
UE5 Fundamentals of
Algorithms
Lecture 4-5-6: Programming strategies
Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business
Romain Vuillemot

Outline
• Definitions of programming strategies

• Divide and conquer

• Greedy algorithms

• Dynamic programming

Programming strategies

Examples of Strategies:

• Divide and Conquer: Divide a problem into simpler sub-problems, solve the
sub-problems, and then combine the solutions to solve the original problem.

• Dynamic Programming: Solve a problem by breaking it down into sub-
problems, calculating and memorizing the results of sub-problems to avoid
unnecessary recomputation.

• Greedy Algorithm: Make a series of choices that seem locally optimal at each
step to find a solution, with the hope that the result will be globally optimal as
well.

A programming strategy are algorithms aimed at solving a
specific problem in a precise manner.

Examples of divide and conquer algorithms:
• Binary search

• Quick sort and merge sort

• Map Reduce

• Others: Fast multiplication (Karatsuba)

Binary search
Given a sorted list, find or insert a specific value while keeping the order.

See .the notebook

http://127.0.0.1:8000/03-lists-search-sort.ipynb
http://127.0.0.1:8000/03-lists-search-sort.ipynb

Quick sort
Recursive sorting algorithm which works in two steps:

1. select a pivot element

2. partitioning the array into smaller sub-arrays, then sorting those sub-arrays.

Merge sort
Divide an array recursively into two halves (based on a pivot value), sorting each half,
and then merging the sorted halves back together. This process continues until the
entire array is sorted.
Complexity: .O(nlog(n))

Map reduce
Divide a large dataset into smaller chunks and processes them independantly. Two
main steps:

• the Map stage, where data is filtered and transformed into key-value pairs

• the Reduce stage, where data is aggregated and the final result is produced.

Map reduce (without map reduce..)
Calculate the sum of squares values from a list of numerical values.

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Map reduce (without map reduce..)
Calculate the sum of squares values from a list of numerical values.

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

result = {}
for num in data:

square = num * num
result[square] = num

final_result = list(result.items())

print(final_result)
print(sum([x[0] for x in final_result]))

[(1, 1), (4, 2), (9, 3), (16, 4), (25, 5), (36, 6), (49, 7), (6
4, 8), (81, 9), (100, 10)]
385

Map reduce (Python)
1. Divide the problem in sub-problems

2. Apply the mapping function

3. Reduce the results

Map reduce (Python)
1. Divide the problem in sub-problems

2. Apply the mapping function

3. Reduce the results

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

def mapper(numbers):
result = []
for num in numbers: # calculate the squares

result.append((num, num * num))
return result

def reducer(pairs):
result = {}
for key, value in pairs: # sums the squares

if key in result:
result[key] += value

else:
result[key] = value

return result.items()

Map reduce (Python)
1. Divide the problem in sub-problems

2. Apply the mapping function

3. Reduce the results

chunk_size = 2
chunks = [data[i:i+chunk_size] for i in range(0, len(data), chunk_size)]

mapped_data = [mapper(chunk) for chunk in chunks]

grouped_data = {}# map
for chunk in mapped_data:

for key, value in chunk:
if key in grouped_data:

grouped_data[key].append(value)
else:

grouped_data[key] = [value]

reduced_data = [reducer(list(grouped_data.items()))] # reduce
print(sum([x[1][0] for x in list(reduced_data[0])]))

385

Discussion on Divide and Conquer
• Similarities with recursion by dividing a problem in a sub-problem

• But with a combination step (which may hold most of the code difficulty)

• Can be implemented in a non-recursive way

• complexity when split the problem and solves each splitnlog(n)

Example: Change-making problem
.

: all the available coins

: amount

Greedy solution:

1. Sort the coins in descending order

2. Initialize a variable to count coins used

3. Substrack the number of coins used (if limited)

4. Continue this process until amount becomes zero.

Qopt(S, M) = min ∑n

i=1 xi

S

M

Example: Hu!man code
A prefix code for lossless information compression. The key idea is to build a
character frequency tree, and then traverse the tree to obtain the code (0 for left
branches, 1 for right branches).

Steps to Follow:

1. Create a queue with letter frequencies.

2. Take the two least frequent characters from the list.

3. Create a node in a tree that contains the sum of frequencies and the two
characters as children. Add this node to the queue and remove the children.

4. Repeat steps 2 and 3 until no more elements remain; the last element is the root
of the tree.

Example: Hu!man code

Example: Change-making problem (Python)
Greedy solution to return the minimal number of coins necessary.

coins = [1, 2, 5]
amount = 11

Example: Change-making problem (Python)
Greedy solution to return the minimal number of coins necessary.

coins = [1, 2, 5]
amount = 11

def coin_change_greedy(coins, amount):
coins.sort(reverse=True) # important! sort in descending order

coin_count = 0
remaining_amount = amount

for coin in coins:

while remaining_amount >= coin:
remaining_amount -= coin
coin_count += 1

if remaining_amount == 0:

return coin_count
else:

return -1

print(coin_change_greedy(coins, amount)) # 3 (11 = 5 + 5 + 1)

3

Example: Change-making problem (Python)
Greedy solution that returns the list of coins used.

Tip: use a list with the same structure as coins.

Example: Change-making problem (Python)
Greedy solution that returns the list of coins used.

Tip: use a list with the same structure as coins.

def coin_change_greedy(coins, amount):
coins.sort(reverse=True)

coin_count = 0
remaining_amount = amount
used_coins = [0] * len(coins)

for i, coin in enumerate(coins):

while remaining_amount >= coin:
remaining_amount -= coin
coin_count += 1
used_coins[i] += 1

if remaining_amount == 0:

return coin_count, used_coins
else:

return -1, []

coins = [25, 10, 5, 1]
amount = 63
min_coins, coins_used = coin_change_greedy(coins, amount)

print(f"Minimum coins needed: {min_coins}")
print("Coins used:", coins_used)

Minimum coins needed: 6
Coins used: [2, 1, 0, 3]

Example: Change-making problem (Python)
Greedy solution that returns the list of coins used from a limited availability of
coins.

Tip: use a list of coins availability of same structure as coins.

coins = [25, 10, 5, 1]
amount = 63
coin_availability = [1, 2, 3, 4]

Example: Change-making problem (Python)
Greedy solution that returns the list of coins used from a limited availability of
coins.

Tip: use a list of coins availability of same structure as coins.

coins = [25, 10, 5, 1]
amount = 63
coin_availability = [1, 2, 3, 4]

def coin_change_greedy(coins, amount, coin_availability):
coins.sort(reverse=True)

coin_count = 0
remaining_amount = amount
used_coins = [0] * len(coins)

for i, coin in enumerate(coins):

while remaining_amount >= coin and used_coins[i] < coin_availability
remaining_amount -= coin
coin_count += 1
used_coins[i] += 1

if remaining_amount == 0:

return coin_count, used_coins
else:

return -1, []

min_coins, coins_used = coin_change_greedy(coins, amount, coin_availability

print(f"Minimum coins needed: {min_coins}")
print("Coins used:", coins_used)

Minimum coins needed: 9
Coins used: [1, 2, 3, 3]

Discussion on Greedy algorithms
• Often considered as an heuristic
• Easy to understand, implement and communicate

• They often lead to non-optimal solution

Examples of dynamic programming algorithms
• Fibonacci Sequence

• Rod Cutting

• Sequence Alignment, Longest Subsequence Finding

• Shortest Path Finding

Fibonnacci (reminder)
To calculate the -th number in the Fibonacci sequence, which is determined as
follows:

latex Copy code , Where the sequence
starts with 1, 1, and then continues as 2, 3, 5, 8, 13, 21, and so on, to find the 9th
number ().

Let's calculate the 9th Fibonacci number step by step:

n

fib(n) = fib(n − 1) + fib(n − 2) n ∈ N

n = 9

fib(1) = 1

fib(2) = 1

fib(3) = fib(2) + fib(1) = 1 + 1 = 2

Fibonnacci (naive)

Call tree (for):

Requires to calculate the same F-value multiple times.

def fib(n):
if n < 2:

return n
else:

return fib(n - 1) + fib(n - 2)

n = 6

Fibonnacci (dynamic programming)
Optimized using a lookup table, which is a data structure to memoize values that
have already been computed.

Fibonnacci (dynamic programming)
Optimized using a lookup table, which is a data structure to memoize values that
have already been computed.

def fib(n, lookup):
if n == 0 or n == 1:

lookup[n] = n

if lookup[n] is None:
lookup[n] = fib(n - 1, lookup) + fib(n - 2, lookup)

return lookup[n]

def main():
n = 6

lookup = [None] * (n + 1)
result = fib(n, lookup)
print(f"{n}-th Fibonacci number is {result}")

if __name__=="__main__":
main()

6-th Fibonacci number is 8

Rod cutting
Given a list of cuts and prices, identify the optimal cuts. Given the example below,
what is the best cutting strategy for a rod of size 4 ?

size (i) 1 2 3 4 5 6 7 8

price (pi) 1 5 8 9 10 17 17 20

Rod cutting
Given a list of cuts and prices, identify the optimal cuts. Given the example below,
what is the best cutting strategy for a rod of size 4 ?

size (i) 1 2 3 4 5 6 7 8

price (pi) 1 5 8 9 10 17 17 20

Solution: For a rod of size 4 optimal solution is 2 cuts of size 2 so .

Rod cutting: check a solution
Given the previous table of size and price, check the cost of a given solution by
defining a function check_rod_cutting(prices, n) .

Rod cutting: check a solution
Given the previous table of size and price, check the cost of a given solution by
defining a function check_rod_cutting(prices, n) .

def check_rod_cutting(prices, n):
table = [0] * (n + 1)

for i in range(1, n + 1):
max_price = float('-inf')
for j in range(1, i + 1):

max_price = max(max_price, prices[j] + table[i - j])
table[i] = max_price

return table[n]

prices = [0, 1, 5, 8, 9, 10, 17, 17, 20]
n = 2

max_total_price = check_rod_cutting(prices, n)
print(f"The maximum total price for a rod of length {n} is {max_total_price

The maximum total price for a rod of length 2 is 5

Rod cutting (brute force)
Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function

2. identify a base case

3. identify a recursion mechanism

Rod cutting (brute force)
Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function

2. identify a base case

3. identify a recursion mechanism

def cut_brute_force(n, t):
if n == 0:

return 0
max_valeur = float('-inf')
for i in range(1, n + 1):

valeur_courante = t[i] + coupe_brute_force(n - i, t)
max_valeur = max(max_valeur, valeur_courante)

return max_valeur

Rod cutting (brute force)
Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function

2. identify a base case

3. identify a recursion mechanism

def cut_brute_force(n, t):
if n == 0:

return 0
max_valeur = float('-inf')
for i in range(1, n + 1):

valeur_courante = t[i] + coupe_brute_force(n - i, t)
max_valeur = max(max_valeur, valeur_courante)

return max_valeur

lengths = [0, 1, 2, 3, 4, 5, 6, 7, 8]
values = [0, 1, 5, 8, 9, 10, 17, 17, 20]
rod_length = 2
max_value = coupe_brute_force(rod_length, values)
print(f"The maximum value for a rod of length {rod_length} is {max_value

The maximum value for a rod of length 2 is 5.

Rod cutting (dynamic programming)
General case:

• Cutting a rod of length optimally.

• Cutting a rod of length optimally.

General case:

size (i) 1 2 3 4 5 6 7 8

price (pi) 1 5 8 9 10 17 17 20

i

(n − i)

Vn = max1≤i≤n(pi + Vn−i)

Let's calculate V_3 step by step for each possible value of i :

1. If i = 1 , we cut the rod into two pieces: one of length 1 and one of length 2.

•

•

2. If i = 2 , we cut the rod into two pieces: one of length 2 and one of length 1.

•

•

3. If i = 3 , we cut the rod into one piece of length 3.

•

• (Assuming that as a base case.)

V3 = max1≤i≤3(pi + V3−i)

V1 = p1 = 2
V3−1 = V2

V2 = p2 = 5
V3−2 = V1

V3 = p3 = 9
V3−3 = V0 V0 = 0

Now, we can calculate the values for V_2 and V_1 recursively using the same
formula:

For V_2 :

For V_1 :

So, V_2 is 5 and V_1 is 2.

Now, we can calculate V_3 using the values of V_2 and V_1 :

V2 = max(p1 + V1, p2 + V0) = max(2 + V1, 5 + 0) = max(2 + 2, 5 + 0) =

max(4, 5) = 5

V1 = max(p1 + V0) = max(2 + 0) = 2

V3 = max(p1 + V2, p2 + V1, p3 + V0) = max(1 + 5, 5 + 2, 9 + 0) = max(6, 7, 9)
= 0

Rod cutting (dynamic programming)

Rod cutting (dynamic programming)
INT_MIN = 0

def cutRod(price, n):

init cache tables
val = [0 for x in range(n+1)]
val[0] = 0

for i in range(1, n+1):

max_val = INT_MIN
for j in range(i):

max_val = max(max_val, price[j] + val[i-j-1])
val[i] = max_val

return val[n]

if __name__=="__main__":

arr = [1, 5, 8, 9, 10, 17, 17, 20]
size = len(arr)
print("Max size cut " + str(cutRod(arr, size)), len(arr))

Max size cut 22 8

Change-making problem (dynamic
programming)

.

: all the available coins

: amount

Qopt(S, M) = min ∑n

i=1 xi

S

M

Qopt(i, m)

= min

⎧⎪⎨⎪⎩
1 + Qopt(i, m − vi) si (m − vi) ≥ 0 we use a coin of type i of value

Qopt(i − 1, m) si i ≥ 1

we do not use coin of type i, we use i − 1

Lessons on dynamic programming
• It is necessary to study each problem on a case-by-case basis.

• Storing a large number of partial results, which requires significant memory
usage.

• Suitable for only certain problems (min, max, counting the number of solutions).

