
UE5 Fundamentals of
Algorithms
Lecture 1: Introduction
Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business
Romain Vuillemot

Outline
Definition and examples of algorithms

Algorithms properties

Complexity analysis

Data structures

Empirical complexity analysis

What is an algorithm?
Definition

History
The earliest algorithms, originating from the name Mūsā al-Khwārizmī, a Persian
mathematician from the 9th century. For more information, visit

.

Back to ancient civilizations, such as the Egyptians and Babylonians, developed algorithms
for basic arithmetic operations, like addition and multiplication. Euclid's algorithm,
developed around 300 BCE, is one of the earliest known algorithms and is used to find
the greatest common divisor (GCD) of two numbers.

An algorithm is a set of unambiguous instructions designed
to solve a problem.

https://mathematical-
tours.github.io/algorithms/

https://mathematical-tours.github.io/algorithms/
https://mathematical-tours.github.io/algorithms/

Question
Are you aware of any algorithm?

Question
Are you aware of any algorithm?

Do you know how they work?

Do you think they work perfectly?

Can they be biased or make non-optimal decisions?

Notes

The representation (or sometimes translation) into a programming language is not
reciprocal: not every program is an algorithm.

For example, reactive programs (handling input/output) or those containing
animations do not terminate because they are always waiting for input. They do not
constitute algorithms in the strict sense.

Algorithms are language-agnostic; they describe the logic and steps needed to
solve a problem, but not the specific coding details.

Example: Euclid's algorithm
One of the earliest algorithm: Euclid's algorithm to compute the greatest common divisor of
two integers a and b:

Example: Euclid's algorithm
One of the earliest algorithm: Euclid's algorithm to compute the greatest common divisor of
two integers a and b:

In [1]: def gcd(a, b):
 while b != 0:
 t = b
 b = a % b
 a = t
 return a

gcd(10, 20) # 10

Out[1]: 10

Example: Euclid's algorithm
One of the earliest algorithm: Euclid's algorithm to compute the greatest common divisor of
two integers a and b:

In [1]: def gcd(a, b):
 while b != 0:
 t = b
 b = a % b
 a = t
 return a

gcd(10, 20) # 10

Out[1]: 10

In [2]: assert gcd(12, 18) == 6 # GCD of 12 and 18 is 6
assert gcd(1071, 462) == 21 # GCD of 1071 and 462 is 21
assert gcd(0, 8) == 8 # GCD of 0 and 8 is 8
assert gcd(25, 0) == 25 # GCD of 25 and 0 is 25
assert gcd(-12, 18) == 6 # GCD of -12 and 18 is 6

How do you check an algorithm is correct?
Mathematical Proof: a formal and rigorous method of demonstrating that an

algorithm is correct.

Code Review: a collaborative process where one or more peers review the code

implementation of an algorithm.

Test Cases: sets of inputs and expected outputs used to validate that an algorithm

produces correct results.

For test cases:, the assert statement is used to check whether a given condition
evaluates to True , then the program continues to execute normally. If the condition is
False , an AssertionError exception is raised, and the program stops executing.

How do you check an algorithm is correct? (cont.)
In [3]: def add(a, b): # function to test

 return a + b

assert add(2, 3) == 5, "Test Case 1 Failed"
assert add(-1, 1) == 0, "Test Case 2 Failed"
assert add(0, 0) == 0, "Test Case 3 Failed"
assert add(10, -5) == 5, "Test Case 4 Failed"

print("All test cases passed!")

All test cases passed!

Exercice: x power n
An algorithm (and tests) that calculates :

Exercice: x power n
An algorithm (and tests) that calculates :

In [4]: def puissance(x, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 temp = puissance(x, n // 2)
 return temp * temp
 elif n < 0:
 temp = puissance(x, -(n + 1) // 2)
 return 1 / (temp * temp * x)
 else:
 temp = puissance(x, (n - 1) // 2)
 return temp * temp * x

Exercice: x power n
An algorithm (and tests) that calculates :

In [4]: def puissance(x, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 temp = puissance(x, n // 2)
 return temp * temp
 elif n < 0:
 temp = puissance(x, -(n + 1) // 2)
 return 1 / (temp * temp * x)
 else:
 temp = puissance(x, (n - 1) // 2)
 return temp * temp * x

In [5]: assert puissance(2, 3) == 8
assert puissance(5, 0) == 1
assert puissance(3, -2) == 1/9
assert puissance(2, 10) == 1024
assert puissance(2, -3) == 1/8
assert puissance(2, 1) == 2

Exercice: The sum of the first n integers
An algorithm (and tests) that calculates :

Exercice: The sum of the first n integers
An algorithm (and tests) that calculates :

In [6]: def sum_n(n):
 return n*(n+1)/2

assert sum_n(1) == 1 # 1
assert sum_n(2) == 3 # 1 + 2
assert sum_n(3) == 6 # 1 + 2 + 3
assert sum_n(4) == 10 # 1 + 2 + 3 + 4
assert sum_n(5) == 15 # 1 + 2 + 3 + 4 + 5
assert sum_n(1000) == 500500 # ..

Exercice: Leap year
Write a function is_leap_year that takes a year as input and returns True if it's a leap
year and False otherwise. The function follows the rules for leap year determination:

A year that is divisible by 4 is a leap year.

However, a year that is divisible by 100 is not a leap year, unless...

The year is also divisible by 400, in which case it is a leap year.

E.g 2000 is a leap year, 2020 is a leap year.

Exercice: Leap year (cont.)

Exercice: Leap year (cont.)
In [7]: def is_leap_year(year):

 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
 return True
 else:
 return False

test_years = [2020, 2100, 2400]

for year in test_years:
 if is_leap_year(year):
 print(f"{year} is a leap year.")
 else:
 print(f"{year} is not a leap year.")

2020 is a leap year.
2100 is not a leap year.
2400 is a leap year.

Exercice: Leap year (cont.)
In [7]: def is_leap_year(year):

 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
 return True
 else:
 return False

test_years = [2020, 2100, 2400]

for year in test_years:
 if is_leap_year(year):
 print(f"{year} is a leap year.")
 else:
 print(f"{year} is not a leap year.")

2020 is a leap year.
2100 is not a leap year.
2400 is a leap year.

Another possible test: compare to the Python from the calendar module.isLeap

https://github.com/python/cpython/blob/607f18c89456cdc9064e27f86a7505e011209757/Lib/calendar.py#L141

Exercice: Leap year (cont.)
In [7]: def is_leap_year(year):

 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
 return True
 else:
 return False

test_years = [2020, 2100, 2400]

for year in test_years:
 if is_leap_year(year):
 print(f"{year} is a leap year.")
 else:
 print(f"{year} is not a leap year.")

2020 is a leap year.
2100 is not a leap year.
2400 is a leap year.

Another possible test: compare to the Python from the calendar module.isLeap

In [8]: import calendar

def is_leap_year(year):
 return calendar.isleap(year)

https://github.com/python/cpython/blob/607f18c89456cdc9064e27f86a7505e011209757/Lib/calendar.py#L141

Exercice: Find a number in a list
Given a list of integer, return a specific number provided as parameter

Exercice: Find a number in a list
Given a list of integer, return a specific number provided as parameter

In [9]: def search_element_in_list(element, list):

 for i in list:
 if i == element:
 return True
 return False

element_list = [1, 2, 3, 4, 5]
element_to_find = 3
result = search_element_in_list(element_to_find, element_list)
assert result == True, f"Expected True, but got {result}"

Exercice: Find a number in a list
Given a list of integer, return a specific number provided as parameter

In [9]: def search_element_in_list(element, list):

 for i in list:
 if i == element:
 return True
 return False

element_list = [1, 2, 3, 4, 5]
element_to_find = 3
result = search_element_in_list(element_to_find, element_list)
assert result == True, f"Expected True, but got {result}"

Another type of test is to compare with a built-in Python function:

In [10]: def search_element_in_list_python(element, lst):
 return element in lst

assert search_element_in_list(element_to_find, element_list) == search_

Algorithms properties

Properties
An algorithm possesses the following properties (among others):

Communicable

Efficient

Complete, terminates, and correct

Deterministic

Communicate algorithms
There are different ways to write algorithms. There is no optimal one, it depends on the
context. Examples of contexts are:

Plain language (pseudo-code)

Formalization such as an equation

A software specification

Implementation in a programming language

Plain language (pseudo-code)
The pseudocode is a way to write algorithms in a human-readable way. It is not a
programming language, but it is close to it. It is a way to communicate algorithms. E.g. for
Euclid's algorithm:

Divide a by b, and you get the remainder r.

Replace a with b.

Replace b with r.

Continue as long as it's possible; otherwise, you get the GCD (Greatest Common

Divisor).

or

function gcd(a, b)
 while b ≠ 0
 t := b;
 b := a mod b;
 a := t;
 return a;

Equation
You can use mathematical equations and notations to describe certain aspects of the
algorithm's behavior or to express mathematical relationships within the algorithm.

μ = (Σx) / N

∑
n
i=1 xi

Fn = Fn

− 1

+ Fn

− 2

PRt+1(Pi)
=

∑Pj

PRt(Pj)

C(Pj)

Graphics
Graphical representations of algorithms are visual ways to illustrate the flow, logic, and
structure of an algorithm. They are often used to aid in understanding, designing, and
communicating algorithms, especially in algorithm design and computer science
education. There are various types of graphical representations, and the choice depends
on the complexity and purpose of the algorithm.

source: https://commons.wikimedia.org/wiki/File:Euclid_flowchart.svg

https://commons.wikimedia.org/wiki/File:Euclid_flowchart.svg

Code (Python)
Code (Python, Java, ..); example in Python:

In Java:

def gcd(a, b):
 while b != 0:
 t = b
 b = a % b
 a = t
 return a

public class GCD {
 public static int gcd(int a, int b) {
 while (b != 0) {
 int t = b;
 b = a % b;
 a = t;
 }
 return a;
 }
}

Discussion on the type of representation
There are different ways to express an algorithm, depending on the context and the level of
formalization required.

Graphical representation is more accessible and provides an overview, allowing for
the detection of errors, patterns, etc. Humans have better perception abilities in the
visual space than in text.

Pseudo-language has the characteristic of being flexible, close to both human and
computer languages, and independent of a programming language. However, it is
often defined ambiguously and requires additional effort for implementation.

Finally, implementation (e.g., Python) has the advantage of being immediately
testable. However, it can be very strict (must be correct) and sometimes challenging
to read if one is not familiar with the language. This also depends on the
programmer.

Efficiency

Efficiency is relative to various criteria (values we want to measure) that need to be
calculated (theoretically) or measured (empirically) in order to understand what is
happening. Note that it is necessary to use large values of to obtain a representative
behavior. Among these criteria:

Execution time

Required memory space

Disk storage space

Etc.

We will see later that the concept of Complexity is based on one of these criteria and
allows independence from the technology used (language, computer, compiler, etc.).

An algorithm is considered efficient if it minimizes the
consumption of resources required to perform it.

n

Example:
In genomics, it is common to compare two sequences (of genes) of lengths and
(e.g., and).

The number of comparisons is .

If the size of the sequences doubles, then the number of comparisons... quadruples!

.

Now, if we want to align 3 sequences, it becomes .

In practice, it becomes challenging to find a solution quickly (especially when comparing
more than 2 sequences).

 The same applies to long sequences.

 Therefore, it is necessary to have an efficient algorithm (in the case of sequence
comparison, consider the (Basic Local Alignment Search Tool)).

N M
TAG CAC TGC TTG

N × M

(2 × N) × (2 × M) = 4 × (N × M)

N 3

→

→
BLAST algorithm

https://en.wikipedia.org/wiki/BLAST

Other properties
Other qualities of an algorithm (beyond being simple and understandable):

 All of this is very difficult to prove (formal proof, etc.)!

Completeness: An algorithm must be complete, meaning that
for a given problem, it provides a solution for each of the
inputs.

Termination: An algorithm must terminate within a finite time.

Correctness: An algorithm must be correct and terminate by
providing a result that is the solution to the problem it is
supposed to solve.

→

Algorithms patterns
An algorithm has a pattern, which is a way to classify algorithms based on their properties.

There are several ways to design algorithms, either based on performance
constraints or based on the structural style.

There is not a single unique algorithm for a given problem.

Examples of patterns (main ones):

By purpose

By implementation (e.g., recursion, functional, etc.)

By design paradigm (Divide and Conquer, etc.)

By complexity

Complexity

What is complexity?

There are different types of complexity:

Best Case: The smallest number of operations the algorithm will have to execute on
a dataset of a fixed size.

Worst Case: This is the largest number of operations the algorithm will have to
execute on a dataset of a fixed size.

Average Case: This is the average of the algorithm's complexities on datasets of a
fixed size.

Note: It is often the worst-case analysis that is chosen (provides an upper performance
limit). The complexity in terms of the number of operations is typically the most studied.

The complexity of an algorithm is the formal estimation of the
amount of resources required to execute an algorithm. These
resources can include time, memory space, storage, etc.

Exercice: find the complexity
def maximum(L):
 m=L[0]
 for i in range(1,len(L)):
 if L[i]>m:
 m=L[i]
 return m

Exercice: find the complexity
def maximum(L):
 m=L[0]
 for i in range(1,len(L)):
 if L[i]>m:
 m=L[i]
 return m

(goes through the whole list in the worst case scenario)

Intuition behind the complexity calculation
Notation Complexity Intuition

Constant First or nth element of a list, ...

Logarithmic Divide in half and repeat, ...

Linear Traverse data, ...

Quasi-Linear Divide in half and combine, ...

Quadratic Traverse data with 2 loops, ...

Exponential Test all combinations, ...

, k >2 Polynomial Traverse data with k loops, ...

Factorial Test all paths (graph), ...

O1

Ologn

On

Onlogn

On2

O2n

Onk

On!

Exercice: find the complexity
In [11]: def nocc(x,L):

 n=0
 for y in L:
 if x==y:
 n=n+1
 return n

Exercice: find the complexity
In [11]: def nocc(x,L):

 n=0
 for y in L:
 if x==y:
 n=n+1
 return n

(goes through the whole list in the worst case scenario)

Exercice: find the complexity
In [12]: def maj(L):

 xmaj=L[0]
 nmaj=nocc(xmaj,L)
 for i in range(1,len(L)):
 if nocc(L[i],L)>nmaj:
 xmaj=L[i]
 nmaj=nocc(L[i],L)
 return xmaj

Exercice: find the complexity
In [12]: def maj(L):

 xmaj=L[0]
 nmaj=nocc(xmaj,L)
 for i in range(1,len(L)):
 if nocc(L[i],L)>nmaj:
 xmaj=L[i]
 nmaj=nocc(L[i],L)
 return xmaj

Exercice: find the complexity
The complexity of an is_even(n) algorithm that takes an integer n as input and returns
True if n is an even number and False otherwise.

Exercice: find the complexity
The complexity of an is_even(n) algorithm that takes an integer n as input and returns
True if n is an even number and False otherwise.

In [13]: def is_even(n):
 return n % 2 == 0

Exercice: find the complexity
The complexity of an is_even(n) algorithm that takes an integer n as input and returns
True if n is an even number and False otherwise.

In [13]: def is_even(n):
 return n % 2 == 0

Exercice: find the complexity
In [14]: def somcubes(n):

 s = 0
 while n>0:
 s = s+(n%10)**3
 n = n//10
 return s

def eq_somcubes(N):
 L = []
 for n in range(0, N+1):
 if n==somcubes(n):
 L.append(n)
 return L

Exercice: find the complexity
In [14]: def somcubes(n):

 s = 0
 while n>0:
 s = s+(n%10)**3
 n = n//10
 return s

def eq_somcubes(N):
 L = []
 for n in range(0, N+1):
 if n==somcubes(n):
 L.append(n)
 return L

 (we seek numbers that are equal to the sum of the cubes of their digits).

Exercice: find the complexity
You have two sorted lists, [1, 3, 8, 10] and `[2, 3, 9]``, and you want to obtain a
new merged list from these two lists (without using sorting functions like sort or sorted).
What is the complexity?

Exercice: find the complexity
You have two sorted lists, [1, 3, 8, 10] and `[2, 3, 9]``, and you want to obtain a
new merged list from these two lists (without using sorting functions like sort or sorted).
What is the complexity?

We iterate through all the data once: .

In [15]: def merge_sorted_lists(list1, list2):
 merged_list = []
 i = j = 0

 while i < len(list1) and j < len(list2):
 if list1[i] < list2[j]:
 merged_list.append(list1[i])
 i += 1
 else:
 merged_list.append(list2[j])
 j += 1

 while i < len(list1):
 merged_list.append(list1[i])
 i += 1

 while j < len(list2):
 merged_list.append(list2[j])
 j += 1

 return merged_list

In [16]: list1 = [1, 3, 8, 10]
list2 = [2, 3, 9]
merge_sorted_lists(list1, list2)

Out[16]: [1, 2, 3, 3, 8, 9, 10]

Example: Selection sort
Implement the selection sort which is described as pseudo-code below:

Start with an unsorted list of elements.

Find the smallest element in the unsorted portion of the list.

Swap this smallest element with the first element in the unsorted portion.

Now, consider the remaining unsorted portion (excluding the element that was just

swapped).

Repeat steps 2 to 4 until the entire list is sorted.

The result is a sorted list in ascending order.

The key idea is to repeatedly select the smallest element from the unsorted part of

the list and move it to the beginning of the sorted part of the list. This process

continues until the entire list is sorted.

Example: Selection sort (cont.)

Example: Selection sort (cont.)
In [17]: def selectionSort(l):

 for i in range(0, len(l)):
 min = i
 for j in range(i+1, len(l)):
 if(l[j] < l[min]):
 min = j
 tmp = l[i]
 l[i] = l[min]
 l[min] = tmp
 return l

if __name__=="__main__":
 liste = [54,26,93,17,77,31,44,55,20]
 selectionSort(liste)
 print(liste) # [17, 20, 26, 31, 44, 54, 55, 77, 93]

[17, 20, 26, 31, 44, 54, 55, 77, 93]

Example: Selection sort (cont.)
In [17]: def selectionSort(l):

 for i in range(0, len(l)):
 min = i
 for j in range(i+1, len(l)):
 if(l[j] < l[min]):
 min = j
 tmp = l[i]
 l[i] = l[min]
 l[min] = tmp
 return l

if __name__=="__main__":
 liste = [54,26,93,17,77,31,44,55,20]
 selectionSort(liste)
 print(liste) # [17, 20, 26, 31, 44, 54, 55, 77, 93]

[17, 20, 26, 31, 44, 54, 55, 77, 93]

Complexity is on the order of .

Complexity Calculation
There isn't just one but several methods to calculate the complexity of an algorithm,
depending on its properties (and the desired precision of the complexity). Here are the
main approaches:

Reduction of the code to a known case and combination of complexities. For
example, two loops () result in an overall complexity of .

Reduction to a family of known functions and calculation of the relative growth
rate (limit).

Empirical calculation by displaying execution times as a function of the problem
size. It's worth noting that this is independent of the power of the machine.

O(logN) O(n2 log(n))

Data structures

Standard data structures
Included in Python ()

int : Integer, typically 4 bytes in size.

long : Long integer, can be 4 or 8 bytes in size.

float : Real number.

str : String, a sequence of characters (with Unicode conversion).

bool : Boolean, representing True or False.

tuple : Tuple, an ordered collection of elements, e.g., (1, 2, "ECL", 3.14) .

list : List, an ordered and mutable collection of elements.

set : Set, an unordered collection of unique elements.

dict : Dictionary, a collection of key-value pairs, e.g., {'small': 1, 'large':

2} .

You can check the data type of a variable or object

documentation

print(int)
print(type(int))
assert isinstance(3, int)

https://docs.python.org/3/tutorial/datastructures.html

Standard data structures (cont.)
range : A range, representing a sequence of values to generate.

complex : Complex number, e.g., 1j is one of the square roots of -1.

file : File, for handling file input/output.

None : Represents the absence of a value (equivalent to void in some contexts).

exception : Exception, for handling errors and exceptional conditions.

function : Function, a reusable block of code.

module : Module, a file containing Python code and definitions.

object : Object, a generic data type representing any Python object.

Advanced data structures
Not included in Python, often achieved using standard structure and object-oriented
programming:

Linked Lists: A data structure where elements are linked together with pointers.

Stacks: A linear data structure that follows the Last-In-First-Out (LIFO) principle.

Queues: A linear data structure that follows the First-In-First-Out (FIFO) principle.

Priority Queue: A data structure that stores elements and returns the one with
highest (or lowest) priority.

Advanced data structures (cont.)

Heaps: Tree-based data structure that is often used to implement priority queues.

Deques (Double-Ended Queues): A linear data structure that allows elements to
be added or removed from both ends with constant-time complexity.

Trees: A hierarchical data structure with a root node and child nodes.

Graphs: A non-linear data structure consisting of nodes and edges.

Hash Tables (Dictionaries): A data structure that allows efficient key-value
mapping and retrieval.

Data structures complexity

List: Sequence of elements with dynamic resizing and allow for constant-time
access to elements by index.

Dictionary: Allow key-based operations such as insertion, retrieval, and deletion.

Set: Enable et operations like union, intersection, and difference,.

Understanding the complexities of these built-in data structures is essential for selecting
the right one for specific programming tasks and optimizing the performance of Python
programs.

Dictionnaries
A dictionary in Python is an unordered collection of key-value pairs.

Keys in a dictionary must be unique and immutable, meaning you can use strings,
numbers, or tuples as keys.

Values can be of any data type.

Dictionaries are useful for a wide range of applications, such as:

Storing and retrieving configuration settings.

Counting the frequency of elements in a dataset.

Representing data in a structured way, such as JSON.

Example: Creating a Dictionary in Python

Implemented as a Python dictionary.

Raises a KeyError: 'missing' exception if accessing an undefined key.

A good practice is to use .get("attr", "") to return a default value if the key

doesn't exist.

We will see that they are widely used for memoization to avoid recomputing certain

calculations (e.g., dynamic programming).

>>> phonebook = {'bob': 7387, 'alice': 3719, 'jack': 7052}
>>> phonebook['alice']
3719

Example: Creating a Dictionary in Python
Here's an example of how to create a dictionary in Python:

In this example, we've created a dictionary named person that contains information
about an individual. We access the values stored in the dictionary using their respective
keys.

Output:

.

Create a dictionary to store information about a person
person = {
 "name": "John Doe",
 "age": 30,
 "city": "New York"
}

Access values using keys
print("Name:", person["name"])
print("Age:", person["age"])
print("City:", person["city"])

Name: John Doe
Age: 30
City: New York

Question: Count words in a list (using a dictionnary)
Write an algorithm that takes two parameters:

stri : A list of words.

n : An integer.

And returns how many words in the list appear exactly n times, and return that count.

Question: Count words in a list (using a dictionnary)

Question: Count words in a list (using a dictionnary)
In [18]: def countWords(stri, n):

 m = dict()
 for w in stri: # m {'hate': 2, 'love': 4, 'peace': 4}
 m[w] = m.get(w, 0) + 1

 res = 0
 for i in m.values():
 if i == n:
 res += 1

 return res

In [19]: s = ["hate", "love", "peace", "love",
 "peace", "hate", "love", "peace", "love", "peace"]

print(countWords(s, 4)) # 2

2

Exercice: detect duplicates from a list (using dicts)
Write an algorithm validates the following:

assert duplicatas([1,2]) == False
assert duplicatas([1,2,1]) == True

Exercice: detect duplicates from a list (using dicts)
Write an algorithm validates the following:

assert duplicatas([1,2]) == False
assert duplicatas([1,2,1]) == True

In [20]: def duplicatas(L):
 d = {}
 for x in L:
 if x in d:
 return True
 d[x] = True
 return False

assert duplicatas([1,2]) == False
assert duplicatas([1,2,1]) == True

Exercice: algorithm optimization (using dicts)
Optimize this algorithm all integers such that with A, B, C, D ranging
from 1 to 1000.

A2 + B2 = C 2 + D2

n = 1000
for a in range(1, n+1):
 for b in range(1, n+1):
 for c in range(1, n+1):
 for d in range(1, n+1):
 if a**2 + b**2 == c**2 + d**2:
 print(a, b, c, d)

Exercice: algorithm optimization (using dicts) (cont.)

A first loop uses a dictionary result_map to store pairs that yield the same

result .

A second loop iterates through values and checks if there are matching

pairs in result_map .

n = 1000
result_map = {}

for c in range(1, n+1):
 for d in range(1, n+1):
 result = c**2 + d**2
 if result in result_map:
 result_map[result].append((c, d))
 else:
 result_map[result] = [(c, d)]

for a in range(1, n+1):
 for b in range(1, n+1):
 result = a**2 + b**2
 if result in result_map:
 matching_pairs = result_map[result]
 for pair in matching_pairs:
 print(a, b, pair)

(c, d)

c2 + d2

a2 + b2

Sets
A set in Python is an unordered collection of unique elements. It is similar to a
mathematical set and has the following characteristics:

1. Uniqueness: Sets do not allow duplicate elements.

2. Unordered: Sets do not have a specific order.

3. Mutable: Sets are mutable, which means you can add or remove elements after
creating a set.

4. No Indexing: Sets do now allow to access elements by their index.

5. Common Set Operations: Sets support various set operations such as union,
intersection, difference, etc.

Sets (cont.)

Common set operations include:

Adding Elements: You can add elements to a set using the add() method.

Removing Elements: Elements can be removed from a set using the remove() or
discard() method.

Set Operations: You can perform operations like union (|), intersection (&),
difference (-), and more between sets.

Checking Membership: You can check if an element is in a set using the in
operator.

Iterating: You can iterate through the elements of a set using a for loop.

Sets are commonly used for tasks where uniqueness and set operations are essential.

Creating a set
my_set = {1, 2, 3, 4, 5}

Creating an empty set
empty_set = set()

Set Operations in Python
Method Description

add() Adds an element to the set.

clear() Removes all elements from the set.

copy() Returns a copy of the set.

difference() Returns the difference of two sets.

intersection() Returns the intersection of two sets.

pop() Removes and returns a random element from the set.

union() Returns the union of two sets.

isdisjoint() Returns True if the sets have no elements in common.

issubset() Returns True if the set is a subset of another set.

issuperset() Returns True if the set contains another set.

There are many other set operations available in Python, and frozenset can be used to
create an immutable set.

For more details, refer to the .Python documentation

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

Exercice: remove duplicatas from a list (using sets)
Write an algorithm validates the following:

assert duplicatas_sets([1,2]) == False
assert duplicatas_sets([1,2,1]) == True

Exercice: remove duplicatas from a list (using sets)
Write an algorithm validates the following:

assert duplicatas_sets([1,2]) == False
assert duplicatas_sets([1,2,1]) == True

In [21]: def duplicatas_sets(L):
 s = set()
 for x in L:
 if x in s:
 return True
 s.add(x)
 return False

Exercice: remove duplicatas from a list (using sets)
Write an algorithm validates the following:

assert duplicatas_sets([1,2]) == False
assert duplicatas_sets([1,2,1]) == True

In [21]: def duplicatas_sets(L):
 s = set()
 for x in L:
 if x in s:
 return True
 s.add(x)
 return False

In [22]: def duplicatas_sets2(nums):
 return True if len(set(nums)) < len(nums) else False

assert duplicatas_sets2([1,2]) == False
assert duplicatas_sets2([1,2,1]) == True

Exercice: find pairs duplicates (using sets)
In a list, return the values that occure exactly 2 times.

Exercice: find pairs duplicates (using sets)
In a list, return the values that occure exactly 2 times.

In [23]: def find_duplicate_pairs_optimized(lst):
 seen = set()
 duplicate_pairs = []

 for num in lst:
 if num in seen:
 duplicate_pairs.append((num, num))
 seen.add(num)

 return duplicate_pairs

In [24]: input_list = [2, 3, 5, 2, 7, 3, 8, 5]
find_duplicate_pairs_optimized(input_list)

Out[24]: [(2, 2), (3, 3), (5, 5)]

Exercice: find words typed with a single row on a keyboard (using
sets)
You can determine words that can be typed with a single row of letters on a keyboard using
sets in Python.

In [25]: words = ['Velo', 'Ecole', 'Informatique', 'Etroit']

In [26]: not {"q"}.difference("qsdfghjklm") # check if a letter is in the set

Out[26]: True

Exercice: find words typed with a single row on a keyboard (using
sets)
You can determine words that can be typed with a single row of letters on a keyboard using
sets in Python.

In [25]: words = ['Velo', 'Ecole', 'Informatique', 'Etroit']

In [26]: not {"q"}.difference("qsdfghjklm") # check if a letter is in the set

Out[26]: True

In [27]: def check_keyboard(words):
 result = []
 for w in words:
 ws = set([c.lower() for c in w])
 if not ws.difference("azertyuiop") \
 or not ws.difference("qsdfghjklm") \
 or not ws.difference("wxcvbn"):
 result.append(w)
 return result

In [28]: check_keyboard(words) == ['Etroit'] # for a French keyboard

Out[28]: True

In [29]: check_keyboard(["data"]) == []

Out[29]: True

Empirical complexity
analysis

Empirical complexity analysis
A practical way to estimate complexity

1. Gather data on the execution time of algorithms or operations for various input
sizes. This data is typically collected through various random measurements.

2. Plot the time measures for the various measurements, for each algorithm to
assess performance scales.

3. Analyzing trends to draw conclusions about the algorithm's time complexity by
observing curves in the plotted data.

Using the matplotlib library (to be imported as a module):

In [30]: import matplotlib.pyplot as plt

Example: constant time
In [31]: steps = []

def constant(n):
 return 1

for i in range(1, 100):
 steps.append(constant(i))
plt.plot(steps)

Out[31]: [<matplotlib.lines.Line2D at 0x10bd7c190>]

Example: linear time
In [32]: steps = []

def linear(n):
 return n

for i in range(1, 100):
 steps.append(linear(i))

plt.plot(steps)
plt.xlabel('Inputs')
plt.ylabel('Steps')

Out[32]: Text(0, 0.5, 'Steps')

In [33]: import time
import random
import numpy as np
#%matplotlib inline

nvalues = [100, 500, 1000, 1500, 2000, 2500, 3000]
timesAlgo = []

for i in nvalues:

 random.seed()
 p = 12**2 # magnitude of values
 liste = []

 for x in range(i): liste.append(random.randint(0, p))

 a=time.perf_counter()
 e1 = []
 for n in liste:
 e1.append(n)
 b = time.perf_counter()
 timesAlgo.append(b-a)

In [34]: plt.plot(nvalues, timesAlgo, "r-", label="Algo 1")
plt.title("Complexity/Perf comparison")
plt.show()

In [35]: import time
import random

def measure_sorting_time(sorting_function, lst):
 a = time.perf_counter()
 sorting_function(lst)
 b = time.perf_counter()
 return b - a

nvalues = [100, 500, 1000, 1500, 2000, 2500, 3000]
timesAlgo = []

for i in nvalues:
 random.seed()
 p = 12**2 # Magnitude of values
 lst = [random.randint(0, p) for x in range(i)]

 time_python_sort = measure_sorting_time(sorted, lst.copy())
 time_selection_sort = measure_sorting_time(selectionSort, lst.copy(
 # add more sorting algorithms

 timesAlgo.append((time_python_sort, time_selection_sort))

python_sort_times = [t[0] for t in timesAlgo]
selection_sort_times = [t[1] for t in timesAlgo]

In [36]: # Plot the results
plt.plot(nvalues, python_sort_times, marker='o', linestyle='-', color='
plt.plot(nvalues, selection_sort_times, marker='o', linestyle='-', colo
plt.xlabel('Input Size (n)')
plt.ylabel('Time (seconds)')
plt.title('Comparison of Sorting Algorithms')
plt.legend()
plt.grid()
plt.show()

