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Abstract: The wide adoption of smart machine maintenance in manufacturing is blocked by
open challenges in the Industrial Internet of Things (IIoT) with regard to robustness, scalability
and security. Solving these challenges is of uttermost importance to mission-critical industrial
operations. Furthermore, effective application of predictive maintenance requires well-trained
machine learning algorithms which on their turn require high volumes of reliable data. This paper
addresses both challenges and presents the Smart Maintenance Living Lab, an open test and research
platform that consists of a fleet of drivetrain systems for accelerated lifetime tests of rolling-element
bearings, a scalable IoT middleware cloud platform for reliable data ingestion and persistence,
and a dynamic dashboard application for fleet monitoring and visualization. Each individual
component within the presented system is discussed and validated, demonstrating the feasibility of
IIoT applications for smart machine maintenance. The resulting platform provides benchmark data
for the improvement of machine learning algorithms, gives insights into the design, implementation
and validation of a complete architecture for IIoT applications with specific requirements concerning
robustness, scalability and security and therefore reduces the reticence in the industry to widely
adopt these technologies.

Keywords: fleet monitoring; bearing degradation; Cyber-Physical System; predictive maintenance;
Industrial Internet of Things; Industry 4.0; accelerated lifetime testing

1. Introduction

The Internet of Things (IoT) is the interconnection of computing devices embedded in assets or
Things, enabling them to send and receive data [1]. Over the past decade, this paradigm has been
applied to research areas such as smart environments [2], healthcare [3] and logistics [4]. In addition to
these applications, IoT delivers a range of benefits to industry by enabling more efficient, optimized
monitoring and controlling in a cost efficient manner. This application of IoT to industry is often
described as Industry 4.0 or the Industrial Internet of Things (IIoT) [5]. The physical assets within an
industrial environment are equipped with smart sensors, connecting them to the Internet and creating
a Cyber-Physical System (CPS) of interconnected machines. These sensors collect and transmit valuable
data about Key Performance Indicators (KPIs) which can be used by analytic and cognitive technologies
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to improve the overall performance of manufacturing plants by increasing the production or reducing
its cost. In order to prevent the disruption of mission-critical industrial operations, the rise of IIoT has
opened new challenges with regard to robustness, scalability and security. These requirements apply
to each component within the overall IIoT architecture [6].

In the current trend toward digitalization and IIoT, manufacturing companies also increasingly
rely on a range of technology platforms to help streamline their production and increase their
productivity, among others by avoiding machine downtimes and the accompanying loss of turnover.
Monitoring the condition of, for instance, motors, pumps, fans, turbines, gearboxes, and more
specifically bearings and gears inside them, plays a vital role in the maintenance program of rotating
machines. The most common KPIs for this category of machines are vibration and thermal signals [7].
Monitoring these KPIs leads to early fault detection, which is crucial for moving from a time-based
Preventive Maintenance (PM) program to a condition-based Predictive Maintenance (PdM) strategy.
This PdM strategy reduces unexpected machine downtime and unnecessary replacement of healthy
machine parts, and the associated costs. In summary, through application of the IIoT paradigm and
smart sensors, the condition of these machines can be constantly monitored and evaluated.

The resulting monitoring data can be used by state-of-the-art machine learning algorithms to
calculate an estimate of the Remaining Useful Life (RUL) of the assets [8]. Targeted maintenance
can then be scheduled based on these estimates. However, condition-based monitoring models
require the availability of large and reliable data sets, for both training and validation purposes,
that capture all variations observed in all potential operational conditions, the potential failure modes,
the fault evolution and hence the lifetime of bearings. A supervised learning approach, for example,
needs all this data to train the model and minimize incorrect classifications. Reliable benchmark
datasets that capture the evolution of behavior of failing machines during its lifetime, under various
operating conditions, are scarce and, for most companies, the investment cost of collecting this
data, because it requires significant effort and a long time, does not outweigh the benefits they can
reap. The resulting lack of data is a major hurdle for the adoption of condition-based monitoring
in industry. Although recent advancements in sensor, acquisition and processing hardware have
demonstrated cost-effective solutions [9,10], it is easier to quantify the cost than the economical benefit
of this investment.

Flanders Make and imec, therefore, jointly developed a living lab, named the Smart Maintenance
Living Lab. It is an open test and research platform consisting of seven identical drivetrain systems
designed to monitor rolling-element bearings and accelerate the process of collecting data about their
lifetime under diverse and variable operating conditions. The resulting well-documented data set
can be used for the development, testing and validation of bearing fault diagnostic and prognostic
methods. Moreover, it can be used in benchmark studies to compare the different methods.

The goal of this paper is to provide insights into the architecture of this living lab, and how this
setup can enable condition-based machine maintenance. The paper starts with a high-level description
of the living lab in Section 2. Section 3 contains an overview of the related research. The next three
sections dive into the architectural details and essential building blocks, i.e., Section 4 explains the
drivetrain subsystems, Section 5 goes into the Obelisk cloud platform, and Section 6 describes the
dynamic dashboard. The paper is finalized with the results and a set of conclusions on the potential
broader applicability of the living lab for machine condition monitoring in Sections 7 and 8.

2. Smart Maintenance Living Lab

The Smart Maintenance Living Lab is an open test and research platform for smart machine
maintenance, from drivetrain subsystem, over the cloud, up to the dynamic dashboard. A schematic
overview of its architecture is presented in Figure 1. Within the lab, seven identical drivetrain
subsystems are installed, resembling a fleet. These machines are designed to perform accelerated
testing of rolling-element bearings until their end-of-life. Moreover, they are equipped with different
sensors to monitor the bearings throughout their lifetime and collect the resulting data. The platform
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aims to support the adoption of smart machine maintenance in industry through (i) the creation
of a large, varied and well-documented dataset which can help with the development of accurate
diagnostic and prognostic algorithms, and (ii) providing insights into the components required for
and the technology choices made to come to an integrated end-to-end smart maintenance architecture,
from monitored hardware to scalable cloud back-end to dynamic front-end.

Figure 1. Presented scalable Industrial Internet of Things architecture

For the architecture, an Industrial Internet Reference Architecture (IIRA), presented by the
Industrial Internet Consortium (IIC) [11], was chosen. This three-tier architecture consists of an
edge, platform and enterprise layer respectively.

The first tier contains the edge nodes, i.e., the sensors, actuators, and control systems connected
to the physical machines. A cluster of interconnected nodes is called a proximity network. Each of
these networks generally has an edge gateway to connect the nodes with the access network. The fleet
of machines located in the Smart Maintenance Living Lab forms one proximity network consisting
of seven edge nodes, i.e., the drivetrain systems. Each one of these subsystems is connected to the
edge gateway. In addition to connectivity between the nodes and the access network, the gateway
is also used to process the measured data at the edge. Diagnostic algorithms are used to reduce the
high dimensionality of captured data by extracting a set of features. These diagnostic features are then
transferred to the next tier, i.e., the platform tier.

The second layer, or platform tier, of an IIRA architecture has the goal of further processing and
analyzing data from the edge tier, and sending control commands from the enterprise tier to the edge
tier. In our setup, the most important component of this tier is Obelisk, our in-house cloud platform
designed specifically for IoT applications that have scalable data needs. It handles the data ingest from
the edge tier, ensures data persistence, supports data querying in various formats and enables stream
processing. Furthermore, the platform tier includes analytic and machine learning services that process
the collected data. The machine learning service in our platform tier estimates the RUL of the bearings
for each drivetrain setup within the fleet. This estimation of RUL is based on the accelerometer and
temperature data obtained from conditioning monitoring of the assets in the edge tier. Prognostic
algorithms such as RUL prediction are key in enabling PdM.

The goal of the third and last tier, i.e., the enterprise tier, is to bundle domain-specific applications
as well as decision support systems and to provide interfaces to end-users including operation
specialists. In our enterprise tier, we provide a dynamic dashboard platform that allows end-users
to build and adapt dashboards that communicate the sensor data captured in the fleet of machines,
as well as the output of the RUL service, in an intuitive manner. This dashboard supports the operator
in determining the appropriate follow-up actions, without hard-coded visualization configuration
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through automated sensor discovery and semantic reasoning to match data and results with the most
appropriate visualisations.

Using this three-tier architecture, the living lab platform allows to collect large amounts of data
about degrading bearings and the occurring failures during their lifetime under diverse and variable
operating conditions. The resulting large data set can be used to:

• Test and benchmark the performance of existing software, e.g., diagnostic and prognostic
algorithms, and hardware solutions such as intelligent sensors.

• Improve models and therefore develop, test and validate better diagnostics and prognostics
algorithms.

• Demonstrate the potentials of condition-based fleet monitoring to improve machine diagnostics
and prognostics by employing fleet data stored in the cloud environment.

Besides collecting a dataset with bearing faults under realistic and varied operating conditions,
the living lab and this paper deals with two more research questions:

1. Design of a robust, scalable and secure platform for sensor data ingestion and stream processing;
2. Design of a dynamic, intuitive dashboard application that reduces the amount of manual

configuration required to construct the desired sensor data visualizations.

All of these technologies offer great opportunities for the industry to optimize machine
maintenance strategies. In this way, the living lab aims to bring wider adoption of condition-based
monitoring technologies in industry and to support the development of new diagnostic and
prognostic algorithms.

3. Related work

As the Smart Maintenance Living Lab demonstrates a complete architecture for IIoT applications
and, to the best of the authors’ knowledge is the only one doing so, related work is discussed at
the different levels of the architecture: (i) the data collection at the edge tier, (ii) the data ingestion,
persistence and stream processing platform as well as the analytic and cognitive machine learning
algorithms in the platform tier and (iii) the dynamic dashboard for visualization and feedback.

The drive for adoption of smart maintenance in industry is dependent on intelligent condition
monitoring models. These models require large, reliable data sets. Today, only few public data sets are
available and they are recorded under limited operating conditions. The IEEE PHM 2012 Prognostic
Challenge data set [12], for example, consists of 17 bearing runs under three different conditions of
varying load and rotation speed. Each of these accelerated lifetime bearing runs is recorded on the
same test bed setup. It was already apparent from the challenge that different operating conditions
resulted in varying machine learning models. However, early results from the collected data also
indicate a variability between different drivetrain subsystems [13]. Therefore, the data collected by the
Smart Maintenance Living Lab on a fleet of seven machines can result in a more reliable data set that
enables the generalization of algorithms created for smart maintenance use cases.

For the platform tier, various IoT middleware platforms, both commercial, e.g., Amazon Web
Services IoT platform [14], Microsoft Azure IoT Hub [15], Google IoT Platform [16], and open-source
alternatives, e.g., ThingSpeak [17] are available today. These platforms are well developed and
maintained by large publicly traded companies or large online communities. They support numerous
features with regard to security, data storage and communication protocols [18]. However, the use of
these platforms creates a tightly coupled architecture to the chosen vendor, introducing constraints
to the system and negatively impacting its modularity [19]. FIWARE [20] is technology and vendor
agnostic as it relies on proven and widely adopted open-source standards and packages, alleviating
its community of users from any lock-in constraint. However, as described by the authors in [20],
they experienced scalability limitations due to the non cloud-based setup used. Obelisk [21], the IoT
middleware platform presented in this paper for the platform tier, addresses these scalability issues.
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Dashboard applications in the enterprise tier enable the remote and intuitive monitoring of the
vast amount of data produced by the bearing lifetime test setups. Dynamic dashboard applications
allow stakeholders, e.g., managers, system experts, customers, to build their own dashboards that
visualize KPIs about the systems of their choice by selecting sensors and visualizations at will. Many
off-the-shelf dynamic dashboards, such as Microsoft PowerBI [22], Tableau [23] and Google Data
Studio [24], are either well integrated with classic data warehouses but do not integrate well with the
vast amount of streaming sensor data and the streaming platform technology they require; or they
require a lot of programming effort or manual configuration when combining the output of multiple
sensors, e.g., Node-RED [25]. This manual configuration is required, on the one hand, at design time
to instruct how to fetch data and bind it correctly to the available data processing and visualization
components, and at runtime, on the other hand, there is still the burden for the user to select from a
plethora of available sensors, data processing components and visualizations. In previous research [26],
we proposed to wrap sensors, data processing components and visualizations as Web Things, i.e., APIs,
that can be automatically discovered, called and combined, and this way to reduce the sensor and
visualization choice overload by reasoning over the available metadata that the Web Things are
annotated with. Within the Living Lab Smart Maintenance, this dynamic dashboard using semantic
reasoning is integrated in the enterprise tier, on top of Obelisk.

4. Drivetrain Systems

As mentioned in Section 2, the edge tier consists of seven identical drivetrain systems [13]. A single
setup comprises of a shaft with the test bearing, lubricated by an internal oil bath, and one support
bearing on each side. The system is driven by a motor at a rotation of up to 3000 rpm and a radial load
of up to a maximum of 10 kN is applied to the test bearing using a hydraulic cylinder. During the
accelerated lifetime testing of the bearings, the rotational speed and radial load of each setup can be
controlled, allowing it to operate under a variety of different conditions.

As shown in Figure 2, each setup is equipped with an accelerometer, temperature sensor, load
sensor and speed sensor for monitoring purposes. The speed and load applied to the system is
controlled, and the measurements from these sensors are obtained, using an industrial Beckhoff control
platform. The acquired sensor measurements are locally processed to reduce the high volume of data.
An overview of the resulting measurements and diagnostic features is shown in Table 1.

Figure 2. One of the seven setups that is used to accelerate the lifetime of bearings and allows to
acquire data during the accumulation of operational bearing faults until end-of-life. Reprinted from
IFAC-PapersOnLine, 52, Ooijevaar, T., et al., “Smart Machine Maintenance Enabled by a Condition
Monitoring Living Lab”, 376–381, 2019, with permission from Elsevier.



Sensors 2020, 20, 4308 6 of 15

Table 1. Overview of the measurements captured at the edge tier and features calculated by the edge
data processor to reduce the volume of raw measurement data.

Feature Description

Raw measurements
load Load on the bearing
rpm Rotation speed of the shaft
temp.env Ambient temperature
temp.housing Temperature at bearing housing
Statistical features
acc.RMS Root Mean Square of acceleration signal
acc.kurtosis Kurtosis of the acceleration signal
acc.peak Peak of the acceleration signal
Bearing fault features
acc.BDF Bearing Defect Frequency
acc.BPFI Ball Pass Frequency of Inner ring
acc.BPFO Ball Pass Frequency of Outer ring

These diagnostic features are transferred to the next tier, i.e., the platform tier, of which Obelisk is
the most important component.

5. Obelisk: Scalable Cloud Platform for IoT Applications

Obelisk is a cloud-based Platform as a Service (PaaS) developed by IDLab [21]. It is jointly used by
stakeholders from industry and academia to conduct collaborative research on IoT applications.
These stakeholders include data producers, data scientists, application builders and end-users.
The platform itself is presented as an intermediate layer between the different components and
functions as the backbone within the overall Living Lab architecture, as visualized by Figure 1.
It supports a number of different protocols and is used for stream processing within the platform tier
or data consumption by enterprise tier applications, e.g., dashboard applications. However, the most
important use of the platform is data persistence at large scale. Throughout this section, the internal
architecture of Obelisk is discussed along with the important design choices made for each component.

The terminology used is derived from the IoT concept. A Thing is an all encompassing name
for sensors and actuators. A single Thing can measure more than one type of measurement, named
a Metric, and is addressable with an ID. It can be a single cyber-physical device that has multiple
sensor-heads, e.g., vibration, temperature, as different metrics. A group of Things belonging to the
same company, manufacturing plant, project, etc. are encapsulated within a Scope. Doing this provides
a number of benefits with regard to maintainability, security and data isolation. This data isolation is
ensured throughout the entire data flow, i.e., from ingest to egress. Permissions for both users and
service accounts are limited to one or more Scope(s), preventing unauthorized parties from gaining
access to classified data. The fine-grained access control is based on standards such as OpenID [27].

5.1. Architecture

As Obelisk is presented as a cloud platform, the Application Programming Interface (API) is the
main point of interaction with the system, which is composed of multiple services, each providing a key
piece of the puzzle. As previously highlighted in Figure 1, The Obelisk API can be divided into three
major parts: (i) The ingest API supports the data producers to securely and reliably insert data into the
system; (ii) The egress API can be used to consume the events, both historical and in real-time, in order
to process and/or visualize the data; (iii) Finally, the metadata API provides additional information or
metadata about the available data for application builders and consumers. This includes information
about user permissions and the available Scopes, Things and Metrics.

When ingesting new data, it is pushed onto an internal data streaming platform. This component
is highly critical since each incoming event passes through it. The decision for Apache Kafka was
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made due its high-throughput, low-latency, resiliency and scalability [28]. As shown in Figure 3,
two internal components are listening to the message queue for incoming events: the scope streamer
and the storage sink. The scope streamer routes these events to their respective scope related streaming
pipeline, based on the available metadata, for consumption through the egress API as real-time events.
The storage sink ensures data persistence by writing the incoming events to the time-series database.

Figure 3. Obelisk architecture. Combined, the blue and orange components form the Public API for the
stakeholders (users and connected devices), accessible through the load balancer. The arrows indicate
dependencies between the different components.

As metadata database, the option was made for a NoSQL DB, namely MongoDB [29], as it
requires no fixed underlying data schema. The biggest advantage of using a schema-less design in
this scenario is its ability to scale horizontally. Additional database servers can be added, creating
a MongoDB cluster consisting of one primary, or master, server and multiple secundary, or slave,
servers. Using a cluster of database servers, read operations can then be executed on all members of
the cluster. The write operations, however, are constrained to the primary server, but implementation
of MongoDB’s sharding technique allows to parallelize this. Its ability to become larger and much
more powerful through addition of database servers makes MongoDB the preferred choice for large
and constantly evolving data sets. As time-series database, InfluxDB [30] was chosen. It uses the
same core storage technology applied in most popular NoSQL databases today, including MongoDB,
and thus possesses the same advantages with regard to flexibility, scalability and read/write speed.

As mentioned above, data consumption from Obelisk is achieved through the egress API.
It consists of two sub-components each serving a different functionality. The first sub-component is
the streaming API that supports real-time data consumption. This consumption of incoming data as
Server-Sent Events (SSE) enables both stream processing by the RUL prediction services and real-time
visualization of the data by enterprise tier applications such as the dynamic dashboard. The second
sub-component is the RESTful API that can be queried to obtain historical observations and metadata.
By using Obelisk as a middleware platform for stream processing, the machine learning services
within our system are abstracted from the enterprise tier components such as the dynamic dashboard
application. Improved or additional RUL prediction algorithms can therefore be deployed as new
services within the overall system without inducing any changes to the dependent components.

To support different protocols, additional endpoints for Graph Query Language (GraphQL)
and Next Generation Service Interface (NSGI) v2 [31] are added as adapters on top of the RESTful
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API. GraphQL is a lightweight query language developed by Facebook in 2016 and presented as an
alternative for REST. One of its main advantages is the ability to define precisely the data you want,
replacing multiple REST requests with a single call [32]. NGSI v2 is a data format used for context
information management in IoT applications and is intended to manage the entire lifecycle of context
information, including updates, queries, registrations, and subscriptions. A final option for data
retrieval is by use of the dataset exporter. This component allows the file-based extraction of data in
large quantities from the system.

5.2. Scalability

Obelisk has been designed with scalability in mind. This is apparent from the overall architecture,
the technologies chosen, e.g., the streaming platform, the databases, and even the internal operation
of individual components. Firstly, the architecture is in compliance with the Microservice-based
Architecture (MSA) [33]. This indicates that each component presented in Figure 3 is a loosely-coupled,
fine-grained service, or microservice that can be independently deployed. This architecture does
not only improve the maintainability and continuous development, but also the scalability of the
platform as a whole. Container-orchestration systems, e.g., Kubernetes [34], permit automatic scaling
of individual services on-demand. The status monitor component shown in Figure 3 performs a
complete data flow throughout the entire system to obtain an accurate health status of each service.
By doing so, bottlenecks in the system can be detected early and quickly acted upon by replicating one
or more components at the root of the problem.

Secondly, in addition to the scalable design, various strategies have been implemented at software
level to protect against usage spikes. For instance, the ingest API applies a tuneable budget-based rate
limiting, while the storage sink, shown in Figure 3, implements buffering strategies.

6. Dynamic Dashboard

The main point of contact for end-users with the presented IIoT system for fleet monitoring and
visualization are enterprise tier applications. These enterprise tier dashboard applications combine
data from different sources, queried from the platform tier, and present it to the user in an intuitive
manner. For this living lab, the dynamic dashboard application developed by IDLab [26] enables
end-users, e.g., operators, managers, to query the most relevant data from the information services,
e.g., physical assets, and machine learning algorithms, by querying Obelisk and aggregating the
data into meaningful visualizations accessible through a dynamic Graphical User Interface (GUI).
The purpose of the dashboard is to ensure that the end-user can make business decisions in a timely
manner based on the data. The in-house dashboard application distinguishes itself from commercial
alternatives available today, e.g., Tableau, Grafana, through its automated sensor discovery and
reduction of sensor and visualization choice overload by suggesting appropriate visualizations for
selected sensors, using semantic reasoning on the available sensor and visualization metadata. Its aim
is to eliminate as much of the configuration work as possible when setting up a new (fleet of) asset(s)
in the edge tier and creating dashboards to visualize them.

6.1. Sensor Discovery

Within a Local Area Network (LAN), sensor discovery can be achieved using network discovery
methods such as DNS-SD, mDNS, UPnP, or protocol suites, e.g., DLNA, zeroconf. Once an asset is
added to the fleet and connected to the network through smart sensors, its IP address is automatically
obtained from the DHCP server and broadcast to other devices within the LAN using one of the above
aforementioned protocols. This methodology proves useful at the edge tier, where all devices are
deployed within the same network. However, enterprise tier applications, such as the dashboard
application, can be deployed outside of the edge tier networks. As described in more detail in [26],
the most pragmatic solution for discovery of sensors within a remote network is by providing a root
address for each sensor network at run-time. Then, upon HTTP GET request to that IP address and a
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predetermined TCP port, a discovery service responds with a list of the available services and how to
reach them.

The Web Thing Model [35] proposes a standard for the API routes required to communicate this
list of available services and provides a unified RESTful API to access the diverse, discovered sensors
and services that come with heterogeneous communication protocols and data formats. The Web
Thing Model describes a set of API endpoints that need to be implemented by a Web Thing, each with
their own goal. A complete overview of these endpoints, or routes, and their descriptions is given in
Table 2. In addition to these endpoints, the Web Thing Model also specifies a JSON model to convey
information about the resources, e.g., actions, properties, things.

Table 2. The Web API endpoints that a Web Thing RESTful API must provide to make it compliant
with the Web Thing Model.

Endpoint Description

{wt} The root resource URL.
{wt}/model The model description of the Web Thing.
{wt}/properties The list of available properties directly exposed by the Web Thing.
{wt}/properties/{propertyId} The details of a specific property.

{wt}/actions The list of available actions, in case the Web Thing can control
actuators, e.g., can adjust rotation speed.

{wt}/actions/{actionId} The details of a specific action.
{wt}/actions/{actionId}/{executionId} Execution of a specific action.

{wt}/things Lists additional Web Things that the Web Thing exposes when
functioning as a gateway.

{wt}/things/{thingId} A specific Web Thing exposed by the current Web Thing.

{wt}/subscriptions
The list of subscriptions to actions or properties, by clients that
want to be notified when the state of this action or
property changes.

A Web Thing compliant with the Web Thing Model, also named an Extended Web Thing, can
directly expose its sensors, or properties and actuators, or actions, through the root URL ({wt}/properties
and {wt}/actions endpoints respectively). In contrast to this direct integration pattern, an option for the
so called gateway integration pattern is also supported. This enables an Extended Web Thing to expose
other Web Things through additional resources ({wt}/things/{thingId}), therefore serving as a gateway.

When the data from each Web Thing, such as assets within a fleet, is exposed by a RESTful
API compliant with the Web Thing Model, client applications in the enterprise tier are capable of
automatically discovering the available sensor properties and actions. These client applications are
thus no longer burdened by the configuration of new assets and the annotation of the data types and
formats of their sensor properties. Therefore, the end-user of these applications is no longer expected
to have any technical knowledge about the fleet to visualize its sensor data. The drawback, however,
is that the configuration must still be performed within the Web Thing API by a technical expert.
As the Web Thing Model API is a lightweight specification and therefore easily implemented without
extensive effort. Furthermore, the registration of new assets can be automated through local network
discovery methods as discussed in this section.

6.2. Architecture

As shown in Figure 4, the dynamic dashboard application consists of two core services: (i) the
Broker component is the backbone for the dashboards as presented to the end-user. It provides
functionality for authentication, data persistence, sensor discovery and semantic reasoning through its
RESTful API. (ii) The Web Thing Gateway is used as an intermediate service that exposes an Web Thing
Model compliant API for data sources that have not implemented the model themselves. These data
sources are sensors, e.g., from the Things stored in Obelisk, and visualizations. The Web Thing
gateway includes support for both historical events, through REST API calls, as well as real-time
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events by bridging the Obelisk SSE to the WebSockets protocol in conformity with the Web Thing
Model. As shown in the architecture overview, the web thing gateway is only used in case the remote
Web Things do not provide an API as specified by the Web Thing Model. Extended Web Things can be
directly configured in the broker using its API or via the dashboard GUI.

Once the root URL of an Extended Web Thing or gateway is provided, the broker discovers
the available properties and actions by crawling the available web resources on the API. Through a
semantic extension of the Web Thing Model discussed in Section 6.1, semantic annotations of these
resources, describing their purpose, can be retrieved using content negotiation through request headers,
e.g., Accept: application/ld+json to retrieve semantic annotations in JSON-LD instead of the Web Thing
Model’s standard JSON responses. This semantic context is then used by the broker to combine
properties from multiple Web Things. To prevent the broker from intensively re-querying the Web
Things, the semantic information is stored in a knowledge base. As pointed out earlier, not only sensors
are presented as Web Things, also the visualizations used in the dashboard GUI are retrieved this way
and they too are semantically annotated. By doing so, the dashboard broker is capable of semantic
reasoning to match sensor properties to valid visualizations using the EYE server [26]. This partially
automates the process of dashboard creation and assists the end-user in picking the most relevant
visualization from the high number of supported visualization types.

Figure 4. Dynamic Dashboard architecture. The orange components are core services within the
dynamic dashboard, the blue components are provided by the platform tier, here Obelisk, and the
green components are Web Things in the edge tier exposed according to the Web Thing Model.

6.3. Scalability

The dynamic dashboard application ensures scalability in various ways and aspects of the system.
First and foremost, this application, similar to Obelisk, is designed according to the MSA standard.
This implies that once again, each component is packaged and deployed as a containerized application.
In case the dashboard is used as a PaaS, this ensures scalability when the amount of users and therefore
the amount of created dashboards increases. Secondly, the dynamic dashboard application ensures
scalability when the number of monitored assets within the system increases. Through the automated
sensor discovery and (reasoned) dashboard visualization suggestions, the overhead for the end user
remains minimal by removing the responsibility of manually adding and configuring new assets
within the dashboard application as well as assisting these users in matching the new incoming data
with the available visualizations. Lastly, the introduced impact on the network usage and Web Thing
Gateways due to automated sensor discovery can be minimized by intelligent caching and scheduling
strategies. By doing so, the sensor discovery can be planned during periods of minimal system load.
This safeguards the network usage within the overall system when the amount of available Web Thing
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Gateways or created dashboards and therefore the requests made by the dashboard application to
these components increases.

7. Results

The presented Smart Maintenance Living Lab architecture is currently deployed in practice and
provides companies a scalable monitoring and visualization system for smart maintenance from edge
to enterprise tier, from cyber-physical assets to dashboard, by solving the three research questions
addressed in this paper:

1. Creation of a dataset with bearing faults under realistic and varying operating conditions;
2. Design of a robust, scalable and secure platform for sensor data ingestion and stream processing;
3. Design of a dynamic, intuitive dashboard application that reduces the amount of manual

configuration required to construct the desired sensor data visualizations.

Regarding the first research question, free samples of the experimental dataset can be downloaded
at https://www.flandersmake.be/en/datasets. These samples are part of a larger set for various
operating conditions such as rotation speed, load and different fault types and severities.

As for the latter two research questions, the complete platform is demonstrated and validated for
industrial use cases. Therefore, an example dashboard has been created, as shown in Figure 5. This key
component within the enterprise tier of the architecture is the main point of contact for the researchers
working on, and the companies visiting, the living lab. It enables them to monitor the entire fleet of
seven machines located at the edge tier by consuming their measurements and calculated features,
as listed in Table 1, from the platform tier IoT middleware, Obelisk. The monitoring dashboard for the
operator includes widgets for the seven most important KPIs. Due to the semantic reasoning within
the dynamic dashboard application, the overhead and manual labour of creating and configuring
these eight chosen widgets for each of the seven setups is reduced, resulting in a more user-friendly
monitoring environment.

Figure 5. Visualization within the dynamic dashboard application of KPIs from Setup 3 in the Smart
Maintenance Living Lab as listed in Table 1.

To demonstrate and validate the presented system for smart maintenance applications, a machine
learning algorithm has been integrated with the platform tier. Through stream processing of the
incoming data in Obelisk, a prediction of the RUL is calculated [36]. This percentage value indicates
the estimated overall health of the bearing, 100% indicating that the bearing is completely new and
0% that the bearing has completely broken down. After real-time processing of the incoming data,
these RUL predictions are pushed to Obelisk as data points of a RUL metric. Each of these data

https://www.flandersmake.be/en/datasets
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points is linked back to the setup or source from which it originates. By doing this, the dashboard
can immediately consume these data as can be done with any other metric or KPI. Figure 5 contains
a widget to monitor the RUL of the shown setup. At the captured moment in time, the bearing in
this setup is flagged as degrading and is currently approximately at 64.5% of its remaining useful life.
This provides feedback and can trigger an alert for the operator that maintenance will be required and
should be scheduled in the near future.

8. Conclusions and Future Work

This paper proposed and implemented a complete architecture for IIoT applications. Throughout
the design process of this architecture and its key components, special attention was given to the open
challenges with regard to robustness, scalability and security that arose through adoption of the IoT
concept in industry, resulting in a scalable system for fleet monitoring and visualization. This system
has been demonstrated and validated though a smart maintenance use case, leading to an open test
and research platform for accelerated bearing lifetime tests. However, this Smart Maintenance Living
Lab is more than a proof-of-concept for smart maintenance applications in manufacturing industries.
Through further data collection of end-to-life bearing tests, more intelligent and accurate machine
learning algorithms can be created. This increase in accuracy will improve the overall performance of
the presented system, further improving the PdM on machines consisting of rolling-element bearings
and its benefits to industry.

Furthermore, each individual component within the system, i.e., the Obelisk cloud platform,
the RUL estimation service and the dynamic dashboard application, is designed for reusability.
Obelisk serves as a key component in various data science related research projects and can be applied
to many IoT scenarios, such as smart cities, transportation and healthcare. It is continuously improved
and new features are added on a regular basis. Next iterations of Obelisk will include more intelligent
device management and support for various options for data ingestion with regard to data formats and
communication protocols. In fact, the communication protocol can be completely abstracted through
the use of adapters, supporting various state-of-the-art protocols common in IoT applications [37,38].
The dynamic dashboard used in the system is presented as complete dashboard solution. However,
due to its modular design and adoption of the MSA, each key building block is encapsulated in a service.
This enables the integration of the core functionality, e.g., sensor discovery, semantic visualization
reasoning, in other dashboard applications, e.g., Grafana [39], Tableau [23], ThingsBoard [40].
Future work for the dynamic dashboard involves further automation and personalization of the
dashboard creation process and therefore further reducing the manual overhead required of the
end-user. This can be realised through use of a recommender system that is capable of selecting
the best option from the list of valid visualizations retrieved from the semantic reasoner, taking into
account the context and end-user preferences. This recommender system can then once again be
packaged as a service and used by the aforementioned dashboard applications.

In conclusion, this paper aims to support the adoption of smart machine maintenance in industry
through (i) the development of an open test and research platform to generate a valuable and otherwise
difficult to obtain benchmark data set for the improvement of machine learning algorithms applied
to smart machine maintenance and (ii) the design, implementation and validation of a complete
architecture for IIoT applications with specific requirements concerning robustness, scalability and
security and therefore reducing the reticence in the industry to widely adopt these technologies.
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Abbreviations

The following abbreviations are used in this manuscript:

API Application Programming Interface
CM Corrective Maintenance
CPS Cyber-Physical System
DHCP Dynamic Host Configuration Protocol
DLNA Digital Living Network Allicance
DNS Domain Name System
DNS-SD DNS Service Discovery
EYE Euler Yet another proof Engine
GUI Graphical User Interface
HTTP HyperText Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IIoT Industrial Internet of Things
IP Internet Protocol
IoT Internet of Things
JSON JavaScript Object Notation
JSON-LD JSON for Linked Data
KPI Key Performance Indicator
LAN Local Area Network
LoRaWAN Long Range Wide Area Network
mDNS multicast DNS
MSA Microservice-based Architecture
NGSI Next Generation Service Interface
PaaS Platform as a Service
PdM Predictive Maintenance
PHM Prognostics and Health Managmeent
PM Preventive Maintenance
REST REpresentational State Transfer
RUL Remaining Useful Life
SMM Smart Machine Maintenance
SQL Structured Query Language
SSE Server-Sent Events
TCP Transmission Control Protocol
UPnP Universal Plug and Play
URL Uniform Resource Locator
VNO Virtual Network Operator
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