Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Image Classification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
El Alimi Sara
Image Classification
Commits
c8a8999c
Commit
c8a8999c
authored
1 year ago
by
selalimi
Browse files
Options
Downloads
Patches
Plain Diff
Add Knn.py
parent
5d5c8a68
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
knn.py
+82
-0
82 additions, 0 deletions
knn.py
with
82 additions
and
0 deletions
knn.py
0 → 100644
+
82
−
0
View file @
c8a8999c
import
numpy
as
np
import
os
import
pickle
import
matplotlib.pyplot
as
plt
import
plotly.graph_objects
as
go
# Commentaire global expliquant le but du code
'''
Here is the code to compute the L2 Euclidean distance matrix and predict labels using k-nearest neighbors:
'''
# Create distance Matrix
'''
Arguments :
-Deux matrices.
Returns :
dists : la matrice de distances euclidiennes L2.
La computation de cette fonction doit être effectuée uniquement avec des manipulations de matrices.
'''
def
distance_matrix
(
X
,
Y
):
XX
=
np
.
sum
(
X
**
2
,
axis
=
1
,
keepdims
=
True
)
YY
=
np
.
sum
(
Y
**
2
,
axis
=
1
,
keepdims
=
True
)
XY
=
X
@
Y
.
T
dists
=
XX
+
YY
.
T
-
2
*
XY
return
dists
# KNN predict
'''
Arguments :
-dists : la matrice de distances entre l
'
ensemble d
'
entraînement et l
'
ensemble de test.
-labels_train : les étiquettes d
'
entraînement.
- k : le nombre de voisins.
Returns :
-Les étiquettes prédites pour les éléments de data_test.
'''
def
knn_predict
(
dists
,
labels_train
,
k
):
n_test
=
dists
.
shape
[
0
]
y_pred
=
np
.
zeros
(
n_test
,
dtype
=
np
.
int64
)
for
i
in
range
(
n_test
):
indices
=
np
.
argsort
(
dists
[
i
])[:
k
]
k_nearest_labels
=
labels_train
[
indices
]
y_pred
[
i
]
=
np
.
argmax
(
np
.
bincount
(
k_nearest_labels
))
return
y_pred
# evaluate_knn
'''
Here is the code to evaluate k-nearest neighbors and plot the accuracy as a function of k:
'''
'''
Arguments :
-data_train : les données d
'
entraînement.
-labels_train : les étiquettes correspondantes.
-data_test : les données de test.
-labels_test : les étiquettes correspondantes.
-k : le nombre de voisins.
Returns :
-La précision du modèle Knn : le taux de classification entre les valeurs prédites et les observations
réelles des données de test.
'''
def
evaluate_knn
(
data_train
,
labels_train
,
data_test
,
labels_test
,
k
):
dists
=
distance_matrix
(
data_test
,
data_train
)
y_pred
=
knn_predict
(
dists
,
labels_train
,
k
)
accuracy
=
np
.
mean
(
y_pred
==
labels_test
)
return
accuracy
# Plot Accuracy of KNN model
'''
******La fonction trace la variation de la précision en fonction du nombre de voisins K****
Arguments :
-X_train : données d
'
entraînement
-y_train : étiquettes d
'
entraînement
-X_test : données de test
-y_test : étiquettes de test
'''
def
plot_KNN
(
X_train
,
y_train
,
X_test
,
y_test
,
max_k
=
20
):
neighbors
=
np
.
arange
(
1
,
max_k
+
1
)
accuracies
=
[
evaluate_knn
(
X_train
,
y_train
,
X_test
,
y_test
,
k
)
for
k
in
neighbors
]
plt
.
plot
(
neighbors
,
accuracies
,
'
b-o
'
)
plt
.
xlabel
(
'
K
'
)
plt
.
ylabel
(
'
Accuracy
'
)
plt
.
title
(
'
Variation of Accuracy with K
'
)
plt
.
savefig
(
"
Results/knn.png
"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment