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Abstract
Due to the advances in the digitalization process of the manufacturing industry and the resulting available data, there is
tremendous progress and large interest in integrating machine learning and optimization methods on the shop floor in order
to improve production processes. Additionally, a shortage of resources leads to increasing acceptance of new approaches,
such as machine learning to save energy, time, and resources, and avoid waste. After describing possible occurring data types
in the manufacturing world, this study covers the majority of relevant literature from 2008 to 2018 dealing with machine
learning and optimization approaches for product quality or process improvement in the manufacturing industry. The review
shows that there is hardly any correlation between the used data, the amount of data, the machine learning algorithms, the
used optimizers, and the respective problem from the production. The detailed correlations between these criteria and the
recent progress made in this area as well as the issues that are still unsolved are discussed in this paper.

Keywords Machine learning · Optimization · Manufacturing · Production

1 Introduction

Together with the rising popularity of machine learning
research and the growth of the available data amounts, the
applications of the developed methods have found their way
into various industrial fields. In this context especially, the
exploitation of data for optimization in existing production
lines is of high relevance [35, 53]. Optimization can take
place in two different ways: on the one hand, there is the
improvement of the product quality itself; on the other hand,
the production process can be changed for the better.

The utilization of machine learning is motivated by its
additional capabilities to spare resources, machining time,
and energy and increase yield where traditional methods
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such as six sigma strategies have reached their limits [53].
In the author’s eyes, the term “machine learning” describes
algorithms to identify and extract valuable patterns in the
data: from data transformation methods (e.g., PCA), over
data exploration methods (e.g., k-means clustering), and
traditional methods of supervised learning for regression
and/or classification (e.g., decision trees) to more recent
methods (e.g., Convolutional Neural Networks). These
cover a broad range of complexities, origins, and recency
of the algorithms themselves, all having in common the
extraction and use of specific features of the data useful to
improving quality.

Though an important prerequisite for the application of
machine learning for production processes, industry 4.0,
industrial analytics and high-performance computing will
not be discussed in detail in this manuscript. The initiation
of smart manufacturing systems in existing plants can be
realized by storing and processing of arising data by existing
and additionally installed sensors. Due to the continuous
development of new sensors, processing software, and
storages on low-price level as well as the small degree of
necessary interventions into a running process, the hurdles
for smart manufacturing are set low.

The aim of this study is to review machine learn-
ing applications to optimize products and production pro-
cesses in existing production environments from 2008
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to 2018. Since earlier years, the authors refer to the
extensive review of Köksal et al. focusing on data min-
ing applications for quality improvement in manufactur-
ing industry [53]. Additionally, there exist more general
reviews on machine learning in manufacturing that either
do not explicitly concentrate on optimization issues [10,
37, 67, 92, 118] or focus on special methods and/or
applications [15, 112].

The interest in the integration of machine learning
and optimization algorithms in production processes has
increased steadily since 2009 and has been at a consistently
high level since 2014. Thus, it remains a hot topic in
latest research, starting with the development of scientific
methods for sensor placement, going through data storage
and processing architectures, and ending with machine
learning and optimization algorithms [118].

Since the field of machine learning and optimization
in production processes is very wide, the authors have
identified three closely related topics that will not be
covered extensively in this review. The first one is
optimization with methods from the field of design of
experiments (DOE) and response surface methodology
(RSM). Even if a DOE or RSM is used in applications,
the review will not focus on the specific designs. Here,
the authors like to refer the interested reader to the
comprehensive work of Montgomery [68], as a detailed
description of methods and applications is beyond the
scope of this review. The second topic is statistical process
control (SPC), pioneered by Shewhardt in 1925, which uses
classical statistical analysis of the collected data for process
variation reduction [93]. As the majority of publications
does not fall back to the methods of “modern” machine
learning, this field of research is excluded. A third topic
to exclude is model predictive control (MPC) as a special
field of control engineering. Here, the authors would like
to refer the interested reader for example to the work of
Mayne [64] and Scattolini [87]. In general, the application
of machine learning methods for the optimization of
production processes can take place with or without an
immediate quality feedback, depending on its’ availability.
With a quality feedback, it is quite similar to closed
loop control engineering, as it is used to adapt process
parameters to improve the measured quality. But as neither
the quality feedback, the process parameters and the process
description itself are in the typical format used for closed
loop control (feedback and parameters as time series data
and the process description as a state equation), nor is
there a frequent change of the parameters during a running
production step, the authors will exclude this special field of
research from the review.

The paper is organized as follows: firstly, the occurring
data types in manufacturing are reviewed. Secondly, an
overview on applications of machine learning for quality

improvement without change of manufacturing parameters
during the process is given. Subsequently, applications
where explicit changes of manufacturing parameters are
allowed are reviewed in detail. After a detailed analysis
connecting data, machine learning, and optimization, a
conclusion is drawn and open research questions are
discussed.

2 Data inmachine learning in production

The first step to solving a machine learning problem is
to identify the data that is available. There are different
types of data which will affect the type of analyses that
can be used on them. Based on their types, the amount
of information which data gives can vary considerably
[11]. Data can be structured in the following ways. Topics
such as data quality, missing data, or details about data
preprocessing will not be addressed in this work, but may
be found, for example, in [35].

2.1 Qualitative vs. quantitative data

Qualitative data can be divided into nominal data and
ordinal data. Nominal data only gives the name of a category
to which something belongs like the name of a material
for the press hardening of a component [74]. Ordinal data
indicate the order of something. For example, Neugebauer
et al. [69] divide the quality of gears, which are produced
by forming, into classes depending on the pitch accuracy.
Quantitative data can be interval data where there is no
absolute zero point such as the tool temperature in a press
hardening process; and ratio data which can be used to give
information about relative size, such as sheet thickness of a
press hardened part at a certain point [11, 74].

2.2 Time series vs. workpiece-related data

Most commonly, a time series is a sequence or continuous
signal with equally spaced points in time like the energy
consumption of a machine tool over time (see for example
[109]). Another possibility is data that is related to
a workpiece such as the workpiece temperature during
the heating of the press hardening process [74]. Such
workpiece-related data can, however, also be time series
data.

2.3 Controllable vs. uncontrollable data

As described in Oh et al. [72], data can also be divided with
regard to their controllability. Controllable parameters can
be adjusted either manually or automatically, while uncon-
trollable parameters may not be changed. An uncontrollable
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parameter is for example the sheet thickness at the begin-
ning of a press hardening process because this parameter is
defined by the coil producer. A controllable parameter can
be the time a part remains in the press.

2.4 Present vs. historical data

Another way of subdividing data may be with respect to its
measurement date. Machine learning algorithms can learn
from historical data and then use present data to predict
future outcomes. However, it has to be taken into account
that the data acquisition can be changed and adapted over
time. Therefore, it may be necessary to clean up historical
data, as for example described in [38] or models based on
older data have to be retrained.

2.5 Measured vs. simulated data

The origin of data also plays a significant role. It is
important to verify simulated data with real data. The
use of both simulated and experimental data is also
possible (see for example [25] where new simulations are
automatically performed in order to improve the prediction
quality of a platform that incorporates experimental data,
computational simulations, and a machine learning model).
In the case of production processes, it should also be
considered that established and robust processes almost
exclusively produce good parts and very few data are
available for rejected parts. However, machine learning
models need balanced data, so simulation plays a key role
here [7].

2.6 Observable quantities vs. process state variables

In many manufacturing processes, it is not possible to
measure on-line the state variable values that describe
the system state and are essential for process control.
Instead, only quantities related to the state variables can be
observed [89]. Senn et al. [89, 90] for example describe
a deep drawing process where observable quantities are
forces, displacements, and strains while state variables are
the high-dimensional stresses in the workpiece at various
locations.

The knowledge of the structure of production data is
crucial for the right choice of machine learning models.
Most data coming from production systems equipped with
sensors can be considered as structured data which is
much easier to handle than unstructured data [85]. Another
important aspect which is not the focus of this manuscript is
the fusion of data from multiple sensors. More information
on this topic can be found in [60] or [81]. The next section
describes different approaches for a machine learning–
based optimization in production.

3 Application of machine learning
for optimization of production

Process optimization by machine learning can be struc-
tured into two main topics, distinguished by the adjust-
ment of production parameters. The first is optimiza-
tion without change of production parameters during the
manufacturing process. Examples are root cause analy-
ses to prevent from recurrent quality issues, early pre-
diction of manufacturing outcomes to spare unnecessary
process steps, and diagnostic methods to detect erroneous
behavior of products or processing units. All examples
have in common that there is no direct adjustment of
the production parameters but product quality is improved
indirectly.

A second topic is optimization with change of production
parameters. Here, optimal production parameters are
determined using the data of an already running production
process. By adjusting the parameters to the characteristics
of the product and the specific optimization goal, a higher
quality is achieved. Implementations can be distinguished in
machine learning approaches with additional optimization
modules and self-optimizing control systems based on
analytical process models. In this paper, only machine
learning approaches are discussed.

In both (direct and indirect) approaches, the objective
for optimization can be a product- or process-specific
quantity. Product-specific quantities are for example surface
roughness, shrinkage, and processor speed, while the energy
consumption of a plant or tool wear is a process-specific
one. Optimization of both types of objectives results in
improved product quality defined in terms of cost, time,
consumption of resources, and/or the specific optimization
objective.

3.1 Optimization without parameter changes

Typical industrial applications for quality improvement
based on machine learning are found in large-scale
production such as plastic injection molding (PIM) and
the production of semiconductors. The authors assume
that this is grounded on the high amounts of usable
data points provided due to short cycle times. Especially
that in the manufacturing of micro-electronic parts exists
long-lasting tradition (see, e.g., [4, 41] for examples
for classification algorithms in industry as early as in
1993). Up to now, scientists are still challenged by
imbalanced datasets, missing data, and concept drift [16,
115]. The following section provides an overview of
three different approaches for optimization without change
of the production parameters: Root cause analysis, early
prediction of manufacturing outcomes, and diagnostic
systems.
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3.1.1 Root cause analysis

An obvious approach for quality improvement is the
analysis of existing data records to extract relevant features
and feature combinations for high or low product quality.
This might be done by feature selection at a preliminary
stage of learning a model or as specific root cause analysis.
There exists a lot of literature in these fields (see the
already mentioned reviews [10, 15, 37, 67, 92, 112, 118])
and analysts seem to be satisfied with the identification
of previously unknown patterns and important features
relevant to product quality. Reports on the consequences of
changes of production parameters drawn from the patterns
are rare.

In the sector of semiconductor manufacturing, the
research of Chien et al. on root cause analysis is quite
fundamental. In his work, he proposed k-means clustering
[24]; principal component analysis (PCA), clustering, and
decision trees [22]; stepwise batch regression algorithms
with random forests [21] and feature selection together with
logistic regression [23] to find root causes for poor quality
and finally enhance yield.

Other authors such as Kumar et al. [56] or Diao et al.
[30] apply hierarchical generalized linear models (GLM)
or improved PCA and modified support vector machines
(SVM) to identify dominant factors for quality and quality
prediction. It is also possible to apply Gibbs Sampling
for variable selection, learn multivariate adaptive regression
splines (MARS) to predict semiconductor yield, and use
decision tables to extract root causes [49].

Another method to find root causes for quality issues
is the extraction of defect patterns. For instance, Franciosa
et al. [32] analyze a multi-stage assembly system and
utilize a combination of multi-physics simulations from
first principles, measurement data and artificial neural
networks (ANN) to identify defect patterns. In the field
of semiconductor production, Wang [110] proposes the
clustering of defect patterns.

Association rule mining is a method to extract inter-
pretable relationships relevant for product quality (see
[114] in semiconductor manufacturing). In drill produc-
tion, Kamsu-Foguem et al. thoroughly describe the use of
association rules [44].

3.1.2 Early prediction of manufacturing outcomes

In optimization of manufacturing processes, not only is
product quality a highly relevant criterion, but so are
the costs of production steps. If production steps are
expensive in terms of time or price, it is useful to
predict manufacturing outcomes beforehand. With this
method, unnecessary and costly production steps can be

avoided by dropping products from the production line
before the critical steps. Alternatively, additive corrective
manufacturing actions can be initiated, for example the
correction of wafers with expected poor performance in
semiconductor production [116].

The early prediction of production outcomes differs from
traditional process identification in the size of the parameter
set. For process identification, a full set of relevant
production parameters of all processing stages is needed,
while the early prediction already works with process
parameters of an early relevant part of the production line,
allowing to introduce correcting actions before finishing the
whole production process.

But simple process identification with the full parameter
set enables the so-called virtual metrology as exemplarily
described by Kang et al. [45] and Khan et al. [50]. Here,
the quality of the out-of-sample products is predicted by a
machine learning method, saving time and costs. As this
does not optimize the production process but only means
a regression/classification of the production output, the
authors would like to refer the reader to the work mentioned
above.

The challenge of the early prediction of manufacturing
outcomes is to make a reliable prediction of the final quality
at early stages of the process and to identify relations
between process steps. Several authors proposed solutions,
e. g., the work of Lieber et al. [59] and Konrad et al.
[54] for rolling mill processes with self-organizing maps
(SOM) and k-Nearest-Neighbor (kNN) approaches or Arif
et al. [5] for decision trees in semiconductor manufacturing.
Both works have in common that no application was
reported.

More promising is the work of Weiss et al. [115,
116], who estimated the final microprocessor speed after
each manufacturing operation applying linear regression
and boosted trees: the predictions initiating corrective
manufacturing actions if necessary. The authors were
challenged by the already mentioned concept drift, missing
data, and imbalanced datasets. Special methods to overcome
these problems were developed by Chen and Boning [16],
who apply boosting and bagging of customized decision
trees to predict semiconductor yield before packaging.

3.1.3 Diagnostic systems

Another way of optimizing the final quality of a product is
the use of diagnostic systems within the production line. It is
possible to monitor the product itself (part diagnosis) and/or
the processing machines (plant diagnosis). Both approaches
lead to an alarm being raised if the condition of the part or
machine is anomalous or becoming anomalous, requesting
correction actions to be taken.
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3.1.4 Part diagnosis

For the diagnosis of parts, two main applications are
described, namely visual inspection and the diagnosis of
part assemblies.

Automatic visual inspection, applied before, during, and
after production processes, serves to maintain good part
quality, examining images for possible faults. Various meth-
ods were developed for the production of semiconductors
and screen glasses [40, 43, 105], ceramics and tiles [47],
and miscellaneous processes relating to metal parts [42, 63,
88, 113, 121]. Additionally, generic methods for different
materials and purposes were developed [73, 80].

Methods for visual inspection vary over projection meth-
ods like independent component analysis [105] and PCA
[17]; filter-based approaches like discrete cosine trans-
form [76] and discrete wavelet transform [121]; learning-
based approaches like SVM [106], Hidden Markov Models
(HMM) [42], fuzzy clustering [43], and convolutional neu-
ral networks (CNN) [63, 73, 80, 113] for regression or
classification; and statistical methods [88].

Diagnosis of assembly processes or its results usually
uses data sources different from images, resulting in the
use of different methods. Additionally, recent authors try to
cover not only one specific processing stage but multi-stage
processes as well. This complicates the problem to be solved
due to correlations between the different process steps and
the resulting error propagation. For sheet metal assemblies,
Ceglarek and Prakash [14] show a piecewise least squares
approach for use in a state-space model. Their introduction
reviews various publications in the field of fixture diagnosis
methods. The force signature of the assembling robot arm is
used by Rodriguez et al. as input to an SVM [82]. Luo et al.
[61] extend this approach by abstracting specific behavior
representations from the force signature.

3.1.5 Plant diagnosis

Diagnosis of production plants or machines can be
realized by anomaly detection methods. In anomaly
detection of production plants, one distinguishes between
phenomenological and model-based approaches [70]. In
phenomenological approaches, measurements are classified
directly to detect anomalous behavior, while model-based
approaches compare a system model representing the
normal system behavior and the system’s measurement data.

Due to the high amount of available publications,
only a short introduction into the topic is given and the
important topic of one-class classification is being skipped.
For this, the authors would like to refer the interested
reader to the comprehensive work of Shin et al. [96].
In case of phenomenological approaches, sensor data like
time-series data is processed. To extract features from

it, transformations like wavelet transform [33], empirical
mode decomposition [39, 117], or independent component
analysis [101] are used. The features can be processed with
various algorithms like ANN, SVM, optimizers, or fuzzy
logic [127]. Typical applications are induction machines
[8], pneumatic systems [27], gear boxes [86], and bearings
[57]. Model-based approaches usually do not rely on feature
extraction from time-series and can use machine learning
algorithms like PCA or partial least squares [120] directly.

Closely related to anomaly detection methods, which are
mostly used for failure detection, is the field of maintenance
methods which aim to prevent machine failures due
to deterioration of the machine. A distinction is made
between time-based and condition-based maintenance,
called preventive and predictive maintenance [66].

Preventive maintenance tries to extract the mean useful
life of a machine and/or its parts to schedule maintenance
activities before breakdown. To the author’s knowledge, the
use of machine learning methods for this task has not been
reported to the scientific community yet, as simple statistics
leads to good results [66]. For preventive maintenance,
a mathematical formulation of the loss function to be
optimized can be found (see, e.g., the work of Cassady and
Kutanoglu [13]). If the term of preventive maintenance is
abstracted to the level of job shop scheduling, the work
of Adibi et al. shows parameter estimation by clustering
[1], reinforcement learning [91], and ANN [2]. Predictive
maintenance tries to extend the maintenance intervals by
monitoring the machine’s conditions, sparing costs for
unnecessary, time-based scheduled, maintenance activities.
In contrast to preventive maintenance, there are several
authors applying machine learning methods in this field, and
the authors like to refer the interested reader to the review
of Ahmad and Kamaruddin comparing both time-based and
condition-based maintenance for various examples [3].

3.2 Optimization with parameter changes

In order to optimize parameters of industrial processes
which were described by machine learning methods, the
typical workflow contains the following four steps [53]:

1. Generating a database with few experiments or run
simulations with DOE methods,

2. Modeling the physical correlations between the process
parameters and the quality criteria with statistical or
machine learning methods,

3. Optimization of the process parameters using the
created process model,

4. Adjusting the process parameters manually or automat-
ically.

As mentioned in Section 2, the database for modelling
the physical correlations with machine learning methods
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can consist of measured data like in [46] or of simulated
data [77, 103]. If the machine learning model is supposed
to replace a time-consuming physics-based simulation, it
is called a meta- or surrogate-model [78, 111]. With
this method, the risk of error propagation through the
different models is given. Both systematic and stochastic
errors can occur during construction of the physics-based
simulation and subsequently be adapted by the meta-model
built from its calculations, resulting in an invalid meta-
model as well. But even with valid physics- and meta-
models, approximation errors to the real process have to be
considered. However, the approaches discussed below are
based on measured data. Often, the created process models
are not simple linear regression models but complex non-
linear models as SVM or ANN. The training of these models
can be time consuming and computationally expensive, but
for a good representation of the physical correlations, the
usage of non-linear models is often indispensable.

The optimization of process parameters can be realized
by traditional approaches like Newton’s method, hill climb-
ing algorithms, or gradient descent algorithms, leading to
a local optimum. A second possibility to optimize the pro-
cess parameters is to use evolutionary algorithms, usually
leading to the global optimum of the given search domain.
The usage of evolutionary techniques received a lot of
attention in recent years [122, 123]. The approaches dis-
cussed in the following section use evolutionary algorithms
in most cases.

3.2.1 Machine learning with subsequent optimization
approaches

There exist a lot of different fields for machine learning
approaches and subsequent parameter optimization. The
following sections present examples in different specific
manufacturing fields.

Milling Especially in milling processes, a lot of research
was done on approaches including ANN and genetic
algorithms (GA). The authors of [46, 97, 107] used
these techniques to improve different quality criteria by
optimizing the cutting parameters of the milling process.
Denkena et al. [28] suggest a SVM to predict the
geometric deviation of the workpiece. To optimize the
cutting parameters, they were sampled on a grid and optimal
parameters were chosen based on the prediction of the
SVM. In [26], Coppel et al. compare ANN and SVM models
to predict quality criteria and also test different optimization
algorithms, such as GA, particle swarm optimization (PSO),
and simulated annealing (SA) algorithms, respectively,
to determine optimal cutting parameters for the milling
operation. An ANN model with subsequent PSO achieved
the best results.

Turning Turning operations were the process of interest in
[9, 36]. In Bouacha and Terrab [9], an ANN with subsequent
PSO was compared with a non-dominated sorting genetic
algorithm (NSGA-II)-based RSM model. Because of less
computation time, the ANN with PSO algorithm was the
better choice in this case. Gupta et al. [36] used different
modeling approaches like regression, RSM, SVM, and
ANN to predict the quality criteria; GA was used to find
optimal process parameters.

Gear hobbing and boring In the field of gear hobbing [12]
ANN and in boring [108] ANN and SVR were proposed
to predict the quality criteria. Cao et al. [12] optimized
their process parameters based on ANN with a differential
evolution algorithm. Venkata Rao and Murthy [108] used an
unspecified multi-response optimizer.

Electrical discharge and abrasive waterjet machining The
authors of [6, 62] have done research on parameter
optimization in electrical discharge machining (EDM)
and wire EDM [65, 79], respectively. All of them used
ANN to predict the quality criteria, except Rao and
Pawar [79], who applied a second-order regression model.
The process parameters were optimized with different
algorithms: augmented Lagrange multiplier algorithm [6],
GA, PSO and SA algorithm [62], wolf pack algorithm
based on the strategy of the leader (LWPA) [65], and
artificial bee colony (ABC) algorithm [79]. In more special
EDM, applications like wire EDM turning [55], micro-
EDM [126], or micro-clearance electrolysis-assisted laser
machining [104] parameter optimizations based on machine
learned prediction models were conducted as well. All
used more or less already mentioned combinations of ANN
and NSGA-II [55], SVM and GA [126], and ANN and
improved ant colony algorithm [104]. Zhang et al. [126]
predicted the processing time and electrode wear with a
support vector machine as a regression model. In the second
step, they performed a multi-objective optimization with a
GA. The results represent a pareto-optimal solution between
the minimum processing time and minimum electrode
wear. Srinivasu and Babu [100] and Zain et al. [124,
125] optimized the process parameters of abrasive waterjet
machining with regression models and ANN, respectively,
followed by GA.

