Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Image Classification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
El Alimi Sara
Image Classification
Commits
565d9df2
Commit
565d9df2
authored
1 year ago
by
selalimi
Browse files
Options
Downloads
Patches
Plain Diff
Update mlp file
parent
efa3fceb
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
mlp.py
+26
-27
26 additions, 27 deletions
mlp.py
with
26 additions
and
27 deletions
mlp.py
+
26
−
27
View file @
565d9df2
import
numpy
as
np
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
import
plotly.express
as
px
import
plotly.io
as
pio
N
=
30
# number of input data
N
=
30
# number of input data
d_in
=
3
# input dimension
d_in
=
3
# input dimension
d_h
=
3
# number of neurons in the hidden layer
d_h
=
3
# number of neurons in the hidden layer
d_out
=
2
# output dimension (number of neurons of the output layer)
d_out
=
2
# output dimension (number of neurons of the output layer)
learning_rate
=
0.1
# set the learning rate
learning_rate
=
0.1
num_epochs
=
100
num_epochs
=
100
# Random initialization of the network weights and biaises
# Random initialization of the network weights and biaises
...
@@ -70,10 +68,10 @@ def loss_metrics(predictions, targets, metric, status):
...
@@ -70,10 +68,10 @@ def loss_metrics(predictions, targets, metric, status):
- learning_rate: Learning rate for gradient descent.
- learning_rate: Learning rate for gradient descent.
Returns:
Returns:
-
updated_
W1: Updated weight matrix of the first layer.
- W1: Updated weight matrix of the first layer.
-
updated_
b1: Updated bias vector of the first layer.
- b1: Updated bias vector of the first layer.
-
updated_
w2: Updated weight matrix of the second layer.
- w2: Updated weight matrix of the second layer.
-
updated_
b2: Updated bias vector of the second layer.
- b2: Updated bias vector of the second layer.
- loss: Mean Squared Error (MSE) loss for monitoring.
- loss: Mean Squared Error (MSE) loss for monitoring.
"""
"""
...
@@ -95,8 +93,8 @@ def learn_once_mse(W1, b1, W2, b2, data, targets, learning_rate):
...
@@ -95,8 +93,8 @@ def learn_once_mse(W1, b1, W2, b2, data, targets, learning_rate):
output_layer_gradients
=
output_error
*
softmax
(
output_layer_output
,
derivate
=
True
)
output_layer_gradients
=
output_error
*
softmax
(
output_layer_output
,
derivate
=
True
)
# Update weights and biases of the output layer
# Update weights and biases of the output layer
updated_
W2
=
W2
-
learning_rate
*
np
.
dot
(
hidden_layer_output
.
T
,
output_layer_gradients
)
/
data
.
shape
[
0
]
W2
=
W2
-
learning_rate
*
np
.
dot
(
hidden_layer_output
.
T
,
output_layer_gradients
)
/
data
.
shape
[
0
]
updated_
b2
=
b2
-
learning_rate
*
(
1
/
hidden_layer_output
.
shape
[
1
])
*
output_layer_gradients
.
sum
(
axis
=
0
,
keepdims
=
True
)
b2
=
b2
-
learning_rate
*
(
1
/
hidden_layer_output
.
shape
[
1
])
*
output_layer_gradients
.
sum
(
axis
=
0
,
keepdims
=
True
)
# Calculate the error at the hidden layer
# Calculate the error at the hidden layer
hidden_layer_error
=
np
.
dot
(
output_layer_gradients
,
W2
.
T
)
hidden_layer_error
=
np
.
dot
(
output_layer_gradients
,
W2
.
T
)
...
@@ -105,13 +103,13 @@ def learn_once_mse(W1, b1, W2, b2, data, targets, learning_rate):
...
@@ -105,13 +103,13 @@ def learn_once_mse(W1, b1, W2, b2, data, targets, learning_rate):
hidden_layer_gradients
=
hidden_layer_error
*
sigmoid
(
hidden_layer_output
,
derivate
=
True
)
hidden_layer_gradients
=
hidden_layer_error
*
sigmoid
(
hidden_layer_output
,
derivate
=
True
)
# Update weights and biases of the hidden layer
# Update weights and biases of the hidden layer
updated_
W1
=
W1
-
learning_rate
*
np
.
dot
(
data
.
T
,
hidden_layer_gradients
)
/
data
.
shape
[
0
]
W1
=
W1
-
learning_rate
*
np
.
dot
(
data
.
T
,
hidden_layer_gradients
)
/
data
.
shape
[
0
]
updated_
b1
=
b1
-
learning_rate
*
(
1
/
data
.
shape
[
1
])
*
hidden_layer_gradients
.
sum
(
axis
=
0
,
keepdims
=
True
)
b1
=
b1
-
learning_rate
*
(
1
/
data
.
shape
[
1
])
*
hidden_layer_gradients
.
sum
(
axis
=
0
,
keepdims
=
True
)
# Calculate the loss using the specified metric
# Calculate the loss using the specified metric
loss
=
loss_metrics
(
output_layer_output
,
targets
,
metric
=
"
MSE
"
,
status
=
"
forward
"
)
loss
=
loss_metrics
(
output_layer_output
,
targets
,
metric
=
"
MSE
"
,
status
=
"
forward
"
)
return
updated_W1
,
updated_b1
,
updated_W2
,
updated_
b2
,
loss
return
W1
,
b1
,
W2
,
b2
,
loss
#One Hot Function :
#One Hot Function :
def
one_hot
(
targets
):
def
one_hot
(
targets
):
...
@@ -136,7 +134,8 @@ def one_hot(targets):
...
@@ -136,7 +134,8 @@ def one_hot(targets):
return
one_hot_matrix
return
one_hot_matrix
#learn_once_cross_entropy
#learn_once_cross_entropy
def
learn_once_binary_cross_entropy
(
W1
,
b1
,
W2
,
b2
,
data
,
targets
,
learning_rate
):
def
learn_once_cross_entropy
(
W1
,
b1
,
W2
,
b2
,
data
,
targets
,
learning_rate
):
"""
"""
Perform one gradient descent step using binary cross-entropy loss.
Perform one gradient descent step using binary cross-entropy loss.
...
@@ -145,7 +144,6 @@ def learn_once_binary_cross_entropy(W1, b1, W2, b2, data, targets, learning_rate
...
@@ -145,7 +144,6 @@ def learn_once_binary_cross_entropy(W1, b1, W2, b2, data, targets, learning_rate
- data: Input data matrix of shape (batch_size x d_in).
- data: Input data matrix of shape (batch_size x d_in).
- targets: Target output matrix of shape (batch_size x d_out).
- targets: Target output matrix of shape (batch_size x d_out).
- learning_rate: Learning rate for gradient descent.
- learning_rate: Learning rate for gradient descent.
- metrics: Specifies the loss metric (default is Binary Cross Entropy).
Returns:
Returns:
- Updated weights and biases (W1, b1, W2, b2) of the network.
- Updated weights and biases (W1, b1, W2, b2) of the network.
...
@@ -154,24 +152,24 @@ def learn_once_binary_cross_entropy(W1, b1, W2, b2, data, targets, learning_rate
...
@@ -154,24 +152,24 @@ def learn_once_binary_cross_entropy(W1, b1, W2, b2, data, targets, learning_rate
# Forward pass
# Forward pass
# Implement feedforward propagation on the hidden layer
# Implement feedforward propagation on the hidden layer
Z1
=
np
.
matmul
(
data
,
W1
)
+
b1
hidden_layer_input
=
np
.
matmul
(
data
,
W1
)
+
b1
A1
=
sigmoid
(
Z1
,
derivate
=
False
)
# Apply the Sigmoid activation function
hidden_layer_output
=
sigmoid
(
hidden_layer_input
,
derivate
=
False
)
# Apply the Sigmoid activation function
# Implement feedforward propagation on the output layer
# Implement feedforward propagation on the output layer
Z2
=
np
.
matmul
(
A1
,
W2
)
+
b2
output_layer_input
=
np
.
matmul
(
hidden_layer_output
,
W2
)
+
b2
A2
=
softmax
(
Z2
,
derivate
=
False
)
# Apply the Softmax activation function
output_layer_output
=
softmax
(
output_layer_input
,
derivate
=
False
)
# Apply the Softmax activation function
# Backpropagation phase
# Backpropagation phase
# Updating W2 and b2
# Updating W2 and b2
E2
=
A2
-
targets
output_error
=
output_layer_output
-
targets
dW2
=
E2
*
softmax
(
A2
,
derivate
=
True
)
dW2
=
output_error
*
softmax
(
output_layer_output
,
derivate
=
True
)
W2_update
=
np
.
dot
(
A1
.
T
,
dW2
)
/
N
W2_update
=
np
.
dot
(
hidden_layer_output
.
T
,
dW2
)
/
data
.
shape
[
0
]
update_b2
=
(
1
/
A1
.
shape
[
1
])
*
dW2
.
sum
(
axis
=
0
,
keepdims
=
True
)
update_b2
=
(
1
/
hidden_layer_output
.
shape
[
1
])
*
dW2
.
sum
(
axis
=
0
,
keepdims
=
True
)
# Updating W1 and b1
# Updating W1 and b1
E1
=
np
.
dot
(
dW2
,
W2
.
T
)
hidden_layer_error
=
np
.
dot
(
dW2
,
W2
.
T
)
dW1
=
E1
*
sigmoid
(
A1
,
derivate
=
True
)
dW1
=
hidden_layer_error
*
sigmoid
(
hidden_layer_output
,
derivate
=
True
)
W1_update
=
np
.
dot
(
data
.
T
,
dW1
)
/
N
W1_update
=
np
.
dot
(
data
.
T
,
dW1
)
/
data
.
shape
[
0
]
update_b1
=
(
1
/
data
.
shape
[
1
])
*
dW1
.
sum
(
axis
=
0
,
keepdims
=
True
)
update_b1
=
(
1
/
data
.
shape
[
1
])
*
dW1
.
sum
(
axis
=
0
,
keepdims
=
True
)
# Gradient descent
# Gradient descent
...
@@ -181,10 +179,11 @@ def learn_once_binary_cross_entropy(W1, b1, W2, b2, data, targets, learning_rate
...
@@ -181,10 +179,11 @@ def learn_once_binary_cross_entropy(W1, b1, W2, b2, data, targets, learning_rate
b1
=
b1
-
learning_rate
*
update_b1
b1
=
b1
-
learning_rate
*
update_b1
# Compute loss (Binary Cross Entropy)
# Compute loss (Binary Cross Entropy)
loss
=
loss_metrics
(
A2
,
targets
,
metric
=
"
BCE
"
,
status
=
"
forward
"
)
loss
=
loss_metrics
(
output_layer_output
,
targets
,
metric
=
"
BCE
"
,
status
=
"
forward
"
)
return
W1
,
b1
,
W2
,
b2
,
loss
return
W1
,
b1
,
W2
,
b2
,
loss
def
calculate_accuracy
(
predictions
,
actual_values
):
def
calculate_accuracy
(
predictions
,
actual_values
):
"""
"""
calculate_accuracy: Compute the accuracy of the model.
calculate_accuracy: Compute the accuracy of the model.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment