Fundamentals of Computer Programming
Lecture 3: Advanced SELECT queries

Zied Bouyahya

Ecole Centrale de Lyon, Bachelor of Science in data science for responsible business

em

lyon
, business
E el school

1/22

Outline

SQL nested queries
SQL EXIST
e The CASE statement

Window functions

Common Table Expressions
REGEXP_LIKE

2/22

The airportdb (ffdb) database

-] B EB booking E3 flight_log EE employee
5 _id) _id 1%j booking_id B airplane_type @ log_date 1%j employee_id
© birthdate A4 passportno @| 17 flight_id % type_id fec user #ec firstname
AR sex lo—|"=c firstname A5 seat A5g identifier 124 flight_id A5C Jastname
RBC street A5¢ [astname 123 passenger._id fBe description Ao flightno_old © birthdate
nec ciy = o123 price #sc flightno_new ABC sex
12ip = gt EB airport_reachable 124 from_old e street
A5 country 13j flight_id EH airplane . ROt . 123 to_old ABE city
#ec emailaddress #6¢ flightno 13j airplane_id i airport_id 123 from_new 1237ip
A5 telephoneno 13 from o 123 capacity 123 hops Z; ;°—"e‘” 9 o< country
13to 123 type_id = e?arture_o fec emailaddress
Ga departure 125 airline._id airport_geo © arrival_old #BC telephoneno
-8 Gy arrival = 123 airport_id © departure_new 123 salary
Bairport 173 airline_id 5 airline fBC name O arrival_new #ac department
14 airport_id 173 airplane_id R airline_id fEc Gty 123 a!rplane_!d_old #35 username
ARG fata T P = #BE country 123 a!r?lane._ld_new RBC password
Ajgicao -) |a_ta_ 123 |atitude 123 a!rlfne_!d_old
55 name 8 flightschedule :‘“ alrllnenlame 123 longitude 123 airline_id_new
"3; flightno R base_airport ion A5 comment
EB weatherdata 1% from
() log_date o'to
G time @ departure
1%j station O arrival
123 airline_id
123 teml?] 123 monday
s B
123 wind 123 wednesday
ABC weather = thursday
o 123 friday
123 winddirection 125 saturday
123 sunday

3/22

SQL nested queries

Definition

In SQL, a sub-query (or nested queries) consits in execuitng a query within
another one. It is generally used within a WHERE or HAVING clauses.

Syntax

SELECT *

FROM table_name

WHERE column_name = (
SELECT value
FROM another_table
LIMIT 1

)

This query returns a single result (row).

Remark
It is possible to use other binary (relational) operators such as <, >, =, etc.

4/22

SQL nested queries
Nested SELECT returning a column

e A nested SQL query may also be used to return an entire column.

e In this case, the outer query uses the command IN to filter the rows

containing the values returned by the inner query.

Syntax

SELECT *
FROM table
WHERE a_certain_column IN (
SELECT one_column
FROM another_table
WHERE another_key = another_value

5/22

SQL nested queries

Examples

Find all passengers who have made a booking on a flight that departs from a

specific airport.

SELECT p.passenger_id, p.firstname, p.lastname, p.passportno

FROM passenger p
WHERE p.passenger_id IN (

);

SELECT DISTINCT b.passenger_id

FROM booking b

JOIN flight £ ON b.flight_id = f.flight_id
WHERE f.from = 1

Explain?

1.

The nested SELECT retrieves distinct passenger_id values from the booking table for flights
departing from the specified airport (airport_id 1).

The outer SELECT then retrieves details (id, firstname, lastname, passport number) of
passengers whose passenger_id is present in the result of the nested SELECT.

6/22

SQL nested queries
Examples (Ctd.)

Find airlines that have more than 10 flights.

SELECT airline_id, airlinename, total_flights
FROM (
SELECT a.airline_id, a.airlinename, COUNT(f.flight_id) AS total_flights
FROM airline a
JOIN flight f ON a.airline_id = f.airline_id
GROUP BY a.airline_id, a.airlinename
HAVING total_flights > 10
) AS airlines_with_more_than_10_flights;

Explain?
1. The inner SELECT statement counts the number of flights for each airline.

2. The HAVING clause in the inner SELECT filters out the results, retaining only those airlines
with more than 10 flights.

3. The outer SELECT statement then retrieves the airline information and the total number of
flights from the filtered results of the inner SELECT. SELECT.

7/22

SQL nested queries
Examples (Ctd.)

Passengers who flew from Alessandria airport.

SELECT passenger_id, firstname, lastname
FROM passenger
WHERE passenger_id IN (
SELECT passenger_id
FROM booking
WHERE flight_id IN (
SELECT flight_id
FROM flight
WHERE “from™ = (
SELECT airport_id
FROM airport
WHERE name = 'ALESSANDRIA'

8/22

SQL EXIST

Definition

The EXISTS keyword in SQL is used to check for the existence of rows in a
subquery.

Example

SELECT =*
FROM passenger p
WHERE EXISTS (
SELECT 1
FROM booking b
WHERE b.passenger_id = p.passenger_id
)3

9/22

SQL EXIST
Using NOT EXISTS

Find passengers who have not made any bookings

Example

SELECT =*
FROM passenger p
WHERE NOT EXISTS (
SELECT 1
FROM booking b
WHERE b.passenger_id = p.passenger_id
)3

10/22

SQL EXIST

Correlated Subquery

Find flights that have bookings:
Example

SELECT flight_id, flightno
FROM flight f
WHERE EXISTS (
SELECT 1
FROM booking b
WHERE b.flight_id = f.flight_id
);

This subquery checks if there exist any bookings for each flight (1 if true)

11/22

SQL EXIST

Using EXIST with aggregation

Find flights that have more than 20 bookings.

Example

SELECT flight_id, flightno
FROM flight f
WHERE EXISTS (
SELECT 1
FROM booking b
WHERE b.flight_id = f.flight_id
HAVING COUNT(*) > 20

12/22

The CASE statement

e The CASE statement in SQL is a conditional expression that allows you

to perform conditional logic within a query.

e It is often used to create new columns based on certain conditions or to

categorize data.

Syntax

CASE
WHEN conditionl THEN resultl
WHEN condition2 THEN result2

ELSE default_result
END

CASE: The keyword to start the CASE
statement.

WHEN condition THEN result: This is
the first condition. If condition is true,
the corresponding resultl will be
returned.

ELSE default_result: If none of the
conditions is true, the ELSE clause
provides a default result.

END: The keyword to end the CASE
statement

13/22

The CASE statement

Example

If a flight is less than or equal to 2 hours (120 minutes), it's labeled as a
'Short Flight.' If it's between 2 and 4 hours (240 minutes), it's a 'Medium
Flight! Anything longer falls into the 'Long Flight' category.

SELECT flight_id, flightno, departure, arrival,
CASE
WHEN TIMESTAMPDIFF (MINUTE, departure, arrival) <= 120 THEN 'Short Flight'
WHEN TIMESTAMPDIFF (MINUTE, departure, arrival) > 120
AND TIMESTAMPDIFF(MINUTE, departure, arrival) <= 240
THEN 'Medium Flight'
ELSE 'Long Flight'
END AS flight_category
FROM flight;

14/22

Window functions

Definition

e Window functions allows to perform calculations across a set of rows
that are related to the current row.
e Operate on a "window" of rows and are often used in conjunction with

the OVER clause

Example
Find the average price of flights for each airline.

SELECT flight_id, airline_id, price,
AVG(price) OVER (PARTITION BY airline_id) AS avg_price_per_airline,
AVG(price) OVER () AS overall_avg_price
FROM flight;
The PARTITION BY clause in the OVER clause is used to define the
window within which the AVG function operates. In this case, it calculates
the average price for each airline separately. The OVER () clause without

any partitioning calculates the overall average price for all rows.
15/22

Common Table Expressions (CTEs)

Definition

e Common Table Expressions (CTEs) are temporary result sets that can
be referenced within a SELECT, INSERT, UPDATE, or DELETE
statement.

e CTEs are defined using the WITH keyword. CTEs make complex
queries more readable and allow you to break down a query into smaller,
more manageable parts.

Syntax
e cte_name: The name assigned to the

WITH cte_name (cl, c2, ..., cN) AS (CTE

-- CTE query definition

SELECT ... e (cl, c2, ..., cN): Optional. Specifies the

FROM ... column names for the CTE.

WHERE ... e AS: Keyword used to define the CTE.
) e — CTE query definition: The actual SQL
—= Main query using the CTE query that defines the CTE.
SELECT ...

e — Main query using the CTE: The main

FROM cte_name;
- query that references the CTE. 16/22

CTE

Example

WITH HeathrowFlights AS (

e The CTE (HeathrowFlights)

SELECT
f.flight_id, selects relevant columns from
f.flight . L

ERERO, the flight table and joins it with
f.departure,
f.arrival, the airport table to get the
a.name AS departure_airport departure airport's name.
FROM
flight f e The WHERE clause filters the
JOIN . .
]]] results to include only flights
airport a ON f.from = a.airport_id
WHERE departing from Heathrow. The
) a.name = 'fleathrow! main query then selects all
SELECT * FROM HeathrowFlights; columns from the CTE.

17/22

REGEXP_LIKE

Example

SELECT =

FROM airport

WHERE REGEXP_LIKE(lower (name), '~"ales', 'i');
Advantages

e Pattern Flexibility.

e Advanced Pattern Matching: Examples include matching patterns with
variable lengths, specific character combinations, or complex conditions.

e Case-Insensitive Matching (option 'i").

e Negation.

18/22

Exercises

Exercise 1: Retrieve the flight details (flight_id, flightno, departure,
arrival) for flights departing from 'Heathrow' airport.

Exercise 2: Find all passengers who have made bookings for flights that
depart from "Heathrow’ airport.

Exercise 3: List the airlines with more than 1000 flights.

Exercise 4: Retrieve the passengers who have not made any bookings.
Exercise 5: Find flights that have at least 3 bookings.

Exercise 6: Categorize flights as 'Cheap’, 'Medium’, or 'Expensive’ based on
their average price (<= 300, 301-400, > 400).

Exercise 7: Identify flights with a duration higher than the average duration
for their respective airlines.

Exercise 8: List the airports whose names start with 'Ales’ (case-insensitive).
Exercise 9: Find passengers who have made bookings on flights departing
from 'Heathrow' or 'Vienna'.

Exercise 10: Retrieve flights with the number of bookings for each fligh’g.g/22

Exercises (Ctd.)

Exercise 11: For each passenger, display their name and the total number
of flights they have booked.

Exercise 12: Identify flights with the maximum number of bookings.
Exercise 13: Retrieve the average price per airline for flights with more than
5 bookings.

Exercise 14: Find passengers who have made bookings for flights departing
from airports whose name do not start with a vowel. (use regexp_like)
Exercise 15: Display the flight details for flights that do not have any
bookings.

Exercise 16: Categorize flights as 'Popular’ if they have more than 10
bookings; otherwise, label them as 'Less Popular’.

20/22

Exercises (Ctd.)

Exercise 17: List the airlines and the total number of flights they operate,
along with the overall average price for all flights.

Exercise 18: Using a CTE, retrieve the flights departing from 'Heathrow’
airport.

Exercise 19: Find passengers who have booked at least one flight with a
price higher than 500.

Exercise 20: Retrieve the airports with names that do not start with 'Lond’.

21/22

22/22

