From b9b7c782dd5cb2be0825985d26963a550f7ef4eb Mon Sep 17 00:00:00 2001 From: romaingallo <beromrousse@gmail.com> Date: Sun, 24 Nov 2024 13:56:44 +0100 Subject: [PATCH] Ex 4 --- TD2 Deep Learning.ipynb | 477 +++++++++++++++++- hymenoptera_data/train/ants/formica.jpeg | Bin 0 -> 7858 bytes hymenoptera_data/train/ants/imageNotFound.gif | Bin 0 -> 5504 bytes 3 files changed, 468 insertions(+), 9 deletions(-) create mode 100644 hymenoptera_data/train/ants/formica.jpeg create mode 100644 hymenoptera_data/train/ants/imageNotFound.gif diff --git a/TD2 Deep Learning.ipynb b/TD2 Deep Learning.ipynb index d8520fc..64f6283 100644 --- a/TD2 Deep Learning.ipynb +++ b/TD2 Deep Learning.ipynb @@ -691,15 +691,16 @@ " self.pool = nn.MaxPool2d(3, 2)\n", " self.fc1 = nn.Linear(64 * 3 * 3, 512)\n", " self.fc2 = nn.Linear(512, 64)\n", - " self.fc3 = nn.Linear(64, 10) # Dropout whose value you will suggest ???\n", + " self.fc3 = nn.Linear(64, 10)\n", + " self.dropout = nn.Dropout(p = 0.1)\n", "\n", " def forward(self, x):\n", " x = self.pool(F.relu(self.conv1(x)))\n", " x = self.pool(F.relu(self.conv2(x)))\n", " x = self.pool(F.relu(self.conv3(x)))\n", " x = x.view(-1, 64 * 3 * 3)\n", - " x = F.relu(self.fc1(x))\n", - " x = F.relu(self.fc2(x))\n", + " x = self.dropout(F.relu(self.fc1(x)))\n", + " x = self.dropout(F.relu(self.fc2(x)))\n", " x = self.fc3(x)\n", " return x\n", "\n", @@ -2286,10 +2287,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "be2d31f5", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAC+CAYAAAAfrfTyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebRlR3ne/auqPZz5zlPPs8aWBBISIInZCIMHHMcK/mKM8IchNhDbxPEyKyFAgkNIjI0/D4CTtXCseCUGnNiObUKwEZhRoAHN3Wq1er7zcO6Z91D1fn/Uubdvd4vRYIE5T6/b9559au9dtXftXU+97/O+pUREGGCAAQYYYIABBvgugn66KzDAAAMMMMAAAwxwMQYEZYABBhhggAEG+K7DgKAMMMAAAwwwwADfdRgQlAEGGGCAAQYY4LsOA4IywAADDDDAAAN812FAUAYYYIABBhhggO86DAjKAAMMMMAAAwzwXYcBQRlggAEGGGCAAb7rMCAoAwwwwAADDDDAdx0GBGWA73nccccdKKVQSnH11Vd/zbJ/8Ad/gFKKe+655++pdk8vXvCCF3zda/IPBSdPnkQpxa//+q8/3VUZoI/h4eHNZ/NNb3rT012dAb7HMCAoA/yDwPj4OHfeeSf/4T/8hwu279mzh3e84x1PT6W+BbzjHe9gz54939K+n/rUp1BKcfLkyW9rnb6T+LvcnzvuuIMXvOAF39b6fCfxd70/Sin+4A/+4Ntap4vxe7/3e9/yOZ6q7/7+7/8+d95559+9YgN8XyJ4uiswwADfDpTLZX7qp37q6a7GAAN8T+P3fu/3GB8f54477vi2HO/2228H4NWvfvW35XgDfH9hYEEZYIABBhhggAG+6zAgKAN8X6LT6fCGN7yBsbExarUaP/3TP83a2tol5T72sY9x6623Ui6XqVarvOIVr+CRRx65pNyRI0f4x//4HzM6OkqhUOCGG27gz//8zy8ok2UZ73znOzl48CCFQoGxsTFuueUWPvGJT3zH2rmBe++9l+c+97kUi0X27t3LBz7wgUvKJEnC29/+dg4cOEAcx+zcuZNf+ZVfIUmSS8r+t//237j++uspFouMjo7yqle9ijNnzlxQ5tixY/z4j/8409PTFAoFduzYwate9SrW19e/Y+3cwG/+5m+ye/duisUiz3/+83n44YcvKfON3DOAer3OL/7iL7Jz507iOObAgQO85z3vwTl3Qbn/8T/+B9dffz3VapVarcbhw4f5rd/6re9YG0+dOsXP//zPc9lll1EsFhkbG+MnfuInLnEhbeiuPve5z/GWt7yFiYkJyuUyP/ZjP8bS0tJmuT179vDII4/w6U9/elM3suFCezr77gDfvxi4eAb4vsSb3vQmhoeHecc73sHRo0d5//vfz6lTpzZ1AgB33nknr3nNa7jtttt4z3veQ6fT4f3vfz+33HIL999//6a//ZFHHuHmm29m+/bt/Oqv/irlcpkPf/jDvPKVr+RP/uRP+LEf+zHA++jf/e5387rXvY4bb7yRRqPBPffcw3333ccP/MAPfMfaura2xstf/nJuv/12fvInf5IPf/jD/NzP/RxRFPEzP/MzADjn+JEf+RE++9nP8vrXv54rrriChx56iN/8zd/k8ccf50//9E83j/drv/ZrvO1tb+P222/nda97HUtLS/z2b/82z3ve87j//vsZHh4mTVNuu+02kiThzW9+M9PT05w7d46/+Iu/oF6vMzQ09B1r7x/+4R/SbDZ54xvfSK/X47d+67d40YtexEMPPcTU1BTwjd+zTqfD85//fM6dO8cb3vAGdu3axec//3ne+ta3Mjc3x/ve9z4APvGJT/CTP/mTvPjFL+Y973kPAI899hif+9zn+IVf+IXvSDu//OUv8/nPf55XvepV7Nixg5MnT/L+97+fF7zgBTz66KOUSqULyr/5zW9mZGSEt7/97Zw8eZL3ve99vOlNb+KP//iPAXjf+97Hm9/8ZiqVCv/qX/0rgM3r9XT13QG+zyEDDPA9jte85jWye/fub6jshz70IQHk+uuvlzRNN7f/x//4HwWQP/uzPxMRkWazKcPDw/KzP/uzF+w/Pz8vQ0NDF2x/8YtfLIcPH5Zer7e5zTknz33uc+XgwYOb26699lp5xSte8a008VvG85//fAHkve997+a2JEnkuuuuk8nJyc1rcOedd4rWWj7zmc9csP8HPvABAeRzn/uciIicPHlSjDHya7/2axeUe+ihhyQIgs3t999/vwDykY985DvZvAtw4sQJAaRYLMrZs2c3t999990CyC/90i9tbvtG79m/+3f/Tsrlsjz++OMXnOtXf/VXxRgjp0+fFhGRX/iFX5BarSZ5nn+nmncJOp3OJdu+8IUvCCB/+Id/uLlto8+/5CUvEefc5vZf+qVfEmOM1Ov1zW1XXXWVPP/5z7/kuH/XvgvIG9/4xm95/wG+PzFw8QzwfYnXv/71hGG4+fnnfu7nCIKAv/qrvwL8jLher/OTP/mTLC8vb/4YY7jpppu46667AFhdXeWTn/wkt99+O81mc7PcysoKt912G8eOHePcuXOAD7l85JFHOHbs2N9rW4Mg4A1veMPm5yiKeMMb3sDi4iL33nsvAB/5yEe44ooruPzyyy9o74te9CKAzfb+z//5P3HOcfvtt19Qbnp6moMHD26W27CQfPzjH6fT6fx9NpdXvvKVbN++ffPzjTfeyE033bR5b7+Ze/aRj3yEW2+9lZGRkQva+5KXvARrLX/7t38L+Hvbbrf/Xl0exWJx8+8sy1hZWeHAgQMMDw9z3333XVL+9a9//aZ1EODWW2/FWsupU6e+7rmerr47wPc3Bi6eAb4vcfDgwQs+VyoVZmZmNv33Gy/ijQH6YtRqNQCeeOIJRIS3ve1tvO1tb3vKsouLi2zfvp1/+2//LT/6oz/KoUOHuPrqq3nZy17Gq1/9aq655ppvU6ueGtu2baNcLl+w7dChQ4DPHfLsZz+bY8eO8dhjjzExMfFV2wD+uojIJddvAxukb+/evbzlLW/hN37jN/ijP/ojbr31Vn7kR36En/qpn/qOunfg0nsLvr0f/vCHgW/unh07dowHH3zw616Xn//5n+fDH/4wP/iDP8j27dt56Utfyu23387LXvayb1OrLkW32+Xd7343H/rQhzh37hwisvndU+l8du3adcHnkZERgKfUXl2Mp6vvDvD9jQFBGWCAp8CGAPLOO+9kenr6ku+DILig3C//8i9z2223PeWxDhw4AMDznvc8jh8/zp/92Z/xf//v/+W//Jf/wm/+5m/ygQ98gNe97nXfiWZ8w3DOcfjwYX7jN37jKb/fuXPnZjmlFB/72McwxlxSrlKpbP793ve+lzvuuGOzvf/8n/9z3v3ud/PFL36RHTt2fGca8g3gm7lnzjl+4Ad+gF/5lV95ynIbRG9ycpKvfOUrfPzjH+djH/sYH/vYx/jQhz7ET//0T/Nf/+t//Q60wmtKPvShD/GLv/iLPOc5z2FoaAilFK961asuEfACT3m/gAuIzVfDd3PfHeAfLgYEZYDvSxw7dowXvvCFm59brRZzc3O8/OUvB2D//v2AH3he8pKXfNXj7Nu3D/CWg69VbgOjo6O89rWv5bWvfS2tVovnPe95vOMd7/iOvuRnZ2dpt9sXWFEef/xxgE2h7/79+3nggQd48YtffIEb4GLs378fEWHv3r2bg/PXwuHDhzl8+DD/+l//az7/+c9z880384EPfIB3vetdf7dGfQ08lRvi8ccf32zrN3PP9u/fT6vV+obubRRF/PAP/zA//MM/jHOOn//5n+eDH/wgb3vb2zYJz7cTH/3oR3nNa17De9/73s1tvV6Per3+LR/za937p6PvDvD9jYEGZYDvS/z+7/8+WZZtfn7/+99Pnuf84A/+IAC33XYbtVqNf//v//0F5TawEZ45OTnJC17wAj74wQ8yNzf3VcsBrKysXPBdpVLhwIEDTxnG++1Enud88IMf3Pycpikf/OAHmZiY4Prrrwd8Qq1z587xn//zf75k/263S7vdBuAf/aN/hDGGd77znZfMvEVks42NRoM8zy/4/vDhw2itv+Pt/dM//dNNDQnAl770Je6+++7Ne/vN3LPbb7+dL3zhC3z84x+/pFy9Xt9s48X3Vmu96f74TrXXGHPJPfjt3/5trLXf8jHL5fJTEpynq+8O8P2NgQVlgO9LpGnKi1/8Ym6//XaOHj3K7/3e73HLLbfwIz/yI4DXmLz//e/n1a9+Nc985jN51atexcTEBKdPn+Yv//Ivufnmm/md3/kdAH73d3+XW265hcOHD/OzP/uz7Nu3j4WFBb7whS9w9uxZHnjgAQCuvPJKXvCCF3D99dczOjrKPffcw0c/+tGvu0bJO97xDt75zndy1113fUup3bdt28Z73vMeTp48yaFDh/jjP/5jvvKVr/D7v//7m5qRV7/61Xz4wx/mn/2zf8Zdd93FzTffjLWWI0eO8OEPf5iPf/zj3HDDDezfv593vetdvPWtb+XkyZO88pWvpFqtcuLECf7X//pfvP71r+eXf/mX+eQnP8mb3vQmfuInfoJDhw6R5zl33nknxhh+/Md//GvWd8PS8a2mhD9w4AC33HILP/dzP0eSJLzvfe9jbGzsAjfNN3rP/uW//Jf8+Z//OT/0Qz/EHXfcwfXXX0+73eahhx7iox/9KCdPnmR8fJzXve51rK6u8qIXvYgdO3Zw6tQpfvu3f5vrrruOK6644qvW9VOf+hQvfOELefvb3/5Np/z/oR/6Ie68806Ghoa48sor+cIXvsBf//VfMzY29i1dN4Drr7+e97///bzrXe/iwIEDTE5O8qIXvehb7rsDDPB3wtMWPzTAAN8mfCthxp/+9Kfl9a9/vYyMjEilUpF/+k//qaysrFxS/q677pLbbrtNhoaGpFAoyP79++WOO+6Qe+6554Jyx48fl5/+6Z+W6elpCcNQtm/fLj/0Qz8kH/3oRzfLvOtd75Ibb7xRhoeHpVgsyuWXXy6/9mu/dkG481PhX/yLfyFKKXnssce+oTZuxfOf/3y56qqr5J577pHnPOc5UigUZPfu3fI7v/M7l5RN01Te8573yFVXXSVxHMvIyIhcf/318s53vlPW19cvKPsnf/Incsstt0i5XJZyuSyXX365vPGNb5SjR4+KiMiTTz4pP/MzPyP79++XQqEgo6Oj8sIXvlD++q//+uvWeXx8XJ797Gd/023dCDP+T//pP8l73/te2blzp8RxLLfeeqs88MADl5T/Ru6ZiA85f+tb3yoHDhyQKIpkfHxcnvvc58qv//qvb967j370o/LSl75UJicnJYoi2bVrl7zhDW+Qubm5r1nn//2//7cA8oEPfOCbbu/a2pq89rWvlfHxcalUKnLbbbfJkSNHZPfu3fKa17xms9xGn//yl798wf533XWXAHLXXXdtbpufn5dXvOIVUq1WBdgMOf5W++4GGIQZD/AtQIl8AwqpAQb4LsYdd9zBJz/5Se677z6CIGB4ePjprtK3FTfeeCO7d+/mIx/5yNNdle84Hn30Ua666ir+4i/+gle84hVPd3W+4/iVX/kV/vt//+888cQTxHH8dFfn247V1VWcc0xMTPDGN75x0+o4wADfCAYungH+QeDMmTNMTExw1VVXPWVa8+9VNBoNHnjgge9YJMh3G+666y6e85znfF+QE/Dtfdvb3vYPkpyAFyT/fSxtMMA/TAwsKAN8z+PRRx9ldnYW8OK9Zz/72U9zjQYYYACAT3/605si8507d3LZZZc9zTUa4HsJA4IywAADDDDAAAN81+FpDTP+3d/9Xfbs2UOhUOCmm27iS1/60tNZnQEGGGCAAQYY4LsETxtB+eM//mPe8pa38Pa3v5377ruPa6+9lttuu20zdfQAAwwwwAADDPD9i6fNxXPTTTfxrGc9a1PV7Zxj586dvPnNb+ZXf/VXv+a+zjlmZ2epVqtfM/PhAAMMMMAAAwzw3QMRodlssm3bNrT+2jaSpyWKJ01T7r33Xt761rdubtNa85KXvIQvfOELl5RPkuSCjIXnzp3jyiuv/Hup6wADDDDAAAMM8O3FmTNnvu6aXE8LQVleXsZay9TU1AXbp6amOHLkyCXl3/3ud/POd77zku2/9ZZd3PrcjPkTHbrrQlRVzOwtgspoN+H+ux1JKgSh4u6jwvFZ2D5q2D5qUW1HowuNxP9MzigO7BRIhLQDi8uCLoVUig6dC0YE5aCXwZkVWEgUBsXOUWHXpBAoEAezi75MO1PoUChqRUlBFMD0DBQjIU0UaSpkKYgFrcABSQLGwNgoxJFidBKsCM11mJuH+VVoZtC00M1BFASBwjqhnUI7gTQz5CiMccwMKa6cdJQDOLMKjy4IbWuolhQzIw5SoZsYerllvQvtTBMEikIAh3aDTSxHz4KODOUwZ99Ow65tMU8e7zJf1xQrihuudLzsB4bZta/K4w+2+JtPrvLlR8HGEZftyJgqOQKg3YWFNszWFWfmYXqqyI3X9tg5IuyahCyDR44JD52CI08qhoYMu2csIyVhfHyayehmfkRWOf3IPRxdnWZ4uMset8Z627LKFAeH1hmOWnRNgc7kDMYOMz1yNcGecTL9GJ0nn6C+ktLpOAozeyiXRhnZs4No2whoA+JQkoMkkLehtYB0zkE2j5IVUC3AsWFuVADi79/mRs0lTlPlQHJQTl2Yllz8QRSAVWABEXAgolD0F3ETfwxE+dNI/8cJOIXSguj+eSy+I8mW3/2/1dbzbvxswIAECqUVIPhqqn79HSRAD+gCWb+uTjaPsdEsxcZ5lb82osAJarOcnD+32jyF/96dr9Jn91yL/uHXcPPzX7K5nyAoIM8sWW7o9QSXgxNBi6bbEo4/Aiv1jG43oZdaei6h02vT7nVwacrLXzHJTc/Z0W+nAhFEBGtznMB6U9PtKUQgTxV5B+LIYQKo1IQwVhijCAKhtaY49TCkCSSZI0lSer2URjshSTK6VlhtNOnlKb08Ic1zksyBtcTKEhkwGuIooBjH1CoRk5NlpqbHqFSLjE1H2FRz8niX9XqDpJewtnSG3ft3cexkwtmzp0nTBmmWk+UpndyS5hkiQu5yNJbIGEKtAcEJaKVQyqFV6C3PSrBOUBv3Wkv/voFohXOyebw0z7Gi0TpASb8vawGlyJ2g8G0qFHKazRW6rTpojWiDFQFxGKURBI3/GxTGBNz6rCpPth9nZW2N5lpKdz1HoYmKBg0oYyAICMsRcbGADnz/swJGAgraoJ3QTdp0O11snuOcQ5QgOFzuyBOHWP9ZWQtObfZVEY1TggkDTMGgI4VWGnE5RiBPU9LM4lzue6FSqACCUBNECmMEKw5ycLnC5iBOoURjtIACh0IcWCuI8/1WGUUUa+JChFHCzORebn3Oc2jMnWP2xDquXWRscgfLq/OsLi0wXBhnYnySfZdfQWNllQO3XMW9J/+MOF9k27YylWwdVdzPanCI+x76LMViERMWsbnBWsHhKFbK7LviOp59+bVMViqUI41F0UqER08v8tAj92NdwoE9ByjHEcXqEDOjI9SKAUaff2zbmbDcSsmVJcTRWE84cvIkrdV5xkfGyGYzzj5+jvXGCs1mk5HRGlNjB6iNBiys/C3/3wfvpFqt8vXwPZEH5a1vfStvectbNj83Gg127tzJrc/rMESdVuaIEIJUUW63GZqEPNAs1OCTX8zpacWp05qza8LssjA3rtg7IkSp0OkIJ5uGE+uKTi9gVy1Fd4VqBBkQOyEw/iUaKkXshIZWLHWhUIFKKFQMhMq/u0Ogl4POFJESioHfb3oMdoxBngiJAqsVNoA8B5WDc0ISQlyAkoYzZ+DsgiIwjqStWO8JqSiMA5NCnsFQUTNZEpwTmoGiHgirTUUrhTSFE23N3DLYTOikQiL+RZQmAc4KvW7OSscQGkUlgsmKY/uUYXk15/gJ6Fkhd5qDw7BvwnLDDQFXXyvcf2/Cpz+XMTwZ8aJnw+FD6wyPdZHdAY9NdKhElmNzASMhVCYtcShY58e0ZltRXwelHKsrKSMmZ0UJJlIkVkgtNNvQbAUYNOE2x7ZCj0oxYm+6RNZbZzYrUW4LQ2mH7nyPvQeGqGbrTGqInaPTmkFfeS0jV4/jgkVO/PXDdGcjTOZoJpPExW2MVbax8+B+omrgCYoWcKknJ+kaFC3S6aHSBFyCyDpKevjHs7/GjPU/skE2NgiKOk9GlPSLO3V+JO8P3P5v/IvSav/bbRnEnfTJAJuDPhvkQQT/hvZf4UBtlLVseQF7IuPPddE5N7DBXjbcpWrLRisX1mOzLnKeBG1g47juKQjKxrndeX5ywX79gRGBUQQ9OsKuPXs3SYRz1jfZOdI0oNf21ynPITDQbkBrSYHktExCN8vQtkummqishTYdhoen2LV7z6ZZWTaP7bDW0ek50lzT6ymaDU23AcXIEccwOqEoVvw+GiEZNmQr0KpDkgtJL6HZ7GF0Ri+2lLUhZx3da2OTLpiE3OVAjlEWrR2h0URRRBQFFOMC1coIoyPTjE8W2b5bEcUGl+ecyJYxQZv52SaLZ1e58rJryLMhVpdP01UNxOWEOiXTOVmaYCWnZzPaiaCdJQwETEAomsh4oqu1wdMK63m1KDLJsGIRK+QoUuvvmVZFjAkIwgitA8SClZzcCaFR/YErw7o2jWaTViPB5RpRGqshc4AyKBRawOBHOqMVoTEEQUSCZU16dCQlcxYjgs1CTyYzDUqj0w5BUiAoFwjDCFGg84TEAWlGL+2S9lLEZkioMQHogibQCtsR8lZOr5WRt5PNSYAScKIQrQijgEgFGBUQRAGiUk+Iezk2y8E5NuYjKoAYTRwoQiATIcsEyQRnFQ7tr6vzk0ybiz+nAo3C9p9nVQi54tBNjNcmmRgapXFugaRRYqQyw5Ozj9PrnsUUYoaqO5ka20WeNKgUh7n6hc/laPduTnfm2ObWKdaXUOUSUo4I62eIM0emEpSKQGmscwiWZnONxx67n0w5rrniWvbVdjAUlzDdnOKIY/+By6lWy0yOjBJGITosUCkXGakUUVrTtUI5UJQTR1RKmG92aLXqrGU9GplldNsehmzMw6cfZb3eptlNGBvbgSFgeGKKfYemWf/y3f3XzdeXZzwtBGV8fBxjDAsLCxdsX1hYeMql7eM4fspERoVKjskdhIIDshwaDUeSK1YWHI8/JCwvw8OrjqVE6OYahWK9G2CHIQsczcTRyw1RrHjsjOPRVHPZroDr96WoXOisKxInlGpglKA0TE0KQQyZhaISjFI4hFDD9klFvQFZT3C5QisYm4p4xg0K8gRtFOvr0KtDtwPrFrJcqBUhDCEqQaAU7Vxo94D+g+QU6HxjNqoIlGJiWHPVHkO3l7HedHQs1IeFXgdOLCsWOtBKDCIOU7DUtCBOkeYZyw1NbkEhXDFjOLw747k3xVx7TY1Pf6rO5+7OeHhWCAsRl89kXLZdcXh/kT07IkISTj8BFBQzU2Cki+pAoBLKsVBUkGea9Q508pywACt1OLMIa3VFoaCor3e59yua9gHDoR05o+OKcwtwZtbPMvLc8eRZRbWq2WM1hgbh8iOQKYo6wWhNUMiYqEA7b1LPLGMRdM/ljD37KuJrJ+mtfpalJ8/QbA6RlYeJ4gkuGwuYuXKM2q7tmHIJMQa0RmnXH+l7OKtRcQlkGHQP8hRxLZQrgPRAHOK8WUKZ8+O6Jydwwai98afbss0B1pMYtXWA35ieWNnkIZ4rqIuIgJw/X39WI9pvVo4thGOjXlvI0cXYYmXxb17pE6j+9zmQeSsQ0j8X/ZfLVrPMxaxj4zhb27bV0rL12sj56im+ykurv3+eafJE+pfBE6BchChWxBFEgcYYhcqE2GjCwN9fbQKUMpsvxQ1ysgHXt2QGylIIAzoaTNif5RYgijbulbeoRAX/o7RCa9CBIYhiQqcxsRBXCuQSIusBmdaozOBUjk0StORobf0gHQREcUSxXKJcG6JcjRidsESFABCqNYMxGskzxIScmlsBHmH/7v1Uazs4efIMiW0ToigJBJGQWN8RLZbEQZpmGJ3SFYvRCv9PQCusuL5FRJFaRyaCQRFFAaiIQBlCHRAG/sfogEw5AgwKwWiHNpD2ejTbK/TSdZRIv8+BEY1oTW7z/nOiUMImWdHGD9ppR3CJJtABlDROFM4otBZcCuQZNhPyniVIcqjEEBicdbjModIcyXtoZXGREBQ1UUVTLBniOMA6R6eeUV/o0kpzXC9HOQGlcfh3rg4V2ihECUmWQu5wOWhj0FpQoj3ZEI0OhGIhoFwStDg6mZBZR572H0DtwPS7t/XWSR1posgQaEXulLdqRQqlVzl87UsodMs8cqxF0u4wNR2hdE6j1ebymWeybXoX27fv5syZY1RqJXZcNcZjXzjGlE65upwxFI/x0HqF1dlzVFSP67YbchVxtp6w2kvJrSDaAJZussRjX/oUsyeOcejy69m5bQ9DxWGKgebA3n2MVquU4og0S2lmDsksSWopRpqSURQChQkMpUKRajkmTco0hseYrI0h7YQvf+yzrMwv0um2sHnOtplptKlx1bWXseaaCF/lXfQUeFoIShRFXH/99fzN3/wNr3zlKwEvfP2bv/mbb2rxqV5dIBOyHBKnaHZgrQeRAe0c1XFFcRnaCxonMFSE3RMRzztURUnCmdWEsXFL3rIUlWGllTHfDWmmEWmWE+SWVgtaCQRdxfSYECkh1orxKtgMwsA/iGmuCB0UI4iHvRWg3fYv6UOXF9hzWYJyUB3RHH/A8eSKYnxbyIGpnEfvdRQUWIQoArECGkx/RLD9wUIUWKfIBXqpZmbnMC99+Sgnj5zh7JM9uonQLEJa8e/+9VlhqOCYKVtqFU+qGqlmsS6sNR1rXYhiwzP2aV5ytXDLLYbabk0ch6huytq6IgkV28cVM8OK6SFDRVkmyo7xYTi56FidE0q9nA45K2tgE7AWtBHKNUNtVJGm8OAxxXoSMjGSg3LU12CtDXMNwzO3CwSOx08r1tZChqo5ViyOEAlgvemQIKN7qkWeFqlKm7wXUKxAaapCGm2jW5jn9OPL1Bsx17oik7Ew++AyZ8+Waa84xi6/gSuuXyRYv5fuowX0zAEkLGNNG40FHaKsN4MoE6MihdBGqKF0E52MgOmB64DNUJL5QXjDaqI3rBSb//nBsG89EAHMhrsGbybeGNdVf+T31nhEs0kY/LjvTemb1gvosxE2z6m2WjMUfYtQ/2/Z0oE2rB8b7pat2+1FFhbnzdbk/eNvnF5vOZdc9Lf2f4iAKHd+lrTJuNRFO7BJfPp7bvl+C0Rhra8SCnQguFSRpwplhEJREceCVgJiETTi/GUwAeCCvmuHzXujlNpc+deK0Msh7RnoW02NhkDjB3Al6EBQaLT2g2oYKALjiabTmjhUiEQUh4TdhyJKxwLccciVIu1ojEsxykCeo0gJA4jDAmNjY+w7MM7k9jJjw4ZyLSeIFFkKxZKiEGvWRTE8Nkp1fJQkgW6u2L17P6uriiSbQ+t1tBKCXBMqQ4ImUxlaa3Kr0OLI0STW9gmJRmuN0grTd9sUlaJoDIIjMAqjDMYEhCbol9XgHIXAW0MQh1aaLG2StVdxiUOhcH3yrpWAsmhlMCY8bylTlqB/DZ31JkhxGh2GFKKYvJST9iykFlEaFYMY7U3TFuhacp1AMUIbjQkUyimc0zgszmhQFiuQOMGJt9SERUVcUWQtTWI1kkm/f3pC5yxkqUWyHItGKe/2MtqiDYQ4tAhaBZ7kGUeuPCHOM4co7QmXeAsxsDmB0KEmLBniisYYTZgr8tyhjWZhdYWjX3oEO+/otlOybofh0lmmRgwryxl0VjBpiV7DUQoVlZGIex/9Cx578otcN6a5cnIXOlasLceU45h2p8zyepfpWoubd0fUOzFfOp6x1E1RJgBJSfMeKl4m7yVUoiIHZ6YItEGHAVqEJMuwAr08Ybg8RCFQlGJ/z3ILPRGMhqGKoVArko8UmZ4c4oG7n2Btpc5aY4VSocC2ob3kqWX/5dupTY9w71ceuWQF7q+Fp83F85a3vIXXvOY13HDDDdx44428733vo91u89rXvvYbPsbccU0hV6ysQqPpO8FQQbO6akl60EuFBNg+rKgUoVZ0HNhjeOUrruXuL3+Z1UZCw0IngbVUgymybSxjvNwmazms+JuRptDOhVIBhguKtKtIEsFZSJQ3MxsD1oDuQqEEhRhsDnGomBnpUotz4jIszjpOPaFopjEvfnEZo9fImoqls0JuIQ69RbMQ+Flr7qD/VKMQrztREEaK/ftGmNyW01519FahtQ6lAnQTTbmhKEaa5107zrMP9RgfyyFIUNVRHnqswxc/2+TBOciUZmYUZrYHFIsGFRUZHm4zMy4Mh4ozmSUASsrh2m1MGpC1LbGBk6czvni/4brtikosLNWh1VYkTtFqO87OKXZOGRqNnF6u2TYN28ctWQ5hACvrQqAC1ts55SKMjgpOWcplh82FejvlzBlNqOAZZUgbijwNMcUx8tYiaShImiDTHYJuk7V1Ia2WccUKuDq13c9iLCwwfO0VXHb1OYKVk5w7W6Slr+ZQYRL0EurYXyDhZejdz8BfaQMmxHuNSyAVhBjlit4Koiy4CIzPjsn591vf0uF9zGrrYNwf0NWGhUSd33Z+LO5bHPq7Sb/s+fF8C3mA8yYH2/+8SV62PPwXGyP6riDo13mT1FxoNfGWnY129Pcz/TZs1PkSgrKFjLG1vbLp8tl0Wz2VhelrQhCxOGvIM8H1jTfWel9+qaQIAghj0FowgUJnnsz4AdhggowoVJdaevD19AYhjdJgAo10PDlxVtDGEYYQGH8hRLy+QXn2gvcY+VlltaTZf1jYvhdEDOutColS9AQUCQQpLs0IMJTLATM7Rjh02QRXX10kDDVBAOIClBLKFUVgIAhDtILLD1X4gR/ejzYBSdey3gywusDjjxWZmzuO001UL9m810ZrjLWkypvXNI5AC0qBUQFKKYyOMaYI2mCUxbrMWwiBMDAEWjBB4D16VlDK9MmFoBDStEW7vYASiwk0eW7Qyusd0N41400F/W4n/snKxBEog1jXdzlBWCgQFAO0zdHNhLyb4axglMGGOU4FuJ71198aAhFKYUAYhdg8IWs7khScs2iryHo5aSrodu5JFgKSEQaOLNSb/dz0rY+I4KwgSiE4RDm0gNUWjMKafkfJHdYpOj1HJ3cY4/tZoRigI4c4IXcBIo7cgTLeyk/oUMb3J6wi0IpCXGPnxHV0z+V0G232X3EFc6fPcOT4WaJiSG10J7v2H2L7tu001o5x+Fk303aLNM98issn9lJKZwnTLnpoOzcfbJNmsLyWstbM6HQ6tOurBEGIVhVcbnB4rZ3t5lBvkJuAndu2MTNawmhFYmGtk7PW7bGwusL86gKt9ggzo+OMyBCB0iSJ5eTKGkSGmXKB0WqBQhCwvt7hi5+5j8VzZ0mThCg0HNi/lyAq8IznXIEajjmwYwcPPv71XTsbeNoIyj/5J/+EpaUl/s2/+TfMz89z3XXX8X/+z/+5RDj7tXBu3lIz0Es8Sy4XFL1U6HbFW1PaMFaE8rhDCRRLMFXOmT/zKI3lBmRQbylmVxXFouX6/SFXjPUoGGFt3gs3ZcPcLorlNUFGIOrb5dMMUucFq0ZDaPwF7aZQG1YMlaBYEDqNnCMPKOZWFGdPOprrcP1NJUbGujTXHCND0FiEwPpZRy/tv5gCIc/8w4uAFYXSECmYKAklu0RWz4mtpWwEXRRyNI26cPKcolKp8aOvuIZnPTfHqFOgOlibMDGac+aI4oEzgjKuP0ty5J0e0Uodu9KjYBXlEFprjuU1RauiqZ+zxJKzXodWQ5irw+ceDBipOcq549Q5y8l5ODGnUGjqdcfn73NUyoahIce+7SlTw14wq4H1huXIE13OnoNqSRMFmh3jjlJJ6PTAiWNpRVhe82NKoQQEVYZ2D7P60ByttiXq5XSSEwTKkgmMjwWUgodJPvMItZ0vZ/Qle3B6lbBxgqUTy7TTKcLdezGVIvaB/0H9Lz5DZV9IZeYwKvLTbaViRHpgFMQBogpgC6g8R8hRJkIk8bMjJYA979rZGAA3NCP9WbvaYAcbhOYiUtAvtGn1UPT33apV6b9ENz+7LfsJFxKUS94BG4Pz+Znd+WNuqY9sHM4fR7xRadNcfd6SI+fru6Vegi8rG2Rma/3clr+fylDyVciKUgqtDdoIQaC9sFML2kAUC4WCt2w468WNWmlCk6NyLyAvl7w2aWQ46Ffq/MXRWpNlORohDgUliizzotIggtAItRFBa0Hr2GtQtCaKfIO0VmilsJEmiGHbZY69l3t37e4D0OoGdPISFmiGbe+SSnoYyamULHsPjnLosiJTk5o8V7hMkXQcyinCEMLYgQatAyploVL1bgJbVYxPCiooo4OdID3Ozc6SuKbnwFpjlMVoRxCGYB25OG8hVAajYqK4zPjENDM7Z+h1NEvzc7SbS1jXQZQFB1FfCKu0Qgd9UbJyOMlpri/T7K4gyqIwfnZuw343t31LgsYo5S1aWNiwTOCwzhL09UDl4YjMOawxmBTSPMMlfauJcnjnvEaFChGHzXJ0V5EhiLJok+Fib8GJ0gBlPHkUBLGQ9TJs5pCet9aExmFD5TVkeGG05NYrRwJPWhA8gepbE22gvLTLgViFtmazL0UBBGGGQQi1xgqIaKwzpLnFOotSDpdqxCiUeP3OwT3XcHDkahbnT2MLBu1yRkenmJ07xWi8iwN7LmfH3ssYGh9nbXWN8QP7OP74UZ5odKmwwkx2hqwwQ6MgsLLCyFCNcnWMh9ZHeGDxJFlbsGlAO8+wLsGi0caTKnEp9bVzdJMWVirEfQtQ1yiyBM6dXeHEmSc4ajvUJibZv+cQuyeniEQjvYy1RotOvckjeUba67DyyAJnHz9KL02ZGh+nENfISNm5+yCFkYjaeJGrL9vJQ3d9DxAUgDe96U3flEvnYnS6Qrmm0LEiDmF4VLG2bsmAbuZ9l0EOofUaxFpFkeYJRx6d5+RZx5dPKTp5yOX7DM+6Wjg43kN3hUYd5qwQFxWq03+nCvQSWFqFShFKCnQAgfXip14CKw6qBUVNoNcVakMwMQWmFDKxb4jRK1uM705YOgWj1SbNOcu5M4pWw89GRARnlJdgGhB13iMvfZN9oBVxDC4XXCdj4XiXdF2IU+/PbWWKZltIcmF0pMyuXVAeOYfERVSwm2zlKNunekgInUzjxLGwKrRWhbUTKcnZlPoq1Feg3YO1luXRuYhdY1BaFlod6BnlzdxG0cwVDes4/oTjK48ozixDT0L2HRB6nZzVhiLNQw5sz5ksW/ZORazWM+JQWF6HRktYWoZeLWTnjGOo6hguQkerviARCkVBh2AqmtVjq5RoEXVStIHlttDqWoKCZsXAhFpl7S//kmQhZu8bMiJpIWmD9tIJzn3lBCbO2fbMVVR+hNYDj7GSFAllmqISP8M1fmbpsiWk8zj57HF0HhHM7ABVQOfL4AreOmBCT1ikBbIxc/Uefh9ls2XCvuFyuQhqg8xozs80RfmBdMP1A/0Bvj+6bx3g1VYS4y78bnPA33qQLZv6kRznyY5c8PUmmdhqIVJ4V5DFE6iNdm0R8fqqy3nyslE/3bembGpq+mXU+XZtnhfOkx7pu2SQTfcDCsLIERUscVFhU2/5MX3XjNFgQkWYCc6uc2g/7No1jFJ609K19R5oowhEQeBACUGgUJJTKAiFYoDpu3K8S0gQZzxRMj46I4odozszdh0MiSLvBhoZg30HHfV2AIUypU6BknHkGaS9hGpRKMcxcahRxhFHmrSjcCjyXMj7L4IoiCiWQoZGipsaHSdCpwOz5xqszs1SK2vy8RHWWxHNVoM07eJCR5jjB8cgAK0JI0OxMsr4xDgH9s1w8MAEpXLME8d6PJynrNGj2QPruii8e0aJ+Fm4BnEJzc4aK2vL9JJmPzJIo8SLQk1f+7LBWb2xUPDqB41z/r0hYr24tn+vC8WIgsvIrMPqDZLt361iFaZP7nXojyZW6PRSej2L6QgmlL6VzwuPA60wJsRpR55Z8sTieg5tDWGg0AXrI25SbxmCvq7Mge63xYvPFWL7JL3vr1F495cOAlSgUIEDlZE7wSrrrSmhJY4DUJpeCr3EkGUC1nmNWyCoMKC3Wuf04w8hEhNEZdaW1imUS5RLVdr1Omm7w9Kp0xSiiEJc5b6jn+CLD/8FadbhQCVCRSGtMOavHnqc2bUmoV0hDs/QMQUS72fFiSLJfGSTcwodGUqxIQwy5p+4l7/8dEzjxhfyrP0HqQWasZKmuGOYgr6C0FlOnz2KtorJYhmd9ghKNYZGagw7yNsdlts55x5e4PjdD9Np1onDEKMCxkcmmNm+nUPX74GiIRGH+yZTw35PRPF8NeQpNOqeNYeBYnlJ6KXQ6QhJG7Kuj3ZRKKolGBoGXYC040iUYnxSsW3Mcu2BnN0zkHcdK01haclHBlRKsN71+28ERnQzReqEroYoBCeaVgLrPaHpQraFjqGyZWQUxscVuw/AyLhlfMc6uc0YjRXjERz9SsbRR6C+LoxO+NBesf7Fm+SAgqjgH0RxDocG7Uj9JIQ4FnrdjHbLK9TFKawV2i2h3vb7bxt2ODlBUl+jVKkhgcNkEIbOh0uGigTFqQVFIw2YX02hp6g3hcWGop1CoWBodC2roolzYXHOkQMPn4HZBowby5EjilYqnFoyqFB4xiG4+nJhYQ4ee0JYzzQTY4rJGsyMhSixREVHO4FmE3pdzcSYYXo8Z7joqEaKGFD9CAFn/ACeoXh0NSGuJxyuGDpNxfGuIwo1Qxqetdewd6SNrWvyWhlV/xJu9SqEBvOff5BsPmRsr0b91R/Se7RIerpHIR8i3DaDNcvIyr0E9XW6i/PI8VO0n1ynfjqlNjrB2M9fR1ioohILruHfWCZCqQxc7gVJuPMDfn9QVxv+iK2akafEFnPD1km+2vojW1wr/QJbLSobvy8mKBvnl4vKPVUVnoLLnNecXOQf2Uq4th6/bxkS5cOgNy0tDh8SvXEs4ysnfaKivsrLS/VnrVk/EkKUP5BgiQuKwGhyEcRqlHIocowRIuMok1FN19k+MkQYh5c2WaSvR9FkWYrWhqQLSrwZXvUvhlKm/9tbc7LcR88pBcpAZTxnz5WGYmlDiOsFnpNTimuf4ZhaNvRyQyUSGnVNp12gWhbGx6E24l3EJhRyI2jjQ1e17ruuQs3EZImx8TLOgoil11Hcd3ePz/7tWRZm12m11omCnKFqRFwcppcUCaMAxNBupBTLZUZGy0xOjlGrDrNne43xiYDqMLTXNUOhphZrurGhl2pEDEYrAg2lakClWmBubpHZhXM0WnWcswQKf39x3uIiGiUhznU2Ca30GYhWgijj75/kfW6tkf6DIrlAlnmBfCrYzF8HVVS41JFZjeDdb32tJ+Qalzps12ESQYcOE0FghFBBIAYcdGy/46EgspgghFwhqSFQFtuzKKexCLIRsda3Ginx4nnBRzpp8ZYfp7UXVQcaHQaI9uHFLk9JE+hFQlkJccERx4YgDEl6GtUn8iaKGa7MMGL3YiVlemqCQmWEh+79IiqCYmmUsbFJJqf20mrMMTJepDI2wae/8kGKrVWGopgZt8rukYSw2uayoTKnl5s0M0XgwOkUbQSlAxxdJPTPqFYBsXEYBVpbbL7Oycc+Q7uzSrn8T7l+205CrSnFMDFRYmp8GO220xKhmXQoBCUSyRkqVxmKDDJSIVJFHls/QqvVoN1ps2/nAXpZTnV0iB27dpEWfC4zlea0e5ZvBt/TBEWkb0mwiqQtpNaS5tBpK7Ke0EuEbqKoDEFtyDP5SgnyUHHNQbhcCZU4Z6Sq6DZgeRHmzinqbRgfg1IJxqZHOD3f5cmzCa2eIrMKE/kHTmWQZsJ6DzqJIkcTFxQ7a0Kv4/OcLJwW1pccJ4842uvC+qpQX1O0Ov1JZwhzK1AraEInRGUQJ4TGP+MZkIufMTm8S8kpECM8cTKlGCqq1udo6Tg4uyrMtxRDQ4pbb1SUq0s0FwU3f4ZiMA9RxsqspbXuKIYB1aoiLqWsdRWdJqgOdDJYaQiLHchxEELDao59RZHnsLjieHzRi+ZW1x2fezAiLgm1iuLwXsc1V2ZMTkDJCisr0FrIsXkBTYtuvUtkhVqsmJpUBLFDBxAZx0jFUY4UEf4lk8eKVgL1HiBQrwvzqTAqCulaus6Sas22guKqHbBjd4bJvbWp123g7v4CdnWZRdtk/n7YdfhWIv0oRz63iH5UU9kz7sMKZxI6H/8Tki+0KamItD7rRY3BlcRhSK88BYXdSKEBrgX5nLdWqMBrEXTIpl9j0wzApjZ1U8D6VVwYvvDGz0UWEjjvFjKcDyPeGOS/CunZuuumSFfwL8iNh2crufkqdZM+abgg2kj6zd9wl+jzx1FbLCab4t8N147y313g/vEFfVnZUvYCKKx1iGiUFqwFEzjiIsSxF3smXa9bMgZEa5x2hNoh6RyjtSVKI5Pnp+sbzbgokgcC0uz85TEKylVFEGiU8m4ArRVaa6zkmCpIUwgjx/guQ6G4lWH54waBYnpSGBnuWx97QrWiWV2BUqQolXxbnFMo6925cVHIcoGOwgSKMAgolGLCOPTcz2mW5hwP3jdHfalNnll6mWO1kaDXmlQqRcZGSkxPVQlLVaxoxkaqjI+MEgZFlBKmRiAUQ2/FsXi6ydzJWbqtZVzeJo4ySv1cIEm3w+pqk2Mn11hbb5D1Ra1BP2eO7QtlhRyjIgITkbuwP3P3Hcto0zewaeymWVEjG+QdaDUT1jOLc4LLHJJDoDWmqMkDh6RCnjofbm4UOg48AQsVkga41IJ1aJuT56knSmjEWRCfA0ZHDm0CrAYxpu+6NGiloZuhXYDToAKDNqYflJCCFlQ/B5I45yO+JEOc3jQsYkE5A9ZHDNnMh8RXRFMtGUxkqBQKBETgHHFY4eDEDTDrWHaz1OeX2H3FNGIEMsWOsR3s2bOfXft2cOzxOUoTZT730Cd47OSTDAWWnCbH1nN2qxa7tx2E8hToRSq1AoqA3DmszcldjjLGe4sdaJOjIzA6wllLkuUkXUuneQ//rZty+uaXcmBmJ5k1HDk1z8Kpk6S9Nq1Oi9OzJ5kYG+fAldcwMzJMtRCQZsKxY/Mcf/BBeu0mgYrJXZfJmRkOXL6X4T2jtMQyWSgSGUPBhV9nonYhvqcJih+0+z7jXJEjtFqKRsO7J5o97X2/bRgaV9gNt08sVIwP83K5YmkJFmeF9RakXW9tGR9STG4PueGFmkceBj4Xct+RjNVUk3UFZ70AKhdN2vfJB6EnSZkV1up+BhRrBakizRyttqLRFnoWL5bSCqcVx2e9uDVwiplpTbmQo4Gs47CZ9FNR+Bd7mkHPABqOzCp6Di4fVwxFQjtXnGsB1ZDnXVnm2TdkdNtNOrMW24EkTOmJ4oGjcHYWUivoTFhvOT7yKWHbSMCBsqPRgy8eF060/Qzn1Kyl3YXmuqWeGgracGCv4erdjvlFy+xqwlITDu4PefYzYd9uYXxqiPZynW1jlvm1nFOzAduqhoJxSKBYXRdOLcH6mqZY0rTalrW6oYyFQEB5t9nsvKKTgxCwnJTYo3rsNg7JcuaBrsDkqGNywiFdb/ZuNhStukGftOgzRzgbDLP9+puZes4Ys59qkmhHt2eoWEtkl0nv+58sfqHOyFCRXvc0tnQztZc+l8I144xWFI4eYbHrZ+12BJWXkdx60/YGczD9ad2WBGZqw/KwMTjDRQ+nnHebbJCEzVwjW4qpi46xac346rjkNPT5iOtX6GIShFx6SHURkdBsbtgIdxf6VqKNjRvHVFv22VJdhSc3G14stNo4im933+JyAR8S+tYKhVE+JFghhKF3pTgnNFYEm/uoHG2EQCcU4nMgJxgZjhkeqxLFBi44rk/StnEOlJDbvgUj9GLPKDp/JZ1zGOOPEYTC5E6FE8fQkFCsQpr2BajGEQS+tV6IymbUinWKWhVspgi08wJfjU8WZr0ws1SFLPVuKOe8IF4k3IyI6rYVxx5rszzvdXTOemuOo5/PpdMjUEKohEqhSVyoYwrjpIxjClXiUoH6ckCeKRZn1zh18hxLa/M0Ox16WZs8b9JpZjTaOauNNj3no1Uszg/0yrtorHIYBO0EpT2JM0ah87iv3XYXdn3JMUZhne53Nz9qigid9Zx6p0sQ+GRuNrco8dof1yeoeeLDuJQBVbCEfZLiAtCBQrIM5xRpN8VigQijFCpUBNrXP0lS7wosaMJSAJkgQeBztiQZxhhMOULF3k+YdDR5u+stK85bWJxoXzfrIHco7Y+fK4WgcM5HwGQ9aGuFVY5SUVOKNFFsCImYLB+ke6pNY6nO8Og0rbVVVhYXqNSGWFlYoFNvsTy/QFQwGKc5+cT/pb16HzdcsYtCFHPy7CrHlxvsb4eMhAe599RjtKwlznPEWZztJ49ToHLBqdBTLHE4DJlLcYlDUkWW5WS2zdy5T/PIPQ8ys+9arrn8JsaiElFeYLnRJctCwkSzmnfID8FwwRBr4cxCk8fv+QqtRgsVCFfuuQwqTZ7zooOMT+2CsqGgFXExZKQYUFLhN8NPvrcJCg6sVWSZf2EZ7WfeWivameJsS6ED7+6JKjE27THZhN3TQhwJ3Z5mbkGYXfBj4nBZEZaF8QnD7gMFrrxuiD17c6aHI0rK8sjRjF5uSWw/C4Dy5ywghFoIYkvJONJU6ADZgncTUfEzAnHeRxtqIQcSJcyvwHwXIqvotkGVNZdXFaHyAlknF078Au1n5EnqkwOdXgCTw0QNVhrgxPCqH53hxuc5jCxy7F6LW4Cxkn9JNltw8iSs9iDNwXbgyXlop4oHT8C2EUWvCyttGK4FjJYtnY6j3TYkDmolzXV7LT/xg0UOXxfxxc+s85V7Mx45Y7j8QMw1VxlKQcpoJWakpBiKoRQIZ9dy4pFJ4ukFnjglPPQInJjTlCohY4WU1RXHVx4zrO0w7Bx3TIwKiy148qxiajIk1QbZOcK++VmG244USLQiChWBEhZOQzvRtJzDpo583RKkikIjYO/z9zL9rBLEa2TNJmiL1gXotrFr0HwYWu0OppcThTXG3vxCwsuqQE7oLKIEp2KUE1Q+AtkUqBCvsGuC016QJA5RmR9wNwZpLeddJBsakovdNhfrTLZYUjYjaTZxoX5i6+ZLCcZWIrKRMG3j5/xxNi0aWwjLhqFFwYXH3ah3XzPjQ3A3yqkto1G/bVutJ1uqtUnGZMvGS07mSXmWOXLrI3RQEGshjDSB1ohAt+1YnffExWsJWgxVlsmyhzjVPkk8coBipYQO9AXXTjbMSmiyXOj1wFlDr+sHmkJZo4ONyovXr/QRGM1wzVG5wocat5pCu+UtQWIthaKmVPa7OicorfqGJY04IQ68i8M5yDNvGiuW+qGu1ltQggAKBW+VzTKDAFkqNFYtTz6+Qta1m20wyme2zsVfk9wpGl2h2UqYPfdFXPI4odZEgbcIlQo1DDGNToulZoNut0sh2k83DWl2FokKJXJVoZdDRl/UI55I+ay+alMv1O9F4CxaB2gd4cSBWLTqJzfr66sUpr9P/8XWD1dLuymdtS4m8JFUPjGfY0NDoZxDZV4oiyhU6rDKQqR8IugAJBdsCiozWAEdOKJSRDE2WCx5IrgsR6ygFdhQY0JFnltUQYH4zLVBOSCoBSijUCVDohxpK0Fyu5nULQgCTKCJgwgTBuhAESlFHuZkaUCW9c2c1pB0BaVTdKiJoxBtIqqM0M4sI6NjTA2PsSSak8cfozI2zL59V3LNFc8mLsYY0+OGlz2HD3/iV7l/dZldwyFT5YAD2y1XzSiUi3HVnWwfzzl67jRp1/avr7eaxHGR0PhkTRZN7iy257DOgdXkHUuSASoH7bAEbNu+gx++5SYmq2WSzNJMvTsPByvrXVbEsdLLKGQ5n/nre3jiwXspRhFiR3wW2t17qAxNMbF9lEIhIMsdjcSxJBl5L+ebwfc0QXGiWF6BTu61IJPTXtUfxf6R6YlPmtbJFLONlNxCKTLsGhe2TTjKoTA3D0mquGyXYnLEoE3Ojh0R1940xNRUgnRSSgXLzm0JE6NwrgHWeLNlYHKqsc9XYnMoamFHCYpeLkIYC1FsMGXN0aMZxRBiIzgN1XHNYgbLC8LYiGFp2bGca+qJxYQwMeEzrmZ9WYNWikCBiSGy3u3Tc5BaOLGqmG9Cq6c4fDnsmWhSloS1tYwjR2HhtOaZ+xXjZcfpFfjKGchEESpHkkM3g9wKylmOLiomqgH7ZnJ2TuRMjwidnmK5YVltOqply8ufJTz3Gsv0AUHrAvl6xtKaoCWk2+oQqIy1xjxkgrKKULxmppPVcUX40sNw8kTA9LTh8n05SdtSUHByMefEvKFUDJmaTn0yrFiYHFPUE8c955pMJIo09eGPO8ZjzEgE7Q4PL1tWc0sMxFoRWM2QKHQxZvgAqMIa+WqdfLFJNTCEBUWv2aG3bqilOa7TpQ0MX7uLYFqjVBNxDqvLaAzKxDgdo8IWKp5CBWWQDLErPs7cJfg5ocMnDmFj7DsfAbPxeevfTyGcZUsROD+mbo7xF4k8vz6ewq2yxZW06YLaEhV0SQK5rdggExttvOD3VqKhEC1bP15EYMDrF9gMcDovmvWDWJ5Dp2sx2qCMDwsNY0PfkIHNHPOnLWknQFQOqkshnqPbvofl1kmU5ERSplwbQpxDtO5bk7zg1RgfQmut7Qto/cBZKTnKZV8na90WcuJPvJGNVhuvc0MpssSnwbdpwFpT0FNCVAL64lBnfflOV9NNHJUyGO1T9otoum2vDev1FFiFjh15JhRKhoKCMNA0luDsqZTl5ZbPzox4q4bRmNDrNLSyiGuTJ+tk2TJdt8Jat4XNUlKbkKcdRLK+/sPXT5xQiyN0sB0XhCRZlygsEKiAFIezORtRMV5M5COYvEGun/xN+VibMAiwzrCRGVlp5xNNuj5xUD5pHX1rjCe82s/608yTcrEoLFYplAvQ4iMb1aY70ed1cKnvRxofVm2VI3M+H44OHDoUokKAU4pMWazEuNzrxSTJsQVNVIagbKCnyVu5f6lKhAoVkQHJC4jTSC/t5/fxkVRhLBQqBl0IMaEDNGkuqNSgMovk0u/bDpsabBZQCCYYCYZR6xFGd2h3m3TDKlPTMyzMnWUkGmPvrsvYvmMGR0q31aOnHuOx1QXqWU7WssymBWaaiueOCcvLlm7m2DG9je0PW2rlAifXc3o2wQZeKKm1j87Jc8Hljm7ivAbH+eyLcSEiiAKMEYJSiKOJK1hGhkMMcb9P+VfGvm1lztQtx07VOXn3fZw+eh+loQRJNHv3XUMnaTMzeTXCMIu9FruqQ1TjAJc4llbbrKw3v6lX1/c0QUkTRb0hzDcUPW1YyiyVUHAZOANJKvSsJhNNL/U3o5cIK2eEh88ZyqFmW0XYMylcd22J664b4tzcGocPTzA6UycIOrQXcpZOwPGH/Zo25SKE4ghFSIFe6igFsLMGUwVhyHi/dlSG0apickqz95qQB47lRMrf6GJVk8aGufmc7TsDTADH5wSlIkqBxbiE6e2aRk9x6oTzGWzxpk4lPg+K4NPqm0LA5KhQX7dUKnDtMwyj0y269Zy8AYmDe0/AakeoFYQj5xS6YPgnt1U5O9fi6NmcRtsPBKtNaDrFoe2G67bljJYcoyOKalmz2tKcOadZ6wqHDoYUSwlBUGXbVI3LDrQ5cUp45KGU7cOKnSU/a2y3ASWYENaXHfc8aFlcF9pdx/BQkefdBFPVnJVFn94/Sb3wttnVnFuGTgfGarBrxoIVFhYzsm6GEWFcK2Yqgqk41s4KrQR6SpE5hQ0CKqHDAdGQEK0eRy3VWX9sDbciVMuKXiel1VMELUetk+FMiV4k9KRD/MD/JJ09R2VyDPWMF5FPXIZ0j5ItzVOe2AVRzQsyJfe/SVF54jPqqYxNK8dWN4eo80/5RRaFS9B/ghXny13wTF+8/8UP/KYlZIPZqM11Vp4yPf3F7p4tLhrZ8vnrZqbetIZctG2jIep82+XisnrLSfvfZ5mj3eqLWPssKAgUZkP/YB2r846Vs5o0EZJuD5sv0li/h4ePfplcWabGh6gWq1SqsfdA9U/s+q4F56QfEaPILIj1GVKDUPquFR9W7JxDa71psVBKo7XxScmwBIEi1ULSM3TWhfUF6KxDbRJsrgiLG44sn2gRfHIvGxhcv8vY1BBE3jphnWCtD6mNY59zJelZ7r+nydxcg3azg3OCdc67tIxgyHCqRy9ZoNE6gZUVknSFNG0hEnqSYAwOn7jSSe4j1pxFK0WSr1IKZjCE5HmCiS1GYp9wRoHWxpPyfsSX9F17rm9P0cbr/AKtCcT4iBZ032go3sWgFD5suJ8crd83JncMkZcyGvUOnXqbvJPjNvIC9cOjrdAXd/oEc/0UvmiNX+dHBJRFhyDOnzGxCUEiFAsRQ+WQ8rDGiiG3GUnqCEqKkeGQKOiPJ+c0vVWHtHOUjhDt89wExZDQhP7dqw2CoEOLDhRhkEFoyUTIRUGkCI0PZ84yUE4RmZiiDqkFFUqdCc4dOcnY6HYqhWGWlxexxkEgpO0MlRnmT59g/9XXULfzfOpLf8xIZYS006aRtsmccEWlgrQ6VKuW+vzDnDy6wJ7RAllQQDVaaOXInSbNc2/xsYIVwYlDnMG5AAXExYBSOSCKtbcKRQHrC0/wqfs+S+nZL2Lv8BCmb/JUgDaabSOKxkrI3WdPUF9bphROs7C8TmY77Nt/GaWhCutZi4cefZK5bWNM1moEuogOAsbL5a/zErkQ39MERSGMjinyAJ5cEh47C7VIsbvmXSYTJVjPBMT2s0gan6xHe7/waFUYinO2jSsqxR6jRWHmakVttAGqR9LOmT3mOPWIUE80XSfkVtFNFFkAw7EwUoHh0OclicRnsS3GiriqGKnB2LgwPp1z3dWKbMVrZPJQOL1oCSPF5Jjm0SdSMq0YL8FE1RIITE6DqWkWlhy2LxI1iF/HwYGIYmQo4jk372a4cpbGUpdMw5WX54SBY20ennxS8fgR6CaOu4+BCjWX7SjyUz+2gxtvLbO6tsCXP7vA6SdyFlYUXzrqON6CydEie2Z6VEMYqsLufSGqGnNq1vC//6qNZJC1LNmZVXQeUCsIlSLMLnZ57IyiclDTWrTUe7DYUJxYEppNeOLJnDNzQhRqrrusyI3X5uyYqnDfF1fQWc7aOiytO554MuX0OXC5YfuEYWxEaKc5C0ttrhRvYE5ysIsZ6ysZiy2hoaBSiSnmlomRGnuHLEuPt2ku9njyExnTzR5PPtijlDm0jUh7IWmaoDJLbzlHjxSIsxadY6cpJsvYrMOa09R2TEPwBO2P3Ek8cSvyg96a4uO6uigiVFABGeonSOh5N40J/MvYbc04Kxe6eS7we1xkJtkgDFuKbLpdfFf2xoqta+6cfzAuIh1ywXE2SVI/g6wo91UJyOamCwjMxtJ9T8Gz5HzBCwOXthCzDes+bOp0xIHT4nmK+IiddluRZ1AoKqzkREYThOcFq511YeGkIuto0iQhSZew2aM8eeIBAlNkpFqhFo1izTBhbMit83k3hD6x8EQ6s4IoTZb56Jk4Fp/afss9MkZhU0uSpZSq8WablGIzwRoozp4Q6guK1rpfcLQ863DWQZRTm4yISpog9F3FZppE+ay1/hpo0o7PE2j627JU0+s4CjXH/JkOD95/hpV6nU63Rag1YoTMdul0l1hvzZJkS7Q7x2l3T6FVShgaAqXRlJC+kFsrg6gQpG8REIsVRaZaOLuOogTKE7dA+/xMmRKiUJioRYhRrK2m2HTD7aXYuHE+R43BaC+CFeU7qnaeHSuNF8rSz0zb7ytTO4eJJwNWVteZPyOsnWojPZ9GXwdey4P26ehNQUOkPT9R3rqM1X5xw9x6YaxyZFbhugrlDIFxVMohQ1WDjg25BHStRceGsdECceBoNXukPUXeUqhujtMKZwSbOZSCYqVMKQ4x2ufeStIuWc8/31mWkFtHlvsFEP2kxPgMtsa7tYaKwxSooBoxuTiqlQJD4xPcc89nyGYzdu46yJ6p/Vx3w7OYffIJxrYVYcxSPzLDsy/fxpeOn2P+5KPsqwYcGh/m1GLGmdWc8e5xFpuKbcMVnlzpkocQhiFhfx2OPMvBeItXEDrEGIxoNJowCjGhz68lxvpcNnmPE0fu5wujk0xefxM1E2z2d8GT/OPHz7B0doXGEkyPhowNT1EbqnHVM/cTjkTU15dZmJ3j5KmjjA0NMzWzm4O79mGy9NKXzNfA9zRBqVShUPVRJ4FYdo9rZoYFaYNNHOWCImh6t44VR94XnZVCYdeIY1dZQQaVAjz5REaA4sABC6ZDGMPSKce5E8JiU7GYQKgVByZBlFAwClJHr6dQxmeONRZKsc+/sLAmDE8oJmcchdhyzWE4+WiMLhVZrbcYmR5hIuqwMtej3YFaDLtHU2qxJQ4VkRauuMJy7pziyAMg1vtx9cZAYjTPeOY4L3l5FR2FrJ2FXqdLJXY0V6C5rjgzH3BuKfc+YOUw2vDSF+/keS8rEY51qO4eYXQs5OT9sxw/YXjkZJegoQjFUS5ALYLhima0WkANC520i2B5/KgmToS0miA6YX1FkWSK6rDmymdWWVpY4+QZWG4oHpmFxYZhetxQLOR0u4o4LnLLc6bYue0skzXHVNWQVC3To8JCG1otR72hqJZCRoeEkhE2XLpRf1bVEFhpwhElNFEECIdxGNFUK45mK6VnFEO1iMdWc1Y+nbCWCHtGR1H7XsiO2gIPfuoLrDlHMckYL0N+JCHYpui0esyfLjJ68z9m5LJ91D/9f8jOTTP0kqv9mj0uBBX0B+PM609MFSSFrNtPXBXhWYTDC5A471aB859Rl5KHrbjA1aLOa1q0t6ZtroK8UXaru+U7hX7dvwpF+dq4xF10/vcmH1CQpdDrKEzghauFWBFukBOELHE0lhW9hqLV7pJkq6zWH+X40buQrMv05AEkmODw9c/l4HW7MMaQ5zmK8ws5aqNIE0eaau+mEZ+6wK9Qqzc9aT5zqebJ+9fpdHtc+4JtmL6l1Icp98lYPwmxaIcOFVlXM3euQxBpdJzitMWEEZVaSFxwBKFfW8jlirjgw4x7LUArXK4IY+dzcCiD1o6FuTqN+hrNepNu0iEyFgl6OGljew1s2qDbbdHpWURiH3ItbGpvlHX9BHQxkoETi4hlo9NYybDSRFQJqyCzCVEYE2pDJpYkhYXVnDhUKHc+05/T3r5l6LtZBCDAr15pEfFWGm856Ycaa9XnNd7lZgohxWKFIWXpZQnt9ZxsJcUoT5Ks9u4xY3weFRVor0myOdYpJM1xHUfe891JRwqjNEZ7At7LMlxbgQ4pxzHFYk6sxZcLDdqAcjnaZAQljbQhEgsmoKs1ucEHNoTeCqWdd5MkXUeW5ahC34dqISdDciHSmulKkR3DVU6s9hir7GBC7WWucQqlHOvLa0xMbWdqYjudlSYVV6BciDGhd9strB5lfvZTzM0d5cbrnkHSadBtW+Zsl/9z5DSLHYd1wq60zrW7p5ldb7CeQBhHFALVd0MG5E58JJLJ+0Jt700wNgadg/iFDkPBE96sRbe1zKnTR1m58hqqlcqG4ggROHZilQc/cz9pK2F6dAf19RWmZnaye88+SqMF9EiRrFHHpo6Fk6d40h5j32Ut9s1MUwm+uUQo39MERWmhuw6uJRycgOExBzk0raKbguvCeFnTyaCbC2KFsZJh1xBsG3IUcmhnsLwq1BvwyLGM4Yqw/6CiWhZUG44dV6x1IEUoFgOGhizNdcdKXdF1UDDCRFERl3xCuGIRFtbh1BI0cohLiueFMFSBiUPDFO0Y7uw5MgVrDeHkk8KOXRFr8ynbypZuXegWoL2uKFSgaiB20BOwKIx4E+q2QxVe/MoCo9sWkPIE1ekSjfmjdJZT8g6MjsKLX2Y4etxx7LTQMxCZkH17ixSqc0gU4HSJ6rYCu9KAuXpGL/WvnE4vxabeCBDljny9haDIm8LiqvAlCRkuWLKWw4XQ6fr0/J1EOHmyRXfNcc8JOL0KWmn2TCoO7syJtGNhVdEWKJc7hLZHa7FF0TlqRRgeUtSWFYERL7CtCBOjQiEQ8gQCJYwqoYhmDeGUc5xEkYhjm9bsKTqGh2KiiuPTJ3MmiwX2TAlzjYxTPb8mysHDN7Lz9mGaf3QXrRbkQUA4GeDmOrSb0DuZ4cweJm57DTOvu5kseYDGZ48w9OLXYnbVwNZBRTjV8xEFruNDj+mvNqcr3iTtU1SeJyVbiUffSnCJOPWpfLPq/HallH9it4bvCohW/QSx0v9M/7MfzNVXO/ZXw1MRnIvcQupiV9FT1PcpsdWKsnWzuvB76V+zIHAUYojCvgBVhKQrPrmh1mTW0qFNubJAZ3aZ5Ww7t9x4OXFpF/uv2sHMdIHaaIS1G+uueMKhlCJNfeRPnvt1dbQS0kQRRtIfVCEIvItm6bTw8D1dutkaOy4bZmJ7FWudT76lFL2uIs2hUFGURyBNFVYy2u0cOjlBlBMFgXeR9CKycoQa0lQqfkkBm/kMphrvJrEWek1Ht6FROMLAcvT4LA+dOoISy1DBR44pZTHGUimXKRUihtJJOp3dtDvLJPYsmFW06QIWYy3WCkjg3TVoEIdfRNHftsw2CM0kiCHJUsLQEgUxvcy7xFKnSHsQKeWTuPU78sa1VX2Hj+4nxPO3U/XXtemvU9N32ciGXkkpWu2EdtAj146oYKhNlWhZsJ3cCzrF9t02XmPj1/zxIckuBUkskllUpCiUI8oVTaFivG5FaR9x2RXaDYsTqI0YokpAZMRH8uQAEbgeSd/CU4pDCjVDLQpoW0eaKHriCFCkZOQ4LAoshKKJSyGRgST3iayGYp/92JmMq3bPoJMas4+fIs1z9u3cRXPlHGeOH0GHggkjJkZ2sb6yTn1plT3XHuJv7/s92u0zfOnYOaZHhYmKIQ4MDSu06om/dzmYsqMUao7Nt+mJphBEKKMxJsA5nxsoUEIQGJwOcVlCmmTkaQI6JNbGL5IoCqsViVoDhPlTj3L/icfYdtX1xNqLtJu9jM9/8gGai/NkiWDKQq02wY5tO9l79U627a7RyWGoWGA4inAze2i1u7TqXZ5YXuHKseGv8XK4FN/TBCVLFHkmhGXvikg6XrcQBkKtAplAmAvrXUdRfPRMimU4hpGCX09ndNS/74cK0MuERkNx31d8eNvMCCytQyv36ezTtaxvUvTmz43MiZWSolQQP7vX0GwrokBQTpF0NZ0VS3FEEZcMu/aMsn/vKsvn2nzm7oy053AuZ7gs5Imi21UcnxVW1oWcfmSBxq8ZASjxD3m1JpSG6uhQg42w2TzFMKIrKS6FB49rnvGCIe54fYMPfTDh0ZOayOQ0V84g6wlKAnTR4BwMDYUMDTkwGVbBwrrQaGnGjCVrC425nHxNcfqcYnUNjq6kTFQCrtmdUh1RnFuDh44Lx85ZVj9mmaiGtPIMHSj2T2ou35YzPSFY59cYevhMwpNPWCacxvQc3U4/lBrFcl0olCJ2jOZkeU6eKNLcv/wiESb7M68VKzSVECIk2rCvoDlYMpQLGY/2Mh7PhW1jARL0qFX8uj8tU0DGMub/8uOcu7tB11TZOVOmXGqRnRLW9ShDB17E3tt/nOEXDqHMk9Q/+t9xq8NUrz2ANu2+9cQvY65UGUEhzqEk67ssyv63bXmG3M9OiVUXhCADfZIiXiBq/Ytu6/o4G0nNNnWnektIj904lmJzjZ++qd2H77JJjjYjgbZG1GyQJLyQT6mtxOarYIPofK0ysFlHtbHPRee8gABdJBSW/k5KCWmeszyfgxOGq45SJUCrgOYqREUhqCjykkXykCTaSTAzxQ8+s8b+nZqhIU2x4PxMVyDpWYolnyUY5ZMaNvoupDD0SdVsrinEUKnQ16f4quaJYvmMw4ZVmusp939xnhe/soTSik7L99te6kWyPputX8XcZj6stdftkecZywuOkTFDXFcEQUStXGF0rMTolCYsebGsUhqb+nDWPDN0O4KJ/ArfZ8+sUu+06fY6LKiMmZGYqfEhwrjsr5lTFIsZQ+Vhet0Zmu2ddLIFchYRtYySdbI0RcShFX6NG2x/RWHtXSUmITAZkYtwYlHi3WLiBEsOph/BKP2ocNWnwX1Xob9/GiMaI/21X3zmM6wVAuM1M07h9RB9fcP62jpNmpSLBhMroqpBFwNszyHOYvBCZReAMaaf7dniejmSOlzuV7QemogYnTIMD8eEJUMQeCFvmgrdpiXv+aRw7VZGL7MU85BiATAaRYAJI5yk/XT2jkohJqhGFDWkTpOlgs00pqCJooBeLwMshViolAMklL7e0VE0frXqromZKMTsrE1yttGjsbJOUQnlmSFOnVpk+44r2PeCw1x59XWceOJRhC7h9Bo7d46ytLSL5OgxHj45x7X793Df6ZhWmpKljl4voyCOK7dPkGVdWp2UTGk0grYh1qQo8en4S0HkI5CUILlGck2aJn4yYDK/CjghWS8hy1J6mQI9zz33f5Zrdh1g/9AI3dTyuc89ziNfvIeYjN3b9rGwOsvhw9ex78rLmdxTo1QJ6DQtiXOMTEyy58ABJMvp9LqoTFhZa3ydl8eF+J4mKPV1QaV+zYwsUzSaQuoM1ZKiGCmuvcxQruQszTpOPOEFsgKMVKBQ8CsPi/WWeaN8CG8WQhj5B6+3suHj92t/hAH4Rfv8Eusbrtco1MSxYERoNRS7Z4RuFwpxyDOfM4ZRc8RFzd6dMYWRNda7GePFMrWSIwxzigVBtRUSQHHI16MniuKwoqd9YiBjvMXU5X7EOvd4h4VHqwwdbqKjOnpjJp1CKAGfvc9yuu74udcLd/ys4f/73Yx63bF6uk7rcU1ptIOpJeCErJORNITIeffVyWU4uxYwXXU0ekKGl1LU2157kCGcXMmYGIeH5+GLDwkPn1aI0aw2HL3EgiiGhzUHtjl2jQsTwz5N9cgQtJXjU59dpLkIB6ZAUsVy03H8jKLRVOzaLuwZdqx1YHEZztRgchhiJcwow+PAWYF1vFm5AFSt5ivzlmEtHA81HRMwPZbTWEwxYhkJQ3ZOlWg1T/O5v53DZIad1x1gamgBc7KHjafZ99r/lx0vvxEzESLtEzT+2+9S/7+z1F7xzwiGIqCLM6EniUqBilCqgl+ZzvRn5tonbnMKXII4n0TPRzT0SUr/86Zlw/Z/NgiM+IZtuPfV5vo3sDkyfD0rBU9RZqv7R2AjYsW3Ry4s89XwNTxQl7iXtoYdby294RLZ2OcCK5H/HAZCdcix2hSOnVQUjaZYzum0rE+5LgoVJJSLAePlAuVSgUOXC3FBUYxyhmoRnWbXCymV8SsRK5/3JM0Vy6uKbk9TiAUyhzjPlEplBUo2r4fLYHV2hbxXYmw4wrkKWZLgrF97y1lDo+4g8Hl7ksRPlNLc5zRx1tLrdklT705p1FOvf5sqYocSVueX2NEYYWpnlVI5BLy5Pc+g0/I5NgolzeLZFr31RSKd09WQ5JbTS3V6eY+d28YpRF4Xo7UljEOCwBBHI3TSIu3eJGm6SmbO0jJnEGmhxKB1COSIAqP7fVoyoriFtVVEHGmWUIhzimFAK01BfCSUQ6P7WiTp32onut//NWLpi4o1fmFBr38RFKK8SNcHc/sBNO+kZConMZDYjNzlWOXw0lpvshNj/MrIOoL+mksSKFApYVlRHdKMTyiGJyNKVUVUCIijAKW9ei9LM3otS2s9Y3XFkaympG2HDBuK1RCjNUNDJfJc0VnJyVJLo+7XOYuGvf7EOUWee/GrLffoNDukqWBUtmktiiODsj1AISbyk5nODFm3TaWScOLEHJV4B1dedhmT46dZmkvJm22a9UVym9Ju11k4/SSqs4Q1OXG5zHJaZKxWZNfoCE8urTNccoyPlLhh7zTdNOHP7j7BegZRGJHlKe1WCFoRhIHXo0QGZX1esCyFzKaIs94NpBROclLnQIy/Z70uYa/BwtnH+eyRBxg+fBOPPDjLJz78MVRiaXUthaDFxMQM07u2cfmzppkYjdFKKMea0UqV1sgElVrIWBiQ5EKjl7I4e4LvidWMvx1Ic4gNDFUVrZZfdXihqdhxZY1bbzbs3Z8jeZeTRxJaa7C8CtpCrdBPDmV9orbcCt3Up5h3+FV1tUCuFXkXEulPhDU+UY/zC/c5BakoUmswoaPbFAohVCtCbBSVWoHJSYfK6IvHWqjIoiII4h4qSH2MfuoYLQu1sJ8S2kE8BNP7Ao4fS7E5kCvyRPpmUaFWFVpLLY5/yVJvwq5DhqFphyTQWIO0A43VlOa5jGufCT/ySs1ffdSyMKs4d8oxvu4oRm10AOtdzWNfEXLxwuGyyXly0TFcUOwcEkopNDL45APwxKoijzVn6o7sUXj4SWGxrRmpaK6YEjqJvz7djjBU1eyYEMbKMF5WjM/ELLRzWrnl6OMZn34wZu2gYrQotDuajoapCc3lO3JGY6FWhbOLirMrMD0MwyhGEFYF5hV0gCp+7aJzqeVBLZQF8p4wHGfUmpbFZUXVwJAIu4s5j55a4kzXMRY4ZtLTdBZ6qCXH8POvZO+PHoKa0Gs8RPtj/4vFPz1BZ9dL2fny52JMC3KLIgPpIeQo5fBpGaugSv2X8EbK+xQkRrmej+7ZsI5s/HawuVhg/0fY0Bf1f/oEZXP03iAzX8sl9BRQ6iIGsCHaxVvmZDOEVs4ThqfAhaLXb+TEm//5/RXnXV7nK7dRkQs+h5GmUtRsm3SYUBPqHFRAmmqyxLHWUKw3UrRLuOxQzPhYhOmv1KtUAAhZroiiEIVDGy8uzzNFlgvNjl9jRSuIA4VziihShGE/+Xo/Kd3Swlm++MSfUORyyvGzKBdL3jqS+1wsYSj0WooktdhQ02xCY61Ht90lSTMy6ZLmPZI0Ibe2H9qsSea6pGkRl6csrswz/mTMzMw4tZEKJi6RZIZu1zI2GdLr5Xz2kw/gOueY4hSBUdTzAl2JmVtt0kl6jI/EFLTzosywhNYhuTjCQDNcKdJLxmh2hNC0sa4DzvqFF23o75GSzejxXrKGCipoF2KtxdqUQlimnXa8oBqN+EVr+rezTyKMwgoE+Cyt/eX98As5+gX/RECcQ/cjYTY6tJGYQGlU7juKkhSjBSKf6yqxgnaO0ChckKMxPgN1HPplDWIoFS1E3lVNz0ekiFFEhRB0RFwqUCilqKBLJ0vodhzNZocsLzCiNENDhvJYiWIZVoodlhZS5pbblFo5w72AkYkiYSlEhwrBolWZoiik0SFJAlyeoCJFrhw4S2g0JtCEtkR7IWW50GTvnjGaO0aZOz1L6YRh50ybQ9dtY3TPFLNHj3H1jTfw4GMfIVpvs2ffQdLVlJ/8R8+kUiiyjUd5QXqCscjS6bYZjaBWifnEF2ZZ7gJorE2xIihJ0GFEIRZCrXCiySwk1tLrptjMopSgw9x/hzeh6kBhMBhxdFNN0I458sCXkFMNTn15jsbiCiPVKpWhcdIs4ZorL+OyG/YzPVXsZxf2esrLdg8xPlyg3miSArMrS5w4fZyVc8f9Ol3fIL6nCQrKW0KiUDAoCqHi6ss0P/C8InsPtXD0SBLLUBV2zkDS9u/luODN3hIBgRAWFBjBdjwJIeon3HRC7BS1EOJckXSVXxAq8LlMohDiAEJy8q6Qd6EQ+9UzazWY2hZSLuaoUei1fJph1Vehnzq9zvzZnEgU27ZXGCo4XLvlyY8FI9Bdy3xOlQLYBHqZwmkoFQOuvipgYS7hM0cUVz+zwhU1R3elTX0Bzp6wRLlw5W5LVAgwScpLX6w59Zhw+pRwbE5hUj/A6wIsdb3gNNeKooZQW2brwko95NAOx3BgeWwOji0G5AYktZxZFFbXDeuJsGsi4hUvjLhiZ49HH85ZWYFTK7DcUmgxVExOUcBkGTGOoYKmVrAcWcp5cskwdrXl1ps1jz7iWDvrmKk6ypEwEWiGS3Cm7gWZFaDnhDWEVHn3WgQ0lbCOsOYCbF+nsN8pGmcdZeMoOMVyz3EqscyLo40jAJYfX2U60OTlGuO3XocUYwTN2p9+gvk/eoh87Cb2/rP/h+I4iAtQNsN2zpA+8GmC6V0EMztQaFCxF+6JAtdGXBtlNbjIu4Rc6i0pFu/qsX2/zVb3R39w9SbX89YT6fu4N5O/fa1Msxc/+JsGjC3blZw3bPT382nm5YJjXZA3RV3w6/zhNo5zsVVmq1uqf5C+16qfan+Lv0f5gW3TutSvmFI+GVaxAJM1ISoYtFbYXFirG84uZBw7UefME7McfTjgRS/czZ69NaJCiIijvtrFZhFRbBDlSFPIraLT8boSo/1zliUQivjIGqtIE6EQe5Hi+mqDLz7yRxypf4Is/zSj9hH2xj/O8Pg4QX9ZH60FsYqVeR9N2OqlrK20aNSbZFmPtJPS6jVJkh55Lv1Zq6GTBLTbPplYGGTMLq7zlUefpFoMGR0bI4pKRAXD0jnD7NISn/7SfZTDItJ5gqFsFav30nEHyBGWGzn1TpMgWKagO8RRgcjERLpAHJTQQQGlNCGWgonJ8hCnE4zSaF3CudyvpaN8bqlcUmKT4HKFISJN1imYkEBpMqtQQYCIw4kPifZhxxqndN/l460nuTV9jUs/wl4pxFnvElIKUSHSX/ogVCGxCgnE4Zwj1zF5lNOLIU8E21U4HM6mWOtdfHFBEZciCrHGBBlo6yeLmSKQACcGo0Jw/XqLQZmQ8lDEhGoRaEevkdPsZKytOjQFhoKQKCpTqWnqrTaN5S6NtS5KBRSCCKhgjWCt160olM+ia4DcEOQKHUbkJgSdEwVD7Kg8g2S9g81zOg244sppFurHCYaH2HHlHg5esYPSzD6WT81T7zxI1vkrmpngdv8YNzzjKpJ0jXJtisUTi0xVT/HZrmKpGROORtx7tklHW8KSwebaZ0t3XpSvRRCx5HlKTxyx1gQqJwyt18nkQn+WjSp4K1qAITIRAvSSNqqpiduOMydmmT95juHSKAvzC+zYXWD/niuIKgW2bYv96s/9l4JGGC5qilGBqaGQ+dWUY/WznHviBOtLp5nS3ycEJTZQDr2bpVQGi3DZ5YqRYp3G2Zz5uZxG3YtLy1VFqegIjF8dFwVK++Q1NhMKBlQIxZIiLvvEaxJBXPKz8iSBdSu0gfGaYnhIUYiB3GeObNXBprCSQJTCTKQYHe6xPJsR1wxhAbKkgywmrJxNOHrE0lgS9u0s8azn3sr8iftZP92G/mJXhbKim/loIRULrb46PQ4MN94yxpXPTLj7rxOuuCri2S8rYMwKC0/A2izML8PhZ5Z46T/WjM94M3UV4cprFA8/KNx1jyO7zIc1mwjO1YXj5xTrXSEJNG3xy823k5yjq4parBgfNrzyJQUa7ZxzZ1PWm3ByVRgqFfnJl8T8xE9UcMEiExXN0hyYBxwnHrUs1g07Y0UeCO01S1RS7NgZUxtKSc8Ip2Y1hUCzUs/orCoOTjqGYyhHikIZyiVFHnidRVEplgSG0VwtQoKigUNhGEdxVhwx0EOoZkLHwrbIYZ1mQQm9tZQzHUtDYNhqiloo5AarE0Sn3rjRO0Zh1w3EL7uG3c++guErU28Kz4Vs9SiN//0nNL/UYOzHLqc6XQbdwy9cB0r3TR8u9flRnAIXbMSU+heCpb86qvhRcoMc6K1Wjg0tRl8TIv3Be8P6cjH6BGczydnFIcdbIBdrTbYmXesTB9lY8+epiNAlx1SXkKPNvzbW6ulvFM6LKS84jttgNGoz1T34/BPFUkCzkTF3BkplRxz7rKJpktFJE46enqfRMpigyGMPLTNcixgZKdLrhlSHYyqjiiAy5LnCKugk8P+T92c/lmVpdif228MZ7myjm5nPY8xTRlSONXdWs4osFskWQQkNqdUtCv0gQA8C9JdIAtQQJLAbjQbUZDWrRRaLNbDIqszKzMohMiMyY3aP8Mnc3Obhjmfae3962NfcLSIjySwBekjwAO527Y7H7jln77XXt761xMVwUWsjW1lVirrxdHuRYalEQSh4+8M/5Z29v2DmSupqxt70j5kpx3/2yn+NsRrnA66OXShVAQfDhlqVlGVFUTQMR2PqoqKaTQnBEXzMbdLBYPMuduEio6KmHj+mroZUk5I0qcj3RygV8L5iOi35ZGsL8j5rXUerqRnNRojdQyUbCDaKVxuL831Kf4JwHG36raXVbpNqE0P4GodnhtExgBTlSZIsTrYS03y9QFANLoywpk2QBCexfJHanKaZITRPSztEQayag2dlLNGuMLqPetExr0o9ter3IZautArzhBuoa0/la3AaQoOpFKlt4VKDTRTeRrt7FQRdN2BiQrOqapRJcGJAWqRWz1uoc4JPmBUKKT3TRpHolHbuyWzC8nKffi+WAQ8OKo73HPv7NbNCkXVSkJRUe9LMUZaO0Ai+dITS41KFc5HyVCYhTRoa71G0SIyQtTJ0arGJ4VL2PMNPxszGIzrdjEnpWNE9Xv/COdIeMfagPOTwwZC6nvGjN/+IlhySdmsOHr9Le/kGrTSlKkd8/OiI1nhGJ1VUmXA0K7l3vEcRPDrR2EyhvCbUCXWYtw6LpwmC8tFDKNHRPTdxijp4mjBPCa8h1QI6RFdcNDQORcLw7jH+qMIVNVlb0ekukNqUjYvnGKy1ERvPG3uG7bWANQrfsrg+rPZ6+Jlj99E2a5fbnzOIff72Cw1Q9HzAqSdC4yIQERHu368oJorth+CUxySK0SRqS1otSNvz8d5FDwJXz2vaWgghxN7/dM5GS1xpWQNuAk7B+fOKthXKAqryaW6GSDQbK2top8Kd92bs7yR88bcXsd2KcjbFNp4HdzzDcdRkDFYu0F5eYfh+xbiMbE5Xw2JPONeBzU1hNFRMtICBVkfx2i9bdDhibV3x7Bt9eucqdj8R3nkLui1F2tF89SuKLJ3GOdELGuGVVwx/uSR88lhzNA7cWIO2hfc34cMDTek9s4a40hOF1ikLLcXN1Yq/9WXF7/2DDN1f5N5HU97/3gn/7N8Fhmh++ctd1lem1ED6apuNC8Ljwym9jxru7CouLCmohJYI3URx71HJo11hsZ+RJw2TY81b24abl3L6g4JO7ulqoZNJdAde0+zfhdeX4GIHkqlwMBE2q0ChYlv0urYQBEGTIywHIVVgGsVEFCWKMPFsO08jMJZAgWZ45TLdwQZerTH8t/+E9DsPaf/j/zM3vrZMEqYoDyIFgQmjf/t9xv9mh865dfLnrkaK2/dQ1PPhOhDbOS2njTzzIKVPd+uYqDdSNkRGRc0ZhPl2ylzIE72KfD5g+A9tn6MnOcUHopjn4DxJwpmXmeKLngpvf8b7ckqcfAYxCZ8GIU9eMr9Py9MyzxyFyan5CU8xTdM01E2DtZaVFcPOx8KdHxdcuJqxvKG5vJ5xdDDg2uV1dH3C3t4uH39coUVhtCW4hLVzPRZWFxj0+7Q7bchT+j1DmipMK+6VeKhdXPUVDgoXcM2YrdG/4c3Nf8GsdjR1hq/6aFlgWNUEHdkFLwJz2/1ECU3RMCoKXPCUpWdWeJom4EOC1hmLSwNWVhfodtscD9tMqoyeFYq8RbUHzidMxiPaA8fm7oThbERZTyh8xQIlg1Cgw4wqBKBGqRoVYmBl8B5FjuICKhygqOK+KUNmFcezEZNqQmqJGgmJk5djhlEWEYUjahFi+/SEzDqUSsAn0czNZIQ6oAixjCanSdDxpyiZm79ZdIgiXAWEOfBUYmL4KPPSkPcoE8+ByWTC8WxMlhu0dlSNJ4SYHmy1whmFBI22kZ0JLlAXDRKEMihMask7Gh9SfGOYjhXiPMYKjQiTOuabdTuadqeh1zX0+i1aPUPWsig14/H9gslWTavdJmtbpAlYLaSpxhqF8Z5EQJGgExdN2pTBpRoZzygLhwuetlG0M02rOyAbWSZ6j5Vz50ltwv0Hdwmuz6UNT1X3qEYvUMgjvDrmxvJbrOVT9ptnWH3hMsvnX2aprzkebXH84F3aozvc2xkzLRqs1uxPPMOpAxWwmWBTQ24SxCt0JYQmTl7BBZqZog4KsYbaBVzwYGLHVXCC1IYqxHy5xguNcbSSFtcGN+i4FSZhyuriOtt7O2xc3uDFl1+D3HJn8ohv//GPuXX5Gl997iU2Om30mYHDB+FwUvLOnTu8994POdm/z8uXXvhZI9ZPbb/QACVITBP2PtZQ80wYDZsY0jSF4YgoHNUQmtiumiVxfHQ1TKYwHMN0pqibSCuv9k59DWLXSWLnNXsDhYKigq1d4eK6ogmCU8RMHoHKw6RWtHJFKUKB4tzAkPUMkmj2t4X9Tcftd4QHjxTjkPH84iJ7Bx/x1ocTbt8z3LoCN9qeTh9Wc+hZRYGQaqhRdLopvX50cbzxhZSly9D4kt3Hiu0dIcmEW7c02jn+x/9r4Npzli//qrC1Jfzg24Ewg34qFBW89UCwRjGexnZgawQlAa8iYLM68NxGxu99wfMrv9ni/LNtQh5Y2hCWFzP+P98tsSGh32+j/T55JuQr52mZgksXZiy04KOHipZJeHa15vKyYmw0f/JXgaoxfOl6QyfzuMpzfxdG4yhgjAyDwgKdFJI60FaKW+cUCwvgDmA6C0/m/2UD7cyTzoSCwHUDV6zGNx7xsCdCIYqRC7RF2FBR4Dc2hl/59Q3Wfv0NDu7+Fe//X/6StdVr3DCP0IcfovvPoEUjwVF88E0e/eFPWA2OepBCXxFUK2owRc9ZgDoCVe9QLkTtSXBELlielG6UVvN2YT7Dnsx/PhHEzh8/q105CzjkzA35qTt/ejtTqjntEJrnKEQC5Elm0M94/ee9tfrMY5/9/aeeq56UgT71OYoz4YrCBx/+mCKMuXnjZa5feQWjDOMDz0fDhksTzatfybj17Dm+/MU+tz884s0ffMLxZIo4QRtPZgJuVzg8qUntkCxJ6A8W6eYt+gstFgYpWaLJE03wYFNPbWok3eZR+Rc8GP+ESvcx6jzCCq30OVqtayzkixwcLdF/FEisoqmJhmUhoHyDFBGQdFt9tKQ0TUOvlXHlZp/VS216Xc3SouFH31Ns7SoaEyjpgl9BTUpc1XB8XFM0iiIYKlKgYVqVtNsTyjKGVgblQRwBE7UERsfuHFoYvYLzxzTOM5sYQgpVk4GqYtutzEHC/AAEie3oIqcGdgp0iTDFqEWUtoRQkyXteXOYQ2uNURbm7djGzgWw8/fWGFCBJIsOvajIpJgQr5VIDKonuibXNNR1Q5AKR413PjKTQcV4gtSSmGjcpvRcSCweL7F9Nk3BO4dr4LiO/ZXTLCNJoqcNKiEEOK5hXApTX6Fsm8VBi97AsDjznBwW7B2V1FNP1stiGW/uTuuayIBpYgo17RybxTbrUNo4x/gJdVFRlDPa7SVunLvJhat9dlaG7Lw3ZrF7mQrFg8cHXFi5zs2Ltzi39ion258QDv9vtORd+mvPkbBGO6nIqg+p9h/xeHfIH/7lHUYH9/nirYs8d/Ec9w9mvLezhxOFsSaWmBNQSYJ4IHhC4wje4Z1H1wlNbTG6BuUJKqBt7BDTWqgbjziFcZBoS1v3uTx4mdVwntFRQTMN2N6YwfkuV26do7Xc4qAa8z/+2X/HZPSATn+J+//L/z3/u9/8bRazDBE4KT3f+Mld/qff/33e/vafMzzYopXanzE4fP72Cw5QFHregdDrKxaWowakKmBSKAonNCUoo+i348nlPUiiqF3UivgG9oZC2lKs9+NCdnQCh2NF2oJ+FxYGLcqmpqpjaNnOYTSH6+TQEkgFZh52xzBVhluXByydd1y71uPc+TGlG3PwYMb+XXh8TxiPYg12fX2V1XXh+GCTn9xveDxssTxpuNAJvH0blvpw5ZzCmKhJUSKsbSSkuSNbXKd93iFmSLHnmexDKxGCUlx7KWfSBHZ2G774tRytpywuCYvr8OxLsLisuX07sH2iWFtUnD+XIL1VPt6esL0743DXsbOvmHlYX8n56pdSLt9SaDVBhzZat+n1NC1Tclw2TEcz6rHDTBwqbKIaQ6/Tw5gRVeN5dytDCHTXAx+9Izw40nzx+Yyvv1JgRbF/GEiU4t2tmk/uKjpXFPmiMJrB8D5sFUIPwcyEwwL2D2GrUByKUGnFdatIswCzOMt+saNIG6EUQ4HnjgiNgkOEq6JYJ3CsQJa79NcsfvPb3PuD92h3Aklvl+P/5v/OyaZw5f/0n5M/t4Lf+oTH/48/w2/PeJxoVh/sUH7vL+l8+etgkmjW5QqoCygnqHIEzRjcDHDRbsLwlJVQgScCWeApOAHmg7wSUCG2RKrYtfhkeyoXOUNlnNWBnN3OPOXMr/NW5DlrEcX7cUV8CoJObfnPvvjsewpPQ/9+ajtb7jlFRfK04nNav9Lz5/qn2OX0I49Oxjx+8/t87613+Ye/2+bqpedZ209oL8JzL6UYq2hGNVcvaJ69ucazNzP+3b/d5MM724ynJdJ4xAVc40htoDI1TRkokjbFqEu9tECvk7PQg1anwmd3GKcfM5RthnpMln+BDfsMPlwEP0BJC0vKxgIMFqNLrHEBgqJpFEEHtPFoPC1juHptiavPCcvnDBKEzsBy+7awsgTFkdBuKSqpmEw1lXKMhlNSa8izlFFpsMqQomnQeDQqVCT1HlNpWOh1OSxKGnEEExDxUdirDF48kBFo491BFL16jfcGZXJ8aFA4lI6+F1FUrEAM4mJLN1oQKnwYolmONvnBk6qYhRTmwX+nh1MpwQWPURplTAQqKppKRrAT19QaISiDlsj4iI4LQSG68arUIFpjRBGMwxgT7fQtpK0kOqFqoQ4OVUVmQClPCJ5Q1ZQhUBU1LgiZzaEB8ha6ZUmTDJ1rHC7qXiqYTaKZWmZyWnnD0nJNNYXJkcPXZTRgtJoQPKUrKYsWrvG0Eo1tWVQa7X4dYBuHzTRlKbhGs9ReZymBe3c+5GCnYufxjIRF+r0lth9scrS/wLUrKaPtP6E4OmA4HHE8s/zG9ZyrHLC9ucN7vkOhBzzcdtzePOCksAx2Tkhahk+OJjTakmcZJIEkiWxIXMfM2wKDx7lA4wI+lGASUqOwiSLN55EpWhFShZGAJiEjoSUZbdXnYn4BGVt0qFnfWGWoN/mlLz7L+YtXODopePvR9zk+uEMiFc2h41t/8s9pBXjl1ktMZ45/9523+NP/+Z+xd/c9XDHDBY/t/kdkde+JjEirreguQprHRet4ohjPBG0VNTFpWBSMK4VvopahqKLPRJYqOjksLCp6uVDVMClhFDTVJKC7hleeWSBJNOc2Mk5GBR/f3mXvRHBes9ILpBpOppoSy/MvX+R3f+8iG6ubrKxaktaM0fGEcgQnuzA8gv09RUgtr71xgU635od/XVAUCVfOexaXArqTsbKkMdJgE0+nrTg8DGRaMeikHGwXbPS7qI6nmTruvh/4+F1hfU3R6mnWr1vuPvJcuZFy/VbF9DhwdACvPAOvvwTGBn796ymHJTRjYWNtgO51OB4L40PDh399wh9/M/D+oxhQmHcDoZrAUMAGghea44aWgdwqHj+a0Ksci6lgVEHdSkl8xlI7Tn6jccXdHUXtFfsHwq98YZF//L/ocGlji2YsHO1mGEpGM88Hm4ZZbXj9WmDtfODDO4oHQ8XXn4H9bcVDp9n0gftKM1Kxrff5juZIR8HexRyePae4+xC6CMrAJYmFjLYPLGvFAEVu4PrLGZ36JwzfLlhC0bqRUZwUnPzohMdjRfbf/1NMAm5vRvOgwPiUfs/RjEqO/niL9PoxdrWNbQSqMRQHUOwh1R7IEUoqMCGaaiYKUXPPEi9zgRo/PcGfMgunFvanLcin22l78t9kOytm/ZmPP9W/oBUS5vk9P48vyv8v2xmm5QlwO70NBJfgXcKMih+8+QMu/d4FXvlKxsKynk9SHnRDXTqUBFK9zbULm0yPd/lgWFGziJMWqdN442gMNLMR9NYZLPTo9BSLiwrDlMfjb3NSv0W2lJOk5znX/RqD1Wu0ky51rTk80RyPhGEBBxPPlQ2Fagc+fv8Rk50DLly+QdLuY62gQ4M0FczarK/lrF8xNDWMpkJuYfu24t77gYlx7O5aGplycLxLeTJiKWlABbLEYqoYpKdQoAyLSU013qTbbZNmKX7qEWsiCyJRz6EwT+RK2vQp/RDXnETWTgRxDa4uSBJHkuqYaTMvbWtlY3aOioZsEhRBT/HuGMwaVVNjQoXGEHwTHUiVfXJiqXk6tkRkjVKxDS0KaOcrfC3R3FBpwGFQhHk7WdrOSWQW/Q7FkOQpMo+L0AgGM7fQFxIRsqqmbgLSFDjncLXDzcJcoKtQuXoa2O0tIW3QuQYbfVVmM0PwjqYK9NsGbRP6iznOCTZrmI1iXlC7pcFBNXYcT0uSUYHpWvKWwpgoAPbEaybJE9TM0rE9Bgx4/3ufMNwN3Lz6CuXiXT7ZfJfWgmH1/Crnr1yl00tp7v+/aPXP851ZTqtpoyfbSGuVH32S8a/e2eO4eojXGkkUWavFB8cWPSopxWJTwQUFEtveRSsEh2jACioNsczTBMTHlvfKKIKxWBLC3LdG5lS0JjoEJzrj2tpzLLQGFEWglhZHx3usXFonTM7hizbvPnqHN9/+n9DNMf0sRYWC4d33+B/+mwdgF5hNSg62tilOjvHeE5Pe/+bjxS80QEFiR05/EUAxG0FRQlNCWSi8EpoQsxpGM2E8i7kOsyq2Fw/6kAzgfAIbl+CTD+H+Y/h4ogkoWokhS4W7dw65cmWV3/qdN1i5aHjzze/xjT/Z5uAoMBk1HNcabxRXLvf5u793jmefOaHTmWFbNU0xYbIfON4V9g8VOwegc8WVGyusbazR71SI3eNLry3j3AHlbEa1mnHx/DKDtqHcv8fzX8yZKsfW7ZI77x+zuLHO2jMB1YwojoU77wo7u3D9muLmi9BqB9IUXvqCJfgZP35LUYWEL7ysGPQdHk828Cz0LNAm6WZ4XdJzKW5UYcaG77/twMBwOGPzXkXeeDotQekhFbD1AfPQXs/+scFOhPPdeExmoWZnr8YFOPXaqBqYTIVUK37p5R7P3ahotQXJoOMDDwZwqQsPD4QfPhDGteJVpfhwVziqVXzfWvhQPA+I7FmtYE0Jz/eFb0ygBfzyORACjfd0lqCzAIsIvhIuHSiGZSDDsJZplvaOGH7fgbV0+oGdRzDeDvjKotqaB9/dYwFFZiKLVc/7UpcvGexVQ/ntP0OnOf0vvQTNAZT7SL0PYR9sHVmJuSv+k0TjuSYFgTkbPh/jz7AVp23HZ8o6TxiQeX7O55V0zvIwP7WdAQTCUyAQjdI+R6iimAOqsx/OTw8wP8eA8ylw9OTnp1mj+EOe/BFaJSAZNhju37vNt/7ij/jKa89TbQ8pZmNqr9ndH3Kwd8h4PGY4qfjow09oqoKD4wk2vcbN57/G0eERlcDOzhahsfzX/4f/iq/+6gpaDPv3K37w1jf44PBPWLiywPWFL/DMyutcWh3QyjXBaw4OYOchbN0TToqGSX3MyUHNSi/wwx98lwfv/5iXnrnFa6/9OmmWo0yNqiFLS7r9Vix2WCinDuUMH99uOBw6SrFkqWJ0UjCcnFBVBW0cxkKWWbLCzhkDRWaEc9mYWVWwmlpsliLWRz8SAXOapyQ12syTk4MmSc7hnENkiJYG50tEyvkhtthE0DoQ5snE2qjYaYZCa4uXGqPGGLVIMJYgNYm2lM0MUYokSTBoYiebzLUoT88hmTvJ6hDLP+pU/T2XXQlzF1tAGaKpm3N4icZxXumoCzQRqSudYtKc3KaYVk3dlFSzQNMYmtqhQkCCw3nB1x7vS3wT7e+N1dhEYVspScviGk9VCbWHRgz9VkqS5bTawmwenpoqod3StHtwtO+YHI2R/UBtKnLfJlvISTKFcuAQsJpeu8utpS+gDjIm+0eoUDNopbz+6jNs71SsrS6w0ltjqedJkzHT1jr0lnn5mqY7OaaeaR4d7PDC+oT+wmX+8K0DPt47JCghm9eIYznO4Zqaqq4IoYbUkinzJB1aGY/KQIvCK42eBVTQaG0RMQSfgEkwStBesCGANxhlWVy7wNXVDagbJuMJ3dYiJzNH6vrkdpmtvV3ee/9blPtH+BqmrUCWNhRVzd7BCbPxXbwLOOejMFziessoQ5pn/HtGqZ/afqEBigKyRCFemM5gPFa0WswtrAWnI8syKkG7+RfVxIjzVhLZAaUhTxS4+JpHI8XYG1Y6gdUO5BKYnQh3Z7vUs7f4+//b1/nab1zh8tU1Dvcn/P7/+yM+uG/42leX+L2/o7hx4R7dtkFbjy9ajLcr9j523HsfjkYwbDQbVwe8/MYGnXaDxtDNc77+Wy9wOFb8wb/4Nn7fsnp+iUsbPYqjR1x5oY8fBI4P91m9kHPhhQVCckSYNWzfhaMdxfKqocaxfFGACefXFL4rvPP9wMOHsLCuSHp9bL9A+ZrJQU1WOjqXW6hOHlvwmpqk7Wl1NMU0Dhh7J47bdz1LClwLSATT0fhg4sAmivc/adhJFMOVqMURpXj4WNg8MmwsK5bagcvLgdWB8HAHPvhozOOXPdcHnmom1CNP1wqLfVjoCTt1YOgS3v44MJ0pdCse7wGKQgWOBbp4vBies7CYw/RAcykTXlzSnGx6FlNFeyCYfgxwDDOhnsR2bRMCrhQefRyY2YSZD9SVZ78RaizLCwtc7nhUUdFqGbrGc1AJPgGrDcMtxdHDbdp5wvIzPXrPfoJSexBmKNNEijxRKKui+6uOFX8VBBzzVuM4sMXkx3mpe77iOzV2Uz6e20+m8tOOntNJ/olW5cwF/x/wGJDTC+cUbJxlQU6Ri8xpf33mVdH+4nO1Iz8NUj5vADrzxCdeKPMdkbM7EbckSchCm7LR5ElKOTnh49tvUlcjvDMcDz1GWx4fHXB8dMjh/oSZhyxNmRVHtFtdxH+PavKY3ZNjdvdOeOb6f8qrb2yQJpbxTmDz4x/z19/+p7iBsHr+S9w49wa3Li6Qp4bg4WSk2X4M249hb1vYG41ot45xix3Gdc34pOSkKPjWD/6C+3c/5Mbl1+i11nj+5Re5+vwAF05TyGP1b/sBHBw1DMc1Tntoa8bjCU0VPVNqVZNbMw8cTWi7hOAKLi9q7MFd0sRjjSFLLSZv472NZR3v5u3bcQwTCbGF2LTR+hzBlYgrUBIzWBBiWSQu/VE6ami01miTEoKbZ9goQpigw4TErFCXM4xpQa3nqbiBoASlLYKJ/hbz8qDMBdgKifk8eIyO/hqegDUJtW/mIa5glMdYFbutSgcOgvUo49Da49EkJieQxJZek5EoBdqgqwalK7TxhGDxQTDaxDKWiqL/4BrEJ2irCYlFJw0qlDH4tGkzBoyk1CK4UOK9x+ZCO4XcBqquMDlpGE7GqKmw0PNYH7A6wWQqimgVrHQvkuzCwzsf0+2nXL6YceX6mEYyaA9oL/XRaUK7O2FhfZ33ttZ4+ME7/O2XUtav9tg97PCHb24yPdnjl5894f/425f5xkeX+cN3HlBXJeNQAQWu9kjlCU203DcoMILVSUyrBrxSmNSj52Jm3cQghcQoErEk3mAxMI9ACE7RHazw6s0voJsO9ZFmeDAi9I949dU36A42UGnNn//1N/ngne9SziokQDlp0EpTVJ7J1NHU9ZPrPILX6P6btdtcfO6FzxXR/6ztFxugKGLIkVMkBlqZzIc8QdtY34w2QcTOCYREKRIbtSrMXWTbueJoX0gTeOmSMHWeRAcSJXRTRbsNV59dh3TK97/zE17+Qof1jfMsdDs8e2uT5dVV/tf/xQYXLjzGVBNcWdCMc8oyYeexYmcfdk7m+Twh5cvPXUTngclkzGR7wqzWHI8tL7/8Bps7e3zy3l22twuevX6NNGsx2Tvi+rUOD19IeO4Ll1m9JhTliGLb8MEPG6wYvv7bHcpqyGgX0olnUmjeews+/FDx+Cggj2suXp7yYh90rjncU3RPFL0NT2gSCBZdHSG1o649IQiJ0hxOhA83Nef7gZU8+s6YBlRLUyE83q/YH0fDzkGmaGmF0cLBWKGSlK9ddzxzAZ692SPNKzZ3HL//b4b8xTcHZC/EoK7Rfmw27HQEo4RiBpuFYBJIteZKNyEAM4RcFAUBq2BFAl9KY6jbpIE3FhW9KeyOhFaLCDonUQBMFcGpCoqEqEGajBV7xjBYy3m/nPBh8LQSw9/7yleoj3+C7I6wJDSNYLynlSimPqf7wgY3XxqQdwpsfwa8DzIB0wY7iOemPo6ugEA0npLYAubkSbsxp9qSMxqS03ZNXLQ7hzMMRFBnJvfT1z2d7D9lgPR5Y8BndSOfYlF4qglh/r5B5gLe+YvCmdd9Fqz8+3CRzP/7G7AvWaYwiabtUq5c7LHctxwczzg5Lmktdnk0hd3HHxB0YJC1mRYls7rgZDqhxnCpa7BSMJwecXg8RILl6o2b9HodpnuOxx9/zNs//APK4TH54HVeuPHr3Lq8SJ4avIeTY8Un9wIf3FccVkBLYWfw0lqbm5eX2D05odVbQidthtMd3t38kNtbe/zGV77Kf/VbX4vCUCLQ0wqc02xtFRSzkmJW0pgEZQwn0wllU1KHmmntaNnoUp2mmryyqCShU95hf7LNQkuDpDitKb2lwc5zbTweIdHzUEB1yrQZEt3HpxtgAzhBi0LraNKmTXQRlTkq1lphbYKfG1ZqrREagoxJ9TmU6eK1xugkrtqlxovFajvPr4y2bBIkMjpaoY1Gi8GHOC5kBqr5ql6p8OQcMMbSbrfxWUKVVjSzAnFN7MwTwYeGYABvwQdslqKtxqgMSQwuKMQViIIkt2RpgjEx8dg1HryPQlYBLxGcaVJcLTRlAl4hTc1s0jCrHNNpRag0vlYoaZiMHHU19zJSnnZLWF3UtLspWqDx4J1mtVnFmB6XLvdZ7kEdMn7/D77LpWcvcPNXBiTJBIyQX30GrzS9bMhLa1N2tnZZDIusXljjf/VbN/mD713k//ndt7nw3n16vQ5WBUofqBuPcnMiKkCiwM4zjpIAKhioY9lPVIKdt6EnuDgOEoXN4qJhIXiC89S1A9vitSuvk1bLFFOhmkwZLHTpdNoYk7G02uePf/BNvv/2nzMbDQkhzE0LFRIcdeXxVQwwRIFRsUFFKUWSWrqDDkvnBvz78zQ+vf1iAxQDdRND+rpd6PTg8FCwaaQV9Zwi1wAaEqPIbExtNEj0PCgh1MK0EDpdyFrgC09RwfFYka0Ybj1vefWry4yqPguLI6Te5dFtz/Gsz/VrGzyXDrh29RyNaxiOE/bu73H/g2OqiaOqAkdHcDSF41px86UVLlzKmY0zSpnxo7cPSfq/y9h0+Z//1TdY7Cve+NJ1XAVO99i4tYK4e6QmcPnZDucuWJpyk2YSuH9b8XgzYJ0wPZ4AcDCG/SPFnQeBx3uKSoTRWNFd0Bzt1RxvZyxdNRwcC/kgwe2eYCVHiYV6SnAKmxiyzJOIojSBtx9A08ClFcXFRWEwErYmHm8SZq7BzQQfDPddZFC0gXZm+I2bwlduOl7/Ysa1V9eY1QfcGk14+0PH935QsNIyPHtzlf2m4mByxLRS7J/AtNZkiaelFes9w/WlhlrBJ0CiNAOJ4Y2XNKxbz/TE0hN4Q8Nw10dTNKeojhVZBoXAuIT9GTSiWCbOsaU2LF3I6K87bu8FZtrw4vKAV7p3MGbGqKdxPcGNwCqFvnWOK7/WI18dQ3qASjxiKpSqIkKzPUiXgQqkAJkSlYBEQNIAjYohUT62cp9eq58K+3Px+WreUHGWVfmpcswTFuTnrLWcraycASpP/NM4fa+5j0KYo6YzoORTGphTMe1ZncyZz3qCkz5vH/89+2y0YDNHbiqOT/Z49LCk12qzuLjOrJ5w9Pge9UHJflHQnKuZ+hongUlZYKxlPCwxVDRBMS0mpOYKX/uVV8gz4Sfvf5fbb3+TyXiTvL/BK6/9Ll94cYNOK+bFnJzA4x2ogmLjsqK7JGw9VgxnluNQsLymUb0eq5sr7C2uMBzeo6wbSh1I2l28B6V17AJRCgjUpWc0LKiaGbO6xpsAhca5miZEG/xJXdFJPAZDqi25UVxYc5zcu0PLxkA6azNGU8cs9ImHJgrMI62viOb1sTylxEfAYhZpZWCVpnJToEZrjZcm6kYQPNGbxOg06hlwaJVgWwvYsIqrC2zaBiypTSiaguBrtImMhdVPF4NKKwLCqTQWHYMFtQoQ5gnDAlbgdEmplKGdtLCdFnWrzVhrZicn0AguxJyiRmqackhVlKStFmmWYhKL81EcW5c+VlK1EJTGGo0xCpTDe8EgJDbaSAQCIRiqIjp52yS6RFdVQ+MUoj3jwjEaQSgbmkmFr0FbQ2gAZbFJRp4ZDJpQe3LdJXtsqcY7nBzu0EzXaA06aLNEdymh3XFUs5qqatg9eshJecxiZ8b3HziSacF6t8ud9ya4Zsjf/eIFGnmGv373Y5IqOuh6hMZ7nPMopbE6IU00iY7CZN04xE+i9l2iqWgdPMG7aB2BRXR0uZW51sj4QKgVwWkuX7zCjXPXcBNLGmBrf8zSUoerl6+gkzaf7H/C+zvfIu1NkczMzSjjsWyKBmmYdwfG1HFt4vmgjSHL27RbOdPhHiyv/HuHqbPbLzRAERVL+uOJUPk4mHqBxka/Hx94UhdNdExEzQ2xZlgqilKoakUxgjRXDHpQFDCuhaMpVDrj2Vf6/Mpv1vSyPc5boeSEva0o/KSTU5kVrKr5q7/c4cHDHRa7LcS1eXTvhFyiP8vhISwuKq6+ZLl4uYM4YXhccDR8TBVe4h/9b/4R9x7+gB9/f8zuwZTf/du/zGy4yWzm2Fhv0esLNAU3n13Aq03qSU09XuD+h/s0RTSa3n0UyAyMh4rjmbC9o3Ap7O8LvoHZ2PPmm8LBlufF1wyTQ8VUGsp7ntbeY0ggGM9orHjwE8W0EDAx22NUw/ceCh/uwXoPcgUHJeycCCuLltw6RhOHGE1uPLmKM976QHNhXVhbc+SdApNrtAu8cgPe/HHBv/ye5uucsPM4cHCg2D4Stk402mpurAdurQvPX2q4cEmxu60YoUglcBFhUwwXdewUODh2XESTTOCgFJxSjCqhrTXdTLM9DTwqAnsoci0siUbQ2L7iwlLBv/7AgU745fM9zg1HvP8vjjHW05Sa3qzhYqIwFzqs/WZCurgJyiOqg6g0OmdqCLaFtoNozas1hDa4Mq5OPaiGeFK6cGqXwhOEcCqIPf3n5/eruU5lHjR4mmHxqe4d+PnAyel2Fpx83m09L/HMmZk41TwtxaigPl9UcpaxOcvQPLk9L1WdIWgiGps7sXymylPMStJMo9qKurbMZp7cWjBdTg72ebS5ybVrz3FpccBbb71LM21YWO6ys/WI1bULvP7Kq3zwwZvkrZxzy+dQcpFXXrjB7bc+5rvf/jNMM8XT5tIzv86v/epLLC0ZQlCUJUwLhW0LN9YUqRF2DgXVKO5/nPLxlvBwb8TyqsUjkbmZTZmVDTYzLK8MyDoxBiPOFIHgFbvbnklRMSlmlFWNaSl8o/C+onYB7wLBeZokYJMUwdPNhI5scn+2zYVujlEKnWaMZo7KZ3M2Q+FRsTPGeWqj4iIBD8ogojAevFmm1fKYZIfGBUKQ2EL/ZDWrQRRaB9JEI6bPrWu/wtWLX2UyyfnBD/+Muj5AaUhMStmkOO+w2hHEPGlVF/Q8oUHNxbCR0TbE9OmgDVo8CQYkwYVYdnKuRrTDKk2wgtNCoy0EHbtSDCjvwDvqqsQ5R1EmKG1i+rMTCFFP0xQe7zx1omNasXJIcChrCEahXEpiTYwecB6nKqSJkt3gPdZoVCvBq4bCeerKUxcOaSBJDfW0Ynwy4+jQUtQWaxJUaHGpWODo3n0a16LTu8H+/jZLqo1N2my9X3P56gWStkckoSkNo927nDMJtK9y4cIl3isD/+1ffYh3jk6+TeGjiLhq4vnhBJyPRngaTaIVWhussiDgfSC4QOWi020dPEH8vCswdnjaNMWkoOZmfa6uIVFcOP8CX33uV2mmCj/17G1vk2eWq1efIe8t017P+MY7f4ZJ7rN6MWNaKEJo0AF8FZieBJwTGh9ZcKM1VsdcJpu36S8u0u51opXAzyNcm2+/0AAFDQHBOUU5IS4zDTTzCcAoYouagnS++vNuzmgbiSsGA1kqZGnM8ilnMBlHuvK3f+s6f/8fegadx5zcHeH8mJ2R5yfvZtzZnPLaGzXaK24/nLF1ULO7d8K5Xsr1W6vkNmF4VLO8odnoC62B5dylZYbjkh+/fULe6fDBhwUXnrtBYmdcXu+Qp7C7VzA8btg4t8T2vccUW3vY5+AcQtr31MUUzCIfvj1j74EDD87Bvftw/hzReKqKi/Sdo9iq287AKOHgEOpKKILnK1/rUx6POdyBlnKkGdRGs3cojA9iG7TGox14HWgaxUlQjEdAY5iJ0B5Y/vavLbAg+0xOYqt2O7O4UvHhncBCy7C8okgzTzjciXYgTWBjXbGyAEUj/OC9gq1tuL8Px1XMRFnsGV6/ofidLwde+0qbccj4w38qTEOsh/S0YonAeYm6kh/XhktpYDwTRh4ehxhBtmqEdqO4W8EOmlpiCvVUCcYKS7nhO7c9I2f5R6+tUR0c8P1JwVUv9Bu41FFcWdUoKyx8zWMXjlF2EbJFVKsP1iF+H6REqz6o/nyiNiADCCUqxIC12NPOU3DyKX3oKQshT1tuIU7enlgSOmUuPo8B+ZtsnysPiUjiCZ4wc8B0ClJ0FDk+ia+V8Gn9yul+PCn3PC07ffqDT9HJGZHuqTD2M39Lu9Vm/fwFHj++g7WKqqrw2rA7PWJr+4CTQtg62qNXNWTtFZQesb+9RVVXDIcjPrj7Yyau4N0PPsGXbf72b/8Dcg/f/su/opw52ukipnuBV7/4Fa5ebaEQqkoYzzQmES4uCnnmkaCpCoNtYjBpNeryz//0ERvLFft7O2zu7TGZNYj0ydMeF84tAiqmLdvYJVOWgYMDj/MNzjvquiRJLA0gPuBdTRCHC8KwKKjLGUmWMEjHbG6+gzUN3iuSVo4LNeNZwOk2SimMmpd1MHhxaB9BkZof19juqwjOUDYL5NkUS+z6cABGCBKIXeZxckk6PV586ev8g7/1jxm013m0XfPJ3bs82trEJBZjBxibUtc1xgSCCngfRbuIoCSWVgISfUrQT9hAk9hYuhRFMPLELr9pCmbNCOdyRGVoo+gtLKIQxFeIcwQfYqhd0+CqGjdzBE9MYp5fIDErzUd20miqzJKkYHXABYUWhwoxPFJOxV94gjVYq6Nzt9Y4mxCsoPTcXXgquDKgQ4OvFZPRDL0vZFODKENPr7E2W2b/aMSgk7Oyusr97XtMdx+ytLzCxfO3uLX6n9JbTrj9/nt88+GfcvLwHf6LX36RX32lTY3jQfUSTfaYsYNRYVA6EJK514xrEBfICPNLyRCa6Bxb60BAU+NxweNDdEgOIX6/fr7QQBRN8AQXw2+1CdgMuosDXnrmZRaTVWbHDYnE7qB+u01/qUPat3y4/y5Fc5dOrwNlQjBT6nqK8w6MwdQBM2tIao1OLXmaY4xBa0t/cZX1CxfJ+71Y7lCfpVt/9vYLDVBOE+rRcUL1ROv6EOIAaHVMAU5V/E58gMILYZ5GG6wQUBGYjGEyixP7bmFYvbDGpRvLLCw9YjZq+JNvCY2scenGdfaGH/DWe8c8mgp/78uBlqlQZcPVdcPaYpt6BlVI2NoRzj+3zqB/zGga2D9y3L03QZGzv3nA7Ycae2mb3/9n/5znb5zj1dcu8wf/4jbvvbdJL21zsHMHdXLE7HHgja9mnH+mYDZ1zKYVD+9MokEUghfFwXFcwSwNBOcjINs7jrHm/RyMVUwn0ap/0NXceLZh5zHsvAV5GdmlkAmTGqZeMS0h0zHvphRNM/9OFwZQTqPI9Nxyyq99ZcBLz0yJttmgdWAyUvx3/6REagiVYvpYCKHBdhXJQHHtWsZgseKTe4ajicKVjqkobKJZaAvLA8e1ZXjhhnDpSsPd/XhCBx1NoVSAJQIDDY9qxX1RvGLg2Gnuh8AB8IJVPAzC7XHggQhdEdaIojmPIEHz46PAhz7wXFvRO9nnh48qloPQE8WlBJ5ZMqjU0HlJyK+Dzq8i3fOo1jKSqJgKWwGhAtWN5ZdmPHdGzVGyBDIDqZFQokID8Dl27/L5brHCU72KnEElfxPG5GdtZ7GDOQN+TsHF2XKQ52krcJi/WOSnAcrpa8Lp7U/Vgj6DjT7zN+iohThd0GtVU1VHjE/20S4nTzs48exvbnN0UnL5yhUAHm/tcuPaM7z79vuISWn1lml3l+OkUsdrIWt3efm5Df76z/4lUp7QzXuEbMD6uWe5ee08iRWmU8XJMAZPLgyEVn5KJim8g/EQfGXxknIyajOrAoc7hjqss7C6SNM4EjypF9Jc47yf694UR0eOvYMS710Mc/MN1CVOAlocuAbXVHhXM/KOvJ2S65pm+hHH48estjRGBYzVHM+mTKsUnS4ggfgeSmOMJjiZ73MUytonByI26jZli9Sew9opomu0icegCWFu8hbAaG7cfJn/8j//L7lx9RJH23D/fsH6xnU2t7+HUhVa1aQ6wek0WubrELOqtKBUiNVONc9LEEVQClEmZu4QNTZOCwZLmOu0lGozHR0zm41JcqHT7pG1UhBHXZu5I6+maTxeGZxYaBq092hto7usRL2JrxzBa2ymY5u/NvjEIE0g4Kmp0ZVGW4M1YE0EVhLipRbLJy3IM5KkwQfBVQKuiRpy52hmJeOhpyihlfVYV9eYbM1QSUYwCVrl3Lr1MlsP77HRv8jl1SuEGbAIP9n+Lrd33uVX1pdY7CQcnTzm0Uj40eFbiK1pZbHUaFOLTubnYZPQlA6pa5yzOC80br7PKqCTMAcdc+1QiAxd4w04j/gYX0LpCCY6bmsr6F7G89e+zOX2M/hxoG07bD7e5Pz5c5xb2aAWOA77vL/3Q5SekrcztLYYpShMQiOOpgFXlWTdHG0gyxIGvQ6YnE73HGurG1xcO4fHE/IUtX375x6mfqEBSiDWvIC5MIsnbpRaRWBitYookrmlRIiTFNFjiVPDzySLjOzBWHFQdXnu/DWgQKsOO7s9vveTLhu3fptf+6Vfp3fxT5iEv+St9w7ZH2oWFjQvdnO6gwEbG89Qe8Xd2zEz5PorN/nTP/8ee7sepYcUtaaVOLYOBdta4Iff/zZlAc/fepHf/lsv0u21ePBok42lBcqjbTquIltKWFjPmY5H7G8JhwcjRofzrqQwrwgowdg4gdsUFvuKjTaUAnkQjo4Emygur8GNFY8MC5ZW4bZXjA9Ae0EZxaiEn2xGWnqxn+IlxBY6E7i+Djc24OED+MFdzfFhgdRCf0mT9NI4MDLD9IX2kuKDtxu2tgQ1EfothZ0JuYKqqilr4XCqMHVAgqKbw6UVYTERTBA6aUJuHFJWWGfjPBjkyfzXQ6OD8KECox2DVHOvgvsKVlpwo2f5aM8zCkICLChoKWEmcar8KAQ+bmLb82QW+NZdx/OJpmwCawlcygzSAVl0pDdTdH4ZWXgW1V9HbBb1JQ0osxLFsEqDOwY/jNoN0wLpgiQRwIgg1PNJ+mztY34zzOuVZ0GKPwUnnznxP6+c8tnHP+81n8e8zAGSnEpNnoCUpy6fTy62s2/8WZ2bPnOf5nOe85Q9+WkWR31arwIIhvG4gNCiRmgPFjg4PuL+nY8Z9Jfo5oqHj3fx2lDUM8aTklpmLK+tk6VC4xsODg7RyrK8dJHVpT66OKYzGOATB/kFzl+4SZqkjEZwcqKpfCBpQe1jzk6WGLwoqgLKqZDrMWutXVa7ltpsMBx6rt8a8IVnLrO1tcOP3/8L8tUWJlW4+vTPEvYPZoxOJpTNDBdcDD1s6jkwcDhf4UJDkIYqCF4aUn3C3b33UTqmZntt8SIcj6d4ltEmi1k289WYC4JVpwnBc+t5ichSniiaoawGdO06Wm+itcEHsMrig4fgsLbDq89/mSuXLmCM4vio4uGjx2SdNoP+TWaTd0A3GG1jCYkaEUeYgyBR8WcIJnYSKWJatjZPzjOMRovGqmRujQ9tu0Ar8dRuTDVtwE+p7ZQgjqbxBLFodLxE5uVOk2iSRJNYS9LOabwwGVe4IiCNIxiDdwqlA4iOu6AjEPMhYDzkeYK2lqB8jDTRYE2CMRlKe4IkND2PKzU2xFWuSZtoTlfX+AAraoA7ChjT8PprX2I2nnFyPCTJLVYLedJm9fw5tu5/Qn5hg5n5gOeWhefWNO8/uMebH2/jJWUvtDDKYiw4ZVAK0lzIs1jqci6jKXJc7fBNg6tjEnHwzD1NYo5OkqpoIJhYKJqIEwNIcLEAF+ZAVnLOLT7L9c7zhBPN8OiEPMlotTssLayysL6AdC3ffPhdTmaP6WWxGyfJLJm1GOmhrMa7lEFXmPaFumpIrafbz+gvnefVW79EohI8MGsKktww2rnz2QHgZ26/0ADlVIMVAoS5U6eOVhXRYOyJahuCBhfmk7gIeEWiFZWLCcHKCnUFB1PF4toi3h/w0Tv7fOH1l9ib5Jildb78G18nqBNEcl58+RIHu3vcfah4+fkB3W6CzTps7Y0ZTzwqX+Hyixk/eW+Tb79dsdZvc2VxRjlxvPdICOkiX/7a8+ztPeJb37nHD+uPWFlNWOh22Hm0x/BwSlt5dApLF3IwgZM9x3hEDH+ygpuvYgVhoadZ7EV33E4eNQS31uCTY2icojcQbl4QXtiAhZZC+SgWHmwo3vwBjMZEX4AAhddcvdjm7/y9KyT5kDR1tNvQa89ITcMHHyTc/W/HHEwcjx4dQF2jZoJO2rh6gh870tLz8BA+3jG0bENZxy6I1Cl+dEfY3FLUTtHWlvML8OKVhlvnA52g+OSRQukUlaRMdqdUezMUUagqIlRKSFAMUewSuKA1WdDsScCheWUJMh3oirCqw7x6ojkJgSGKBRQzBUvKchXPJoGB9zhRJKJwiUZeDqy+rqCnMYsbqP4t6F9G2l2QCuVkLoydl3XE8yQO2zcoL6AS5naZgEVpTXR4JGpKgoqtxw3QREOoJ9b2p7qUz2o9PnPzc7f/0OOfU+Z54vJ6ikHm7cxPUok/hW7mTz51wpo7i37q4c/uy/z+UyDEEy3LmeecdhKpyNytdhdZvNzm3t4WW4/vMRyd8PjgENGWmprd3RNaSY/sckq/1WFrf5eTrR0urK0yqiuGk4Jp0fDlX/oVuv0Bk2aGUZCrPtlghVaiOTl0zCYpUxfIFhVGKWrvCRJ3pqkC5cjTKR9wwf05xexDTH6do+xXmZxb5JdeeIbXbi3wzjtd7j98l+5iB63j6/JcIwKTkaOc1QQXRa1K11jboqwr1JwB8Sq2hjbeozNh6+RDhtUJy4mJLIURHIpxJajOOUQSrPI45WJOjjbIXLCs5yybaP2EGVFEhiOIpqpXSdMZVh9FPVWIgm2UoZUu0cw63Lt7zOriKg83Z+weH+CVZ2ntOrPJu2Q24MVhDPjGE6TBGIvCozFzu/u5RNYk81JU7O6xKDCGKiQQPFplQI0Kmnbai12L1YjJdIL3FaIcRqckqUVnGiMGXzVPupCy1JK2WuTtFsEHJEupiibqLubATXzAaEOSZBhrEaUJTUXwsZ3aakEHgyfm64gSjGEuLkvJki7SN+QGxHuMbjBpQ9A11uTc7LxG368ynY2jwDnPePj+D1lfvcAX3/hNnn/2VS4+s8S3/uhjPvr4Tc63Dsm68P5oyDuPA4/2Wuim5otXMvppm4ejKZMSCtcglSVv57QHGUYnNGVDVVU0swmuBCeW0Ah13VB7QbSJgmUVj7sYQdvoBwYGkxjM3DSv3TvHGxffoFUO0F5TjB3TMOa5l1/k3IV1dB/uh0cMi09AGhofgZ1zcchKc0On1SbVHXwnZ9qGpg54qQm6JB90WVru4ssZIV2mnBqmxcnPMUA93X6hAYpR88YC/ZR91kqRWCHRc5MaH1uOfR2FskqiZiOxUWXuGmH/SBEyhXPQG1jeeKFhtLvP8ESx+aDhwSf77B0ZiqZi/2if99/9kP1HQ5b6lsPDgLM9Ou2EzC5SNIFJWdNuDTgsHbdvl1S+xVIf6iqwtQtbJxmSCFvbFc/depY7H+2idcPOw4/oJA29ZMjoaIZOBZVErcbJoWJ/yzAeO8I8x0WFmAeUpbCxEss6zXzuyFJhfV3RWoBqJiwsKJa7kBEDDg924MFjePtHgiuFRIEYwei4Qnnj9TW+/NUOeWeGyjrYrMCJxhclDx9VGFEYDcf7MNkUWuaE1I7xNjA+EtoCuhH+8j2wNmEh9Rwew9jDj27D4Qw6eeCLNxK++rLwpdczVpcCJ5sluQnsTiIYcwfCcBjXgBnhzIQJByqKyC6hOC4Cu8Byqrjegb09x8BoFvIIxsaVsC2anbmhVAt4Tgnvi2ZfAh0Ud73CZnD9Fdh4HXRfQXcderegewHJuiiTgKvmDIONJ6EyKHGI7aP8KrgSJAVaUZGtHUqn8/vKJ+Uc9aTdWD1tPz7d5FPo4P//22fBgpprUpQ8ZVLUmX8wByjzK+/0SWdLVE/Azunz5clqLorl1NPPPFtCUrEVdFqf8ODhFnt7B9x7sMmsaDBJj6u3brG3s0Wqe3TyC+w9nmFMSqvTZuP8OpPpmMe7B8xmBVnS4+qlNXw9i0JDr9E2pymnHBwcM3ML2AwkFdpekemC3BeUrZKmHrP/6IDND+9z+/0fsLt/j1xqFof3MUv7vPbcP+SXX1vAKM2kaMjbhpXVLqDm5Y4oFq2rImoCPDEbpWmAef5RcCQ6ivfrYEiNJ28PuX//NpmqSeYaktp5ZmFKLRnarGAwILHb6en3FzVcqECi5ywYEREGCTHSAEPdKLS5gDYFShVoEUQ1iBFa6TkO9ms+/vAxs9WUuw+2OBofU2vPYGWZB3dzdHOINQskxlDXsb3d+tgZEvBxdW4kdnGoKOmMp0KCD57UKnKrqcQRiO7K46akREi1oddZJW8vMqvGlKGMC0+r8NT4uiD4EFtYUx0dhYMn10IrTfHaUK3WuLmoOMkTlBEwCmMtFkOYL0aa2jOrHVIbbG7RJjooi/JIqKL2SmlEHFmWkNgM3Xg0JTWxjPLswpfIjxY5Hp4wLcfs7Rwx6A9YWVlnMFhmIV2M2UFOWH4G3j/8iMQYNpuGkTN0W4prKwKFZlZMyFs9+q02xmhUPUWZqBdptTSddkJVGw6HgWmtCVaR6JinllnDqBCaWKSKoFcCxkAipwSoIU1i8nTa6fDM9ZcZqCVCGZhNZ1hrWVg8T571aC1p9tNjPrnzLYzbxYijKkq8CLVTc6I3JbWQJIpEaTpZRoGmbAyNg93HD/iO0ly+cI2lttDNE1qmx8HfYFD7hQYoKBA7T2ifU+FGCcncgdl7QaeKxgHzC9372Iuf5THFMc0VE6dovOb8cmBjOaDCiKpqWLlyiyakbN4/5mDo+N4P/iWd9ojdR5tMjg0v33qBCxd3uXm9T6vV4dFuYDTTKNVlOPX0Fja4fDMlTe/Q17t8fEezOzPUOl6gWdamk8LNNcWoKCjGYwqvSFSDqmOtsBY4OizIVEU9DvM6q6KZCU0NgubCVUt/yVFPILHxZExaccWiTAQFvXYUOt5+APXHMT9iPI3tw0oiQEkzNRdXQUJDYkpsRyN5F58I3jX4ouJg31OXsfvi5HDGzr2KlW4gkYDKNfXMMBp6RKAS4b0dODmET3Y1jQh1pfEarp/T/L3fEH7nt7v0VitMbjle9pTTivf/pOa7f2W4ugJVGo9nGg8xbaAmMEPRwpB74X0FIxHeaEHWCDsTzZKGxURFM6lmHuiI0AAvKMsDFN+b11CUUiynwu++bnj+DU/S1ah8AdW5Au1zkLdROtZy0QZlOmhJwcfug0gPdMCvgBSIylCmDb4AaqDiqW/9PPPEEUFJw5w9mV+4c/fdT5Vqfqosc2b7GQuSJ5k9pwz/zzsunOpiTj//1GjuU4BJnhrHzUs0cT/O7Myn9DTyaSAizP031JxRkU8BoMcHu7h9+Oi9O+xt71B5Ict6XLuyxt7BNsFplpdeYHnlGcrxe4xnE4Ynx7TaGbPJmOF4iNGW1eWLPHNtAysl3pUICdqX7B9NaQ8WOTh6n5PxFqPZDlaX5H7E5OSQqprg6pJpMeNgXLBzMmQ4PmFBCxcGbVZnDesrz0N4KdoI7E3JVEKis1guYW5TJoHjo2PqRgjSoFSMivAEnAuRvfAewZHqhsvnhKP9HxOaCZnWGBzaWionTDyEdAFrFjBeE5RgjUW8xnuPNvPQwLn2g/lenFL6mgSt5pNX0wa7hrab8+fFsSW1XSYTxwfvb3EvH7J7OGU8HeEt2MSRZxtUsx2MNuTJCrMyQbTgg8c5F+3SrY4VSmSeiTl3mdXRBVXN29a1UXOtiqKYHXBcOTr5gE7epZPndDsdKhWYzUZUsyGzoqaZTrHakqYG5WLHgxdPnRrSfkq3nWE2lmiagBKNTTUqlLimohGP+GioZlJNWcRwRvEJaXCkiUEnCuc9lVYYHdBmXjbzGiOW1ICIRTdCxy6xWJ3j3v2PuHD+Gi9cf43NB58wPTlGEg81XLx6hXwBdjcfUanb9E3BXmNpxJEoTzDCDDiZKY6ahJ7RdLsZudKYmWPWVFTiKVyNlIHGRRYnEYXTFqPj3+IRtA2IC1SNQs9LP04UXoNKIrvmNLRbPdbXb/DS8vOkJy2aouFkNOHi5XNcvHSFwWCFg/qIj47e5Hj4iNF4TOlqgq+pnUO8RC+e0lKXE9pmRG4WUKFD46F0gSoUiDRsb77D6OQRN6+/yvW1qyyuXeTwh/+xABRLFKIFwZya1sT4huhFYBTex7KP1XHlhlJkeZzI60ZhlaLfEh6PhDv7CpVbVJ0h/QTp9zmZBsQYlpYM+49+wuZkzP7JmPOXn+XyC19gevDXHB6OaecJ+3uapYWr0J2imLC6oqh9Spuc4f4Cl671OVK7+KOSPBOGhw95ZzLl+GTGqFBoAy3rWegr2mmIF4NTzE6E1obG5NFZdXwIs1F8rLeY8OIv9Tk+OEQaaPUVSxvx4n/wvqAdZL3IHhWVcDiGsgKTxJWVnjs5zjsCCRoyI9y7vc9sGMh6xwR1DNLHAqEKdG0s+UxmgZ3dgv0ToZ8riqkgY8Glik7PokxDamJKcSXxuw/OYKyihefaWs4bLweWVk/QmYO0x8KFJa49d8C19xu+8RPP4fWUldXYupjDHIRCB0Uj0CZQAvcQWkpxM4fjoXDsNMs6UJWgvKISKJSiA1xFc4Dw/eDpAovA1Vzzmy8mvHjLYVNBpR2kfQnyFbApAQdNjdIGSRLEtNFUEFz0FRA3p/LySOvpFpg8ln5cDpKDuAhYnH/KmJw1azvdnrjFntFtnM7vP+va/uyDnzV0+xuBk8/8qk/fSp7qXtW8PTicClci6hDN08lRy9M/4wz++OyOnxrJqtPSllGUZcGDrW32dw8oqwaUZbCwTKvTZtDfoDFtLm7c4mSmqGYZeMfC4grlrCToFK1TJpMZF1+5xtpyi/FwSuOmNJUiyxSH+yccDw842P+I7d3H4GqsAW0TjsajWIpRcDybMasbyrLC1SVVljAxCSf7exy9+yavvvF7TIcpo0mBD/FghvAUYFaV5/btfaazNonKwAnGC34e5mZUdGNWoji/5FjpHPDg401SK2QqkCYxX8fbhHEZSLJLWJ0TxBGCRYKLnTxGxbKUjogyoFH4uZGbBoleGRF7KlAWYQk4xpgpkKCCxpgOReEZjQ6pwj7eR3+Wes7I5NmAcpIjzZDE9shtihcfzwUVLQ9ieKGPg8lpzR0FWkdrdRVDAw2A8iilSNOALg+ZzKY0zQpdtUA7a9FLMlrdZYYKqnIc3z801E1sENBaIbWjSStc5shzQ7fTIqCxSmGU0FQ149Cgyiruk9IoHbBJnMADDT54GrFop2MytYodL9H8JEHplLZN0NqgA4SQ8NXrXyc5MEz7UzSapcVzPNj6iPGo5PL5q9x67kXOXVjF6yFvv/Nd3h+/SdqJWTkjByezKLKta0PpLVlmI4ttIej4k0pRjTx7kwnaqKi5EU3LJmjbwjvBi0Osw2QaqzzBW1KdolKiKFgsjXi0i4Li8+cv86s3f5X2sM9kNGbc7HPz1QVe+MJFlB4QGs0HW/d4//5fU06PKGdNDGFsGuoQwymV1tSJoZxVFElBllSkpkNAUQQIVCQJJKZFaCY82PwIh+GVXo//aEo8cQwQDJDaaGmOOvU/iUnF3imSOU0txNpilkQTKm2jy2OWQCsPTBw0VUCNopj15OAx7vozvPjKOkWYsXc4Yu/wmIMT6PZGfPjet1juTKFSuKrg5ZtfxlFj/Ihqb0K5PWR/VlCMa3Z2Sw5HFaNJSV15ZvWEoipZ62eEClwIpEqRAboGqYgnKtDJNOdWLYdHDSfHsL8jVGXc97XzORvXBW+EmYLFRTh3Ht56Ew6OFf0WJMiTjoQgUeltdUzM9RpQgmiFn7MnxiqKmWd2NGPQq5CkxiQB72dUh47VnuKlZxR3HgZUED76GDIFMoOqEWah4fZDqIMQJkKoFRMfv/9uG9aXUopZjW403X6PQAWTgBk3mGpKkjiuXVH86+8L3/jYc3ECN9cgn09yRsCimCB4HdgSxUjgplUsB/jhEO6LUHhh0WsWVNSceALPAC0RfqgCK0HxPHA+Fa5tKM6njrA1775YHKCSQRzcXYmqDSo4RKconQEgvkb5KcpNYtknmPiPLBrfzUWvohIUKXgTTXpqkPpMSvHfpJzzWbDx2RLKT998+ryfuoB+js87feoZNicyMvFgxPKqPDGQi887U7qRM/cr5pNVvH36PhJOdSnE70xDcTxjejKjkUDe7TErSoIv6KaGZy/fIkmu0emvUbsTtu9us7PZJs/b1MWEB1tbjCZjrG1xaW2NECY0zYjaj5gVNSejhiSFvd07DE8OmU3HdLodsiSubLMkwQscT0c0EtNyfaijjllbxt5T+Ybxo/e5c/semb1EMZ4hhVBOKsRDtxtF484FxrMJTWNJTSu2wZr4tWjxGAK5jf5BGwszth/fJoQZvVSRA6nVzCpPEWoanzHIL+IxWB1FsE3kLKKdvHdAgz51hxVQ6tRhOErYm+jEgAqKusrJ1Ro6eYC2giFHq5zaNVQOyrKh8TWFbygbQQh0jCbLNiiKD0iSY/J0iVmVEP1yZJ5O7KP766nhHxqlDWqeI4OeW6Ea86RrK0+gY6H0BcHtMBpOqfNlBp0unVbKSr9HK73AaNJmMhrRVNHeX6PQWqiLhqkZE5qaLE1J8ozMgoTAzFc4NwePKrrIOid4rdCJwerYNu+cJ8s0aZYQRHC14BpL8B6osS1LmqQkSjHIV5g+HHO0e0hvsEhZlhzvHXHp0lUefvyAbnsBkYatTz6mfSXwyfht7u2d4NoQdMAZD43H1LE84iyUTcX+uOK4maKMBa9JvcJWAd8EZt5TZ4HeoEXeyjFiMcrTAF5lGO/QosmShCw1ZDbBa0/phdJ7Gl+DsrSTHuE40EwqXFMxWE5YW1llb7fi8oUFfnz0CR8+/jZVM4ygW8dVoTjAxa42rRQ6aJyGWjmUnqKVJ4ghBKGhQpTGJoKlRShnPLp3Gzed0fobdCH+wgMUS2RDMhNvO4EgMZu1LIg10DQCFE3UTSAQfLxwDZBbWO8rOgMYtGpypegqxZKNlLHIAtc3hNFowqioKUvLcDikKNY5d+0cs+k+3/rOFoutt8CMyLOCXFUoURTOQ5pQ+Bk7RzWjaQJK025ZUuOpfD0vT8UBoPaBxinqClxLsdqF1dzjTkpcIZwcCdPhfJ6yiivXc2x2wrXnFHsdOHgAjx4oPnhfyFNh0Jkv6I1gdFxxnDrrihDLQErNa50K3UQty0I/ZmJMtwMWQRghWqiG0M80zz6r2D+O88kP7wgPdzRtpdgfBsZOGFawmit2J3DcxPHo8prh7/zWAr/xyxl37g357/9Jxf3NVVYXHFQKNZyBQK8DL77eYuObNe/vBlQrCn5PT9YAVCoaDzXAoYIUxbMKjmbCD53mkQgn2nBBw80k4YO6IUGxhOIDHVgNistKWFWwbAU7c+xsKvIENrqa5JpBSQFuBKpBeZDaQtaK8/psTCgOoZmglINQI9qgWgtEIY+DUCFhhvJ1rKXVNdQeaeaW2addoJ/VdfyMFcbZ6sqTm2dYknnF5MyD8UVP7v95mRT5nNvz139Ki3KadqzPPO8pmYKoeUbyXM/y5DVzvcST26cM0ul7GdDaMhlPSNKMhYU+1XbJYr/P2uJ5VhYWeebGFfLOAnWR4a7eJClv8NYnO2Srl/nok7sEH8iyDqu9FieHWwyHh0yHu8wKF5N5U4OXirTdYiEIrU7GbDqhm7coG8GJp9UySBV1CVVlEBPZndoFGh+Yzh7xzjvf5tkbv4t3DiGnnp3STYJ4TVnAhcvL1IWwmC0TGnD1cI7shMQ1dBJDu1tCs8/J0RYbbUtOQy6WRAFWRQ8Ou0yaLtLUJraqWxW1TEHwSlDGIiEghCdMlo8+p+h5uUkkmnwFEYJXhGYJm4xIzBGJ7qJ1Hp1kJaAkIM4jfm4VL3GM6HYuMi23cNUhSZphzRIh6NgyzROsGh1jsSgsWsxpzBNaNIkGJPrNnpYIRSDRmqAFJ0PGZYVXy+h0lW6e09Maq1OM7jCdziDUaBqEgPcN9bhGCkOdWLJWm7qdUEugKGtCE0gTSJRiUte4yhEkxZqUpJUgIZYutLJRTJuklLaKFvulQ/lAwIBNSW3KzYWXMEeWfn+RWzde4GB3m9u3f8zK+QXWLqxz89lnOHd1gds/+BGj6iEf7X4ConBTz8xC3TToUNPxKUYFsgSqsuRoVqCVop1lLLRb9LI2WidxHmkqKutQuSCdBmsUoVGEEqQB7y3eC8oHUu1plKUOkT0WZdE6kLUWeP3SMyy7DsMjx9HJhLVkmaOtnGyxz/HSmLf332Q0vosRH/U4JkDqo3wiiVy21pZWpmm1FWmusNaCh7IRVAOmUdS1o5Apmi5pJ8FiGO7tkf/HAlA0YA3kVpGouPp/kkcShE5+KkR7Wk53Dsp6bmTjhXEFjVdkCZzrQpLAtDEEbbm3VXJxfxvMPk461HWFKwPeaQ6PSk5GcDyGomhx/3CP7+1+wOX1LpfWDK2kJhFPU1c0IrR0YGNBaIJn4i3dxKGCwxcNndTgXSDRAauiC2XtFHhY6msGvUAxC1SFYnhAZDyUkFpDt+3ZfeRpnOLue8LD29DM4rLEa3BBkaYSBcU2ziSnq9nTBhM9n2isii6sJhMSGj58y/HsZUgAqwKmo5jVms1t4QffDQwnilYqWAPDkXDSQC0xAberFS7ACzf6dBeE5YHiV3+jxfMvp3S6Q/K+p7/k+M43t7mA0EEwDZg0LrC6CVxcV3z7E8F358wJKio5FDiJ4ruYjRlYVIoFEb5fwBZQK9iXwFUMQ+X4BLisYScERkFxA8Wagp4S8qBhqtAtIcs1ti9ofwQzh/gVYAU106hKg5nFGlM5RNWzeFbNzbJQs8iwpDnQIL5BXAG+QtUOqYmBZZKBlMhnJ+4zHiOflXN8Cld85vo++9hZG3qBJyFyn9J//Iz3+byPOJWjxH/qKdsz/zA1b0z6qfLSXBz55AOfABOe6mv0fJ6eW2Y8BWyCD2Eu0FU0lWeh0+fVV17nK1/5Ci+++jKDhQGTowknjx5z5aJG/+qLOCn5o2//mFlRkKQJqwvL9LrC7sFjZsNjmmqG0oZAhXKGzApV5egPusyqCUejIU1dYvIu5WRKWUxxwdHrtEiSaJu+utjncDSiKRSEmsePbnPh3K9jtbC4nLO01KepPDoxeOcop8KLLy/RXXCst1cZbQ/44fcfMm08x6MJ3ja0kiEb/TEH21tk9YReqOkkMXCv8o6ZD0ydot1bJyFDTq3i0bGDUTVYBRdXDcdli71RRUCRKIc9w2BprWLnHxoTog9GEIWWDayekZgMrWw0udQx7FLC6cDq8HO37iRJyVuXcMWERGo6qWVcRxpMKY1SyXxBOG/uUtHxVGuNqLhYCipqQXSIpbRQBZpa4RQo4/AoQlNQhCNOEo1jQKpzQpPStgNagz6zekJVn9BUMyD+ba50hFmDmTXoaXT7daJJNViJx1CCJojB2Bi8mGcGpRIaP/cQEYMxKVlm0TRU2kV9TZKgE8tCZ40Fv0rFjEk1opjUXLlxk/2jHTLpcfXcs6ysrdFbzjlSR7x99y9JkgZDGo+feKqiYjwRgvJoG8gyIUs0SaXBu/h7FlCZ4MTgnECa0s5z2guaVkewKprPuXEgw6OTWEbzlWJSK/ysoA4Bp4UsM3S7XZ5df5F23efgcUFxUrK4vMz62hWSxS6vf/VF/s2d7/Ho8Q+ZzWYoiUxcM58rlVLoNJAnltxquu2Edg6dFqRGUdeBwhmCUzR1xsTVTEWikZ/ERvTwNyjvwC84QElNnMisBh/kSVSJiMRWKiUx+OoMDR7CqR4vqpGjmZPQ7yt6qdC4qDyfzTwnR4GPP9zi0pVACHauUFegPFXtebx7HB0LMaxtbNDt1bRblqzXxuicphgjmVAMG9qJIbWehdSzPFf4T2tPicJXUTimvSLRUNXCQZMgKnDjoqASzfrNnM0fVbS6CkniviXG85M3j9nbj3+na5i3mAnaKqoaJhNYWo2rWefihJJahTKxFKbnJl2+mQ9kCCEoxhNhf0/oGKFtVdSy9MHncDhWFDO4dN5wsh0j4pM0EgeiogC38kJdK157KeE/+U3D4rmM1kqN6VZ4q+mbjGefC3z4gzHfasHzG9BPieDrRLFbVdy5J2TaMEjj3DU7q8lQUBGoiSr1HMVtr/ixeEQJXdFUwE0RPqw0bRE6QXF/zrqUStPKPBsrit4AJoeB6UTRuxQZG9kdEWyBWgTlUkJZoosiMiNJ+gSUKK0RlRCNdRqkniImoAOo4FHBICGLybDaoMwApIBqD+WnTyd+deZvkzNA4/Tus9f1z2BBnoCJz94pn/6I/+Amn3nu2TLST334KVhRT5iDJ6uBuUvoE/rmLFs0/6f02d9Pn6eetINKgFYn5+qNW3zx9S9w69lrtDopdTli5+AOyu1ztF+wf1RzNAt0ewssL8yoas/KQofxeAcn0M7aTEuPTRLKErQ0VNOKJAhHx0dUTY0Lgf3RmMwFxDUMWl3qEO27nZtxZWOVpeUBO8fHJImhpqIshjhXkaaawWqHbj9BzU2yhic1rrRU+1Oq7cesfuk8z91cZHy4zuPd2TxOoCChYs0OmTVjWsqTpAZlddSopAmumFE2itX2ebTOSROBOib6WW2RYMjSgiurnldW+vyLv6pw3kQDS4ni5jAvyRmZC+GNYMXgvdDUHdJsFbTg5/U2rQSrYvZVrSPzoDQEFYs53dYFTqodghuRtSbUoY+XBKV8LLvMD6zogNLRA0IpQRmNsgYtAR0MTkXTzDooGiKrVNYBX3mCM4gq8GFIOZ2gdJuMdpwgM4POBmidImqCuAnWxNTismiQGhKJAYHeCVMMIbPoNMEFhbFFxMhWozQYq/GqpvGGUCmCn2FsQmY0tpPhXIqgsEmLVTb4+MMP6LbbtDptDg4fk3UMtqc4Gu/wSxdexXGMsMFB/w7j4QFtY0lUEruHGstEJ3hXMa0deeZJTEoCtLCUCipV45TGaY1gMWRkKk7vrlLUuUKSQONnNMqhO4FepunmKeUsdj5OHdHyQCA0kJgFbnWuk0wGlEcnaGNZGAwwecraxQs8nOzx1x98i6PdLeqmxJ+W0ELU8QtgEwV4lLbgTDxGtaOVxM6q1AYSQ0xW9mAkwyQJaWqwNicVoPw5xyF+wQFKPtedhPAUeJw2A5y2R0aK+bSs8bTeLQLVnD1BnSZmKiYzhUoDuQpkTnGyO2VlbYGqcWTGsr4SSFsGjyVJhQePjvGSMuj26aSGcjJhu6xYHChMEBpvyAcpqStpK2E5h7IKTCrwPnYw1AHaaUz7FKXYGSuyTLO+0eLgaEJLKV74asrFly0XLhoOtid879sNJlFMxoKLXYtzNiSulJSKf8/wGHp9jckF72FpA/KBYnoS249DgGaedQcg8+9zOhU+fgRFo9gYQK4VqoCjSri9KbRTzd//3YQP3vPceS/g6yc1CoxEnc80KBa6wvqFjGx5RMgTVBLzQdLU88UvK97/ofCnP4Kdq4pBJtSl4nAMm6PAzjjhjZuGa1cMEBkUpRSFRMO1guiM64FjPIc++kn0VKS5cyK9eVegqxT3lMehuJgonht4nr1uWOp7qqmwuwOjU3pmUwgFqMwRlvcw5xqUyZHxGFXV0F5A8n68SLVGqRJUEwkG59B1hTgfXQB1hjJ9sBqjZ/Fc8zOUuHlDT8kTLxGefIWfAQU/3/YpDHMKMpQ88Sg5/fXneqPPKSOps3f8HO/zpKJ0ypgohejYNglEPYo+s9T280/RgtbRREtJwq0bN/k7v/O7fOG1l8jaGbPpkMf3PuGDH3+HGxdW2B8f8p2fPGLnaEqoK5YGXZpSWFvoY9MEleXk3R55q2B774TJZERmNLWvsdoyLWbRZkwpTNoiM0JTOKZ1xfJin82dI5qm4eBwhLeKonAkiSVIQLxDE7CJYnEpYTqrycoMKTzTccpsGji/OODcClx6JmC84+VXBvgfGsSf8PqrluneCNMkTK9vMDM1zXSXIni0DyQmduhYs0pmz8fVvVYoY1CqQUlMvzEhIzWKvhV6qTCsNEEsSnkMMck92soTDd7EEMSgJTppt/wCJFFzYCQKXRVh7imV4EVhCaRKYzAoY0hblygmP8HU27TSjMJ3n5gpPqnizc8aZcBoA0bPdTEuurzOTyqvNV7FWp9rwBUOqTwBh68DdaKBE7TJabf7LAwW0GlKrlI6vXM0dhnnJxT1FCMTXNkQQizpZ6kBY8nyHK0hyQxlYghFFcGfgzRP5uF2gbLwTJzDmIR+OyfNNdYoXNAsJcssscQkndDp9bhy9Ro/+eA7HN/b5Nqza3zhi1/g13/ri9x7e5MHD+9TugZRCaO6wkgEas4BEuaWDp5ZXWOsBhVoglB5hytrbBMIqcaiEe8IEg3jZlWFLjwmEYKrcCiMNix1WvRbKbltSHAkpmZaaiqnSLIBr6y8zGKzxtb2MSE0dLs9rLEkvZzF8x3+yV/+EQ/vfodQNzHdWXm0MSTGYMXSzLOLfICAQUtCWVkmlUKpmtQqUhPIdIgdkz4KfbUKINHi3uj0byJ9+8UGKMowNzeS6Ajuo0pdaQhu7t9wivz9GcCCoqxgVkBAsEmUCOwdC3UtdCXaw7s+HB8VbD3W5C0DTUO/Y2lEMS0c7RyODhompTAaHrHYb3M0HGNNysoIFtqexYU+ncRTjo6xgIR44ARFqmM0gU4DnSwal+2PofKaQSuQ4DBGce6CpnYTrl9PKQ5mLPcC770XLefbObQ7UQuiVKRmtY4sSJDooXK4B6vnBdtSrK1CNoC9zTnLrhSjuR/HKdOkdWw0mUwVR7dhZ1XotaEYx0C/mRfOr8JCt+TrvwOdgebDHwvVCMTHlXTjINHCzr0pxaghH8xQBVB1MWLxwwnXljSXLyj+6l3hX/0kJpZqrSDEzqzVZc/f/Y0OV1/q8Zf/GlI0UwmMVYxsd0SxrEYoBaZK6EmM+T5RwqIE3kUzUx4H9EXxQgavXdGcuwJqBid3YedQszkSMiMURwoZaXAB2xKSsiHM9lDnEqgDUgjYDpIEFIJyHiU1YgXJW+hakMkRajiFYJGFFVSni2QZiEdRoTCIaqF0D0wTA6LmJY/IxDw9x4X5/P4U//10+WX+83MZlLOPfebxpwDiM6/7DECJ76vOPDZHw6gzIt/P++yfpn2eiGXj7BVLPJ9tg1aQ5Cm185wbrPKlX/oSFy6sUvuGUApv//gt/vqb32DQsVxeM/zVN37Ajz45phKhqGqOjk7YWDrP2uqAwWKP9sJSzHMxcDQ8BhGKsmGwvMR0NMI7T6/boZzM8EnKpCgo6hKrDXXTkCQWL7B7OGH/ZEQrb8WqllYgNY2fYpTi6pU+eStltuMwvYTOQEA5suUl1i9eY3RyHzE1G1fPsfmgw2ic0WVI0hsxsynrG1c5GR5wVBn2Do64sLbIaOyY1NDrXseELkpbEpvRaEFcjQ7RLn8hO+Y/+c1LvP3ePmVNdG9V8xI3/knmjdanJxR4FVOItTLUdYskcWgTxxKJNSGUFlJjkUThvIvsrInCoSRbZlasIBzQtlMCHZzY+fmqMXpev9MKbSxKkohFVQz/C2JiEVBFv5YgBucc4iDROWJBfEOoauoCCGBSR+Eq6qbAZG16WZtuJ6ebpITWEsbmNGXA1ZMo2BUhtZq8ZWnlxO4TFMYYapXgixJV11EEalooAsHVVJMGQkkoPL1uQpJl9PIe62GD4XGBJsE1HiWWV15/nePqx/zy157h6jOXqYuGYTXkzz/8H9idPqCsYVZ6gi9RuHje4EgThU8tToRZqFGmoZYGFxxSC8UkdmO2LChxeFdT1zEEsJl4sCGW501G1k6pJcGZjLSdoVQDWmMTTdq6wJWVV7iqL3O0PWY2nrKw0CPrdLh0/Srdc0v82U++wSeb3wapsWmClqhZtFpjdbw4TTAEbchbmlZuyTOLEiidpvaWiZ+bHAUPocFYS5570jCj8kPK2kHWYeFzhqiftf1CAxTmTKecqX8rThmV+ah7Ck60iu1/ErWKo4lQuzjICDBz4CvFxiLkiVCOY+llb+aoP5lwYS7SzBPo5YZ+6nCzYxZ6LRo34fhEMZo0BAWJacjTDE3F6mJAqimJCniiruQ0G8coIU0URQ3HE2FSQYOilWjWe0IWSl57JeOVL0Fja7o9Txh5OkvCr/2q5r0fCiqEJzqbmB8yL2uFOCB5gaOR0Boo2i2hnWsGy9EDxg0Mvohq9ZlT+DmPJyFmGPUWABFmDRw8hlBFjU4L6HcgzIRkIPzm7yguXlH81R8Lk6O5Od68hr39sObxxxm9hcjqaClRonBTBxNF10bL/okzBAkMtGbQCeBgrdPildcWkF6FAFN8ZEwkAhODOnUVAcCj6KMYSZzhA5pjgWWEHoZbiee1i5aVS4FQCw/uwOaBMA6xtLVqYXwiFAYWeprpKFAdQW8VOrZGdTUqAaVqok92BmKJLrEemhnhaIJMa0yao6xBhjNCbVCJQtyYQIFOKxQzgirBBZSXJz4+MJ+05yBFnZm0n5zjPwUEzoCHM9fGk59n0Yl8+iU/9dyz73m2rnRWe3IKUuKX/Glw8qnP+8zOqk9/uHzqsfmLdURjVVkz6C7z5a98lS/+0hdYXu5RNo57d2/z7b/+Lo83H7M5PGL6qMs33/6Yk9KTdbqcjGYUXlhY7pPksPtoi8XKkf9/yfuzWNuy/KwX/I1mNqvf/d5nn/5Ec6LJyC7SmU4317gr21xuYRtK5SukQqDCEpKREA9ISCCEhYQEPIB5ABX1APcKVLp1q6AuYOyL002mnZmREZERGX1z+mb37epmN8b418NYe599TmQap+qWSqma0jl777XmWnM1c47xje///b+v2+JgOEajWF5fYX93H1/XiBcSZel2etQSaDDU5OwfH9HOLONpjQH6gx5HozEdK1grFMGA1jSuILgped5nfaWL1R4/KTCZxdqG+WVodweMJgfc//jbHB1PWOj9LIuLa3x823Pj4C5zekKrv8ikrFDTA4qyZGF9hac/9Sxf/9pbCDlz3WdIbIc0zUmtRbSi5TxFWRJkzJX5mnrnPnsf3yVTazgSGmlmDQMJ4aT196Tep2elHqXAWKpS005B5wofHBKib5RRGo+PhnBaYQ3Ry4WAISNJz1PXx5jikDzrUZo5DCHqS5TGGEti4k9Ex0UUsc0YEVKjZthcEbyBoEi0jf4lCXhn8D7ElfssjiNohW8KXDmm0DllPUfP92m3EnKVMmgvQKMpihE0NY0K0f0VjUkzlJGZB0nApOBqE8cU5/DBxE5HiVIBVxVMQkMrV3xm+Qpt59iVbZ6+/jKjgwO2Nx6wcmkeqQz1uMP2Dc87t97ljnmXtzbfxhAZByTB+waNx0j0dNKZxmlFogKJdVjVkBnPpNKUzuLKhDIB0gYLNL4hSHSgNioGURoDaSel3W3R7faxVuOqGA+A1WTtAS9e+iwvDD7L8f0JD/fvkacJ/fkB80vLzK8tcHe6wyvv/Q7TYhOTabRO0FqR6FgiUwFCcAQvaB3BehOEsnIxRTs4RBo8GgmGxkW1e64CVempdYXIPkof4VttzqlV/qTbDzRA8V6RJLOYbxf1F0EigIuBqwovMluQxjyeqlGMxlA6EB1dDCUIeaa4sBbBQ1PEjtBUxU6UduMpd0Ay6GWewYJhac6yP2m4dbemazVN7hkVjtX5NsoXtG3J2qJmkBdUR1NyqykaIVXC+hIM2rG8snUMdw6E3amm0xPSoFhbCKRVYP08JNajlCbPAs20wjoBr1iaE+aWhGKkUDUz74U4j3gXNS5+Nsj0eirWrQO0tDBoGeaetcwtLrG7FTga7zKdeHwpM+YpBm8RJLb/5VHn0czM7jo5DFqCTKA6EGwGL74UtTjf/qZi854nTOHmpiLtw717nvV1Rao8pqkwSrBtTWeuQ0NN05SIDqSieW5N+MwFUJ0Wb30olNOKdtvggSExlkDPJu+ozYyTbqaIin1iLTvBI8B5pegoxZryfHZZsbTowQuHDxUf7sNENF0Ly1roqmjVPFhW6L4wOoaDvdiX2ZookjZQeaQ5RFSD0gtgOqAsMhzB/hGQodtLsXOsmVLff8i4iDHwdVGTaMf8EiR9oOfRVoEoxMsjAuGEZYDHJ/vTv0+Awn+lznJqAfvdnuhkn+9xm8hjT6/OHk9mt/zXyjzfD5d7cuhZS+y5lXVeeP4L/Jn/7qdYWJinmBxz/+EG3/zWKxzv73J/Ywsd4O5bWxzWcDgtSSpPXTcoDK25PtLOo77Kl9y7tcnWwy0G/Tl0cHhx1NOKxfl5lNZ0FweE3HDn7l0QTdk06CSlmha4xtM1FjUbQybTGpMqrNX4MAQZk2cZ/UELZQ3FsKCqMioFF55tI1Lz7lvf4a0//Ca+PuTc+ZRO6+fYP3qFD9//TVq9KV/66R/n9s07DL1QivDlH/ksxWHFaDym27nG0vJ1Oq0V2u02c4MuNklo6oqjo/us9vbI/Q7vvDPl9rZGmw42GAJRgOqCRyvNSSuwR9AYQtB4BcbEC8o1CdbGco7zgRAaUHo2oWssBqN9TCr2AjToZB7FRZx7SC4TWnYOUTlaCcZYzEwcq5RgtIoiVT1LH7YKo8yM5VYkVoFKoqdL4/CNI1gNOtrHh1lpK0kt2kBRFtTFmMNhReUr+rJAJ0vIbMrCYIFJklFWQ5R2oFOctjShmgmwDZ6AV4qQ2mjIdnJZ+ZkUAI0PCq1zPv/My/zsl15Gy5Sb7wJDYXFtmVde/SrCi1x/8WdZzD+NuDE3b3ydV5o/oHGCNzZmiHpHXQk61CT6hOm2pFZHw7pEGKQacdBpNKPSMnUaGk8lNY3EEp1RCmsSdG5IsiQyJO2MPMsxWuEkUEtg0jQ0knB+6TnWkssc3h2xcW8LpYT5pXmCEi5fXWe3GPJbr/47xvsfxA7XNEGnFpNatEkwweOqknHl8UjMTgqasvZMmimhCSg8SeJRiQWVoEQQbQkK0CYC/2qKcw4lU2j//wlAObGT9jOPLIRTUezJyvOkecDPgEsxEcp61tE4q823W4rlZcVch6h619FxNO1A68T404M0YAWk9Ni2YaUDkwXHzlAwY8UgT1npNPRzodep6BrD4Z2CuW484euJ0E4V/XYsfzw8gve3hM2xQpLIBp3rQt8GLi8Jz19PGI8s3/pqw/WXokbFDRXtFmRauHIRGpWwteGZHnlcDWVz8t6jr8ncnGJleWb9TwQUZctz8fkunblFmrBDb06xezuWuYKPnQHaRJJAJ2BE6FmFb0NQQuNj2Qwdu6gMgm6Ep5/RLKye5zvfmPKdb+zhNew3CQfHjo33GxZyISGyRnZB0HOBvKNpW0VLw8Ulz5/58YTPf8kyNSkf/OMJGzfHXO2leGCk4veTqPgdN2cYgVwUNYpmNm+mKJ5WhisExkHxqQEsdoTQCOFQc2sT7npYNcJTrah8r5ywPq8YzAuubSgPwOPpzFlMGgglqKFCtQT8FCk0WjuYBjgeR58Aa0GG+EnD9HDEOzc8r+84mhBB8ZIWPreoePa8pndRkMU4Jj/m0qrhu87+T5ZizohRT/94jOXgDKMhpzerJ5/nibLPqc71DL6RJ287y6h8r+1JNuXJ9zJ7zY9XdyI6a3daPPf8FUQKRuMjbn30Dl/72mts7x2xs7FNVTUUZUmiDZiMpjqm9DXOOdIk5XBri34K8wtzPNg9wjtBrCaEwOHxhDRt4VLI8xZmUpCkGWlZY5VlNB5hBXzjKKsydv41h0DgyNdkWUY7TQHwbkg5fUA7Dxzun0eeNnFgdhUSPEeHI+7du81/+F/+I6PDPXLl+Pqr/xM/8ZOOBw9+h+2jh5RbIzaP/hOXz6/iEAbLK7TyDre3tkGlXLz4JQaL5/nci89weW2OhX6N6taMRxP0ZJM7793mmx/ucOeBUOiXEdWZcYsgyhJ0hQohAukQadI4zOkYMicKqzWN85hQ00pajGoAhxDQKqCNjiZ6alYm0gonSfRkSa+SJAYbjknNEKfPo3SOVg2J0tEzA4XWGmMEdHRntVrN/FGitizNEpTSlNrReEfjq8gWGIu2QppnJJklsSlBCU656O/kHU0YcjxyuKbHoNMm0Zpuq02vv0y306HfH5B2OpRuwuFkj8lkl2Y6wqU5jjimKPE00xrEx7NSGRKbsrp4gf/msy9TTnbY3x5xsDNCF0ec719mfn6BzHRJqhYHm3tceOkc74Rvcnv/FjZN0cbi8TReUzeCrwPKRw2TtqATg545vmYaOqlmkGvauWFSGcZ19JaKgnMhGINYjTE51kR1UeMMxgi6iiW4aeUoao8PLfpqCTtJODqcUk5rFuYHpK0Oi2ur0Nb80dvf5Oj4DRLrEAw6VSS5RVlNahShnknDgqKuo6keQaiVhyZEPxpiq3GmPTaxcdFlUkySkLQsGZ6JKmJ5/L82Zjyx/UADFJFouAOx88b7yJic1rf9rItABBxUU6iq+AHZWfeATmB5SbEwmGV+FhGImBS6RDZCZvs6IyROsbmv2BjDs1calloxFXNyAFNV0+8ZGNdMKwguEBpoL8VumsJDN49z2LBSfLQFu4Wm04NEogo7T4X5nnBxFfp54M33Kna3hJsfWX78ZzvkyZD3PgxkFrpthbGOqisYrzg+nCHsTKO10O3B4jwkJobSnai5pQhU+2Py9jY2VIj3NNVMtwKkCWSZnFpV4BTaKIyNk4n2mvUrbdpLExoUH30gHOxDksP8muWlL6yQ5yP6H3reuQ3Ke473ormqVhqL0KqF4UHJ8SZcX1WsLcMXv9DiCz+V0b6gGB/C+kW4+WHJ4nIElKXENOQ2sTwggJ9N7OGEKROFVYEF4BkRKgXXO4qF9kz920QfmXtlYCTCktc0ZcC7aIiXaKGqDOOJZ3oIVhR4hZ9aTHCnbJx2AVUV0DjC0DM9FA6OHdNqSqcDBLi9FfjdbXi1iR0RFugo4XADppPA572io4UwL7G9kdjK90lV6hPb2Y6fsxfD6W3yqGUZmVFNnOpcPoFNTssz6vSG007ix/QwZ5gbOfPzsdd25rXMnlqdopszr/X0WCc7nXmYwPLSAudWcqrJLvv7R3ztj15hb69gc3uTjc1tNBbXOKZuyuFoTFXVMeUWCAQq7yirhul4gp+1QdfjKUl7QKfbZzIe0U00/V6HpNNBCFx56grb21s0wbOatxiNS4qgZzbxmrIq8UGQUJHmSfQQkopWa5urFwcc7D7E+SvotKCpCzZv3qM3Snn99Tf5+h9+m+defJbbd26z+fCIyfTfoGehhMYk+GnB0c4Ox+OC/vIcBwcF92/exSZd1i89y8UrV1lbW2F12XPl6ojWSsOtd77F//Jb/45b28KDrUV06yUUA1JXAfHzaLxDY6LmJMT4CSsgWqI1vp+1gRoNIeVwOmJ5IYOJOv1iJGg8GqVOysmzvBc8Vhts0ia3L6GrOxgZ0m5VoFdwUmKVR2uN1ilKLFo3s0k7oLWJAZozawUngrEmCpBnWpCmcPgm4K0h9QrtPE48jfeEqsH76J4bgqcup/jaUdYNadYiMwmL7ZxLyxd56tJVVlZWqLRwd2+Lm3ffYXf/FkU1IUhDisaLp6qGhFChrUYbS5anXF+/xnRvyHuv3yD1y1y6/Dk+3HyXKhTUfoo2mmc/+xx7+3d5/d1vc2f0ALEWSSyBhhiiKIQQcI1Ao2gawSZCMjP6rZ3F1YLveuba0MkCSoSmVnhRBB3TmL3ScSFZzATISqjHU0bakLaioNUHCN7w7NLzXEoucrxVcHhwxGCux/LqGulclxc+/RRv7N5g8+jrLPYLtEpoTEKjLT4Ihfd4p3GVp6k8VdngqoAEj0+ivkg3gtQKF/vF0bmJ17q1JK2cNG+RtBIScZBC1glkYr8vZvUHGqA0NdgEjJH4pUiskwqRsYhavpjwW5eKaRH7sI3h1JxsMKdYXRISoC6hnAplo2gkEqKNiQDFKoVVMK4Ub+wohghZ2zCfBEY7ChXAVYHtu4GuikyJEyHPwKoYE94o6PVjy9/OsWByxflcsBaaUqK6HsWFeUU7Ee5vCJMhDPrC519OWFiHb38tBvTlGZxbFDo2TthNrhg832HugiPPHXs3POM9KKdQ10KrFb/sMAtQHB85ks4+JBY3BWaOu17FsEWrow7lxAKf2eSpNayttfjCTy0T6il/9F8CkyNYOKdRrcCk3mK53+NHfirn8//NmN//XXj/jYA9B0UVu5bKQhG24P6ux00VP/Z5xcs/0mb9xRS70OBaOamv+cIPeV79L8Ldm/GMVkRPllQeaUprFI0EDNDGUACpClxG0xBYSGEpCzQEqgoOJ8KDA8BrVlUUV2820FeG2sWgw+w4UDYxo6kk8OCeZ3FX8cJl6C8rKC31ocemNVXdMNqB/SOh8Io6CNNMMXGKt4407zvPwewT7AuMJTJUyVFg5a7h6ZbGZh5pnUz/s0DEkzd4xkrkv7qdoI0nQcPZUk14xDae3U5JllMfoSceK1Gn8//RdpbREUEFNXuvj4CPmolup9MRVike3r/NjTv77O4dcnA0Zn/3iKCSSJlLYDSZUJYl3gtpktDpdCimBfuHR6im4ThLCAFs3qY7N2ASPN1EY/Icmxp0Zkl8gy9rPn7/A6xN6LVaTIqSgCdPkhgtbw3KCMZoQhBWlxY5ODhiKbN84ema6fZr5OevMDkWmhLqySF/8I2vs3SxTd1EQe79e5scHZVM6pLj0TGDLOeZa5fY39lFdEWr16G/uEIxGvHmt77NYVHSXXyOl7/841y9dJ4sKM5dmGLcDT747W/yP/8//5A3bxoWzv8pFhefYlwFKlfHDBkNRgJOexCNCbHdVwIo5QmEaFGv4wpfhYBVlqJw+DAkTVtMJgEJUcgq0qBUPWOt02hyqTRJkpDlcyzN9RnMXedw6x3UdIe5gWVYzSF+OutQMYCgbOTMNBab6FkKMoQQze+YeUEliYJMx5JzE5AmukZXLnJDPkRNYdT1xfZlm3fj8xlH7Yc03mCnCT4Iq705nl5ZIskMg1bCcLTD0XAD7z0SEvAO7xqcKHSWoizYJKXfXeRS9xKHHzXUxzkknlY6YP2pdW68/RFPX36RZ595nryfUeyUfPWj36ZJFHnWBpMQygmuaXBVTXAeHSI4135m8aBiS3YQmFSa2nlqB13bUFcwrRJqpUlyGzUHQYNTBF9RlbEzpmoavEDtc/IsdiPNd85xrf8MYc9QjwqM1rTbbSQ1PP+ZKwzbI75266u45iELLUOvrUnSgKjApFbsDg37RzXVtKaoPVIEqDzBNwQEpxUGPWsbjYOVF0NQhlSnJElGq9UjTS1Kl7RbNSo0mCqDyZ98yPiBBijMapciUZehiP37PjxivcVHfUpRSuz6nL1jo+LFkiSxVVm8mukvFHUDYxcpNZtqMNFLYNwo3rijOPAJl5YCSfCMh3A8jZPvYltim5+G3ES9SZ5oikIRjCbgOBzCcArtruKFRc2kVNzd8DQonFc8s6qxOjBpFMvrbX74KcXBwxFUU976o4qbtwKttsLXikkTGE0V5y+1uHpN072Qo5MRmx96mnLWKksUi5YBWrkwKUFKw/G+ZuG6haBwlcIkMTnZuigQg2iJj4pdMVpD1tFc/0LGs5+zpO0D/ug3A0e78OLnFOlA0R4YrC6YDhsOtwyXnxV++r9tGBXC7/0hpAG6qVCVICrmJF04Dz/0410uvGCRrIrivCpHQsGnXzRsfeC4vxOj3QdoMglYIilgAUOgD7SU4YEIQStWUfQRGq2QVHizgA/GitpH8fR8CCyrCAh3UOwRhYFOwClNqw44NEcI20qxXWoGZaCZKj41gbQrbN7R9LuC8yBe0zGBLNOMy0B9LBw3cFQHzhMTpG8IjBWkCDuieD9ozh8KS1uwsCwxzGtGvcsjhyui+RWfBCknk/2ji4FTcPLYfWdun1FiKpzVj5yt75xhYb5Leef7uDAff96zNaUTMzaI7+2EsTl5zbN26/HxEXv7U9774D5vvP0xh4dj9g+PQHKuXHmKnd0tNjdjqcfPWFSlDUmSUqiSqq4ZTS0L83P0+l3yPMNYEzNacgPBUkzGOO/IF+Yw1jLoz7G8ssKNj2+yezSm8UK/02LQ7zHXG3D3wQNKHGlm+T/++f+Of/0//lt8U7J1d4eDu1uEwS2evv4lpnXKBzdvcXNji3u7AZUIt+9tEqQmWvs3WB04t74AqsEwR1UMWVmeo9Pu8O7WFgfjCQeV4+KFL9NqX6LfEs6fO8TU99h5/23+8Csfkg5+jp/73/8Ue3sZmxt71M0xmQ4xuE/5aKE+c8ETq9HeY5XGBYhXTvwOThitEAJNnTIpJ6ycV+g9xfi4wTU1whE+7JLIKsauxOYDpcjbHdZWl7n+/EWeffoiWfJZvvq/vkY4rFA2p6gEVCBIMtNtuehqKoqIW2ZoXCBIwNU1SiKoCMaStjRkGqsCKngaF6ibaHMvAFajrCVp5/Tmu2RZitWBqh5RjMYMR46HmwN21s5xbj4nb2lUeYwNNZlWBKtpmkApQtW4qEea76Mw5KbFtc41RvePeXj/AWme0fiKo/0Dzl+5xPadTeZayySpYePmBltqi4fuIa1+m1QrUJZCGQoMpi7RRRNTpWc+XcYajFGxrAI0jdBUsL3nOVaBoBIchqSVoG2KKH+at2S1wiQxpLRjo1ewTg1J4jE650LrPK1Ji63N6IS9dmmRdj6gNdenNdfiGzde5f799ymLKbSjBGIty+nkQidVpAhpgGOVcBxip1diNE5bXPC44GmIxnzGaMRYNDnB5zRYqKJRqrYRm6rEkGhL2urP2Lk/2fYDDVCEKDQVZiAFFd059Wywd8SguFqo63gtnjACJgFSReWhrBWpjkmPU60oZyOyNgqVCK6GaQVv3lMMXcYPPxW42vdxpVcr5juwOBD6WQQ5Kmg6NpAZhdfCjfuBkQsoA7WH9RW4eF4xmEsZVz20nvLGzSnPrSmuzAVub8BTV+CzlwuOD+DuQ/jODbi74zkuIEmEq8sw31G4UmFb0O4UlDsTdm4ENj6A8VARZih9f0fYHkNIYVQmXP90l837E/LFLp/+YsqP/JmG3/v3Q7bvlqeunjqmuWNUrBuffyrlM38q49y1hmo85P1X4f4HghXF9jZ0vWJ+GagDgx40aZu9jZqV84Ff+nOa9SXNa1/1HOwoqip+vgphOFRMRp7QeJR3yNBhbAGuopsE+l14cBxP8hyhxSzegPj6EmKIYI4wVlEPsypQADoR9kRxr1Js+cAcio5WdBQMUsF7jfbCsRLWtGIg4Ixm0BayFGrRbNbQK2EqJyJdzXEVmHqh3ShcoxEJJAjKe/AxodV5oaXhikS3Rw1MAYtQI+yK4k4DGwfC/Eihu5yWORTqTFvxk4KRT1wEj8olT9Z3T+s0Z/Qp4WRCOHlO9aiOcxbYPMacfI/jnv15UkN67Hlnu5y4mZ78H4i1w9nxTq5fdeImK4qyqPm93/86D+7f4cHdTcZFDHprDwxHx9vcunmDqqojxT97vNWW4+GQxbk+y4MBk7pGZZbxdMhoZFiZH3D58kXSlmZjcsx4OqGtNcPdfZa6Xba3NllcWaDfbXNUVLTSnNX1ZTY2HtLvtAneM51OSZMe77z3AZUL1JOaxHqe/6FnubN1l42NLahHvHrzfUqEahpzrBbnu9y5e4s0NVy7eg1dHJGlgbzTZv3CORYX1tjaucPGvftUPjBtAklrwPqVz9AEw3y/QFcfcPvtN/nGV97n2L3ISz/836OTRXxzwPAogrJKPDrEso4Wiw0Br8JpUGrAR70CChU97VEq9nsHNE6E42ngyrxn+aJhc2ObnY0HTKeHMT+KlThJKosxgeeeP8ez11/i2pVFrpzP6XfgxWd+nj/47SEffXAbURXOTQnEMhECSusZQ6hjmUeBzSxJpQjOgQS0teS2RdKxcYyvHdV0Ql3WNEWsi6gkmkOaVkLWycgzS6edxxZmVSF1g9AwnOzx9t2PGPop3ZbloDhib3+D1CTofI4pU6ZlhRKhlSryxGBMDE+8lJzDTqCVt7l25Xl04nn37de5VF3i8pWn+ezLX2BuNeONV97klfKrlG5EK+tE/YXJaKUtqlaHcTLCe0/djEB5jAGdCmJBGY1RDiMOW3tcECpvaESjZ6yJqsArFSUHweMTRaYT0szQyiw6Gs2QJinnWk9xTT/DcGdKb8mxcrHPYK5HImtcPH+Fr7z6Bv/zN/5vjEY3UNIw1cJGJuyvOi4st2nnCSKaTq5QwZEaR6+naCUZVmsmdcPuyHE09tQSW4+FFAkJwRu8g2lV4+sjum2NbTVkHYftdEmT7Pta7PxAAxTvZaYU5lHqu8wGxFlLtvczUaw8EsUaq2JS5Gwy3t4RWnlsP67KOCLbJGb8hKC4sQ03djT9bocf/1zNuq4JWqhRzHVhgJCZyMTsjSJjkuWKXAt7x9H3RAl0EsXSgvCZz2quX0vY2xaWzAK63WU6usN6P2YyJDlMS8XXfjewO4bNPcO4FNqtwFyiOBoKH92N4XkLncA3fm/KFyaKViKMtxVNDSddGOLi6XA8VWQty8tfnOeZ5zxPXTY0TeB4p2LtUkN3Wdi+o9ESjbS0jiZH7a7m019MeOYLQtaZcnzPU21C2IelJTjYhOlQmJSO0RF0Fbz4GceEY46PhLmBJmkJP/QF4egBvH8kaBcnzNor9naE77xWc24VEhr0RJBkDzUA71pY0/D5l3O+/VZMq85FYYgZShp1EmhNhrAE2AAFhk0cy1W0GaklIEpRSWA1aBI1c8iUQKaEnoKegasDyDpCNlDoriBGuFYqvjBUvLNrGI0DW4eehsC5NYN42NoOdBOho6PV87SIE62HU7BXeEWlFEFmya2z83RTNG8fCxcfBubnNWQqpuhGTv0TGo3vucmT/+Rx4BD+OLRxRh9yFgd9AuzIJ+87+7pOj/tov8eeQZ35efa1BvXIQDYQjfICTJqKG7dv4X3D8WjIcFKytLBEnqZ8fOs2k3FJkJklfogAazwZ0+206KQGaw0LrQHD/QPaeUbeazG30KfTsuxsb1AVBcV0ymB+kfHRMaHdRilNNS7xZUNXGUw7x5Ul55ZXMEFItGKu08OI5ZVX3mZaNhjfUHu4sLbMzuYx777xOp35mlKNmVvssPtwwqALi8s9qmqZCxcv0UlzNt7bZuvhNu088NQzF2l1VhBXoZRlWjvKBi489RK9doIN2+Stmo23v83WzRvU9nM899n/HpsNIAjz820m03mmZcGkKUiUJiiDV4bUzAy2lMNLXHBEUCgEbMzQQWaarugbUkwSdndL1i/Oo3SbulJULoBvYckRpVFBkxrhU5+6zLWLF1joQMso2q3A/JzmypUBOxvzNM0+FdHq3KgqlmREMNoSLeZiu2ySBPIcmkZjtCLLLXZm6lUXNWXpqSuPn4AUHodH9zKy+ZxWPyNvJzHMsWnACTmWXp6QtTJ0bhm5Az7YbaITbighxG5FLdBOWtDRVKZF8BOUBLz3rCerdF2PqnGEKnB0eMTTzz5L3nkHW3W5vHKdEBzaDtjKbnPr7g0aUwOBkGWoTNGybXRq8K2EspNBVaCbEAXCFhoVGS+IDQTt3CBWaIJlEqBGqF1DMwo4ObFFV+hk1mGEhlZGmmcgQq+1wuXus7CVgzpgcT3FeaGaahZX5zmox/zum19h98G7KGqUVtQKhmOYFLB/CK2WxtpYvrPKo6xneZCxtpjTyRIm05J7uwW3tqN7sxCDIRvx5BCrEGXF3qRhaMG0G9pzmvl5i2rX9GMu/Z9o+74Byle/+lX+0T/6R7z++utsbm7y7/7dv+MXf/EXT+8XEf7u3/27/Mt/+S85OjriR3/0R/nn//yf88wzz5zuc3BwwF/7a3+N//Af/gNaa/7cn/tz/NN/+k/pdrvf12vRSp3W6hUzQeuZwU8FRdNA4+S0lq91ZE9MEt0qg8TcGz+dMSwKTCbYJBqp3byvePcB7DcwqTx3+9BZVyx0oJOANVE7UFWKraNoA7/YTWllJb5SuFpIdVwwponi4uWUlz6fkpuGyVgoyjHueMi5vsbgwSoGA+gOIrLWEljNUi7mju1N4YMbwrROuDDvqRthew8SI3z4jubFlwxF7RhPhTpeg7QTodPWXH3K8uxn2nzqeaHdaUiebXF4UHC8VTG/kPHS5zts3BwyPXCkVmGz+Pl0eor1i0Kia6qhIJWK7EBHsTgvlCMhyxTjGh5uwNOXFFWAm7ccRhnKkbD9oXD7Bty9GQW4Ko/f17ASag8f32i49IpmtSfkCGkOrdKgWjo6TxqPAjIi9aiJ2DIh+qEgYWYABbVSbIlnmyigPfSRRZkogyjPhJj7k4owl8YOnjTX5Bkk/ahR8hbqBm48VLxzACYIVSWUAdJpzEiZnwYm46jT6fdhOIKtqWbUCF1gJMJIolnelGgDXUkMs+wDbYQpnncazUs7isFE0ElMfj0BGHIGNDw22f9xUhB5dA2ok50fAxd8Qsj6SYCiHmlQzhqxnJaA1OOP/27H+cTrmrFD6kwZyuvTN3bKnngFGWztHLB3OGF4tMtwOKE/6LN8bp1bNz9mNIylmRDCI3ZGRfOtfrdH7QLbBwdkJsFaw7Rx9LRlb1Kx98GN6BGkE3S7y7COxlTFZMTC4gLBlxjVQayhKGsUmkGng2sc86ur1HXslKhDjQuOctpQOqG1eI68M2Fr90PK/RqlpnTSPvV8i8+9/AwfvP8ag8F1lubPc+e9d8gzS1E76nLEaHKebnfAi5/+DPj3effjDZL2Apef/iy3v/l/4f/wk79Gq5vTZH0eHHd58Ys/RbvXp5xaijrQbmV0ujmtPCMrUxqSGJ+BAxVwWuH9TO8TQM9KOgoVQwbVLA8nBDQRXe88qBk95Ulsn8SsxZK4TiEkM8duRZpaunmKTYTOvNCZNyStSFO3u9DtdTgaWlxQ1FVBYmuUGLz3GGXQaGzQs9PWU4eKKHOOOgabKnwQmtkkHXyIuhMRRGmMScm7Of2uwWYK8TV1E0W5fTEs6oReFgfqUdLQ6Gn0hgkViCXoBB0UqTb0Wx1C1qFu2kyLQ2TiOa8vcPfjO1ibcuHKRQ4O9jnY3aE/N2AyHLMwv0jWCbz//rv83vtfYW90hE0VTVnRJBV1VlNnBcZqgivJE4XupoQqnuuNxFy3EGI8iA8WsUJqNGkSrRWMl2gEOYsC8CoumsUHVFnidUZtUwyOxORcGVzhvF3l4709mrpBh5w8z+icH9Dpd/m/v/K/cvfBtwhNjTIKo6MIAAVF1bBzaFBDS6BGJzV5ouj1Nf0FS7/fZr7TJkna7A1HGDMCqiiBSBzKKFRmyJQlBMdoVDKe1CSl4BpFXQquo1nXvT9mAHt8+74BymQy4TOf+Qx/+S//ZX75l3/5E/f/w3/4D/mN3/gN/vW//tdcvXqVv/N3/g4/93M/x3vvvUeeR+T0F/7CX2Bzc5P/8l/+C03T8Jf+0l/iV3/1V/m3//bffn8vZsacxPFWzU5uTgfAxkNRRVfUSJsLSapitLiJF1kIUWRrZg81uSLPFVkKmYOLC8LlA0W5b+n2aub6ml4f2lkEBlrBqFB8633F5lCRG8XaQONU1JpYrUiYWXcniqvPLNCbGzI99BSV553vbHK4HUiAwZzlylMdfuhCiQmOr3/LM5lohJJ3bwgPtmO73vq8Y31ekArSLLqvDg+FnQ3PwrkWH2847j9oWJ0Xkl70SOn1HGuLFd1BSToQ6mBRRY0vPaN7JVcuOF7+YXjtdxVpDkkrtimPp4E3vxl46XOweE6RLAhJDk4Lk4nQm48ZP0miaEZCMoCb94WHD0C5wO13hL29WIoDwRpFmkfA6Gb5HMHB5kbALCq6iUKOhXAY2J9OuX0TVtXMzCny1JyaYUpkUgzxBqeEXTSHCD00RhSHyrOhBSRwIWa6kighCcJCpmn1hDAXCAq2xpq39oRQxdXgq6WwHxSLovgMCofgKk+nq6kqUE44tyzYVLi/q/iojK+hI3AkwrGKGUFLWtAiHCtNS2AVGACZEraUsFcKoY6vTfnZGzoTzKdOGJGzKOUTrAmnwEadvW12oZxcG+oJIBF/nRVfHmNaZgc7Y13+CLR8FzAij/8us93OburkWHr2x4z5iJ0hs/uDgAfvG3Z2N6hmAthBb8DWxkP29vZJkpS6rk8eHt+h1rTbOQLsHY9xTYMgZGmK1ppk/5j7W7ukWuGbil6nx3PXLtNLYffwkO7iGsZojo5LFueXaPU7TJuaQdbm6OCI9YvnudLKcQSCKO4/fMgHH74PGky7T510WLy0CMMJG5Oaw81Dgmt4+fPPcuHKCq+/OmFt7TLPPH2V4mCLPV+x8eA+a6t9rjz1FFk3Z/POLsFNmevO8fz1n+LZF36Mjx5+i/mFHe6/+hHvffVjeit/loWVq1RjgzWQpZomJPQHLXr9DsfjIUljMOKjL1QIJBpELM4DyqMws1Mlglkns8QBBUEiozIZZbz31pAk09y5pamrBebbHYzNMcTOJrEpdQj0epClQjt3JBZs6rhwxfLed1KUznHKcFQ8oEdNK7+KUUn0R4FYXgImhaOqmniiVUKQkqap4/kikOYWQgZu5geCwbYsaSslyxO0EoIv8WLjpNx4lkiZM5qqLGl8xbge04hDjELQ0evFK5xukSctktSSptFjpp12WGjmyZZznAtcPP80SUf48OPXeeryc5y/dJ1zT5+nDLu8+/pr7A8PaaoS8WYWsheiTsPVpCYKYbUKtFotQtqimJbU04LKeYIPYDSWgGsUjRGUDgQdSFUcu+KAl6JReAOJDvSMJxNNVjqQlNXli5yTS2zfnoDzzPUW0SbhwqXLrF04zxv3PuKbH/0nar+PyRKUMmACOokLclwTXcjFIeJoKqhrhVMJwymMxoJIYOJypipQScB70MTYlSyBdluTZGDyBFJNVWgShNA0lIeO4+kUWeFPvH3fAOUXfuEX+IVf+IXvep+I8E/+yT/hb//tv82f/bN/FoD/4X/4H1hdXeXf//t/z6/8yq/w/vvv81u/9Vu8+uqrfOELXwDgn/2zf8af/tN/mn/8j/8x6+vrn3jeqqqoqur07+FwODvgyTj8yNZeJA6oEqCoYvif0tG3w9rYKmts1KKEJopltY5lgtQqVBZbgVsWdAMX1+BLQH8p4+LKlGvLDZkWlBXKWrG9L7xzGx7saNodhU0Ck9oymSjwiq4N0X0RRbdjWF42DPcrPvqOY2cLRmNwSjh/vs0Xf3qFC894rBTcfDelO6dYomZ/Rzgeezot4ZllxZVuXEVYH31IRClaraiVWVgTfvTncv7TQaDbdjHbzsaW43LiQCXxjQVPcQSH26BLYf+gYfcBdHqwfF4xKqNgKzTC4SH80VdgsACLy9DtKrpZLGktLymOjoQwFVbmFNPD+Doyq7l5U6COIE5pwWhmBk4RcPRnKZjTAjaPBGUVLStUDTzcFe5uCJNGwZx/dI4RSztGBDPTOWg0Siu0BMYEBsCSUhwrj1OaiyI4JRwiLAv0iKuQzakiDeBGio9qxZuFcBiE55TwhQXLdR341lhwBN4FQHHBQV4EJlrRMkKvp5gUwlYDtwnMBzgi6ipyEVpKsSKaORUYz9qkF4huvCIxeXnoFcHpaAEeZmyCZrbKjcd9DAGcsBGneOIMK3Fa5zz7kBNR7HdhOM7ud/K7emLf0/sfL/s8ScKcfcgJSPrk00lkSZ48/gyknPxsmobpdEoIkGUtdg8OOTw4oK4dS/15ptMCEYdSCmsN1toI1Mdj6rrBueg14YNQNw1VXSOhQYLQbuUUdQxqGz7YITEKcsPo+JjD4xFoQ6/TZn93j7KdcfHCOZ67fpF23uG4GjO/tkTnvYx33n+Hyjt2dg64f2OD+7fuclRXLDx1lbKc8OKnP8W5i+cxWtHOc7I8Yf1Cn6PdNRYW+1x6+jLdXouk1+HWRx8y3D9kPC7o9q/x4qf+PL25Oa49f4nu/IDNe8v4uYKnPn2e7rzQlAqrFcVUMFbTHeR0ex3aWYu6nlDpBBMcBkMiCUEcjoAoj0IjSvASNQZq9tUK4E0sM+IUG3eF42LKcDQmTTTdpE2aJEiIA2hiW9DMDOEseNG000BiFe12tJjXOuD9lKL6GI2i172ETrIIhMyMWlYKVUIoooYveI9rClxuQFt0I2hlMYmmTjXaJ6AtWSch0QHlG5TySFOjvaHlHOddylO2S1I7tl1Nk3vGNlCWTTwnlY3lHq8ZN0PaeYd+r0eS53TzDhebS4y2C6q6pG4qxnsTrly7zv7WHrZqM+h1uX/jHuX8EV+99fvsD4eYRNHOE9rtFGXAhVhICypF2VYMJaRBS01iE8REG38VJMa2CJQhUDuF1QG0op4tnrWdMR0AWIzVtBJNJ02xaFLb43LrCvqoRXU8oT8YoKxmMN+n3evhc89H+29Rq11sRxGqmKlEkqKTyGwGneCdjq3pomiCiw0nHm7dOaQqGwaLizg8R1U0uwtO46qZkL9T0+oJecvSHbRo9xqKcUY5qamKinpSUtY1/H8ToPxx2+3bt9na2uJnfuZnTm8bDAZ86Utf4hvf+Aa/8iu/wje+8Q3m5uZOwQnAz/zMz6C15pVXXuGXfumXPvG8/+Af/AP+3t/7e5+43YczDPQpoR2dZesa6kJiV4iOmhKVRGCiiQDGzDokjAWbKrQR2i3F0nzULlRlFMcuLil+6QuCHwdoApWH46Hi7gO4val4cKzwqZCJsDuGaqPhXCZcmwffxMTMTivQyRwPPt6jdJ7b34H7+/DOBhQ+5//86aucf8bR7uziG831L1zEtSr2/uABRoRLy3BhGeYJ6Cpm3WRZnLhEQX8e2n2hmpasrjd88cfg4IFitBff69Eu2A7RzXDi8bUw3ocP3lcsz8UB6v59xfWXNYM1WGygqQxHew3FnjAcwfY2mA9j19AXviSknZLUC8U0lq/SBKa1Ymmg6FyBo21hvDf7zE3MCDoNJQyxdJJqkBwebMDBMeS5QivY2BHGhSZJhNGRQ7cefe8yk1WEGS+gJLI9oqEjMKeiELVQMI/GasVe8DiJRnMWRdvCDR94f6rYm8IEoSWai8pzPtXMm0A7KAqlQQITLXQC7AlMKlhTwpW+woiirBW7HjZU9E3RCF30aTmqQ1yltiW61WaRGGGIogRKrwh1VPerk4n6e4lOzpAXT5Iq33OLSvKTGsuZ55LHf55tLX4SfJzewem+Z2HTHwdWzh5OPfH36e0njNGsw0gA7wJJkiAhcHBwSF1HUezW1taZ0g5Ya0jThKbxp+AEoK4bmsahdQQx02mBtYa6UWRpwv3tTQZ5ylK7R5JqfBCwllorLl9/lqmruHxpmS++eI3rV1eYFAX3twxvv/JtvvWdd2PYndW8c/M25TSKTc9ff4p7d27Sa7U4t7rCq998hS998UX81HPl0kUSXXP9009z784277/7Dm5Us/Otewx39xkGR2qX6Qy+jJIV1tpbfP5nn2L7/Tfpdfo8/8I58taYsvSUtUd5jVHhFKjOLbU4OGwzLBNMbbFB4YOhEY9gsCp2qimJjtCIn1H8CgnRnEyfWOAT24i1GLwIidZYO4sVVxqdtrFZhrYaYwPtPOpPrAWUkGbRxkGCUFV3MXqXprZYXaH0HEgkCtWs1NTUgWbs8bWbpaIrai80XiM1pNogShOCxrQS0jzD5gnBOaZDF+35y4ZOSDivU142OZe1ofSOh75m3wRqNMELk8qjQoUohTiN1J5QTjBhRFetMEgXsMPA7v4OV5+7zqDbY+vWQ4JeYL6zxOrKeZ7+1FO89dpr/OEHX+PjjdvYJCHrdegP+nQ6KQKMyilKJXTabRISpBFwmtLHCAKlNNpq5LTMFVcdRgdsEktqnuia204CiVEEFI3XUcRrNcEagu1w9dxLLPhVtu8f0s5brKyscjwpWF5eZX5lnj96+Dp3d99A64YktVQSvZdMlmBUFCeHkOBcwLuAC7E7zruAQ6gmjv2DQLbgaXfbWJVQTj3ihKZyMd4kh7mmxrQtWbtFmiSktiBNhCMamsqgmu8yPv0x2/+mAGVrawuA1dXHrWxXV1dP79va2mJl5XEIZa1lYWHhdJ8nt7/1t/4Wf+Nv/I3Tv4fDIRcvXozuriKPvDpmg5ZziqIQxMf22BPWRJuZUHY2yJtZm7G2YK3QaSvOnYOWAV9oRkN4sANTl/DZzxt2y8iajCdwNIR6CKvzcFgJu7WhMsJKNzDfKplPwSZxpF9cFLJEIbXwra9Fyno4VLy+BXfGhsW5DNMyEEb4EkJoEaRitD3icCugneZzlxXdRCiPYyt8loM20ePFJsLoOE7sg2XFrfcDq+cytPMUI8E3cXWztem58Y5nZSXQ6Wq6XUN3AXoDYdAX1p5W9FYVhYPBmqHdsoyHLT56tWA6rrEGnIO1ywMWnhlTG6h3Fb08MlBaYsZENxMuXlU8tWd4+w9joJVSs3Z5iAFXaqZzSOL3JMxcaiWW5FyALBF6nRkYY5YbIgpPrNlGNiVuzYw5WwgwVfAAKESzrwQTYpdNgjAUzS0J3Ko1h8SSzBLCigS6KrCkNL0g7I2BGl4gcIhGiXBpJpnYDcJQDLUP1AWMSjgWmIriWMF5UXQIVEAp4FWgEWipKPBtlGJCLO80AtnM6v4xNoGz8o/HZ/tTCclpGejs484IWB9jU86ggbO4RM4AjRMG4+T3k+0UCZ1RxIbHX9pjr/Dkj5OXMmN7ngRTjxigk9LTo9epAGMM3W6X6bSIIXLCKTAxxsTyRZJgrcU5NwMnPo4Jsw9PRMjzNmVZnuKzRGlSo3FlTYWibDlqL/QXB4xGU1RwbNz7mPXVAedXFlleWub1b32HG3cesDWGre0jHmzt43TEfofjKXe3d5mb73O5n/KpSy+hleFT19a59e3X+J3f/s98+oufZ3m5w3Ay5P13b3Dn1gPu3t+iqRrWl5coas3+cMLayjUyGRCOt1nu7/LgnVfAjbj6qc9i5xb55rc+JmtfZG3hAqkGnEbrGmUKFpcTDvY67B/nTMox2puoL9EGLZ6AER4FLAABAABJREFURoUEh5vl5cgpGAxEk0aDARVLkiJCJ7WMbUYnTzEmJWhNp9VFVR2MzigKIVXqNBcmLkCir0dZeIbjXSbFexjd4FxJ47Zpt1cJ9clJFU/C4AKuagiNjxIoo1EScJUilAovIQr3k4w00zG6o64YVw7fNAQXaCnFBaV4MU35dDejFzR3RjUPQslOoyCZGT5OA1KVWAQXYtu9cjBSDcvdy5xPryJWkyZjmoln8dIad+9+wNZOxfNPfYZLV65h8ha76Q7fvPUKSmt0kqCSDJt0Ts9No5qYFmwtHWtxQSiagrp0VM7hQ7TuDxJ1Zz7E967SGMbXTjtonWK1JbWxywcMtVNonZIkGpVbLq2+xKJd5+D+hCzVtDsdjkYjLqyfI2u1eWfzBq9+9AccDTcpq4YqBtgRlCXxAUETfBKv0RBQPomAz8dOWASCeBpV4o8D5bRBOYM0Qmg84hpc7RjvOfbaQ0CYUxotGqUbAhVaC51Om8QlfD/bD0QXT5ZlZFn2idu1OuMKriLqDg6KCVQV8UI7Ke2Y+LueDSpWQ5bM/D8UpKlicT6G4EmjKBthawN2dmCwpqlLR93EluRyLJhKkbfh1r4wqhUtE3h2SbjUiiZx2kCWQZYquu2YklwEIXhFVcPtI3hQGLr9hP/2Z7p87oVtdm8cUY8ceSfj7mbN7/1+wfJywkK7pjkW6mlcYSdWR9M1AyRCJ4OdXbjxEbz5Jti25Rf/Ty26g4I8hzqAhEBTKh5+IEy3YLDoWb1gMQnkmbC6Isw9JTRa0EmK6sxhM0V+5Lj9ngddx4vZaFauafL1mvNzCaMHGn2jpjoQaKIuhxDB39K5BHQ9mywezXjx6xKSBJQDrII0lq3qWVdHnim0nOQrxcGzVLFN96RDtY5fMTngif43qVbcQ1gW4SJwnqjbmSjNUAlThN0gDAi8lGhaCqYeDmbdI0oHqiAo0SxlkUl6v4YdopGdCdCI4kDBXgm9Y+GoFI7FMJbAPrBMBCAVkZlpFFQoUiA6LGjGSngg8XMRAH+GSVCzGf3UD+WT22kJZQYqzk72j4GUJ9qU5cx+j9iak33P7HrC1JxFHko9tq96AlBw8pucPMGjhz6GWU5eUuDxx56lY2Zg5PDwaMacROChtSZNU7IsYzqdxHA052b//Bkc9gikNE0zM2cUunlOv52z0O2Spl08QqvXZziccvnpSxzsHJJmGU+98Azb9+9Tu4YP7j3k7nHNnSNFUCl7R2MaR8xy8Z5WYnn2+jPsHzV84yvf5Bd++RcY9FI2Nu5x5flnMflT1OURG5t32NmacufuBqNhydGwoq4rimIDrQ1z3XkODw8oxt8Ctc3u/ffwh6/xzGeewe6MuLuzSeAlmnLKtGkYjTxGWWpGmJZQNxmdTkYnSZnYjNJV0VyNWTkUBSaanJ00XAWJplFBqViOCAprovW8CrEsO9ftkKc5WhK0TlhcWuHOg4JWGq3pg48LPTVbgWijGY9hZ3/ErbvfQLc2SFLBC4wne/S70RlWOU+alVgbW2cVAZ3F+qZWUbcWg4917MqUGcgIgbrxuKKmqSrwQpLmtNop57I5LmU9WkFwVcOd0YSPpyN2c41NNUJk2ULjZk62kOgY0qqnhgW/wsHNfQ72hqycW8S5isOdIUsr53lw8x7tpEvaFe5+/IAdOcSlhqTbwmQZOsloRFGHyNQEDFopxEUH6qapKasJRdlQNIF61pEjswWKEYvSQp6kdLKMhc4cuc6QAI1zlM2E4DxeBGMDwSq6rSUWs3Xcvsa5hlQnjIsJ84tzdBZ6HJsxv/nu73Dr4RuUkzFVVULVYLVGpzGlwztNEAWiESdRtNtIZEUUaGOwWUI+r7A5eNdQlTXlqEF74nkDeO/ZNQVVoymKBi2Oug40HhLVI887tEz+/7s247W1NQC2t7c5d+7c6e3b29t89rOfPd1nZ2fnscc55zg4ODh9/J90iy6yzBI7o8laWcRWYaVmjIl5xKAY/ajdOEsV1sQLUGlIDFijaSqhOI7gxAU4t6Zodwr2thRVA+MR1FMYTYQqxGM/tQaX5z09oyhLxaQWFrpRjT03PwvvC0KlNSMn3DlUfHikcEqzNJ/yy784x+rgYx683bC3CeO65K33gCzlSz+RsX+jZvcIVIiW88NJnMjmB4I1sXyCEZwoymlgkBvS1JG2FO02aCdMj2NHidMwkRjhLeuayVgIPY1NA1YLtg068Zh2TUgz2s5y/lqP2+8VFIVnbsEwf76C3GFamn4Ow2N461WY78LCokKCUBcKrfys7hq9abSJdvQyK2HomVut9yA+fr6iodOCbjvWPmfxpxGQiFDKaXc49exnRpjBkBgWOSewqBTzKBICGcLFPJbEgoL7U8OdSjhyEvUiIhiErKUwWWTudRPQPrr+WoQWmguiuC1CoYQJgZ1G6I8MEy+zJFxhquBAIFeKlghaabYFjlHMG5hK7CJaR/EAmKKYBqgboXXyhv6km3xycpcZhX8CTqK/iDwqu5wFHKe+I2f+Pr0vsi+f0I+cHOTkz0+83hN2JaKQ7z4YySePdxZHBTDWopSiaepTViQeWqiqKmbupGm0OK8d3nue3NSsf1kkMi165npZ+0DZ1CyutinrmqJs6A5aBFGcu7jGoNflaHcfq1O2d464e3cLQkAry8HOFrVz9Jb7VMWEcjplcWGOhcUOR8UeobB88M7bPPfcFQYLCzzYusPDh/foDjosLc1zuDPi/r0dJpOCxFrGwzE1ZcyWqmu0DPGdDNvv8rVvvsq8GWGXh5TJPueefZrpoWMy3eL+3ipqYpCqQqkJ/UGXJE9otzLm5weUZUldVzjlCMrHr1kUMz/XWBzV0RxSK+KkJ+CVYCSe9yeAtJXm5GkbozT9bgtre3gKtLU4F4G90XGiRSlcE3h4z3Nv6wMm7jt0vUMFi1EwLXcJYYRSA0TVfOrT59k/uBMPZRTWROt79EyIa6KfE544cCsIzlEXDdWoQnlP1kpot9qcW1ziQrtPi5yDpmRresw3Q8nDRpgWDUo5IiUAymh8AnlmEKvAGrrZGktqDW8C/a7w1LXnSVL4zuuvMzeY54UXP8PTn32BuYvCm7/9FW7v32V+aZ62a+GDYNMURcDXseSEc3htqb1D+YC4OnqYeEdwPuqDTEKiNUbHccZayJMWHZuS0gYPZVlzPC0ZlhV1qMFokjzQ7wx4cf5T2IOMva1D8iSHVOO056mnr6AHGd++/XUOxm8TmjFNVRAKhzQBFwLVxEOYgRLMLG8pzlfBBZQ4yJJYYUggbSXkeaAsHaUOSO1oiiYuoqzF6BRKKPYatkaeIDWuaEAUvUFK0usgiXziOv3jtv9NAcrVq1dZW1vjK1/5yikgGQ6HvPLKK/zVv/pXAfjyl7/M0dERr7/+Oi+//DIAv/u7v0sIgS996Uvf3wFP/E9m77muoSggTn7RCdXaWVvxzFY4UUJiY5nhpBvkVL/iYTxW7O0KRQ2dfmQC0pYwKcA1grhocpRksN4WrizHzouqgWCFeSv0LZQoap/QmrNsPJgwOlIcTuCoUHx4AEfBkhrF5n7Jf/yPOzy35Gi7WCcZj2P77I/8WJ/VhSOGKnqySFDsDIV7m4rVRVhOYjeS7SrkMNKgtVcYa8kSDfNCZw7Kw8gsaT3zRlHRInp05JgbdLj8hQHYDb79WvT+ePpZGKwOsSsZxUiRKYuvFU0JrW6L1iB6Jhjtcdbz4Dbs78NkLKRtzXwO00nMB1Inbsg2ftjJLDNJZhoGreKEqkJcySSZ0DEKSYnCMQ2L1xIebkMa1UPE/owZXUs0QAsE2ihSgflZcustFE4UL2uFDYKpBQuc1xC04pYIUxF6CHOZJusoggpQKEITAWogBqldNFHbuVcrOkT6u1GwU3lGKNpEvYsSoSSKYBeU4hhhj/jef1oUc1rI0VwykHnFHzlHqhXWa6SM7sbfc/tu1/YTrMdZ5uIkGfix/Z7c/+SDPGFbnrzv7HE/Ib6Njz2tAJ3upx5/3H/tPcATghbwPlBV1WyuiixJCCEKrGfuld57Qgin4OSEYTlhT4yJ54tSElmXNCFIIGl1CNpg8xztG/J2Tq+TUQ6PWZzr0x8M2Lr/kN58n+29XYaFo5clHI8P2dzfY3N7n8uXz8dIewRtAhcurbK9s0++tkrwMFha5+aNW7zx2ruUxYjzVy/yzltvEOqGYVGwtDBH1XjKqmZaTPDBMRobVlbWmJSHfPvNr7Oxv0fd1awOKw4/us/9wyEvfOqzqGYD21zC9tZ5sLWDkorhuGZuvibv5MwtdSmKKZNqROEsNuioM9AKMAQXr38vAaXiwgUJOBGsjx1touPq2WpIkxRLRpqlXLx0lTv3HYIltRndrE2nHSMA9KxryDnNvXsTHuz+PphdmtBCe4MxhtKPKd0+ebpA0GBsj6YJUSsYFCqxiIkt4wKoTMXcHR8XmFr72KruAtK4eI7rhLm8z3ODFS632vgAN4sJb7maD53ClxbKkqZqgBBzxZKYIgygdIJNOrwweAmGCcPjIxo1pigqlhcv085bpKHPfL7O4f4RMpfwta0/ZL88YD7PCD6JTISC0NQU1Eio0VIiWDwtvFJoiSvmzCZYldAyKa3UYlVkUJyv4/ncQIFjUh5Re82orBhNxzTOEWwg61jmuh3WV56h2wwYH5YYDK4OLK31uXjtErafcKO+wU75DjYpSRJDOkuDrhtFqIW6cuDrWdK0juWmoPEhLvhMZkk6GWmeYBMIlVCrBNcofF0i3iNBICi0gcQYsjTFiKE5dkwnDt/UaCCUQ5pCs9DpIP3F7zEIfHL7vgHKeDzmxo0bp3/fvn2bN998k4WFBS5dusRf/+t/nb//9/8+zzzzzGmb8fr6+qlXyvPPP8/P//zP81f+yl/hX/yLf0HTNPzar/0av/Irv/JdO3j+uE2f0t+xdDIdC95zmhljkxnLMuva0Soi1Nm4NRtZFWkaSw7HxyH2m3sVWyk02DS28pYjRVVExqLbU7RDpOCDCCMHyirmWoCLrqNhKmwcNGx+s450sIt2wptDqHVGmgqqdgzHmn//WyN+eA1+4kdSFtYC996scZVmPq1xlYvvIVVsbsP7G5r18zntToPNBWuFtXOG7V3wIdJyeSvF5Jq21YQkClyNOZnUFSqJk+/4sOHpZxTduWM+fgc+/lixN4SNXc315zTPDTKKQ8/WzTHN1KONMLdkMblDiMLPhx/BnbdizbqqFXfvCEfHcDgGZUOcfJPIYAnRJI86iocjzRxbjQ2K9qz9WHlILVx9IWX+vMGlnofb8ftyqJn+RE5P4GImtfCzzp4OsIImU8K7Irwigq8087MVfYMwVgIWjJ6ZviXgKqGsYj06SGwP9wRKBZdyw1QCvhIuoShV9JMoiMnXCyiWNIxmIu2Jgn00uwgTFH9aC/+7ntDJBNFC4+H4MIYIGiBUijAWdE+eaBOezdxh9utZ1uPs7ydllxl9r0TO6DoelWsePbd6/HGnjAuRORF5nOF47DFn71Oz48weO/uM5YzW5fQ9nCKZ2eNOjIfOAKvTXyV6nLRaLUajySnoyPPWKfA6YU5O7tNanybjaq3JspymqWZl3cDS0hKHhwdYq5lbWGRl9Rx10aPT63B+dRUJjmpas7txQNrp8/67HzO/vATGs3E8ZGNrl9rD8twCRjRN7agbz7jwvPLaRzzcmODkkD/zCz9Ommj29o5pz82zeG6Z2x/doyoL8lYW/SmMZnVhCe8UDzc3kRBwTc32zi69vGBhrkvSSilD4Na9PXrLc/Sc0OrcYmXBMhhMKZsxl6/XPPw4UBWajckRrb4layekbQMqjTYMVsB7FB5zykromXHgyeeu8RJZWCSmgWsRdLAYcmySs7q2wGDxPHvvfoQxsDzfZnm+S5rH1tL4XNE6/tbdDxhNXkFJRQiGum7TzhJEGg6Ht7iwfAmtB7z37h5JWmHyFNvKMTYgKgIeZdWshBnwShAfw1eDEnzjCBJIbU6/Ncezcys8mw8YGGHsRrxeH/MdVbGnAsE7vAsEH9Az/kgZ0F7hfUJKxlx7lSU1z8HeJpU4rl67zNbmXYqjAskCWZ5y+amL3Pn4Y97e2ebB/n1MoljKEkaNifqnEMNpxVqsCliVgQ+EukFUACdYZciTFJtZ2oklRdN4Yeoco8pT1hW1r6i1EETTiJuFYLrY0p6C7XhWlha4nF5AjRK0uPiZ5QmtXofLzy+xZ/b44J1vMXUbBAWNVwQsJmlIUASvMBW4EEvKIjJzCI4if2WJOVV5QtK2aGMIXqhGDtdoaGYGD/pRjVhCQ6hrTJqBV2gH0iiUDlBXVOMjCtyfbHKfbd83QHnttdf4yZ/8ydO/T8Srf/Ev/kX+1b/6V/zNv/k3mUwm/Oqv/ipHR0f82I/9GL/1W7916oEC8G/+zb/h137t1/jpn/7pU6O23/iN3/h+X0pcqOn4GZUTqBygIlNgk1gXPRHHJlpFURhwOmAqRWqjh4eESCXWVQQ5gWj05Rx4p5AQSPI4gJZVwM2OhYoZLwt9MEbReKibgBfAB5qgEKVQJupiNkeKWgVwAa8MiRWWOw26Ee7dqjncFYqRYjBQKDUhTKAq4OOH8M59YW4x4fqLOaOHNb0FRWLAaE9dz7xGVAQEWjf4APvbEWzZEyZDgXihaWI5LEtq7r7WsLNN9G6ZwLvvN/R6CVeOhHanYFp6xEeFf546jPcImhASJltQTcvTSbEsodhUPLgPzgcSC3ke2RBFZFKcCFoUuAiq2m1F5mOuzcnrHKwYXv6pLu1ByfsfBDxwSDh1aT+Z5ywRKIGiIg5exyK0laIjcF3Bt0TzCvB5FZniQiA3sJoIwzQCHl8FpLIw62CYIDgRgtKMFfRVwDvPs1pxWcNEYORhqjSawKe0sC6KOyh2FBwrYao1NfDnTeAXrWJ93mPbimIkfDSFjRBXr8cucHSg6HQF1eWTzMXJyR5mM/is/BJP0tn9J+NEkEfakDMMyal1iZx8fmcM3eTR88X9Zr9HYdeZ5zr5ffZaTmiTU1DDI5DyGNNy5o2cgJQT1exZ47aT9xEioAghMBwOEeEUfHQ6XY6PD2eak/imz4KSyJhorDWIhNlKPCAS2D/YxyqNUppef8DW5gaXzi0y189QrkAZw1QaihCo9g/JewNc0Hz88S2Oj0c8fe0Ko/GQ5YV5FJrhjQJhxOHYE+4eg65JUmFrf4/dwx3OX1rlnfff5uF3HpImhmcurGONZnG+i8pTdvcOMCZhca7PfH+O49GEh5sPmVZjwrHDNY6iriiD40pvQL8X6PcztjbvUE5vknU9vfaE3mAFTYuDw8DhwQQ7DjQhxIwXo6mDjsZ0IvjQoDQoH1d3IQSsikm54sPMBEwTTCDRBoshMSlz8z1e+NRL3LzrCKFmftBjfW3A3FILnUZnbqU04oUHD6b80eu/xXS6H63S0wajarRqkbYyRtMJx8Ntur1rBG9BFGmekpQJWgXEONBxISVBoohcAk0VrQ8IIS5i0oRuq8/luSU+25vjXJriy30+Ptzgm+N9DkOgrhyujCsiTZiV/aJ7rRKN0YZOq8+Xzn2R3nSJ0EqQakS7NY/TJW+9+Qqfuv4yTz/7AtmgzeIz8/z+G79JXRd0rME2FWURmJaCd4bEKPJWRrvdwpocL7FtGhVFxO0kwauAVVH/M6pqRkXNuKgY1yVNHc/roEBZjUpT0naCMSYyG5kn72est8+TT3OGRyMyk4BRdAY9nnnxAgwq3rr9IcPiHlBhraBTQWeCahxKoEliTo72cTwRol+WUiFeL15oGk3iUlxjUc7P1kiRZUkshJbCaQPBYUwsC5ZlhW/crDMpMoyKgFYN2jvwyfdmUb/L9n0DlD/1p/7UaT34u21KKX7913+dX//1X/+e+ywsLHz/pmx/zFZXUBZxoFUm6kmSNK7aE8tM9BXFsWo2qM48O8lzxck47ELsIPF+5iEl8bm1hiSNYtNRAcMizhHJyXcwU69XdTSzqZv4ZQWJq4pgINEJTicsLtQcHDvGPsZOr/c9F/OY2+KdUBbx+O2+sLHp2XldePdjuL8vtLqaz76QcbQ1ohrBYCWh3a1xUxjNAJooRbeXUE1LlCg6mVDOViLGCEYLvoZChGAVuoohgZsbin1nwEYxsXOGo82axUXF8irYXOEqmOsKYerYvh/o9QKqjmWcMPtcg1PMz8dz8OBQSHqKrKVmJaFIBdZupiFxsVW8LqOQObNxH5Norn2qQ3upoa6nBDWPB0ZRahNLnnHdTkksqQgxiC9FYZXiWGKrb4lwUQnfAe4TFfs9BfNKYTwkDqpE0U5mScSOmLGioFLCUIRFZaiCpueFlhV6mWJBw3EBwwCtrkGnwuFYuF4rAppxAp2WQTeBea8ZpAFXaqYT2JkKf1TAxz7EhOMAw6FwrlQxLfaxesdsExU1OSeGZsLJ9R9XmaddNY8DE4g/5bu1EJ8yKPLY76fPfzZUUCDagz8BPp4AFo9pYs6+BfXE/kohWh7fH04dZU/GGO9j2UZrTQiBvb296HV0RgR74iK7uLjAZDI+dZiN5SEDEoW1rTyjqWuyVsZoOGKu12dr64DDwz0ykzK/eg7dblM2B9y+c5PhqMSXBePxlMIL4/GYpbkFFud6bO0cxZwqrRgOD6JPk/Y8//xzPNzcYzrc5/DgkKBhaWGASSzHVUU7TRiOhlSNx6uMXn8RU05YXh3QmcvZ2tvENY5pUTE36FMZQ9UUrK+fo5Ua7t65z/L8JSblAxpWqcZLLKwsgmuALsYEjsZHTOsaUTVZovDB4p2nEY1g4uKJOp5nOn7HPgSU1gSEIA06zOriJidv9Xju+ctk2Tk+uvkqaZayuLRIf36OLI9eRic4NYjwO7/3MRsPX43NArqNVm1cI9hezvXnv4BSA8ojHTuMbBx/gw/RNA6DcoLJdATP3qMkYLQiTTSFj3b4KgkYndDvdXim2+W8TbDNhM2jfV452GenKhEf4vnj4wJt5jeNshadWGxiaKUJF/oXsLuODzffpdPp0Ru0mIynzM2v0urdRUzNwmXD/u49dtx3OBzeI1OwoBzaKxZNxbiumJaaWlmUeFLdwiYZWWJJUksn1SQiSF1ReUfpC6pQMJGCYVUwEU/to0AVIoMUGZGM1lwW9XsWdOo5119jVVbJMsPqCwOaxmH9Av3eCpPS8dGtW9x8+AaTYggSSNNAngu+EOoy0NQBmqgVVLPuR0ROS14SZinSk5qJCySFRycaZRTaGEyaYNoZrVYOYhCJAufgG+q6pnGCnrX/aBtQEnU3SiuaavLJse2P2X4guni+16YFpFZMJnG1a3Ts1kkydZqlk5hIQc/IhUeak5MVoMRJwQcVSzEiZzSAUS8xnAhOC84pgo9GYwlx0A8zI5vxRNFU8QTzKpZzAjNxqCiWL86z3DJcHe2wty988wOP2IRrfUXHBtIMfK0YN9AE+Pim8NGNmKw8bYQ8gWcvG9y0Yv+BwzeatJexeqVhuGEoKkcz83a5/2DEu99wrF8M9HtQ9IW6FOSkq2FWYsEIuoIqgWSpxXorpZ1oinoM1rKzFXDbjmef0xweaj56w6GN47XfcRwdGb78synel2BAmeit4Hwsq52/Bue9Zn8Y6LQVDYosNdCA8566gvE4AjghoCQaT2kL568lPP9DGpPXZJmmcy6e0jWxYycKY8GjGHMyj6rY0itR0ForoZpNuJlStEUxUcKCVuQzB0S8Jm0CaS6kVtFINISyOubleIRSAvsucH8i9DAMEe65wMCC9YoggV6jaLcNB9qTGwiNwzkNQ09mY/3kaCLsTwO7QfEdL/xBgDEKS2AksawY81DOBAXCI9ZkVnY5ASNyBqg8CtnjCUBx5ufstrOylFiKiR/gaVifnPl3cuyT8suZx58tQ8kTfz9WCvpe25M2s2eBzsn1J4Ix0YTthFF5BE707HqOzIm1hrIsmJ+fp65rxuMx1lo6nQ6JtVijCcFFJ8+6QeUOcSWDhQGj4yNsu8N4XODrhnfeep/K1WRZi/2DA7rtNh2tubC2xNr6OW69c4f5lXMMhkds727TNFXMX5LAO+98yPq5ddpdw8HomDQxGKUZDUeMphNym0YwnmVU5ZTpdMj83DzjwrG1ucXy4iKrK0vcuHkbaw2HZUmnbci7hlwnGCOcO7/OjQ93mBaHdLvLsY19aul0QHSXrJdxcHSM8wGXNBjvyIJDGhsXBL5EmQBK431sORWJGoW5ds3zT2UkSZsbNz3tbp/rn7rC+uVP8ftfu82oHLO23OPcSo/FpR5ZaknT2eQmwtZWwytf/5Cl+T5Z+jSu8dRVw8SNOHe+wy/81I9Tjld5/Vvv4WvPylyfSZ3QTBvKcYPWBmN1lLxrT2hiWTUTDcpgEhO1KxJITMKFPOWq1mTFMcfVlDcOdrkzmeJDXHUGD2iDSg0maLAKmyXxX6rJu3NcbV+l3fRYXPBYm/P0U9e59fA7HG5O+NxPXOZHfvJLnF+/xG/9T/+Z/dFX+dIzbd6820AxJHhDWysGJjD1Nc7Fz7eoK2y7S7vTpdVNSY3BYKi8UHrPxAaqUNCoMdbVmCqa1YmPJReMRqUa09a02hl522Jy6LY7XJZnmZcFlpZaeBFwKXlnwOVrF9lOH/LxxutU1X1CUzKpHUXtqSuhnHrqscJNFaERggelNYaZVjCZdZG4gPcKvMeXDdKMMWmCSu1MDA22m9NqZ9g0RwhoCZRFRRhNqKczMfJsPJMghMbNwFDF97P9QAMUmmhl39QzHw4TreyTNLawJlqdLBDQQmxnlWiVrHVcp1Z1XL07D66OJ8iJab5oCCbqBVwTVwfGxCeTAOLihy+iYqw4M/YbYr1wthDOMs3aco3RBVkrUC0ojg4EbxrO60CexK4ipYViAk2jYksyzGzqFQt9aKeO/U2QKaCEB7cVT7+UUc4FShdfd6sldLOSzbvC3Y8iG5Nlj5iiKJ2JK1cXoHQa09E8dVW4ctWSJw6SjHt3DbffrbBLgaVLlh/95R6ln/Ktr1dI0Pzwz/VwTDjc9eDjZ3hiiqdQdDpw6Tlh/xhCA51FS39pnv2tiuaNEeMj2D+Mn52WWeijEpbWEn7oZxLaSw5PilUNKpJNWInARKmYwxNb9IR0NonWCDXRd2QJOCaQobBBM6eEhtjhU0rCFo7ns0CuYraOV4E0ieDijihuBtiR+JgLM3+FsfIcBmEqcK8RKhR9FOMpLDqHaM2RxPJR4YVDCUwk4JSiCYFdgV2B+wq2lSIEYYriGAhaUOkMQJ+A6LNlGGJp5aQ1WHn1CAB8F4By+rgz7Ik6ASOznU7xw1mA8SRIOQtozjzP6XOGmRU/Z/YNZ17bk0zLyaZmJaQntxkoUkqxuLjI/uERZVUhEk6k7DNGRWETizVRfKm1ptfr0TQN49GITrfD0sIiZVlEVkoJ2mqqqsR1uqxfWmdyfMCdjfskKsckFboIPHiwy70HGyytrdK4aAXYn+uxND9gYXGOO7c2GVcZclwxLUp8CFHTZixN3UBV4UNBURjKyYR8vkvj4eDomKqqKEyJNiqKCW0e7QjylK3tbfJWl1aesbOzC2h29/YpioIkabO/d0QxmnDlyjL7h0Nu3b9H3r7MqmqRmwm9/CLFBFCGuYWc3qBFnmRsH6QwjN4UjXiUeBJtEB9AXNRMKEi0sDQPn3+xi2rukuVder0VLl1d4se//Gm+/V7J7YcPaLdyLlyY49KlOVaWE5aXPXkeGdqyhD/8/U1akrLQe4rKbTIa71BMJjhf0/iGqio4ng7ZHR1RjIb057PoiySCeEGFQMBQNlE7EpzEclSazDq7YlncKJhPWzyftViRmmZc8tHxPm9MRhQhYIxFhxg1IjaOdUrbaPDWapG2DMpanpl/jkXVZ3g0pnB1TEzPB3zuS5/nYPw+L3/pZUzQvPuNO3zt5h9yZd3x0tPXWFuHt996l/v7hwiObq7RQ0WqA4l4ktCQ+gbtS6gVVbBUAmXdMG4avFEIGRIavBekqaMflChEG4yO6cSioqg1VSmdxHKx9RRLh+sc7TSUu+AksH7uKhcvXmScTfiwfodabRCCoyg9o4OK8biiGHnqqcJNwJfRQE8psCrGjyhrwJzMZwHtfVzW+9mAVNeICE4p6jq2OutYtMdkWdQFiiE4g8z8iFBuNjZEQ7wmBLz55CX/x20/0AClrFUMxVIxj8akYLMYSJfYOBEDs8FRnQ7aWs06RDwz9XRE2j7EO4UZZRmiHXSY0cWJIZaDztCZcTB9RMufJtzPwJFNLNeuZgxaBaGoQQtpAi9eiC3B7RAnJmsltnjVxDRhgdoJ/R6cW4wGaMVRnOyTFEQLH7xR8Nz1RbLOkHbmWLsirK9Z+l3N/TsN0zGMJzFnYXk+AhWTCqKjr0hoFGgY9C0LrYCeFvQu5nirOH9ZKPc92sPRLc9id8yP/5Tw1amiM7fO819uMx7f5ehAYWxA6wistItgrhwKe7cVvUVFyGB+4LG9EYtpwsWpZn8rsHlfUZUBLxqjhKAjI4FOEJ0hzvP2NwIffRA/3VypWI9GKAQqAlMgUUJOFJs2omhLDBasCIwQhjpQClSiOUaolUMrOFCWEYGyEXRl2RLFgxDYJ6AweCWkeC4pON8WlnqWcRk4KD2jRnHXK7YFdhGWa1hAWLCKiVG8HYQ9AqUITqARGEr0YZmIIiA0s5ZOjcRohZQz4OSJLcwENLMyzyNmhUcA5eRcf4wFeXT+n9x2Ql6o0/0fsTTMfjzGypw8NsyAUlBPMCbwuFYlPM7m8MTvJwf/bgzL7Jgigel0hGZWrpkxS1objIlJq3neIgQfw+dm5lhpktBpt+i0co6PDzDaICFEerlpEGVQWjMpJ2xs7zM8OmZpfoGFpQFvvf8B48pTO8fWxiatLGex32NxYZ5L1y5ysD/hwc4+mgHH2ztMpwUK8N5R6xoQzp9bI5RTDo4LPIrd/WNEhKIsCT7QNE3sJkxS8DVVGdjb3wMUmxvbp2xQVdcIik6ng7U5r776AYvzPUrnmZYJO/uwrEuqapsqWHI1xpPGdv2iptNNOX9xibyXYx4aGu9IQogdO04TRCMS8FqQEFicF565Erh17ztUxYhWtsr6hef4sR/5IQ6PWrz66lsk1rO0uMjK4gWWFgcMBpG1STMQH/jogyn/+T++TlNusTscMS13mEz28K5GW8XD+7v85m//Dj4ssr83ITSBG3cqzp8viBxozKUJTYg+HC5gtCHNErRJUFbFFb+CbpLybN7jWpaRhMDuZMS3podsi0cSPQtajWGrIQjKCWIUOknJOzl5p835xYv8xPXPM5c67n18hGqukCWG2zc+Zm7cYVQHJg/n2Do84rV3v0WSb/PU05cx3QGdzHLt3DzTYsrRuKKXKnITKJuAMZrMGlKjsCrgfYMLNUNxVEFRi4vtvSGlKXvUI4urphACJvfYliVpZWibROfZaY22CSv5Er2jZcIoRdUNo6rgyuVLtNIepSnZVLc4aN7HU1E0nuFRw/Geoxg3uBpUMChl4zwlLoIRE9kak+goR1CRTcMHPLG7SLwnnMyJRE1l6QVpAnkVSNqCSU3Ua9YBVzQEV4MO8XrVeuZODN5+fwjlBxugFLFtVNuor8jzeLHYEzHoCf2sItiI5Zz4d/AnNbcYGCgqKruRk7FfZvhQTh0SlYqCzDADNEIELif7nbDhzI6vleKZ6wOW5msm+zXpDBg1RQyKMxmIRFGrVYpyEs3GahfV9MYoOhlkaXRTHU2j2ZH1MaXZhYbf+U/H/PTPaX7+F4Riorn7gedg0+O8zMpMEQQXDmoFbQWpjt0wxURx/qIimVN4IyTdOnqOeFCNIHUgeCgPhIO3GnYqRTM2vPTzFtsf0UbTnzNMduLsWDexzNM0UJeK0T64CpKeotWBqvDMnVOsXYBUaW73AseloalmynqEoAJFBT0FKjj2NxQHD+JnbGaznhDbi6uZjiiTyKgEFf9uKUUxYxwCkIim0DBBcct7lmP7FbcLRwoMUsNcGlhHeAnFQW34jhfemM2fmRHOLSramaPVEXo1HI4V9ZFQBWELxQOlSFFc97Ab4H6IjreJivX9mplNNdCo2api1gGzoGChBToHmdWBPzG5ny3XeB5nOh5jUM4ChfjwE+YDeKz7Jj73mX0/AThOfpfvctuZ/U6ouZOe/+/CvnwCoJx5CWff5gkDc1K6aeUpTePJWy2yxJKmCWlikNnyo64rnIv29k1ds3bhPONJxvHR0anlvTEGd9JGZxwPH96jqctYPqg9ogPvfnST+xubNHWg1UrQSoN3nF9bI9MJxWTCzsYmVmWMixpXHkFwaKUJ6BkrC1eurLOzucG4GDEeTfAhdsq4mNQXg+GUYjop8T5ahDvXYG1CVZcoFEmakOc5wQutLMe5itGowNWOw+MxTSM416U/OGD/UHF40GNpcJtr568hWMqpQ6RmbqlNXzqs+CUK8bhdhwqz16EEZWLg21yrots55JXX3mY02abbXuKFF17mz/7SjzHXXeP/+j++w3FxwNrKElcurXHx4iJra5ZeJzYihADlFH7zP7/Fh7e+SZ7UTN0eVT3E+wbBI0FzeDzmzXe+QytbwpoeraTF3qFjaalCHLhCUGJiR4mP55NJYllHpxaBqEdJU1bynOutFj2iL847kyE3XU1IDEmqMYkl0RZf11C7KFatPdgK32SoIHxq9QUunxtQTQ9QqaM8Lrl4/Tof3f1N9vbn+fynv0y1qxn5EXcnr/OZz7TodHJIDKpp2B97fG3IVILFMWeEDefxyuB9LDc33uN0Q21qKt0QtMGkcaXry4ByDmoBb1CpJu1a0n7sHg0N+FpwtSNPE5aLi6hxxnRaogzMzc3Tyhe5eOU8G/lD3t9/ldrv0zSOclozOSwZ7UxpSjeTGszE5lojLi4CvIAVIYQGlViUMVglKLEYF3A60Mx0MYqo+1JWY3RAmoq6nPlZeYuqAto5xDl8E6LgOQGZjcu+EXz93QaC7739QAMUJIblYRV5BnkK1sgjw8sZVXxih6/PWDsrHdscZaZgnllsEPyJV8hswjNyum8QYtpsiIAnhuDF8Do8p89jdGynXZlTzOUTJvtNfJyFqlFs78B0qtidCrWC51eiSdmkhhMaPzOKXiuq1l+7AXtjRRnixTsuFYtdxY9eAS0lB7uKxCge3AgUwxi4JRLLOxC7hz4+BpMpnl5XpHlAK0VqDWkmDA9rRlMFBCYHDVbDwT6oCQxLxc0dYVrD8VhYWlN0u2OoJxxtR+rQWME7FRmZWYnLZpomCJu3hd4y7A3B5pajqeHi0ymdXsOXrebgoeXGWzXlcTzR51csrQ7U4wnHuw3lNFA1UfDcI37WTmLHkZPoLBvZE4URMEpjMRxpTzEr0QyAfiIUPvDQwyUlXJFAqqJLZRo8tYMdr7gX4IPQ8EApEoEFFDse9o5geR7ERMO4caM4EmFfwaEITjRHWphIoCWK3kx5HeRRazNEYOXktICDIfqltDvMrkY5w/ipM9038klwEngCnHBG2Cqn18ij60XOdECdAUJnn58ThkUegZ3HL7lP8junQESeON4Tx//E6/nkfSfv1fsQzczSlPVz51hfX6OdafYPhjPvjsDRcIggWGtmCw5NUUzY29+jaWL5IoSA0MxKRFEPZnRKnliSTsrxaMTBeMLu9j7tVoeJFPhZkF27lXNwsMv6pavc/OA2PiSgOlg3xXjHM89e4+jgkHFRcXd7H2MVt258TNZqkaUJvVZG6RvKMqbyevfIDVckTuzOOabTAmNqjLYYpVheXqTdaeOqKIzeO9ikKmtc7ZgWJVYnnDvfoq4r7t8/ILMBoxfZ2gusLl6hGdU0jaeqKzr9LguLXSrvUFRsbBYYCXQyS9kEMj3Elbd59+7b+FCRZ3MMBi/wEz/6k1y8+BT/j//XHW7cv83a8hzn1pd46vIaC/MZrVYcaxOjaerAjY8KfvcPvo5rHlBJl6hrOeGwTbTbtykAtRszKT1VUtPNBwQRXC24MqCZdfAoBUbNYkyihkEUYCw9k/B0lrNuDaqpuV9MeLOeUIrCKk2iLdbYGAhIbLcMMvP3qEuqKay0V8iPPW9+/X02H+yxvHAeX5X/b/L+7MmSJM3uxH6fqtpyV9/DY19yqaysrKU3dAEDYBozFIgMRyhDGb6Q/yBH+DQUkiAG5DSAbqC3qq6uJSszK7fIiIw9fPe72aaqHx/UrrtHVlWj+4EiLKGJeLjHvXbtbmaqR893vnN4/ugV4+mU5UHLtb09TueP+MmXf8rmsKK0m2i1IGrBl48OefnyiFxiMvokYqMniwmsx6A00dOq0OBptU5zg/U4kyNBCNoRugbv23R+CtiB4EqLdRaX53RWkOj4zta3uS77tB1YAkHgxv4tptvbdMOOj8+/4HT5HBtaVrOG+rijPW2J8wZfBzRL7JP23R8G0+u5UqMCvYmfSEj2HaVBQ8pLM0EImtq+jRXEuj6FOrFvzaqhlY7YetpV3RsrhmTT4ZJRKr2/jnxTe/Zf2H6nAYpYEJfMvYq+tIP5BnPSl2fWWTAX3Qw9WAmklU+Iby4UETBO14lWiTXxPQtD8kO5ADvQo36QdVLvhuXdd5KotRPFZum+2QGsKjheKR8+AR0XvH898ug04MjYy2umQxgUymoufPgcvlpkSA67w8C8FmaNYW8v54f/Tc7udMHJi47FkRDq5IsSgqA+6W4iwtNzw9N5pCgNoyIyviG4Urh5e5fh8ISjZ4HTWrEizL3SrZRywzAcK6dL5cWh0vj0vm6+PSQfRtpFy/HTiF+moMAmwmQMqwWUhWH/muXJs5Sf0rTCJ4+Um/ciZ1800MG9dyNvfVe5/37g239oef6p8MlPArs3BdWWdlkze63MT5T5CsopDPuvYz3ZZ5Im8JzEYHVYPidy1yjvitBK0oJEE5kUQtMoi2AYIrQxGbzNEFYdnKCck0DnPSP8YWa5l0GnkZ+slL9dKO952MrhuBG+qCKfx6QnOQZKlCLC0kCmykiVAvp2wnSOtCJ4EtBdbyNSurGzqV/+6vW7LsGsyyp9QuJF984bzMo3rvveneRy0/URrwCXC52I/trjrzzot/zvN90jf+9efy+b0r8H04sbsyxja3uH6WSD0XjC5vY1HB2LqsVgGY4HVG3N+WxGmQ9QiZRFycHhMb6LFwAlxNh3RiTjttI6NkcDhtmA3/+jH/If/uP/SlWtmG5uUlcV4/GEtvV0TYUvBtTRcH5+StVGNBvh26QVQ2B1fMJWCbsbE14dHlCOx0QCR8eHyV6/yIjzhhg8ziY75K6Lfa7Q2rY/Q1W5//Yd3nrrHdqq4eDwNa9fHbK7fZPhaJ/HT7/uTekUh2M2W1KUZ7Tt1yyXJcPinFcHHl+1aVIOQ9QrthNa3zHaGLM5dng/5vhogG9SJ4nhnPnJzzk+/oSoHePRDYrhd9nZeId7dx/wF39zyv/7L37B1jTn5t4+b927w3Q6ZnNHKUpLViiRxNR+9tkjyuwph7GDUGNMhtERKhXGBMajIVtb+5TllM4rx2dLFqtznClATVofqhIllbdZLyijJzQRjyAuZzAU7mQFD/KCDOWsDfy8rTkBRBxCRsBigunL94aIw2VgXMDalEP03sa7FO2EemFx3YphtsPt713nr/76T7FS8P0P/pDdW/u089fMv3jBtzY3mTYN/vSIF6sznnz6EvEtKpagAaeRug0oybHYo6x8wHulE080LSYKgyIFc3RBCW1D07Z0vkvlFE3Ms3MZbqDkZaCYWq6XN3lQ3sA1Ja2rkcxwe+8GSkG54fhk8TkvDj+kWi7pqor5acv8ZU08b5A6MTRdl0TRyppRXc+LKTeJKBe6NhElhgS8VMCaBNhNaSmLlB3UtRmh9oj3ePXJfbZt6ZqOGEIafXrzvkyA3OKKyHD8j4Mcv9sAxSU9xjBPSbrG6aV4rwcZ6zFYINXQ1yJEvUxDFi6Fscn2LoEfmzoUE3i5eNa+9LM+Tg+CQkzutelLFfbvFOzdhJOvmyQkzOFkpiyqJOr9+lR4sRQGLvJsDr98Bj944JhM03HapfDsVHlSCa2B60MlF2Vepe6g8yrnvHGU54HYJYv22MJiJcwqGLgEiFqE0xpOW0MG1F0yQRtuKPe+HalXgaPnysaWsLULYaaMR4Zr7xZUs5YqQMwCGpKl/mgrEOnolhFtlGkBHamffuVTp9DGNDI/VuiS+PXwXFl2ireWpQ989aljTMOkUOwIMoms5spwBNv7QlYGlsvI+ZnQrWA6TqWRNRBRUsDeMH2NWBKj8hDllwhBBTXwQCy3Y6QySlYKp7Vym+TD8tgkPxQlsIGwDdxBuJHB5gDyLIKDKgi/r8rjyvLpUtmplIMIX6nwROBYk419JsnJ1kVhhXDWn0qiSpCkZapRVlfPX2AqwpZcyZS6OolfFZr+Jvbk6u/fdH2sb49rR8NvPgGXrMrfBx4uXu+FvJarJSLV32Zp/xu2/iVcfZqLbqQr7yfPXXKmLHO6LhIi3L1/jztv3WcxW/DJJ5+wWlUYIzRNzcbmBiLQNE3foiz43ml23fVjrWV3e5PdrQHf+f4HFMMBq6rCR491Du8DbbNgOt1g4RvOZzN2NqdoiOTjDepQYrpkpLXyNTc398kHSgie4WRACJGu7VgsKqqmIctyQufJnCXEvtTk/ZUPIpLnBXme8fu/9z6+sXz8848YTYa8/c7btLVjMa/S+xEwTnAuueguF0va9jXW7VKpI56cERsQnrEx2QUsWeZYrFYsm4q8TGJYT9JDNe0hxyc/ZjH/FIhMpg9w+bdxbpfdvT0iI/6X//BzBmPD9f09tq9tMp4MGU1sSmYfKcaBEpmd15yc/4r9Pc+rA0/XdRR2hHOb4CtEVhR5wbAc0AXF+wYryXKxaSuiDkDsBasYVTBRiRoIUfBRUGPIjeWay/lWUbIpKbLgs67mkVFinmEiiFgkClEssfdrstZhjEcllVbubN7n7vA2x69OWS6XDIYDFqcz/O5t7ty7x/mLhvvXBlSnH+HNMfvbI3btkr244uGzyM++OqFbtUxHo6ThMJE6wDykclQ+yAhWWHmoFw2RDnIlL8uUK5TnfdZNQCQgLqJdTGZ9K0vVG25GE7k23eatwTvE84zae8QKw+GY0XCLycaQA/+az49+wfHhS2Znc6pZRVys6GYrfNMAkUBAvUBv6IaksVzEXrCkGqAj4FzSQKazUy4mQI3KYCtjY2NAWwfmDTR1r8A3ioQIXZfqUhqBtKD3LWQDg7OQDR3jDfcbJXa/bfudBiguh0EBeZaM2dYD3xtjrKw1KN8Y+6/u0A+4RtIXI3Ztqwy+F2WuBbEqvW17P86IrIFOYkkgUberM0+RWQYlFE45mAmnJ9DVcL4UHp8IVYC2jvz7zyy3N4bc2qjIM1jVwqxSDpZCEy3WAViezwINFoPy8mTFv/1Tww9vQYZyXgsHh0JQuHunILcd1SzpOTxC60GyDDENRa5c3zPs3lhyNosUE+HGWxlvf79g/qqhWXj27ijLRti8LrSivPpKkEHBrW9ZumZJrCPdKk2smSSmQFA2pqmDJ7TKoEwXbbWCxSxyfqyUo4JOtmmbU1ZHc2wJxzM4eAX333cIHX4OoYbxFEY7cPi8/7772p3TdY5eUvNnmt7jLrArcI7y2CuNjdxXYRIVXyttl0oxIkKpgpN0rE1SKWiFUvuUTdFZRWKKs98twUrkcS3UAY4UjhAa1WSFD5QKGKVCqJSLjqIEfqHoCZB6fe6SOpLe0iSuTcZp6RyTdRfM+iQNvCmKvfpz9RT+tW19R/wt91/udbF989i/YUcFLmpFVwD/JUvT32C+8ZrlzUNdxV8Xd/VBiTFGVCInx8cMiiHL2Yjp5Af8kx/+MR/+8u/48d/+LXXVYsWBVU5OzyjLnBhT+bJP5yJqoqHXlvnWCrf2dxgP4M/+3b8hNC1i4PD0mNFwwHg4wIjQtC3vvnWbt9+6Sdc4TpukWwjtHDOAs1XDeb1iUXc8f/aKw7MVLivJrUPFYsXhfUfmLC7LOJvNk6V73zqdys7roMPAj/76Z+R5zs7emN/7o9/nb/7yZ9Qrpa1SacpaS57liAjOOUSU4dBjrGVZd5iw4HyRPjvvW0ajKZGSug7Ml0IxLolkDEvl8PgJh4d/w2r5ECvCcPIWbvABIU4ZFhnD4S5//qNnNN2MB3fuUNgRgyInE5PAmhWKPJDnhs5HfvbLr5D8GTdvZjx/nvPqoCXGgMgQ57ZBIk3nOTw+pGq6lNqrimBp2wzVHDQZhEnvbBpjyt0JhDQH4pgY4f3hkLtlibPw1Ld8JJ46y3DGJVdhUkleJRm9OU1JyxqEEJVxucM/efAvmWYb6BCqesb122+RZ/C3P/mPDEcD3v3Wd7j+7gd89uVf8+Gzv+T+bsG3JisKm/PTR69hWeE7w7l05FnqYjqsLXY4oihz8kFOawxVpdTzltBEMBAGES2VrlCsKBIdxuXJY0S7ZDceBcgxbsogn7CrdyhPJsQ6YvJAVpTc3L6NzYa0Wcd/+OJvePzqp8xmJ1TLGttV2LAiEOis0Bl64WvyxBAnuGHGYJyDGHwdiG1ANRJJgn4jjmKQloK+C4RaMVFxYihygxHDch7wXQfaYQcW42xyRe1SBIV6hS7SNan7rsCgLdSd/L1j0Te332mAUuapfdb2tft1WQfo3Sf7HdcrtF4zkpjy9LgY14ZqvZ6k/3v9WInJH8LENNlYAxr0QrOi9IJYt34qZTKy/Ff/bMDW5oJuJhy/hnqRuoa6AE9PYdalVknrlXOvfPcmlBIIUWka4ZNjw2u1TMeG8zpwtIhEMUyGaWJbBeX5ceB02yALeHWmTMbw7tvCdz4Y8ujzc5pKyAYWqZX2LDBxltxCXUlquytayg1law/GGwaXl5TDHF+fIUWbxLlieP895c6OUl7zmNDRzJRQCU2dNDz0K+syh+1pCh1zFiQTzg4UHx0P3i3Y2re0HczPV7RtTlgJo1yoRLnzHmzfiMQ2HbMsLM1I2d6Hxy8v1+1rg66MxKgMSCdxh3JfDK+JvFDIRXAGFlEpUKp5Yky2gUqUfWCuQkXfXSPCsSqnMbKoUopx6ZRGYBHW/irKqSbGyIoy0lRGGYoyJXUQLRBWRE6BiiTsHZMuUPr/B0kAZghsqjKxYC5czq7M4uuJfd0qfJUN/CY4WVvGX7TXCBcCFgNrAeslUyKXF8UFm8LlQWV9LLkEI1cPe/XhcHk9aF+SugKwrr7Uq9tVkPJNlJVcKWuMCM5autDw6OtP+dkv/o5ykLNcrmjbjsGwJPqAM4ZBMSA3htPZMiV+Z4blsk3UtsKqqnnx6oCBgDKgCpHJxoij0zPqumJQFgyGI169es2d2zd4cPcuVjKqAJOdDQorPD17xqqrqTvP5w+fpQ6NNgCGarmicRZnLVmeMR2NuLa9wcHRKWfzpIeBy2yhtmmJLkM18vz5a5xz3Lt3k4dfPOLs+BTUEUPygek8aIy4LKPznhADvlshcYnvIjWOYCJmFfuQzo4oA1ZtEiaaRsDCwfEXHBz+OfXyBYMyY7rxbbLyA1otiD6S5QUHpw3Pv/g4+ZxIxmQ4RNSwXHb4NnL9WuIyEeXjT8/5T3/1E27erNjcKblzd8LZ7Ii6WWDdGGtHWGnx/pzV6owuJK8TSAaahTHAFtp3a0Uipg9Zs/35IEYosowHownfHkyYFiWr2PGFUWaDIeIjWWixIfQgJV1nagzSpzUjMJAh79/4gF27z2LWcXw+o6Xj5MUx33r/fezwl2wMrnPzxn2+/OwLfvTwL3j87JfcMzllqeSTfe7cuMbWdIeTRcfPHx1xcF4xHufMfc7myJINC0KW0YlgCRRtQd2C7xpqn/QgRZHGN+cctnSMxgVbLmMw2mBn5zo3b97l1s17jKPl6G8f0523dE3N1nibcTmhCh03rhd8VD3nyxePeP3yFbGtKWzEGp9sE6wjEBCSLgeJxGBwpWO0M2C6PcIHpa087TIBDawQo0FN0sJkRgmtpQ4CxOTfU+bkhWW1ClSTBg0BVxpsLmRuiDiDiUK1CCxOK7qqScBcFOMjefz/stX9/y9tZSZkTi/Y8KudO8asDa/6VWmvGblY3IledGsCySRLeg1JPz6HkHQl63HTyhX9QN9bHyNJDNR7sA+Glj/6wzF7exXtImCtYb6KVDHtP6+Eg9pw94ZhKpHHx6nuWoaKegGjESwXsIw5v/f7b7N6/YqvX5+x8kKeC1sjZbFQIoGqtVTBsTFo2A7KjZvw4K6hGJxj84gbGm5fG/H5hwuMsYwKJTfK/Fz51WeW9/55wajsGG2AdkJ1UnP8Qjk/Mtx4TzEDZXmecf4sUhbKdNBxfJy6n9SncEbfKrlNYuLJUHDJ+ZguJKrQGDg5DWRe2LyxRetbskHgxanj1UeGP/lvHfffaqE0NMtI18LsXNnYckw2AtubnixLDFDU3nCPBIIywEqirpObrbLTt7M1CmdByTBUse/JUmVThEpSB02J5yym82ez/17PEF4FqIOSt7BAWWBBlE6FlxKZaerQSfVyYQvYR3gpCfBOMZyJUqdnxZJSlEM/G4umslRJEl87k+LlL2uHV2b2pNbm11p3fxNr8oYArTdJogfffdnjootHLnYDSXzDGw9fXwTrna+KZa/etb5vvRjoL5CLstGVH4U33oPEb4KUyy34SLVqKIoc7zuOjg6o6jmHr4+p65qNyQQnENoaJyn4czk7YzwsGOTJocEWA1YrjzFcCAKrpuPR6yOO50s6nyy6T89XlEWODx0vXrwizyzb4zEWw8nxjGywxb/64R+xWp7z/PMPOZud03lP51uiRorMsbkxpq0alk1LVljqVct519Esa9peD3MBTNoWa1M7sTHJV0L72vRi0bFaPmdjY8psviL4uh/LhBACzrnUGWQs1gliPCI1qiVR2xSYauDcRpowoA2W4IVusWC2+ILD04/Q9pQyL7l77wdY9z1Wdd4/j2c4HnN0ckpTd5yfZ7xwB7zzzpBoxuSZMJk6BlPFZkLTBf4f/+YL/u7nz5ifRfZ3BuztTrm2t+DJswqNFswQI5to9Gg4xaB96UUhCpYKNCL0viwX7sCgYjDGkuUFN0YjvjuZsOcMMUQe+44nJtXhMxtwfQZV0zSoDySjMFBj0yrfWiR2bLpN2mVN17Z07ZL7b79HhueLLz5he/Ma9+7c58aDXf76L/4XpPmMu1uKdEuQCQczw88/eUnVeBrN+PLVknmEkc/YHAqlCL4NzFqoRfA+acqyLIlKFcizjOnGFnvXrrN7/QY7e/tc27vO9Z099rZ22dvcYmM8oTAZn/7oU067V3TiGYxLBpMJ99+9xY1vb6OjkodfnTDZ3OL0NMdlHbY3ucM4MixFBPEJoLarmsYHpHQMNwrKaYERR914/LAhtimYs6kjbTTYQc6wzPBNi1IRoicfluSDIRphuuPBTvCtg97eOsthPC0ps5LlKmKznNnhGRIbTB4xzhHN/x+1GdsrHTtXsEhKLjaXzpgXrcU9mLYGlGSUZWy6XZBkXW8TUAkx5fMkwKPJjCn288e642e9aO21Kqiwf014cLfDrzqsCHYoLDwsm+QU+3QmDKfCn3xL2csiH75Wjk+FrSJciPnOW3hwb8I/uZ/z02cz7owidYRBkS7OmlSaGBrDcua5dVMoMyijopXSnitZhHLqOG5gXinGKoM8sXA2E6qFUp8L423L8bmyvwGtafn8S8/5U8P1dxy7bynnx4azM9jegddP4PHXqU24KIW2VYiKZIZBb44XWhBJrrpOkw/A0YljQ4S//esDNvYs3//ODc7PTsnHjtGWMppCZyLLI1gep7FlcxDQNlKa1C3QeOgkdcVcwYiE/jvPVZOKXw1jUvZFp1D3s18k5fMsUbIoHBC5bSxDDZz0LMc2hiWpdf0cYSGw0lTiin2p70DhCZEKUE2tw9uaylwVSkMShe1oqgKqpFJUo8mSP/RlpR3gBjBVQ0FKck2t8P3MfgEgpC/7XBIZrM/Bq2BjjS4iV9DDN7QhFxTjet9LZuSN464ZkDXzcgVkyPo5rm7rY64XAmsyqEcyAum99e/nIu9nzfYaLhgXDelxIpDlluADdVNTNTXz+Ty1FIdU2nBOuLGRszs1tN7SdUrTdpTWMW8Cy2qJQXsdS0jZPaqs6pa2C/gQ+peuhGixIWKdYXM6ZjSakI1HFJLzrbfe5//wP/7vePH8OX/5p/+e2D3Bty0+dukjzR2jMmeQW2QRef/3PuDhF094+vULzlYtqoGiyC5SlxNQCeSF49r+Ls+fv7wQ9J+dn2CMpW08YjwffHCXrx6+pqrnycdFa7I8J18zKWFBjJsYIlE6fLC0vqXtamzqsMWHmmrxiKr+HCdz8uGY0fg99na/Q5QxzWGLeoOVQNTA+SLZkfvaMTs/5/Wz5zhVRgNhMt0kNoauivz0F2f86qOvCY3y8Wcdp7sZN7d32N01nM1esVzG/rQribqByCp1c/R2yJ0mX5bkfWSS7we9p5QYjMlwec7WeMR3Nzd5azDEaeTF2Zy/6yoOXbLDd04I/bmaulICZn0pZQYvDhFhMrrGrcmt5KbqU7nFr+D6vdscnfyMm5P32N3d4dOPPubTg6/58OEZQ6m5VRbY8SZfP53z7HhJ5ZUvXsxoBLJxDjaFh7YRqqVSxQ6cw+VDRpslk9Emm1t77O3tc2P/Ordu3OTm3nV2NzeZjMaMhgMGec4gy8icwYhw+HrBq8eHZBrQgWM03OD6tU123s6Z7m/wsuroNDAc51zbn6CdIXQBsQHnPIXL0OjoOkVCoKkyOu2SpMQkU1MryVQyDDNikbp6goOu6XDOURSWMh8RsDT1ioASVMnKISMHeVFSV5ZmVVHVHdYK41HB1nSDUa0gORGPr5Vi4iiHJQM7vEK7/pe332mAkmrNl4PrmkVZgzSVS/+S2K8Uk7Ns+qAvXGZJX5iQgMaFFvENhe1lOQcg9gOtNeuBNtWUqwVU5x02Jp+OX34SOV8oosIysWj88K3I/lRxqnzvpnBSeLo2WdxXXslLYco5rx/NKUvPnQKKEvwqMq9hMFVcLuxNPdM8DUK2gEYlJaBWqa5+srK0ZMTKUObC0AlFFrGZMswM3SLwt5/B0y/h3luRx592fP25knWRv/q3ge//i4LDIzh4LmyM4Ouv4GyuDAYwGiVztlUUhiiDvDe1i708p03syTATqmVksOkInccEx2rpOZ153r2doV1Fe6QwNqyOlOoohTfWZ4E8h1v3hfcby9/+VbK6h/VE3bfFobRicJrafjuBXJMVdiNCgzIh3daaBAAbIuequGAo1eCN8jjCPZQ7QI0hE+WAyDHCICYwmqGMSCZwrababk3kOUqDYd7f5jSR1kES4LEKXpL3hNUEhq4Bt4AbBspcktBs3Tv9BvOgF8LRdcXl4oRcazwE+A3X/K/dpIkpvAAahjef6yqrolf+jpcXmMKlJf7FvpevWTVR8r/mxdJbZMsb76XXigS5OM767QnJnVSMwfciva6rWScZn50esTly7Iwtt7cM12/d4PWLI3wTiCbn0euar49Bc6HrtC+vxP5tKG2X2k9FUu6JamR7Z5tRmbEz3aIscmbnFedHC374f/qnbO1uc/jqkDwfEkLA9zqKvb0dcpcYjkXVEFV4+PFDYlSGwwFN3dL5QNt2l19DLyz2XaBaVcnzxSV/AnGW4aBkdrpgOLJMNyc4d4wxGTEmbUcyRhSIOSFYjMmJMWCiR02XvHaCowiguqBpv8bZY9p6gUjB5vR9JLvLi+cBly96U8mAxXJyPqPuIoYcS0Pn5pydChIV36zIQstsd5fWB/7d//NjTDjDSUbtIy8OWoIfMilucOvmBsvVkrZNRl91nYHpqFYvMVqBSem5MfQt4OKwNkuldbGoCNZmDAYD7o4nfDCaMDGwWi35ydkxX3QdnXWYLMUG5JkDowRfE+qWIH3MCDlqBMlK7k/fYnE84+jonPtvv83bt97l+VcvkC899WpBnuVsXBvxf/+b/xd/99XXvHg9Y38SuH1ri84ZunyDm3s7fPZyiceTD3JGkyHDzTF2MMa4EcNiwubmHnt7e1zfu8H+3j7XtnbY2dhiOpkwHg4ZFgWDvCB3FmslMWTm0le5WnR89cUzyuyErZvQnE5wccJyGZkdCwec8MXxAR8//ITV8gXD0hLzglUTcbYjx/Y6p0GyWBGPukj0Ed94utjSdUpeFr0De0ZeJl2UyYEsOe5mWXL3LaxBjaTw27rFqCDGIqbFSEjNIXRIDGhV4fMCZ4okwRg7apdRTi3jccEoK37TUPVbt99pgLJehaUVWrrNrt1eofc+AUhunbEPJ4uklZr2zPm6DVmkX5H3g/KaFb/oMugnghj73nFJDMxFWQk4OY989KmwvwOvz5STmaZSUAdnS/j2Pbi5qYnhMclquCxBO2HZKrPj5DJa1x2ZhY1Bev5iAN4p46FgB4LJUj5P5mA4EHwQfG3Zf2vI6UFHrHKoC5anS66NDa5JqaUuAyzUbeTP/oNHDTR14NUzy9dfK9oBBs4P4c//bw2DiSVX5VcfCmeNoC4yPwOrKfvI2VS6cjFNPj4I8woks6nWL0JmFZsL77wz5od/PMUS+OQTiwwzNHS8/hLaArqVEurU7vbwK0EKw/s3LHfei/zor1Jb8HrOc0CD9sG6ykiUTZMG0kaEMalbQY2Q96WdZYy0KJUILXAEyRhOhRVJm3IXodBUHNmMhkcCZygVMEIYiHJLlRaDV1j252IjSqvaAyehILEovVkvY41sAyOB6yrcIIUY3jUpByg6kJB+1o6xiUy5BChvlHWughJJ5/JV7PKbL5ieiYFvgBO5BEJX9r34fQVsrK8FvWBUroCT/vF6RdB7MexGLlcQ6+dJqXXpulq3UPfva51QfDGZ+8vadcI2yqR0OE3mUG7xmBsbSuaUdtUyLRwaDQdL4bQKNK30VgKxt/k2fUIyvSmc0IXAzvYNrm3vMdrY5Hw+pxhMuPfWfQzC40+/5NWrZyybNKmOhkPe+867rOYzzo/P8W2gzBzVqkatwYphOChQMlZVS/C9zqLXongfODo6TZ4XLsMaS1vV5DZLGpwq8pd//ncgjrwoqOsVIUSausWYFEKHnaSPzUSCBmz0qHcEv6Lz57h8TlO/Zn5+itgJ48F7oPt0DSieNirOutQ1I5a2XmHWab+mJQRDXQtLEU7peFUovyocDx8949nTJzgjlNmAqErVwevjCjN1uMGEyWQEmnJfurbDx12OTqecnn2B6DKtBvvzbLy5xbTtiNEToxBEyLOc/dGQ742n7BkFH/h8OeOzeknrI9FaTEyOz1GSm2aMgS56Yi9INnnAlQV3du7yne0PqI4aBmVFvfLc2b3DYu8Vjz7/jA/e/T57uzf44qsv+eXXn/D4xVPu71/jv/+BY393yFw2qUNHW2zRjSe8/YO32dnZZfvaNbav7TPd2mNjusXmxtYlGBkMky4qz8mdw7nkqmros2/6czlq0sf6oHRt4KtPXvLl335Es1jgwiaOgkExYf/mDkfNko8//5JfPfkVR69+heg5ZWGxRhBNxppRLODoNMV4RE0L1brpqBctIXRY1xCGLeW4wGWCy8Y4I2R5RJwn+EDTpFZjl0eGLkfx1N6jVlDJqOpAveoIvQ1+jMp81tB0CzRr8T5gTCDrnVNFDJk1/GO232mAYmxqvUu0cJ8pYBKboaTB1FwMcvSmP/1Aui7ZrMWw5gpwCcniF123E6e21YvkR9IAKYYEWDSJbrUv0Xz13PPqVFLjRZvAkRHYmwj7W0n/EhSWqxTaFyOoUWpNLqN5nsxtcpPaZzGkVjvS681sEgfnTokRZnOolzAZOMbTjHkD3dmY23cNiscYQ/aiYZRDVgpiIidHnsEwpyyEdiZ88qOOzkPpelYiZT1RGo/WcLxynEnBwYslgwmMhjAcggQl1kKIwvlCeH4MXV5SmALmlqLsuHOvIduOPLhXcvfdQDtv+Z6Z0DSCDioOF54HDwYsjlfEpdJEw09+Zjg6C6zmgc376UJu9LLbVki6g6jJS2QnFzYLw/Naed7185xAUGFBZCSwK8mfYN4Dh4UqYxWiSczLuQpzUd5D8QKHklxhnThWBD5CmSBsiTI1yjBA0ccSlCq9u20CZV5hiLKDsAnsIIxFmaDcQtgnCXw3dO2QK0jQBEwiqTV9PXGvTzr4ddHGFUCyBuW/dVvThVdZk/72C3bjyr7ra+gNd9r+PvnmMb5hf5+Od0E39kD/CpKPXKE2uQRcCphkupZljqbriDGVRlSV7e1t6uWCcWkpXc7WJEPiCrUZo4GjOlsyHKa8lvdvOEanwmCuzCrPybwmREMbki29aky5PgLGGpaLBcZadm/sMhlPEGc575aUo4LF+YK/+s9/wenqjJ29LV6/PmJjPGV7tMHq+IhBZlg4S123+B69RZSubVFiir3oQw9Te6lcMLTBB7rGE2wKRKyqGpc7QhcJ3uNsQqjrRGdVhaiMsgwpBiyaiKpPnRjR4Kgpsw5xc2bzY05PDxmUu0zG3yHGHYwRco10weOjJsZCFdGQ2nTFXSDQGANd19HZJatKOXitnJye8/rVS6w2ZM4xGZSotIhR6iZyMFuxw5hMLMZKCnHNLVEHXNsqMKZgNvuKzp/22hvh9s0bDDe26HxH3XZUwVOgvJ8XvJUV2K7hdTvnp+2MpQ04hNwq2wPHxmTIoCzwKOfLBQd1w6wNaFQyInk55l52n9dPD1nNasqRoV0dc3JguHX9Lc5eLLm2d4t8o+U//ec/pbGe73/nNt/dH/DWDcepbhD8PuX+hAc3NvhgvMnG5jZbm5tMJxuMx2PKckhZlpRZQZZlZDa5spoeaF+c4zHhct8nF3ch0nql7QJV3XH64oSP//RnvPz8KVlm2d0YUEjJdGtMO+j44vwJnzz+OU+ffsJqdkSWCcMyw1nBZRZjlApNVv8ZFz4kprDE1uKtSUGAYnFWLj1ORDFZTm4MajuqqiZ4IXcwGBUUzhJV6XCJnQlK10HQjBgbrMvIigxxBW00aNPho6coI1meYRCa2lOHBt36e8aob2y/0wBlPeiJChhJ7AlXmI+LekwCMxe6EyE9BpBeZIv04EST0PGiuiPryU77ATTR8UbSAiDGdFxINu+mF4Z2nfYDteKMohlc24Zhlsbm2RxWlVJeBBrKxfN6nwCAc1xMwmoUk4H6pK2JtVKJ4eHLpCnZK5TBjsFlgc2bOVu1wQd47/0NPvnlERojk2FkaJPpUZaDyzpOjxSCkhnBSQrviyF9NtMpxE44n8P49h4Hc8PDoyW3zgy395W8SEJZrdLnNlvBgoK83KQVkjCuHbK7N2L77oq9nYYohmzqmIYVL76smS1bRoUSmpa8VCZ7gmPM6H7g0d81LM8j+Vn6MnpiCw99C28SygYRMgebZSqTLVV4EpQXCDdUmWkCrRnKBJPElaKckbQlqGGKsqPKTISHAptqmSOsJHAmgTsq7CM8I7JQYS8KA2AZFQ8EIl56sa1GoqTbdxHekgRSC4SpQmEEH5WVKut0SVmXdtYU37q17Lec91c3/eZ9a3R2scOVY6+3q25x/al9FXDolb/fYFm+sd9vLEfRg5P18vDiJOayRLQGI2vA1b/u9bVbFAXj0ZA4n1P7cPFSF7NzdkeO3XHG9a0B2+MV+5uWwWSE1vM0GMeIetgauhQv0EXmlSfLLb5ucc72Ja7Uco6kSfT69evcufuAP/jOd3j7W+/zk48+5C9e/Zhf/OQjlmczfvzTH3O+WKRsF4XN8S4HXz8jBM+qrgkhsOy6ZHIlKWahKEqqqqJpLks8pn/eEEJf3jC9zi2xOhdfsXggUmaORRv6nJ51srMHf8DO7h5tp6lfIwbG4469HY/ogpevnjNbLtjdvsP2zvdouyG+NXRNSG24ohg6vAK9EDzljvXjUFCsiYTYENURfM1soXTtIYYuZSLljmE+gnMlbxdkDmbLmqP5jO1yRJm7lKIuFqORMivZ2XyAswMOTz5F42n66q0jK3KKomA6NiCGTet41zmK6OlWc75ozjnIM4yxTIzh9nSbd27cZm9zgtVA3Va8PD8m6yLaKp1YilHGD258j9vDPbyA8cpwOOX+27c4OHzCq2fHfPDdf8ru9ZscNY/Q4pwfvv8WGxtj7u1sMNzbYbyzTz6+xr3N6xTDMWVZUuQFeQ9GnMtwfWClNba/9PrwDlVCVEJMXj6NV1qf2q7rpmNVtyxXLcuqopmtOPvoCUdfPiG0Hftbe+QMsHlGNnX86vhzPn3+Ew5efEw1OyFEJZc8tZBKspKPRiGzSXRvUgk1hJiAqKbkeFcUDMY5g3FGlhWopOiWrm0R48hE0NwSbCTPLYNBzmQ4RmOkS+EyhK5DtKJtG+rgcLkwHBWURYmSEdTg2yaltHeRZtGyajwqDdx8Y8T6e7ffbYACaXA1a+2JXpRnUjmmnwBMoppDTCnG9N0gtmdBIqlks9Yorsdh0+eiSF/rj5pOuDU44cp47USwouR5AhwhpJHWkJ5DstShI6LUq549CQYt02Q5axVPaqGNXepOsXnE5XJhsd+1QtOCHSQNyqyBs4Vlf1coC89wHBCpyJhy/60x82VL2wnmw46jM8vdbcWagBphY0OJNQxNYn9aD1WTsn9AGYzSIFmtBM0Mu/cnfPiTGbNO+OKlZW8r8sEmoIrRJFYe7w64lr/Dss0YcIqvZ/hoQQpyu6KUgF/OGe6ULLKKzjsqr2xeyxhvGc7PI3UwfP7FkqNnytYIygJWyzTYr4O6U6aN9lqh9J08qTWhf4XtQeTaKgkfN1BOgNeSNEE7MZ0w94LhCwmcGuWlKu8B+wLX+wlybgObEf4E4bmmfXd76+4XAjOFOUmvYkmlno6UoryN0qjQ9jWVBYZWIwMRGhFmMbUs70li04ySUFcktffQ/y1XTrC/Z7uY6y/ACb9e6rny/zQpXwUo+ms7ia6TlPU3Mi6Xj71yjMivg5U1AxQvLZ41cpGIvE5bvtDX9L+Ngotr0G/wwV9Y3LvcsbVhMZo+/clU6Zan5BoZb2eYLJUl4olns7Tc3s6oQ0m2isysUHext+NefxYGlw148O4Dvv2D7/HH//xPGOQDvnr4krPjE/7n/+v/zGq14vXZMcvlKrnUikNyeHl6xOl8RueVPMuIQWm9x4fQBxUmltMY07vBXnqhGGMuxqT1ZG+MYXtnG+cs89mCar7EAL5L7z/LMqIG8qKg05aTsxcI24yLkq1pzmgYWK6OOT07Yzar2N97h2t7H2CzMcbB3HswyfZdgcxYTGZpusRER8JFSm2ILSFRx3haFMP5vMERGJY25bYUGZubW4mpXHisi4SYMa89h6slW5QMshzQC01g5gwbkxugwmz+JYjhfHHCq0VDZgqmZcntLOM9ybghOT7LeDGMrMw1bk82oG0oQsPNzTvcu36H/c0NbG45PHqNK8bgRmzXFdFYBuWQt927LM5qqpUHao6PVuzsXuf6zRu8+PyY3a3rzJuXfPrkrxkWQq0l+5ObTG8/4MaDb7G1d40izykGI5wrMNYgYhBJDEnqik6OrDGk7zcExcdIFxJL0nTJabZuWpZVzWK5YrVcslgsOFusCKvA+Lxm9tVLqnrJxmSCMQPK4Zjt61M+W37JL57+Ha9PHlLXCzCGwbBkPBowKJMBV1e3tHUFEslslzJ2gE6V2resukjjBedI4BzT66kE9R04wUoHth+XrOCMu0hZNsaRm4wQkvGgaJM6EG1ihUJQBENZOLAZscyou5Km9jRdSztboL7lH7P9TgMUUbC9tfza478H6xhzWb9O4572nZBp4L2aybbu7lm3zCuXGRAak64lxvXKr8/lkUtQsy7hOJdSiZXe6C0k4FRkgjOJXdEIi3n66frVZmiF2rO2FkBI4luVPoipf/0+QIypcyQfKJMI370XyJySCxgTefZYuHZvk+vXPFut52xeoT6Vg7pWWK1gOI24keC7ZDQ2W8EvnkItBf/iW4FJ4SlzJQQwmbK3N6L1kaPDFZHIq8OO04Xj9NxTzQX1kSIzFIOMti6IWDY3S6SrmJ2lCer5l8qLX6z4wx8qd79XExrD2argvC3ZelCQbQdiHfi3/ynw6cOIb4Rb28LyXDk4Sp/p2uI+/ZvqBDUJvBwFgSUUJAHwripzjUQRrqlwosqsN2czUSgkMAKGCCsjWFVWoli17GnktsIRhlojm6KcqHCqkU1JmpalKMckYDIkMTp13/Gzp8JrgRXCXOEIZQdDpsqMRLlGhH1VMmP6c+2yvnIBE6525Pw6hrjY9Aoo0TV7Ild27dmUNVGRjH4uUcYFuXK1dIS8qS/RXy8BvfG38uvlo3jl9wVQ6Qf0vuyjwmVj0ZrZNMIgM7x7d5/nL494db5k1V/LmTMEFB8sVVNTO+HVM2FzY0g+ahkWgTIXahcYjDIOT5XjRcT2QDJqCm9cl321B01lntG2DVu5Y7pxjddPz7Gb+1Sh4pe/+gVlOUKMYAW8KFE9T189I3SBqurwocPnnrLMkSYtTbou4Lu6Z0YTKFnT/d4nwFGUKZiwbTuqVaQsc7yv+c53v8MnHz6kXlQsqo7Q61ZETNLTxQ7rMqpqxWQ04k/+2S26VcMvPv+aF6+eYV3G3rXvsDl9G2cGiAiDwlKtOqKzZJ3QSZegiCjWGdrgU4eUdDgzwErAEhF1ECOLuiJ2HTbPCDGJ1NUrvusoBzmdz9EOYhBC7KialsNFxbCMTLIci5DiHNJ3MRnuoMEj0vEv33IcnJ1wvKqRbsmDbsBbdcu4qnmRGV7SssIxcUnbI10OmlPHgtZNKYcFTDqCj5QDz4ZYGoHd4h5ZW1KFOYv2jG89eJ/RNPDxr/6WO9UDNnd22dzZ4UXzkkfHn/Ho9Zzh5nUmW8Kr1YjNMGDLlJRZjsvS54imrkCiT+GxCj7GC1Dig9L4SOs90XvoWtS3dM2SplpSLed0qzN0OSOsGkItMBOqU8NqPqcoMkQdXdVSXss4jTP+5snPeXHyiKqtCGoRNKU++4iPkcw51Do6Bb+s0+JXO8SuS4kBMRGbGaLv8K2ncRYlEnwg+I51E0lSzgqly5AmEIoca1uGZZ40fnXN+dmcqqkIoUsL8i6wiA2ow9icwiSNYj4saIoSlwWcy9A2/MYx7Ldtv9sApXd7NZJWQutVZEpd7D1KuBwjjUlmaet9rtLYF5+ZSu9JIb3HiVwcQ4SUz6P0NsC9z4VJIMa5K+ZwMc0QRSYUeRLDhpg8TuZzaAK0AcJ58g2B5IAZFbCwbIWzBWxvwMZYaTuh0eREKrWwtZM0IC5fAxc4Pu4onhpuffuE1UHHxjUDw47dTWFzM3DcOG4shRCga1L3T+bgqwP49LUw3iuw2Yqi7IGXEbLMMNhKSYzDoWDF8O3vbvIH/1XORlnx5ck5vhZWUWjCkNNZzWhjgNoMY0tk2NG0FaVzzFU4eK10RF69jjx/PScb5Hz3j4dIeY4toBwIowzGpXJ3K5Vw6LUMF/pRSWyWJWXbdH03iEdZqXDURpqexTAkjce032cP5RTlRwoDUb6lyg0x5D3wdBrIjWJVcBrS562wo8pLgaUmpqVEOdGUryOkVUqq/iWBbK2wQJj1wPg6iuuLgaWmiS6jf39mnaTdl0Wuzv765n8vbjZXgIW53PWytKOXrEoP0dflDN7Yb33u65XnkQuRuPT+PpcdRN94TVeZj2/8aAqDSi20fdv/uu9ORS8WFW+YzPWgbFAW7FzbxWWG8XnF8WzB0ckZwXesqsDT4xVDm7rEpiNDvZpTiFDY5CybOYePntE0AxuYjksOVytGowmr5qxfaEjPZAjT6ZgwW1GdLfn66Zd0Mubhoy/Z3p3w6KdP2JqsUN9eymRs0myEkNqINUa6ruPtt+5z+PqQ0/NzjEAXA4pcaOHW3UTWml7w2pBs+B0hKG3rmZ3PeP3sNdsbQzamYx49+hoJvmdhkqeHorRNx/Y055/+s2vcvTHk009ecHZ6RJZP2Zy8xai4jZWCQJ8LZQxbGwWn8w5vDdKuh3/BSOwFqgFjTe8LZbBZxJhI0waarmZYWrxmdD6QZykUrmtrssKRlQVBYIAQpcKIsGo8s6VnJS1Fbil6T5CsBymjwQ7WnvCv39tgpyxYeaVqDGYOxTziVx1V69mt2rTAqqDtOhrf8frsEJMNaQxkc6ENHadNxxyhcUPEFIzjHk0jzBcNxI7lcsXu7h22rz0jhsA737vJq9cP+dHzv+LZWUtHwSBzvD6Z0T15RVYOKfG4GzcYOA8XJZNAFxJAWOtIGh9pu0jddLR1A92SIlQUYYnp5jTNkqaaU9dLvIDNx2xt7TBcGk4PTlguakSVQTZCvGM4HdBIw7//9G94+OSnRFkSiHQ+nSehq1iuasbTnOGwwKgSg6epGupFQz7OscOcPLd9LIwkUXEmWKtYjWkc6RfgUVNnFU1M2UA5hCAMMyV0Bm+Frm1Y1spiWVNXc1xmsDgiAY2C7zqWyzlNk0pfRZ5js4LxyJFlEUeG/CMQyu80QDFvABTlopWhZx7WNe00JPYiU+lXTQheFe2bA5LuLD3AmB4oXAUyyIUOJR3zivBWkr+Ic1yADI1p8h+NBFFNuQQBqlqoun5CI6m3VVM5SdaLTGC2iGgQogpZJnReOVtBDEpeCF1ImpWA0K7NQAT27uRs7Tl0aaA7wwRhNBFeHyrjqSFuGebzQF2n17vq4NEpHHSQrX0iVmmisKrMG8EvoCxb/jf/epO7NzL+h//9hN0tz/nrnKabYYGQFxxUJScVHFYrXh5WjCaW2kd81XJ9bJiWcHAAz14Ip+fwe3+yzb0fjJjuKuI6Ts8iL14FYiXcuqFMiGQ5lAZ0nlp1gyqdKoFIgV60g2cO7paG143yygvHKKeSuma0Byf7IryF8hzlEJtSXVGyEAlGGEbYs0l++9MYe4YkdebsYfk9Iq9RVmqwImxIoAIaTSAk02TKViI9r6Nskm4boGSkwTsnuQEPBay5qEeukVfPOPDbyzSyPjev3if9r6u1HL0CRNYP6EHBFQbl1zbVS9DQa2RSLXV9/+VhLrZfaz3uH7JmdPRSuE6/gFjf/oYAt7e6FyLtcsmtGzf5Z3+4z7ODV/zNzz7h8bPX1F1In5txHCwsd+9M2NpasjMOlGUacX0dMCHiiIyHludHLQ7lbFUlNlQuX4tzlth1nC/nfPXkMdPPr7NoDG2zpPZCVlgWyzPyPCMf5KgxKIa6bokx9l1AqTDy/OkzOh9weYZIAB97X5OuZ036j6tnVehTZaV3rTNOGA4GnB4csre9iY01v//9t3n68oznLw7xQZNfiHrKUvlv/+v3uX//XX7xsy95+PiA8XSPEG5g3S7B5EQDRlxaQRnLoFQwFWcLR8ShPumh2q4j4lEVVGJf5FFyk9jk89kCJGBtgTUe6zJ8jJgY8V2LlchklErHi5WSLR3OGbI6o6q6xBC1yrxusPTmhP15GVUxmjMZWDatwUhE9iK0keBhOyjf7gKLNjJbec5WwvHSclIbVv6EVVfTNY6u65CuZtMZ8vGQgd7AzXKq2CDAt9//fSQuefL0U+6/f53v/ME73L1/j7/+039HU/2K0TCj2NhisLHFdFIwsktWi2OOl1Pi2YpxExBRmq6j9clXx4dLPcliWTFfVCwWC+rlHFufMYhzCtOkjJuyJB9OKKe3yQZTxAyQaOleHlHNIiEq29Ntgrdkec54a8DfPf8lP/vsz5nXr7Am5Yj5AL6rCN4nbUtr8ZtDiiwjNB2+amjrFh+EIioyzEESw2LLSGksWWZxWfJ26qJinaXzvic6GxIHGLA2JfAG39E0Lb5TuqpF6BiMM5zN8U2HbysMkcZ3+CqgsUYx5EVOMZyQOQcxXLgI/0O332mAYs0lEDGQqGMUl/UrxrBmUVJHhMvSWNh1EAIQpbfs1n5eSCnFvhcvmn5VGyO96Kh/YmGdh5R0KqLJAK0v0SigRrh2I2NaeM6OlToKXYDGX4bRSt+rr/0EF3vqXXqUogpVpTx/kZKac0nak9hGnrwQ8jyBoHYlTEZQVTA78gnU7Fasjjuefqr85CeGg3nBg3uWVdNyfCIUubJh4PUcni2EWoWicEnrsYCunyxr55CVQCOcnyjvvbfJjXs11AUhpMG+nAhu5xZ6sEM5UVZN6lU+PJ4xr1Kip3aRyY4jdA1FptzYF/LYUGpOljmCKs9fRo4P4cZUKQuQUpjsCcEIjz9NADJ9dunzcqTAQAScKkUh7FlwFZTecEhiMiY9mzAW2M7BeahiMk+7blL3zgvgOcKHQVmiHJCA5kRSi7Ankis8EKEh5f2kBlLDC1IWEKQylAIbQI5SSLptCgxVKPvXPlHYMym4MVFy0hdy+c0A5Wp3To81LluLezfd9QPkyk79/Wlbn8MXqP23b70QNJ2o5tJE7srh1+VS4NKp+So4Yf349H7ekL1EUlfP+nE9wFnvMh1PubM14qxqwWT84Q9+wCgTPtkc8tnDp1RNIJqID56TFzOuDwMyEaKP5KVg8pJu0bI89bjOMcoS0K/PW0TASuqdUhWcseRFSbWs+fjzLwh2RD4ecvbqBX5RUWaO4AZUq4oQlOnuDt//3h/xi5/+hMOD1xgr5EXKkwkx0sUAEWJvTb+1vc3xwTExNsSY2JMsy6iq+uLrWecw+TYgJuO8qnGzU37wwQNGw5wsCKv5OUEKxoMhhIZ/9a/+mNv3v8/f/OUvefjsMY3s0bbbWDfEqsFoGhzFGAQHJmINbE4zAp55cKgaJEDb1cxXJ7ispDAjcgvDUjA2MltUdF1qf6aTxIblhhiSl0tnWqJ6smLBzdsrmm7B6XHG+UxZLByrVUG1yvFtRxMjJioWhxiwYrBmwccv4GiWMzLCpLDk1IjWWGlxmWUzE3bLDLNhUMnwCnWAZW04Wa44OK95fdaiZExHU2wx5sXzKbNOaGoIUoHPuHHrXXTw19x55yabG9f58D9+zHb8ku9fLxlMdmHzHg/u3mZnZ5fhxiaD0QZZOQSxHC+WLFZLqtWKpq7pupa2bliuGs4WS05nM45OzzifnRLbiunQcmNni2vX9tnc3mNYThCX0ZEljVQw5CvP7NWS8/MVm8MRvrUUWc7+rR0+P3/Kj578NVU4AIm0HbRtRxfaFOCnHiTSdYF6adDcE5pAW3l8HRLjF8FER7Qe6wxWA2oNkjuKIicbDHB5ThMi89mM1WJOkBzTM5xiE7PSeCWGhhDT/DopBhS5pevDWFeV0q1aJNpkdKqaWqfrlnrZpHZnlKEr0Mlbf8/A8+b2Ow1Q1h0zFz4mRrEWsiK173q4YEGMFcaT3rRJIawtueGi1HNp/KaYtQFbTNS4sYAkoW3UdGzJBOMUJ4IzykUmckxdJd96f8jyYMHyLLJCCUGo2wSOLhe26fhiFPF6YaoZ1i9M02MmY5gWyXOkqmG1UlYVOCNc30saCh9hOMqwpcEMArUX/vInyn/6HMabjjtTTzxTxsP0uLaDV3NY+vQ8IaSTl34h70Oi+eqqZVAtma8CNwdCno9pli2hnTPayHn7u1u8WG4z9mOWr+cYUeq2ou080+GQqJGtbcvMVOwYoSihmMDseMbsmeHazW28JLOpGxuBrUJ57/uWwWYgHwmbWwP+7tOUvSNA1vMTGUopyXmx0sB8CRsjpRxDPhO+jqmmeiuH1gp1BTNN7Yn3olJbYXOUOpGetFCLUqowVOWOCBWRTVJ7covyHJgB1zVy3aTvaEISSB+jtAozlBOULSxbScLLTNNrp3/dIxEeGOFWHslsAly6np1jCjf7tVJPfy7TA/I1uNCL/67ByW94zFVn2jVbY+Pl/Vy9jwsgcuFd0jMeF008vw3YXCn1qF55KeZKiahnOqVHVyqX5mzau9AiUAVlczrm/jXH+SpgszH/+r/77/gf/seWf/M//V/40UdPOakNWVwwGSVCqPUpCr5ZKCo1i4UnBouxkSKT1Lpsk17AuQIUgkY67zk9PWFYlBwfHfHi2RNWIdI0K/AtsWmRYoDXhsGwYDje5eHXrzk7myECgzInzwtW1YrhaERYLGiDT4LYAK9evEK47MDx3hNC04st5aIrKF13wunJDFC6tiH+8mvuX99kOHb8yb/4HsPBJmcHT/j6xTEfffSIn//sFbN5S3DbINsQyxTc1lPpBpO0bBL71vUCDY5h3rCynmAimVqsjcRQkQ0zigzK3JNlhqaLzOsKokGMJeDx0dD6ANaSx4Dx6YuvF46uhmzYMd6Z4Yo5wzEEv0m12qSpMto2p2scJrjewsFhzSE/elGTiWGKY8cahtqC1GicY2nIc2VUOMa5YzzIGJZZKp8LXJOOcdlxbUMJ2lBkS175d5ncsOj0NV0s+b33/4jXT5/z2cdnZJOSw68sEy2pF58wb+bMmk1MvsO9/X3u3H7Anbt3GW1s4LIcBZqm5eg88vroNY8fP+L4+JjVcsVqVXG2WjJfLah9jc1ztre2uHvtLnf2brA1nJBZh49K0yrtKlC3LXXTMWgj2cmS+nDGeDigKIZMN4bc+tY2B/MVP3/0M2p5zWCS0VbQVB0QoIto7A3urMFGiN7TaCR2SvTJByZ0LYrifcDlgslzitxgM+iiEo1jMtlgPBjSeU9mCoiRrlmkrLb++vQaUSwaU3AjUTEm6xtGIoJHiEQfaFcRYsSISeusLiI2EETwoUMGv4l+/e3b7zRAudCgpK40ZF3Iib077MXta0dZZTQGpW+r6ksjIqkN2UoquUjfFtoPzakdr5+Q+g7c1GyRQ2YNVuNlDhBcMCyffzxjZ5gGdB9SWabukj/CugMa0wdb6cV/CQLaa4lUFesSuBpYaBuoDVQN2CKxKOOJUi8BB02jaOcJXvjxj+Hf/dhSh4w/uGmYFi06VewKzmfCvBJOKxiWjswrVatUfsKUY0SUtgUGSlTLZHOT/Z0V7/9egdcGsRWzZcANLFsP3uHFl2M+f/iI1ycdWZ7Ecm0DRV5x+9aIm3daPvsIzirhzi7cmSqjQhhYRaIHHLevD/h6c8FqLmzeGHDn95Y0tXKy8lhgk8iiH8RXJD1O7GfDIIaHTeT7CIMiBfjdU5gbISuTqPiojXzdwh0Du06J1iBD2Mvgu53ySYQ9SaDDEMgkeZiMgBphG+VnAgcYClL5aE9hV5UFyhHCI4FTEd6KSglUKhygtCJMUXaB7xq4XyqjbN0iD5hel7FuPe5rk+t5fb0l5o1LMMGVfb5RAroo47wBTvQKol8/+h94vV3x7kh/8+Zr1G8cS77xd9/xQLh64+VrvHgPkj6Pp4fHbI9v8/adParOMylKbu84/usffo/5bMWHX52gjZINx3hfsZwrZR5oO6iWLeXAkJuM4+OG45VhuYpMyuT/0Pp4kUKuqnRVRTkY4U3g64NnVN6iEunmc05mSzK3Yro1ARVOXn9NG5S2WyII1mUMBkOMCCF0xBjp2g4QYkwRFheO1jG1FYNSFDlb29u8evXqohStMeB9hxjL6XnFYlEzX9bs7YwZH824d23M/nTIy5dDvn52zmAyJbo9ujjCisMYh9G8HwkdTjIysViTzCGNDRjNGOaW0aBm3kYyZxnlGbMsteBbCWQm4r0yW7SoJqddJeJVU6bLuqsIQV3v6dHknB5Zdm9ZrChZZgissOaEyXRF22S0qxHL2Zi2GxCjoDGVTR4fnLBcNWyoZbcYsFk4smEkRMNi1XCyWNK2ngxhXGZMS2GaCaNMmA4KJhvbDIYTkECsNjiUTcr9JKANssTpFrfueX7847/he9f/KQM2+PSzz/ni9ClHZ0vaOGS02fH8LDKuHNdjRuZKiiJHxeJsTgiRs+kGq+D5xZefcHpyiIhhvLHJ/o19bu/fZH/7GtNySCEOFJq24/hszum8Yl5XtE0DwbNROLZdQbtqsEbYHG2STeDBB1M0t/zNJx/z7PRTYqyQKKgauk4JbSR2HmJEjWAyixGDmD4mQH2/gIhIhLBqkeCRUhANmKKgyAtcUYAtaGMKcF2LbV3uMJohIeK7VAkoByXWWGJM7ExTN8Rlh8uFLEvuvU48nSh+panN3iTwJCak5FhjeoX6P2rI+R0HKEJiLkyimGX9zmNa8Vl7wVDjLIzHsHcdnj6FplaM7zUp9rJTJvaUsyj9AJYer5oEthqTSt1myTDNaDKIMz2zojGxKMHAy2Ooluk4HmhaRb0mJ0F0raPFaG/EJr2eJqb3klj1pE1xvcZl3VVUFII6Yf9GKj/FqHgLn3684Pa3BuzdHvGn/77i6xPBDgqubYIJerEwV4RsPORfvivkdsVPP488OQpUoWDchwF2Cs7mbO9ug6zYmHo2N3PEzvC0PP6iYXtzj4dPlL/68QteHy5pOgGbQ1YSo2HRrjg4WbG5Eci2BizOWiRGzo/BbEFmHTE2iOTENjm4eg9PPm958PsZ2UbLUeXJSYF8a+BoSc6ykXQSv0ZYiHKnUbpOaSO8J5Ysg4+8Je86xk7oIrRR2cjA2si8TkF+7+eGUYysIuTeMBHlmolMEBzC6xjZx7BP5NQqX2piVBYKIwPbKmxjyIjsRWVMyvQ5FcNLTYLd7xH5bib8YJIyMLqOK8zCZQzDG629f18Z5uJCuPL3OmzwagnnojR5lUm5chFdHTH+AYPHZaDbJWD5jduv3bV+X/+l+hJ4bTipD/nls4rfz77F9u4dXj57xQDP2cEztrdK/us/fJfjp4+QekkwHjGRGFqMWopiwOlRS93UKUiwSYnH46KkLQJnTWBR+cRWRqUOkWW7AhyDsqA+nTEYTXAmYDPHZDrknbfu8tMPv6Bt6xQkGiV5e5RDirJkMhkwGBV88dnXxJDo+CzPiCHiMsvOzjYHrw9omi4ZxFnD2dk5pg8wUiJIMj8yfQ5H03heHp6RDYZEOsrJJtdv3kW/ekYx3kZlmxgzrAgiDkMS/maZwzhLRHqG1mGcJmt1FHWGLPP4uMTaLYq8ABxt1zHIDMEVVA2IWKykEqfX1KECivGezAghs/iuB9pOmZ/lTDcyXCnJd8RGjKT3m2kL2uC7CpEpXWfxaY1PW9Ws5jOihTrmLMyALS0QGzlVx+Nl4OS86yNK2jQeojiNbI+3eO/tDd576z7T0QanLx1n52ecfnxGlk8YZxOePnrI/q0dbty5we7GDSY7I/78oz/j65M5xmcUTuiWS+YvX0I+JSsGGJexu7NBnifTwNFoxI3dXd5/912Olyecnexyc3uf/Z1rTMoxmbGEoHRVx7xeMZ8vOTo75nB+Sl1V5NZRFCWTcsS1LGd3KizE0Z2WzOcNW3ZCdTziw8Ov+NkXf0tdz4nR01QdbdVSVw2h7gghIv0KVlToQhprxKVzRoxJJnEmNV5IhLhSIp5Y5gSvZOohtMzPz1lahxjBa0c5KIkZuDbSZhFrHcNBibWGpq6IxlPHiK862kUHRc/OkYTenmQuaPP0f3G9JjOkfd7oBPwHbL/TAMVJ32ZskuX8msXoFyiprVASeBmPlNtvCePrKU9mdpxKOhfOuzH5ahjLhch1Xe6BVJYxkgSPa8CT9eDF9hb6oX+M9qtL0chsKb0xHDR1AgbG9iCk3z/2E5NoEoGu9S2CYG1Cqb6D4BKiNUDVKHUFZyfQKlQtCSXnGT//WcvyR4FPHye3zHnT8eJVYDKCQQmuEO7fnPCH/9v3GLsznv78Cx59DQ9Vkdil8lIPzqJJWp+710uuXTthkEdMaVgZ4fxcGG8UfP3wCSdHSr1q8EZYnoAPFieKc4Gnz2u6ueG99/fY2lqyO2kZDNJ7tOMMTwSG+E7oklCeJ192fPXTAW//oRJ9TG2JkrxHMqAROEVoEYZiOdaOocAhwjRYTkykjZH7rVCHDmcNO4NIzBWzSF/6xCg0yf/Busj39oRahOVJZGCS7qcj5Tbt14bjFnaMcEcMW16oY0RRzlFeIQxU2Ua5BZRARyr9HPSlv5vG8K0RbEwioUtlyHXkAU4vWYQr269N47+BVUnMg15hSHgToHzz/6me+evPorz5+5u1pN+yrSHOrx1Rf8PPumzU/74YsC7uSz8+rGjjjNftGZ8f5HxvsM10POKjn/+CX332AnfrAbfv3qAMDxlWc7ZHsLUZmG44ogaOzitmp8rxDJZNxigTgnGIzSjbmv0BlMZwVge6kOrtW1tTzs7PWS0rFE9TL+naBggsq4aff/g5uctYLTp8DGR5gXphsaho2o7hwDKdDrm+v8vJaXJJnc0qApJW32fnhJAcYUfjAaPRkLbzDMclzuUcH56k+AiXE4Inakwa5ag8ffKKPLe0i8CXu4bTeUZmN4lSgjiCZghKURjECgYhl9TWLGKwYntWOS2MjFh8t6CtH5EPvssgK9nfus2qXpLbktBZrBoET+iBrfcRL57MWkJM15fxKUcnxkgmhrAqePVswt6dOViPhJjC+2yBOMHGSF42xG4JPofeyTcTRRxUmeHcReZZ4IiArT1nq5bDKtJ2yjrMSYOkFWNUzmIFxx3X728xirusTldYX2DqgG9ydu7f5cw84uHnR3zwwffZ2Nnk4PyYwc6QzbDL7HxOEIOJ0NUzHj75itiXx8Cws72RBNJZwfbWNh84x972DgevD1icndPWntlsxXxRc3p+xvzshGp5QucXqDMMp9vcvL6LMwVCxpZY8gW8PKspzZBmkUDExnSLr09O+NnzXxD8CdG3Fx05bdXi29QSrJpYJwUIntAJXedxhcO6dPHZwiazxBCTfUaAbtaxjDWBjKgONwBMjcsLhkXJuLS4vIBQUFdL8mgu2vHTkJEyfgpniRLpGk9bB0wRcNYlkWceMSq4wuAGFjUWbQLdoiNGJbp/BH3C7zhA6dO2sUYohkpRQl0lr5BEPysWyIbCzXeEnQ8MLYHB2qVVeuapZ1zWLNTaiXvdMhwuBtGUapzZBGyM9pNLuKzLr/N9zBUWXTSJdbve/tTImx1Aa8t91WSB33sjpVbUTClzpVkqoUnHzAoYj9KE6Ju0io8C03HBv/4/3ufarZo/+19PCN6g0TItlUH/FnwQooWbb0354J84Dj49pDCACNem4NoZ0cSURJwZymmOlTl7uxvceDvDFS0UBs1g/5Zw7U6DaSNPn7QcHUMnhrZukWjoYktTKR3KmWk4PFlwZ2Rpa5AOpFHiqiE2nhgaaPuyEkrdwI/+Q0XTluiWJYjQYTCq1CI81ciXAisUITARoVThsSr3jLKt8LmBxxqYB6BR9jZgd9PSxMh5pYwNDCUSo1B3YFtlawdKI+AhF1i1Sj0VnFf8y/QdTsTzGOGhgQ965uRzIk8E3tbUhrxU4QTlVFP30VsIf1AIO5s9kAz9OdeDXMzfAyzSR/IG67EuJb653286hlyClzdKOmtAc+X4V7cLUCEXepg1W7LOwLp47m8c9kJ/ctW47ar4d+2L8s3Onyv7Z87iBp580vFavmI632K7usbssOb1fMA7G2/x+LNfkNcLtjcit695phtCPkiHLkeG5TwwXygnq5pSCgZDYdZ5juqOP/jWhMWq49Fhy9Ey0Hjl1etDrIPFyTGKxfsKRBmOhnjfEYNSFBkgGLEX7OticUaeWQZ2zIvHz9je2uV149mYDpPpWYgsqob5qsYakwZzhbbpkli2SV4peZaC/5zLqavTi68TlEiki8LT4wXn3QnbW29hTUkXhRgaIiExl5LjTHqNKoKYrF9Rm4sykyU1DXShplp9QWa3Gdl77I136MpNmjbQeiVK6mhzJoCYlPcVk+gdK7Q+YK2ntobCJrGtIlSHA7xss3d7hZEGr4knESNgIy4HdQu6LiMmmTv0LrlVZvClMHPK2WpFM1vSnC7RVZNOKpNYgxhTRohGoalXHBy/4vmrE/Ki5PDVIbPzFVmZkec1zx4/pRwnZmo82Gf77h7LMGP79T7zVcv5vKVqOzqNGG0I7QGfP0wTaqfwHsLe1hSXO/K8ZHvDUmQFzub8qop8/NlHPHr8Fecnr6A5oywdGzs73Lh7n71rd9gYbqBeWFYtsekYn66ozlsykxHJiCGws7PBUit+/vqnPDv9kBBWhKajrRp81RDqQPDJ/0ZEwToMgRgD/VRHiBEpUlvrOsMrRk3shVdcjHS+gph0KoOtMWVZgESCBOoYsE3Skxgj5DadUzFAtaqICl3nUQSXW2znkDZ9B26UI2rxnSf6QEARm/KBQtelRokYaLp/HIXyuw1QDFib2m6v34F8JLx8Ar5KzIcYGBSwc9ew/92CuOmIiwqTdRiXHqtRCJK6cYwoJoHyVB7SJIq9Oo4bAWcSG2JNYjfWgYFCWhEnYNPPEj34aOpkHS39BdYHBV2YRV20PfYDtjOQWyhyLiz8fV+/kwDjkp5pUbwmOdz2zpDrD/YYT57wT/4osvE/RZ6cGm5vBIbOEw2crsAUlvsfbGKyU5pqzumZMB0b3pGOQpPTLA4yk3H95i6TaYt1kG9tELKIsZ7B9Yw/+u87TKxYfrpBu1xS2AFWDJXpGI8KqsrTNBFnlHHRsDleoKHjbJ5s6TNjUJ/jG0/bRI4PO5rm0ky1WSo//4812fUEcg6InAm8VjiW5NTaITjAqpAjvBblMcofW8NRBMRgFJad0vhk8a/jyGwFZSPsORgbJYtCM1fsUBhNDMvzwHKZ8iYGm8JwV7gxiyxa5aVanhGZq3Aoyjuq3CCBxNsku/sTgWMxBFVuoPxzgQ8mkE9THXYtA7EmtVVegAqltwbXf1B1543tApx8A5Rc+J/8I1YvF8BBe9BxJYfqv/QyLgza5IpBG5dGNuu/ezBzMRGvwYuCc0N2hndo4msUz3F1yHIWePLohOnWO3z3Bz/kzx7+LVpZ3JalLAKDoSEfpJXkRCLZwDDdCNx5FXl90lEbw/HK0Dawqj1v3Z5CnIN0vJx3tAqTPMPHjlXTEkPSbQTvkvdF5zmfnZMXGSKGpqnTgiFLDrB106LGcfDVIzofaJoVu3s7nJ3OLgDleDIiczlHR0dkeWCIUK9qxKSMk9Fwg+Vq0WtYLr9YYxzWGozNGQ42ydyEEJP5Y+rSKTBSEqKgWNQagkmMgxiLSLL3j9FgTMAaAQKdzqm6z8mzHcpsh8wI0RqiSS6UMdg0VCmgkS4EoCE3gqXAd5HMJVPJzisxCJ03+IMxcJOt/YiaU0LsgDQZ5oWSFS2z2TkmbgA54gRfGEYDx8YgIxhl1rQslg2sGpwRxNmUgBxjCvI2BlVHnhWUrkBWSYM3Hk9YLs8wMuDB7W/x6vgTTg4Nbz/4NiYXXh0dspzCcumpOqGJJrkDB4PrB9mqrvlVFy6aKXjrNjvbY7I8w7qM4XDI1sY2u9szKDwn549wtNx5+z53777D9d0bTIabCBmNj1Qx4sqSfH6MLgMGy9CNqStlPJowmkz5xfEv+dnXf0FVHRBaT73q6KqW0KWcpeRNI32ES1qxpHJrxARQAp7kviya2rfXuXSJeRWkA112qGtw5SA5mMQGHyJWlNbXEGE8KhmXgobUGRW6hiaEvhU5lQrzwqESkNJR9l1dtVHaNiKthyym8ywDVyYdRjnK/+FjEL/rAMWCdcJoBJMNoZUEGETBOBiMDLs3DDvvDohbGd4YjG0wGTgnWKME6cFIVEzsHWDpF329QdVlY4RcWOobm0CE6ztwOg+g/bESQFrbSYikjhkhsSK9/QHrk8z2tfygaXVj6JOKs9TmJeu8ngslHX06cxKMiqYcor19x7A8wOic1y86zlcwKiPXJxFD0mU0ESaFZWezw3QnLFfwyQthNovcmEZclkpXwaQOpc0tuHatYDAR1BlinoKosmLEZtlRfX1OfXpCdVYjMiErdjidv4JVBTGSO8P2MLI5gGvTIffvZDz75Skbu4ZlFTg5aSn3hJdfL/n040DbKeOk9+rFy8rOfs6T49QyXAOHkszWOtICv4ip7DbUJGb9sSo7KiwlMlNloBaNkaYWQswoykidK0c1FJ1h08FAQDohnkdMCaU1rBrhZR3ZPUr6pWJgeHIWqVX5loGxglWgb1l9TwM3BEoxzDRyHJNB3/cQ/kUpbG0qmgvSwLp765uMxwUzsgYZ+ub9b2xvkCBXKZb+PLna8fNNpuON4/Q3rtmSi99X7tcrgGntkXJl+/XwQN5kSa6Aj/S3QOhdnq+yKP3fw+EIg+C7isKllrz58pyzumbRnvLnf/5nzFYV10cw2bLk0yH5UHE0KTV24AiVZ387MsgsxI55E9kaOnbGhuNZRzOf8e17GY0qh6ukXVpWbepWUCjHA37wB9/jw7/7iK6OGFv2TGeLNSbp0VSJIYB4utZj+8BAEWFjOkr+ElFoO4+1hvl8QeZSnoyz7iKjR2NkONnDZWN8ewzI5cJFJHmKuIJyMKEcjMmzIT5kRJ/coI0b4PquAbFymQvj0viRSj1pXKLP/ImhwZtA7V8wDI/IsyHODShEIFhsBNUOr5Lao0njZes7rM3wJuUD2SZclKWdGKIGmtpy+HqDqJGNPU/Qs0t5lLWUpcWaiuVqSYy3WLicMxMZDS1jAesjtu6w3qOphRJxLrmyIqhJ4lAjgveBxXwBczhqTlnO59hhTtBznj15ycbeLjmBe/e+jdv0VOMlB2dnPH55wPHJOXXdEALEzmNIE3WkoW46PvVrrQd8S2+xvT0lKxzOZWxOxrx95zaRf8HNWzcxVc1GOaTMhghZaoNeeuZNcv0dVyv0eE5sIqNyxLzymACT6YhHx0/480/+jIP5YyS2yTG8i8Q2ojESUazpo1qQ3tNQ+1Vqn6EUelF2H1aAtYhNppCKEGJASQ60umjAzvEjTzFw2DySWcVHT2jBNw1xUpJlgHSIRHIbsAX4zBKbxKq5LMOYiLPQdIpGD94TaCEo+bBAbEGcOLIiY6Mcv8nc/he232mAIn2JxwgsjiGY1KVjhzCcWib7JcX1AW1h0rJOU3BTUhenQXydqdNbkCCakou9KuKTXiTGdJ+qktuUZeBsv0glmYWt47Nlfcx+UWwNENNKfC2SWSchK6CeC82MiOBQcgtZz5yITZNYYucvPVnWlstoerwr4PqNQKYntPM5v/pFoGvg+kZkM1MkJHHuzV3Y3I+UxRG+nvHkaeTTL2E8hMKAuB5EAQbPvQeea9cDm9sZ4jrIcoJYPB3i8qSf8QskwmnV8OrkhB/88F/y8MtfcPDimDJXbuSW/d0Rb7+9zez1C2xQsoHFeU+9rGhrx9FRavctM8iSKQxW4PpNYf+W8uNf0Tu5Cq3CgmQvb0gZSE4N26Sk4l8J/J9jahGeomwSGAK+UeoqsFMKZSbM28BhTJ1bY0mNmV0jVIvE2GQibFrLw3kgPjY4D49VmaphIybQV2OYE3AKN4ywK3AKnEVoJaUZ/56FdzYVO+rbyJ2CuwSxVzUaAusTqz/JL3/W2tILJmO939USz/oxhjd8e/jmcdfbG+BAe9aj3yleRkWsHWWvPuTXjnOlhJN8Ttbq8jVQkct9AhedavLN46hQlIaqmUE7JM9zBm7E3s0hX79+yYuDx7z8j59xe1jz9n1P4UzyCJJIOXSoDcSqQ6Ilix2mM1zbEOwcPJEb1wcEZ/ns8wZpWt6/O+TLo8B5tZZcK0YU33o+/egLFvMlMSoOwXeBtmn6snByWvZR0RhRYyjyDGssy2XFbFZR1T6pGQTEmBQiGTog/VYFYyzFYMxkeoPlaknXpfvX4CSBiQhZYDreRKRAbIYzU9RCozUiqQ04k2Sdb6xJ5W/bMy9GUZNs8k2ahmm6Jo130tLwEOd3MfYuxjicpvfknEFixKvBS5+HRKTtWqxJib0p+hzyzBAJiUUmBY8eH22i0jLaWmCzFUJOFIvJc2yRU58eE9WzyHNOjaGSyLxp0bOKcFbTLFu0o9f6mf70MBh8AsXWkWUZtzZusjvehYEQmorRaJ/dPcsnn/2MwerbPLj7AZ121BJQ05KZwLJZcT47x/vQ+05pst4nCQSNtJwddXz+adJfiAjviLC9NSEvHDbL2d7Y5v0s59rmHq9ev+T0eMbJsmGxqJgva9oYGA0H7JiAOZnRVMp4MKLrLJkI12/vsqTmzz/9c54+/wgNS8QKziVGjdwk8BE9oorN0zeoCviUNr2+TtfzD1bAWZwlDQK9jsSIECTNgbGO+LCiWbZkQ0dWClmuSEwsGLbD1yuGQ0eeG2yRMSwHSRflcrphpG1bghdC1xIwaKjBpc5OVUcxyCiGJdZmiC2x1lGW5T+KGf6dBihFBnmZmBQR2NqFYg+yrZJsPESLEm96CoxIpMYRyPNkrGZcbwdhJLEnkhT9ShIwJqvu1GZcFCDZ5XNZTcLZ9dyybmtWLnUF0p8UvlO8T0yLC5ceXFETBW40KZ1Nb/jm1s/Tt1BfumFJ75x70a+EkSRk3b8x4sFbGaFe8uwLeP6lcGND2JgGMomIEZqgjARuX1cGMmd5Gnn8BWwPlGGRjptlilVousRKLI5n3LovBASnUwTfx4mllZgdDFDTUNfQdJYiL3j5/BXRW4xLLpWLShiPLTdurHj1WcVkrNhRx9DCxqai1nB0WnLwcsn1Qf/ZomxsGK7fEFbLjlaFV8CiL/OsNJmjFZpEs6VEbhnDsSqPEL4W8GrIFWZprUEe4PysY3tPKBysbPItWXu+DIxiW4M/U4JV6IQC5T4ZT88CTyVyrvA2MEEwqowlMsCwD0xipOlLT9ckucbeBP5wKEy3Fcnkgpwwrk/fDrwJPix9ANkVGNDfd0nsXpwOb9yfToj1CUiq+1/d55vbBdthLliSbzq+9mvuVNP+Ta3Nb+x1eUPSoGjqzV8zJ+HyRwNX/F76c1zkoiQ0W5zTqCHLtqErEMmxg4LJYJNPz55ye+y4NW7ZHreMN5R8GLEuhZVp6wl1Yh+n10bMzytGhYGuI1hL6Fa0555b10vmVc7iBGhr2jZl5DibPtDoO46rU7zvV6mxSh9XXLOjwvb2Nts7W3z26UMQSZ0WMaXGhphei7G9P1Kv/YD+PFDFWMtkMmE4uM5otMvrVw8J2vXfbwInxhisNeTZkI3pDTZ33sKwyXLpEzNj+iRdEZy1ZC4jtwYHZBJTeUTWnig2ZZVpYFSOGA22aP05Xs/w7gu6sElhdzE24DBEbxDTIM6lpZgPRE3gqu06rDGIE5rOE6PtA+YEZ5W2U05Pj/nq+RG7ewve/yAnLwIaOwRLnpe4LPXldYOc4COrumVxPMe8OsFUDSF0qI8p7bjzmD7oLvbeHFZSps/9rfscH87oWqUsDcvVEfnhHlvTPZqqZe/aTc6LQ56cP2VDStQHBmVB23X4LvT4Xi+uGWMsklswytnsNZ9//nFiy0XQeJOt7QlZnmFcxmQ0QcTi1XE4f8yTR89YnJ+T5SVbm1tMioxRE5if1YhautbSVp5ru7vkwwF/9dnPeXj4Eb6p0BBwWVr92gxMbi6usaAkoXFmCGrQRgmVJQSfynEScamdNTG7PeMeApdeO1GJknQpIQo2BCIt3jvqKyGB1gqIQ2wEkzMYFOTlCFeWaEzff+Uy2m6FF0PbBtRZsqLFbBZozLG5IDHHZBnO5Ona/I2rm9++/W4DlKGwew0m21DeEMq9DDMcE9yUDkHwmH5gCAR8bLFLRRfJeXTt4hl7IJEW7kLTpE9RAB9Tvc32X96ako4+AYx4xV3z6mQgIbEnzkDdpdWngT4AsO/UWYtp+1HaOpKhjl0DnivUulkP5nqxir5o9zQwGAmWltVRxeNfRWwU9qdKnqXXFmwCW0aE0UZgOY88egrdQtkYphLXOn9H+gv11s2CLAS+/HDJg/em5HsgrsVoi+DRLiC+pQ6waiPLeUOXGR4dPKTtWgalwTo4WyhV1fLy8Sl5bPi9P8m49UcD5ucef9pQDBy3biufjfoQR4FRATvbMD9T5gslF+W+GM5VmQALSeWeoJFcEmDa7b+LMSk7Z08jjaRk6IEalqLMamExixReGEbDWUzBf9jEesQQiSsYmpQ4PFSItmNaGj5rhHMRPpPInahsATs9UOkQOjGc0rcjO6GKynah3N4h1Z/smuMWyPrz4IrAmv57Vll/t1cYkTVIudCTXJ5rl/vJxe8LA7Tftq3PJb0EBfTnNm/8XN53dbt67HXy8Rtlngs2ZX18uSjraOiZmgtl+eVbWP9dNzXHyzOm4ylEQ1i0VIMWgzCwlt0tx96uUg5qIGBtTjaIiI1k6jC5IYuO+VFyLo7ep264ENHQMB7nmC7ghpF6BRul4/WyxYdAjJY8S0xKDDEZGGrsZTyJM025Oun+6ENiZ31IQN5ZpE8vFoH7D+7z9NkL6qpNE5/txxpNrXKqjq3t67x48RV1dcbaYGZ9fTvnKMqC6cYOebmFxiJ12okmLsTa1IlkEqtjjSU3DpOBZDb5rqwnrnXXI5Zrkzs0q2MOZh8TY4u3L3DFC2K3gdUcR/Jr8lrQdpGub4cWsYiJNMEjre11EQUxBByCiKVuA8+OnuHjazI5o31yxGS0z7Xru0xGgtiOcmApijyBJwem6vCzGeH1CeZ8hniIvkufuQRCllbzYrUvUwnG5Ly3/x12h3vUbUPVnbF15y22d3M+/PnP2SyvcffmA1a+5pcnH3Nmam4We/i2I0gSsMeuS6yMMZg8Jx8UjMcDRqOCIrP4EKmWcz59+BkBg4/CO8axs2XJCoeVjNFgyN6msrp1neXinBfWMMwH5GIY+EhzOMeJxahjebZktFkyHJV8+vxLfvLFf+b/Q96fxMqW5ed96O+/1tpdtKe9ffbVdyy2ZlFuaFuW8OCRrcF7b2DLgEcEJUDNQLDhgRvYhD3xiDbewJBHegb8YMN4lJ4sqiPFXiqySFZlZVVlZmXezNude7pod7fW+r/B2nHOubeyaJU9IrSBmxknYseOHRE71vrW9//+39etLzAhomJwLsPmFlM4jLW4iWD7QAg6fOeKdBEJGSFL11FUhWjxRjExgjfYkNguJSaGSFJX5y5ENxgzgMmBPTEOlYgrhWKUWqKtGvKyoszHWJNTZWM0Gjbtilg3xGiJvid4n0qN1iEhIFi0Bx97fBsQ41ExZPs/Cn/ypxygzA6Ue18y2OMCqpzgKiJTUld4B8TBy5Okcvee7SKFypWT1D+exeSqWhbC9AhMoZx8LJydKKsVycDEKGWVJve2TcLaSFoFIsnTZNeunEILUwkn5fIoXZu+FCNCdEDcOc5ypWN0Q5iT2EFkO8xj12O3XoOgRAoN3R8DWNGWrm7ZPg88/0hZXAiVGzqGhknUGChHyUBpcSk8e5S6ZnYK+zCUoowTigLu3PLcurPh29/vGH28ZfbgADKPhg7X9YSmpXvWEbeKc4KTQN23pBi/4RyDJy+Uciz4uuezXzbc/uIYORpTjju2XUdsIptloBRhMobJJE1kywul7JV2pOTAHSKlKJmmNsoKoUfYKmxFeV+FiShTVTpgH5iqpValNsJClSbA0dJQDasJMUnIGhG6ocbbxYCEJJougH0r5C7wRiMsBFqFSwzHQ30tEBmLkg0UyMxF7u0LasGVQjYX1HFDU5BoH+tAQ1rZXJU7BG6Inq7ByU5P8sImpF714SIaTFX0BeXpS9sVa8KLAGQgUOQmsNCBObl6rg7X+5+wvQA29MZ9w+vczBp64fGb56V0dcbq1LE5O8O3TyjEoU64OD/FFhOCKbhcfIwe9WQoVhWbvNOTNqTz1IuO2MNoz5KNI/HSUWUlm6aBLKM57VDf4kTJTBwWH8nArfepPKKkls44AHh54UNULi4vOXl+iqokC/vCUZUl3aIbXGPh7GwBmibAosiZzeds1kuatqPIx+zt3ebk5AMuzh4myp5hoSDJ0yRR/jm3b73J8fEroGPWa48xycSxsBna9eSSkRlL5gzGOZwNOGMxkqVxabBjwAoaPLkrGJW3KerHeL3gcHrMlz51n5OTgudPItbK0ObsyPNAT8ovc77HIwQN9LHHdIJRg7MJ+DRReHr5lM5fUuUt9w5yxsUBdV3x/GRC9ZrHuUCWCWVZpPfZe3SzhrNLZL1K46NNgtjYp2sxXSYGyRwmz7BimI/nzO2YxdmGvglUI8d2WbM/P+De/Qe4eo/7r7/O+/XbfNye4EYjFl1L33VEDRTjis22ARGyUcV0f87BwZzjo0PuHh0wr3JWlwsePn7Ch4/P+eZ3vkVQcHlOZgx7e+P0WTvHfDridbmNy3P2D57x+OHHyKbGbj3NqqaUiiZ4xgc5r9y/zbOLU379W/+As9PvEX2LKzOKWUExK8EqxmYYlxasJULf9/imx7d9So1WHXxvEtiPEofIhJiCA0VQUt7LTZG7atKsEDwxKFAgxmAyweWOar+kKgwus3jv6Lyg2w4lx2hHDIHFZcvlcoviyUuHYIlB6fqICUrsAuoDTd8RB18WV5S0o/jJJeIfsv2pBiiHD4Ty7oi2nGKlJMWwlShbUpFgWAWR+nutLRgfR8ppJNtTymdpJeMKYXo4ZvJKSWDN5E6L/AH0bVrpqexM0tIEpoMzpMuGgL+BedBBUasMHiui9J3B7yzsBw1AlCEDaJiIxKTjW6vDKvlqEXXN9AtXgt1I6iASIEiq9UqMnJ1E/AJiIxTFwPYkMT6IUJTCZAR9DR++G3n8fegbhr7qNAKsa/AlzHJlVHiqSeT+sfD8w4ZyfMntzyvZpEvzTISLC6VrlCpLHVObJtmJawwYPOOs4+4MMiL3XjO89VMz3HFBkIAQqDeRxYc1D99LouU7d4VXP+34rd8LPH8Cn3tT6WrIjfDaVKi8UrWCD4a3ifRqWElkhvDbwM8qfEbhjyRVE05MKsuMUTqUJ8ArxvKWUc4DXGgyfHstps+ytMotZ7AhRQAsjOGiV9ZeOED4LJEaIYqwpzAhUlh4pRBGRjlplHIMxR3F5IoaSYtX1SvCQAYGhQLE63X54yY4Gb7/3Xc/PPH64v9RunJ2z7spft0BhCvW4waTcuVV8tLxd/Th1fFunOvNTRkAjt4Qxg7syQ0wcuVKq8PBb7A1Pva03Ya2XtBta7qmZ7FaE4DcWB52W/aPC9q6I4gnSsR3gcy5JDfzAWOVYuQwEllfpvvEBcbTMYvLLeXIsLpU8D23ZoanK8NJndo5UcX7lqIomO/d4unTZ7jM0NbNFXCANEmoDiL3ELh9cMzdu3f4xu//0aALERaXC6xzhBDYbmvKaoR1lsJUjMop9faS9eKMGDt2zra70k6WOQpXMKqmjCZ7WJcTeoNY8H3AqxJ1KAVJmghEDMaZ1CHmLOKGMp0RoiQQgSriDGW5z2z8Gsbc4zN3v8hn7nyOmcvYXj5n29Xk45LQAp1Q5Yo1QtMZNm1Nqx4fQloCitJ5sOrofMM2rNibWO4dz6mKDJdVVHZMngnGXCDRJwfb8QhrDLbvsMtL4mqDxIC4wajfFgRHamE0gJX03pylyCu+cO9LHE9u0dKyamtu334Lm3ve/vbvczg/5sH9B9Rdz6PLD9l2a9KIvyVkjm2MjEclfj7HIBzdPuLO8SHH+zP2JjPGWYbxAfVK3/c09YL67BxCIDOOGJQ3Xr3LfD6myC3GZsynE6zLyMTQ1w3d5gn12Sm2U2pdMTsS3vz8XTablt/53d/k46d/SOw2KS5lnDM9mjDenyAWNo2n6ztUlCy3mDyFkPZtj+8joU0eUeiuJGMgRsQkzaXIoDsh/f6MDp4oCGhENdK3gtl0YBQnYPLE/uWjCmczfAt107JcL7jcNEyLnK5p2daRer3FOcXXKQgwDuOFLRySGbq10NU9IXZYZ7GZIfZXNtL/XNufaoBSHVlCWRBkBKQaV6RD6AYhmJB6PUDIUZdhDnJy9ezNGqZ3ejJRyAz52NIbT+4cczom31fKnFQv12GiH7pzdtWWSLrf2AQ+0kCR9kl5PkP9D1L/fgCju5o+VzqV3CXqFV7UDCRQc/1+b477yC7gcBDRRcPps0hYp/MsKyF0yXxOApQF3DpKIXznZ7BcpH9iNPm5kCbOvk+oPBtBNTFkuaXdeHIrvPtH50Sp2D9qqKYGVxlG+zmbTct0AsWmZeQybJWx2UYkKMfzyCtHgbGD174wJr87w/uA9IKNhs5bmm1isaaT9I198NDze+9kHOxDzDqamEpl9+fC3MLhEmaXymmEE5LBXY/ijfKWGo5M5EThBEHUcKGp6+c2wkqV39HA6zbHimej8AERqyl/Z9VBL5HbmSW3QhsjTi1OlZ7AEYm9mYlwIJHbuaUaweEsEDqh6GA6U2ScWBIYhKZxhzN2HiaK5Art8HUL6ddoeHG7CU5+BPX7C9vN8km4CRwGkBNvlHZuGqndtCwQkj/P1YFu3BpA+u45Es2LTMmurTjyQmPSNdD5wfebAH+kbmrWyw1t27PZJtebWpUCx9ZbvBshrkFkaNUViNHjstRZ1bck11eBzCldH+jaPk14aikLw+37Gf/STFAf+aePDctGCSGNG03TUT85wTqHywxoDgMo8T6VdxIzlk58cbHk/PQipRubxE72Q+psTMmlXF5cYq3j8PAeNnNsls/p+lT+McZeJSTvQBAq3Ln1gL3pAUYyNl3y6NhlhoXBRdI5S5E7MptjjU1W5C6JZoflytDfYVlt1uSqjKsDjBRkriDP71C3M+qmJi8ELxGTG5LFfQYaiBbKclgttS11aGlCQxd7DBYbHJ2/ZDpuODzOQebUdUahJfNpz2T6jKAbAJw4MjdCxOLaLXadEnrVpFZa0cFLw4LmbuhEspBZxEZGxZx9u8+jh0/wvWE6N1w8PeXo7h2KscEy4ZXXX+f98z/mux9/h/OuId+/RXMg5JMZcVRRaaCYzMhtzu39GYfTCYbI2flzHm1q1pstz8+ec3H+jEigLEYsl4/5428pre/oWs8br9/l8GBKWWZY45hWcOdgn+72kucnH3EmgaYWsqmyvz9leQq/9s/+GX/wnd9iszlHNWCcw/SR3iudt4PGsaf3kSxLM4o1OSqeGATtArH3Qxu0XDVpJJwvxIHFNsPvLDmT74DJbi2QrvmuST9B16eW+mKkuElOURWYzKAqrHxDXTc09RaraZGeF2mOrRtFNx2qPW5SkI9yXOVoHGjYQtNjMks+qciyf4HSjENVEGWCYZyM1ehI1l2eyCDqImKGmDlDBMlABDeZYkdLCDXGZQTsYHtt8K0kU6ZciH0aPSNCEKEbVoReU1pj10A5IgWdiQ76gZ1Rp9B3elWuEZNYmJusvbUpkfhqlB4UtLv5aPd1RpNcZofFSppLYkLHzilFlQS+mw5ON0q7KxlYGE3geA+m45SmXJ/CagN1E2HXfTQAKwtUopRZyn94/N3A+98EzSJ2HHn28YbJLGNvVqJ5wGae7TqdvtUAocFkwrSyON9xfy+yN1LGE0teRoK1RGPRrqa+2FCNLE+c4fysp2qV770Ljy6V7zwMfGlecnIW+P1HwpdeUSRGjkYge4oNyldWwm/EiNdUS1YUZ5TXg/BFlGck5uKWwFJTuWuCcNorv9P3vGlgP0Y6NdTDynUP4VLhpIvcdpapERYRpgS6wW+mM5F9p9wyli3wxEfGmWGxtdTik6B6pyUxDOq23Vc8fIfIYIU8TOROICclxe4ukN0mLxIqN++/rgEN14/olVbiattl++xKLFdgRK9AiNwEJTcM026+lty4fcX+DcBEBhCfgIheI+mbr7UDMsMp/aCAd6C9RNisWh59eMJm09K3HS5zg718sqzv+o6urdg8b4gPGuJeMg2SfLCCjnEQvXuKUfo++h5s2yXtyf4Mm/VUjccUI0LTMSuFzDpE/JCCbhJYMMIbb73Bk8ePqaZT6u022Y0Pb2BX1wfYbDYURY6xlsl0QlPXhKh4nwCPtRZnM/JihKKszp5Rd5urj3kXKLgT4hpjKUcjjm7fZzI+ACkJRLZ1pA2KsxEJAQ2GqswocjeIHKFwiYFRSZO9lRRO2HrloyffZVZWHOy9xcH8GOMK6tby3sfnXFye4sMF+9NI7RuCToiSI8bhxBJDT56VgCEET+0bupAMxBxCVV5y73iMZY/YXZDnH1GWHVWZp7ZsrXCMaBvLsyeB8i4YHxIrXTp0mzRDSXvCMBhajDNXZW0UXpm/ziibk00sq8WGe3c/jZGG56ffpzITXn3lAT3Kt08+4MPHp8RYk3WBkBWMs5xsNMHZjKnJmYynTJ2l71vOF6c8ff6U87PHNM2Wajzm/uuvcO/oFrH1nFxueXb6nHfe+UM0DCULEY4OppSFS11ZYvGnNZcfrWkWsFo1HOQzmvM9Hp0+4rf+6J9wvnySmA6bbCRi44nLQJAtNk8lNGLA5nkqm4SAepMycvqYunHCTuA7fE5KKuuEBKLDwLTvfrNJEnatb1I06Q97xYdA6GFhO3Jbc5zllCNLnIxoaqVvA6FPbcx5Ycgrg3E5bROpW0+77IbFQU6WO8pCCJMcDLgqpxpVjEbVn1wifmn7Uw1QehkTmQAlBo+Relj8WSIepR98RUqiGBSLqE1finjUZsNEUhIRJPjkanoRyaNQlSRqbGj33W6SqDH4wXq+TwwJZnCWtXrVoWmNEH3KW9kxI7t+dAYmxrqU5wNcTwDmGpzIINy9UpbvGHCT5pC+S3bqozHcOjZoB02vtDE1ZmBS+/DBPkxy8L3w9AQuFkrmhjIU12myQlq5mgw6Lzx8N/JsCX/8ruP1W55qP3VKOY20F1vaNnL2QaTvhrZrUbpOaKMwKQLTIqAh8OQE3nyrQGKPrZdQzggGeu85fxbZG+eUrmO9hc0qrXq7qCzbgt9/KLx9KnzmHiw38KpLrb9UgVe2yn4UPhAIaliifIjyk0b4PMK3FJ6o8kCVTznh/WDpJRJUOBPlNCoPBPYJrIFakwvsHMPRVMhHENqI2wpeHccaWfaBXAzRGJoi0niINufCgd9Tmq2lk0hhkhvbIKT/QXRhNFnVTiSxGpVClgSMV9sLz7nuHPkBJkWv998xGi/cfxNwxOGBQWOyAwSoDp01/FCA8gNlp919N8s5AfD6oiHbVdsxwwAqL76F3e3dIDuctHOGPM9RVZq6xg8dJKAsG1i1PVoonRYgAZtl+BCwLll+t5sWkyulK+ibjjJLIvQyrwhZweq8oxoVuJFjPFEq03NvksK4Lmul9/GKPX3y+Cl13bJZr8nzHOssIeogoN0xnynl1fuAc47pdErb1LTNltFojLWWru9wLtnSnz9/TPAD/W0T4xOCDhqBiMHgrOHe3Vd4/bVPY2VG35GcZ1G8pGtMoiWzltxlGJdoWbEGsXlKh5JwNSEh0LYrLi/foR0VjGc5B+NXMS6n61suVxdcLD9G4nOsCFk+Zuv3CPGIzFXYmBjEFkPQjKooCdpCFrBZJC/gcDKhMEe0XUD4Dm3/hLgFZYwrC4wVxM949HHg/e8H7h2nU3NVlnLFVAir1GkyoDSMSYJPkxlwyqw64o69zWa1wbeRcpKxPD1jvjcjHylvfeo+X/yZI37rn3yd9x99DCrUTYc/P4e8QmzG2DhMUYF1uBhZNzXLxQVPTj9ksV0wOxjx2ePPcefwDrNiBAHWm5pNazFmzdnZY74dQbDD93+Po4MJmTWcPrrg4299SHceabcRlwnVaELd1fz2e/+Us/XDoVxVYJ1BJQWeUm9Zx4aszDFFhnVC3waiVUIf6NsuAVK4ovYV0JgaBXQolSphcO6VZELqUluzKsSgqRowaNaMpJBSjYo2gfp0zRmKc5ZplyPZiNzl9MXuOveIy3BlQUZArCdk0ASlXtZJ0+cjmYM+BFwpTOfJtbaP/gcqwn/S9qcaoCQJIyQeoU+qeCQJYolYLIPPKGiq3yUbtECkx5KB5GgYrD2DwqZBa2W+p6BCvoDxWCjnhve/Fwi90iHkWfqysmIIDXRp4B1sS7CShHbJjTJRbDrQ56qJYcldOpsd8FCGchE7TxW9Ag4SB7rOXC9Is1yoMsMbb+RMxsLlNgl4ZQA0VQX7c6FwyUhuu1VW62Tdb3UImeT6eM6k14xBOF/BB8/hux8J8+MCkwWeXSoXfxBZ1cqsUjYb2G5htpeSlaslzKPhZNGhhXB8kDEb92w7uDjtWD2PVI2HYknfB1yrXD6Hsw882qRzjBa6ILQBvvHeFsFTzCNbhHdqy3EZGdlUzrmbw6d74R1VhIhVwxbFOXjNRj7fCo9Nyiq651Lgn2hkXy2fR/lthI1GviJCLrASZYlhGlNT+t07CURsLy0PnwTMNvlInGpk3UKWpZXIK3tCt1XKIyWbGU42yihajI3XTqk3ccduFWiGDz0Ahe5c3+BH+gnv9h+YmR3guLnFHXUxrLBu+JHIDrDcBDBX5R+udSJXfPFwdsN1uRPWXgts5bq1+Kq8I9clID6BCfqEzTmhrHK22zXBe4wYMAGLxRohH8qndS346Ohb6DeRvARxFg0dYpV8lBhT6wLVzBJFqeua5qQjdEn0GbsFwWdMq5439hx7k5xvP1PONkofgBBptjVFntPDUAr16A2NTlHkTCZjFosF1mX0vuXRx0+AyHQyI4RAlmXM9+Z4r1ycn9N1TRLBStKwaIyoCsbYtDASw2x+m1cefBUr+/RBWDc9dae0PplniYIxGblxyfPEGDLrUsp6sn+9Go+QxED0fsP+4ZT5ZMT+XMnHLSKWiJLlawq3pdmuuFx4RC5QThDbMZ4+wPuCTQ2WSE7Aa2BkLSEGsgz2JlNuHUyo6x7id/B6iljou8AqbrBdCz7HNz0ffODY1hmq4Ps+aetGI0rx4IVu04FXJKaxW7EEUbJ8xJuHn2M2OkBiZFWvuHvnLcYjz+nyu3z+p+/xxqfu8tH3l/zeu9/ivUcfEL0SgoWmI56dIJlDraGaHWBzIfqOPrbUsWb/1jGf3fs0B9WM3Dh8ryxXHavaU7c9de+pyhzfdywun/D2t5WgkeAj+sZdbBd4/xvfxZ8vaTZpQr5165jRJOcPH7/Nu6dvo5knc4lpQwaDNVVC61POkA5eMpLmkD5ADB7tPCKaSkIuorsRXHeeRUlNH1UJIV79aG0GzqV9QzSE3mB2uoVhDNkxMdp41qcbxEeao4pyFDBVwf58RIwZPrZ0m5Z607DxAb9uaVYNnQ/4LhAvN/imw2UWqQzjWZGaQJylyEb/4jAoKZItENmSunY8yR2jR8iAEQmwpJExkV2e1OMBwoRIC1pjohK6BhMCxUSoDi3FeaQ+h6q0kEP2wXV+inFCbhNiTR07w+10YJQhvXig9YWr6g3ZwLhY4UaaLTc6gXYlIq7mH9m1jZo0/kMKKRyNDa++XuH7Db6Htk3loMM9KMtU/olhmERCmpysUYzToaU4ndjO30WAthW+fSJc1AVt03L7lY5oYNPA734Hfv9dmJWw3sAXPpXx6l3P6UXEmJw+KOs6UpYlxdhysNeyJ4HTS88//ofCuAzcuqeslrC4VJ5+CHGTSmGqUDew7KBToe6TNqRAqBX+uFNeXQtvjZSJM4QSPtMor0XhTKEnsgZMppSF8NUgfDPAKcJ3eyhUmaphZJS7AnOF9xHeB95QOLaWvcLSNJ7nDTzwlmLPM62UN8bw9P2AbQ0xwMpDrJU8U45GgdgpizNhPFHOToX5pTKdQvSGIgeVgNmxDkNHjhpSy+TgD6aAhAG9vgRSXiRTfjiAUXbXm3wyg/IDQIRr4BBv7n9dwlG4kqvcxD66+89QykksSQL2L2hcbrCDPwykXJEzA5ILAbrOgwZy52ijUlUloQ8ULkuWAUZoQsnDpw3z/QLXCcXUIaYnErClxarS9x3FJLVd+lbYXihWesrMsm56Ym/JxPDKPWHv0PDxqeF0k5xAV40HY1I4XtcPpoqSjNNIJZMss6gqq/V6mBQCeZEznY45Ozun7dJH1C56losV1prBjC2VnvLc0fchiWoHsCIo5XjOrXtfxbhbrFYdPhgW64a66eljisI2qhR5ZFSkRGPrzOA6a4eVuaTFmaYwPrHKfGa4Pf8xqmxMnhW0QWn8gr7tif2CqA1tDMTgsVYYjSsOjgIHB3B+sWHzrCZGARso88AoOPJ8zqTK8U3L6bPvEeITlEvUJvYmE8F7T+8D3apmfRlYLqDzHaqW0PfDT0OQ3FGMS0Qdoe8hpgyugRxgLz/k/vQWai/oexjvj6g3SxwzTJ7TLG+z+GjG733jd3h88RRVj/oeQ4Yah7MFTiPqW5p2gzWWaAzjPOfB3gP2rZAZQ9cHTuoll+uGNkSKrGJSZhTZlOl0xnK74fL5KYvVc95+548IIdIvF7iLmtWjE5pVMsuczSeM9+fk90um+3fZv7hD+HiFagdiUJ/EqwyaELXJHMNZwWUOiZ6+awl9TOM4CXDEYBEE1ZDYJiPp7+F3HWOEEEhaE4M6i7EG59JcGPodk5qW9GawJ4iqsO1Y9p6m7hgdBGYHMyYTS1GV5GaEJbK4qFkvGsKmI9SeGD1RQqoybJXeCLZzGAx53uAwlOZfIKv75LvakpSG4ZqFQIAcMITUJzwwJ57kjdICFcoYJeJshuk3iPa4cYEZF8QcprOG0X4kKyaszhpyl6J2DeDM0MZ1Q/UnypWHie+FvuOqc0dkyPox10BkVxNMnX+pDfDGm3vxtnDlaovufFKSiVxbd2RdoO8SiMgrmO8N4sBk8khUuFwn+34rSbEtZlidyC7hNNUnNz2cruHcR17bF0rtuVgK9RbEWJSCb39Qc/fYcHBsaDthubY4V2FMxLpAlllWmy1+X5lP4ckZ/H9/NfJgLtx5Q2i8sH0coYODcXpPQeGyE5bD6tGIQQfKO+X3Gd7ZBqZGuVvBuIR7FfzYGr6J5ZFGnorSWMPEKfcrw5fWgX+M8p0ofAZhNrAFrTW8GuFZhFNR9hRyjbxmobSQlYrJ4xDcqIzm8OCNDL9UNp3ywbNIaZTbI8gLhULxTwylCq0V3nuivCo50kb2qkAx210gXAthJV0fMrRzvsA67CKw4UWscqNdUHYXxo7K0GtMsPPPUSUZor3ctROvwWmqS+o1YOEGBhr+f1MXk1rpU5nyE4HPAFJ2Z7oD1zvm5UY7E7ALIRz2v7rWhf2DPUIX6UgC0hADnULjO3JjaGXKdx9vOT6a8Ox5lwBhH4iFISsnSUvSNUiEcpzhvbANgbxSVCLaKJMSGi/sTToUJcsC243n1XnOtjWoWuo2DdqpdGNwuUWkwHuPiGWX+Or7gGpqnTXGcnG+wFnHwcEBfd+zWm7woSf2aVVtBiDqQ7LW73sPImTOkRcT7t77MSbTN1nXBmM8IQrbNrDteqJVNAnfGI9KxmVO8II1DrdzeB3W0yqCDoZqZdZzOC6xco+mDmzrhmW9Ytus6Zoa3ze0ccv8aMKt28fcvf0ms/EdDvdvM8kmfOvb3+XJR19HNx15PqLIC6pJxuywxHcbTpbv4f1TVFvU+MToSsQPY5+EkmYzYbvO8N6Tuk0EGwTTKaYAzQxSRDIMrrUD4xcH48oRX3zlx7j/2j6Hx46L0wv86oix5Hz/ve8xrW4j+3P+2Uff5nfe/San60UyzrMGEUc5HbN3cMDBwYzRfJ++yNkGT0+RmDhvOO062rrhcn1BsMrxbI+7k1uUpsR7g8cl3UY4YVvWxMslp88+YGQd++tLpq2jWXq6TWAyq5gd73P3K69y/Llj5uv7xKnlN37973Dy0TuErh9KNDoAlaRtlFYJhZKLw1ohukjsukGYHYc4leE3FBn8b1L514smVnb3qxs6zEwwmMImLxwC0d+YnwANYVj8RpQBhIeIBk/sPWImTIxSjSqkKOiKQJe31LWm45DG6TS+pfEkbHvWradrlHBHsL1B9/jn3v5UAxQlDKDjmr1IHhwZadoPw307N75ryhMsXlfQdlhriUGwpiSO9lA7JWqH5Guy2aAy52NGo5S9Y4wObHzqkrHDl7ITvRKhCyRDquHxoAMoGD5x1RT8ZIYvVXbiyGEThk4G1VSSGbQqZlh9GxJguXfHsTeObOtAiCmQMGiq8WcC3kIM8PxM2GzTazg7ZA5JmjzUpPdlJWlm6k55640x/85PF8hiye/8TqQLcHAIr9yKLC9bjnLlS28GJmN4/JGwbSv6WFCOMl4ZZRS2IyBcrpTjo4wHD3qenUDYwvmHERWhW0C0AtOkf6ibBMD2J45/52fu87vfeMYHH6fyWwDWGnlfI+VamAkcjoESvrCBM41cojwC3umUnysN5Uj5sSD8UaM8jrAB3hLhsSrrEHkVQy3wDOHSKPtqWXWWBzPPKw8gm6XWRh1KNO7AY/ah6JQiE549gyyzCBEzUmb30qp6KvDBQ8PH3+85mBj2s2GWN8JVavEwoafSyY5i2E34+gNVnrSA3AV/pQtl1+0hwyr5aoDYHeoKOOgN8DC87o7heOn+K0Dywqvv2Bi9otnk5v07MHQD4PzAdpNFudrpGuBcMSjD5jIhRE81KnE2Udb1Jg3QqgavyqNtjwUenQlvvprjo7BpoXCBibMIHZI5bNDkzhoCJou4IuA1/T5iDVWRjAiKdaRW5ejAsu7Ae0O2FD70HlQp8gLnDAeH+5xfLJNQ1gRm0xnnZ5dX30U9tCKrgvfK2dnl4KUSKMsc36ee8pQHljpsxKbbO4FsOTrEZfvEPuLyjK7PaLuepo+JPVGPiVBVBeOqwFnIbNLYcWOyiuKTONZZnJHkom0L6m3N2WLBdrum2SypuyViIuODGV/8wpf4l378J3nl1htomLNZgbEGA5xcOMriI5YX7ycjSieUs4bXvzyi71tqqemfero+Djj72vY+qiI+w7eH9KEi0CbvGiD2kX7TE+oeMkMMPVZMappCEMkoxiNe2/8sd6d3ePLwOY/eg9JV0J1j5veYTPcZF1Mm0zFff+cPeL45JwYPCMZkZFXJZG/ObG+f+eSAUVYQbbKEX3tPE1NnTGsgOsP+0SF3qymTfIKQ03lLEEcfelaLUy4uV5ycnHJx8pg8M8zaLbKo2awzlouayWzE3tEB97/4Gq//xFuM9ieM6n2yLMM5y6//uuPpu2/jfX0F+hVNAliFvoBsq5ALqhnqe2hSMrGGOEgaArpj3CUlWKdynqLOIJJaw5MmKa2OxXJNl2dpfyMDozLoxxKATseJvafdbFieQ/CRvgvEEGm2HaHt0T4kcKV6JdAWhDBIHLQPNJcrLlDcIfDaD2eAX97+VAOUHV8e8KCGWBuKvCI6UDzQk3o9k2jougTkiHjQFm17VBSnFTgIZgTsgSxRq0S7R9QNUliM6dOqUbjSlTjZTfRCkafySbuFrkmaE0OaH0wcggVFrxbJKEN5iIFlufHOdj4XOmTypEXE1UAuJule9g8Fg4eQRLPeQ6/KtoFpmcIHLxep7KLDMWU4j92SVmRoKBHohwv93pHwr/xczkd/rCzfhO++p2zOlYdLJcvhrVeEtx4UbNbK5TKCcVhn2R9NiTJiu7wgK2ZsfYOK4d4dx+NbPe5MicsEkDYbQ3XsENfRtYKPcLif8X/7f97mx/61iv/XLzv+3/+fHmsNnSofEwkIvxuFgzX8pBGqTBlb5b5XxqJciuVbvfJWHbm7r7wytvxYq5yjnGjk82LYE8M5kZFRPh0jdzE0UZhIJEfISyWWoDZ9TjqsUszwN5kweqA8KKFZBNpFKikxTb3kVg2vvmaoPoCsD7hcUJvAoQovTf6ATYZxV0jhJbAA13df/bG7b0AhqVQoLzx2NflfAZIbzEh4CbTcfM7NE9x58O/YDdUXL9TdPrvXuEI4elUeur6oebGN+iYgeslzJZqIrTyVsbi2JHhou4jte5w1xNinFuCyZJMdswwN680W39QcWkcUTe1xRjEuICbHOIgx0BctVaawVEKAPghFkVFNejTP6JfC/sGY0G/YeOV8awmamBNQRlbYWqF3ggRD27SpnBJ3erP0tqxxqfMiesqqAJIQFZJLtBVhVJSoNaw32xRCZ3OMmzDbv09V7pO5CkHYNj3btqX2LYEeDYEyM5RF6k2/yqqJw6LHKGoFKy79to2hsAGiZ7ndcHF5yeLykqZZ4ENHtT/lZ378J/jKF36K23de4fatOUWZs1ym1GalpxoVPHjlVV597bP4rsbiMYVw9GrD6182FLLPttmnXq8IqzAs0BIrkLrELLGb4v00We4bkm8NQt/0NKsaI2CdQbKkRxNjEOtQZ5iO7vJW9Xl0U2DafTaLS/KDCcfHUz76+NuMzD6vv36H9y8+4qxZYSU5rIpYsknJ3sEhBweHjEY5PrZstmk+1lGJh2FMjGTFmOnsmJmB3At1A5u2w2Mwfst6c8bZxQUfffg+Jx9/G/Vr3rj/We6P5zifsVzVhODJ84zJnSm3Pn+f0d4M6xyTseW1uw9Q/TkMln+o8Pg7f4h2PRCwmRkWqwo+0DU9QQXtPcEnZ3NUsVkaTHxwiE9MVVpDJN2KyQzOyuBafGPk6APeD92pImTGYjMhikFMRDWlFRtJ1hfGGowkYWS7acEK4gzGWBpvaJtIv/X4PuCIGCvJKFBNsn5QIQ4W992yYWs3/Cjbn2qAImQYCpSW6D1Pv7ngYHbA9NOCt/3AnriBW+lJhuQKuITuTY6pMpqPtlTzDB1X9GGSEKitcVSobhF/Rr3oaRsIhiGqnOsBV4Q8gzt3hGarNGvwvV4xHSBYd2N836n+dy2hAziRGxqURH0Pjw3C2IHpZKdXEYX3vtvQ3QcXYNMO4Ccop2eCnynew8USdGgvMgas0+vXHNo/xSTQFVSIRnjwWokEg3aB+Rjmk5TP85qAzZTXXqn49Jdf4ev/9An1pkZtEgref+MOIUQ+eP8MTKCplSdPPZ8ppxzNlywuAmVUuiA8rw2vj4WzFZheGGXwmZ8e81Nfc+RHLV/48ozJ324IxhCBp0CBcCnC7QDjtfJmrqxDAmJfFKEn0qrh7Qb2e6GcBr7aGb65UE4MnKvyGQdjEbwIczXsiUIBhYMQIh+dKqvGcPu+Zf8oIlGIK5/a5fYBp7iR4m4Z8kLRmoFiiYP2I5LN4O7nBULK1EjmOfGFGfuqbCLpmOyK7DfKKVf7x+v75KXH5Oq2vnj/lcZk0DWoXIt1XwAmw41dC5pywyFwR7ncfOGXtp3uZDg5NTvBXQLxN8/9CqAoV+Z0sutk23m0aNIRVfOc0FnCosP0FpvVjKcVsu5StpXLWGnBuw83fOXViuUEzMTQdpHRKNHw1kaMK4hBMVGxWc9oamlaT+97Rg76WFJvagoLm77FkEG/5GBmOK4jq7Fh65Wensl8zqjKqGoLUtD0gRiEwjmQIXU4ywhBCTFNHDHEVMIFiixHNTIuDGVVEMWAZmy2bWopLvfZO/oU073XyOwUMRl9VNZNTRv8UFIWnDHkNpmVhaiY0OOcwxgHmpLOTVQks6mTQyJWN7TrJZfLBWeXJ2w3W8TB/p3X+Imf+Zf5N//lf4XDak7nhSYE2g1cXnrapmE6c8z2HDEe8Oqrb7C8eIbvFtj5intvGfaOHaUruff6AY++/4Sua6EPBA9Ek4C0OoI/QGVK1B4jFmvSBeEbj288WW5QSQ7gBIPN0ngjVjgsjgirlovtCgkWWziCrrm8sBRFyXx6yGh/znvf/Wcs12tiiMkVezxhduuQo719cufoupr16pJt78myEaPZEdl8lFKYuwgmY2sLgjjWXaBb10kLJ5F+tebs/JyPPvgeTx+9TdecM50d8vr8DoVW1Oue1tQc3psynhWwP8bnjj6kBaVYy2Q84bV79xDzs2CEXw2ej7/9h4MZncFIBGOSpqNPVQFVUiCfsRgJiLXkBlyE4C2xT9oPGQyXxCRPLpUBngyBgsFLGqviAIIAcRZrU/vokD14JaxXJPWYmKRnsjYFXxJDAqiSFl/0kaApYFcHYJQVDltlxKiENsVF/En6uU/a/lQDlEgNbJNXiA0cPugp5DmYfQw5SR7rCRqwREQyICMMoMawhwkHqPwRoTQEVxDDebLNZobR1+njI0zX0T2L9OuhbdQO/iSyQyDKdGJ47Y2MDz9o8TF5lIjoVRnFDFbygybpqpX46jCD5mDHnAhJD4LVF1h6MYlRsQP91rXw/Q8EcdD2iQGJCF2rnJxxZTC3w1TJ6hrYnQdDuUgErymY1IjwyuuBvrugjcqyTz4j1ioHEzDO8Mr9fba94+S0ZbUN1LFhrzrGVRMyW0B+waOPzpgXsF4Ks/kBx7d76mdrXC88vRDeWzs++oPAtjX8zOvKg7FSVpEibwkaaBrPj3/1VZ5uZ6jAQmChwqUq7wPnHr7qDQ9ReoXXTWonPguwxvDOSvmxqeHBHnxxCw+D8EgNnzWRr+4ZPt6mY+WDSd6kNENYVgow+/hRYHkilCi2t2SZMs8Vt5++K80jZi4wBsmGa0F2Pjc7+mwYENIFm7psdr/R4cO/ys25CQJulnkGAPly+eQKLrzMtAx44rp0Iy/m5HzC8V/eru66gcWvBpeXgYqQOlpuvq8rQJI+2yvm6Ca4ehmE3Xj1LLPkI0urDpun38XefM5yuaasYLuN5EVJEIMrMqr5Hdb+gtKNMUXLcrNmMi0onaX3W7xvEVFcYfB9jy0KChU60+HblqxIJYkJGatGKelojOPWYc6yU1Z1h7GG1WbDaDxi5GA+ntL0ympbo9FQZSkzp+9auqCEHmaHB0zLMd//8AO6vifPU9cKRhhXFWVVsVg3ZK5CTcX04C3y6Zt0sUqdGNoi1tIFfzXAS0wCynFVEoLgrCPLDUWWUozTRbVb7QxaNXoWm0u260sWy3O2zYrR7JDDu5/hlde/xFe+9BUOjg6ot/DsbEtegnOWtunJHUxnOaOJJfSG44Mj5vMD6qbl8I01D14b4Rx4WTM7rJgdjdle9km8qcnMi6jEWCJhCtER6ZKZ3a72N2ThCCbZ/ZvUkZIC4CPTYs79/BUKmTLeM9T1kmbVMr91yJOLd5ll97l1fI/vfPRt3nv6Md53qFWKyZyD40P29w7IrbDaXHK6PKVpl0xn+0xnJWVuiT6NzY16us2CqJE6KxA1jMuMom3ZLJdcPH/ORx9+h7NH36ZvLylHJV96601ePbqPBEOxX3P3wZT9yT5PT5Xvn5+jHz3HZDnHB1OyIV9nOp7w6r37iPwsKPwD4MNvf4PYtoNtkk8t40bSusGA6K5d3BDFJm2XBWssmfOD/49HB5+TGNKC1ViDycBmgt/9BvuIhEH7ZjUZsokme7fcpO/O65U2zsRIbKFZeghdms98h7U9ea5JWtClYFyNkVhayipjujcBDNt1Q7+uybIfssj5IdufaoACPVEiogZrZlR3Rli2ePFYCpQMoxYNC9S2iFYoJZbPY9igvsX3J1THIWlPyMG2BG2xQB9rpG3wFz2bE6XtBirb7DwpUq3NWWE6N8zuwfhSrkSBA7mSHIh1oH9juqjkxmgt5nrmMMPKNR1fX1hxCmm8d0MAYBwARkDx/WDBf2MR7TWxKXbHlmjqagVSpPbQUWGu2hEN85nl+E7O7SPPatHy/FR4dCI0jVKkRSLWwHg64eTxioszTxBLXgpNveJ73/4el0tP07ZENYRg0g+oDOzdynlSwqoRvnMCH557AkqVGc43gfsTyCWktlLfUZjIZz93jP04UYQGvfIAq1W4RPk+kaNhYn+qwusIExGcwod15HhpuHcU+fJE+P2L5JPyoTd8Oo+8PjV8/5lQTRS8odkKOCGvAtXIEColXAjbNlI4cCWIYxCWCWSaAMmgC9p151xNvDepjngDq+iN/S3DfLJj09KArVzjmvSF/ZCfwE0koddW8soNBuWmOHZ3cqrXGOGfc1FzxejtLv6r1dBLvia7jouhzIO58To/7H289H6cE/Lc020NRVZhxTJywmg8wveRp09OKIqSTCCrjnl8WXL3aMrtgzlbc0FcXTKbH9B1G/o2YIbuAVWPxh5nW6TMEAK2ENpOMV0GtbJtPE3rcN5gqxF3FxvmmaGWDA097fqCiXFMRiVNUGLfMZ6nCbAcz9jfK3n++BF9XTMel3St53A+YV1vKIosLVqsTZ6RuUFNgSkKMBN8zFivl0S2ZC6nzEbgcnw0ZCaJxp2xVLmjzMc4ZzFGKaoRxjmKPENVcTbHdyExpLGmb865PD9jsbqg9cpk/9Pcf/BFDo7f4M6DVznaOyDUhsePapaLDbdvVTjriBlUec5okmEzg8tgPp8ynU2YH1te/0LF4YHgo2dTbzHOMzuYclltCLEk0uAloL0icYawh2JRQ9LGDKI6VxYU4wrVnr6LaJ/ykQCsyTnOXsFuA163nJ6dU41H7B0VPHz4farxmKOD29TR8/bJ9zlbXKAWqumcw+Nb7M3mKe6gXrP2LfuHB9ze/xSHoyl907Ju4KLuaJqWWDi8iWhnkgbDFbQ+0tRLNpenPH74LRbPvkvwS5yzvHLvDX7stS/htmMWi5bZsUO6Mc+fer799BlnfMSqa0gWj/c4PJySFxbjLNPxmNfv3UPMz5FZy69mGQ/f/jrdegtBMSZ17eBDYrZ9TJ2YQOrgGn72dhABQ2rpb2NqkOjTb9wWEVtmZBOLM6AoGhKzZ4xgc4c1lr5TjE8t3Yilq3v6TZd8eYIgQWjbln7ZIrkma40QB8F90igFoA8QOrCaEcWiRKITyCxq/wUCKCm+2Q1jvaDGESkRAqlvfoIwwRmInKc2PrUQzpG4wi9PKKoNYXQIMsEORSCRCqUm8l1ct6E97VldJB8RzLUvVfI8SYnBx/cL8qOCbOxp6oAMXiNGrpnzlzUnOxAiuwnpilVJD4odxvNBA2Gd8gLzYvXKuFNv/LvyrBgAiTCcrx0yfIzS9ckQLbeCLdKbMQhvfSbn819VMldz/jTy8H3YbNPsFmN6fplD0IbFZoMPhiw3bHv46MkFrawByI3jrfsFVahZNpHzhZIVOVGEZ5fw8WVie6wYCgt9a9hsAxIdsbVkseNLP+ZYLFv6tceN7zDBsifCucAKQFPe0WsYzklC2SedcmQslwQqDN+4jExGhlf34MuryK8G5RsKn1sbPntL+WwhdBvDqhKsRC4WifnIcoOVwGyqjN4QpFBcaTBVWiFgFOwAIpIO78UOHXZAI614dwvFnUBBSfuKuUlIvEgpvNxJc3OPAQG8UNq56tjZ3XXzAAOTcvN4NyUrLz7wSa93/XTkJUAyvJcdQLpaFb/QcfQJBxxWZ5+05TZjNp6T4yAv8G1G5gqOjvZ59913uX/3GIMy3TtkUo358MmGvekhbT/jbF0zM0fUYUbYNuSuoLCphdeWOYVRNPaojBEbKchxbUMRc8pRT+dhvTHkGtG1UkpPuVcSyymxO6EObQrS2y7IjOWgUIg9+/c/R99sKXPL/iRjrR2Ojjb2hNiTZRnWGWZjRznKyfIctQVny1SKaX3E9JukqxqNCCFprkQiKjkBR+4sZZZEr5vODwm4yiZGjHFUhWGUZ0wnhjwTYluz2ZyxXjxnubmkpaTa+xTHdz/H4dE9inHB3n5JVVjqTeTy+ZIQW9Tn2BJGlWU2t4zGDpWkSzi4VXL/zQnjo4zD+wWYmq7tWa9qVtsNrlSkBNc6nGQIknJaZE6QUXLhVsiMTflBgJvkOD8C3+NjS2xb4q7LMSu5Y+6QyRzRQKBjWwcOpm/hpmeIFuzv3eL9+j2+9+R7+NBT7R9w6/gWe/M5mYHeRI4mh7w1us/YOWIUmi6w9ZYmeoge71uaHlyZJzbHWoIqG1XasGZRn7LpTohaIxamk2M+d/xF3PaA8ycbuugZjw9YnSiPVs/41uNv0zmouwaPokQ+xQOODqcUhcMYw3Q84Y1798ntn6GoKv7+eMT7f/i7tMsFVy19RhAVjNNUox+iC4KmLhvirjSUfvIRwceADnSqRouLSUtnx26IW1EiSpE78iIn9IN3AhGbZeRFRlbm1EBsAvQRNBK6QB91OJcd+WUweUqupw9p3eUiKp4+dlirWBdgJLjJjwY5fqS9f+mXfon/5X/5X3jnnXeoqoqf+7mf47/+r/9rPvvZz17t0zQNf/2v/3X+p//pf6JtW/78n//z/Hf/3X/H7du3r/Z5+PAhv/ALv8A/+kf/iMlkwl/8i3+RX/qlX8K5HxUvOQSPYAhkQA1UGCyRHtgQWGHFg+SAJ3CGMTXa1Zh4gWVCj6LUOByWCSAE1oh20EfaleHyLNL3is0HR9iUQ4g1wnQiHL8yATfn4nlPaDYYrsWoarhq60yK6fRcFcUOztwYGTpLU61Qh/BBIdHnOyZm18Wz80IRvZ5lXh7rr0pHcRdgeLVApywUE2Q4z3R/H5TRNJK7wOXTwPc/gCenyT/BSCqRRhTJhKat2S57itEe622DrXKasOHj5x3G5RzOAnUbmIwM00lJ3RuWq8DFhbBuocjgbh64WDn6IPTqaNrAxw83rC49xX7HvICJOSEL1TCXWc5FCapcDO/2tsKRJiBgrPBMExVqB7FY6A1/8Fz52h34iRF8cylciPD1tfL6EkZ3AjjD+btC3oMNwnaldMEzzmF6IGSvKuI0eZT465ZZgTQxux2bkDIzrhkUrn1uXt7kxjF22w5Q7Eo0L+KPq8euWZAbD35iueYGWzIAlk/MIn4RF71w1/Ud18+82XL88hPl5btePvYLH96LR7gmFVOGzLzYZ17OWEchFiOM7xg7x7gsKfOSSW64XKzZeGV8dEjn9vjwyRZWG24fHtOqoTIjZpXFFZE8S2L5cTWm7zpCr9hpQVSHZj2VCn2oWNYwmTZ0nbJcLDjYazGZ4Xx1yl4pjDHU3RYxOT6AmBQYGS4+ZDwqabaOvf1j2qYnxp4YO/LSsVluyIoCsQY3MlQHFYR7HMqMfCNslpcE37F/FPkzX7vPH/7xc56etpQ2Z5QrmcuZjCqqImc8n3D/zj1yB7Npxv5sQlWOsWpZXJ6yuDxns7hgUa9YLk5Zrc7Rao+j459iMvtMctMFhJp5ppgezi9aunabBN9RyVyKqJjMHVkutL1SVMqDexnk+/RVgVRL1rWn2dasVmtOL85pg6bukNyS99AHQzQCjMHkIB1oTOYPAw3gcosrM6K3OJ+0EBo8EgruFK8zNlMET9euGZUzjg732XbPkKbkwWtv8Hx7yu9/8Dad75ns73N85x7HR4dMpmNGRUFuIqZr8V1Lve1Y9dAbR1WOuVUpbb3mYmv4eL1k2zVE78lDxBWRmGfYUYWdFWSHR3TtFts0fOru57k/eZXVRUcflf39PYqqZNOs+cb3/5DH5x9QjucwlFq4+g3e5+hwTlFkiDGMRyNeuXMH536KzFr+nhq+8/u/Rb9Z4EPqwrEZQydOijJQjYQg9G2EHsSHZGMfNXnUANal0j9iCJp0keIHttYMWT22wJoMlZDkBDZgK0dWGEQicZIl17CO1LGjkRhiaoU2qWxUjS2TWYZYR7MN9H7oHBOIbU8gJtt+ieSF/eTx8IdsPxIi+LVf+zV+8Rd/kZ/+6Z/Ge89//B//x/y5P/fnePvttxmPxwD81b/6V/nbf/tv8z//z/8z8/mcv/SX/hL/7r/77/Kbv/mbAIQQ+Lf/7X+bO3fu8Fu/9Vs8efKEf//f//fJsoz/6r/6r36U00FpSMvXIqFFpsmMhx5lk2zc45wYa0wWiNogJBWQMYpUEW87RDxKQyDHsk+gQeMK02yI2456rdTbVPeF1M8fh3ZiY2E0FopRw/pszZPvNxCT14hKSr3ddVpclYd35aGbbMpA8cuQjIpNE6zuUm5J4MQMgCYZ9CR1vAwT1RVUGQS0dviUrp47GMrtAFJZJprQZgncrLbw8GGgKiNnJ8rzp5AXqXSkQwhl1HTVtD5w8qxn0U4ZH9zm0fOnSGaZTNJFeDAvUROIeUXrHGpytDc0PahT7h8bmhhxNrU1ezHECM02snge2DsC6VtuH64Q7xBVanxyshFlM8ziXg25KHcQRCOdWlYEbpFWCYcG3mmUP7owfHYGX6rhGz003nB2plR7BmuEmTNYjRSZsmwN3RaWrTKrIjNRcBAlJNffyFXpgoGy1MhQqnvp17ebzG/SFTfZlOuL+SVGQa73e4ENufEkHXYeqI0rCPEJgOP6OT/IkvzAflfne/N1h4fkxknt6oZwgya8fi9X53PzGFelpj95M8RU6lOhU4uPjnFWcrHaMN87YjoqaeoF58sL8rwgmMi33v2IvXHJXjUjr0oWFyccH5VYKxS2oBgLBUuMqcB0SKnY2BGj4sYOomV92VGWMD0Y0a62VHnLbAxNaGm9IcSUELzaRGrfYY3DRsHJBqLD+Qm+61k2OU2zpQ9Clhf0q0tGoxIQuuiYjoXxgxrfOmbmdbJiw+GRkhUdP/HjYz73qTlf/srrPHoUefLYYGXGfHzM0eEtDm4dU40mzMdTppUwqgQjQrMVnj454+LsOaH1bDZrzi8vudhsGB+8yqtv/GsUs09Re0tfn6KyYT5x7Oc5/RaWl1syA4XNcE6Z7CvzvQROYoxkThmNLGVpaI3lnEAbldj3NJsti8tLTp9fsFlHIhaMkltDdArBoqZEJY3PKRjRIFiQgMZAVI9Gg8FQlDnEjPnomAfzt2g2YCuDtSVtf8H6UpkeHKDdioNbd/hH3/tHPF49ZXx8xK3bd7h/9wH3bh0xzh3dds1iccFqvWXtA+oyJmXO1FgycUQxtBZCf4G0ns5v6dsteVNRjvco5zNGRYG9cx9Itgf7veNz9z4HfcF2u6SsCqpRheL5+gff4P2n3yDSIZnHbCA+E96WxFIbMRiEg4MZeZlhrWU0qrh/fAv9/E8QvNJ3ge9+/Z8Q2g0+glWLywRLSO3XRjESEU0ZbRqG1uMhfkVEsIXBFm6YEywaIDYRiozo0xzV2YjSESP4GHGF4Iqk61KvGGdwWeqG8ppWxiYKOjA7xhmyKqOYFLi8opo7+uDxXUdXe3zT0/eBqMk4MfwflXhf2n4kgPJ3/+7ffeHv//F//B+5desWX//61/lX/9V/lcViwf/wP/wP/K2/9bf4N/6NfwOAv/k3/yaf//zn+Z3f+R1+9md/lr/39/4eb7/9Nn//7/99bt++zVe/+lX+i//iv+Bv/I2/wX/6n/6n5PkPOs21bUvbtld/L5fL4VYgWc6kFuKcN4nq8PKHGLZAidKhUg+1Z0lGY7JGbIfmByAVyTI/kFqWl6jW2L7B+p4QY9JfjMDv0oHNDnQkXQSi+GXDs0ewPotXAtpwY6Vp7Ytjvgwma5CYk52uIShXnZ1XT5cETHZeKMNdiNwIEORak4mSVPy7xfXAkJjB9V9EhpbIJIg1BnoV8kpZLDzfeRsWC1gthdk4Wdr7YT5qAzxfGPxHltp3rDYrHi5yThfCchmZTUqCRi7XHWJz9m494N2HH/GVz5ZUs5xsJBxq5HCabOCr55EPNXU5OQddb2jbjHbp0RhxolRFWoHskya9npRb0SosBZ4Brw5+wh+ZSBZNcopFkSJyL1h+9xImmfDTVeTjoIxicvqlBldF7r2avkdVi30UOV0YLns4Xwv7TyPlUSLhdEeJDAF8agSxetVp9QMsxQ+ZjPXGtXF1TbxQ/7nxTb8gaL3BmFxhHr3e7wYOepFpeelcPum+KyHujRO7yQa99PcPeWc39pEXz3f3vBfO8XrXm+8nRKXXgFOlKkZsmxKvjiIXAoaua+m7ltG05PDwCCMFm41n1VtMecS2n1KveiIrptOKWTFBsktgD6lyerMktxZjWvAB07T0HrJxSXFxQZUH7H7JdFkzqgw+OjqfSse9BqwxmFpIwcjJmn0+sVwsLzFOycsphTWs6p51na6rECOaWySPxCLS5Cuy/T9kNvIcxSn3HpxxOLfszTqq6R6z6hUe3HqVs1enLNdzZuUB+3v7FCNLkMTuN/3uOxe2y4b14hnNes1is+ZyvWSxPWe0d5fPf+HPcufOl1l2Geuzp1izJc9b9udz8jyjbiJt02PEkTmY7in7hzlFmXj8MJjUWRfp+4g3C7qwpm1bmrZhs11zubzk/HzJatkjvqKwFZYMFxXpc4IpEXuF2LFWUoYXEEUJXYt26XdgrcWYjP3qNmOdQKGcnz5i/+g2b77xaT784Dvosz1efeOznNRP+GDxMUe37nDvwT0ODo+YjSfEtuVidcn54pLldotkOdNRSQ5oiHi1yfivqVk1Dbic/ckU2QYW2wXrZoPveowRJvk+08mM6u4rzPMxn9F95v0+l+c1VVYwGU3IM+HD1UM+3L4DdoGJEe2FthfYWs5OSCDFRIyJIA84PJxjigwxlqKsuHvrNj/xxZ8kkGak9/7wN/HtFvWaWIigNH43fwxjfJbGJRkMF0PUxKRYhyuF1GQzdNIEj4SAaLKjMDFCZiAzgzQgdb81mxbfJONBYxzR9mkOKmwyOVSLoFiTMqu2XUblCmxuMLlLc1qIEAwmRGIz2Pk34YeOiZ+0/V/SoCwWCwAODg4A+PrXv07f9/zZP/tnr/b53Oc+x6uvvspv//Zv87M/+7P89m//Nl/+8pdfKPn8+T//5/mFX/gFvvWtb/HjP/7jP/A6v/RLv8R/9p/9Zz9wv2GGEElOsj19+C4uJsUyjAYw0SCkQr9IJAbFxQjZmCgzIjIwMYM9vlpiv0T8Fgma2JNlco7VIXVYZFgxIzijhE559r7ng3dAuzTOx2Flmeq2id8QdmLZq1LiMJYP5QjdWemn8o4OJcedfmQ33qeJ4qZQN12oOrR47sSzNyeFpHUYQNFQOjAyVChsWv1npWAUnp8ol5eCy1KbcgpEHABUVKIPfO97Z4zmSmbWPH605XQl1D5Sd0pmLVFbmrajzD/iqNxwcXnGwVHJ3oEj5ImpMCrMikj9EFDFWygnjs3WcP60pxwLzeUWy5wc4UsKjyQyVktH4HsYLJDZSBWSaLaPyrnAErhjIHphqimh+R+fK3+2tHzR9Kw0vf++VlwmSA7rtcG3ynxucSOlaIWuET54G45vRQ7uCWauQ6F3MJ5KFyI3CsBctazshKifxBrsEKW5oe24+rK4ft7V9/gyUBle5+q4LwGBl17sB/GEvPSUm+zODSZI5LqDeLffJ4CTq06kF0ikG4BJbzx08xxvAp4rX/0k/G5ii9MuXbvRI67Ax5LeW8jA25LZbMTh/jFnz88oihlZkZGXY959co6JBQf3JpjjN5ndjcT+fTS09OVXwLyLZOegW0xXg+8Rqchsh8s7xKSU4P2jHAQqKTj0HVke2WxT0KdbBi4uICuEEAyhq9F+Q24ztpvAuBhTtyvWOEIjuKxIbELlqQ4NdtIRRzVu+jscju9xuDdhbzxlPM0oRlvK/IJCbyPZAfrMIZq8CgZddfqcotDUSmh76vUZXXvJtmlZrFdc1GuyvXt84XP/Fp//1JepY8GjR2tCu2KatYxyYVJOCMGx2rb0vqfII8UIDm7llJVlFzIoLnV2NK3y6Owhj9dvU4dL6k3NxWLF2eKMxWLBZr1huYwUYildEtoqPbYr6WSCqiMOlgZJw5eklc7lhF6J2x6HA+vYnxzx+t7r1HUDfWKuQlezvuzY378Pqrii4IPNI6TMONo/5HAyI8dwcv6c9WaFsUKe5exPJzhVgg80Cio5RiOhrwmhZzwaIVFZ9w2bTmC1xWvLtvdgMkbVmHlZMp0e4MKI+XPD4qSlD4H5fEw1dazkgg/q76H2gnJs6Wshakdsl8TBQO/0meFbRJQ0FwEcHs7JiwwRQ5kX3Lt1i5+Rn8Iaxz8oc77zjX+C36yJfST0igwUrnGpQcO6xGTYQc8YY6T3knJxlgFjUv6cmsE/pQ9J2B+F2HlclaXcnDwHNanhog8EP/x+8wGMeMBGYpY6hFAlRkO/9YS4odt6bOEwTlDTEdHkYCypRKUqhCZ80gD1Q7f/0wAlxshf+St/hT/zZ/4MX/rSlwB4+vQpeZ6zt7f3wr63b9/m6dOnV/vcBCe7x3ePfdL2H/1H/xF/7a/9tau/l8slr7zyCr2e3hgPC4KcIabBsI8ypINK0k9bTDKhOb9IP5qDEZ5IpEdosYnDB7/FdS3WK91aOX+s+A2gQx+7JFdT04N1MN1PP7EP3olcPoYsDi7DpBMTTTBXBzSRTPyGUVtILcjsOkJTWeKq+2E4hhm8VxTlegEvCTj8wFKU4eJL/9dkbpoA0QB+kuYkgRFrEhAxJulLYg++T/btQaHrkgtkYnEG0Zoq81GkU2E2yRi5ZD3eYGgaxY4sPnb0jcH0K7JRwzvfaXhT73L7fsHyeZcqcx3MJ8qre4aTTaSOYAu4XPRkvXDrGPamMJ1Ap8pbouwrrPBYhQ8JvGkde0CphtdM8hl5DjxEOVLhdjD0RN4CfqOHvxMiPy85a+1pGuHhCXBpMD7wtFb6KNyeKOMJHOwr3VY4v7ScPI2MJ1BUJAA8lNZupg/LzYl5uCrlxvdy9X8hrSRvtCW/oH6+CUR2CuibHiW7/98s+3yiR8kPXhsvneifvN1g8q7vE65De4addGiPv0JVn3D8K+DzCefzSaBKA6odfdhCWIOZELQjSIF1HsTiKWibDScnJ2jo6UODxIKmrGi04GA+ZXxwwPFb/zrZ4ZbmLKI6JS9ew/IRkuWoh2gEMR2S3yKuH1LkOaNZi9lYJHo6xjgjHB0aRFu6HmZzpe+zFEEfhT4EGt9QZo48NwT1dH5JNbbk6rAFrJtAOTHs3XeM7rdkh0JeTBnnY46mI2aTPcaTEbPJiKrMyV1NoRuMDYSY0yxLhFQeSAuN9FnHoOAbunrFZtuz2i7Zbi+RvOKtz/08n//yl5hOK84eK60PGE0p40az9HnVsNnUiAQyq8z2C2bz6gqc7FBj08DbHzzi7Ud/j2DfI8Ytm+2Gy8szLi7OqLc1XZ+0epGGeTGjzHPERvrtCEORzpcUW5HMwRxpMFBUI0YF1FEUE149+hwTd4BODPX6ghAMR4d38bpgeXHJV3/mxznjnG/9wbuMZ3OwjsWqQeqOmFvKUck8z3Eh0veBTYBeLIUVcgnEGFHjyEd7xL5lu16wuDzn7NF7rBfPIM+wbcsG4aIaU5Uld7MJs21k8fSS2Eam+3OqWcHWLvnG4m2eNu9hqg4bDNFL0h/aHpU1bTN8nM+UP4qRPiQJwGdFODqYkeUOEaEsSu4cHfMTn/8qzlqMy3jn93+N5vKC0Ec0phnGGkEdaG7JCoPJBWdTbELwQ3ZUMyxE7TAPucHHJA1eSG4gL3GjApuXBN/TdR2hTp+PcykHSaxNMs7QJ+PKXYMAgAouBNT3tL4Hk/JVIooEm843pmso+h+BPuH/AkD5xV/8Rb75zW/yG7/xG/9nD/HPvRVFQVEUP3C/leTsmBonApjxAEwiMCWxIjVCQDUg9BTjMcE6oqR1SJI1ZqAFzVPIFpZszxBDweJxx/okErthIEBSDU0hM0pVwt3X4fQjZXUhDOnnVxOHYTcJMawgExAww3JyR3YyMDJmUK0zHEJ05wqZgMzObHNo6nlhnpGbfwxNJruFt5DU97uOIUGwJC2K2uSP5QyoT1b3aqCN0HXpADoIeHXIH/IBxAnrBrZ1ZDqCdQtkipVAYXuCgWkRmBaGbmvoNPLRd56S5QHjk7+vNVAZOJxH2j7R1Q+fdcz2MmQKkxJisOROiJ1wgDATZSnCPM+4bAMPNHAWE+34FWN4TuAyGBpj2EOJMXKAshT4orX8WkxCyX9TDBoiy43QbSJOYTqYG61XgYcrEGN4da7c3fe4THDjYSW50wvdBB3wg2WYl7ddC7Fel4RuthZz49qR3XGumBK5YheuXkPlxWPffG35ZKbj+jUGwPsCLXdzpxu3r96nfvIuu/cuNx74RJZErh94Gce8dLwgMXVzhA2hc0k0GQMhtjhj8F5p+56mXWDzMWKVzWZN7y1Cw2bb0nYz1r99yVe++q+wdj1nFxn78wwbnpGVDxDmhPAcKQTxDifHZKMl+aRl3xWsi57xuOVildNuleN7Y/qwYb3aUmQ5RdExnVo2a0XUU00qNn2yTdfMUh6OofXYYDiYFRwVY04uG3CR0d6E2YFQVWNG5YTDyZyD0YxRVTKuRpRFQW48mfZYNexNKzZdloLYfErsziyUo8CohOePA9um53yx5nK1YhMCx6/9FF/80le4e69iG5R8LMz2K5b9mK45RygIXcYmdPi2w0qkKISD44osvzE1KDSN8u77Z/zm1/9/nLa/iS1rYuxZ1ys22yXrZce2ifgGfBvxksIMx1VFnuVcnJUoKW1ZTTLPzMReXV/qPQ4BV2IpmY9uMdExF4sz2nWPzWA2HnFxcsL8fs6X/rVD7r11yO//1sfMjm8xGRVEVRpRchEO8gpnA13TsukiwVqKzFLIELgXDV10BCx+s6BZXXJ58ZzHH32X5enDlLNUjMhCwMbAIhuxV0xwVqifrllsLrl9fItRVYFEHvnHPF5/h16XiFPs2BAk5YyYLGJMS0DwJqPxjvNT5e130k9iZ/d/eDAjyxxiDaOy4t7xLUS+ws6P4Nv/9B/RXJ4QYhpDvE/p9SoByYS8zJPoeHCiNSEkH6zd7zIatI/pb9GkqcySDsh3QghNErQGj3pP8IHYW4xGjKYsqhgHL7BBNG8ktSnnY4O41OwTWiWIpipCiKhPoGnnSPujbP+nAMpf+kt/iV/5lV/h13/913nw4MHV/Xfu3KHrOi4vL19gUZ49e8adO3eu9vm93/u9F4737Nmzq8d+lM1Qkhxid6tVT8QMBmxT1Jyi4kH7ZHJjDGE8RhkPU3SDkGMw0LesHj+nOOmZvNrR9crio4BfkeyjrUKA9RqqUnA57B3BwW3h8ftpYjeD6dYOkIhRLLty0I7BGE5erjtyknFTYjwMXAERuF5YX02IMrhzhqvDXO2H6JUJnBkmwJ3zrJhkHtc3QlkMpSTSfr1PFvkxwKaGbZ0yRHRggFInkqIurX6CAh2oGD54Etj41AE0zgWI+BAwquSF5+GpoTCOTxWes2c9jYd5CeMinVM5gdlIaUew7uH5aeSbseXHPgdlLpyeeZYrpS3gA4HbCNHAFyeRT0dQb3mG8CHKjxuYKliUx2qwmfDEK7UqMxXuEbhvhPdIQWR3VcgUiuGzqjQxNJXCPsIyKNu18tqxUL0KjIdV665cccVyvIRQ5Pr2FUiUge7UeJVzcNUOvmMddrWgF2s+7PQuVy/8AlDhpRs3z+Glbfd6JLC8A0tX+8abYOQTnvtyrUrSceSF198xKTdOZ4fEXgZug3HCTiN184WjjTShQb0Qg0GCQ2yglxw1hqgtPRvcyPFs9YS6vsCZgoyIZoEogfOnp4Ta8vd+5X/n9p2Kdax5cG/CZz59wKS4hfgnWFsRWIB9jHQfEPoV4+PXGLUbbHZOr7e53JyRj5ROplT7luJ8w+joCFk/pcKxWG0YjTJ8XpL1EWnWuFGBlBnVqMBHQ6sZs/mE+e05fdYw0xEHRcZ0mlNNS+bjMfPRhFFekbuC3Fbkso/zx2DuoGZGg2W1jtSilBXMp3D/LpSVstkoq2bN2eUp5+sFZnqH1978KW4fjylHYFS4e0ewJif3R1ycrchdQegctfbEEMgsTA8ce0c79iQNZNsG3n9vyTf+4Os8f/wul35D5y7pTUvX1/i2oW+VZutp2kDoU4JuFzpcWVAxYptXtKbAmQwrKRbDOnuFzWPnEF9gTE7GmPt7r2KiY1JOMP0FdbNlvH+Hvfs9m/CEcf7TvP3ugrVGjo9vMx6PKHJLt13RbHvqusMZR8xHWFpGKJZIUEfd9qz7gFghtkvq5YKL82c8e/Iem4uP8b4mYJAuDZwiglsvuVO3FLGmL3pe/9Ie++MxfmNZ25qnq3PUQRCLM568NEgmhJCTZUNQbBExxiOxhpBxsXjKt9+xKU1Z4VNvwdH+jLywiBHKPOfWwSFf+fQXho4nePuf/kOayzNC55NDaxgM16IjtKm8H3qTXGVNYux114mxYzGG+SY6g3GJtQle6NsO62JiiIuM0Cu+9kgfUjhiTMylMWYY0wwSlOgjIVryzFI4S58Jpu+JqkQiISa2XjW1Nv8o248EUFSVv/yX/zL/6//6v/KP//E/5o033njh8Z/8yZ8kyzL+wT/4B/yFv/AXAPjOd77Dw4cP+drXvgbA1772Nf7L//K/5OTkhFu3bgHwq7/6q8xmM77whS/8SCefKvwOoUBpSFqSAhuP8N1jsnyNWkMk9ckKBZEcgxue15Om+xZkwd69LUoPXuhrpd8kZ9VoE9tQWJiN08SSZ7D/QMgmhmYbMHFo8Up8zYvUuLlu8U2fI1ddPELKoDFGr0Jldz5gKkqIu5Uu1xPBAH6S6FcwUa/nrQF56KCH2J1DKs+kfXeT467LJ3jhcpnmp74fzNB2+piwCzMEP6AnA8SQMjbWrfBkIYSgZNlA4UlAVTlfwWSa8eY9CL3QhASY6gbGZXqzl42wNxVGY2W7Bq/KxQWcnMFsoizXhrqDbQH/EMNtjRQKPyHCyAS+jeFYlOcqrBCmGGYmxUj2JXwaeG+VGs/3BH7SGc47uDTKZ8SxL54zDx2K12QANxdhpsrMCBMlfRgufTEvOLruPvSdi6rc+Ld7/MaEvSsHyc4vxUoyy9mxGjfm+Bd+x3r9vb/47wYb8fL2wwDKzZty4/SUQUfySU/84cd9oQpw8/EfMg6pyGD0dnOfoSPtZuXIKX1sSYnwBZldY+iRWBAjtHFLK1tiv+Zye4pvG7S/ZOQsQs+42ufwzi26uuN//ye/TVlMOL1c8eD2Ef+P//vP89m3MsbFlnIyBekQe0TIlqy2HXujMTaHYgLtOjGCZCNyE+hsy/6hA79kVFnK42MuFi3VrGBRN4gxjCYlsSwJ+ZTLGozNMKagcoccHx2QzWBSWiqBsYNpJUyqkqqYUcoBNkyx/ZyRe4uK1+h0ThsM6wU8/LgHVSYzYVQFRmWGdZZehcV6wXJzQR2Ue8dfZv/gEJykZOhC2MthH0O5GlNyh72RweDoui3EjmKk3Lm/R1m54SsM9J1w8lHLycMTpF4z8jMuliOW8YxGNsTYEkJPaKFZDxlkIRKisqlbggT2qwlFsY9IRhx0Y04sRmyydQckWmxfgM0ZVXP2qynTvUiZb+keLTgMd+hlweOPG3I35oOy5VG55dbte+xNxtgQWC/PuVxvUnAqjlk1ZiKOJJ4QuqBsNy2rzoMVtN7SrBc8P33M8yfvs10+JcT+OpohBkJXE1zBLVdx0DuWFxtGe5bSjPC1Q23k4eopi9U5hS2R6QTtIoaIBKXrBcUgWdKMZC6x+jGW+G7NYvGEd96xienQiL75gMODKXmWRucyz7l7dIgzX8BZyF3ON373V2nOn0Hnk1tsbwgNaOdTN2RIOUyiqUKQ1jYpoXi3EMY6sDaBfT+sdk1Mc2oYsnp6oI2EPoUDxggui5jSkhUOIvimJzQetUI2KbAxghpiMMQ+YJ3B5LsJD2z+fzC+vLT9SADlF3/xF/lbf+tv8b/9b/8b0+n0SjMyn8+pqor5fM5/+B/+h/y1v/bXODg4YDab8Zf/8l/ma1/7Gj/7sz8LwJ/7c3+OL3zhC/x7/96/x3/z3/w3PH36lP/kP/lP+MVf/MVPLOP8ydtu/ZYoMMViKBCdDJUVIWJTMBXFsG4eowQiS3aJx+gS0Z5sPKIZL+kXSr1KKnmFK1GrRiXL0ivv7QuH9yvWtadbREyEJBrSK6bk5qLx5bK/SKoLxpjAw27RfFW6uTrG9WMJtJAAShxIehnqnDvgMtjl7+ZREdgxqc4pmqpimMH+XiWdQ4jgdwJPdGBcbjA3JgkXI+l51sAsU147Uta1sGmUto6EAWxZC7F3FFbZGyWDnzSPKz4m/cxkLOQ5ZE6ZTmDRkrI7QtLB9J1gMpAsvZd2gKSbqHy3Djxwhg+7ZM88NsJJiBxEZUJirlZby2QfHnSRdQvzHO4ewvk5dLUwHwU+PRf2LuGkNmxFh9TkFAJ5D9gbQTmOaJd8VpJ7LNeGbC+RCldf3G61oIkGvUaew25muPyG7+Y6QfLl4730OsoNC/tPOIeb19knsSC7/cyNu3cAanewP0mj8vLr3Czb/CCX8gPbDz2y8kKlyeVgXETXHY5AbnKMzoEMYocET+hqNl2PRwk2YDWB7K7b8pnXvsCq3uL7JbGo2cbAtr3gdJXzvYfPuXXrLq44hn6O6Iy+9sR4SBt6bFkRtgEnPSPb0h2UnJwHnG1Q4PC1N1k8P2U8iWyaLcXEYEYWa4RcSjA56g65rEuWy5Y2rDg4ymmC0NWOIp9gNhl2BXnlKNqMPM8QDlF9AHpAld9h7u7gJKPHsNoIH50E/uj956hfc/uO58d/4h5ZkdN08Pxiw7OLU1brBbg5o/Fdghou1zCplHmRtFMhg+kow7lDKhPoW0/XtWSmZ3ZQsn80QkyKeug74dkjz/JsRWUDB5N96vU9Nps1q3XLqq9pY4/H0veevk3gZLBeYr1Zs+oajicjnJsBeWpKMIJVh4i7ulokGsQUOJPz6sGrxD4wmeyTl578XODSMT884NHJdzmYfIHtCIoyp0DYXF6yrtesthuiCKMqgxixDvoYmVRz2tDQXC7pBbLMUa8WrJYXnD7/mPNn79NszwnaJYC+YxxIY9akKHlQHrO9CDTbHqsZyw5G08jD+iPeOfk2m/YM4xQZjcAIfagR4zEZg3begVeMeDTWgKKyTxDDxeIR3/1eGruJEN68z/H+lCx3WCOMypK7tw7J7BdxzuEy4Zv/9FdZnz6hbxj8UDRpTGTozCEx/z6CxMRbiNPkjWIF63aLrqRXCb4Dl/xVFCE2Sl8HJMYUOCgW9WkBjjHDmiokLWSM6DayOe0QIsEHfIjptgGbQza2uMKS2eyHjy2fsP1IAOW//+//ewB+/ud//oX7/+bf/Jv8B//BfwDAf/vf/rcYY/gLf+EvvGDUttustfzKr/wKv/ALv8DXvvY1xuMxf/Ev/kX+8//8P/+RThxAcCSdSYlwh8gHQMCHDzGZEq0h6hpRA6ZEmJE8U85Ipm45EY/xHrY9FsXlsFkpYZ3WknkBmFQC0ZiAirPK3pHFjkqe/nFDaPorrYmxMgy2CTztJnjVaxr/5qQfI5jBlC3CEPh07XkCLy6uPbwwA4hy5Wuy050IaTUa4apThMFBliELJvmiCPHKV0XTRLrrPJFrlscaoTUpH9pIEh5bIAfeup86jN57IpytLS0BJ5bMGcrcc29fqWJKNpUdo4DSeygzSYGzJgH6LIcmkMKpJJWSJvuW8TqFtWUaydUwM3DZGL44NnxWIg8R1ESee2GkyliEc4XvRKVfKK+IsDHweg7z/ci/NRKenBmKPtAYQ8iFuPWMEA4c5Ci1ClmmVLNEz1IPAEMZBDTX3wGOwV54+G5icqPdld2uPOJ3tiXD9yJWr4HCrjVjp7BOdNjugOm+HYB5mWG5uV2hWX1xn5eesysFvgC2rl73et9rncrugntp37B7Tbm6b+fL8yIL9MNOmMGOnSszOYA8c0zyGbKakvl7ZBwSwxRVIcYW8SW2t5i+w4SGoA1iIsYYclfhu5ZtfUYxNkSJGDyvvXmbZqu88+336BvlcFZy92hN2J6yt+dx9OwffyYxW06xe4e4vCE3h+hmQ3VoicWavjOorchnUy7rLdl4Qu9KZDrCFPuYMObs1HG+8DRN8vg5W50Ts4iRoV3UHuDciJCPibZC/Qgt7hLlHq44Zn92wKhw+B6aRjhbKScb5bLzbNfnbN0lZ9sxvp1zftrx/vuPeX5yysXFii6bcHne8u77Gx6VQnitoHg1I8+h3qagwb1Rjvae2q8htlRT5c4rE4oqByJdB++9V/P4gxNK2WIkUI3G7M0O2Wzu0WzXtPWWpo90uiZq8iYVNwyFUfG+Y7m5pJsobS3pN2IUcRajKTdIhrZ8Ey0ijoPpbaZ2TLft+f43HxE87M/v0+mWjx+vmJV3cUcVF3ZL02xZ1T1BItY4yklOCZQ2p6hmqEnmcj4mZ+JyMqZdNqwWz7k4P+Ps5ENWZx/Q1kuihuv4oqsFhVCUEz7/4POMmLLZ9ExGI4qyZFwWnOmKbzz9FsvTh+DbVA6alJhJiakmKCusbbBicNaC7wh1Txc9aIvisdLixXO+MLzzbsoiUkDevM/toxkuS4GK1hXcPjoE+VwKfjTCN37377I5PUW7OGi0UodPjCRflBivRPYmA5elTijFEGMqz6jvk06ki0QNiNNUmvEME0MqcSnDfGRAY6Tz6Ux3kobQe7rLJAWIIRCiH+YcIVeHK1KI4FUi7j/n9iOXeP6PtrIs+eVf/mV++Zd/+Yfu89prr/F3/s7f+VFe+pPPB48SsXqXqA8QswSeIdkzhFFSESMYyUieKIbAObDEIERaVHuMV0zvU/KpTfSAqQyVj2StEozg1+m9W4TCQT4SNouIv9wxEClsTMw1VS0MqJidPf5QWhlWzbt8nh3Njl5366Soa4YchGs25mq1u1uok4IId4BIo16XGYZ9k+7l+rszemNy2rUzixA1Octg9CphdmdIliIXBO2F1UaZjAYWphXeuA23D+DJeWCxASvKeBQ4mEaOR5G+SaxHuqAH8sAm/Yl4xQdouqTjQcDlgliSMNVFyjy1RpUilECmwuMQ+G4nfLFQVg30Xug00ip0CAvgqUZeFccfB5jEwB9slWJluL2nzCaRZiu8+8iy8oG1EVQNvUS+YAz3i4ibCnYCBEV7EqYdTNq04BpUGFII4MCiXQE8Ay/Y0Q+0lihXg+GNeT3dvGLDXnxAd8fb1QFf/i1c3a0/8LB8wlOuLoldC9kLQGWHdIeCz9Xv/gbV8gJ7c3X2u+Xi9Yu+/NjVc7jGXrt/N84xz2YcjMYUxRS/PSD0M2ws8R30wRPaitBZjG/ItAGtUSLeB4Ltef/ht3BOGN89xFVKVWX0rcdqZNEt+KPvvoP1sL644Ce//FnGlefuLWF09CqrbkvTZIxnd6njKbW/5PziXfZvP6B2EVgSyxE9jtY9x0wcUh5S5Mf07HH5LFK3a7pujUXxoaHebJHiKUW1pchbxtbg24xukdHoHOo9fLGPnR2yv3/ApCowJiXE1j0seqHNLMV8D5O1xOj5h7/xmIuzEdul573vPeX87ITNZsm2V96XPyB/7/uoKsvPvEpcv8nxwYjVMqJ9ZFREgu/RzlPkyu1XSo7vTTBWaGr442+v+Se/9nWy8Jg7R1Nms1mKuShL9qeH9M0rtH1L75PBWuciuIiLhr5L13foYLFesyy2dGtFjEPUI9Fi1KbeSpsGI2MznC05zPfZrrY4GeM7T9CWto5MqkN8fMZkf8q6bFnUl7Q0zKuCvfGIwjqcyyjLCeNixnQ0Js8zmq7n5GLN+mKFE89qfcrp2WNOn33I9vwxvt8kL6OrthQdsIngXJXcYqtXWC+SQVrmcsaTMTItOGnPiKOMPnp8vcWqkGnEZlMkyzDlEV4XuLgG7YkxXZ8xQAwBcQ3QICbgMawWwnvvG9SkhW6VO47zMWYwwMqd43hvxudfe4vofx71Hd/6+q+xXFzS1x2hVYipTKMDQ5vsLAwmSwZxVgw+pNR2Y1PZyVgIUQmbAG1E3K51Of1Y47D4ksyQJTEJqoE4aAiMpG6kGHdJqCnsMWqaI3wTaUXpNxE37n5g7PqTtj/VWTz///bONMaS6y70v3NqvfvtvWfr8XjsxI7tBBMnjhOeeJJHhGCJVUjkGWQWgQyOsAEFAijwARlb4hNEKDyQCB8wWERijULAbwwBC3tsT+LdnrEzM561u6eX27fvWsv5vw+n6nb3zHjhPfD0ZOontTyuOvfeU/U/Ved//tvJzXBxehQtp3G0jUK2pX0TW9tAuyR6AocKhiHQtxNl9nk3VbikiGdIlaBKHtVdmpo7xdq5BUxvSGfNBo5qA9oIvqfwNbz5jS7zRxIk2yJSaVAio9olKotZMJl1AzasI2DraDiO2Ml/dEmSpYVZxcMYa/nI5yudjQHJFiQ2rlFGC26jtyopKhvsRm9sDufoTEnJ4h8kt+zoDYuPTfyzn08cWxwIJYSuLaG80IJmWej0hCDQ7JoRdlSzIF2d4Ga/YxLFakdwUrvYNjqfw+ygj40t0FapKCoDW5ekMa4JAoMxQhjaSk4BsFdZq00XRUs0USRMlB3e56UQWfsYSrGqhBIKpTRjJcX7EsO5HkiseOqM4X86mkbd4AeayVrErkizooWVXkpiFC0X6jWNU0usS8woVJzPnppRanCAvZGaDf9ErkTmlius1SqPOwIrqK3OEDaUkAuH+GZLSi7At1snbFYcRr8iF8eKbPqv6E19y32DkinU+W+OOiZs6eXIvCcXHJNNfd34zMiNs1k5yapSbU4S8nWTwG2ivRIdqWDiCnHkkUQJsbFl6E0cgxnDoU2Kh1F9lFb0owGuUgSOprW+gh/4xGmPSAy67GHcLp5TBpNSK5c5trKIY1zC6Zs5cyrB98sME59m1+HcSZseurpmt2FYGYZoHTDslRkmLpT20x94OM4UTmmS4VCRpH2UctCkuDplGHukRpMkAyTs4dRbqDEf42tiU6e/HhANm6TVMeZ21JlouLZ2ksEGLwLGBbeiaIxXiUqCMgH9KOb1YzE6hvWOz0qrj4ojxssuafc0C62jKOMRt0+hBz327rkW13Fp1hSB6xMNIpCEsSmPPfvGCUsBSSS8/nrMPx98gddeeJxKaZW1zk52Tu9mvFrH1T6Vcpnx+iTDZEBqIiQa0HYE44KWmChW0LfvgkG/y/Jyi+HAAFkBr6zqpHJsUTBQ+EGDXZMlxoJxO4kOY9bXW1TLE5SqIeeWj9EIpintGmPJW6aqy0x4ZQIHwlKVarVBtVyhXCpTK1ephhWUdmm3Oqy3E5aSFTrrPbrRkIXFYwxWz5GaAcpxbEEK++LKrHgxSnnsmL6G90/dQK9tXdR+qYTreJTLFV6NVmhFXSbGJ0mHu1g+c5x0OMSXBDdK8FKNmBK6WsZzOqh4CS/UuFFKvxthUiGNbCFBcRWIjc1ptx1OHAdfK6q+i6tmaDat4pjGCUQR5TRih+Nx245rCa5r8dqbb7Bwdp6h6mMchVIJiKAcbavWauueVijSWEhFkUiKJ9oukDXZzsk2HkWZbBuUbDLQYuzcpu0ilrycfmb9Vq7gKLVRbVxZl5ASUEZhYsMwGaKUpqQuLsT6dnwbKCgx2llG0SXBR4hwAZEhGgdhD/7wI6DPk3qvAh4OHgl9TNpBpTFKXIxy0RIRlH2ikousr1CZSHBmPAZvxDhZEKnj2viO5TcNSydlpAxobZWX0fbUjnVbGFFIlvutndx1Yq0uSmcLx2wVm6+687L0ABqr5OSW/zzTJ0/qUJvmri1JGAqbq+5gfZMwyiYC695Rjt2l0pjNuRhZyXyx4cNaQ6LAd2wmgNYwVgPPEfoReB40Q0H6Ai54yl6nBlwDg1SIjC1PL2BjZ7S1mCwsgecpxprCxLiiMaH55qspnbaBMVCOhyrZ6pMVpblZOZzOtpyfAqLU8LWe4oDrMu7ExKntfcMoKgrmRTg3MPyPMcV8HzwMrRhOr6TUyhrHN+yY1dDX+ENN96yBWHMuNSx2hH2uw7QWPNfWK8YAETYvO2Yj3crb8HJssUxssk4oUTYgFjasDLkikAeu5UM6b7NhJtv4zs0KQ378omeCTR3Z8s+LmwobwalywfELFaLRb14w8PL+bu7PFgvLBeczpUtMZm1MyU2Mo88FNHBlF32jcVQZxCNOU4aJEMUuxlgFw1EdDGWU8u3GcwqyfV2JldCJhviOQZkhrl8ikR46jkjMkFrYZBinaBVRLdc432uzui7UygHJIMI5r+n1wMQaf3yOpb4iSn3KYYlSWEF6hnNrfc53NJWaS9XTODpEOQlRKqQqIU4GiDIElYD6uFCpubilAbq0lgUVTuMMAasAABwfSURBVCJDg9JlZqen2DlTxvNtgbQ8eUsESgFMjYGrHZKoQcWtMRUKVV+zvBAT92q02iGhV+GWPTdSLs3y7Cuvsry6wmprmSNHXyIaDtm7dxfTzaYt6oUhrMbs2d+gMVYiGgpvnjAcfvoUveWzOJ5hceUMncFZhv1l4um9NOpTeE5AqVKnmcyQmAFpZ4gSRRSsYnSPIE3wnJROAtFwSCtepqzsgsETH6VsXCBKjd47Jo4op+P02z1EaQbdHqlKiU2HlUUIwpD65ARxRdEIyqTpkMD3qVbrVCo1mpUa9XqNSlBGOy5JZFhdWuf06bO88eYJ5ldX8JRQ9UsEtQq9pSRTiA1KHIzKtw0RBJd6Y5L3z74fNQxI44QwCAjCgHq9yrcWT/DCyjFKExXGxuvM7NmP8hXdlVOoOCVOI/Sgjx+U8d0abrmJuGPo/nmk08KNDOlwaIuuqRRDj9S0GOLixT79jubNNzW+KyTpkH1zO6nXQkzUY335PMvnTtM5v0A9hfdN7sJVHqnxmD9zAtKe3SFaQNJ8c1ibwCFZirBR2byAkCY2C8jE+UtIYxIhSZXdu0dlf1pQ2StQsqxFZRyMzha22r7oxKgsU2ejQrpJBWMilNbEcXyJF9Fbc0UrKHY68jDKtxZq6VpzE4FVVNRNJK3riRfn8WZO4jQNykwjaQzuGjod4BuF6Q9QriHVLm65hOgm2m3jBhGOEyKnEmvZ0NY1ESfQWTKYvhrNUUbb87mWEJRsoN9wAJFYK0VeS4Rs1ZDXJCFTBLTaUE5EYffAyRWVXCHJUmIlL8QmG+//PAdYclcCdh7JnkOr4WarZScLZM12DBsNQEdnc0VqrzVXZHSWwZNbQesh1FxQRnAdO5BUpqxJZlRQHiSpyvzTth8O2aAzQrcPbgK1io33GG9Axbe3x/GwEeaUCcsVuh3B19BMDS6aHQhHtBCnCf8mit3YGJpjRnOj1uwk5U3tkKaGhifsCBWLXYdECWfWYc+q0JwS+2BVhHqo2J1oXltIWEsUfh9eih2uaQnvmzVQzsZcFi+hcpdNppAqj2xfntxUdok/Lvjv5gl9JCzZ5HLJhKs35dZsnvgzq8soWyv3pIw0jM1WiYtNLyO7xmZFxFzQdHPfzYWfvuA6ZKPdFm9wPnZzpUewAUZ5Pe9Ubc2tB5tia3ZbH3mikDQiNYbEGNAGF4PnKRJx7UJEaURplLYVihVglGFgUgZDgxf6qEGXRASlI3AU6515OoMOgXLZHexmuXOKXbO7qE1VMVEXHIXphQy6fYyEOGnArkoTVwzJsM9wuEQSDUgin/6gh9et4gR+VsY8JU4iEtPHLyWM7ykxPg2NuqLkg6P6OO4antvG9yNmmw327y1Tqaot3jGj7C3yfBivChUPPDT1UFPVwrADZ/tCt6dIkiY9SQjK4+yevYZTi12W2+sMkiGr7WUm+nXCcIZyycNTQBAztSdkeqZOEmmOHevzxH8c5/z8OUpewPTEHGkyz1LrFYy0iVWXOa5jrDaOF1ZpmhqSTJOmEfRjWtIj9ePMq5cS9w29yJAkCY7yARelFZ4TIsqWkM8HSqADtKQ4rlU0YzdFRQ61YIKeWaBRnqM8M0E7WqcUetSbE9RKVeq1OvVqjVq5guN6RHHK6kqb+YVFjp8+xRvfepWTx18jilKmZ69lemqSa/bcxGB9je78SayCkrlFbAoAvl/lfbM3UTNN+r2YMAjQrmZiqswwWOXQ80+wuLZIQ11Ppd6gVp8iKClW6z7d9jz9tR6DuIc3DPDjMkpVMLpEpF16qSEdREhis2zS1KDTCPG7xDgMtYsWIY6HpPGAZNgj6XXZPdNAE9FeOsfK2bP0ux38IGTP+z/ApNzI+LU38uQ3nuLkkcOkUReT7dNlRgshlWWZ2nKgjqPwHIVOsjz/xLrgU62Q2BAZky2ArSVfZbWfBJvKDPaYNYZl9cSyzBCtHbuGSWw2lxFbOVdESNOrSEGxjgIfg0HooVUM+Ij00Tpk0J/HLB8hCFZxyjWMKiHDHro/xC1HiCRIqke7COtwnNjZCXgkJR9ClyiKUN66jePQdg4aDmyEe75LcK5g2LlEcF1FcwKqY7B4xtYXGW08r215aqsUWCuFyrO8FLhKZYGoku3lY3dB1tmEEzh2D4thZEhjRaKsKd4IGwNHjeY1lJNnwQrkVpEseyQv7ia56zCz4OQD0yHLyNHWvSXWu5GlKmeBU5sUK0fb+crJ37Dapg1LvpldvrhXCkfb7QOUgiiFbl+x3ksZJpCkwrGTioSYYGWJUn0HQ4FWYvCVYhahisLPzBZlo/iGFmIDYyrFUYYmMCcpU6LoK83HxhNeMcJapBjD7g+hMnNlrj5NNjUf9jXzXZf2SkwUZVqezjqfKZQigiQKBtn+F7GCkrHmIxcbHb95gs9dPTl5ERqRLSEaOfl9vjSyRcnZqMWSH5MLtIN3Sa6cZB/Px8HI/TO6jrf5bP7vTBHZuDRlKxrnylf2p+wWWhvKSX7bBFw1RujuA32eiDZxajVszzU4WNO1oIkShwEaT7kkeLYGhYO1prgOxlEkjq1u7Lga3ygGcYqogJX2OQZRl1Lgs7CuCOuKoakjNGlMjJGmMV7ZoROCiQw1CWgGVUIF/YGi0w1xPZB0wGDQw3G76EgxjHoY6WDSDtofMr7bZdeegHpDUy6nlKuGSllR8RPK3hqNmss1u8dpNj10Hhmfydh1YawBvSEErsKpChUfqr6gIsXplrC81GWl3SU2DmJcIlJqY3X2zMxx+twZ1rpLpGlExReaZZ/AcRCJGJt02D1bgiEcP9vjnx/7Jq+98SK1SpnpsWkm67uQ5Cb6wwWWeydgNcItKbSX0CxpwpJPzTSJTUxMRJx0GSQRxjcQ+MSlmLhncI2PViFKl9BacJ0hRtzMNW014olyneW1Aa7nQxqjcJmcnKbTX0RLyOTsHjrlHt3UUKPMVGOasbEG1XIZ1wlI45TllVXOzS9x4vgJvnXqCKdPHmVl6U0G3RZKuZg0xnM1zWaTuX0f4mh3jah1Hps8Ywef47pMNGaZDqYZDFJKYYDrlJicrqHDhKePPMe5xW+RmoT20jzL9QlK4Q7CcJxawyqlwzhm2O7TGbbRPYfQA69cJVZl0nAnScnBdM+CyQJaHYWjFEoGdActeoMBnvLpdtbodFZpt+a5fnaMsaqXVQzuoz2XyvQsY7vm8Co1pue6lBu7OOi4nHjpKUy/k2c/kG/1IjrdWFzZtEySJMvayXaq1wJJ9hLIrfQpMkpAVNkKQ9Cb3nHKBj5ruzhSZKnOYOXrYpPLjULkonrSb8sVraA4WaSEIiW/7DTb9A80Sp3HaazgVhv0hlVct0TqL+MkXUgjNDb4w2gFboD4E4g00ZQxqoFRQhIvILH1sbmOLQWfDm01R/toKbsS0DboVSvwfWFsUjGzV9FuiW1vsHsRGMHoXK1hNEGNlBPHKgV219gssyeLBfB9xeQkOJ5wfl4xMHatnBiVpTcLrs4CXTMlI3c/OZn26+QWlMz1Y0Y74bKRxkwWp4K9lUpb74RIVqo/m4HyAlu2nkv+MEBesVZ0Pm/Jpnb2dx2tbECwEtZ60Dtj41XizE02jOHMOUM1gPj8MoF/LWNaExuokLCIXVk6yuZi7RHFqwjrKOaVyysmYacy7EgdjqwK3zHt8B07DXFfkNhQrV1oT7C+2lIlZZ9v6LsOvZ5QLoP2tpoDVBZDRBZ7hMke5tDY68tTh/MZelNcB3DRvjUb9c9sg/zeXdJqoi9xbHM72VAEt17gxa+FzYk+G4pENjY3WUVkpFBt+q4t1hm2BrmKynSkjQZKMovJ5qDY3IKyuYe5Hi9lfD1DOUxp+RG4QxxjXRyeY3Adu2e5iQ3aKMDFdVyqJUWtHOAqjVEpRht83yeoltGBA9plfTiktdrBtPooEaIkohN3WI/W6SUdBmmXmgoJQx9fbPpw1I8JJaQcVqj5itLAJU5jmueWOL3cot83Nv7NW6fX7xLHSzhBh4kdFa69ocHkpKZSiXDCPmEYUyp7lMPAljWvXMPkeAUnS/O099/eQ0cJ4xWDN6Po9BXaQMkXPEfRXoH1jmFheZ21fo8EjRiXfhLTqITsnZ3l9fos3X6HVOyK2FcOJkkIwpjxpockHidPDPi3/zjKyy8/z8r6GximaNaq1IIxJib2M0jXSJf7rMfzLAyPEQwd3MCn5o9RrvggTVKGmHaf5ShioM6DNviBwfM0OvFx/RJKlUgxBPGA2ARoDOJEKAVxN0KJj+P4xEmPKIkoD2pUy3WCoE4wXSeYESrDGCMBygSU3ApprFhdaTG/sMixkyd441tHefPYK7TXzpJEbdJ4gCQGtGJ99U3OuT7o66lXxthxzQc59dohku56NhAdquUxbpy+AS/UTMwGaFHE6ym+7/LC8aO8/MbzxNE6KE28vkRr4TSh79Js1NEmQDmT6CBFV5eI05h2v02ihGo6wA9r1MMyg4ndDP0yycoCutu1AadpinHsQ6FwSZTPoN+j31uj31kgXp9m/+5ZpifGqc5M4FfHqE7OUR2bJggrhJUU5ZUQx+H/GMWxF/6DdNAZFdyztbUydw86G/fYqrqyscUK2Xvevg1MtiCzz7QhHc1VTu7/NXahoHCzzwmIQVJbKl8rsYXdsHONUnrjvfYuuKIVlPVWjdVqgiZCoUkJ0FSBEINBSQRUWGu7DOZjalMOw8Aj6DdAVZC4jZIUtIcEPmbok0oHrfoIHikQLUJntUaUAKki6guDyBb9ScWm3OaTtSi7KZIOhEEKSyuKWBQqFFyxRdDioV1wG6yCa+sC2Bd+oq31QVxszYKhHTAG62oJazC1B3AUSy3BDG1xt3y/H6WVTefNJ4tcyc0GplWkrdKTOlZhMI4CX0axLeTWdmOVFZVFgntZ/RRrdbATmUk2LCd2j59sclPYVOHMn+P64Lu2gJ3GxrN4bla0J7MUDVJbjt8NsmtCkQh0h+CVQxzPYXqmgZfAehJTTl0cDBWsa6eqYFLAxRAJrArsUAoc4XWjWOrAvrLDbMmWrE8qKUk5zVXZjcwryTaFdEE3YODB0APlZvVm8mJr2RjMnl37+c2TdKYI2hWFjOKMwN4XhbUgjKbwUVBtptvkCkKWdm0HjLJutBTrTzbZxJ8rJptcMKPPs0lhyY+zVTm5iMwCt8Vyojc0ks2bB27sx7Hp2vPvviC2RZzsPpssmDoFvIv7MnADknhIHHVwdUQ5tG6C1I1wTIrjxHYTUBmSugNM6qCdkLA0xtSYSzUMQEGcpjZrTGscz8MNXTzXpxYmBOKgk5T1do8kFXzHI4kT+oOIbq9PxR+gSiWMVqTGlmZHXJJESD0H1wkoletUG1X8YJlu2iVKBaGDkQgnHDI1Xmb/dbPsnq7TaIAXJojXQ7sDPAcc8XGT3ThJjV53hShSmRXUvvyN2M067ZpUUbbmSTBWgW+3YXklodM/i+OsUivFGDGksoZilbG6w87xEusDn1TWMckanc45fHcdpRWryz5L5x1ePnKGV48eoTc4D3Tp9xJa3RpB6OO7PlNj15I4bVb7hmHapRWfJxiUQISKruIFimq5RJJMkvSGEAl91SIQn1qQUkpLhG6KUjEOmj6KoWc38IQs0NKJ8QJFt79IOagwUx8nkS6OlJiamaa206U6ViVNE86v9Tm/tEja7zBMBiycP8/p+VOcPvs6y8unMKZFtZxC6GMSlzQxYGzWigwW6a/VqZV2s3d6D8TrrJ58ze5NpB2u27WfsWoT3/eRSGNEEZYcBtLh9Nq38N0Ir1q1VcJ9B9+0STrLRJ4i8B1qXgmvNkVaCUmjNmmcoFJIhgN8FPWwRikMib0Z4nKDdOksSbeFSGoVCE+hXJUVanNwEo3jC6pSxp+Ypjyzi2q1geOX8f2ANB4wSBNQirGSy0275xjefifpoMvqiVcQk4xWn9puvmYf1dRkmRAyeqBVXswNkynImfsns5jk0SUoW2lB0BitcTwX7WicrMSGkYQkShDfZHOIts9PIpRL/7laZ0reTe7wNmNtbY1ms8n99/4vwtBn6+vt0vqZZPn2b/lmVpf+rMgF7WXLfy7Jlq/a1PC/4kbnk81bSu3d/sim/r0XA2Bzf9+uDthbk5WJh1Gft67+Lx4FF/5M5qX5/ye3jmz+/4J3zzsMODMyt+mtlphLDHrZrBW9G/luCu6VC79T2UwHlT3Ao/itXKkbtdvcJclS/N/q59TW8X5BB7MdTd76mcitcJv6sfmUrUCauSmzziqlslUrNo4tt8xl/Rmlj+ffM7qGTRavfOU9+lmz5Xvs/dms+W6VxdZ7m01Q2ScvvFtKyRaFetOP5L9k4xtG/d18YzZ+a2Mqe6c32kbf7X2TzWcuuj95Z2xcx4XfnQ86dYGYLt2Hi/P3tv6+bXTxr2/ITY3aXGrI5LI0Yi0Z25E4SfjC/36EVqtFo9F427ZXpIJy7Ngx9u/ff7m7UVBQUFBQUPD/wKlTp7bs5XcprkgXz/j4OAAnT558Rw2sYPvQbrfZs2cPp06dol6vX+7uFLwLCpldmRRyu/K4WmQmIqyvr7Nz5853bHtFKii5+bLRaHxbC/LblXq9XsjtCqOQ2ZVJIbcrj6tBZu/WsPBWiYMFBQUFBQUFBZeNQkEpKCgoKCgo2HZckQpKEAT89m//NkHwn0tZKri8FHK78ihkdmVSyO3Ko5DZxVyRWTwFBQUFBQUF395ckRaUgoKCgoKCgm9vCgWloKCgoKCgYNtRKCgFBQUFBQUF245CQSkoKCgoKCjYdhQKSkFBQUFBQcG244pUUP7wD/+Qa665hjAMuf3223n66acvd5euWh566CE+8pGPUKvVmJ6e5gd/8Ac5cuTIljaDwYD77ruPiYkJqtUqP/IjP8LCwsKWNidPnuSuu+6iXC4zPT3NZz/7WZIkeS8v5arl4YcfRinFAw88MDpWyGx7cubMGX78x3+ciYkJSqUSt9xyC88+++zovIjwW7/1W+zYsYNSqcSBAwd4/fXXt3zHysoKd999N/V6nWazyc/8zM/Q6XTe60u5KkjTlM9//vPs27ePUqnE/v37+Z3f+R02J88WMnsb5Arj0UcfFd/35U//9E/l5Zdflp/92Z+VZrMpCwsLl7trVyWf/OQn5Utf+pK89NJL8txzz8n3fd/3ydzcnHQ6nVGbe++9V/bs2SMHDx6UZ599Vj72sY/Jxz/+8dH5JEnk5ptvlgMHDsg3v/lN+epXvyqTk5Py67/+65fjkq4qnn76abnmmmvkgx/8oNx///2j44XMth8rKyuyd+9e+cmf/Ek5dOiQHDt2TP7pn/5J3njjjVGbhx9+WBqNhvzt3/6tPP/88/L93//9sm/fPun3+6M23/u93ysf+tCH5KmnnpJ///d/l+uuu04+/elPX45L+rbnwQcflImJCfnKV74ix48fly9/+ctSrVbl93//90dtCpm9NVecgvLRj35U7rvvvtH/p2kqO3fulIceeugy9qogZ3FxUQD5+te/LiIirVZLPM+TL3/5y6M2r776qgDy5JNPiojIV7/6VdFay/z8/KjNF7/4RanX6zIcDt/bC7iKWF9fl+uvv14ee+wx+e7v/u6RglLIbHvya7/2a/Jd3/Vdb3neGCOzs7Pye7/3e6NjrVZLgiCQv/zLvxQRkVdeeUUAeeaZZ0Zt/vEf/1GUUnLmzJn/vs5fpdx1113y0z/901uO/fAP/7DcfffdIlLI7J24olw8URRx+PBhDhw4MDqmtebAgQM8+eSTl7FnBTlra2vAxo7Thw8fJo7jLTK74YYbmJubG8nsySef5JZbbmFmZmbU5pOf/CTtdpuXX375Pez91cV9993HXXfdtUU2UMhsu/L3f//33Hbbbfzoj/4o09PT3HrrrfzJn/zJ6Pzx48eZn5/fIrdGo8Htt9++RW7NZpPbbrtt1ObAgQNorTl06NB7dzFXCR//+Mc5ePAgR48eBeD555/niSee4FOf+hRQyOyduKJ2M15aWiJN0y0vRYCZmRlee+21y9SrghxjDA888ACf+MQnuPnmmwGYn5/H932azeaWtjMzM8zPz4/aXEqm+bmC/3oeffRRvvGNb/DMM89cdK6Q2fbk2LFjfPGLX+SXf/mX+Y3f+A2eeeYZfvEXfxHf97nnnntG9/1Sctkst+np6S3nXddlfHy8kNt/A5/73Odot9vccMMNOI5DmqY8+OCD3H333QCFzN6BK0pBKdje3Hfffbz00ks88cQTl7srBW/DqVOnuP/++3nssccIw/Byd6fgXWKM4bbbbuN3f/d3Abj11lt56aWX+KM/+iPuueeey9y7gkvxV3/1VzzyyCP8xV/8BTfddBPPPfccDzzwADt37ixk9i64olw8k5OTOI5zUTbBwsICs7Ozl6lXBQCf+cxn+MpXvsK//Mu/sHv37tHx2dlZoiii1Wptab9ZZrOzs5eUaX6u4L+Ww4cPs7i4yHd+53fiui6u6/L1r3+dP/iDP8B1XWZmZgqZbUN27NjBBz7wgS3HbrzxRk6ePAls3Pe3ez/Ozs6yuLi45XySJKysrBRy+2/gs5/9LJ/73Of4sR/7MW655RZ+4id+gl/6pV/ioYceAgqZvRNXlILi+z4f/vCHOXjw4OiYMYaDBw9yxx13XMaeXb2ICJ/5zGf4m7/5Gx5//HH27du35fyHP/xhPM/bIrMjR45w8uTJkczuuOMOXnzxxS0P4WOPPUa9Xr/ohVzw/8+dd97Jiy++yHPPPTf6u+2227j77rtH/y5ktv34xCc+cVEK/9GjR9m7dy8A+/btY3Z2dovc2u02hw4d2iK3VqvF4cOHR20ef/xxjDHcfvvt78FVXF30ej203jrNOo6DMQYoZPaOXO4o3f8sjz76qARBIH/2Z38mr7zyivzcz/2cNJvNLdkEBe8dP//zPy+NRkP+9V//Vc6dOzf66/V6ozb33nuvzM3NyeOPPy7PPvus3HHHHXLHHXeMzucpq9/zPd8jzz33nHzta1+TqampImX1PWRzFo9IIbPtyNNPPy2u68qDDz4or7/+ujzyyCNSLpflz//8z0dtHn74YWk2m/J3f/d38sILL8gP/MAPXDJl9dZbb5VDhw7JE088Iddff/1VkbJ6Objnnntk165dozTjv/7rv5bJyUn51V/91VGbQmZvzRWnoIiIfOELX5C5uTnxfV8++tGPylNPPXW5u3TVAlzy70tf+tKoTb/fl1/4hV+QsbExKZfL8kM/9ENy7ty5Ld9z4sQJ+dSnPiWlUkkmJyflV37lVySO4/f4aq5eLlRQCpltT/7hH/5Bbr75ZgmCQG644Qb54z/+4y3njTHy+c9/XmZmZiQIArnzzjvlyJEjW9osLy/Lpz/9aalWq1Kv1+WnfuqnZH19/b28jKuGdrst999/v8zNzUkYhnLttdfKb/7mb25JxS9k9tYokU0l7QoKCgoKCgoKtgFXVAxKQUFBQUFBwdVBoaAUFBQUFBQUbDsKBaWgoKCgoKBg21EoKAUFBQUFBQXbjkJBKSgoKCgoKNh2FApKQUFBQUFBwbajUFAKCgoKCgoKth2FglJQUFBQUFCw7SgUlIKCgoKCgoJtR6GgFBQUFBQUFGw7CgWloKCgoKCgYNvxfwHj72SaNnY8uQAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import os\n", "\n", @@ -2378,10 +2390,83 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "572d824c", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Utilisateur\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\torchvision\\models\\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n", + " warnings.warn(\n", + "C:\\Users\\Utilisateur\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\torchvision\\models\\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet18_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet18_Weights.DEFAULT` to get the most up-to-date weights.\n", + " warnings.warn(msg)\n", + "Downloading: \"https://download.pytorch.org/models/resnet18-f37072fd.pth\" to C:\\Users\\Utilisateur/.cache\\torch\\hub\\checkpoints\\resnet18-f37072fd.pth\n", + "100%|██████████| 44.7M/44.7M [00:04<00:00, 11.5MB/s]\n", + "C:\\Users\\Utilisateur\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\torch\\optim\\lr_scheduler.py:224: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "----------\n", + "train Loss: 0.5780 Acc: 0.6926\n", + "val Loss: 0.4311 Acc: 0.7843\n", + "\n", + "Epoch 2/10\n", + "----------\n", + "train Loss: 0.4811 Acc: 0.7623\n", + "val Loss: 0.2616 Acc: 0.8954\n", + "\n", + "Epoch 3/10\n", + "----------\n", + "train Loss: 0.4060 Acc: 0.8197\n", + "val Loss: 0.2885 Acc: 0.9085\n", + "\n", + "Epoch 4/10\n", + "----------\n", + "train Loss: 0.3933 Acc: 0.8279\n", + "val Loss: 0.1568 Acc: 0.9412\n", + "\n", + "Epoch 5/10\n", + "----------\n", + "train Loss: 0.5643 Acc: 0.7664\n", + "val Loss: 0.2189 Acc: 0.9281\n", + "\n", + "Epoch 6/10\n", + "----------\n", + "train Loss: 0.3650 Acc: 0.8320\n", + "val Loss: 0.1691 Acc: 0.9216\n", + "\n", + "Epoch 7/10\n", + "----------\n", + "train Loss: 0.2907 Acc: 0.8566\n", + "val Loss: 0.1891 Acc: 0.9281\n", + "\n", + "Epoch 8/10\n", + "----------\n", + "train Loss: 0.2651 Acc: 0.8893\n", + "val Loss: 0.1664 Acc: 0.9281\n", + "\n", + "Epoch 9/10\n", + "----------\n", + "train Loss: 0.2797 Acc: 0.8852\n", + "val Loss: 0.1949 Acc: 0.9150\n", + "\n", + "Epoch 10/10\n", + "----------\n", + "train Loss: 0.3902 Acc: 0.8361\n", + "val Loss: 0.1805 Acc: 0.9216\n", + "\n", + "Training complete in 2m 60s\n", + "Best val Acc: 0.941176\n" + ] + } + ], "source": [ "import copy\n", "import os\n", @@ -2565,20 +2650,394 @@ }, { "cell_type": "markdown", - "id": "bbd48800", + "id": "b0afce78", "metadata": {}, "source": [ "Experiments:\n", "Study the code and the results obtained.\n", "\n", + "*The maximum accuracy has been reached during epoch 4, with an value of 94.1%.*\n", + "\n", "Modify the code and add an \"eval_model\" function to allow\n", "the evaluation of the model on a test set (different from the learning and validation sets used during the learning phase). Study the results obtained.\n", "\n", - "Now modify the code to replace the current classification layer with a set of two layers using a \"relu\" activation function for the middle layer, and the \"dropout\" mechanism for both layers. Renew the experiments and study the results obtained.\n", + "*I downloaded images directly via google to form a test set (10 bees and 10 ants) :*" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cf3a0e55", + "metadata": {}, + "outputs": [], + "source": [ + "dataTest_dir = \"data\\BeesAntsTest\"\n", + "# Create train and validation datasets and loaders\n", + "imagTest_datasets = {\n", + " \"test\": datasets.ImageFolder(os.path.join(dataTest_dir), data_transforms[\"val\"])\n", + "}\n", + "dataloadersTest = {\n", + " \"test\": torch.utils.data.DataLoader(\n", + " imagTest_datasets[\"test\"], batch_size=4, shuffle=True, num_workers=4\n", + " )\n", + "}\n", + "datasetTest_sizes = {\"test\": len(imagTest_datasets[\"test\"])}\n", + "class_names = imagTest_datasets[\"test\"].classes\n", + "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "b621b35d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy on test = 0.8999999761581421\n" + ] + } + ], + "source": [ + "def eval_model (model,dataloadersTest) :\n", + "\n", + " running_corrects = 0\n", + " \n", + " for inputs, labels in dataloadersTest[\"test\"] :\n", + "\n", + " inputs = inputs.to(device)\n", + " labels = labels.to(device)\n", + " \n", + " outputs = model(inputs)\n", + " _, preds = torch.max(outputs, 1)\n", + "\n", + " running_corrects += torch.sum(preds == labels.data)\n", + "\n", + " # print(preds,labels,running_corrects)\n", + " return float(running_corrects/len(imagTest_datasets[\"test\"]))\n", + "\n", + "print(\"Accuracy on test = \",eval_model (model,dataloadersTest))\n" + ] + }, + { + "cell_type": "markdown", + "id": "e6969c12", + "metadata": {}, + "source": [ + "*Accuracy dropped from 94.1% to 90%. This is a small drop, perhaps due to the small size of the test set.*\n", + "\n", + "Now modify the code to replace the current classification layer with a set of two layers using a \"relu\" activation function for the middle layer, and the \"dropout\" mechanism for both layers. Renew the experiments and study the results obtained." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "87c73482", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def train_model2(model, criterion, optimizer, scheduler, num_epochs=25):\n", + " since = time.time()\n", + "\n", + " best_model_wts = copy.deepcopy(model.state_dict())\n", + " best_acc = 0.0\n", + "\n", + " epoch_time = [] # we'll keep track of the time needed for each epoch\n", + "\n", + " for epoch in range(num_epochs):\n", + " epoch_start = time.time()\n", + " print(\"Epoch {}/{}\".format(epoch + 1, num_epochs))\n", + " print(\"-\" * 10)\n", + "\n", + " # Each epoch has a training and validation phase\n", + " for phase in [\"train\", \"val\"]:\n", + " if phase == \"train\":\n", + " scheduler.step()\n", + " model.train() # Set model to training mode\n", + " else:\n", + " model.eval() # Set model to evaluate mode\n", + "\n", + " running_loss = 0.0\n", + " running_corrects = 0\n", + "\n", + " # Iterate over data.\n", + " for inputs, labels in dataloaders[phase]:\n", + " inputs = inputs.to(device)\n", + " labels = labels.to(device)\n", + "\n", + " # zero the parameter gradients\n", + " optimizer.zero_grad()\n", + "\n", + " # Forward\n", + " # Track history if only in training phase\n", + " with torch.set_grad_enabled(phase == \"train\"):\n", + " outputs = model(inputs)\n", + " _, preds = torch.max(outputs, 1)\n", + " loss = criterion(outputs, labels)\n", + "\n", + " # backward + optimize only if in training phase\n", + " if phase == \"train\":\n", + "\n", + " # Vérification les gradients\n", + " for name, param in model.named_parameters():\n", + " if param.requires_grad and param.grad is None:\n", + " print(f\"No gradient computed for {name}\")\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " # Statistics\n", + " running_loss += loss.item() * inputs.size(0)\n", + " running_corrects += torch.sum(preds == labels.data)\n", + "\n", + " epoch_loss = running_loss / dataset_sizes[phase]\n", + " epoch_acc = running_corrects.double() / dataset_sizes[phase]\n", + "\n", + " print(\"{} Loss: {:.4f} Acc: {:.4f}\".format(phase, epoch_loss, epoch_acc))\n", + "\n", + " # Deep copy the model\n", + " if phase == \"val\" and epoch_acc > best_acc:\n", + " best_acc = epoch_acc\n", + " best_model_wts = copy.deepcopy(model.state_dict())\n", + "\n", + " # Add the epoch time\n", + " t_epoch = time.time() - epoch_start\n", + " epoch_time.append(t_epoch)\n", + " print()\n", + "\n", + " time_elapsed = time.time() - since\n", + " print(\n", + " \"Training complete in {:.0f}m {:.0f}s\".format(\n", + " time_elapsed // 60, time_elapsed % 60\n", + " )\n", + " )\n", + " print(\"Best val Acc: {:4f}\".format(best_acc))\n", + "\n", + " # Load best model weights\n", + " model.load_state_dict(best_model_wts)\n", + " return model, epoch_time" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "5740c727", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "----------\n", + "No gradient computed for fc.0.weight\n", + "No gradient computed for fc.0.bias\n", + "No gradient computed for fc.3.weight\n", + "No gradient computed for fc.3.bias\n", + "No gradient computed for fc.6.weight\n", + "No gradient computed for fc.6.bias\n", + "train Loss: 0.6962 Acc: 0.4959\n", + "val Loss: 0.6802 Acc: 0.5686\n", + "\n", + "Epoch 2/10\n", + "----------\n", + "train Loss: 0.6932 Acc: 0.5205\n", + "val Loss: 0.6792 Acc: 0.5556\n", + "\n", + "Epoch 3/10\n", + "----------\n", + "train Loss: 0.6899 Acc: 0.5082\n", + "val Loss: 0.6796 Acc: 0.5621\n", + "\n", + "Epoch 4/10\n", + "----------\n", + "train Loss: 0.6936 Acc: 0.4754\n", + "val Loss: 0.6798 Acc: 0.5621\n", + "\n", + "Epoch 5/10\n", + "----------\n", + "train Loss: 0.6913 Acc: 0.4959\n", + "val Loss: 0.6803 Acc: 0.5621\n", + "\n", + "Epoch 6/10\n", + "----------\n", + "train Loss: 0.6941 Acc: 0.5164\n", + "val Loss: 0.6793 Acc: 0.5556\n", + "\n", + "Epoch 7/10\n", + "----------\n", + "train Loss: 0.6946 Acc: 0.5246\n", + "val Loss: 0.6775 Acc: 0.5556\n", + "\n", + "Epoch 8/10\n", + "----------\n", + "train Loss: 0.6889 Acc: 0.5000\n", + "val Loss: 0.6804 Acc: 0.5686\n", + "\n", + "Epoch 9/10\n", + "----------\n", + "train Loss: 0.6890 Acc: 0.5451\n", + "val Loss: 0.6795 Acc: 0.5621\n", + "\n", + "Epoch 10/10\n", + "----------\n", + "train Loss: 0.6846 Acc: 0.5328\n", + "val Loss: 0.6801 Acc: 0.5686\n", + "\n", + "Training complete in 2m 14s\n", + "Best val Acc: 0.568627\n" + ] + } + ], + "source": [ + "# Download a pre-trained ResNet18 model and freeze its weights\n", + "modelEx = torchvision.models.resnet18(pretrained=False)\n", + "for param in modelEx.parameters():\n", + " param.requires_grad = False\n", + "\n", + "\n", + "# Définir une nouvelle tête de classification avec deux couches ReLU et du dropout\n", + "modelEx.fc = nn.Sequential(\n", + " nn.Linear(num_ftrs, 500), # Réduire les dimensions à 500\n", + " nn.ReLU(), # Première couche d'activation\n", + " nn.Dropout(0.2), # Dropout avec un taux de 50%\n", + " nn.Linear(500, 100), # Réduction supplémentaire des dimensions\n", + " nn.ReLU(), # Deuxième couche d'activation\n", + " nn.Dropout(0.2), # Dropout avec un taux de 50%\n", + " nn.Linear(100, 2) # Couche finale avec 2 sorties pour les 2 classes\n", + ")\n", + "\n", + "\n", + "# Send the model to the GPU\n", + "modelEx = modelEx.to(device)\n", + "# Set the loss function\n", + "criterion = nn.CrossEntropyLoss()\n", + "\n", + "# Observe that only the parameters of the final layer are being optimized\n", + "# optimizer_conv = optim.SGD(modelEx.fc.parameters(), lr=0.001, momentum=0.9)\n", + "optimizer_conv = optim.SGD(\n", + " filter(lambda p: p.requires_grad, model.fc.parameters()), lr=0.001, momentum=0.9\n", + ")\n", + "\n", + "exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)\n", + "modelEx, epoch_time = train_model2(\n", + " modelEx, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=10\n", + ")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "bc0c9b8b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy on test = 0.5\n" + ] + } + ], + "source": [ + "def eval_model (model,dataloadersTest) :\n", + "\n", + " running_corrects = 0\n", + " \n", + " for inputs, labels in dataloadersTest[\"test\"] :\n", + "\n", + " inputs = inputs.to(device)\n", + " labels = labels.to(device)\n", + " \n", + " outputs = model(inputs)\n", + " _, preds = torch.max(outputs, 1)\n", + "\n", + " running_corrects += torch.sum(preds == labels.data)\n", + "\n", + " # print(preds,labels,running_corrects)\n", + " return float(running_corrects/len(imagTest_datasets[\"test\"]))\n", + "\n", + "print(\"Accuracy on test = \",eval_model (modelEx,dataloadersTest))\n" + ] + }, + { + "cell_type": "markdown", + "id": "7c9d9b92", + "metadata": {}, + "source": [ + "*Accuracy dropped dramatically, it is below 50% for a binary test. There is a problem somewhere...*\n", "\n", "Apply ther quantization (post and quantization aware) and evaluate impact on model size and accuracy." ] }, + { + "cell_type": "code", + "execution_count": 44, + "id": "b66dcbf6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "model: fp32 \t Size (KB): 46004.72\n" + ] + }, + { + "data": { + "text/plain": [ + "46004720" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "\n", + "def print_size_of_model(model, label=\"\"):\n", + " torch.save(model.state_dict(), \"temp.p\")\n", + " size = os.path.getsize(\"temp.p\")\n", + " print(\"model: \", label, \" \\t\", \"Size (KB):\", size / 1e3)\n", + " os.remove(\"temp.p\")\n", + " return size\n", + "\n", + "print_size_of_model(modelEx, \"fp32\")" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "24244338", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "model: int8 \t Size (KB): 45088.402\n", + "Accuracy on test = 0.5\n" + ] + } + ], + "source": [ + "quantized_model = torch.quantization.quantize_dynamic(modelEx, dtype=torch.qint8)\n", + "print_size_of_model(quantized_model, \"int8\")\n", + "print(\"Accuracy on test = \",eval_model (quantized_model,dataloadersTest))" + ] + }, + { + "cell_type": "markdown", + "id": "eb15b96f", + "metadata": {}, + "source": [ + "*Neither the accuracy nor the size have changed much*" + ] + }, { "cell_type": "markdown", "id": "04a263f0", diff --git a/hymenoptera_data/train/ants/formica.jpeg b/hymenoptera_data/train/ants/formica.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..af83327233be73099c700fce654749842aad4a9d GIT binary patch literal 7858 zcmex=<NpH&0WUXCHwH#VMg|WC4+e(+w;7xnxY*e_*x9%^I5@buxVZTw1o(J)`D8`K z1SOQ^RaKPal@!&q&GpqZO*9pi3>*zjEUoSA>{Rt!Je_Sk%x&$gL547LadY$W^2rDY z$XIJAX;_mC{vTiv<X~uGILOSX#K0uT$SlbC{|JK&0|O%~$h8bGz{bGL!phFb#PR<K zgS`L)BNHnVGYbbR3j-@F0|Nsi6Egz~tDvHgA)8~Muu@{7h?tRaP~*gf>`ogmeh^hY z_)sNj(x#89CZ^6s|Bo<8F)}bQGcv-=2GJ}`%&d%T|Bo;j3NkP;F|sf+GcmJ+j0PFb zz%0ljq-ZFt<QT}BxbWZy5oM#oi5nj}IX7PX`2Q9I4>KbJlOVGogFVBg?9z{Fua>G_ zO%HxAo}Vl({Wy8&@gF~*_hyt@#U|$a``TJ{_G~x%)OF<n1A~a?P6Y<Lz|}UNn=-Fo zy|1^{HT<T_JH@LfJ+8g%3tsMeqkLCbdCn*0XUgZVf0eemnb&i4eax{t^LkEJ=y&w8 zEerT4*J<Pww`1SrlkpYTCtT_IvgzqEDetqpn%}1A2ukc1F1T}__ll^l!CYTWFP&Xx zh060APwZ&QV|!$3(daR&c;Aix3~iBWPipM9n66o3A%6Az`PXkHuZHfe+4|eR^q%1S z2QR<9-ZEwFO_m8BVIi0N9>xYgKK-6;%g$A)MV@?9mR`FnE%;4IPeuKr$;Ih2w+Uv? zc_s6}YOV8(hnmZ^u1s0^%6RqWH_KI<&w9%9zvQ<3yU>w+;>ABbYjZwpoKG@5Qr|Y| z{K8-nA?fPb+~I|BvGyKk?@up_yt?6cR^}CHO>W<g?eR-;ubk?V<D8LtV2OT`5l7pP z>1`<%^ZX<J-MPeGc%-NQj_a@3Lb>VRrd?d4Rd&<RK(}tezuCug=Wpn|8fEiTsxqj! zw?(H~OIjzs@VAS@q}=Y$_n%9>I@soNE5_i&s|sa?p5psYc`PhlT2-R!*WHd&-og5_ zq3Xzz7`M*7k58)IzGo{}XLx>&Q0M8{4-V};xbcX+s@j_`w~Nj!0AQVZ1()iRsv z=RHL+?sTW3r@dXE&?~-6l@sqU9yHn_d`-|!O?093k>%-Zs}IjvyXu~Jzu39tZSVf= z6L9ib7Wzsg^2xd2<@2V_@R0p>HP`9EjovAGY`h1z<nC{;?^N$hJ=5xvx$^YlplMTX z>MIDCK4!Sn-MhK)LPFckZab;jMc$p6pLz71S`G#IHojZ>>*Ei@^L)V}t2zJa)!R zTdL+~F{p9QjN8&I(^4j)5#W?8QuRpPds1<x&Y1<@ZwG8@{P4?l&+etu*%s)Y;fZm0 zF1BdarKvBAdryW)?VB`b=M#ssd;UCPnJ#)|?w3llCy^ni8$|XSY`P_4r!Ysz{Nsmy zqg%mQ@7E;1NfXZ8(_F<<yYQ{oOrLduX)3F-ymMb_XQjIE9dw9$>Yi_Jaab)i+;47t zs?nw2>>jz_LhnX;-c>V|%rbfw!ymTF@4VV~9)+@;+Y3Fu?JN8FS$WQq;MXSGUamiF zbTLyb-HCyrh<Ry;z_s}yQ~KqLUYT--FPL+%PvVitwUkL=PHHz9tR{X7XgZns{_V=; z?gc%~6TkdA796=a<cHHDwOi4>+v^^`UG^f-eyYdQ%gY^4@mQ4Ynsr+Du4Y=sBq2sC znQfj<{dTG9%Ez?!`#65Od}{t7r(gDWR!>O2yk+Z$CkN*&U+T4FXVL4Lr&lVw>*6nQ zWKNb{z-Lm*`?aX6Yrfd!6=%N{tLmNE#ptuCw~<{us6$ctiN8aF;i;pVKWD0Ge)0*C z;bvHuny1;a)@72wq24tUN}ATbEwb`kt9{S;>-TBF&i9zj<>y@d(H7KhuG1XDvyf|l z`pU4V-t{HXDnCmbPX1>&91yLSC=?VzX`%zOA;r|2d>v;5R;xvTr^#b?o3zDvB$ zuJrOxJ9%Y}NYBKQzT^WD#a)_q3TrMtyJ&c8$D7Uj?|7xjXt88%ytK%xk<05?mGiOL z+6Uba{^7a0+&^iVc3z!bLeH0$t9GeDn~Pp2etGV6tmc=z;U%7w3hVYCeT~}o3a>Bq zFWqa*c|~NxmUq7Y_JwudT3Q#iS0y;`;gOl83)oIQ6TY=JUG{?T-EiCEdK=_g_8wm6 zvs>BZ@t5b9Z`!rq<oBLhtrg|?OCv_+-f_Xywreqb9N)hgnQiSes8!>&buZMMS=v6k zc4ukS<6TSp7Fyr_d$j!WQ}#XFdY9*Su)1>cdTx29U%)q4K6=Fr%}4!*CABt*T6=0t ztGjn7h)JZz;jjBWz0Yqg>}CElJX!fZq_!<3<mJ)JuXubHe4iB&=El)GZN9Z~+|q4} zrrpgw!mveyl_7V6OY&B&n5SBWL7Ug;E*C!W#yz02Ut;@1JJnFZuS+j%mk8MDRpdVX z^Bmo^mw#Tct?gS{HLK?2PHS23cdCEvIh>wrtX<Kc8T4c8+DY?oF)v;5mGfof%$bp{ zHdj{HE`H@HdnE2w$Gz+9d2L*C)?NQ`D&_LZoSBuebG&2}Sl*V4pUJ-~edEC`y)=8i zdsCObS{^DJa`W37rs$yZOG0MSd6n*(TUR=4-)?{V=ZUN3olbY|{M$V<Pq+S(80%-b zXQrBmwyJwgsXp-N_#Bfwe%r@xwpI)0)GCF_{AYM=BprQ8`ai=C7Xv-xirMZ*(_H4< zOWgmvrARn$ft7PZ{2cictKN2;dlC1e@>sk7cP9?d4GW!`gpHPdFy#t!^-7D`Yjdk> zURlz)9lQS}{%7dh^I6o!@o?|?rJk{uUgh50Gx479E(z`Fr9qpeCQV#vuBrT4<<lp_ zcZ&`MY?~vQ`lkP<zq4HB8XcR4Uo8jBBmdMr-obph*tA`XFGx-0-i*>ES#JdxcQIZP zarbHL{?xQA?6Duq4lxs%ra8@Z1!tWm-uhN7^y*9HG|yoDC8-i8Y=hi5p79u{$7pHP zF1q~qcK-9XDxW={o}bwIl`-e=ii6)LY+1W+tAyRBUrAwMTQ!!Y3ABs2b_B5K+S%DE z>&>4u^Fh_^HK)%g7QNpRHtml2g*o4+u=)0}$MiT(4esFS*;u_*c4O=%x99TJZngG- z?!sr!ojI%d{?+6@h0}_5uRS*K-Y&@T+;?40&7?%@%#!W#_x~LKl673=t7dfcWT(XA zmp(sTcIB0))FF|O*(>W<X2*P1u9)aKS(snd|4e7et+!MAE4;Qmeo>irBuVA$jytpa zf>rNa*ST~_mgC*8po2TL>}1v#SaKiXY~5?{pwLU*i%CGJpoMpm7305rsh_hRKg-?{ zHCJu5gR`+#sb(gZ!@NSPfLEQHCW#c*Zrs9gWk#aD&z@t8rs!lvr%N8HeDqYMU-_Db z=2ffRL5F&EP5v`1_R+f6b9c?^2_E9&Opl&jEO=}9tC(@--OQQu)3;9Jl5)7PN9EI% z)y&xs1oUUDyXIgxvy@M}X0qH;-*s`B+NG(E3W{5G^6Olli)}b}LohpN_H@-{5zDr4 zzirh#tG;F5BBuNgP5ycbxjQx#SoKEwuAQ*fO#Y|XhfbdG3#*!V?wsz=+!^#$t~Ru= z`!Sn^<hBRpQoE+y-|<!bV${FMp><2z?i3m)Zw}7Lb@eb;b%}_&F2Qo|UU)Cx^bo1Z z>qEC+S`bv1(0wdr*X-_`ZAY$27Ti3R*Rtw?bf!Z3`YRQ8jE`_nT)wRE%T9}T3uJ?) z=P;gG_3X)QxwP9iwO^?2>8ee>edF&kv+XaR{%5ETFX-<-&U>!l&*{yp6V7g!AmJo3 z;oH{V3dIZ)pC<Tg9NjIlFmbl1fX-SAt^W*h@~>3=?cQ8|f9}i<?spa;yMKGB{bxw* zspR<Xk-D=r^@zCG;=2($1Mk$$Kik*q-S~a(s{IlNTjuB<@mgYZrD>&yj!;NUt`}F- z#>ppcXaBp_?A0#nabfP%!Y?)}Ihz8OuPr*<Y!x!`)J+!Q^AZg={iI5kOi|D@zr(~K z%lT*7&D#@iUGKb;=v7iszr=3S-Q`hE0h>aLoEmppOLN~pe@J_?cd+b@=g;(0MQ_|Z zBKzo8%I-NSJ1fN_b*^y5re+3c>^dHJVnywPxWx9<dBOTymd(w186~0<l=O0DWZToD z7xrC?`PQMyFy;1)563lZ9@mNFcc=tLEnTTyu}y^AnO}YReE%h`Z$3;7d;QFJjc9Jz z>t~z=?!1?N%-s3YbNRI+uY_7p>j=1R5-pkg)4BMMdeFl@mC1R9Ykg);JDk6yJoKLQ z7d!U%0u@QiGUhny8f}Vp+jsUtrOJc*C!Rl*UbI|AOUB+%-|V)ZCePF@OTRY;Icf&j z=CL^33i`X`L)D)n%@HTdI3N5u<t4sPu5jVyzc+e5wZ3nklTq@Yp-gedli6G%8j4KQ z_2%95+p;t-ICZts?I-VyckJ=ZoLRXn<n(dB4LY+URK5zBD@W<|`dVE%&86zP^`>K- zZT`PSA3IOgTs_<!v#F1vcu)7O8)1LV`z@Aj%WwWrF|U?`_r!mOW@TTmGnb|b{M62k zaNa-t^dX74%MC-PbLP5kpZIRB`<5oxeMxuvlpdAt+~WBn==Q9{gSpz`o-%6|ZoI87 z+3+Ro)|9!y{2H6Qb}#v@bzZgZTgTS?;8e%sN2X3~xVa+vEz6IlsbS8ir&VrRKAWZO zlI^29wO`MtJ^FJb=z_FY_8HxGk5ac<taa#)kUjQ$#<l0Fk&h(9W>zZfy2zb+@TY%( z3%{wdm+19bt9*=Fmj!ycPT>sQB(#*b_44`Jmdux>TE{bFe0fcuPR~;-Te|Jf={`{n z(H%>Le9!s67XR{-%V_DPH&@;Tr)n-0xM$T|<ncN?SLE{-_N5czyv`i1Ib^$JzQ})u ziG@$)GVk?tPMh*%mzt#Cg6N<QZWih8Pp>O74{WW~?RZ^v{ZitRtzi=tSDJL1p50Xt zsCF~VCdU4qO6cA7A8mT(G|Sjci?}9o>zPiB(;g9zOLJr<7C+=IcyoE(n$w;;7IlA5 zy}K!7;%Tqerhi8s3;62%nq9%pG%<O?>h9-rQjBG-KkWQHdFHfl6*?y*?Nts)P3H+& zGN;B*(RRzuEAO65PgR+nb^j3i?WN~K)x3?2R@Zt+UNC6Pp0qT_>_3BK@5iL5MF+pM zDC}yvG5P1@e~V^@EnVZiP?MKuo6u~&@Z;wsb2HbZ6wkOiKPY!@%9*M;OII!zI-HuB z%KCI-l9T?_sPAS6&7M9KfAdY$QZm!lm}g~vgw3y@CEVsK6c$9fXSZ7=>Au`!?m6WV z!{I)&1<UTM&aU>=VPN~dLu!w1?k1&mE6yC}xjcXI>fm0TwKpZFsKoA`;IZ$qrk~@D z6@oKLqNaVYR_-|eHg!Y8gNYMaw1O@RZC0Irvv9ShOE%k)_=3uwo+D|o(QYSI&F}R7 zXPE8sYs$^pUZy&)^BLsA@6`5$O{|Icy!GI)hM(m-f0e%K)-8Gpv!(?Fh<MpCP276W zX2IKiY7b8xU-02??u2!BW;X4Oy%zq)jFavAN%Ny^^ESpi6o2@&)i*VG#e~IILhgSr z*%jpxU}nZ;l~dsM!8ZP3=BrxwUsqaAn|3NZh@3GwpkVn7EvCoMw?`*g=(7B3Q*~Ka z`AG8Y2cFexXQkJwhB1ip{8pFqk~icl*mP#Ka7gLS6-N86>dubcvg*74Nr%5lw!+;L z{%mx)ee(LP#<g2+@A2a*u959sJFn6(^w8C^<vU&#<;7Y_&dl}X6yNBvb?V$r`k!03 zCYPpZuk^h-@uPOd?-pj&Q+sVU_kB5>Dg9hq&bDsDd$vNs`O7T*YwPb%&pM&dxK`{x zgUr9cMY>CDZp{o}(GV=&?r~Z>#^ODHVaS|23wTf28wgF9|8K9`QOhUA8Ru6XT@dno ze)3P37aL+0?Y5ScD0TXN_?(GV{cgc|0ee4u?&X{R?ntihN;6Pjsb;=<NX)D&jzON5 z3OAZhai~~)%572AZ}Cx)7JM_i!eR3zzt^E#cqUFg9M`dB_EhsvF@dR~(SMwcr-e-` zcx>!5{qd=+DM77!bvCV8oxAg{Vf2w2Z$(q}oBM9-pIK|}G{bMYNPg2IgWTK`I~zhp z7ao{0Wo0@8Pvdj`EthV+zpEK|YKn;Q?~<<9m%<~zOxE<(%_!P*%_A(v>1JN;v#5w& zPiNOGSbyM+UCe`ReY@7QS{4;enW=jD8h@_#V()HstF78v3OSsA7brz7__FEU?{W|O ziSegv7Ch=cw&g#AyHHnw_vE@qmsd`ezF&Mk_xQw)I0-)S{w@010;z1NJg>8pWB%;V zip;s0Q6TU-j!XK_AH^+7K`YB;Hv3I{AKbj%@ce%U%Vy1KOP-&a@<Kz(<aN%Z*=axb z9<aRq=fIoe+)A-emN{N{mBaB~l)EqdPVp~S&Z3Fu*+OQuCZ1=jnmB9b;*IH(WT$Cu zC=^pvyL0TN{W&N7%ysLQ+H|(=c%F2VK{k?epTn;iZ1eK!e6OmN&VRF7-1FW1+ljJE z3T2-1UVO7xXYr=aE3ChMq;Z=(JEGIB=5@<_Wy+JYRau^2Pk-C8{6LUs!R@&=J8O?m z3B9yx|5e$di9xwO=eBW85YrK{TJrh+l!((CEw-iJO?_$F-VmIf`e;G^#v2jR4-T&n z;@RvK8o6<ag^c&h*u&ZP9z5t5{(8^YX(Nl#e}>Mv&0E?c=NB4(o?@pmWp<!uaK<kG zBNIFVe#!4Yr=xZGQfQ^WYelz4R%&ut=gWtacr1@?tz@5Y*HFXQ`0cK#+ZQlRxxcGa zZkr0@wPTFWmd){be6n=It-~#vjEag}d(Sr9i2KoNm32RAUPs^6fUTmln^Zhk23<bo zbZqL9?;SUObhIrCnS1o@sf$T*dULhUZk$uIf3{1h%IE#j-Nz<P?o0l6=hzc*otek> zn(9jyEWA~w#h7U8dQklN+_xE*pJe%bShTWd!;iYDwkuUX+}Nnnt8zQBNdLT+&05LE zM6HcxT+b|BC$B$a>hvY-Ze;d$zNK5cU&MBKdbKN83w}NlTw8tO;Nv@9xo&mF$9J^b zI38?Ey?X9qnCfz-ske;8Q+D`0WuLUO#OCdcB@e!b`p+#i*5I`XUz$-6nW^-EyXgK~ zwkf+dms)aWE?N+1(6Tz<&vJ%-CJv>a-yF_(%$c6HSm()>Q{@}^GC89>PKDU*&Xs5n zJGE@J)$4a^8dr^0uKe}-z4~dNg}JhtyQZ*xxbkO}+RF9fu2*iAc7Iknwf~l;=6at~ zKCAo+7#^2hTDa-*iT>xtEZmB}QjSj1lZaY>olRr8UBEK^2s;PWQ11Ku78hRrd*fCK z&-|~JFQ1&~)XJj9YkWB5X;wg~?@JbjX`xB_Pe1=>s1CZ4aph%XWqYk!##-K~Cd{6j z`o0BP^GnE;t$4})PcOB6=lfmjc08AP8#hDhZoP-i70;hhV(Vs$Z<}&Gczy0nS)Cn1 zVt!$!GM}v7-S))B*FW#6sN}i#vd~ZC`OOV&PB!|yZpJEiqJCXIKkwtASL|DYR#&(r zP2N&;?G{Ix&$KyZA+M)Z=B_$+R9oqOh2oNr)tmZ_)TFOn%3bYyXiH!F>(kW^Gxn5d zH0YkwuDW<k!oz4akHM_PbDTX_oqF+B$Wu)A-q-$k*#%Z>rp=h4>#bvPsgF_8hrd;) zhv)CZXV0ch;yk;7^QCC`a?x#$6IM-({4yi@kWAoT$uB3)p3yXNnQF2-enZ^%*GoRj z^i>_}n{~UmBe+=8=X92bR))^9-w{oAi>D>?1V2o-Fw~kGF?-n#W-cxV_8qHlKfUmG z(d;j&x2t6251d+encaHIgR@%#UKo3^MQ&YraZ0PSRo_CjYoTwqeiKkU8pCPv>AIzl z+>|ZLUS~+_9r$AXXYrIc(+RVAw;DWOY~yF`ocNz1?EVt*jV8OxL#u^yJU>Vui;hj@ zGuPvPXzaV~(x3icGiF`dHdohTs@WrhB{~AZ58NK9o$`|0vPS9F1^p%O+^s8anciw? zHQTNyxzbzpX-ezrU5`^fd$rx!H$l_#N4=rae}-)D88Mew&!=q=dU0HN)4s6w%W>26 z5B7(z^=9K|<M2MQ(%UO{?$Pts|2{<eKD2*T@;vqLRGUjprZTJyId$89AD`v2>GrIP zb_Y`?1>g5%(fY~7p1l9V!6S=nXL=?otTksfJ1DShaoE8FQ(onlD(J90&^+QBFjXsr zd5zWL?0=ytwO<{R^+o<OWTt!NH~(UO_~$vZv5dB<=OcZO<vyyqAt4VZt1wJ>VRcyR zWq}x@V5RTetc~io6~yl5x^9<_<Ia{|8W)=wo0>2=t0c*4*QR@}FHXMObo=3!T@%+T z2WRcCRQddY?RHMSoXDda(<+y8$8Kd=bt7QAM*h~K$i(SEj_mXG?<B}iXrEV7C4AEM z*{SMX+u82t+ZD{MvHH(ov9wZ*=U4`G#30G|6s&RHpJ|&i8`LDX3(IbgS9|5*p`P92 zzR_8s+U2&|oyB3R3bItw@4ji~Ilc1sw&f!E$s3ptJxQ;hQ<2wk!u{W?7;Qx>31ybI z^Cr&vwcNR_!)|-x!I=pQ_H4~`_F}gTWQeG@kMJw_bxXs0ortL3agY7wkL0Z%A2JO* ze2J4!WzX+cmx#tC5j^pB1<${%@>!7Uclm3UZ`YOG&u6VYch^v~x8CB!9H~F^SdPtG zw(a73A=d3GY0|EyFI!(uNqyOrJMEU1{E|G^RaGJaN7gKKnq;zmlgG~6;@wfzdR75} zOQohbFmAbZ=rQ}u{kL@2N1ZEcWL{@^OMGUdc1uO8#`V8)8EQ9F#r9Nw4cax`L~G8L z70*ru<=B1vVz|iCC}-!=?%7W*cHX=BuV#_`DxQ^h-HL;befRy(aQ>W1{*`L|*S}77 zzq5Zi<G>%wbu$Y-UDdj<L6NI`Pd<-+!>hAvmRKB~X0}VDY)@|fhgnQHouB4%n0ZC9 z=WVw>nsS``%oLUF0rNDqt~A^VnB2Smiu|)A-MrN{`a+v)AADjtw%j6YwdPdA_5T?T zo(cb@a#`hdqQl!H<%pF9cM~5xPqwvkV(@C7#kzjSPC4bLOvZPNBT{3RO`pQR9yP`6 z#vS=*O0V80*%r=P&tvQ2XtbM2#*uwtx0k;_h^DvyVxOsI=BbxLnos9NynHD4EG4Zm zX#QlW-jfHm{%1JjqP$t{jd}KyD1B=k37d|CT#wmjF1WbkRa`2g@YyP(qm2Q(Cal}} z^mEh9sOJ1lBBx&#TE8#+^Zav9=F)9TmntrrTz{gju-tEE$WE^bzb<)-v;El_Q+)oE zk*U1D<Eu4~(xVsnU3ipv-c;A@rm#<YQ^U8T=YDLIWVb)#yw+=FOIGTmB}*Py?D@}d zb^A58Ct0s_RXr-T_m!-8!f(6&&z|VhS1ztGTPh~LZ))yuiIWL0UlvX@zN@poZE|`_ zV912J(5zsqx2fi>TeeIH+W3gCE<iFk*2(v|MPF2m;>{$<wWrKCh5n3Xo)t2=VEuQt zj+wrfi-gz;44*%gEmeKBTQn`++t_E*vM>(YDVO+8mhf~-PjG!(yVH4=clOhWk9wCQ zBdv2RgmwibdF@oXy=KoO8UJtBKg_OHQ`&pmTlLr+DNj$f+pfBShYx*q(<%zm_dI!J z+ESn3skyqkYDaz6l!x$nNLVK@=~fyCPn)-N%VRCRvb|6Alk-15m9Ywo4pCQ__gvn? zb%B1|#apnf+4HNZDVF`1i6&#(k*ds{YEG?O9A3ND%u0*Wj4EZE_?*c&qb#t}>5j+K zRo8!4IR5V75)8HU@xK1<s95H!El-auJEgthX$z~U!%e9rr#jfndDqu|P;Oh*+SHyh z>2cOw)yNMDw;mi+-eWgueVWwQN_(C#lM+6sQ^zJvywLdTo>NEaaprQXpoiBSY}R)_ zU*qBP=#nGvjaOHD(ztBn{10<qee%cf^5P|P9(iurYIstpQ^wKm=B}9Hxd%fJ?r&Y> z91|U!5y7(R(BXhRQNQ-gZxdgA@<-CqrQ&P;GXz_ieC=y#e!bS|`<JqH_D}n&UIuR9 zOl)BIp;W*6<d4LvJ@ebtH+WV||Kii|T;lAGZauG9m)Wacsz`LLQ!4bj`q#|s+x?A# z#jifqNyM#Jf7ozs`3|XogI}+Cwf|?}_p&YZV*Xdd5)_gmwPJ^i(WIOSa}`XrgytU0 z;rnN2P!7}8S8>fFZ1Kve>sy?rc+A?M_N!Wle~-m|9*dhh=4l0-(8~H|TYk@!KYa3s zL!iL%&X_!NwTb1nDIP0U{M`EQ*O7<%R@0nV9_)QzboJPGi9K>4SA#vt>zjLH;w>JY ziDh*mkuT?a+`FE4?e~wPU0LhY{xjUN+;-~2rzU-vv3j?7t!1WmZ<{pDQky+))!Jv= zUej_t1I@iVxgB>X-&DHuh-b^xrl`~<+Zs0o&1QVUBGD)3`*+54T_-ONtHiFCUTp&2 zleVr&bZK^8E|RI@ShLGSfg>r*SC=tS*kMC=>SWN+u%LUZQ!9&d7SnHc9V?E21ubE+ zEZTfcA{vUK?T%cB7qoJ5xF%k3+VDcrsYx)RL|_d`imE+iLHZ8Lf{X!GCHDVs0sx)X BsEGgo literal 0 HcmV?d00001 diff --git a/hymenoptera_data/train/ants/imageNotFound.gif b/hymenoptera_data/train/ants/imageNotFound.gif new file mode 100644 index 0000000000000000000000000000000000000000..bdeaae94004e06c6a35d147ec58fb35062076b52 GIT binary patch literal 5504 zcmZ?wbhEHb)M3<Nyvo2}Z}0f#&D(F^zIAkTeEj(F?%lf$4UH#GoLIGL)y9n*FJ8R( z<jIp)uU<`@IC198S-rh|@7}$eIdkToJ$tTQyOxxcvS`tw^XJd++`04i?b|^?!AqAe z+q7v@QBm=+W5*93JoxF;r|;jtGtd$!{^ySH4N!1NEJ=*;4Y0AVC`e4sPAySLN=?tq zvsHS(d%u!GW{Ry+xT&v!Z-H}aMy5wqQEG6NUr2IQcCuxPlD(aRO@&oOZb5EpNuokU zZcbjYRfVlmVoH8es#RXG6-ZcLNdc^+B->WW5hS4iveP-gC{@8!&r~<rz{pU++)~fb z)Wp)zP)EVYz|dIV&_LhFQrFPX%Ea8t&`bdel<X92ic-?7f?V97b`_<h*(zm}loVL$ z>z9|8>y;bp<rk&v8(Lag>Khp88yV>qrKIT=SLT%@R_NvxE5l51Ni9w;$}A|!%+FH* znV6WAUs__Tqy#m#BDcWT7jAG~u^!k%ddc~@`W1-<`i6Q2`nkCve}O$*ToROua0XV@ z#UYgisro^w#rdU0$*Do9Y05}e;kO8+u)x>X$|XO!G&eP`#M8xAsUo*PFC{a@%FNWr z(!$il!qD8*z|hdu#KOSQ$<@Hf*v-w!z{SAL0H)V7uec;JFF6&aHxr@P9Isw0=c3fa zlKi5O{QMkP>;+`xm*f{`<QFJ7J1c1TCMIX*f%uxBumuO4l}l<-W?5>ATTy<l0yuE2 zGO;<p%)rUn&C$Zy+{Dn((AC({$=uAz+}zp1(b?3@%*<5@sy79j$02$xaq88#Q?Sto z#Vk@x!-Rrd+(1llq68&SI|W3_Pt8lQRVq@lw`2VO@9&@AzkdGs{_X3R&!0Yic>nJ0 zo7b;izIguZ>66Eg9zM8#@9v%3w{G6Je(ma&%a<-*IDhW!nbW6Eo;ZH&=#j&R4j$OQ zZ||PnyLRr_zHRH4&6_rESif%Vn$@dTu2{Zo>5|2Z7A}}SZ|<Dgvu4hiK5goh$&)5d z=<n<8>F(<6Xm4w6X>Mw4sIRN7sjjN5C@(85DK083$j{5o$<E5mNKZ>mNlr>kh>wen ziH?el2oDPl2@VPj@b~le@%HlcaCdWcadvWau(z|dv9_|bFgG(bF*Y(Z(AU$|(bm$` zP*+n`QC3n^ke8E{k(QE_5El~_5f%~@;OFDz;pXDxU}s}xVP;}vU{L(Y0xo-WKqRQZ zV_^I5FrmOhN2>qClA@D2R`V~cDDhewwf@GMveR#?_CMHA;iEVE{EIDBXY+R7|FEOR zZ~g7}Klap}fB*Y`Lt|5OOKV$uM`u@ePj6rUgo%?TPnkMx`iz;gX3v>BZ~lUXixw|g zx@`H1m8%LF*RET?VdJLFTefc7zGLUE-Fx=#+kfETrVPf_$Fh&6pFDmh_4K*37n9GY zT)A{T>RQsR8+SwQBs{qH*zZx?vnMY-Uc|h4_1@{-%@1F^KSh53dhciWpI_Jitz!9e zJ?DW)GfS^x&nAP!Rc-zXRwk+&J&$%S*1L6hh5urqei_@w81YH>PALDg<Is@wJkZ{J zWEqFThDoW5XPQbLo8o!-nbQ9`_sc$=dAV8O!h%z4WOS`EG|w#Ysy5<%@@3`B*3jjz zPHH_}GO;aY>ov~R!dhaRk{&K-eYCaX$kxp32YNM3PT$#)_HNqh>~O6(^Q!N&?h5_L zpMFT}XO?5mk2Uwpy2S1CY}yJR9c)(*{+IOgQ>fuwb7Ri4OLPU-FL9Ok+$(6Des<OB z4S9cOp2@km-QKOv*JRt2JG)}r8Re!|2wirbz-?$Z)zb6fg2dl$kN#BVnp|~GbKkjp z)0da0_vgQUx7Yl~hiB`ZlQ+l4SHFIJvwQg;xw@_9Ur#=L&L{i(&!hi$ug|Z4`FHF5 z+RG;j6^yw*Etjifyme(k^T(rx4>iT>T<66ICQbRju#NdtxPrHQ(~kvBvj2h?b&6iv zxJXTZ*H*;@&3(d)dla247Im2}TPVX}&$l$T-|pNBv5A-Ncr0wF);QTQS;y$6%A{is zlBrE~5t$-Wv;Igt5sl&!QtMOq+nH>VJn3eVeC908j_JOIoL;lDyf``LCZD{?HmBu5 z=cAcbA8sz6H{(a7`m|^!t*(XbedQdBGaagCO|0>VYFm0TFiLY_f5NQHzWRz+tt&oe zoKjofH6coCMfsv%D^{<WF-vt#p_Wv~g6FMG+3V)NIhC!x@82%Z4TsX4ayCwv>CRC- zrDyHA`J5Y5?v{QZ?_A|;VG|n|@02C5Y-dXdIKuS6&Y*?u!Lr%^*ReT!I54sb2{f+T z#bz_1VTaopZ~Yx_j2Io6_yZUm*w|DyI0*fhQZQis=G4%#@8zxTd_jTf)%k*a4XYW1 zZWqmNSo61MA_Id;z0VOQ6=nf_L9Qh^>jc=A=xjd2#?e@Giv6(7=Q9t*1V5iMF}~=? z=D_@*;jpWR!<TcCYu*%JRQc|6<h-jluhZ#3dB%g67@owWNyH`cI-GU!n6Qc2wI}A2 zKuEZ5%MFGZJWjVA(jR=i6Og{P<z{8EL*YG!FV?0H%J}D%KeU>>r|?#~_{mkGn&}_R zPu2;4bU4-hIJSssPWils%Q8!J%&*RipJ#Nl^Z47!=YH8|w=xQ8C^RyASKt1xcXp%q zg|gSPR-fDXvTAu;)rI`|c`XN+mH%4Ur3BQL-*#2tZ+LjwcwxhVnZdCvY)1ZT_KIXN zfA}OIU}Ip%5pC|*!aPy?{_k&hH_tWtqgmZwd2>-Y=Oz)UB{{nVj8Dt31cmLqV!Du- zdGS2K8{5s8y&4-CPRIz}5#RTjm$9O#TK?Fl=LfzPe#kl|&GgCW!M^pa%{&}A3LHDk z4Me+q3#3Ar*gB>ie82Hb>L=x!A}hY_SMhkC=e$FbL1V!IrH<ShGnqqzwks?YKj`M2 zxDhYHCSkL0CSR@-NBrwaE4I!^G;F`RJMqJg7cKt+*R_0Mc3|uku$pw!zuk=|k!Pxg zy8y@ki8&`0Ge}*3vcj;ZfP?3Vlwd2vp66%tIsgB<rr0^bX>nsAS8vE-7RlvK$}RaN z-7-$f`#p~N=3VIZe{%QJh6E`NrM0~RKW=Jznt2##J(#+oMpZzR)BSYqgshD{Pj$L4 zxG{AJu|)YC5;lxH&3(^ka?76uXU|PLZtH2t^)OmS+cCi{bJCfnlG~AN{RfVIDCO;O zy}e9OOkwYogRe7vU7BtLT=$(>xpuC_>Fej}G7ss`Xlo5PGHd6LZ-yIljb|GRt6Lps zTUS)KvHal|ahA+wHZf|6a}#`~JFZj@oGCk{CPsR;^rq6*r8B*A<&z(}zjxo;qQ$tt z=yAjEfK@)K8VnWxSzKm0U)6M<HgDq+hhWX)DQ2F>uTJK+S6=jTjix2XC8M6egqN1= zvszhou1vi0C0<BM(_(4YrBz-F7D?Sd5UAb4&vat4=1H*&ZdYuJ+822@NSan%(VcL0 z?tvUlK|M~lb8D}zDGkk*owy<VZ|^3qB=1D+vmRHsE!sNGSa*@w0j;a5N{kgZqf?U3 z-`YJ-Y~gylr;o+AWbOJG8Mw;FHb+9b^SWhP<2r>0x8zziEKg0kwn3p{t&qWQpVbo< zPS-k;e(HjUo4QJ1)#Nw1!aCC7lh*PyG4bAatoIH&)x@x4Gq0TVuB_Ir%Y++@vX>@J zo^?_^NqDB;gL@ad4n&yi8K>^4{{P5)?(4f3tOVOV59qL|wP~EKbKJ`ivC?&C=gydY zllJ}5P0M=x((At#!+{rP9GJweH^yaM-^I3hv3X)f)H=za17dyaOIi;c=$`jseW<{r zu&1iVjkl((^=wcN34U&-az>y)@QLaJuhoy9Dh2P9a@#0Sa{Dm<|1I1xyH`{R_5>`L zdTp=Mg;!PGdp0ZcGcxa(8+o~hp>cWCl<g-%K3Q+(xvu;s^a#^irqZ<y2TitpTcPV` zSfSW)MAF!iiT{KKtIUSe+Yg4+98p!CJ@<6t52=OgSG-+Z`;xIS+=-EyosH#Uht9KG zaoOC;(aJYu{$}W`=-tuFR=8CBv|ZJ_=1a4;InDk5mh)A>=fpG1_Jyttp35Gx`4<1W zy00t4bzfT@*|n1O#MX733CDK}E@0S`=D^tTA)8I+;q^WLOa)qV-zYHs=HQkv6D--A zts)|Q>yjMPrscVBa)ljl?9BTn*y8&p-T!yqgJs)x%w73XS0RDnL*Mref(;Fs{0TSM zB^m@cKIB!nGjy=-Fy~-em#?(vH-pQH0}N^bEle&9_jnz42t3lwSN>pqPx`@D0ksbw z7+q>O7|)w=ur+*`Ag*}-V_(CG_6hmi4KWX#EF75soGlPoFz1obeT}ti9g3Q-|9<*I z?+2@tK@MAv!gD7B%Y)f`OiTx?pYupKu;>+RVvIR(!)SWN`N<Cd8@NIeZg8(Sz&0tb zH12uyBQ<%a^Ow(kYBGMn#5^N)pEARj8Q<qH6o^~yeO~ZdHz$^(dVTdi^}Z5ijo4Qq z;!Uh_^NP7$_AuJ1A7YvH_q+0mm^(ZxDp~6C%9A(OK2dG2yscbcRI$6}0aL%#B|(Sp ziY#_vZ{ImRjqm@pfO{chvj3rn?RG7^2W+29-#EbZC~q_4oO>Ko&7GKq?ANslSHE4v zUi;Qtzw(i=;(h1mTTgyo`>{7#o@LAPSLaq6RG;&&|6nH1z;rG5eIk1e)46i1KgD@9 z0xk}Z#3UGgUyb{bfBink&+D~L0gNHvD=%y>da*tK|Mjv}=C$GhjIIw#j*Hj*w-T?8 zF{tKs$p5meV4HZcad~N*dV%70MmYwiKJ{7!hWcaQ8p_mJUQRO(THg4~yw+_(!@BT% zHi;^Zh=M=vwMO5wncN%e-5cM0OHMPW{$9@DHKY8cdydg{1_t$}@7pRA9#m_bXwqC! z?>nRJ!?)sB%Uir|6kIf~a@|mF>Cv2Wqxt&sd=`O1HT4!t_m<11bs+(DZ@0IqPi{<l zQTP2>3HJpCp6#WA0ZqQ)^;#9RaX0F3O{=+gyso*U?b7$k3J#{g<0ZNo#SIz-au=$c z13Jx5l$ThrmT6Sj>}adDsErFRur;p{F=t4=-k>wR!%Kj1XE;k>dCioF`gDy>vl;dO z-?Z1|{wO&7tlPz*r@_2gG@~WepeyBi<FpFKIX8NqKksUpUU%hKb*Kd6-RF#(X0ZI6 zp36F+dd>A(=?e@}-wW@R8|*pJ%;L~(dZJmwJSR7z`)x*Dk%X(*i}Ka!b+?!22evZ^ z2QZ|Ucd3<kUyWe=^P-050)uD*BkKc3W`~Y2_gp3o7UyyXrp`X@NJhq;jOWx@1Ue`7 zu{W-0pZGAXmo<S=^a8{0=?!l=ia%^;WHn&a-kJCPMffQXwlfyJp5cAW7bYm4XulN3 zDCJ({7hb{Z&{1Jt>|j~Ac1Mxn@`CT*bDf`eacE2xUr@**p3hNU92`Dz`ihE0;(c=L zO-tCT|64|8H(V&s%4E;EIj!Wwv;s}`BFpIo0n^K7_B2nMUf(diULbeZx7;gX3=Uti zn=SRUpXYjB&tct=$34NgAv15$gXwh_@&(GP%&)g5-RN>YP$)3HINhS?qC~~Cm36<5 zb56O*-gv!qf_bN-WK-nKx(xB!==7@j9Ch~MWw%ynFFe7%p1oeSgJn`i{j=%$^W0}g zsh4j5S(Uq@W7dRO`%YFemK&J;m=&7d>CV}?^=I|*8*`l>Fs{9+y>}=3`t6Ks!{;uK z=wS|+$g*N?R5`=V_SyGtb}V3+`($P#$AePK$@xYd-7DHBd<koMk=b^_v*N7gd=9PN zM>G3d4pez@%<C*K`=79*h_Re8;YAU1S2L?tt-Z%APR^<4E$3BzsJi@e*2|kSqdZvp zC1#b27s{=gmms-_$BJXi_2L(m?f=@l*-kDJGB3AxufA|%wy_q+`s)qmQRS&SW;+G+ zJ)cqhfxTJidfO}W`G=p+Ii|Fza>D$bZj+;C<X;hM4cIwR_UA+efk~PtCuGg2v;S2p z={f0b#?mPX^Od~{Wirb}%$pB;c7|$BR&SqrH@tE-d&S2v#(?Ql4m2&T$yEP3bw#tn z@}6BQCj44a+qq(rSC(_s$|<|FX6%|abJxnx1uN&RTG1r7s`|kSJtu9GB<-$*RrQZJ zRs~7TowaJhhgAnBPU}?S+|s46_?G7X6|>Y=MRBaT#kSK+b}v`gf>*0sgVtp1oZe=z z#{0n<2cgyJ3~SG?T2rODs>5OJ;>5MZ6>Ho-t=@cUt;NYTA&TpkGp*bFZ0(_}b(@>k zH7cz=d~n@DrS%i7GCLQn-Q>9bTh{7|hV_9D*X41ppUJr4q}PUHr`DgS;+Y||W>2Hq zFD}VfRhs<2wb-=l1f%8dGHCL6O9;=_lFeq7zAY{)&DAEfDdE#b|E5i`iW@>6tiQZ! zQ_jIn`x!TzJ8qumxK1o-v#Iqa4sC(wuLLraHU&P|v?*$p(QOu&)yi(w8~YA!KD$8G zse6l6HfNa7)~m0!TxU=Xo6X{x&F;5p>uSTTvlpl&M6>*loy~3@w9UC-TlB)sS=>xH zuhmK_w`6N?>vr0lD!u*ft~EEj6fS>Mj9$I{Y1dYdi<>7o?vVSmF;II)bJGsP(_3P) zw{ux<R6D&xq`SXu_WHip!t9$iPJ6v^cJykC>K(JE$shc+)0%tdWTlM@XN$d0T(v@a z-P+x|X1-?Gcw6X>*7EJ$tFL9v-)+r#m2vKVZ_aZQXC02_JmWa?xcAl-ucn`_<~-6k z{e1L>nPI!rw0HVUlrFN|o7}CHe{$~}1L+*jeRB^;)w=JSH$iH9+rIe@QX7x$D?X&U zj%~k+x9SSF{pH*nlH2w#J|L02OlZliP5K)*t&%>l#AQ1h&uZ2=2kdqq;K_+@sQrDQ zyz_w29+j_A2gS1YO8m*>+jG!d`k<W6It7_SbAPF-tXciL>d^J7gIaG6sNFfV#d?=P z&Ppkp!>!tf&3HDN&N-Y~D0=9_VF#HbPBuqeVve}&;kKD`#B0wHpF2nV{u~LAIT~bh iG$iI|Sk2LhIY*=R9F4hiH15yQ1es$=Il_(%4Aua%JEMaD literal 0 HcmV?d00001 -- GitLab