UES Fundamentals of
Algorithms

Lecture 10: Trees

Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business

Romain Vuillemot

[AAA

&9 ivon

| business
CENTRALELYON school

import sys

import os

from graphviz import Digraph

from IPython.display import display
from utils import draw_tree_dict

Outline

e Definitions
e Data structures
o Weighted trees

Trees

Tree is a hierarchical data structure with nodes connected by
edges

* A non-linear data structures (multiple ways to traverse it)
» Nodes are connected by only one path (a series of edges) so trees have no cycle
» Edges are also called links, they can be traversed in both ways (no orientation)

Example of trees:

e Binary trees, binary search trees, N-ary trees, recursive call trees, etc.

 HOB (Horizontally Ordered Binary), AVL (Adelson-Velskii and Landis, self-balancing
trees), ...

o B-trees, forests, lattices, etc.

Definitions on trees

(similar to the ones for the binary trees)
Nodes - atree is composed of nodes that containa value and children.
Edges - are the connections between nodes; nodes may contain a value.
Root - the topmost node in a tree; there can only be one root.

Parent and child - each node has a single parent and up to two children.
Leaf - nonode below that node.

Depth -the number of edges on the path from the root to that node.

Height - maximum depthin atree.

Definitions on trees (cont.)

N-ary Tree - atree in which each node can have up to IV children. Binary trees is the
case where N = 2.

Weight - a quantity is associated to the edges.
Degree - the number of child nodes it has. Binary tree is the case where degree is 2.
Subtree - aportion of a tree that is itself a tree.

Forest - acollection of trees not connected to each other.

Data structures (dicts + lists)

A simple way is the adjacency list using a dictionnary dict type.

tree_dict = {
IIaII: [Ilbll' IICII] ,
IIbII: [Ildll' IIeII] ,
IICII: [Ilfll] ,
IIdII: [] ,
||e||: [] ,
Ilfll: []

}

draw_tree_dict(tree_dict)

Data structures (dicts + named lists)

e A variation is to use a named variable for the list.

tree_dict_name = {

a .
! .
nen.
g
natt .
nfn,

s

{"neighbors":
{"neighbors":
{"neighbors":
{"neighbors":
{"neighbors":
{"neighbors":

[Ilbll’ "C"]}’
[Ildll’ Ilell]}
[II.’:II] }'

[1},

[1},

[1}

’

tree_dict_name["a"]["neighbors"]

[Ibl,

1 1]

Data structures (sets)

e The children are unigue and not ordered

tree_set
Ilall .

Ilbll :

c .
nqn .

€ .
Ilfll:

= {

Se.t([llbll’ IICII]
Se.t([lldll’ Ilell]
Ilfll])’

)
)

([

(),
set(),

()

Data structures (lists of lists)

e Each node is an entry in the list
e Children are sub-lists

tree list

|—||—||—|—|r—||—||—||
-+~ M0 QS O T QY

- - - - - - -

Data structures (tuples)

e Each node is the first tuple
e Children are additionnal tuply entries
e Warning: tuples are immutable (cannot be changed)

tree_tuple = ("a", |
(Ilbll’ [])’
(IICII’ [
(Ildll' [
("e", [1)

1)
1)
1)

tree_tuplel[@] # cannot be changed

a

Data structure (class object)

How to create the tree? How to retrieve all nodes? Both iterative and recursive ways.

class Node:
def _init_ (self, value, children = []):
self.value = value
self.children = children

Data structure (class object)

How to create the tree? How to retrieve all nodes? Both iterative and recursive ways.

class Node:
def _init_ (self, value, children
self.value = value
self.children = children

[1):

class Node:
def init_ (self, value, children
self.value = value
self.children = children

[1):

def get_all_nodes(self):
nodes = [self.value]
for child in self.children:
nodes += child.get_all_nodes()
return nodes

def get_all_nodes_iterative(self):

nodes = []

stack = [self]

while stack:
current_node = stack.pop()
nodes.append(current_node.value)
stack += current_node.children

return nodes

root = Node("a", [
Node("b", |
Node("d"),
Node('"e"),
1),
Node("c", |
Node("f"),
1),
1)

or using "root.children"
root.get_all_nodes()
[IaI’ Ibl’ Idl’ Iel’ ICI, I.I:I]

root.get_all_nodes_iterative()

Weighted trees

Trees with a quantity associated to the links or the nodes

o Useful to quantifie both nodes and links
e Storing those values require additionnal data structures

Data structures for weighted trees (dicts for
edges)

» We need to add an extra value to encode values in edges

tree_w dict = {'a': [{'b': 0}, {'c': 0}],
'b': [{'d': @0}, {'e': 0}],
'c¢': [{'f': 0}],
|d|: []’
Iel: []
¥

tree_w_tuple = {
‘a': [('b', @), ('
'b': [('d', @), ('
ICI: [(fl
'qd': []’
IeI. []

Weigthted trees as classes

class Node_weight:
def __init__ (self, data, weight=0):
self.data = data
self.children = []
self.weight = weight

tree = Node_weight(1)

childl = Node_weight(2, weight=5)
child2 = Node_weight(3, weight=7)
tree.children = [childl, child2]

Exercise: Calculate the total weight of a tree

Tip: go through all the nodes and get the edges, then sum their weights.

Exercise: Calculate the total weight of a tree

Tip: go through all the nodes and get the edges, then sum their weights.

def get_tree_edges(root):
edges []
stack [(root, None)]

while stack:
node, parent_data = stack.pop()

for child in node.children:
stack.append((child, node.data))
edges.append((node.data, child.data, child.weight))

return edges

tree_w_oo = Node_weight(1)

childl = Node_weight(2, weight=5)
child2 = Node_weight(3, weight=7)
tree_w_oo.children = [childl, child2]
get_tree_edges(tree_w_oo0)

[(1, 2, 5), (1, 3, 7)1

sum(tpl[2] for tpl in get_tree_edges(tree_w_oo))

Out[43]: 12

Exercise: Calculate the total weight of a tree

A recursive version:

def calculate_total_weight(node):
total_weight = node.weight
for child in node.children:

total_weight += calculate_total_weight(child)
return total_weight

calculate_total_weight(tree_w_oo)

12

An Edge class for edges

e To consider edges as objects
e Can be used as a complement of the nodes (or without the nodes)

class Edge:
def __init__ (self, source, target):
self.source source
self.target target

class Node:
def __init__ (self, label):
self. label = label
self.children = []

class Tree:
def __init_ (self, root_label):
self.root = Node(root_label)
self.edges = []

Main trees properties

e Hierarchical structure
* Nocycle
e All nodes connected

We will mostly use one of the two traversal methods (BFS and DFS) to achieve this.

Also we will using the dictionnary-based data structure:

tree = {
"A": ["B", "C"],
"B": ["D", "E"I,
IICII: [IIFII’ IIGII] ,
IIDII: [IIHII’ IIIII] ,
IIEII: [IIJII] ,
IIFII: [] ,
"g": [],
"H": [],
IIIII: [] ,
IIJII: []

draw_tree_dict(tree)

SEET

Generalized BFS (Breadth-First Search)

def bfs(tree, start_node):
queue = [start_nodel
result = []

while queue:
node = queue.pop(0)
result.append(node)
children = tree.get(node, [])
for child in children:
if child is not None:
queue.append(child)

return result

print(bfs(tree, "A"))

[IAI’ IBI’ ICI’ IDI’ IEI’ IFI’ IGI’ IHI' III, IJI]

Generalized DFS (Depth-First Search)

def dfs(tree, start_node):
stack = [start_nodel
result = []

while stack:
node = stack.pop()
result.append(node)
children = tree.get(node, [])

for child in children:
if child is not None:
stack.append(child)

return result

print(dfs(tree, "A"))

Tree property: are all nodes connected?

Without having a first node and re-using the dfs

def is_tree_connected(tree, start_node):

if not tree:
return True # An empty tree is considered connected.

visited set()
stack =

1]

stack.append(start_node)

while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
stack.extend(tree.get(node, []))

return len(visited) == len(tree)

is_tree_connected(tree, "A")

dfs_check_connected(tree, "A")

Tree property: does the tree have a cycle?

def has_cycle_dfs(root):
def dfs(node, parent, visited):
if node in visited:
if parent is not None and parent != visited[node]:
return True
return False

visited[node] = parent

for child in node.children:
if dfs(child, node, visited):

return True
return False

visited = {}
return dfs(root, None, visited)

What if we add an extra node "K"?

tree["F"] = ["A"]

Tree property: Check if the tree is an n-ary tree

def is_binary_tree(tree, node, n = 2, visited=None):
if visited is None:
visited = set()

1f node in visited:
return True

visited.add(node)
children = tree.get(node, [])

if len(children) > n:

return False

for child in children:
if not is_binary_tree(tree, child, n, visited):
return False

return True

is_binary_tree(tree, "A", 2)

Get all the edges of a tree

def generate_edges(graph):
edges = []
for node, neighbors in graph.items():
for neighbor in neighbors:
edges.append((node, neighbor))
return edges

generate_edges(tree)

[(IAI, IBI),
(IAI, ICI),
(IBI, IDI),
(IBI, IEI),
1 IFI),

IGI),

IHI),

('ct,
(ICI’
(IDI

(IDI, III),
(IEI, IJI)]

def generate_edges_dfs(graph, start_node):
edges []
stack = [start_node]
visited = []

while stack:
node = stack.pop()
visited.append(node)
for neighbor in graph[node]:
if neighbor not in visited:
edges.append((node, neighbor))
stack.append(neighbor)

return edges

generate_edges_dfs(tree, "A")

{(IAI’ IBI),
(IAI’ Icl)’
(IBI’ IDI),
(IBI, IEI),
(ICI’ IFI),
(ICI’ IGI),
(IDI’ IHI),
(IDI, III),
(IEI’ IJI)}

