Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Image classification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dubray Chloe
Image classification
Commits
2068610f
Commit
2068610f
authored
1 year ago
by
Dubray Chloe
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
75cb3981
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
mlp.py
+155
-0
155 additions, 0 deletions
mlp.py
with
155 additions
and
0 deletions
mlp.py
0 → 100644
+
155
−
0
View file @
2068610f
import
numpy
as
np
from
read_cifar
import
*
import
matplotlib.pyplot
as
plt
d_h
=
64
epsilon
=
0.00001
def
sigma
(
z
)
:
return
1
/
(
1
+
np
.
exp
(
-
z
))
def
learn_one_mse
(
w1
,
b1
,
w2
,
b2
,
data
,
targets
,
learning_rate
)
:
a0
=
data
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
a1
=
sigma
(
z1
)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
a2
=
sigma
(
z2
)
predictions
=
a2
d_out
=
np
.
shape
(
targets
)[
1
]
dC_da2
=
2
*
(
a2
-
targets
)
/
d_out
dC_dz2
=
dC_da2
*
a2
*
(
1
-
a2
)
dC_dw2
=
np
.
matmul
(
a1
.
T
,
dC_dz2
)
dC_db2
=
dC_dz2
.
mean
(
axis
=
0
)
dC_da1
=
np
.
matmul
(
dC_da2
,
w2
.
T
)
dC_dz1
=
a1
*
(
1
-
a1
)
*
dC_da1
dC_dw1
=
np
.
matmul
(
a0
.
T
,
dC_dz1
)
dC_db1
=
dC_dz1
.
mean
(
axis
=
0
)
w1
-=
learning_rate
*
dC_dw1
b1
-=
learning_rate
*
dC_db1
w2
-=
learning_rate
*
dC_dw2
b2
-=
learning_rate
*
dC_db2
loss
=
np
.
mean
(
np
.
square
(
predictions
-
targets
))
return
(
w1
,
b1
,
w2
,
b2
,
loss
)
def
one_hot
(
labels
,
num_classes
=
None
):
if
num_classes
is
None
:
num_classes
=
np
.
max
(
labels
)
+
1
one_hot_matrix
=
np
.
zeros
((
len
(
labels
),
num_classes
),
dtype
=
int
)
for
i
in
range
(
len
(
labels
))
:
one_hot_matrix
[
i
,
labels
[
i
]]
=
1
return
one_hot_matrix
def
learn_one_cross_entropy
(
w1
,
b1
,
w2
,
b2
,
data
,
labels_train
,
learning_rate
)
:
a0
=
data
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
a1
=
sigma
(
z1
)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
a2
=
sigma
(
z2
)
predictions
=
a2
N
=
len
(
labels_train
)
y
=
one_hot
(
labels_train
)
dC_dz2
=
a2
-
y
dC_dw2
=
np
.
matmul
(
a1
.
T
,
dC_dz2
)
dC_db2
=
dC_dz2
.
mean
(
axis
=
0
)
dC_da1
=
np
.
matmul
(
dC_dz2
,
w2
.
T
)
dC_dz1
=
a1
*
(
1
-
a1
)
*
dC_da1
dC_dw1
=
np
.
matmul
(
a0
.
T
,
dC_dz1
)
dC_db1
=
dC_dz1
.
mean
(
axis
=
0
)
w1
-=
learning_rate
*
dC_dw1
b1
-=
learning_rate
*
dC_db1
w2
-=
learning_rate
*
dC_dw2
b2
-=
learning_rate
*
dC_db2
loss
=
-
np
.
sum
(
y
*
np
.
log2
(
predictions
+
epsilon
)
+
(
1
-
y
)
*
np
.
log2
(
1
-
predictions
+
epsilon
))
/
N
return
(
w1
,
b1
,
w2
,
b2
,
loss
)
def
predict_class
(
predictions
):
return
np
.
argmax
(
predictions
,
axis
=
1
)
def
accuracy
(
y_true
,
y_pred
):
return
np
.
mean
(
y_true
==
y_pred
)
def
train_mlp
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
,
num_epoch
)
:
training_accuracies
=
[]
for
k
in
range
(
num_epoch
)
:
w1_new
,
b1_new
,
w2_new
,
b2_new
,
loss
=
learn_one_cross_entropy
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
)
a0
=
data_train
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
a1
=
sigma
(
z1
)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
a2
=
sigma
(
z2
)
predictions
=
predict_class
(
a2
)
training_accuracy
=
accuracy
(
labels_train
,
predictions
)
training_accuracies
.
append
(
training_accuracy
)
w1
,
b1
,
w2
,
b2
=
w1_new
,
b1_new
,
w2_new
,
b2_new
return
(
w1
,
b1
,
w2
,
b2
,
training_accuracies
)
def
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
)
:
a0
=
data_test
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
a1
=
sigma
(
z1
)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
a2
=
sigma
(
z2
)
predictions
=
predict_class
(
a2
)
test_accuracy
=
accuracy
(
labels_test
,
predictions
)
return
(
test_accuracy
)
def
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
:
int
,
learning_rate
,
num_epoch
)
:
d_in
=
(
np
.
shape
(
data_train
))[
1
]
d_out
=
np
.
max
(
labels_train
)
+
1
w1
=
2
*
np
.
random
.
rand
(
d_in
,
64
)
-
1
b1
=
np
.
zeros
((
1
,
64
))
w2
=
2
*
np
.
random
.
rand
(
64
,
d_out
)
-
1
b2
=
np
.
zeros
((
1
,
d_out
))
W1
,
B1
,
W2
,
B2
,
training_accuracies
=
train_mlp
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
,
num_epoch
)
final_testing_accuracy
=
test_mlp
(
W1
,
B1
,
W2
,
B2
,
data_test
,
labels_test
)
return
training_accuracies
,
final_testing_accuracy
if
__name__
==
"
__main__
"
:
learning_rate
=
0.1
num_epoch
=
100
split_factor
=
0.9
batch_dir
=
'
data/cifar-10-batches-py/
'
data
,
labels
=
read_cifar
(
batch_dir
)
data_train
,
labels_train
,
data_test
,
labels_test
=
split_dataset
(
data
,
labels
,
split_factor
)
training_accuracies
,
final_testing_accuracy
=
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
d_h
,
labels_test
,
learning_rate
,
num_epoch
)
k
=
list
(
range
(
num_epoch
))
k
=
[
x
+
1
for
x
in
k
]
plt
.
plot
(
k
,
training_accuracies
)
plt
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment