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Programming strategies

Examples of Strategies:

Divide and Conquer: Divide a problem into simpler sub-problems, solve the sub-
problems, and then combine the solutions to solve the original problem.

Dynamic Programming: Solve a problem by breaking it down into sub-problems,
calculating and memorizing the results of sub-problems to avoid unnecessary
recomputation.

Greedy Algorithm: Make a series of choices that seem locally optimal at each step
to find a solution, with the hope that the result will be globally optimal as well.

A programming strategy are algorithms aimed at solving a
specific problem in a precise manner.



Divide and conquer

1. Divide: Divide the original problem into subproblems of the same type.

2. Conquer: Solve each of these subproblems recursively.

3. Combine: Combine the answers appropriately.

It is very close to the recursive approach

The Divide and Conquer strategy involves breaking a complex
problem into smaller, similar subproblems, solving them
recursively, and then combining their solutions to address the
original problem efficiently.



Examples of divide and conquer algorithms:
Binary search

Quick sort and merge sort

Map Reduce

Others: Fast multiplication (Karatsuba)



Binary search
Given a sorted list, find or insert a specific value while keeping the order.

See .the notebook

http://127.0.0.1:8000/03-lists-search-sort.ipynb


Quick sort
Recursive sorting algorithm which works in two steps:

1. select a pivot element

2. partitioning the array into smaller sub-arrays, then sorting those sub-arrays.



Merge sort
Divide an array recursively into two halves (based on a pivot value), sorting each half, and
then merging the sorted halves back together. This process continues until the entire array
is sorted.
Complexity: .O(nlog(n))



Map reduce
Divide a large dataset into smaller chunks and processes them independantly. Two main
steps:

the Map stage, where data is filtered and transformed into key-value pairs

the Reduce stage, where data is aggregated and the final result is produced.



Map reduce (without map reduce..)
Calculate the sum of squares values from a list of numerical values.

In [49]: data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]



Map reduce (without map reduce..)
Calculate the sum of squares values from a list of numerical values.

In [49]: data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In [60]: result = {}
for num in data:
    square = num * num
    result[square] = num

final_result = list(result.items())

print(final_result)
print(sum([x[0] for x in final_result]))

[(1, 1), (4, 2), (9, 3), (16, 4), (25, 5), (36, 6), (49, 7), (6
4, 8), (81, 9), (100, 10)]
385



Map reduce (Python)
1. Divide the problem in sub-problems

2. Apply the mapping function

3. Reduce the results



Map reduce (Python)
1. Divide the problem in sub-problems

2. Apply the mapping function

3. Reduce the results

In [69]: data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

def mapper(numbers):
    result = []
    for num in numbers: # calculate the squares
        result.append((num, num * num))
    return result

def reducer(pairs):
    result = {}
    for key, value in pairs: # sums the squares
        if key in result:
            result[key] += value 
        else:
            result[key] = value
    return result.items()

385



Map reduce (Python)
1. Divide the problem in sub-problems

2. Apply the mapping function

3. Reduce the results

In [5]: chunk_size = 2
chunks = [data[i:i+chunk_size] for i in range(0, len(data), chunk_size)

mapped_data = [mapper(chunk) for chunk in chunks] 

grouped_data = {}# map
for chunk in mapped_data:
    for key, value in chunk:
        if key in grouped_data:
            grouped_data[key].append(value)
        else:
            grouped_data[key] = [value]

reduced_data = [reducer(list(grouped_data.items()))] # reduce
result = sum([x[1][0] for x in final_result])

print(result)

----------------------------------------------------------------
-----------
NameError                                 Traceback (most recent 



call last)
Cell In[5], line 2
      1 chunk_size = 2
----> 2 chunks = [data[i:i+chunk_size] for i in range(0, len(dat
a), chunk_size)]
      4 mapped_data = [mapper(chunk) for chunk in chunks] 
      6 grouped_data = {}# map

NameError: name 'data' is not defined



Discussion on Divide and Conquer
Similarities with recursion by dividing a problem in a sub-problem

But with a combination step (which may hold most of the code difficulty)

Can be implemented in a non-recursive way

 complexity when split the problem and solves each splitnlog(n)



Greedy algorithms

Examples:
Change-making problem

Knapsack problem

Maze solving

Graph coloring

Algorithms that make a locally optimal choice.



Example: Change-making problem
.

: all the available coins

: amount

Greedy solution:

1. Sort the coins in descending order

2. Initialize a variable to count coins used

3. Substrack the number of coins used (if limited)

4. Continue this process until amount becomes zero.

Qopt(S, M) = min ∑
n
i=1 xi

S

M



Example: Change-making problem (Python)
Greedy solution to return the minimal number of coins necessary.

In [82]: coins = [1, 2, 5]
amount = 11



Example: Change-making problem (Python)
Greedy solution to return the minimal number of coins necessary.

In [82]: coins = [1, 2, 5]
amount = 11

In [83]: def coin_change_greedy(coins, amount):
    coins.sort(reverse=True) # important! sort in descending order
    
    coin_count = 0
    remaining_amount = amount
    
    for coin in coins:
        while remaining_amount >= coin:
            remaining_amount -= coin
            coin_count += 1
    
    if remaining_amount == 0:
        return coin_count
    else:
        return -1

In [81]: print(coin_change_greedy(coins, amount))  # 3 (11 = 5 + 5 + 1)

3



Example: Change-making problem (Python)
Greedy solution that returns the list of coins used.

Tip: use a list with the same structure as coins.





Example: Change-making problem (Python)
Greedy solution that returns the list of coins used.

Tip: use a list with the same structure as coins.

In [87]: def coin_change_greedy(coins, amount):
    coins.sort(reverse=True) 
    
    coin_count = 0
    remaining_amount = amount
    used_coins = [0] * len(coins)
    
    for i, coin in enumerate(coins):
        while remaining_amount >= coin:
            remaining_amount -= coin
            coin_count += 1
            used_coins[i] += 1  
    
    if remaining_amount == 0:
        return coin_count, used_coins
    else:
        return -1, []

coins = [25, 10, 5, 1]
amount = 63
min_coins, coins_used = coin_change_greedy(coins, amount)



print(f"Minimum coins needed: {min_coins}")
print("Coins used:", coins_used)

Minimum coins needed: 6
Coins used: [2, 1, 0, 3]



Example: Change-making problem (Python)
Greedy solution that returns the list of coins used from a limited availability of coins.

Tip: use a list of coins availability of same structure as coins.

In [92]: coins = [25, 10, 5, 1]
amount = 63
coin_availability = [1, 2, 3, 4]





Example: Change-making problem (Python)
Greedy solution that returns the list of coins used from a limited availability of coins.

Tip: use a list of coins availability of same structure as coins.

In [92]: coins = [25, 10, 5, 1]
amount = 63
coin_availability = [1, 2, 3, 4]

In [91]: def coin_change_greedy(coins, amount, coin_availability):
    coins.sort(reverse=True)

    coin_count = 0
    remaining_amount = amount
    used_coins = [0] * len(coins)
    
    for i, coin in enumerate(coins):
        while remaining_amount >= coin and used_coins[i] < coin_availab
            remaining_amount -= coin
            coin_count += 1
            used_coins[i] += 1
    
    if remaining_amount == 0:
        return coin_count, used_coins
    else:
        return -1, []



min_coins, coins_used = coin_change_greedy(coins, amount, coin_availabi

print(f"Minimum coins needed: {min_coins}")
print("Coins used:", coins_used)

Minimum coins needed: 9
Coins used: [1, 2, 3, 3]



Discussion on Greedy algorithms
Often considered as an heuristic

Easy to understand, implement and communicate

They often lead to non-optimal solution



Dynamic programming

1. Characterize the structure of an optimal solution.

2. Define the value of an optimal solution recursively.

3. Reconstruct the optimal solution from the computations.

Notes :

Applies to problems with optimal substructure.

Also applies to problems where solutions are often interrelated (distinguishing it

from divide and conquer).

Utilizes a memoization approach, involving storing an intermediate solution (e.g., in a

table).

Dynamic programming involves breaking down a problem into
subproblems, solving these subproblems, and combining their
solutions to obtain the solution to the original problem. The
steps are as follows:



Examples of dynamic programming algorithms
Fibonacci Sequence

Rod Cutting

Sequence Alignment, Longest Subsequence Finding

Shortest Path Finding



Fibonnacci (reminder)
To calculate the -th number in the Fibonacci sequence, which is determined as follows:

latex Copy code ,  Where the sequence starts
with 1, 1, and then continues as 2, 3, 5, 8, 13, 21, and so on, to find the 9th number ( ).

Let's calculate the 9th Fibonacci number step by step:

n

fib(n) = fib(n − 1) + fib(n − 2) n ∈ N

n = 9

fib(1) = 1

fib(2) = 1

fib(3) = fib(2) + fib(1) = 1 + 1 = 2



Fibonnacci (naive)

Call tree (for ):

Requires to calculate the same F-value multiple times.

In [4]: def fib(n):
    if n < 2:
        return n
    else:
        return fib(n - 1) + fib(n - 2)

n = 6



Fibonnacci (dynamic programming)
Optimized using a lookup  table, which is a data structure to memoize values that have
already been computed.



Fibonnacci (dynamic programming)
Optimized using a lookup  table, which is a data structure to memoize values that have
already been computed.

In [97]: def fib(n, lookup):
    if n == 0 or n == 1:
        lookup[n] = n

    if lookup[n] is None:
        lookup[n] = fib(n - 1, lookup) + fib(n - 2, lookup)

    return lookup[n]

def main():
    n = 6

    lookup = [None] * (n + 1)
    result = fib(n, lookup)
    print(f"{n}-th Fibonacci number is {result}")

if __name__=="__main__": 
    main() 

6-th Fibonacci number is 8



Rod cutting
Given a list of cuts and prices, identify the optimal cuts. Given the example below, what is
the best cutting strategy for a rod of size 4 ?

size (i) 1 2 3 4 5 6 7 8

price (pi) 1 5 8 9 10 17 17 20



Rod cutting
Given a list of cuts and prices, identify the optimal cuts. Given the example below, what is
the best cutting strategy for a rod of size 4 ?

size (i) 1 2 3 4 5 6 7 8

price (pi) 1 5 8 9 10 17 17 20

Solution: For a rod of size 4  optimal solution is 2 cuts of size 2 so .5 + 5 = 10



Rod cutting: check a solution
Given the previous table of size and price, check the cost of a given solution by defining a
function check_rod_cutting(prices, n) .



Rod cutting: check a solution
Given the previous table of size and price, check the cost of a given solution by defining a
function check_rod_cutting(prices, n) .

In [27]: def check_rod_cutting(prices, n):
    table = [0] * (n + 1)

    for i in range(1, n + 1):
        max_price = float('-inf')
        for j in range(1, i + 1):
            max_price = max(max_price, prices[j] + table[i - j])
        table[i] = max_price

    return table[n]

In [30]: prices = [0, 1, 5, 8, 9, 10, 17, 17, 20]
n = 2

max_total_price = check_rod_cutting(prices, n)
print(f"The maximum total price for a rod of length {n} is {max_total_p

The maximum total price for a rod of length 2 is 5



Rod cutting (brute force)
Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function

2. identify a base case

3. identify a recursion mechanism



Rod cutting (brute force)
Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function

2. identify a base case

3. identify a recursion mechanism

In [33]: def cut_brute_force(n, t):
    if n == 0:
        return 0
    max_valeur = float('-inf')
    for i in range(1, n + 1):
        valeur_courante = t[i] + coupe_brute_force(n - i, t)
        max_valeur = max(max_valeur, valeur_courante)
    return max_valeur



Rod cutting (brute force)
Let's solve the rod cutting problem using a brute force (naive) approach.

1. define a value function

2. identify a base case

3. identify a recursion mechanism

In [33]: def cut_brute_force(n, t):
    if n == 0:
        return 0
    max_valeur = float('-inf')
    for i in range(1, n + 1):
        valeur_courante = t[i] + coupe_brute_force(n - i, t)
        max_valeur = max(max_valeur, valeur_courante)
    return max_valeur

In [34]: lengths = [0, 1, 2, 3, 4, 5, 6, 7, 8]
values = [0, 1, 5, 8, 9, 10, 17, 17, 20]
rod_length = 2
max_value = coupe_brute_force(rod_length, values)
print(f"The maximum value for a rod of length {rod_length} is {max_valu

The maximum value for a rod of length 2 is 5.



Rod cutting (dynamic programming)
General case:

Cutting a rod of length  optimally.

Cutting a rod of length  optimally.

General case: 

size (i) 1 2 3 4 5 6 7 8

price (pi) 1 5 8 9 10 17 17 20

i

(n − i)

Vn = max1≤i≤n(pi + Vn−i)



Let's calculate V_3  step by step for each possible value of i :

1. If i = 1 , we cut the rod into two pieces: one of length 1 and one of length 2.

2. If i = 2 , we cut the rod into two pieces: one of length 2 and one of length 1.

3. If i = 3 , we cut the rod into one piece of length 3.

 (Assuming that  as a base case.)

V3 = max1≤i≤3(pi + V3−i)

V1 = p1 = 2

V3−1 = V2

V2 = p2 = 5

V3−2 = V1

V3 = p3 = 9

V3−3 = V0 V0 = 0



Now, we can calculate the values for V_2  and V_1  recursively using the same formula:

For V_2 :

For V_1 :

So, V_2  is 5 and V_1  is 2.

Now, we can calculate V_3  using the values of V_2  and V_1 :

V2 = max(p1 + V1, p2 + V0) = max(2 + V1, 5 + 0) = max(2 + 2, 5 + 0) =

max(4, 5) = 5

V1 = max(p1 + V0) = max(2 + 0) = 2

V3 = max(p1 + V2, p2 + V1, p3 + V0) = max(1 + 5, 5 + 2, 9 + 0) = max(6, 7, 8)

= 8



Rod cutting (dynamic programming)





Rod cutting (dynamic programming)
In [36]: INT_MIN = 0

def cutRod(price, n): 

    # init cache tables
    val = [0 for x in range(n+1)] 
    val[0] = 0
  
    for i in range(1, n+1): 
        max_val = INT_MIN 
        for j in range(i): 
             max_val = max(max_val, price[j] + val[i-j-1]) 
        val[i] = max_val 
  
    return val[n] 
  
if __name__=="__main__": 
    arr = [1, 5, 8, 9, 10, 17, 17, 20] 
    size = len(arr) 
    print("Max size cut " + str(cutRod(arr, size)), len(arr) ) 

Max size cut 22 8



Change-making problem (dynamic
programming)

.

: all the available coins

: amount

Qopt(S, M) = min ∑
n

i=1 xi

S

M

Qopt(i, m)

= min

⎧⎪
⎨
⎪⎩

1 + Qopt(i, m − vi) si (m − vi) ≥ 0 we use a coin of type i of value

Qopt(i − 1, m) si i ≥ 1

we do not use coin of type i,  we use i − 1



Lessons on dynamic programming
It is necessary to study each problem on a case-by-case basis.

Storing a large number of partial results, which requires significant memory usage.

Suitable for only certain problems (min, max, counting the number of solutions).




