Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Image Classification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Chaufour Oscar
Image Classification
Commits
7baefb6f
Commit
7baefb6f
authored
1 year ago
by
oscarchaufour
Browse files
Options
Downloads
Patches
Plain Diff
mlp finished + result
parent
f4d3c48d
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
knn.py
+1
-12
1 addition, 12 deletions
knn.py
mlp.py
+130
-2
130 additions, 2 deletions
mlp.py
read_cifar.py
+1
-1
1 addition, 1 deletion
read_cifar.py
results/mlp.png
+0
-0
0 additions, 0 deletions
results/mlp.png
with
132 additions
and
15 deletions
knn.py
+
1
−
12
View file @
7baefb6f
...
@@ -54,17 +54,6 @@ def evaluate_knn(data_train, labels_train, data_test, labels_test, k) :
...
@@ -54,17 +54,6 @@ def evaluate_knn(data_train, labels_train, data_test, labels_test, k) :
return
classification_rate
return
classification_rate
def
plot_accuracy
(
data_train
,
labels_train
,
data_test
,
labels_test
,
k_max
)
:
Y
=
[]
for
k
in
range
(
1
,
k_max
+
1
)
:
Y
+=
[
evaluate_knn
(
data_train
,
labels_train
,
data_test
,
labels_test
,
k
)]
plt
.
plot
(
list
(
range
(
1
,
k_max
+
1
)),
Y
)
plt
.
xlabel
(
'
k (Number of Neighbors)
'
)
plt
.
ylabel
(
'
Accuracy
'
)
plt
.
savefig
(
'
results/knn.png
'
)
if
__name__
==
"
__main__
"
:
if
__name__
==
"
__main__
"
:
t1
=
time
.
time
()
t1
=
time
.
time
()
# # Example distance matrix, training labels, and k value
# # Example distance matrix, training labels, and k value
...
...
This diff is collapsed.
Click to expand it.
mlp.py
+
130
−
2
View file @
7baefb6f
...
@@ -6,6 +6,10 @@ Created on Fri Oct 27 16:48:16 2023
...
@@ -6,6 +6,10 @@ Created on Fri Oct 27 16:48:16 2023
"""
"""
import
numpy
as
np
import
numpy
as
np
import
read_cifar
import
matplotlib.pyplot
as
plt
from
scipy.special
import
expit
from
tqdm
import
tqdm
def
learn_once_mse
(
w1
,
b1
,
w2
,
b2
,
data
,
targets
,
learning_rate
)
:
def
learn_once_mse
(
w1
,
b1
,
w2
,
b2
,
data
,
targets
,
learning_rate
)
:
...
@@ -22,9 +26,9 @@ def learn_once_mse(w1, b1, w2, b2, data, targets, learning_rate) :
...
@@ -22,9 +26,9 @@ def learn_once_mse(w1, b1, w2, b2, data, targets, learning_rate) :
dCdZ2
=
dCdA2
*
(
a2
-
a2
**
2
)
dCdZ2
=
dCdA2
*
(
a2
-
a2
**
2
)
dCdW2
=
np
.
matmul
(
a1
.
T
,
dCdZ2
)
dCdW2
=
np
.
matmul
(
a1
.
T
,
dCdZ2
)
dCdB2
=
(
1
/
N
)
*
np
.
sum
(
dCdZ2
,
axis
=
0
,
keepdims
=
True
)
dCdB2
=
(
1
/
N
)
*
np
.
sum
(
dCdZ2
,
axis
=
0
,
keepdims
=
True
)
dCdA1
=
np
.
matmul
(
dCdZ2
,
w2
.
T
)
dCdA1
=
(
1
/
N
)
*
np
.
matmul
(
dCdZ2
,
w2
.
T
)
dCdZ1
=
dCdA1
*
(
a1
-
a1
**
2
)
dCdZ1
=
dCdA1
*
(
a1
-
a1
**
2
)
dCdW1
=
np
.
matmul
(
a0
.
T
,
dCdZ1
)
dCdW1
=
(
1
/
N
)
*
np
.
matmul
(
a0
.
T
,
dCdZ1
)
dCdB1
=
(
1
/
N
)
*
np
.
sum
(
dCdZ1
,
axis
=
0
,
keepdims
=
True
)
dCdB1
=
(
1
/
N
)
*
np
.
sum
(
dCdZ1
,
axis
=
0
,
keepdims
=
True
)
# one gradient descent step
# one gradient descent step
...
@@ -33,8 +37,132 @@ def learn_once_mse(w1, b1, w2, b2, data, targets, learning_rate) :
...
@@ -33,8 +37,132 @@ def learn_once_mse(w1, b1, w2, b2, data, targets, learning_rate) :
w2
-=
dCdW2
*
learning_rate
w2
-=
dCdW2
*
learning_rate
b2
-=
dCdB2
*
learning_rate
b2
-=
dCdB2
*
learning_rate
# new a2 calculation
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
# input of the hidden layer
a1
=
1
/
(
1
+
np
.
exp
(
-
z1
))
# output of the hidden layer (sigmoid activation function)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
# input of the output layer
a2
=
1
/
(
1
+
np
.
exp
(
-
z2
))
# output of the output layer (sigmoid activation function)
predictions
=
a2
loss
=
np
.
mean
(
np
.
square
(
predictions
-
targets
))
loss
=
np
.
mean
(
np
.
square
(
predictions
-
targets
))
return
w1
,
b1
,
w2
,
b2
,
loss
return
w1
,
b1
,
w2
,
b2
,
loss
def
one_hot
(
labels
)
:
D
=
len
(
labels
)
L
=
max
(
labels
)
# labels is an int array
one_hot_matrix
=
np
.
zeros
((
D
,
L
+
1
))
for
k
in
range
(
len
(
labels
))
:
label
=
labels
[
k
]
one_hot_matrix
[
k
,
label
]
=
1
return
one_hot_matrix
def
softmax
(
x
):
e_x
=
np
.
exp
(
x
-
np
.
max
(
x
))
# Soustraction du max pour éviter les problèmes de stabilité numérique
return
e_x
/
e_x
.
sum
()
def
learn_once_cross_entropy
(
w1
,
b1
,
w2
,
b2
,
data
,
labels_train
,
learning_rate
)
:
y
=
one_hot
(
labels_train
)
a0
=
data
# the data are the input of the first layer
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
# input of the hidden layer
a1
=
expit
(
z1
)
# output of the hidden layer (sigmoid activation function)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
# input of the output layer
a2
=
expit
(
z2
)
#computing the softmax predictions and loss
predictions
=
softmax
(
a2
)
loss
=
-
np
.
sum
(
y
*
np
.
log
(
predictions
))
/
(
float
(
predictions
.
shape
[
0
]))
#cross entropy loss
predictions
=
a2
# the predicted values are the outputs of the output layer
N
=
data
.
shape
[
0
]
# calculation of partial derivates of C
dCdZ2
=
a2
-
y
dCdW2
=
(
1
/
N
)
*
np
.
matmul
(
a1
.
T
,
dCdZ2
)
dCdB2
=
(
1
/
N
)
*
np
.
sum
(
dCdZ2
,
keepdims
=
True
)
dCdA1
=
np
.
matmul
(
dCdZ2
,
w2
.
T
)
dCdZ1
=
dCdA1
*
(
a1
-
np
.
square
(
a1
))
dCdW1
=
(
1
/
N
)
*
np
.
matmul
(
a0
.
T
,
dCdZ1
)
dCdB1
=
(
1
/
N
)
*
np
.
sum
(
dCdZ1
,
keepdims
=
True
)
# one gradient descent step
w1
-=
dCdW1
*
learning_rate
b1
-=
dCdB1
*
learning_rate
w2
-=
dCdW2
*
learning_rate
b2
-=
dCdB2
*
learning_rate
# accuracy calculation
predictions_vect
=
np
.
argmax
(
predictions
,
axis
=
1
)
number_true_prediction
=
np
.
sum
(
labels_train
==
predictions_vect
)
number_total_prediction
=
labels_train
.
shape
[
0
]
accuracy
=
number_true_prediction
/
number_total_prediction
return
w1
,
b1
,
w2
,
b2
,
accuracy
def
train_mlp
(
w1
,
b1
,
w2
,
b2
,
data
,
labels_train
,
learning_rate
,
num_epoch
)
:
train_accuracies
=
[]
for
k
in
tqdm
(
range
(
num_epoch
))
:
w1
,
b1
,
w2
,
b2
,
accuracy
=
learn_once_cross_entropy
(
w1
,
b1
,
w2
,
b2
,
data
,
labels_train
,
learning_rate
)
train_accuracies
.
append
(
accuracy
)
return
w1
,
b1
,
w2
,
b2
,
train_accuracies
def
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
)
:
# prediction calculation
a0
=
data_test
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
# input of the hidden layer
a1
=
expit
(
z1
)
# output of the hidden layer (sigmoid activation function)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
# input of the output layer
a2
=
np
.
exp
(
z2
)
/
np
.
sum
(
np
.
exp
(
z2
))
# output of the output layer (sigmoid activation function)
predictions
=
a2
predictions_vect
=
np
.
argmax
(
predictions
,
axis
=
1
)
# accuracy calculation
number_true_prediction
=
np
.
sum
(
labels_test
==
predictions_vect
)
number_total_prediction
=
len
(
labels_test
)
test_accuracy
=
number_true_prediction
/
number_total_prediction
return
test_accuracy
def
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
,
learning_rate
,
num_epoch
)
:
d_out
=
np
.
max
(
labels_train
)
+
1
# output dimension (number of neurons of the output layer
d_in
=
data_train
.
shape
[
1
]
# Random initialization of the network weights and biaises
w1
=
2
*
np
.
random
.
rand
(
d_in
,
d_h
)
-
1
# first layer weights
b1
=
np
.
zeros
((
1
,
d_h
))
# first layer biaises
w2
=
2
*
np
.
random
.
rand
(
d_h
,
d_out
)
-
1
# second layer weights
b2
=
np
.
zeros
((
1
,
d_out
))
# second layer biaises
w1
,
b1
,
w2
,
b2
,
train_accuracies
=
train_mlp
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
,
num_epoch
)
test_accuracy
=
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
)
return
train_accuracies
,
test_accuracy
if
__name__
==
"
__main__
"
:
# open, read and split the data using read_cifar script
file
=
"
./data/cifar-10-python/
"
data
,
labels
=
read_cifar
.
read_cifar
(
file
)
data_train
,
labels_train
,
data_test
,
labels_test
=
read_cifar
.
split_dataset
(
data
,
labels
,
0.9
)
# train the MLP
d_h
=
64
learning_rate
=
0.1
num_epoch
=
100
train_accuracies
,
test_accuracy
=
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
,
learning_rate
,
num_epoch
)
# Plot the figure
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
np
.
array
(
train_accuracies
)
*
100
,
color
=
'
r
'
,
label
=
'
split factor : 0.9
'
)
plt
.
title
(
"
Multilayer Perceptron training accuracy
"
)
plt
.
legend
()
plt
.
xlabel
(
'
number of epochs (num_epoch)
'
)
plt
.
ylabel
(
'
accuracy (%)
'
)
plt
.
show
()
plt
.
savefig
(
'
results/mlp.png
'
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
read_cifar.py
+
1
−
1
View file @
7baefb6f
...
@@ -24,7 +24,7 @@ def read_cifar (batch_dir) :
...
@@ -24,7 +24,7 @@ def read_cifar (batch_dir) :
data_batches
=
[]
data_batches
=
[]
label_batches
=
[]
label_batches
=
[]
for
i
in
range
(
1
,
4
)
:
for
i
in
range
(
1
,
6
)
:
batch_filename
=
f
'
data_batch_
{
i
}
'
batch_filename
=
f
'
data_batch_
{
i
}
'
batch_path
=
os
.
path
.
join
(
batch_dir
,
batch_filename
)
batch_path
=
os
.
path
.
join
(
batch_dir
,
batch_filename
)
data
,
labels
=
read_cifar_batch
(
batch_path
)
data
,
labels
=
read_cifar_batch
(
batch_path
)
...
...
This diff is collapsed.
Click to expand it.
results/mlp.png
0 → 100644
+
0
−
0
View file @
7baefb6f
23.1 KiB
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment