Select Git revision
Forked from
Vuillemot Romain / INF-TC1
Source project has a limited visibility.
mlp.py 6.63 KiB
import numpy as np
from read_cifar import *
import matplotlib.pyplot as plt
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def learn_once_mse(w1, b1, w2, b2, data, targets, learning_rate):
N = len(targets) # number of training examples
# Forward pass
a0 = data # the data are the input of the first layer
z1 = np.matmul(a0, w1) + b1 # input of the hidden layer
a1 = sigmoid(z1) # output of the hidden layer (sigmoid activation function)
z2 = np.matmul(a1, w2) + b2 # input of the output layer
a2 = sigmoid(z2) # output of the output layer (sigmoid activation function)
predictions = a2 # the predicted values are the outputs of the output layer
# Compute loss (MSE)
loss = np.mean(np.square(predictions - targets))
# According to the formulas established by theory :
d_a2 = 2 / N * (a2 - targets)
d_z2 = d_a2 * a2 * (1 - a2)
d_w2 = np.matmul(a1.T, d_z2)
d_b2 = d_z2
d_a1 = np.matmul(d_z2, w2.T)
d_z1 = d_a1 * a1 * (1 - a1)
d_w1 = np.matmul(a0.T, d_z1)
d_b1 = d_z1
# Calculation of the updated weights and biases of the network with gradient descent method
w1 -= learning_rate * d_w1
w2 -= learning_rate * d_w2
b2 -= learning_rate * d_b2
b1 -= learning_rate * d_b1
return w1, b1, w2, b2, loss
def one_hot(labels):
# Total number of classes
num_classes = np.max(labels) + 1
# one_hot_matrix
one_hot_matrix = np.eye(num_classes)[labels]
return one_hot_matrix
def softmax(x):
e_x = np.exp(x - np.max(x)) # Subtracting the maximum value for numerical stability
return e_x / e_x.sum(axis=0)
def learn_once_cross_entropy(w1, b1, w2, b2, data, labels_train, learning_rate):
N = len(labels_train) # number of training examples
# Forward pass
a0 = data # the data are the input of the first layer
z1 = np.matmul(a0, w1) + b1 # input of the hidden layer
a1 = sigmoid(z1) # output of the hidden layer (sigmoid activation function)
z2 = np.matmul(a1, w2) + b2 # input of the output layer
a2 = softmax(z2) # output of the output layer (softmax activation function)
predictions = a2 # the predicted values are the outputs of the output layer
targets_one_hot = one_hot(labels_train) # target as a one-hot encoding for the desired labels
# Cross-entropy loss
epsilon = 0.00001
loss = - np.sum(targets_one_hot * np.log(predictions + epsilon)) / N
# Backpropagation
d_z2 = a2 - targets_one_hot
d_w2 = np.dot(a1.T, d_z2) / N
d_b2 = np.sum(d_z2, axis = 0, keepdims = True) / N
d_a1 = np.dot(d_z2, w2.T)
d_z1 = d_a1 * z1 * (1 - a1)
d_w1 = np.dot(a0.T, d_z1) / N
d_b1 = np.sum(d_z1, axis = 0, keepdims = True) / N
# Calculation of the updated weights and biases of the network with gradient descent method
w1 -= learning_rate * d_w1
w2 -= learning_rate * d_w2
b2 -= learning_rate * d_b2
b1 -= learning_rate * d_b1
return w1, b1, w2, b2, loss
def train_mlp(w1, b1, w2, b2, data_train, labels_train, learning_rate, num_epoch):
train_accuracies = [0] * num_epoch
for i in range(num_epoch):
w1, b1, w2, b2, loss = learn_once_cross_entropy(w1, b1, w2, b2, data_train, labels_train, learning_rate)
# Forward pass
a0 = data_train # the data are the input of the first layer
z1 = np.matmul(a0, w1) + b1 # input of the hidden layer
a1 = sigmoid(z1) # output of the hidden layer (sigmoid activation function)
z2 = np.matmul(a1, w2) + b2 # input of the output layer
a2 = softmax(z2) # output of the output layer (softmax activation function)
predictions = a2 # the predicted values are the outputs of the output layer
# Find the predicted class
prediction = np.argmax(predictions, axis = 1)
# Calculate the accuracy for the step
accuracy = np.mean(labels_train == prediction)
train_accuracies[i] = accuracy
return w1, b1, w2, b2, train_accuracies
def test_mlp(w1, b1, w2, b2, data_test, labels_test):
# Forward pass
a0 = data_test # the data are the input of the first layer
z1 = np.matmul(a0, w1) + b1 # input of the hidden layer
a1 = sigmoid(z1) # output of the hidden layer (sigmoid activation function)
z2 = np.matmul(a1, w2) + b2 # input of the output layer
a2 = softmax(z2) # output of the output layer (softmax activation function)
predictions = a2 # the predicted values are the outputs of the output layer
# Find the predicted label
prediction = np.argmax(predictions, axis = 1)
# Calculation of the test accuracy
test_accuracy = np.mean(prediction == labels_test)
return test_accuracy
def run_mlp_training(data_train, labels_train, data_test, labels_test, d_h, learning_rate, num_epoch):
# Define parameters
d_in = data_train.shape[1] # number of input neurons
d_out = len(np.unique(labels_train)) # number of output neurons = number of classes
# Random initialization of the network weights and biaises with Xavier initialisation
w1 = np.random.randn(d_in, d_h) / np.sqrt(d_in) # first layer weights
b1 = np.zeros((1, d_h)) # first layer biaises
w2 = np.random.randn(d_h, d_out) / np.sqrt(d_h) # second layer weights
b2 = np.zeros((1, d_out)) # second layer biaises
# Training of the MLP classifier with num_epoch steps
w1, b1, w2, b2, train_accuracies = train_mlp(w1, b1, w2, b2, data_train, labels_train, learning_rate, num_epoch)
# Caculation of the final testing accuracy with the new values of the weights and bias
test_accuracy = test_mlp(w1, b1, w2, b2, data_test, labels_test)
return train_accuracies, test_accuracy
if __name__ == "__main__":
# Parameters
split_factor = 0.1
d_h = 64
learning_rate = 0.1
num_epoch = 100
# Extraction and formatting of the data from Cifar database
data, labels = read_cifar("./data/cifar-10-batches-py")
data_train, labels_train, data_test, labels_test = split_dataset(data, labels, split_factor)
# Initialisation of the data to plot
epochs = [i for i in range(1, num_epoch + 1)]
train_accuracies, test_accuracy = run_mlp_training(data_train, labels_train, data_test, labels_test, d_h, learning_rate, num_epoch)
# Plot the graph
plt.close()
plt.plot(epochs, train_accuracies)
plt.title("Evolution of learning accuracy across learning epochs")
plt.xlabel("number of epochs")
plt.ylabel("Accuracy")
plt.grid(True, which='both')
plt.show()
plt.savefig("results/mlp.png")