Skip to content
Snippets Groups Projects
Commit 9da89970 authored by Sucio's avatar Sucio
Browse files

avancement

parent 86f8efb7
No related branches found
No related tags found
No related merge requests found
File added
This diff is collapsed.
...@@ -29,14 +29,14 @@ def affichage(d_train, l_train, d_test, l_test): ...@@ -29,14 +29,14 @@ def affichage(d_train, l_train, d_test, l_test):
liste_names= np.array(batch_data[b'label_names']) liste_names= np.array(batch_data[b'label_names'])
fig, axes = plt.subplots(large, long, figsize=(12, 5)) fig, axes = plt.subplots(large, long, figsize=(12, 5))
fig.subplots_adjust(hspace=0.5) fig.subplots_adjust(hspace=0.5)
for i in range(len(l_train)): for i,_ in enumerate(l_train):
im = np.array(np.reshape(d_train[i, 0:3072], (32, 32, 3), order='F'), dtype=np.int64) im = np.array(np.reshape(d_train[i, 0:3072], (32, 32, 3), order='F'), dtype=np.int64)
im = np.transpose(im, (1, 0, 2)) im = np.transpose(im, (1, 0, 2))
name=liste_names[l_train[i]] name=liste_names[l_train[i]]
axes[i // long, i % long].imshow(im) axes[i // long, i % long].imshow(im)
axes[i // long, i % long].set_title(f"Train : {name.decode('utf-8')}") axes[i // long, i % long].set_title(f"Train : {name.decode('utf-8')}")
axes[i // long, i % long].axis('off') axes[i // long, i % long].axis('off')
for i in range(len(l_test)): for i,_ in enumerate(l_test):
im = np.array(np.reshape(d_test[i, 0:3072], (32, 32, 3), order='F'), dtype=np.int64) im = np.array(np.reshape(d_test[i, 0:3072], (32, 32, 3), order='F'), dtype=np.int64)
im = np.transpose(im, (1, 0, 2)) im = np.transpose(im, (1, 0, 2))
j = i + len(l_train) j = i + len(l_train)
......
"""import numpy"""
import numpy as np import numpy as np
import pickle import pickle
import os import os
def read_cifar_batch(batch_path): def read_cifar_batch(batch_path):
"""F"""
with open(batch_path, 'rb') as file: with open(batch_path, 'rb') as file:
batch_data = pickle.load(file, encoding='bytes') batch_data = pickle.load(file, encoding='bytes')
data = np.array(batch_data[b'data'], dtype=np.float32) data = np.array(batch_data[b'data'], dtype=np.float32)
labels = np.array(batch_data[b'labels'], dtype=np.int64) labels = np.array(batch_data[b'labels'], dtype=np.int64)
return data, labels return data, labels
def read_cifar(path_folder): def read_cifar(path_folder):
...@@ -22,6 +23,7 @@ def read_cifar(path_folder): ...@@ -22,6 +23,7 @@ def read_cifar(path_folder):
return(data,labels) return(data,labels)
def split_dataset(data, labels, split_factor): def split_dataset(data, labels, split_factor):
"""fonction"""
num_samples = len(data) num_samples = len(data)
shuffled_indices = np.random.permutation(num_samples) shuffled_indices = np.random.permutation(num_samples)
split_index = int(num_samples * split_factor) split_index = int(num_samples * split_factor)
......
numpy
open-cv
\ No newline at end of file
[.ShellClassInfo]
IconResource=C:\Program Files\Google\Drive File Stream\82.0.1.0\GoogleDriveFS.exe,22
test.py 0 → 100644
import numpy as np
def count_matching_elements(vector1, vector2):
if len(vector1) != len(vector2):
raise ValueError("Les vecteurs doivent avoir la même taille.")
matching_elements = np.sum(vector1 == vector2)
return matching_elements
# Exemple d'utilisation
vector1 = np.array([1, 2, 3, 4, 5])
vector2 = np.array([1, 0, 3, 3, 5])
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment