
UE5 Fundamentals of
Algorithms
Lecture 10: Trees
Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business
Romain Vuillemot

Outline
Definitions

Data structures

Weighted trees

Trees

A non-linear data structures (multiple ways to traverse it)

Nodes are connected by only one path (a series of edges) so trees have no cycle

Edges are also called links, they can be traversed in both ways (no orientation)

Example of trees:

Binary trees, binary search trees, N-ary trees, recursive call trees, etc.

HOB (Horizontally Ordered Binary), AVL (Adelson-Velskii and Landis, self-balancing
trees), ...

B-trees, forests, lattices, etc.

Tree is a hierarchical data structure with nodes connected by
edges

Definitions on trees
(similar to the ones for the binary trees)

Nodes - a tree is composed of nodes that contain a value and children .

Edges - are the connections between nodes; nodes may contain a value.

Root - the topmost node in a tree; there can only be one root.

Parent and child - each node has a single parent and up to two children.

Leaf - no node below that node.

Depth - the number of edges on the path from the root to that node.

Height - maximum depth in a tree.

Definitions on trees (cont.)
N-ary Tree - a tree in which each node can have up to children. Binary trees is the
case where .

Weight - a quantity is associated to the edges.

Degree - the number of child nodes it has. Binary tree is the case where degree is 2.

Subtree - a portion of a tree that is itself a tree.

Forest - a collection of trees not connected to each other.

N

N = 2

Data structures (dicts + lists)
A simple way is the adjacency list using a dictionnary dict type.

a

b c

d e f

In [109]: tree = {
 "a": ["b", "c"],
 "b": ["d", "e"],
 "c": ["f"],
 "d": [],
 "e": [],
 "f": []
}

In [110]: draw_tree(tree)

Data structures (dicts + named lists)
A variation is to use a named variable for the list.

To get the neighbors tree["a"].neighbors -> list

In [113]: tree = {
 "a": {"neighbors": ["b", "c"]},
 "b": {"neighbors": ["d", "e"]},
 "c": {"neighbors": ["f"]},
 "d": {"neighbors": []},
 "e": {"neighbors": []},
 "f": {"neighbors": []}
}

Data structures (sets)
The children are not ordered

Children names are unique

In [115]: tree = {
 "a": set(["b", "c"]),
 "b": set(["d", "e"]),
 "c": set(["f"]),
 "d": set(),
 "e": set(),
 "f": set()
}

Data structures (lists of lists)
Each node is an entry in the list

Childre are sub-lists

In [122]: tree_list = [
 ['a', ['b', 'c']],
 ['b', ['d', 'e']],
 ['c', ['f', 'g']],
 ['d', []],
 ['e', []],
 ['f', []],
 ['g', []]
]

Data structures (tuples)
Each node is the first tuple

Children are additionnal tuply entries

In [119]: tree = ("a", [
 ("b", []),
 ("c", [
 ("d", [
 ("e", [])
])
])
])

Class object
The object contains a value and a list of children

The list is not bounded

In [120]: class Node:
 def __init__(self, value):
 self.value = value
 self.children = []

 def get_value(self):
 return self.value

 def set_value(self, v = None):
 self.value = v

Weighted trees

Since we have a tree a way to store weights is using nodes values

Root note weight is

Trees with a quantity associated to the edges

0

Data structures (dicts for edges)
To encode values in edges we need to add an extra value

In [134]: tree = {'a': [{'b': 0}, {'c': 0}],
 'b': [{'d': 0}, {'e': 0}],
 'c': [{'f': 0}],
 'd': [],
 'e': []
 }

In [135]: tree = {
 'a': [('b', 0), ('c', 0)],
 'b': [('d', 0), ('e', 0)],
 'c': [('f', 0)],
 'd': [],
 'e': []
}

Weigthted trees as classes
In [136]: class Node_weight:

 def __init__(self, data, weight=0):
 self.data = data
 self.children = []
 self.weight = weight

tree = Node_weight(1)
child1 = Node_weight(2, weight=5)
child2 = Node_weight(3, weight=7)
tree.children = [child1, child2]

Exercise: Calculate the total weight of a tree
Go through all the nodes..

Exercise: Calculate the total weight of a tree
Go through all the nodes..

In [137]: def get_tree_edges(root):
 edges = []
 stack = [(root, None)]

 while stack:
 node, parent_data = stack.pop()

 for child in node.children:
 stack.append((child, node.data))
 edges.append((node.data, child.data, child.weight))

 return edges

In [138]: tree = Node_weight(1)
child1 = Node_weight(2, weight=5)
child2 = Node_weight(3, weight=7)
tree.children = [child1, child2]
get_tree_edges(tree)

Out[138]: [(1, 2, 5), (1, 3, 7)]

In [139]: sum(tpl[2] for tpl in get_tree_edges(tree))

Out[139]: 12

Exercise: Calculate the total weight of a tree
A recursive version:

An Edge class for edges
To consider edges as objects

In [142]: def calculate_total_weight(node):
 total_weight = node.weight
 for child in node.children:
 total_weight += calculate_total_weight(child)
 return total_weight

In [143]: calculate_total_weight(tree)

Out[143]: 12

In [145]: class Edge:
 def __init__(self, source, target):
 self.source = source
 self.target = target

class Node:
 def __init__(self, label):
 self.label = label
 self.children = []

class Tree:
 def __init__(self, root_label):
 self.root = Node(root_label)
 self.edges = []

Visualize a tree
In [146]: from graphviz import Digraph

from IPython.display import display

def draw_tree(T):
 dot = Digraph(format='png')

 def add_nodes_and_edges(tree, parent_name=None):
 for parent, children in tree.items():
 dot.node(parent, parent)
 if parent_name:
 dot.edge(parent_name, parent)
 add_nodes_and_edges({child: [] for child in children}, pare

 add_nodes_and_edges(T)

 display(dot)

