
UE5 Fundamentals of
Algorithms
Lecture 4-5-6: Programming strategies
Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business
Romain Vuillemot

Outline
Definitions of programming strategies

Divide and conquer

Greedy algorithms

Dynamic programming

Programming strategies

Examples of Strategies:

Divide and Conquer: Divide a problem into simpler sub-problems, solve the sub-
problems, and then combine the solutions to solve the original problem.

Dynamic Programming: Solve a problem by breaking it down into sub-problems,
calculating and memorizing the results of sub-problems to avoid unnecessary
recomputation.

Greedy Algorithm: Make a series of choices that seem locally optimal at each step
to find a solution, with the hope that the result will be globally optimal as well.

A programming strategy are algorithms aimed at solving a
specific problem in a precise manner.

Divide and conquer

1. Divide: Divide the original problem into subproblems of the same type.

2. Conquer: Solve each of these subproblems recursively.

3. Combine: Combine the answers appropriately.

It is very close to the recursive approach

The Divide and Conquer strategy involves breaking a complex
problem into smaller, similar subproblems, solving them
recursively, and then combining their solutions to address the
original problem efficiently.

Examples of divide and conquer algorithms:
Binary search

Quick sort and merge sort

Map Reduce

Others: Fast multiplication (Karatsuba)

Binary search
Given a sorted list, find or insert a specific value while keeping the order.

See .the notebook

http://127.0.0.1:8000/03-lists-search-sort.ipynb

Quick sort
Recursive sorting algorithm which works in two steps:

1. select a pivot element

2. partitioning the array into smaller sub-arrays, then sorting those sub-arrays.

Merge sort
Divide an array recursively into two halves (based on a pivot value), sorting each half, and
then merging the sorted halves back together. This process continues until the entire array
is sorted.
Complexity: .O(nlog(n))

Map reduce
Divide a large dataset into smaller chunks and processes them independantly. Two main
steps:

the Map stage, where data is filtered and transformed into key-value pairs

the Reduce stage, where data is aggregated and the final result is produced.

Map reduce (without map reduce..)
Calculate the sum of squares values from a list of numerical values.

In [49]: data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Map reduce (without map reduce..)
Calculate the sum of squares values from a list of numerical values.

In [49]: data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In [60]: result = {}
for num in data:
 square = num * num
 result[square] = num

final_result = list(result.items())

print(final_result)
print(sum([x[0] for x in final_result]))

[(1, 1), (4, 2), (9, 3), (16, 4), (25, 5), (36, 6), (49, 7), (6
4, 8), (81, 9), (100, 10)]
385

Map reduce (Python)
1. Divide the problem in sub-problems

2. Apply the mapping function

3. Reduce the results

Map reduce (Python)
1. Divide the problem in sub-problems

2. Apply the mapping function

3. Reduce the results

In [69]: data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

def mapper(numbers):
 result = []
 for num in numbers: # calculate the squares
 result.append((num, num * num))
 return result

def reducer(pairs):
 result = {}
 for key, value in pairs: # sums the squares
 if key in result:
 result[key] += value
 else:
 result[key] = value
 return result.items()

385

Map reduce (Python)
1. Divide the problem in sub-problems

2. Apply the mapping function

3. Reduce the results

In [5]: chunk_size = 2
chunks = [data[i:i+chunk_size] for i in range(0, len(data), chunk_size)

mapped_data = [mapper(chunk) for chunk in chunks]

grouped_data = {}# map
for chunk in mapped_data:
 for key, value in chunk:
 if key in grouped_data:
 grouped_data[key].append(value)
 else:
 grouped_data[key] = [value]

reduced_data = [reducer(list(grouped_data.items()))] # reduce
result = sum([x[1][0] for x in final_result])

print(result)

--

NameError Traceback (most recent

call last)
Cell In[5], line 2
 1 chunk_size = 2
----> 2 chunks = [data[i:i+chunk_size] for i in range(0, len(dat
a), chunk_size)]
 4 mapped_data = [mapper(chunk) for chunk in chunks]
 6 grouped_data = {}# map

NameError: name 'data' is not defined

Discussion on Divide and Conquer
Similarities with recursion by dividing a problem in a sub-problem

But with a combination step (which may hold most of the code difficulty)

Can be implemented in a non-recursive way

 complexity when split the problem and solves each splitnlog(n)

Greedy algorithms

Examples:
Change-making problem

Knapsack problem

Maze solving

Graph coloring

Algorithms that make a locally optimal choice.

Example: Change-making problem
.

: all the available coins

: amount

Greedy solution:

1. Sort the coins in descending order

2. Initialize a variable to count coins used

3. Substrack the number of coins used (if limited)

4. Continue this process until amount becomes zero.

Qopt(S, M) = min ∑
n
i=1 xi

S

M

Example: Change-making problem (Python)
Greedy solution to return the minimal number of coins necessary.

In [82]: coins = [1, 2, 5]
amount = 11

Example: Change-making problem (Python)
Greedy solution to return the minimal number of coins necessary.

In [82]: coins = [1, 2, 5]
amount = 11

In [83]: def coin_change_greedy(coins, amount):
 coins.sort(reverse=True) # important! sort in descending order

 coin_count = 0
 remaining_amount = amount

 for coin in coins:
 while remaining_amount >= coin:
 remaining_amount -= coin
 coin_count += 1

 if remaining_amount == 0:
 return coin_count
 else:
 return -1

In [81]: print(coin_change_greedy(coins, amount)) # 3 (11 = 5 + 5 + 1)

3

Example: Change-making problem (Python)
Greedy solution that returns the list of coins used.

Tip: use a list with the same structure as coins.

Example: Change-making problem (Python)
Greedy solution that returns the list of coins used.

Tip: use a list with the same structure as coins.

In [87]: def coin_change_greedy(coins, amount):
 coins.sort(reverse=True)

 coin_count = 0
 remaining_amount = amount
 used_coins = [0] * len(coins)

 for i, coin in enumerate(coins):
 while remaining_amount >= coin:
 remaining_amount -= coin
 coin_count += 1
 used_coins[i] += 1

 if remaining_amount == 0:
 return coin_count, used_coins
 else:
 return -1, []

coins = [25, 10, 5, 1]
amount = 63
min_coins, coins_used = coin_change_greedy(coins, amount)

print(f"Minimum coins needed: {min_coins}")
print("Coins used:", coins_used)

Minimum coins needed: 6
Coins used: [2, 1, 0, 3]

Example: Change-making problem (Python)
Greedy solution that returns the list of coins used from a limited availability of coins.

Tip: use a list of coins availability of same structure as coins.

In [92]: coins = [25, 10, 5, 1]
amount = 63
coin_availability = [1, 2, 3, 4]

Example: Change-making problem (Python)
Greedy solution that returns the list of coins used from a limited availability of coins.

Tip: use a list of coins availability of same structure as coins.

In [92]: coins = [25, 10, 5, 1]
amount = 63
coin_availability = [1, 2, 3, 4]

In [91]: def coin_change_greedy(coins, amount, coin_availability):
 coins.sort(reverse=True)

 coin_count = 0
 remaining_amount = amount
 used_coins = [0] * len(coins)

 for i, coin in enumerate(coins):
 while remaining_amount >= coin and used_coins[i] < coin_availab
 remaining_amount -= coin
 coin_count += 1
 used_coins[i] += 1

 if remaining_amount == 0:
 return coin_count, used_coins
 else:
 return -1, []

min_coins, coins_used = coin_change_greedy(coins, amount, coin_availabi

print(f"Minimum coins needed: {min_coins}")
print("Coins used:", coins_used)

Minimum coins needed: 9
Coins used: [1, 2, 3, 3]

Discussion on Greedy algorithms
Often considered as an heuristic

Easy to understand, implement and communicate

They often lead to non-optimal solution

Dynamic programming

1. Characterize the structure of an optimal solution.

2. Define the value of an optimal solution recursively.

3. Reconstruct the optimal solution from the computations.

Notes :

Applies to problems with optimal substructure.

Also applies to problems where solutions are often interrelated (distinguishing it

from divide and conquer).

Utilizes a memoization approach, involving storing an intermediate solution (e.g., in a

table).

Dynamic programming involves breaking down a problem into
subproblems, solving these subproblems, and combining their
solutions to obtain the solution to the original problem. The
steps are as follows:

Examples of dynamic programming algorithms
Fibonacci Sequence

Rod Cutting

Sequence Alignment, Longest Subsequence Finding

Shortest Path Finding

Fibonnacci (reminder)
To calculate the -th number in the Fibonacci sequence, which is determined as follows:

latex Copy code , Where the sequence starts
with 1, 1, and then continues as 2, 3, 5, 8, 13, 21, and so on, to find the 9th number ().

Let's calculate the 9th Fibonacci number step by step:

n

fib(n) = fib(n − 1) + fib(n − 2) n ∈ N

n = 9

fib(1) = 1

fib(2) = 1

fib(3) = fib(2) + fib(1) = 1 + 1 = 2

Fibonnacci (naive)

Call tree (for):

Requires to calculate the same F-value multiple times.

In [4]: def fib(n):
 if n < 2:
 return n
 else:
 return fib(n - 1) + fib(n - 2)

n = 6

Fibonnacci (dynamic programming)
Optimized using a lookup table, which is a data structure to memoize values that have
already been computed.

Fibonnacci (dynamic programming)
Optimized using a lookup table, which is a data structure to memoize values that have
already been computed.

In [97]: def fib(n, lookup):
 if n == 0 or n == 1:
 lookup[n] = n

 if lookup[n] is None:
 lookup[n] = fib(n - 1, lookup) + fib(n - 2, lookup)

 return lookup[n]

def main():
 n = 6

 lookup = [None] * (n + 1)
 result = fib(n, lookup)
 print(f"{n}-th Fibonacci number is {result}")

if __name__=="__main__":
 main()

6-th Fibonacci number is 8

Rod cutting
Given a list of cuts and prices, identify the optimal cuts. Given the example below, what is
the best cutting strategy for a rod of size 4 ?

size (i) 1 2 3 4 5 6 7 8

price (pi) 1 5 8 9 10 17 17 20

Rod cutting
Given a list of cuts and prices, identify the optimal cuts. Given the example below, what is
the best cutting strategy for a rod of size 4 ?

size (i) 1 2 3 4 5 6 7 8

price (pi) 1 5 8 9 10 17 17 20

Solution: For a rod of size 4 optimal solution is 2 cuts of size 2 so .5 + 5 = 10

Rod cutting: check a solution
Given the previous table of size and price, check the cost of a given solution by defining a
function check_rod_cutting(prices, n) .

Rod cutting: check a solution
Given the previous table of size and price, check the cost of a given solution by defining a
function check_rod_cutting(prices, n) .

In [27]: def check_rod_cutting(prices, n):
 table = [0] * (n + 1)

 for i in range(1, n + 1):
 max_price = float('-inf')
 for j in range(1, i + 1):
 max_price = max(max_price, prices[j] + table[i - j])
 table[i] = max_price

 return table[n]

In [30]: prices = [0, 1, 5, 8, 9, 10, 17, 17, 20]
n = 2

max_total_price = check_rod_cutting(prices, n)
print(f"The maximum total price for a rod of length {n} is {max_total_p

The maximum total price for a rod of length 2 is 5

Rod cutting (brute force)
Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function

2. identify a base case

3. identify a recursion mechanism

Rod cutting (brute force)
Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function

2. identify a base case

3. identify a recursion mechanism

In [33]: def cut_brute_force(n, t):
 if n == 0:
 return 0
 max_valeur = float('-inf')
 for i in range(1, n + 1):
 valeur_courante = t[i] + coupe_brute_force(n - i, t)
 max_valeur = max(max_valeur, valeur_courante)
 return max_valeur

Rod cutting (brute force)
Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function

2. identify a base case

3. identify a recursion mechanism

In [33]: def cut_brute_force(n, t):
 if n == 0:
 return 0
 max_valeur = float('-inf')
 for i in range(1, n + 1):
 valeur_courante = t[i] + coupe_brute_force(n - i, t)
 max_valeur = max(max_valeur, valeur_courante)
 return max_valeur

In [34]: lengths = [0, 1, 2, 3, 4, 5, 6, 7, 8]
values = [0, 1, 5, 8, 9, 10, 17, 17, 20]
rod_length = 2
max_value = coupe_brute_force(rod_length, values)
print(f"The maximum value for a rod of length {rod_length} is {max_valu

The maximum value for a rod of length 2 is 5.

Rod cutting (dynamic programming)
General case:

Cutting a rod of length optimally.

Cutting a rod of length optimally.

General case:

size (i) 1 2 3 4 5 6 7 8

price (pi) 1 5 8 9 10 17 17 20

i

(n − i)

Vn = max1≤i≤n(pi + Vn−i)

Let's calculate V_3 step by step for each possible value of i :

1. If i = 1 , we cut the rod into two pieces: one of length 1 and one of length 2.

2. If i = 2 , we cut the rod into two pieces: one of length 2 and one of length 1.

3. If i = 3 , we cut the rod into one piece of length 3.

 (Assuming that as a base case.)

V3 = max1≤i≤3(pi + V3−i)

V1 = p1 = 2

V3−1 = V2

V2 = p2 = 5

V3−2 = V1

V3 = p3 = 9

V3−3 = V0 V0 = 0

Now, we can calculate the values for V_2 and V_1 recursively using the same formula:

For V_2 :

For V_1 :

So, V_2 is 5 and V_1 is 2.

Now, we can calculate V_3 using the values of V_2 and V_1 :

V2 = max(p1 + V1, p2 + V0) = max(2 + V1, 5 + 0) = max(2 + 2, 5 + 0) =

max(4, 5) = 5

V1 = max(p1 + V0) = max(2 + 0) = 2

V3 = max(p1 + V2, p2 + V1, p3 + V0) = max(1 + 5, 5 + 2, 9 + 0) = max(6, 7, 8)

= 8

Rod cutting (dynamic programming)

Rod cutting (dynamic programming)
In [36]: INT_MIN = 0

def cutRod(price, n):

 # init cache tables
 val = [0 for x in range(n+1)]
 val[0] = 0

 for i in range(1, n+1):
 max_val = INT_MIN
 for j in range(i):
 max_val = max(max_val, price[j] + val[i-j-1])
 val[i] = max_val

 return val[n]

if __name__=="__main__":
 arr = [1, 5, 8, 9, 10, 17, 17, 20]
 size = len(arr)
 print("Max size cut " + str(cutRod(arr, size)), len(arr))

Max size cut 22 8

Change-making problem (dynamic
programming)

.

: all the available coins

: amount

Qopt(S, M) = min ∑
n

i=1 xi

S

M

Qopt(i, m)

= min

⎧⎪
⎨
⎪⎩

1 + Qopt(i, m − vi) si (m − vi) ≥ 0 we use a coin of type i of value

Qopt(i − 1, m) si i ≥ 1

we do not use coin of type i, we use i − 1

Lessons on dynamic programming
It is necessary to study each problem on a case-by-case basis.

Storing a large number of partial results, which requires significant memory usage.

Suitable for only certain problems (min, max, counting the number of solutions).

