Skip to content
Snippets Groups Projects
Commit 56cceedd authored by Audard Lucile's avatar Audard Lucile
Browse files

Update mlp.py

parent 3ae0d3c9
No related branches found
No related tags found
No related merge requests found
import numpy as np
from read_cifar import *
import matplotlib.pyplot as plt
def sigmoid(x):
return 1 / (1 + np.exp(-x))
......@@ -57,7 +59,7 @@ def learn_once_cross_entropy(w1, b1, w2, b2, data, labels_train, learning_rate):
targets_one_hot = one_hot(labels_train) # target as a one-hot encoding for the desired labels
# cross-entropy loss
# Cross-entropy loss
loss = -np.sum(targets_one_hot * np.log(predictions)) / N
# Backpropagation
......@@ -94,18 +96,77 @@ def train_mlp(w1, b1, w2, b2, data_train, labels_train, learning_rate, num_epoch
# Find the predicted class
prediction = np.argmax(predictions, axis = 1)
# Calculate the accuracy
# Calculate the accuracy for the step
accuracy = np.mean(labels_train == prediction)
train_accuracies[i] = accuracy
train_accuracies[i] = accuracy
return w1, b1, w2, b2, train_accuracies
def test_mlp(w1, b1, w2, b2, data_test, labels_test):
# Forward pass
a0 = data_test # the data are the input of the first layer
z1 = np.matmul(a0, w1) + b1 # input of the hidden layer
a1 = 1 / (1 + np.exp(-z1)) # output of the hidden layer (sigmoid activation function)
z2 = np.matmul(a1, w2) + b2 # input of the output layer
a2 = 1 / (1 + np.exp(-z2)) # output of the output layer (sigmoid activation function)
predictions = a2 # the predicted values are the outputs of the output layer
# Find the predicted label
prediction = np.argmax(predictions, axis = 1)
# Calculation of the test accuracy
test_accuracy = np.mean(prediction == labels_test)
return test_accuracy
def run_mlp_training(data_train, labels_train, data_test, labels_test, d_h, learning_rate, num_epoch):
# Define parameters
d_in = data_train.shape[1] # number of input neurons
d_out = len(np.unique(labels_train)) # number of output neurons = number of classes
# Random initialization of the network weights and biaises
w1 = 2 * np.random.rand(d_in, d_h) - 1 # first layer weights
b1 = np.zeros((1, d_h)) # first layer biaises
w2 = 2 * np.random.rand(d_h, d_out) - 1 # second layer weights
b2 = np.zeros((1, d_out)) # second layer biaises
# Training of the MLP classifier with num_epoch steps
w1, b1, w2, b2, train_accuracies = train_mlp(w1, b1, w2, b2, data_train, labels_train, learning_rate, num_epoch)
# Caculation of the final testing accuracy with the new values of the weights and bias
test_accuracy = test_mlp(w1, b1, w2, b2, data_test, labels_test)
return train_accuracies, test_accuracy
if __name__ == "__main__":
split_factor = 0.9
d_h = 64
learning_rate = 0.1
num_epoch = 100
data, labels = read_cifar("./data/cifar-10-batches-py")
data_train, labels_train, data_test, labels_test = split_dataset(data, labels, split_factor)
epochs = [i for i in range(1, num_epoch + 1)]
learning_accuracy = [0] * num_epoch
for i in range(num_epoch) :
train_accuracies, test_accuracy = run_mlp_training(data_train, labels_train, data_test, labels_test, d_h, learning_rate, i + 1)
learning_accuracy[i] = test_accuracy
plt.plot(epochs, learning_accuracy)
plt.title("Evolution of learning accuracy across learning epochs")
plt.xlabel("number of epochs")
plt.ylabel("Accuracy")
plt.grid(True, which='both')
plt.savefig("results/mlp.png")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment