Skip to content
Snippets Groups Projects
Commit 5bbb047e authored by corentin's avatar corentin
Browse files

Correction of the softmax, graph added, correction on backpropagation

parent a3d152ab
Branches
No related tags found
No related merge requests found
......@@ -6,16 +6,14 @@ import matplotlib.pyplot as plt
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def learn_once_mse(w1, b1, w2, b2, data, targets, learning_rate):
N_out = len(targets) #number of training examples
N_out = len(data) #number of training examples
# Forward pass
a0 = data # the data are the input of the first layer
z1 = np.matmul(a0, w1) + b1 # input of the hidden layer
z1 = np.dot(a0, w1) + b1 # input of the hidden layer
a1 = sigmoid(z1) # output of the hidden layer (sigmoid activation function)
z2 = np.matmul(a1, w2) + b2 # input of the output layer
z2 = np.dot(a1, w2) + b2 # input of the output layer
a2 = sigmoid(z2) # output of the output layer (sigmoid activation function)
predictions = a2 # the predicted values are the outputs of the output layer
......@@ -30,50 +28,39 @@ def learn_once_mse(w1, b1, w2, b2, data, targets, learning_rate):
# print('shape w2', w2.shape)
# print('shape b2', b2.shape)
# Backpropagation
# Backpropagation
delta_a2 = 2 / N_out * (a2 - targets)
# print('shape delta_a2', delta_a2.shape)
delta_z2 = delta_a2 * (a2 * (1 - a2))
# print('shape delta_z2', delta_z2.shape)
delta_w2 = np.dot(a1.T, delta_z2)
# print('shape delta_w2', delta_w2.shape)
delta_b2 = delta_z2
delta_z2 = delta_a2 * (a2 * (1 - a2)) # We divide by the sample size to have an average on the error and avoid big gradient jumps
delta_w2 = np.dot(a1.T, delta_z2)
delta_b2 = np.sum(delta_z2, axis = 0, keepdims = True)
delta_a1 = np.dot(delta_z2, w2.T)
# print('shape delta_a1', delta_a1.shape)
delta_z1 = delta_a1 * (a1 * (1- a1))
# print('shape delta_z1', delta_z1.shape)
delta_w1 = np.dot(a0.T, delta_z1)
# print('shape delta_w1', delta_w2.shape)
delta_b1 = delta_z1
# Update weights and biases
w2 -= learning_rate * delta_w2
b2 -= learning_rate * np.sum(delta_b2, axis = 0, keepdims = True)
w1 -= learning_rate * delta_w1
b1 -= learning_rate * np.sum(delta_b1, axis = 0, keepdims = True)
delta_z1 = delta_a1 * (a1 * (1 - a1))
delta_w1 = np.dot(a0.T, delta_z1)
delta_b1 = np.sum(delta_z1, axis = 0, keepdims = True)
return w1, b1, w2, b2, loss
def one_hot(labels):
#num_classes = np.max(labels) + 1 on va le hardcoder ici
num_classes = 10
num_classes = int(np.max(labels) + 1) #num_classes = 10
one_hot_matrix = np.eye(num_classes)[labels]
return one_hot_matrix
def softmax_stable(x):
#We use this function to avoid computing to big numbers
return(np.exp(x - np.max(x)) / np.exp(x - np.max(x)).sum())
#We use this function to avoid computing big numbers
return(np.exp(x - np.max(x, axis=1, keepdims=True)) / np.exp(x - np.max(x, axis=1, keepdims=True)).sum())
def cross_entropy_loss(y_pred, y_true):
loss = -np.sum(y_true * np.log(y_pred)) / len(y_pred)
def cross_entropy_loss(y_pred, y_true_one_hot):
epsilon = 1e-10
loss = - np.sum( y_true_one_hot * np.log(y_pred + epsilon) ) / len(y_pred)
return loss
def learn_once_cross_entropy(w1, b1, w2, b2, data, labels_train, learning_rate):
N_out = len(labels_train) #number of training examples
N_out = len(data) #number of training examples
# Forward pass
a0 = data # the data are the input of the first layer
......@@ -82,31 +69,33 @@ def learn_once_cross_entropy(w1, b1, w2, b2, data, labels_train, learning_rate):
z2 = np.matmul(a1, w2) + b2 # input of the output layer
a2 = softmax_stable(z2) # output of the output layer (sigmoid activation function)
predictions = a2 # the predicted values are the outputs of the output layer
# print('a0', a0[:2])
# print('w1', w1[:2])
# print('z1', z1[:2])
# print('a1', a1[:2])
# print('z2', z2[:2])
# print('a2', a2[:2])
# Compute loss (cross-entropy loss)
y_true_one_hot = one_hot(labels_train)
loss = cross_entropy_loss(predictions, y_true_one_hot)
# Backpropagation
# delta_a2 = 2 / N_out * (a2 - labels_train) ceci n'est plus nécessaire ici
delta_z2 = (a2 - y_true_one_hot)
delta_w2 = np.dot(a1.T, delta_z2) / N_out # on divise par N_out pour ne pas faire des saut de gradient trop elevés
delta_b2 = delta_z2 / N_out
delta_z2 = (a2 - y_true_one_hot) # We divide by the sample size to have an average on the error and avoid big gradient jumps
delta_w2 = np.dot(a1.T, delta_z2) / N_out
delta_b2 = np.sum(delta_z2, axis = 0, keepdims = True) / N_out
delta_a1 = np.dot(delta_z2, w2.T)
delta_z1 = delta_a1 * (a1 * (1 - a1))
delta_a1 = np.dot(delta_z2, w2.T)
delta_z1 = delta_a1 * (a1 * (1 - a1)) / N_out
delta_w1 = np.dot(a0.T, delta_z1) / N_out
delta_b1 = delta_z1 / N_out
# Update weights and biases
w2 -= learning_rate * delta_w2
b2 -= learning_rate * np.sum(delta_b2, axis = 0, keepdims = True)
delta_b1 = np.sum(delta_z1, axis = 0, keepdims = True) / N_out
# Update weights and biases
w1 -= learning_rate * delta_w1
b1 -= learning_rate * np.sum(delta_b1, axis = 0, keepdims = True)
b1 -= learning_rate * delta_b1
w2 -= learning_rate * delta_w2
b2 -= learning_rate * delta_b2
return w1, b1, w2, b2, loss
......@@ -129,13 +118,10 @@ def train_mlp(w1, b1, w2, b2, data_train, labels_train, learning_rate, num_epoch
# Compute accuracy
predictions = forward(w1, b1, w2, b2, data_train)
predicted_labels = np.argmax(predictions, axis=1)
# print(predictions.shape)
# print(predicted_labels.shape)
# print(labels_train.shape)
accuracy = np.mean(predicted_labels == labels_train)
train_accuracies.append(accuracy)
print(f'Epoch {epoch + 1}/{num_epoch}, Loss: {loss:.3f}, Train Accuracy: {accuracy:.2f}')
print(f'Epoch {epoch + 1}/{num_epoch}, Loss: {loss:.3f}, Train Accuracy: {accuracy:.5f}')
return w1, b1, w2, b2, train_accuracies
......@@ -144,22 +130,20 @@ def test_mlp(w1, b1, w2, b2, data_test, labels_test):
# Compute accuracy
predictions = forward(w1, b1, w2, b2, data_test)
predicted_labels = np.argmax(predictions, axis=1)
print(predicted_labels)
test_accuracy = np.mean(predicted_labels == labels_test)
print(f'Train Accuracy: {test_accuracy:.2f}')
print(f'Test Accuracy: {test_accuracy:.2f}')
return test_accuracy
def run_mlp_training(data_train, labels_train, data_test, labels_test, d_h,learning_rate, num_epoch):
def run_mlp_training(data_train, labels_train, data_test, labels_test, d_h, learning_rate, num_epoch):
d_in = data_train.shape[1]
d_out = 10 #we can hard code it here or len(np.unique(label_train))
#Random initialisation of weights
w1 = np.random.randn(d_in, d_h)
b1 = np.random.randn(1, d_h)
w2 = np.random.randn(d_h, d_out)
b2 = np.random.randn(1, d_out)
w1 = np.random.randn(d_in, d_h) / np.sqrt(d_in)
b1 = np.zeros((1, d_h))
w2 = np.random.randn(d_h, d_out) / np.sqrt(d_h)
b2 = np.zeros((1, d_out))
# Train MLP
w1, b1, w2, b2, train_accuracies = train_mlp(w1, b1, w2, b2, data_train, labels_train, learning_rate, num_epoch)
......@@ -168,32 +152,40 @@ def run_mlp_training(data_train, labels_train, data_test, labels_test, d_h,learn
test_accuracy = test_mlp(w1, b1, w2, b2, data_test, labels_test)
return train_accuracies, test_accuracy
def plot_graph(data_train, labels_train, data_test, labels_test, d_h, learning_rate, num_epoch):
# Run MLP training
train_accuracies, test_accuracy = run_mlp_training(data_train, labels_train, data_test, labels_test, d_h, learning_rate, num_epoch)
# Plot and save the learning accuracy graph
plt.figure(figsize=(8, 6))
epochs = np.arange(1, num_epoch + 1)
plt.plot(epochs, train_accuracies, marker='x', color='b', label='Train Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.title('MLP Train Accuracy')
plt.legend()
plt.grid(True)
plt.savefig('image-classification/results/mlp.png')
plt.show()
if __name__ == '__main__':
data, labels = read_cifar.read_cifar('image-classification/data/cifar-10-batches-py')
X_train, X_test, y_train, y_test = read_cifar.split_dataset(data, labels, 0.9)
d_in, d_h, d_out = 3072, 64, 10
learning_rate = 0.1
num_epoch = 100
d_in, d_h, d_out = 3072, 728, 10
w1 = np.random.normal(scale=0.5, size=(d_in, d_h))
b1 = np.random.randn(1, d_h)
w2 = np.random.normal(scale=0.5, size=(d_h, d_out))
b2 = np.random.randn(1, d_out)
# print(forward(w1, b1, w2, b2,X_train[:1]))
# for i in range(100):
# learn_once_cross_entropy(w1, b1, w2, b2, X_train[:1000], y_train[:1000], 0.005)
train_mlp(w1, b1, w2, b2, X_train[:10000], y_train[:10000], 0.1, 100)
# train_mlp_2(w1, w2, X_train[:10000], y_train[:10000], 0.05, 100)
# test_mlp(w1, b1, w2, b2, X_test[:50], y_test[:50])
# #Initialisation
# w1 = np.random.randn(d_in, d_h) / np.sqrt(d_in)
# b1 = np.zeros((1, d_h))
# w2 = np.random.randn(d_h, d_out) / np.sqrt(d_h)
# b2 = np.zeros((1, d_out))
# train_mlp(w1, b1, w2, b2, X_train, y_train, 0.1, 100)
# test_mlp(w1, b1, w2, b2, X_test[:50], y_test[:50])
plot_graph(X_train, y_train, X_test ,y_test , d_h, learning_rate, num_epoch)
# values = [2, 4, 5, 3]
# # Output achieved
# output = softmax_stable(values)
# y_true = [3, 1] # 1 observation
# y_true_one_hot = one_hot(y_true)
# print(y_true_one_hot)
# y_pred = [[0.1, 0.1, 0.1, 0.7],[0.1, 0.1, 0.1, 0.7]]
# loss = cross_entropy_loss(y_pred, y_true_one_hot)
# print(loss)
\ No newline at end of file
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment