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Abstract

In Machine Learning, estimation of the predictive accuracy for a given
model is most commonly approached by analyzing the average accuracy
of the model. In general, the predictive models do not provide accuracy
estimates for their individual predictions. The reliability estimates of in-
dividual predictions require the analysis of various model and instance
properties. In the paper we make an overview of the approaches for esti-
mation of individual prediction reliability. We start by summarizing three
research fields, that provided ideas and motivation for our work: (a) ap-
proaches to perturbing learning data, (b) the usage of unlabeled data in
supervised learning, and (c) the sensitivity analysis. The main part of the
paper presents two classes of reliability estimation approaches and sum-
marizes the relevant terminology, which is often used in this and related
research fields.

Keywords: predictions, reliability, prediction accuracy, data perturba-
tion, unlabeled examples, supervised learning.

1 Introduction

In Machine Learning, various criteria can be used to assess the predictive model
quality, such as interpretability and computational complexity. However, pre-
dictive accuracy is usually considered the most important criterion [39]. When
using supervised learning, we aim to achieve the best possible accuracy for mod-
eling learning data and for making predictions for new examples that were not
included in the learning process [1, 39]. As a result of these efforts, one of the



mainstreams of the research proposed a variety of predictive models, each of
them featuring different properties.

Another line of research focused on developing techniques for achieving bet-
ter accuracy by stabilizing predictive bias and variance properties of existing
predictive models. These approaches use predictive models as their parameters
and are therefore model-independent. Their strategies for improvement of the
accuracy usually consist of iterative re-building of predictive models and modi-
fications of learning set or other learning parameters. Bagging [14] and boosting
[25] are the examples of such approaches.

All these research fields positively contributed towards gaining more accu-
rate predictive methods and formalizing their evaluation approaches. However,
the averaged accuracy measures which are the most commonly used for the
evaluation of the model accuracy, provide no local information about the ex-
pected error of individual prediction for a given unseen example. For example,
frequently used estimates in supervised learning are the mean squared error
(MSE) and the relative mean squared error (RMSE); in unsupervised learning,
various cluster quality measures and indices are used, (e.g. cluster homogeneity,
isolation distance, etc.) [23, 46]. This became a challenge for the third related
research field, whose challenge was to estimate the reliability (prediction error,
confidence, accuracy!) of individual predictions. The application of individual
prediction reliability [19] estimates is important for different fields of machine
learning, such as:

e risk-sensitive decision systems, where acting upon predictions may have
significant consequences (e.g. medical diagnosis stock market, navigation,
control applications). In such areas, the appropriate local accuracy mea-
sures may provide additional information about the prediction confidence.
For example, in medical diagnosis, physicians are not interested only in
the average accuracy of the predictor. When a certain patient is analyzed,
the physicians expect from a system to be able to provide a prediction as
well as the estimate of the reliability of that particular prediction. The
average accuracy of the model cannot provide information whether some
particular prediction is reliable or not. Therefore, reliability estimates for
individual predictions need to be developed.

e statistical simulations of the real data, which are used to study the proper-
ties of the applied statistical methods. In the area of real data simulations,
the model parameters are set to describe the true model parameters as best
as possible [28]. By replicating data using the simulation model and com-
paring it to the actual data, one can evaluate the used statistical method
and its fit [47]. However, in cases when it is expensive and cost-consuming
(e.g. in medicine, using expensive equipment, etc.) or impossible (e.g. in
regression) to gather all outputs of the true model to perform the compar-
ison, or when only the accuracy of some specific simulated output values

Lthe terminology is explained in following sections and in Appendix A



of interest needs to be evaluated, the local reliability estimates are of a
greater benefit than the measures of the overall model’s performance.

In this paper we summarize the main contributions of the research in the
area of evaluation of reliability of individual predictions in supervised learning.
The paper is organized as follows. In Section 2 we describe the work in the fields,
which provided motivating ideas for the research which is the main subject of
the paper: (a) the approaches to perturbing learning data, (b) the usage of
unlabeled data, and (c) the sensitivity analysis. We explain the motivating
ideas stemming from these fields. Section 3 summarizes the general ideas and
two classes of approaches in the field of estimating the individual prediction
reliability. Section 4 provides the conclusions drawn from the presented work
and Appendix A summarizes the relevant terminology in the field.

2 Motivations in the Field of Model Analysis

In the following we summarize the work in three related research fields, which
form the motivation for the development of the model-independent approaches,
which are summarized in Section 3.2. The fields which deal with perturbing
data and the usage of unlabeled examples in supervised learning are generally
concerned with the accuracy performance and evaluation of the whole predictive
model. Both of these fields exploit the variations of the original learning set to
improve the general model accuracy. Since some of these methods also focus on
weighing and analyzing the role of included individual examples in the learning
set variations, an inspiration arises to explore the usage of these ideas further.
A possible way to apply these ideas is using the sensitivity analysis as a general
framework, which is the third field, summarized in this section.

2.1 Perturbations of Learning and Test Examples

The group of approaches aiming at improving accuracy of predictive systems by
perturbing learning data is general and model-independent. These approaches
generate the perturbations of learning data either by creating a new learning
set by selecting learning examples with replacement or by assigning weights to
particular examples. The approaches which perturb the test examples perform
such perturbing by modifying attribute vectors with an objective to estimate
or improve accuracy for a particular test example. In the following we make an
overview for each of these groups of approaches.

One of the most well-known methods, which generates multiple learning sets
by sampling with replacement the original learning set, is bagging [14]. On each
of generated versions of the learning set bagging builds a separate predictive
model and uses it to calculate a prediction which represents a solution to a par-
tial problem. The final solution is achieved by combining individual prediction
into the aggregated one. Bagging has been shown to strongly reduce the vari-
ance while in most cases leaving the bias unchanged. Thus it is mostly effective
in conjunction with decision and regression trees which exhibit high variance.



Focusing on a model as a discriminant or predictive function, bagging works as
smoothing of the classification frontier or the regression function. Averaging in-
dividual predictions in an aggregate therefore gives a smoothed prediction which
is more stable. Although the approach has proven to be effective, its downside is
that the construction of the whole set of models is time and memory consuming.

Similar to bagging, other methods like stacking [68] and bumping [61] at-
tempt to decrease the prediction bias besides reducing the variance. Researchers
found that in all these cases a viable solution involved fitting several models
and merging the predictions that each model produced [48]. One of the latest
methods that involved model mixing, is boosting [25, 56]. Its authors devel-
oped an algorithm that sequentially fits weak classifiers to different weightings
of the examples in a dataset. Those observations which the previous classifier
poorly predicts receive greater weight in the next iteration. The final classifier
is defined as a weighted average of all the weak classifiers. The final classifier
merge has proven to be an effective method for reducing bias and variance,
and for improving misclassification rates. Empirical evidence has shown that
the base classifier can be fairly simplistic (shallow classification trees) and yet,
when boosted, can capture complex decision boundaries. In the later work, the
approach was adapted and evaluated also for regression problems [22, 49].

Tibshirani and Knight [60] introduced the covariance inflation criterion
(CIC), which they use to improve the learning error by iteratively generat-
ing perturbed versions of the learning set. In each iteration, they measure a
covariance between input and predictor response and perform the model selec-
tion accordingly. The studies [50] have shown that CIC is a suitable measure for
model comparison, even if we do not use cross-validation to estimate the model
accuracy.

Elidan, et al. [24] introduced a strategy for escaping local maxima that also
perturbs the training data instead of perturbing the hypotheses directly. They
use reweighting of the training examples to create useful ascent directions in
the hypothesis space and look for optimal solutions in the sets of perturbed
problems. Their results show that such perturbations allow one to overcome
local maxima in several learning scenarios. On both synthetic and real-life data
this approach significantly improved models in learning structure from complete
data, and learning both parameters and structure from incomplete data.

The dual perturb and combine algorithm [29] is an approach which, in con-
trast to previously described approaches, perturbs test examples. In the first
stage of the algorithm, a single prediction model, which remains unchanged
through the whole procedure, is generated. In the prediction stage, attribute
vector of a test example is perturbed several times by an additive random noise.
The predictions calculated for each of these perturbed test examples are after-
wards aggregated and averaged to obtain more stable prediction for the original
test example. The experiments on several data sets with decision trees have
shown that the method yields significant improvements in prediction accuracy,
which are in some cases comparable to results obtained with bagging. But un-
like with bagging, this approach makes use only of one model and delays the
generation of multiple predictions until the prediction stage. In this way the



method preserves the interpretability and the computational efficiency of the
original model. Later, this approach has been also applied with the artificial
neural networks and in the context of learning from data streams [26].

The data perturbation approach has been also used in the unsupervised
learning, to obtain clustering reliability estimates and asses the clustering sta-
bility [36]. The authors propose an application of the bootstrapping to generate
a large number of bootstrap simulated clusterings. By analyzing the appear-
ance frequency of a particular example in each of these simulated clusterings,
the authors measure the reliability of the initial clustering. So defined reliabil-
ity estimate may also hold a potential for correcting the clustering outcome for
a given example (i.e. assigning the example to another cluster, to which the
example belonged in the majority of the simulated clusterings).

Besides improving the predictive accuracy, the approaches with perturbing
learning data were also used to solve the problems with time and memory lim-
itations of storing too large data sets. Pasting [15] is such an approach that
takes small bites of the data, grows a predictor on each small bite and then
pastes these predictors together. The approach gives accuracy comparable to
that which could be obtained if all data would be held in core memory which is
computationally faster. The latter also enables the method to be applicable to
on-line learning.

All mentioned approaches iteratively modify the learning set and have been
justified in favorably improving the general hypothesis accuracy score. These
results suggest that the inclusion or removal of individual learning example,
while observing the final model accuracy, may be utilized as an indicator of
model stability, related to that individual example. This idea is illustrated in
Fig. 1 and was employed in later work in the field of estimating the reliability
of individual predictions, which is summarized in Section 3.

2.2 Usage of Unlabeled Data in Supervised Learning

The core idea behind the learning with unlabeled data is that the additional
utilization of unlabeled examples together with the labeled learning examples
can significantly improve the accuracy of the predictive model [58]. Since the
true labels of unlabeled examples are not known, the employment of such ex-
amples does not directly contribute to the knowledge about the dependency
between attributes and dependent (predicted) value. Instead, the employment
of such examples in the learning process contributes the supplemental informa-
tion about the true example distribution in the problem space, which facilitates
more accurate learning process.

Prior to augmenting models by combining the unlabeled and labeled exam-
ples, the unlabeled examples must be assigned a value of the dependent variable.
The well-known EM (Expectation - Maximization) algorithm [20, 30] provides
a solution to this problem and can be summarized as follows:

1. Build the model using only the labeled data.



Figure 1: Reliability of prediction for example F and a particular model M;
could be quantitatively defined by analyzing the value of prediction P; with
respect to predictions, parameters (contents of the perturbed learning sets) of
other models and the stable averaged prediction P,ggregated-

example E @ — P2 I:>aggregated
—» ;

use predictions P,y .e.ca P1s Py <., P, (their differences, variance, etc.)
to make a backward inference about the prediction reliability of
models M,, M,, ..., M, (based on the examples contained in their learning set)
for example E

2. Use the model to estimate the probabilistic density of the possible label-
ings.

3. Use the model and the distribution information to probabilistically label
the unlabeled examples.

4. Using the union of examples with the known labels, and examples with
the probabilistically assigned labels, rebuild the model.

5. If a pre-specified termination condition is not met, go to step 2 and include
additional data.

Applications of such approaches have shown to provide added value in en-
vironments, where large number of unlabeled examples is available, but it is
impossible or too costly to label them and use them in the classical supervised
learning scenario. Such examples include medical domains, where large amounts
of undiagnosed patients’ data is available, but no experts to systematically label
them; or image recognition problems, where it may be very time consuming to
process the graphical data. The augmentation of classifiers in the field of image
classification [2] have shown that such approach benefits in greater classification
accuracy compared to the traditional approach.

The following research in the same field more focused on the use of unlabeled
examples in the context of co-training. Blum and Mitchell [4, 44] showed that
the unlabeled examples can supplement the hypothesis, generated on labeled
examples, when the problem can be represented into two distinct views. This



means that the description of each learning example can be partitioned in two
parts, which are independent and mutually redundant. Their work is applied
on the problem of web page classification, where each web page description can
be partitioned into the words occurring at that page and the words occurring in
hyperlinks that point to that page. Based on the assumption that each of the
views is independently sufficient for solving the classification problem by itself,
two separate learning sets are formed consisting of the same learning examples,
but described with different attribute sets. By building classifiers on each of
these two problems, one can use a classifier which was built on one view to
classify unlabeled data, presented using the other view. The resulting newly
labeled examples can be afterwards included into the original learning set. By
using this approach, the learning results have shown promising reduction of
classification error.

Similar approaches are used also in application field, other than classifica-
tion of web pages. De Sa [21] addresses the problem of learning from unlabeled
data without experience with previously labeled examples at all. The author
applies her approach in the field of computer data classification, in which as-
signing classes to available examples can be time or expense demanding. As a
solution, the author proposes a form of self-supervised learning, which partitions
the problem into two independent problems in a similar way as in [4]. In the
area of processing computer data, such problem representation can be made by
separating the image contained in the record from its associated audio signal.
The author proposes training of two neural networks on each of the separated
data sets and joining the outputs from both networks with the common output
layer of neurons. The goal of the proposed self-supervised learning is to mini-
mize the differences between outputs of both networks, making both networks
classify two views of the same examples into same two implicit classes. The
implicit classes are defined by the codebook vectors, which are at the beginning
randomly initialized in the problem space. Each of the examples belongs to
the class which is represented by the closest codebook vector. By learning such
joint neural network by backpropagating the error of disagreement between two
individual networks, the codebook vectors converge to locations which represent
new centers of the implicit classes. The results showed that the proposed method
does not perform as well as the standard supervised learning approaches, but
nevertheless it successfully and innovatively solves the problem of learning from
completely unlabeled data.

The requirement that the set of attributes must be separable into two differ-
ent partitions is overcome in the work of Goldman [32]. The only requirement of
the author’s co-training strategy is that the used supervised learning algorithm
partitions the example space into a set of equivalence classes (e.g. for a deci-
sion tree each leaf defines an equivalence class). After building two predictive
models using different supervised learning algorithms, the unlabeled examples
are added into corresponding equivalence classes of each of the models. Selec-
tion of the appropriate equivalence class for a particular unlabeled example and
combining of both generated hypotheses is performed by evaluation of confi-
dence intervals. Addition of new examples and building of predictive models is



Figure 2: Reliability of prediction for example E and a particular model M could
be quantitatively defined by analyzing the change in model when an unlabeled
example F is added to the model’s learning set, yielding model M’.

iteration n iteration n+1
xeU P xeU P’
- model — - model —
predict M /prediction predict M’/ prediction
A A
learn & learn
L: labeled D L: labeled
examples > examples

U: unlabeled
examples

U: unlabeled
examples

analysis
difference @

inference about the
reliability of prediction
P for example xeU

afterwards repeated in many iterations. The results showed that the described
approach favorably influences predictive accuracy, i.e. significantly reduces the
prediction error of both predictive models.

The applicable results with employing unlabeled data in the supervised
learning indicate that the additional learning examples, which are generated
from the same original probabilistic distribution, can be beneficially utilized for
improving predictor accuracy. As seen from the variety of approaches, devel-
oped in this field, the procedures for including additional learning examples and
building new predictive models are performed in turn and in many iterations.
This allows the predictive model to gradually increase its accuracy and more
accurately label unlabeled examples which are yet to be included in later it-
erations. Since by each included example the model changes, this conclusion
encourages the idea to observe the influence of inclusion of a particular new
example in the learning set. Namely, by observing the consequential change in
the predictive model, one could try to make inference about the model stabil-
ity, related to that individual example. This idea is illustrated in Fig. 2 and
presents a motivation for research in the field of estimating reliability of the
individual predictions, on which we focus later in Section 3.



2.3 Sensitivity Analysis

Methods for measuring the overall accuracy of a particular predictive model or
of its individual predictions are founded on the quantitative description of pre-
dictive model properties or on the characteristics of the input space. Noise in
data and nonuniform distribution of examples represent a challenge for learn-
ing algorithms, leading to different prediction accuracies in different parts of
the problem space. Apart from distribution of learning examples there are also
other causes that influence the accuracy of prediction models: their generaliza-
tion ability, bias, resistance to noise, avoidance of overfitting, etc. Since these
aspects cannot be measured quantitatively, they cannot be used to construct a
quantitative measure for evaluation of the accuracy.

A possible approach to analyze the local particularities in data and predictive
model properties is with use of the sensitivity analysis. Sensitivity analysis
is an approach which is used to study the influence of parameters and model
properties to its structure and outputs [13]. It is usually performed as a series of
experiments in which the user systematically changes the input parameters and
observes the dynamics of changes in outputs. For the usage of this technique, no
knowledge of model’s mathematical properties is required, hence the model is
basically used as a parameter of the method, presenting a black box with inputs
and outputs [38], which are the only parameters of interest. This approach
has been most widely used in the area of statistics, mathematical programming
[52] and natural sciences [51]. The usage of sensitivity analysis with artificial
neural networks [33] and with Bayesian networks [37] has shown the potential
for application of this approach with the supervised learning algorithms.

In the context of theoretical stability analysis of learning algorithms, the
sensitivity analysis has been discussed by Bousquet and Elisseeff [11]. They
defined notions of stability for learning algorithms and showed how to derive
the generalization error bounds based on the empirical error and the leave-one-
out error. They have also introduced the concept of J-stable learner as one
for which the expected loss function of the learned solution does not change
more than § with small changes in the training set. Bousquet and Elisseeff [10]
and Elisseeff and Pontil [12] applied these ideas to several learning models and
showed how to obtain bounds on their generalization performance.

In a similar way Kearns and Ron [35] define the hypothesis stability as a
quantity that measures how much the function learned by the algorithm will
change when one point in the training set is removed. All mentioned studies
focus on dependence of error-bounds either from the VC (Vapnik-Chervonenkis)
theory [63] or from the way the learning algorithm searches the space.

By proving theoretical usefulness of notion of stability, these approaches
motivated research about empirical estimation of the individual prediction re-
liability based on the local stability of the model, as illustrated in Fig. 3. For
usage in machine learning, a framework has been proposed [5] for controlled
changing of the input (i.e. the learning set) of the learning algorithm, and ob-
serving the changes in output (i.e. predictions) of the learning algorithm. This
framework defines a systematical approach to modifying the learning set, which



Figure 3: The sensitivity analysis approach considers the predictive algorithm
as a black box. By observing the change in system outputs with respect to
the controlled change in inputs (examples and model parameters), an inference
could be made about the reliability of individual inputs.

iteration 1 analysis
; learning
—»I(r:jggt +I 1 algorithm OUtp.Ut. 0,
parameters) | (black box) (prediction) 0,0, ..., 0,
iteration 2
input | learning | oytput
%» algorithm p. .Oz
parameters) | (black box) (prediction)

inference about the
reliability of inputs

iteration n
input |, | eaming | oythut O,
“amr algorithm —
parameters) (black box) (prediction)

induces a change in the input of the learning algorithm. If this change is small,
then the change in output prediction for the modified example is also expected
to be small. Since the opposite scenario would indicate the instability in the
generated model, the magnitude of output change may therefore be used as a
measure of model instability for a modified example. The same reasoning is used
also in other model-independent approaches in the field of individual prediction
reliability estimation.

3 Reliability Estimation for Individual Exam-
ples

Individual reliability estimates enable the user to make a distinction between
more and less accurate predictions. The idea and benefits of implementing
this challenge in contrast to estimating the average model accuracy (e.g. using
MSE) is illustrated in Fig. 4. The reliability estimation of individual examples
has also an additional advantage as well. Namely, the calculation of individual
predictions’ reliability estimates does not require knowing of true label values.
In contrast to MSE estimate, which requires a testing data set, the idea of
individual predictions’ estimates is that they can be calculated for arbitrary
unseen examples.

Past research has referred to reliability estimation of individual predictions
with different terms and in the different contexts of machine learning. This chal-
lenge was most frequently approached in the field of classification. The notion
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Figure 4: Reliability estimate for the whole regression model (above) in contrast
to reliability estimates for individual predictions (below).
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of reliability estimation has most frequently appeared in conjunction with the
notion of transduction or transductive reasoning. The usage of these terms may
have different meanings in different environments, but basically transduction
represents an inference principle that reasons from particular to particular [63]
in contrast to inductive learning, which aims at inferring a general rule from
particular data. Transductive inference therefore aims at making predictions
for unlabeled examples without constructing a general predictive model. Such
definition closely relates the transductive reasoning to instance-based learning
and case-based reasoning (one of the most well known algorithms in this area is
k nearest neighbors). However, the transductive methods represent much wider
scale of approaches, since the reasoning can be based also on other criteria (e.g.
distribution of examples in input space) and not only using the distance metrics
and labels of the nearest neighbors. Transductive methods may also exploit
only selected examples of interest and not necessarily the whole input space,
which enables them to make other inferences apart from predicting labels. We
find inferences about reliability measures of a special interest.

A good criteria to differentiate between various approaches for reliability es-
timation for individual examples is by determining whether they target a specific
predictive model or whether they are model-independent. While the approaches
from the first group are less general, they are usually better mathematically or
probabilistically founded. Since the model-independent approaches are general,
they cannot exploit parameters, specific to a given predictive model (e.g. the
sum of least squares in linear regression), but focus on influencing the standard
parameters, which are available in the supervised learning framework (e.g. the
learning set, attributes, etc.). Such approaches are therefore less probabilisti-
cally interpretable, allowing such reliability estimates can take values from an
arbitrary interval of numbers.

To refer to both groups of estimates, probabilistically interpretable and gen-
eral, we use a superordinate term reliability estimate to name any measure that
provides information about trust in individual prediction accuracy. Since the
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true error of an unlabeled example is not known, it is also more appropriate to
say that we estimate the prediction reliability rather than the prediction error.
This also conforms with the definition of reliability which can be defined as the
ability to perform certain tasks conforming to required quality standards [19].
Namely, the prediction accuracy in regression is considered the required quality
standard.

In the following we focus on each group of methods individually.

3.1 Extensions of Existing Predictive Models

To enable the users of classification and regression models to gain more in-
sight into the reliability of individual predictions, various extensions of existing
classification and regression models were proposed, enabling them to output
predictions, extended with their corresponding reliability estimates.

By using mathematical and statistical foundations to expand the basic for-
mulation of a predictive model, it is feasible to define reliability estimates which
are grounded in the probabilistic theory, hence having values with the prob-
abilistic interpretation. Such reliability estimates, called confidence measures,
have values belonging to the interval [0, 1], where 0 represents the confidence of
the most unreliable prediction and 1 the confidence of the most reliable one.

Previous studies have referred to reliability of single predictions with differ-
ent terms. Gammerman, Vovk and Vapnik [27] and later by Saunders, Gammer-
man and Vovk [53] propose an extension of the support vector machine (SVM)
algorithm for classification and show that their modified SVM successfully pro-
duces the reliability estimates and outperforms other predictive algorithms. Be-
sides achieving favorable results, the authors also introduced the notions of confi-
dence and credibility, denoting a probabilistic reliability estimate and probability
for not classifying an example into the second most probable class, respectively.
This approach was later applied in selected practical domains, including face
recognition problem [41], where confidence and credibility proved to be infor-
mative measures of classification reliability. Later on, the work continued with
Nouretdinov, et al. [45] demonstrating the use of confidence value in the context
of ridge regression. Using residuals of learning examples and a p-value function
the authors improved the basic ridge regression with confidence regions.

Focusing on multilayer perceptrons, Weigend and Nix [64] extended their
predictions with adjoined reliability estimates by expanding the original per-
ceptron with an additional output neuron, that was intended to predict the
variance in the neighborhood of the input example. The variance was learnt as
a part of the backpropagation learning, during which the variances for the learn-
ing examples were calculated and presented as the output targets. Despite the
big sensitiveness to the local changes, the favorable experimental results showed
that the predicted variance estimates can be used as the reliability estimates.

In 1997 Heskes [34] proposed a method for computation of prediction in-
tervals for the ensembles of neural networks. Being defined as a degree of
agreement between predicted value and example’s label value, the prediction
interval is therefore an estimate of the individual prediction reliability as well.
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The proposed reliability estimates are defined using the variance of outputs of
individual neural networks in the ensemble, where each of them was trained and
stopped on the bootstrap replicates of the original data set. In 1999, Carney
and Cunningham [16] proposed an improvement of the former method by divid-
ing the original ensemble to smaller, equally sized ensembles and averaging the
variances among them. The experimental results showed an increase in stability
and accuracy of such improved reliability estimates.

The overview shows that the former group of approaches is designed for the
use with particular predictive models and due to their specific formalisms they
cannot be used with other models. The other branch of the research, on which
we focus in the following subsection, therefore explores the approaches which
are independent of the predictive model, hence being more general.

3.2 Model-Independent Approaches

Many approaches to model-independent reliability estimation are concerned
with local modeling of prediction error based on input space properties and
local learning [31, 55, 54, 69, 3]. In this context most frequently the local cross
validation is applied to calculate the prediction and the prediction error for the
example of interest using a local model in the problem subspace. Using the
local leave-one-out procedure, the local errors of the example’s neighbors are
acquired, enabling the reliability estimate of the example to be defined as their
weighted average. These approaches have indicated good results, but are sen-
sitive to distance metric, noise in the neighborhood and the type of the local
predictive model.

As an alternative to local modeling, Tsuda et al. [62] proposed an algorithm
to predict the leave-one-out error of a single example for kernel based classifiers
(support vector machines and linear programming machines). Their work in-
troduces a meta-level of reasoning and presents a meta-algorithm for predicting
the leave-one-out error. The algorithm is based on observation, whether the
omission of a particular learning example from the learning set would cause the
example to be misclassified in the prediction stage. The simulations showed
that the proposed meta-learning approach compares favorably to the conven-
tional theoretical leave-one-out error bounds, owing to which its leave-one-our
error estimate can be reliably used for model selection.

As an application of the transductive reasoning principle, Kukar and Ko-
nonenko [40] proposed a transductive method for estimation of classification
reliability. Their work introduced a set of reliability measures which success-
fully separate correct and incorrect classifications and are independent of the
learning algorithm. The proposed estimates are based on the change of the
posterior class distribution between the inductive and transductive classifiers.
Inductive classifier is the one generated on the original learning set of examples,
while the learning set of the transductive classifier includes an additional exam-
ple, the one for which the classification reliability is being estimated. The usage
of term transductive in this context is justified by purpose of the transductive
model, whose task is to make inference about classification reliability for a given
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example of interest and not to perform classification. To quantitatively express
the difference between posterior class distributions, the authors propose a set
of metrics (variation distance, Bhattacharyy’s distance, harmonic mean, stan-
dardized Euclidean distance, cosine of angle between the vectors representing
distributions, etc.). These metrics and the products of their various combina-
tions are used to separate sets of correctly and incorrectly classified examples
by defining a threshold for each of the used metrics. Since the metrics are not
bound to a particular model formalization, the approach can be used with the
arbitrary learning algorithm. The approach as such therefore represents a first
joint implementation of ideas, coming from the field of perturbing data and the
field of using unlabeled examples in supervised learning, as illustrated in Fig. 1
and 2. The results have shown successful separation of correctly and incorrectly
classified examples in many testing domains.

Bosni¢ and Kononenko [9, 6] later adapted the approach to regression. Trans-
ductive predictions, introduced by this technique, were used to model prediction
error for each individual example. Initial results were promising and showed the
potential for estimating the prediction error.

The extended work of Bosnié and Kononenko [5] standardized the framework
for the usage of sensitivity analysis approach to develop the individual predic-
tions’ reliability measures, evaluated the appropriateness of this technique for
five regression models, and justified the motivation for this work using the Min-
imum Description Length principle [42]. Using the previous work in the same
field, they supplemented the methodology with ideas from the field of sensitivity
analysis, as illustrated in Fig. 3. Given the example and its initial prediction for
which the reliability was to be estimated, the authors repeatedly modified the
model learning set to obtain a set of sensitivity predictions. Based on sensitivity
predictions they proposed the reliability estimates which evaluated the local bias
and local variance in the problem subspace, leading to information about predic-
tion reliability. The purpose of the controlled local modification of the learning
set was to explore the sensitivity of the regression model in a particular part of
the problem space. By doing so, the reliability estimates were adapted to the
local particularities of data distribution and noise and the sensitivity was thus
related to changes of the regression model prediction when the learning set was
slightly changed.

The similar ideas are put in practice also in a related field of active learning
[17] which is concerned with the optimal choice of which learning examples to
include in the learning set to optimize learning. There are many heuristics for
choosing the next learning example, based on choosing places where less data
is available [65], where the model performs poorly [43], where the confidence in
predictions is low [59], where the new example will influence the change in the
model most [18] or where we previously found data that resulted in learning [57]
(reinforcement learning strategies).

In contrast to the preceding approach for the estimation of classification re-
liabilities, the reliability estimates for regression predictions were based solely
on the outputs of the prediction system and therefore did not require any esti-
mations of distribution functions. The use of such approach was possible due
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to the continuous nature of predicted values in regression. Namely, this makes
possible to numerically express the difference between two regression predic-
tions, in contrast to classification, where it can only be observed whether the
predicted class was the same or different. An open question for the further work
remains, whether the sensitivity predictions could also be used to correct the
initial predictions of the examples, reducing their error and making them more
accurate.

3.3 Performance Comparison of Reliability Estimates

When evaluating reliability estimate’s performance, we are interested mostly
in how informative it is about the prediction accuracy or its error. However,
with model-dependent approaches which are formalized as model extensions, the
estimates are commonly expressed as confidence intervals, providing information
that a prediction belongs to an interval with a certain degree of probability. Due
to probabilistic founding of these approaches, the information they provide is
accurate and does not call for evaluation in contrast to the model-independent
reliability estimates.

The model-independent estimates are commonly defined as metrics with an
arbitrary interval of target values, which are approach and domain dependent.
As such they do not provide an absolute interpretation about the prediction
accuracy/error, but allow to relatively determine which predictions are more
and which are [ess reliable. Besides depending on the approach and the problem
domain, the accuracy of model-dependent estimates varies also depending on
the used regression model. Comparison of the described key properties of both
approach families is given in Table 1.

Table 1: Comparison of the key performance properties of model-dependent and
model-independent reliability estimates.

model-dependent approaches model-independent approaches
(extensions of existing models) (general approaches)

treating model as a parameter

founding ~ embedded into the model (black box)

estimates’ estimates usually estimate values belong to an
values probabilistically interpretable arbitrary interval

reliability for (x1,y1) is 49
AND reliability for (xz,y2) is
59 = prediction for (x2,y2) is
more reliable

example of  prediction for example 1 is on
reliability interval [14,16] with 95%
value probability

In previous work, extensive testing of nine reliability estimates was per-
formed [8], which were based on the various model-independent approaches: sen-
sitivity analysis, measuring variance of bagged predictors, local cross-validation,
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density-based estimation, local modeling of the error, and a combination of these
approaches. Testing of these estimates was performed in terms of statistical
evaluation of their correlation to the prediction error. The obtained results us-
ing eight regression models (regression trees, linear regression, neural networks,
bagging with the regression trees, support vector machines, locally weighted
regression, random forests, and generalized additive model) indicated different
performance of the estimates with different regression models. They especially
indicated the potential for the usage of:

e sensitivity analysis estimates and local modeling estimates with the re-
gression trees, linear regression, and generalized additive model,

e bagging variance with locally weighted regression,

e local cross-validation estimate with support vector machines, random forests
and locally weighted regression,

e combined estimate with the neural networks and bagging with regression
trees.

Since the empirical evaluations revealed that the estimates’ performance de-
pends on the used regression model and on the particular problem domain, two
approaches for the automatic selection of the best performing reliability estimate
were proposed: based on the meta-learning and on the internal cross-validation
[7]. The testing results of both approaches demonstrated an advantage in per-
formance of dynamically chosen reliability estimates over performance of the
individual reliability estimates. In addition, the preliminary testing of the pro-
posed methodology on a medical domain demonstrated the potential for its
usage in practice.

4 Conclusion

The paper summarizes approaches which provide motivating ideas for the de-
velopment of methods for estimation of individual prediction reliability and the
field of estimating reliability of individual predictions itself. We have explained
the motivation coming from the following research fields:

e approaches to perturbing data,
e usage of unlabeled examples in supervised learning,
e sensitivity analysis,

e other related research fields: active learning, transductive reasoning,
meta-learning, and reinforcement learning.

Motivation coming from all the above fields indicates the significance of a
single example for the evaluation of overall model’s performance. As such, it
also provides the ideas for evaluation of a single prediction reliability instead of
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evaluating the whole model. The above approaches imply that a single predic-
tion reliability can be evaluated by observing changes in the generated model,
which occur when a particular example is added or removed from the learning
set. In addition, the sensitivity analysis approach offers the general framework
which can be used to systematically analyze changes in the generated model,
while remaining independent of a particular model.

In the section about the reliability estimation of individual examples we
made a differentiation between various approaches by determining whether they
target a specific predictive model or whether they are model-independent. In
the Appendix we also present a unified excerpt of the related terminology, which
often appears in the literature, carrying different meanings.

As the field individual prediction reliability estimation is relatively new, the
following questions arise and call to be addressed in the further work:

1. How to define further and more accurate model-independent reliability
estimates?

2. How to make model-independent reliability estimates’ values more inter-
pretable (probabilistically?) and comparable among different estimates?

3. How to select the most appropriate reliability estimate for a given prob-
lem?

4. What are the possibilities for the application of the described methodology
(stock market, medicine, data streams, etc.)?

The latter questions need to be addressed in any practical application of
this methodology, as were in the application on a medical prognostics domain
[7], which also demonstrates the benefits and potentials of this methodology.
The data consisted of 1035 breast cancer patients, who had surgical treatment
for cancer between 1983 and 1987 in the Clinical Center in Ljubljana, Slovenia.
The goal of the research was to predict the time of possible cancer recurrence
after the surgical treatment. The study resulted in complementing the bare
recurrence predictions with reliability estimates, helping the doctors with the
additional validation of the predictions’ accuracies and significantly improving
usefulness of the prognostic system.

To conclude, further development of the field of prediction reliability esti-
mation would bring benefit for users of critical decision support systems, where
the prediction accuracy implies financial, business, medical and other important
consequences. Bringing awareness to the machine learning community about the
potentials of this methodology may bring its greater utility as well as the further
advances in this field.

A Glossary of Relevant Terms
In the following we present a résumé of the terminology used in the field. The

asterisk (*) marks the terms which we define in accordance with the definitions
of closely related other terms in the area.
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accuracy estimate* One of the aspects of prediction reliability. An estimate
which positively correlates with the prediction accuracy or negatively cor-
relates with the prediction error. Estimate, similar to confidence, but
more general, since it does not have a probabilistic interpretation (it can
take values from an arbitrary interval of real numbers and need not be
limited to [0, 1]).

confidence Probabilistically expressed accuracy estimate for a given predic-
tion. Value of prediction confidence therefore represents the probability
of its accurateness. It is based on an assumed probability distribution
and in classification it can be also defined as 1 — po, where ps denotes the
probability of the second most probable class [53].

confidence interval In statistics, an interval on which an estimate is likely to
take values with a given degree of confidence [66]. In regression problems,
also the prediction accuracy with respect to the true example value (which
may differ from its label due to noise in the data) [34].

credibility A probabilistic measure for estimation of prediction reliability, re-
lated to confidence. Instead of estimating accuracy based on assumed
probability distribution, it uses its own probabilistic model (e.g. observ-
ing the ratio of support vectors among all examples or using the Lagrange
coefficients [53]) to perform the reliability estimation.

error estimate* One of the aspects of prediction reliability. An estimate
which positively correlates to the prediction error. It does not have a
probabilistic interpretation and can therefore take values from an arbitary
interval of real numbers. It may be implemented as inverted accuracy es-
timate.

prediction interval The output prediction accuracy with respect to the target
value (which differs from the true regression value by some noise) [34].

probabilistic error estimate* An error estimate with a probabilistic inter-
pretation, expressed as 1 — con fidence.

reliability A general notion in engineering, denoting the ability of a system or a
component to perform its required functions under stated conditions for a
specified period of time [67]. In machine learning, we can define reliability
as any qualitative property or ability of the system which is related to a
critical performance indicator (positive or negative) of that system, such
as accuracy, inaccuracy, availability, downtime rate, responsiveness, etc.

reliability estimate An estimate for quantitative measuring of reliability (which
is in most cases defined qualitatively). According to particular context (see
def. of reliability), reliability estimate can therefore represent an accuracy
estimate, error estimate, availability estimate, etc.
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sensitivity A notion similar to stability. Quantitatively expressed dependence

between the changes in system parameters and structure, and the critical
aspects of the system operation [13].

stability A property of the system not to change its critical performance aspect

for more than for a specified threshold, when selected parameters of the
system change. Defined in the context of learning hypothesis stability [11].

transduction A wide term, generally denoting reasoning from particular to

particular. In the context of reliability estimation it represents the basis
for many approaches [27, 53, 41]. The transductive reasoning is often used
to construct reliability estimates, which measure the probability of how
the newly labeled example fits into the distribution of all given examples.
The notion of transduction is used also in cases, when the construction of
the hypothesis is needed only for examples of interest or for some other
intention apart from predicting. Such application may be the estimation
of prediction reliability, as in [40, 9].
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