Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Image classification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Chauvin Hugo
Image classification
Commits
d9474802
Commit
d9474802
authored
1 year ago
by
Chauvin Hugo
Browse files
Options
Downloads
Patches
Plain Diff
Add new file
parent
600437e4
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
mlp.py
+206
-0
206 additions, 0 deletions
mlp.py
with
206 additions
and
0 deletions
mlp.py
0 → 100644
+
206
−
0
View file @
d9474802
import
numpy
as
np
def
sigma
(
x
)
:
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
learn_once_mse
(
w1
,
b1
,
w2
,
b2
,
data
,
targets
,
learning_rate
)
:
N
=
data
.
shape
[
0
]
# Forward pass
a0
=
data
# the data are the input of the first layer
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
# input of the hidden layer
a1
=
sigma
(
z1
)
# output of the hidden layer (sigmoid activation function)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
# input of the output layer
a2
=
sigma
(
z2
)
# output of the output layer (sigmoid activation function)
predictions
=
a2
# the predicted values are the outputs of the output layer
# Compute loss (MSE)
loss
=
np
.
mean
(
np
.
square
(
predictions
-
targets
))
# Adjustment of w1, b1, w2, b2 with their gradients
# A REVOIR !!!!!!!!!!!!!!!!!!!!!!!!!!!!
dCda2
=
2
/
N
*
(
a2
-
targets
)
dCdz2
=
dCda2
*
a2
*
(
1
-
a2
)
dCdw2
=
np
.
matmul
(
transpose
(
a2
),
dCdz2
)
dCdb2
=
dCdz2
dCdz1
=
np
.
matmul
(
dCda2
,
transpose
(
w2
)
*
a1
*
(
1
-
a1
))
dCdw1
=
np
.
matmul
(
transpose
(
a2
),
dCdz1
)
dCdb1
=
dCdw1
# Correction of the w1, b1, w2, b2 values
w1
+=
-
learning_rate
*
dCdw1
b1
+=
-
learning_rate
*
dCdb1
w2
+=
-
learning_rate
*
dCdw2
b2
+=
-
learning_rate
*
dCdb2
return
w1
,
b1
,
w2
,
b2
,
loss
def
one_hot
(
labels
)
:
array
=
np
.
zeros
((
len
(
labels
),
len
(
labels
)),
dtype
=
np
.
int
)
for
i
in
range
(
len
(
labels
))
:
array
[
i
,
labels
[
i
]]
=
1
return
array
def
learn_once_cross_entropy
(
w1
,
b1
,
w2
,
b2
,
data
,
labels_train
,
learning_rate
)
:
a0
=
data
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
a1
=
sigma
(
z1
)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
a2
=
sigma
(
z2
)
# Creation of the encoded vector and calculation of gradients
Y
=
one_hot
(
labels_train
)
dCdz2
=
a2
-
Y
dCdw2
=
np
.
matmul
(
transpose
(
a2
),
dCdz2
)
dCdb2
=
dCdz2
dCdz1
=
np
.
matmul
(
dCda2
,
transpose
(
w2
)
*
a1
*
(
1
-
a1
))
dCdw1
=
np
.
matmul
(
transpose
(
a2
),
dCdz1
)
dCdb1
=
dCdw1
# Gradient descent
w1
+=
-
learning_rate
*
dCdw1
b1
+=
-
learning_rate
*
dCdb1
w2
+=
-
learning_rate
*
dCdw2
b2
+=
-
learning_rate
*
dCdb2
# Loss calculation
loss
=
np
.
mean
(
np
.
square
(
a2
-
labels_train
))
return
w1
,
b1
,
w2
,
b2
,
loss
def
train_mlp
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
,
num_epoch
)
:
train_accuracies
=
np
.
zeros
(
num_epoch
)
for
i
in
range
(
num_epoch
)
:
# Creation of weights and biases of the network
w1
,
b1
,
w2
,
b2
,
_
=
learn_once_cross_entropy
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
)
# Calculation of the output a2
a0
=
data_train
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
a1
=
sigma
(
z1
)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
a2
=
sigma
(
z2
)
# Accuracy calculation
count
=
0
for
j
in
range
(
len
(
a2
))
:
if
a2
[
j
]
==
labels_train
[
j
,
0
]
:
count
+=
1
/
len
(
a2
)
train_accuracies
[
i
]
=
count
return
w1
,
w2
,
b1
,
b2
,
train_accuracies
def
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
)
:
# Calculation of the output a2
a0
=
data_test
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
a1
=
sigma
(
z1
)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
a2
=
sigma
(
z2
)
# Accuracy calculation
test_accuracy
=
0
for
j
in
range
(
len
(
a2
))
:
if
a2
[
j
]
==
labels_train
[
j
,
0
]
:
test_accuracy
+=
1
/
len
(
a2
)
return
test_accuracy
def
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
,
learning_rate
,
num_epoch
)
:
# Setting of the neuron numbers of the network
d_in
=
data_train
.
shape
[
1
]
d_out
=
data_test
.
shape
[
0
]
# Random initialization of the network weights and biaises
w1
=
2
*
np
.
random
.
rand
(
d_in
,
d_h
)
-
1
# first layer weights
b1
=
np
.
zeros
((
1
,
d_h
))
# first layer biaises
w2
=
2
*
np
.
random
.
rand
(
d_h
,
d_out
)
-
1
# second layer weights
b2
=
np
.
zeros
((
1
,
d_out
))
# second layer biaises
# Accuracy calculation of the train and test sets
w1
,
b1
,
w2
,
b2
,
train_accuracies
=
train_mlp
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
,
num_epoch
)
w1
,
b1
,
w2
,
b2
,
test_accuracy
=
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
)
return
train_accuracies
,
test_accuracy
##
# COPY OF READCIFAR.PY AS I WAS UNABLE TO IMPORT IT
import
numpy
as
np
import
os
import
pickle
import
random
def
unpickle
(
file
):
import
pickle
with
open
(
file
,
'
rb
'
)
as
f
:
dict
=
pickle
.
load
(
f
,
encoding
=
'
bytes
'
)
return
dict
def
read_cifar_batch
(
batch_path
)
:
with
open
(
batch_path
,
'
rb
'
)
as
file
:
# On unpickle le batch
batch
=
pickle
.
load
(
file
,
encoding
=
'
bytes
'
)
# Extraction de data et labels
data
=
np
.
array
(
batch
[
b
'
data
'
],
dtype
=
np
.
float32
)
/
255.0
labels
=
np
.
array
(
batch
[
b
'
labels
'
],
dtype
=
np
.
int64
)
return
data
,
labels
def
read_cifar
(
batch_dir
):
data_batches
=
[]
label_batches
=
[]
# Itération sur les batches
for
file_name
in
os
.
listdir
(
batch_dir
):
if
file_name
.
startswith
(
"
data_batch
"
)
or
file_name
.
startswith
(
"
test_batch
"
)
:
batch_path
=
os
.
path
.
join
(
batch_dir
,
file_name
)
data
,
labels
=
read_cifar_batch
(
batch_path
)
data_batches
.
append
(
data
)
label_batches
.
append
(
labels
)
# On combine data et labels depuis tous les batches
data
=
np
.
concatenate
(
data_batches
,
axis
=
0
)
labels
=
np
.
concatenate
(
label_batches
,
axis
=
0
)
return
data
,
labels
def
split_dataset
(
data
,
labels
,
split
):
# On vérifie la bonne dimension de data et labels
if
data
.
shape
[
0
]
!=
labels
.
shape
[
0
]:
return
OSError
(
"
data et labels doivent avoir le même nombre de lignes !
"
)
# On détermine la taille des data train et test
train_size
=
round
(
data
.
shape
[
0
]
*
split
)
# On shuffle les data et labels
shuffle_index
=
[
i
for
i
in
range
(
data
.
shape
[
0
])]
# On extirpe les data/labels train et test
data_train
=
data
[
shuffle_index
][:
train_size
]
labels_train
=
np
.
array
([[
labels
[
i
]]
for
i
in
shuffle_index
])[:
train_size
]
data_test
=
data
[
shuffle_index
][
train_size
:]
labels_test
=
np
.
array
([[
labels
[
i
]]
for
i
in
shuffle_index
])[
train_size
:]
return
data_train
,
labels_train
,
data_test
,
labels_test
##
if
__name__
==
"
__main__
"
:
data_folder
=
'
C:
\\
Users
\\
hugol
\\
Desktop
\\
Centrale Lyon
\\
Centrale Lyon 4A
\\
Informatique
\\
Machine Learning
\\
BE1
\\
cifar-10-batches-py
'
data
,
labels
=
read_cifar
(
data_folder
)
data_train
,
labels_train
,
data_test
,
labels_test
=
split_dataset
(
data
,
labels
,
0.9
)
train_accuracies
,
test_accuracy
=
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
=
64
,
learning_rate
=
0.1
,
num_epoch
=
100
)
plt
.
figure
()
plt
.
plot
(
range
(
len
(
train_accuracies
)),
train_accuracies
)
plt
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment