diff --git a/knn.py b/knn.py index 55b1f1543b0066a1446d269249879ed9c1591d17..b99e3c2902529633a8e0893175bb66580a79ba75 100644 --- a/knn.py +++ b/knn.py @@ -1,6 +1,10 @@ #Libraries import numpy as np import matplotlib.pyplot as plt +import math +import random +from read_cifar import * + #Functions def distance_matrix(Y , X): #This function takes as parameters two matrices X and Y @@ -26,7 +30,7 @@ def knn_predict(dists, labels_train, k): def evaluate_knn(data_train, labels_train, data_test, labels_test, k): #This function evaluates the knn classifier rate - labels_test__pred=knn_predict(distance_matrix(data_train, data_test), labels_train, k) + labels_test_pred=knn_predict(distance_matrix(data_train, data_test), labels_train, k) num_samples= data_test.shape[0] num_correct= (labels_test == labels_test_pred).sum().item() accuracy= 100 * (num_correct / num_samples) #The accuracy is the percentage of the correctly predicted classes