UES Fundamentals of
Algorithms

Lecture 4-5-6: Programming strategies

Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business

Romain Vuillemot

[AAA em
¥ lyon
(business
CENTRALELYON BEA® glele]

Outline

Definitions of programming strategies

Divide and conquer

Greedy algorithms

Dynamic programming

Programming strategies

A programming strategy are algorithms aimed at solving a
specific problem in a precise manner.

Examples of Strategies:

e Divide and Conquer: Divide a problem into simpler sub-problems, solve the sub-
problems, and then combine the solutions to solve the original problem.

e Dynamic Programming: Solve a problem by breaking it down into sub-problems,
calculating and memorizing the results of sub-problems to avoid unnecessary
recomputation.

» Greedy Algorithm: Make a series of choices that seem locally optimal at each step
to find a solution, with the hope that the result will be globally optimal as well.

Divide and conquer

The Divide and Conquer strategy involves breaking a complex
problem into smaller, similar subproblems, solving them
recursively, and then combining their solutions to address the

original problem efficiently.

1. Divide: Divide the original problem into subproblems of the same type.
2. Conquer: Solve each of these subproblems recursively.

3. Combine: Combine the answers appropriately.

It is very close to the recursive approach

Examples of divide and conquer algorithms:

e Binary search

e Quick sort and merge sort

 Map Reduce

o Others: Fast multiplication (Karatsuba)

Binary search

Given a sorted list, find or insert a specific value while keeping the order.

4= 3

Y
[
3

A

O |--- h-

1

See the notebook.

http://127.0.0.1:8000/03-lists-search-sort.ipynb

Quick sort

Recursive sorting algorithm which works in two steps:

1. select a pivot element
2. partitioning the array into smaller sub-arrays, then sorting those sub-arrays.

3[718[5[2]1]9]5]4]
—
3]7]8]512[1]9]5E

|

—
3[518]512[1[9ER7]

/

™
319[8[5[2[1 5]/

4

M
3[1[8]512[EY9[517]
[I

—
EEZ%jEEEH
[3[1[2]4[5]8]9]5]7]

[1]2[314]5]5]718]9]

Merge sort

Divide an array recursively into two halves (based on a pivot value), sorting each half, and
then merging the sorted halves back together. This process continues until the entire array
is sorted.

Complexity: O(nlog(n)).

38(27(43|3(9(82|10

38127143 |3 918210
38|27 43| 3 9182 10
S LN LN
38 27 43 3 9 82 10
27|38 3143 9182 10
3127|3843 9110 (82

Map reduce

Divide a large dataset into smaller chunks and processes them independantly. Two main
steps:

o the Map stage, where data is filtered and transformed into key-value pairs
» the Reduce stage, where data is aggregated and the final result is produced.

couple
@v/ (k,v) [Reduce
@’ couple
3 Red
@)Q (k,v)
[N
O AR

Données

Données

Résultat

Données

Données en entrée

Données

Map reduce (without map reduce..)

Calculate the sum of squares values from a list of numerical values.

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Map reduce (without map reduce..)

Calculate the sum of squares values from a list of numerical values.

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

result = {}

for num in data:
square = num * num
result[square] = num

final result = list(result.items())

print(final result)
print (sum([x[0] for x in final result]))

[(ll l)’ (41 2)’ (91 3)’ (16, 4)’ (25’ 5)’ (36, 6)’

4, 8), (81, 9), (100, 10)]
385

(49,

7).,

(6

Map reduce (Python)

1. Divide the problem in sub-problems
2. Apply the mapping function
3. Reduce the results

Map reduce (Python)

1. Divide the problem in sub-problems

2. Apply the mapping function
3. Reduce the results

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

def mapper (numbers):
result = []
for num in numbers: # calculate the squares

result.append((num, num * num))
return result

def reducer(pairs):
result = {}
for key, value in pairs: # sums the squares
if key in result:
result[key] += value
else:
result[key] = value
return result.items()

385

Map reduce (Python)

1. Divide the problem in sub-problems
2. Apply the mapping function
3. Reduce the results

chunk size = 2

chunks = [data[i:i+chunk size] for i in range(0, len(data), chunk size)

mapped data = [mapper (chunk) for chunk in chunks]

grouped data = {}# map
for chunk in mapped data:
for key, value in chunk:
if key in grouped data:
grouped data[key].append(value)
else:
grouped datal[key] = [value]

reduced data = [reducer(list(grouped data.items()))] # reduce
result = sum([x[1][0] for x in final result])

print(result)

NameError Traceback (most recent

call last)
Cell In[5], line 2
1 chunk _size = 2

-——-> 2 chunks = [data[i:i+chunk size] for i in range(0, len(dat
a), chunk size)]
4 mapped data = [mapper(chunk) for chunk in chunks]

6 grouped data = {}# map

NameErrors:s name 'data'’ is not defined

Discussion on Divide and Conquer

Similarities with recursion by dividing a problem in a sub-problem

But with a combination step (which may hold most of the code difficulty)

Can be implemented in a hon-recursive way

nlog(n) complexity when split the problem and solves each split

Greedy algorithms

Algorithms that make a locally optimal choice.

Examples:

e Change-making problem
o Knapsack problem

» Maze solving

e Graph coloring

Example: Change-making problem
Qopt (S, M) = min Z?:l x;.

S all the available coins

M amount

Greedy solution:

1. Sort the coins in descending order
2. Initialize a variable to count coins used
3. Substrack the number of coins used (if limited)

4. Continue this process until amount becomes zero.

Example: Change-making problem (Python)

Greedy solution to return the minimal number of coins necessary.

coins = [1, 2, 5]
amount = 11

Example: Change-making problem (Python)

Greedy solution to return the minimal number of coins necessary.

coins = [1, 2, 5]
amount = 11

def coin change greedy(coins, amount):
coins.sort(reverse=True) # important! sort in descending order

coin count = 0
remaining amount = amount

for coin in coins:
while remaining amount >= coin:
remaining amount -= coin
coin count += 1

if remaining amount == 0:
return coin count

else:
return -1

print(coin_change greedy(coins, amount)) # 3 (11 =5 + 5 + 1)

3

Example: Change-making problem (Python)

Greedy solution that returns the list of coins used.

Tip: use a list with the same structure as coins.

Example: Change-making problem (Python)

Greedy solution that returns the list of coins used.

Tip: use a list with the same structure as coins.

def coin change greedy(coins, amount):
coins.sort(reverse=True)

coin _count = 0
remaining amount = amount
used coins = [0] * len(coins)

for i, coin in enumerate(coins):
while remaining amount >= coin:
remaining amount -= coin
coin_count += 1
used coins[i] += 1

if remaining amount ==

return coin count, used coins
else:

return -1, []

coins = [25, 10, 5, 1]
amount = 63
min coins, coins used = coin change greedy(coins, amount)

print (f"Minimum coins needed: {min coins}")
print ("Coins used:", coins used)

Minimum coins needed: 6
Coins used: [2, 1, 0, 3]

Example: Change-making problem (Python)

Greedy solution that returns the list of coins used from a limited availability of coins.

Tip: use a list of coins availability of same structure as coins.

coins = [25, 10, 5, 1]
amount = 63
coin availability = [1, 2, 3, 4]

Example: Change-making problem (Python)

Greedy solution that returns the list of coins used from a limited availability of coins.

Tip: use a list of coins availability of same structure as coins.

coins = [25, 10, 5, 1]
amount = 63
coin availability = [1, 2, 3, 4]

def coin change greedy(coins, amount, coin availability):
coins.sort(reverse=True)

coin count = 0
remaining amount = amount
used coins = [0] * len(coins)

for i, coin in enumerate(coins):
while remaining amount >= coin and used coins[i] < coin_ availak
remaining amount -= coin
coin count += 1
used coins[i] += 1

if remaining amount ==

return coin count, used_coins
else:

return -1, []

min coins, coins used = coin change greedy(coins, amount, coin availabi
print (f"Minimum coins needed: {min coins}")
print ("Coins used:", coins used)

Minimum coins needed: 9
Coins used: [1, 2, 3, 3]

Discussion on Greedy algorithms

» Often considered as an heuristic
e Easy to understand, implement and communicate
e They often lead to non-optimal solution

Dynamic programming

Dynamic programming involves breaking down a problem into
subproblems, solving these subproblems, and combining their
solutions to obtain the solution to the original problem. The
steps are as follows:

1. Characterize the structure of an optimal solution.
2. Define the value of an optimal solution recursively.
3. Reconstruct the optimal solution from the computations.

Notes :

» Applies to problems with optimal substructure.
e Also applies to problems where solutions are often interrelated (distinguishing it
from divide and conquer).

o Utilizes a memoization approach, involving storing an intermediate solution (e.g., ina
table).

Examples of dynamic programming algorithms

Fibonacci Sequence

Rod Cutting

Sequence Alignment, Longest Subsequence Finding
Shortest Path Finding

Fibonnacci (reminder)

To calculate the n-th number in the Fibonacci sequence, which is determined as follows:

latex Copy code fib(n) = fib(n — 1) + fib(n — 2), n € N Where the sequence starts
with 1, 1, and then continues as 2, 3, 5, 8, 13, 21, and so on, to find the 9th number (n = 9).

Let's calculate the 9th Fibonacci number step by step:
fib(1) = 1

fib(2) = 1

fib(3) = fib(2) + fib(1) =1+1=2

Fibonnacci (naive)

def fib(n):
if n < 2:
return n
else:
return fib(n - 1) + fib(n - 2)

Call tree (forn = 6):

/\

VALY
F@) F(2

ANV ANEAN
F3) F@) F2) F() F2) F()

/N
F2) F(1)

Requires to calculate the same F-value multiple times.

Fibonnacci (dynamic programming)

Optimized using a lookup table, which is a data structure to memoize values that have
already been computed.

Fibonnacci (dynamic programming)

Optimized using a lookup table, which is a data structure to memoize values that have
already been computed.

def fib(n, lookup):
if n == 0 or n ==
lookup[n] = n

if lookup[n] is None:
lookup[n] = fib(n - 1, lookup) + fib(n - 2, lookup)

return lookup[n]

def main():
n ==e
lookup = [None] * (n + 1)
result = fib(n, lookup)
print(f"{n}-th Fibonacci number is {result}")

6-th Fibonacci number is 8

Rod cutting

Given a list of cuts and prices, identify the optimal cuts. Given the example below, what is
the best cutting strategy for a rod of size 4 7?

OO (O ODO
(a) (b) (c) (d)
OO OO0 DO OO0OO

(e) ® (@ ()

size (i) 12 3 45 6 7 8
price(pi) 1 5 8 9 10 17 17 20

Rod cutting

Given a list of cuts and prices, identify the optimal cuts. Given the example below, what is
the best cutting strategy for a rod of size 4 7?

OO (O ODO
(a) (b) (c) (d)
OO OO0 DO OO0OO

(e) ® (@ ()

size (i) 12 3 45 6 7 8
price(pi) 1 5 8 9 10 17 17 20

Solution: For a rod of size 4 optimal solution is 2 cuts of size 2so0 5 + 5 = 10.

Rod cutting: check a solution

Given the previous table of size and price, check the cost of a given solution by defining a
function check rod cutting(prices, n).

Rod cutting: check a solution

Given the previous table of size and price, check the cost of a given solution by defining a
function check rod cutting(prices, n).

def check rod cutting(prices, n):
table = [0] * (n + 1)

for i in range(l, n + 1):
max price = float('-inf')
for j in range(l, i + 1):
max price = max(max price, prices[]j] + table[i - J])
table[i] = max price

return table[n]

prices = [0, 1, 5, 8, 9, 10, 17, 17, 20]
n =2

max total price = check rod cutting(prices, n)
print (£"The maximum total price for a rod of length {n} is {max total ¢

The maximum total price for a rod of length 2 is 5

Rod cutting (brute force)

Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function
2. identify a base case
3. identify a recursion mechanism

Rod cutting (brute force)

Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function
2. identify a base case
3. identify a recursion mechanism

def cut brute force(n, t):

if n ==
return 0

max valeur = float('-inf')

for i in range(l, n + 1):
valeur courante = t[i] + coupe brute force(n - i, t)
max valeur = max(max_ valeur, valeur courante)

return max valeur

Rod cutting (brute force)

Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function
2. identify a base case
3. identify a recursion mechanism

def cut brute force(n, t):

if n ==
return 0

max valeur = float('-inf')

for i in range(l, n + 1):
valeur courante = t[i] + coupe brute force(n - i, t)
max valeur = max(max_ valeur, valeur courante)

return max valeur

lengths = [0, 1, 2, 3, 4, 5, 6, 7, 8]

values = [0, 1, 5, 8, 9, 10, 17, 17, 20]

rod length = 2

max value = coupe brute force(rod length, values)

print (f"The maximum value for a rod of length {rod length} is {max valc

The maximum value for a rod of length 2 is 5.

Rod cutting (dynamic programming)

e Cutting a rod of length 2 optimally.

« Cutting a rod of length (n —) optimally.

General case: V,, = max1<;<n(p; + Vi)

size() 1 2 3 45 6 7 8

price(pi) 1 5 8 9 10 17 17 20

Vs = max;<;<3(p; + V3;)

Let's calculate v_3 step by step for each possible value of i :

1.1f i = 1, we cut the rod into two pieces: one of length 1 and one of length 2.

e Vi=p =2
e Va1 =W,

2.1f i = 2, we cutthe rod into two pieces: one of length 2 and one of length 1.

e Vo=py=5
e V3 o=V

3.1f i = 3, we cut the rod into one piece of length 3.

[.‘/E)) p— pg p— 9
e V3_3 = Vj (Assuming that Vy = 0 as a base case.)

Now, we can calculate the values for v_2 and v_1 recursively using the same formula:
For v._2:

Vo = max(p; + Vi,ps + Vo) = max(2 + V4,5 + 0) = max(2 + 2,5+ 0) =
max(4,5) =5

For v 1:

Vi = max(p; + Vp) = max(2 +0) =2
So, v 2isband v_1 is2.
Now, we can calculate v_3 using the valuesof v.2 and v_1:

V3 = max(p; + Vo, p0 + Vi,p3 + Vo) = max(1+ 5,5+ 2,9 + 0) = max(6, 7, 8)
=8

Rod cutting (dynamic programming)

Rod cutting (dynamic programming)

INT MIN = 0
def cutRod(price, n):

init cache tables
val = [0 for x in range(n+l)]
val[0] = 0

for i in range(l, n+l):
max val = INT MIN
for j in range(i):
max val = max(max val, price[j] + val[i-j-1])
val[i] = max val

return val[n]

if name ==" main ":
arr = [1, 5, 8, 9, 10, 17, 17, 20]
size = len(arr)
print("Max size cut

+ str(cutRod(arr, size)), len(arr))

Max size cut 22 8

Change-making problem (dynamic
programming)
Qopt(S, M) =min Y. ;.

S: all the available coins

M: amount
Qopt (7:, m)

1+ Qopt(i,m—v;) si(m—v;) >0 we use a coin of type 7 of value
= min Qopt (i —1,m) sii>1

we do not use coin of type i, we use: — 1

7]

1c 1 2 3 4 5 6 7
1c, 3¢ 1 2 1 2 3 i 3
1"&3"’ 1 ond 1 | 1 | 2 5 2 2

Lessons on dynamic programming

 |tis necessary to study each problem on a case-by-case basis.
» Storing a large number of partial results, which requires significant memory usage.

» Suitable for only certain problems (min, max, counting the number of solutions).

