diff --git a/.gitignore b/.gitignore
index 074d7f7dd776c89e9eb069a212d9bfe15cdecc37..21398a9ff74d5133f2a2bc41937d73128e18de62 100644
--- a/.gitignore
+++ b/.gitignore
@@ -3,8 +3,8 @@
 
 # Data
 data/*
-transfer_learning/hymenoptera_data/train
-transfer_learning/hymenoptera_data/val
+hymenoptera_data/train
+hymenoptera_data/val
 
 # Torch model
 *.pt
diff --git a/TD2 Deep Learning.ipynb b/TD2 Deep Learning.ipynb
deleted file mode 100644
index b6ce0e1a989fd6641b5a1454b9b0d7976e66e72e..0000000000000000000000000000000000000000
--- a/TD2 Deep Learning.ipynb	
+++ /dev/null
@@ -1,1888 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "id": "7edf7168",
-   "metadata": {},
-   "source": [
-    "# TD2: Deep learning"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "fbb8c8df",
-   "metadata": {},
-   "source": [
-    "In this TD, you must modify this notebook to answer the questions. To do this,\n",
-    "\n",
-    "1. Fork this repository\n",
-    "2. Clone your forked repository on your local computer\n",
-    "3. Answer the questions\n",
-    "4. Commit and push regularly\n",
-    "\n",
-    "The last commit is due on Wednesday, December 4, 11:59 PM. Later commits will not be taken into account."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "3d167a29",
-   "metadata": {},
-   "source": [
-    "Install and test PyTorch from  https://pytorch.org/get-started/locally."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 29,
-   "id": "330a42f5",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Requirement already satisfied: torch in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (2.2.2)\n",
-      "Requirement already satisfied: torchvision in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (0.17.2)\n",
-      "Requirement already satisfied: filelock in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (from torch) (3.16.1)\n",
-      "Requirement already satisfied: sympy in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (from torch) (1.13.3)\n",
-      "Requirement already satisfied: typing-extensions>=4.8.0 in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (from torch) (4.12.2)\n",
-      "Requirement already satisfied: networkx in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (from torch) (3.1)\n",
-      "Requirement already satisfied: jinja2 in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (from torch) (3.0.3)\n",
-      "Requirement already satisfied: fsspec in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (from torch) (2024.10.0)\n",
-      "Requirement already satisfied: numpy in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (from torchvision) (1.22.4)\n",
-      "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (from torchvision) (9.2.0)\n",
-      "Requirement already satisfied: MarkupSafe>=2.0 in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (from jinja2->torch) (2.1.1)\n",
-      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/anaconda3/envs/infa4/lib/python3.8/site-packages (from sympy->torch) (1.3.0)\n",
-      "Note: you may need to restart the kernel to use updated packages.\n"
-     ]
-    }
-   ],
-   "source": [
-    "%pip install torch torchvision"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "0882a636",
-   "metadata": {},
-   "source": [
-    "\n",
-    "To test run the following code"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 30,
-   "id": "b1950f0a",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "tensor([[-1.4659, -0.1341,  0.1910,  0.0218,  1.3658,  0.8917,  1.0628, -0.3176,\n",
-      "         -0.2600, -0.2872],\n",
-      "        [-0.0126, -0.0465,  0.2912,  0.4202,  1.2204,  0.1587,  0.3785,  0.0893,\n",
-      "         -1.2530, -0.5823],\n",
-      "        [-0.1116, -0.4923,  0.1068, -2.2929,  1.1194,  0.1912,  0.1003, -0.3300,\n",
-      "          1.2028,  0.4128],\n",
-      "        [ 0.0107, -0.9120,  0.7665,  0.3744, -1.5287,  0.0866, -0.2056,  0.1550,\n",
-      "         -0.0897,  0.2161],\n",
-      "        [-0.6883,  0.0320, -0.2972, -1.1948, -1.5010,  1.8736,  0.1917, -0.7650,\n",
-      "         -1.3622,  0.3975],\n",
-      "        [ 0.1935, -0.9554, -1.1062,  0.2188,  1.6034, -0.0754, -0.1147, -2.2671,\n",
-      "          1.3213,  2.1263],\n",
-      "        [ 1.9160, -1.4137,  0.2075,  0.3736, -0.0277, -0.8734, -0.6322, -0.1003,\n",
-      "         -1.5709,  0.6832],\n",
-      "        [-0.1293, -1.2336, -0.6936,  0.2776, -0.8490, -0.4399, -0.1854,  0.0193,\n",
-      "          0.5169,  0.1895],\n",
-      "        [ 0.8107, -0.4397, -0.7788,  0.2323, -0.2399, -0.3275,  0.9527,  1.1022,\n",
-      "          0.2348,  1.8839],\n",
-      "        [-0.2577,  0.5727, -0.6433, -1.1216, -0.7814,  2.6153, -0.9804,  0.9203,\n",
-      "          0.2468,  0.1160],\n",
-      "        [-0.4528, -3.0148,  0.2142, -0.6560, -0.5975, -0.3176,  0.9180,  0.2664,\n",
-      "         -1.4368, -0.0199],\n",
-      "        [-0.4210,  0.1599,  0.7807, -1.1358, -0.8921,  0.8362, -1.0528, -1.4270,\n",
-      "          0.2394,  0.4054],\n",
-      "        [-1.4733,  0.7435, -0.5230, -0.9226,  0.6155, -0.0909,  1.4459,  1.8425,\n",
-      "         -0.8389,  2.5789],\n",
-      "        [ 2.4644, -1.4380, -0.3848,  0.4128,  1.3633,  0.3712, -0.8086, -1.3316,\n",
-      "         -1.9959, -0.6573]])\n",
-      "AlexNet(\n",
-      "  (features): Sequential(\n",
-      "    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))\n",
-      "    (1): ReLU(inplace=True)\n",
-      "    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
-      "    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))\n",
-      "    (4): ReLU(inplace=True)\n",
-      "    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
-      "    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
-      "    (7): ReLU(inplace=True)\n",
-      "    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
-      "    (9): ReLU(inplace=True)\n",
-      "    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
-      "    (11): ReLU(inplace=True)\n",
-      "    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
-      "  )\n",
-      "  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))\n",
-      "  (classifier): Sequential(\n",
-      "    (0): Dropout(p=0.5, inplace=False)\n",
-      "    (1): Linear(in_features=9216, out_features=4096, bias=True)\n",
-      "    (2): ReLU(inplace=True)\n",
-      "    (3): Dropout(p=0.5, inplace=False)\n",
-      "    (4): Linear(in_features=4096, out_features=4096, bias=True)\n",
-      "    (5): ReLU(inplace=True)\n",
-      "    (6): Linear(in_features=4096, out_features=1000, bias=True)\n",
-      "  )\n",
-      ")\n"
-     ]
-    }
-   ],
-   "source": [
-    "import torch\n",
-    "\n",
-    "N, D = 14, 10\n",
-    "x = torch.randn(N, D).type(torch.FloatTensor)\n",
-    "print(x)\n",
-    "\n",
-    "from torchvision import models\n",
-    "\n",
-    "alexnet = models.alexnet()\n",
-    "print(alexnet)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "23f266da",
-   "metadata": {},
-   "source": [
-    "## Exercise 1: CNN on CIFAR10\n",
-    "\n",
-    "The goal is to apply a Convolutional Neural Net (CNN) model on the CIFAR10 image dataset and test the accuracy of the model on the basis of image classification. Compare the Accuracy VS the neural network implemented during TD1.\n",
-    "\n",
-    "Have a look at the following documentation to be familiar with PyTorch.\n",
-    "\n",
-    "https://pytorch.org/tutorials/beginner/pytorch_with_examples.html\n",
-    "\n",
-    "https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "4ba1c82d",
-   "metadata": {},
-   "source": [
-    "You can test if GPU is available on your machine and thus train on it to speed up the process"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "id": "6e18f2fd",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "CUDA is not available.  Training on CPU ...\n"
-     ]
-    }
-   ],
-   "source": [
-    "import torch\n",
-    "\n",
-    "# check if CUDA is available\n",
-    "train_on_gpu = torch.cuda.is_available()\n",
-    "\n",
-    "if not train_on_gpu:\n",
-    "    print(\"CUDA is not available.  Training on CPU ...\")\n",
-    "else:\n",
-    "    print(\"CUDA is available!  Training on GPU ...\")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "5cf214eb",
-   "metadata": {},
-   "source": [
-    "Next we load the CIFAR10 dataset"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "id": "462666a2",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Files already downloaded and verified\n",
-      "Files already downloaded and verified\n"
-     ]
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "from torchvision import datasets, transforms\n",
-    "from torch.utils.data.sampler import SubsetRandomSampler\n",
-    "\n",
-    "# number of subprocesses to use for data loading\n",
-    "num_workers = 0\n",
-    "# how many samples per batch to load\n",
-    "batch_size = 20\n",
-    "# percentage of training set to use as validation\n",
-    "valid_size = 0.2\n",
-    "\n",
-    "# convert data to a normalized torch.FloatTensor\n",
-    "transform = transforms.Compose(\n",
-    "    [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]\n",
-    ")\n",
-    "\n",
-    "# choose the training and test datasets\n",
-    "train_data = datasets.CIFAR10(\"data\", train=True, download=True, transform=transform)\n",
-    "test_data = datasets.CIFAR10(\"data\", train=False, download=True, transform=transform)\n",
-    "\n",
-    "# obtain training indices that will be used for validation\n",
-    "num_train = len(train_data)\n",
-    "indices = list(range(num_train))\n",
-    "np.random.shuffle(indices)\n",
-    "split = int(np.floor(valid_size * num_train))\n",
-    "train_idx, valid_idx = indices[split:], indices[:split]\n",
-    "\n",
-    "# define samplers for obtaining training and validation batches\n",
-    "train_sampler = SubsetRandomSampler(train_idx)\n",
-    "valid_sampler = SubsetRandomSampler(valid_idx)\n",
-    "\n",
-    "# prepare data loaders (combine dataset and sampler)\n",
-    "train_loader = torch.utils.data.DataLoader(\n",
-    "    train_data, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers\n",
-    ")\n",
-    "valid_loader = torch.utils.data.DataLoader(\n",
-    "    train_data, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers\n",
-    ")\n",
-    "test_loader = torch.utils.data.DataLoader(\n",
-    "    test_data, batch_size=batch_size, num_workers=num_workers\n",
-    ")\n",
-    "\n",
-    "# specify the image classes\n",
-    "classes = [\n",
-    "    \"airplane\",\n",
-    "    \"automobile\",\n",
-    "    \"bird\",\n",
-    "    \"cat\",\n",
-    "    \"deer\",\n",
-    "    \"dog\",\n",
-    "    \"frog\",\n",
-    "    \"horse\",\n",
-    "    \"ship\",\n",
-    "    \"truck\",\n",
-    "]"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "58ec3903",
-   "metadata": {},
-   "source": [
-    "CNN definition (this one is an example)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "id": "317bf070",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Net(\n",
-      "  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))\n",
-      "  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
-      "  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))\n",
-      "  (fc1): Linear(in_features=400, out_features=120, bias=True)\n",
-      "  (fc2): Linear(in_features=120, out_features=84, bias=True)\n",
-      "  (fc3): Linear(in_features=84, out_features=10, bias=True)\n",
-      ")\n"
-     ]
-    }
-   ],
-   "source": [
-    "import torch.nn as nn\n",
-    "import torch.nn.functional as F\n",
-    "\n",
-    "# define the CNN architecture\n",
-    "\n",
-    "\n",
-    "class Net(nn.Module):\n",
-    "    def __init__(self):\n",
-    "        super(Net, self).__init__()\n",
-    "        self.conv1 = nn.Conv2d(3, 6, 5)\n",
-    "        self.pool = nn.MaxPool2d(2, 2)\n",
-    "        self.conv2 = nn.Conv2d(6, 16, 5)\n",
-    "        self.fc1 = nn.Linear(16 * 5 * 5, 120)\n",
-    "        self.fc2 = nn.Linear(120, 84)\n",
-    "        self.fc3 = nn.Linear(84, 10)\n",
-    "\n",
-    "    def forward(self, x):\n",
-    "        x = self.pool(F.relu(self.conv1(x)))\n",
-    "        x = self.pool(F.relu(self.conv2(x)))\n",
-    "        x = x.view(-1, 16 * 5 * 5)\n",
-    "        x = F.relu(self.fc1(x))\n",
-    "        x = F.relu(self.fc2(x))\n",
-    "        x = self.fc3(x)\n",
-    "        return x\n",
-    "\n",
-    "\n",
-    "# create a complete CNN\n",
-    "model = Net()\n",
-    "print(model)\n",
-    "# move tensors to GPU if CUDA is available\n",
-    "if train_on_gpu:\n",
-    "    model.cuda()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "a2dc4974",
-   "metadata": {},
-   "source": [
-    "Loss function and training using SGD (Stochastic Gradient Descent) optimizer"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "id": "4b53f229",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch: 0 \tTraining Loss: 44.446738 \tValidation Loss: 39.709481\n",
-      "Validation loss decreased (inf --> 39.709481).  Saving model ...\n",
-      "Epoch: 1 \tTraining Loss: 35.712898 \tValidation Loss: 32.340186\n",
-      "Validation loss decreased (39.709481 --> 32.340186).  Saving model ...\n",
-      "Epoch: 2 \tTraining Loss: 30.993299 \tValidation Loss: 30.197401\n",
-      "Validation loss decreased (32.340186 --> 30.197401).  Saving model ...\n",
-      "Epoch: 3 \tTraining Loss: 28.716211 \tValidation Loss: 28.417901\n",
-      "Validation loss decreased (30.197401 --> 28.417901).  Saving model ...\n",
-      "Epoch: 4 \tTraining Loss: 26.939352 \tValidation Loss: 26.354477\n",
-      "Validation loss decreased (28.417901 --> 26.354477).  Saving model ...\n",
-      "Epoch: 5 \tTraining Loss: 25.582816 \tValidation Loss: 26.713869\n",
-      "No improvement in validation loss for 1 epoch(s).\n",
-      "Epoch: 6 \tTraining Loss: 24.345140 \tValidation Loss: 24.874123\n",
-      "Validation loss decreased (26.354477 --> 24.874123).  Saving model ...\n",
-      "Epoch: 7 \tTraining Loss: 23.290062 \tValidation Loss: 24.112446\n",
-      "Validation loss decreased (24.874123 --> 24.112446).  Saving model ...\n",
-      "Epoch: 8 \tTraining Loss: 22.414044 \tValidation Loss: 25.658204\n",
-      "No improvement in validation loss for 1 epoch(s).\n",
-      "Epoch: 9 \tTraining Loss: 21.516157 \tValidation Loss: 22.744862\n",
-      "Validation loss decreased (24.112446 --> 22.744862).  Saving model ...\n",
-      "Epoch: 10 \tTraining Loss: 20.712172 \tValidation Loss: 22.697988\n",
-      "Validation loss decreased (22.744862 --> 22.697988).  Saving model ...\n",
-      "Epoch: 11 \tTraining Loss: 20.020578 \tValidation Loss: 22.441365\n",
-      "Validation loss decreased (22.697988 --> 22.441365).  Saving model ...\n",
-      "Epoch: 12 \tTraining Loss: 19.345497 \tValidation Loss: 22.729177\n",
-      "No improvement in validation loss for 1 epoch(s).\n",
-      "Epoch: 13 \tTraining Loss: 18.707986 \tValidation Loss: 22.530268\n",
-      "No improvement in validation loss for 2 epoch(s).\n",
-      "Early stopping triggered. Stopping training.\n"
-     ]
-    }
-   ],
-   "source": [
-    "import torch.optim as optim\n",
-    "\n",
-    "criterion = nn.CrossEntropyLoss()  # specify loss function\n",
-    "optimizer = optim.SGD(model.parameters(), lr=0.01)  # specify optimizer\n",
-    "\n",
-    "n_epochs = 30  # number of epochs to train the model\n",
-    "train_loss_list = []  # list to store loss to visualize\n",
-    "valid_loss_min = np.Inf  # track change in validation loss\n",
-    "trigger = 2  # Number of epochs to wait before stopping\n",
-    "early_stop_counter = 0  # Counter for early stopping\n",
-    "\n",
-    "for epoch in range(n_epochs):\n",
-    "    # Keep track of training and validation loss\n",
-    "    train_loss = 0.0\n",
-    "    valid_loss = 0.0\n",
-    "\n",
-    "    # Train the model\n",
-    "    model.train()\n",
-    "    for data, target in train_loader:\n",
-    "        # Move tensors to GPU if CUDA is available\n",
-    "        if train_on_gpu:\n",
-    "            data, target = data.cuda(), target.cuda()\n",
-    "        # Clear the gradients of all optimized variables\n",
-    "        optimizer.zero_grad()\n",
-    "        # Forward pass: compute predicted outputs by passing inputs to the model\n",
-    "        output = model(data)\n",
-    "        # Calculate the batch loss\n",
-    "        loss = criterion(output, target)\n",
-    "        # Backward pass: compute gradient of the loss with respect to model parameters\n",
-    "        loss.backward()\n",
-    "        # Perform a single optimization step (parameter update)\n",
-    "        optimizer.step()\n",
-    "        # Update training loss\n",
-    "        train_loss += loss.item() * data.size(0)\n",
-    "\n",
-    "    # Validate the model\n",
-    "    model.eval()\n",
-    "    for data, target in valid_loader:\n",
-    "        # Move tensors to GPU if CUDA is available\n",
-    "        if train_on_gpu:\n",
-    "            data, target = data.cuda(), target.cuda()\n",
-    "        # Forward pass: compute predicted outputs by passing inputs to the model\n",
-    "        output = model(data)\n",
-    "        # Calculate the batch loss\n",
-    "        loss = criterion(output, target)\n",
-    "        # Update average validation loss\n",
-    "        valid_loss += loss.item() * data.size(0)\n",
-    "\n",
-    "    # Calculate average losses\n",
-    "    train_loss = train_loss / len(train_loader)\n",
-    "    valid_loss = valid_loss / len(valid_loader)\n",
-    "    train_loss_list.append(train_loss)\n",
-    "\n",
-    "    # Print training/validation statistics\n",
-    "    print(\n",
-    "        \"Epoch: {} \\tTraining Loss: {:.6f} \\tValidation Loss: {:.6f}\".format(\n",
-    "            epoch, train_loss, valid_loss\n",
-    "        )\n",
-    "    )\n",
-    "\n",
-    "    # Save model if validation loss has decreased\n",
-    "    if valid_loss <= valid_loss_min:\n",
-    "        print(\n",
-    "            \"Validation loss decreased ({:.6f} --> {:.6f}).  Saving model ...\".format(\n",
-    "                valid_loss_min, valid_loss\n",
-    "            )\n",
-    "        )\n",
-    "        torch.save(model.state_dict(), \"model_cifar.pt\")\n",
-    "        valid_loss_min = valid_loss\n",
-    "        early_stop_counter = 0  # Reset the counter if validation loss improves\n",
-    "    else:\n",
-    "        early_stop_counter += 1  # Increment the counter if no improvement\n",
-    "        print(f\"No improvement in validation loss for {early_stop_counter} epoch(s).\")\n",
-    "\n",
-    "    # Check for early stopping condition\n",
-    "    if early_stop_counter >= trigger:\n",
-    "        print(\"Early stopping triggered. Stopping training.\")\n",
-    "        break"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "13e1df74",
-   "metadata": {},
-   "source": [
-    "Does overfit occur? If so, do an early stopping. \n",
-    "Yes at some point, the validation loss increases while the training loss is still decreasing. The gap between the training loss and the validation loss is increasing. This means the model is overfitting the training data and is not good on adapting to other data than the training data. \n",
-    "Epoch: 0 \tTraining Loss: 42.229941 \tValidation Loss: 37.315443\n",
-    "Validation loss decreased (inf --> 37.315443).  Saving model ...\n",
-    "Epoch: 1 \tTraining Loss: 34.319380 \tValidation Loss: 31.597989\n",
-    "Validation loss decreased (37.315443 --> 31.597989).  Saving model ...\n",
-    "Epoch: 2 \tTraining Loss: 30.519103 \tValidation Loss: 28.500407\n",
-    "Validation loss decreased (31.597989 --> 28.500407).  Saving model ...\n",
-    "Epoch: 3 \tTraining Loss: 28.410455 \tValidation Loss: 27.284037\n",
-    "Validation loss decreased (28.500407 --> 27.284037).  Saving model ...\n",
-    "Epoch: 4 \tTraining Loss: 26.793309 \tValidation Loss: 26.645246\n",
-    "Validation loss decreased (27.284037 --> 26.645246).  Saving model ...\n",
-    "Epoch: 5 \tTraining Loss: 25.407288 \tValidation Loss: 25.301372\n",
-    "Validation loss decreased (26.645246 --> 25.301372).  Saving model ...\n",
-    "Epoch: 6 \tTraining Loss: 24.219666 \tValidation Loss: 24.314122\n",
-    "Validation loss decreased (25.301372 --> 24.314122).  Saving model ...\n",
-    "Epoch: 7 \tTraining Loss: 23.164498 \tValidation Loss: 23.535732\n",
-    "Validation loss decreased (24.314122 --> 23.535732).  Saving model ...\n",
-    "Epoch: 8 \tTraining Loss: 22.176390 \tValidation Loss: 23.461353\n",
-    "Validation loss decreased (23.535732 --> 23.461353).  Saving model ...\n",
-    "Epoch: 9 \tTraining Loss: 21.281976 \tValidation Loss: 22.478021\n",
-    "Validation loss decreased (23.461353 --> 22.478021).  Saving model ...\n",
-    "Epoch: 10 \tTraining Loss: 20.414580 \tValidation Loss: 22.096407\n",
-    "Validation loss decreased (22.478021 --> 22.096407).  Saving model ...\n",
-    "Epoch: 11 \tTraining Loss: 19.702178 \tValidation Loss: 22.104724\n",
-    "Epoch: 12 \tTraining Loss: 18.904676 \tValidation Loss: 22.039121\n",
-    "Validation loss decreased (22.096407 --> 22.039121).  Saving model ...\n",
-    "...\n",
-    "Epoch: 26 \tTraining Loss: 11.553949 \tValidation Loss: 24.366738\n",
-    "Epoch: 27 \tTraining Loss: 11.138622 \tValidation Loss: 25.671352\n",
-    "Epoch: 28 \tTraining Loss: 10.805559 \tValidation Loss: 25.136608\n",
-    "Epoch: 29 \tTraining Loss: 10.427645 \tValidation Loss: 25.924139"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 37,
-   "id": "d39df818",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVxU9f4/8NcMA8M67AyriGyKiOaOC+5oLtelXSutNEvTW9b1XvV3TSsluy1Wln5btEXNFtNyTc3APRdcEFJRQUH2YRl2GOb8/kDGmRQXBM4sr+fjMX/wOWfOvEGLl5/zOe+PRBAEAUREREQmSip2AURERET3g2GGiIiITBrDDBEREZk0hhkiIiIyaQwzREREZNIYZoiIiMikMcwQERGRSWOYISIiIpPGMENEREQmjWGGqIm++uorSCQS3Usmk8Hf3x/PPPMMrl271uyfd/LkSQwYMADOzs6QSCRYvnx5s38G3drHH3+MkJAQ2NjYQCKRoLi4+Jbn6f+diI+Pv+m4IAgICQmBRCLBwIEDm7VGiUSCRYsW3fP70tPTIZFI8NVXX93x3OXLl2PChAkICgpqke+BqKlkYhdAZOrWrFmD9u3bo7KyEvv27UNcXBwSEhKQlJQEBweHZvucZ599FuXl5diwYQNcXV3Rtm3bZrs2Ne7UqVOYPXs2pk6dismTJ0Mmk8HJyem273FycsKXX3550y/7hIQEXLp06Y7vN1arVq2Cg4MDBg8ejC1btohdDpEOwwzRfYqMjET37t0BAIMGDUJdXR3efPNNbN68GZMmTbqva9fV1UGj0UAul+Ps2bOYNm0aHnzwweYoG7W1tboZJWpccnIyAGDatGno2bPnXb3nsccew7p16/DJJ59AoVDoxr/88ktER0dDrVa3SK0tLSUlBVJp/YR+ZGSkyNUQ3cDbTETNrHfv3gCAK1eu6MZycnIwffp0+Pv7w8bGBkFBQVi8eDE0Go3unIbp/nfeeQdvvfUWgoKCIJfLsWbNGkgkEmg0GqxcuVJ3G6PB2bNnMXbsWLi6usLW1hZdunTB119/bVBTfHw8JBIJvv32W7z66qvw8/ODXC7HxYsXdbdG9u7di2nTpsHd3R0KhQJPP/00ysvLkZOTg0cffRQuLi7w8fHBa6+9htraWoPrL168GL169YKbmxsUCgW6du2KL7/8En/fx7Zt27YYPXo0du7cia5du8LOzg7t27fH6tWrb/o5Xrt2Dc8//zwCAgJgY2MDX19fPPzww8jNzdWdo1ar8dprryEoKAg2Njbw8/PDyy+/jPLy8rv6s1q9ejU6d+4MW1tbuLm5Yfz48fjrr790xwcOHIgnn3wSANCrVy9IJBJMmTLljtd94oknAADfffedbqykpAQbN27Es88+e8v3FBYWYsaMGfDz84ONjQ3atWuHBQsWoLq62uA8tVqt+3NydHTEiBEjcOHChVteMzU1FRMnToSXlxfkcjk6dOiATz755I71N6YhyBAZG/6TjKiZXbx4EQDg6ekJoD7I9OzZE1KpFAsXLkRwcDAOHz6Mt956C+np6VizZo3B+z/66COEhYXh3XffhUKhgIuLCw4fPozo6Gg8/PDDePXVV3Xnnj9/Hn369IGXlxc++ugjuLu7Y+3atZgyZQpyc3Mxd+5cg2vPmzcP0dHRWLVqFaRSKby8vHTHpk6digkTJmDDhg04efIk5s+fD41Gg/Pnz2PChAl4/vnnsWfPHixbtgy+vr6YM2eO7r3p6emYPn062rRpAwA4cuQIZs2ahWvXrmHhwoUGNZw+fRqvvvoq/vOf/0CpVOKLL77Ac889h5CQEMTExACoDzI9evRAbW0t5s+fj6ioKKhUKvz2228oKiqCUqlERUUFBgwYgMzMTN05ycnJWLhwIZKSkrBnzx6D0Pd3cXFxmD9/Pp544gnExcVBpVJh0aJFiI6OxrFjxxAaGopPP/0U3333Hd566y3d7cSGP9fbUSgUePjhh7F69WpMnz4dQH2wkUqleOyxx25a71RVVYVBgwbh0qVLWLx4MaKiorB//37ExcXh1KlT2LZtG4D6NTfjxo3DoUOHsHDhQvTo0QMHDx685WxdSkoK+vTpgzZt2uC9996Dt7c3fvvtN8yePRsFBQV4/fXX7/h9EJkMgYiaZM2aNQIA4ciRI0Jtba1QWloqbN26VfD09BScnJyEnJwcQRAEYfr06YKjo6Nw5coVg/e/++67AgAhOTlZEARBSEtLEwAIwcHBQk1NzU2fB0CYOXOmwdjjjz8uyOVy4erVqwbjDz74oGBvby8UFxcLgiAIf/zxhwBAiImJafT7mDVrlsH4uHHjBADC+++/bzDepUsXoWvXro3+XOrq6oTa2lrhjTfeENzd3QWtVqs7FhgYKNja2hr8LCorKwU3Nzdh+vTpurFnn31WsLa2FlJSUhr9nLi4OEEqlQrHjh0zGP/pp58EAML27dsbfW9RUZFgZ2cnjBw50mD86tWrglwuFyZOnKgba/j5/P1zbkX/3Iaf+dmzZwVBEIQePXoIU6ZMEQRBEDp27CgMGDBA975Vq1YJAIQffvjB4HrLli0TAAi7du0SBEEQduzYIQAQPvzwQ4PzlixZIgAQXn/9dd3Y8OHDBX9/f6GkpMTg3JdeekmwtbUVCgsLBUG48fduzZo1d/z+9P39eyASE+cMie5T7969YW1tDScnJ4wePRre3t7YsWMHlEolAGDr1q0YNGgQfH19odFodK+Gf00nJCQYXO8f//gHrK2t7+qz9+7diyFDhiAgIMBgfMqUKaioqMDhw4cNxh966KFGrzV69GiDrzt06AAAGDVq1E3j+rfQGuoYOnQonJ2dYWVlBWtrayxcuBAqlQp5eXkG53bp0kU3gwMAtra2CAsLM7jmjh07MGjQIF0Nt7J161ZERkaiS5cuBj/X4cOHN/o0UYPDhw+jsrLypltGAQEBGDx4MH7//fdG33u3BgwYgODgYKxevRpJSUk4duxYo7eY9u7dCwcHBzz88MMG4w31NdTzxx9/AMBNa7EmTpxo8HVVVRV+//13jB8/Hvb29gY/n5EjR6KqqgpHjhy57++RyFjwNhPRffrmm2/QoUMHyGQyKJVK+Pj4GBzPzc3Fli1bGg0oBQUFBl///f23o1Kpbnm+r6+v7vjdXtvNzc3gaxsbm0bHq6qqdF8fPXoUsbGxGDhwID7//HPduqDNmzdjyZIlqKysNHi/u7v7TZ8tl8sNzsvPz4e/v3+jtQL1P9eLFy/e9c9VX8PPpbGf3e7du2/72XdDIpHgmWeewUcffYSqqiqEhYWhf//+jdbj7e19020xLy8vyGQyXb0qlQoymeymn6G3t/dN19NoNPj444/x8ccf3/Izb/fzITI1DDNE96lDhw66p5luxcPDA1FRUViyZMktjzcEjwa3W+fxd+7u7sjOzr5pPCsrS/fZTb323dqwYQOsra2xdetW2Nra6sY3b97c5Gt6enoiMzPztud4eHjAzs7ulouHG443piEMNPazu91778WUKVOwcOFCrFq1qtE//4Z6/vzzTwiCYPBnlJeXB41Go6vH3d0dGo0GKpXKINDk5OQYXM/V1RVWVlZ46qmnMHPmzFt+ZlBQ0P18a0RGhWGGqIWNHj0a27dvR3BwMFxdXZv12kOGDMGmTZuQlZVlEIq++eYb2Nvb656sakkNj3dbWVnpxiorK/Htt982+ZoPPvggvv32W5w/fx7h4eG3PGf06NFYunQp3N3d7/kXc3R0NOzs7LB27Vo88sgjuvHMzEzs3bv3pts9TeXn54d//etfOHfuHCZPntzoeUOGDMEPP/yAzZs3Y/z48brxb775RnccqH/0/5133sG6deswe/Zs3Xnr1683uJ69vT0GDRqEkydPIioqSjfLRmSuGGaIWtgbb7yB3bt3o0+fPpg9ezbCw8NRVVWF9PR0bN++HatWrbrjLZXGvP7667o1OQsXLoSbmxvWrVuHbdu24Z133oGzs3Mzfzc3GzVqFN5//31MnDgRzz//PFQqFd59913I5fImX/ONN97Ajh07EBMTg/nz56NTp04oLi7Gzp07MWfOHLRv3x4vv/wyNm7ciJiYGLzyyiuIioqCVqvF1atXsWvXLrz66qvo1avXLa/v4uKC//73v5g/fz6efvppPPHEE1CpVFi8eDFsbW2b9Umft99++47nPP300/jkk08wefJkpKeno1OnTjhw4ACWLl2KkSNHYujQoQCA2NhYxMTEYO7cuSgvL0f37t1x8ODBWwbHDz/8EP369UP//v3x4osvom3btigtLcXFixexZcsW7N27956/l+PHjyM9PR1A/SPigiDgp59+AgD06NEDgYGB93xNoubAMEPUwnx8fHD8+HG8+eab+N///ofMzEw4OTkhKCgII0aMuK/ZmvDwcBw6dAjz58/HzJkzUVlZiQ4dOmDNmjV31Q+lOQwePBirV6/GsmXLMGbMGPj5+WHatGnw8vLCc88916Rr+vn54ejRo3j99dfx9ttvQ6VSwdPTE/369dOt4XFwcMD+/fvx9ttv47PPPkNaWhrs7OzQpk0bDB069I4dkufNm6d7pP3777+HnZ0dBg4ciKVLlyI0NLRJdTeVra0t/vjjDyxYsAD/+9//kJ+fDz8/P7z22msGwUoqleLXX3/FnDlz8M4776CmpgZ9+/bF9u3b0b59e4NrRkREIDExEW+++Sb+3//7f8jLy4OLiwtCQ0MxcuTIJtW5YsWKm3oYNcxstebfOaK/kwjC37paEREREZkQPppNREREJo1hhoiIiEwawwwRERGZNIYZIiIiMmkMM0RERGTSGGaIiIjIpJl9nxmtVousrCw4OTm1SCt3IiIian6CIKC0tBS+vr6QSm8/92L2YSYrK+umHYWJiIjINGRkZNyxS7rZhxknJycA9T8MhUIhcjVERER0N9RqNQICAnS/x2/H7MNMw60lhULBMENERGRi7maJCBcAExERkUljmCEiIiKTxjBDREREJo1hhoiIiEwawwwRERGZNIYZIiIiMmkMM0RERGTSGGaIiIjIpDHMEBERkUljmCEiIiKTxjBDREREJo1hhoiIiEwaw0wTCYKA9IJyXCuuFLsUIiIii8Yw00RLtv2Fge/G45tD6WKXQkREZNEYZpqok78zACDhQr7IlRAREVk2hpkm6hfiAYkEOJdTijx1ldjlEBERWSyGmSZyd5Qj0rd+dmZ/aoHI1RAREVkuhpn7EBPmAQDYl8pbTURERGJhmLkPMaGeAOpnZrRaQeRqiIiILBPDzH3oGugKR7kMheU1SM5Si10OERGRRWKYuQ/WVlJEB7sD4K0mIiIisTDM3KeY0OvrZviINhERkSgYZu5TTFj9upkTV4pQVq0RuRoiIiLLwzBznwLdHRDobg+NVsDhSyqxyyEiIrI4DDPNoOGpJt5qIiIian0MM82g4VYTFwETERG1PoaZZhAd7A6ZVIIrqgpcUZWLXQ4REZFFYZhpBo5yGboGugLgrSYiIqLWxjDTTAbobjVxnyYiIqLWxDDTTBoWAR++pEJtnVbkaoiIiCwHw0wz6eirgLuDDcqqNUi8UiR2OURERBaDYaaZSKUS9AvlLtpEREStjWGmGd3oN8N1M0RERK2FYaYZ9b8+M3M2qwSqsmqRqyEiIrIMDDPNyEthi/beThAE4MBFzs4QERG1BoaZZqZ7RJu3moiIiFoFw0wza9jaYH9qPgRBELkaIiIi88cw08y6t3WFnbUV8kqrcS6nVOxyiIiIzB7DTDOTy6zQu50bAG5tQERE1BoYZloAd9EmIiJqPQwzLaD/9X4zx9KKUFlTJ3I1RERE5o1hpgUEezrAz8UONXVaHElTiV0OERGRWWOYaQESiQQxYde3NuC6GSIiohbFMNNCbmxtwDBDRETUkhhmWkifEA9YSSW4lF+Oa8WVYpdDRERktowmzMTFxUEikeDll1/WjQmCgEWLFsHX1xd2dnYYOHAgkpOTRazy7jnbWaNLgAsAzs4QERG1JKMIM8eOHcNnn32GqKgog/F33nkH77//PlasWIFjx47B29sbw4YNQ2mpaTSja9h4cj8f0SYiImoxooeZsrIyTJo0CZ9//jlcXV1144IgYPny5ViwYAEmTJiAyMhIfP3116ioqMD69etFrPjuNfSbOZBaAE2dVuRqiIiIzJPoYWbmzJkYNWoUhg4dajCelpaGnJwcxMbG6sbkcjkGDBiAQ4cOtXaZTdLZ3wXOdtZQV2lwOrNE7HKIiIjMkkzMD9+wYQMSExNx7Nixm47l5OQAAJRKpcG4UqnElStXGr1mdXU1qqurdV+r1epmqvbeWUkl6BfigW1J2dh3IR/dAl3v/CYiIiK6J6LNzGRkZOCf//wn1q5dC1tb20bPk0gkBl8LgnDTmL64uDg4OzvrXgEBAc1Wc1Po+s1w3QwREVGLEC3MnDhxAnl5eejWrRtkMhlkMhkSEhLw0UcfQSaT6WZkGmZoGuTl5d00W6Nv3rx5KCkp0b0yMjJa9Pu4k4Z1M6czilFSUStqLUREROZItDAzZMgQJCUl4dSpU7pX9+7dMWnSJJw6dQrt2rWDt7c3du/erXtPTU0NEhIS0KdPn0avK5fLoVAoDF5i8nG2Q6iXI7QCcPBSgai1EBERmSPR1sw4OTkhMjLSYMzBwQHu7u668ZdffhlLly5FaGgoQkNDsXTpUtjb22PixIlilNxk/UM9kZpXhn0X8jGyk4/Y5RAREZkVURcA38ncuXNRWVmJGTNmoKioCL169cKuXbvg5OQkdmn3JCbMA6sPpmHfhfw7rvkhIiKieyMRBEEQu4iWpFar4ezsjJKSEtFuOVXW1KHzG7tQo9Fiz5wYhHiZVhgjIiJqbffy+1v0PjOWwM7GCr2C3AAACRe4boaIiKg5Mcy0Eu6iTURE1DIYZlpJwyPaf6apUFVbJ3I1RERE5oNhppWEKR2hVMhRVavF8fQiscshIiIyGwwzrUQikaB/w60mdgMmIiJqNgwzrajhVhPXzRARETUfhplW1D/EAxIJcC6nFLnqKrHLISIiMgsMM63I1cEGUX7OADg7Q0RE1FwYZlpZw62m/ansN0NERNQcGGZaWcMi4AMXC6DVmnXzZSIiolbBMNPKHmjjAke5DIXlNTibVSJ2OURERCaPYaaVWVtJ0SfYHQDXzRARETUHhhkR3HhEm+tmiIiI7hfDjAgGXA8ziVeLUFpVK3I1REREpo1hRgQBbvYI8nCARivg0CWV2OUQERGZNIYZkcSEegAA9nNrAyIiovvCMCMS3T5NXDdDRER0XxhmRBId7A5rKwmuFlYgvaBc7HKIiIhMFsOMSBzkMnQLdAXAXbSJiIjuB8OMiLiLNhER0f1jmBFRzPV1M4cvqVCj0YpcDRERkWlimBFRhI8CHo42KK+pQ+LVIrHLISIiMkkMMyKSSiXoF1L/iDZvNRERETUNw4zIdOtmuAiYiIioSRhmRNbQb+bsNTUKyqpFroaIiMj0MMyIzNNJjggfBQDgQCob6BEREd0rhhkjwEe0iYiImo5hxgjEhF1fBJxaAEEQRK6GiIjItDDMGIFuga6ws7ZCQVk1/souFbscIiIik8IwYwTkMitEB7sD4FNNRERE94phxkjEhLLfDBERUVMwzBiJhkXAx9OLUFGjEbkaIiIi08EwYySCPBzg72qHmjotjlxWiV0OERGRyWCYMRISiUTvEW32myEiIrpbDDNGpGEXbS4CJiIiunsMM0akT4g7rKQSXM4vR2ZRhdjlEBERmQSGGSOisLXGAwEuAHiriYiI6G4xzBgZbm1ARER0bxhmjExDmDl4qQCaOq3I1RARERk/hhkj08nPGS721iit0uB0ZrHY5RARERk9hhkjYyWVoF9IfTfgBK6bISIiuiOGGSOke0Sb62aIiIjuiGHGCPUPq5+ZOZNZjOKKGpGrISIiMm4MM0bIx9kOYUpHaAXgwEXeaiIiIrodhhkjxVtNREREd4dhxkg1PKK9P7UAgiCIXA0REZHxYpgxUj2D3CCXSZFdUoWLeWVil0NERGS0GGaMlK21FXoGuQEAEniriYiIqFEMM0ZswPVbTVtOZ/FWExERUSMYZozY+Af8YCOT4nRmCY5fKRK7HCIiIqPEMGPE3B3leKirHwDgi/2XRa6GiIjIODHMGLln+wYBAHal5OKKqlzkaoiIiIyPqGFm5cqViIqKgkKhgEKhQHR0NHbs2KE7PmXKFEgkEoNX7969Ray49YUqnTAw3BOCAKw5mC52OUREREZH1DDj7++Pt99+G8ePH8fx48cxePBgjB07FsnJybpzRowYgezsbN1r+/btIlYsjqn92gEAfjiegZKKWpGrISIiMi6ihpkxY8Zg5MiRCAsLQ1hYGJYsWQJHR0ccOXJEd45cLoe3t7fu5ebmJmLF4ugb4o723k6oqKnD+qNXxS6HiIjIqBjNmpm6ujps2LAB5eXliI6O1o3Hx8fDy8sLYWFhmDZtGvLy8kSsUhwSiQRT+9fPznx1KA01Gq3IFRERERkP0cNMUlISHB0dIZfL8cILL2DTpk2IiIgAADz44INYt24d9u7di/feew/Hjh3D4MGDUV1d3ej1qquroVarDV7mYExnH3g6yZGrrsb2pGyxyyEiIjIaEkHkbmw1NTW4evUqiouLsXHjRnzxxRdISEjQBRp92dnZCAwMxIYNGzBhwoRbXm/RokVYvHjxTeMlJSVQKBTNXn9rWrE3Fe/uuoBIPwW2vNQPEolE7JKIiIhahFqthrOz8139/hZ9ZsbGxgYhISHo3r074uLi0LlzZ3z44Ye3PNfHxweBgYFITU1t9Hrz5s1DSUmJ7pWRkdFSpbe6Sb0CYWstxdlravyZVih2OUREREZB9DDzd4IgNHobSaVSISMjAz4+Po2+Xy6X6x71bniZC1cHGzzczR8Am+gRERE1EDXMzJ8/H/v370d6ejqSkpKwYMECxMfHY9KkSSgrK8Nrr72Gw4cPIz09HfHx8RgzZgw8PDwwfvx4McsWVUMTvT1/5eFyPnfTJiIiEjXM5Obm4qmnnkJ4eDiGDBmCP//8Ezt37sSwYcNgZWWFpKQkjB07FmFhYZg8eTLCwsJw+PBhODk5iVm2qNp5OmJoBy8AwOqDaSJXQ0REJD7RFwC3tHtZQGQqDl9S4YnPj8DWWorD/xkCVwcbsUsiIiJqVia1AJjuXe92bujoq0BVrZZN9IiIyOIxzJggiUSCabomeumo1tSJXBEREZF4GGZM1MhOPvBW2CK/tBpbTrOJHhERWS6GGRNlI5Nicp+2AOof0zbzpU9ERESNYpgxYRN7toGdtRXO5ZTi0CWV2OUQERGJgmHGhDnbW+PR7myiR0RElo1hxsQ92y8IEgnwx/l8XMwrFbscIiKiVscwY+IC3R0QG6EEAHx5gE30iIjI8jDMmIGp1x/T3ph4DaqyW+9rRUREZK4YZsxA90BXdPZ3Ro1Gi7VH2ESPiIgsC8OMGZBIJHju+uzMt0fSUVXLJnpERGQ5GGbMxMhIb/i52KGgrAa/nLomdjlERESthmHGTMispJiia6KXxiZ6RERkMRhmzMhjPQPgYGOF1Lwy7EstELscIiKiVsEwY0YUttZ4rEcbAGyiR0REloNhxsw807ctpBJgf2oBzuewiR4REZk/hhkzE+BmjwcjfQBwdoaIiCwDw4wZeq5/EADgl1NZyCutErkaIiKilsUwY4a6tnFF1zYuqKnTYu3hK2KXQ0RE1KIYZszUVF0TvStsokdERGaNYcZMxUYo4e9qh6KKWvycyCZ6RERkvhhmzJTMSopn+9avnfniwGVotWyiR0RE5olhxow92iMATnIZLueXI/5CntjlEBERtQiGGTPmKJfhiV4NTfTSRK6GiIioZTDMmLnJfdrCSirBoUsqJGeViF0OERFRs2OYMXN+LnYY2am+id6XBzg7Q0RE5odhxgJMu95Eb8vpLOSq2USPiIjMC8OMBYjyd0HPtm6orRPw9aF0scshIiJqVgwzFqJhi4N1f15FRY1G5GqIiIiaD8OMhRjaQYlAd3uUVNZi44lMscshIiJqNgwzFsJKKtE10fvyQBqb6BERkdlgmLEgj3T3h7OdNdJVFdjzV67Y5RARETULhhkLYm8jw8SGJnp8TJuIiMwEw4yFmRzdFjKpBEfTCnEms1jscoiIiO4bw4yF8Xa2xZjOvgDYRI+IiMwDw4wFeq5f/ULgbWeykVVcKXI1RERE94dhxgJF+jkjup07NFo20SMiItPHMGOhpl5vorf+6FWUVbOJHhERmS6GGQs1KNwL7TwcUFqlwY/HM8Quh4iIqMkYZiyUVCrBs9fXzqw+mIY6NtEjIiITxTBjwR7q6g9Xe2tkFFZid0qO2OUQERE1CcOMBbOzscKTvQMBAG/vOAd1Va3IFREREd07hhkLN7VfO/i52CFdVYG5P56BIPB2ExERmRaGGQvnbG+NTyd1hbWVBDuTc9hIj4iITA7DDKFzgAsWjo4AAMTtOIdj6YUiV0RERHT3GGYIAPBk70CM7eKLOq2AmesSkV9aLXZJREREd4VhhgAAEokES8d3QoiXI/JKq/HPDSf5uDYREZkEhhnScZDLsOrJrrC3scKhSyp8sPuC2CURERHdEcMMGQjxcsLbD0UBAFb8cRF7z+WKXBEREdHtMczQTf7R2ReTo+v7z7zy/WlkFFaIXBEREVHjGGbolhaMikCXABeUVNZi5vpEVGvqxC6JiIjolpoUZnbu3IkDBw7ovv7kk0/QpUsXTJw4EUVFRc1WHInHRibFJ5O6wtXeGmcyS/DGlhSxSyIiIrqlJoWZf/3rX1Cr1QCApKQkvPrqqxg5ciQuX76MOXPm3PV1Vq5ciaioKCgUCigUCkRHR2PHjh2644IgYNGiRfD19YWdnR0GDhyI5OTkppRMTeDnYocPHusCiQRY9+dVbDqZKXZJREREN2lSmElLS0NERH2TtY0bN2L06NFYunQpPv30U4Mwcif+/v54++23cfz4cRw/fhyDBw/G2LFjdYHlnXfewfvvv48VK1bg2LFj8Pb2xrBhw1BaWtqUsqkJBoZ7YdbgUADA/J/P4kIuf/ZERGRcmhRmbGxsUFFRvyh0z549iK+VgHkAACAASURBVI2NBQC4ubnpZmzuxpgxYzBy5EiEhYUhLCwMS5YsgaOjI44cOQJBELB8+XIsWLAAEyZMQGRkJL7++mtUVFRg/fr1TSmbmuifQ0LRP9QDlbV1eGHtCZRVa8QuiYiISKdJYaZfv36YM2cO3nzzTRw9ehSjRo0CAFy4cAH+/v5NKqSurg4bNmxAeXk5oqOjkZaWhpycHF1QAgC5XI4BAwbg0KFDTfoMahorqQTLH+sCH2dbXM4vx783ckNKIiIyHk0KMytWrIBMJsNPP/2ElStXws/PDwCwY8cOjBgx4p6ulZSUBEdHR8jlcrzwwgvYtGkTIiIikJOTAwBQKpUG5yuVSt2xW6muroZarTZ40f1zd5RjxcSukEkl2HYmG18dShe7JCIiIgCArClvatOmDbZu3XrT+AcffHDP1woPD8epU6dQXFyMjRs3YvLkyUhISNAdl0gkBucLgnDTmL64uDgsXrz4nuugO+sW6Ir5Izvgja0pWLLtL0T5u6BboKvYZRERkYVr0sxMYmIikpKSdF//8ssvGDduHObPn4+ampp7upaNjQ1CQkLQvXt3xMXFoXPnzvjwww/h7e0NADfNwuTl5d00W6Nv3rx5KCkp0b0yMjLuqR66vWf6tsWoTj7QaAW8tD4RqjJuSElEROJqUpiZPn06Llyo37fn8uXLePzxx2Fvb48ff/wRc+fOva+CBEFAdXU1goKC4O3tjd27d+uO1dTUICEhAX369Gn0/XK5XPeod8OLmo9EIsHbD3VCOw8HZJdU4eXvT3FDSiIiElWTwsyFCxfQpUsXAMCPP/6ImJgYrF+/Hl999RU2btx419eZP38+9u/fj/T0dCQlJWHBggWIj4/HpEmTIJFI8PLLL2Pp0qXYtGkTzp49iylTpsDe3h4TJ05sStnUTJxsrbHyyW6ws7bC/tQCfPR7qtglERGRBWvSmhlBEKDVagHUP5o9evRoAEBAQAAKCgru+jq5ubl46qmnkJ2dDWdnZ0RFRWHnzp0YNmwYAGDu3LmorKzEjBkzUFRUhF69emHXrl1wcnJqStnUjMK9nbBkfCTm/HAaH+1NRddAVwwI8xS7LCIiskASoQnP2A4ePBgBAQEYOnQonnvuOaSkpCAkJAQJCQmYPHky0tPTW6DUplGr1XB2dkZJSQlvObWA+ZuSsP7Pq3C1t8bW2f3h52IndklERGQG7uX3d5NuMy1fvhyJiYl46aWXsGDBAoSEhAAAfvrpp9uuZyHzs3B0BDr5OaOoohYz1yWiRqMVuyQiIrIwTZqZaUxVVRWsrKxgbW3dXJe8b5yZaXkZhRUY/fEBlFTWYkqftlj0j45il0RERCauxWdmGpw4cQJr167FunXrkJiYCFtbW6MKMtQ6Atzs8f6jnQEAXx1Kx6+ns0SuiIiILEmTFgDn5eXhscceQ0JCAlxcXCAIAkpKSjBo0CBs2LABnp5cCGpphnRQYsbAYHwafwn/2XgGET5OCPHiQm0iImp5TZqZmTVrFkpLS5GcnIzCwkIUFRXh7NmzUKvVmD17dnPXSCZizrAwRLdzR0VNHV5cm4hybkhJREStoElrZpydnbFnzx706NHDYPzo0aOIjY1FcXFxsxV4v7hmpnXll1Zj1Ef7kVdajbFdfLH8sS633X6CiIjoVlp8zYxWq73l2hhra2td/xmyTJ5O9RtSWkkl+OVUFtb+eVXskoiIyMw1KcwMHjwY//znP5GVdWOh57Vr1/DKK69g8ODBzVYcmaaeQW7494hwAMCbW1JwOsN4ZuqIiMj8NCnMrFixAqWlpWjbti2Cg4MREhKCoKAglJWVYcWKFc1dI5mgaf3bYXhHJWrqtJixLhFF5fe2ASkREdHduq8+M7t378a5c+cgCAIiIiIQFhaGRYsWYfXq1c1Z433hmhnxqKtqMebjA7iiqsDAcE+sntwDUinXzxAR0Z3dy+/vZm2ad/r0aXTt2hV1dXXNdcn7xjAjrpQsNcZ/ehDVGi1eHBiMucPDuSCYiIjuqNWa5hHdSYSvAm+OiwQArIy/hAWbz0JTx0XiRETUfBhmqMU92j0Ai//RERIJsP7Pq3hh7QlU1hjP7B0REZk2hhlqFZP7tMXKSV1hI5Niz195eOLzI1CVVYtdFhERmYF72s5gwoQJtz1uTM3yyPiMiPTBuqlyTP36OE5lFOPhVYfx9TM90cbdXuzSiIjIhN3TzIyzs/NtX4GBgXj66adbqlYyAz3aumHji9Hwc7FDWkE5Jqw8iKTMErHLIiIiE9asTzMZIz7NZJxy1VWYsuYY/spWw97GCp9O6oqB4V5il0VEREaCTzOR0VMqbPHD9N7oG1K/MeVzXx/HD8czxC6LiIhMEMMMicbJ1hprpvTE+Af8UKcVMPenM/jo91SY+WQhERE1M4YZEpWNTIr3H+2MFwcGAwDe330B8zclsRcNERHdNYYZEp1EIsG/R7THG2Pre9F8dzQD0789gYoajdilERGRCWCYIaPxdHRbrJzUDXKZFL+fy8MTn//JXjRERHRHDDNkVEZEemPd1F5wtrPG6YxiPLTyEK6oysUui4iIjBjDDBmd7nq9aNJVFZjw6SGczmBDRiIiujWGGTJKIV5O2DSjDyJ8FFCV1+Dxz47gj3N5YpdFRERGiGGGjJaXwhbfT++N/qEeqKytw9RvjuOHY+xFQ0REhhhmyKg52Vrjy8k9MKGhF83GM1i+5wJ70RARkQ7DDBk9G5kU7z3aGTOu96JZvicV835mLxoiIqrHMEMmQSKRYO6I9njzei+aDccy8Dx70RARERhmyMQ8Fd0Wq56s70Wz91wenvjsCArYi4aIyKIxzJDJGd7RG+un9YKLvTVOZ5bgoZWHkF7AXjRERJaKYYZMUrdAN2x8sQ/8Xe1wRVWBh1Yewin2oiEiskgMM2Sygj0d8fOMPujoW9+L5onPjmDn2RyxyyIiolbGMEMmzcvJFt9Pj9b1onlh7QnM+f4USipqxS6NiIhaCcMMmTxHuQyrp/TA8zHtIJEAP5+8hmEfJGBPSq7YpRERUStgmCGzYG0lxfyRHfDTC33QztMBeaXVmPrNcbzy/SkUV9SIXR4REbUghhkyK90CXbF9dn9Mj2kHqQTYdPIahn2wD7s5S0NEZLYYZsjs2FpbYd7IDvjpxT4I9nRAfmk1pn1zHC9vOImics7SEBGZG4YZMltd27hi2+z+mD6gfpZm86ksDPtgH35L5hNPRETmhGGGzJqttRXmPdgBG1/sgxAvRxSUVWP6tycw+zvO0hARmQuGGbIID7RxxdZZ/fDiwGBIJcCvp7Mw7IME9qUhIjIDDDNkMWytrfDvEe3x84y+CPVyREFZDV5YewKzvjuJQs7SEBGZLIYZsjhdAlywdXY/zBwUDCupBFtOZyH2gwTsPJstdmlERNQEDDNkkeQyK/xreHtsmtEHYcqGWZpEvLQ+ESruwk1EZFIYZsiiRfm7YMusfnhpUAispBJsPZON2A/2YXsSZ2mIiEwFwwxZPLnMCq8ND8fmGX0RrnSCqrwGM9YlYuY6ztIQEZkChhmi6zr5O+PXWX0xa3D9LM22pGwM+2Aftp3hLA0RkTFjmCHSI5dZ4dXYcPwysy/aezuhsLwGM9cnYsa6EyjgLA0RkVFimCG6hUg/Z/z6Uj/MHhIKmVSC7Uk5iP1gH7aeyYIgCGKXR0REehhmiBphI5NizrAwbNabpXlp/Uk8/+0JZBRWiF0eERFdxzBDdAcNszT/vD5LszslF0PfT8CHe1JRVVsndnlERBaPYYboLtjIpHhlWBi2/7M/erdzQ7VGiw/2XEDsB/uwJyVX7PKIiCyaqGEmLi4OPXr0gJOTE7y8vDBu3DicP3/e4JwpU6ZAIpEYvHr37i1SxWTpwpRO+G5ab3z8xAPwVtjiamEFpn5zHM9+dQxXVOVil0dEZJFEDTMJCQmYOXMmjhw5gt27d0Oj0SA2Nhbl5Ya/FEaMGIHs7Gzda/v27SJVTARIJBKM6eyL318dgBcGBMPaSoK95/Iw7P19eG/XeVTW8NYTEVFrkghG9GhGfn4+vLy8kJCQgJiYGAD1MzPFxcXYvHlzk66pVqvh7OyMkpISKBSK5iyXCABwKb8Mi35Nxv7UAgCAn4sd/ju6A4Z39IZEIhG5OiIi03Qvv7+Nas1MSUkJAMDNzc1gPD4+Hl5eXggLC8O0adOQl5fX6DWqq6uhVqsNXkQtKdjTEd882xOrnuwGPxc7XCuuxAtrE/H06qO4lF8mdnlERGbPaGZmBEHA2LFjUVRUhP379+vGv//+ezg6OiIwMBBpaWn473//C41GgxMnTkAul990nUWLFmHx4sU3jXNmhlpDZU0dPo2/iP9LuIyaOi2srSR4tl8QZg8OhYNcJnZ5REQm415mZowmzMycORPbtm3DgQMH4O/v3+h52dnZCAwMxIYNGzBhwoSbjldXV6O6+kanVrVajYCAAIYZalXpBeV4Y2sK9p6rn0X0Vthi/qgOGBPlw1tPRER3weRuM82aNQu//vor/vjjj9sGGQDw8fFBYGAgUlNTb3lcLpdDoVAYvIhaW1sPB6ye0gNfTu6ONm72yFFXYfZ3J/HE50dwPqdU7PKIiMyKqGFGEAS89NJL+Pnnn7F3714EBQXd8T0qlQoZGRnw8fFphQqJ7s+QDkrseiUGc4aFQS6T4sjlQoz8aD/e3JoCdVWt2OUREZkFUcPMzJkzsXbtWqxfvx5OTk7IyclBTk4OKisrAQBlZWV47bXXcPjwYaSnpyM+Ph5jxoyBh4cHxo8fL2bpRHfN1toKs4eEYs+cARjeUYk6rYAvD6Rh8LsJ+Dkxk3s9ERHdJ1HXzDS2dmDNmjWYMmUKKisrMW7cOJw8eRLFxcXw8fHBoEGD8OabbyIgIOCuPoOPZpOxSbiQj8W/JuNyQX0/pe6Brlg8tiM6+jqLXBkRkfEwyQXALYVhhoxRjUaLLw+k4eO9qaioqYNUAjzZOxCvDguHs7212OUREYnO5BYAE1kaG5kULw4Mxu+vDsDoKB9oBeCbw1cw6L14fH/sKrRas/43BhFRs+LMDJEROHSxAK//mozUvPome+29nTCtfzuM6ewLGxn/zUFEloe3mfQwzJCpqK3T4utD6Vi+JxVl1RoAgFIhx+Q+bTGxZxu42NuIXCERUethmNHDMEOmpriiBuuPXsXXh9KRq65vAGlnbYVHuvvj2b5BaOvhIHKFREQtj2FGD8MMmaoajRZbz2Th8/1p+Cu7fo8xiQSIjVBiav926B7oym7CRGS2GGb0MMyQqRMEAYcvqfD5/sv443y+brxzgAum9gvCg5HekFlxXQ0RmReGGT0MM2ROUnNLsfpgGjYmXkONRgsA8HOxwzN92+KxHgFwsuVj3URkHhhm9DDMkDkqKKvG2iNX8O3hK1CV1wAAHOUyPN4jAM/0C4Kfi53IFRIR3R+GGT0MM2TOqmrrsPnkNXxxIA0Xrz/WbSWV4MFIb0zr3w6dA1xErpCIqGkYZvQwzJAl0GoFJKTm44v9l3Hwoko33qOtK6b2b4ehHZSwknKxMBGZDoYZPQwzZGlSstT44sBlbDmdhdq6+v+827rb49l+QXi4mz/sbWQiV0hEdGcMM3oYZshS5aqr8PWhdKz78ypKKmsBAM521pjUqw0m92kLpcJW5AqJiBrHMKOHYYYsXUWNBj+dyMSXB9JwRVUBALC2kmBMZ19M698OHXz43wURGR+GGT0MM0T16rQC9vyViy/3p+FoeqFuPCbME8/3b4e+Ie5swkdERoNhRg/DDNHNTmUU4/P9l7EjKRsNG3R38FHg+ZggjI7yhTWb8BGRyBhm9DDMEDUuo7ACXx5Iw/fHMlBZWwcA8HG2xTN92+Lxnm2gYBM+IhIJw4wehhmiOyuuqMG6P6/iq0PpyC+t39zSUS7DxF5tMKVPW/iyCR8RtTKGGT0MM0R3r1pTh19OZuGz/Zd1Tfhk0vrFwlP7B6Gjr7PIFRKRpWCY0cMwQ3TvtFoBCRfy8dm+yzh8+UYTvn4hHpgW0w4xoR5cLExELYphRg/DDNH9Scoswef7L2NbUjbqrq8Wbu/thKn92+EfnX1hI+NiYSJqfgwzehhmiJpHZlEFVh9Ix4ZjV1FRU79YWKmQ45m+QXiiZxs423GxMBE1H4YZPQwzRM2rpKIW649exZqDaci7vljYwcYKj/dsg2f6toW/q73IFRKROWCY0cMwQ9QyajRa/Ho6C5/vu4zzuaUA6nfsHtXJB8/HtEOkHxcLE1HTMczoYZghalmCIGBfagE+33cZBy4W6Mb7BLvj2b5BGBjuCRmb8BHRPWKY0cMwQ9R6krNK8MX+NGw5nQXN9cXCnk5yTHjAD49090eIl5PIFRKRqWCY0cMwQ9T6soor8fWhdPx0IhOq8hrdeOcAFzzSzR9jOvtywTAR3RbDjB6GGSLx1NZpsfdcHn46kYk/zuXpZmvkMimGd/TGI9390SfYA1ZS9qwhIkMMM3oYZoiMQ35pNX45dQ0/Hs/ULRgGAF9nWzzUzR8Pd/NHoLuDiBUSkTFhmNHDMENkXARBQNK1Evx4PBO/nLoGdZVGd6xnkBse7uaPUZ184CCXiVglEYmNYUYPwwyR8aqqrcPulFz8eCIT+1Pz0fB/I3sbK4zs5INHuvmjZ5Abt04gskAMM3oYZohMQ3ZJJX5OvIafTmQiraBcNx7obo+Hu/pjQjd/+HH3biKLwTCjh2GGyLQIgoATV4rw4/FMbD2ThfLrWydIJEDfYA880t0fwzt6w9baSuRKiaglMczoYZghMl0VNRrsSMrBjycycORyoW7cyVaGMZ198Ug3f3QJcOFtKCIzxDCjh2GGyDxcVVXgp8RMbDyRiWvFlbrxEC9HTOjqh3Fd/ODL21BEZoNhRg/DDJF50WoFHLmswo8nMrHjbDaqarUA6m9D9Ql2x4QH/DEi0ptPQxGZOIYZPQwzROartKoWO5JysDExE3+m3bgNZWdthQcjvTGhqz+ig93ZlI/IBDHM6GGYIbIMGYUV2HzyGn4+ec3gaShvhS3GPeCHh7r6IVTJvaGITAXDjB6GGSLLIggCTmYU4+fETGw5nY2SylrdsU5+zpjQ1Q//6OwLd0e5iFUS0Z0wzOhhmCGyXNWaOuz9Kw8bE68h/vyNvaFkUgkGhntiQld/DOngBbmMj3kTGRuGGT0MM0QEAKqyamw5nYWfT17DmcwS3bji+mPeE7r6o2sbPuZNZCwYZvQwzBDR36XmluLnk9ew+eQ1ZJdU6cbbuttjQld/jH/ADwFu9iJWSEQMM3oYZoioMXXXH/PemJiJnWdzUHG92zBQv+nlQ1398GAnHyhsrUWsksgyMczoYZghortRUaPBb8k5+DnxGg5cLNBteimXSTE0QokxUT4YGO7FbRSIWgnDjB6GGSK6V9klldh8Mgs/J2YiNa9MN+5gY4UhHZQYFeWDAWGeDDZELYhhRg/DDBE1lSAIOHtNja1nsrD1TLbBNgqOchmGRSgxqpMP+od58IkoombGMKOHYYaImoMgCDiVUYxtZ7KxLSnbYOGwk1yGYR2VGB3lg34hnrCRSUWslMg8MMzoYZghouam1dY35tt2Jhvbk7KRo74RbBS2MsR29MaoKB/0DfZgsCFqIoYZPQwzRNSStFoBiVeLsPV6sMkrrdYdc7azxvCOSoyK8kWfYHdYWzHYEN0thhk9DDNE1Fq0WgHHrxRh25ksbD+bg3y9YONib40R12dsotu5Q8ZgQ3RbDDN6GGaISAx1WgHH0gux9UwWdp7NQUFZje6Ym4MNRkR6Y3QnH/QMcmOwIboFhhk9DDNEJDZNnRZH0wqxNSkbO8/moLD8RrDxcKwPNqM6+aJnkBuspNxOgQhgmDHAMENExkRTp8WRy4XYllQ/Y1NUcWNXb08nOUZ18sHoKB90beMKKYMNWbB7+f0t6txmXFwcevToAScnJ3h5eWHcuHE4f/68wTmCIGDRokXw9fWFnZ0dBg4ciOTkZJEqJiK6PzIrKfqFeiBuQhSOLhiKb57tiUe7+8PZzhr5pdX46lA6Hl51GP2W7cWSbSk4nVEMM/83J9F9E3VmZsSIEXj88cfRo0cPaDQaLFiwAElJSUhJSYGDgwMAYNmyZViyZAm++uorhIWF4a233sK+fftw/vx5ODk53fEzODNDRKagRqPFwYsF2HI6C7tSclFWrdEda+Nmj1FR9TM2ET4K7uxNFsFkbzPl5+fDy8sLCQkJiImJgSAI8PX1xcsvv4x///vfAIDq6moolUosW7YM06dPv+M1GWaIyNRU1dYh4UI+tp7Jxp6UXFTW3tgAs52HA0ZH+WB0Z1+EKe/8DzoiU2WyYebixYsIDQ1FUlISIiMjcfnyZQQHByMxMREPPPCA7ryxY8fCxcUFX3/99U3XqK6uRnX1jcch1Wo1AgICGGaIyCRV1tRh77k8bDmdhT/O56Fao9UdC1M6YkyUL0Z39kWQh4OIVRI1v3sJM7JWqumOBEHAnDlz0K9fP0RGRgIAcnJyAABKpdLgXKVSiStXrtzyOnFxcVi8eHHLFktE1ErsbKwwKsoHo6J8UFatwZ6UXGw9k4WEC/m4kFuG93ZfwHu7L6CjrwKjo3wxOsoHAW72YpdN1KqMJsy89NJLOHPmDA4cOHDTsb/fHxYEodF7xvPmzcOcOXN0XzfMzBARmTpHuQzjHvDDuAf8UFJZi13JOdh6JhsHLhYgOUuN5Cw1lu08h84BLhhzPQD5ONuJXTZRizOKMDNr1iz8+uuv2LdvH/z9/XXj3t7eAOpnaHx8fHTjeXl5N83WNJDL5ZDL5S1bMBGRyJztrPFI9wA80j0AheU12Hk2B1vPZOHIZRVOZxTjdEYx3tr2F3q0dcXoKF882MkbXk62YpdN1CJEXTMjCAJmzZqFTZs2IT4+HqGhoTcd9/X1xSuvvIK5c+cCAGpqauDl5cUFwEREt5BXWoWdZ3Ow5XQWjqUX6calEqBnkBuGd/TGsAgl/F15K4qMm8ksAJ4xYwbWr1+PX375BeHh4bpxZ2dn2NnVT40uW7YMcXFxWLNmDUJDQ7F06VLEx8fz0WwiojvILqnEtjPZ2HomG6cyig2ORfgoMCxCidiOSj7uTUbJZMJMY//xrFmzBlOmTAFQPzuzePFi/N///R+KiorQq1cvfPLJJ7pFwnfCMENEBGQUVuC35BzsSsnF8fRCaPX+z+/nYlcfbCKU6BHkxt29ySiYTJhpDQwzRESGCstr8Ptfudidkot9qfmoqr3xuLeznTUGt/dCbIQSMWGecJAbxdJKskAMM3oYZoiIGldZU4cDFwuwKzkHv5/LM9gE00YmRb8QDwyLUGJIBy8uIKZWxTCjh2GGiOju1GkFnLhShN0p9bejrqgqdMckEuCBABfEXl9AHOzpKGKlZAkYZvQwzBAR3TtBEJCaV4bdKbnYlZyD05klBsfbeTogNqI+2DwQ4MIdvqnZMczoYZghIrp/OSVV2H19nc3hSwWorbvxq8PTSY6hHbwQG+GN6GB32FpbiVgpmQuGGT0MM0REzUtdVYuE8/nYlZKL+HN5KNXb4dvBxgoDw70Q21GJQe29oLC1FrFSMmUMM3oYZoiIWk6NRosjl1XYnVI/a5OjrtIds7aSoHc7d12jPqWCC4jp7jHM6GGYISJqHYIg4ExmCXal5OC35FxczCszON4lwAXDO3pjeEcl2nEBMd0Bw4wehhkiInFcyi/DruRc7ErJwcmrhh2IQ7wcERuhxPCO3ojyd2YHYroJw4wehhkiIvHlqquwOyUXvyXn4PAlFTR6LYi9FbaI7ahEbIQ3erVjB2KqxzCjh2GGiMi4lFTWIv58HnYl5yL+fB7Ka+p0xxS2MgzpoMTwjvUdiO1t2IHYUjHM6GGYISIyXlW1dTh0qQC7kusXEKv0OhDLZVL0D/VAbEdvDO2ghJuDjYiVUmtjmNHDMENEZBrqtAISrxbht7M5+C0lBxmFlbpjUgnQo60bYjt6IzZCiQA3exErpdbAMKOHYYaIyPQIgoBzOaXYlVy/ziYlW21wPMJHgeEdvRHbUYn23k5cQGyGGGb0MMwQEZm+jMIK7Lq+gPh4eiH01g+jjZs9YiOUiO3ojW6BrrDi1gpmgWFGD8MMEZF5UZVV4/dz9QuI96fmo1qj1R1zd7DB0A5KDI9Uok+wB7dWMGEMM3oYZoiIzFdFjQb7LuRjV3Iu9vyVC3XVja0V7G2sMDDcE8M7emNguBec7bi1gilhmNHDMENEZBlq67Q4mlaIXck52JWSi+ySG1sryKQSRAe76xYQc2sF48cwo4dhhojI8giCgKRrJfgtOQe7knOReoutFWI71ncgDubWCkaJYUYPwwwREV3OL8OulFzsSs5B4t+2Vgj2dEBsR+/6rRX8nCHlAmKjwDCjh2GGiIj05amrsPuvXOxKzsWhSwWorTPcWmFYhBLDIpToGeTGBcQiYpjRwzBDRESNUVfVIv58PnYl5yD+fD7Kqm8sILaRSdGtjSv6hrgjOtgDnf2dIeO+Ua2GYUYPwwwREd2Nak0dDl1SYVdyLv44l4ccdZXBcUe5DL2C3BAd7I6+IR4IVzrxllQLYpjRwzBDRET3ShAEpBWU4+AlFQ5dLMDhyyoUV9QanOPuYIPewe7oG+yBviHuaONmz07EzYhhRg/DDBER3S+tVkBKthqHLhXg0CUVjqYVokJvt28A8HOxQ5/rszZ9gt3hxce/7wvDjB6GGSIiam41Gi1OZxbj4MX6cHPyapHBQmIACPFyRN/g+vU20e3c4WzPpn33gmFGD8MMERG1tIoaDY6lF9XP3FxU4WxWCfR/u0olQKSfc/16m2AP9GjrBjsbPil1OwwzehhmiIiotRVX1ODI5UIculSAgxcLcCm/3OC4tZUED7RxxYAwTwwI80SEj4KLif+GYUYPwwwREYktp6QKhy8X4ODF+gXFWSWGT0p5OMoRrtVOxAAAEsBJREFUE+aBAWGeiAn1hKuDjUiVGg+GGT0MM0REZEwEQcAVVQX2p+Yj4UIBDl0qMFhMLJEAnf1d6mdtwj3R2d8FVhY4a8Mwo4dhhoiIjFm1pg4n0ouQcCEfCRfycS6n1OC4i701+ofW346KCfOAl5NlPCXFMKOHYYaIiExJTkkV9l0PNvtS81FapTE4HuGjwIBwTwwM80TXQFdYm2lXYoYZPQwzRERkqjR1WpzKKNbN2pzJLDE47iiXoW+IOwaEeWFAuCf8XOxEqrT5MczoYZghIiJzUVBWXb/W5nw+9qUWoLC8xuB4qJejbq1Nj7amvVEmw4wehhkiIjJHWq2As1klSDifj/gL+Th5tQhavd/ottZSRLdzx+AOSgzt4AUfZ9OatWGY0cMwQ0RElqCkohYHLhYg4UIeEi7kI1ddbXC8o68CQ64Hm0hfZ6Pva8Mwo4dhhoiILI0gCDifW4q95/Lw+195SLxaZNCRWKmQY3D7+mDTN8TDKG9HMczoYZghIiJLV1BWjT+uB5t9qfkGfW1sraXoF+KJoR28MLiDl9E8+s0wo4dhhoj+f3t3HhPVuf4B/HvYhuUigogzUxSpVSguRNEK7sItMtadFrWWQhetVq1Wm0q0jfT+I13UpLVibRA1JdVQlpBgpaCAVkWxglJFpBWVRJBqqwJeEOX9/eGPuY4MgyDMzBm+n+QkM+e875nnyTMTHs4yQ0T/0/jgIQou/42cCzdwqPRGq28j9u/fG//29UDIi/3wosoZkmSa01FsZh7DZoaIiEg/IQRKq2qRU/qosTn7xK3fz/V2QMiLjxqbwOfdoLAx3ukoNjOPYTNDRET0dGruNuDwxRrklN7Ar3/cRENTs3abk501Jg3pi5AX+2GqT1/0+ZeiW2NhM/MYNjNEREQd99/7D3H8z5vIKa3BodIbqKn9391RVhIwaoCr9u6oFzz+1eWno9jMPIbNDBER0bNp+U6blsbm/PW7OtsXjOmPuPARXfqaHfn7bdOlr0xEREQWx8pKwgjP3hjh2RtrXh6C67f/i0MXHzU2x/+8Bf/+vU0aH4/MEBERUafVNz6AJAGOdl17fIRHZoiIiMgonBSmbyUs83fDiYiIqMdgM0NERESyxmaGiIiIZI3NDBEREckamxkiIiKSNTYzREREJGtsZoiIiEjWTNrMHDlyBDNnzoRarYYkSUhPT9fZHh0dDUmSdJbAwEATRUtERETmyKTNTH19Pfz9/bFt27Y2x4SFhaGqqkq7HDhwwIgREhERkbkz6df2aTQaaDQag2MUCgWUSqWRIiIiIiK5MftrZvLy8uDh4YEhQ4Zg8eLFqKmpMTi+sbERd+/e1VmIiIjIcpl1M6PRaJCUlITDhw9j8+bNKCwsRHBwMBobG9ucs2nTJri4uGiX/v37GzFiIiIiMjaz+dVsSZKQlpaGOXPmtDmmqqoKXl5e2LdvH+bNm6d3TGNjo06zc/fuXfTv35+/mk1ERCQjFvur2SqVCl5eXigvL29zjEKhgEKh0D5v6dV4uomIiEg+Wv5uP80xF1k1M7du3UJlZSVUKtVTz6mtrQUAnm4iIiKSodraWri4uBgcY9Jmpq6uDn/88Yf2eUVFBYqLi+Hm5gY3NzfExsYiPDwcKpUKV65cwfr16+Hu7o65c+c+9Wuo1WpUVlbC2dkZkiR1afwtp7AqKyt71Cmsnpo30HNz76l5A8y9J+beU/MGzCt3IQRqa2uhVqvbHWvSZub06dOYOnWq9vmaNWsAAFFRUYiPj0dJSQn27t2L27dvQ6VSYerUqdi/fz+cnZ2f+jWsrKzg6enZ5bE/rlevXiYvuin01LyBnpt7T80bYO49MfeemjdgPrm3d0SmhUmbmSlTphg8F5aVlWXEaIiIiEiOzPrWbCIiIqL2WMfGxsaaOgg5s7a2xpQpU2BjI6trqZ9ZT80b6Lm599S8AebeE3PvqXkD8szdbL5nhoiIiKgzeJqJiIiIZI3NDBEREckamxkiIiKSNTYzREREJGtsZgzYvn07vL29YW9vj4CAABw9etTg+Pz8fAQEBMDe3h7PP/88duzYYaRIu86mTZswZswYODs7w8PDA3PmzEFZWZnBOXl5eZAkqdVy8eJFI0XdNWJjY1vloFQqDc6xhJoDwMCBA/XWcPny5XrHy7XmR44cwcyZM6FWqyFJEtLT03W2CyEQGxsLtVoNBwcHTJkyBefPn293vykpKfDz84NCoYCfnx/S0tK6K4VOM5R7U1MT1q1bh+HDh8PJyQlqtRpvvvkmrl+/bnCfu3fv1vs+aGho6O50nlp7NY+Ojm4Vf2BgYLv7lXvNAeitnSRJ+PLLL9vcp7nWnM1MG/bv34/Vq1djw4YNKCoqwsSJE6HRaHDt2jW94ysqKjB9+nRMnDgRRUVFWL9+PT744AOkpKQYOfJnk5+fj+XLl6OgoADZ2dl48OABQkNDUV9f3+7csrIyVFVVaZfBgwcbIeKuNXToUJ0cSkpK2hxrKTUHgMLCQp28s7OzAQCvvfaawXlyq3l9fT38/f2xbds2vdu/+OILbNmyBdu2bUNhYSGUSiVefvll7W+86XPixAnMnz8fkZGROHv2LCIjIxEREYGTJ092VxqdYij3e/fu4cyZM/j0009x5swZpKam4tKlS5g1a1a7++3Vq5fOe6Cqqgr29vbdkUKntFdzAAgLC9OJ/8CBAwb3aQk1B9Cqbrt27YIkSQgPDze4X7OsuSC9XnrpJbF06VKddb6+viImJkbv+I8//lj4+vrqrHvvvfdEYGBgt8VoDDU1NQKAyM/Pb3NMbm6uACD++ecfI0bW9TZu3Cj8/f2feryl1lwIIVatWiUGDRokmpub9W63hJoDEGlpadrnzc3NQqlUiri4OO26hoYG4eLiInbs2NHmfiIiIkRYWJjOumnTpokFCxZ0fdBd5Mnc9Tl16pQAIK5evdrmmMTEROHi4tLV4XUbfXlHRUWJ2bNnd2g/llrz2bNni+DgYINjzLXmPDKjx/379/Hbb78hNDRUZ31oaCiOHz+ud86JEydajZ82bRpOnz6Npqambou1u925cwcA4Obm1u7YkSNHQqVSISQkBLm5ud0dWrcoLy+HWq2Gt7c3FixYgMuXL7c51lJrfv/+ffzwww94++232/1xVkuoeYuKigpUV1fr1FShUGDy5Mltfu6Btt8HhubIwZ07dyBJEnr37m1wXF1dHby8vODp6YkZM2agqKjISBF2nby8PHh4eGDIkCFYvHgxampqDI63xJrfuHEDmZmZeOedd9oda441ZzOjx82bN/Hw4UP069dPZ32/fv1QXV2td051dbXe8Q8ePMDNmze7LdbuJITAmjVrMGHCBAwbNqzNcSqVCjt37kRKSgpSU1Ph4+ODkJAQHDlyxIjRPruxY8di7969yMrKwvfff4/q6mqMGzcOt27d0jveEmsOAOnp6bh9+zaio6PbHGMpNX9cy2e7I5/7lnkdnWPuGhoaEBMTg9dff93gjw36+vpi9+7dyMjIwI8//gh7e3uMHz8e5eXlRoz22Wg0GiQlJeHw4cPYvHkzCgsLERwcjMbGxjbnWGLN9+zZA2dnZ8ybN8/gOHOtuXy+q9gEnvyvVAhh8D9VfeP1rZeLFStW4Ny5c/j1118NjvPx8YGPj4/2eVBQECorK/HVV19h0qRJ3R1ml9FoNNrHw4cPR1BQEAYNGoQ9e/Zof9H9SZZWcwBISEiARqOBWq1uc4yl1Fyfjn7uOzvHXDU1NWHBggVobm7G9u3bDY4NDAzUuVh2/PjxGDVqFL755ht8/fXX3R1ql5g/f7728bBhwzB69Gh4eXkhMzPT4B92S6o5AOzatQuLFi1q99oXc605j8zo4e7uDmtr61Zddk1NTatuvIVSqdQ73sbGBn369Om2WLvLypUrkZGRgdzcXHh6enZ4fmBgoMk79Wfl5OSE4cOHt5mHpdUcAK5evYqcnBy8++67HZ4r95q33LnWkc99y7yOzjFXTU1NiIiIQEVFBbKzsw0eldHHysoKY8aMkfX7QKVSwcvLy2AOllRzADh69CjKyso69bk3l5qzmdHDzs4OAQEB2js6WmRnZ2PcuHF65wQFBbUa/8svv2D06NGwtbXttli7mhACK1asQGpqKg4fPgxvb+9O7aeoqAgqlaqLozOuxsZGlJaWtpmHpdT8cYmJifDw8MArr7zS4blyr7m3tzeUSqVOTe/fv4/8/Pw2P/dA2+8DQ3PMUUsjU15ejpycnE415EIIFBcXy/p9cOvWLVRWVhrMwVJq3iIhIQEBAQHw9/fv8Fyzqbmprjw2d/v27RO2trYiISFBXLhwQaxevVo4OTmJK1euCCGEiImJEZGRkdrxly9fFo6OjuLDDz8UFy5cEAkJCcLW1lb89NNPpkqhU5YtWyZcXFxEXl6eqKqq0i737t3Tjnky961bt4q0tDRx6dIl8fvvv4uYmBgBQKSkpJgihU5bu3atyMvLE5cvXxYFBQVixowZwtnZ2eJr3uLhw4diwIABYt26da22WUrNa2trRVFRkSgqKhIAxJYtW0RRUZH2jp24uDjh4uIiUlNTRUlJiVi4cKFQqVTi7t272n1ERkbq3NV47NgxYW1tLeLi4kRpaamIi4sTNjY2oqCgwOj5GWIo96amJjFr1izh6ekpiouLdT77jY2N2n08mXtsbKw4ePCg+PPPP0VRUZF46623hI2NjTh58qQpUtTLUN61tbVi7dq14vjx46KiokLk5uaKoKAg8dxzz1l8zVvcuXNHODo6ivj4eL37kEvN2cwY8O233wovLy9hZ2cnRo0apXN7clRUlJg8ebLO+Ly8PDFy5EhhZ2cnBg4c2Oabw5wB0LskJiZqxzyZ++effy4GDRok7O3thaurq5gwYYLIzMw0fvDPaP78+UKlUglbW1uhVqvFvHnzxPnz57XbLbXmLbKysgQAUVZW1mqbpdS85ZbyJ5eoqCghxKPbszdu3CiUSqVQKBRi0qRJoqSkRGcfkydP1o5vkZycLHx8fIStra3w9fU1y6bOUO4VFRVtfvZzc3O1+3gy99WrV4sBAwYIOzs70bdvXxEaGiqOHz9u/OQMMJT3vXv3RGhoqOjbt6+wtbUVAwYMEFFRUeLatWs6+7DEmrf47rvvhIODg7h9+7befcil5pIQ/3/FIhEREZEM8ZoZIiIikjU2M0RERCRrbGaIiIhI1tjMEBERkayxmSEiIiJZYzNDREREssZmhoiIiGSNzQwR9TiSJCE9Pd3UYRBRF2EzQ0RGFR0dDUmSWi1hYWGmDo2IZMrG1AEQUc8TFhaGxMREnXUKhcJE0RCR3PHIDBEZnUKhgFKp1FlcXV0BPDoFFB8fD41GAwcHB3h7eyM5OVlnfklJCYKDg+Hg4IA+ffpgyZIlqKur0xmza9cuDB06FAqFAiqVCitWrNDZfvPmTcydOxeOjo4YPHgwMjIyujdpIuo2bGaIyOx8+umnCA8Px9mzZ/HGG29g4cKFKC0tBQDcu3cPYWFhcHV1RWFhIZKTk5GTk6PTrMTHx2P58uVYsmQJSkpKkJGRgRdeeEHnNT777DNERETg3LlzmD59OhYtWoS///7bqHkSURcx9S9dElHPEhUVJaytrYWTk5PO8p///EcI8eiX25cuXaozZ+zYsWLZsmVCCCF27twpXF1dRV1dnXZ7ZmamsLKyEtXV1UIIIdRqtdiwYUObMQAQn3zyifZ5XV2dkCRJ/Pzzz12WJxEZD6+ZISKjmzp1KuLj43XWubm5aR8HBQXpbAsKCkJxcTEAoLS0FP7+/nByctJuHz9+PJqbm1FWVgZJknD9+nWEhIQYjGHEiBHax05OTnB2dkZNTU2ncyIi02EzQ0RG5+Tk1Oq0T3skSQIACCG0j/WNcXBweKr92dratprb3NzcoZiIyDzwmhkiMjsFBQWtnvv6+gIA/Pz8UFxcjPr6eu32Y8eOwcrKCkOGDIGzszMGDhyIQ4cOGTVmIjIdHpkhIqNrbGxEdXW1zjobGxu4u7sDAJKTkzF69GhMmDABSUlJOHXqFBISEgAAixYtwsaNGxEVFYXY2Fj89ddfWLlyJSIjI9GvXz8AQGxsLJYuXQoPDw9oNBrU1tbi2LFjWLlypXETJSKjYDNDREZ38OBBqFQqnXU+Pj64ePEigEd3Gu3btw/vv/8+lEolkpKS4OfnBwBwdHREVlYWVq1ahTFjxsDR0RHh4eHYsmWLdl9RUVFoaGjA1q1b8dFHH8Hd3R2vvvqq8RIkIqOShBDC1EEQEbWQJAlpaWmYM2eOqUMhIpngNTNEREQka2xmiIiISNZ4zQwRmRWe+SaijuKRGSIiIpI1NjNEREQka2xmiIiISNbYzBAREZGssZkhIiIiWWMzQ0RERLLGZoaIiIhkjc0MERERyRqbGSIiIpK1/wNq+NzSjZwJYQAAAABJRU5ErkJggg==",
-      "text/plain": [
-       "<Figure size 640x480 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "n_epochs=19\n",
-    "\n",
-    "plt.plot(range(n_epochs), train_loss_list)\n",
-    "plt.xlabel(\"Epoch\")\n",
-    "plt.ylabel(\"Loss\")\n",
-    "plt.title(\"Performance of Model 1\")\n",
-    "plt.show()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "11df8fd4",
-   "metadata": {},
-   "source": [
-    "Now loading the model with the lowest validation loss value\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 43,
-   "id": "e93efdfc",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Test Loss: 17.170850\n",
-      "\n",
-      "Test Accuracy of airplane: 73% (736/1000)\n",
-      "Test Accuracy of automobile: 89% (898/1000)\n",
-      "Test Accuracy of  bird: 57% (573/1000)\n",
-      "Test Accuracy of   cat: 60% (601/1000)\n",
-      "Test Accuracy of  deer: 75% (753/1000)\n",
-      "Test Accuracy of   dog: 56% (569/1000)\n",
-      "Test Accuracy of  frog: 88% (884/1000)\n",
-      "Test Accuracy of horse: 74% (742/1000)\n",
-      "Test Accuracy of  ship: 84% (846/1000)\n",
-      "Test Accuracy of truck: 73% (735/1000)\n",
-      "\n",
-      "Test Accuracy (Overall): 73% (7337/10000)\n"
-     ]
-    }
-   ],
-   "source": [
-    "model.load_state_dict(torch.load(\"./model_cifar.pt\"))\n",
-    "\n",
-    "# track test loss\n",
-    "test_loss = 0.0\n",
-    "class_correct = list(0.0 for i in range(10))\n",
-    "class_total = list(0.0 for i in range(10))\n",
-    "\n",
-    "model.eval()\n",
-    "# iterate over test data\n",
-    "for data, target in test_loader:\n",
-    "    # move tensors to GPU if CUDA is available\n",
-    "    if train_on_gpu:\n",
-    "        data, target = data.cuda(), target.cuda()\n",
-    "    # forward pass: compute predicted outputs by passing inputs to the model\n",
-    "    output = model(data)\n",
-    "    # calculate the batch loss\n",
-    "    loss = criterion(output, target)\n",
-    "    # update test loss\n",
-    "    test_loss += loss.item() * data.size(0)\n",
-    "    # convert output probabilities to predicted class\n",
-    "    _, pred = torch.max(output, 1)\n",
-    "    # compare predictions to true label\n",
-    "    correct_tensor = pred.eq(target.data.view_as(pred))\n",
-    "    correct = (\n",
-    "        np.squeeze(correct_tensor.numpy())\n",
-    "        if not train_on_gpu\n",
-    "        else np.squeeze(correct_tensor.cpu().numpy())\n",
-    "    )\n",
-    "    # calculate test accuracy for each object class\n",
-    "    for i in range(batch_size):\n",
-    "        label = target.data[i]\n",
-    "        class_correct[label] += correct[i].item()\n",
-    "        class_total[label] += 1\n",
-    "\n",
-    "# average test loss\n",
-    "test_loss = test_loss / len(test_loader)\n",
-    "print(\"Test Loss: {:.6f}\\n\".format(test_loss))\n",
-    "\n",
-    "for i in range(10):\n",
-    "    if class_total[i] > 0:\n",
-    "        print(\n",
-    "            \"Test Accuracy of %5s: %2d%% (%2d/%2d)\"\n",
-    "            % (\n",
-    "                classes[i],\n",
-    "                100 * class_correct[i] / class_total[i],\n",
-    "                np.sum(class_correct[i]),\n",
-    "                np.sum(class_total[i]),\n",
-    "            )\n",
-    "        )\n",
-    "    else:\n",
-    "        print(\"Test Accuracy of %5s: N/A (no training examples)\" % (classes[i]))\n",
-    "\n",
-    "print(\n",
-    "    \"\\nTest Accuracy (Overall): %2d%% (%2d/%2d)\"\n",
-    "    % (\n",
-    "        100.0 * np.sum(class_correct) / np.sum(class_total),\n",
-    "        np.sum(class_correct),\n",
-    "        np.sum(class_total),\n",
-    "    )\n",
-    ")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "944991a2",
-   "metadata": {},
-   "source": [
-    "Build a new network with the following structure.\n",
-    "\n",
-    "- It has 3 convolutional layers of kernel size 3 and padding of 1.\n",
-    "- The first convolutional layer must output 16 channels, the second 32 and the third 64.\n",
-    "- At each convolutional layer output, we apply a ReLU activation then a MaxPool with kernel size of 2.\n",
-    "- Then, three fully connected layers, the first two being followed by a ReLU activation and a dropout whose value you will suggest.\n",
-    "- The first fully connected layer will have an output size of 512.\n",
-    "- The second fully connected layer will have an output size of 64.\n",
-    "\n",
-    "Compare the results obtained with this new network to those obtained previously."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 39,
-   "id": "3f0e1df3",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Net(\n",
-      "  (conv1): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
-      "  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
-      "  (conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
-      "  (conv3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
-      "  (fc1): Linear(in_features=1024, out_features=512, bias=True)\n",
-      "  (fc2): Linear(in_features=512, out_features=64, bias=True)\n",
-      "  (fc3): Linear(in_features=64, out_features=10, bias=True)\n",
-      "  (dropout): Dropout(p=0.5, inplace=False)\n",
-      ")\n"
-     ]
-    }
-   ],
-   "source": [
-    "import torch.nn as nn\n",
-    "import torch.nn.functional as F\n",
-    "\n",
-    "# define the CNN architecture\n",
-    "\n",
-    "\n",
-    "class Net(nn.Module):\n",
-    "    def __init__(self):\n",
-    "        super(Net, self).__init__()\n",
-    "        self.conv1 = nn.Conv2d(3, 16, 3, padding=1)\n",
-    "        self.pool = nn.MaxPool2d(2, 2)\n",
-    "        self.conv2 = nn.Conv2d(16, 32, 3, padding=1)\n",
-    "        self.conv3 = nn.Conv2d(32, 64, 3, padding=1)\n",
-    "        self.fc1 = nn.Linear(64 * 4 * 4, 512)\n",
-    "        self.fc2 = nn.Linear(512, 64)\n",
-    "        self.fc3 = nn.Linear(64, 10)\n",
-    "        self.dropout = nn.Dropout(0.5) #0.5 is a common value for dropout\n",
-    "\n",
-    "    def forward(self, x):\n",
-    "        x = self.pool(F.relu(self.conv1(x)))\n",
-    "        x = self.pool(F.relu(self.conv2(x)))\n",
-    "        x = self.pool(F.relu(self.conv3(x)))\n",
-    "        x = x.view(-1, 64 * 4 * 4)\n",
-    "        x = F.relu(self.fc1(x))\n",
-    "        x = self.dropout(x)\n",
-    "        x = F.relu(self.fc2(x))\n",
-    "        x = self.dropout(x)\n",
-    "        x = self.fc3(x)\n",
-    "        return x\n",
-    "\n",
-    "\n",
-    "# create a complete CNN\n",
-    "model = Net()\n",
-    "print(model)\n",
-    "# move tensors to GPU if CUDA is available\n",
-    "if train_on_gpu:\n",
-    "    model.cuda()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 40,
-   "id": "aa2236d4",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch: 0 \tTraining Loss: 45.562531 \tValidation Loss: 42.305997\n",
-      "Validation loss decreased (inf --> 42.305997).  Saving model ...\n",
-      "Epoch: 1 \tTraining Loss: 39.474510 \tValidation Loss: 34.808490\n",
-      "Validation loss decreased (42.305997 --> 34.808490).  Saving model ...\n",
-      "Epoch: 2 \tTraining Loss: 34.700151 \tValidation Loss: 31.855279\n",
-      "Validation loss decreased (34.808490 --> 31.855279).  Saving model ...\n",
-      "Epoch: 3 \tTraining Loss: 32.568385 \tValidation Loss: 30.140585\n",
-      "Validation loss decreased (31.855279 --> 30.140585).  Saving model ...\n",
-      "Epoch: 4 \tTraining Loss: 30.986165 \tValidation Loss: 28.920407\n",
-      "Validation loss decreased (30.140585 --> 28.920407).  Saving model ...\n",
-      "Epoch: 5 \tTraining Loss: 29.480848 \tValidation Loss: 27.039851\n",
-      "Validation loss decreased (28.920407 --> 27.039851).  Saving model ...\n",
-      "Epoch: 6 \tTraining Loss: 28.076040 \tValidation Loss: 25.635999\n",
-      "Validation loss decreased (27.039851 --> 25.635999).  Saving model ...\n",
-      "Epoch: 7 \tTraining Loss: 26.760129 \tValidation Loss: 23.955000\n",
-      "Validation loss decreased (25.635999 --> 23.955000).  Saving model ...\n",
-      "Epoch: 8 \tTraining Loss: 25.494585 \tValidation Loss: 22.745345\n",
-      "Validation loss decreased (23.955000 --> 22.745345).  Saving model ...\n",
-      "Epoch: 9 \tTraining Loss: 24.251832 \tValidation Loss: 22.095386\n",
-      "Validation loss decreased (22.745345 --> 22.095386).  Saving model ...\n",
-      "Epoch: 10 \tTraining Loss: 23.139143 \tValidation Loss: 21.138833\n",
-      "Validation loss decreased (22.095386 --> 21.138833).  Saving model ...\n",
-      "Epoch: 11 \tTraining Loss: 21.975158 \tValidation Loss: 20.665420\n",
-      "Validation loss decreased (21.138833 --> 20.665420).  Saving model ...\n",
-      "Epoch: 12 \tTraining Loss: 21.043967 \tValidation Loss: 19.621433\n",
-      "Validation loss decreased (20.665420 --> 19.621433).  Saving model ...\n",
-      "Epoch: 13 \tTraining Loss: 20.083247 \tValidation Loss: 19.357569\n",
-      "Validation loss decreased (19.621433 --> 19.357569).  Saving model ...\n",
-      "Epoch: 14 \tTraining Loss: 19.313826 \tValidation Loss: 17.967391\n",
-      "Validation loss decreased (19.357569 --> 17.967391).  Saving model ...\n",
-      "Epoch: 15 \tTraining Loss: 18.373283 \tValidation Loss: 17.859599\n",
-      "Validation loss decreased (17.967391 --> 17.859599).  Saving model ...\n",
-      "Epoch: 16 \tTraining Loss: 17.662972 \tValidation Loss: 17.973600\n",
-      "No improvement in validation loss for 1 epoch(s).\n",
-      "Epoch: 17 \tTraining Loss: 16.953707 \tValidation Loss: 17.344405\n",
-      "Validation loss decreased (17.859599 --> 17.344405).  Saving model ...\n",
-      "Epoch: 18 \tTraining Loss: 16.256076 \tValidation Loss: 17.016450\n",
-      "Validation loss decreased (17.344405 --> 17.016450).  Saving model ...\n",
-      "Epoch: 19 \tTraining Loss: 15.596459 \tValidation Loss: 16.758178\n",
-      "Validation loss decreased (17.016450 --> 16.758178).  Saving model ...\n",
-      "Epoch: 20 \tTraining Loss: 14.904443 \tValidation Loss: 17.566068\n",
-      "No improvement in validation loss for 1 epoch(s).\n",
-      "Epoch: 21 \tTraining Loss: 14.407137 \tValidation Loss: 16.661745\n",
-      "Validation loss decreased (16.758178 --> 16.661745).  Saving model ...\n",
-      "Epoch: 22 \tTraining Loss: 13.845622 \tValidation Loss: 16.064557\n",
-      "Validation loss decreased (16.661745 --> 16.064557).  Saving model ...\n",
-      "Epoch: 23 \tTraining Loss: 13.241376 \tValidation Loss: 16.710681\n",
-      "No improvement in validation loss for 1 epoch(s).\n",
-      "Epoch: 24 \tTraining Loss: 12.743690 \tValidation Loss: 16.099553\n",
-      "No improvement in validation loss for 2 epoch(s).\n",
-      "Epoch: 25 \tTraining Loss: 12.296984 \tValidation Loss: 16.603530\n",
-      "No improvement in validation loss for 3 epoch(s).\n",
-      "Epoch: 26 \tTraining Loss: 11.733432 \tValidation Loss: 16.308954\n",
-      "No improvement in validation loss for 4 epoch(s).\n",
-      "Epoch: 27 \tTraining Loss: 11.293886 \tValidation Loss: 15.828966\n",
-      "Validation loss decreased (16.064557 --> 15.828966).  Saving model ...\n",
-      "Epoch: 28 \tTraining Loss: 10.787941 \tValidation Loss: 16.363491\n",
-      "No improvement in validation loss for 1 epoch(s).\n",
-      "Epoch: 29 \tTraining Loss: 10.433505 \tValidation Loss: 16.555964\n",
-      "No improvement in validation loss for 2 epoch(s).\n"
-     ]
-    }
-   ],
-   "source": [
-    "import torch.optim as optim\n",
-    "criterion = nn.CrossEntropyLoss()  # specify loss function\n",
-    "optimizer = optim.SGD(model.parameters(), lr=0.01)  # specify optimizer\n",
-    "\n",
-    "n_epochs = 30  # number of epochs to train the model\n",
-    "train_loss_list = []  # list to store loss to visualize\n",
-    "valid_loss_min = np.Inf  # track change in validation loss\n",
-    "trigger = 2  # Number of epochs to wait before stopping\n",
-    "early_stop_counter = 0  # Counter for early stopping\n",
-    "\n",
-    "for epoch in range(n_epochs):\n",
-    "    # Keep track of training and validation loss\n",
-    "    train_loss = 0.0\n",
-    "    valid_loss = 0.0\n",
-    "\n",
-    "    # Train the model\n",
-    "    model.train()\n",
-    "    for data, target in train_loader:\n",
-    "        # Move tensors to GPU if CUDA is available\n",
-    "        if train_on_gpu:\n",
-    "            data, target = data.cuda(), target.cuda()\n",
-    "        # Clear the gradients of all optimized variables\n",
-    "        optimizer.zero_grad()\n",
-    "        # Forward pass: compute predicted outputs by passing inputs to the model\n",
-    "        output = model(data)\n",
-    "        # Calculate the batch loss\n",
-    "        loss = criterion(output, target)\n",
-    "        # Backward pass: compute gradient of the loss with respect to model parameters\n",
-    "        loss.backward()\n",
-    "        # Perform a single optimization step (parameter update)\n",
-    "        optimizer.step()\n",
-    "        # Update training loss\n",
-    "        train_loss += loss.item() * data.size(0)\n",
-    "\n",
-    "    # Validate the model\n",
-    "    model.eval()\n",
-    "    for data, target in valid_loader:\n",
-    "        # Move tensors to GPU if CUDA is available\n",
-    "        if train_on_gpu:\n",
-    "            data, target = data.cuda(), target.cuda()\n",
-    "        # Forward pass: compute predicted outputs by passing inputs to the model\n",
-    "        output = model(data)\n",
-    "        # Calculate the batch loss\n",
-    "        loss = criterion(output, target)\n",
-    "        # Update average validation loss\n",
-    "        valid_loss += loss.item() * data.size(0)\n",
-    "\n",
-    "    # Calculate average losses\n",
-    "    train_loss = train_loss / len(train_loader)\n",
-    "    valid_loss = valid_loss / len(valid_loader)\n",
-    "    train_loss_list.append(train_loss)\n",
-    "\n",
-    "    # Print training/validation statistics\n",
-    "    print(\n",
-    "        \"Epoch: {} \\tTraining Loss: {:.6f} \\tValidation Loss: {:.6f}\".format(\n",
-    "            epoch, train_loss, valid_loss\n",
-    "        )\n",
-    "    )\n",
-    "\n",
-    "    # Save model if validation loss has decreased\n",
-    "    if valid_loss <= valid_loss_min:\n",
-    "        print(\n",
-    "            \"Validation loss decreased ({:.6f} --> {:.6f}).  Saving model ...\".format(\n",
-    "                valid_loss_min, valid_loss\n",
-    "            )\n",
-    "        )\n",
-    "        torch.save(model.state_dict(), \"model_cifar.pt\")\n",
-    "        valid_loss_min = valid_loss\n",
-    "        early_stop_counter = 0  # Reset the counter if validation loss improves\n",
-    "    else:\n",
-    "        early_stop_counter += 1  # Increment the counter if no improvement\n",
-    "        print(f\"No improvement in validation loss for {early_stop_counter} epoch(s).\")\n",
-    "\n",
-    "    # Check for early stopping condition\n",
-    "    if early_stop_counter >= trigger:\n",
-    "        print(\"Early stopping triggered. Stopping training.\")\n",
-    "        break"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 44,
-   "id": "96d4a864",
-   "metadata": {},
-   "outputs": [
-    {
-     "ename": "ValueError",
-     "evalue": "x and y must have same first dimension, but have shapes (30,) and (3,)",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
-      "\u001b[0;32m/var/folders/c_/bcjgdb5j6wq89qpwvs1rl29h0000gn/T/ipykernel_27875/286785084.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_epochs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_loss_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Epoch\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mylabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Loss\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mplot\u001b[0;34m(scalex, scaley, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m   2785\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mdocstring\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mAxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2786\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mscalex\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mscaley\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2787\u001b[0;31m     return gca().plot(\n\u001b[0m\u001b[1;32m   2788\u001b[0m         *args, scalex=scalex, scaley=scaley, **({\"data\": data} if data\n\u001b[1;32m   2789\u001b[0m         is not None else {}), **kwargs)\n",
-      "\u001b[0;32m/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mplot\u001b[0;34m(self, scalex, scaley, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1663\u001b[0m         \"\"\"\n\u001b[1;32m   1664\u001b[0m         \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcbook\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnormalize_kwargs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmlines\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLine2D\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_alias_map\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1665\u001b[0;31m         \u001b[0mlines\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_lines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1666\u001b[0m         \u001b[0;32mfor\u001b[0m \u001b[0mline\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mlines\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1667\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_line\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    223\u001b[0m                 \u001b[0mthis\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    224\u001b[0m                 \u001b[0margs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 225\u001b[0;31m             \u001b[0;32myield\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_plot_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    226\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    227\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mget_next_color\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m_plot_args\u001b[0;34m(self, tup, kwargs)\u001b[0m\n\u001b[1;32m    389\u001b[0m             \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mindex_of\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtup\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    390\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 391\u001b[0;31m         \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_xy_from_xy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    392\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    393\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcommand\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'plot'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m_xy_from_xy\u001b[0;34m(self, x, y)\u001b[0m\n\u001b[1;32m    267\u001b[0m         \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_check_1d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    268\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 269\u001b[0;31m             raise ValueError(\"x and y must have same first dimension, but \"\n\u001b[0m\u001b[1;32m    270\u001b[0m                              \"have shapes {} and {}\".format(x.shape, y.shape))\n\u001b[1;32m    271\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m2\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mValueError\u001b[0m: x and y must have same first dimension, but have shapes (30,) and (3,)"
-     ]
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAc2UlEQVR4nO3dfWyV5f348U9paaturRG0lgcRNt1QohttYJR1fue0CxgXli2wuIg6TdbsAYHptGNTcWbNXGTTTXAPoDFBR1R0LOkc/WPDKu4BVswiJC7CLLhWUowt6lYG3L8/DP2ta3Gc2geu9vVK7j/O5X2fc51c1vP2vs9DXpZlWQAAJGDMcE8AAOBECRcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGTmHyzPPPBNXXnllTJgwIfLy8uKpp576n8ds2bIlKioqori4OKZNmxYPPPBAvyYLAIxuOYfLW2+9FRdffHH85Cc/OaH99+zZE/Pnz4/q6upobm6Ob33rW7FkyZJ44okncp4sADC65b2XH1nMy8uLJ598MhYsWHDcfW655ZbYtGlT7Nq1q3ustrY2XnjhhXj++ef7+9AAwChUMNgP8Pzzz0dNTU2PsU9/+tOxdu3a+Pe//x1jx47tdUxXV1d0dXV13z569Gi8/vrrMW7cuMjLyxvsKQMAAyDLsjh48GBMmDAhxowZmLfVDnq4tLW1RVlZWY+xsrKyOHz4cLS3t0d5eXmvY+rr62PlypWDPTUAYAjs3bs3Jk2aNCD3NejhEhG9zpIcuzp1vLMndXV1sXz58u7bHR0dcc4558TevXujpKRk8CYKAAyYzs7OmDx5crz//e8fsPsc9HA5++yzo62trcfY/v37o6CgIMaNG9fnMUVFRVFUVNRrvKSkRLgAQGIG8m0eg/49LnPmzInGxsYeY5s3b47Kyso+398CAHA8OYfLm2++GTt27IgdO3ZExDsfd96xY0e0tLRExDuXeRYvXty9f21tbbzyyiuxfPny2LVrV6xbty7Wrl0bN9100wA9BQBgtMj5UtG2bdvik5/8ZPftY+9Fueaaa+Khhx6K1tbW7oiJiJg6dWo0NDTEsmXL4v77748JEybEfffdF5/73OcGYPoAwGjynr7HZah0dnZGaWlpdHR0eI8LACRiMF6//VYRAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJ6Fe4rF69OqZOnRrFxcVRUVERTU1N77r/+vXr4+KLL45TTz01ysvL47rrrosDBw70a8IAwOiVc7hs2LAhli5dGitWrIjm5uaorq6OefPmRUtLS5/7P/vss7F48eK4/vrr48UXX4zHHnss/vznP8cNN9zwnicPAIwuOYfLqlWr4vrrr48bbrghpk+fHj/60Y9i8uTJsWbNmj73/8Mf/hDnnntuLFmyJKZOnRof//jH48tf/nJs27btPU8eABhdcgqXQ4cOxfbt26OmpqbHeE1NTWzdurXPY6qqqmLfvn3R0NAQWZbFa6+9Fo8//nhcccUVx32crq6u6Ozs7LEBAOQULu3t7XHkyJEoKyvrMV5WVhZtbW19HlNVVRXr16+PRYsWRWFhYZx99tlx+umnx49//OPjPk59fX2UlpZ2b5MnT85lmgDACNWvN+fm5eX1uJ1lWa+xY3bu3BlLliyJ2267LbZv3x5PP/107NmzJ2pra497/3V1ddHR0dG97d27tz/TBABGmIJcdh4/fnzk5+f3Oruyf//+Xmdhjqmvr4+5c+fGzTffHBERF110UZx22mlRXV0dd911V5SXl/c6pqioKIqKinKZGgAwCuR0xqWwsDAqKiqisbGxx3hjY2NUVVX1eczbb78dY8b0fJj8/PyIeOdMDQDAicr5UtHy5cvjF7/4Raxbty527doVy5Yti5aWlu5LP3V1dbF48eLu/a+88srYuHFjrFmzJnbv3h3PPfdcLFmyJGbNmhUTJkwYuGcCAIx4OV0qiohYtGhRHDhwIO68885obW2NGTNmRENDQ0yZMiUiIlpbW3t8p8u1114bBw8ejJ/85CfxjW98I04//fS49NJL4/vf//7APQsAYFTIyxK4XtPZ2RmlpaXR0dERJSUlwz0dAOAEDMbrt98qAgCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGf0Kl9WrV8fUqVOjuLg4Kioqoqmp6V337+rqihUrVsSUKVOiqKgoPvCBD8S6dev6NWEAYPQqyPWADRs2xNKlS2P16tUxd+7c+OlPfxrz5s2LnTt3xjnnnNPnMQsXLozXXnst1q5dGx/84Adj//79cfjw4fc8eQBgdMnLsizL5YDZs2fHzJkzY82aNd1j06dPjwULFkR9fX2v/Z9++un4whe+ELt3744zzjijX5Ps7OyM0tLS6OjoiJKSkn7dBwAwtAbj9TunS0WHDh2K7du3R01NTY/xmpqa2Lp1a5/HbNq0KSorK+Puu++OiRMnxvnnnx833XRT/POf/zzu43R1dUVnZ2ePDQAgp0tF7e3tceTIkSgrK+sxXlZWFm1tbX0es3v37nj22WejuLg4nnzyyWhvb4+vfOUr8frrrx/3fS719fWxcuXKXKYGAIwC/Xpzbl5eXo/bWZb1Gjvm6NGjkZeXF+vXr49Zs2bF/PnzY9WqVfHQQw8d96xLXV1ddHR0dG979+7tzzQBgBEmpzMu48ePj/z8/F5nV/bv39/rLMwx5eXlMXHixCgtLe0emz59emRZFvv27Yvzzjuv1zFFRUVRVFSUy9QAgFEgpzMuhYWFUVFREY2NjT3GGxsbo6qqqs9j5s6dG//4xz/izTff7B576aWXYsyYMTFp0qR+TBkAGK1yvlS0fPny+MUvfhHr1q2LXbt2xbJly6KlpSVqa2sj4p3LPIsXL+7e/6qrropx48bFddddFzt37oxnnnkmbr755vjSl74Up5xyysA9EwBgxMv5e1wWLVoUBw4ciDvvvDNaW1tjxowZ0dDQEFOmTImIiNbW1mhpaene/33ve180NjbG17/+9aisrIxx48bFwoUL46677hq4ZwEAjAo5f4/LcPA9LgCQnmH/HhcAgOEkXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZ/QqX1atXx9SpU6O4uDgqKiqiqanphI577rnnoqCgID7ykY/052EBgFEu53DZsGFDLF26NFasWBHNzc1RXV0d8+bNi5aWlnc9rqOjIxYvXhyf+tSn+j1ZAGB0y8uyLMvlgNmzZ8fMmTNjzZo13WPTp0+PBQsWRH19/XGP+8IXvhDnnXde5Ofnx1NPPRU7duw47r5dXV3R1dXVfbuzszMmT54cHR0dUVJSkst0AYBh0tnZGaWlpQP6+p3TGZdDhw7F9u3bo6ampsd4TU1NbN269bjHPfjgg/Hyyy/H7bfffkKPU19fH6Wlpd3b5MmTc5kmADBC5RQu7e3tceTIkSgrK+sxXlZWFm1tbX0e87e//S1uvfXWWL9+fRQUFJzQ49TV1UVHR0f3tnfv3lymCQCMUCdWEv8lLy+vx+0sy3qNRUQcOXIkrrrqqli5cmWcf/75J3z/RUVFUVRU1J+pAQAjWE7hMn78+MjPz+91dmX//v29zsJERBw8eDC2bdsWzc3N8bWvfS0iIo4ePRpZlkVBQUFs3rw5Lr300vcwfQBgNMnpUlFhYWFUVFREY2Njj/HGxsaoqqrqtX9JSUn89a9/jR07dnRvtbW18aEPfSh27NgRs2fPfm+zBwBGlZwvFS1fvjyuvvrqqKysjDlz5sTPfvazaGlpidra2oh45/0pr776ajz88MMxZsyYmDFjRo/jzzrrrCguLu41DgDwv+QcLosWLYoDBw7EnXfeGa2trTFjxoxoaGiIKVOmREREa2vr//xOFwCA/sj5e1yGw2B8DhwAGFzD/j0uAADDSbgAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMvoVLqtXr46pU6dGcXFxVFRURFNT03H33bhxY1x++eVx5plnRklJScyZMyd++9vf9nvCAMDolXO4bNiwIZYuXRorVqyI5ubmqK6ujnnz5kVLS0uf+z/zzDNx+eWXR0NDQ2zfvj0++clPxpVXXhnNzc3vefIAwOiSl2VZlssBs2fPjpkzZ8aaNWu6x6ZPnx4LFiyI+vr6E7qPCy+8MBYtWhS33XZbn/+8q6srurq6um93dnbG5MmTo6OjI0pKSnKZLgAwTDo7O6O0tHRAX79zOuNy6NCh2L59e9TU1PQYr6mpia1bt57QfRw9ejQOHjwYZ5xxxnH3qa+vj9LS0u5t8uTJuUwTABihcgqX9vb2OHLkSJSVlfUYLysri7a2thO6j3vuuSfeeuutWLhw4XH3qauri46Oju5t7969uUwTABihCvpzUF5eXo/bWZb1GuvLo48+GnfccUf86le/irPOOuu4+xUVFUVRUVF/pgYAjGA5hcv48eMjPz+/19mV/fv39zoL8982bNgQ119/fTz22GNx2WWX5T5TAGDUy+lSUWFhYVRUVERjY2OP8cbGxqiqqjrucY8++mhce+218cgjj8QVV1zRv5kCAKNezpeKli9fHldffXVUVlbGnDlz4mc/+1m0tLREbW1tRLzz/pRXX301Hn744Yh4J1oWL14c9957b3zsYx/rPltzyimnRGlp6QA+FQBgpMs5XBYtWhQHDhyIO++8M1pbW2PGjBnR0NAQU6ZMiYiI1tbWHt/p8tOf/jQOHz4cX/3qV+OrX/1q9/g111wTDz300Ht/BgDAqJHz97gMh8H4HDgAMLiG/XtcAACGk3ABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZPQrXFavXh1Tp06N4uLiqKioiKampnfdf8uWLVFRURHFxcUxbdq0eOCBB/o1WQBgdMs5XDZs2BBLly6NFStWRHNzc1RXV8e8efOipaWlz/337NkT8+fPj+rq6mhubo5vfetbsWTJknjiiSfe8+QBgNElL8uyLJcDZs+eHTNnzow1a9Z0j02fPj0WLFgQ9fX1vfa/5ZZbYtOmTbFr167usdra2njhhRfi+eef7/Mxurq6oqurq/t2R0dHnHPOObF3794oKSnJZboAwDDp7OyMyZMnxxtvvBGlpaUDc6dZDrq6urL8/Pxs48aNPcaXLFmSfeITn+jzmOrq6mzJkiU9xjZu3JgVFBRkhw4d6vOY22+/PYsIm81ms9lsI2B7+eWXc8mNd1UQOWhvb48jR45EWVlZj/GysrJoa2vr85i2trY+9z98+HC0t7dHeXl5r2Pq6upi+fLl3bffeOONmDJlSrS0tAxcsdEvx+rZ2a/hZy1OHtbi5GI9Th7HrpicccYZA3afOYXLMXl5eT1uZ1nWa+x/7d/X+DFFRUVRVFTUa7y0tNS/hCeJkpISa3GSsBYnD2txcrEeJ48xYwbuQ8w53dP48eMjPz+/19mV/fv39zqrcszZZ5/d5/4FBQUxbty4HKcLAIxmOYVLYWFhVFRURGNjY4/xxsbGqKqq6vOYOXPm9Np/8+bNUVlZGWPHjs1xugDAaJZ/xx133JHLASUlJfGd73wnJk6cGMXFxfG9730vfve738WDDz4Yp59+etTV1cXDDz8cn/3sZyMi4oMf/GDU19fHgQMH4pxzzolf//rX8d3vfjdWrVoVF1xwwYlPND8//u///i8KCvp1dYsBZC1OHtbi5GEtTi7W4+Qx0GuR88ehI975Arq77747WltbY8aMGfHDH/4wPvGJT0RExLXXXht///vf4/e//333/lu2bIlly5bFiy++GBMmTIhbbrklamtrB+QJAACjR7/CBQBgOPitIgAgGcIFAEiGcAEAkiFcAIBknDThsnr16pg6dWoUFxdHRUVFNDU1vev+W7ZsiYqKiiguLo5p06bFAw88MEQzHflyWYuNGzfG5ZdfHmeeeWaUlJTEnDlz4re//e0QznZky/Xv4pjnnnsuCgoK4iMf+cggz3D0yHUturq6YsWKFTFlypQoKiqKD3zgA7Fu3bohmu3IlutarF+/Pi6++OI49dRTo7y8PK677ro4cODAEM125HrmmWfiyiuvjAkTJkReXl489dRT//OYAXntHrBfPXoPfvnLX2Zjx47Nfv7zn2c7d+7Mbrzxxuy0007LXnnllT733717d3bqqadmN954Y7Zz587s5z//eTZ27Njs8ccfH+KZjzy5rsWNN96Yff/738/+9Kc/ZS+99FJWV1eXjR07NvvLX/4yxDMfeXJdi2PeeOONbNq0aVlNTU128cUXD9FsR7b+rMVnPvOZbPbs2VljY2O2Z8+e7I9//GP23HPPDeGsR6Zc16KpqSkbM2ZMdu+992a7d+/OmpqasgsvvDBbsGDBEM985GloaMhWrFiRPfHEE1lEZE8++eS77j9Qr90nRbjMmjUrq62t7TH24Q9/OLv11lv73P+b3/xm9uEPf7jH2Je//OXsYx/72KDNcbTIdS36csEFF2QrV64c6KmNOv1di0WLFmXf/va3s9tvv124DJBc1+I3v/lNVlpamh04cGAopjeq5LoWP/jBD7Jp06b1GLvvvvuySZMmDdocR6MTCZeBeu0e9ktFhw4diu3bt0dNTU2P8Zqamti6dWufxzz//PO99v/0pz8d27Zti3//+9+DNteRrj9r8d+OHj0aBw8eHNBfAh2N+rsWDz74YLz88stx++23D/YUR43+rMWmTZuisrIy7r777pg4cWKcf/75cdNNN8U///nPoZjyiNWftaiqqop9+/ZFQ0NDZFkWr732Wjz++ONxxRVXDMWU+Q8D9do97N+F3N7eHkeOHOn1I41lZWW9fpzxmLa2tj73P3z4cLS3t0d5efmgzXck689a/Ld77rkn3nrrrVi4cOFgTHHU6M9a/O1vf4tbb701mpqafM35AOrPWuzevTueffbZKC4ujieffDLa29vjK1/5Srz++uve5/Ie9GctqqqqYv369bFo0aL417/+FYcPH47PfOYz8eMf/3gopsx/GKjX7mE/43JMXl5ej9tZlvUa+1/79zVO7nJdi2MeffTRuOOOO2LDhg1x1llnDdb0RpUTXYsjR47EVVddFStXrozzzz9/qKY3quTyd3H06NHIy8uL9evXx6xZs2L+/PmxatWqeOihh5x1GQC5rMXOnTtjyZIlcdttt8X27dvj6aefjj179vjZmWEyEK/dw/6/ZePHj4/8/Pxetbx///5eZXbM2Wef3ef+BQUFMW7cuEGb60jXn7U4ZsOGDXH99dfHY489FpdddtlgTnNUyHUtDh48GNu2bYvm5ub42te+FhHvvHhmWRYFBQWxefPmuPTSS4dk7iNNf/4uysvLY+LEiVFaWto9Nn369MiyLPbt2xfnnXfeoM55pOrPWtTX18fcuXPj5ptvjoiIiy66KE477bSorq6Ou+66yxn6ITRQr93DfsalsLAwKioqorGxscd4Y2NjVFVV9XnMnDlzeu2/efPmqKysjLFjxw7aXEe6/qxFxDtnWq699tp45JFHXDceILmuRUlJSfz1r3+NHTt2dG+1tbXxoQ99KHbs2BGzZ88eqqmPOP35u5g7d2784x//iDfffLN77KWXXooxY8bEpEmTBnW+I1l/1uLtt9+OMWN6vtTl5+dHxP//v32GxoC9duf0Vt5BcuzjbWvXrs127tyZLV26NDvttNOyv//971mWZdmtt96aXX311d37H/tI1bJly7KdO3dma9eu9XHoAZLrWjzyyCNZQUFBdv/992etra3d2xtvvDFcT2HEyHUt/ptPFQ2cXNfi4MGD2aRJk7LPf/7z2Ysvvpht2bIlO++887IbbrhhuJ7CiJHrWjz44INZQUFBtnr16uzll1/Onn322ayysjKbNWvWcD2FEePgwYNZc3Nz1tzcnEVEtmrVqqy5ubn7o+mD9dp9UoRLlmXZ/fffn02ZMiUrLCzMZs6cmW3ZsqX7n11zzTXZJZdc0mP/3//+99lHP/rRrLCwMDv33HOzNWvWDPGMR65c1uKSSy7JIqLXds011wz9xEegXP8u/pNwGVi5rsWuXbuyyy67LDvllFOySZMmZcuXL8/efvvtIZ71yJTrWtx3333ZBRdckJ1yyilZeXl59sUvfjHbt2/fEM965Pnd7373rv/9H6zX7rwsc64MAEjDsL/HBQDgRAkXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIxv8DdgKZtXsFZmAAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<Figure size 640x480 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "plt.plot(range(n_epochs), train_loss_list)\n",
-    "plt.xlabel(\"Epoch\")\n",
-    "plt.ylabel(\"Loss\")\n",
-    "plt.title(\"Performance of Model 1\")\n",
-    "plt.show()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 58,
-   "id": "b86dd2c4",
-   "metadata": {},
-   "outputs": [
-    {
-     "ename": "RuntimeError",
-     "evalue": "Error(s) in loading state_dict for Net:\n\tMissing key(s) in state_dict: \"conv3.weight\", \"conv3.bias\", \"fc1.weight\", \"fc1.bias\", \"fc2.weight\", \"fc2.bias\", \"fc3.weight\", \"fc3.bias\". \n\tUnexpected key(s) in state_dict: \"fc1.scale\", \"fc1.zero_point\", \"fc1._packed_params.dtype\", \"fc1._packed_params._packed_params\", \"fc2.scale\", \"fc2.zero_point\", \"fc2._packed_params.dtype\", \"fc2._packed_params._packed_params\", \"fc3.scale\", \"fc3.zero_point\", \"fc3._packed_params.dtype\", \"fc3._packed_params._packed_params\". \n\tsize mismatch for conv1.weight: copying a param with shape torch.Size([6, 3, 5, 5]) from checkpoint, the shape in current model is torch.Size([16, 3, 3, 3]).\n\tsize mismatch for conv1.bias: copying a param with shape torch.Size([6]) from checkpoint, the shape in current model is torch.Size([16]).\n\tsize mismatch for conv2.weight: copying a param with shape torch.Size([16, 6, 5, 5]) from checkpoint, the shape in current model is torch.Size([32, 16, 3, 3]).\n\tsize mismatch for conv2.bias: copying a param with shape torch.Size([16]) from checkpoint, the shape in current model is torch.Size([32]).",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
-      "\u001b[0;32m/var/folders/c_/bcjgdb5j6wq89qpwvs1rl29h0000gn/T/ipykernel_27875/3291884398.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_state_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"./model_cifar.pt\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0;31m# track test loss\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0mtest_loss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0mclass_correct\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0.0\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36mload_state_dict\u001b[0;34m(self, state_dict, strict, assign)\u001b[0m\n\u001b[1;32m   2151\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2152\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merror_msgs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2153\u001b[0;31m             raise RuntimeError('Error(s) in loading state_dict for {}:\\n\\t{}'.format(\n\u001b[0m\u001b[1;32m   2154\u001b[0m                                self.__class__.__name__, \"\\n\\t\".join(error_msgs)))\n\u001b[1;32m   2155\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0m_IncompatibleKeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmissing_keys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munexpected_keys\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mRuntimeError\u001b[0m: Error(s) in loading state_dict for Net:\n\tMissing key(s) in state_dict: \"conv3.weight\", \"conv3.bias\", \"fc1.weight\", \"fc1.bias\", \"fc2.weight\", \"fc2.bias\", \"fc3.weight\", \"fc3.bias\". \n\tUnexpected key(s) in state_dict: \"fc1.scale\", \"fc1.zero_point\", \"fc1._packed_params.dtype\", \"fc1._packed_params._packed_params\", \"fc2.scale\", \"fc2.zero_point\", \"fc2._packed_params.dtype\", \"fc2._packed_params._packed_params\", \"fc3.scale\", \"fc3.zero_point\", \"fc3._packed_params.dtype\", \"fc3._packed_params._packed_params\". \n\tsize mismatch for conv1.weight: copying a param with shape torch.Size([6, 3, 5, 5]) from checkpoint, the shape in current model is torch.Size([16, 3, 3, 3]).\n\tsize mismatch for conv1.bias: copying a param with shape torch.Size([6]) from checkpoint, the shape in current model is torch.Size([16]).\n\tsize mismatch for conv2.weight: copying a param with shape torch.Size([16, 6, 5, 5]) from checkpoint, the shape in current model is torch.Size([32, 16, 3, 3]).\n\tsize mismatch for conv2.bias: copying a param with shape torch.Size([16]) from checkpoint, the shape in current model is torch.Size([32])."
-     ]
-    }
-   ],
-   "source": [
-    "model.load_state_dict(torch.load(\"./model_cifar.pt\"))\n",
-    "\n",
-    "# track test loss\n",
-    "test_loss = 0.0\n",
-    "class_correct = list(0.0 for i in range(10))\n",
-    "class_total = list(0.0 for i in range(10))\n",
-    "\n",
-    "model.eval()\n",
-    "# iterate over test data\n",
-    "for data, target in test_loader:\n",
-    "    # move tensors to GPU if CUDA is available\n",
-    "    if train_on_gpu:\n",
-    "        data, target = data.cuda(), target.cuda()\n",
-    "    # forward pass: compute predicted outputs by passing inputs to the model\n",
-    "    output = model(data)\n",
-    "    # calculate the batch loss\n",
-    "    loss = criterion(output, target)\n",
-    "    # update test loss\n",
-    "    test_loss += loss.item() * data.size(0)\n",
-    "    # convert output probabilities to predicted class\n",
-    "    _, pred = torch.max(output, 1)\n",
-    "    # compare predictions to true label\n",
-    "    correct_tensor = pred.eq(target.data.view_as(pred))\n",
-    "    correct = (\n",
-    "        np.squeeze(correct_tensor.numpy())\n",
-    "        if not train_on_gpu\n",
-    "        else np.squeeze(correct_tensor.cpu().numpy())\n",
-    "    )\n",
-    "    # calculate test accuracy for each object class\n",
-    "    for i in range(batch_size):\n",
-    "        label = target.data[i]\n",
-    "        class_correct[label] += correct[i].item()\n",
-    "        class_total[label] += 1\n",
-    "\n",
-    "# average test loss\n",
-    "test_loss = test_loss / len(test_loader)\n",
-    "print(\"Test Loss: {:.6f}\\n\".format(test_loss))\n",
-    "\n",
-    "for i in range(10):\n",
-    "    if class_total[i] > 0:\n",
-    "        print(\n",
-    "            \"Test Accuracy of %5s: %2d%% (%2d/%2d)\"\n",
-    "            % (\n",
-    "                classes[i],\n",
-    "                100 * class_correct[i] / class_total[i],\n",
-    "                np.sum(class_correct[i]),\n",
-    "                np.sum(class_total[i]),\n",
-    "            )\n",
-    "        )\n",
-    "    else:\n",
-    "        print(\"Test Accuracy of %5s: N/A (no training examples)\" % (classes[i]))\n",
-    "\n",
-    "print(\n",
-    "    \"\\nTest Accuracy (Overall): %2d%% (%2d/%2d)\"\n",
-    "    % (\n",
-    "        100.0 * np.sum(class_correct) / np.sum(class_total),\n",
-    "        np.sum(class_correct),\n",
-    "        np.sum(class_total),\n",
-    "    )\n",
-    ")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "bc381cf4",
-   "metadata": {},
-   "source": [
-    "## Exercise 2: Quantization: try to compress the CNN to save space\n",
-    "\n",
-    "Quantization doc is available from https://pytorch.org/docs/stable/quantization.html#torch.quantization.quantize_dynamic\n",
-    "        \n",
-    "The Exercise is to quantize post training the above CNN model. Compare the size reduction and the impact on the classification accuracy \n",
-    "\n",
-    "\n",
-    "The size of the model is simply the size of the file."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 42,
-   "id": "ef623c26",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "model:  fp32  \t Size (KB): 2330.946\n"
-     ]
-    },
-    {
-     "data": {
-      "text/plain": [
-       "2330946"
-      ]
-     },
-     "execution_count": 42,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import os\n",
-    "\n",
-    "\n",
-    "def print_size_of_model(model, label=\"\"):\n",
-    "    torch.save(model.state_dict(), \"temp.p\")\n",
-    "    size = os.path.getsize(\"temp.p\")\n",
-    "    print(\"model: \", label, \" \\t\", \"Size (KB):\", size / 1e3)\n",
-    "    os.remove(\"temp.p\")\n",
-    "    return size\n",
-    "\n",
-    "\n",
-    "print_size_of_model(model, \"fp32\")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "05c4e9ad",
-   "metadata": {},
-   "source": [
-    "Post training quantization example"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 15,
-   "id": "c4c65d4b",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "model:  int8  \t Size (KB): 76.522\n"
-     ]
-    },
-    {
-     "data": {
-      "text/plain": [
-       "76522"
-      ]
-     },
-     "execution_count": 15,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import torch.quantization\n",
-    "\n",
-    "\n",
-    "quantized_model = torch.quantization.quantize_dynamic(model, dtype=torch.qint8)\n",
-    "print_size_of_model(quantized_model, \"int8\")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "7b108e17",
-   "metadata": {},
-   "source": [
-    "For each class, compare the classification test accuracy of the initial model and the quantized model. Also give the overall test accuracy for both models."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 52,
-   "id": "35135f12",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/torch/autograd/__init__.py:266: UserWarning: quantized::linear_dynamic: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at /Users/runner/work/pytorch/pytorch/pytorch/torch/csrc/autograd/autograd_not_implemented_fallback.cpp:72.)\n",
-      "  Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch: 0 \tTraining Loss: 17.109160 \tValidation Loss: 17.287051\n",
-      "Validation loss decreased (inf --> 17.287051).  Saving model ...\n",
-      "Epoch: 1 \tTraining Loss: 17.108934 \tValidation Loss: 17.279689\n",
-      "Validation loss decreased (17.287051 --> 17.279689).  Saving model ...\n",
-      "Epoch: 2 \tTraining Loss: 17.114191 \tValidation Loss: 17.282382\n",
-      "No improvement in validation loss for 1 epoch(s).\n",
-      "Epoch: 3 \tTraining Loss: 17.112787 \tValidation Loss: 17.279775\n",
-      "No improvement in validation loss for 2 epoch(s).\n",
-      "Epoch: 4 \tTraining Loss: 17.114435 \tValidation Loss: 17.270469\n",
-      "Validation loss decreased (17.279689 --> 17.270469).  Saving model ...\n",
-      "Epoch: 5 \tTraining Loss: 17.110570 \tValidation Loss: 17.282572\n",
-      "No improvement in validation loss for 1 epoch(s).\n",
-      "Epoch: 6 \tTraining Loss: 17.106720 \tValidation Loss: 17.281430\n",
-      "No improvement in validation loss for 2 epoch(s).\n",
-      "Epoch: 7 \tTraining Loss: 17.106561 \tValidation Loss: 17.282130\n",
-      "No improvement in validation loss for 3 epoch(s).\n",
-      "Early stopping triggered. Stopping training.\n"
-     ]
-    }
-   ],
-   "source": [
-    "import torch.optim as optim\n",
-    "\n",
-    "criterion = nn.CrossEntropyLoss()  # specify loss function\n",
-    "optimizer = optim.SGD(quantized_model.parameters(), lr=0.01)  # specify optimizer\n",
-    "\n",
-    "n_epochs = 30  # number of epochs to train the model\n",
-    "train_loss_list = []  # list to store loss to visualize\n",
-    "valid_loss_min = np.Inf  # track change in validation loss\n",
-    "trigger = 3  # Number of epochs to wait before stopping\n",
-    "early_stop_counter = 0  # Counter for early stopping\n",
-    "\n",
-    "for epoch in range(n_epochs):\n",
-    "    # Keep track of training and validation loss\n",
-    "    train_loss = 0.0\n",
-    "    valid_loss = 0.0\n",
-    "\n",
-    "    # Train the model\n",
-    "    quantized_model.train()\n",
-    "    for data, target in train_loader:\n",
-    "        # Move tensors to GPU if CUDA is available\n",
-    "        if train_on_gpu:\n",
-    "            data, target = data.cuda(), target.cuda()\n",
-    "        # Clear the gradients of all optimized variables\n",
-    "        optimizer.zero_grad()\n",
-    "        # Forward pass: compute predicted outputs by passing inputs to the model\n",
-    "        output = quantized_model(data)\n",
-    "        # Calculate the batch loss\n",
-    "        loss = criterion(output, target)\n",
-    "        # Backward pass: compute gradient of the loss with respect to model parameters\n",
-    "        loss.backward()\n",
-    "        # Perform a single optimization step (parameter update)\n",
-    "        optimizer.step()\n",
-    "        # Update training loss\n",
-    "        train_loss += loss.item() * data.size(0)\n",
-    "\n",
-    "    # Validate the model\n",
-    "    quantized_model.eval()\n",
-    "    for data, target in valid_loader:\n",
-    "        # Move tensors to GPU if CUDA is available\n",
-    "        if train_on_gpu:\n",
-    "            data, target = data.cuda(), target.cuda()\n",
-    "        # Forward pass: compute predicted outputs by passing inputs to the model\n",
-    "        output = quantized_model(data)\n",
-    "        # Calculate the batch loss\n",
-    "        loss = criterion(output, target)\n",
-    "        # Update average validation loss\n",
-    "        valid_loss += loss.item() * data.size(0)\n",
-    "\n",
-    "    # Calculate average losses\n",
-    "    train_loss = train_loss / len(train_loader)\n",
-    "    valid_loss = valid_loss / len(valid_loader)\n",
-    "    train_loss_list.append(train_loss)\n",
-    "\n",
-    "    # Print training/validation statistics\n",
-    "    print(\n",
-    "        \"Epoch: {} \\tTraining Loss: {:.6f} \\tValidation Loss: {:.6f}\".format(\n",
-    "            epoch, train_loss, valid_loss\n",
-    "        )\n",
-    "    )\n",
-    "\n",
-    "    # Save model if validation loss has decreased\n",
-    "    if valid_loss <= valid_loss_min:\n",
-    "        print(\n",
-    "            \"Validation loss decreased ({:.6f} --> {:.6f}).  Saving model ...\".format(\n",
-    "                valid_loss_min, valid_loss\n",
-    "            )\n",
-    "        )\n",
-    "        torch.save(quantized_model.state_dict(), \"model_cifar_quantized.pt\")\n",
-    "        valid_loss_min = valid_loss\n",
-    "        early_stop_counter = 0  # Reset the counter if validation loss improves\n",
-    "    else:\n",
-    "        early_stop_counter += 1  # Increment the counter if no improvement\n",
-    "        print(f\"No improvement in validation loss for {early_stop_counter} epoch(s).\")\n",
-    "\n",
-    "    # Check for early stopping condition\n",
-    "    if early_stop_counter >= trigger:\n",
-    "        print(\"Early stopping triggered. Stopping training.\")\n",
-    "        break"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 57,
-   "id": "2c5913bd",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Test Loss Model Quantized : 21.156928\n",
-      "\n",
-      "Test Accuracy Model Quantized of airplane: 70% (700/1000)\n",
-      "Test Accuracy Model Quantized of automobile: 77% (771/1000)\n",
-      "Test Accuracy Model Quantized of  bird: 47% (475/1000)\n",
-      "Test Accuracy Model Quantized of   cat: 43% (438/1000)\n",
-      "Test Accuracy Model Quantized of  deer: 50% (503/1000)\n",
-      "Test Accuracy Model Quantized of   dog: 55% (550/1000)\n",
-      "Test Accuracy Model Quantized of  frog: 80% (802/1000)\n",
-      "Test Accuracy Model Quantized of horse: 66% (661/1000)\n",
-      "Test Accuracy Model Quantized of  ship: 71% (719/1000)\n",
-      "Test Accuracy Model Quantized of truck: 77% (779/1000)\n",
-      "\n",
-      "Test Accuracy Model Quantized (Overall): 63% (6398/10000)\n"
-     ]
-    },
-    {
-     "ename": "RuntimeError",
-     "evalue": "Error(s) in loading state_dict for Net:\n\tMissing key(s) in state_dict: \"conv3.weight\", \"conv3.bias\", \"fc1.weight\", \"fc1.bias\", \"fc2.weight\", \"fc2.bias\", \"fc3.weight\", \"fc3.bias\". \n\tUnexpected key(s) in state_dict: \"fc1.scale\", \"fc1.zero_point\", \"fc1._packed_params.dtype\", \"fc1._packed_params._packed_params\", \"fc2.scale\", \"fc2.zero_point\", \"fc2._packed_params.dtype\", \"fc2._packed_params._packed_params\", \"fc3.scale\", \"fc3.zero_point\", \"fc3._packed_params.dtype\", \"fc3._packed_params._packed_params\". \n\tsize mismatch for conv1.weight: copying a param with shape torch.Size([6, 3, 5, 5]) from checkpoint, the shape in current model is torch.Size([16, 3, 3, 3]).\n\tsize mismatch for conv1.bias: copying a param with shape torch.Size([6]) from checkpoint, the shape in current model is torch.Size([16]).\n\tsize mismatch for conv2.weight: copying a param with shape torch.Size([16, 6, 5, 5]) from checkpoint, the shape in current model is torch.Size([32, 16, 3, 3]).\n\tsize mismatch for conv2.bias: copying a param with shape torch.Size([16]) from checkpoint, the shape in current model is torch.Size([32]).",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
-      "\u001b[0;32m/var/folders/c_/bcjgdb5j6wq89qpwvs1rl29h0000gn/T/ipykernel_27875/2110516623.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     60\u001b[0m )\n\u001b[1;32m     61\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 62\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_state_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"./model_cifar.pt\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     63\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     64\u001b[0m \u001b[0;31m# track test loss\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36mload_state_dict\u001b[0;34m(self, state_dict, strict, assign)\u001b[0m\n\u001b[1;32m   2151\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2152\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merror_msgs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2153\u001b[0;31m             raise RuntimeError('Error(s) in loading state_dict for {}:\\n\\t{}'.format(\n\u001b[0m\u001b[1;32m   2154\u001b[0m                                self.__class__.__name__, \"\\n\\t\".join(error_msgs)))\n\u001b[1;32m   2155\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0m_IncompatibleKeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmissing_keys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munexpected_keys\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mRuntimeError\u001b[0m: Error(s) in loading state_dict for Net:\n\tMissing key(s) in state_dict: \"conv3.weight\", \"conv3.bias\", \"fc1.weight\", \"fc1.bias\", \"fc2.weight\", \"fc2.bias\", \"fc3.weight\", \"fc3.bias\". \n\tUnexpected key(s) in state_dict: \"fc1.scale\", \"fc1.zero_point\", \"fc1._packed_params.dtype\", \"fc1._packed_params._packed_params\", \"fc2.scale\", \"fc2.zero_point\", \"fc2._packed_params.dtype\", \"fc2._packed_params._packed_params\", \"fc3.scale\", \"fc3.zero_point\", \"fc3._packed_params.dtype\", \"fc3._packed_params._packed_params\". \n\tsize mismatch for conv1.weight: copying a param with shape torch.Size([6, 3, 5, 5]) from checkpoint, the shape in current model is torch.Size([16, 3, 3, 3]).\n\tsize mismatch for conv1.bias: copying a param with shape torch.Size([6]) from checkpoint, the shape in current model is torch.Size([16]).\n\tsize mismatch for conv2.weight: copying a param with shape torch.Size([16, 6, 5, 5]) from checkpoint, the shape in current model is torch.Size([32, 16, 3, 3]).\n\tsize mismatch for conv2.bias: copying a param with shape torch.Size([16]) from checkpoint, the shape in current model is torch.Size([32])."
-     ]
-    }
-   ],
-   "source": [
-    "quantized_model.load_state_dict(torch.load(\"./model_cifar_quantized.pt\"))\n",
-    "\n",
-    "# track test loss\n",
-    "test_loss = 0.0\n",
-    "class_correct = list(0.0 for i in range(10))\n",
-    "class_total = list(0.0 for i in range(10))\n",
-    "\n",
-    "quantized_model.eval()\n",
-    "# iterate over test data\n",
-    "for data, target in test_loader:\n",
-    "    # move tensors to GPU if CUDA is available\n",
-    "    if train_on_gpu:\n",
-    "        data, target = data.cuda(), target.cuda()\n",
-    "    # forward pass: compute predicted outputs by passing inputs to the model\n",
-    "    output = quantized_model(data)\n",
-    "    # calculate the batch loss\n",
-    "    loss = criterion(output, target)\n",
-    "    # update test loss\n",
-    "    test_loss += loss.item() * data.size(0)\n",
-    "    # convert output probabilities to predicted class\n",
-    "    _, pred = torch.max(output, 1)\n",
-    "    # compare predictions to true label\n",
-    "    correct_tensor = pred.eq(target.data.view_as(pred))\n",
-    "    correct = (\n",
-    "        np.squeeze(correct_tensor.numpy())\n",
-    "        if not train_on_gpu\n",
-    "        else np.squeeze(correct_tensor.cpu().numpy())\n",
-    "    )\n",
-    "    # calculate test accuracy for each object class\n",
-    "    for i in range(batch_size):\n",
-    "        label = target.data[i]\n",
-    "        class_correct[label] += correct[i].item()\n",
-    "        class_total[label] += 1\n",
-    "\n",
-    "# average test loss\n",
-    "test_loss = test_loss / len(test_loader)\n",
-    "print(\"Test Loss Model Quantized : {:.6f}\\n\".format(test_loss))\n",
-    "\n",
-    "for i in range(10):\n",
-    "    if class_total[i] > 0:\n",
-    "        print(\n",
-    "            \"Test Accuracy Model Quantized of %5s: %2d%% (%2d/%2d)\"\n",
-    "            % (\n",
-    "                classes[i],\n",
-    "                100 * class_correct[i] / class_total[i],\n",
-    "                np.sum(class_correct[i]),\n",
-    "                np.sum(class_total[i]),\n",
-    "            )\n",
-    "        )\n",
-    "    else:\n",
-    "        print(\"Test Accuracy Model Quantized of %5s: N/A (no training examples)\" % (classes[i]))\n",
-    "\n",
-    "print(\n",
-    "    \"\\nTest Accuracy Model Quantized (Overall): %2d%% (%2d/%2d)\"\n",
-    "    % (\n",
-    "        100.0 * np.sum(class_correct) / np.sum(class_total),\n",
-    "        np.sum(class_correct),\n",
-    "        np.sum(class_total),\n",
-    "    )\n",
-    ")\n",
-    "\n",
-    "model.load_state_dict(torch.load(\"./model_cifar.pt\"))\n",
-    "\n",
-    "# track test loss\n",
-    "test_loss = 0.0\n",
-    "class_correct = list(0.0 for i in range(10))\n",
-    "class_total = list(0.0 for i in range(10))\n",
-    "\n",
-    "model.eval()\n",
-    "# iterate over test data\n",
-    "for data, target in test_loader:\n",
-    "    # move tensors to GPU if CUDA is available\n",
-    "    if train_on_gpu:\n",
-    "        data, target = data.cuda(), target.cuda()\n",
-    "    # forward pass: compute predicted outputs by passing inputs to the model\n",
-    "    output = model(data)\n",
-    "    # calculate the batch loss\n",
-    "    loss = criterion(output, target)\n",
-    "    # update test loss\n",
-    "    test_loss += loss.item() * data.size(0)\n",
-    "    # convert output probabilities to predicted class\n",
-    "    _, pred = torch.max(output, 1)\n",
-    "    # compare predictions to true label\n",
-    "    correct_tensor = pred.eq(target.data.view_as(pred))\n",
-    "    correct = (\n",
-    "        np.squeeze(correct_tensor.numpy())\n",
-    "        if not train_on_gpu\n",
-    "        else np.squeeze(correct_tensor.cpu().numpy())\n",
-    "    )\n",
-    "    # calculate test accuracy for each object class\n",
-    "    for i in range(batch_size):\n",
-    "        label = target.data[i]\n",
-    "        class_correct[label] += correct[i].item()\n",
-    "        class_total[label] += 1\n",
-    "\n",
-    "# average test loss\n",
-    "test_loss = test_loss / len(test_loader)\n",
-    "print(\"Test Loss Initial Model : {:.6f}\\n\".format(test_loss))\n",
-    "\n",
-    "for i in range(10):\n",
-    "    if class_total[i] > 0:\n",
-    "        print(\n",
-    "            \"Test Accuracy Initial Model of %5s: %2d%% (%2d/%2d)\"\n",
-    "            % (\n",
-    "                classes[i],\n",
-    "                100 * class_correct[i] / class_total[i],\n",
-    "                np.sum(class_correct[i]),\n",
-    "                np.sum(class_total[i]),\n",
-    "            )\n",
-    "        )\n",
-    "    else:\n",
-    "        print(\"Test Accuracy Initial Model of %5s: N/A (no training examples)\" % (classes[i]))\n",
-    "\n",
-    "print(\n",
-    "    \"\\nTest Accuracy Initial Model (Overall): %2d%% (%2d/%2d)\"\n",
-    "    % (\n",
-    "        100.0 * np.sum(class_correct) / np.sum(class_total),\n",
-    "        np.sum(class_correct),\n",
-    "        np.sum(class_total),\n",
-    "    )\n",
-    ")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "id": "748b1915",
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "markdown",
-   "id": "a0a34b90",
-   "metadata": {},
-   "source": [
-    "Try training aware quantization to mitigate the impact on the accuracy (doc available here https://pytorch.org/docs/stable/quantization.html#torch.quantization.quantize_dynamic)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "201470f9",
-   "metadata": {},
-   "source": [
-    "## Exercise 3: working with pre-trained models.\n",
-    "\n",
-    "PyTorch offers several pre-trained models https://pytorch.org/vision/0.8/models.html        \n",
-    "We will use ResNet50 trained on ImageNet dataset (https://www.image-net.org/index.php). Use the following code with the files `imagenet-simple-labels.json` that contains the imagenet labels and the image dog.png that we will use as test.\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 16,
-   "id": "b4d13080",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n",
-      "  warnings.warn(\n",
-      "/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet50_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet50_Weights.DEFAULT` to get the most up-to-date weights.\n",
-      "  warnings.warn(msg)\n",
-      "Downloading: \"https://download.pytorch.org/models/resnet50-0676ba61.pth\" to /Users/paulineramage/.cache/torch/hub/checkpoints/resnet50-0676ba61.pth\n",
-      "100.0%\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Predicted class is: Golden Retriever\n"
-     ]
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQ8AAAGKCAYAAAASUsRVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9265mSZLn9XP3tb7DPu84ZESeqqq7qnroZtAgAeKaCx4AiXfgZRCXXMILcM0ICQnNBRJIAz09zGhm6KmuqqzMyMzIjNix9/5O6+BuXJj54dtZXZUdmfSAtD0VEfmdfPny5W5u9re/mTkRER7bY3tsj+3v2Py/6wE8tsf22P7/2R6Fx2N7bI/tvdqj8Hhsj+2xvVd7FB6P7bE9tvdqj8LjsT22x/Ze7VF4PLbH9tjeqz0Kj8f22B7be7VH4fHYHttje6/Wve8PU0q8evWK8/NznHM/5pge22N7bP+Omohwf3/PRx99hPd/WLd4b+Hx6tUrPv300/f9+WN7bI/t/8Ptd7/7HZ988skf/M57C4/z83MA/rv//n/i5OQUR4IU8c7Y7k4gQUr20gnOOZwPQKodOc+cVMIJHu8dznn7jcM5imbjvCBJcNapIIgICCTydxyOVhMSvZ6k8jKJQHMNnG9+IYAD6jjEe8CDMfljasaPvi0iiN2XJB1XltwPNTPnnF7FUfp09m/tWe+9DR4QsfvV0SCSbLw6YpxDHtw9SNOH4B048hszHrF+9Fk5XB1vfmbOles+vBcRfSZ1mFLeL5/nSbJP83zpNZNdv7lZgSSJaONykvSZ5d9I0t81z0EklZ/XPuuogoMueIJ35RrzPDNOMwD7aUBiZI55LoQ4C1NeaymWecq345wH50ipjkvXfJ4rAYQQdJt53+E8OFsX3gW8d2WdiEQdawh0obffeETE+tL5D11X74NATDN55Tjn8Ti64MtrcHRdRwiheUpO5xQ47AcOmxu2968ZhoH/+r/9b8r+/kPtvYVHXkSnp+ecnJwhadYFUaSFbsK8LcVeBx/Kb+12EfJrFQQ+Cwvn0HnNCzHiSHiqIND9VzeVwO8RBlI2pzSCwy5CcoEK/+SN7fA+jyPolrRxRVQWtZtS+zXhElO7bo/mq/1/7xx523lU6FDuXf/EvJ/keNNJSgiCb36PE5Ko4MudFGGe33VSBKlDQCbIiz/l6+axSttV20tpKSb9efO2NBvdZqfOh/1vKsJcyiFQDglUQMcY7XVCRIizvs7CI5UuEq1MSympgJdUNrxzjkVw9J0ueecdcRb6eQBgOa2Yp5nZOp1TIkVhmudyT3pbeX2rEEgJRFy9z1TXgRMTIDa44AM065/ybOvaDCZMQmfCwxZCvj3nhL7viyDw3pGSI8bJvhHxflHWbhc6vNd95/NvnCM1j2S9OmW/WNF3HYfDvszXH2vvLTy+05zHdj5gC526OexLJBw+b1Th6KHrNq935UVMoORVkvAuNtcQfBLbBPYAnFMtKCtA1mc+pfR1Mm1Cx50XBvm79hDzyFV4103pCYiD9HB+bRF13hNFSLEu3KOvmVbinGsQ64T3VXsxHYB6UDpUXOTJ0d8G32zS6I7kYtWiUvNKaEQDiNf5QhdmauaSvKEdOHHlO0fzJXYw5GEkOZYvIu3U4bx+JUizTooaVuenjdeMQl0DgMchzuN91gqa+0Efg+AQcUf3OichWL9BPKHzeNEt0InOeLDOfIzEkPBlqTo9FMpB5kiSEEfR9cSkb34GjlQ0N713j3dVo02SD4F63zE5nHekvF6DzyeijuuBNuucx3shb+U5JlKacK63ayS8fZb3QPL1twCh8yzXK2K8QsKS79t+sPBIJhBwQRdmWezH6mtW1fUktQdoEjVPngfSAxVZpWQ9jcGRJvvc67IPiE0geKcbLJsx2azx+YE1Wg1AEjUPYr6hrPpKY0qkqJK+bJhk6mGzcY8P26NraB+pahymikaEUMyOiCAUq89BTM2eEtWm6qKx8WVZ4iF5/V4ZUzmx8kPJ2lm+kaRjSa1aIPV1fhaNPMjjSe3NHml+YmKviN6jORGRo3USJd+TUDemPq+snYiYDps3cpzxrpFX9t1ixohpVY1QkxSZEfrONgweh2PR2yYLHuliMUm7KTHGibmYFOB8ImuoKSabPylmSkQ3ZBXoXk0Ueyb5fD2at/bxeF/WaRFAQYVj0cb98fp1Jpnz+u9YkOKE2Iqeoz2bvsOjmoceBAKSNTkPHrr1mu6hyvwH2qOr9rE9tsf2Xu0Hax6tiumyoQ6mdrmsyRtQx/FpbaBgbg6Hl2rolLOr2MJBT2DDfbwHidHOrAy6JlUPJWsWehaKy6pllvbBvu9J0mAkTjKQAkV7cTSHvN5XayolQUxTKOOWOu6HKVNijEcaRO21OadtHrI9DRHB4bNm4Zzec2PWOBv7saFY/8a0Fak3q9fPtlFyeio12kWLRZSbc/Un5KlqLupIjTbzUA9JIK6YZ1npOJ4jKRoMZDynMWu8x0kqz9x5wSWPOD1JvVlqLSiYtYP9OGonS0fnXQEevQ/MUs0WupnO97gMoErCB08yFTV5fRYpJVzMQGdnWlMzF65qpCm5Y2A9Pwv7Quc8Pqi2nVekE0cXGpzEzOrYmMTeh/IAQvBE70lpsGskYnQ4lwgZRJVqxup3IiA47wuY+33aj4d5oCZMUZR9aJaMKaUiBhJay+BcWVnyAO3Pa0ZKH6qv2oJQyJtIIluOwXftDxEnrRywzeWJ7RveFROlAIaSjjb/HKV6X5ypqlK3xBEo+LA5tWPzhsobUqSqvBVXqfPlqCZcvoeCiUiea1ev4dQOb00KaUwEr2gPwd6YRYgiR6qygwp6p2RmlHwXnHqA9xR1GjFPRGMqNeNxzjCS5ogoJm4DIjkEb4eEJG8eFLsPAwl5IHCqIl0BVO/N3pdISpF51nsb3Ag9IKbK53WZzRQ6vEs4l70viZRiNW+TgvDZu9HMRF0GAuIaTx8OUvXWZQEZXPa+VDwjA57eqfclg51IxDnK5yGoh7KAtiL22syxNAGJcYp0kgWl4i5FYIuOJaYKSn+f9iNoHmYPNhIUQIHIuuZcswDLeyaWq3uX5tQHlbIN4IQJIdMaEpDMDVukvasnM+STtgJ8zlSgUASQXid/XydW0COhujAb8WX33WIDekJII0ycc0WgufKe9eJgmibiONDZmliterq+K/hOnD0xSYE3q5DNfSa719Zr4TIKdzTn5eTL3qAyTq8nk10zONNEGm9QMpWrehlUEH4Xja8CQDXQclFabwGSEGKzcMUW/jFI6qnz553TUz9VDKQcPFRhnMHElGID6tq9mLuU4npNxDkiBrp6HwyQrs07DyGvpxkpuk6eCt200TSelOIRsKFAfaP1ihANZNV79HQhFDzDG+bhvS/CuAuevu8akNUjKZKhdtWKqz4f44RIqkIziblyYZ5Nw+m6AnzrI/J6eB6pvn+8/WiahxTdNaNaWdo2G8hl74G0H7Va9bEZRDpa/Hp2uvJDRaftxLdjasZUPpG267KYdQFUzQQbT7vxMTD0mM6RirZSQMSygXTWCwib1JVYvELN/YPu72kYmIc76A/axWKFl3Ni6u0aAVwoUyRQtKM8HojklZgVfZCiluq1qn/FOd9I+txroOUveBEykKZzkTdnFXyOlsuQ7ztrnJCkCgfdBMcalbqpmnEXaXCsuhWA2TQ0V567dpSk2bT6zXKfXUjE1Gh2knU5O3hSYmIuIKI3LaK9Lz3B8zpyBO+L90UtFZ3bqkm7o9tIIhAglnHOELzOMao1BN/RmWALQT1wwTxxuUtVCXWcwUH0XTkABPdAC26fCbhuiZv1kCjrL0Y1T0zAeNcrwCq6Hr5vewRMH9tje2zv1X4EzcOOAdMqsvngJDMXqwQVaIA0VHXCFS0lSSK4RpaLMzQhS9nsmM0mib4S78BllVZPtWMFtNqdznv7rD2NOTr1HGpKJeoJraddPflacDibJEfnpqOOQbItmlXNxDxPxGHDePgCgJvDnm59zfpEKf/eXTCnBZi/Xm3y1s53+MakSy1qWf7JGpHNQso8BftNfm55lpJqbUUJLiZkqw0eQzvfMV/c8SmomuRc8aLvAMEZPJX6nhPzsppabYzdSiwzAlg0AldSp3fGJ8AbkayOI4piFq557jHFMhfiPa5Ze4IrRDNsGrIJByimV7Riw03Mf5znRGFMQZJ+3uFJUnk2IXR0oS8mivcexJmWQHlGqo1kW8fhU2OKUqEDHaiBp8U28tB1EGey+zaJQEoE11oHyhf5Y/EsbfvBwiOrSCo4GsDLQLHK96D824JprTqvHIM6cSoQXF2tAhALIpwJOkfaroia2Y3A8a3HQBSkSs3nSsby5SJOopk3WajpAoiN3a9dVXtZhGLb5h0mRQXO9nGjEnc9B5aMk9GAE8h0R5K3AHRdTxRPv8g0ZbWdM2DqxZFcI4xNJuj69eW6ZdrQDUSzKavNWzEO9VDo97MQqZvEruePvWQPm0jt+yHhq4znyAviTDC0A24wJRNehQaeUjV1qHObhY9zQpJ8yORDQ3k60QSOAvNV/Q9iRkjjKknSHgiOLJR0+IpvKEht3wdc8EdrCXFlk/lFb9czEyR4Ba/LNQ3ElPlorQieOYOd4s3NaNhY1PsuI81LsOWB5DMn5UNjUrA3c1r6CE6JaZ6/R8D0qDULE9DJPfJI5AVdBYq4Y1s+OV9PINFYjCodWv/NsZbx3YiO8iUSQpdt9mTXcPXzzEYECD6pGzBVajMiBFyxESt2nu9DSWPNMCngJXlfV/elAKHrWawuGArwdYb3if3e7N8u0i0gyGwT4w1hzwtAiUqFOetcobtX7KVeL8+KuqrzBvD2/WOty9k1k4gh+6G4+fLGbkHso3mX/G6+r9ne+/14hsIwD5+fOzo8y+vi3g3gxFyUMM9RH2xeNk7A6bdjWUtZiOQ4E6daqLlZRaz3B4TEwh7NYy7sUZ2/mBrXtwnNmAW8bVwfsqZseFx2IzklQFZtSOcvNkpkMMEdynwrtaDO47HiXPdfPuD0XeeE2B6gztXYoRQL0aHiXX+8PWIej+2xPbb3aj/cbKGaxnJ0eKjLKjUnircfVPdyI7LJ6rarqqNJx3oAfRdb+G7Eau5PmteOuUHRpTGF9HBoTq1kEW+uqt4OEBdxkv3xeqIUaS968uVxVRdtdguKnSa1Py+Jrg9EOQEgzj0pzVXrSh0uRSbjNAVD/zMVwmGaQWMeJLK56Mp7vp2vxpzIs6QGnGkqLtmzNLIV2OmecK4GlD3s4yHGcfxMfMW28ncbb0DjbC4tmyGuaFVqQPWG/8SUyWt63c51asoUt3UiWRBlV+KgTMtw2fSJSIw10tTlCO5jk+/YNHLFlM1Oq5bkJRKPPWLKXygarIizH9l9iVeNNV/D8Cnna7yRoEGbudfZ+C6+ePLMRi7rQnk7QvsMLM4nB+z5BchYTLB5numCjUIePo2/vf1wnkeKBljpjVQV+LuDiEXdPdLz6qZLJhyK5tVCm2reuCYQTB+MfVYm7zhehvxoGiDo+BsCkr5r34uqiKD8CIliAJv2kBoBlTkJrcIoqQJ8LpPKGqxBvWux8Dw8HTE1/FsHkubijhSXN51d0+lirKaJgJjZlTeI6DOpGId+v4VmUhPI1gX930xiCiToOrxf1LHnsTUS6WEUbb7H2hqjxARHM/vH9nn5rTsG73wlNYWyRvLDTwZ8u3LfnYhZmXUc0TnmKVNEY541m0+NnC4b3VbekRh0lIWWUgWp27geaUz3FCvRsNxsA3IrQVjKELMZHgqnB13vrhVmx4e0K3/Za9ED2Jd14phFTb0CjXuPJI/Eg91LJNp1W4fGH2s/XHjMIzIPdMHbxNWVKa1UNY3giBWJ4gVZ2iknNTRStNqB+kZ+UA1jzwRSBakq81S/8V1CU4sEKBzlSDn820EGwsp3kl4b0bDnOeUTVj+PUheb3pNqBMVGl0RWaPT7qd5Yk/tBdbWqnThRQCy/0axdSnxnI7GSCHFORSBlQZ35KtHAy0JKQkrIv02czV0WPlF1R0cVWj7QrubfV620MdlNGKfmHWi5BD6Dnc2nzmVCe8UbdB7rk/OuTJ3lT2nC8pOSBlvwUxQ4QLL2KF61j0I8C4iv9+kQgvfNGHQT++rQUWJgomo8hjkdOweaeTEMqfJXMmu2Cs9MoC6sVUnG+8iohB3Tzfzr9slgTAZ987qCDkGCKwxenbuO0YbtJTFHR3QwpkfM47E9tsf2/3L7wZpH5yKdi3jzOJTmPMklUvaBq+2g/19UC1N3M7cfNBbAVTu0NSlE1ETKTU8gh/hwxBtQl1cdSmw0Hf30OOpGpAaqIXZiua7apj5CTAULmOf0wLbPrsLmIs1pW92Vdlok1+gXpQcNqy+u9+xWtZexAVnsvtWEy+PWPCniWzMlB7dldV41omyWKEnSl9MxJsEHV4KugmkZHq8eDcC5qFpek1fioaereMmg4EvtmKRB9HN0eJsDrc6jnchSXf5lPqn5UiSzbVP1ckiBFlzpy4krSs8c1Uwun3sNdcjaTWYp931oxi05FIaUVANtdO086HoDD7SzTGt4MFvtxJF3x3Ho/TFfqsU4QLdP5bgca+vOZU9Niz86nE905gWaZylb8e8AefwYgKkUFS8DiaALs3OB2dTERKXcHm1cX9250UyasnhEbdECRUpNiQONGiuOmJq+XbVdddHUTdYFc0+mvPgbewLMttYRZ3xFoqrFbRav1jQs1O1WXz1SxLP6nq+R5UAVMA8jWJ0BzmVDtb/HyENSVUe9xezzz9dUolQoX0pHgXPZfMkxD97Bxx884cn1WXkAKSW64PHWybu7Hfv9yBxrvohsDukzARccyeyhlJJh562aHSvukqPxGjyrQChlOh8Qy5y6nI9inhoafp0Pipmi16pAY2e5NuYpg4YR5ykAq/MenD+KO4lJ6lp00Hl0/ZbUhTrfOV4mZzYp676JJ/lDrTUTnfPmJs8mW0bsqoteQez8Y46xG6lrr+I52kdnWdUEQebZ9tf3bz9YeChLrqtSNdvkZpDnXIqR1stR79S5mowmCUa0qvZeagNMfMAn30xc/mYFGjM3QTJqblnFihMjpcL8A7X3LKTVrqELzuEoPm/DJlpgzD6wj/V0aBfGEWZS+rfTW9Aw8hawExOeDWmgTVmgqfge2NCpQX9cRvW9BgsCnS1wV2xywQU4sQQ45+s1JycrFosFAKtlx5OrU66uTnWu4sg8TyC+aAvPr3rGKZFM+O72kc1+KM+w64K5UGIeOCklhkG5I9M840TYD/r5OKsgSRKrByGDuDafqfxvliZ5zrPA8hxn2lHJozhIq4UlsnPFh0AcoyX4gZBxriNtwWKnUIpP1/lyeidJxGhr4UhA1ZgoFWCuCKAkFe+o3z/G5Oo+qkLryIGT/2qEhYg0kb16Dw+xltRo7N7pYRDnnOowEp3ifkf77Y+0R8zjsT22x/Ze7UfjeUC2qe19h/m99bX6njtwrmY6z7+zf2tcqJ0o3mMcbP1eEhI1wlCZ0jn6JaubrqhuYCdUk/R3FsD5qsqbzC5mTrJTvolz8M5ZuHSmNh/b4MfuZ74jvbO1GdrM8jZz+Rp6LzW5j9KeG3PA6XWL1mz5GCrMJAU7qBiRnkjZfl52PSfLBRdnKwBePL/k4uKExaJqO9M0sN3ekgeVUiLFmczziNOApKm4UZ9cnnN9eVaeYvBCmrYl+7fzFhmcf28ejsk0l3mKvLs78PZ2z3YY6/y5xg0tGQ2oGmcLLUh5L68r9aTEWDVX7z1dFwreM88a1h68RTGnqDkzspYQU+OahxAsIrc85oD3mkYyn+qzHJslZUhHz7BqNw8jksvvfMvT8EdckhKLdZRnv8E4ynXy3GiSn4AreKGY5ubLJugJwZFCOLrnP9Z+OD3dA5ZL1ElNLOPB8pFWd2Vxg2bVLxsdjf1bHZxUwlZj39k39Xc+ZypraMRmK8vRb1wGGdS9Rp3smOHT7MIr9OOWY6Dcf+dzAFRC5gZkdVUI5D58cx92N3WJHKmu1cXWkrSdd/ROSvIakUTnHwiTBqAW1EfvqLlN+j6wWgTOT5SI9vzJJU+enrJaGQiYZuK8Z7/Va0zjiMRU7lOSmhISI3MyTkDUzZ9p3/N8a3k684ROIJHFalWeUUqx5GARv9TBG8dg4R0vrhecr+Cbd9rnu+3M7jA1uWuFVnfXxT9TzJZs/pav5DlyBfB0jTACA4MbvCtaGYX8bHJO0ILhJczkyWvWK/qWpiLU9PnUJytyXKbDmZQLRpF3xVTKzzE/w3qAlkC6PL0p4kNNXqVYkS8mH4YZ5n2YsTJpnAiFmGY/6cICRyD6RBe/v9nyI2ge+l8AoqMyIBswK/+rSWDa93TzuyJwdPKDbajZMoS1mcWOgJ/kaGD9fGFylGZ+X5x7sNEouIAXTGJUgK/Ma5tYyCewpC+dA0Kbc6HGlWgf3kItbGGmhKcmWfZlfqrQEZNo7ojMRrXRk7N7yRvjeHGXu25wkS4EVv2STz98CsDT5+c4lxhHTVE3DwMS58p1mCPDYajz7T1pPOC8kEpq/0Cc5nJqDQcdU9ctrI+BbhEY9wcbZ8dufyjJeHzoEaBfKq4Sug7SyHLh+clLfe/DKfLmbuL1jZYB2A0zbV0WDMto+T++4TakpEFnXegLsBujpi2st5a9UKZdBn0SKQPvQWGbEgiXZ7lZZ9qPL8F2PmMNtm6mTBKTegC0AZKdBTu2sUUKyLmKZXEc0a3kn7YsiLeDLc+N/upImzFBWwRMDqwrgJv+pSk+Zr5ve8Q8Httje2zv1X642WJ+NeccXePzFyi5hMGgCxEcsfGE5NiMxsRwVWXrvIU7m4TMIdLS2MJYCv0Sjk0C3zDw3JEMNg9KxhxMLUyNm69IZN+YME5fZ8HtnJZMODr8q9ERnCM6qVG1SY64Jt4lvDsmtWdORuM+IcoxlVweOOEdyViQOsbQqQ29NBfc8yfnfPzhNWfnFg0cD8zDyGSaR5wm4jxanku9BxHHYa+fh64HEcbtfTk9iZF5mopTSKLG/ISV1vsIEvGLJXFUzeMwDsxTJCyW9vPEyflTzjrVMpyH0J8Susq+WfqRl08DJ0t9/frtnpttrKlVxSGpeT5O10m2SoK5Lqe5FobS+iY1UXDOUXvE1JRUTvCYHC6EEs8UZ12n+Zo5lYC6UvP8RtO8bR14xSeyxik2v137mrqeOfKuUcaV9wWYdtOYyLruqklSgosz70MqSFAqA8aI8x05qxrJmRrxdyB58KPlMNVJ8DiqKz4nOz5a/VWrwlSyRPHvq8npilswF+3J+SniselreSXyKrZNmP9usUkqBtK1AKNdtO2yrZpUMJmyME1Aecd30h4kiiqrYe6VR+FMHolxHyanLmLvqnAAdRfWwch3/vE5jaDdl/OVlp+LNV2drvnZp88AeP5shffCPKkwGHYb5jkyD7qx46x1SmS2VIhpAueYDgpcDuIJIRDHgWSV1WKC6bAhLNY6N75jGgdcFha7e07PL9hu7m1cgeX6hMNmB8D55XMurq7pFrpw1+slPnirOJjNVc847lh6FWofXTkW/ZKv36oZI7neTJPTAkepyTLPiTGaul+SEGUz0kwIr/vr2HPqywbzVvMlrzcV7HN57VwHLhiXL0sxrWLU1psR5Q2UuWoeqR4OR6C4K2ZnXqe67KoZ4gVo8p66RuAATGLBlQ0epzeQCMXCt13SvPYp42Z87/bDhUf+YxvE19klSWUaUm6oBbZ8ITuBwRe5MyxLWCtnDXAqdWbzxV1LMBIru9DOgisGmmDJgxo7MxNp2sto/2ZDAy0XRBPyhpJpuhCdskTJ+EU5LZRgVISmeKJE5sY/n4lBTcIoTA0rozqO11BGqneZO+K4vDjjF3/ynKvLnJdzYN4PHO41wdBue0uaxnpKSSDhiZNuynkacM4zH1QQ7HZ7QrekW5wwmXDolwvFEUwgRQbmOTJa+G+i4357ABQDWa8XzNPIxfUHAFw/OacPkYWzcOFxxxA9MYXjBMZxLuUmY5q5XnvkUvt8ezeyn+vzVU+IYxhzrlDV7Fr57pxqC1XTy5nhc5yNYR9NxUOS4nj6JBS7qES/nIWsKQaGHnglyZKRymoGuTyYPP9iB2qD1dhSyuCuVhYEl1nXhCONKa+GjLuQy766XI5S51UIZN5S51wpUKXPrEav/11oYj9CxTitfObNPmhvyrlSVdZUcE1yVyf7GEnWqNomJXyNdQWgD47JgtK0Ayvb2OgORwlk8v+1WgDHp0EGZH8fO7ElkSuTzyZbPK6pvVL0ncKiNGAs30XWPBqV16N1To9wLUlVxU2ehrqm/bm6ADN5KC/2j14+5ZMPLzhZCy6N1kdiHnbcf/s7AHb370j0+C4n0ZmJsakJ65fEaWDafQvA/iDMdKxWq+I18LsFwzCwWBoLNYEPMJrAWZ4/RZKwNo8OceL86przMzVbfDogc2K/V61imCbC6ozV6qREgkYc8zwXTc15x3jYcW4u5XHdMdxJMSHm5ImpATvtgMpnkT4DBSFznynO5gnS1yGoGI+NmeNcZeeW8o/ZlZsSIjPi2nSHclQZMASPl+akRzfqUYY0qlYcMqHM1SxqkhIEKQB18bLl4MWoToiaUS7Reg+dWKKLpuaMhQcfeZ/yUvy7GC6PgOlje2yP7b3aj+aqzdpAEW7e0XjPSg0QoSbDdaa2ZzAxSQa+GnsOSicp+yIzviE5xW9zgDuFIXMxbcUbGs1Ef1g1pJLKMH9ByDT7rI2Iw0DVppem3+O0A1QCl43Bu6hJMu17EaU9e9/2qTK/zy7AzmDaBtKx9KE2F8Lpes0vfqbmwMsXp4S0Zzrc19SEkti8+YL7bz/XPheXSOgLBnLYH8wNaipySIz7HcNGSWLOrximiWF/T2cYxxz3dF3H3Knm0PmOcTiU2iBpuAW/IM66tE7PTul8ZBo2+vncIfudkv1QDYphyzDfs9+r+TSNM93qvMYuxZlZHM7U7ifrHu/WfHlbHZo6l/m+beG5VvdQdb1c1zSL4/wo5as1dinzlIJHIuU+JaV6SpciuqorSjGFnLlvKwCXCW/5kUdDC6HRPJBiTXmnc5RTLmLu5qp8WyrKnOjN6J0AACAASURBVKzJ9Yph5PXv85iAUDEXkUq1xzkLPmxn64+3Hyw8PJqHIxXXSlXRjkhPUKuulAK7IC408QKOKNWXXrJWNQlvNFlx06lEA5VyRa2cVDkLGNvkbSEkKm5CI/jAzJMH9UO8fEdEFW5HHuexBZrLAWYdOL9tKrJOhgaUNapj5x0+NPayVLGmi6jauh9cnvHLP33B1aWBhMM983RA4oQz78nm3Q03r79kiErYCqkjjhvmUTfpYb9hd5hLrRgf9tzfvSFkQlfaKSHMuxLgKOKJ84jv1VvSLZYcNjdsNzcAbDc919cvcUGf8bTfM2+hX5o3ZnFG0gwT+toLEiPjsGVv3BDfrZH0FYtOx7U8eUK/WhYm57DZcb7YIxeXAHx9DznvhY5bgxpLadHyzCjf8bEjptZYzTsymwtixaPyp0kfQi0ZZ16davKKg+D7xmlQTd66DtS7p4NQAdbUFW9IjfXY1MTXrdBzZS5KbaN8yLjeDt3GAHFOi0UVz5IBoy32Alq69e+VJGYxSRm8bCcuNan59HxuA3gwLcEzF5zRANLmpo5C2UWsNEO+Rn46DU6SD5vifUlHKHsSHqSXz5Xt8sOSSmTL4yjDbYGvCm4eLRCaACipr4/TP+nx453Hu0q5DqHiJs5ZkYlsP1td1Q8/uAbgl3/6gtUyMR70RI/7O2QeCL5jPqhnY9rfK4YxqTCZHAybb5l26gm5v79nTIHDrBu773skCWPU38dhS9+dgHMswtLuZaLv13R2EnYuEaeRw0GvcXp6iveO/UZxk51E+sUZK1uUfhqZWYBX8LNjZLu5YZ5SxRu45/7ujs7rKX95ccnJxTM6c/d63zPuBs6XunDWT5/y+j6wNS9RcLb+kGbafTnAAMRKLuZnnJIWLa0Z2vO6q4dQxvG0Oyun6pylLlD3LkdgpjKuczY4rNJb2cTO4Vw4qm2b8gGZy0ma5hCawy6JkArdobdCW6ax2vulpKUkkBq4CnrYBQfO7jU61NsVh5Jd7Pu0R8zjsT22x/Ze7UfDPDqnuRKl5O+wEz7VE1/p6FLsTk3zU0PIpZp/+jqpz7y4Lyk6SL44+YeZzCMPPvMiGleTNY/sKi6oes6bWlxA9k9jvng9RSpnxR0RdyrRSF+nJBYuX7GZh6dYMFJO645vafQ1pL/qtM+uzvn5T54D0PeRab9lNC0ijQPLTpDxjt29vvfm1V9z9+YVsdPaMNv9jt1ux+7+1l7v6ZeXsPzA7jkSpwNxtnSLw8j56QIhcdjZOMKCvl/jRE8oiTPzNNCbNhfjnt32HUym/Uwj/UqwlCEshsjusMOvrvTzzZfc3e8QhGmsJq/vem6++i0AF2fnvPxoy3JtqQNOr3H9imE0beccPr56ylcbxWVu7zYENLaq4mdqHMdWnW9oA6r1eCphEQO7pDwPkdTgW7bymyC2rtPkSa3m0ZopKfkHnj2jp1NeNmRH0yRsLDWAUkMvurzmQjCNPO8M40llExk0wRZCyWQkSU1tS0fQCYhXAtz8d1AnfrirVjTvpWIXvjws0AQ92X2mZoCj8j1+HzgjBqLqJ7NowaaQ97DXBe6bTOg6LaGBPIWW6FXrvVYmpkXzkYfkGnJQO5ZqLh0PVlByVjpioNbYFuecYmeNS5m6DslokLp/mz7q1Ji9XiMfn16c8ZOPn7JYWlTosGHc3JeN3jPDNHDY7bl5rQDpZ7/+Na+//DV+oYFxp9cfsTtMjNHAte6USIcMO5uhBeKWhRAmricxM+wH1ufax2pxQh8Whfex3+zxYZGxOMb9nrFb4y1adYye6SBEM0F6drx78xXSmel0+4rNzTcEF5BOsZl+sUTiTNct7RE67m7fshyMpTpPLE/Oa6KpFDnF8eGZmnRezri525qZUcH2nASpPt8mx4UP6kI/4mQ0p5kAvkkyJTmrfGV8aphJjXnKHA5XrqHHXxmH6DopyZkwnA9XCF0181jGvpp1TraGj+kPQhWatqxs3A3XdQ5NfIxT/CUEuhxM9T3ajyA87A9608nXi0uqaf1V4kozGXoit1moMPp6GVzBKPPpmwhNCjtnmHJqUPPMVqsglYIyR4KqIXDpPWgSHftQUfuyePKXjuBSFS1tCcWHoCsY6p9pylI7MDxECw9VYQv1O8E7Ou9ZrXXDfPDklIuLjjRtATjc3xLnSJcU8/AeNrvI6y9+x1evvgbg23vYuyfErf5Gujvc6gxEhUXoViTXl8XfL1YcdrdMJpA8M/udo1+dE0LGRdYsetjtduQZCkFYrXu7j4hIZLfX57RYnzKPB3amIbm4Z7Mbcb2Ctnc3W+7f7UgSWSxVc0hxYtn3LHpdntPdQP/Jn7G++BCA7XYLskFsh90dDiSJrO1QeXHxlK674Nt3m7pRnfKBsicqr8yKVUXaoLW6nvKJ32qR1gRijPXUd65Q0vVjy7IXWq2grovcU2gOu7zkaxpC6ymPKw8pa9aZvFgWpyYjciGnrTAeU5pLcGNKswn3nDZBr991wbSn79ceMY/H9tge23u1H05Pdx3JdUQNFSunWD6NWzUcAfHV/YWzcnq5s5y3s2AIUj0q+gatTSkC0QU8NeCp2o9mZx6pqjRYReNKkQYrkeyskZbBbsh5/oo3b1KrQjZ6iTM0u8hmPeekRmkVm7nauMfNBY8LsLZ8FOcXK5wcCgdjniKdmwmmqe3uD7z6/DO++uoLbm7uAIhhxRQcaaWYxzTfwuaWqr4uCN7Tnz7Rz8eJcYysLf+HTFo8ablYapAccHLSsd/dMUUd13LREaehmIo+jcwj9GZySByRNDKNqv3gO/XMjGrG7Cfolqds7t8xZaQ/zYyHgftbvdeLs0vC6Tsun/1EX1+/5O72a7xR3GOC+9tvePHpL/WaIlyfPyelM769NUxIInOs9W5JVo84m4269I7yZOiTbeJUpLFEUfwjSULMtCzsjtabpwEu+bGrxlk+swsXXOU4hqp2IRSqwQMOUl7K0qxF13iNYpxrwqzs3k2zWgvGtg2+I5c0yebo92k/gtmitTPzPRf1LmX2RvswyuzoTaAYSGPI2F6uAsjR8D5cIKVYE534cOT6AhSQFQpQW2jiDSCq5msj5Jpxtu68Os78W7uus2ztJcmyLYz2mcvxNapCSgVc5WGuyToTMUbO1if85FPNxXF+7hk3+5KsuA+BkHbs7tVs+Rd/+b/x5Tc3DLJmMNfr7v4dd5tbptnAtyvh+vKkANbL5RrfLxAzScQ71oun9BaQttsdmGJP1y9Y9gpWTtPAPOtvATwjozjEcJJRlpwse6ZRzZr9YUDiyO6gwmO5WLNcrdluVMCtV2v29weGYSjcBR965mHG9yr0/OkTRllyv9U+16fnPH/+EZu7b3RM88Q0Ob741b8E4NnHW67xPLn4hP2oQm+zO9B5VwDTVFBz24R6YhSsAeeIKVbuiB0m9aALKjgSZdydd0iqGIjCXomaad4bGS2vC2gJi3pO2gFJKNc94p+Uz/M4jg8u7NCOZqLM82AZ/kJZrxr7YpnTgDnNStd3iRgHvm/7EWJb9E/O6JUKoJQhxLzz9dsuzdQH5hDnS4h+ybDdcu4bKeudQ1PkFwgKce6BtK6gZW4FrAVyApiSKjCfBiXT2DHIpT3mB5ylvbfMWI0v3dVrqpZVTwucU8S96TT3V3CtljYIXJ+f8ss/+YDzc52bcfuO6TDQmQbg4oY4jXz2278B4Ndf7pjcU1Kc+Pb2HQDv3u24eXNXnkmQFVfXL1j1OUBqJKUO73Rju+BxPuIsyGoetizWT1iszpqCe4HQrVkuszCBFEfyUjo9PWEa9mw2FrkbJw77d0yDYhzxRDPt5zKP47gHl+icY7AYm904E2XFqlcBtZ8ShzHy+svf2Fx8zYcffcrlE/USbe7ekdKW2chwb179FpcSVw6eXX2sfQwz4ziUg8d1wTyDdvrCg1IWJgzsrr0B4JVOpAfbnBLTbKzTeWa5XGkl+/zcBShR4jmpdQUzKYcXJYsYSEn6lAuQlbgpEqHRZiDpYdBkpz9C3u1eNB2hZVXDKV5YMsYpCyb/+b7tEfN4bI/tsb1X+xFC8l1BkaOkIo28V7X8CL0WwHW4JrWbnr8ZAc/9lc7JGT0AVQl9pTYLoi6pI/W/+uqPxlnGYXZtaDSTlKpNKbNqTG0dkPyb4r93TFJLFfrynXJu2O8aN1+9jYryO6gh+Q4XPItef/PRi0tOT0Ohkk8TamKMSgNnuOft66/56ktV3c8vnvOrv/5L/vJf/At+8+U7u2zHYn2ON7r5uLvg2bMPeHaqfaZwRgwzS/Tk7NyKEAJ3t2oepLjkybOPWC4C+8xanRQD6byVTmAmhK5gIqHrOOwc6wvVCnb3n5PmXTnP5nli9oFcwVvSyDTs8aFnsNQAb+9nRoGgl+RkOzNNiYWt1t9J5Obdjj//h6ppnJ2dMceZE9EvDGNgc/uWKP+KFz9VDenlk6d8/o2UZ+IsjKFoyiRwNQdvqfWT100OlcgWrBNcSnQpQWjWW5wQlz1PyttpHCFIQyct0FvDjk5JqqldPm7r+TQJjUrLZTdyV67JHbLQ+2pq/eYwh6x5uOCQ1OFcJMzf3Tt/W/vxeB5lcx67Hqsr0hfX1TGImo42lfaRQ99zcpS6iXOR6NKc/r5CGmLcjbop9V/7vtmPRYClhKRY3FhiQFqb5EVD6o8nNc5z7dOS8hyDWC0QbHZwkzEqL4ijymAOXjxV8tSzJyskHpgGG5cILm5xo2IF+7u3fPnZrxktLuXf/N9/xf/wj/8JX7w58OLpzwCYhteMbz8v+UPXyxXDOLIP2udiOSDi8Wu95unpmjjs6XsNt3/6wYdcP3nGPOvmBpinA4FYsJYUOpbrsyp8fcfi9Jo0qymU4sh02BLMBRgHQcKaFLW/3e4tcTgQcXzzToXHN+8iqRfLmQFB7nl98y1/8tEzm5vn3O08v/3NrwH45S9/wXJ1xjgpwOr7BeO4x2033H6t37n6eM2Ti1Pe3u3yE9AQAHuGKcfBNOtYs9M3wPsRrqUJsX3o6Eo+XEsRUYqFOauAWNegdtGYLTQHmygoP7cfGgfJc7yPHuajaZaW4jDWZ79YEJPeTzUzpImjsYPLCw6twfR924+QhlBP7Yd4ISmSK5gBOVkgSK0ejwMhHmEcaiLWJCUaJ2KfxwwnNfYgNlHNYe8yLS/31wgg05MadFqFh+So0KjFm7R6fAZmH+IpeUwVZCVKQd1zwaDSHKalVMC03G9jQ//k5VN++umlvTEyDkKywJ9AIk1DSba02dzzbht5/U69Cf/4f/lf+frNhv/sP/+vuL9Vnsfn//J/ZnX5MQcjgb366ks+/+wcXiiZ6jBtePbinOsnxtwMA+HsjNNT3dj9ck2QAcHhOx1z359w2G8JvZHGlr1mE8uaBHB2umJjXg5N/xbY3+lrCQeS2zFaLqD7zT37uzcMU2QwD8xuhu1hwyELTvMe/M0r1bJ+/tHX/Mf//l9ws9Ll++qLz/nkk08IRkRb9EtmvyROew57FXKbm8948uTn7A8qxHaH4SifRx589kNFJ5rtLQOm9lc94FQrCaEvh513QhApa0k5L4ov1OddO3l4wOVraDyMvhejBb75Zv22JEg5zgkClcOS+3Y+Ia3wkLyG7aUlEBJq3pLv0x4xj8f22B7be7UfHpIvEW9JhV0T8SokRY9b442G3kvGCFpXk9l7OXlryrzV8lK1jbamKd4YfrF8ybeIthxL6pxANqPZkpRr4gozVsfYhr9nT0prmiVGUszXNK9R48Fpv6/30fBTzKzy3rMwr8NHL6759JNLxOqjSJqRcao2OjMyH5jNJfr69Su+evMt/8f/+VcA/O71Hc+urvnlL875/I1qFnMMxLRjf68Rrjev/iWH/cjtnZoUoTtl4XZc9IodxO075u4ZJ1cf2X0EIh4hMlmYQecT0yQ4c+86F5jnqVDJ5yRs7++qze48l9fPeGdz8/bdO2ZJbDaqemy2O755uwPx3Ez6q9vDpC75slAcq0Uo0df/+rM3MP1z/pN/9GcALNye89MFveFFh+0N3eqMsDwhJV3i+9t3dP3nvLhWrsgX30xMTTY4EY6ygIE908YUzVqr/kD/8o6SmQ1LbZi1xZSs3g9Va2i9GcfF0jHzW43lavLKkQmcVF2v2IuZOi1Q6JqYKYi23poId9uLWctoPY/xO3jK395+BLNlBpkKIFrSp5FNifpwvM/BRPUmdH6z7h4AXwru5MCiEuQTzKVa1DxfcyHk4STDMRrb1NNmFhFLQ1h/55zLkWoGjBnhLYdFOzVlctIiJ0JwntnlxDCq9rmGW5Ie5ATBNf15X9ThsxPduM+eniFpKvkUYkzE+UDOXZmmPS4d2N4rYPqrX/+Kf/ZXn/FP/y911a7Xa16+/Cn/7J/8jzirCHf19Kds7w5svlEz5vJ0yXp1yTha4iG2PDs94XD7JQCb4Yyrl9eIBVB1yzPEOea4L/Vs52lH6PoiLLyHrlvhsLSC2z3OB0qZF9cT057zixN7Lfz1b19zu1F8Y9gPpOT5+l7YxorvrBdnOKOnr1c982FjhxS82wm/fbPj5ZdvdJwhcn15wgcvntkjHtnd3bBaLegtjF9Ys7l9x6XhOc8un/D12/tymOXEDS1ip/9m08IYFk1qBbH7yYvQ40FSU3DJNmY5DIXkpYTCO6MelNSGomtTvCuHbnAWC5Np8pgZ3o7UguUAvKSjtBVaWFxNnxzGn7OVVjPcVzC4TR3xR9qPwDDNPA3BS8OQyGzQnP7Ad1UYNBvZN+hzlKD8iRIs1hkgWrkjSrAyJNlpYiAFXq3wjkyoFtLgIr6t0mVvNyxWcY5AfR2T5nkoiWNMWykp8yWRYkdvdmYUx9QeB6gtXSIjg2oZoYn7SSlxcbrmTy0T2MkJTLsdZJQ8GXibLEjtcIOf97z67b8B4H//p/+af/07x+nFpwDcf/XXHPYbzs5XvP7stwC8/fwzBDjcq6bx7OoZf/LznzHsXgNwedLRucT9qGSsqw//AReXT1lY1rBu0ZNSpAuaLQwgsWS5XBaeB1bVbjwY3rBY4ecD242Oe316zf04sNnrGM7Oz3jxInC3+dpmYmRKga4HjC8RcFw++ZT1Sq8RFh23717D/Rc6znXH2/3Mb15pYueOieuzk1Kguwse8Sv2uwOCXufs2iOs2N+rwLl4fs54