Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • main
1 result

Target

Select target project
  • mcollas/mod-4-6-td-2-collas
  • mduhalde/mod_4_6-td2
  • mkhatib/mod_4_6-td2
  • adorson/mod_4_6-td2_Dorson
  • edelland/mod_4_6-td2
  • agiard/mod_4_6-td2
  • bosioa/mod-4-6-td-2-bosio
  • ndelorme/mod-4-6-td-2-antonin-delorme
  • harteaga/mod_4_6-td2
  • bbrudysa/mod_4_6-td2
  • moudet/mod_4_6-td2
  • dtibi/mod_4_6-td2
  • mguiller/mod_4_6-td2
  • svincent/mod-4-6-td-2-vincent-simon
  • ykarouma/mod-4-6-td-2-karouma
  • ggeiger/mod_4_6-td2
  • rrousse/mod-4-6-td-2-romain-rousse
  • bdeneuve/mod_4_6-td2
  • cdurget/mod_4_6-td2
  • barryt/mod_4_6-td2
  • tpoirier/mod_4_6-td2
  • melbadao/mod_4_6-td2
  • gbeauvy/mod_4_6-td2
  • cmassala/mod_4_6-td2
  • lpoirson/mod_4_6-td2
  • asennevi/mod-4-6-td-2-as
  • ykessi/mod-4-6-td-2
  • zzhengfe/mod-4-6-td-2-zhang
  • mkosksi/deep-learning-td-2
  • flegrand/td-2-deep-learning
  • cgirard/mod_4_6-td2
  • laudard/mod_4_6-td2
  • pishida/mod_4_6-td2
  • jseksik/IA-td2
  • fhu/mod_4_6-td2
  • nlascoux/deep_learning
  • pdanjou/mod_4_6-td2
  • ochaufou/mod_4_6-td2
  • amilford/mod_4_6-td2
  • ttraore/mod_4_6-td2
  • mtalec/mod_4_6-td2
  • pguerinc/mod_4_6-td2
  • ebisson/mod_4_6-td2
  • nterbech/mod_4_6-td2
  • jcaty/mod_4_6-td2
  • afaytout/be-2-deep-learning
  • pramage/deep-learning
  • selalimi/mod_4_6-td2
  • sbessac/mod_4_6-td2
  • mcart/mod_4_6-td2
  • vkadkhod/mod_4_6-td2
  • amaassen/mod_4_6-td2-fork
  • cgerest/mod-4-6-td-2-cgerest
  • rgirard/mod_4_6-td2
  • clemencm/mod_4_6-td2
  • hbettaie/deep-learning-td-2
  • tdesgreys/mod_4_6-td2
  • bdarne/mod_4_6-td2
  • epaganel/mod_4_6-td2
  • mbenyahi/td-2-deep-learning
  • pmarin/mod_4_6-td2
  • jmansion/mod-4-6-td-2
  • zkabbaj/mod_4_6-td2
  • tfassin/deep-learning
  • delkhadr/mod_4_6-td2
  • tdenis/mod_4_6-td2
  • vludvig/mod_4_6-td2
  • mbabay/td-2-deep-learning
68 results
Select Git revision
  • main
1 result
Show changes
Commits on Source (7)
Showing
with 2290 additions and 174 deletions
This diff is collapsed.
%% Cell type:markdown id: tags:
## Test Pytorch
%% Cell type:code id: tags:
``` python
import torch
N, D = 14, 10
x = torch.randn(N, D).type(torch.FloatTensor)
print(x)
from torchvision import models
alexnet = models.alexnet()
print(alexnet)
```
%% Output
tensor([[ 0.6650, 2.0888, -0.3361, -0.6212, 0.6276, -0.3091, 1.6601, -0.1404,
0.0224, -1.1360],
[-0.8311, -1.6385, 0.3011, 1.2989, 0.2328, -0.0061, 0.4039, 0.3956,
-0.2067, -0.8877],
[-0.2899, -1.7310, -0.4318, 1.3837, 3.1771, 1.7354, 0.3680, -0.0743,
-0.1610, 0.8281],
[-0.2591, -2.0913, 0.8630, -0.3533, 0.9323, -1.4520, 0.4476, -0.2588,
-0.0963, 1.8449],
[ 0.4599, 0.3258, 0.7780, 0.6943, -0.4343, -0.0536, -0.1049, 0.2867,
0.5493, -1.2934],
[-0.6990, 0.0783, -0.8745, 1.2521, 1.5363, 0.8770, -0.5319, -0.2629,
0.7732, -0.5001],
[-0.2902, -0.8901, 0.1904, 0.7456, 0.5802, 0.0443, -1.2447, 2.1954,
0.5382, 0.2219],
[ 1.0372, -0.7516, 0.7940, 0.8207, 0.6601, 0.0317, 0.1410, -1.7062,
-0.6549, 0.6287],
[ 0.6680, 1.0136, -0.0813, -1.4382, 0.4640, 1.2923, -1.0299, 0.5684,
1.6626, -1.1921],
[-1.1864, -0.6625, -1.0846, 0.7550, -0.8748, 0.2835, -1.4264, 1.0279,
-0.6046, 0.6298],
[-1.9253, -0.4960, -0.8379, 1.8726, -2.0282, 0.0869, 1.2508, 0.0390,
-1.7213, 0.3269],
[ 1.7196, -1.6188, -0.4604, -1.0196, -0.8883, 1.2987, 0.4795, 0.5581,
-1.0138, -0.2184],
[-0.6600, 0.5816, -0.6574, 0.4684, 1.2546, -0.4140, -0.2636, 0.4267,
0.1736, -1.5019],
[-0.8852, 0.6677, -1.3074, -1.2241, -1.4054, 0.0919, 1.5832, 1.4357,
-1.9016, 0.7274]])
AlexNet(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU(inplace=True)
(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU(inplace=True)
(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU(inplace=True)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU(inplace=True)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
(classifier): Sequential(
(0): Dropout(p=0.5, inplace=False)
(1): Linear(in_features=9216, out_features=4096, bias=True)
(2): ReLU(inplace=True)
(3): Dropout(p=0.5, inplace=False)
(4): Linear(in_features=4096, out_features=4096, bias=True)
(5): ReLU(inplace=True)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
)
%% Cell type:markdown id: tags:
## Exercise 1: CNN on CIFAR10
%% Cell type:markdown id: tags:
See if cuda is available ==> it is not
%% Cell type:code id: tags:
``` python
import torch
# check if CUDA is available
train_on_gpu = torch.cuda.is_available()
if not train_on_gpu:
print("CUDA is not available. Training on CPU ...")
else:
print("CUDA is available! Training on GPU ...")
```
%% Output
CUDA is not available. Training on CPU ...
%% Cell type:markdown id: tags:
Load the CIFAR10 dataset
%% Cell type:code id: tags:
``` python
import numpy as np
from torchvision import datasets, transforms
from torch.utils.data.sampler import SubsetRandomSampler
# number of subprocesses to use for data loading
num_workers = 0
# how many samples per batch to load
batch_size = 20
# percentage of training set to use as validation
valid_size = 0.2
# convert data to a normalized torch.FloatTensor
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
# choose the training and test datasets
train_data = datasets.CIFAR10("data", train=True, download=True, transform=transform)
test_data = datasets.CIFAR10("data", train=False, download=True, transform=transform)
# obtain training indices that will be used for validation
num_train = len(train_data)
indices = list(range(num_train))
np.random.shuffle(indices)
split = int(np.floor(valid_size * num_train))
train_idx, valid_idx = indices[split:], indices[:split]
# define samplers for obtaining training and validation batches
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
# prepare data loaders (combine dataset and sampler)
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers
)
valid_loader = torch.utils.data.DataLoader(
train_data, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers
)
test_loader = torch.utils.data.DataLoader(
test_data, batch_size=batch_size, num_workers=num_workers
)
# specify the image classes
classes = [
"airplane",
"automobile",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
]
```
%% Output
Files already downloaded and verified
Files already downloaded and verified
%% Cell type:code id: tags:
``` python
```