Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Image classification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Massala Corentin
Image classification
Commits
5bbb047e
Commit
5bbb047e
authored
1 year ago
by
corentin
Browse files
Options
Downloads
Patches
Plain Diff
Correction of the softmax, graph added, correction on backpropagation
parent
a3d152ab
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mlp.py
+71
-79
71 additions, 79 deletions
mlp.py
with
71 additions
and
79 deletions
mlp.py
+
71
−
79
View file @
5bbb047e
...
...
@@ -6,16 +6,14 @@ import matplotlib.pyplot as plt
def
sigmoid
(
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
learn_once_mse
(
w1
,
b1
,
w2
,
b2
,
data
,
targets
,
learning_rate
):
N_out
=
len
(
targets
)
#number of training examples
N_out
=
len
(
data
)
#number of training examples
# Forward pass
a0
=
data
# the data are the input of the first layer
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
# input of the hidden layer
z1
=
np
.
dot
(
a0
,
w1
)
+
b1
# input of the hidden layer
a1
=
sigmoid
(
z1
)
# output of the hidden layer (sigmoid activation function)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
# input of the output layer
z2
=
np
.
dot
(
a1
,
w2
)
+
b2
# input of the output layer
a2
=
sigmoid
(
z2
)
# output of the output layer (sigmoid activation function)
predictions
=
a2
# the predicted values are the outputs of the output layer
...
...
@@ -30,50 +28,39 @@ def learn_once_mse(w1, b1, w2, b2, data, targets, learning_rate):
# print('shape w2', w2.shape)
# print('shape b2', b2.shape)
# Backpropagation
# Backpropagation
delta_a2
=
2
/
N_out
*
(
a2
-
targets
)
# print('shape delta_a2', delta_a2.shape)
delta_z2
=
delta_a2
*
(
a2
*
(
1
-
a2
))
# print('shape delta_z2', delta_z2.shape)
delta_w2
=
np
.
dot
(
a1
.
T
,
delta_z2
)
# print('shape delta_w2', delta_w2.shape)
delta_b2
=
delta_z2
delta_z2
=
delta_a2
*
(
a2
*
(
1
-
a2
))
# We divide by the sample size to have an average on the error and avoid big gradient jumps
delta_w2
=
np
.
dot
(
a1
.
T
,
delta_z2
)
delta_b2
=
np
.
sum
(
delta_z2
,
axis
=
0
,
keepdims
=
True
)
delta_a1
=
np
.
dot
(
delta_z2
,
w2
.
T
)
# print('shape delta_a1', delta_a1.shape)
delta_z1
=
delta_a1
*
(
a1
*
(
1
-
a1
))
# print('shape delta_z1', delta_z1.shape)
delta_w1
=
np
.
dot
(
a0
.
T
,
delta_z1
)
# print('shape delta_w1', delta_w2.shape)
delta_b1
=
delta_z1
# Update weights and biases
w2
-=
learning_rate
*
delta_w2
b2
-=
learning_rate
*
np
.
sum
(
delta_b2
,
axis
=
0
,
keepdims
=
True
)
w1
-=
learning_rate
*
delta_w1
b1
-=
learning_rate
*
np
.
sum
(
delta_b1
,
axis
=
0
,
keepdims
=
True
)
delta_z1
=
delta_a1
*
(
a1
*
(
1
-
a1
))
delta_w1
=
np
.
dot
(
a0
.
T
,
delta_z1
)
delta_b1
=
np
.
sum
(
delta_z1
,
axis
=
0
,
keepdims
=
True
)
return
w1
,
b1
,
w2
,
b2
,
loss
def
one_hot
(
labels
):
#num_classes = np.max(labels) + 1 on va le hardcoder ici
num_classes
=
10
num_classes
=
int
(
np
.
max
(
labels
)
+
1
)
#num_classes = 10
one_hot_matrix
=
np
.
eye
(
num_classes
)[
labels
]
return
one_hot_matrix
def
softmax_stable
(
x
):
#We use this function to avoid computing
to
big numbers
return
(
np
.
exp
(
x
-
np
.
max
(
x
))
/
np
.
exp
(
x
-
np
.
max
(
x
)).
sum
())
#We use this function to avoid computing big numbers
return
(
np
.
exp
(
x
-
np
.
max
(
x
,
axis
=
1
,
keepdims
=
True
))
/
np
.
exp
(
x
-
np
.
max
(
x
,
axis
=
1
,
keepdims
=
True
)).
sum
())
def
cross_entropy_loss
(
y_pred
,
y_true
):
loss
=
-
np
.
sum
(
y_true
*
np
.
log
(
y_pred
))
/
len
(
y_pred
)
def
cross_entropy_loss
(
y_pred
,
y_true_one_hot
):
epsilon
=
1e-10
loss
=
-
np
.
sum
(
y_true_one_hot
*
np
.
log
(
y_pred
+
epsilon
)
)
/
len
(
y_pred
)
return
loss
def
learn_once_cross_entropy
(
w1
,
b1
,
w2
,
b2
,
data
,
labels_train
,
learning_rate
):
N_out
=
len
(
labels_train
)
#number of training examples
N_out
=
len
(
data
)
#number of training examples
# Forward pass
a0
=
data
# the data are the input of the first layer
...
...
@@ -82,31 +69,33 @@ def learn_once_cross_entropy(w1, b1, w2, b2, data, labels_train, learning_rate):
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
# input of the output layer
a2
=
softmax_stable
(
z2
)
# output of the output layer (sigmoid activation function)
predictions
=
a2
# the predicted values are the outputs of the output layer
# print('a0', a0[:2])
# print('w1', w1[:2])
# print('z1', z1[:2])
# print('a1', a1[:2])
# print('z2', z2[:2])
# print('a2', a2[:2])
# Compute loss (cross-entropy loss)
y_true_one_hot
=
one_hot
(
labels_train
)
loss
=
cross_entropy_loss
(
predictions
,
y_true_one_hot
)
# Backpropagation
# delta_a2 = 2 / N_out * (a2 - labels_train) ceci n'est plus nécessaire ici
delta_z2
=
(
a2
-
y_true_one_hot
)
delta_w2
=
np
.
dot
(
a1
.
T
,
delta_z2
)
/
N_out
# on divise par N_out pour ne pas faire des saut de gradient trop elevés
delta_b2
=
delta_z2
/
N_out
delta_z2
=
(
a2
-
y_true_one_hot
)
# We divide by the sample size to have an average on the error and avoid big gradient jumps
delta_w2
=
np
.
dot
(
a1
.
T
,
delta_z2
)
/
N_out
delta_b2
=
np
.
sum
(
delta_z2
,
axis
=
0
,
keepdims
=
True
)
/
N_out
delta_a1
=
np
.
dot
(
delta_z2
,
w2
.
T
)
delta_z1
=
delta_a1
*
(
a1
*
(
1
-
a1
))
delta_a1
=
np
.
dot
(
delta_z2
,
w2
.
T
)
delta_z1
=
delta_a1
*
(
a1
*
(
1
-
a1
))
/
N_out
delta_w1
=
np
.
dot
(
a0
.
T
,
delta_z1
)
/
N_out
delta_b1
=
delta_z1
/
N_out
# Update weights and biases
w2
-=
learning_rate
*
delta_w2
b2
-=
learning_rate
*
np
.
sum
(
delta_b2
,
axis
=
0
,
keepdims
=
True
)
delta_b1
=
np
.
sum
(
delta_z1
,
axis
=
0
,
keepdims
=
True
)
/
N_out
# Update weights and biases
w1
-=
learning_rate
*
delta_w1
b1
-=
learning_rate
*
np
.
sum
(
delta_b1
,
axis
=
0
,
keepdims
=
True
)
b1
-=
learning_rate
*
delta_b1
w2
-=
learning_rate
*
delta_w2
b2
-=
learning_rate
*
delta_b2
return
w1
,
b1
,
w2
,
b2
,
loss
...
...
@@ -129,13 +118,10 @@ def train_mlp(w1, b1, w2, b2, data_train, labels_train, learning_rate, num_epoch
# Compute accuracy
predictions
=
forward
(
w1
,
b1
,
w2
,
b2
,
data_train
)
predicted_labels
=
np
.
argmax
(
predictions
,
axis
=
1
)
# print(predictions.shape)
# print(predicted_labels.shape)
# print(labels_train.shape)
accuracy
=
np
.
mean
(
predicted_labels
==
labels_train
)
train_accuracies
.
append
(
accuracy
)
print
(
f
'
Epoch
{
epoch
+
1
}
/
{
num_epoch
}
, Loss:
{
loss
:
.
3
f
}
, Train Accuracy:
{
accuracy
:
.
2
f
}
'
)
print
(
f
'
Epoch
{
epoch
+
1
}
/
{
num_epoch
}
, Loss:
{
loss
:
.
3
f
}
, Train Accuracy:
{
accuracy
:
.
5
f
}
'
)
return
w1
,
b1
,
w2
,
b2
,
train_accuracies
...
...
@@ -144,22 +130,20 @@ def test_mlp(w1, b1, w2, b2, data_test, labels_test):
# Compute accuracy
predictions
=
forward
(
w1
,
b1
,
w2
,
b2
,
data_test
)
predicted_labels
=
np
.
argmax
(
predictions
,
axis
=
1
)
print
(
predicted_labels
)
test_accuracy
=
np
.
mean
(
predicted_labels
==
labels_test
)
print
(
f
'
T
rain
Accuracy:
{
test_accuracy
:
.
2
f
}
'
)
print
(
f
'
T
est
Accuracy:
{
test_accuracy
:
.
2
f
}
'
)
return
test_accuracy
def
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
,
learning_rate
,
num_epoch
):
def
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
,
learning_rate
,
num_epoch
):
d_in
=
data_train
.
shape
[
1
]
d_out
=
10
#we can hard code it here or len(np.unique(label_train))
#Random initialisation of weights
w1
=
np
.
random
.
randn
(
d_in
,
d_h
)
b1
=
np
.
random
.
randn
(
1
,
d_h
)
w2
=
np
.
random
.
randn
(
d_h
,
d_out
)
b2
=
np
.
random
.
randn
(
1
,
d_out
)
w1
=
np
.
random
.
randn
(
d_in
,
d_h
)
/
np
.
sqrt
(
d_in
)
b1
=
np
.
zeros
((
1
,
d_h
))
w2
=
np
.
random
.
randn
(
d_h
,
d_out
)
/
np
.
sqrt
(
d_h
)
b2
=
np
.
zeros
((
1
,
d_out
))
# Train MLP
w1
,
b1
,
w2
,
b2
,
train_accuracies
=
train_mlp
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
,
num_epoch
)
...
...
@@ -168,32 +152,40 @@ def run_mlp_training(data_train, labels_train, data_test, labels_test, d_h,learn
test_accuracy
=
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
)
return
train_accuracies
,
test_accuracy
def
plot_graph
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
,
learning_rate
,
num_epoch
):
# Run MLP training
train_accuracies
,
test_accuracy
=
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
,
learning_rate
,
num_epoch
)
# Plot and save the learning accuracy graph
plt
.
figure
(
figsize
=
(
8
,
6
))
epochs
=
np
.
arange
(
1
,
num_epoch
+
1
)
plt
.
plot
(
epochs
,
train_accuracies
,
marker
=
'
x
'
,
color
=
'
b
'
,
label
=
'
Train Accuracy
'
)
plt
.
xlabel
(
'
Epochs
'
)
plt
.
ylabel
(
'
Accuracy
'
)
plt
.
title
(
'
MLP Train Accuracy
'
)
plt
.
legend
()
plt
.
grid
(
True
)
plt
.
savefig
(
'
image-classification/results/mlp.png
'
)
plt
.
show
()
if
__name__
==
'
__main__
'
:
data
,
labels
=
read_cifar
.
read_cifar
(
'
image-classification/data/cifar-10-batches-py
'
)
X_train
,
X_test
,
y_train
,
y_test
=
read_cifar
.
split_dataset
(
data
,
labels
,
0.9
)
d_in
,
d_h
,
d_out
=
3072
,
64
,
10
learning_rate
=
0.1
num_epoch
=
100
d_in
,
d_h
,
d_out
=
3072
,
728
,
10
w1
=
np
.
random
.
normal
(
scale
=
0.5
,
size
=
(
d_in
,
d_h
))
b1
=
np
.
random
.
randn
(
1
,
d_h
)
w2
=
np
.
random
.
normal
(
scale
=
0.5
,
size
=
(
d_h
,
d_out
))
b2
=
np
.
random
.
randn
(
1
,
d_out
)
# print(forward(w1, b1, w2, b2,X_train[:1]))
# for i in range(100):
# learn_once_cross_entropy(w1, b1, w2, b2, X_train[:1000], y_train[:1000], 0.005)
train_mlp
(
w1
,
b1
,
w2
,
b2
,
X_train
[:
10000
],
y_train
[:
10000
],
0.1
,
100
)
# train_mlp_2(w1, w2, X_train[:10000], y_train[:10000], 0.05, 100)
# test_mlp(w1, b1, w2, b2, X_test[:50], y_test[:50])
# #Initialisation
# w1 = np.random.randn(d_in, d_h) / np.sqrt(d_in)
# b1 = np.zeros((1, d_h))
# w2 = np.random.randn(d_h, d_out) / np.sqrt(d_h)
# b2 = np.zeros((1, d_out))
# train_mlp(w1, b1, w2, b2, X_train, y_train, 0.1, 100)
# test_mlp(w1, b1, w2, b2, X_test[:50], y_test[:50])
plot_graph
(
X_train
,
y_train
,
X_test
,
y_test
,
d_h
,
learning_rate
,
num_epoch
)
# values = [2, 4, 5, 3]
# # Output achieved
# output = softmax_stable(values)
# y_true = [3, 1] # 1 observation
# y_true_one_hot = one_hot(y_true)
# print(y_true_one_hot)
# y_pred = [[0.1, 0.1, 0.1, 0.7],[0.1, 0.1, 0.1, 0.7]]
# loss = cross_entropy_loss(y_pred, y_true_one_hot)
# print(loss)
\ No newline at end of file
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment