Select Git revision
test_analyse_simple.py
Forked from
Vuillemot Romain / INF-TC1
Source project has a limited visibility.
-
Romain Vuillemot authoredRomain Vuillemot authored
mlp.py 6.96 KiB
import numpy as np
import read_cifar
import matplotlib.pyplot as plt
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def learn_once_mse(w1, b1, w2, b2, data, targets, learning_rate):
N_out = len(data) #number of training examples
# Forward pass
a0 = data # the data are the input of the first layer
z1 = np.dot(a0, w1) + b1 # input of the hidden layer
a1 = sigmoid(z1) # output of the hidden layer (sigmoid activation function)
z2 = np.dot(a1, w2) + b2 # input of the output layer
a2 = sigmoid(z2) # output of the output layer (sigmoid activation function)
predictions = a2 # the predicted values are the outputs of the output layer
# Compute loss (MSE)
loss = np.mean(np.square(predictions - targets))
print(f'loss: {loss}')
# print('shape a1', a1.shape)
# print('shape w1', w1.shape)
# print('shape b1', b1.shape)
# print('shape a2', a2.shape)
# print('shape w2', w2.shape)
# print('shape b2', b2.shape)
# Backpropagation
# Backpropagation
delta_a2 = 2 / N_out * (a2 - targets)
delta_z2 = delta_a2 * (a2 * (1 - a2)) # We divide by the sample size to have an average on the error and avoid big gradient jumps
delta_w2 = np.dot(a1.T, delta_z2)
delta_b2 = np.sum(delta_z2, axis = 0, keepdims = True)
delta_a1 = np.dot(delta_z2, w2.T)
delta_z1 = delta_a1 * (a1 * (1 - a1))
delta_w1 = np.dot(a0.T, delta_z1)
delta_b1 = np.sum(delta_z1, axis = 0, keepdims = True)
return w1, b1, w2, b2, loss
def one_hot(labels):
num_classes = int(np.max(labels) + 1) #num_classes = 10
one_hot_matrix = np.eye(num_classes)[labels]
return one_hot_matrix
def softmax_stable(x):
#We use this function to avoid computing big numbers
return(np.exp(x - np.max(x, axis=1, keepdims=True)) / np.exp(x - np.max(x, axis=1, keepdims=True)).sum())
def cross_entropy_loss(y_pred, y_true_one_hot):
epsilon = 1e-10
loss = - np.sum( y_true_one_hot * np.log(y_pred + epsilon) ) / len(y_pred)
return loss
def learn_once_cross_entropy(w1, b1, w2, b2, data, labels_train, learning_rate):
N_out = len(data) #number of training examples
# Forward pass
a0 = data # the data are the input of the first layer
z1 = np.matmul(a0, w1) + b1 # input of the hidden layer
a1 = sigmoid(z1) # output of the hidden layer (sigmoid activation function)
z2 = np.matmul(a1, w2) + b2 # input of the output layer
a2 = softmax_stable(z2) # output of the output layer (sigmoid activation function)
predictions = a2 # the predicted values are the outputs of the output layer
# print('a0', a0[:2])
# print('w1', w1[:2])
# print('z1', z1[:2])
# print('a1', a1[:2])
# print('z2', z2[:2])
# print('a2', a2[:2])
# Compute loss (cross-entropy loss)
y_true_one_hot = one_hot(labels_train)
loss = cross_entropy_loss(predictions, y_true_one_hot)
# Backpropagation
delta_z2 = (a2 - y_true_one_hot) # We divide by the sample size to have an average on the error and avoid big gradient jumps
delta_w2 = np.dot(a1.T, delta_z2) / N_out
delta_b2 = np.sum(delta_z2, axis = 0, keepdims = True) / N_out
delta_a1 = np.dot(delta_z2, w2.T)
delta_z1 = delta_a1 * (a1 * (1 - a1)) / N_out
delta_w1 = np.dot(a0.T, delta_z1) / N_out
delta_b1 = np.sum(delta_z1, axis = 0, keepdims = True) / N_out
# Update weights and biases
w1 -= learning_rate * delta_w1
b1 -= learning_rate * delta_b1
w2 -= learning_rate * delta_w2
b2 -= learning_rate * delta_b2
return w1, b1, w2, b2, loss
def forward(w1, b1, w2, b2, data):
# Forward pass
a0 = data # the data are the input of the first layer
z1 = np.matmul(a0, w1) + b1 # input of the hidden layer
a1 = sigmoid(z1) # output of the hidden layer (sigmoid activation function)
z2 = np.matmul(a1, w2) + b2 # input of the output layer
a2 = softmax_stable(z2) # output of the output layer (sigmoid activation function)
predictions = a2 # the predicted values are the outputs of the output layer
return(predictions)
def train_mlp(w1, b1, w2, b2, data_train, labels_train, learning_rate, num_epoch):
train_accuracies = []
for epoch in range(num_epoch):
w1, b1, w2, b2, loss = learn_once_cross_entropy(w1, b1, w2, b2, data_train, labels_train, learning_rate)
# Compute accuracy
predictions = forward(w1, b1, w2, b2, data_train)
predicted_labels = np.argmax(predictions, axis=1)
accuracy = np.mean(predicted_labels == labels_train)
train_accuracies.append(accuracy)
print(f'Epoch {epoch + 1}/{num_epoch}, Loss: {loss:.3f}, Train Accuracy: {accuracy:.5f}')
return w1, b1, w2, b2, train_accuracies
def test_mlp(w1, b1, w2, b2, data_test, labels_test):
# Compute accuracy
predictions = forward(w1, b1, w2, b2, data_test)
predicted_labels = np.argmax(predictions, axis=1)
test_accuracy = np.mean(predicted_labels == labels_test)
print(f'Test Accuracy: {test_accuracy:.2f}')
return test_accuracy
def run_mlp_training(data_train, labels_train, data_test, labels_test, d_h, learning_rate, num_epoch):
d_in = data_train.shape[1]
d_out = 10 #we can hard code it here or len(np.unique(label_train))
#Random initialisation of weights Xavier initialisation
w1 = np.random.randn(d_in, d_h) / np.sqrt(d_in)
b1 = np.zeros((1, d_h))
w2 = np.random.randn(d_h, d_out) / np.sqrt(d_h)
b2 = np.zeros((1, d_out))
# Train MLP
w1, b1, w2, b2, train_accuracies = train_mlp(w1, b1, w2, b2, data_train, labels_train, learning_rate, num_epoch)
# Test MLP
test_accuracy = test_mlp(w1, b1, w2, b2, data_test, labels_test)
return train_accuracies, test_accuracy
def plot_graph(data_train, labels_train, data_test, labels_test, d_h, learning_rate, num_epoch):
# Run MLP training
train_accuracies, test_accuracy = run_mlp_training(data_train, labels_train, data_test, labels_test, d_h, learning_rate, num_epoch)
# Plot and save the learning accuracy graph
plt.figure(figsize=(8, 6))
epochs = np.arange(1, num_epoch + 1)
plt.plot(epochs, train_accuracies, marker='x', color='b', label='Train Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.title('MLP Train Accuracy')
plt.legend()
plt.grid(True)
plt.savefig('image-classification/results/mlp.png')
plt.show()
if __name__ == '__main__':
data, labels = read_cifar.read_cifar('image-classification/data/cifar-10-batches-py')
X_train, X_test, y_train, y_test = read_cifar.split_dataset(data, labels, 0.9)
d_in, d_h, d_out = 3072, 64, 10
learning_rate = 0.1
num_epoch = 300
# #Initialisation
# w1 = np.random.randn(d_in, d_h) / np.sqrt(d_in)
# b1 = np.zeros((1, d_h))
# w2 = np.random.randn(d_h, d_out) / np.sqrt(d_h)
# b2 = np.zeros((1, d_out))
# train_mlp(w1, b1, w2, b2, X_train, y_train, 0.1, 100)
# test_mlp(w1, b1, w2, b2, X_test[:50], y_test[:50])
plot_graph(X_train, y_train, X_test ,y_test , d_h, learning_rate, num_epoch)