Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Image classification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Chauvin Hugo
Image classification
Commits
600437e4
Commit
600437e4
authored
1 year ago
by
Chauvin Hugo
Browse files
Options
Downloads
Patches
Plain Diff
Add new file
parent
1a0d1140
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
knn.py
+125
-0
125 additions, 0 deletions
knn.py
with
125 additions
and
0 deletions
knn.py
0 → 100644
+
125
−
0
View file @
600437e4
import
numpy
as
np
import
matplotlib.pyplot
as
plt
def
distance_matrix
(
M1
,
M2
)
:
M1_2
=
np
.
sum
(
M1
**
2
,
axis
=
1
,
keepdims
=
True
)
M2_2
=
np
.
sum
(
M2
**
2
,
axis
=
1
,
keepdims
=
True
)
M1M2
=
np
.
dot
(
M1
,
M2
.
T
)
dists
=
np
.
sqrt
(
M1_2
+
M2_2
.
T
-
2
*
M1M2
)
return
dists
def
knn_predict
(
dists
,
labels_train
,
k
)
:
predict_labels
=
np
.
zeros
(
dists
.
shape
[
0
])
for
i
in
range
(
dists
.
shape
[
0
])
:
# On trouve les k indexs les plus proches sur la ligne i de dists
k_indexes
=
np
.
argpartition
(
dists
[
i
,:],
range
(
k
))[:
k
]
# On récupère les labels des images
k_labels
=
labels_train
[
k_indexes
]
# On compte les occurences des labels dans les k voisins
unique_labels
,
counts
=
np
.
unique
(
k_labels
,
return_counts
=
True
)
# On prend le label qui revient le plus souvent
predict_labels
[
i
]
=
unique_labels
[
np
.
argmax
(
counts
)]
return
predict_labels
def
evaluate_knn
(
data_train
,
labels_train
,
data_test
,
labels_test
,
k
)
:
dists
=
distance_matrix
(
data_test
,
data_train
)
predict_labels
=
knn_predict
(
dists
,
labels_train
,
k
)
acc
=
0
for
i
in
range
(
labels_test
.
shape
[
0
])
:
if
abs
(
predict_labels
[
i
]
-
labels_test
[
i
,
0
])
<
10
**
(
-
6
)
:
# on prend en compte les valeurs presque nulles
acc
+=
1
/
len
(
predict_labels
)
return
acc
##
# COPY OF READCIFAR.PY AS I WAS UNABLE TO IMPORT IT
import
numpy
as
np
import
os
import
pickle
import
random
def
unpickle
(
file
):
import
pickle
with
open
(
file
,
'
rb
'
)
as
f
:
dict
=
pickle
.
load
(
f
,
encoding
=
'
bytes
'
)
return
dict
def
read_cifar_batch
(
batch_path
)
:
with
open
(
batch_path
,
'
rb
'
)
as
file
:
# On unpickle le batch
batch
=
pickle
.
load
(
file
,
encoding
=
'
bytes
'
)
# Extraction de data et labels
data
=
np
.
array
(
batch
[
b
'
data
'
],
dtype
=
np
.
float32
)
/
255.0
labels
=
np
.
array
(
batch
[
b
'
labels
'
],
dtype
=
np
.
int64
)
return
data
,
labels
def
read_cifar
(
batch_dir
):
data_batches
=
[]
label_batches
=
[]
# Itération sur les batches
for
file_name
in
os
.
listdir
(
batch_dir
):
if
file_name
.
startswith
(
"
data_batch
"
)
or
file_name
.
startswith
(
"
test_batch
"
)
:
batch_path
=
os
.
path
.
join
(
batch_dir
,
file_name
)
data
,
labels
=
read_cifar_batch
(
batch_path
)
data_batches
.
append
(
data
)
label_batches
.
append
(
labels
)
# On combine data et labels depuis tous les batches
data
=
np
.
concatenate
(
data_batches
,
axis
=
0
)
labels
=
np
.
concatenate
(
label_batches
,
axis
=
0
)
return
data
,
labels
def
split_dataset
(
data
,
labels
,
split
):
# On vérifie la bonne dimension de data et labels
if
data
.
shape
[
0
]
!=
labels
.
shape
[
0
]:
return
OSError
(
"
data et labels doivent avoir le même nombre de lignes !
"
)
# On détermine la taille des data train et test
train_size
=
round
(
data
.
shape
[
0
]
*
split
)
# On shuffle les data et labels
shuffle_index
=
[
i
for
i
in
range
(
data
.
shape
[
0
])]
# On extirpe les data/labels train et test
data_train
=
data
[
shuffle_index
][:
train_size
]
labels_train
=
np
.
array
([[
labels
[
i
]]
for
i
in
shuffle_index
])[:
train_size
]
data_test
=
data
[
shuffle_index
][
train_size
:]
labels_test
=
np
.
array
([[
labels
[
i
]]
for
i
in
shuffle_index
])[
train_size
:]
return
data_train
,
labels_train
,
data_test
,
labels_test
##
if
__name__
==
"
__main__
"
:
data_folder
=
'
C:
\\
Users
\\
hugol
\\
Desktop
\\
Centrale Lyon
\\
Centrale Lyon 4A
\\
Informatique
\\
Machine Learning
\\
BE1
\\
cifar-10-batches-py
'
batch_filename
=
'
data_batch_1
'
data_all
,
labels_all
=
read_cifar
(
data_folder
)
print
(
"
Data shape:
"
,
data_all
.
shape
)
print
(
"
Labels shape:
"
,
labels_all
.
shape
)
data_train
,
labels_train
,
data_test
,
labels_test
=
split_dataset
(
data_all
,
labels_all
,
0.9
)
print
(
"
Data train shape:
"
,
data_train
.
shape
)
print
(
"
Labels train shape:
"
,
labels_train
.
shape
)
print
(
"
Data test shape:
"
,
data_test
.
shape
)
print
(
"
Labels test shape:
"
,
labels_test
.
shape
)
acc
=
np
.
zeros
(
20
)
for
k
in
range
(
1
,
21
)
:
acc
[
k
-
1
]
=
evaluate_knn
(
data_train
,
labels_train
,
data_test
,
labels_test
,
k
)
plt
.
figure
()
plt
.
plot
(
range
(
1
,
21
),
acc
)
plt
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment