Skip to content
Snippets Groups Projects
Commit 385f8348 authored by selalimi's avatar selalimi
Browse files

Add mlp.py

parent 54bf1931
No related branches found
No related tags found
No related merge requests found
mlp.py 0 → 100644
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.io as pio
N = 30 # number of input data
d_in = 3 # input dimension
d_h = 3 # number of neurons in the hidden layer
d_out = 2 # output dimension (number of neurons of the output layer)
learning_rate = 0.1 # set the learning rate
num_epochs=100
# Random initialization of the network weights and biaises
def initialization(d_in,d_h,d_out):
np.random.seed(10) # To get the same random values
W1 = 2 * np.random.rand(d_in, d_h) - 1 # first layer weights
b1 = np.zeros((1, d_h)) # first layer biaises
W2 = 2 * np.random.rand(d_h, d_out) - 1 # second layer weights
b2 = np.zeros((1, d_out)) # second layer biaises
return W1,b1,W2,b2
data = np.random.rand(N, d_in) # create a random data
targets = np.random.rand(N, d_out) # create a random targets
# Define the sigmoid activation function
def sigmoid(x,derivate):
if derivate==False:
return 1 / (1 + np.exp(-x))
else:
return x*(1-x)
# Define the softmax activation function
def softmax(x,derivate):
if derivate == False :
return np.exp(x) / np.exp(np.array(x)).sum(axis=-1, keepdims=True)
else :
return x*(1-x)
#Definir les métriques :
def loss_metrics(predictions, targets, metric, status):
if metric == "MSE":
if status == "forward":
return np.mean((predictions - targets) ** 2)
elif status == "backward":
return 2 * (predictions - targets) / len(predictions) # Gradient of MSE loss
elif metric == "BCE":
# Binary Cross-Entropy Loss
epsilon = 1e-15 # Small constant to prevent log(0)
predictions = np.clip(predictions, epsilon, 1 - epsilon)
if status == "forward":
return - (targets * np.log(predictions) + (1 - targets) * np.log(1 - predictions)).mean()
elif status == "backward":
return (predictions - targets) / ((1 - predictions) * predictions) # Gradient of BCE loss
else:
raise ValueError("Metric not supported: " + metric)
# learn_once_mse
"""
Update the weights and biases of the network for one gradient descent step using Mean Squared Error (MSE) loss.
Parameters:
- w1: Weight matrix of the first layer (shape: d_in x d_h).
- b1: Bias vector of the first layer (shape: 1 x d_h).
- w2: Weight matrix of the second layer (shape: d_h x d_out).
- b2: Bias vector of the second layer (shape: 1 x d_out).
- data: Input data matrix (shape: batch_size x d_in).
- targets: Target output matrix (shape: batch_size x d_out).
- learning_rate: Learning rate for gradient descent.
Returns:
- updated_W1: Updated weight matrix of the first layer.
- updated_b1: Updated bias vector of the first layer.
- updated_w2: Updated weight matrix of the second layer.
- updated_b2: Updated bias vector of the second layer.
- loss: Mean Squared Error (MSE) loss for monitoring.
"""
def learn_once_mse(W1, b1, W2, b2, data, targets, learning_rate):
# Forward pass
# Calculate the input and output of the hidden layer
hidden_layer_input = np.matmul(data, W1) + b1
hidden_layer_output = sigmoid(hidden_layer_input, derivate=False) # Apply the sigmoid activation
# Calculate the input and output of the output layer
output_layer_input = np.matmul(hidden_layer_output, W2) + b2
output_layer_output = softmax(output_layer_input, derivate=False) # Apply the softmax activation
# Backpropagation phase
# Calculate the error at the output layer
output_error = output_layer_output - targets
# Calculate gradients for the output layer
output_layer_gradients = output_error * softmax(output_layer_output, derivate=True)
# Update weights and biases of the output layer
updated_W2 = W2 - learning_rate * np.dot(hidden_layer_output.T, output_layer_gradients) / data.shape[0]
updated_b2 = b2 - learning_rate * (1 / hidden_layer_output.shape[1]) * output_layer_gradients.sum(axis=0, keepdims=True)
# Calculate the error at the hidden layer
hidden_layer_error = np.dot(output_layer_gradients, W2.T)
# Calculate gradients for the hidden layer
hidden_layer_gradients = hidden_layer_error * sigmoid(hidden_layer_output, derivate=True)
# Update weights and biases of the hidden layer
updated_W1 = W1 - learning_rate * np.dot(data.T, hidden_layer_gradients) / data.shape[0]
updated_b1 = b1 - learning_rate * (1 / data.shape[1]) * hidden_layer_gradients.sum(axis=0, keepdims=True)
# Calculate the loss using the specified metric
loss = loss_metrics(output_layer_output, targets,metric="MSE",status="forward")
return updated_W1, updated_b1, updated_W2, updated_b2, loss
#One Hot Function :
def one_hot(targets):
"""
one_hot_encode takes an arrayy of target values and returns the corresponding one-hot encoded matrix.
Parameters:
- targets: An arrayy of target values.
Returns:
- one_hot_matrix: A one-hot encoded matrix where each row corresponds to a target value.
"""
num_classes = np.unique(targets).shape[0] # Determine the number of unique classes in the target arrayy
num_samples = targets.shape[0] # Get the number of samples in the target arrayy
one_hot_matrix = np.zeros((num_samples, num_classes)) # Initialize a matrix of zeros
for i in range(num_samples):
target_class = targets[i]
one_hot_matrix[i, target_class] = 1 # Set the corresponding class index to 1
return one_hot_matrix
#learn_once_cross_entropy
def learn_once_binary_cross_entropy(W1, b1, W2, b2, data, targets, learning_rate):
"""
Perform one gradient descent step using binary cross-entropy loss.
Parameters:
- W1, b1, W2, b2: Weights and biases of the network.
- data: Input data matrix of shape (batch_size x d_in).
- targets: Target output matrix of shape (batch_size x d_out).
- learning_rate: Learning rate for gradient descent.
- metrics: Specifies the loss metric (default is Binary Cross Entropy).
Returns:
- Updated weights and biases (W1, b1, W2, b2) of the network.
- Loss value for monitoring.
"""
# Forward pass
# Implement feedforward propagation on the hidden layer
Z1 = np.matmul(data, W1) + b1
A1 = sigmoid(Z1, derivate=False) # Apply the Sigmoid activation function
# Implement feedforward propagation on the output layer
Z2 = np.matmul(A1, W2) + b2
A2 = softmax(Z2, derivate=False) # Apply the Softmax activation function
# Backpropagation phase
# Updating W2 and b2
E2 = A2 - targets
dW2 = E2 * softmax(A2, derivate=True)
W2_update = np.dot(A1.T, dW2) / N
update_b2 = (1 / A1.shape[1]) * dW2.sum(axis=0, keepdims=True)
# Updating W1 and b1
E1 = np.dot(dW2, W2.T)
dW1 = E1 * sigmoid(A1, derivate=True)
W1_update = np.dot(data.T, dW1) / N
update_b1 = (1 / data.shape[1]) * dW1.sum(axis=0, keepdims=True)
# Gradient descent
W2 = W2 - learning_rate * W2_update
W1 = W1 - learning_rate * W1_update
b2 = b2 - learning_rate * update_b2
b1 = b1 - learning_rate * update_b1
# Compute loss (Binary Cross Entropy)
loss = loss_metrics(A2, targets,metric="BCE", status="forward")
return W1, b1, W2, b2, loss
def calculate_accuracy(predictions, actual_values):
"""
calculate_accuracy: Compute the accuracy of the model.
Parameters:
- predictions: Predicted values.
- actual_values: Ground truth observations.
Returns:
- Accuracy as a float.
"""
correct_predictions = predictions.argmax(axis=1) == actual_values.argmax(axis=1)
accuracy = correct_predictions.mean()
return accuracy
def train_mlp(W1, b1, W2, b2, data, targets, learning_rate):
"""
Perform training steps for a specified number of epochs.
Parameters:
- W1, b1, W2, b2: Weights and biases of the network.
- data: Input data matrix of shape (batch_size x d_in).
- targets: Target output matrix of shape (batch_size x d_out).
- learning_rate: Learning rate for gradient descent.
- num_epochs: Number of training epochs.
- metrics: Specifies the loss metric (default is Binary Cross Entropy).
Returns:
- Updated weights and biases (W1, b1, W2, b2) of the network.
- List of training accuracies across epochs as a list of floats.
"""
# Forward pass
hidden_layer_input = np.matmul(data, W1) + b1
hidden_layer_output = sigmoid(hidden_layer_input, derivate=False)
output_layer_input = np.matmul(hidden_layer_output, W2) + b2
output_layer_output = softmax(output_layer_input, derivate=False)
N = data.shape[0]
# Backpropagation phase
output_error = output_layer_output - targets
output_layer_gradients = output_error * softmax(output_layer_output, derivate=True)
W2_update = np.dot(hidden_layer_output.T, output_layer_gradients) / N
update_b2 = (1 / hidden_layer_output.shape[1]) * output_layer_gradients.sum(axis=0, keepdims=True)
hidden_layer_error = np.dot(output_layer_gradients, W2.T)
hidden_layer_gradients = hidden_layer_error * sigmoid(hidden_layer_output, derivate=True)
W1_update = np.dot(data.T, hidden_layer_gradients) / N
update_b1 = (1 / data.shape[1]) * hidden_layer_gradients.sum(axis=0, keepdims=True)
# Gradient descent
W2 = W2 - learning_rate * W2_update
W1 = W1 - learning_rate * W1_update
b2 = b2 - learning_rate * update_b2
b1 = b1 - learning_rate * update_b1
# Calculate loss and accuracy
loss = loss_metrics(output_layer_output, targets,metric="BCE",status="forward")
train_accuracies=calculate_accuracy(output_layer_output, targets)
return W1, b1, W2, b2, loss, train_accuracies
def test_mlp(W1, b1, W2, b2, data_test, labels_test):
"""
Evaluate the network's performance on the test set.
Parameters:
- W1, b1, W2, b2: Weights and biases of the network.
- data_test: Test data matrix of shape (batch_size x d_in).
- labels_test: True labels for the test data.
Returns:
- test_accuracy: The testing accuracy as a float.
"""
# Forward pass
hidden_layer_input = np.matmul(data_test, W1) + b1
hidden_layer_output = sigmoid(hidden_layer_input, derivate=False)
output_layer_input = np.matmul(hidden_layer_output, W2) + b2
output_layer_output = softmax(output_layer_input, derivate=False)
# Compute testing accuracy
test_accuracy = calculate_accuracy(output_layer_output, labels_test)
return test_accuracy
def run_mlp_training(X_train, labels_train, data_test, labels_test, num_hidden_units, learning_rate, num_epochs):
"""
Train an MLP classifier and evaluate its performance.
Parameters:
- X_train: Training data matrix of shape (batch_size x input_dimension).
- labels_train: True labels for the training data.
- data_test: Test data matrix of shape (batch_size x input_dimension).
- labels_test: True labels for the test data.
- num_hidden_units: Number of neurons in the hidden layer.
- learning_rate: The learning rate for gradient descent.
- num_epochs: The number of training epochs.
Returns:
- train_accuracies: List of training accuracies across epochs.
- test_accuracy: The final testing accuracy.
"""
input_dimension = X_train.shape[1]
output_dimension = np.unique(labels_train).shape[0] # Number of classes
# Initialize weights and biases
W1, b1, W2, b2 = initialization(input_dimension, num_hidden_units, output_dimension)
train_accuracies = [] # List to store training accuracies
# Training loop
for epoch in range(num_epochs):
W1, b1, W2, b2, loss, train_accuracy = train_mlp(W1, b1, W2, b2, X_train, one_hot(labels_train), learning_rate)
test_accuracy = test_mlp(W1, b1, W2, b2, data_test, one_hot(labels_test))
train_accuracies.append(train_accuracy)
print("Epoch {}/{}".format(epoch + 1, num_epochs))
print("Train Accuracy: {:.6f} Test Accuracy: {:.6f}".format(round(train_accuracy, 6), round(test_accuracy, 6)))
return train_accuracies, test_accuracy
# plot_ANN
import matplotlib.pyplot as plt
def plot_ANN(X_train, y_train, X_test, y_test):
"""
Plot the variation of accuracy in terms of the number of epochs.
Parameters:
- X_train: Training data matrix.
- y_train: True labels for the training data.
- X_test: Test data matrix.
- y_test: True labels for the test data.
"""
# Train an MLP and obtain training accuracies and final test accuracy
train_accuracies, test_accuracy = run_mlp_training(X_train, y_train, X_test, y_test, num_hidden_units=64, learning_rate=0.1, num_epochs=100)
# Display the test accuracy
print("Test Set Accuracy: {}".format(test_accuracy))
# Create a Matplotlib plot
plt.plot(list(range(1, len(train_accuracies) + 1)), train_accuracies)
plt.title('Accuracy Variation Over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
# Save the figure (optional)
plt.savefig("Results/mlp.png")
# Show the plot (optional)
plt.show()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment