Skip to content
Snippets Groups Projects
Select Git revision
  • b5a9c00f66700d637b348522b0a1ec6a1f010686
  • master default protected
2 results

graph-cycle.py

Blame
  • doc_output.py 955 B
    print("----------------------------------------------> Importation des modules")
    import os
    
    from langchain.embeddings import HuggingFaceEmbeddings
    from langchain.vectorstores import Chroma
    
    embedding_function = HuggingFaceEmbeddings()
    VECTORS_DIRECTORY = "text_files"  # Change this directory if needed
    
    # Charge des documents locaux
    
    print("----------------------------------------------> Charge des documents locaux")
    persist_directory = os.path.join(VECTORS_DIRECTORY, "vector")
    new_db = Chroma(persist_directory=persist_directory, embedding_function=embedding_function)
    print("Entrez votre requête :")
    
    query = input()
    embedding_vector = embedding_function.embed_query(query)
    
    tot_docs = ""
    print("----------------------------------------------> Recherche dans la documentation")
    docs = new_db.similarity_search_by_vector(embedding_vector, k=3)
    
    for i in range(len(docs)):
        tot_docs += f'data {str(i)} : {docs[i].page_content}\n'
    
    print(tot_docs)