fix test glouton
Compare changes
- Schneider Leo authored
+ 1
− 1
Le problème de rendu de monnaie est très fréquent dans la vie de tous les jours et peut être défini comme suit : étant donné un montant, une machine capable de rendre la monnaie doit rendre ce montant au client à partir de pièces (1c, 2€, etc.) et de billets (10€, 50€, etc.). On suppose pour simplifier qu'il n'y a que des pièces en centimes; un billet de 5€ sera représenté comme une pièce de 500 centimes. On suppose également (dans un premier temps) qu'il existe un nombre suffisant (autant que nécessaire) de chaque pièce, mais dans un second temps nous introduirons des contraintes de disponibilité des pièces.
De manière plus formelle, un stock de pièces est un tuple $S=(v_1, v_2, ..., v_n)$ où l'entier $v_i > 0$ est la valeur de la $i^{ème}$ pièce. Pour refléter le fait qu'on a des pièces de 1, 2 et 5c, $S$ contiendra $v_1=1$ (1 centime), $v_2=2, v_3=5$. Le problème de monnaie est un problème d'optimisation combinatoire $(S,M)$ permettant de trouver le tuple $T=(x_1, x_2, ..., x_n)$ avec $x_i \geq 0$ qui minimise $ \sum_{i=1}^n x_i$ sous la contrainte $\sum_{i=1}^n x_i.v_i=M$. Autrement dit, nous souhaitons aussi bien obtenir le montant exact, que minimiser le nombre total de pièces $x_i$ de valeur $v_i$ utilisées. Appelons $Q(S,M) = \sum_{i=1}^n x_i$ la quantité de pièces à rendre pour le montant *M* étant donné le système *S* décrit dans la Table~1. Une solution optimale $Q_{opt}$ à ce problème est telle que *Q(S,M)* soit minimale :
Dans certaines situations il faudra gérer le nombre de pièces/billets disponibles (la table *D*). Nous noterons *d[i]=k* pour dire : il y a *k* pièces/billets du montant *$v_i$* disponibles (pièces ou billets du montant *v[i]*) à l'indice *i* dans la table *S*. On supposera cependant dans un premier temps qu'il y a un nombre suffisant de chaque pièce/billet dans le tableau S. On supposera également que *S* est ordonné dans un ordre croissant.
L'exemple de la Table 1 est un système *canonique*, c'est à dire qu'en choisissant systématiquement les pièces de plus grande valeur (algorithme glouton) on obtient toujours la solution optimale. Il existe des systèmes pour lesquels c'est moins simple, par exemple $S=(1,7,23)$. Pour **M = 28**, en choisissant en priorité les pièces de plus grande valeur on trouvera $T=(5,0,1)$ (6 pièces), alors que la solution optimale est $T=(0,4,0)$ (4 pièces).
Les techniques de programmation gloutonnes ont la particularité de faire des choix locaux à chaque étape de calcul. Cette méthode ne donne pas forcément un nombre minimal de pièces mais elle est simple à comprendre et à implémenter. Son application au problème de rendu de monnaie est simple : on trouve la pièce la plus grande inférieure ou égale à $M$. Soit $v_i$ cette pièce. On utilise ($x_i = M \ div \ v_i$) fois la pièce $v_i$; le reste à traiter sera $M'=(M \mod v_i)$. Ensuite, on recommence suivant le même principe pour satisfaire $M'$. Ce qui donne le pseudo-code d'algorithme suivant (qui fait l'hypothèse d'un nombre illimité de pièces, on ne tient pas compte ici de $D$ : $d_i=\infty$) :
```
```
```
```
Vous noterez que la méthode Gloutonne ne garantit pas que *Q(S, M)* soit minimal comme les tests l'ont montré pour M=28 et S=(1, 7, 23). La méthode Gloutonne utilise un optimum local (choix de la plus grande pièce) qui ne débouche pas forcément sur un optimum global. Cependant, elle est très simple à calculer.
Exemple d'arbre de recherche résultant *M=28* et *S=(1,7,23)*. C'est à dire, on a seulement des pièces de 1, 7 et 23 (€ ou cents) en nombre suffisant. Dès qu'on atteint 0, on remonte de ce 0 à la racine pour obtenir la solution minimale donnant le nombre minimal d'arcs entre ce 0 et la racine. On remarque qu'on utilisera 4 pièces de 7c pour avoir 28c. Par ailleurs, on remarque que le choix initial de 23 (à gauche de l'arbre) laisse le montant *M'=5c* à satisfaire lequel impose le choix de 5 pièces de 1c. En bleu les autres chemins choisissant une pièce de 23.
On construit un arbre de recherche (arbre des possibilités) dont la racine est *M*. Chaque noeud de l'arbre représente un montant : les noeuds autres que la racine initiale représentent $M' < M$ une fois qu'on aura utilisé une (seule) des pièces de $S$ (parmi 1, 7 ou 23€). La pièce utilisée pour aller de $M$ à $M'$ sera la valeur de l'arc reliant ces deux montants. Cet arbre est donc développé par niveau (en largeur). On arrête de développer un niveau supplémentaire dès qu'un noeud a atteint 0 auquel cas une solution sera le vecteur des valeurs (des arcs) allant de la racine à ce noeud.
```
```
```
```
```
```
```
A noter que vous pouvez combiner la construction et la recherche du plus court chemin (en vous arrêtant au premier 0 rencontré). Cependant, cette methode a pour inconvénient d'explorer un très large espace de recherche (qui devient vite très grand). Un autre inconvénient est le calcul de solutions dont on sait qu'elles ne seront pas optimales.
```
```