Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Image Classification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
El Alimi Sara
Image Classification
Commits
385f8348
Commit
385f8348
authored
1 year ago
by
selalimi
Browse files
Options
Downloads
Patches
Plain Diff
Add mlp.py
parent
54bf1931
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
mlp.py
+353
-0
353 additions, 0 deletions
mlp.py
with
353 additions
and
0 deletions
mlp.py
0 → 100644
+
353
−
0
View file @
385f8348
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
plotly.express
as
px
import
plotly.io
as
pio
N
=
30
# number of input data
d_in
=
3
# input dimension
d_h
=
3
# number of neurons in the hidden layer
d_out
=
2
# output dimension (number of neurons of the output layer)
learning_rate
=
0.1
# set the learning rate
num_epochs
=
100
# Random initialization of the network weights and biaises
def
initialization
(
d_in
,
d_h
,
d_out
):
np
.
random
.
seed
(
10
)
# To get the same random values
W1
=
2
*
np
.
random
.
rand
(
d_in
,
d_h
)
-
1
# first layer weights
b1
=
np
.
zeros
((
1
,
d_h
))
# first layer biaises
W2
=
2
*
np
.
random
.
rand
(
d_h
,
d_out
)
-
1
# second layer weights
b2
=
np
.
zeros
((
1
,
d_out
))
# second layer biaises
return
W1
,
b1
,
W2
,
b2
data
=
np
.
random
.
rand
(
N
,
d_in
)
# create a random data
targets
=
np
.
random
.
rand
(
N
,
d_out
)
# create a random targets
# Define the sigmoid activation function
def
sigmoid
(
x
,
derivate
):
if
derivate
==
False
:
return
1
/
(
1
+
np
.
exp
(
-
x
))
else
:
return
x
*
(
1
-
x
)
# Define the softmax activation function
def
softmax
(
x
,
derivate
):
if
derivate
==
False
:
return
np
.
exp
(
x
)
/
np
.
exp
(
np
.
array
(
x
)).
sum
(
axis
=-
1
,
keepdims
=
True
)
else
:
return
x
*
(
1
-
x
)
#Definir les métriques :
def
loss_metrics
(
predictions
,
targets
,
metric
,
status
):
if
metric
==
"
MSE
"
:
if
status
==
"
forward
"
:
return
np
.
mean
((
predictions
-
targets
)
**
2
)
elif
status
==
"
backward
"
:
return
2
*
(
predictions
-
targets
)
/
len
(
predictions
)
# Gradient of MSE loss
elif
metric
==
"
BCE
"
:
# Binary Cross-Entropy Loss
epsilon
=
1e-15
# Small constant to prevent log(0)
predictions
=
np
.
clip
(
predictions
,
epsilon
,
1
-
epsilon
)
if
status
==
"
forward
"
:
return
-
(
targets
*
np
.
log
(
predictions
)
+
(
1
-
targets
)
*
np
.
log
(
1
-
predictions
)).
mean
()
elif
status
==
"
backward
"
:
return
(
predictions
-
targets
)
/
((
1
-
predictions
)
*
predictions
)
# Gradient of BCE loss
else
:
raise
ValueError
(
"
Metric not supported:
"
+
metric
)
# learn_once_mse
"""
Update the weights and biases of the network for one gradient descent step using Mean Squared Error (MSE) loss.
Parameters:
- w1: Weight matrix of the first layer (shape: d_in x d_h).
- b1: Bias vector of the first layer (shape: 1 x d_h).
- w2: Weight matrix of the second layer (shape: d_h x d_out).
- b2: Bias vector of the second layer (shape: 1 x d_out).
- data: Input data matrix (shape: batch_size x d_in).
- targets: Target output matrix (shape: batch_size x d_out).
- learning_rate: Learning rate for gradient descent.
Returns:
- updated_W1: Updated weight matrix of the first layer.
- updated_b1: Updated bias vector of the first layer.
- updated_w2: Updated weight matrix of the second layer.
- updated_b2: Updated bias vector of the second layer.
- loss: Mean Squared Error (MSE) loss for monitoring.
"""
def
learn_once_mse
(
W1
,
b1
,
W2
,
b2
,
data
,
targets
,
learning_rate
):
# Forward pass
# Calculate the input and output of the hidden layer
hidden_layer_input
=
np
.
matmul
(
data
,
W1
)
+
b1
hidden_layer_output
=
sigmoid
(
hidden_layer_input
,
derivate
=
False
)
# Apply the sigmoid activation
# Calculate the input and output of the output layer
output_layer_input
=
np
.
matmul
(
hidden_layer_output
,
W2
)
+
b2
output_layer_output
=
softmax
(
output_layer_input
,
derivate
=
False
)
# Apply the softmax activation
# Backpropagation phase
# Calculate the error at the output layer
output_error
=
output_layer_output
-
targets
# Calculate gradients for the output layer
output_layer_gradients
=
output_error
*
softmax
(
output_layer_output
,
derivate
=
True
)
# Update weights and biases of the output layer
updated_W2
=
W2
-
learning_rate
*
np
.
dot
(
hidden_layer_output
.
T
,
output_layer_gradients
)
/
data
.
shape
[
0
]
updated_b2
=
b2
-
learning_rate
*
(
1
/
hidden_layer_output
.
shape
[
1
])
*
output_layer_gradients
.
sum
(
axis
=
0
,
keepdims
=
True
)
# Calculate the error at the hidden layer
hidden_layer_error
=
np
.
dot
(
output_layer_gradients
,
W2
.
T
)
# Calculate gradients for the hidden layer
hidden_layer_gradients
=
hidden_layer_error
*
sigmoid
(
hidden_layer_output
,
derivate
=
True
)
# Update weights and biases of the hidden layer
updated_W1
=
W1
-
learning_rate
*
np
.
dot
(
data
.
T
,
hidden_layer_gradients
)
/
data
.
shape
[
0
]
updated_b1
=
b1
-
learning_rate
*
(
1
/
data
.
shape
[
1
])
*
hidden_layer_gradients
.
sum
(
axis
=
0
,
keepdims
=
True
)
# Calculate the loss using the specified metric
loss
=
loss_metrics
(
output_layer_output
,
targets
,
metric
=
"
MSE
"
,
status
=
"
forward
"
)
return
updated_W1
,
updated_b1
,
updated_W2
,
updated_b2
,
loss
#One Hot Function :
def
one_hot
(
targets
):
"""
one_hot_encode takes an arrayy of target values and returns the corresponding one-hot encoded matrix.
Parameters:
- targets: An arrayy of target values.
Returns:
- one_hot_matrix: A one-hot encoded matrix where each row corresponds to a target value.
"""
num_classes
=
np
.
unique
(
targets
).
shape
[
0
]
# Determine the number of unique classes in the target arrayy
num_samples
=
targets
.
shape
[
0
]
# Get the number of samples in the target arrayy
one_hot_matrix
=
np
.
zeros
((
num_samples
,
num_classes
))
# Initialize a matrix of zeros
for
i
in
range
(
num_samples
):
target_class
=
targets
[
i
]
one_hot_matrix
[
i
,
target_class
]
=
1
# Set the corresponding class index to 1
return
one_hot_matrix
#learn_once_cross_entropy
def
learn_once_binary_cross_entropy
(
W1
,
b1
,
W2
,
b2
,
data
,
targets
,
learning_rate
):
"""
Perform one gradient descent step using binary cross-entropy loss.
Parameters:
- W1, b1, W2, b2: Weights and biases of the network.
- data: Input data matrix of shape (batch_size x d_in).
- targets: Target output matrix of shape (batch_size x d_out).
- learning_rate: Learning rate for gradient descent.
- metrics: Specifies the loss metric (default is Binary Cross Entropy).
Returns:
- Updated weights and biases (W1, b1, W2, b2) of the network.
- Loss value for monitoring.
"""
# Forward pass
# Implement feedforward propagation on the hidden layer
Z1
=
np
.
matmul
(
data
,
W1
)
+
b1
A1
=
sigmoid
(
Z1
,
derivate
=
False
)
# Apply the Sigmoid activation function
# Implement feedforward propagation on the output layer
Z2
=
np
.
matmul
(
A1
,
W2
)
+
b2
A2
=
softmax
(
Z2
,
derivate
=
False
)
# Apply the Softmax activation function
# Backpropagation phase
# Updating W2 and b2
E2
=
A2
-
targets
dW2
=
E2
*
softmax
(
A2
,
derivate
=
True
)
W2_update
=
np
.
dot
(
A1
.
T
,
dW2
)
/
N
update_b2
=
(
1
/
A1
.
shape
[
1
])
*
dW2
.
sum
(
axis
=
0
,
keepdims
=
True
)
# Updating W1 and b1
E1
=
np
.
dot
(
dW2
,
W2
.
T
)
dW1
=
E1
*
sigmoid
(
A1
,
derivate
=
True
)
W1_update
=
np
.
dot
(
data
.
T
,
dW1
)
/
N
update_b1
=
(
1
/
data
.
shape
[
1
])
*
dW1
.
sum
(
axis
=
0
,
keepdims
=
True
)
# Gradient descent
W2
=
W2
-
learning_rate
*
W2_update
W1
=
W1
-
learning_rate
*
W1_update
b2
=
b2
-
learning_rate
*
update_b2
b1
=
b1
-
learning_rate
*
update_b1
# Compute loss (Binary Cross Entropy)
loss
=
loss_metrics
(
A2
,
targets
,
metric
=
"
BCE
"
,
status
=
"
forward
"
)
return
W1
,
b1
,
W2
,
b2
,
loss
def
calculate_accuracy
(
predictions
,
actual_values
):
"""
calculate_accuracy: Compute the accuracy of the model.
Parameters:
- predictions: Predicted values.
- actual_values: Ground truth observations.
Returns:
- Accuracy as a float.
"""
correct_predictions
=
predictions
.
argmax
(
axis
=
1
)
==
actual_values
.
argmax
(
axis
=
1
)
accuracy
=
correct_predictions
.
mean
()
return
accuracy
def
train_mlp
(
W1
,
b1
,
W2
,
b2
,
data
,
targets
,
learning_rate
):
"""
Perform training steps for a specified number of epochs.
Parameters:
- W1, b1, W2, b2: Weights and biases of the network.
- data: Input data matrix of shape (batch_size x d_in).
- targets: Target output matrix of shape (batch_size x d_out).
- learning_rate: Learning rate for gradient descent.
- num_epochs: Number of training epochs.
- metrics: Specifies the loss metric (default is Binary Cross Entropy).
Returns:
- Updated weights and biases (W1, b1, W2, b2) of the network.
- List of training accuracies across epochs as a list of floats.
"""
# Forward pass
hidden_layer_input
=
np
.
matmul
(
data
,
W1
)
+
b1
hidden_layer_output
=
sigmoid
(
hidden_layer_input
,
derivate
=
False
)
output_layer_input
=
np
.
matmul
(
hidden_layer_output
,
W2
)
+
b2
output_layer_output
=
softmax
(
output_layer_input
,
derivate
=
False
)
N
=
data
.
shape
[
0
]
# Backpropagation phase
output_error
=
output_layer_output
-
targets
output_layer_gradients
=
output_error
*
softmax
(
output_layer_output
,
derivate
=
True
)
W2_update
=
np
.
dot
(
hidden_layer_output
.
T
,
output_layer_gradients
)
/
N
update_b2
=
(
1
/
hidden_layer_output
.
shape
[
1
])
*
output_layer_gradients
.
sum
(
axis
=
0
,
keepdims
=
True
)
hidden_layer_error
=
np
.
dot
(
output_layer_gradients
,
W2
.
T
)
hidden_layer_gradients
=
hidden_layer_error
*
sigmoid
(
hidden_layer_output
,
derivate
=
True
)
W1_update
=
np
.
dot
(
data
.
T
,
hidden_layer_gradients
)
/
N
update_b1
=
(
1
/
data
.
shape
[
1
])
*
hidden_layer_gradients
.
sum
(
axis
=
0
,
keepdims
=
True
)
# Gradient descent
W2
=
W2
-
learning_rate
*
W2_update
W1
=
W1
-
learning_rate
*
W1_update
b2
=
b2
-
learning_rate
*
update_b2
b1
=
b1
-
learning_rate
*
update_b1
# Calculate loss and accuracy
loss
=
loss_metrics
(
output_layer_output
,
targets
,
metric
=
"
BCE
"
,
status
=
"
forward
"
)
train_accuracies
=
calculate_accuracy
(
output_layer_output
,
targets
)
return
W1
,
b1
,
W2
,
b2
,
loss
,
train_accuracies
def
test_mlp
(
W1
,
b1
,
W2
,
b2
,
data_test
,
labels_test
):
"""
Evaluate the network
'
s performance on the test set.
Parameters:
- W1, b1, W2, b2: Weights and biases of the network.
- data_test: Test data matrix of shape (batch_size x d_in).
- labels_test: True labels for the test data.
Returns:
- test_accuracy: The testing accuracy as a float.
"""
# Forward pass
hidden_layer_input
=
np
.
matmul
(
data_test
,
W1
)
+
b1
hidden_layer_output
=
sigmoid
(
hidden_layer_input
,
derivate
=
False
)
output_layer_input
=
np
.
matmul
(
hidden_layer_output
,
W2
)
+
b2
output_layer_output
=
softmax
(
output_layer_input
,
derivate
=
False
)
# Compute testing accuracy
test_accuracy
=
calculate_accuracy
(
output_layer_output
,
labels_test
)
return
test_accuracy
def
run_mlp_training
(
X_train
,
labels_train
,
data_test
,
labels_test
,
num_hidden_units
,
learning_rate
,
num_epochs
):
"""
Train an MLP classifier and evaluate its performance.
Parameters:
- X_train: Training data matrix of shape (batch_size x input_dimension).
- labels_train: True labels for the training data.
- data_test: Test data matrix of shape (batch_size x input_dimension).
- labels_test: True labels for the test data.
- num_hidden_units: Number of neurons in the hidden layer.
- learning_rate: The learning rate for gradient descent.
- num_epochs: The number of training epochs.
Returns:
- train_accuracies: List of training accuracies across epochs.
- test_accuracy: The final testing accuracy.
"""
input_dimension
=
X_train
.
shape
[
1
]
output_dimension
=
np
.
unique
(
labels_train
).
shape
[
0
]
# Number of classes
# Initialize weights and biases
W1
,
b1
,
W2
,
b2
=
initialization
(
input_dimension
,
num_hidden_units
,
output_dimension
)
train_accuracies
=
[]
# List to store training accuracies
# Training loop
for
epoch
in
range
(
num_epochs
):
W1
,
b1
,
W2
,
b2
,
loss
,
train_accuracy
=
train_mlp
(
W1
,
b1
,
W2
,
b2
,
X_train
,
one_hot
(
labels_train
),
learning_rate
)
test_accuracy
=
test_mlp
(
W1
,
b1
,
W2
,
b2
,
data_test
,
one_hot
(
labels_test
))
train_accuracies
.
append
(
train_accuracy
)
print
(
"
Epoch {}/{}
"
.
format
(
epoch
+
1
,
num_epochs
))
print
(
"
Train Accuracy: {:.6f} Test Accuracy: {:.6f}
"
.
format
(
round
(
train_accuracy
,
6
),
round
(
test_accuracy
,
6
)))
return
train_accuracies
,
test_accuracy
# plot_ANN
import
matplotlib.pyplot
as
plt
def
plot_ANN
(
X_train
,
y_train
,
X_test
,
y_test
):
"""
Plot the variation of accuracy in terms of the number of epochs.
Parameters:
- X_train: Training data matrix.
- y_train: True labels for the training data.
- X_test: Test data matrix.
- y_test: True labels for the test data.
"""
# Train an MLP and obtain training accuracies and final test accuracy
train_accuracies
,
test_accuracy
=
run_mlp_training
(
X_train
,
y_train
,
X_test
,
y_test
,
num_hidden_units
=
64
,
learning_rate
=
0.1
,
num_epochs
=
100
)
# Display the test accuracy
print
(
"
Test Set Accuracy: {}
"
.
format
(
test_accuracy
))
# Create a Matplotlib plot
plt
.
plot
(
list
(
range
(
1
,
len
(
train_accuracies
)
+
1
)),
train_accuracies
)
plt
.
title
(
'
Accuracy Variation Over Epochs
'
)
plt
.
xlabel
(
'
Epoch
'
)
plt
.
ylabel
(
'
Accuracy
'
)
# Save the figure (optional)
plt
.
savefig
(
"
Results/mlp.png
"
)
# Show the plot (optional)
plt
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment