UES Fundamentals of
Algorithms

Lecture 1: Introduction

Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business

Romain Vuillemot

[AAA em
¥ lyon
(business
CENTRALELYON BEA® glele]

Typesetting math: 100%

Outline

o Definition and examples of algorithms

Algorithms properties

Complexity analysis

Data structures

Empirical complexity analysis

Typesetting math: 100%

What is an algorithm?

Definition

An algorithm is a set of unambiguous instructions designed
to solve a problem.

History

The earliest algorithms, originating from the name Musa al-Khwarizmi, a Persian
mathematician from the 9th century. For more information, visit https://mathematical-
tours.github.io/algorithms/.

Back to ancient civilizations, such as the Egyptians and Babylonians, developed algorithms
for basic arithmetic operations, like addition and multiplication. Euclid's algorithm,
developed around 300 BCE, is one of the earliest known algorithms and is used to find
the greatest common divisor (GCD) of two numbers.

Typesetting math: 100%

https://mathematical-tours.github.io/algorithms/
https://mathematical-tours.github.io/algorithms/

Question

e Are you aware of any algorithm?

Typesetting math: 100%

Question

e Are you aware of any algorithm?

e Do you know how they work?
e Do you think they work perfectly?
e Can they be biased or make non-optimal decisions?

Typesetting math: 100%

Notes

» The representation (or sometimes translation) into a programming language is not
reciprocal: not every program is an algorithm.

e For example, reactive programs (handling input/output) or those containing
animations do not terminate because they are always waiting for input. They do not
constitute algorithms in the strict sense.

» Algorithms are language-agnostic; they describe the logic and steps needed to
solve a problem, but not the specific coding details.

Typesetting math: 100%

Example: Euclid’s algorithm

One of the earliest algorithm: Euclid's algorithm to compute the greatest common divisor of
two integers a and b:

Typesetting math: 100%

Example: Euclid’s algorithm

One of the earliest algorithm: Euclid's algorithm to compute the greatest common divisor of
two integers a and b:

def gcd(a, b):
while b != 0:

t = b

b=a¢%b

a =+t
return a

gcd(10, 20) # 10

Typesetting math: 100%

Example: Euclid’s algorithm

One of the earliest algorithm: Euclid's algorithm to compute the greatest common divisor of
two integers a and b:

def gcd(a, b):
while b != 0:
t =
b =
a=
return a

3 b

t+ o o -

gcd(10, 20) # 10

assert gcd(12, 18)

== 6 # GCD of 12 and 18 is 6
assert gcd (1071, 462) =

) == 21 # GCD of 1071 and 462 is 21
assert gcd(0, 8) == 8 # GCD of 0 and 8 is 8
assert gcd(25, 0) == 25 # GCD of 25 and 0 is 25
assert gcd(-12, 18) == # GCD of -12 and 18 is 6

Typesetting math: 100%

How do you check an algorithm is correct?

» Mathematical Proof: a formal and rigorous method of demonstrating that an
algorithm is correct.

o Code Review: a collaborative process where one or more peers review the code
implementation of an algorithm.

o Test Cases: sets of inputs and expected outputs used to validate that an algorithm

produces correct results.

For test cases:, the assert statement is used to check whether a given condition
evaluates to True, then the program continues to execute normally. If the condition is
False,an AssertionError exception is raised, and the program stops executing.

Typesetting math: 100%

How do you check an algorithm is correct? (cont.)

def add(a, b): # function to test
return a + b

assert add(2, 3) == 5, "Test Case 1 Failed" # Expected: 5
assert add(-1, 1) == 0, "Test Case 2 Failed" # Expected: 0
assert add(0, 0) == 0, "Test Case 3 Failed" # Expected: 0
assert add(10, -5) == 5, "Test Case 4 Failed" # Expected: 5

print("All test cases passed!")

All test cases passed!

Typesetting math: 100%

Exercice: x power n

An algorithm (and tests) that calculates :

Typesetting math: 100%

Exercice: x power n

An algorithm (and tests) that calculates :

def puissance(x, n):
if n ==
return 1
elif n $ 2 == 0:
temp = puissance(x, n // 2)
return temp * temp
elif n < 0:
temp = puissance(x, -(n + 1) // 2)
return 1 / (temp * temp * X)
else:
temp = puissance(x, (n - 1) // 2)
return temp * temp * X

Typesetting math: 100%

Exercice: x power n

An algorithm (and tests) that calculates :

def puissance(x, n):

if n ==
return
elif n % 2

temp =

return

elif n < 0:

temp =

return
else:

temp =

return

1
puissance(x, n // 2)
temp * temp

puissance(x, -(n + 1) // 2)
1 / (temp * temp * X)

puissance(x, (n - 1) // 2)
temp * temp * X

assert puissance(2, 3) == 8
assert puissance(5, 0) == 1
assert puissance(3, -2) == 1/9
assert puissance(2, 10) == 1024
assert puissance(2, -3) == 1/8
assert puissance(2, 1) == 2

Typesetting math: 100%

Exercice: The sum of the first n integers

An algorithm (and tests) that calculates :

Typesetting math: 100%

Exercice: The sum of the first n integers

An algorithm (and tests) that calculates :

def sum n(n):
return n*(n+1)/2

assert sum n(1l)
assert sum n(2)
assert sum n(3)
assert sum n(4)
assert sum n(5) ==
assert sum n(1000)

I

I
NN NN
+ + +
W W W

Il
il
Il R, 2 oW R
+ +
NN

N oo o

O % W OH W ¥
O NN KM RKRK
© + + + +

Typesetting math: 100%

Exercice: Leap year

Write a function is leap year that takes ayear as input and returns True if it's a leap
year and False otherwise. The function follows the rules for leap year determination:

e Avyear thatis divisible by 4 is a leap year.
e However, a year that is divisible by 100 is not a leap year, unless...
e The year is also divisible by 400, in which case it is a leap year.

E.g 2000 is a leap year, 2020 is a leap year.

Typesetting math: 100%

Exercice: Leap year (cont.)

Typesetting math: 100%

Exercice: Leap year (cont.)

def is leap year(year):
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
return True

else:
return False

test years = [2020, 2100, 2400]

for year in test years:
if is leap year(year):
print(f"{year} is a leap year.")
else:
print(f"{year} is not a leap year.")

2000 is a leap year.
2020 is a leap year.
2100 is not a leap year.
2400 is a leap year.

Typesetting math: 100%

Exercice: Leap year (cont.)

def is leap year(year):
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
return True
else:

return False
test years = [2020, 2100, 2400]

for year in test years:
if is leap year(year):
print(f"{year} is a leap year.")
else:
print(f"{year} is not a leap year.")

2000 is a leap year.
2020 is a leap year.
2100 is not a leap year.
2400 is a leap year.

Another possible test: compare to the Python isLeap from the calendar module.

Typesetting math: 100%

https://github.com/python/cpython/blob/607f18c89456cdc9064e27f86a7505e011209757/Lib/calendar.py#L141

Exercice: Leap year (cont.)

def is leap year(year):
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
return True
else:

return False
test years = [2020, 2100, 2400]

for year in test years:
if is leap year(year):
print(f"{year} is a leap year.")
else:
print(f"{year} is not a leap year.")

2000 is a leap year.
2020 is a leap year.

2100 is not a leap year.
2400 is a leap year.

Another possible test: compare to the Python isLeap from the calendar module.

import calendar

def is leap year(year):

return calendar.isleap(year)
Typesetting math: 100% |

https://github.com/python/cpython/blob/607f18c89456cdc9064e27f86a7505e011209757/Lib/calendar.py#L141

Exercice: Find a number in a list

Given a list of integer, return a specific number provided as parameter

Typesetting math: 100%

Exercice: Find a number in a list

Given a list of integer, return a specific number provided as parameter

def search element in list(element, list):

for i in list:
if i == element:
return True
return False

element list = [1, 2, 3, 4, 5]

element to find = 3

result = search element in list(element to find, element list)
assert result == True, f"Expected True, but got {result}”

Typesetting math: 100%

Exercice: Find a number in a list

Given a list of integer, return a specific number provided as parameter

def search element in list(element, list):

for i in list:
if i == element:
return True
return False

element list = [1, 2, 3, 4, 5]
element to find = 3

result = search element in list(element to find, element list)
assert result == True, f"Expected True, but got {result}”

Another type of test is to compare with a built-in Python function:

def search element in list python(element, 1lst):
return element in 1lst

assert search element in list(element to find, element list) == search_

Typesetting math: 100%

Algorithms properties

Typesetting math: 100%

Properties

An algorithm possesses the following properties (among others):

e Communicable

 Efficient

o Complete, terminates, and correct
e Deterministic

Typesetting math: 100%

Communicate algorithms

There are different ways to write algorithms. There is no optimal one, it depends on the
context. Examples of contexts are:

Plain language (pseudo-code)

Formalization such as an equation

A software specification

Implementation in a programming language

Typesetting math: 100%

Plain language (pseudo-code)

The pseudocode is a way to write algorithms in a human-readable way. It is not a
programming language, but it is close to it. It is a way to communicate algorithms. E.g. for
Euclid's algorithm:

Divide a by b, and you get the remainder r.

Replace a with b.

Replace b withr.

Continue as long as it's possible; otherwise, you get the GCD (Greatest Common
Divisor).

or

function gcd(a, b)
while b # 0
t := b;
b := a mod b;
a = t;
return a;

Typesetting math: 100%

Equation

You can use mathematical equations and notations to describe certain aspects of the
algorithm's behavior or to express mathematical relationships within the algorithm.

2?21 L
« 'n = Fn
—1

+ F'n

— 2

=(Xx) /N
P Rt+1 (P;)

PRt(P

2.p, ¢

Typesetting math: 100%

Graphics

Graphical representations of algorithms are visual ways to illustrate the flow, logic, and
structure of an algorithm. They are often used to aid in understanding, designing, and
communicating algorithms, especially in algorithm design and computer science
education. There are various types of graphical representations, and the choice depends
on the complexity and purpose of the algorithm.

ENTRY

Euclid's algorithm for the
greatest common divisor (gcd)
of two numbers

[2]
3]
(4]
(5]
(6]
NS

source: https://commons.wikimedia.org/wiki/File:Euclid_flowchart.svg

Typesetting math: 100% |

https://commons.wikimedia.org/wiki/File:Euclid_flowchart.svg

Code (Python)

Code (Python, Java, ..); example in Python:

def gcd(a, b):
while b != 0:

t =Db
b=a¢%$hb
a =t

return a
In Java:

public class GCD {
public static int gcd(int a, int b) {
while (b != 0) {

int t = b;
b =a % b;
a = t;

}

return a;

Typesetting math: 100%

Discussion on the type of representation

There are different ways to express an algorithm, depending on the context and the level of
formalization required.

» Graphical representation is more accessible and provides an overview, allowing for
the detection of errors, patterns, etc. Humans have better perception abilities in the
visual space than in text.

» Pseudo-language has the characteristic of being flexible, close to both human and
computer languages, and independent of a programming language. However, it is
often defined ambiguously and requires additional effort for implementation.

 Finally, implementation (e.g., Python) has the advantage of being immediately
testable. However, it can be very strict (must be correct) and sometimes challenging
to read if one is not familiar with the language. This also depends on the
programmer.

Typesetting math: 100%

Efficiency

An algorithm is considered efficient if it minimizes the
consumption of resources required to perform it.

Efficiency is relative to various criteria (values we want to measure) that need to be
calculated (theoretically) or measured (empirically) in order to understand what is
happening. Note that it is necessary to use large values of n to obtain a representative
behavior. Among these criteria:

Execution time

Required memory space

Disk storage space

e Etc.

We will see later that the concept of Complexity is based on one of these criteria and
allows independence from the technology used (language, computer, compiler, etc.).

Typesetting math: 100% |

Example:

In genomics, it is common to compare two sequences (of genes) of lengths /N and M
(e.g., TAG CACand TGC TTG).

The number of comparisonsis N x M.

If the size of the sequences doubles, then the number of comparisons... quadruples!

(2xN)x(2xM)=4x(NxM).

Now, if we want to align 3 sequences, it becomes N3,

In practice, it becomes challenging to find a solution quickly (especially when comparing
more than 2 sequences).

— The same applies to long sequences.

— Therefore, it is necessary to have an efficient algorithm (in the case of sequence
comparison, consider the BLAST algorithm (Basic Local Alignment Search Tool)).

Typesetting math: 100%

https://en.wikipedia.org/wiki/BLAST

Other properties

Other qualities of an algorithm (beyond being simple and understandable):

Completeness: An algorithm must be complete, meaning that
for a given problem, it provides a solution for each of the
inputs.

Termination: An algorithm must terminate within a finite time.

Correctness: An algorithm must be correct and terminate by
providing a result that is the solution to the problem it is
supposed to solve.

— All of this is very difficult to prove (formal proof, etc.)!
Typesetting math: 100%

Algorithms patterns

An algorithm has a pattern, which is a way to classify algorithms based on their properties.

e There are several ways to design algorithms, either based on performance
constraints or based on the structural style.

e There is not a single unique algorithm for a given problem.

Examples of patterns (main ones):

* By purpose

e By implementation (e.g., recursion, functional, etc.)
e By design paradigm (Divide and Conquer, etc.)

e By complexity

Typesetting math: 100%

Complexity

Typesetting math: 100%

What is complexity?

The complexity of an algorithm is the formal estimation of the
amount of resources required to execute an algorithm. These
resources can include time, memory space, storage, etc.

There are different types of complexity:
o Best Case: The smallest number of operations the algorithm will have to execute on
a dataset of a fixed size.

» Worst Case: This is the largest number of operations the algorithm will have to
execute on a dataset of a fixed size.

» Average Case: This is the average of the algorithm's complexities on datasets of a
fixed size.

Note: It is often the worst-case analysis that is chosen (provides an upper performance
limit). The complexity in terms of the number of operations is typically the most studied.

Typesetting math: 100%

Big-O Complexity Chart
[Horrible] [Bad][Fair Good] [Excellent]

Operations

Elements

Typesetting math: 100%

Exercice: find the complexity

def maximum(L):
m=L[0]
for i in range(l,len(L)):
if L[i]>m:
m=L[1]
return m

Typesetting math: 100%

Exercice: find the complexity

def maximum(L):
m=L[0]
for i in range(l,len(L)):
if L[i]>m:
m=L[1]
return m

(goes through the whole list in the worst case scenario)

Typesetting math: 100%

Intuition behind the complexity calculation

Notation Complexity Intuition

01 Constant First or nth element of a list, ...

Ologn Logarithmic Divide in half and repeat, ...

On Linear Traverse data, ...

Onlogn Quasi-Linear Divide in half and combine, ...

On? Quadratic Traverse data with 2 loops, ...
O2" Exponential ~ Test all combinations, ...
On* k>2 Polynomial Traverse data with k loops, ...
On! Factorial Test all paths (graph), ...

Typesetting math: 100%

Exercice: find the complexity

def nocc(x,L):

n=0
for y in L:
if x==y:
n=n+1
return n

Typesetting math: 100%

Exercice: find the complexity

def nocc(x,L):

n=0
for y in L:
if x==y:
n=n+1
return n

(goes through the whole list in the worst case scenario)

Typesetting math: 100%

Exercice: find the complexity

def maj(L):

xmaj=L[0]

nmaj=nocc(xmaj,L)

for i in range(l,len(L)):

if nocc(L[i],L)>nmaj:

xmaj=L[1i]
nmaj=nocc(L[1],L)

return xmaj

Typesetting math: 100%

Exercice: find the complexity

def maj(L):

xmaj=L[0]

nmaj=nocc(xmaj,L)

for i in range(l,len(L)):

if nocc(L[i],L)>nmaj:

xmaj=L[1i]
nmaj=nocc(L[1],L)

return xmaj

Typesetting math: 100%

Exercice: find the complexity

The complexity of an is_ even(n) algorithm that takes an integer n as input and returns
True if nis an even number and "False ™ otherwise.

Typesetting math: 100%

Exercice: find the complexity

The complexity of an is_ even(n) algorithm that takes an integer n as input and returns
True if nis an even number and "False ™ otherwise.

def is even(n):
return n % 2 == 0

Typesetting math: 100%

Exercice: find the complexity

The complexity of an is_ even(n) algorithm that takes an integer n as input and returns
True if nis an even number and "False ™ otherwise.

def is even(n):
return n % 2 == 0

Typesetting math: 100%

Exercice: find the complexity

def somcubes(n):
s =0
while n>0:
s = s+(n%10)**3
n =n//10
return s

def eq somcubes(N):
L =[]
for n in range(0, N+1):
if n==somcubes(n):
L.append(n)
return L

Typesetting math: 100%

Exercice: find the complexity

def somcubes(n):
s =0
while n>0:
s = s+(n%10)**3
n =n//10
return s

def eq somcubes(N):
L =[]
for n in range(0, N+1):
if n==somcubes(n):
L.append(n)
return L

(we seek numbers that are equal to the sum of the cubes of their digits).

Typesetting math: 100%

Exercice: find the complexity

You have two sorted lists, [1, 3, 8, 10] and '[2, 3,9] ', and you want to obtain a
new merged list from these two lists (without using sorting functions like sort or sorted).

What is the complexity?

Typesetting math: 100%

Exercice: find the complexity

You have two sorted lists, [1, 3, 8, 10] and '[2, 3,9] ', and you want to obtain a
new merged list from these two lists (without using sorting functions like sort or sorted).

What is the complexity?

We iterate through all the data once: .

Typesetting math: 100%

Typesetting math: 100% |

def merge sorted lists(listl, list2):
merged list = []
i=7j 0

while i < len(listl) and j < len(list2):
if listl[i] < list2[j]:
merged list.append(listl[i])

i+=1

else:
merged list.append(list2[]])
j 4= 1

while i < len(listl):
merged list.append(listl[i])
i+=1

while j < len(list2):
merged list.append(list2[]])
j +=1

return merged list

Example usage:

listl = [1, 3, 8, 10]

list2 = [2, 3, 9]

result = merge sorted lists(listl, list2)
print(result)

Example: Selection sort

Implement the selection sort which is described as pseudo-code below:

 Start with an unsorted list of elements.

e Find the smallest element in the unsorted portion of the list.

e Swap this smallest element with the first element in the unsorted portion.

» Now, consider the remaining unsorted portion (excluding the element that was just
swapped).

o Repeat steps 2 to 4 until the entire list is sorted.

e Theresultis a sorted list in ascending order.

e The key idea is to repeatedly select the smallest element from the unsorted part of
the list and move it to the beginning of the sorted part of the list. This process
continues until the entire list is sorted.

Typesetting math: 100%

Example: Selection sort (cont.)

Typesetting math: 100%

Example: Selection sort (cont.)

def selectionSort(l):
for i in range(0, len(l)):
min = i
for j in range(i+l, len(l)):
if(1l[j] < 1l[min]):

min = j
tmp = 1[1i]
1[i] = 1l[min]
l[min] = tmp
return 1
if name ==" main ":

liste = [54,26,93,17,77,31,44,55,20]
selectionSort(liste)
print(liste) # [17, 20, 26, 31, 44, 54, 55, 77, 93]

[r», 20, 26, 31, 44, 54, 55, 77, 93]

Typesetting math: 100%

Example: Selection sort (cont.)

def selectionSort(l):
for i in range(0, len(l)):
min = i
for j in range(i+l, len(l)):
if(1l[j] < 1l[min]):

min = j
tmp = 1[1i]
1[i] = 1l[min]
l[min] = tmp
return 1
if name ==" main ":

liste = [54,26,93,17,77,31,44,55,20]
selectionSort(liste)
print(liste) # [17, 20, 26, 31, 44, 54, 55, 77, 93]

[r», 20, 26, 31, 44, 54, 55, 77, 93]

Complexity is on the order of .

Typesetting math: 100%

Complexity Calculation

There isn't just one but several methods to calculate the complexity of an algorithm,
depending on its properties (and the desired precision of the complexity). Here are the
main approaches:

e Reduction of the code to a known case and combination of complexities. For
example, two loops (O(log IV)) result in an overall complexity of O(n? log(n)).

e Reduction to a family of known functions and calculation of the relative growth
rate (limit).

« Empirical calculation by displaying execution times as a function of the problem
size. It's worth noting that this is independent of the power of the machine.

Typesetting math: 100%

Data structures

Typesetting math: 100%

Standard data structures

Included in Python (documentation)

e int:Integer, typically 4 bytes in size.

e long:Longinteger, can be 4 or 8 bytes in size.

e float : Real number.

e str: String, a sequence of characters (with Unicode conversion).

e bool : Boolean, representing True or False.

e tuple: Tuple, an ordered collection of elements, e.g., (1, 2, "ECL", 3.14).

e list: List, an ordered and mutable collection of elements.

e set : Set, an unordered collection of unique elements.

e dict : Dictionary, a collection of key-value pairs, e.g., {'small': 1, 'large':
2} .

You can check the data type of a variable or object
print(int)

print (type(int))
assert isinstance(3, int)

Typesetting math: 100%

https://docs.python.org/3/tutorial/datastructures.html

Typesetting math: 100%

Standard data structures (cont.)

range : A range, representing a sequence of values to generate (in Python 2,
xrange()).

complex : Complex number, e.g., 1j is one of the square roots of -1.

file : File, for handling file input/output.

None : Represents the absence of a value (equivalent to void in some contexts).
exception : Exception, for handling errors and exceptional conditions.
function : Function, a reusable block of code.

module : Module, a file containing Python code and definitions.

object : Object, a generic data type representing any Python object.

Typesetting math: 100%

Advanced data structures

Not included in Python, often achieved using standard structure and object-oriented
programming:

Linked Lists: A data structure where elements are linked together with pointers,
allowing for efficient insertions and deletions but not direct access to elements by
index.

Stacks: A linear data structure that follows the Last-In-First-Out (LIFO) principle,
commonly used for managing function calls, undo operations, and parsing
expressions.

Queues: A linear data structure that follows the First-In-First-Out (FIFO) principle,
used for tasks such as managing tasks in a print queue or breadth-first search in
graphs.

Priority Queue: A data structure that stores elements with associated priorities and
allows for efficient retrieval of the element with the highest (or lowest) priority.

Typesetting math: 100%

Advanced data structures (cont.)

Heaps: A specialized tree-based data structure that is often used to implement
priority queues. It ensures that the highest (or lowest) priority element can be
efficiently accessed.

Deques (Double-Ended Queues): A linear data structure that allows elements to
be added or removed from both ends with constant-time complexity, useful for
certain algorithms and data management.

Trees: A hierarchical data structure with a root node and child nodes, commonly
used for various purposes such as binary search trees, AVL trees, and decision
trees.

Graphs: A non-linear data structure consisting of nodes and edges, used for
modeling relationships between objects or entities. Python provides libraries like
NetworkX for graph manipulation.

Hash Tables (Dictionaries): A data structure that allows efficient key-value
mapping and retrieval. Python's built-in dict type is an example.

Data structures complexity

e List: Lists in Python offer dynamic resizing and allow for constant-time access to
elements by index. However, they may have linear time complexity for operations
like insertion or deletion in the middle of the list due to shifting elements.

 Dictionary: Python dictionaries, implemented as hash tables, provide constant-time
average-case complexity for key-based operations such as insertion, retrieval, and
deletion. However, the worst-case scenario can lead to linear time complexity.

o Set: Sets in Python have efficient average-case time complexity for set operations
like union, intersection, and difference, which is often close to constant time.
However, in rare cases, these operations may exhibit linear time complexity.

Understanding the complexities of these built-in data structures is essential for selecting
the right one for specific programming tasks and optimizing the performance of Python
programs.

Typesetting math: 100%

Dictionnaries

A dictionary in Python is an unordered collection of key-value pairs. It is a versatile data
structure that allows you to store and retrieve values based on unique keys. Unlike lists or
arrays, which use integer indices, dictionaries use keys to access their elements.

e Keys in a dictionary must be unigue and immutable, meaning you can use strings,

numbers, or tuples as keys, but not lists or other dictionaries.
e Values can be of any data type, including strings, numbers, lists, other dictionaries,

or even functions.

Dictionaries are useful for a wide range of applications, such as:

e Storing and retrieving configuration settings.
e Counting the frequency of elements in a dataset.
e Representing data in a structured way, such as JSON.

Typesetting math: 100%

Example: Creating a Dictionary in Python

>>> phonebook = {'bob': 7387, 'alice': 3719, 'jack': 7052}
>>> phonebook['alice']
3719

o Implemented as a Python dictionary.
 Raisesa KeyError: 'missing' exception if accessing an undefined key.
e Agood practiceistouse .get("attr", "") toreturn a default value if the key

doesn't exist.
o We will see that they are widely used for memoization to avoid recomputing certain

calculations (e.g., dynamic programming).

Typesetting math: 100%

Example: Creating a Dictionary in Python

Here's an example of how to create a dictionary in Python:

Create a dictionary to store information about a person

person = {
"name": "John Doe",
"age": 30,

"city": "New York"

}

Access values using keys
print("Name:", person|["name"])
print("Age:", person["age"])
print("City:", person["city"])

In this example, we've created a dictionary named person that contains information
about an individual. We access the values stored in the dictionary using their respective
keys.

Output:

Name: John Doe
Age: 30
City: New York

Typesetting math: 100%

Question: Count words in a list (using a dictionnary)

Write an algorithm that takes two parameters:

e stri:Alist of words.
 n:Aninteger.

And returns how many words in the list appear exactly n times, and return that count.

Typesetting math: 100%

Question: Count words in a list (using a dictionnary)

Typesetting math: 100%

Typesetting math: 100%

Question: Count words in a list (using a dictionnary)

def countWords(stri, n):

m = dict()
for w in stri: # m {'hate': 2,
m[{w] = m.get(w, 0) + 1
res = 0
for i in m.values():
if i == n:
res += 1

return res

if name ==" main ":
Driver code
s = ["hate", "love",

llpeacell, "hate",

print (countWords (s, 4)) # 2

"peace", "love",
n lovell ,

llpeacell ,

"love':

4, 'peace’': 4}

Illovell ,

llpeacell

]

Exercice: detect duplicates from a list (using dicts)

Write an algorithm validates the following:

assert duplicatas([l,2]) == False
assert duplicatas([l,2,1]) == True

Typesetting math: 100%

Exercice: detect duplicates from a list (using dicts)

Write an algorithm validates the following:

assert duplicatas([l,2]) == False
assert duplicatas([l,2,1]) == True

def duplicatas(L):
d = {}
for x in L:
if x in d:
return True
d[x] = True
return False

assert duplicatas([l,2]) == False
assert duplicatas([l,2,1]) == True

Typesetting math: 100%

Exercice: algorithm optimization (using dicts)

Optimize this algorithm all integers such that A2 + B? = C? 4+ D? with A, B, C, D ranging
from 11to 1000.

n = 1000
for a in range(l, n+l):
for b in range(l, n+l):
for ¢ in range(l, n+l):
for d in range(l, n+l):
if a**2 + b**2 == c**2 + d**2:
print(a, b, c, d)

Typesetting math: 100%

Exercice: algorithm optimization (using dicts) (cont.)

n = 1000
result map = {}

for ¢ in range(l, n+l):
for d in range(l, n+l):
result = c**2 + d**2
if result in result map:

result map[result].append((c, d))
else:

result map[result] = [(c, d)]

for a in range(l, n+l):
for b in range(l, n+l):
result = a**2 + b**2
if result in result map:
matching pairs = result map[result]
for pair in matching pairs:
print(a, b, pair)

o Afirstloop uses a dictionary result map to store pairs (c, d) that yield the same
result ¢ + d?.

e A second loop iterates through a® + b values and checks if there are matching
pairsin result map.

Typesetting math: 100%

Sets

A set in Python is an unordered collection of unique elements. It is similar to a
mathematical set and has several important characteristics:

1. Uniqueness: Sets do not allow duplicate elements. If you try to add a duplicate
element to a set, it will be ignored.

2. Unordered: Unlike lists or tuples, sets do not have a specific order. The elements
are not stored in any particular sequence, and you cannot access them by index.

3. Mutable: Sets are mutable, which means you can add or remove elements after
creating a set.

4. No Indexing: Since sets are unordered, you cannot access elements by their index.
Instead, you typically perform operations on sets as a whole.

5. Common Set Operations: Sets support various set operations such as union,
intersection, difference, and more, making them useful for mathematical and data
manipulation tasks.

Typesetting math: 100%

Sets (cont.)

Creating a set
my set = {1, 2, 3, 4, 5}

Creating an empty set
empty set = set()

Common set operations include:

Adding Elements: You can add elements to a set using the add () method.

« Removing Elements: Elements can be removed from a set using the remove () or
discard() method.

» Set Operations: You can perform operations like union (|), intersection (&),
difference (-), and more between sets.

e Checking Membership: You can check if an element is in a set using the in
operator.

« Iterating: You can iterate through the elements of a set usinga for loop.

Typesetting math: 100% |Sets are commonly used for tasks where uniqueness and set operations are essential.

Set Operations in Python

Method

Description

add ()

Adds an element to the set.

clear()

Removes all elements from the set.

copy ()

Returns a copy of the set.

difference()

Returns the difference of two sets.

intersection()

Returns the intersection of two sets.

pop ()

Removes and returns a random element from the set.

union()

Returns the union of two sets.

isdisjoint()

Returns True if the sets have no elements in common.

issubset()

Returns True if the set is a subset of another set.

issuperset()

Returns True if the set contains another set.

There are many other set operations available in Python, and frozenset can be used to

create an immutable set.

For more details, refer to the Python documentation.

Typesetting math: 100%

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

Exercice: remove duplicatas from a list (using sets)

Write an algorithm validates the following:

assert duplicatas sets([1,2]) =
assert duplicatas sets([1,2,1]) == True

Typesetting math: 100%

Exercice: remove duplicatas from a list (using sets)

Write an algorithm validates the following:

assert duplicatas sets([1,2]) == False
assert duplicatas sets([1,2,1]) == True

def duplicatas sets(L):
s = set()
for x in L:
if x in s:
return True
s.add(x)
return False

Typesetting math: 100%

Exercice: remove duplicatas from a list (using sets)

Write an algorithm validates the following:

assert duplicatas sets([1,2]) == False
assert duplicatas sets([1,2,1]) == True

def duplicatas sets(L):
s = set()
for x in L:
if x in s:
return True
s.add(x)
return False

def duplicatas sets2(nums):
return True if len(set(nums)) < len(nums) else False

assert duplicatas sets2([1,2]) == False
assert duplicatas sets2([1,2,1]) == True

Typesetting math: 100%

Exercice: find pairs duplicates (using sets)

In a list, return the values that occure exactly 2 times.

Typesetting math: 100%

Exercice: find pairs duplicates (using sets)

In a list, return the values that occure exactly 2 times.

def find duplicate pairs optimized(lst):
seen = set()
duplicate pairs = []

for num in lst:
if num in seen:
duplicate pairs.append((num, num))
seen.add (num)

return duplicate pairs

Example usage:

input list = [2, 3, 5, 2, 7, 3, 8, 5]

result = find duplicate pairs optimized(input list)
print(result)

[(2, 2), (3, 3), (5, 35)]

Typesetting math: 100%

Exercice: find words typed with a single row on a keyboard (using
sets)

You can determine words that can be typed with a single row of letters on a keyboard using
sets in Python.

words = ['Velo', 'Ecole', 'Informatique', 'Etroit']
check keyboard(words) == ['Etroit'] # for a French keyboard

Typesetting math: 100%

Exercice: find words typed with a single row on a keyboard (using
sets)

You can determine words that can be typed with a single row of letters on a keyboard using
sets in Python.

words = ['Velo', 'Ecole', 'Informatique', 'Etroit']
check keyboard(words) == ['Etroit'] # for a French keyboard

def check keyboard(words):

result = []
for w in words:
ws = set([c.lower() for c in w])

if not ws.difference("azertyuiop") \
or not ws.difference("gsdfghjklm") \
or not ws.difference("wxcvbn"):
result.append(w)
return result

typed with single row = solution(words)
print (typed with single row)

['Etroit']

Typesetting math: 100% |

Array Sorting Algorithms

Algorithm Time Complexity Space Complexity
Best Average Worst Worst
Quicksort lﬂ(n 1og(n))| le(n 1og(n))l
Mergesort [2(n log(n))| [6Cn log(n))| [0Cn log(n))|
Timsort [8(n 1og(n))| [0Cn 1og(n))| D)
Heapsort [a(n log(n))| [6Cn log(n)d| [0Cn log(n))] [ocn)|
Bubble Sort [ocD)|
Insertion Sort acn) 0(nA2) 0(nA2) [o¢D)|
Selection Sort 8(nA2) [o¢D)|
Tree Sort [aCn 1og(n))] [6Cn log(n))|)
Shell Sort [(n log(n))||8(n(log(n)dA2)| [0(n(log(n))A2)| [o¢D)|
Bucket Sort -
Radix Sort [acnk) |
Counting Sort [ACAEK)) 0Ck)
Cubesort aCn) |6(n 1og(n))| |0(n log(n))| 0(n)

Typesetting math: 100%

Typesetting math: 100%

Data Structure

Array
Stack
Queue

Singly-Linked List
Doubly-Linked List

Skip List
Hash Table

Common Data Structure Operations

Time Complexity
Average Worst
Access Search Insertion Deletion Access Search Insertion Deletion
[ecw)] an) o] [0 o ocn)
ot o) foct) o low)
acn acm ecd] [ecw)] ocn) ocn) o] [on)]
6Cn) ow| fecw)] ow| o)
acm ecd] [ecw)] ocn) ocn) o] [on)]
[6Clog(n))] [BCLog(n))] [6CTogCn))] [8CTogCn))] [0Cm)
N/A [ecn) (o) [ec) N/A D)
Binary Search Tree [8CLog(n))] [6CLog(n))] [6Clog(n))] [eCLogn))] D) D) o(n
N/A| [8Clog(n))][eClogCn))] [@Clog(n))] [N/A

Cartesian Tree
B-Tree
Red-Black Tree
Splay Tree

AVL Tree

KD Tree

(8Clog(n))] [8CLogCn))] [6CLog(n))] [BCTog(n))] [0CLogn))] [0CLog(nd)] [0CTog(n))] [0CLognd))
[8CLogCn))] [eCLog(n))] [eCLog(n))] [€Clog(n))] [0CTog(n))] [0CLogCn))] [0CTog(n))] [0CLog(n)d]

N/A| [eClog(n))] [6Clog(n))][eClogCn)d] (N/A| [0Clog(nd)][0Clog(n))] [0CTog(n))]
(8CLog(n))] [eCLog(n))] [6CLog(n))] [€CLog(n))] [0CTog(n))] [0CLogn))] [0CLog(n))] [0CLog(n))]

[eCtogCn))] [eCLogCn)] [6CLogCn))] [eCLogln))]

Space Complexity
Worst

0(n

o

~

3
||

o
~
3

o

o
~
3

o

o
~
=1
=iE=dii=a1=a15 =21 5=¢
ol 22D]e |2
SIS SIS S|l ||
I I A&
S
g
g

II
Al
3 3
(w7

o
~
3

o

Empirical complexity
analysis

Typesetting math: 100%

Empirical complexity analysis

A practical way to estimate complexity

1. Gather data on the execution time of algorithms or operations for various input
sizes. This data is typically collected through various random measurements.

2. Plot the time measures for the various measurements, for each algorithm to
assess performance scales.

3. Analyzing trends to draw conclusions about the algorithm's time complexity by
observing curves in the plotted data.

Using the matplotlib library (to be imported as a module):

import matplotlib.pyplot as plt

Typesetting math: 100%

Example: constant time

steps = []
def constant(n):
return 1

for i in range(l, 100):

steps.append(constant(i))
plt.plot(steps)

[<matplotlib.lines.Line2D at 0x11774cd30>]

Typesetting math: 100%

Typesetting math: 100%

1.04 ~

1.02 ~

1.00 +

0.98 ~

0.96 -

20

40

60

80

T
100

Example: linear time

steps = []
def linear(n):
return n

for i in range(l, 100):
steps.append(linear(i))

plt.plot(steps)

plt.xlabel(' 'Inputs')
plt.ylabel('Steps')

Text(0, 0.5, 'Steps')

Typesetting math: 100%

100 A

80

B0 -

Steps

40

20 A

T
0 20 40 60 20 100
Inputs

Typesetting math: 100%

import time

import random

import numpy as np
gmatplotlib inline

nvalues = [100, 500, 1000, 1500, 2000, 2500, 3000]
timesAlgo = []

for i in nvalues:
random.seed ()
p = 12**2 # magnitude of values
liste = []

for x in range(i): liste.append(random.randint(0, p))

a=time.perf counter()

el = []
for n in liste:
el.append(n)

b = time.perf counter()
timesAlgo.append(b-a)

Typesetting math: 100%

plt.plot(nvalues, timesAlgo, "r-", label="Algo 1")
plt.title("Complexity/Perf comparison")
plt.show()

Complexity/Perf comparison

0.00018 A

0.00016 1

0.00014

0.00012 -

0.00010 -

0.00008 -

0.00006 A

0.00004

T T T T T T
] 500 1000 1500 2000 2500 3000

Typesetting math: 100%

import time
import random

def measure sorting time(sorting function, 1lst):
a = time.perf counter()
sorting function(1lst)
b = time.perf counter()
return b - a

nvalues = [100, 500, 1000, 1500, 2000, 2500, 3000]
timesAlgo = []

for i in nvalues:
random.seed()
p = 12**2 # Magnitude of values
lst = [random.randint(0, p) for x in range(i)]

time python sort = measure sorting time(sorted, lst.copy())
time selection sort = measure sorting time(selectionSort, lst.copy(
add more sorting algorithms

timesAlgo.append((time python sort, time selection sort))

python sort times = [t[0] for t in timesAlgo]
selection sort times = [t[1l] for t in timesAlgo]

Typesetting math: 100%

Plot the results

plt.plot(nvalues, python sort times, marker='o', linestyle='-', color='
plt.plot(nvalues, selection sort times, marker='o', linestyle='-', colc
plt.xlabel('Input Size (n)')

plt.ylabel('Time (seconds) ')

plt.title('Comparison of Sorting Algorithms')

plt.legend()

plt.grid()

plt.show()

Typesetting math: 100%

Comparison of Sorting Algorithms

—8— Python Built-in Sort
0.175 1+ —®— Selection Sort (Custom)

0.150 +

0.125 4

0.100 +

0.075 ~

Time (seconds)

0.050 +

0.025 A

0.000 - ® ® ® & ®

T T T T T T
0 500 1000 1500 2000 2500 3000
Input Size (n)

Typesetting math: 100%

Typesetting math: 100%