Finishing For the parameter optimization process in roller
grinding, Chen et al. [19] used RSM for the quality
prediction and a hybrid PSO algorithm for the optimization
task. For the optimal configuration of the grinding slurry of
waterjet grinding, Liang et al. [58] used an adaptive neuro-
fuzzy inference system (ANFIS) approach. Zhao et al. [128]
optimized the parameters of the grinding and polishing
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process of integrally bladed rotors by using a regression
model and the signal to noise ratio for the optimization.

Plastic injection molding (PIM) and fused deposition mod-
eling For PIM, extensive reviews are found in [31, 48],
extending the possible methods to other meta-models and
optimization algorithms. Further, authors like Chen et al.
[18] and Xu and Yang [119] used ANN and GA or rather
ANN, gray correlation analysis, PSO, and multi-objective
PSO for the parameter optimization. Peng et al. [75]
improved fused deposition modeling by using the response
surface methodology combined with a fuzzy inference sys-
tem and a GA optimization.

Welding In the field of welding, Rong et al. [83] proposed
an extreme learning machine; Dhas and Kumanan [29],
a quadratic regression model; and Norouzi et al. [71],
an ANN, an ANFIS, and an ANN trained with PSO
for predicting quality parameters. For process parameter
optimization, Rong et al. used only PSO algorithm [83],
while the other authors used both PSO and GA.

Others The last three examples for research in parameter
optimization based on machine learning models are press
hardening [103], electroplating [34], and selective laser
sintering [84]. Stoll et al. [103] predicted their quality
criteria with a linear regression model. In the second
step, a parameter optimization based on the least squares
method was performed. Genna et al. [34] and Rong-Ji
et al. [84] predicted their quality criteria in electroplating
and selective laser sintering with ANN and optimized
the process parameters by a so-called external optimized
algorithm and GA, respectively.

3.2.2 Machine learning with other optimization approaches

The previously mentioned papers contain various
approaches to optimize process parameters and improve
quality in many different manufacturing applications. In
general, many researchers used ANN to describe their
manufacturing process and predict the quality criterion
of interest. In the second step, a GA was applied. Alter-
natively, the model and the optimization can be realized
simultaneously by using an active DOE [94, 95], sequential
approximate optimization [51, 52], or Bayesian optimiza-
tion [20, 99, 102]. Another possibility is to inverse the
problem. Instead of building a model and optimizing the
input parameters, a model with quality parameters as inputs
and process parameters as outputs is constructed [98].
This rejects the underlying assumption used beforehand
that one specific parameter configuration will result in a
defined quality value, but different parameter configura-
tions can result in the same quality. Here, the assumption is

that different qualities can result from the same parameter
configuration. This seems counterintuitive to the authors,
but according to [98] the prediction error compared to
experimental data is less than 5%.

4 Discussion and analysis

The reviewed literature shows that the production-related
applications of machine learning with or without optimiza-
tion are manifold. In this study, we investigated which
combinations of production methods and machine learning
models are most successful and how optimization methods
for quality improvement can be integrated. Our results are
presented in the following.

4.1 Classes and origin of used data

The available data for training the machine learning models
can be classified according to the categories explained in
Section 2: Process parameters mostly are on continuous
scales, therefore most data in the mentioned papers contain
quantitative data such as water pressure or jet traverse rate
[100]. Further examples for interval and ratio data can be
found in [116]. In a few cases, also nominal qualitative data
are available, for example in [12, 16, 116].

Depending on the selected optimization goal, data can be
available in the shape of time series and product-specific
data. If the parameters are not changed during optimization
(see Section 3.1), often only product-specific data are
available, except in the area of anomaly detection [8, 27, 57,
86]. If the parameters are changed during optimization (see
Section 3.2), the data may be available both as time series
and as product-specific data. In the work of Bouacha and
Terrab [9], among other things, the process forces and the
surface roughness of the part are defined as outputs. Here,
the process forces are available as time series and the surface
roughness of the part as product-specific quantity.

For the distinction into controllable and uncontrollable
data, as well as observable quantities and process state
variables, it can be summarized that input variables are
mostly controllable and observable quantities, for example:
cutting speed [36] or electrode feed rate [104]. Input
variables can also only be controlled indirectly, for example
feed rates [26, 36]. The output variables, however, are
mostly uncontrollable or only indirectly controllable, for
example the process forces in Bouacha and Terrab [9].

Most of the data in the investigated papers was recorded
and subsequently a machine learning model was trained.
Exceptions are the work of Denkena et al. [28]; here, the
model is further trained with present data. Furthermore, they
also use simulated data to train the model. More examples
of approaches based only on simulated data can be found in
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Fig. 1 Applications, algorithms, and number of data points per input. Size and color indicate the median of the number of data points per input
dimension of the model. On the horizontal axis, the machine learning algorithms are roughly sorted by complexity

[51, 77, 103]. In the remaining articles, only measured data
have been used.

4.2 Machine learning and applications

A closer look on the reviewed papers reveals several
potentials to increase the effectiveness of machine learning
for optimization of processes.

Figure 1 gives an overview of the analyzed research
papers. Tables 1 and 2 map the different applications and
algorithms to the classes used in Figs. 1 and 2.

It is obvious that in nearly every mentioned field of
application every mentioned algorithm has been used. The
size and color of the points additionally give a feeling for the
used data. They represent the median of the number of data
points per input dimension; the median is used due to the
fact that the specific distributions are unequally distributed.
It can be seen that most entries are on the same level, but
there are upper outliers in semiconductor manufacturing and
diagnosis, where huge databases are available.

To dive deeper into the topic of the used data and the
model complexity, Fig. 2 shows the ratio of data points

Table 1 Classification of applications

Diagnosis Machining Plastic manufacturing Others

Defect detection Milling PIM welding

Automatic visual inspection Welding Fused deposition modeling Gas forming

Assembly fault detection Gear hobbing Polyester film manufacturing Press hardening

Finishing Job shop scheduling

Drilling Textile draping

Turning Deep drawing

EDM

Abrasive waterjet machining

Boring



Int J Adv Manuf Technol

Table 2 Classification of algorithms

Clustering Projections Decision tree Special neural Other classification Other regression

ensembles networks algorithms algorithms

kNN PCA Boosted trees ANFIS HMM GLM

k-means ICA RF CNN Logistic regression MARS

Gabor filter RBF-NN Association rule mining Regression tree

SOM Decision tree Gaussian process

Fuzzy classification Extreme learning machine

Statistical image processing

per input dimension for different algorithms, sorted roughly
by their complexity. Some really high ratios occurring in
diagnosis via projections are skipped for a better scaling.

Two important points can be recognized from this figure.
Firstly, the values of the data points per input dimension;
secondly, the missing relationship of this ratio to the used
algorithms.

The number of data points per input dimension varies
between 1 and some thousand, and the authors like to
state that ratios below 10 might be critical. To learn
an appropriate model, the data has to represent the full
complexity of the given process. For example, if the process
is linear and assuming no noise, at least two data points

Fig. 2 Point-dimension ratio for used algorithms. The image was
created using a swarm plot to make points with the same values
distinguishable. The gray area indicates a critical amount of points per
dimensions

per dimension are necessary to map this relationship from
the data. With increasing noise and the potential of outliers,
the ratio has to increase as well to learn an appropriate
model. As the industrial processes are assumed to have
a higher complexity, it might be possible that even with
a sophisticated DOE not all relevant relationships are
represented by the data.

Relating the ratio to the algorithms, the authors expected
them to be correlated, as a more complex algorithm that
is able to map more complex relationships typically needs
more representative data. But this expectation was not
fulfilled, as there is no correlation visible. All algorithms
are used with all possible ratios. In the opinion of the
authors, this is considered critical. To stay with the example
mentioned beforehand, an ANN can be used for a linear
mapping as well as a simple linear regression, but the
less complex model has several advantages over the ANN.
On the one hand, it provides a better interpretability, so
the mapped relationships can be understood and possible
failures (of the data and the model) can be detected. On the
other hand, a complex model needs more time for training,
split into the actual training time, the feature engineering,
and the tuning of the hyperparameters. If training time is an
issue, this fact should not be ignored.

At the end of this paragraph, the authors want to point
out that process complexity, the number of data points per
input dimension to the model, and the model complexity are
highly related. To learn an appropriate model, the data has to
represent the process complexity and the model complexity
has to fit both the process complexity and the number of
data points available.

4.3 Optimization algorithms

If optimization is used to find the best process parameters as
stated in Section 3.2, an appropriate optimization algorithm
has to be selected. As the loss function is assumed to be
complex with different local optima, global optimization
algorithms are used. In the meantime, GA is just as popular
as PSO, while both approaches can provide similar results
as comparisons like [29, 62, 71] show.
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4.4 Applicability in the real process

In this section, the authors want to discuss the applicability
of the different approaches in real production processes.

For root cause analysis, the early prediction of manu-
facturing outcomes, and diagnostic systems, approaches are
assumed to work in real life (see e. g. [40, 44, 116]).

If process parameters are changed, the application is
more critical, due to several reasons. Firstly, as the used
data originates from simulations and experiments, it is not
certain that it truly represents the real production process.
Secondly, for a running process, optimization results have
to be robust. They should be valid for different machines
and products and should be able to tolerate measurement
outliers like a crashed sensor. Thirdly, for process chains,
certain parameter changes that are valid for a single
machine might be inconvertible due to the relationship
to previous and subsequent process steps. Processing
times cannot change if the process chain shall not get out
of step.

A more general problem seems to be the amount of
available data, as the analysis in Section 4.2 shows. If that
is the case, the authors propose to add additional, better
available data such as simulation data or to inject knowledge
using a gray box approach. Both possibilities can result
in higher model accuracy and higher acceptance of the
model. More data generally provides the ability to map more
complex processes and to reduce the model’s variance. With
respect to the acceptance issue, the authors think that the
opportunity to improve the model by domain knowledge can
lower the hurdle to use it. Together with an interpretable
model like the rule mining approach by Kamsu-Foguem
et al. [44], this can help establish appropriate data mining
approaches for optimization in production.

5 Conclusion and further aspects

5.1 Summary

The advent of smart manufacturing simplifies the exploita-
tion of data provided by whole production plants, individual
machines, or single sensors, enabling machine learning at
different stages of complexity. Simultaneously, a shortage
of resources and the struggle of manufacturers to stay com-
petitive makes machine learning necessary to spare energy,
time, and resources and to reduce waste. As data often
already exists in various storages or is cheap to create, the
step to its beneficial use is a small one.

In this review, the available data types and the use of
the data for machine learning in different applications were
described. The applications vary from the simple setting of
learning a valid machine learning model to the combination

of machine learning with optimization. If only a model
is learned, it can be used for root cause analysis, the
early prediction of manufacturing outcomes, and diagnostic
systems to optimize product quality or process efficiency.
Else, if a model is combined with optimization algorithms,
it is possible to find production parameters optimal for
a specified loss function. This function can include the
mentioned constraints on energy, time, and resources and
waste or describe a specific measure of the part’s quality.
The optimized parameters and their introduction into the
machine make the whole production process more flexible
and adaptive to the different requirements occurring in the
process.

5.2 Conclusion

Given these potentials of optimization, the closer analysis
of the overall process of data collection, model training,
and optimization revealed a critical aspect: the connection
between the process complexity, the stored data amount,
and the model complexity. In the inspected papers, quite
often, this connection was not respected, leading to complex
models being trained on low amounts of data, risking
overfitting and/or a lack of interpretability. This aspect can
gain skepticism toward the application of machine learning
in the manufacturing industry. To face this challenge, the
authors recommend being careful in every step of building
the optimization chain and to question the data, the used
machine learning methods, and optimizers. Other critical
aspects hindering the optimization of processes via machine
learning might be a lack of relevant data or difficulties
in getting access to the machine’s control systems. All
these problems might vanish with time passing to gain
expertise, fill storages, and lower hurdles by hard- and
software.

5.3 Future research directions

In the author’s eyes, machine learning in production is not
limited to the before-mentioned improvements. It has the
specific chance to improve product quality enormously if
applied for open-loop control for multi-stage production
processes, as already proposed by Konrad et al. [54],
Lieber et al. [59], and Arif et al. [5]. As product quality
can already be predicted at early production stages as
done by Weiss et al. [116], one could optimize for the
best subsequent machine parameter set to achieve the best
possible product quality, given the limits of the raw material,
the production parameters, and the previous processing
results. Thinking bigger, this approach could be extended
from the product-specific stage to machine- and plant-
specific stages, improving the overall efficiency taking
resource, energy, and time restrictions into account.
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Yet another future research topic could be the simplifica-
tion of machines and the use of larger tolerances of the raw
material. Machine learning–based optimization techniques
might face the higher requirements of the processing steps,
ensuring unvarying quality, and simultaneously reducing the
costs of machines and the raw material.
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