UES Fundamentals of
Algorithms

Lecture 8: Binary trees

Ecole Centrale de Lyon, Bachelor of Science in Data Science for
Responsible Business

Romain Vuillemot

| [AAA em
¥ lyon
, business
CENTRALELYON BEL® pleTe]

Outline

e Definitions

e Data structures
» Basic operations
e Properties

Definitions

Tree is a hierarchical data structure with nodes connected by
edges

e A non-linear data structures (multiple ways to traverse it)
» Nodes are connected by only one path (a series of edges) so trees have no cycle
e Edges are also called links, they can be traversed in both ways (no orientation)

We focus on binary trees.

Trees that have at most two children

e Children can be ordered left child and the right child

Binary trees representation

Trees are most commonly represented as a node-lin diagram, with the root at the top and
the leaves (nodes without children) at the bottom).

draw binary tree(binary tree)

Binary trees data structures

Binary trees can be stored in multiple ways

e The first element is the value of the node.
e The second element is the left subtree.
e The third element is the right subtree.

Here are examples:

e Adjacencylist T = {'A': ['B', 'C']}
° Arrays [IIAII , IIBII]
e Class [Object-oriented programming Class Node ()

Other are possible: using linked list, modules, etc.

Adjacency lists are the most common ways and can be achieved in multiple fashions.

Binary trees data structures (dictionnaries and
lists)

Binary trees using dictionnaries where nodes are keys and edges are Lists.

T = {

: ['B','C'],
: ['D', 'E'],
: 01,

: 01,

: [

HMoaQw»

Using OOP

class Node:
def init (self, value):
self.value = value
self.left = None
self.right = None

def get value(self):
return self.value

def set value(self, v = None):
self.value = v

root = Node(4)

root.left = Node(2)
root.right = Node(5)
root.left.left = Node(1l)
root.left.right = Node(3)

Definitions on binary trees

Nodes - atree is composed of nodes that contain a value and children.
Edges - are the connections between nodes; nodes may contain a value.
Root - the topmost node in a tree; there can only be one root.

Parent and child - each node has a single parent and up to two children.
Leaf - nonode below that node.

Depth - the number of edges on the path from the root to that node.

Height - maximum depthin a tree.

Basic operations

Get the root of a tree

Return the topmost node in a tree (there can only be one root).

Get the root of a tree

Return the topmost node in a tree (there can only be one root).

def get root(T):
if (len(T.keys()) > 0):
return list(T.keys())[0]
else:
return -1

get root(T)
lAl

assert get root({}) == -
assert get root({"A": []}) == "A"
assert isinstance(get root({"A": []}), str) # to make sure there is onl

Get the list of nodes

Return all the nodes in the tree (as a list of nodes names).

Get the list of nodes

Return all the nodes in the tree (as a list of nodes names).

def get nodes(T):
return list(T.keys())

get nodes(T)

assert get nodes(T) == ['A', 'B', 'C', 'D',
assert get nodes({}) == []

Get the list of edges

Return all the edges as a list of pairs as Tuple.

Get the list of edges

Return all the edges as a list of pairs as Tuple.

def get edges(graph):
edges = []
for node, neighbors in graph.items():
for neighbor in neighbors:
edges.append((node, neighbor))
return edges

get edges(T)
[(lAI, IBI), (IAI’ lcl)’ (IBI, IDI), (lBl, IEI)]

assert get edges(T) == [('A', 'B"), ('A', 'C"),
assert get edges({}) == []

('BY,

‘D),

('B',

'E")]

Get the parent of a node

Return the parent node of a given node (and -1 if the root).

Get the parent of a node

Return the parent node of a given node (and -1 if the root).

def get parent(graph, node to find):
for parent, neighbors in graph.items():
if node to find in neighbors:
return parent
return None

assert get parent(T, 'D') == 'B'
assert get parent(T, 'A') is None
assert get parent({}, '') is None

Get the parent of a node

Return the parent node of a given node (and -1 if the root).

def get parent(graph, node to find):
for parent, neighbors in graph.items():
if node to find in neighbors:
return parent
return None

assert get parent(T, 'D') == 'B'
assert get parent(T, 'A') is None
assert get parent({}, '') is None

Check if the node is the root

_Return True if the root not, else None.

Get the parent of a node

Return the parent node of a given node (and -1 if the root).

def get parent(graph, node to find):
for parent, neighbors in graph.items():
if node to find in neighbors:
return parent
return None

assert get parent(T, 'D') == 'B'
assert get parent(T, 'A') is None
assert get parent({}, '') is None

Check if the node is the root

_Return True if the root not, else None.

def is root(T, node):
return find parent(T, node) is None

assert is root(T, 'A') == True

Get the children of a node

Given a node, return all its children asa List.

Get the children of a node

Given a node, return all its children as a List.

def find children(graph, parent node):
children = graph.get(parent node, [])
return children

assert find children(T, 'A') == ['B', 'C
assert find children(T, 'B') == ['D', 'E']
assert find children(T, 'C') == []

Get the children of a node

Given a node, return all its childrenas a List.

def find children(graph, parent node):
children = graph.get(parent node, [])
return children

assert find children(T, 'A') == ['B', 'C']
assert find children(T, 'B') == ['D', 'E']
assert find children(T, 'C') == []

Check if the node is a leaf

Return True if the node has no children.

Get the children of a node

Given a node, return all its childrenas a List.

def find children(graph, parent node):
children = graph.get(parent node, [])
return children

assert find children(T, 'A') == ['B', 'C']
assert find children(T, 'B') == ['D', 'E']
assert find children(T, 'C') == []

Check if the node is a leaf

Return True if the node has no children.

def is leaf(T, node):
return len(find children(T, node)) ==

assert is leaf (T, 'C'")
assert not is leaf(T, 'A')

Add/Delete a node

Given a tree as input.

e Add a node to given a current partent

e Remove a given node

Add/Delete a node

Given a tree as input.

e Add a node to given a current partent

e Remove a given node

def add node(graph, parent, new node):
if parent in graph:
graph[parent].append(new_node)
else:
graph[parent] = [new node]

def delete node(graph, node to delete):
for parent, children in graph.items():
if node to delete in children:
children.remove(node to delete)
if not children:
del graph[parent]

U= {"aA": []}
add node(U, "A", 'F'")
U

Height of a tree

Calculate the longest path from the root to leaves. Tip: use a recursive approach

 if the node is a leaf, return 1
» for a current node, the height is the max height of its children + 1

{'a': ['B', 'c"], 'B': ['D', 'E'], 'C': []1, 'D': [], "E': []}

Height of a tree

Calculate the longest path from the root to leaves. Tip: use a recursive approach

 if the node is a leaf, return 1
» for a current node, the height is the max height of its children + 1

{'a': ['B', 'c"], 'B': ['D', 'E'], 'C': []1, 'D': [], "E': []}

def height(T, node):
if node not in T:
return 0 # leaf
children = T[node]
if not children:
return 1 # leaf
list heights = []
for child in children:
list heights.append(height (T, child))
return 1 + max(list heights)

assert height(T, 'A') == 3
assert height(T, 'B') == 2
assert height(T, 'C') == 1

Height of a binary tree

racine

SpNaou ap aiquiou

16
n =200 1
n+1= 2(h+1)
log(n + 1) = log(2("1)
log(n + 1) = (h + 1)log(2)
log(n+1)/log(2) =h+1
soh =log(n+1)/log(2) — 1

h is equivalent to log(n)

Binary trees (using Arrays)

0 1 2 3 4 5 6 7 8 9 10 11

In a complete or balanced binary tree:

« if the index of a node is equal to 7, then the position indicating its left child is at 2z,
 and the position indicating its right child is at 22 + 1.

Visualize a tree

from graphviz import Digraph
dot = Digraph()
dot.node attr['shape'] = 'circle'

dot.node('0’
dot.node('1l’
dot.node('2'
dot.node('3’
dot.node('4"
dot.node('5"

label='0"') # Root

N N N’ e’ e N

dot.edge('0', '1")
dot.edge('l', '4")
dot.edge('1l', '5")

dot.edge('0', '2', color='red')
dot.edge('2', '3', color='red')

dot # Render the graph

Visualize a tree

from graphviz import Digraph
from IPython.display import display

def draw binary tree(tree dict):
Create a new graph
dot = Digraph(format='png')

Recursive function to add nodes and edges
def add nodes and edges(node, parent name=None):
if isinstance(node, dict):
for key, value in node.items():
Add the node
dot.node(key, key)
Add the edge to the parent (if it exists)
if parent name:
dot.edge(parent name, key)

Recursively call the function for the children
add nodes and edges(value, key)

Call the function to build the tree
add nodes and edges(tree dict)

Display the graph in the notebook
display(dot)

