
Fundamentals of Computer Programming
Lecture 3: Advanced SELECT queries

Zied Bouyahya
Ecole Centrale de Lyon, Bachelor of Science in data science for responsible business

1 / 22



Outline

• SQL nested queries
• SQL EXIST
• The CASE statement
• Window functions
• Common Table Expressions
• REGEXP_LIKE

2 / 22



The airportdb (ffdb) database

3 / 22



SQL nested queries
Definition

In SQL, a sub-query (or nested queries) consits in execuitng a query within
another one. It is generally used within a WHERE or HAVING clauses.

Syntax
SELECT *
FROM table_name
WHERE column_name = (

SELECT value
FROM another_table
LIMIT 1

)

This query returns a single result (row).

Remark
It is possible to use other binary (relational) operators such as <, >, =, etc.

4 / 22



SQL nested queries
Nested SELECT returning a column

• A nested SQL query may also be used to return an entire column.
• In this case, the outer query uses the command IN to filter the rows

containing the values returned by the inner query.

Syntax
SELECT *
FROM table
WHERE a_certain_column IN (

SELECT one_column
FROM another_table
WHERE another_key = another_value

)

5 / 22



SQL nested queries
Examples

Find all passengers who have made a booking on a flight that departs from a
specific airport.
SELECT p.passenger_id, p.firstname, p.lastname, p.passportno
FROM passenger p
WHERE p.passenger_id IN (

SELECT DISTINCT b.passenger_id
FROM booking b
JOIN flight f ON b.flight_id = f.flight_id
WHERE f.from = 1

);

Explain?
1. The nested SELECT retrieves distinct passenger_id values from the booking table for flights

departing from the specified airport (airport_id 1).

2. The outer SELECT then retrieves details (id, firstname, lastname, passport number) of
passengers whose passenger_id is present in the result of the nested SELECT.

6 / 22



SQL nested queries
Examples (Ctd.)

Find airlines that have more than 10 flights.
SELECT airline_id, airlinename, total_flights
FROM (

SELECT a.airline_id, a.airlinename, COUNT(f.flight_id) AS total_flights
FROM airline a
JOIN flight f ON a.airline_id = f.airline_id
GROUP BY a.airline_id, a.airlinename
HAVING total_flights > 10

) AS airlines_with_more_than_10_flights;

Explain?
1. The inner SELECT statement counts the number of flights for each airline.

2. The HAVING clause in the inner SELECT filters out the results, retaining only those airlines
with more than 10 flights.

3. The outer SELECT statement then retrieves the airline information and the total number of
flights from the filtered results of the inner SELECT. SELECT.

7 / 22



SQL nested queries
Examples (Ctd.)

Passengers who flew from Alessandria airport.

SELECT passenger_id, firstname, lastname
FROM passenger
WHERE passenger_id IN (

SELECT passenger_id
FROM booking
WHERE flight_id IN (

SELECT flight_id
FROM flight
WHERE `from` = (

SELECT airport_id
FROM airport
WHERE name = 'ALESSANDRIA'

)
)

);

8 / 22



SQL EXIST
Definition

The EXISTS keyword in SQL is used to check for the existence of rows in a
subquery.

Example
SELECT *
FROM passenger p
WHERE EXISTS (

SELECT 1
FROM booking b
WHERE b.passenger_id = p.passenger_id

);

9 / 22



SQL EXIST
Using NOT EXISTS

Find passengers who have not made any bookings

Example
SELECT *
FROM passenger p
WHERE NOT EXISTS (

SELECT 1
FROM booking b
WHERE b.passenger_id = p.passenger_id

);

10 / 22



SQL EXIST
Correlated Subquery

Find flights that have bookings:

Example
SELECT flight_id, flightno
FROM flight f
WHERE EXISTS (

SELECT 1
FROM booking b
WHERE b.flight_id = f.flight_id

);

This subquery checks if there exist any bookings for each flight (1 if true)

11 / 22



SQL EXIST
Using EXIST with aggregation

Find flights that have more than 20 bookings.

Example
SELECT flight_id, flightno
FROM flight f
WHERE EXISTS (

SELECT 1
FROM booking b
WHERE b.flight_id = f.flight_id
HAVING COUNT(*) > 20

);

12 / 22



The CASE statement

• The CASE statement in SQL is a conditional expression that allows you
to perform conditional logic within a query.

• It is often used to create new columns based on certain conditions or to
categorize data.

Syntax

CASE
WHEN condition1 THEN result1
WHEN condition2 THEN result2
...
ELSE default_result

END

• CASE: The keyword to start the CASE
statement.

• WHEN condition THEN result: This is
the first condition. If condition is true,
the corresponding result1 will be
returned.

• ELSE default_result: If none of the
conditions is true, the ELSE clause
provides a default result.

• END: The keyword to end the CASE
statement

.
13 / 22



The CASE statement
Example

If a flight is less than or equal to 2 hours (120 minutes), it’s labeled as a
’Short Flight.’ If it’s between 2 and 4 hours (240 minutes), it’s a ’Medium
Flight.’ Anything longer falls into the ’Long Flight’ category.

SELECT flight_id, flightno, departure, arrival,
CASE

WHEN TIMESTAMPDIFF(MINUTE, departure, arrival) <= 120 THEN 'Short Flight'
WHEN TIMESTAMPDIFF(MINUTE, departure, arrival) > 120

AND TIMESTAMPDIFF(MINUTE, departure, arrival) <= 240
THEN 'Medium Flight'

ELSE 'Long Flight'
END AS flight_category

FROM flight;

14 / 22



Window functions
Definition

• Window functions allows to perform calculations across a set of rows
that are related to the current row.

• Operate on a "window" of rows and are often used in conjunction with
the OVER clause

Example
Find the average price of flights for each airline.
SELECT flight_id, airline_id, price,

AVG(price) OVER (PARTITION BY airline_id) AS avg_price_per_airline,
AVG(price) OVER () AS overall_avg_price

FROM flight;

The PARTITION BY clause in the OVER clause is used to define the
window within which the AVG function operates. In this case, it calculates
the average price for each airline separately. The OVER () clause without
any partitioning calculates the overall average price for all rows.

15 / 22



Common Table Expressions (CTEs)
Definition

• Common Table Expressions (CTEs) are temporary result sets that can
be referenced within a SELECT, INSERT, UPDATE, or DELETE
statement.

• CTEs are defined using the WITH keyword. CTEs make complex
queries more readable and allow you to break down a query into smaller,
more manageable parts.

Syntax
WITH cte_name (c1, c2, ..., cN) AS (

-- CTE query definition
SELECT ...
FROM ...
WHERE ...

)
-- Main query using the CTE
SELECT ...
FROM cte_name;

• cte_name: The name assigned to the
CTE.

• (c1, c2, ..., cN): Optional. Specifies the
column names for the CTE.

• AS: Keyword used to define the CTE.

• – CTE query definition: The actual SQL
query that defines the CTE.

• – Main query using the CTE: The main
query that references the CTE. 16 / 22



CTE
Example

WITH HeathrowFlights AS (
SELECT

f.flight_id,
f.flightno,
f.departure,
f.arrival,
a.name AS departure_airport

FROM
flight f

JOIN
airport a ON f.from = a.airport_id

WHERE
a.name = 'Heathrow'

)
SELECT * FROM HeathrowFlights;

• The CTE (HeathrowFlights)
selects relevant columns from
the flight table and joins it with
the airport table to get the
departure airport’s name.

• The WHERE clause filters the
results to include only flights
departing from Heathrow. The
main query then selects all
columns from the CTE.

17 / 22



REGEXP_LIKE
Example

SELECT *
FROM airport
WHERE REGEXP_LIKE(lower(name), '^ales', 'i');

Advantages
• Pattern Flexibility.
• Advanced Pattern Matching: Examples include matching patterns with

variable lengths, specific character combinations, or complex conditions.
• Case-Insensitive Matching (option ’i’).
• Negation.

18 / 22



Exercises
Exercise 1: Retrieve the flight details (flight_id, flightno, departure,

arrival) for flights departing from ’Heathrow’ airport.
Exercise 2: Find all passengers who have made bookings for flights that
depart from ’Heathrow’ airport.
Exercise 3: List the airlines with more than 1000 flights.
Exercise 4: Retrieve the passengers who have not made any bookings.
Exercise 5: Find flights that have at least 3 bookings.
Exercise 6: Categorize flights as ’Cheap’, ’Medium’, or ’Expensive’ based on
their average price (<= 300 , 301-400, > 400 ).
Exercise 7: Identify flights with a duration higher than the average duration
for their respective airlines.
Exercise 8: List the airports whose names start with ’Ales’ (case-insensitive).
Exercise 9: Find passengers who have made bookings on flights departing
from ’Heathrow’ or ’Vienna’.
Exercise 10: Retrieve flights with the number of bookings for each flight.

19 / 22



Exercises (Ctd.)

Exercise 11: For each passenger, display their name and the total number
of flights they have booked.
Exercise 12: Identify flights with the maximum number of bookings.
Exercise 13: Retrieve the average price per airline for flights with more than
5 bookings.
Exercise 14: Find passengers who have made bookings for flights departing
from airports whose name do not start with a vowel. (use regexp_like)
Exercise 15: Display the flight details for flights that do not have any
bookings.
Exercise 16: Categorize flights as ’Popular’ if they have more than 10
bookings; otherwise, label them as ’Less Popular’.

20 / 22



Exercises (Ctd.)

Exercise 17: List the airlines and the total number of flights they operate,
along with the overall average price for all flights.
Exercise 18: Using a CTE, retrieve the flights departing from ’Heathrow’
airport.
Exercise 19: Find passengers who have booked at least one flight with a
price higher than 500.
Exercise 20: Retrieve the airports with names that do not start with ’Lond’.

21 / 22



Solutions

22 / 22


