Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
Hands On Rl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Moreau Maxime
Hands On Rl
Commits
b4e270ab
Commit
b4e270ab
authored
1 month ago
by
MaximeCerise
Browse files
Options
Downloads
Patches
Plain Diff
ok
parent
3b9fe874
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
a2c_sb3_cartpole.py
+81
-34
81 additions, 34 deletions
a2c_sb3_cartpole.py
videos/rl-video-step-0-to-step-1000.mp4
+0
-0
0 additions, 0 deletions
videos/rl-video-step-0-to-step-1000.mp4
with
81 additions
and
34 deletions
a2c_sb3_cartpole.py
+
81
−
34
View file @
b4e270ab
import
wandb
import
gymnasium
as
gym
import
numpy
as
np
from
stable_baselines3
import
A2C
from
stable_baselines3.common.monitor
import
Monitor
from
stable_baselines3.common.vec_env
import
DummyVecEnv
,
VecVideoRecorder
from
huggingface_sb3
import
package_to_hub
def
a2c_sb3
():
env
=
gym
.
make
(
"
CartPole-v1
"
,
render_mode
=
"
rgb_array
"
)
env
=
Monitor
(
env
)
env
=
DummyVecEnv
([
lambda
:
env
])
env
=
gym
.
make
(
"
CartPole-v1
"
,
render_mode
=
"
rgb_array
"
)
env
=
Monitor
(
env
)
env
=
DummyVecEnv
([
lambda
:
env
])
wandb
.
init
(
entity
=
"
maximecerise-ecl
"
,
project
=
"
cartpole-a2c
"
,
sync_tensorboard
=
True
,
monitor_gym
=
True
,
save_code
=
True
)
wandb
.
init
(
entity
=
"
maximecerise-ecl
"
,
project
=
"
cartpole-a2c
"
,
sync_tensorboard
=
True
,
monitor_gym
=
True
,
save_code
=
True
)
model
=
A2C
(
"
MlpPolicy
"
,
env
,
verbose
=
1
,
tensorboard_log
=
"
./a2c_tensorboard/
"
)
model
.
learn
(
total_timesteps
=
300000
)
model
.
save
(
"
a2c_cartpole
"
)
env
.
close
()
eval_env
=
gym
.
make
(
"
CartPole-v1
"
,
render_mode
=
"
rgb_array
"
)
eval_env
=
Monitor
(
eval_env
)
eval_env
=
DummyVecEnv
([
lambda
:
eval_env
])
success_count
=
0
num_episodes
=
100
scores
=
[]
for
episode
in
range
(
num_episodes
):
obs
=
eval_env
.
reset
()
done
=
False
episode_reward
=
0
while
not
done
:
action
,
_
=
model
.
predict
(
obs
)
obs
,
reward
,
done
,
info
=
eval_env
.
step
(
action
)
done
=
done
[
0
]
# Extraction de la valeur booléenne
episode_reward
+=
reward
scores
.
append
(
episode_reward
)
if
episode_reward
>=
200
:
success_count
+=
1
model
=
A2C
(
"
MlpPolicy
"
,
env
,
verbose
=
1
,
tensorboard_log
=
"
./a2c_tensorboard/
"
)
model
.
learn
(
total_timesteps
=
500000
)
wandb
.
log
({
"
episode
"
:
episode
,
"
episode_reward
"
:
episode_reward
,
"
success_rate (%)
"
:
success_count
/
(
episode
+
1
)
*
100
})
model
.
save
(
"
a2c_cartpole
"
)
env
.
close
()
eval_env
=
gym
.
make
(
"
CartPole-v1
"
,
render_mode
=
"
rgb_array
"
)
eval_env
=
Monitor
(
eval_env
)
eval_env
=
DummyVecEnv
([
lambda
:
eval_env
])
video_folder
=
"
./videos/
"
eval_env
=
VecVideoRecorder
(
eval_env
,
video_folder
,
record_video_trigger
=
lambda
x
:
x
==
0
,
video_length
=
1000
)
success_rate
=
success_count
/
num_episodes
*
100
avg_score
=
np
.
mean
(
scores
)
obs
=
eval_env
.
reset
()
for
_
in
range
(
1000
):
action
,
_
=
model
.
predict
(
obs
)
obs
,
_
,
_
,
_
=
eval_env
.
step
(
action
)
eval_env
.
close
()
wandb
.
log
({
"
final_success_rate (%)
"
:
success_rate
,
"
final_average_score
"
:
avg_score
})
print
(
f
"
Taux de succès du modèle A2C sur
{
num_episodes
}
épisodes :
{
success_rate
:
.
2
f
}
%
"
)
print
(
f
"
Score moyen :
{
avg_score
:
.
2
f
}
"
)
video_folder
=
"
./videos/
"
eval_env
=
VecVideoRecorder
(
eval_env
,
video_folder
,
record_video_trigger
=
lambda
x
:
x
==
0
,
video_length
=
1000
)
obs
=
eval_env
.
reset
()
for
_
in
range
(
1000
):
action
,
_
=
model
.
predict
(
obs
)
obs
,
_
,
_
,
_
=
eval_env
.
step
(
action
)
eval_env
.
close
()
package_to_hub
(
model
=
model
,
model_name
=
"
a2c_cartpole
"
,
model_architecture
=
"
A2C
"
,
env_id
=
"
CartPole-v1
"
,
eval_env
=
eval_env
,
repo_id
=
"
MaximeCerise/a2c_cartpole
"
,
commit_message
=
"
add a2c with evaluation
"
)
package_to_hub
(
model
=
model
,
model_name
=
"
a2c_cartpole
"
,
model_architecture
=
"
A2C
"
,
env_id
=
"
CartPole-v1
"
,
eval_env
=
eval_env
,
repo_id
=
"
MaximeCerise/a2c_cartpole
"
,
commit_message
=
"
add a2c
"
)
wandb
.
finish
()
wandb
.
finish
()
if
__name__
==
"
__main__
"
:
a2c_sb3
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
videos/rl-video-step-0-to-step-1000.mp4
+
0
−
0
View file @
b4e270ab
No preview for this file type
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment