Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Image classification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Massala Corentin
Image classification
Commits
d3d40f89
Commit
d3d40f89
authored
1 year ago
by
corentin
Browse files
Options
Downloads
Patches
Plain Diff
Ajout des fichiers de code sur le git
parent
ca4d1607
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
knn.py
+58
-0
58 additions, 0 deletions
knn.py
mlp.py
+254
-0
254 additions, 0 deletions
mlp.py
read_cifar.py
+57
-0
57 additions, 0 deletions
read_cifar.py
with
369 additions
and
0 deletions
knn.py
0 → 100644
+
58
−
0
View file @
d3d40f89
import
read_cifar
import
numpy
as
np
def
distance_matrix
(
matrix1
,
matrix2
):
#X_test then X_train in this order
sum_of_squares_matrix1
=
np
.
sum
(
np
.
square
(
matrix1
),
axis
=
1
,
keepdims
=
True
)
sum_of_squares_matrix2
=
np
.
sum
(
np
.
square
(
matrix2
),
axis
=
1
,
keepdims
=
True
)
dot_product
=
np
.
dot
(
matrix1
,
matrix2
.
T
)
dists
=
np
.
sqrt
(
sum_of_squares_matrix1
+
sum_of_squares_matrix2
.
T
-
2
*
dot_product
)
return
dists
def
knn_predict
(
dists
,
labels_train
,
k
):
output
=
[]
for
i
in
range
(
len
(
dists
)):
res
=
[
0
]
*
10
b
=
np
.
argsort
(
dists
[
i
])[:
k
]
for
lab
in
b
:
res
[
labels_train
[
lab
]]
+=
1
label_temp
=
np
.
argmax
(
res
)
#Attention à la logique ici
output
.
append
(
label_temp
)
return
(
np
.
array
(
output
))
def
evaluate_knn
(
data_train
,
labels_train
,
data_test
,
labels_tests
,
k
):
dist
=
distance_matrix
(
data_test
,
data_train
)
result_test
=
knn_predict
(
dist
,
labels_train
,
k
)
#accuracy
N
=
labels_tests
.
shape
[
0
]
accuracy
=
(
labels_tests
==
result_test
).
sum
()
/
N
return
(
accuracy
)
if
__name__
==
"
__main__
"
:
data
,
labels
=
read_cifar
.
read_cifar
(
'
image-classification/data/cifar-10-batches-py
'
)
X_train
,
X_test
,
y_train
,
y_test
=
read_cifar
.
split_dataset
(
data
,
labels
,
0.8
)
print
(
evaluate_knn
(
X_train
[:
1000
],
y_train
[:
1000
],
X_test
,
y_test
,
5
))
# print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
# y_test = []
# x_test = np.array([[1,2],[4,6]])
# x_train = np.array([[2,4],[7,2],[4,6]])
# y_train = [1,2,1]
# dist = distance_matrix(x_test,x_train)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
mlp.py
0 → 100644
+
254
−
0
View file @
d3d40f89
import
numpy
as
np
import
read_cifar
import
matplotlib.pyplot
as
plt
def
sigmoid
(
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
learn_once_mse
(
w1
,
b1
,
w2
,
b2
,
data
,
targets
,
learning_rate
):
N_out
=
len
(
targets
)
#number of training examples
# Forward pass
a0
=
data
# the data are the input of the first layer
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
# input of the hidden layer
a1
=
sigmoid
(
z1
)
# output of the hidden layer (sigmoid activation function)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
# input of the output layer
a2
=
sigmoid
(
z2
)
# output of the output layer (sigmoid activation function)
predictions
=
a2
# the predicted values are the outputs of the output layer
# Compute loss (MSE)
loss
=
np
.
mean
(
np
.
square
(
predictions
-
targets
))
print
(
f
'
loss:
{
loss
}
'
)
# print('shape a1', a1.shape)
# print('shape w1', w1.shape)
# print('shape b1', b1.shape)
# print('shape a2', a2.shape)
# print('shape w2', w2.shape)
# print('shape b2', b2.shape)
# Backpropagation
delta_a2
=
2
/
N_out
*
(
a2
-
targets
)
# print('shape delta_a2', delta_a2.shape)
delta_z2
=
delta_a2
*
(
a2
*
(
1
-
a2
))
# print('shape delta_z2', delta_z2.shape)
delta_w2
=
np
.
dot
(
a1
.
T
,
delta_z2
)
# print('shape delta_w2', delta_w2.shape)
delta_b2
=
delta_z2
delta_a1
=
np
.
dot
(
delta_z2
,
w2
.
T
)
# print('shape delta_a1', delta_a1.shape)
delta_z1
=
delta_a1
*
(
a1
*
(
1
-
a1
))
# print('shape delta_z1', delta_z1.shape)
delta_w1
=
np
.
dot
(
a0
.
T
,
delta_z1
)
# print('shape delta_w1', delta_w2.shape)
delta_b1
=
delta_z1
# Update weights and biases
w2
-=
learning_rate
*
delta_w2
b2
-=
learning_rate
*
np
.
sum
(
delta_b2
,
axis
=
0
,
keepdims
=
True
)
w1
-=
learning_rate
*
delta_w1
b1
-=
learning_rate
*
np
.
sum
(
delta_b1
,
axis
=
0
,
keepdims
=
True
)
return
w1
,
b1
,
w2
,
b2
,
loss
def
one_hot
(
labels
):
#num_classes = np.max(labels) + 1 on va le hardcoder ici
num_classes
=
10
one_hot_matrix
=
np
.
eye
(
num_classes
)[
labels
]
return
one_hot_matrix
def
softmax_stable
(
x
):
#We use this function to avoid computing to big numbers
return
(
np
.
exp
(
x
-
np
.
max
(
x
))
/
np
.
exp
(
x
-
np
.
max
(
x
)).
sum
())
def
cross_entropy_loss
(
y_pred
,
y_true
):
loss
=
-
np
.
sum
(
y_true
*
np
.
log
(
y_pred
))
/
len
(
y_pred
)
return
loss
def
learn_once_cross_entropy
(
w1
,
b1
,
w2
,
b2
,
data
,
labels_train
,
learning_rate
):
N_out
=
len
(
labels_train
)
#number of training examples
# Forward pass
a0
=
data
# the data are the input of the first layer
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
# input of the hidden layer
a1
=
sigmoid
(
z1
)
# output of the hidden layer (sigmoid activation function)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
# input of the output layer
a2
=
softmax_stable
(
z2
)
# output of the output layer (sigmoid activation function)
predictions
=
a2
# the predicted values are the outputs of the output layer
# Compute loss (cross-entropy loss)
y_true_one_hot
=
one_hot
(
labels_train
)
loss
=
cross_entropy_loss
(
predictions
,
y_true_one_hot
)
# Backpropagation
# delta_a2 = 2 / N_out * (a2 - labels_train) ceci n'est plus nécessaire ici
delta_z2
=
(
a2
-
y_true_one_hot
)
delta_w2
=
np
.
dot
(
a1
.
T
,
delta_z2
)
/
N_out
# on divise par N_out pour ne pas faire des saut de gradient trop elevés
delta_b2
=
delta_z2
/
N_out
delta_a1
=
np
.
dot
(
delta_z2
,
w2
.
T
)
delta_z1
=
delta_a1
*
(
a1
*
(
1
-
a1
))
delta_w1
=
np
.
dot
(
a0
.
T
,
delta_z1
)
/
N_out
delta_b1
=
delta_z1
/
N_out
# Update weights and biases
w2
-=
learning_rate
*
delta_w2
b2
-=
learning_rate
*
np
.
sum
(
delta_b2
,
axis
=
0
,
keepdims
=
True
)
w1
-=
learning_rate
*
delta_w1
b1
-=
learning_rate
*
np
.
sum
(
delta_b1
,
axis
=
0
,
keepdims
=
True
)
return
w1
,
b1
,
w2
,
b2
,
loss
def
learn_once_cross_entropy_2
(
w1
,
w2
,
data
,
labels_train
,
learning_rate
):
N_out
=
len
(
labels_train
)
#number of training examples
# Forward pass
# Feedforward propagation
z1
=
np
.
dot
(
data
,
w1
)
a1
=
sigmoid
(
z1
)
z2
=
np
.
dot
(
a1
,
w2
)
a2
=
sigmoid
(
z2
)
# Compute loss (cross-entropy loss)
y_true_one_hot
=
one_hot
(
labels_train
)
loss
=
cross_entropy_loss
(
a2
,
y_true_one_hot
)
# Backpropagation
E1
=
a2
-
np
.
eye
(
10
)[
labels_train
]
dw1
=
E1
*
a2
*
(
1
-
a2
)
E2
=
np
.
dot
(
dw1
,
w2
.
T
)
dw2
=
E2
*
a1
*
(
1
-
a1
)
# Update weights
W2_update
=
np
.
dot
(
a1
.
T
,
dw1
)
/
N_out
W1_update
=
np
.
dot
(
data
.
T
,
dw2
)
/
N_out
w2
=
w2
-
learning_rate
*
W2_update
w1
=
w1
-
learning_rate
*
W1_update
return
w1
,
w2
,
loss
def
forward_2
(
w1
,
w2
,
data
):
# Forward pass
a0
=
data
# the data are the input of the first layer
z1
=
np
.
matmul
(
a0
,
w1
)
# input of the hidden layer
a1
=
sigmoid
(
z1
)
# output of the hidden layer (sigmoid activation function)
z2
=
np
.
matmul
(
a1
,
w2
)
# input of the output layer
a2
=
softmax_stable
(
z2
)
# output of the output layer (sigmoid activation function)
predictions
=
a2
# the predicted values are the outputs of the output layer
return
(
predictions
)
def
forward
(
w1
,
b1
,
w2
,
b2
,
data
):
# Forward pass
a0
=
data
# the data are the input of the first layer
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
# input of the hidden layer
a1
=
sigmoid
(
z1
)
# output of the hidden layer (sigmoid activation function)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
# input of the output layer
a2
=
softmax_stable
(
z2
)
# output of the output layer (sigmoid activation function)
predictions
=
a2
# the predicted values are the outputs of the output layer
return
(
predictions
)
def
train_mlp
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
,
num_epoch
):
train_accuracies
=
[]
for
epoch
in
range
(
num_epoch
):
w1
,
b1
,
w2
,
b2
,
loss
=
learn_once_cross_entropy
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
)
# Compute accuracy
predictions
=
forward
(
w1
,
b1
,
w2
,
b2
,
data_train
)
predicted_labels
=
np
.
argmax
(
predictions
,
axis
=
1
)
# print(predictions.shape)
# print(predicted_labels.shape)
# print(labels_train.shape)
accuracy
=
np
.
mean
(
predicted_labels
==
labels_train
)
train_accuracies
.
append
(
accuracy
)
print
(
f
'
Epoch
{
epoch
+
1
}
/
{
num_epoch
}
, Loss:
{
loss
:
.
3
f
}
, Train Accuracy:
{
accuracy
:
.
2
f
}
'
)
return
w1
,
b1
,
w2
,
b2
,
train_accuracies
def
train_mlp_2
(
w1
,
w2
,
data_train
,
labels_train
,
learning_rate
,
num_epoch
):
train_accuracies
=
[]
for
epoch
in
range
(
num_epoch
):
w1
,
w2
,
loss
=
learn_once_cross_entropy_2
(
w1
,
w2
,
data_train
,
labels_train
,
learning_rate
)
# Compute accuracy
predictions
=
forward_2
(
w1
,
w2
,
data_train
)
predicted_labels
=
np
.
argmax
(
predictions
,
axis
=
1
)
# print(predictions.shape)
# print(predicted_labels.shape)
# print(labels_train.shape)
accuracy
=
np
.
mean
(
predicted_labels
==
labels_train
)
train_accuracies
.
append
(
accuracy
)
print
(
f
'
Epoch
{
epoch
+
1
}
/
{
num_epoch
}
, Loss:
{
loss
:
.
3
f
}
, Train Accuracy:
{
accuracy
:
.
2
f
}
'
)
return
w1
,
w2
,
train_accuracies
def
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
):
# Compute accuracy
predictions
=
forward
(
w1
,
b1
,
w2
,
b2
,
data_test
)
predicted_labels
=
np
.
argmax
(
predictions
,
axis
=
1
)
print
(
predicted_labels
)
test_accuracy
=
np
.
mean
(
predicted_labels
==
labels_test
)
print
(
f
'
Train Accuracy:
{
test_accuracy
:
.
2
f
}
'
)
return
test_accuracy
def
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
,
learning_rate
,
num_epoch
):
d_in
=
data_train
.
shape
[
1
]
d_out
=
10
#we can hard code it here or len(np.unique(label_train))
#Random initialisation of weights
w1
=
np
.
random
.
randn
(
d_in
,
d_h
)
b1
=
np
.
random
.
randn
(
1
,
d_h
)
w2
=
np
.
random
.
randn
(
d_h
,
d_out
)
b2
=
np
.
random
.
randn
(
1
,
d_out
)
# Train MLP
w1
,
b1
,
w2
,
b2
,
train_accuracies
=
train_mlp
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
,
num_epoch
)
# Test MLP
test_accuracy
=
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
)
return
train_accuracies
,
test_accuracy
if
__name__
==
'
__main__
'
:
data
,
labels
=
read_cifar
.
read_cifar
(
'
image-classification/data/cifar-10-batches-py
'
)
X_train
,
X_test
,
y_train
,
y_test
=
read_cifar
.
split_dataset
(
data
,
labels
,
0.9
)
d_in
,
d_h
,
d_out
=
3072
,
728
,
10
w1
=
np
.
random
.
normal
(
scale
=
0.5
,
size
=
(
d_in
,
d_h
))
b1
=
np
.
random
.
randn
(
1
,
d_h
)
w2
=
np
.
random
.
normal
(
scale
=
0.5
,
size
=
(
d_h
,
d_out
))
b2
=
np
.
random
.
randn
(
1
,
d_out
)
# print(forward(w1, b1, w2, b2,X_train[:1]))
# for i in range(100):
# learn_once_cross_entropy(w1, b1, w2, b2, X_train[:1000], y_train[:1000], 0.005)
train_mlp
(
w1
,
b1
,
w2
,
b2
,
X_train
[:
10000
],
y_train
[:
10000
],
0.1
,
100
)
# train_mlp_2(w1, w2, X_train[:10000], y_train[:10000], 0.05, 100)
# test_mlp(w1, b1, w2, b2, X_test[:50], y_test[:50])
# values = [2, 4, 5, 3]
# # Output achieved
# output = softmax_stable(values)
# y_true = [3, 1] # 1 observation
# y_true_one_hot = one_hot(y_true)
# print(y_true_one_hot)
# y_pred = [[0.1, 0.1, 0.1, 0.7],[0.1, 0.1, 0.1, 0.7]]
# loss = cross_entropy_loss(y_pred, y_true_one_hot)
# print(loss)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
read_cifar.py
0 → 100644
+
57
−
0
View file @
d3d40f89
import
numpy
as
np
import
pickle
from
sklearn.model_selection
import
train_test_split
import
pandas
as
pd
# batch.meta
#{b'num_cases_per_batch': 10000, b'label_names': [b'airplane', b'automobile', b'bird', b'cat', b'deer', b'dog', b'frog', b'horse', b'ship', b'truck'], b'num_vis': 3072}
def
read_cifar_batch
(
file
):
with
open
(
file
,
'
rb
'
)
as
fo
:
dict
=
pickle
.
load
(
fo
,
encoding
=
'
bytes
'
)
# keys = [b'batch_label',
# b'labels',
# b'data',
# b'filenames']
return
(
np
.
array
(
dict
[
b
'
data
'
]).
astype
(
'
float32
'
),
np
.
array
(
dict
[
b
'
labels
'
]).
astype
(
'
int64
'
)
)
def
read_cifar
(
path
):
data
=
[]
labels
=
[]
#Add the 5 batches
for
i
in
range
(
1
,
6
):
data_temp
,
labels_temps
=
read_cifar_batch
(
f
'
{
path
}
/data_batch_
{
i
}
'
)
data
.
append
(
data_temp
)
labels
.
append
(
labels_temps
)
#Add the test batches
data_temp
,
labels_temps
=
read_cifar_batch
(
f
'
{
path
}
/test_batch
'
)
data
.
append
(
data_temp
)
labels
.
append
(
labels_temps
)
#Concatenate all the batches to create a big one
data
=
np
.
concatenate
(
data
,
axis
=
0
)
labels
=
np
.
concatenate
(
labels
,
axis
=
0
)
return
(
data
,
labels
)
def
split_dataset
(
data
,
labels
,
split
):
X_train
,
X_test
,
y_train
,
y_test
=
train_test_split
(
data
,
labels
,
test_size
=
(
1
-
split
),
random_state
=
0
)
return
(
X_train
,
X_test
,
y_train
,
y_test
)
if
__name__
==
"
__main__
"
:
path
=
'
image-classification/data/cifar-10-batches-py/data_batch_1
'
main_path
=
'
image-classification/data/cifar-10-batches-py
'
data
,
labels
=
read_cifar_batch
(
path
)
data
,
labels
=
read_cifar
(
main_path
)
X_train
,
X_test
,
y_train
,
y_test
=
split_dataset
(
data
,
labels
,
0.8
)
# print(X_train, X_test, y_train, y_test)
# print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment