
Introduction to data analysis
Exploratory data analysis and visualisation

Lecture 1: Introduction to SQL for data analysis

Zied Bouyahya
Ecole Centrale de Lyon, Bachelor of Science in data science for responsible business

1 / 51

Useful Resources

• SQLbolt (lessons 1 to 6, and 13 to 18)
• W3School
• Codecademy
• KhanAcademy
• SQLzoo
• TutorialsPoint
• SQL.sh
• SoloLearn
• etc.

2 / 51

https://sqlbolt.com/
https://www.w3schools.com/sql/
https://www.codecademy.com/learn/learn-sql
https://www.khanacademy.org/computing/computer-programming/sql
https://sqlzoo.net/
https://www.tutorialspoint.com/sql/
https://sql.sh/
https://www.sololearn.com/learning/1060

Some data sources

• The open data catalog of the government: OpenDataGouv
• The platform: Kaggle
• Relational Dataset Repository

3 / 51

https://www.data.gouv.fr/fr/datasets/catalogue-des-donnees-de-data-gouv-fr/
https://www.kaggle.com/datasets
https://relational.fit.cvut.cz/search

Definition of a Database

• A database is a structured collection of data.
• It allows for:

◦ Efficient storage
◦ Easy retrieval
◦ Management and updating of data

• Example: A library catalog storing information about books.

4 / 51

Types of Databases

• Relational Databases:
◦ Data is organized in tables with rows and columns.
◦ Examples: MySQL, PostgreSQL.

• NoSQL Databases:
◦ Non-tabular, designed for unstructured or semi-structured data.
◦ Examples: MongoDB, Firebase.

• Other Types:
◦ Hierarchical databases
◦ Network databases
◦ Object-oriented databases

5 / 51

Structure of a Database Table

A table in a relational database consists of rows and columns.
• Each row represents a record or an entity.
• Each column represents a field or attribute of the entity.
• A table typically has a name and is used to store data related to a

specific entity (e.g., Customers, Orders).

6 / 51

Primary Key

A primary key uniquely identifies each record in a table.
• It must contain unique values.
• It cannot have NULL values.
• A table can have only one primary key.

Example:
Customer_ID (Primary Key) Name Email

7 / 51

Foreign Key

A foreign key is a column or set of columns in one table that references the
primary key of another table.

• It establishes a relationship between two tables.
• It ensures referential integrity by only allowing values that exist in the

referenced table.
Example:

Order_ID (Primary Key) Customer_ID (Foreign Key)

In this example, Customer_ID in the Orders table refers to the
Customer_ID in the Customers table.

8 / 51

Example: Primary and Foreign Key in Tables

Consider two tables: Customers and Orders.
Customers Table

Customer_ID Name Email
1 Alice alice@email.com
2 Bob bob@email.com
3 Charlie charlie@email.com

Orders Table
Order_ID Customer_ID Order_Date

1001 1 2023-01-01
1002 2 2023-01-02
1003 1 2023-01-03

In this case:
• Customer_ID is the primary key in the Customers table.
• Customer_ID in the Orders table is the foreign key that references the

primary key in the Customers table.

9 / 51

Relationships Between Tables

Relationships in relational databases define how tables are connected.
There are three main types:

• One-to-One
• One-to-Many
• Many-to-Many

10 / 51

One-to-One Relationship

A one-to-one relationship links one record in a table to one record in another
table.
Implementation:

• Use a primary key in one table as a foreign key in the related table.

Example:

Users Table
User_ID Name

1 Alice
2 Bob

Profiles Table
Profile_ID (PK, FK) Bio

1 "Likes cats"
2 "Loves programming"

11 / 51

One-to-Many Relationship

A one-to-many relationship links one record in a table to multiple records in
another table.
Implementation:

• Use a primary key in one table referenced by a foreign key in another
table.

Example:

Authors Table
Author_ID Name

1 Alice
2 Bob

Books Table
Book_ID Title Author_ID (FK)

101 "SQL Basics" 1
102 "Advanced SQL" 1
103 "Data Science" 2

12 / 51

Many-to-Many Relationship
A many-to-many relationship links multiple records in one table to multiple
records in another table.
Implementation:

• Use a junction table with foreign keys referencing the primary keys of
both tables.

Example:
Students Table

Student_ID Name
1 Alice
2 Bob

Courses Table
Course_ID Title

101 Math
102 SQL

StudentCourses (Junction Table)
Student_ID (FK) Course_ID (FK)

1 101
1 102
2 102

13 / 51

Constraints on Foreign Keys

Foreign keys help maintain referential integrity by enforcing the following
constraints:

• On Delete: Defines what happens when a record in the referenced
table is deleted.

• On Update: Defines what happens when the primary key value in the
referenced table is updated.

• Options include:
◦ CASCADE: Automatically update/delete the foreign key value.
◦ SET NULL: Set the foreign key value to NULL.
◦ RESTRICT: Prevent deletion or update of the referenced record.

14 / 51

What is SQL?

• SQL stands for Structured Query Language.
• It is used to interact with relational databases.
• SQL allows you to:

◦ Create databases and tables (CREATE).
◦ Insert, update, and delete data (INSERT, UPDATE, DELETE).
◦ Retrieve data using queries (SELECT).

• SQL is supported by most relational database management systems
(RDBMS), like MySQL, PostgreSQL, and SQLite.

15 / 51

Structure of a SELECT Query

General Syntax
SELECT column1, column2, ... FROM table_name WHERE
condition;

• SELECT: Specifies the columns to retrieve.
• FROM: Specifies the table to retrieve data from.
• WHERE (Optional): Filters rows based on conditions.

Example
SELECT name, age FROM students WHERE age > 18;

16 / 51

Basic Examples of SELECT Queries

• To retrieve all columns from a table:

Query
SELECT * FROM employees;

• To retrieve specific columns:

Query
SELECT first_name, last_name FROM employees;

• To rename a column (aliasing):

Query
SELECT first_name AS "First Name", last_name AS "Last Name"
FROM employees;

17 / 51

Using Conditions in SELECT Queries

• The WHERE clause is used to filter rows.
• Operators:

◦ Comparison: =, >, <, >=, <=, <> (not equal)
◦ Logical: AND, OR, NOT
◦ Pattern matching: LIKE, IN, BETWEEN

• Example:

Query
SELECT * FROM employees WHERE department = ’HR’ AND salary >
50000;

• Retrieves all employees in the HR department earning more than 50,000.

18 / 51

Sorting and Limiting Results

• ORDER BY: Sorts the results of a query.
◦ Default: Ascending order (ASC).
◦ Use DESC for descending order.

• LIMIT: Restricts the number of rows returned.
• Example:

Query
SELECT first_name, last_name, salary FROM employees
ORDER BY salary DESC
LIMIT 5;

• Retrieves the top 5 highest-paid employees.

19 / 51

SQL Data Types

• SQL data types define the type of data a column can hold.
• Common categories:

◦ Numeric Data Types:
▶ INT: Integer values (e.g., 1, 42).
▶ FLOAT, DOUBLE: Decimal numbers.
▶ DECIMAL(p, s): Fixed precision decimal numbers.

◦ Character Data Types:
▶ CHAR(n): Fixed-length strings (e.g., ’A123’).
▶ VARCHAR(n): Variable-length strings (e.g., ’Hello’).
▶ TEXT: Long text.

◦ Date and Time Data Types:
▶ DATE: Stores date (e.g., ’2025-01-03’).
▶ TIME: Stores time (e.g., ’13:45:00’).
▶ DATETIME: Stores both date and time.
▶ TIMESTAMP: Stores date and time with time zone.

◦ Other Data Types:
▶ BOOLEAN: True/False values.
▶ BLOB: Binary data (e.g., images, files).

20 / 51

SQL Date/Time Functions: Converting and Formatting

• SQL provides functions to manipulate and calculate with date and time
values.

• Converting Date and Time:
◦ STR_TO_DATE(string, format): Converts a string into a date.

Example
SELECT STR_TO_DATE(’01-03-2025’, ’%d-%m-%Y’);

◦ DATE_FORMAT(date, format): Formats a date as a string.

Example
SELECT DATE_FORMAT(NOW(), ’%Y-%m-%d’);

• Current Date and Time:
◦ NOW(): Current date and time.
◦ CURDATE(): Current date.
◦ CURTIME(): Current time.

21 / 51

SQL Date/Time Functions: Calculating Time Intervals

• SQL provides functions to calculate time intervals.
• Finding Time Intervals:

◦ DATEDIFF(date1, date2): Difference in days between two dates.

Example
SELECT DATEDIFF(’2025-01-10’, ’2025-01-03’); – Returns 7

◦ TIMEDIFF(time1, time2): Difference between two times.

Example
SELECT TIMEDIFF(’14:30:00’, ’12:00:00’); – Returns 02:30:00

◦ TIMESTAMPDIFF(unit, datetime1, datetime2): Calculates the
difference in specified units (e.g., SECOND, MINUTE, HOUR, DAY, MONTH,
YEAR).

Example
SELECT TIMESTAMPDIFF(YEAR, ’2000-01-01’, ’2025-01-01’); – Returns 25

22 / 51

Using Aggregate Functions

• Aggregate functions perform calculations on multiple rows.
• Common functions:

◦ COUNT: Counts the number of rows.
◦ SUM: Calculates the total of a numeric column.
◦ AVG: Calculates the average value.
◦ MAX: Finds the highest value.
◦ MIN: Finds the lowest value.

• Example:

Query
SELECT department, AVG(salary) AS avg_salary
FROM employees
GROUP BY department;

• Calculates the average salary for each department.

23 / 51

Grouping Data with GROUP BY and HAVING

• GROUP BY: Groups rows that have the same values in specified columns.
• HAVING: Filters groups (similar to WHERE, but used for groups).
• Example:

Query
SELECT department, COUNT(*) AS num_employees
FROM employees
GROUP BY department
HAVING num_employees > 10;

• Retrieves departments with more than 10 employees.

24 / 51

Question 1: Count flights departing in a specific month

Problem: Count the total number of flights departing in June.
Solution:
SELECT COUNT(flight_id) AS total_flights
FROM flights
WHERE MONTH(departure) = 6;

Explanation:
• COUNT(flight_id) calculates the total number of flights.
• MONTH(departure) extracts the month from the departure column.
• WHERE MONTH(departure) = 6 filters for flights in June.

25 / 51

Question 2: Average capacity by airline

Problem: Find the average capacity of airplanes for each airline.
Solution:
SELECT airline_id, AVG(capacity) AS avg_capacity
FROM airplanes
GROUP BY airline_id;

Explanation:
• AVG(capacity) computes the average capacity.
• GROUP BY airline_id ensures averages are calculated for each airline.

26 / 51

Question 3: Top 5 most expensive bookings

Problem: List the top 5 most expensive bookings.
Solution:
SELECT booking_id, price
FROM bookings
ORDER BY price DESC
LIMIT 5;

Explanation:
• ORDER BY price DESC sorts bookings in descending order of price.
• LIMIT 5 restricts the result to the top 5 rows.

27 / 51

Question 4: Total flights per airport

Problem: Count the total number of flights from each airport.
Solution:
SELECT departure_airport, COUNT(flight_id) AS total_flights
FROM flights
GROUP BY departure_airport;

Explanation:
• COUNT(flight_id) counts flights for each airport.
• GROUP BY departure_airport groups flights by their departure

airport.

28 / 51

Question 5: Flights departing after a specific date

Problem: List all flights departing after January 1, 2024.
Solution:
SELECT flight_id, departure
FROM flights
WHERE departure > '2024-01-01';

Explanation:
• The WHERE departure > ’2024-01-01’ filters flights after January 1,

2024.
• flight_id and departure are selected for display.

29 / 51

Question 6: Passengers with duplicate bookings

Problem: Identify passengers with more than one booking.
Solution:
SELECT passenger_id, COUNT(booking_id) AS total_bookings
FROM bookings
GROUP BY passenger_id
HAVING COUNT(booking_id) > 1;

Explanation:
• COUNT(booking_id) counts bookings per passenger.
• HAVING COUNT(booking_id) > 1 filters passengers with multiple

bookings.

30 / 51

Question 7: Flights with no bookings

Problem: Find flights that have no bookings.
Solution:
SELECT flight_id
FROM flights
WHERE flight_id NOT IN (

SELECT flight_id
FROM bookings

);

Explanation:
• The subquery SELECT flight_id FROM bookings retrieves booked

flight IDs.
• WHERE flight_id NOT IN (...) filters out flights that are booked.

31 / 51

Question 8: Airline with maximum flights

Problem: Identify the airline with the maximum number of flights.
Solution:
SELECT airline_id, COUNT(flight_id) AS total_flights
FROM flights
GROUP BY airline_id
ORDER BY total_flights DESC
LIMIT 1;

Explanation:
• COUNT(flight_id) counts flights for each airline.
• ORDER BY total_flights DESC sorts airlines by flight count.
• LIMIT 1 returns only the airline with the highest count.

32 / 51

Question 9: Monthly revenue from bookings

Problem: Calculate the total revenue for each month.
Solution:
SELECT MONTH(booking_date) AS booking_month, SUM(price) AS total_revenue
FROM bookings
GROUP BY MONTH(booking_date);

Explanation:
• SUM(price) calculates the total revenue.
• GROUP BY MONTH(booking_date) groups bookings by month.

33 / 51

Question 10: Passengers with no bookings

Problem: Find passengers who have no bookings.
Solution:
SELECT passenger_id
FROM passengers
WHERE passenger_id NOT IN (

SELECT passenger_id
FROM bookings

);

Explanation:
• The subquery SELECT passenger_id FROM bookings retrieves IDs of

passengers with bookings.
• WHERE passenger_id NOT IN (...) filters passengers without

bookings.

34 / 51

Fundamentals of Computer Programming
Lecture 2 SQL join

Zied Bouyahya
Ecole Centrale de Lyon, Bachelor of Science in data science for responsible business

35 / 51

SQL Joins

• What’s that?
◦ Joins in SQL allow combining data from multiple tables in a single query.
◦ Exploiting the power of relational databases to efficiently obtain results

that combine data from different tables.
• Example

◦ Typically involves associating rows from two tables based on the equality
of values in a column.

◦ For instance, a database with "user" and "address" tables can be joined
to retrieve user data along with their address in a single query.

• Another Example
◦ Consider a website with tables for "articles" (title, content, publication

date, etc.) and "authors" (name, registration date, birth date, etc.).
◦ Joining these tables allows a single query to display an article along with

the author’s name, avoiding the need to display the author’s name in the
"article" table.

36 / 51

SQL Joins
Types of Joins

• INNER JOIN: Returns records when the condition is true in both tables. One of the
most common joins.

• CROSS JOIN: Produces the Cartesian product of two tables, joining each row from
one table with every row from another. Results in a large number of records.

• LEFT JOIN (or LEFT OUTER JOIN): Returns all records from the left table even
if the condition is not met in the other table.

• RIGHT JOIN (or RIGHT OUTER JOIN): Returns all records from the right table
even if the condition is not met in the other table.

• FULL JOIN (or FULL OUTER JOIN): Returns results when the condition is true in
at least one of the two tables.

• SELF JOIN: Joins a table with itself as if it were another table.

• NATURAL JOIN: Natural join between two tables if there is at least one column
with the same name in both SQL tables.

• UNION JOIN: Union join.
37 / 51

SQL INNER JOIN

Definition
In SQL, the INNER JOIN command, also known as EQUIJOIN, is a common
type of join used to link multiple tables. This command returns records when
there is at least one row in each table that corresponds to the condition.

Syntax
SELECT *
FROM table1
INNER JOIN table2 ON table1.id = table2.fk_id

The above syntax specifies that you should select records from tables
table1 and table2 when the data in the id column of table1 is equal to
the data in the column of table2.

38 / 51

SQL INNER JOIN
Alternative Syntax

• The SQL join can also be written as follows:
SELECT *
FROM table1
INNER JOIN table2
WHERE table1.id = table2.fk_id

• The syntax with the WHERE condition is an alternative way to perform
the join but may be less readable if there are already multiple conditions
in the WHERE clause.

Example
• Imagine an application with a "user" table and an "order" table

containing all orders placed by users.
• To display all orders associated with users, you can use the following

query:
SELECT id, first_name, last_name, order_date, invoice_number, total_price
FROM user
INNER JOIN order ON user.id = order.user_id

39 / 51

INNER JOIN
Example

CustomerID CustomerName City
1 Carrefour Tassin
2 Auchan Bron
3 Monoprix Villeurbanne

Table: Table: Customers

OrderID CustomerID OrderDate
101 1 2024-01-15
102 2 2024-02-05
103 1 2024-03-20

Table: Table: Orders

SELECT *
FROM

Orders
INNER JOIN

Customers ON Orders.CustomerID = Customers.CustomerID;

OrderID OrderDate CustomerID CustomerName City
101 2024-01-15 1 Carrefour Tassin
102 2024-02-05 2 Auchan Bron
103 2024-03-20 1 Carrefour Tassin

Table: Result of INNER JOIN

40 / 51

Cross join

• In SQL, the command CROSS JOIN is a particular join of two tables
that returns the Cartesian product of the two tables.

• Each record in the first table is mapped with each row in the second
table.

• Typically, CROSS JOIN is combined with a WHERE clause to filter the
result (the Cartesian product) based on some criteria (or condition).

• For example, if table_1 contains n records and table_2 contains m
records, the cross join will return an n × m records.

Syntax
SELECT *
FROM table_1
CROSS JOIN table_2

41 / 51

Cross join
Example

student_id student_name gpa
20231998 AW Yerim 3.45
20231345 Naomi Helmbold 4.1
20238843 Wang Deyi 3.9

advisor_id advisor_name office
1234 Savinien Jean 12
1235 Vuillemot Romain 16
1236 Bouyahya Zied 17

SELECT *
FROM

students
CROSS JOIN advisors;

student_id student_name gpa advisor_id advisor_name office
20231998 AW Yerim 3.45 1234 Savinien Jean 12
20231998 AW Yerim 3.45 1235 Vuillemot Romain 16
20231998 AW Yerim 3.45 1236 Bouyahya Zied 17
20231345 Naomi Helmbold 4.1 1234 Savinien Jean 12
20231345 Naomi Helmbold 4.1 1235 Vuillemot Romain 16
20231345 Naomi Helmbold 4.1 1236 Bouyahya Zied 17
20238843 Wang Deyi 3.9 1234 Savinien Jean 12
20238843 Wang Deyi 3.9 1235 Vuillemot Romain 16
20238843 Wang Deyi 3.9 1236 Bouyahya Zied 17

42 / 51

SQL left join

The LEFT JOIN, also known as LEFT OUTER JOIN, in SQL retrieves all
records from the left table, and if there are matching rows in the second
(right) table, those are included in the result as well. If there is no match in
the right table, NULL values are filled for columns from the right table.

Syntax
SELECT *
FROM table1
LEFT JOIN table2 ON table1.id = table2.fk_id

LEFT JOIN is particularly useful to retrieve all information from table1 and
the associated information even without matches in the table2 (in such
case, the NULL values are used)

43 / 51

SQL left join
Example

emp_id emp_name department_id
1 KURAKOVA, Sofia 101
2 XU, Jiani 102
3 MERABET, Camil 103

Table: Table: employees

department_id department_name
101 IT Department
103 HR Department
104 Marketing

Table: Table: departments

SELECT *
FROM employees
LEFT JOIN departments ON employees.department_id = departments.department_id;

emp_id emp_name department_id department_name
1 KURAKOVA, Sofia 101 IT Department
2 XU, Jiani 102 NULL
3 MERABET, Camil 103 HR Department

44 / 51

LEFT JOIN
Example 2

customer_id customer_name
1 CEHIC, Mélissa
2 MALIKIREDDY, Reddy
3 HRISHIKESH, Alikatte

Table: Table: customers

order_id customer_id order_amount
101 1 150.00
102 2 200.00
103 1 100.00

Table: Table: orders

SELECT *
FROM customers
LEFT JOIN orders ON customers.customer_id = orders.customer_id;

customer_id customer_name order_id order_amount
1 CEHIC, Mélissa 101 150.00
1 CEHIC, Mélissa 103 100.00
2 MALIKIREDDY, Reddy 102 200.00
3 HRISHIKESH, Alikatte NULL NULL

Table: Result of LEFT JOIN

45 / 51

RIGHT JOIN

The RIGHT JOIN, also known as RIGHT OUTER JOIN, in SQL retrieves all
records from the right table, and if there are matching rows in the (left)
table, those are included in the result as well. If there is no match in the left
table, NULL values are filled for columns from the left table.

Syntax
SELECT *
FROM table1
RIGHT JOIN table2 ON table1.id = table2.fk_id

46 / 51

RIGHT JOIN Example
Example

customer_id customer_name
1 DEMODE, Charlotte
2 GONG, Yuxin
3 QI, Haofei

Table: Table: customers

order_id customer_id order_amount
101 1 150.00
102 2 200.00
103 1 100.00
104 3 300.00
105 4 120.00

Table: Modified Table: orders

customer_id customer_name order_id order_amount
1 DEMODE, Charlotte 101 150.00
1 DEMODE, Charlotte 103 100.00
2 GONG, Yuxin 102 200.00
3 QI, Haofei 104 300.00

NULL NULL 105 120.00

Table: Result of RIGHT JOIN

47 / 51

FULL (OUTER) JOIN

FULL JOIN a.k.a. FULL OUTER JOIN is used to combine the results from the
two tables based on certain criteria and fills the missing matches with NULL
values.

Syntax
SELECT *
FROM table1
FULL OUTER JOIN table2 on table1.id = table2.fk_id

48 / 51

FULL JOIN
Example

customer_id customer_name
1 BOUYAHYA, Zied
2 MIRONESCU, Elisabeth
3 VUILLEMOT, Romain
4 SAVINIEN, Jean

Table: Table: customers

order_id customer_id order_amount
101 1 150.00
102 2 200.00
103 1 100.00
104 3 300.00
105 5 120.00

Table: Modified Table: orders

customer_id customer_name order_id order_amount
1 BOUYAHYA, Zied 101 150.00
1 BOUYAHYA, Zied 103 100.00
2 MIRONESCU, Elisabeth 102 200.00
3 VUILLEMOT, Romain 104 300.00
4 SAVINIEN, Jean NULL NULL
5 NULL 105 120.00

Table: Result of FULL JOIN

49 / 51

SELF JOIN

The SELF JOIN command is used to match table information with records
from the same table.

Syntax
SELECT
`t1`.`name_column1`,
`t1`.`name_column2`,
`t2`.`name_column1`,
`t2`.`name_column2`
FROM `table` as `t1`
JOIN `table` as `t2` ON `t2`.`fk_id` = `t1`.`id`

50 / 51

SELF JOIN
Example

id prenom nom email manager_id
1 Yerim Aw aw.yerim@example.com NULL
2 Jane Smith jane.smith@example.com 1
3 Bob Johnson bob.johnson@example.com 1
4 Alice Green alice.green@example.com 2

SELECT
t1.id, t1.firstname, t1.lastname, t1.email, t1.manager_id,
t2.firstname || ' ' || t2.lastname AS manager_name
FROM employees AS t1
LEFT JOIN employees AS t2 ON t2.id = t1.manager_id;

id firstname lastname email manager_id manager_name
1 Yerim AW aw.yerim@example.com NULL NULL
2 Jane Smith jane.smith@example.com 1 Aw Yerim
3 Bob Johnson bob.johnson@example.com 1 Aw Yerim
4 Alice Green alice.green@example.com 2 Jane Smith

Table: Result of Self-Join
51 / 51

	The SELECT Query

