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Abstract

The recent advancements in the fields of artificial intelligence (Al) and machine learning (ML) have
affected several research fields, leading to improvements that could not have been possible with
conventional optimization techniques. Among the sectors where AI/ML enables a plethora of
opportunities, industrial manufacturing can expect significant gains from the increased process
automation. At the same time, the introduction of the Industrial Internet of Things (IloT), providing
improved wireless connectivity for real-time manufacturing data collection and processing, has resulted
in the culmination of the fourth industrial revolution, also known as Industry 4.0. In this survey, we
focus on the vital processes of fault detection, prediction and prevention in Industry 4.0 and present
recent developments in ML-based solutions. We start by examining various proposed cloud/fog/edge
architectures, highlighting their importance for acquiring manufacturing data in order to train the ML
algorithms. In addition, as faults might also occur from sources beyond machine degradation, the
potential of ML in safeguarding cyber-security is thoroughly discussed. Moreover, a major concern in
the Industry 4.0 ecosystem is the role of human operators and workers. Towards this end, a detailed
overview of ML-based human—machine interaction techniques is provided, allowing humans to be in-
the-loop of the manufacturing processes in a symbiotic manner with minimal errors. Finally, open issues
in these relevant fields are given, stimulating further research.

Keywords: Industry 4.0, machine learning, fault detection, predictive maintenance, security, anomaly
detection, human—machine interaction
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Mankind has made significant advancements during the last 300 years, in the area of industrial
manufacturing. The first industrial revolution focused on mechanical innovations relying on steam and
water, while the second one leveraged electrification and advanced machine tools, further boosting and
improving the production output. Then, starting from the 1950s, the third industrial revolution adopted
increased digitization using semi-conductors and more recently, communication networks, paving the
way for automated manufacturing. During the last decade, artificial intelligence (AI) and machine
learning (ML) have been introduced in the manufacturing sector, enabling more efficient processes,
sustainability with reduced waste and consumption of materials, safer working environments and
increased quality and productivity. AI/ML-based manufacturing can offer various manufacturing
innovations by providing fault detection and prediction, optimal use of raw materials and resources,

1.1. Industry 4.0

The fourth industrial revolution (Industry 4.0) aims at providing an industrial environment for real-time,
intelligent, interoperable, and autonomous manufacturing environments [6]. In order to realize this
vision, Industry 4.0 is based on recent innovative information and communication technologies, such as
cyber-physical systems (CPS), Internet of Things (IoT) and cloud computing (CC) [7], having attracted
the research interest of the academia and the industry in a plethora of applications [8]. CPS results in the
interconnection of physical elements with cyber-elements [9]. More specifically, physical elements
comprise components such as sensors, operator panels and computers, collaborating and communicating
to collect and provide data to cyber-elements where management, processing and decision-making takes
place [4,9]. Furthermore, loT enables the real-time interconnection of different objects, for example,
sensors, actuators, machines and robots among others, in a safe and reliable manner. At the heart of IoT
lie heterogeneous communication networks, including fifth generation (5G) networks, Wi-Fi, machine-
to-machine (M2M) deployments and cloud technologies (cloud, fog, edge) [10,11,12]. At the same time,
humans should maintain an important role in the Industry 4.0 environments, empowered with smart
devices, virtual and augmented reality (VR/AR), being in the loop of the manufacturing process and
taking advantage of the AI/ML-based decision-making [13]. Thus, considering these advanced
technologies, Industry 4.0 promises to radically change the current industrial production processes
benefiting industrial stakeholders, personnel and consumers, promoting environmental sustainability.

In the context of Industry 4.0, a plethora of applications is envisioned, providing flexibility, competency,
real-time self-optimization, and automation, as well as accomplishing complex tasks and satisfying strict
quality requirements in intertwined digital and physical procedures [8]. More importantly, the relevant
ubiquitous applications mainly span in the manufacturing and production development areas [14]. To
evolve these applications, fault detection, prediction and prevention play a major role. With the
contribution of ML algorithms, early and accurate fault detection can lead to minimum downtime,
owing to the recognition of damaged and defected products or parts, in real-time. The wealth of data
contributes to accurate prediction of machine condition, remaining useful life (RUL), and faults, leading
to an appropriate and cost-effective maintenance schedule, thus minimizing the downtime, due to a fault
occurrence [10,15]. The human factor has also an important role in the production procedure of the
Industry 4.0 ecosystem, whereas collaboration with robots and machines is a critical challenge within
factory halls. Human activity recognition and decision-making algorithms increase operators’
performance, leading to efficient and safe production, as well as to the minimization of ramp-up time.

1.2. Machine Learning

The application of ML algorithms requires the existence of a vast amount of data to trigger decision-
making in several industrial processes. In this regard, the implementation of novel technological
paradigms, such as CPS and IoT, enables the generation of different types of data structures, as it has
been observed in works focusing on Big Data Analytics (BDA) [15,16,17]. In general, data has a
specific life cycle (source, collection, storage, processing, visualization, transmission, application) [18].
However, most of the time, the gathered data that will be processed in subsequent steps, is confused
with noisy data generated from the surrounding environment, making it difficult to separate the original
data set from noise. On the other hand, fast changing dynamic environments and different machine
working states impose significant challenges to ML-based fault detection, prediction and prevention.
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Overall, the need for reliable and accurate real-time transmission and computation arises, while security
issues are becoming increasingly serious, due to the increased level of interconnection among the
different subsystems [10].

The ML algorithms can be categorised into supervised learning, unsupervised learning, reinforcement
learning (RL) and deep learning (DL) algorithms [15]. Each category is briefly described below.

e Supervised learning is a method where an expert inserts known outputs for specific inputs to
train the algorithm and is widely used for classification and regression [15,19,20]. Thus,
supervised ML is usually employed in scenarios with labeled data availability. Popular algorithms
include artificial neural networks (ANNs) and support vector machines (SVMs) [15,19,21].

o Unsupervised learning where there is no feedback provided from anyone and the algorithm finds
patterns in unknown data sets (clustering, association rules, self-organised maps) [15,19,21] and
so, unlabeled data are used for training purposes. The most popular and well-known unsupervised
algorithm is principal component analysis (PCA), mainly used for monitoring purposes [19].

¢ Reinforcement learning refers to unsupervised ML operation, examining if a chosen action
resulted in a reward, for a specific performance metric [15]. RL demands sequential actions and
tries their outcome, selecting those better fitting the problem at hand. So, RL significantly departs
from other learning categories which are based on leveraging historical data, creating intelligence
from previous decisions and rewards.

e Deep learning where multiple layers have been employed in order to build an ANN, which is
able to make intelligent decisions, handling large amounts of data with high complexity, without
any human intervention [15,22,23]. Some DL algorithms are convolutional neural networks
(CNNs), restricted Boltzmann machine (RBM) and auto-encoders (AE) [23].

In Figure 1, the different ML categories are summarised and their key characteristics are highlighted. It
is evident that as the Industry 4.0 era is upon us, there exists an ever increasing adoption level of ML
algorithms to satisfy the needs of different aspects of industrial settings. These include process
monitoring and quality control, fault detection and diagnosis, as well as machine health monitoring and
predictive maintenance [24]. Moreover, the capabilities of ML, regarding the timely processing of an
abundance of data are critical to safeguarding the cyber-security of the Industrial Internet of Things
(IToT) enabled interconnected manufacturing environments, accurately detecting and mitigating threats
[22,25].

Reinforcement Learning
Decision process
Reward system

Learn series of actions

Supervised Learning Unsupervised Learning

No labels
No feedback
Find hidden structure

Labeled data
Direct feedback
Predict outcome

Deep Learning

Feature extraction
Classification

Figure 1

Various machine learning (ML) categories and their key characteristics.
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1.3. Previous Survey Works

The research area of Industry 4.0 has received several contributions in recent years. The survey in
Reference [10] presented an overview of CPS in IIoT settings, giving in detail a relevant architecture,
enabling the control of systems and processes, while ML was presented as a promising solution for CPS.
Then, the authors of Reference [16] provided a thorough analysis of the role of BDA in IoT and a
taxonomy of ML algorithms in BDA-enabled applications, such as self-maintenance, self-prediction and
self-configuration. Furthermore, an overview of ML for manufacturing systems was given in Reference
[15], discussing implementation issues, as well as the benefits and drawbacks of different categories of
ML algorithms, including supervised, unsupervised and RL algorithms, concluding that currently,
supervised ML techniques are most appropriate for smart manufacturing. Next, the work in Reference
[19] discussed the use of BDA in the process industry and its dependency on ML. More specifically,
several supervised and unsupervised ML methods were presented, suggesting that semi-supervised
solutions have the potential to provide better trade-offs among implementation complexity, performance
and data requirements. In addition, a detailed survey of big data structure and analytic techniques for
CPS were examined in Reference [21]. In this context, descriptive (clustering, correlation) and
predictive analytic techniques were evaluated.

In the area of machining processes, the impact of ML solutions was presented in Reference [20]. Several
machining cases were listed and a brief presentation of ML-based tool wear monitoring and prediction
was included, outlining its potential. Regarding the field of smart manufacturing, the role of DL was
investigated in Reference [23]. In greater detail, the evolution of DL and its advantages in processing
heterogeneous and highly complex data, compared to conventional ML solutions, as well as various DL-
based computational methods for improving manufacturing processes were highlighted. Next, the article
in Reference [26] focused on three areas for AI/ML application, that is, faster convergence in
environments with partial and intermediate AI/ML integration with a single optimization iteration, deep
active learning towards optimal topologies through multiple iterations without neglecting the benefits of
exploration-exploitation trade-offs and finally, knowledge-based assistants for improved human—
machine interaction (HMI) by translating the optimal topology to a concept design, leveraging relevant
metadata of historical expert decision.

The study in Reference [27] examined several works on ML-based optimization in the areas of product
quality and process improvement. The interdependencies among the used data, the amount of data, the
ML algorithms, the adopted optimisers and the specific production problems were discussed, concluding
that often, their correlation is not carefully investigated, thus leading to highly complex models, being
trained with insufficient amounts of data, exhibiting overfitting and low interpretability. Next, the
authors of Reference [28] introduced research strategies for industrial big data collection in intelligent
environments, ontology modeling and deduction methods, as well as predictive diagnostic solutions for
production lines, relying on deep neural network (DNN) and DL in cloud-assisted devices with self-
organised reconfiguration capabilities.

An overview on anomaly detection on industrial wireless sensor networks (IWSN) was given in
Reference [25], comparing ML methods, including K-nearest neighbor (KNN), SVM, ANNs and hybrid
schemes. Finally, the study in Reference [29] offered a deep insight on data mining techniques for
production management, focusing on production scheduling, quality improvement, defect analysis and
fault diagnosis. Still, ML-based solutions were not thoroughly presented, thus leaving a gap in the
literature. Table 1 provides the summaries of the relevant surveys and possible AI/ML-based solutions
that they might discuss within the Industry 4.0 area.
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Relevant surveys and tutorials on artificial intelligence (AI)/ML and Industry 4.0.

Reference Short Description Scope of ML in Industry 4.0
) 10T, cloud/edge computing,
Xu H. etal., 2018 [10] CPS aspects in [IoT ) o )
sensing and decision-making
) ML-based BDA for
Rehman et al., 2018 [16] The role of BDA in IIoT

Wuest et al., 2016 [15] ML’s role in manufacturing

Data mining and BDA
Geetal., 2017 [19] . )
in the process industry

Overview of ML

Kim et al., 2018 [20] _ o
m mach1n1ng processes

self-organization and prediction

Focus on supervised
learning for fault diagnosis
Supervised, unsupervised and
semi-supervised learning for BDA
Brief summary on tool-wear

and condition monitoring

Interaction of big data and

XuL.D.etal., 2018 [21] ]
CPS in Industry 4.0

Nothing in particular

) Brief overview of
Wang et al., 2018 [23] DL for smart manufacturing

fault detection and prediction

Overview of anomaly Presentation of
Ramotsoela et al., 2018 [25]

detection in IIoT implementation aspects

Presentation of specific
AI/ML use cases for o
Aggour et al., 2019 [26] . . . applications for component
manufacturing and inspection ) . ) o
inspection and life prediction

Focus on production

Weichert et al., 2019 [27] ML for process optimization quality, brief overview of

fault detection and prediction

Strategies for BDA, ontology Brief overview of DL
Xu X. etal., 2017 [28]

modeling and deduction for predictive diagnostics

Data mining and BDA o .
Cheng et al., 2017 [29] Nothing in particular

for production management

) Classification and analysis of ML
) ML-based fault detection, ) o
This survey o . for fault detection, predictive
prediction and prevention ) )
maintenance, HMI and security

Open in a separate window

1.4. Contributions

This survey aims to provide a comprehensive overview of ML-based solutions for fault detection,
prediction and prevention in Industry 4.0. Currently, limited automation of fault detection, prediction
and prevention is observed. This trend necessitates staff training towards efficiently using conventional
software diagnostic tools. In this way, manufacturers are dealing with increased costs and suboptimal
use of human resources. In addition, such manual methods are incapable of early fault detection,
adapting to the dynamicity of fault sources and learning new fault types from the abundance of
manufacturing data. At the same time, faults may be caused by external sources, such as human errors
or cyber-attacks, and so, this survey discusses ML solutions in the fields of HMI and cyber-security. The
presentation of a holistic approach on tackling faults in Industry 4.0 contexts, independently of their
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sources, either being machine tool wear, cyber-attacks or inefficient human—machine collaboration, as
well as the detailed analysis of relevant cloud/fog/edge architectures, significantly differentiates our
survey from other recent works. More specifically, the following contributions are given:

e An extended discussion on the proposed cloud/fog/edge architectures to enable the acquisition
and processing of heterogeneous data in Industry 4.0 for intelligent monitoring and decision-
making in fault detection and prediction is provided.

o A thorough presentation of supervised, unsupervised and deep learning solutions in the fields of
fault detection and predictive maintenance is given.

e Cyber-security issues and ML-based solutions are discussed, emphasizing on the gains that they
provide compared to conventional techniques.

e ML-based HMI aiming to keep humans-in-the-loop of the manufacturing process is presented.

¢ Open issues are discussed, highlighting the necessary advancements that should be made to
enable the Industry 4.0 and beyond vision.

Also, in Figure 2, various cases of AI/ML solutions for fault detection, prediction and prevention are
depicted. In the following sections, all these areas are thoroughly discussed and details on the impact of
ML-based implementations is highlighted.

Real-Time Data Processing and Analytics

IoT :
Cloud | Datacenters
Fog | Nodes
. 4 Edge | Devices
Fault Detection Observations ge |
—_—— Y,
' ' ‘ \ Human-Machine
Training Datasets Interaction

\ (o))
1. ol
I

, Security (@)
1

ML Algorithms

A
oy
R

& /

Predictive Maintenance \
Fault Prediction and

APEN
— 3

S\ Action Selectlon / A
T Thread Detection

Applications of AI/ML in Industry 4.0 fault detection, prediction and prevention.

Figure 2
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1.5. Structure

Figure 3 depicts the ML-enhanced aspects in the context of Industry 4.0, being presented in this survey.
Stemming from this classification, the rest of the paper is organised as follows. In Section 2, an
overview of cloud/fog/edge architectures for the integration of ML for fault detection, prediction and
prevention is provided. Then, Section 3 presents and classifies ML techniques tackling fault detection,
while Section 4 includes relevant ML solutions for predictive maintenance of machinery and tools.
Next, Section 5 highlights the main security and threat detection issues, towards minimizing the impact
on the manufacturing processes while Section 6 discusses ML in the context of HMI. Finally, open
issues are given in Section 7 and conclusions are drawn in Section 8.

MUL-Based Fault Detection,
Prediction and Prevention

Cloud/fogledge Fault Detection Predictive Human Machine Security &
architectures Maintenance Interaction Threat Detection

Vit et Deep Theoretical Implemented
AUnpeLEES Learning Frameworks Solutions

Figure 3

Structure of this survey.

2. Cloud/Fog/Edge Architectures

As the IIoT constitutes an emerging network paradigm bridging physical and cyber-entities in CPSs, a
combination of interconnected components, cloud and service-oriented computing, as well as real-time
analytics can potentially support challenging industrial scenarios and improve productivity in a cost-
efficient manner. However, a huge amount of data is typically generated by the sensor devices in
particular situations, such as the manufacturing inspection that deals with the detection of product
defects. Although decentralised and autonomous decision-making and reliable real-time control are of
paramount importance, conventional cloud computing naturally falls behind, owing to the centralised
computing processing and the requirements for persistent connectivity. On the contrary, fog computing
goes beyond and supports computation offloading of heavy tasks via autonomously and locally operated
IIoT nodes, being close to the edge of the network, which in turns leads to decreased network traffic,
improved scalability and efficiency, and enhanced security [30]. Recently, cloud/fog/edge architectures
for data-intensive loT applications, relying on efficient knowledge extraction from data existing in
different areas of the decentralized hybrid clouds and within data lakes, in the form of unstructured data,
were presented [31]. In the meantime, using ML at the edge can offer advanced prediction capabilities
and efficient resource management given the resource-constrained nature of IoT-based devices. Next,
recent research approaches based on ML technologies that promise to remedy the aforementioned
challenges are described.

In Reference [32], an industrial CPS was described that employs fog computing and facilitates the
delivering of real-time embedded ML applications through cyber-physical industrial interactions, while
attaining security and privacy. More importantly, the cloud platform stored production-ready ML
models in industrial operations, encoded as predictive modelling markup language (PMML) for various
applications, which were divaricated and executed by the locally deployed fog nodes. Then, real-time
predictions and decision-making, for example, control changes, could be provided without requiring
persistent connection to the cloud. A three-layer architecture was proposed, where the sensing layer
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acquired real-time data measurements and incorporated a software agent to facilitate the communication
between physical and cyber-environments. At the same time, the fog layer undertook the reception of
inbound data streams and execution of PMML-encoded ML models, while the cloud layer was
responsible for maintaining the metadata about each fog gateway in a global repository. It was noted that
the PMML model was based on an existing SVM supervised learning model formally defined by a
separating hyperplane, which is capable of predicting faulty heating operations by performing linear and
non-linear classification and regression analysis in labeled training data. A comparison and performance
assessment through multiple load/stress tests in industrial control processes between the underlined CPS
and conventional cloud-based systems was performed, in terms of reliability and consistency. The
results revealed the superior performance of Al-aided fog/cloud computing in several real-time
decision-making and self-optimising engineering scenarios, where circumstantial failures may occur.
Although the proposed architecture has significant benefits, it also has constraints mainly owing to the
inadequate processing capabilities of fog nodes.

A reference four-layer cloud-assisted smart factory architecture was presented in Reference [33] that
consisted of a smart device layer, a network layer, a cloud layer, and an application layer. By integrating
these layers and applying Al techniques to each of them, a unified and coordinated smart factory
environment can be realised that ensures flexibility, reliability, and efficiency. The smart device layer
comprised basic smart devices in the production cycle, for example, robotic arms and automated guided
vehicles (AGVs) and suggested the application of Al to machine vision and path planning applications.
Besides, the network layer mainly included IWSNs, where the Al algorithms aim at improving the
device-to-cloud (D2C) and device-to-device (D2D) communication and enhance the network resource
distribution and load balancing. Moreover, exploiting Al in the cloud layer can effectively improve the
processing of large-scale manufacturing data and resource management. Finally, adopting Al in the
application layer resulted in dynamic preventive maintenance, resource reconstruction, and context-
aware services. Nevertheless, technical challenges regarding the large amount of diverse and
unstructured data, the system complexity and heterogeneity, the resources allocation, and the cloud
security also exist and should be handled.

A CPS IoT-based architecture for manufacturing processes that supports multiple products, internal
tasks and intermediate outsourcing flows was proposed in Reference [34]. To continuously improve the
overall quality of the processes and dynamically control the mixed data flow issues from
internal/outsourcing processes, a cloud computing control server was implemented, where the
developed IoT beacons detected the status of the production machines and processes, collected sensor
data, and wirelessly interacted with this server through the IEEE 802.11ac protocol at 5 GHz. Besides,
the Intel IoT Analytics cloud module [35] was responsible for the data gathering task. To further
strengthen the proposed architecture by introducing prediction capabilities, DL-based analytics were
exploited to process the data and execute the fault detection classification. As indicative paradigms of
the application of this architecture, the manufacturing processes for vehicles’ high intensity discharge
headlight and cable modules were considered. More specifically, three learning algorithms were tested;
the supervised learning support vector regression (SVR) that can perform real-value function estimation,
the radial basis function (RBF) that can be used in various kernelised learning algorithms and in
function approximation, and the deep belief learning-based DL (DBL-DL) that includes four layers, that
is, one visible layer handling inputs from IoT sensors, two hidden layers extracting classification
features and one output layer. Among them, the DBL-DL model was the most efficient for recognizing
defect types. However, it is highly important to develop and apply accurate and fast analytics in the
cloud layer along with big data techniques.

In an effort to accurately and in real-time detect the types and degrees of product defects in multiple
assembly lines of industrial environments, a robust inspection system, named Deeplns, was
implemented in Reference [36] aided by fog computing to offload the computation process to fog nodes
and a DL-based CNN classification model. This model contained lower-level CNN layers to facilitate
feature extraction during data uploading, as well as higher-level CNN layers to realized defect
classification and degree regression. The proposed system was capable of processing big data with low
response latency and network traffic and combined three modules; the fog-side and server-side
computing modules and the back-end communication module. To investigate the performance of this
system, image processing was realised using image filters, detecting surface defects by pixel chip pads.
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The data set included ten categories of defects, each of which contained 200 images for training and 50
images for network testing. The experimental results demonstrated the robustness and efficiency of the
proposed method, regarding the recognition of defects against two well established methods, that is, the
contour detection approach that uses contour classifiers to determine the category of defects and the
pixel-based method that uses a classifier trained with pre-defined pixel-based features of input data. To
further improve the efficiency of this system, multiple fog devices should be simultaneously used.

In Reference [37], a three-layer distributed ML model for an industrial monitoring system was presented
that processes the data stream in the fog and intends to save spectrum and minimize the energy
consumption by restraining unnecessary uplink data transmission. This model incorporated an 10T
cloud back-end storage point, implemented using the ThingsBoard platform, a fog middle layer,
implemented using small resource-constrained Raspberry Pi devices, and a lower IWSN layer,
consisting of TelosB motes with sensor devices and a gateway. The proposed model includes both
learning and monitoring tasks in the sensor device, as well as simulation of the data streams in the fog
node. The sensor nodes initially send information data to fog nodes, triggered by changes in the values
of certain model parameters. The fog node simulates the data streams and recognizes local anomalies
and faulty behavior of sensor devices, whereas the cloud gathers the local information from the fog
node. To verify the performance of this model, a real-world test-bed was implemented with three
different indicative noisy data streams as input, while a moving average model was used as a reference
model for comparison purposes. According to the results, the proposed model reduced up to 98% the
packet transmission attempts by sensor devices with minimal accuracy loss, whereas the end-to-end
delay was constrained to 180 ms. By reducing its complexity, the proposed model can be used in
devices with limited resources. Also, effectively prioritizing the packets can increase the reliability and
flexibility of this model.

Since the wireless channels of I1oT are highly dynamic, typical techniques that enhance energy
efficiency and extend the battery lifetime, for example, predictive transmission power control, cannot be
directly applied. To overcome this issue, a forward centralised dynamic approach was proposed in
Reference [38] that effectively manages the execution time and transmission power level of sensing,
processing, and transmission processes of Al-driven IIoT devices at the edge. More importantly,
FCDAA aims at adaptively optimizing the sleeping time of IloT devices and the transmission power,
while attaining enhanced reliability. A system-level battery model was also reported that inspects the
duty-cycle and energy dissipation in these devices, along with a data reliability model over hybrid
transmission power control and duty-cycle network associated with the wake-up and sleep periods of
devices. To experimentally test the performance and reliability of the proposed method, an appropriate
test-bed with IoT devices was implemented and industrial data sets were generated and processed. The
Monte Carlo simulation results demonstrated the high reliability of this method in both static, that is,
product processing and dynamic, that is, vibration and fault diagnosis, industrial applications, where the
received signal strength indicator and the packet loss ratio were the key performance indicators.
Although the integration of TPC and duty-cycle management mechanism for Al-based IloT devices
increases the complexity of the proposed FCDAA and the delays, this integration meaningfully
decreases the energy consumption.

In Reference [39], a fog computing-based framework was described for remote sensing, monitoring of
the health conditions of equipment, and fault detection in industrial environments. By enabling fog
computing, this framework aims at attaining low network latency while ensuring reliability, scalability,
and cost-effective storage of huge amounts of data. Also, this framework included an online process
monitoring system, collecting real-time data, IWSNs, communication protocols, and ML-based
predictive analytics. The competence of this framework was evaluated by conducting a real-world
experiment on a factory floor that involved monitoring of the vibrations and energy consumption of
pumps in a power plant and computer numerical control (CNC) machines. To gather real-time data,
multiple wireless sensors, that is, current transducers and accelerometers, were installed on pumps and
CNC machines. Each sensor was equipped with a ZigBee wireless module, in order to transmit the
measured sample data sets to the private cloud, whereas sample data sets were sent to the Azure public
cloud for data analysis. A supervised random forest (RandF) ML algorithm was used on the Amazon
elastic compute cloud (EC2) for the development of a predictive model. This ensemble learning
algorithm constitutes a simple and flexible method for classification and regression and consists of tree-
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structured classifiers. Based on this algorithm, multiple decision trees, which provide a classification for
input data, are randomly created and merged into one “forest”. Then, the algorithm collects the relevant
classifications and generates the prediction. The results underlined the accuracy of the predictive model,
as well as the short training time associated with it.

Table 2 includes the targets of the various architectures and the ML solutions that they support in the
context of Industry 4.0.

Table 2

Target of cloud/fog/edge architectures and respective ML solutions for Industry 4.0.

Reference Target of Relevant Architecture ML Solution

Minimisation of failures
O’Donovan et al., 2018 [32] . SVM
and latency reduction

Improvement of D2C and D2D

o General approach for
Wan et al., 2018 [33] communication and resource

o various AI/ML solutions
management optimization

Improvement of process
Lee etal., 2017 [34] quality and dynamic SVR, RBF, and DBL-DL

mixed data flow control

) Detection of defect
Lietal., 2018 [36] CNN
type and degree

. Reduction of spectrum usage o )
Lavassani et al., 2018 [37] ) Distributed sensor learning
and energy consumption

Sensing and processing
L General approach for
Sodhro et al., 2019 [38] execution time management ) .
. . various AI/ML solutions
and transmit power reduction

Latency reduction,
Wuet al.,, 2017 [39] reliability improvement and RandF

scalability provisioning

3. Fault Detection

In the context of Industry 4.0, fault detection and diagnosis is a crucial and demanding process due to
the autonomous and self-optimised operation of machines and the wealth of data that is collected in real-
time [40]. Currently, the use of diagnostic software for functional tests involves actual manufacturing
data in real settings, providing poor diagnostic accuracy while technicians are required to perform
several debugging rounds, as well as physical probing to identify the root cause of faults, thus
demanding increased amounts of time for repairs, reaching several days or even weeks [41]. In ML-
based approaches, the big data that is acquired by the monitoring system must be timely processed in
order to correctly detect abnormal operation and faults. Fault detection and diagnosis mainly involves
three steps, that is, data collection, data processing for feature extraction and finally, fault classification
[42]. Relevant solutions for fault detection are mainly based on supervised, unsupervised and deep
learning methods.

3.1. Supervised Learning-Based Solutions
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In the area of supervised learning, several studies have employed ML methods to tackle issues of
industrial fault detection and diagnosis. In Reference [41], the authors targeted the development of an
automated diagnosis tool for circuit-boards, in order to reduce human effort and improve the diagnostic
accuracy. The intelligent detection and diagnosis solution relied on three ML classification methods, that
is, ANNs, SVMs and weighted-majority voting (WMYV), where the latter combined the benefits of
ANNSs and SVMs. These methods were trained using repair history data while, fault instances stemming
from failure logs and subsequent repair actions were exploited to train the classification models. The
comparison in terms of accuracy and resolution among the three ML methods and conventional
diagnostic software showed that WMV provided the best performance, offering optimal repair guidance.
Moreover, the proposed ML-based methods represent significant improvements compared to
conventional manual fault detection and diagnostic software. From the performance evaluation, when
three attempts are performed, according to the proposed optimal repair suggestion set, the accuracy of
the conventional diagnostic software falls below 50% while the adoption of the ML-based diagnostic
system allows more faulty boards to be successfully repaired, reaching up to 77.5% in low volume
manufacturing and 98.7% in high volume. Nonetheless, in Reference [43], it was shown that the
accuracy of these methods may be compromised in cases where repair logs are fragmented, resulting in
missing errors, or syndromes during the diagnosis process. Thus, as missing syndromes might lead to
erroneous repair guidance, the authors presented a board-level fault diagnosis system to mitigate their
effect in different ML models. In greater detail, the log files containing the syndromes from a faulty-
board were analysed and preprocessed prior to root-cause analysis. The ML methods included SVM,
ANN, Naive Bayes, and Decision Tree and were implemented on WEKA [44], using training data from
two synthetic boards and two industrial boards. The extensive performance evaluation showed that the
fault diagnosis performance significantly varies, depending on two factors. Firstly, different ML
algorithms perform better under different missing-syndrome handling methods, for example, ANN is
superior when label imputation is adopted, while its performance deteriorates under the decision-tree
model. Secondly, the fault diagnosis systems may set different goals, including not only high fault
detection and diagnosis accuracy, but also the reduction of irrelevant syndromes.

Another work investigated the impact of imbalanced data sets on the performance of SVM binary
classifiers [45]. In these cases, employing sampling methods like the synthetic minority oversampling
technique (SMOTE) can balance the data set prior to training by a classifier. Still, in nonlinear
problems, SMOTE experiences difficulties as minority instances in the feature space of the classifier,
instead of the input data space are generated. In order to overcome this limitation, weighted kernel-
based SMOTE (WK-SMOTE) was presented, performing oversampling in the SVM classifier’s feature
space. WK-SMOTE was shown to improve the performance of detecting the stage of degradation in the
insulation of high-voltage electrical machines in comparison to other methods, according to multiple
trials of imbalanced data sets. More specifically, when WK-SMOTE is applied on this multi-class
imbalanced classification problem, the highest G-Mean score, equal to 0.371 is achieved, as well as the
best accuracy equal to 88.1%, among the compared algorithms. Similarly, supervised ML for fault
detection with imbalanced data and concept drifts, that is, changes in fault patterns, due to machinery
aging or after repair/replacement was examined in Reference [46]. For this purpose, ensemble learning
was adopted, integrating several offline classifiers and a three-stage method was developed to detect
abnormal machine operation in a smart factory. During the first stage, an ensemble classifier was trained
using an improved dynamic AdaBoost.NC classifier and the SMOTE method was adopted to reduce the
effect of data imbalance. Then, in the second stage concept drifts in imbalanced data were detected,
employing a linear four rates method. Finally, the third stage created a new ensemble, by relying on
AdaBoost.NC and SMOTE. The experiments that were conducted with imbalanced data sets, revealed
that the proposed method can successfully detect abnormal operation with an accuracy rate in minority-
class data of over 94%. Detailed comparisons between ML methods were presented in Reference [47]
for fault detection in semiconductor manufacturing with imbalanced data. In greater detail, three
sampling-based, four ensemble, four instance-based algorithms, and two SVM methods were evaluated,
in two cases, with each one comprising 50 data sets. In the first case, etching process data was acquired
while the second case was based on chemical vapor deposition process data. From the trials, it was
shown that the instance-based algorithms exhibited the best performance, in terms of G-mean, F-
measure, and area under the curve, even when the imbalance ratio increased. Thus, for settings where
wafer defects stem from different process parameters, while the available training samples lie in a small
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subregion of the space form from these parameters, defective patterns can be only learned within this
subregion. So, efficient model training necessitates the availability of defective data from the majority
of the defective patterns, even if they occur with low frequency. Still, instance-based fault detection
addresses such issues, surpassing the unavailability of defective samples.

Next, the development of a monitoring system, leveraging the availability of big data from an
automotive manufacturing plant was the subject of Reference [48]. As real-time monitoring is necessary
to avoid sudden interruptions in the production process, IoT sensors collecting a wide range of data,
such as temperature, humidity and measurements from accelerometers and gyroscopes were used. Fault
prediction was based on a hybrid prediction scheme, consisting of density-based spatial clustering of
applications with noise (DBSCAN) to detect outliers and RandF classification to remove outliers prior
to fault detection. Furthermore, this hybrid scheme was tested at a real automotive manufacturing plant
and results suggested that hybrid DBSCAN-RF can offer improved accuracy, compared to classification
methods, such as Naive Bayes, RandF and multilayer perceptron, among others. In greater detail,
DBSCAN achieved an accuracy of 100%, compared to other classification models, while DBSCAN-
based outlier detection with RandF improved the accuracy of standalone RandF by 1.462%. At the same
time, the integration of DBSCAN with Naive Bayes, logistic regression, and multilayer perceptron
improved the performance of their conventional versions by 3.173%, 0.567%, and 2.026%, respectively.

3.2. Unsupervised Learning-Based Solutions

Regarding unsupervised learning methods, there have been various works presenting fault detection
solutions. The authors of Reference [49] aimed to alleviate the burden of manual fault information
extraction, relying on previous knowledge and diagnostic skills, by developing an intelligent fault
detection scheme. So, a two-stage unsupervised learning method using a neural network (NN) was
employed, where in the first step, sparse filtering for feature extraction from the mechanical vibration
signals was performed. After, the second step was based on softmax regression for automatic
classification of the machines’ health conditions. The proposed method was validated in two scenarios,
that is, fault detection for motor bearing and locomotive bearing, showing that, as the volume of
unlabeled data increased, the accuracy performance was improved. The proposed two-stage
unsupervised learning with an NN improved the accuracy of fault diagnosis as number of the unlabeled
data increased. Furthermore, the weight vectors of sparse filtering exhibited similar properties to Gabor
filters, serving as excellent band-pass signal filters, providing an insight on the way that unsupervised
feature learning deals with mechanical signals.

Then, for renewable energy systems, based on wind turbines, the work in Reference [50] introduced an
autoencoder and explored its application on fault classification from collected raw vibration signals,
integrating both supervised and unsupervised learning methods. More specifically, a fault diagnosis
scheme consisting of multiple hierarchical extreme learning machines (ELM) was presented,
concatenating a forwarding list of ELM layers, with each one performing independent data processing.
ELM represents a learning method that is suitable for multi-class classification, due to its multi-input
structure and single-hidden feed-forward networks, achieving better performance compared to SVM
[51]. ELM performs representational learning towards data preprocessing, feature extraction and
dimension reduction. During data preprocessing, the ELM-based autoencoder was used for data
representational learning, providing the feature reconstruction and in the next step, the ELM network
extracted a compressed low-dimensional representation. The ELM-based autoencoder increased the
classification accuracy by 5-10% when compared with other popular classifiers, such as SVM and
relevance vector machine (RVM), searching the optimal solution from the constructed feature space. So,
it was revealed that accuracy and efficiency of multiple fault detection for wind turbines can be
enhanced, while this solution can be scaled to other industrial settings.

Unsupervised learning solutions for CPS have been developed in Reference [52]. Focusing on
monitoring the machine spindle during its operation in a CPS, multidimensional classification using ML
clustering was developed. The main target of the clustering algorithms was to partition the collected
data set into clusters, by evaluating metrics, such as Euclidean distance or probability distributions, that
do not consider the physical interpretation of each variable, thus resulting in uncoupled knowledge
discovery. In addition, a performance comparison was conducted for the three clustering algorithms that
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were employed, that is, K-means, hierarchical agglomerative and Gaussian mixture models, evaluating
their accuracy to spindle performance knowledge during high load operation. It was concluded that,
although the Gaussian mixture model incurred higher implementation complexity, it was capable of
detecting clusters that were more relevant to the operating conditions. Additionally, the agglomerative
algorithm provided a detailed analysis of the cycle’s but it was severely influenced by inherent
variables, such as angular speed, leading to possible interference during knowledge discovery. Finally,
K-means clustering performed similarly to the hierarchical agglomerative algorithm but it was
adequately faster, thus enabling rapid data set analysis.

3.3. Deep Learning-Based Solutions

In order to improve the performance of fault detection and overcome the limitations of conventional ML
methods, DL-based solutions have been developed. DL relies on raw data and multiple layers, with each
one designed to be simple and non-linear, being able to automatically create new representations of the
data and provide accurate detection or classification [53].

In industrial applications, where fault detection uses noisy mechanical data, a DL solution named
LiftingNet was presented in Reference [54]. LiftingNet can be adaptively trained using mechanical data
sets and perform classification without pre-defined features. For validation purposes, two motor bearing
data sets were used, that is, the Case Western Reserve University (CWRU) and a motor bearing data set
with varying rotating speed. It was shown that LiftingNet was able to adapt to different tasks and
provide fault classification, even using only noisy mechanical data, surpassing the performance of
conventional SVM classifiers, in cases where the desired data is usually difficult to trace and process.
Still, LiftingNet was characterised by three limitations. Firstly, fault severity could not be assessed, as
the amplitude of mechanical data was normalized in order to feed the various rotating speed signals into
the network. Secondly, fast training and overfitting prevention techniques were not applied, thus
limiting its performance. Thirdly, better designs for the loss function and the final classifier should be
integrated, towards improving the behavior of LiftingNet. Another paper examined fault pattern and
crack size identification by exploiting mechanical data and more specifically, vibration acceleration
signals from machine bearings [55]. Thus, two-layered bearing fault detection was developed, relying
on a hybrid feature pool extracting information from the raw vibration signals, addressing their non-
stationary behavior, due to different crack sizes. Then, sparse stacked autoencoder (SAE)-based DNNss
were employed for data classification. From the results, it was highlighted that the proposed two-layered
bearing fault detection method improved the detection accuracy, compared to SVMs and back-
propagation NNs (BPNNs) alternatives, for varying fault severity, independently of the nonlinearities in
the vibration signals. Still, for roller fault identification, its performance was slightly degraded,
underpinning the need for improved signal processing algorithms.

The issue of handling changes in the signal features and performing early fault detection was discussed
in Reference [56]. Due to these variations, it is challenging to decide whether or not, they stem from
abnormal mechanical faults or scheduled changes during machine operation. Aiming to tackle this
problem, a three-step early fault detection method, applicable in time-varying workloads was given in
detail. In the first step, DL was adopted for the automatic selection of the impulse responses from long-
term mechanical vibrations. Next in the second step, an algorithm was developed, extracting the
properties of machine tools from the selected impulse responses. Then, the third step involved an
indicator based on these properties, being used for health status prediction of the machinery. The DL-
based solution was evaluated, using a large volume of data during a period of 228 working days in an
automobile factory. It was shown that the reliance on the extracted dynamic properties offers significant
improvement in health prediction, compared to conventional signal-based features, such as time-domain
features, frequency-domain features and wavelet transform.

The detection of failures in the gearbox of mechanical equipment, and more specifically wear, pitting
and broken teeth that may cause interruptions and workers’ injuries, was the topic in Reference [57].
Since current data-driven solutions have limitations due to using specific data classes, it is necessary to
study various data characteristics to improve the detection accuracy. As a result, the developed DL-
based solution performs data acquisition of mechanical vibration signals, deriving representative
features. Then, an NN for fault detection was constructed, based on the multi-layer gated recurrent unit
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(MGRU) model. MGRU provides feature representation with stronger similarity to the original data. So,
each neuron layer, sequentially learned more abstract representations and offered better classification
results. Regarding the accuracy performance, MGRU improved the accuracy of gear fault detection
without incurring excessive computational complexity, when compared to the long short-term memory
(LSTM), the multi-layer LSTM (MLSTM) and the gated recurrent unit (GRU) model. Then, the
separability analysis showed that MGRU was able to extract the information from the plethora of
mechanical signals and efficiently identify the different fault types. Moreover, MGRU exhibited strong
robustness against the variations of parameters in the experiments, maintaining a stable classification
accuracy. Further advancements to DL for fault detection, due to machine bearing, were reported in
Reference [58] where a snapshot ensemble CNN (SECNN) was proposed. Snapshot ensemble learning
based on the cyclic learning rate (CLR) scheduler and the combination of local minima has the potential
to improve fault detection performance but requires experience-based pre-defined CLR information. In
order to automatically determine the appropriate learning rate for SECNN under different data sets, a
three-step approach was given. Initially, max-min cosine cyclic learning rate scheduler (MMCCLR) was
designed to mitigate the effect of other parameters on the learning rate. In the next step, a new learning
rate testing, namely logL.R Test, was employed for proper learning rate range estimation of the
MMCCLR. The proposed SECNN with MMCCLR was experimentally tested using the bearing data set
of CWRU, the self-priming centrifugal pump data set, and the bearing data set of the machinery failure
prevention technology. From the results, it was concluded that SECNN with MMCCLR surpassed other
baseline methods, based on stochastic gradient descent (SGD), including SGD with decay ratio (SGD-
Decay) and stepwise decay (Step-Decay). However, some limitations were highlighted, regarding
SECNN. More specifically, it was observed that SECNN did not consider imbalances among normal
and fault data. At the same time, pre-defined fault types should be often used for training, thus resulting
in incorrect classification of faults that did not exist in the training data set.

In a different setting, fault detection for computer-based assembly lines of the automotive industry was
studied in Reference [59]. This process is usually performed through boundary checking while the
analysis of complex non-linear signals is manually performed by experienced personnel. Thus, a DL-
based automated fault detection and isolation (FDI) method was presented, using the individual signals
from various software and hardware sources of the assembly line. After, data encoding took place and
signal values corresponding to categorical entities were encoded through one-hot-encoding. At the same
time, for continuous signals, a specific range was considered and divided into a fixed number of bins,
based on the statistical properties of the signal. In order to detect correlations among different inputs, the
spatial transformation of the input space into a vector-space embedding was performed through a set of
deep auto-encoders (DAEs). As the continuous space of vector embedding requires further processing in
order to correspond to specific system states, hierarchical clustering processed the extracted features
from the DAE. From the performance evaluation, it was demonstrated that the proposed DL-based FDI
was capable of processing and modelling the large volume of multi-type spatial-temporal manufacturing
data, at a high accuracy, in real-time working conditions, surpassing alternative methods, including
template-based, rule-based and Bayesian-based FDI.

Table 3 summarizes the industrial settings and the ML solutions that were adopted for fault detection
and diagnosis in Industry 4.0.
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Fault detection setting and respective ML solutions for Industry 4.0.

Reference

Fault Detection Setting

ML Solution

Maier et al., 2013 [41]

Jin et al., 2016 [43]

Mathew et al., 2018 [45]

Lin et al., 2019 [46]

Lee et al., 2016 [47]

Syafrudin et al., 2018 [48]

Lei etal., 2016 [49]

Yang et al., 2016 [50]

Diaz-Rozo et al., 2017 [52]

Pan et al., 2018 [54]

Sohaib et al., 2017 [55]

Luo et al., 2019 [56]

Tao et al., 2019 [57]

Wen et al., 2019 [58]

Igbal et al., 2019 [59]

Automated detection

for circuit boards
Missing syndromes due
to fragmented repair logs

Imbalanced data sets

Imbalanced data sets

and concept drifts

Imbalanced data sets

of semiconductor production

Wide range of data types

Use of unlabeled data,
lack of previous knowledge
and diagnostic experience
Use of raw vibration signals

from wind turbines
Machine spindle monitoring

Use of noisy mechanical data

Use of vibration acceleration
signals for bearing and
crack size identification
Time-varying signal features
and early fault detection
Failures in the gearbox
of mechanical equipment
Automatic range adjustment

of the CLR scheduler

Use of multi-type spatial-
temporal signals of an

automotive assembly line

ANNs, SVMs and WMV

SVM, ANN, Naive Bayes,

and Decision Tree
WK-SMOTE SVM

Ensemble learning with

various offline classifiers

Comparison of three sampling-
based, four ensemble, four instance-
based, and two SVM methods

DBSCAN-based RandF

Two-stage NN with sparse

filtering and softmax regression

Multiple hierarchical ELMs

K-means, hierarchical, agglo-
merative and Gaussian mixture
DL-based LiftingNet

SAE-based DNNs.

DL-based dynamic

properties extraction

MGRU-based NN

SECNN with MMCCLR

DL-based FDI with DAEs

Onpen in a separate window

4. Predictive Maintenance

Another important process that can greatly benefit from the application of ML, is predictive
maintenance. More specifically, the availability of a wealth of data, stemming from the various
processes and machine state information enables the timely and accurate prediction of when machinery
requires maintenance, as well as zow maintenance operation can be improved. Even when clear
indications of machinery wear is not available, predictive maintenance leverages on data acquired
during production to identify the characteristics of this degradation. In this way, costs and downtime
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duration can be reduced while increasing the production output. The application of BDA and data fusion
for predictive maintenance purposes has been recently investigated within the contexts of semiconductor
manufacturing and smart factories, in References [60,61], respectively.

4.1. Supervised Learning-Based Solutions

The first category of ML-based solutions for predictive maintenance relies on supervised learning and
comprises the majority of relevant works. In Reference [62], multiple classifiers (MC) were adopted for
predictive maintenance, regarding integral type faults in semiconductor manufacturing, that is, failures
occurring due to the accumulative high usage and load on the machinery parts. Thus, the developed
method aimed at addressing the issue of imbalanced data sets, usually existing in maintenance
classification problems [63] and enabled maintenance under statistical cost minimization. Towards this
end, MC components operating with varying prediction horizons, improved performance targets, such as
predicting frequency of unexpected breaks and unexploited lifetime, imposing maintenance decision
rules in a dynamic manner and tackling high-dimensional data problems. The MC supervised ML
method was implemented in a semiconductor manufacturing maintenance process, revealing that better
performance can be achieved, compared to conventional preventive maintenance solutions and
predictive maintenance alternatives, relying on single SVM and k-NN classifiers. Thus, the MC method
was capable of providing the lowest operating costs while being robust against varying values of
parameters, determining the frequency of unexpected breaks and the amount of unexploited lifetime.
Another work investigated the remaining lifetime detection of key machinery components for predictive
maintenance purposes by analyzing heterogeneous data that were collected through multiple sources
[64]. More specifically, an ML-based solution was developed for structuring such data sets, considering
the spatiotemporal property, and invisible factor modeling for reduced downtime and energy-efficient
machine operation. The adopted systematic procedure comprised structuring of industrial big data, and
semantic web technology for semi-structured data, as well as target recognition, detection and tracking
for unstructured data. Then, multi-scale analysis was performed for structured data characterisation,
identifying hidden patterns, while spatial envelope analysis extracted independent subsystems and time-
frequency analysis performed signal decomposition. The performance assessment of the multi-scale
analysis method showed that it improved the accuracy of remaining lifetime prediction, compared to an
alternative ANN method using a single source of information. More importantly, it was concluded that
exploiting heterogeneous data from multiple sources enables novel methods of predictive maintenance,
task scheduling and machining process optimization towards reducing the energy consumption.

Next, predictive maintenance based on heterogeneous data, such as cutting forces, vibration signals and
acoustic emissions, from milling machinery was the main focus in Reference [65]. The authors adopted
ensemble learning RandF where each individual decision tree corresponds to a regression tree, as tool
wear represents the gradual failures in the operation of cutting machinery. Also, the bagging, slipping
and stopping criteria for the ML-based solutions were given and comparisons with ANNs with a single
hidden layer and SVMs alternatives were presented, using a data set collected from 315 milling trials. It
was observed that although RandF required longer training than ANNs and SVMs, it provided the
highest accuracy in predicting tool wear. An SVM solution was proposed to address issues in shop-
floors where the main production is performed, through automated machines, workers or both, in
Industry 4.0 environments, millions of devices and sensors can produce a wide range of data for
predictive maintenance. So, in Reference [66], ML based on SVM was presented, modelling the
conveyor belt system through the M/D/1 queue. In this setting, SVM predicted instances of abnormal
operation where machine overloading or slow downs occurred, by detecting changes in the queue
parameters. For any abnormality, the situation was solved by reconfiguring the manufacturing system.
This enabled a flexible system, even if an abnormal situation occurred, as illustrated through simulations
where automated detection of abnormalities and self-healing were observed.

As small and medium-sized enterprises (SMEs) constitute a major group within the Industry 4.0,
providing specific benefits in terms of innovation and willingness to adopt novel solutions, as well as
limitations regarding their workforce and economic resources, the work in Reference [67] proposed a
low-complexity solution for predictive maintenance, aimed at SMEs. Currently, existing ML-based
methods rely on complex, algorithms, such as linear-discriminate analysis (LDA), decision trees and
neuro-fuzzy networks. Moreover, such methods are based on significant amounts of data being collected
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for classification and feature extraction. For these reasons, the authors proposed a low-complexity
algorithm for online feature dimensionality reduction and automated machine status detection and
prediction through an NN. The proposed solution included two steps where in the first, add-on sensors
collected machine status data. Then, data parsing and feature extraction were performed, prior to
dimensionality reduction and feeding of the results, as input into NN for training and prediction model
creation. For verification and validation purposes, the NN-based method was implemented using real
machine data from a spring manufacturing factory, employing add-on triaxial accelerometers for data
collection. Comparisons with other methods, such as LDA, showed that highly attractive trade-offs
between accuracy and prediction can be attained, thus facilitating the adoption of ML-based predictive
maintenance by SMEs. More specifically, the proposed method achieved an overall accuracy of 93.1%,
equal to LDA, but with the capability of being implemented with more simple hardware, thus avoiding
the need for expensive and specialised hardware.

In cases where machine conditions dynamically vary in time due to concept drifting with aging, failures
and repairs, predictive maintenance is a challenging process. More specifically, patterns stemming from
the operational data could significantly change, thus resulting in reduced prediction accuracy. In order to
tackle this issue, especially when only a single classifier type is used, ensemble learning based on MC
types and diversity was employed in Reference [68]. The basis for the proposed solution is diversity for
dealing with drift (DDD) [69], enabling data diversity manipulation for constructing ensemble models,
with each one comprising several base classifiers to address concept drifts. However, the multiple
classifier type DDD that was developed, consisted of multiple classifier types, dynamic weight
adjusting, and data-driven adaptation to concept drifts for offline learning. In this way, timely adaptation
to concept drifts and high prediction accuracy can be harvested. Moreover, to relax the computational
requirements, the distributed cloud computing framework, called MapReduce was adopted [70]. From
the simulations that were conducted with a concept drift data set, the efficiency of the multiple classifier
type DDD was outlined, adapting to concept drifts by appropriately updating the classifier weights,
leading to an accuracy of 87.99%.

4.2. Unsupervised Learning-Based Solutions

Currently, there exist few works presenting unsupervised learning solutions for predictive maintenance.
In Reference [71], a complex system is given, performing IoT data collection, storage, processing and
visualization, prior to predictive modelling. This system provides structured and unstructured data
ingestion from multiple sources, as well as data management via data lakes, based on file and data base
management systems, such as Hadoop and Apache Hive, among others. The joint consideration of big
data and cloud computing, during the predictive stage encompasses data quality processing and
MapReduce-based distributed principal component analysis (DPCA). DPCA exploits unsupervised
learning for training, using unlabeled data which is necessary in large-scale manufacturing plants,
characterised by heterogencous data. The system was subject to long-term evaluation in a real industrial
environment and compared learning algorithms based on K-means, square predicted error (SPE) and
DPCA-based T-squared. It was observed that SPE exhibited a more stable behavior, in terms of fault
detection, while K-means and T-squared were more sensitive in instances of multi-variable value
changes. Independently of the adopted ML algorithm, the system enabled real-time notification of
abnormal operation, even several days prior to an actual failure. Next, the work in Reference [72] aimed
at integrating real-time and historical analysis, towards self-optimization for predictive maintenance.
Thus, an intelligent data analysis and real-time supervision (IDARTS) framework was presented for data
collection and creation of context-aware data analysis and evaluation. IDARTS was designed according
to the plug-and-produce functionality, supporting predictive maintenance with dynamic system
virtualization, addressing changes at the shop-floor level. The data output from the virtual resources was
used to train a K-means clustering classifier. Moreover, context-awareness and HMI allowed the system
to either adopt the operation parameters towards self-reconfiguration, or guidance to an operator for
safeguarding normal production conditions and product quality. From the experiments, it was revealed
that IDARTS provided scalability and adaptability to production changes, in terms of shop-floor layout
while performing data analysis in runtime environment, without needing additional programming, down
time or redeployment.

4.3. Deep Learning-Based Solutions
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DL has emerged as a significant advancement in data-driven analysis and optimization for industrial
applications, especially for those focusing on the accurate prediction of RUL. The authors of Reference
[73] presented a device electrocardiogram (DECG) framework, employing a deep denoising
autoencoder (DDA) and regression operation to enhance the accuracy of RUL prediction of industrial
machines. DECG avoids sensor installation and acquires temporal data for each operation at the device
or operator level, from the programmable logic controller (PLC). Also, DECG overcomes the necessity
of experts in complicated production issues, greatly reducing maintenance costs. More specifically,
DECG collected data relative to the machines’ cycle time and through DL and a wide range of run-to-
failure data, achieved automated feature extraction and accurate prediction. The proposed solution was
put against a conventional factory information system and results illustrated that DECG was able to
identify the behaviour of operation working time and offered more fine-grained training data,
facilitating DL in accurately predicting RUL. Thus, the proposed solution can lead to reduced DL
overfitting and improved RUL prediction accuracy. Next, RUL through deep transfer learning (DTL)
was investigated in Reference [74]. DTL addressed feature transfer in DL networks and relied on three
strategies, that is, weight transfer, feature transfer and weight update. Thus, DTL with feature transfer
learned the joint features among multiple objects, improving the prediction accuracy of RUL, thus
showing the advantages of DTL. In greater detail, initially, a SAE network is trained off-line with
historical run-to-failure data containing RUL information of a cutting tool. Next, the trained network is
transferred to an operating tool towards performing on-line RUL prediction. In this way, RUL prediction
was performed without interrupting the machine tool’s operation. Also, efficient RUL prediction was
achieved without requiring excessive historical failure data sets. As current RUL prediction methods
experience difficulties in extracting heterogeneous features from high-dimensional massive signals, the
predictive maintenance performance is threatened. In Reference [75], data-driven machine health
monitoring was developed, employing adaptive kernel spectral clustering (AKSC), combined with deep
long short-term memory recurrent NNs (LSTM-RNN). In greater detail, a three-step approach was
adopted, first including, frequency and time-frequency domain extraction from massive signals and an
Euclidean distance-based algorithm for identifying the machine degradation features. Then, AKSC was
presented, for detecting anomalies in the machine operation, based on multiple degradation features. In
the last step, LSTM-RNN was created for updating and predicting the machine failure time. The
performance of AKSC with LSTM-RNN was evaluated, using a set of test-to-failure experimental data,
outlining its superiority compared to other methods, in terms of average error, root mean square error
and accuracy. The improved performance of LSTM-RNN was attibuted to its ability of extracting the
long-term spatiotemporal dependency of different degradation parameters, towards provding short-term
failure prognostics. Furthermore, predictive maintenance in ultra-precision manufacturing applications
has been studied in Reference [76]. So, a DL data-driven framework was proposed, fusing multiple
stacked SAEs to perform tool condition monitoring. The DL-based solutions consisted of a training
model that was able to process multiple parallel feature spaces from time-, frequency- and wavelet-
domains data, extracting low-level features and a feature fusion structure for learning higher-level
features relevant to tool wear. In addition, feature extraction and classification performance was
improved by a modified loss function. A data set representing a real manufacturing process was used to
evaluate the performance of the DL-based solution. It was shown that by exploiting the feature learning
ability of deep layer models and the heterogeneous feature spaces, the proposed solution successfully
classified the tool wear condition with over 96% accuracy, outperforming BPNN and SVM alternatives.

Table 4 includes the specific industrial environments and the respective ML solutions that were
employed for predictive maintenance of equipment in Industry 4.0.
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Table 4

Predictive maintenance setting and respective ML solutions for Industry 4.0.

Reference Predictive Maintenance Setting ML Solution

Imbalanced data sets .
Susto et al., 2015 [62] ) MC supervised method
of integral type faults

Unstructured multi- Multi-scale analysis
Yan et al., 2017 [64] )
source heterogeneous data (envelope, time-frequency)
Wu et al.,, 2017 [65] Heterogeneous data RandF
Shin et al., 2018 [66] Self-healing in shop-floor SVM

. NN-based for online
Low-complexity

Kuo et al., 2017 [67] ) feature dimensionality reduction
operation for SMEs o
and automated prediction

) Bias mitigation when Ensemble learning with
Lin et al., 2017 [68] ) ) ) .
using a single classifier type MC types and diversity
Large-scale monitoring K-means, DPCA-based
Yu et al., 2019 [71] ]
with unlabeled data T-squared and SPE

Dynamic changes at
Peres et al., 2018 [72] K-means
the shop-floor level

Automated RUL prediction
Yan et al., 2018 [73] . DL-based DECG
without experts’ knowledge

RUL relevant feature .
Sun et al., 2019 [74] . DTL with SAE
transfer in DL network

Heterogeneous feature extraction )
Cheng et al., 2019 [75] L AKSC with LSTM-RNN
from massive signals

Tool wear identification
Shi et al., 2019 [76]  in ultra-precision manufacturing Feature spaces-based DL

without experts’ knowledge

5. Security and Threat Detection

Industry 4.0 invokes a wide variety of sensors and actuators, IT systems with fog/cloud data-driven
processing and BDA, as well as wireless and wired network components, along with different standards
and specifications. These key elements, coupled with the end-to-end digitization have the potential to
offer many advantages and significantly transform the supply chain and the product lifecycle of the
manufacturing system and make them more efficient, decentralized, and sufficiently-connected.
However, Industry 4.0 also bring various security challenges and caveats, due to the integration of new
technologies and architectures, thus making the industrial infrastructures more susceptible to new forms
of attacks, such as product tampering, service interruption, infiltration, intellectual property loss, and
spear phishing attacks. More importantly, these attacks not only trigger malfunction, but also leak
important information. For instance, cyber-attacks, such as Stuxnet computer worm attacks [77] tend to
increase, along with the increasing levels of connectivity. The heterogeneous, diverse, and large-scale
nature of the aforementioned enabling technologies and the complex physical industrial environment
itself hinder the application of traditional information technology security countermeasures, for
example, firewalls, and the detection of potential security vulnerabilities.

https://www.ncbi.nim.nih.gov/pmc/articles/PMC6983262/ 19/36



01/10/2020 Tackling Faults in the Industry 4.0 Era—A Survey of Machine-Learning Solutions and Key Aspects

Various challenges arise for maintaining the security requirements for integrity, confidentiality, and
availability by protecting each subsystem from unauthorized access, use, disclosure, disruption,
improper modification or destruction of data [78]. More specifically, integrity is related with
consistency, accuracy, and reliability of both the information data and the physical components of the
entire supply chain and the product lifecycle. Besides, confidentiality involves privacy issues in the
horizontal and the vertical value chain of the industrial systems and preventive maintenance data
security, whereas availability includes resiliency and recovery of a typical distributed Industry 4.0
architecture.

Heretofore, the aforementioned issues have been highlighted in the literature [78], while several
solutions, including cyber and physical detection methods, as well as standards (e.g., Reference
Architecture Model Industry 4.0 (RAMI 4.0) [79], Industrial Internet Reference Architecture (IIRA)
[80]) to safeguard manufacturing have been provided to realize an Industry 4.0 environment secure from
known risks, vigilant against new threats, and resilient against zero-day attacks. Nevertheless, security
issues in specific domains can drastically influence the operation of the entire system in a non-trivial
and non-evident manner. As the cyber-risk to the next-generation industrial systems is estimated to
increase, protecting the corresponding implementations against conventional and sophisticated cyber-
attacks at all levels of the industrial processes represents a challenging task. To improve threat detection,
ML is the key technology that enables fundamentally effective decision-making capabilities. By
integrating cyber-security and physical data, ML not only facilitates the detection of cyber-physical
attacks, but also, effectively enhances the accuracy and shortens the response time of security
mechanisms. Although ML has been intensively applied both in physical security data and
manufacturing systems, it has not been extensively exploited in manufacturing security. Physical
security training data for ML can be acquired through voice recognition, fingerprint authentication, gait
authentication, keystroke and other biometrics. Also, ML implementations in manufacturing involve
real-time vision system for surface defect detection, weld defect defection, surface defect detection,
preventative maintenance, and supply chain optimization.

To obtain accurate knowledge about cyber-threats and effectively recognize future malicious events in
CPS, where multivariate time series data is dynamically generated, exploiting threat intelligence is of
paramount importance. More specifically, threat intelligence enables efficient event and network traffic
monitoring and analysis, using a signature-based method exploiting a predefined blacklist of existing
attack signatures, an anomaly-based method taking advantage of profiles of normal events to recognize
attacks or a hybrid technique, where an anomaly generally defines something that visibly deviates from
the norm/standard and can be identified by analysing the sensed data or traffic patterns. In Reference
[81], a novel threat intelligence scheme based on beta mixture-hidden Markov models (MHMMs) was
proposed that intends to model the dynamic interactions of Industry 4.0 subsystems and discover known
and unknown attacks, while surpassing existing signature- and anomaly-based methods. In this scheme,
Industry 4.0 key elements, that is, CPS and IoT, interact and two principal components are included; a
smart management module, handling the heterogeneous data sources of sensors, actuators and network
nodes and a threat intelligence module monitoring and indicating abnormal activities and cyber-attacks
in the physical and network domains. The latter is based on a Beta Mixture and hidden Markov
mechanism (HMM), aiming at accurately and effectively detecting and discriminating normal and attack
data. In HMM, the first component, namely the beta mixture model (BMM) [82] fits multivariate time
series of physical and network data and stands for the input of the second component, that is, the HMM
[83], which aims at estimating the posterior probabilities and identifying the latent structures for
detecting indistinguishable normal and abnormal states. The performance of the HMM was enhanced by
excluding irrelevant features and reducing sensor and network dimensionality, through an independent
component analysis (ICA) technique [84]. Since publicly accessible real-world Industry 4.0 data sets are
not available, the evaluation of the threat intelligence scheme was realised by combining two well-
known data sets; the CPS data set of sensors and physical devices [85] and the UNSW-NB15 data set of
network traffic [86]. According to the results, the proposed method surpassed other previously proposed
anomaly detection methods, that is, methods that only create profiles from normal activities to
differentiate attacks without defining the attack types, in terms of detection rates, false positive rates,
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and processing times. Although, the MHMM stands for a strong potential candidate for the monitoring
and detection of both known and zero-day attacks, it requires a significantly large number of data
samples for parameter estimation.

An ML approach to physical data was proposed in Reference [87] for cyber-physical attack detection.
Two examples of attacks were considered and simulations, along with experimental demonstrations
were carried out to verify the effectiveness of the proposed method on cyber- manufacturing system
(CMS) security. In particular, ML was initially used to recognize malicious defects in three-dimensional
(3-D) printing (additive manufacturing process) and so, 3887 simulation images with 512 x 512 pixels
size were captured. Also, ML was used to detect two attack modes, that is, attack on design and attack
on operation, in CNC milling process (subtractive manufacturing process) with acoustic signal data. In
particular, the signal used in the simulation process was a time-serial amplitude numbers, created by a
summation of sine-functions with fundamental frequency, harmonic frequencies and a Gaussian noise.
Three ML algorithms were implemented with image classification; the supervised KNN and random
forest learning methods that perform discriminant analysis and multi-way classification, respectively,
and the unsupervised anomaly detection method that is capable of recognizing abnormal behavior and
new types of attacks contrary to the supervised methods. Notwithstanding, the anomaly detection
method necessitates the definition of particular rules for normal network behavior, which is not a
straightforward process. The results indicated that the anomaly detection algorithm was capable of
obtaining up to 96.1% accuracy in detecting malicious cyber-physical attacks in the 3-D printing,
whereas RandF reached a mean 91.1% accuracy in detecting cyber-physical attacks in CNC milling
process. Besides, the KNN method fell behind in terms of accuracy.

In Reference [88], a cost-effective context-aware DNN-based intrusion detection method was presented.
This solution consisted of several hidden layers between the input and output layers and it was applied
in smart factories, threatened by a plethora of advanced cyber-security threats. This unsupervised DNN-
based learning method included hidden layers between input layer and output layer and involved three
phases; data capture and parsing, odel build and inference, and threat visualization. More specifically, a
multi-variety production system with heterogeneous facilities was considered, with interconnected
devices and objects. Based on the results, this method can effectively detect anomaly signs and
significantly reduce the risks of cyber-attacks. Specifically, the results underlined that by adopting the
propose solution, the cyber-security performance metrics were improved up to 33%, compared to other
conventional methods. However, the major drawback of this study is the limited data, which in turns
hinders the generalization of the obtained results in other application domains.

In Reference [89], the security risks in industrial control systems (ICSs) were mitigated through a
process-aware supervised learning data-driven defense method that detected various categories of
attacks and distinguish between disturbances and malicious behavior. In particular, a robust non-linear
supervised SVM model was developed that was capable of detecting abnormalities and malicious
activities in real-time, distinguishing the attacks from process disturbances, while providing
redundancy-based mitigation of detected attacks via automated control switching. A primary SVM
along with separate SVMs were adequately trained using large data sets of normal operation and attack
condition generated by multiple sensors of a complex, non-linear Tennessee Eastman (TE) process, in
order to identify on-going attacks and discrimate their types, respectively. It is noted that the TE process
stands for a well-defined simulation of a real chemical process that has been extensively used for
comparative assessment of several data-driven fault detection and diagnosis methodologies in process
control research [90]. To demonstrate a complete payload delivery mechanism and investigate the
influence of process-aware attacks on the entire process, a hardware-in-the-loop (HITL) test-bed was
exploited, which used realistic disturbances in a simulation model. The threat model was identical to
that of the Stuxnet worm [77] and three attacks were assumed, that is, sensor, controller, and actuator
attacks. These attacks aimed at modifying or spoofing data values and parameters of the process. Based
on the experimental results, the proposed ML approach satisfactorily and accurately detected all
previously unseen tested payloads with small delays, whereas false alarms were not observed contrary
to conventional attack detectors that rely on maximum and minimum thresholds.

Table 5 lists the cyber-security targets of different relevant studies and the adopted ML solutions,
guaranteeing the cyber-security in various Industry 4.0 settings.
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Table 5

Target of security mechanisms and respective ML solutions for Industry 4.0.

Reference Target of Security Mechanisms ML Solution

Monitoring and detection of
Moustafa et al., 2018 [81] ) MHMM
cyber-attacks in Industry 4.0

Detection of cyber-physical KNN, RandF, and
Wu et al., 2019 [87] ) o )
attacks in 3-D printing processes anomaly detection

Detection of anomalies
Park et al., 2018 [88] in multi-variety DNN

production systems

. Detection of abnormalities
Keliris et al., 2016 [89] o o SVM
and malicious activities

6. Human—Machine Interaction

Although new requirements for digital technological advancements are emerging within next-generation
complex industrial environments, the human factor remains critical, as traditional human-physical
systems (HPSs) suggested, and stands for an essential component in attaining flexibility and adaptability
in industrial processes. However, in technology-rich working environments, work division between
human workers and machines is usually observed and the assigned tasks are categorised into human-
specific and machine-specific. Contrary to the principle of the computer-integrated manufacturing
(CIM), Industry 4.0 does not envision workerless production facilities, but rather pursues the synergetic
integration of humans and machines in a shared working space, in the sense of a human-cyber-physical
system (HCPS) [91], where the individual skills and talents of humans can be successfully exploited.
Industry 4.0 imposes transitions on work division between human and machines, since humans are
assisted by intelligent devices and machines, that is, human—machine cooperation, while interacting and
exchanging information with the machines, that is, human—machine crossover collaboration. Therefore,
there exists a need for a symbiotic environment that focuses on the effective collaboration and
cooperation between humans and machines for handling combined task elements, while communicating
over the IIoT [92]. Through this paradigm, higher product variability and customization, as well as
increased production efficiency and quality can be ensured. Furthermore, humans excel at making
decisions and exploring new solutions, under situations of uncertainty and incomplete information data.
Also, humans demonstrate adaptive capabilities and can more efficiently propose useful policies, in a
timely manner. Besides, machines can be used for rapidly and repeatedly storing, retrieving, and
processing data, as well as for systematic pattern recognition. Next, we initially survey recent theoretical
studies on HMI in Industry 4.0 and then, we underline works that simulated and implemented ML-based
HMI solutions.

6.1. Theoretical Frameworks

To further improve the accuracy and the quality of industrial processes, the Intelligent Factory Space
(IFS), an Al-inspired architecture that facilitates the interaction between humans and robots, was
presented in Reference [93], emphasising on the safety and trust aspects, during the two-way
communication between humans and robots. Also, the notion of patented intelligence (Pi)-Mind was
described in detail in Reference [94], as an Intelligence-as-a-Service (1aaS) provider that transparently
and proactively introduces human expertise on decision-making based on self-awareness. As the
dynamic industrial CPS usually encompasses unexpected or emergency situations, conventional ML and
predictive methods might not lead to the desired outcome. In this direction, Pi-Mind suggests that the
experienced humans and Al-driven machines are an indivisible compound and share the responsibility
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for the impact of the decisions made in critical cases. This technology surpasses the rational decision-
making by comprising models, techniques, and tools that capture and clone, that is, digital twinning, the
creative cognitive human capabilities and the created Pi-Mind agents. Additionally, the concept of
Industry 5.0 was introduced in Reference [95], which goes beyond automation and envisions the
synergy between humans and autonomous machines to enhance creativity and efficiency. In Industry
5.0, two types of learners are observed; human operator as a learner and machine, robot, or computer as
a learner.

As the human behavior is dynamic, an accurate characterisation or modeling of the human performance
through conventional methods is not usually feasible. In general, humans are often considered, as a
physical resource that can be characterised by statistical terms. As shown in Reference [96], statistically
estimating the human role is not sufficient in various human-involved systems. Although ML techniques
can reproduce human skills by building artificial models and algorithms and handle decision-making
processes, the collaboration of humans and machines raise the mutual ML [97]. This type of ML focuses
on the human self-learning and machine self-supervised learning capabilities and tries to capture, not
only the information on machine status, but also human observations, in order to extract decision-
making policies in human—machine integrated environments. Nevertheless, mutual ML leads to more
complex and time-consuming operations for effectively managing the dynamic industrial processes in
real-time. In this perspective, the challenges and potential of mutual human—machine learning in
upcoming industrial areas were described in Reference [97] and illustrative collaboration scenarios were
presented.

6.2. Implemented ML-Based Solutions

In Reference [98], a human-in-the-loop (HIL) approach was proposed and evaluated to determine the
human operator’s choice complexity (OCC) in a manufacturing system, where a real human was
encapsulated in smart manufacturing settings and OCC represented the selection of the proper
component, for example, a tool, on a mixed model assembly line (MMAL) among a variety of
components. In this approach, the required time interval for the component selection was related with
the dynamics operator’s performance and was controlled by the number of options and the task
complexity. The particular characteristics that defined and affected the OCC were initially identified and
then, they were used to construct a regression model, where the human reaction time, as a function of
the degree of choice complexity stood for the response variable (feedback) that trained several ML
algorithms, that is, linear regression, regression trees, regression rules, instance-based learning
algorithms, and SVMs. Among them, the supervised learning based on linear regression handled
regression tasks by modeling a target prediction value based on independent variables and was fitted
using the least squares. Also, the RandF method was exploited that use binary decision trees as a non-
parametric supervised learning method for classification and regression and predicted target numerical
values of variables represented in the leaf nodes. Besides, the regression rules were used and applied a
step-wise selection, in order to obtain adequate attribute combinations with respect to a decision table.
Additionally, instance-based learning algorithms were adopted, that is, the KNN regression method, and
made a comparison between recent problem instances with those observed during training and stored in
memory. Finally, SVMs with Gaussian kernels were developed via sequential minimal optimization
algorithms. The aforementioned algorithms aimed at accurately predicting the cycle time according to
the complexity of the tasks and the influence of CCO on the operator’s resultfulness. Overall, the
performance of the linear regression method in terms of the correlation coefficient, the mean absolute
error (MAE) and the root mean squared error (RMSE) was not satisfactory, whereas the RandF
surpassed all the other algorithms.

In industrial applications, a long time is typically required, during the manufacturing phase, where a
production system comes close to its desired operational performance. This phase is called ramp-up and
is inherently dynamic and unpredictable, dramatically affecting the economic factors of an industrial
system. Ramp-up strongly depends on the knowledge and expertise of the human operators. In
Reference [99], the advantages of human—machine symbiosis during ramp-up were demonstrated by
combining human intelligence in taking the best decisions and structured ramp-up experience with the
machine’s capability for processing data quickly, accurately, and reliably, extracting optimal policies.
Specifically, a Q-learning, that is, RL strategy guided by expert production engineers was proposed that
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minimized the unnecessary iterations in human decision-making processes, as well as the required data
sets by conveniently acting for different ramp-up states. This learning approach exploited a specific
update rule, that is, the update policy of a state value depending on new data entry, which involved the
estimation of a new state value through a comparison procedure between current and previous state
values. The validation of this strategy was obtained, using a ramp-up emulator and three existing and
well-established machine-based exploration strategies as a reference, i.e, random exploration, greedy
exploration, and greedy exploration with increased probability. In random exploration, the ramp-up
actions are randomly selected to generate the data set. On the contrary, greedy exploration opts for
actions that correspond to the highest possible reward by using a fixed probability, whereas greedy
exploration with increased probability exploits a variable probability that depends on the number of
iterations. The results indicated that, instead of exclusively using logarithmic machine-based random
exploration, exploiting also the human knowledge was a more efficient strategy that closely approached
the optimal behavior, while requiring significantly less data. On the other hand, the greedy exploration
strategy enabled the generation of satisfactory results, but did not take advantage of the human element
and hence, unnecessarily led to more states and implied a longer ramp-up time.

The integration of humans in a CPS through the assistance of human activity recognition (HAR), based
on wearable sensors was studied in Reference [100]. In particular, a DL algorithm was used,
accelerating the HAR process and facilitating the classification and analysis of daily human activities.
More specifically, the DL-based CNN algorithm was adopted. The preprocessing of the data from
wearable devices in different body positions in HAR tasks was a substantive component of this DL
algorithm and included data segmentation and data transformation. Thus, the impact of different data
segmentation methods on the DL performance was analysed and four data transformation approaches
were compared, i.e, raw acceleration data, the multi-channel method, the spectrogram method, and the
spectrogram integrated with shallow features method. The experimental results validated the
classification accuracy performance of the CNN-aided HAR in different scenarios, when multiple
wearable devices and single or multiple sensors were used. It was shown that the accuracy reached a
value of 97.20% for eight daily activities, according to the data from seven wearable sensors, and it was
demonstrated that CNN surpass by far other common ML methods, that is, ANNs, Decision Tree, KNN,
Naive Bayes, and SVM. However, the accuracy of RandF was only 7.22% lower than CNN. These
results also revealed that the multi-channel method performed better in both classification accuracy and
training time, while the length of data segment drastically influenced the classification accuracy of the
CNN-aided model. By increasing the segment length, the accuracy drastically improves.

Table 6 presents the main objectives of tackling HMI issues, as well as the employed ML solutions.

Table 6

Target of Human—Machine Interaction (HMI) implementations and respective ML solutions for
Industry 4.0.

Reference Target of HMI Implementation ML Solution

) Prediction of cycle time with Linear regression, regression
Busogi et al., 2017 [98] . .
respect to task complexity trees, instance-based and SVM

o Reduction of the required )
Doltsinis et al., 2018 [99] . . Q-learning
iterations and data sets

Classification and analysis of
Zheng et al., 2018 [100] ) o CNN
daily human activities

7. Open Issues
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The latest advancements in the ML-inspired methods and the rise of DL have opened up new
opportunities towards revolutionizing Industry 4.0 and beyond and have led to the possibility of
realizing highly autonomous and effective industrial operations, while enhancing the fault diagnosis,
mitigating human faults, safeguarding the security, and preventing unexpected losses, under complex
and dynamic scenarios. Nevertheless, current work lays practical and methodological grounds for future
research, since open research issues there exist and require attention. The range of challenges and future
research directions can be summarized as follows.

7.1. Practical Challenges

The ML techniques depend, in principle, on massive and high-quality labeled data sets collected by
sensors and network equipment, including manufacturing data collection and control systems that
monitor the status of machines and radio frequency identification (RFID) that automatically identify and
track tags attached to objects within factory halls, to obtain the prospective performance gain in the fault
diagnosis field and attain robustness and reliability. As the IIoT emerges and cloud computing becomes
widely adopted, data availability increases. However, processing large amounts of data in depth to find a
near optimal solution, requires a huge computational effort. Nowadays, powerful multi-core central
processing unit (CPU) architectures, graphics processing units (GPUs) and broad availability of libraries
for DL (e.g., Reference [101]) allow for fast, parallel data processing for large-scale and real-time fault
prognosis. With a view to real-time operation, field-programmable gate array (FPGAs) have shown
stronger potential over GPUs in scenarios, where power consumption restrictions, flexibility to process
with different data types, for example, binary, ternary and even custom ones, and performance in DNN
comes into play massively [102]. Hence, upgrading CPS embedded electronics is necessary to enable
the learning algorithm implementation on FPGAs.

Owing to the rapid development of hardware technology and computational power, ML and DL
methods can be widely employed in industrial settings. Nevertheless, data-based modeling and fusion
issues are usually observed, since the data is vulnerable to losses, redundancy, mislabeling, class
imbalance, non-stationarity, and heterogeneity of information, which in turns hinders the effectiveness
of the training procedure. Also, modification and enhancement of the ML framework to handle specific
scenarios, including efficient error propagation and heuristic training regime, are not trivial tasks. To
address the aforementioned challenging issues, future research should be devoted to the improvement of
the computing efficiency and processing time of the learning algorithm and the design of learning
methods, which effectively adapt to various degrees of uncertainty. Moreover, known fault types should
be predefined and the ML methods should be modified to detect and recognize unknown fault
conditions. In this direction, it is critical to realize more sophisticated data cleaning, in order to enhance
the quality of the source data and subsequently meliorate the fault detection models. Targeted
exploration, predefined experimentation, and incorporation of prior expert knowledge during the
initialization of the learning models could reduce the number of required iterations and increase the
quality of the learning policy. Future research could also include the application of parameter-
optimisation techniques, such as genetic algorithms and particle-swarm optimisation. To further reduce
the number of the required tasks, adding a confidence score to predictions and a scale factor to the
generated actions is suggested. Furthermore, different ML techniques could be combined, in order to
cooperatively accomplish the fault prediction procedure. Hence, the employment of hybrid and
ensemble ML schemes is foreseen, considering the accuracy requirements, the acquisition of the
communication parameters from the network elements, the centralized or distributed diagnostic
performance, and the architecture design.

Existing results may not be able to be generalised in nature, since location-based restrictions may
emerge and the empirical findings may be application-specific. Therefore, the ML-based methods
should be applied to any other measured signals in industrial fields to verify whether the findings remain
valid. Currently, there is a gap in acquiring data from diverse application scenarios. Thus, implementing
test-beds and conducting real experiments in different industrial areas is indispensable, in order to
validate the accuracy of the learning algorithms in terms of fault prediction, especially in scenarios with
dynamically changing environments and increased latency and resiliency requirements. In order to
maintain validity over time, it is recommended to periodically refresh and re-run the ML algorithms,
using recent data.

https://www.ncbi.nim.nih.gov/pmc/articles/PMC6983262/ 25/36



01/10/2020 Tackling Faults in the Industry 4.0 Era—A Survey of Machine-Learning Solutions and Key Aspects

Since ML-based Industry 4.0 stands for a comparatively young technology and research field, there is
no unified perspective on what the ML technological advances imply. To eliminate barriers among
various disciplines, new educational and specialized training strategies should be developed within
industries, while increasing the level of cooperation between universities and industrial sectors and
bringing together researchers and practitioners from different fields. In this respect, governments should
also provide tax incentives to manufacturing companies, in order to promote the adoption of Industry
4.0 principles.

7.2. Networking, HMI, and Security Issues

Although the proposed frameworks and implementations can be potentially used in several industrial
fields and processes, cloud and fog computing has significant limitations and further research work is
required. For instance, the proposed approaches directly depend on the availability or deployment of
physical devices in the factory, whereas there exist limited relevant libraries and platforms that support
fog computing. Besides, fog nodes are characterised by modest computing capabilities, which prevents
their use in certain ML applications with huge computation loads. Thus, multiple fog devices are
required to enhance the running efficiency and obtain accurate and fast analytics. Additionally, it will be
worthwhile to perform the classification regression experiments on other types of productions. Also,
future work may focus on cloud-based parallel ML algorithms for big data management and analysis.

While current work has demonstrated the potential of incorporating humans in Industry 4.0 contexts
using representative industrial scenarios, it partially captures the actual complexity in the decision-
making processes. Therefore, it is indispensable to further validate the generic feasibility, applicability,
and scalability of the proposed ML-based methods in full-scale industrial applications and human-
involved systems, actual production systems, and real assembly lines with the proper resources. It is also
envisaged to conduct inferential analysis to further assess the major differences amongst the presented
approaches.

To combat ever evolving attack types against the safety of critical industrial infrastructures and the
reliability of data transmission, including hijacking attacks targeting the data delivery node, damaging or
stealing its load, advanced ML methods are needed. Current work can be extended by applying the
intelligent mechanisms on more manufacturing processes of real Industry 4.0 systems and validating
their performance in real-world cyber-physical environments and peculiar cases, such as complex
malicious attack protection, data recovery, online learning, given the critical nature of those cases.
Besides, extracting more than one type of training data is also required, in order to further enhance the
accuracy of threat detection. Finally, as more I1oT devices are installed and connected, under a variety
of abnormal conditions during the manufacturing process, both software and hardware security of [1oT
devices and platforms should be considered in future works [103].

As it has been observed from the previous discussion, the exist various remaining open issues for the
efficient implementation and operation of ML in Industry 4.0 environments. Figure 4 depicts the current
major open issues towards tackling faults in Industry 4.0 environments and potential solutions that ML-
based methods should adopt.
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Figure 4

Open issues and potential solutions towards tackling faults in Industry 4.0 through ML.

8. Conclusions

The integration of artificial intelligence and machine learning in different sectors of the human society
has played a key role in enabling exciting new possibilities in improving the quality of life and
safeguarding the sustainability of our ecosystem. In the context of Industry 4.0, AI/ML enables a
plethora of improvements throughout the manufacturing loop, optimizing processes, in terms of waste
reduction, automation and product quality. A highly important area in realizing the Industry 4.0 vision is
the timely detection and prevention of faults, leveraging the Industrial Internet of Things deployments
and the subsequent acquisition and processing of heterogeneous big data. Towards this end, this survey
presented relevant ML solutions, classifying them according to their learning process. Moreover, closely
related aspects, necessary to provide a holistic overview of fault detection and prediction, that is, cyber-
security issues and the role of humans within the manufacturing loop, were thoroughly discussed.
Finally, aiming to foster further developments in this field, open issues were given, outlining the
shortcomings of the current solutions and drawing possible future research directions.
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