Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Image classification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Cavallo Alberto
Image classification
Commits
176efbde
Commit
176efbde
authored
1 year ago
by
MSI\alber
Browse files
Options
Downloads
Patches
Plain Diff
27/10 Second exercises almost finished
parent
81097624
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
mlp.py
+172
-0
172 additions, 0 deletions
mlp.py
with
172 additions
and
0 deletions
mlp.py
0 → 100644
+
172
−
0
View file @
176efbde
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
pylab
as
pl
def
sigmoid
(
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
learn_once_mse
(
w1
,
b1
,
w2
,
b2
,
data
,
targets
,
learning_rate
):
# Forward pass
a0
=
data
# the data are the input of the first layer
z1
=
np
.
matmul
(
a0
,
w1
)
+
b1
# input of the hidden layer
a1
=
sigmoid
(
z1
)
# output of the hidden layer (sigmoid activation function)
z2
=
np
.
matmul
(
a1
,
w2
)
+
b2
# input of the output layer
a2
=
sigmoid
(
z2
)
# output of the output layer (sigmoid activation function)
predictions
=
a2
# the predicted values are the outputs of the output layer
# Compute loss (MSE)
loss
=
np
.
mean
(
np
.
square
(
predictions
-
targets
))
return
w1
,
b1
,
w2
,
b2
,
loss
def
one_hot
(
vet
):
encoded
=
np
.
zeros
((
len
(
vet
),
max
(
vet
)
+
1
),
dtype
=
int
)
encoded
[
np
.
arange
(
len
(
vet
)),
vet
]
=
1
return
encoded
def
learn_once_cross_entropy
(
w1
,
b1
,
w2
,
b2
,
data
,
labels_train
,
learning_rate
):
# Forward Pass
Z1
=
np
.
dot
(
data
,
w1
)
+
b1
A1
=
sigmoid
(
Z1
)
Z2
=
np
.
dot
(
A1
,
w2
)
+
b2
A2
=
sigmoid
(
Z2
)
# Calculate loss (Binary Cross Entropy)
m
=
labels_train
.
shape
[
0
]
epsilon
=
1e-15
# small constant to avoid log(0)
loss
=
(
-
1.0
/
m
)
*
np
.
sum
(
labels_train
*
np
.
log
(
A2
+
epsilon
)
+
(
1
-
labels_train
)
*
np
.
log
(
1
-
A2
+
epsilon
))
# Backward Pass
dZ2
=
A2
-
labels_train
dW2
=
(
1
/
data
.
shape
[
0
])
*
np
.
dot
(
A1
.
T
,
dZ2
)
db2
=
(
1
/
data
.
shape
[
0
])
*
np
.
sum
(
dZ2
,
axis
=
0
)
dZ1
=
np
.
dot
(
dZ2
,
w2
.
T
)
*
A1
*
(
1
-
A1
)
dW1
=
(
1
/
data
.
shape
[
0
])
*
np
.
dot
(
data
.
T
,
dZ1
)
db1
=
(
1
/
data
.
shape
[
0
])
*
np
.
sum
(
dZ1
,
axis
=
0
)
# Update weights and biases
w1
-=
learning_rate
*
dW1
b1
-=
learning_rate
*
db1
w2
-=
learning_rate
*
dW2
b2
-=
learning_rate
*
db2
return
w1
,
b1
,
w2
,
b2
,
loss
def
accuracy
(
Y
,
Y_pred
):
m
=
Y
.
shape
[
0
]
correct_predictions
=
np
.
sum
(
Y
==
Y_pred
)
return
correct_predictions
/
m
def
train_mlp
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
,
num_epochs
):
train_accuracies
=
[]
for
epoch
in
range
(
num_epochs
):
for
i
in
range
(
data_train
.
shape
[
0
]):
x
=
data_train
[
i
:
i
+
1
]
y
=
labels_train
[
i
:
i
+
1
]
w1
,
b1
,
w2
,
b2
,
loss
=
learn_once_cross_entropy
(
w1
,
b1
,
w2
,
b2
,
x
,
y
,
learning_rate
)
# Calculate accuracy for the epoch
Z1
=
np
.
dot
(
data_train
,
w1
)
+
b1
A1
=
sigmoid
(
Z1
)
Z2
=
np
.
dot
(
A1
,
w2
)
+
b2
A2
=
sigmoid
(
Z2
)
train_pred
=
(
A2
>
0.5
).
astype
(
int
)
acc
=
accuracy
(
labels_train
,
train_pred
)
train_accuracies
.
append
(
acc
)
return
w1
,
b1
,
w2
,
b2
,
train_accuracies
def
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
):
Z1
=
np
.
dot
(
data_test
,
w1
)
+
b1
A1
=
sigmoid
(
Z1
)
Z2
=
np
.
dot
(
A1
,
w2
)
+
b2
A2
=
sigmoid
(
Z2
)
test_pred
=
(
A2
>
0.5
).
astype
(
int
)
test_acc
=
accuracy
(
labels_test
,
test_pred
)
return
test_acc
def
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
,
learning_rate
,
num_epochs
):
d_in
=
data_train
.
shape
[
1
]
w1
=
np
.
random
.
randn
(
d_in
,
d_h
)
b1
=
np
.
zeros
((
1
,
d_h
))
w2
=
np
.
random
.
randn
(
d_h
,
1
)
b2
=
np
.
zeros
((
1
,
1
))
w1
,
b1
,
w2
,
b2
,
train_accuracies
=
train_mlp
(
w1
,
b1
,
w2
,
b2
,
data_train
,
labels_train
,
learning_rate
,
num_epochs
)
test_accuracy
=
test_mlp
(
w1
,
b1
,
w2
,
b2
,
data_test
,
labels_test
)
return
train_accuracies
,
test_accuracy
def
main_MSE
():
N
=
30
# number of input data
d_in
=
3
# input dimension
d_h
=
3
# number of neurons in the hidden layer
d_out
=
2
# output dimension (number of neurons of the output layer)
learning_rate
=
0.1
# Random initialization of the network weights and biaises
w1
=
2
*
np
.
random
.
rand
(
d_in
,
d_h
)
-
1
# first layer weights
b1
=
np
.
zeros
((
1
,
d_h
))
# first layer biaises
w2
=
2
*
np
.
random
.
rand
(
d_h
,
d_out
)
-
1
# second layer weights
b2
=
np
.
zeros
((
1
,
d_out
))
# second layer biaises
data
=
np
.
random
.
rand
(
N
,
d_in
)
# create a random data
targets
=
np
.
random
.
rand
(
N
,
d_out
)
# create a random targets
w1
,
b1
,
w2
,
b2
,
loss
=
learn_once_mse
(
w1
,
b1
,
w2
,
b2
,
data
,
targets
,
learning_rate
)
print
(
'
Loss (MSE) :
'
+
str
(
loss
))
def
main_CrossEntropy
():
split_factor
=
0.9
d_h
=
64
learning_rate
=
0.1
num_epochs
=
100
# Define your data, labels, and parameters here
# Generate some sample data for demonstration
# Replace this with your actual data
data_train
=
np
.
random
.
rand
(
100
,
10
)
labels_train
=
np
.
random
.
randint
(
2
,
size
=
100
)
data_test
=
np
.
random
.
rand
(
20
,
10
)
labels_test
=
np
.
random
.
randint
(
2
,
size
=
20
)
# Call run_mlp_training with your data and parameters
train_accuracies
,
test_accuracy
=
run_mlp_training
(
data_train
,
labels_train
,
data_test
,
labels_test
,
d_h
,
learning_rate
,
num_epochs
)
# Create a plot of training accuracies across epochs
plt
.
figure
(
figsize
=
(
10
,
6
))
x
=
range
(
1
,
num_epochs
+
1
)
plt
.
plot
(
x
,
train_accuracies
)
plt
.
xlabel
(
'
Epochs
'
)
plt
.
ylabel
(
'
Accuracy
'
)
plt
.
title
(
'
Training Accuracy Evolution
'
)
pl
.
grid
()
plt
.
savefig
(
'
mlp.png
'
)
plt
.
show
()
if
__name__
==
"
__main__
"
:
main_MSE
()
main_CrossEntropy
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment