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Abstract Increasing market demand towards higher
product and process quality and efficiency forces compa-
nies to think of new and innovative ways to optimize their
production. In the area of high-tech manufacturing prod-
ucts, even slight variations of the product state during pro-
duction can lead to costly and time-consuming rework or
even scrapage. Describing an individual product’s state along
the entire manufacturing programme, including all relevant
information involved for utilization, e.g., in-process adjust-
ments of process parameters, can be one way to meet the
quality requirements and stay competitive. Ideally, the gath-
ered information can be directly analyzed and in case of an
identified critical trend or event, adequate action, such as
an alarm, can be triggered. Traditional methods based on
modelling of cause-effect relations reaches its limits due to
the fast increasing complexity and high-dimensionality of
modern manufacturing programmes. There is a need for new
approaches that are able to cope with this complexity and
high-dimensionality which, at the same time, are able to gen-
erate applicable results with reasonable effort. Within this
paper, the possibility to generate such a system by applying
a combination of Cluster Analysis and Supervised Machine
Learning on product state data along the manufacturing pro-
gramme will be presented. After elaborating on the different
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key aspects of the approach, the applicability on the identified
problem in industrial environment will be discussed briefly.
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Introduction

Increasing market demand and customer requirements
towards higher product and process quality and efficiency
(Kovacic and Sarler 2009) force companies to think of new
and innovative ways to optimize their production. At the
same time, high-tech engineering products become more
and more optimized (e.g., gear wheels for offshore wind
turbines, aerospace products working at the physical lim-
its of materials). The growing importance of quality for
competitive success has been demonstrated over the last 30
years by various companies, which successfully understood
and consequently translated customer requirements into final
products (Holcomb 1994; Robinson and Malhotra 2005).
Facing these trends, manufacturing companies have to deal
with rapidly increasing complexity within their manufactur-
ing and business processes to achieve the expected quality of
their products.

Quality is the degree to which a set of inherent charac-
teristics fulfils requirements (in accordance with DIN EN
ISO 9001:2008 definition). Requirements in this context are
understood as the need or expectation that is stated, gener-
ally implied or obligatory. On this foundation product quality
in manufacturing can be defined by the extent to which the
manufacturing company is capable to offer products which
fulfil customer requirements (Koufteros et al. 2002; Boon-
itt 2010). When looking at the manufacturing programme,
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customers are not necessarily the end customer of the final
product, but can also represent internal customers of another
department of the manufacturing firm or of another collabo-
rating company within the manufacturing network.

To meet the customer requirements, at first it has to be
ensured that the manufacturing programme is designed so
that it is able to produce the desired product properties
(Mohanty 2004). Such a manufacturing programme consists
of a process chain with each process having a number of
operations. In the chain, processes may be linked one-to-one,
disjunctively or conjunctively to preceding or subsequent
processes. Each process may have a chain of operations
similarly linked within the process. After ensuring the gen-
eral suitability of the manufacturing programme, the process
quality comes into play. Today, even in advanced manufac-
turing programmes, there is always a degree of variation of
the input parameters of individual products during the vari-
ous manufacturing processes and operations (Yu and Wang
2009). As the processes are not independent of each other,
these variations can, even being tolerable from an individ-
ual (isolated) process perspective, lead to an unacceptable
accumulation causing failure of the final product to meet
the customer requirements. For example, even though bar
steel is ordered according to DIN/ISO specification, there is
actually a variation range within the specifications/standards
(Siyasiya et al. 2005). A batch produced from steel from the
same producer can cause no quality problems during man-
ufacturing but a later batch can fail due to batch variations.
For example, a variation in the homogeneity of the melt can
influence the hardening capabilities and the distortion behav-
iour (Kessler et al. 2006; Clausen et al. 2006) or a difference
in the titanium ratio within the melt can have an impact, in
combination with the different previous processes, on the
behaviour during heat treatment and result in quality prob-
lems like rework or scrapage.

As process quality in manufacturing is directly connected
to product quality (Brinksmeier 1991; Jacob and Petrick
2007) improvements of the manufacturing processes can
have an impact on various levels, e.g., efficiency improve-
ments and/or product quality improvements (Pavletic and
Sokovic 2009). Especially during the manufacturing of engi-
neering products with a high added value, rework and scra-
page due to problems within the processes cannot only
be very costly, but also damage the reputation of a com-
pany within a distributed production network. Along a man-
ufacturing programme, parts as well as information are
exchanged between the interfacing processes. As manufac-
turing processes become increasingly more complex, the
handling of information plays an important role in the man-
agement of product and process quality (Albino et al. 2002;
Hicks et al. 2006). Tracking individual products along the
manufacturing programme and managing their product qual-
ity becomes more and more relevant and leads to large
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amounts of information and data that has to be handled. As
too much information can mean a threat to the process quality
(Jansen-Vullers et al. 2003), itis desirable to know what infor-
mation and data needs to be gathered, how it can be structured
and finally, how it can be applied with maximal impact.

Using product and/or process data to monitor and/or fore-
cast certain events, chains of events and/or outcomes is a
topic widely discussed among scholars for more than the last
20 years. Du et al. (1995) describe monitoring as an act of
identification of characteristic changes of a process by eval-
uating process data without interfering running operations.
In their research they find that monitoring based on learning
from examples turns out to be more effective in manufactur-
ing programmes than learning from instructions.

Yet, as in manufacturing programmes, a wide variety of
potential errors can influence the quality characteristics of
a product. The product end quality is finally determined by
all stages of the manufacturing program (Zantek et al. 2006;
Jiang et al. 2012). Whereas quality and condition monitoring
is well established and partly already successfully imple-
mented, mostly monitoring only one manufacturing process
at a time (e.g., Silva 2009; Jenab and Ahi 2010), concepts
taking the importance of the system view (e.g., Babiceanu
and Chen 2006) into account, thus monitoring of the whole
manufacturing programme, are still rare and need more atten-
tion from the research community (e.g., Choudhary et al.
2009). Additionally, some researchers like Ding, Ceglarek
and Shi (2002) recognize the importance of the system view
for monitoring but focus on a specific characteristic, in that
case diagnosing fixture faults. Other research, also taking the
whole manufacturing programme into account, focusses on
the identification of the critical manufacturing process caus-
ing a deviation from the planed characteristics (e.g., Zantek et
al. 2006). Jiang et al. (2012) and Sukchotrat et al. (2009) are
both presenting novel approaches tackling similar issues as
this paper to monitor multistage manufacturing programmes
using either error propagation networks (Jiang et al. 2012)
or multivariate control charts (Sukchotrat et al. 2009) on a
conceptual level with further research still ongoing.

Within this paper, an approach to increase process and
product quality in manufacturing through monitoring of
product state based data and utilizing a combination of Clus-
ter Analysis and Supervised Machine Learning will be pre-
sented. Through this approach, an individual product can
be described in a structured way along the manufactur-
ing programme. The derived product state data, which is
reflecting the increasing complexity of modern manufactur-
ing programmes, is highly complex and characterised by a
large number of influences and thus statistically of high-
dimensionality. This makes it difficult, or even impossible
to affect conventional modelling of cause-effect relations in
an efficient and goal-oriented way. Therefore, the analyti-
cal power of machine learning theory is utilized within this
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Fig. 1 Product state change during manufacturing process X

approach, having the advantage to be designed to handle
large amounts of complex and high-dimensional data. The
goal is, whenever a product’s state shows too much varia-
tions, the system will trigger an adequate action, e.g., utiliz-
ing expert systems, either to adjust the interfacing processes
to reach the required quality or to scrap the individual prod-
uct to avoid unnecessary processes and thus a waste of
resources.

In the following section, the theory behind the product
state based view in manufacturing will be introduced. Based
on that, section three matches the requirements of using prod-
uct state based data with the advantages of a combination of
cluster analysis and supervised machine learning, capable
of handling the high-dimensional, complex and large sets of
data and information accruing in this context. In section four,
these tools are applied and a theoretical example is given to
make the approach more feasible. The paper concludes with
a discussion and a brief summary of the results, limitations
and a short outlook on further research planed within this
context.

Concept of product state

A manufacturing programme transforms raw material to final
products through different value adding processes in order to
deliver to the customer the desired product. Consequently, the
goal of every manufacturing programme is to add value to a
work piece, component or product (Kalpakjian and Schmid
2009) (hereinafter the term product will be used comprehen-
sively) with each process. Adding value in manufacturing
implies physical transformation of the product (e.g., transfor-
mation of form, hardness, chemical composition, etc.). The
specific purpose of every process and operation is to execute
a part of the physical transformation of the product. Thus,
the state of the product is changed at least with every (value
adding) process. Looking at a product by its state has the
advantage to being able to describe or record the transforma-
tion. Therefore, looking at the product state along the whole
manufacturing programme accumulates a complete picture
of realized measures and transforming processes.

Product state and state characteristics

The concept of the product state based view describes a prod-
uct at certain times during a manufacturing programme or
after, through a combination of relevant state characteristics.
As definable and ascertainable measures, state characteristics
can be described in a quantitative or qualitative way. The state
of aproduct changes due to external influence, be it intention-
ally, for example through machining, or unintentionally, e.g.,
through corrosion, from one point in time to another when
at least one descriptive state characteristic changes (Wuest
et al. 2011). In Fig. 1 a product state change is illustrated
highlighting state characteristics changed during the process
X in gray on the right hand side.

Within this concept, it is inalienable to identify informa-
tion with an impact on the individual product and process
to create a set of relevant state characteristics. In today’s
ever more complex industrial manufacturing programmes,
there are many factors, e.g., machinery used, type of mate-
rial, later application area, etc., which have to be consid-
ered. Today, not all influencing factors for an individual
manufacturing process chain are known. Nevertheless, these
(unknown) factors may have an influence on the final prod-
uct quality. Therefore, there is a need for new methods and
approaches to include their influence in monitoring and warn-
ing/forecasting models within the domain of quality manage-
ment.

Product state characteristics explicitly include measures
of the inner work piece state such as internal stress alloca-
tion (Wuest et al. 2011). Being hard to measure especially
during manufacturing, such measures have a proven influ-
ence on processes and thus the quality of the final prod-
uct (Zoch 2012). Today, these measures are not adequately
considered yet, partly as they are difficult to measure and
their influence is just moderately known (Zoch and Liibben
2011). In the spirit of a holistic system view on the manu-
facturing programme it is nevertheless important to consider
such measures for quality improvement initiatives. Thus, the
product state based view consists not only of a conception of
the product state itself. The product state has to be seen in
the environment of the whole manufacturing programme, the
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Fig. 2 Transforming of a product during a multi-stage manufacturing programme

different processes and operations. In the following section,
this essential connection between process and product state
is described in more detail.

Product state in manufacturing

As stated above, a multi-stage manufacturing programme
consists of different processes and operations, each with a
certain very specific task and goal. To transform a raw mate-
rial to a final product all processes are necessary and have
to be executed in a certain order. Figure 2 shows an exem-
plary industrial manufacturing programme with four main
processes: casting, forging, machining and heat treatment.
In industrial practice, a manufacturing programme involves
generally more processes and/or some have to be executed
multiple times at different stages of the whole manufacturing
programme. To build a foundation for the following concept,
the authors chose to use a simple example in order to focus
on the main ideas instead of getting lost in details.

Today, it has to be taken into consideration that manufac-
turing programmes are not executed by a single company at
a single location any longer but rather in collaboration with
other companies (Seifert 2009). This includes extra interfaces
and interdependencies between stakeholders as well as man-
ufacturing and business processes. For example, the casting
(process 1) in the exemplary manufacturing programme (see
Fig. 2) could be done by company A in country X, whereas
the processes forging (2) and machining (3) are executed by
company B’s department C (country Y) and D (country Z).
As this adds further complexity to the manufacturing itself
by involving additional logistics and information exchange,
there is an indispensible need for a clear structure to iden-
tify, share/distribute and use product and process information
(Merali and Bennet 2011).

At this point, the product state based view (Wuest et al.
2011) offers a structuring of product and process data for
such already highly complex distributed manufacturing pro-
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grammes. First of all, in a production network, different com-
panies and firms are working closely together, therefore, the
information exchanged has to be in a format that all stake-
holders can derive and use with their individual systems.
Thus, product state data is ideally not interpreted and there-
fore exchangeable between different systems. Connecting the
product state data/information to the individual product and
process is in line with today’s ambition to ensure the quality
of every single product. This is especially true for safety crit-
ical products in e.g., aerospace industry and/or products with
expensive manufacturing programmes/processes. Through
time-dependency, the whole value adding process and the
changes can also be tracked and used as a product history,
which is already expected in some industries (e.g., automo-
tive industry).

During a whole distributed manufacturing programme
with stakeholders in different locations all contributing to
the final product, the product state change, respectively the
change of certain relevant state characteristics at that point
in time can present valuable information for the following
processes. These addressed processes can be either directly
following processes or processes scheduled later in the man-
ufacturing programme.

Theoretically, the product state can be derived at all times
during a multi-stage manufacturing programme (see Fig. 2).
In order to design a manageable and sufficiently detailed
model, the checkpoints when the product state should be
derived have to be defined (see Fig. 3). In general, a higher
number of defined product state checkpoints during a man-
ufacturing programme results in increased complexity and
higher dimensionality of the model and a larger amount of
data/information generated overall. Traditional forecasting
methods based on modelling cause-effect relationships tend
to not handle this added high-dimensionality and complexity
well.

Based on that consideration, it might make sense for such
cause-effect based approaches to choose as few checkpoints
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Fig. 3 Process-, product- and information level of a multi-stage manufacturing programme

as possible but as many as needed checkpoints for the task.
First analyses suggest that at least as many checkpoints (plus
one) as there are processes are needed to grasp the major
(intentional) product state changes. Some processes, e.g.,
machining, might need to be separated in additional opera-
tions with extra checkpoints, e.g., clamping, to grasp impor-
tant product and process state information. The nature of
the checkpoints is partly comparable to the concept of using
quality gates to ensure quality of a process (see, e.g., Spath
et al. 2001; Giebel et al. 2009). A checkpoint represents a
critical control point which not only allows to assess the pre-
vious actions but to intervene in the process if necessary
(Fischer and Breitenbach 2009). Other attempts to increase
quality through looking at relations use similar arguments
to define checkpoints, phases or stages (Mizuyama 2004,
2006).

The approach to utilize combined cluster analysis and
supervised machine learning on product state data described
in the following “Supervised learning and cluster analysis
applied to process states” and “Supervised learning and prod-
uct/process states” sections is suited to handle highly com-
plex and high-dimensional data rather well. Therefore, as
many checkpoints as possible can and should be defined,
theoretically increasing the granularity of the quality super-
vision and the results.

Figure 3 illustrates the introduced exemplary manufactur-
ing programme, highlighting the process/ product level and
the overarching information (data) level. The information
level handles the product and process state information/data
set of the individual products along the manufacturing pro-
gramme.

Analysis of this product and process state information/data
describing the product state at the different checkpoints
offers the chance to adjust process parameters of following
processes accordingly during the manufacturing programme
itself. Thereby, ideally reducing the detected quality devi-
ations of the final product. Or, on the other hand, the pos-
sibility to identify critical product state changes early in
the manufacturing programme can be used to implement
an alarm system (“red flag”) which interferes if the prod-
uct state changes in an unappreciated direction at a certain
checkpoint early in the manufacturing programme. Based on
such a monitoring system, experts can decide if the product
can still reach the final quality requirements or if it should
not receive more value adding processes. This expert deci-
sion will be supported by a provision of the needed infor-
mation/data of the current product state and the received
treatment so far (e.g., process parameters). Additionally, the
expert decision can be supported by IT-based expert systems
if possible.
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Fig. 4 Excerpt of a first approach to illustrate state relationships in an industrial example

Potential utilization of product state based view

The initial idea for the aforementioned utilization of prod-
uct state information/data to create a “red flag” warning
system based on modelling the dependencies between the
different states or state characteristics had to be discarded
due to unmanageable complexity and high-dimensionality.
That approach was based on modelling dependencies, which
could be either between state characteristics within a state
or in between different states along the manufacturing pro-
gramme. To model these dependencies in this context, large
volumes of product and process data/information is needed
beforehand and thus impractical, at best. Not all dependen-
cies are known, not to mention a possible quantification of
the cause-effects relations. Furthermore, there are still vari-
ous cause-effect mechanisms unknown, especially when the
whole manufacturing programme is in the focus (system
view) and not just a single manufacturing process/operation.
An example for such dependencies is the field of distortion
engineering where after years of research still not all mech-
anisms are identified (Zoch 2012). Much research and indi-
vidual testing/experiments would be needed to get a first,
partly satisfying result. At the same time this would make
the approach inflexible, time-consuming and vastly expen-
sive, thus, not applicable in a fast changing environment like
industrial manufacturing.
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Theoretically, assuming that most dependencies, basically
cause-effect relationships, between states or state character-
istics are known, it still is very resource intensive to inte-
grate them all in a model. Figure 4 shows a small excerpt
of an attempt to model the relationships between a selec-
tion of state characteristics of a manufacturing programme
in an industrial case. The different notations appearing in
Fig. 4 are not further explained within this paper. The pur-
pose of Fig. 4 is solely to support the argument of increasing
complexity when modelling cause-effect relations within a
manufacturing process. The result was that even so some
knowledge gain and awareness was raised within the com-
pany, the process of deriving the dependencies and interde-
pendencies and cumulating them in a cause-effect model was
too time-consuming and prone to failure. As soon as one para-
meter of a process within the manufacturing programme is
changed or the product itself changes, the whole model has to
be redeveloped. And, if a company has different production
lines with different products, the model has to be developed
for each individual product/production line. The combina-
tion of unknown cause-effect relationships, fast increasing
complexity and high-dimensionality in modern manufactur-
ing and the time-consuming and resource binding process
are not reflected adequately in the achievable results.

As this first approach was unrewarding, a new approach
is needed which can utilize the opportunities reflected in the
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product state based view on manufacturing programmes and
at the same time being able to handle the occurring chal-
lenges like high-dimensionality from increased complex-
ity within the product state data in an efficient and goal
oriented way. Within the application of this new approach
it has to be possible somehow to identify relevant drivers
(causes) of certain product state changes in a practical and
efficient way without having to analyze and having in-
depth knowledge of the aforementioned relations in such
great detail. Prescriptive data processing/algorithm will find
this sort of complexity hard/impossible to handle because
cause-effect mechanisms may be hidden and unknown by
all the relations, some of which are in themselves unknown
(Wuest et al. 2012).

Sequences of manufacturing operations and processes are
characterised by the start and end states of each operation
or process. Experiential data and information are often used
to determine whether or not the states represent a desirable
stage in the manufacturing of the product. Classical Statis-
tical Process Control (SPC) is based upon the use of state
process data. The usefulness of SPC lies in the ability to
examine a process and the sources of variation in that process.
Variations in the process that may affect the quality of the
end product or service can be detected and corrected, thus
reducing waste as well as the likelihood that problems will
be passed on to the customer.

Different types of variations occur in all manufacturing
processes. Variations have in the past been typified into
common cause variations consisting of the variation inher-
ent in the process as it is designed. Common cause varia-
tions may include variations in temperature, properties of
raw materials, strength of an electrical current, etc.; and
assignable-cause variations, which happens less frequently
than the first. With sufficient investigation, a specific cause,
such as abnormal raw material or incorrect set-up parame-
ters, can be found for assignable-cause variations. However,
modern multi-variate systems have considerable complex-
ity with high-dimensional data (Apley and Shi 2001; Zhang
and Wang 2009), with unknown or unclear cause-effect rela-
tionships in the process(-es) and with non-Gaussian data
distributions, at times exhibiting seeming chaotic behaviour
(Chou et al. 1998; Borror et al. 1999; Stoumbos and Sullivan
2002), categorical (Wang and Tsung 2007) or mixed (cate-
gorical and numerical) variables, and numerical data with
different scales of measurement. Furthermore, a monitor-
ing technique without assumptions on the parametric forms
of distributions is important in this context (Monostori et
al. 2006). In the following chapter, a combination of clus-
ter analysis and supervised machine learning is introduced
which is expected to handle the aforementioned challenges
well and at the same time produce usable results for industrial
application.

Supervised learning and cluster analysis applied to
process states

Manufacturing processes will thus naturally exhibit states
prior and subsequent to the process. In this context, the term
process may be a single operation or a sequence of operations
as part of an overall manufacturing programme. Such process
states may be known or unknown, desirable or undesirable
and imply that some form of classification method would be
required to monitor and ultimately facilitate process control.
The problem arises with unknown and undesirable states. The
unknown dimension could imply an infinite set of states and
as such would make classification infeasible. Assuming that
there is a finite population of desirable states it would be fea-
sible to regard all other states as undesirable, and focussing
on a finite set of states; and furthermore regard the probabil-
ity of the discovery of new desirable states as small. If one
was confident that it would be possible to ’discover’ such
new desirable states, one can assume that there is a finite and
relatively static population of desirable states. Thus we pos-
tulate that a manufacturing programme will exhibit a finite
set of relatively static desirable states and that all other states
are by default undesirable. On this basis it can be assumed
that a suitable classification method may be applied in order
to calculate process states and that once the process state
is known, the basis for process monitoring and control is
laid. The diagram (Fig. 5) should illustrate this in as much
as once the state is determined, the next step is to determine
the *driving’ forces represented by the two types of process
inputs or influences.

Selection of suitable classification methods

Simple classification methods will not necessarily provide a
link between the classified state and state drivers, nor will it
facilitate the ’discovery’ of new states. Furthermore, man-
ufacturing processes may exhibit large dimensionality as
well as non-Gaussian, pseudo-chaotic behaviour. This mili-
tates against orthodox SPC and statistical dimension reduc-
ing methods, and focuses attention on multi-variate methods
and data-mining approaches. Classification methods such as
support vector machine (SVM) (Hamel 2009) and various

Operator actions,
interactions &
characteristics

. q Processis ‘driven’ into
Information, material
&dinitial process Process opegfaumberot
e ‘states’ (S) depending
conditions

onits influences

Fig. 5 Determining driving forces based on process inputs
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forms of Cluster Analysis could support the classification
needs of large dimensionality process data, while various
forms of Cluster Analysis could also support the needs for
the exploration of new process states.

Cluster Analysis is an approach that finds structure in
data by identifying natural groupings (clusters) within the
data set. Cluster Analysis in this context should be viewed
as exploratory data analysis tools because they are generally
used to generate, rather than test, hypotheses about data struc-
tures, thus in this case used to generate and iterate a learning
set for use in the Supervised Machine Learning process.

Constraining the manufacturing process sequence to a
set of known and desirable states with the need to effect
infrequent ’discovery’ of new desirable states, can pro-
vide the basis for a hybrid process monitoring and control
approach which uses Supervised Machine Learning together
with cluster analysis to handle the requirements of high-
dimensionality data, unclear or unknown cause-effect mech-
anisms, non-Gaussian data with various scales and types.

To be able to ensure that processes, in the widest sense, are
under control, there are a number of fundamental questions
which must be answered and acted upon:

1. What is the state of the product/process?

2. Is the state desirable?

3. Is the state ‘driven’ by parameters which can be used to
influence it?

4. What can be done if the state is undesirable and persis-
tent?

5. Is it likely that the state may change thus needing no
action i.e. non-persistent?

The above questions should formulate the process moni-
toring and control strategy. The first two questions express the
fundamental need to be able to determine the product/process
state and type before any further action is initiated. The desir-
ability of the state is of the highest importance. All undesir-
able states are consigned to the one state of "undesirable’.
Question 3 addresses the need to know what process influ-
ence(s)/input(s) represent the dominant *drivers’ for the state
so that potential rectification can be supported. Given the
nature of the data as described above, the actual cause-effect
mechanism may not be obvious and/or known, but over time
may become clearer through the identification of the ’driving’
influences. Question 4 is at this stage seen as outside the
domain of the automatic process monitoring and control and
is therefore seen as delegated to expert domains together with
the answer to Question 3. Question 4 addresses the issue of
identifying the persistence or otherwise of a given process
state so that warnings can be produced if the persistence is
changing in an unfavourable manner.

Increasing process scope and the need to monitor condi-
tions which are dependent upon large numbers of parameters,
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Fig. 6 Phases of process state monitoring using cluster analysis and
supervised machine learning

high-dimensionality, (possibly in their 1,000s) has made the
above questions more difficult to answer. Such processes
typically exhibit chaotic behaviour, thus hiding cause-effect
mechanisms.

Modern data-mining methods such as Cluster Analysis
and machine-learning methods have shown the ability to
overcome problems in process, or product, condition mon-
itoring by handling events with very large data dimensions
and without explicitly known cause-effect models and inher-
ent state information (Chinnam 2002). The principle of such
solutions can be expressed in Fig. 6.

The light grey phase on the left side of Fig. 6 indicates a
continuous creation and updating of learning data, while the
other phases indicate a real-time condition data capture and
state classification and analysis.

The product/process condition vectors x; form a popu-
lation matrix X through time such that the population X is
increasing incrementally with each process monitoring vec-
tor x;. It is assumed that x; has high-dimensionality and that
this process monitoring vector is captured in real-time. Real-
time theoretically implies immediate reaction (Shukla and
Frank Chen 1996). In practice, the time horizon connected
to real-time is depending on the application, e.g., face recog-
nition in manufacturing environments with <1s (Megahed
and Camelio 2010). Real-time systems in general are sys-
tems that have the ability to react to certain events or triggers
within an acceptable time-frame (Sha et al. 2004). Gogouvi-
tis et al. (2012) differentiate hard real-time, where the task
must be completed before a certain deadline, in contrast to
soft real-time, where the task should be completed accord-
ingly. In the presented application, real-time is not defined
with a hard time-frame. In this case the real-time issue is not
addressed as the fundamental method is to be investigated.

The total manufacturing programme, which consists of
the sequence of individual processes, can therefore be seen
as a sequence of classifiable states, and as the total man-
ufacturing programme progresses towards the conclusion,
the overall manufacturing programme’s state can be seen as
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the accumulated X matrix. This matrix and the individual x;
condition vectors thus form the working data for the classi-
fication methods. Once learning data has been established,
incremental process state classification and monitoring can
take place in real-time.

The learning phase

Supervised Machine Learning methods display great strength
in their ability to handle large amounts of high-dimensionality
data quickly and reliably. The perceived cost of such meth-
ods is the need to create learning data. The learning data is
used to create a model through which the real-time moni-
toring vectors X; are processed to classify the implied state.
The benefit of the use of learning data is that it can easily
be updated thus facilitates continuous learning. This will in
turn be useful as a process changes with time through wear
and tear, maintenance, increased operator skills, changes is
raw-material supply, etc.

In order to create the learning model it is necessary to
identify characteristic data vectors and label these as repre-
sentative for a state. This phase is the initial phase for setting
up the machine learning framework, and can subsequently be
used to incorporate maturing and changing knowledge. The
above diagram (Fig. 6) shows two complementing methods
by which this is achieved; clustering and adjustment by user
specialist.

Cluster Analysis or clustering is the assignment of a set
of observations into subsets, or clusters, so that observations
in the same cluster are similar in some sense. Clustering is a
method of unsupervised learning, and a common technique
for data analysis used in Machine Learning, Data Mining and
Pattern Recognition.

Clustering techniques apply when there is no class to be
predicted but rather when the instances are to be divided
into natural groups. These clusters presumably reflect some
mechanism at work in the domain from which instances are
drawn, a mechanism that causes some instances to bear a
stronger resemblance to each other than they do to the remain-
ing instances.

In producing obvious clusters it is possible to name them
and typify the cluster characteristics in terms of the implied
process/product states. Consequently, the biggest gains are
likely in knowledge-poor environments, particularly when
there are large amounts of unlabelled, un-classified data.
Indeed clustering techniques can be viewed as a way of gener-
ating taxonomies for the classification of objects. Thus clus-
tering is seen as useful for the generation of learning data for
Supervised Machine Learning methods.

There are various clustering methods. In this context, the
hierarchical approach is seen as the best candidate. This is
so because this form of cluster representation provides inter
cluster relationships in terms of similarity scores at vari-

ous levels. It is important to establish clusters which are a
maximum distance apart as these would represent vectors
which are the most different and as such are likely sources
for learning data. Therefore, hierarchical cluster formation
is considered suitable as a basis for selection of y; instances.
This is the principle of Kennard-Stone data sampling
(de Groot et al. 1999).

Figure 7 shows a small sample population X of 12 vec-
tors x1_12, each indicated as an individual line of different
shaded ’pixels’ with a diagramatic tree structure on the left
of the diagram, indicating the cluster relationship among the
vectors, as a function of the distances between them. This is
similar to the dendrogram in Fig. 8. The top line of Fig. 7
is showing the notation ElementA_B indicating the 11 ele-
ments of each x; that is a dimensionality of 11, while the
vertical list on the right of the diagram indicates the num-
ber of the corresponding x;, named VectorXY. The shaded
matrix indicates the value of the individual vector elements
such that the darker the "pixel’ the higher the element’s value,
and the lighter the pixel the lower is the value, while a white
pixel indicates zero value.

InFig. 8itisclear that the populations {x1, x>}, {x3, x4, x5}
and {x¢} form 3 clusters, the first 2 form a separate cluster
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Fig. 7 Agglomerative clustering output showing natural cluster trees
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with the 2nd highest measurements of similarity, here Euclid-
ian distance. These 2 or 3 clusters could be possible candi-
dates for providing learning vectors. Work is needed vis-a-vis
the selection and use of linkage methods and the user needs
to choose appropriate clusters from the hierarchy, see Fig. 6.
Given that hierarchical cluster analysis is used for the iden-
tification of candidate clusters for the learning data set, it
is considered sufficient to complement the clustering with
expert/user input.

Clustering information can be used to identify learning
sets from the population X, so that clusters which exhibit
‘extreme’/‘undesirable’/‘unusual’ states different from the
main mass of the population X may be included in a learning
set for a Supervised Machine Learning method. This method
is useful during continuing use of the process and for each
product operation, so that by regular use of the Cluster Analy-
sis of product state data, state knowledge can be updated
through adjustments in the learning set. This phase may be
run as frequently as needed to reflect the growing knowledge
and/or increasing data variance.

The learning set Y is consisting of the learning vectors
y;. Bach y; having the same format as the vectors x; except
an additional label indicating which state it represents. The
population Y can be as small as 1 for each state, but it is most
desirable to include a higher number.

Supervised learning and product/ process states

The selected machine learning method here is (SVM). SVM
methods build on developments in computational learn-
ing theory and have attracted attention, particularly in bio-
informatics applications, because of their accuracy and their
ability to deal with high-dimensionality data. Indeed, some
appear to be relatively immune to the ‘curse of dimensional-
ity’. These methods offer considerable potential and have
already been used by the author in condition monitoring
involving x; event vectors up to 500 dimensions (parame-
ters per observation).

SVM is originally a linear binary classification method. It
is based upon the simple classification idea that an input set of
values, vector x; is assigned to a positive class if g(x;) >= 0,
where:

g (x;) =wxx; +b.

Figure 9 indicates the simple linear, binary classification
principles. The classification direction is indicated as perpen-
dicular to the class divider, the hyper-plane.

The vector w in this aspect represents a decision hyper-
plane’s normal vector and is commonly named weight
vector in Supervised Machine Learning literature (Hamel
2009; Manning et al. 2009). The hyper-plane thus described
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Fig. 9 Illustration of binary classification in 2-D

becomes the population separator, state classifier, of x;, with
g(x;) defining whether or not the x; is positively classified.

SVM methods require learning data, Y. Y is normally
compiled from selected process monitoring vectors x;. The
process monitoring vectors form time series and the aim is to
determine each process monitoring vector’s state against the
learning data. Y is furthermore an approximate representa-
tion of the data space, and placing a decision surface, hyper-
plane, equidistant from the respective class/state boundaries
should increase the probability of correctly classifying the
data points, x;, not in the learning set. This leads to the max-
imum margin SVM. Once the learning data, Y, has been
established, the SVM process can be employed to assess the
state by classifying the process monitoring vector x;. Given
that x; is sampled as a time series, it is then possible to gen-
erate a state time series by classifying the x; SVM needs a
relatively small example of data vectors by which to typify
the various types of states.

The vectors x; are the attribute vectors as discussed above.
Given the "dot-product’ nature of the classifier, it can be used
as a non-linear classifier, making it particularly flexible and
useful (Kernel method). Furthermore, the binary nature of
the method is easily extended to a multi-class classifier. Thus
in summary, the method serves as a non-linear, multi-class
classifier. This allows the mapping of x; into a number of
defined states with g(x;) defining the ’strength’ of the mem-
bership of the state. Given that x; is a time-series of process
feature vectors, this enables a mapping of the process into a
number of states. The changing of which can be represented
as in “Support vector machine learning and cluster analysis
applied to process/product state monitoring” section below.
Whether this can be done in real-time is a question which can
only be determined once the approach has been investigated
further.

Given the present context, this is seen as particularly valu-
able as inter-process product states can be given a higher
resolution than just { good, bad} and a resultant nuanced cor-
rective response can be activated.
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Support vector machine learning and cluster analysis
applied to process/product state monitoring

By constraining the product and associated manufacturing
programme monitoring to the observation of desirable and
undesirable inter process states and step-by-step product
work-in-progress states, it is clear that the use of a hybrid
monitoring and diagnosis method can be formed from Clus-
ter Analysis coupled to SVM. SVM is regarded as being
particularly suited for this purpose due to its reliable classi-
fication of high-dimensional data and relatively cheap data
processing cost for real-time or quasi real-time applications,
while Cluster Analysis may assist in the definition of learning
data.

Assuming that the outlined approach in “Supervised learn-
ing and cluster analysis applied to process states” section
with respect to the creation and updating of the learning
data, Y, is possible, SVM can be applied successfully to
determine, incrementally possibly in quasi real-time, the
process/product states at various points in the overall man-
ufacturing programme. Some sample output is shown in
Fig. 10. This output shows the mapping of process states, and
the states’ growing and diminishing vis-a-vis being active. It
is based upon the classification of the state vector x;. The
“strength’ and direction which are given by g(x;).

At approximately x1jo the state defined by the current
{w, b} becomes active and stays active until approximately
x297. The state then drops into inactivity rapidly.

Four different states may be determined, represented by
four different {w, b} planes, thus four different hyper-planes.
The vertical axis shows the values of the four different g;
(x;) while the horizontal axis shows the process monitor-
ing vector x; at different i values, thus different times. In
this manner, there is a mapping of the process states over
time. Such mapping of process states shows how states are
changing with time.

Figure 11 shows a sample state analysis over approx 390
sample’s, x;, worth of process data, each x; consisting of 60
elements. This is mapped with respect to 4 different states,

Active state

Inactive state

Inactive

Fig. 10 Process state versus X; samples, thus showing state versus
time

Process state diagram
states vs x;

——STATE1l ——STATE2 ——STATE3 ——STATE4

'
B, O kB N W

2
3
-4
5
Fig. 11 States versus time, showing 4 process/product states, each
colour indicating different states

that is 4 different hyper-planes. The curves show how these
4 states change with time. A state’s curve above the hori-
zontal axis indicates, in this example, an active state. When
more than one curve is above the x-axis it may indicate ‘gray
zone/transition zone’ if states are mutually exclusive. States,
however, not be mutually exclusive. This depends upon the
selection of the learning data Y. The y-axis indicates the
strength of the state, the x-axis indicates the x;.

Careful use of the learning data Y, the real-time observed
product/process data X together with the hyper-plane defi-
nition(s) {w,b} and applied Cluster Analysis such as outlier
score computation, can produce a probability model show-
ing which observed individual process/product parameters,
or vector elements of x;, seem to be driving the state dynam-
ics. An example of which is in Fig. 12.

Figure 12 illustrates an example of the 60 different
process parameters from the example above. The data is
analysed to find out which are current *drivers’ for a specific
process/product state. The y-axis shows the relative impor-
tance of process parameters, while the x-axis indicates the
individual process parameter’s id. In short, the greater the
value, the stronger the ’driver’. Negative values in this case,
indicate that the parameter ’drives against’ the state mem-
bership. The parameters are sorted according to decreasing

STATE 2 process parameter 'drivers'
0.6 -

0.5 4, Relativeimportance
0.4 -
0.3 1
0.2 -
0.1 1 Parameterid

04 i
0144357 911131517192123252729313335373941434547
-0.2 4
0.3 4
0.4
-0.5

Fig. 12 Importance of individual process/product parameters in the
state dynamics
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state influence. This type of information could assist in the
diagnosis of the actual state and its corrective action and as
such would be important.

Data requirements

There are a few assumptions that form the data collection
for the successful construction and use of a hybrid prod-
uct/process state monitoring system:

1. The partitioning of the whole manufacturing programme
into a sequence of processes, each process responsible for
the product states of each manufacturing step. The prod-
uct state is thus the proxy measurement for the process
state,

2. the population of product states and consequently process
states by proxy, is characterised by high-dimensionality
and cause-effect mechanisms are not fully known or
understood,

3. there is variability present at least due to variability in
product raw-material and process changes,

4. collection of data across a wide spectrum of product and
process information is possible.

Given that the proposed methodological approach described
above, the data collection, should benefit from the data flex-
ibility inherent in the chosen methods. The assumption is
that the total manufacturing programme is likely to exhibit
pseudo-chaotic behaviour in as much as each individual
process will contribute to the high state dimensionality. Data
collection should therefore try to include all parameters con-
sidered having any state influence. The practical problems
can thus easily render the proposed methodological approach
impractical. On the other hand, the strength of the Supervised
Machine Learning approach is that its output will identify the
most important discriminant ’drivers’ and in this manner, at
least potentially identify process domains of concern. Based
on this, the data collection should follow the following prin-
ciples:

1. All possible product data from each process within the
manufacturing programme should be collected such as
inspection data, material data, etc.;

2. all available process parameters should be collected
across as wide a spectrum as possible, such as tool infor-
mation, timing, physical process information;

3. any concerns noted before and/or after the process.

Given these assumptions, regular state data should be col-
lected from the product manufacturing stages. Given that
cause-effect mechanisms between multi-variate process data
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and the product states are largely unknown, it is consid-
ered necessary to collect process information. The wider
this collection can be made, the richer the ability of the
cluster-supervised machine learning and analysis method
will be.

Discussion

The methodological approach described in this paper is based
upon the same method used in another high-dimensionality,
chaotic process domain to determine in effect process state
and ’drivers’ in real-time, although the time base for real-
time in this case was hours rather than seconds. The data
collection in this other application case was relatively easy
in as much as the data was available in electronic form and
needed a suitable database interface to download the avail-
able data. The available data was also quite extensive in terms
of including parameters which could have process influ-
ences, although the process exhibited typical chaotic behav-
iour. The process dimensionality was found to be between
200 and 300 and the condition vector population was of a
similar order of magnitude. The examples shown in “Super-
vised learning and product/process states” section are from
that specific application. In the case of applying this same
methodology to the manufacturing sector, it is realised that
the supply of data would be more problematic. Some process
data would typically be available in electronic form as would
most inspection data, at least in high value manufacturing
such as aero-space and parts of the automotive industry. There
is an argument for including what may be termed adjunct data
such as time, date, operator characteristics, process equip-
ment maintenance records and use in order to cover prob-
able process influences. This will of course increase data
collection complexity as well as problems ensuring data
integrity.

Another issue is the creation of learning data for the super-
vised methods. In this case, it is envisaged that the use of
agglomerative Cluster Analysis can be used to identify poten-
tial undesirable states by isolating extreme states, thus using
a Kennard-Stone type data sampling method. Over time, this
use should decrease as the population of undesirable state
cases increase from the normal running of the manufactur-
ing processes.

Thinking about over-fitting problems within this approach,
it has to be considered that clustering is only used for gener-
ating the learning set complemented by the expert user, and
SVM is basically very resistant against over-fitting given that
the learning data has no massive class imbalance (Scheidat
et al. 2009) and a specific hyper-plane is chosen among the
many separating the data (Vapnik 1998). It is the norm to
select the “maximum margin hyper-plane’.
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Conclusions

In this paper, first the concept of describing an individual
product by its product state along the whole (distributed)
manufacturing programme was presented (product state
based view). After deriving the requirements and challenges
of utilizing product state data in modern manufacturing, hav-
ing to cope with high complexity and high-dimensionality,
conventional methods based on modelling cause-effect rela-
tions are suspended. Being able to handle large sets of highly
complex and high-dimensional data, a combination of Clus-
ter Analysis and SVM is introduced as a possible way to
achieve the goal of improved quality monitoring. Follow-
ing, a theoretical example of an application of the introduced
methods on a similar case illustrates the potential of the
approach to have a significant impact on quality monitoring
in manufacturing. Finally, a short discussion on challenges
arising from application of the presented approach within
an industrial manufacturing environment and eventual data
gathering in that field is presented.

Concluding, the approach on using a combination of Clus-
ter Analysis and Supervised Machine Learning on product
state based data as an option to monitor and thus laying
the foundation to increase quality in manufacturing is very
promising. As of today, first discussions with industrial rep-
resentatives have been carried out focussing on how to apply
the presented approach in a real-life industrial environment.
In a next step, the approach will be developed further theo-
retically and first practical tests will be conducted using syn-
thetic data sets to initial testing of the hypotheses. In parallel,
an exemplary industrial manufacturing case will be identified
and the approach will be applied to get feedback from real-
life conditions and to evaluate the theoretical results.
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