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Abstract
In today’s highly competitive global market, winning requires near-perfect quality. Although most mature organizations
operate their processes at very low defects per million opportunities, customers expect completely defect-free prod-
ucts. Therefore, the prompt detection of rare quality events has become an issue of paramount importance and an
opportunity for manufacturing companies to move quality standards forward. This article presents the learning process
and pattern recognition strategy for a knowledge-based intelligent supervisory system, in which the main goal is the
detection of rare quality events. Defect detection is formulated as a binary classification problem. The l1-regularized
logistic regression is used as the learning algorithm for the classification task and to select the features that contain the
most relevant information about the quality of the process. The proposed strategy is supported by the novelty of a
hybrid feature elimination algorithm and optimal classification threshold search algorithm. According to experimental
results, 100% of defects can be detected effectively.
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Introduction

In today’s highly competitive global market, winning
requires near-perfect quality, since intense competition
has led organizations to low profit margins.
Consequently, a warranty event could make the differ-
ence between profit and loss. Moreover, customers use
Internet and social media tools (e.g. Google product
review) to share their experiences, leaving organizations
little flexibility to recover from their mistakes. A single
bad customer experience can immediately affect com-
panies’ reputations and customers’ loyalty.

In the quality domain, most mature organizations have
merged business excellence, lean production, standards
conformity, six sigma, design for six sigma, and other
quality-oriented philosophies to create a more coherent
approach.1 Therefore, the manufacturing processes of

these organizations only generate a few defects per million
of opportunities. The detection of these rare quality events
represents not only a research challenge but also an
opportunity to move manufacturing quality forward.

Impressive progress has been made in recent years,
driven by exponential increases in computer power,
database technologies, machine learning (ML) algo-
rithms, optimization methods, and big data.2
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From the point of view of manufacturing, the ability
to efficiently capture and analyze big data has the
potential to enhance traditional quality and productiv-
ity systems. The primary goal behind the generation
and analysis of big data in industrial applications is to
achieve fault-free (defect-free) processes,3,4 through
intelligent supervisory control systems (ISCS).5

A learning process (LP) and pattern recognition
(PR) strategy for a knowledge-based (KB) ISCS is
presented, aimed at detecting rare quality events from
manufacturing systems. The defect detection is formu-
lated as a binary classification problem, in which the
l1-regularized logistic regression (LR) is used as the
learning algorithm. The outcome of the proposal is a
parsimonious predictive model that contains the most
relevant features.

The proposed strategy is validated using data derived
from two automotive manufacturing systems: (1) ultra-
sonic metal welding (UMW) battery tabs from a battery
assembly process and (2) laser spot welding (LSW) sub-
assembly components from an assembly process. The
main objective is to detect low-quality welds (bad) from
the processes.

The initial idea of rare quality event detection
through KB ISCS was initially introduced in Escobar
and Morales-Menendez.6 The proposal is extended—
improved with respect to classification and
parsimony—in this article with the introduction of two
algorithms; these algorithms are aimed at addressing
two of the most relevant challenges posed by the l1-reg-
ularized LR algorithm. Challenges and theoretical
properties are briefly discussed. To show the ability of
the proposal in dealing with high-dimensional balanced
data, another case study (LSW) is presented. Finally,
to evaluate its performance, a comparative analysis is
performed following a typical modeling analysis, and
results are compared and briefly discussed.

The rest of this article is organized as follows: It
starts with a review of the theoretical background in
Section ‘‘LP and PR strategy’’ describes the proposal.
Two studies in section ‘‘Case studies’’ followed by the
‘‘Comparative analysis.’’ Finally, ‘‘Conclusion’’ and
‘‘Future work’’ conclude this paper.

Theoretical background

The theoretical background of this research is briefly
reviewed.

ML and PR

As discussed by Ghosh,7 ‘‘As an intrinsic part of
Artificial Intelligence (AI), ML refers to the software
research area that enables algorithms to improve
through self-learning from data without any human
intervention.’’ ML algorithms learn information

directly from data without assuming a predetermined
equation or model. The two most basic assumptions
underlying most ML analyses are that the examples are
independent and identically distributed, according to
an unknown probability distribution. PR is a scientific
discipline that ‘‘deals with the automatic classification
of a given object into one from a number of different
categories (e.g. classes).’’8

In ML and PR domains, generalization refers to the
prediction ability of a learning algorithm model on
unseen data.9 The generalization error is a function
that measures well a trained algorithm generalizes.

In general, the PR problem can be widely broken
down into three components: (1) feature space reduc-
tion, (2) classifier design and selection, and (3) classifier
assessment.

Feature space reduction

In ML and PR, a feature is an individual measurable
property of an observed phenomenon.10 The prediction
ability of the classifier is determined by the inherent
class information available in the features.11 In general,
a feature is good if its inherent class information is rele-
vant to one of the class labels but is not redundant to
other good features. If the correlation of two variables
is used as a goodness measure, a good feature should
be highly correlated to one of the class labels but not
highly correlated to any other features.12,13 A feature
can be considered irrelevant if the information that it
contains is independent from the class label.

The world of big data is changing dramatically, and
feature access has grown from tens to thousands, a
trend that presents enormous challenges in the feature
selection (FS) context. Empirical evidence from FS lit-
erature exhibits that discarding irrelevant or redundant
features improves generalization, helps in understand-
ing the system, eases data collection, reduces running
time requirements, and reduces the effect of dimension-
ality.12–17 This problem representation highlights the
importance of finding an optimal feature subset. This
task can be accomplished by FS or regularization.

FS. Filter-type methods select variables independently
of the classification algorithm or its error criteria, they
assign weights to features individually and rank them
based on their relevance to the class labels. A feature is
considered good if its associated weight is greater than
the user-specified threshold.12 The advantages of fea-
ture ranking algorithms are that they do not over-fit
the data and are computationally faster than wrappers,
and hence, they can be efficiently applied to big data-
sets containing many features.13 However, most com-
mon methods—Mutual Information, ReliefF, and so
on—do not help in removing redundant features, as
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features are evaluated independently; therefore, as long
as features contain class discriminatory information,
they will be selected, even if they are highly correlated
to each other.12,18,19

ReliefF is a well-known rank-based algorithm, and
the basic idea for numerical features is to estimate the
quality of each according to how well their values dis-
tinguish between instances of the same and different
class labels. ReliefF searches for a k of its nearest neigh-
bors from the same class, called nearest hits, and also k

nearest neighbors from each of the different classes,
called nearest misses; this procedure is repeated m times,
which is the number of randomly selected instances.
Thus, features are weighted and ranked by the average
of the distances (Manhattan distance) of all hits and all
misses20 to select the most important features,18 devel-
oping a significant threshold t. Features with an esti-
mated weight below t are considered irrelevant and,
therefore, eliminated. The proposed limits for t are
0\t� 1=

ffiffiffiffiffiffiffi
am
p

,20 where a is the probability of accept-
ing an irrelevant feature as relevant.

Regularization. Another approach for FS is l1 regulariza-
tion. This method trims the hypothesis space by con-
straining the magnitudes of the parameters.21

Regularization adds a penalty term to the least square
function to prevent over-fitting.22 The formulations of
l1 norm have the advantage of generating very sparse
solutions while maintaining accuracy. The classifier-
fitted parameters ui are multiplied by a coefficient l to
shrink them toward zero. This procedure effectively
reduces the feature space and protects against over-fit-
ting. Regularization methods may perform better than
FS methods.23

Classifier design, selection, and assessment

A classifier is a supervised learning algorithm that ana-
lyzes the training data (e.g. data with classification
class) and fits a model. The training dataset is used to
train a set of candidate models using different tuning
parameters.

It is important to choose an appropriate validation
or cross-validation (CV) method to evaluate the gener-
alization ability of each candidate model and select the
best, according to a relevant model selection criterion.

For information-theoretic model selection approaches
in the analysis of empirical data, refer to Peruggia.24

Common performance metrics for model selection based
on recognition rates—correct decisions made—can be
found in Fawcett.25

For a data-rich analysis, the hold-out validation
method is recommended, an approach in which a data-
set is randomly divided into three subsets: training,
validation, and testing. As an heuristic, 50% of the

initial dataset is allocated to training, 25% to valida-
tion, and 25% to testing.26

Once the best candidate model has been selected, it
is recommended that the model’s generalization perfor-
mance be tested on a new dataset before the model is
deployed. This can also determine whether the model
satisfies the learning requirement.26 The generalization
performance can be efficiently evaluated using a confu-
sion matrix (CM).

CM. In predictive analytics, a CM25 is a table with two
rows and two columns that reports the number of false
positives (FPs), false negatives (FNs), true positives
(TPs), and true negatives (TNs). This allows more
detailed analysis than just the proportion of correct
guesses since it is sensitive to the recognition rate by
class.

A type I error (a) may be compared with a FP pre-
diction; a type II (b) error may be compared with a
false FN.27 They are estimated by

a=
FP

FP+TN
ð1Þ

b=
FN

FN+TP
ð2Þ

LR

LR, which uses a transformation of the values of a lin-
ear function, is widely used in classification problems.
It is an unconstrained convex problem with a continu-
ous differentiable objective function that can be solved
either by the Newton’s method or the conjugate gradi-
ent. LR models the probability distribution of the class
label y, given a feature vector x28

P y= 1jx; uð Þ=s uT x
� �

=
1

1+ exp �uT x
� � ð3Þ

where u 2 R
N are the parameters of the LR model and

s(�) is the sigmoid function (logistic function) that maps
values from (� ‘,‘) to ½0, 1�. The discrimination func-
tion itself is not linear, but the decision boundary is still
linear.

The most common approach to estimate the para-
meters of a statistical model is to compute the maxi-
mum likelihood estimate (MLE). The problem of
finding the MLE of the parameters u for the unregular-
ized LR can be defined by in terms of the negative log-
likelihood (NLL)

min
u

XM

i= 1

� log p y(i)jx(i); u
� �

ð4Þ

The NLL for LR is
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NLL= �
XM

i= 1

y(i)logm(i) + 1� y(i)
� �

log 1� m(i)
� �� �

ð5Þ

where m(i) = sigm(uT x(i)). It is also called the cross-
entropy error (CEE) function.29

Under the Laplacian prior p(u)= (l=2)N exp
(�ljjujj1)(l.0), the maximum a posteriori (MAP) esti-
mate of the parameters u is

min
u

XM

i= 1

� log p y(i)jx(i); u
� �

+ ljjujj1 ð6Þ

This optimization problem is referred to as l1-regu-
larized LR. This algorithm is widely applied in prob-
lems with small training sets or with high-dimensional
input space. However, adding the l1 regularization
makes the optimization problem computationally more
expensive. For solving the l1-regularized LR,30 the least
absolute shrinkage and selection operator (LASSO) is an
efficient method.

As the value of l increases, the number of features
included in the model decreases. The higher the value
of l, the lower the chance of over-fitting with too many
redundant or irrelevant variables. The value of l can be
tuned through validation or CV.

In general, high correlations among features may
hamper the LASSO in finding the true model. LASSO
may not be able to distinguish true features with any
amount of data and any amount of regularization.31

Therefore, eliminating highly correlated features is one
of the main challenges.

ISCS

ISCSs are computer-based decision support systems
that incorporate a variety of artificial intelligence (AI)
and non-AI techniques to monitor, control, and diag-
nose process variables to assist operators with the tasks
of monitoring, detecting, and diagnosing process
anomalies or in taking appropriate actions to control
processes.32

There are three general solution approaches for sup-
porting the tasks of monitoring, control, and diagnosis:
(1) data driven, for which the most popular techniques
are principal component analysis, Fisher discriminant
analysis, and partial least-squares analysis; (2) analyti-
cal, an approach founded on first principles or other
mathematical models; and (3) KB founded on AI, spe-
cifically expert systems, fuzzy logic, ML, and PR.32,33

Due to the explosion of industrial big data, KB
ISCSs have received great attention. Since the scale of
the data generated from manufacturing systems cannot
be efficiently managed by traditional process

monitoring and quality control methods, a KB scheme
might be an advantageous approach.

LP and PR strategy

The proposed LP and PR strategy for a KB ISCS con-
siders the l1-regularized LR as the learning algorithm.
Figure 1 displays the proposed strategy, Because manu-
facturing systems tend to be time dependent, a time-
ordered hould-out data partition method should be
considered (framed into a four-stage approach). The
input is a set of candidate features, and the outcome is
a parsimonious predictive model that contains the most
relevant features to the quality of the product. This
model is used to detect rare quality events in manufac-
turing systems. The candidate features can be derived
from sensor signals following typical feature construc-
tion techniques34 or from process physical knowledge.
Due to the dynamic nature of manufacturing systems,
the predictive model should be updated constantly to
maintain its generalization ability.

A total of three main conditions that must be satis-
fied are (1) the faulty events must be generated during
the manufacturing process and captured by the signals;
(2) since the LR learning algorithm is a linear classifier,
the decision boundaries between the two classes must
be linear; and (3) in order for the binary classifier to
properly define the classification boundary, the two
classes should be well characterized, if the one class is
unlabeled, not present, or not properly sampled, a one
class classification—novelty detection—approach could
be considered.35–37 However, novelty detection is out of
the scope of this article.

In the following subsection, the LP is presented. In
which three of the most critical challenges posed by the
l1-regularized LR algorithm are addressed: (1) high cor-
relations, (2) finding the classification threshold, and
(3) tuning the penalty value l (classifier selection).

LP

The first step is to eliminate irrelevant and redundant
features from the analysis. For manufacturing pro-
cesses, massive amounts of data and the lack of a

Figure 1. Learning process and pattern recognition framework.
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comprehensive physical understanding may result in
the development of many irrelevant and redundant fea-
tures. This problem representation highlights the
importance of preprocessing the data.

The feature space reduction is performed in a two-
step approach: (1) irrelevant feature elimination, in
which the ReliefF algorithm is used to obtain the fea-
ture ranking, and the associated weight of each feature
is compared with t to eliminate the irrelevant ones, and
(2) redundant feature elimination, based on a new
hybrid correlation and ranking-based (HCR) algorithm.
The proposed algorithm (Appendix 1) eliminates redun-
dant features based on Pearson’s correlation coeffi-
cients and a feature-ranking algorithm. The basic idea
is to keep the best feature—highest ranked—from a set
of two or more highly correlated variables. The HCR
algorithm is a data preprosessing tool for classification
problems that is simple and fast to execute.

Once the feature space has been reduced, the follow-
ing step is to design the classifier and to identify which
features contain the most relevant information to the
quality of the product. While the classifier is aimed to
detect rare quality events, the features included in the
predictive model may provide valuable engineering
information. Although feature interpretation is out of
the scope of this approach, analyzing the data-derived
predictive model from a physics perspective may sup-
port engineers in systematically discovering hidden pat-
terns and unknown correlations that may guide them
to identify root causes and solve quality problems.

The training set is used to fit n-candidate l1-regular-
ized LR models by varying the penalty value l. It is rec-
ommended to start with the largest value of l that gives
a nonnull model (i.e. a model with the intercept only),
and from that point decrease the value of l to develop
more candidate models with more features. The ratio-
nale behind this approach is that the form of the model
is not known in advance; therefore, it can be approxi-
mated by generating a set of candidate models. This
analysis can be computationally performed using the
LASSO method in MATLAB or R.

Since faulty events rarely occur in manufacturing,
the dataset is highly unbalanced. Therefore, the 0.5
threshold may not be the best classification threshold,
and accuracy25 may be a misleading indicator of classi-
fication performance.

To address this scenario, the concept of maximum
probability of correct decision (MPCD) is used as a mea-
sure of generalization performance.38,39 A model selec-
tion criterion tends to be very sensitive to FNs—failure
to detect a quality event—in highly unbalanced data.
MPCD is estimated by

MPCD= 1� að Þ 1� bð Þ ð7Þ

Since MPCD is used as a model selection criterion,
the optimal classification threshold search—with
respect to MPCD—algorithm (OCTM) is developed
(Appendix 2) aimed at obtaining the classification
threshold. The algorithm enumerates all candidate
solutions—candidate classification thresholds—and
selects the one with the highest estimated MPCD.
Candidate solutions are the mid-point values (logistic
function-based conditional probabilities) between two
consecutive examples.

In the context of PR, the primary purpose is to select
the best candidate model with respect to generalization.
Once n-candidate models have been developed, the vali-
dation dataset is used to estimate the MPCD of each
candidate model, and the model with the highest value
should be selected. In addition to MPCD, sparsity and
CEE should be used as a second-level model selection
criteria.

It is recommended to perform bias–variance analysis
using the CEE to ensure that the selected model does
not exhibit under-fitting or over-fitting problems.26

Finally, the generalization performance of the
selected model is evaluated on the testing set. The clas-
sifier must be assessed without the bias induced in the
validation stage. This stage ensures that the model
satisfies the learning target for the project at hand.

Discussion

Although no algorithm can guarantee the best
answer,40 parsimonious modeling plays an important
role in manufacturing, since model interpretation is
performed to understand the system. Specifically, the
l1-regularized LR algorithm enjoys the following desir-
able properties: (1) It induces parsimony while main-
taining convexity;41 (2) it is founded on the likelihood
principle, maximum likelihood provides a consistent
approach to parameter estimation problems and has
desirable mathematical and optimality properties;42 (3)
according to large sample theory, as the sample size
tends to infinity, the sampling distribution of the MLE
becomes Gaussian;29 and (4) since many candidate
models are created to approximate the true model,
well-known likelihood-based model selection criterion
(Akaike information criterion (AIC) or Bayesian infor-
mation criterion (BIC)) can be applied (and compared)
to solve the challenge posed by over-fitting due to
model complexity.

In this article, the main challenges of the l1-regular-
ized LR algorithm are discussed and approached.
However, the proposed framework could be general-
ized to other regularized algorithms (e.g. support vector
machine), in which a tuning parameter procedure
should be followed to induce parsimony and improve
generalization.43,44
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Case studies

Two automotive case studies are presented.

UMW

UMW is a solid-state bonding process that uses high-
frequency ultrasonic vibration energy to generate
oscillating shears between metal sheets clamped under
pressure. It is an ideal process for bonding conductive
materials such as copper, aluminum, brass, gold, and
silver and for joining dissimilar materials. Recently, it
has been adopted for battery tab joining in the manu-
facturing of vehicle battery packs. Creating reliable
joints between battery tabs is critical because one low-
quality connection may cause performance degradation
or the failure of the entire battery pack. It is important
to evaluate the quality of all joints prior to connecting
the modules and assembling the battery pack.16

The data used for this analysis are derived from the
UMW of battery tabs for the Chevrolet Volt,38 an
extended range electric vehicle. It is a very stable pro-
cess that only generates a few defective welds per mil-
lion of opportunities. However, all the welds in the
battery must be good for the electric motor to function.
This problem representation not only highlights the
engineering intellectual challenge but also the impor-
tance of a zero-defect policy.

The collected dataset contains a binary outcome
(good/bad) with 54 features derived from signals (e.g.
acoustics, power, and linear variable differential trans-
formers) following typical feature construction tech-
niques.34 The dataset is highly unbalanced since it
contains only 36 bad batteries out of 40,000 examples
(0.09%). The dataset is partitioned following the hold-
out validation scheme (including bads in each dataset):
training set (20,000), validation set (10,000), and testing
set (10,000).

Feature space reduction. To eliminate irrelevant fea-
tures, the dataset is initially preprocessed using the
ReliefF algorithm. ReliefF is run with k = 5 nearest
neighbors and a significance threshold of
t = 0:031622 (calculated based on 1=

ffiffiffiffiffiffiffi
am
p

—a= 0:05

and m= 20, 000). According to the algorithm, feature
26 is the most important feature, while feature 14 is
the lowest quality feature. Figure 2 summarizes the
feature ranking and which features are selected based
on t. According to ReliefF, 45 features—out of 54—
should be selected.

Redundant features from the obtained subset by
ReliefF were eliminated by HCR algorithm (d = 0.90).
The algorithm eliminated 13 highly correlated features.
The feature space was reduced to 32 relevant variables
without ‘‘high correlations.’’

Classifier design. The training set was used to fit 100 regu-
larized LR models. The LASSO method was applied to
estimate the fitted least-squares regression coefficients
for a set of 100 regularization coefficients l, starting
with the largest value of l that gives a nonnull model.
However, the nonnull model is not included in the anal-
ysis since its estimated MPCD equals zero. Figure 3(a)
displays each candidate model’s associated value of l,
Figure 3(b) the number of features, Figure 3(c) the asso-
ciated values of g, and Figure 3(d) displays the training
error (e.g. CEE). The number of features decreases as
the value of l increases, Figure 3(a) and (b). Selecting
the right model is one of the main challenges.

OCTM. Figure 4 shows the OCTM search of candidate
model 88.

Classifier selection. The goal is to select the candidate
model with the highest MPCD. In the context of the
problem that is being solved, the goal is to detect low-
quality welds. Due to the relevance of failing to detect
a potential defect, the type II error is the main concern
of this analysis; for this reason, the MPCD is also used
as a model selection criteria. The estimated MPCD, a,
b, and validation error of each model are summarized
in Figure 5.

According to the selection criteria, model 88 is the
best candidate, with an estimated MPCD of 0.8805
(a= 0:0095, b= 0:1111) and four relevant features,
and varying the values of l helped to identify the most
relevant features. The coefficients are shown in Table 1.
The value of g for this model is 0.0063, meaning that
any value estimated by the logistic function below this
threshold will be classified as 0 (i.e. good) or 1 (i.e. bad)
otherwise.

According to the bias–variance analysis, Figures 3(d)
and 5(d), the first candidate models (i.e. 1–60) exhibited

Figure 2. Feature ranking and selection using ReliefF.
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over-fitting problems, while the last models (i.e. 91–99)
exhibited under-fitting problems. Therefore, the bias–
variance trade-off is efficiently overcome by this parsi-
monious candidate model.

A receiver operating characteristic (ROC) plot for
model comparison efficiently depicts relative trade-offs
between TP and FP. The best possible prediction method
would be a point in the upper left corner, or coordinate

0, 1 of the ROC space; it would be a perfect classifica-
tion. The location of the chosen model in the ROC plot
confirms that model 88 is the best candidate, and it has
the smallest estimated a from the set of candidate models
with the same estimated b. Figure 6 illustrates the relative
location of the model 88 in the ROC curve.

Classifier assessment. The importance of this final step is
to assess the classifier without the induced bias in the
validation stage and to ensure the model satisfies the
learning target. The estimated MPCD of the final
model on the testing data is 0.9980 (b= 0, a= 0:0020).
The testing set includes 10,000 records, with seven bad
batteries. The classifier correctly classified the 7 bad
units and only misclassified 20 good units. Recognition
rates are summarized in Table 2.

According to model assessment results, LR not only
shows high prediction ability but also did not commit
any type II error. The graphical representation of the
classification using unseen data (i.e. testing set) is
shown in Figure 7.

LSW

To show the reproducibility and flexibility of the pro-
posal, the same LP and PR strategy is applied to a
balanced dataset, derived from an LSW process:

Figure 3. Candidate model information: (a) values of l, (b) number of features, (c) optimal classification thresholds, and (d) training
CEE.

Figure 4. Optimal classification threshold search of candidate
model 88.
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Laser welding is a welding technique used to join multiple
pieces of metal through the use of a laser beam. The laser
welding system provides a concentrated heat source, allow-
ing for narrow, deep welds and high welding rates. This
process is used frequently in high volume welding applica-
tions, such as in the automotive industry. Laser welding in
the automotive industry has applications that enable man-
ufacturers to weld component engine parts, transmission
parts, alternators, solenoids, fuel injectors, fuel filters, air
conditioning equipment, and air bags, as well as many
other applications.45

Figure 5. Generalization performance of candidate models: (a) validation MPCD, (b) validation a, (c) validation b, and (d) validation
CEE.

Table 1. Coefficients of model 88.

Coefficient Value Coefficient Value Coefficient Value

u0 217.2305 u5 20.0046 u9 31.4627
u22 8.8622 u26 0.000995

Figure 6. ROC curve of the candidate models.

Table 2. Confusion matrix.

Declare good Declare bad

Good 9973 20
Bad 0 7

8 Advances in Mechanical Engineering



The LSW process is often completed in few millise-
conds, it exhibits good repeatability and is easy to auto-
mate. It is an excellent option for high-productivity
processes.

The dataset contains 2199 features and 317 examples
(159 good, 158 bad), and it is partitioned following the
hold-out validation scheme: training set (160), valida-
tion set (80), and test set (77). To maintain space effi-
ciency, only the most relevant plots are included in this
analysis.

Since the included number of bad in this training set
is significantly higher than the UMW dataset, the
ReliefF algorithm is run with k = 10, with a significance
threshold of t = 0:3535. According to the ReliefF algo-
rithm, feature 1812 is the most important feature, while
feature 2190 is the feature with the least discriminative
information. Figure 8 summarizes the feature ranking
and which features are selected based on t. According

to ReliefF, only 13 features—out of 2199—should be
selected.

Redundant features from the subset obtained by
ReliefF are eliminated by HCR algorithm using
d= 0:90. The algorithm eliminated nine highly corre-
lated features. Ultimately, the feature space was
reduced to four relevant variables without high correla-
tions. Then, the l1-regularized LR algorithm was used
to develop 93 candidate model. Figure 9(a)–(d) shows
the most relevant information (e.g. l, number of fea-
tures, g, training CEE, respectively) of each candidate
model.

Since there are seven candidate models that perfectly
separate the data 87–93, Figure 10(a), the number of
features and the validation CEE are used as a second-
ary model selection criteria. Since models 90–93 contain
only one feature, model 90 is chosen, since it is the can-
didate model with the smallest validation CEE, Figure
10(d). Coefficients are shown in Table 3, and its associ-
ated classification threshold is g = 0:4375, Figure 9(c).

The selected model perfectly separated good from bad
welds in the testing set. Recognition rates are summar-
ized in Table 4 and graphically displayed in Figure 11.

Comparative analysis

To evaluate the performance of the proposal, a com-
parative analysis is performed. The results of the two
case studies were compared with a typical modeling
analysis. The same learning algorithm was trained (with
the same values of l) without preprocessing the data
and using widely known model selection approaches—
CEE, AIC, and BIC.24

Models were mainly compared based on their detec-
tion capacity with the smallest a error possible; in addi-
tion, parsimony was also considered. Due to space
constraints, only the most relevant graphs are
presented.

UMW

Following the same data partition strategy, the training
set is used to create the set of candidate models and to
estimate the AIC and BIC scores. The associated num-
ber of features and the values of g (obtained using the
OCTM algorithm) of each candidate model are dis-
played in Figure 12. While the validation set is used to
estimate the MPCD and CEE of each model. Model
selection results are summarized in Figure 13.

According to the AIC-BIC, candidate model 81
should be selected (AIC = 76:8137,BIC = 105:8712),
and this candidate model contains five features with an
estimated MPCD of 0.8778. While the CEE criterion
recommends model 69 (CEE= 0:0025), and this model
contains 16 features with an estimated MPCD of
0.7719. Table 5 summarizes the generalization

Figure 7. LR-based classification.

Figure 8. Feature ranking and selection using Relief F.
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Figure 9. Candidate model information: (a) values of l, (b) number of features, (c) optical classification threshold, and (d) training
CEE.

Figure 10. Generalization performance of candidate models: (a) validation MPCD, (b) validation a, (c) validation b, and
(d) validation CEE.
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performance in the testing set of the three selected
models developed in this section and the final model
from the UMW case study (e.g. final).

The three models correctly classified the seven bad
units in the testing set with a very small a. However,
the final model contains only 4 features, while models
81 and 69 contain 5 and 16, respectively. From engi-
neering perspective, it is significantly easier to interpret
a model with 4 features than a model with 5 or 16.

LSW

Candidate model information is summarized in
Figure 14, while the model selection criterion values are
summarized in Figure 15.

According to the AIC, candidate model 39 should
be selected (AIC = 72:2325), and this candidate model
contains 11 features with an estimated MPCD of
0.8194. While the BIC recommends candidate model 83
(BIC = 85:4445) with only two features with an esti-
mated MPCD of 1. Finally, the CEE criterion recom-
mends model 35 (CEE= 0:2869), and this model

contains 14 features with an estimated MPCD of
0.8056. The generalization performance in the testing
set is summarized in Table 6.

In this case study, the final model outperforms the
three models, although model 83 perfectly separates the
classes, and this model contains two features. However,
models 39 and 35 have many features and also failed to
detect all the bad units; therefore, the MPCD is signifi-
cantly lower.

Discussion

Based on the comparative analysis, the models devel-
oped following the proposed LP and PR strategy exhib-
ited better parsimony properties and good (or even
better) detection capacity when compared with a typical
l1-regularized LR analysis with three popular model
selection criterion (e.g. AIC, BIC, and CEE).

Although l1-regularized LR learning algorithm
induces sparsity, the proposed strategy can boost the
learning algorithm by eliminating irrelevant and redun-
dant features.

The same approach is also being applied to different
automotive manufacturing systems with promising
results; however due to space constraints, they are not
discussed in this article.

Conclusion

Today’s business environment sustains mainly those
companies committed to a zero-defect policy. This
quality challenge was the main driver of this research,
where an LP and PR strategy was developed for a KB
ISCS. The proposed approach was aimed at detecting
rare quality events in manufacturing systems and to
identify the most relevant features to the quality of the
product. The defect detection was formulated as a

Table 4. Confusion matrix.

Declare good Declare bad

Good 50 0
Bad 0 27

Table 3. Coefficients of model 90.

Coefficient Value Coefficient Value

u0 2.3689 u1812 23.2885

Figure 11. LR-based classification.

Figure 12. Candidate model information: (a) number of
features and (b) optimal classification threshold.
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binary classification problem and validated in two
experimental datasets derived from automotive manu-
facturing systems: (1) UMW of battery tabs from a bat-
tery assembly process and (2) LSW sub-assembly
components from an assembly process. In both cases,
the main objective was to detect low-quality welds
(bad) from the process.

To increase the classifier prediction ability and
reduce training times, the dataset was preprocessed in a
two-step approach: (1) the ReliefF algorithm was used
to eliminate irrelevant features, and (2) the HCR algo-
rithm was applied to eliminate redundant features that
most filter methods cannot eliminate.

The l1-regularized LR was used as the learning algo-
rithm for the classification task and to identify the most
important features. Since the form of the model was
not known in advance, a set of candidate models was
developed—by varying the value of l—as an effort to

Figure 13. Model selection approaches: (a) MPCD, (b) AIC model selection criterion, (c) BIC model selection criterion, and (d)
CEE model selection criterion.

Table 5. Generalization analysis of the selected models.

Model Features FN FP TN TP MPCD

Final 4 0 20 9973 7 0.9980
Model 81 5 0 24 9969 7 0.9976
Model 69 16 0 14 9979 7 0.9986

FN: false negative; FP: false positive; TN: true negative; TP: true positive; MPCD: maximum probability of correct decision.

Figure 14. Candidate model information: (a) number of
features and (b) optimal classification threshold.

12 Advances in Mechanical Engineering



approximate the true model. Chosen model exhibited
high capacity to detect rare quality events, since 100%
of the defective units on the testing set were detected.

The proposed strategy used the MPCD as a model
selection criterion. Therefore, the OCTM algorithm was
developed to find g, the optimal classification threshold
with respect toMPCD.

The proposed approach can be adapted and widely
applied to manufacturing processes to boost the perfor-
mance of traditional quality methods and potentially
move quality standards forward, where soon virtually
no defective product will reach the market.

Future work

Since MPCD is founded exclusively on recognition
rates, future research along this path could focus on

adding a penalty term for model complexity. Although
information-theoretic approaches such as AIC and BIC
penalize for model complexity, they are not mainly
founded on recognition rates.
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Appendix 1

The HCR algorithm has three components, Figure 16:

1. Inputs: F, list of features in descending order
(i.e. top-ranked feature in column 1); FC, a fea-
ture pairwise correlation matrix; and delta (d),
the high-correlation threshold. To obtain F, it is
necessary to rank the features according to their
relevance to the target class. Once all features
have been ranked, the ordered correlation
matrix FC is obtained. d is a user-specified
threshold for a pair of features to be considered
highly correlated.

2. Initialization: defines the three sets used by the
algorithm: sorted and uncorrelated feature list,
SUFL, which stores the features evaluated and
selected by the algorithm; EliminatedList, which
stores the highly correlated features that have

been already evaluated and eliminated; and
TabuList, which is the union of the first two lists.
In addition, TabuList is used for the algorithm
to check whether feature i has been previously
evaluated (i.e. either selected or eliminated).

3. Output: Freduced, subset of not highly correlated
features sorted from highest ranking (line 14).

The algorithm performs n iterations (lines 1, 2, 12,
and 13) to find which features are highly correlated to
feature i, and the CorrFeat variable is updated and eval-
uated at each iteration, with three possible scenarios:
(1) when feature i does not have any correlated features
and has not been previously evaluated, that feature is
added to the SUFL and TabuList (lines 3 and 4); (2)
when feature i has one or more highly correlated fea-
ture(s) and is not in the TabuList, that feature is added
to the SUFL, while the highly correlated features larger
than i are added to the EliminatedList, maintaining the
uniqueness of the elements in the EliminatedList while
updating the TabuList (lines 5–9); and (3) otherwise, the
three sets are unchanged (lines 10 and 11).

Since the best values of k—for ReliefF—and d—for
HCR—are not known in advance, they can be tuned
with respect to prediction. The value of k can be set
based on the number of bad units in the training, and d

can be heuristically set and evaluated between 0.50 and
0.95.

Appendix 2

The OCTM algorithm has three components,
Figure 17:

1. Inputs: CP, list of the conditional probabilities
of each example—estimated using the logistic
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Figure 16. Pseudo-code of the HCR algorithm.
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function—ordered by either ascending or
descending.

2. Initialization: defines the vector CCTL that stores
the estimated MPCD values associated with
each candidate classification threshold.

3. Output: g.

The algorithm performs m� 1 iterations (lines 1 and 5)
to find the candidate classification thresholds (line 2),
CCTi, i= 1, :::,m� 1. The MPCDi is estimated at each
CCTi (line 3). The candidate classification threshold list is
CCTL= fMPCDigm�1

i= 1 (line 4). Find the position p of the
maximum value of CCTL. Finally, g is the value of CCTp

(lines 6 and 7).

Figure 17. Pseudo-code of the OCTM algorithm.
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