
UE5 Fundamentals of
Algorithms
Lecture 10: Trees
Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business
Romain Vuillemot

In [5]: import sys
import os
from graphviz import Digraph
from IPython.display import display
from utils import draw_tree_dict

Outline
Definitions

Data structures

Weighted trees

Trees

A non-linear data structures (multiple ways to traverse it)

Nodes are connected by only one path (a series of edges) so trees have no cycle

Edges are also called links, they can be traversed in both ways (no orientation)

Example of trees:

Binary trees, binary search trees, N-ary trees, recursive call trees, etc.

HOB (Horizontally Ordered Binary), AVL (Adelson-Velskii and Landis, self-balancing
trees), ...

B-trees, forests, lattices, etc.

Tree is a hierarchical data structure with nodes connected by
edges

Definitions on trees
(similar to the ones for the binary trees)

Nodes - a tree is composed of nodes that contain a value and children .

Edges - are the connections between nodes; nodes may contain a value.

Root - the topmost node in a tree; there can only be one root.

Parent and child - each node has a single parent and up to two children.

Leaf - no node below that node.

Depth - the number of edges on the path from the root to that node.

Height - maximum depth in a tree.

Definitions on trees (cont.)
N-ary Tree - a tree in which each node can have up to children. Binary trees is the
case where .

Weight - a quantity is associated to the edges.

Degree - the number of child nodes it has. Binary tree is the case where degree is 2.

Subtree - a portion of a tree that is itself a tree.

Forest - a collection of trees not connected to each other.

N

N = 2

Data structures (dicts + lists)
A simple way is the adjacency list using a dictionnary dict type.

a

b c

d e f

In [26]: tree_dict = {
 "a": ["b", "c"],
 "b": ["d", "e"],
 "c": ["f"],
 "d": [],
 "e": [],
 "f": []
}

In [27]: draw_tree_dict(tree_dict)

Data structures (dicts + named lists)
A variation is to use a named variable for the list.

In [28]: tree_dict_name = {
 "a": {"neighbors": ["b", "c"]},
 "b": {"neighbors": ["d", "e"]},
 "c": {"neighbors": ["f"]},
 "d": {"neighbors": []},
 "e": {"neighbors": []},
 "f": {"neighbors": []}
}

In [29]: tree_dict_name["a"]["neighbors"]

Out[29]: ['b', 'c']

Data structures (sets)
The children are unique and not ordered

In [30]: tree_set = {
 "a": set(["b", "c"]),
 "b": set(["d", "e"]),
 "c": set(["f"]),
 "d": set(),
 "e": set(),
 "f": set()
}

Data structures (lists of lists)
Each node is an entry in the list

Children are sub-lists

In [31]: tree_list = [
 ['a', ['b', 'c']],
 ['b', ['d', 'e']],
 ['c', ['f', 'g']],
 ['d', []],
 ['e', []],
 ['f', []],
 ['g', []]
]

Data structures (tuples)
Each node is the first tuple

Children are additionnal tuply entries

Warning: tuples are immutable (cannot be changed)

In [32]: tree_tuple = ("a", [
 ("b", []),
 ("c", [
 ("d", [
 ("e", [])
])
])
])

In [33]: tree_tuple[0] # cannot be changed

Out[33]: 'a'

Data structure (class object)
How to create the tree? How to retrieve all nodes? Both iterative and recursive ways.

class Node:
 def __init__(self, value, children = []):
 self.value = value
 self.children = children

Data structure (class object)
How to create the tree? How to retrieve all nodes? Both iterative and recursive ways.

class Node:
 def __init__(self, value, children = []):
 self.value = value
 self.children = children

In [34]: class Node:
 def __init__(self, value, children = []):
 self.value = value
 self.children = children

 def get_all_nodes(self):
 nodes = [self.value]
 for child in self.children:
 nodes += child.get_all_nodes()
 return nodes

 def get_all_nodes_iterative(self):
 nodes = []
 stack = [self]
 while stack:
 current_node = stack.pop()
 nodes.append(current_node.value)
 stack += current_node.children
 return nodes

In [35]: root = Node("a", [
 Node("b", [
 Node("d"),
 Node("e"),
]),
 Node("c", [
 Node("f"),
]),
])

or using "root.children"

In [36]: root.get_all_nodes()

Out[36]: ['a', 'b', 'd', 'e', 'c', 'f']

In [37]: root.get_all_nodes_iterative()

Out[37]: ['a', 'c', 'f', 'b', 'e', 'd']

Weighted trees

Useful to quantifie both nodes and links

Storing those values require additionnal data structures

Trees with a quantity associated to the links or the nodes

Data structures for weighted trees (dicts for
edges)

We need to add an extra value to encode values in edges

In [38]: tree_w_dict = {'a': [{'b': 0}, {'c': 0}],
 'b': [{'d': 0}, {'e': 0}],
 'c': [{'f': 0}],
 'd': [],
 'e': []
 }

In [39]: tree_w_tuple = {
 'a': [('b', 0), ('c', 0)],
 'b': [('d', 0), ('e', 0)],
 'c': [('f', 0)],
 'd': [],
 'e': []
}

Weigthted trees as classes
In [40]: class Node_weight:

 def __init__(self, data, weight=0):
 self.data = data
 self.children = []
 self.weight = weight

tree = Node_weight(1)
child1 = Node_weight(2, weight=5)
child2 = Node_weight(3, weight=7)
tree.children = [child1, child2]

Exercise: Calculate the total weight of a tree
Tip: go through all the nodes and get the edges, then sum their weights.

Exercise: Calculate the total weight of a tree
Tip: go through all the nodes and get the edges, then sum their weights.

In [41]: def get_tree_edges(root):
 edges = []
 stack = [(root, None)]

 while stack:
 node, parent_data = stack.pop()

 for child in node.children:
 stack.append((child, node.data))
 edges.append((node.data, child.data, child.weight))

 return edges

In [42]: tree_w_oo = Node_weight(1)
child1 = Node_weight(2, weight=5)
child2 = Node_weight(3, weight=7)
tree_w_oo.children = [child1, child2]
get_tree_edges(tree_w_oo)

Out[42]: [(1, 2, 5), (1, 3, 7)]

In [43]: sum(tpl[2] for tpl in get_tree_edges(tree_w_oo))

Out[43]: 12

Exercise: Calculate the total weight of a tree
A recursive version:

In [44]: def calculate_total_weight(node):
 total_weight = node.weight
 for child in node.children:
 total_weight += calculate_total_weight(child)
 return total_weight

In [45]: calculate_total_weight(tree_w_oo)

Out[45]: 12

An Edge class for edges
To consider edges as objects

Can be used as a complement of the nodes (or without the nodes)

Main trees properties

In [46]: class Edge:
 def __init__(self, source, target):
 self.source = source
 self.target = target

class Node:
 def __init__(self, label):
 self.label = label
 self.children = []

class Tree:
 def __init__(self, root_label):
 self.root = Node(root_label)
 self.edges = []

Hierarchical structure

No cycle

All nodes connected

We will mostly use one of the two traversal methods (BFS and DFS) to achieve this.

Also we will using the dictionnary-based data structure:

In [6]: tree = {
 "A": ["B", "C"],
 "B": ["D", "E"],
 "C": ["F", "G"],
 "D": ["H", "I"],
 "E": ["J"],
 "F": [],
 "G": [],
 "H": [],
 "I": [],
 "J": []
}

In [7]: draw_tree_dict(tree)

A

B C

D E F G

H I J

Generalized BFS (Breadth-First Search)

Generalized DFS (Depth-First Search)

In [9]: def bfs(tree, start_node):
 queue = [start_node]
 result = []

 while queue:
 node = queue.pop(0)
 result.append(node)
 children = tree.get(node, [])

 for child in children:
 if child is not None:
 queue.append(child)

 return result

In [10]: print(bfs(tree, "A"))

['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']

Tree property: are all nodes connected?
Without having a first node and re-using the dfs

In []: def dfs(tree, start_node):
 stack = [start_node]
 result = []

 while stack:
 node = stack.pop()
 result.append(node)
 children = tree.get(node, [])

 for child in children:
 if child is not None:
 stack.append(child)

 return result

In []: print(dfs(tree, "A"))

In []: def is_tree_connected(tree, start_node):
 if not tree:
 return True # An empty tree is considered connected.

 visited = set()
 stack = []

Tree property: does the tree have a cycle?

 stack.append(start_node)

 while stack:
 node = stack.pop()
 if node not in visited:
 visited.add(node)
 stack.extend(tree.get(node, []))

 return len(visited) == len(tree)

is_tree_connected(tree, "A")

In []: dfs_check_connected(tree, "A")

In []: def has_cycle_dfs(root):
 def dfs(node, parent, visited):
 if node in visited:
 if parent is not None and parent != visited[node]:
 return True
 return False

 visited[node] = parent

 for child in node.children:
 if dfs(child, node, visited):

What if we add an extra node "K"?

Tree property: Check if the tree is an n-ary tree

 return True

 return False

 visited = {}
 return dfs(root, None, visited)

tree["F"] = ["A"]

In []: def is_binary_tree(tree, node, n = 2, visited=None):
 if visited is None:
 visited = set()

 if node in visited:
 return True

 visited.add(node)
 children = tree.get(node, [])

 if len(children) > n:

Get all the edges of a tree

 return False

 for child in children:
 if not is_binary_tree(tree, child, n, visited):
 return False

 return True

is_binary_tree(tree, "A", 2)

In [11]: def generate_edges(graph):
 edges = []
 for node, neighbors in graph.items():
 for neighbor in neighbors:
 edges.append((node, neighbor))
 return edges

In [12]: generate_edges(tree)

Out[12]: [('A', 'B'),
 ('A', 'C'),
 ('B', 'D'),
 ('B', 'E'),
 ('C', 'F'),
 ('C', 'G'),
 ('D', 'H'),

 ('D', 'I'),
 ('E', 'J')]

In [13]: def generate_edges_dfs(graph, start_node):
 edges = []
 stack = [start_node]
 visited = []

 while stack:
 node = stack.pop()
 visited.append(node)
 for neighbor in graph[node]:
 if neighbor not in visited:
 edges.append((node, neighbor))
 stack.append(neighbor)

 return edges

In [15]: generate_edges_dfs(tree, "A")

Out[15]: {('A', 'B'),
 ('A', 'C'),
 ('B', 'D'),
 ('B', 'E'),
 ('C', 'F'),
 ('C', 'G'),
 ('D', 'H'),
 ('D', 'I'),
 ('E', 'J')}

