Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Image classification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Massala Corentin
Image classification
Commits
ca625f2e
Commit
ca625f2e
authored
1 year ago
by
corentin
Browse files
Options
Downloads
Patches
Plain Diff
uptade of code for KNN (add of final graph + comments)
parent
d3d40f89
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
knn.py
+40
-15
40 additions, 15 deletions
knn.py
mlp.py
+0
-55
0 additions, 55 deletions
mlp.py
with
40 additions
and
70 deletions
knn.py
+
40
−
15
View file @
ca625f2e
import
read_cifar
import
read_cifar
import
numpy
as
np
import
numpy
as
np
import
matplotlib.pyplot
as
plt
def
distance_matrix
(
matrix1
,
matrix2
):
def
distance_matrix
(
matrix1
,
matrix2
):
#X_test then X_train in this order
#X_test then X_train in this order
sum_of_squares_matrix1
=
np
.
sum
(
np
.
square
(
matrix1
),
axis
=
1
,
keepdims
=
True
)
sum_of_squares_matrix1
=
np
.
sum
(
np
.
square
(
matrix1
),
axis
=
1
,
keepdims
=
True
)
#A^2
sum_of_squares_matrix2
=
np
.
sum
(
np
.
square
(
matrix2
),
axis
=
1
,
keepdims
=
True
)
sum_of_squares_matrix2
=
np
.
sum
(
np
.
square
(
matrix2
),
axis
=
1
,
keepdims
=
True
)
#B^2
dot_product
=
np
.
dot
(
matrix1
,
matrix2
.
T
)
dot_product
=
np
.
dot
(
matrix1
,
matrix2
.
T
)
# A * B (matrix mutliplication)
dists
=
np
.
sqrt
(
sum_of_squares_matrix1
+
sum_of_squares_matrix2
.
T
-
2
*
dot_product
)
dists
=
np
.
sqrt
(
sum_of_squares_matrix1
+
sum_of_squares_matrix2
.
T
-
2
*
dot_product
)
# Compute the product
return
dists
return
dists
def
knn_predict
(
dists
,
labels_train
,
k
):
def
knn_predict
(
dists
,
labels_train
,
k
):
output
=
[]
output
=
[]
# Loop on all the images_test
for
i
in
range
(
len
(
dists
)):
for
i
in
range
(
len
(
dists
)):
# Innitialize table to store the neighbors
res
=
[
0
]
*
10
res
=
[
0
]
*
10
b
=
np
.
argsort
(
dists
[
i
])[:
k
]
# Get the closest neighbors
for
lab
in
b
:
labels_close
=
np
.
argsort
(
dists
[
i
])[:
k
]
res
[
labels_train
[
lab
]]
+=
1
for
label
in
labels_close
:
label_temp
=
np
.
argmax
(
res
)
#Attention à la logique ici
#add a label to the table of result
res
[
labels_train
[
label
]]
+=
1
# Get the class with the maximum neighbors
label_temp
=
np
.
argmax
(
res
)
#Careful to the logic here, if there is two or more maximum, the function the first maximum encountered
output
.
append
(
label_temp
)
output
.
append
(
label_temp
)
return
(
np
.
array
(
output
))
return
(
np
.
array
(
output
))
...
@@ -31,19 +37,38 @@ def evaluate_knn(data_train, labels_train, data_test, labels_tests, k):
...
@@ -31,19 +37,38 @@ def evaluate_knn(data_train, labels_train, data_test, labels_tests, k):
accuracy
=
(
labels_tests
==
result_test
).
sum
()
/
N
accuracy
=
(
labels_tests
==
result_test
).
sum
()
/
N
return
(
accuracy
)
return
(
accuracy
)
def
bench_knn
():
k_indices
=
[
i
for
i
in
range
(
20
)
if
i
%
2
!=
0
]
accuracies
=
[]
# Load data
data
,
labels
=
read_cifar
.
read_cifar
(
'
image-classification/data/cifar-10-batches-py
'
)
X_train
,
X_test
,
y_train
,
y_test
=
read_cifar
.
split_dataset
(
data
,
labels
,
0.9
)
#Load one batch
# data, labels = read_cifar.read_cifar_batch('image-classification/data/cifar-10-batches-py/data_batch_1')
# X_train, X_test, y_train, y_test = read_cifar.split_dataset(data, labels, 0.9)
# Loop on the k_indices to get all the accuracies
for
k
in
k_indices
:
accuracy
=
evaluate_knn
(
X_train
,
y_train
,
X_test
,
y_test
,
k
)
accuracies
.
append
(
accuracy
)
# Save and show the graph of accuracies
if
__name__
==
"
__main__
"
:
fig
=
plt
.
figure
()
plt
.
plot
(
k_indices
,
accuracies
)
data
,
labels
=
read_cifar
.
read_cifar
(
'
image-classification/data/cifar-10-batches-py
'
)
plt
.
title
(
"
Accuracy as function of k
"
)
X_train
,
X_test
,
y_train
,
y_test
=
read_cifar
.
split_dataset
(
data
,
labels
,
0.8
)
plt
.
show
()
print
(
evaluate_knn
(
X_train
[:
1000
],
y_train
[:
1000
],
X_test
,
y_test
,
5
))
plt
.
savefig
(
'
image-classification/results/knn_batch_1.png
'
)
plt
.
close
(
fig
)
if
__name__
==
"
__main__
"
:
bench_knn
()
# data, labels = read_cifar.read_cifar('image-classification/data/cifar-10-batches-py')
# X_train, X_test, y_train, y_test = read_cifar.split_dataset(data, labels, 0.9)
# print(evaluate_knn(X_train, y_train, X_test, y_test, 5))
# print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
# print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
# y_test = []
# y_test = []
...
...
This diff is collapsed.
Click to expand it.
mlp.py
+
0
−
55
View file @
ca625f2e
...
@@ -110,45 +110,6 @@ def learn_once_cross_entropy(w1, b1, w2, b2, data, labels_train, learning_rate):
...
@@ -110,45 +110,6 @@ def learn_once_cross_entropy(w1, b1, w2, b2, data, labels_train, learning_rate):
return
w1
,
b1
,
w2
,
b2
,
loss
return
w1
,
b1
,
w2
,
b2
,
loss
def
learn_once_cross_entropy_2
(
w1
,
w2
,
data
,
labels_train
,
learning_rate
):
N_out
=
len
(
labels_train
)
#number of training examples
# Forward pass
# Feedforward propagation
z1
=
np
.
dot
(
data
,
w1
)
a1
=
sigmoid
(
z1
)
z2
=
np
.
dot
(
a1
,
w2
)
a2
=
sigmoid
(
z2
)
# Compute loss (cross-entropy loss)
y_true_one_hot
=
one_hot
(
labels_train
)
loss
=
cross_entropy_loss
(
a2
,
y_true_one_hot
)
# Backpropagation
E1
=
a2
-
np
.
eye
(
10
)[
labels_train
]
dw1
=
E1
*
a2
*
(
1
-
a2
)
E2
=
np
.
dot
(
dw1
,
w2
.
T
)
dw2
=
E2
*
a1
*
(
1
-
a1
)
# Update weights
W2_update
=
np
.
dot
(
a1
.
T
,
dw1
)
/
N_out
W1_update
=
np
.
dot
(
data
.
T
,
dw2
)
/
N_out
w2
=
w2
-
learning_rate
*
W2_update
w1
=
w1
-
learning_rate
*
W1_update
return
w1
,
w2
,
loss
def
forward_2
(
w1
,
w2
,
data
):
# Forward pass
a0
=
data
# the data are the input of the first layer
z1
=
np
.
matmul
(
a0
,
w1
)
# input of the hidden layer
a1
=
sigmoid
(
z1
)
# output of the hidden layer (sigmoid activation function)
z2
=
np
.
matmul
(
a1
,
w2
)
# input of the output layer
a2
=
softmax_stable
(
z2
)
# output of the output layer (sigmoid activation function)
predictions
=
a2
# the predicted values are the outputs of the output layer
return
(
predictions
)
def
forward
(
w1
,
b1
,
w2
,
b2
,
data
):
def
forward
(
w1
,
b1
,
w2
,
b2
,
data
):
# Forward pass
# Forward pass
...
@@ -177,22 +138,6 @@ def train_mlp(w1, b1, w2, b2, data_train, labels_train, learning_rate, num_epoch
...
@@ -177,22 +138,6 @@ def train_mlp(w1, b1, w2, b2, data_train, labels_train, learning_rate, num_epoch
print
(
f
'
Epoch
{
epoch
+
1
}
/
{
num_epoch
}
, Loss:
{
loss
:
.
3
f
}
, Train Accuracy:
{
accuracy
:
.
2
f
}
'
)
print
(
f
'
Epoch
{
epoch
+
1
}
/
{
num_epoch
}
, Loss:
{
loss
:
.
3
f
}
, Train Accuracy:
{
accuracy
:
.
2
f
}
'
)
return
w1
,
b1
,
w2
,
b2
,
train_accuracies
return
w1
,
b1
,
w2
,
b2
,
train_accuracies
def
train_mlp_2
(
w1
,
w2
,
data_train
,
labels_train
,
learning_rate
,
num_epoch
):
train_accuracies
=
[]
for
epoch
in
range
(
num_epoch
):
w1
,
w2
,
loss
=
learn_once_cross_entropy_2
(
w1
,
w2
,
data_train
,
labels_train
,
learning_rate
)
# Compute accuracy
predictions
=
forward_2
(
w1
,
w2
,
data_train
)
predicted_labels
=
np
.
argmax
(
predictions
,
axis
=
1
)
# print(predictions.shape)
# print(predicted_labels.shape)
# print(labels_train.shape)
accuracy
=
np
.
mean
(
predicted_labels
==
labels_train
)
train_accuracies
.
append
(
accuracy
)
print
(
f
'
Epoch
{
epoch
+
1
}
/
{
num_epoch
}
, Loss:
{
loss
:
.
3
f
}
, Train Accuracy:
{
accuracy
:
.
2
f
}
'
)
return
w1
,
w2
,
train_accuracies
def
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
):
def
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment