Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • main
1 result

Target

Select target project
  • mcollas/mod-4-6-td-2-collas
  • mkhatib/mod_4_6-td2
  • adorson/mod_4_6-td2_Dorson
  • mguiller/mod_4_6-td2
  • mbabay/td-2-deep-learning
  • dtibi/mod_4_6-td2
  • bbrudysa/mod_4_6-td2
  • tpoirier/mod_4_6-td2
  • tdesgreys/mod_4_6-td2
  • flegrand/td-2-deep-learning
  • svincent/mod-4-6-td-2-vincent-simon
  • lpoirson/mod_4_6-td2
  • pguerinc/mod_4_6-td2
  • asennevi/mod-4-6-td-2-as
  • mkosksi/deep-learning-td-2
  • tfassin/deep-learning
  • ykarouma/mod-4-6-td-2-karouma
  • pmarin/mod_4_6-td2
  • ggeiger/mod_4_6-td2
  • barryt/mod_4_6-td2
  • melbadao/mod_4_6-td2
  • ndelorme/mod-4-6-td-2-antonin-delorme
  • selalimi/mod_4_6-td2
  • edelland/mod_4_6-td2
  • pishida/mod_4_6-td2
  • amilford/mod_4_6-td2
  • laudard/mod_4_6-td2
  • moudet/mod_4_6-td2
  • jseksik/IA-td2
  • fhu/mod_4_6-td2
  • nlascoux/deep_learning
  • harteaga/mod_4_6-td2
  • bdeneuve/mod_4_6-td2
  • pdanjou/mod_4_6-td2
  • ochaufou/mod_4_6-td2
  • cmassala/mod_4_6-td2
  • ttraore/mod_4_6-td2
  • ykessi/mod-4-6-td-2
  • zzhengfe/mod-4-6-td-2-zhang
  • cgirard/mod_4_6-td2
  • cdurget/mod_4_6-td2
  • ebisson/mod_4_6-td2
  • nterbech/mod_4_6-td2
  • jcaty/mod_4_6-td2
  • afaytout/be-2-deep-learning
  • pramage/deep-learning
  • delkhadr/mod_4_6-td2
  • agiard/mod_4_6-td2
  • rrousse/mod-4-6-td-2-romain-rousse
  • sbessac/mod_4_6-td2
  • vkadkhod/mod_4_6-td2
  • mcart/mod_4_6-td2
  • gbeauvy/mod_4_6-td2
  • amaassen/mod_4_6-td2-fork
  • cgerest/mod-4-6-td-2-cgerest
  • rgirard/mod_4_6-td2
  • clemencm/mod_4_6-td2
  • hbettaie/deep-learning-td-2
  • bdarne/mod_4_6-td2
  • epaganel/mod_4_6-td2
  • mbenyahi/td-2-deep-learning
  • bosioa/mod-4-6-td-2-bosio
  • mduhalde/mod_4_6-td2
  • jmansion/mod-4-6-td-2
  • zkabbaj/mod_4_6-td2
  • tdenis/mod_4_6-td2
  • vludvig/mod_4_6-td2
67 results
Select Git revision
  • main
1 result
Show changes
Commits on Source (3)
*.jpg
.DS_Store .DS_Store
# Data # Data
......
This diff is collapsed.
figures/model1_loss.png

28.1 KiB

figures/model2_loss.png

30.3 KiB

images/audi.jpg

507 KiB

images/cat.jpg

124 KiB

File moved
images/piano.jpg

32.3 KiB

images/rafale.jpg

44.9 KiB

images/spiderweb.webp

138 KiB

images/strawberries.jpg

1.06 MiB

images/sunglasses.webp

82.3 KiB

images/voilier.jpg

42.2 KiB

import numpy as np
def compare_models_accuracy(classes, class_correct_1, class_correct_2, class_total, model_name_1, model_name_2):
# Compare les résultats de deux modèles (accuracy par classe)
print("Overall Accuracy:")
print(
"%2s: %2d%% (%2d/%2d) \t %s: %2d%% (%2d/%2d) --> %s%4s%%"
% (
model_name_1,
100.0 * np.sum(class_correct_1) / np.sum(class_total),
np.sum(class_correct_1),
np.sum(class_total),
model_name_2,
100.0 * np.sum(class_correct_2) / np.sum(class_total),
np.sum(class_correct_2),
np.sum(class_total),
"+" if np.sum(class_correct_2) - np.sum(class_correct_1) > 0 else "",
100.0 * (np.sum(class_correct_2) - np.sum(class_correct_1)) / np.sum(class_total)
)
)
print("\nAccuracy by class:")
for i in range(10):
if class_total[i] > 0:
print(
"%10s \t %2s: %2d%% (%2d/%2d) \t %s: %2d%% (%2d/%2d) --> %s%4s%%"
% (
classes[i],
model_name_1,
100 * class_correct_1[i] / class_total[i],
np.sum(class_correct_1[i]),
np.sum(class_total[i]),
model_name_2,
100 * class_correct_2[i] / class_total[i],
np.sum(class_correct_2[i]),
np.sum(class_total[i]),
"+" if class_correct_2[i] - class_correct_1[i] > 0 else "",
100 * (class_correct_2[i] - class_correct_1[i]) / class_total[i]
)
)
\ No newline at end of file
import matplotlib.pyplot as plt
def plot_performance(train_loss_list, val_loss_list, title = "Performance of Model", save_path = None):
# Plot the performance of the model (train loss and validation loss)
epochs_list = range(len(train_loss_list))
plt.plot(epochs_list, train_loss_list)
plt.plot(epochs_list, val_loss_list)
plt.legend(["Train Loss", "Validation Loss"])
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title(title)
if save_path is not None:
plt.savefig(save_path)
plt.show()
\ No newline at end of file
import os
import torch
def print_size_of_model(model, label=""):
# Print the size of the model
torch.save(model.state_dict(), "temp.p")
size = os.path.getsize("temp.p")
print("model: ", label, " \t", "Size (KB):", size / 1e3)
os.remove("temp.p")
return size
\ No newline at end of file