
UE5 Fundamentals of
Algorithms
Lecture 8: Binary trees
Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business
Romain Vuillemot

Outline
Definitions

Data structures

Basic operations

Properties

Definitions

A non-linear data structures (multiple ways to traverse it)

Nodes are connected by only one path (a series of edges) so trees have no cycle

Edges are also called links, they can be traversed in both ways (no orientation)

Trees are most commonly represented as a node-lin diagram, with the root at the

top and the leaves (nodes without children) at the bottom).

A Tree is a hierarchical data structure with nodes (vertex)
connected by links (edge)

Binary trees
We focus on binary trees.

Children are ordered (left and right)

A

B C

Trees that have at most two children

In [4]: T = {
 'A': ['B', 'C'],
}

draw_directed_graph(T)

Binary trees data structures
Binary trees can be stored in multiple ways

The first element is the value of the node.

The second element is the left subtree.

The third element is the right subtree.

Here are examples:

Adjacency list T = {'A': ['B', 'C']}
Arrays ["A", "B"]
Class / Object-oriented programming Class Node()

Other are possible: using linked list, modules, etc.

Adjacency lists are the most common ways and can be achieved in multiple fashions.

Binary trees data structures (dict + lists)
Binary trees using dictionnaries where nodes are keys and edges are Lists.

In [5]: T = {
 'A' : ['B','C'],
 'B' : ['D', 'E'],
 'C' : [],
 'D' : [],
 'E' : []
}

Using OOP
In [6]: class Node:

 def __init__(self, value):
 self.value = value
 self.left = None
 self.right = None

 def get_value(self):
 return self.value

 def set_value(self, v = None):
 self.value = v

In [7]: root = Node(4)
root.left = Node(2)
root.right = Node(5)
root.left.left = Node(1)
root.left.right = Node(3)

Definitions on binary trees
Nodes - a tree is composed of nodes that contain a value and children .

Edges - are the connections between nodes; nodes may contain a value.

Root - the topmost node in a tree; there can only be one root.

Parent and child - each node has a single parent and up to two children.

Leaf - no node below that node.

Depth - the number of edges on the path from the root to that node.

Height - maximum depth in a tree.

Basic operations

Get the root of a tree
Return the topmost node in a tree (there can only be one root).

Get the root of a tree
Return the topmost node in a tree (there can only be one root).

In [8]: def get_root(T):
 if (len(T.keys()) > 0):
 return list(T.keys())[0]
 else:
 return -1

In [9]: get_root(T)

Out[9]: 'A'

In [10]: assert get_root({}) == -1
assert get_root({"A": []}) == "A"
assert isinstance(get_root({"A": []}), str) # to make sure there is onl

Get all nodes from a Tree
Return all the nodes in the tree (as a list of nodes names).

Get all nodes from a Tree
Return all the nodes in the tree (as a list of nodes names).

In [11]: def get_nodes(T):
 return list(T.keys())

In [12]: get_nodes(T)

Out[12]: ['A', 'B', 'C', 'D', 'E']

In [13]: assert get_nodes(T) == ['A', 'B', 'C', 'D', 'E']
assert get_nodes({}) == []

Get all links from a Tree
Return all the links as a list of pairs as Tuple .

Get all links from a Tree
Return all the links as a list of pairs as Tuple .

In [14]: def get_links(tree):
 links = []
 for node, neighbors in tree.items():
 for neighbor in neighbors:
 links.append((node, neighbor))
 return links

In [15]: get_links(T)

Out[15]: [('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E')]

In [16]: assert get_links(T) == [('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E')]
assert get_links({}) == []

Get the parent of a node
Return the parent node of a given node (and -1 if the root).

Get the parent of a node
Return the parent node of a given node (and -1 if the root).

In [17]: def get_parent(tree, node_to_find):
 for parent, neighbors in tree.items():
 if node_to_find in neighbors:
 return parent
 return None

In [18]: assert get_parent(T, 'D') == 'B'
assert get_parent(T, 'A') is None
assert get_parent({}, '') is None

Check if the node is the root
Return True if the root not, else None .

Check if the node is the root
Return True if the root not, else None .

In [19]: def is_root(T, node):
 return get_parent(T, node) is None

In [20]: assert is_root(T, 'A') == True

Get the children of a node
Given a node, return all its children as a List .

Get the children of a node
Given a node, return all its children as a List .

In [21]: def find_children(graph, parent_node):
 children = graph.get(parent_node, [])
 return children

In [22]: assert find_children(T, 'A') == ['B', 'C']
assert find_children(T, 'B') == ['D', 'E']
assert find_children(T, 'C') == []

Get the children of a node
Given a node, return all its children as a List .

In [21]: def find_children(graph, parent_node):
 children = graph.get(parent_node, [])
 return children

In [22]: assert find_children(T, 'A') == ['B', 'C']
assert find_children(T, 'B') == ['D', 'E']
assert find_children(T, 'C') == []

Check if the node is a leaf
Return True if the node has no children.

Get the children of a node
Given a node, return all its children as a List .

In [21]: def find_children(graph, parent_node):
 children = graph.get(parent_node, [])
 return children

In [22]: assert find_children(T, 'A') == ['B', 'C']
assert find_children(T, 'B') == ['D', 'E']
assert find_children(T, 'C') == []

Check if the node is a leaf
Return True if the node has no children.

In [23]: def is_leaf(T, node):
 return len(find_children(T, node)) == 0

In [24]: assert is_leaf(T, 'C')
assert not is_leaf(T, 'A')

Add/Delete a node
Given a tree as input.

Add a node to given a current partent

Remove a given node

Add/Delete a node
Given a tree as input.

Add a node to given a current partent

Remove a given node

In [25]: def add_node(graph, parent, new_node):
 if parent in graph:
 graph[parent].append(new_node)
 else:
 graph[parent] = [new_node]

def delete_node(graph, node_to_delete):
 for parent, children in graph.items():
 if node_to_delete in children:
 children.remove(node_to_delete)
 if not children:
 del graph[parent]

In [26]: U = {"A": []}
add_node(U, "A", 'F')
U

Out[26]: {'A': ['F']}

Height of a tree
Calculate the longest path from the root to leaves. Tip: use a recursive approach

if the node is a leaf, return 1

for a current node, the height is the max height of its children + 1

Height of a tree
Calculate the longest path from the root to leaves. Tip: use a recursive approach

if the node is a leaf, return 1

for a current node, the height is the max height of its children + 1

In [27]: def height(T, node):
 if node not in T:
 return 0 # leaf
 children = T[node]
 if not children:
 return 1 # leaf
 list_heights = []
 for child in children:
 list_heights.append(height(T, child))
 return 1 + max(list_heights)

In [28]: assert height(T, 'A') == 3
assert height(T, 'B') == 2
assert height(T, 'C') == 1

Height of a binary tree

so

 is equivalent to

n = 2(h+1) − 1

n + 1 = 2(h+1)

log(n + 1) = log(2(h+1))

log(n + 1) = (h + 1)log(2)

log(n + 1)/log(2) = h + 1

h = log(n + 1)/log(2) − 1

h log(n)

Binary trees (using Arrays)

In a complete or balanced binary tree:

if the index of a node is equal to , then the position indicating its left child is at ,

and the position indicating its right child is at .

Also works for ternary trees, etc.

i 2i

2i + 1

Visualize a tree
In [29]: from graphviz import Digraph

dot = Digraph()

dot.node_attr['shape'] = 'circle'

dot.node('0', label='0') # Root
dot.node('1')
dot.node('2')
dot.node('3')
dot.node('4')
dot.node('5')

dot.edge('0', '1')
dot.edge('1', '4')
dot.edge('1', '5')

dot.edge('0', '2', color='red')
dot.edge('2', '3', color='red')

dot # render

0

1 2

4 5 3

Out[29]:

