Select Git revision
ex_matplotlib.py
Forked from
Derrode Stéphane / INF-TC2
Source project has a limited visibility.
-
Derrode Stéphane authoredDerrode Stéphane authored
knn.py 2.44 KiB
import numpy as np
from read_cifar import *
import matplotlib.pyplot as plt
def distance_matrix(mat1, mat2):
# A^2 and B^2
square1 = np.sum(np.square(mat1), axis = 1, keepdims=True)
square2 = np.sum(np.square(mat2), axis = 1, keepdims=True)
# A*B
prod = np.dot(mat1, mat2.T)
# A^2 + B^2 -2*A*B
dists = np.sqrt(square1 + square2.T - 2 * prod)
return dists
def knn_predict(dists, labels_train, k):
# results matrix initialization
predicted_labels = np.zeros(len(dists))
# loop on all the test images
for i in range(len(dists)):
# sort and keep the k shortest dists for test image i
sorted_dists = np.argsort(dists[i])
k_sorted_dists = sorted_dists[:k]
# get the matching labels_train
closest_labels = labels_train[k_sorted_dists]
# get the most common labels_train
uniques, counts = np.unique(closest_labels, return_counts = True)
predicted_labels[i] = uniques[np.argmax(counts)]
return np.array(predicted_labels)
def evaluate_knn(data_train, labels_train, data_test, labels_test, k):
dists = distance_matrix(data_test, data_train)
# Determine the number of images in data_test
tot = len(data_test)
accurate = 0
predicted_labels = knn_predict(dists, labels_train, k)
# Count the number of images in data_test whose label has been estimated correctly
for i in range(tot):
if predicted_labels[i] == labels_test[i]:
accurate += 1
# Calculate the classification rate
accuracy = accurate/tot
return accuracy
if __name__ == "__main__":
data, labels = read_cifar("./data/cifar-10-batches-py")
data_train, labels_train, data_test, labels_test = split_dataset(data, labels, 0.9)
k_list = [k for k in range(1, 21)]
accuracy = [evaluate_knn(data_train, labels_train, data_test, labels_test, k) for k in range (1, 21)]
plt.plot([k for k in range (1, 21)], accuracy)
plt.title("Variation of k-nearest neighbors method accuracy for k from 1 to 20")
plt.xlabel("k value")
plt.ylabel("Accuracy")
plt.grid(True, which='both')
plt.savefig("results/knn.png")
# x_test = np.array([[1,2],[4,6]])
# x_labels_test = np.array([0,1])
# x_train = np.array([[2,4],[7,2],[4,6]])
# x_labels_train = np.array([0,1,1])
# dist = distance_matrix(x_test, x_train)
# accuracy = evaluate_knn(x_train, x_labels_train, x_test, x_labels_test, 1)
# print(accuracy)