
UE5 Fundamentals of
Algorithms
Lecture 2: Recursion
Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business
Romain Vuillemot

https://romain.vuillemot.net/

Outline
What is recursion?

Recursive/iterative approach

Recursive data structures

Tail vs non-tail recursion

What is recursion?

Why recursion?
Main reason: some problems are more easily implementable recursively.

Other reeasons: Iterative code is difficult to parallelize

Code can be more elegant and concise than the iterative version, simpler to

implement.

Similarity to proof by induction.

A function is considered recursive when it invokes itself. This
self-invocation typically involves handling a straightforward
case, known as the base case, and implementing instructions
that lead towards reaching this base case.

Example 0: countdown

Here's how the countdown(5) call would work:

In [37]: def countdown(n):
 if n <= 0: # base case
 print("Blastoff!")
 else:
 print(n)
 countdown(n - 1) # recursive call

countdown(5)

5
4
3
2
1
Blastoff!

countdown(5) prints 5 and calls countdown(4)
countdown(4) prints 4 and calls countdown(3)
countdown(3) prints 3 and calls countdown(2)
countdown(2) prints 2 and calls countdown(1)
countdown(1) prints 1 and calls countdown(0)
countdown(0) prints "Blastoff!" and returns without making another recursive call.

Example 1: factorial (iterative)
Reminder: here is the factorial function in the iterative version.

The function fact_iter is called once

Uses iterative operator (loop, while, etc.)

In [1]: def factorial_iter(n):
 r = 1
 for i in range(1, n + 1):
 r *= i
 return r

In [14]: assert factorial_iter(0) == 1
assert factorial_iter(1) == 1
assert factorial_iter(5) == 120
assert factorial_iter(10) == 3628800

Example 1: factorial (recursive)
Write a recursive version of the factorial function.

Example 1: factorial (recursive)
Write a recursive version of the factorial function.

The function factorial_rec is called multiple times

Identical results to an iterative version of the function

In [2]: def factorial_rec(n):
 if n == 0:
 return 1
 else:
 return n * factorial_rec(n - 1)

In [3]: assert factorial_iter(0) == factorial_rec(0)
assert factorial_iter(1) == factorial_rec(1)
assert factorial_iter(5) == factorial_rec(5)
assert factorial_iter(10) == factorial_rec(10)

Example: Sum of digits
Write the recursive version of the sum of digits.

In [12]: def iterative_sum(arr):
 total = 0
 for num in arr:
 total += num
 return total

In [13]: iterative_sum(range(4))

Out[13]: 6

Example: Sum of digits
Write the recursive version of the sum of digits.

In [12]: def iterative_sum(arr):
 total = 0
 for num in arr:
 total += num
 return total

In [13]: iterative_sum(range(4))

Out[13]: 6

In [14]: def recursive_sum(arr):
 if not arr:
 return 0
 else:
 return arr[0] + recursive_sum(arr[1:])

In [15]: assert iterative_sum(range(10)) == recursive_sum(range(10))

Example 2: Fibonnacci (iterative)

Recursive version?

In [16]: def fibo_iter(n):
 arr = [0, 1]
 for i in range(2, n+1):
 arr.append(arr[i-1] + arr[i-2])
 return arr[n]

In [17]: fibo_iter(4)

Out[17]: 3

Example 2: Fibonnacci (iterative)

Recursive version?

In [16]: def fibo_iter(n):
 arr = [0, 1]
 for i in range(2, n+1):
 arr.append(arr[i-1] + arr[i-2])
 return arr[n]

In [17]: fibo_iter(4)

Out[17]: 3

In [18]: def fibo_rec(n):
 if n <= 1:
 return n
 else:
 return fibo_rec(n-1) + fibo_rec(n-2)

In [19]: assert fibo_rec(10) == fibo_iter(10)

Recursion in real life (plants)
https://en.wikipedia.org/wiki/Barnsley_fern
https://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension

https://en.wikipedia.org/wiki/Barnsley_fern
https://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension

Recursion in real life (paper folding)

(uses the ISO 216 standard's scaling factor of approximately 1.1892071 (2^(1/4)) to
calculate the dimensions of various ISO paper sizes based on their relation to A0)

https://en.wikipedia.org/wiki/Paper_size

https://en.wikipedia.org/wiki/Paper_size

Recursion in real life (paper folding) in Pseudo Code

1. Constant Ratio:

ratio = √2

2. Creating A_i from A_i-1:

function createPaper(A_i-1):

fold A_i-1 along its length to create A_i

3. Recurrence Relation:

function calculateDimensions(A_i-1):

length_A_i = width_A_i-1

width_A_i = length_A_i-1 / 2

Recursion in real life (paper folding) in Python
In [20]: def generate_iso_paper_sizes(n):

 iso_sizes = {"A0": (841, 1189)}
 current_size = "A0"

 for i in range(1, n + 1):
 width, height = iso_sizes[current_size]
 next_size = f"A{i}"
 iso_sizes[next_size] = (height / 2, width)
 current_size = next_size

 return iso_sizes

A0: Width = 841 mm, Height = 1189 mm
A1: Width = 594.5 mm, Height = 841 mm
A2: Width = 420.5 mm, Height = 594.5 mm
A3: Width = 297.25 mm, Height = 420.5 mm
A4: Width = 210.25 mm, Height = 297.25 mm
A5: Width = 148.625 mm, Height = 210.25 mm

In [21]: iso_paper_sizes = generate_iso_paper_sizes(5)
for size, dimensions in iso_paper_sizes.items():
 print(f"{size}: Width = {dimensions[0]} mm, Height = {dimensions[1]

A0: Width = 841 mm, Height = 1189 mm
A1: Width = 594.5 mm, Height = 841 mm
A2: Width = 420.5 mm, Height = 594.5 mm

A3: Width = 297.25 mm, Height = 420.5 mm
A4: Width = 210.25 mm, Height = 297.25 mm
A5: Width = 148.625 mm, Height = 210.25 mm

Recursive data structures
Some data types are inherently recursive, meaning that a subset of this data type has the
same data type:

Lists

Strings (arrays)

Binary trees

Linked lists

Custom (e.g., using objects)

Tail vs non-tail recursion
Recursion can be categorized into two types: tail recursion and non-tail recursion.

tail recursion, the recursive call is the last operation before returning a result. This
makes it efficient in terms of memory usage and stack overflow risk, as there are no
pending calculations.

non-tail recursion involves additional operations after the recursive call, potentially
leading to a stack of calls and increased memory consumption.

The choice between these types depends on the problem and programming language. Tail
recursion often leads to more efficient and readable code, but sometimes non-tail
recursion is necessary, impacting variable lifespan and the result.

⚠️ Impacts results and variables span of life

Tail vs non-tail recursion (cont.)
In [42]: def print_desc(n):

 if n > 0:
 print(" " * n, " n= " , n ," brefore recursive call")
 print_desc (n - 1)

In [43]: print_desc(3)

 n= 3 brefore recursive call
 n= 2 brefore recursive call
 n= 1 brefore recursive call

Tail vs non-tail recursion (cont.)
In [42]: def print_desc(n):

 if n > 0:
 print(" " * n, " n= " , n ," brefore recursive call")
 print_desc (n - 1)

In [43]: print_desc(3)

 n= 3 brefore recursive call
 n= 2 brefore recursive call
 n= 1 brefore recursive call

In [44]: def print_asc(n) :
 if n > 0:
 print_asc(n - 1)
 print(" " * n, " n= " , n ," after recrusive call")

In [45]: print_asc(3)

 n= 1 after recrusive call
 n= 2 after recrusive call
 n= 3 after recrusive call

Disadvantages of Recursion

While recursion can lead to concise and elegant solutions, it's crucial to handle base

cases properly to avoid infinite loops or excessive function calls.

Recursive functions require careful consideration of termination conditions to

prevent stack overflow errors or excessive memory usage.

Can become memory-intensive if written poorly.

One must wait for the base case to start getting results (no intermediate result),

results cannot be obtained progressively (if non-tail recursion).

https://www.xkcd.com/1739/
https://www.xkcd.com/1739/

Recursion calls

Visualize recursive calls

In case of too many function calls, a maximum recursion depth exceeded error is
triggered. You can anticipate this error by not exceeding the limit
sys.getrecursionlimit() or by changing it using sys.setrecursionlimit .

pythontutor

In [30]: import sys
sys.getrecursionlimit()

Out[30]: 3000

http://www.pythontutor.com/visualize.html#mode=edit

Transformation Schemes
There are some recursive to iterative transformation schemes:

1. Write a recursive algorithm.

2. Test, validate, and prove it (in critical applications).

3. Apply transformation techniques to obtain an iterative version.

Note that these techniques are not 100% automated.

f_rec(X) =
 if p(X) then a(X)
 else
 b(X)
 f_rec(new(X))
 end if;

f_iter(X) =
 if p(X) = false then
 do
 b(X);
 X := new(X);
 until p(X) = true;
 end if;
 a(X);

