UES Fundamentals of
Algorithms

Lecture 8: Binary trees

Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business

Romain Vuillemot

em
¥ lyon
business
CENTRALELYON EEA® glele]

Outline

e Definitions

e Data structures
» Basic operations
e Properties

Definitions

A Tree is a hierarchical data structure with nodes (vertex)
connected by links (edge)

A non-linear data structures (multiple ways to traverse it)

Nodes are connected by only one path (a series of edges) so trees have no cycle

Edges are also called links, they can be traversed in both ways (no orientation)

Trees are most commonly represented as a node-lin diagram, with the root at the
top and the leaves (nodes without children) at the bottom).

Binary trees

We focus on binary trees.

Trees that have at most two children

e Children are ordered (left and right)

T =1
TA' [IBI' ICI],
by

draw_directed_graph(T)

Binary trees data structures

Binary trees can be stored in multiple ways

e The first element is the value of the node.
e The second element is the left subtree.
e The third element is the right subtree.

Here are examples:

e Adjacencylist T = {'A': ['B', 'C']}
° Arrays [IIAII’ IIBII]
o Class [Object-oriented programming Class Node()

Other are possible: using linked list, modules, etc.

Adjacency lists are the most common ways and can be achieved in multiple fashions.

Binary trees data structures (dict + lists)

Binary trees using dictionnaries where nodes are keys and edges are Lists.

IBI,ICI],
DI, IEI],
1,

: 1,
=[]

s ==
— ——

Using OOP

class Node:
def __init__ (self, value):
self.value = value
self.left = None
self.right = None

def get_value(self):
return self.value

def set _value(self, v = None):
self.value = v

root = Node(4)

root.left = Node(2)
root.right = Node(5)
root.left.left = Node(1)
root.left.right = Node(3)

Definitions on binary trees

Nodes - atreeis composed of nodes that containa value and children.
Edges - are the connections between nodes; nodes may contain a value.
Root - the topmost node in a tree; there can only be one root.

Parent and child - each node has a single parent and up to two children.
Leaf - nonode below that node.

Depth - the number of edges on the path from the root to that node.

Height - maximum depthin atree.

Basic operations

Get the root of a tree

Return the topmost node in a tree (there can only be one root).

Get the root of a tree

Return the topmost node in a tree (there can only be one root).

def get_root(T):
if (len(T.keys()) > 0):
return list(T.keys()) [0]
else:
return -1

get_root(T)
IAI

assert get_root({}) == -
assert get_root({"A": []}) == "A"
assert isinstance(get_root({"A": [1}), str) # to make sure there is on:

Get all nodes from a Tree

Return all the nodes in the tree (as a list of nodes names).

Get all nodes from a Tree

Return all the nodes in the tree (as a list of nodes names).

def get_nodes(T):
return list(T.keys())

get_nodes(T)
[IAI, IBI, lcl’ IDI, IEI]

assert get_nodes(T) == ['A', 'B', 'C', 'D',
assert get_nodes({}) == []

Get all links from a Tree

Return all the links as a list of pairs as Tuple.

Get all links from a Tree

Return all the links as a list of pairs as Tuple.

def get_links(tree):
links = T[]
for node, neighbors in tree.items():
for neighbor in neighbors:
links.append((node, neighbor))
return links

get_links(T)
[(IAI, IBI), (IAI, Icl)’ (IBI, IDI), (IBI, IEI)]

assert get_links(T) == [('A', 'B'), ('A', 'C'),
assert get_links({}) == []

Get the parent of a node

Return the parent node of a given node (and -1 if the root).

Get the parent of a node

Return the parent node of a given node (and -1 if the root).

def get_parent(tree, node_to_find):
for parent, neighbors in tree.items():
if node_to_find in neighbors:
return parent
return None

assert get_parent(T, 'D') == 'B'
assert get_parent(T, 'A') is None
assert get_parent({}, '') is None

Check if the node is the root

Return True if the root not, else None .

Check if the node is the root

Return True if the root not, else None .

def is_root(T, node):
return get_parent(T, node) 1is None

assert is_root(T, 'A') == True

Get the children of a node

Given a node, return all its childrenasa List.

Get the children of a node

Given a node, return all its childrenas a List.

def find_children(graph, parent_node):

children = graph.get(parent_node,

return children

assert find_children(T, 'A') ==
assert find_children(T, 'B') ==
assert find _children(T, 'C') ==

[IBI,
[IDI’
[]

[1)

Get the children of a node

Given a node, return all its childrenas a List.

def find_children(graph, parent_node):
children = graph.get(parent_node, [])
return children

assert find_children(T, 'A') == ['B', 'C']
assert find_children(T, 'B') == ['D', 'E'l]
assert find_children(T, 'C') == []

Check if the node is a leaf

Return True if the node has no children.

Get the children of a node

Given a node, return all its childrenas a List.

def find_children(graph, parent_node):
children = graph.get(parent_node, [])

return children

assert find_children(T, 'A') ==
assert find_children(T, 'B') ==
assert find _children(T, 'C') ==

Check if the node is a leaf

Return True if the node has no children.

def is_leaf(T, node):
return len(find_children(T,

assert is_leaf(T, 'C')
assert not is_leaf(T, 'A'")

[IBI’ ICI]
[IDI’ IEI]
[]

node)) ==

Add/Delete a node

Given a tree as input.

e Add a node to given a current partent

e Remove a given node

Add/Delete a node

Given a tree as input.

e Add a node to given a current partent

e Remove a given node

def add_node(graph, parent, new_node):
if parent in graph:
graph[parent].append(new_node)
else:
graph[parent] = [new_node]

def delete_node(graph, node_to_delete):
for parent, children in graph.items():
if node_to_delete in children:
children.remove(node_to_delete)
if not children:
del graph[parent]

U — {IIAII: []}
add_node(U, "A", 'F")
U

{IAI: [IFI]}

Height of a tree

Calculate the longest path from the root to leaves. Tip: use a recursive approach

 if the node is a leaf, return 1
» for a current node, the height is the max height of its children + 1

Height of a tree

Calculate the longest path from the root to leaves. Tip: use a recursive approach

 if the node is a leaf, return 1
» for a current node, the height is the max height of its children + 1

def height(T, node):

if node not in T:
return 0 # leaf

children = T[node]

if not children:
return 1 # leaf

list_heights = []

for child in children:
list_heights.append(height(T, child))

return 1 + max(list_heights)

assert height(T, 'A') == 3
assert height(T, 'B') == 2
assert height(T, 'C') == 1

Height of a binary tree

racine

™ :

2

4

SpNaou ap aiquwiou

8
16

n =20 _q

n+1 =20+

log(n + 1) = log(2"1)
log(n + 1) = (h + 1)log(2)
log(n+1)/log(2) =h+1
soh =log(n +1)/log(2) — 1

h is equivalent to log(n)

Binary trees (using Arrays)

0 1 2 3 4 5 6 7 8 9 10 11

In a complete or balanced binary tree:

« if the index of a node is equal to ¢, then the position indicating its left child is at 2z,
 and the position indicating its right child is at 22 + 1.

Also works for ternary trees, etc.

Visualize a tree

from graphviz import Digraph

dot = Digraph()
dot.node_attr['shape'] = 'circle'
dot.node('Q', label='Q') # Root
dot.node('1")
dot.node('2")
dot.node('3")
dot.node('4")
dot.node('5")

dot.edge('0Q"', '
dot.edge('1"',
dot.edge('1"', '

1O N Sy
N N

'2', color="red")

dot.edge('0’
2 '3', color="red")

dot.edge("’

dot # render

