import numpy as np import matplotlib.pyplot as plt N = 30 # number of input data d_in = 3 # input dimension d_h = 3 # number of neurons in the hidden layer d_out = 2 # output dimension (number of neurons of the output layer) learning_rate = 0.1 num_epochs=100 # Random initialization of the network weights and biaises def initialization(d_in,d_h,d_out): np.random.seed(10) # To get the same random values W1 = 2 * np.random.rand(d_in, d_h) - 1 # first layer weights b1 = np.zeros((1, d_h)) # first layer biaises W2 = 2 * np.random.rand(d_h, d_out) - 1 # second layer weights b2 = np.zeros((1, d_out)) # second layer biaises return W1,b1,W2,b2 data = np.random.rand(N, d_in) # create a random data targets = np.random.rand(N, d_out) # create a random targets # Define the sigmoid activation function def sigmoid(x,derivate): if derivate==False: return 1 / (1 + np.exp(-x)) else: return x*(1-x) # Define the softmax activation function def softmax(x,derivate): if derivate == False : return np.exp(x) / np.exp(np.array(x)).sum(axis=1, keepdims=True) else : return x*(1-x) #Definir les métriques : def loss_metrics(predictions, targets, metric, status): if metric == "MSE": if status == "forward": return np.mean((predictions - targets) ** 2) elif status == "backward": return 2 * (predictions - targets) / len(predictions) # Gradient of MSE loss elif metric == "BCE": # Binary Cross-Entropy Loss epsilon = 1e-15 # Small constant to prevent log(0) predictions = np.clip(predictions, epsilon, 1 - epsilon) if status == "forward": return - (targets * np.log(predictions) + (1 - targets) * np.log(1 - predictions)).mean() elif status == "backward": return (predictions - targets) / ((1 - predictions) * predictions) # Gradient of BCE loss else: raise ValueError("Metric not supported: " + metric) # learn_once_mse """ Update the weights and biases of the network for one gradient descent step using Mean Squared Error (MSE) loss. Parameters: - w1: Weight matrix of the first layer (shape: d_in x d_h). - b1: Bias vector of the first layer (shape: 1 x d_h). - w2: Weight matrix of the second layer (shape: d_h x d_out). - b2: Bias vector of the second layer (shape: 1 x d_out). - data: Input data matrix (shape: batch_size x d_in). - targets: Target output matrix (shape: batch_size x d_out). - learning_rate: Learning rate for gradient descent. Returns: - W1: Updated weight matrix of the first layer. - b1: Updated bias vector of the first layer. - w2: Updated weight matrix of the second layer. - b2: Updated bias vector of the second layer. - loss: Mean Squared Error (MSE) loss for monitoring. """ def learn_once_mse(W1, b1, W2, b2, data, targets, learning_rate): # Forward pass # Calculate the input and output of the hidden layer hidden_layer_input = np.matmul(data, W1) + b1 hidden_layer_output = sigmoid(hidden_layer_input, derivate=False) # Apply the sigmoid activation # Calculate the input and output of the output layer output_layer_input = np.matmul(hidden_layer_output, W2) + b2 output_layer_output = softmax(output_layer_input, derivate=False) # Apply the softmax activation # Backpropagation phase # Calculate the error at the output layer output_error = output_layer_output - targets # Calculate gradients for the output layer output_layer_gradients = output_error * softmax(output_layer_output, derivate=True) # Update weights and biases of the output layer W2 = W2 - learning_rate * np.dot(hidden_layer_output.T, output_layer_gradients) / data.shape[0] b2 = b2 - learning_rate * (1 / hidden_layer_output.shape[1]) * output_layer_gradients.sum(axis=0) # Calculate the error at the hidden layer hidden_layer_error = np.dot(output_layer_gradients, W2.T) # Calculate gradients for the hidden layer hidden_layer_gradients = hidden_layer_error * sigmoid(hidden_layer_output, derivate=True) # Update weights and biases of the hidden layer W1 = W1 - learning_rate * np.dot(data.T, hidden_layer_gradients) / data.shape[0] b1 = b1 - learning_rate * (1 / data.shape[1]) * hidden_layer_gradients.sum(axis=0) # Calculate the loss using the specified metric loss = loss_metrics(output_layer_output, targets,metric="MSE",status="forward") return W1, b1, W2, b2, loss #One Hot Function : def one_hot(targets): """ one_hot_encode takes an arrayy of target values and returns the corresponding one-hot encoded matrix. Parameters: - targets: An arrayy of target values. Returns: - one_hot_matrix: A one-hot encoded matrix where each row corresponds to a target value. """ num_classes = np.unique(targets).shape[0] # Determine the number of unique classes in the target arrayy num_samples = targets.shape[0] # Get the number of samples in the target arrayy one_hot_matrix = np.zeros((num_samples, num_classes)) # Initialize a matrix of zeros for i in range(num_samples): target_class = targets[i] one_hot_matrix[i, target_class] = 1 # Set the corresponding class index to 1 return one_hot_matrix #learn_once_cross_entropy def learn_once_cross_entropy(W1, b1, W2, b2, data, targets, learning_rate): """ Perform one gradient descent step using binary cross-entropy loss. Parameters: - W1, b1, W2, b2: Weights and biases of the network. - data: Input data matrix of shape (batch_size x d_in). - targets: Target output matrix of shape (batch_size x d_out). - learning_rate: Learning rate for gradient descent. Returns: - Updated weights and biases (W1, b1, W2, b2) of the network. - Loss value for monitoring. """ # Forward pass # Implement feedforward propagation on the hidden layer hidden_layer_input = np.matmul(data, W1) + b1 hidden_layer_output = sigmoid(hidden_layer_input, derivate=False) # Apply the Sigmoid activation function # Implement feedforward propagation on the output layer output_layer_input = np.matmul(hidden_layer_output, W2) + b2 output_layer_output = softmax(output_layer_input, derivate=False) # Apply the Softmax activation function # Backpropagation phase # Updating W2 and b2 output_error = output_layer_output - targets dW2 = output_error * softmax(output_layer_output, derivate=True) W2_update = np.dot(hidden_layer_output.T, dW2) / data.shape[0] update_b2 = (1 / hidden_layer_output.shape[1]) * dW2.sum(axis=0, keepdims=True) # Updating W1 and b1 hidden_layer_error = np.dot(dW2, W2.T) dW1 = hidden_layer_error * sigmoid(hidden_layer_output, derivate=True) W1_update = np.dot(data.T, dW1) / data.shape[0] update_b1 = (1 / data.shape[1]) * dW1.sum(axis=0, keepdims=True) # Gradient descent W2 = W2 - learning_rate * W2_update W1 = W1 - learning_rate * W1_update b2 = b2 - learning_rate * update_b2 b1 = b1 - learning_rate * update_b1 # Compute loss (Binary Cross Entropy) loss = loss_metrics(output_layer_output, targets, metric="BCE", status="forward") return W1, b1, W2, b2, loss def calculate_accuracy(predictions, actual_values): """ calculate_accuracy: Compute the accuracy of the model. Parameters: - predictions: Predicted values. - actual_values: Ground truth observations. Returns: - Accuracy as a float. """ correct_predictions = predictions.argmax(axis=1) == actual_values.argmax(axis=1) accuracy = correct_predictions.mean() return accuracy def train_mlp(W1, b1, W2, b2, data, targets, learning_rate): """ Perform training steps for a specified number of epochs. Parameters: - W1, b1, W2, b2: Weights and biases of the network. - data: Input data matrix of shape (batch_size x d_in). - targets: Target output matrix of shape (batch_size x d_out). - learning_rate: Learning rate for gradient descent. - num_epochs: Number of training epochs. - metrics: Specifies the loss metric (default is Binary Cross Entropy). Returns: - Updated weights and biases (W1, b1, W2, b2) of the network. - List of training accuracies across epochs as a list of floats. """ # Forward pass hidden_layer_input = np.matmul(data, W1) + b1 hidden_layer_output = sigmoid(hidden_layer_input, derivate=False) output_layer_input = np.matmul(hidden_layer_output, W2) + b2 output_layer_output = softmax(output_layer_input, derivate=False) N = data.shape[0] # Backpropagation phase output_error = output_layer_output - targets output_layer_gradients = output_error * softmax(output_layer_output, derivate=True) W2_update = np.dot(hidden_layer_output.T, output_layer_gradients) / N update_b2 = (1 / hidden_layer_output.shape[1]) * output_layer_gradients.sum(axis=0, keepdims=True) hidden_layer_error = np.dot(output_layer_gradients, W2.T) hidden_layer_gradients = hidden_layer_error * sigmoid(hidden_layer_output, derivate=True) W1_update = np.dot(data.T, hidden_layer_gradients) / N update_b1 = (1 / data.shape[1]) * hidden_layer_gradients.sum(axis=0, keepdims=True) # Gradient descent W2 = W2 - learning_rate * W2_update W1 = W1 - learning_rate * W1_update b2 = b2 - learning_rate * update_b2 b1 = b1 - learning_rate * update_b1 # Calculate loss and accuracy loss = loss_metrics(output_layer_output, targets,metric="BCE",status="forward") train_accuracies=calculate_accuracy(output_layer_output, targets) return W1, b1, W2, b2, loss, train_accuracies def test_mlp(W1, b1, W2, b2, data_test, labels_test): """ Evaluate the network's performance on the test set. Parameters: - W1, b1, W2, b2: Weights and biases of the network. - data_test: Test data matrix of shape (batch_size x d_in). - labels_test: True labels for the test data. Returns: - test_accuracy: The testing accuracy as a float. """ # Forward pass hidden_layer_input = np.matmul(data_test, W1) + b1 hidden_layer_output = sigmoid(hidden_layer_input, derivate=False) output_layer_input = np.matmul(hidden_layer_output, W2) + b2 output_layer_output = softmax(output_layer_input, derivate=False) # Compute testing accuracy test_accuracy = calculate_accuracy(output_layer_output, labels_test) return test_accuracy def run_mlp_training(X_train, labels_train, data_test, labels_test, num_hidden_units, learning_rate, num_epochs): """ Train an MLP classifier and evaluate its performance. Parameters: - X_train: Training data matrix of shape (batch_size x input_dimension). - labels_train: True labels for the training data. - data_test: Test data matrix of shape (batch_size x input_dimension). - labels_test: True labels for the test data. - num_hidden_units: Number of neurons in the hidden layer. - learning_rate: The learning rate for gradient descent. - num_epochs: The number of training epochs. Returns: - train_accuracies: List of training accuracies across epochs. - test_accuracy: The final testing accuracy. """ input_dimension = X_train.shape[1] output_dimension = np.unique(labels_train).shape[0] # Number of classes # Initialize weights and biases W1, b1, W2, b2 = initialization(input_dimension, num_hidden_units, output_dimension) train_accuracies = [] # List to store training accuracies # Training loop for epoch in range(num_epochs): W1, b1, W2, b2, loss, train_accuracy = train_mlp(W1, b1, W2, b2, X_train, one_hot(labels_train), learning_rate) test_accuracy = test_mlp(W1, b1, W2, b2, data_test, one_hot(labels_test)) train_accuracies.append(train_accuracy) print("Epoch {}/{}".format(epoch + 1, num_epochs)) print("Train Accuracy: {:.6f} Test Accuracy: {:.6f}".format(round(train_accuracy, 6), round(test_accuracy, 6))) return train_accuracies, test_accuracy # plot_ANN import matplotlib.pyplot as plt def plot_ANN(X_train, y_train, X_test, y_test): """ Plot the variation of accuracy in terms of the number of epochs. Parameters: - X_train: Training data matrix. - y_train: True labels for the training data. - X_test: Test data matrix. - y_test: True labels for the test data. """ # Train an MLP and obtain training accuracies and final test accuracy train_accuracies, test_accuracy = run_mlp_training(X_train, y_train, X_test, y_test, num_hidden_units=64, learning_rate=0.1, num_epochs=100) # Display the test accuracy print("Test Set Accuracy: {}".format(test_accuracy)) # Create a Matplotlib plot plt.plot(list(range(1, len(train_accuracies) + 1)), train_accuracies) plt.title('Accuracy Variation Over Epochs') plt.xlabel('Epoch') plt.ylabel('Accuracy') # Save the figure (optional) plt.savefig("Results/mlp.png") # Show the plot (optional) plt.show()