Skip to content
Snippets Groups Projects
Commit 5bc9ad20 authored by Dellandrea Emmanuel's avatar Dellandrea Emmanuel
Browse files

Add session 2

parent 4461aff3
No related branches found
No related tags found
No related merge requests found
import matplotlib.pyplot as plt
import numpy as np
def load_data(file_name, delimiter=','):
""" Reads the file containing the data and returns the matrices corresponding to it
Parameters
----------
file_name : name of the file containing the data
delimiter : character that separates the columns in the file (default is ",")
Returns
-------
x : data matrix of dimension [N, nb_var]
d : matrix containing the target variable values of dimension [N, nb_target]
N : number of elements
nb_var : number of predictor variables
nb_target : number of target variables
"""
data = np.loadtxt(file_name, delimiter=delimiter)
nb_target = 1
nb_var = data.shape[1] - nb_target
N = data.shape[0]
x = data[:, :nb_var]
d = data[:, nb_var:].reshape(N,1)
return x, d, N, nb_var, nb_target
def normalization(x):
""" Normalizes the data by centering and scaling the predictor variables
Parameters
----------
X : data matrix of dimension [N, nb_var]
with N : number of elements and nb_var : number of predictor variables
Returns
-------
X_norm : normalized data matrix of dimension [N, nb_var]
mu : mean of the variables of dimension [1, nb_var]
sigma : standard deviation of the variables of dimension [1, nb_var]
"""
mu = np.mean(x, 0)
sigma = np.std(x, 0)
x_norm = (x - mu) / sigma
return x_norm, mu, sigma
def split_data(x,d,prop_val=0.2, prop_test=0.2):
""" Splits the original data into three distinct subsets: training, validation, and test
Parameters
----------
x : data matrix of dimension [N, nb_var]
d : target values matrix [N, nb_target]
prop_val : proportion of validation data in the total data (between 0 and 1)
prop_test : proportion of test data in the total data (between 0 and 1)
with N : number of elements, nb_var : number of predictor variables, nb_target : number of target variables
Returns
-------
x_train : training data matrix
d_train : target values matrix for training
x_val : validation data matrix
d_val : target values matrix for validation
x_test : test data matrix
d_test : target values matrix for test
"""
assert prop_val + prop_test < 1.0
N = x.shape[0]
indices = np.arange(N)
np.random.shuffle(indices)
nb_val = int(N*prop_val)
nb_test = int(N*prop_test)
nb_train = N - nb_val - nb_test
x = x[indices,:]
d = d[indices,:]
x_train = x[:nb_train,:]
d_train = d[:nb_train,:]
x_val = x[nb_train:nb_train+nb_val,:]
d_val = d[nb_train:nb_train+nb_val,:]
x_test = x[N-nb_test:,:]
d_test = d[N-nb_test:,:]
return x_train, d_train, x_val, d_val, x_test, d_test
def compute_cross_entropy_cost(y, d):
""" Computes the value of the cross-entropy cost function
Parameters
----------
y : predicted data matrix (softmax)
d : actual data matrix encoded by 1
Returns
-------
cost : value corresponding to the cost function
"""
N = y.shape[1]
cost = - np.sum(d*np.log(y)) / N
return cost
def forward_pass(x, W, b, activation):
""" Performs a forward pass in the neural network
Parameters
----------
x : input matrix, dimension nb_var x N
W : list containing the weight matrices of the network
b : list containing the bias matrices of the network
activation : list containing the activation functions of the network layers
with N : number of elements, nb_var : number of predictor variables
Returns
-------
a : list containing the input potentials of the network layers
h : list containing the outputs of the network layers
"""
h = [x]
a = []
for i in range(len(b)):
a.append( W[i].dot(h[i]) + b[i] )
h.append( activation[i](a[i]) )
return a, h
def backward_pass(delta_h, a, h, W, activation):
""" Performs a backward pass in the neural network (backpropagation)
Parameters
----------
delta_h : matrix containing the gradient of the cost with respect to the network output
a : list containing the input potentials of the network layers
h : list containing the outputs of the network layers
W : list containing the weight matrices of the network
activation : list containing the activation functions of the network layers
Returns
-------
delta_W : list containing the gradient matrices of the network's weight layers
delta_b : list containing the gradient matrices of the network's bias layers
"""
delta_b = []
delta_W = []
for i in range(len(W)-1,-1,-1):
delta_a = delta_h * activation[i](a[i], True)
delta_b.append( delta_a.mean(1).reshape(-1,1) )
delta_W.append( delta_a.dot(h[i].T) )
delta_h = (W[i].T).dot(delta_a)
delta_b = delta_b[::-1]
delta_W = delta_W[::-1]
return delta_W, delta_b
def sigmoid(z, deriv=False):
""" Computes the value of the sigmoid function or its derivative applied to z
Parameters
----------
z : can be a scalar or a matrix
deriv : boolean. If False returns the value of the sigmoid function, if True returns its derivative
Returns
-------
s : value of the sigmoid function applied to z or its derivative. Same dimension as z
"""
s = 1 / (1 + np.exp(-z))
if deriv:
return s * (1 - s)
else :
return s
def linear(z, deriv=False):
""" Computes the value of the linear function or its derivative applied to z
Parameters
----------
z : can be a scalar or a matrix
deriv : boolean. If False returns the value of the linear function, if True returns its derivative
Returns
-------
s : value of the linear function applied to z or its derivative. Same dimension as z
"""
if deriv:
return 1
else :
return z
def relu(z, deriv=False):
""" Computes the value of the ReLU function or its derivative applied to z
Parameters
----------
z : can be a scalar or a matrix
deriv : boolean. If False returns the value of the ReLU function, if True returns its derivative
Returns
-------
s : value of the ReLU function applied to z or its derivative. Same dimension as z
"""
r = np.zeros(z.shape)
if deriv:
pos = np.where(z>=0)
r[pos] = 1.0
return r
else :
return np.maximum(r,z)
def softmax(z, deriv=False):
""" Computes the value of the softmax function or its derivative applied to z
Parameters
----------
z : data matrix
deriv : boolean. If False returns the value of the softmax function, if True returns its derivative
Returns
-------
s : value of the softmax function applied to z or its derivative. Same dimension as z
"""
if deriv:
return 1
else :
return np.exp(z) / np.sum(np.exp(z),axis=0)
def one_hot_encoding(d):
""" Performs a one-hot encoding: for the output neurons of the network, only 1 will have the value 1, all others will be 0
Parameters
----------
d : matrix containing the values of the target variable (class of the elements) of dimension [N, 1]
with N : number of elements
Returns
-------
e : encoded data matrix of dimension [N, nb_classes]
with N : number of elements and nb_classes the number of classes (maximum+1) of the values in d
"""
d = d.astype(int).flatten()
N = d.shape[0]
nb_classes = d.max() + 1
e = np.zeros((N,nb_classes))
e[range(N),d] = 1
return e
def classification_accuracy(y,d):
""" Computes the classification accuracy (proportion of correctly classified elements)
Parameters
----------
y : network outputs matrix of dimension [nb_output_neurons x N]
d : true values matrix [nb_output_neurons x N]
with N : number of elements and nb_output_neurons : number of neurons in the output layer
Returns
-------
t : classification accuracy
"""
ind_y = np.argmax(y,axis=0)
ind_d = np.argmax(d,axis=0)
t = np.mean(ind_y == ind_d)
return t
# ===================== Part 1: Reading and Normalizing the Data =====================
print("Reading the data ...")
x, d, N, nb_var, nb_target = load_data("iris.txt")
# x, d, N, nb_var, nb_target = load_data("scores.txt")
# Display the first 10 examples of the dataset
print("Displaying the first 10 examples of the dataset: ")
for i in range(0, 10):
print(f"x = {x[i,:]}, d = {d[i]}")
# Normalization of the variables (centering and scaling)
print("Normalizing the variables ...")
x, mu, sigma = normalization(x)
d = one_hot_encoding(d)
# Split the data into training, validation, and test subsets
x_train, d_train, x_val, d_val, x_test, d_test = split_data(x,d)
# ===================== Part 2: Training =====================
# Learning rate and number of iterations
alpha = 0.0001
nb_iters = 10000
training_costs = np.zeros(nb_iters)
validation_costs = np.zeros(nb_iters)
# Network dimensions
D_c = [nb_var, 15, 15, d_train.shape[1]] # list containing the number of neurons for each layer
activation = [relu, relu, softmax] # list containing the activation functions for hidden layers and output layer
# Random initialization of network weights
W = []
b = []
for i in range(len(D_c)-1):
W.append(2 * np.random.random((D_c[i+1], D_c[i])) - 1)
b.append(np.zeros((D_c[i+1],1)))
x_train = x_train.T # Data is presented as column vectors at the network input
d_train = d_train.T
x_val = x_val.T # Data is presented as column vectors at the network input
d_val = d_val.T
x_test = x_test.T # Data is presented as column vectors at the network input
d_test = d_test.T
for t in range(nb_iters):
#############################################################################
# Forward pass: calculate predicted output y on validation data #
#############################################################################
a, h = forward_pass(x_val, W, b, activation)
y_val = h[-1] # Predicted output
###############################################################################
# Forward pass: calculate predicted output y on training data #
###############################################################################
a, h = forward_pass(x_train, W, b, activation)
y_train = h[-1] # Predicted output
###########################################
# Compute Mean Squared Error loss function #
###########################################
training_costs[t] = compute_cross_entropy_cost(y_train,d_train)
validation_costs[t] = compute_cross_entropy_cost(y_val,d_val)
####################################
# Backward pass: backpropagation #
####################################
delta_h = (y_train-d_train) # For the last layer
delta_W, delta_b = backward_pass(delta_h, a, h, W, activation)
#############################################
# Update weights and biases ##### #
#############################################
for i in range(len(b)-1,-1,-1):
b[i] -= alpha * delta_b[i]
W[i] -= alpha * delta_W[i]
print("Final cost on the training set: ", training_costs[-1])
print("Classification accuracy on the training set: ", classification_accuracy(y_train, d_train))
print("Final cost on the validation set: ", validation_costs[-1])
print("Classification accuracy on the validation set: ", classification_accuracy(y_val, d_val))
# Display cost function evolution during backpropagation
plt.figure(0)
plt.title("Cost function evolution during backpropagation")
plt.plot(np.arange(training_costs.size), training_costs, label="Training")
plt.plot(np.arange(validation_costs.size), validation_costs, label="Validation")
plt.legend(loc="upper left")
plt.xlabel("Number of iterations")
plt.ylabel("Cost")
plt.show()
# ===================== Part 3: Evaluation on the test set =====================
#######################################################################
# Forward pass: calculate predicted output y on test data #
#######################################################################
a, h = forward_pass(x_test, W, b, activation)
y_test = h[-1] # Predicted output
cost = compute_cross_entropy_cost(y_test,d_test)
print("Cost on the test set: ", cost)
print("Classification accuracy on the test set: ", classification_accuracy(y_test, d_test))
File added
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment