From b1739e66a2cf4b5883bff2775fd05176b1d17a1e Mon Sep 17 00:00:00 2001 From: Aya SAIDI <aya.saidi@auditeur.ec-lyon.fr> Date: Sun, 6 Nov 2022 17:17:40 +0100 Subject: [PATCH] Create mlp.py --- mlp.py | 21 +++++++++++++++++++++ 1 file changed, 21 insertions(+) create mode 100644 mlp.py diff --git a/mlp.py b/mlp.py new file mode 100644 index 0000000..f669758 --- /dev/null +++ b/mlp.py @@ -0,0 +1,21 @@ +import numpy as np +#We are using the segmoid activation function +def segmoid(x): + return 1/(1+np.exp(-x)) + +#We will also need the derivation function to instore the gradient +def derivation(x): + deriv_segmoid = segmoid(x)*(1-segmoid(x)) + return deriv_segmoid + +def learn_once_mse(w1,b1,w2,b2,data,targets,learning_rate): + # This function performs one gradient descent step + # w1, b1, w2 and b2 -- the weights and biases of the network, + # data -- a matrix of shape (batch_size x d_in) + # targets -- a matrix of shape (batch_size x d_out) + # learning_rate -- the learning rate + A0=data + A1=segmoid(np.matmul(A0, w1) + b1) + A2=segmoid(np.matmul(A1,w2) + b2) + #Let calculate the partial derivates + -- GitLab