From ed0ece351bdd9486557ac0278d02959fffc627c9 Mon Sep 17 00:00:00 2001
From: romaingallo <beromrousse@gmail.com>
Date: Mon, 18 Nov 2024 20:24:55 +0100
Subject: [PATCH] PyTorch install and test

Nothing more, except a useless description...
---
 TD2 Deep Learning.ipynb | 79 +++++++++++++++++++++++++++++++++++------
 1 file changed, 68 insertions(+), 11 deletions(-)

diff --git a/TD2 Deep Learning.ipynb b/TD2 Deep Learning.ipynb
index 00e4fdc..a14730c 100644
--- a/TD2 Deep Learning.ipynb	
+++ b/TD2 Deep Learning.ipynb	
@@ -33,12 +33,12 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "id": "330a42f5",
    "metadata": {},
    "outputs": [],
    "source": [
-    "%pip install torch torchvision"
+    "# ! pip install torch torchvision"
    ]
   },
   {
@@ -52,10 +52,72 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 4,
    "id": "b1950f0a",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "tensor([[ 0.5683,  0.1804,  1.4743,  0.6624, -0.3736, -0.4592,  0.4064, -0.9675,\n",
+      "         -0.4277, -0.2650],\n",
+      "        [ 0.6056, -0.3486, -1.9553,  0.4105,  0.7670,  0.4662,  0.5283, -0.0456,\n",
+      "          1.8780,  0.4968],\n",
+      "        [ 0.8474, -0.4548,  0.2919,  0.2475,  1.4503,  0.6661,  1.7254,  0.8893,\n",
+      "          0.3085, -0.0221],\n",
+      "        [ 0.6990,  0.1521, -1.2816,  2.6347,  0.1262, -0.7044, -0.8741, -0.6162,\n",
+      "         -0.7049, -1.2797],\n",
+      "        [-0.6189,  0.4569, -1.1453, -0.8152, -0.1246, -0.4752,  0.0846, -0.5256,\n",
+      "         -0.0601,  1.3087],\n",
+      "        [-0.2480, -1.2089,  0.2249, -0.1609, -0.4504, -0.3741, -0.3146,  0.3680,\n",
+      "         -0.4713, -1.4470],\n",
+      "        [-0.2880, -2.3141,  0.6689,  0.0861,  0.2228,  0.8982, -1.0881,  2.7190,\n",
+      "         -0.2674, -0.1549],\n",
+      "        [-0.7673,  1.8817,  0.6502,  1.1123, -0.1254, -0.6640,  1.9256,  0.0474,\n",
+      "          0.0234,  0.3481],\n",
+      "        [ 0.7740, -0.7716, -0.1533, -2.0054, -0.5630,  0.3676, -0.3526,  0.0617,\n",
+      "          1.9769, -0.7285],\n",
+      "        [ 1.3182, -0.2133,  1.3239,  0.4849,  0.3648,  0.2810,  0.1524,  0.5622,\n",
+      "         -0.2488, -0.2631],\n",
+      "        [-0.6537,  1.8060, -0.0440, -1.2116,  1.8237,  0.5003,  0.8180, -1.3485,\n",
+      "         -0.2016,  0.1752],\n",
+      "        [-1.4367,  0.8463, -0.6323, -2.0651,  0.5008, -0.4669,  1.2121,  1.3548,\n",
+      "         -0.6097,  0.1014],\n",
+      "        [-0.8016, -1.0746,  0.7798,  2.7186,  0.5087,  1.8546, -0.9003,  0.6299,\n",
+      "         -0.4445,  1.5645],\n",
+      "        [-1.2421, -0.7729,  0.2683,  0.1155, -0.6617, -0.0157,  0.7872,  0.5142,\n",
+      "          1.0696,  1.4580]])\n",
+      "AlexNet(\n",
+      "  (features): Sequential(\n",
+      "    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))\n",
+      "    (1): ReLU(inplace=True)\n",
+      "    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
+      "    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))\n",
+      "    (4): ReLU(inplace=True)\n",
+      "    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
+      "    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
+      "    (7): ReLU(inplace=True)\n",
+      "    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
+      "    (9): ReLU(inplace=True)\n",
+      "    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
+      "    (11): ReLU(inplace=True)\n",
+      "    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
+      "  )\n",
+      "  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))\n",
+      "  (classifier): Sequential(\n",
+      "    (0): Dropout(p=0.5, inplace=False)\n",
+      "    (1): Linear(in_features=9216, out_features=4096, bias=True)\n",
+      "    (2): ReLU(inplace=True)\n",
+      "    (3): Dropout(p=0.5, inplace=False)\n",
+      "    (4): Linear(in_features=4096, out_features=4096, bias=True)\n",
+      "    (5): ReLU(inplace=True)\n",
+      "    (6): Linear(in_features=4096, out_features=1000, bias=True)\n",
+      "  )\n",
+      ")\n"
+     ]
+    }
+   ],
    "source": [
     "import torch\n",
     "\n",
@@ -926,7 +988,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3.8.5 ('base')",
+   "display_name": "Python 3",
    "language": "python",
    "name": "python3"
   },
@@ -940,12 +1002,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.5"
-  },
-  "vscode": {
-   "interpreter": {
-    "hash": "9e3efbebb05da2d4a1968abe9a0645745f54b63feb7a85a514e4da0495be97eb"
-   }
+   "version": "3.11.9"
   }
  },
  "nbformat": 4,
-- 
GitLab