
UE5 Fundamentals of
Algorithms
Lecture 11: Graphs
Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business
Romain Vuillemot

In [1]: import sys
import os
from graphviz import Digraph
from IPython.display import display
from utils import visualize_graph_nx, visualize_graph_w

Outline
Definitions

Data structures

Properties

Weighted graphs and spanning trees

Shortest paths

Graphs

Trees are a specific case of a graph (acyclic, connected graphs)

Examples:

Messaging: the traveling salesman problem, postal routes

Communication networks

Traffic management: flow problems, minimum congestion paths, ...

Air navigation (aircraft in sky corridors!)

Closed transportation system (closed circuit): goods delivery, TSP (Traveling

Salesman Problem).

Printed circuit board wiring

A graph is an abstract data structure consisting of a set of
vertices connected by edges.

Definition
Graph with:

: set of nodes (vertices).

: set of edges (links) or arcs (if oriented).

Properties:

Connected graph: with a path between any pair of nodes.

Directed graphs: where edges have a specific direction.

Weighted graphs: numerical values associated with nodes or edges.

Strongly connected graphs: directed graphs where there is a path from any node

to any other node.

Bipartite: vertices can be divided into two sets with no edges within a set.

Dense graph: with a high edge-to-vertex ratio, often with .

Path: a sequence of connected nodes with vertice.

Cycle: a path that starts and ends at the same vertex.

Degree: number of edges connected to a node.

G = (V ,E)

V

E ∈ (V × V)

|E| = O(|V |
2
)

Data structures: dict
Using a dictionnary with adjacency list (similar to trees without cycles and non-

connected nodes)

In [2]: g = { "a" : ["d"],
 "b" : ["c"],
 "c" : ["b", "c", "d", "e"],
 "d" : ["a", "c"],
 "e" : ["c"],
 "f" : []
 }

In [3]: g.keys() # nodes

Out[3]: dict_keys(['a', 'b', 'c', 'd', 'e', 'f'])

Data structures: dict
In [4]: def generate_edges(graph):

 edges = []
 for node, neighbors in graph.items():
 for neighbor in neighbors:
 edges.append((node, neighbor))
 return edges

generate_edges(g) # edges

Out[4]: [('a', 'd'),
 ('b', 'c'),
 ('c', 'b'),
 ('c', 'c'),
 ('c', 'd'),
 ('c', 'e'),
 ('d', 'a'),
 ('d', 'c'),
 ('e', 'c')]

In [5]: [(vertex, neighbor) for vertex, neighbors
 in g.items() for neighbor in neighbors]

Out[5]: [('a', 'd'),
 ('b', 'c'),
 ('c', 'b'),

 ('c', 'c'),
 ('c', 'd'),
 ('c', 'e'),
 ('d', 'a'),
 ('d', 'c'),
 ('e', 'c')]

Graphs: node-link representation
In [6]: visualize_graph_nx(g)

DFS

Similar than for trees

But needs to memorize visited nodes

Steps:

1. Put the source node into the stack.

2. Remove the node at the top of the stack to process it.

3. Put all unexplored neighbors into the stack (at the top).

4. If the stack is not empty, go back to step 2.

Depth-First Search (DFS) starts exploring graphs at a source
node, explores as far as possible along each branch before
backtracking.

DFS with external visited list (iterative)
In [7]: def dfs(graph, start_node):

 visited = set()
 stack = [start_node]

 while stack:
 node = stack.pop()
 if node not in visited:
 print(node, end=' ')
 visited.add(node)
 for neighbor in reversed(graph[node]):
 if neighbor not in visited:
 stack.append(neighbor)

dfs(g, 'a') # start from node 'a'.

a d c b e

DFS with external visited list (recursive)
In [8]: def dfs_rec(graph, start_node, visited=set()):

 if start_node not in visited:
 print(start_node, end=' ')
 visited.add(start_node)
 for neighbor in graph[start_node]:
 if neighbor not in visited:
 dfs_rec(graph, neighbor, visited)

dfs_rec(g, 'a') # start from node 'a'.

a d c b e

DFS with internal visited list (recursive)
In [9]: def dfs(graph, start_node):

 if start_node not in graph:
 return

 print(start_node, end=' ')
 graph[start_node]['visited'] = True

 for neighbor in graph[start_node]['neighbors']:
 if not graph[neighbor]['visited']:
 dfs(graph, neighbor)

graph = {
 'A': {'neighbors': ['B', 'C'], 'visited': False},
 'B': {'neighbors': ['A', 'D', 'E'], 'visited': False},
 'C': {'neighbors': ['A', 'F'], 'visited': False},
 'D': {'neighbors': ['B'], 'visited': False},
 'E': {'neighbors': ['B', 'F'], 'visited': False},
 'F': {'neighbors': ['C', 'E'], 'visited': False}
}

dfs(graph, 'A')

A B D E F C

BFS

Similar to DFS, it also requires tracking visited nodes to avoid revisiting them.

Steps for BFS:

1. Put the source node into the queue.

2. Remove the node at the front of the queue to process it.

3. Explore all unvisited neighbors of the processed node and enqueue them at the

back of the queue.

4. If the queue is not empty, go back to step 2.

Breadth-First Search (BFS) starts exploring graphs at a source
node, explores all of its neighbors at the current depth before
moving on to nodes at the next depth level.

BFS with external visited list (iterative)
In [10]: def bfs(graph, start_node):

 visited = set()
 queue = [start_node]

 while queue:
 node = queue.pop(0)
 if node not in visited:
 print(node, end=' ')
 visited.add(node)
 for neighbor in graph.get(node, []):
 if neighbor not in visited:
 queue.append(neighbor)

graph = {
 'A': ['B', 'C'],
 'B': ['A', 'D', 'E'],
 'C': ['A', 'F'],
 'D': ['B'],
 'E': ['B', 'F'],
 'F': ['C', 'E']
}

bfs(graph, 'A')

A B C D E F

BFS with backtracking
To memorize the path used to visit nodes.

In [11]: def bfs_with_backtracking(graph, start_node, seeked_node):
 visited = {node: False for node in graph}
 path = {node: None for node in graph}
 queue = [start_node]
 found = False

 while queue:
 current_node = queue.pop(0)
 visited[current_node] = True

 for neighbor in graph[current_node]:
 if not visited[neighbor]:
 queue.append(neighbor)
 visited[neighbor] = True
 path[neighbor] = current_node

 if neighbor == seeked_node:
 found = True
 break

 if found:
 break

 if not found:

 return "Path not found"

 node = seeked_node
 path_sequence = []
 while node is not None:
 path_sequence.insert(0, node)
 node = path[node]

 return path_sequence

BFS with backtracking
Path re-construction from the BFS exploration:

if not found:
 return "Path not found"

 node = seeked_node
 path_sequence = []
 while node is not None:
 path_sequence.insert(0, node)
 node = path[node]

 return path_sequence

In [12]: graph = {
 'A': ['B', 'C'],
 'B': ['A', 'D', 'E'],
 'C': ['A', 'F'],
 'D': ['B'],
 'E': ['B', 'F'],
 'F': ['C', 'E']
}

start_node = 'A'
seeked_node = 'F'
path = bfs_with_backtracking(graph, start_node, seeked_node)
print(f"Path from {start_node} to {seeked_node}: {path}")

Path from A to F: ['A', 'C', 'F']

Graph property: path between two nodes?
INPUT: a list of edges

In [13]: def has_path(edges, n, start, end):
 voisins = [[] for i in range(n)]
 for i, j in edges:
 voisins[i].append(j)
 voisins[j].append(i)

 stack = [start]
 visited = set(stack)
 while stack:
 cur = stack.pop()
 if cur == end:
 return True
 for v in voisins[cur]:
 if v not in visited:
 stack.append(v)
 visited.add(v)
 return False

edges = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 5)]
num_nodes = 6 # number of unique nodes
start_node = 0; end_node = 5
result = has_path(edges, num_nodes, start_node, end_node)
print(f"There is a path between {start_node} and {end_node}: {result}")

There is a path between 0 and 5: True

Data structures: OOP
In [14]: class Graph:

 def __init__(self):
 self.graph = {}

 def add_vertex(self, vertex):
 if vertex not in self.graph:
 self.graph[vertex] = []

 def add_edge(self, vertex1, vertex2):
 if vertex1 in self.graph and vertex2 in self.graph:
 self.graph[vertex1].append(vertex2)
 self.graph[vertex2].append(vertex1)

 def get_nodes(self):
 return list(self.graph.keys())

 def get_edges(self):
 edges = []
 for vertex, neighbors in self.graph.items():
 for neighbor in neighbors:
 if (vertex, neighbor) not in edges and (neighbor, verte
 edges.append((vertex, neighbor))
 return edges

 def __str__(self):
 return str(self.graph)

In [15]: g_obj = Graph()

for vertex in ["a", "b", "c", "d", "e", "f"]:
 g_obj.add_vertex(vertex)

Add edges
g_obj.add_edge("a", "d")
g_obj.add_edge("b", "c")
g_obj.add_edge("c", "b")
g_obj.add_edge("c", "c")
g_obj.add_edge("c", "d")
g_obj.add_edge("c", "e")
g_obj.add_edge("d", "a")
g_obj.add_edge("d", "c")
g_obj.add_edge("e", "c")

print("Nodes:", g_obj.get_nodes())
g_obj.get_edges() == generate_edges(g)
print("Edges:", g_obj.get_edges())

Nodes: ['a', 'b', 'c', 'd', 'e', 'f']
Edges: [('a', 'd'), ('b', 'c'), ('c', 'c'), ('c', 'd'), ('c',
'e')]

DFS using oop
(Only explores a single connex component)

In [16]: def dfs(self, start_vertex, visited = set()):
 stack = [start_vertex]

 while stack:
 vertex = stack.pop()
 if vertex not in visited:
 print(vertex, end=' ')
 visited.add(vertex)
 neighbors = self.graph[vertex]
 for neighbor in neighbors:
 if neighbor not in visited:
 stack.append(neighbor)

Graph.dfs = dfs # update the Graph class

In [17]: g_obj.dfs("a")

a d c e b

DFS using oop
Explores all the graph components

In [18]: def components(self):
 visited = set()

 for vertex in self.graph:
 if vertex not in visited:
 self.dfs(vertex, visited)
 print()
Graph.components = components # update the Graph class

In [19]: g_obj.components()

a d c e b
f

Graph property: can a graph be n-colored?
Two adjacent vertices (connected by an edge) cannot have the same color when properly
colored. Example with (i.e. can a graph be colored with 2 colors).n = 2

Graph property: can a graph be n-colored?
Two adjacent vertices (connected by an edge) cannot have the same color when properly
colored. Example with (i.e. can a graph be colored with 2 colors).n = 2

In [20]: class Node:
 def __init__(self, v = None, n = []):
 self.v = v
 self.n = n
 self.visited = False

def two_color(r):

 stack = [r]

 while len(stack) > 0:
 c = stack.pop(0)
 for n in c.n:
 if(c.v == n.v): # neighbours have same color
 return False
 if not n.visited:
 stack.append(n)
 n.visited = True

 return True

In [21]: n1 = Node("gray")
n2 = Node("black")
n3 = Node("gray")
n4 = Node("gray")
n5 = Node("black")
n6 = Node("gray")

n1.n = [n2]
n2.n = [n1, n3, n4]
n3.n = [n2, n5]
n4.n = [n2, n5]
n5.n = [n3, n4, n6]
n6.n = [n5]

print(two_color(n1))

True

Data structure: Adjacency matrix
Square: it has the same number of rows and columns.

A 1 in a cell indicates a link between nodes i and j .
A 1 on the diagonal would indicate a loop.

It is symmetric: for an undirected graph.

For valued graphs, cells contain values (instead of 1).

mij

mij = mji

Adjacency matrix (example)
Given the graph G , what is its corresponding adjacency matrix?

Adjacency matrix (example)
Given the graph G , what is its corresponding adjacency matrix?

In [22]: nodes = sorted(g.keys())
num_nodes = len(nodes)
adj_matrix = [[0] * num_nodes for _ in range(num_nodes)]
xf
for i, node in enumerate(nodes):
 connected_nodes = g[node]
 for connected_node in connected_nodes:
 j = nodes.index(connected_node)
 adj_matrix[i][j] = 1

for row in adj_matrix:
 print(row)

[0, 0, 0, 1, 0, 0]
[0, 0, 1, 0, 0, 0]
[0, 1, 1, 1, 1, 0]
[1, 0, 1, 0, 0, 0]
[0, 0, 1, 0, 0, 0]
[0, 0, 0, 0, 0, 0]

Adjacency matrix (OOP)
In [23]: class GraphAdj:

 def __init__(self, n):
 self.__n = n
 self.__g = [[0 for _ in range(n)] for _ in range(n)]

 for i in range(0, self.__n):
 for j in range(0, self.__n):
 self.__g[i][j] = 0

 def addEdge(self, x, y):
 if (x < 0) or (x >= self.__n):
 print("Vertex {} does not exist!".format(x))
 if (y < 0) or (y >= self.__n):
 print("Vertex {} does not exist!".format(y))

 if(x == y):
 print("Same Vertex!")
 else:
 self.__g[y][x] = 1
 self.__g[x][y] = 1

 def displayAdjacencyMatrix(self):
 for i in range(0, self.__n):
 print()

 for j in range(0, self.__n):
 print("", self.__g[i][j], end = "")

 def removeEdge(self, x, y):
 if (x < 0) or (x >= self.__n):
 print("Vertex {} does not exist!".format(x))
 if (y < 0) or (y >= self.__n):
 print("Vertex {} does not exist!".format(y))
 if(x == y):
 print("Same Vertex!")
 else:
 self.__g[y][x] = 0
 self.__g[x][y] = 0

In [24]: obj = GraphAdj(6)

obj.addEdge(0, 1)
obj.addEdge(0, 2)
obj.addEdge(0, 3)
obj.addEdge(0, 4)
obj.addEdge(1, 3)
obj.addEdge(2, 3)
obj.addEdge(2, 4)
obj.addEdge(2, 5)
obj.addEdge(3, 5)

obj.displayAdjacencyMatrix()

 0 1 1 1 1 0
 1 0 0 1 0 0
 1 0 0 1 1 1
 1 1 1 0 0 1
 1 0 1 0 0 0
 0 0 1 1 0 0

In [25]: obj.removeEdge(2, 3);
obj.displayAdjacencyMatrix();

 0 1 1 1 1 0
 1 0 0 1 0 0
 1 0 0 0 1 1
 1 1 0 0 0 1
 1 0 1 0 0 0
 0 0 1 1 0 0

Graph property: is a graph connected? (matrix)
In [26]: def is_connected(graph):

 n = len(graph)
 visited = [False] * n
 stack = [0]
 while stack:
 node = stack.pop()
 if not visited[node]:
 visited[node] = True
 for i in range(n):
 if graph[node][i] == 1 and not visited[i]:
 stack.append(i)
 return visited.count(True) == len(graph)

g_m = [
 [0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 1, 0, 1, 0],
 [0, 0, 1, 0, 1],
 [0, 0, 0, 1, 0]
]

We do a DFS
is_graph_connected = is_connected(g_m)
print(f"The graph is connected: {is_graph_connected}")

The graph is connected: False

Graph property: how many connected
components? (matrix)

Graph property: how many connected
components? (matrix)

In [67]: def dfs(adj_matrix, node, visited):
 visited[node] = True
 for neighbor, connected in enumerate(adj_matrix[node]):
 if connected and not visited[neighbor]:
 dfs(adj_matrix, neighbor, visited)

def count_connected_components(adj_matrix):
 num_nodes = len(adj_matrix)
 visited = [False] * num_nodes
 components = 0

 for i in range(num_nodes):
 if not visited[i]:
 dfs(adj_matrix, i, visited)
 components += 1

 return components

Graph property: is there a self-connected node?
(matrix)
I.e is there for instance a node A A→

Graph property: is there a self-connected node?
(matrix)
I.e is there for instance a node A A→

In [68]: def has_ones_in_diagonal(matrix):
 for i in range(len(matrix)):
 if matrix[i][i] == 1:
 return True
 return False

In [69]: # We check if there is a `1` in the diagonal
has_ones_in_diagonal(g_m)

Out[69]: False

Graph property: is a graph oriented? (matrix)

Graph property: is a graph oriented? (matrix)
In [29]: # check if the matrix is equal to its transpose.

def is_symmetric(matrix):
 rows = len(matrix)
 cols = len(matrix[0])

 for i in range(rows):
 for j in range(cols):
 if matrix[i][j] != matrix[j][i]:
 return False
 return True

In [30]: g_empty = []
n = 5
for i in range(n):
 row = []
 for j in range(n):
 row.append(0)
 g_empty.append(row)

In [31]: for r in g_empty:
 print(r, end="\n")

[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]

In [32]: is_symmetric(g_empty)

Out[32]: True

Graph property: is a graph connected? (dict)
We check if the dfs equals the number of nodes.

In [33]: def is_connected(graph):
 if not graph:
 return True

 visited = set()
 start_node = list(graph.keys())[0]

 def dfs(node):
 visited.add(node)
 for neighbor in graph[node]:
 if neighbor not in visited:
 dfs(neighbor)

 dfs(start_node)

 return len(visited) == len(graph)

In [34]: is_connected(g)

Out[34]: False

Weighted graphs
Graph with numerical values associated with nodes or edges.

In [54]: graph_w = {
 "a": [("d", 1)],
 "b": [("c", 3)],
 "c": [("a", 1), ("b", 3), ("d", 1), ("e", 1)],
 "d": [("a", 1), ("c", 1)],
 "e": [("c", 1)],
 "f": []
}

In [58]: def greedy_heuristic_shortest_path(graph, start, end):
 current_node = start
 visited = set()

 while current_node != end:
 visited.add(current_node)
 min_weight = float('inf')
 next_node = None

 # Find the neighboring unvisited node with the smallest weight
 for neighbor, weight in graph[current_node]:
 if neighbor not in visited and weight < min_weight:
 min_weight = weight
 next_node = neighbor

 if next_node is None:
 return float('inf') # No path found

 current_node = next_node

 return 0 # Path found from start to end

In [65]: greedy_heuristic_shortest_path(graph_w, "a", "e")

Out[65]: 0

Weighted graphs
In [49]: visualize_graph_w(graph_w)

Spanning Trees

If a graph has vertices, its MST (Minimum Spanning Tree) will have edges.

A graph can have multiple spanning trees, but the MST is the one with the lowest
weight.

A tree has only one spanning tree: itself.

Question: What is the minimum spanning tree of this graph?

A Minimum Spanning Tree (MST) of a graph is a subset of
edges that connects all vertices while minimizing the total sum
of the edge values.

N N − 1

Weighted Graph MST finding: Prim's Algorithm
1. Start with an initial tree reduced to a single vertex of the graph.

2. At each iteration, expand the tree by adding the available free vertex with the
smallest possible weight.

3. Stop when the tree becomes spanning.

Programming Strategy?

Weighted Graph MST finding: Prim's Algorithm
1. Start with an initial tree reduced to a single vertex of the graph.

2. At each iteration, expand the tree by adding the available free vertex with the
smallest possible weight.

3. Stop when the tree becomes spanning.

Programming Strategy?

Greedy

Weighted Graph MST finding: Prim's Algorithm
In [37]: from heapq import heapify, heappop, heappush

def prim(graph):
 mst = []
 start_vertex = list(graph.keys())[0]
 priority_queue = [(0, start_vertex)]
 visited = set()

 while priority_queue:
 weight, current_vertex = heappop(priority_queue)
 if current_vertex not in visited:
 mst.append((current_vertex, weight))
 visited.add(current_vertex)
 for neighbor, edge_weight in graph[current_vertex]:
 if neighbor not in visited:
 heappush(priority_queue, (edge_weight, neighbor))
 return mst

In [38]: prim(graph_w)

Out[38]: [('a', 0), ('d', 1), ('c', 1), ('b', 1), ('e', 1)]

Graphs: shortest paths
What is the shortest path from ?

Approaches:

1. BFS with local minimum (greedy):

2. BFS with global minimum (dynamic programming):

3. Other?

s → z

Graphs: shortest paths (BFS)
In [39]: graph_s = {

 "s": [("t", 6), ("y", 7)],
 "t": [("x", 5), ("y", 8), ("z", -4)],
 "y": [("x", -3), ("z", 9)],
 "x": [("t", -2)],
 "z": [("s", 2), ("x", 7)]
}

In [40]: def bfs_path(graph, start, end):
 if start == end:
 return [start]

 visited = set()
 queue = [(start, [], 0)]

 while queue:
 queue.sort(key=lambda x: x[2])
 current, path, cost = queue.pop(0)
 visited.add(current)

 for neighbor, edge_cost in graph[current]:
 if neighbor not in visited:
 if neighbor == end:
 return path + [current, neighbor]
 queue.append((neighbor, path + [current], cost + edge_c

 return None

In [41]: start_node = 's'
end_node = 'z'

path = bfs_path(graph_s, start_node, end_node)
if path:
 print("Path from", start_node, "to", end_node, ":", path)
else:
 print("No path found from", start_node, "to", end_node)

Path from s to z : ['s', 't', 'z']

Graphs: shortest paths (Bellman-Ford)
Objective: Determine the shortest paths from a single source to all other nodes in
the graph.

Initialization: Assign an initial distance value of 0 to the source node and infinity to
all other nodes.

Iterative Relaxation of Edges:

Perform iterations (being the number of vertices).

For each edge , update the distance if the distance to node
through node is shorter than the current distance to .

Detection of Negative Cycles:

After the iterations, check for negative cycles by iterating through
all edges.

If a shorter path is found, a negative cycle exists.

|V | − 1 V

(u, v) v

u v

|V | − 1

In [42]: def bellman_ford(graph, src):
 dist = {node: float("inf") for node in graph}
 dist[src] = 0

 for _ in range(len(graph) - 1):
 for u in graph:
 for v, w in graph[u]:
 if dist[u] != float("inf") and dist[u] + w < dist[v]:
 dist[v] = dist[u] + w

 for u in graph:
 for v, w in graph[u]:
 if dist[u] != float("inf") and dist[u] + w < dist[v]:
 print("Le graphe contient des cycles négatifs")
 return

 return dist

In [43]: bellman_ford(graph_s, 's')

Out[43]: {'s': 0, 't': 2, 'y': 7, 'x': 4, 'z': -2}

Dijkstra's Algorithm
Objective: Determine the shortest paths between sources and nodes in the
graph accessible from .

Incremental and greedy construction of a set of visited nodes accessible from
initial vertex .

Initialization: is an empty list and .

Move to the next step:

 node from outside of closest to by following a

path that only passes through nodes in .

The vertices entering in ascending order of distance to .

Warning: assumes costs .

S
S

E
S

E0 G = {S}

Ei+1 = Ei ∪ { G Ei S

Ei}

E S

> 0

In [44]: graph_d = {
 "s": [("t", 6), ("y", 4)],
 "t": [("x", 3), ("y", 2)],
 "y": [("t", 1), ("x", 9), ("z", 3)],
 "x": [("z", 4)],

 "z": [("s", 7), ("x", 5)]
}

In [45]: def dijkstra(graph, initial):
 visited = {initial: 0}
 path = {}
 nodes = set(graph.keys())
 while nodes:
 min_node = None
 for node in nodes:
 if node in visited:
 if min_node is None:
 min_node = node
 elif visited[node] < visited[min_node]:
 min_node = node

 if min_node is None:
 break

 nodes.remove(min_node)
 current_weight = visited[min_node]
 for edge, weight in graph[min_node]:
 weight = current_weight + weight
 if edge not in visited or weight < visited[edge]:
 visited[edge] = weight
 path[edge] = min_node

 return visited, path

In [46]: dijkstra(graph_d, 's')

Out[46]: ({'s': 0, 't': 5, 'y': 4, 'x': 8, 'z': 7},
 {'t': 'y', 'y': 's', 'x': 't', 'z': 'y'})

Summary of shortest path finding
Principle of minimizing a cost (optimal sub-problem)

Principle of algorithms (Bellman-Ford, Dijkstra, Floyd-Warshall) is to overestimate

the weights of the vertices and adjust the cost using a relaxation method.

The Bellman-Ford algorithm is similar to Dijkstra's. We find the notion of relaxation:

.

Dijkstra does not tolerate negative costs and uses a priority queue to process edges

in the correct order and relax each edge only once.

Bellman-Ford processes edges in an arbitrary order. It tolerates negative costs. For

these reasons, multiple iterations might be necessary.

Dijkstra with a cost graph of resembles breadth-first search (the queue becomes a

stack).

d(j) → min(d(j), d(x) + G(x, j))

1