dsLbO8VEwoP8Hvl/UvHCaUGuSq+oa7KA9XZAFE/HrITGkr/jwfe1NKqrIK0drjSHXwbtswfP4wwrrAesE8G5DC5bYue22p53Fp1eMbcceAn58jm88+9ReOA6cH0RWtUNa+HLDRtUy8jGo42bpFYVz6SacgM+6OS5jGZrXY2SQMco8Zhb2DqxdIW2cY1k462WiZN0rC46c6dl6R8j4jVQzuWMsV61nVitKUs2Y7/xARdjIzpU8GTEW5MMC8lkx2qx4NmTc37y8RXrlXZ6uL8hJfBLHec8j8zziDP3ZYh7Drt3/NU/VxblZnrGf/Sf/jlv3qr3Zdmv+OrLv+Hu9jXXZ7r54xSZxoGrcxVQ/8E//Ee8eHaKRA0wO+8HXH/Ny+c/A+Ds4orF4oSuN5PEe1KcmdyIRb+zPtHF3XUZ0JtJDlZrPdHTfMvdfsvaSisMU6RbrRjf6uvDbssHl4HpJy8A+M3nkdCNbN9skCys08S4/5KTtY57HiZ22zvO7KA58cJbgY3Vtr3djnx7u+OFZYlfLs/o19f0/Qn77Z1d955+LYS9XmP37iueXLxkmnWu7vcDXagJuwVl+aaUfR++1MXRdWSacQl30A3tvS/mloTjesOZ/VlB2GPtVL18WXN3zXeOw/wddblLSojEyoo2RaTCAzY+5488MtkQ06ZZ4Z33R2D+H2uPgOlje2yP7b3aD9c8LDeGwxIAZaUhC7AmSEipuY1qKGYjNnCQNKQaceBdphGDSDwCfnJuDgVYs33Ua795HBbXXyqEg1l8WVJngllVHUMSkNi4aDVtfWyIOEpnzielOceavKnOaer9PM71csnFuZ5yz69Pubpa4v3E/p2q0cN2Q7e+QEx1n4aBaXdPMADVyR2//rf/lsWZgoT/5X/xC3zv+be/U7X89KTn6uqU337+N7zeGCAq8PLFz/j5T9W0+dOPTvAucnmlZsqiu2Z98ZLTc1X3+35B3/d0fa1ploICkUtjaHmfgSq918NgxZYMj3j77USSjs6rVrAftkyHHVfGX7l7M3P77obnTxSfeHt7xvJ8YDfB19t3Nm7PsH3Ht8N9eSZxTPgTnc9hUpBwN+hcfX2z4+W7LbuDPq/lMrHfvGF1+oRuqfjPMBwsFsrUf98RQuCT559YHx23m0MttYDmmC0xUh5IsZgkWk0OUpzLXGDFtvP69J23fBUPg+sqRhKcVga06TbXqyNlTbiUTKw6keJ0NH1W56zmmKkaTXJmakmjaRh58yi9gJlCD7WhP9R+sPDoXKJzqfEKNDkuaGNIHHjNHFYKkDuPuHbAFmlaMj/bezZTFgd5VC0r5+8otqFoTpHyG5lVxJTIRW/gVzadSlZLACvo5JFYhVREHhQQMsOqVALTgKipLJJISo7FQvkS69WC1XLBmQGZF+cdxC3D/S07Ex6JgOumsjjnccdhe8ep/oTbm2/YDZ5/8O/9ud2XsB0TP32pgmAVT7lcPOODJ6dsDeN4/vQJP/nkOfsbrduy7iYuz664vlQTY3l2zsnJNS4otrBYnUBTllCr+Tmc9JpuCnBpQtyEWJLlRQfiI+NBzav1esVyFZimnMhnwTjNDBYYF/oFU7wqIPmnH7/k9Zdf8NGzC+4Hnc/bzYb9uKNvCzt5x81Wr7mdBPBc2PwOk+NXn3/Jzz+9svn9CEk7dptEbwF8rlsxTzPOWYxNjDrnlrTok2fPWC3XfGPFtSVpIqpiRsSI6x0ZtlIGsmhG8hLxqn8VEN/4QgWyk0Rb5TDDHZU0lpMDNZCK2uA1cY96JciCQHCkmIpQlKhJh3K8mCTDJakyTvP0VuGRzfiUkiXu/n7th6chdFH/WLacCpgCqabiU6AoakBUW7HeuaN6osVGwzCFlOpEWA25rJtoIiHTRhrUqk32mqSjrR2mgqeScLS3NhRO8ESLnLXJTQ+kNI6UqlcIPC6kBnQ9thv7LvD0as2TC6MDpx3TcM/27VccdrZY3QL6NQtjch6275jGHaN19e7rLwjMpKin8xSXuBhhVMDvyfUZgQMfXS9ZLF4C8Oz5E25ud9zstM/LJy95+uIjTlfZm3LCyfnTklg4zSPzPBXXtgtYOIBjtmps87zH0aRVEMccIZmH5uS0ZzhoXwCXl+c4XnJzo+MmrOl294hFb56erliuzhmHG15e6zienwe+ue35yghwc5yZ5rmspXXfcblecXVmRLUucLvZ8RvTwl68OKNbnjGMB2Ybx/rMk1IiWOLlOE8Mh89KoCFp5tmTp5ytVNi8vpnZ7oXZdtycvWB5sfqAZE9es561jlz1rug2aOgJCVKpI4sC+q2W7hwu1aRFOGXBhqNqAFWL8KAZzsrBpZn7JQe94UoC5qPSrK7VZaTQCY7X+R9uj5jHY3tsj+292o/A81A1yoraFQ9DrjvSumXVpEvUTB+5DktNmSaNLysbNFl11JqbbUo4LXjjXSwFgVSMd8RYPTo+1Bylc/I4X2vFYAh31iJSElPzKiFI7D7zdZ0L5Tt6h0nV2Owe857VoucDcx0+e3rK6YnHmdt12r1j2Nyw39wwHvS9RM/y/CnJaN7jOOL8gv1eKdnffP0rtjvPpdOT8ezpLzHDQPsc9wS5ZI7C6kQp7j4IF1cdH738DwG4vP6A03V1GZ+cXdMvuoLc+37Boq+lG2KcmYct0DFOxmmJI8iMN1OnX67oVqo6A8wRJtmwcAubq8STfsnppRLX7m7vOOy37A3fiEkYRtjev+HpqWEasuTifMGlpTZ89eYeIbLMvI/e8+z6gnPTPPrOc37fs7fyD99885oXLzoQx2jvOYT+9AnzlM9bz3Z3j+dXOv8f/BSJE5fP1RP10xcLNvslX73Vudjs92jhBHvGKVlhs4bEaGb6UZHU5vOCveVk0UbmKgWaxIrDu0I7qjWDimWja7my6pUOUYpZocmPMz43x7HsxZwGoQsBpKbPyCZNG3LxfdoPN1tE/cyJBFKzUac5EZGSANl7y+9IBdvUNVernSPqyi03oP4jin2XVaty9VyXk/odUYZq9Y5ZhGzJNOzMZdYCUFVNdBn3VH+Xvoex9kqxnlndbQXz8Li+Y2lEqmXf8eRyzfWlAhaLRSJNO2RQt+G4ecPh/g3D5oZoyX32k3D54S+JxiB1mrKd/TtVxYe9x3fPy93Hw1csTj5gtVZBsVidEhP4mFiauzfGmZP1CU+eakKhk1VHGgdW15o5bHVyDr4r+MO4v+Nw2JcC3khknA6kWF3uzgl98KwMZBV6xsNQsK1+seSiu2QwMPNwOOBkS29xJ+enHZ1fYRAI87jj+tkzvv78hC6oCbeIHQ7PUyOWPb1ccrvbsTZ3e79Ycnp+wqUR7LoucXnmLK8I3Hx7z+XZluQUiwIYuMMv13jJzFjHOBx49fmv9T68Zz48JZgJt1xfcNL3PL82tzeezWEgr00NeLOXxYRTglYxd9HNngVOconoXAVhg4coJF/JhQXob1a5Bo7XombaL7ZOAE9JlE1yGhFsOVkik5p7IgruApHeeFf5WtrRd0DUP9J+hKjaZH8ySFrf1z2dw9J9RZsLlVz/r2gWDpybK2AXVXiEEl7sCzcE9FTDadEal2/Fa4LX7F0JPvtkKqAqTUooL0n7KX1WRLwFe9WD0jxkieUE9z6w7DourZjzybJnfbIgGAOVeSBOG9KQyykODNtbUhy5v1VuQuyfKefFKO/iPC5NDJY96/L5z1ldfFjGdNh+zWJxwXqlm3g3RvquY5apnnRuwfn5BSsjW6V5w/LsmpMzy9DVd0Bib9Xe9tsD3eKEji/FDgAAIABJREFUhF5ze3+nRaPGQ3GfrU5OYbGkNw2pWy4Jq1N27wyL2bzFu0hvRLPVyZp9ihwOObWApv5brU/s9UTfJ168/Jg336gW4NOMD77M90cfXHJ1WBf+yWq5YnlyQq7cHMdblsGRg8M297e8fbPgyfMXHGycAZjHPcEEa0qe7WbD7ZuvdL7TSPjZX9C/tWRLT3pGtpyc6vx+eL3izcaxz8F6LS6Rp/v3EKy8hTroj7xWyGs2aCE5AkpQjQa85k4t3UUuRv6gf+dVO8k4i3oAKxmxByRq6ZEKzSRSasq+eg1bTSK/5w7+9vaIeTy2x/bY3qv9YM0jRiHGnMCkrVFhWLTLqc+0iSRiccBYEFwOP5ZkZkOlhWe8QfuYianVPFxz3eqKFSrPw7nZPD/ZxJiN+5rxCTFVsLonS1xOEcOKzWScxDtP8NX9m0+HyVyLaelBZoIzjkY8EMcD86gmyXxQL8Kwe8vNWw1aW1yccti80xMV6LqOaXNTvEIXH/xC3WnmPZjnS4b9G5jubIxLQgjqJraT5+LinMuLU2R4Y9/pOD1/QlhkPCKyu73lfqMem/XZU5yDuDeNKQTSbCeWHTOLxYrV+gxvWkAUpbGfP1UPz+tXX3L75iskGi38/JzT02t8l68ZmIeB3hiq3aJn3r/jg49fMO50nLc3X7Pbz6XshBNh1Tu6hc53FyKLTsszAIw4Nvt3Jahwnra8eT2wPl0RUy4FOdOP5yTLzzrFyDQcGA/a51e//Q0nZ1fmroa+f0t/cs7eSkwsV4mnZz1vySH9UaEId+yhOEoYhBg9IbtmBWIbfJdxQDNFZ9XinfOlXAMWv3XkwBPKek+iFIgagGrmlOEbTjwLL0hf/b8xRSvClpnaZn9JEwryPdoPj6r1Hd53KiQac8mRCI5jXr9zIJ6Yfee5slWZbM2r2NpzTmJJMPswE3pK2f2UsRHtRYsyVVdtaILpyIyQbE1JTTqkP8gf1sjEyv2vpK++81xZ3ouzk44QKIDecuEJsiMatXzeb5mGLfutmijTYc8URw67HcNgD3AaGPf3LMzE8MEzD1tOTpXG3Z88pV9fsL3RILa+3zPsd0RLjBHjPRJO8WHJ2aUSsE7XgUUf2W51/i6efczyZF3cjeNhIPolawN25zhw9+4Nh73F0yRB0gIXKMQx3wWEkclOgG7h6TqK0PvkF38Gv1ny5Wdqgsy3A85tCQawjuMBcZ5oz3S97tkMnt4NvPj4TwDY3L+lS3MtuuxnpkipcHay7mDelRq882HDPN4X7omXiWEYefv6FWeW0UzEMa62de2IZ7vbEQ1oH2d49+YbnhpgutvesMTRm+s2ppnF6owrM02Dd2x36rqtZZly/ppKG1BGRgXjwR3r+w0NYJ4nZkvwLVZTRQtNUZ0IxjE6EliprlWNMkuZLYZzyhERKO5bJod3c92uJjT0jPh7FB7iA+I7RXsbnodGtkpT+NrAUWKxZYX4e8Hdso+TNNYblRyWCV9F22gESxGieTYD0njaCyZVSgAm0zqapC8uT2Nrm9Y0biklpjlxv9NeF53j6iyxtrx5Mowc9htGCwY7bG8Zhw07yxieUmK9XnPY3zPbgr/59guePP2Qs2vd+DJuwK1YXOhrF7xm8bJq826/IPlTpr1qLnOc8UHo1wtOrSzjydozbr6kW6pwOL+65rC7I2ECannKsDvw5edq92+2B3ZDYrKFN6ee/Q6mWAHmdb9lmnZ4C8TyXkHC6ycKwn708cd8+NMPefGRaiLbuw3D9qZkVz+9esn+/i2DsUfnw4FEYLPZcnKu9/r0g495/dVvGI1t2/cdIIjZ/YfNN5yerAtAOo0bXIP1LPolyMRhu2F1cgFA6FeMhw1dp3MxTHuGYWaz0XFcnF8Qp4nBnllnRKu8rpYn5wyHqSRFOl2tAM9+jEzmiUoizJR9bgW3a9JkXVtSSJLlvbyOvaMz/kiO4PYpH472/ahCqlSZc6o9lwO38DvyHqvlLkt0uleLYRjM+zdOhN6z7JfQFFX7Y+0R83hsj+2xvVf7ERIgB/3jgh362Q1r4cxH/HkBQol7ccmSp9jraHUwctRhCLmgZHbDGvqQva4iOKc2os+kvmxnNoV2EtRkxakwI/T7ObdCAUmMA+J8HbtEhFSSEHWdpwuO9VJVy4tTYd0dmHd6ao37PcNuw95e73cbpnFbyg8s12ekpMWQtreqOby7G/ngo5/zQUHVPYuTp8Rk9VtXF5ofwk7bsDxnQUAsV2iUkf32htPzpyyXevos/MwkC64/UFV8ngYmTuhPlcb9289+zasvXiGimsg+LbjfUTCQ27t77u/vQTy94STBwzweKh4UJxbLJf3neoL/5b/6nE8/fMIv/0RLHvz0kw85P3vK3kpeLhY9Lk4ctspfmeeRs/NTNveB8aCa2dX1FZvbNWmrGIYnEXpHzgaUorDf3BZcYBgOkEAMD/JdYNGdMMdZeSlAWF2oWTBpn+NhYrfbMVmqgdGDXJ2VKFyZd1z4VHJ6Tt0Suq7Qt51TJm4fXMl/Ms/OosoNwyARpOElmWelwBP6bkmk6rWuCBFH0bldLg6WMY5k72G/VkCk5P1Fg8BLPA0Us6c4fSSR5ojkgubTDlgSfVcZtN+j/QgkMf0jEg04bHj+AjVgrXVMG5jjvdln5lYNOgnFteXEtCibZu+NWZsxk3wtwZdMtt6ArEb9ahzjapc2Qi0XQs4grE38kWNM9DYyRZgUuT4PvLzQhdaNb9jdjMwWt34YNgy7HQdLupOiFuERUwnjPBIDiOvY2WLd7z273aY8vNXylHG3wVu1t77vGQ93RKOjgyPFicVK1XLXT8zzrBwMS7URDzsunr5gtVYBtDk4wuklv/tcC2F//vmXJHpudnqfv/78a27efMv+Vl23h/2G/e5eA+PWqu7vt3stKJTV5sWSqyfPOTXOxepkxb/661f8zqjin350xV/82c+5vrB4mmXHk6cXpPTS5j1y880rvA8Mxnk5OXvCxfklk+VeFYkEgcnAYZc6RoTennnf/T/svdmvJEl25vczM99iuXGX3CqXruomu8kmpeFwAAkUpNECSNDocQRKkP4sAQIEPcxfIUAQBOhJI0AURzPsaTbJ3qprzazKm3mXuLH4Zose7Ji53+JgmNNVmqe0RnZ3xI3Fw93c7JzvfOf7KlRREwSULYoKUxaM+y2DEEqq1TkEzdDHx4d2pOuPtLJ4rJqS4Hq6VtKpUaNNkcvxRQmqrCjklnFBMViNdeTGtiSqnBYHjcoq7fF3xIXDhvxExBpShq00mKhnklJmH76RHqQiwWy+xjQmbY6aMbgMfCo0BEm780dEfZtCqPpVYdHGiO7Muxdrv/XiYe2ItWPU8ph/r4LksAbIZEuNb6nSIf+b0WjpkUnvE5R5us9tJMDMTr73UQ8k4SFaatazKxav0ezYlFaEBCgRAat5NYjgY39Bfi7gvEILun+60JyXVwwiJHMco3aG7YUvsb+i3W1p+/gJo3cYU2QwynlLUZwRVODQpt6WFUPX5nPh3cDgCpay4+uiIOgSJ7tFd9wzjp7FSqwkt19QmIqiKCiSTGNds9qccLeL38HyCW+vb/n1r34Vr51Z89nlkc8+fwXA9voNN2++QiXgEUt7iG7zhTShBR9Nrp28xgfFF5/+gtUmktVefPgDHj55Sisi1n/189/greUPfvxDAGp6SuW4eBwjk36w3F5dYseBYBNv48Dpgydcv/lCviNg3ZAB0TG4KK4kF7UsV/jgaVKvS12jTENZr2kPYlUhkpiDLA7dwTIMnk5El7WKYjkH0QQpTElRNnixcwjBsVIeFrEL1+iCyrjY0yOrgfLfYJhKNSbdBclpwM+bz+4xUKdCwiTHoUlC3/GacD+aRzGVWpCNOORNSCkopAE1fWRBQJeGSkcw2NQVIZ1TPUcZ//XjPebxfrwf78dvNb515GGUxai0C/kcFWhdCJaR+lYA2eGTvmewIdY0JJw33kXCuSxpRmu0n7fsS46kpscqmn/OlMG8sDIy0QPUvJMlRTlpR4nM0bwuh9j4j5oYhMEHTGl4dBp/y+OTDj8YrI7VAW96gr3JxsHOVQxhSSt+rV41nDRL+n1MFw63O5Qu2G5v6bqYk1eLU8axmywgtKFZX2Tege13jN2BUMRIo1iU1OuKQT6z7z1Nc8LZ4w8JNn7v8vQRu7s9KfBYLBRffvEJRxujma/eHvmLv/gXbN+8kuvRYZ0XQWmyKtzoRsZOqisqViqs7NiD7XHecjhGz5TdzSVPn/+A7/3gd+Jn2I6f/Is/Z30S05qlcdQmcCr09vOLh+xvH/Pmq49Jeq3tfsvq5JTlScRmbt5+idaztnPvKOs1VbWWeQLOHbOcgaeiKhqaepk1VYxSYAqO25i29KPheOwnEWsCwXf0UkE7jLF/++winoudAuVH6lNhmK6+D7phWWpqEUAeRkdnNWPGZuacjhjVWutmYXCQVDj1ukR26bz8G3uuQj43RgVcmHXqOot2GiOG6EoqRBOtIAUqs14tFbGZlOorUxC8mkrJ7zi+PebhLDgrQkA6N/1M9JMZfhHAB3uv78RBdnqHVHJK7cUKp9QkKIsSOrmQmCRiU9pkCbt4v3+j/hsUk8gywNQGnTRDRjvhKFk0NgvVBiqjqETgpmt7FlVJaUS4xx0Z/SEvHt4HrA35M61tWTaabh9D4u1dQJea66sjZR37TpzztMcjpZRV3XgkBCvevuCHHm97RgEVC9PghjuOnWAk60c8evKCRaNRvpYfV3BoLYM42l9+/gVfvHzNG7FU+dlPf8qXv/5L+uNdvh6L5Zq6jgvUMFgIDucdpaRsQUWnsdHFm9D6TgR241Q6dpZPPv4p27dxUXv+7AlGK37+Vz8D4OmTCxYmMPbSt3J+zvmj5+y2VwwCKA/OolTg/CJyXPa3VwTlszGXAoqizkI/uB4VmqzNUdQ11WINwbKUtC74EV03jD4S0UZf0fVDNmzCO/r2mNMzpUr2uw7vot7r0PcEd8Za0salH3DrH9GPS6xcIxcUzgVsAr193NzSXPMu+QPNtHHlxoZUKAgU2twD8rWesMQge6dPHJdxiHeZEmC9NpRB58Ul+sTExs2p0fN+06oPXvqZAs4mz5m/e3z73hbn4klRCq9VduBSaLxXqFkK5XMeFl9ktCDpeiKSBacmrQ0l3P+EZyhN5I+mD5U4Qk+Id9BJQ+Qb0ckMA1FK3cNnfHKuiwceASatp6qOitYM+1Yii7LGjnuMFde0fkt38wnbq0jgurndc7Mf6cZ4TOePnmHsG453ceIOw4qXn39K10GziJP77ZvX+NBgxAah272hbM7ypOmHgXHsIVkZ6oB3PauTiDUslhdszpbY9prVabzpXFD0Q8/NPk60v/n0il/94mMu38Y+lK8+/w3D8ZZO6v3OWdruwGYdHzeLM5xXuOBzty8+MPRHhlEqS+NICB5jEkGuwinDW2HOuvaa5x/+Dq++jucqDFsena3ByvUajmzOH3NydsHbrz4BoqBxf7zjRBTPTs43dIc9rkgbRIFRJjN8y2aNG7rc+BWsi/bP2lBLh/E49tE0XeZJ21v2x4GzdfzMcThwPFjO60gqwxRYHFZKgV1n2bKf+p1CoA4KtfwxNoh1hbUSNUyYR9SjSdUUqLSZWVxyr5IyuQjOOY0qizKlz/Te5zvA60gCy/dZ8Lk3K30mASFapg00kaHSW6YuXPdvlSRmFMFEiFkplUtZUfBEZRGVfGJmatExpTA5ZVAR3ckkmkTWm7oU/YzlFdOagFRKksAKkaqbO3Xl9Sn1MXknSOXfCKRlfqoSCbhZhQZ1X/AmUoBLjMj4h+GA0nXeLfp2oOscpo676wcPTxhvvkDp+Pr27i1t72hd4OQsVh3KesHq9CHOdvIzGurVBV4eK1OiyhNK4k0bvKVenNOsY+RydnEK9pZgikzg6pziOBZ8dRPTmKu3l7z+6mteX8bdtGt3U2SYzp7WDGNcPMpqiBPROZKE1jh0tN0do+zAWiusUzEcJ9L/F5VGSaSy63qurr7K6eKwddQ/+l1UIqqFbWx0q+tcFu3ajqHbU0rJebU6ZXd7na9ZWRlMUaJ1jLBGa0FpKiGE6aqRGybgClF1b5bst7cYWXwPh46u71CSTvXDQFMHvICyrfXoomZ7ExdBvzlFa9BdPEZTlCwWO1blL6mbjwCwxQLnA92Q5BJFFDtXY6T6kudmml653AIokYiYzd/Za7SOjZgz9mUEXdU0n2Mxcb4gpT1xVj2cyqEorTEhLlCFeQ+Yvh/vx/vx//P49oCpKTGmlMXMTGXWtHtnuqvCpEY3PXuNInNANClHm2rcopgmn+AlfEu52n26DUSQ716vSkjpTwKlwIQJGFIqgNGklv7gbPymWfk2drUoCjnOujQYN5LWXlWuwOgsA+Ccw9rAxeMYFRg1srcOL9J7Y3vg0I4cO0WzlCihPWLMzCumMATf5x2oXixRSmVAL9iO9fqEpeiiKkb6MYbqSsfnRqcoV6eYKu6mu90t1lpSQ5Q2Bk/IfSYAZVHQCfZgihrvIoegLKXHw44473KLeFEUNGVJJ01/RWEwZZXLkSOBsd3j2lgyHeundL7gIvFTqoLdfstyuaFZxedG6xlGx/42grCb0w3D8Jyd+N9WVY1SZO6JKmr80AG9/C6NqUq0D3T7mKKtTjWqqEDSwu3uOpb4ZaKM44DB5LSk7z2udXhpdry7u2VzcsKqidFOu15yvKrYbAzLB58DMJz/Q1q3jjwYyObZ0zwiWpDIYx8i+JmEtJN4RNQqTNKBsYScAmulNEZpVJFS/wXJ3D1ODECFPN+TFOJMfmaKhmZRTcoMjE5uXX/3+NaLR1mWlGVFEDQiVzO8j8CRHHChQtQyUIacMshnpBTDBfe3mn5UCJP9JCHmrIlNF6TbdSZi4r2P/ipzWzr0ZBSs4oKhZqBsfE7CNR1wnnuaH4RAaWBIWIyuCWFBJ+G9sUdUd4MW0MosHnBam6xKPtgeYxRHAUyPR8vd9oBXdb4JvS8oygV2EMboOBAAJ4zIvjswjjYzPZcnK5rVkl54C/2+pVmsWNRrdCnubu2Ru+1tvpHfXh94++YrBsE4hr5lGMfpGILCtW1Ovyo7xHPrICAdq67HezcpxjnPONdxcR7lHE7wB+8D7eDwAqiWzYZh7HHC/Kzqk8iRGS213JhDX+GDzYC1944nz16gTFxMRjdiTMjgcb3cYIcDVhoRazdQmbhwpgMb2wNojTPxGh32e8rKZJDbGoV1jlG0WovyBD8MeWHtO8+d2zPU0k/Td4xdQXeAs2NcoJaugNP/mEEA6xBmWq8kbZkp7Q4E0e+e8Z1CVAXLa4F3aDxF2m+jSGpOU6Lf2iz1jJhrTpWiX1HImIkc2D1zeJB7IMSenncd376rVklrujTBJTm06MJG5p4bHR23IutbgMcg1ZFMiRWwaeZcrlSYgEsiXhJm4Kb30R81754ZH0myhBqlJvQ6Yh4TqCUvnr6PgFFyCDNyrE6OYoBSFaVR1OO1vGuHq88ISm5Ku8MGw+Wb2HD2/Q9WuP6O/V28AW+2e9ohYOrA4ZCa5QYRipHSYrm8h82Yak1RG5JRW1UarLX0wmKt6gWlUaiiyb6yx3bA+oJeEPQ/+vf/Eb/55eccDr+J3xkcwzhwsoqgYj/2dH2bFxOtC+zQMdoRLTd7XMCniehEYS1NZussh669twGMviTIwqoLw/HYZSmCRaVZNyV9f0AL5rFcn6JUS9vG42iPd2gNjx7F4/zq1UucdxNxzQW0KUEW82EMVEFTK0UluNPh7o6yqelbYfR2PU1T0ori2bKEu11LUcW/u6pm6I4slxGnWq4agveUggmYskAXFaasGIQQV9x+TrV8RVf8KH6GFcwjs5sVZoYURHeBMK/c5tJqkuac1oIwe9fktZzQjG/0hWb5CEWUNtSzuZQOKXW3T1HInAbxd4/3mMf78X68H7/V+I4EkGODWlo5Ia5KseSUwiuF0Srz++XN8XH2CXEiSxgfG6UwRs/Q6VmlRoYPkmaklTeIuFB+woJOAs3pW+d5ptDXU8OTfI3W0yKsgMIoVo2E3vqAPn6OsckGwdK3B9rUFzGMvL255uFjcZsPA8ej524by5W7fcsQSqqSjBF551C6iHk5EH2UZj0kWlGWhkrMl7xrGQZLJThBpUYUjkBByL1DJWWtWa/je6qV4Uf/3n/OT/5pPO67m88JKFoRPFZG4b1jI6Veow123OO8JejEf4gXOV3nqOc78Xms8/fc5r33PHzwhEJCpsIYitpgbUp7FKNXlHWDH+Nx9N2BxWqd09Xj0NIeWpYrIek9uuDy66/ojjHSWH7wEEbwPokyr0AXWDtkrCaoAkfJ9vZa5o3Hh0CflCJHuOkD9TKmPssqcHN35PKNWFhWmqrUVJISLkqDbxVV85yqiGTB7njF4vZnNE+iyVbnY8qQVQaTAZNK505aNWbVxJRxJF5SiphtugW0pzBT3OylWpjC5xB0dLpP55/4d2/JjZ0T+JG+V+ABzySJ+A7jO+iqlX8+pio5pZAuvqy9oeIPi7mXPOcChVZZJNkrjffu3okxqJyvaTUjnZHKUPFfToV8vAgqX7AAwaIS01VO0LwBKNba8wNZ5NRU00dFBTNZYEoNnppBTFXGbsT2R9pjXBz2uz2HduCpUDLGocfZgbtdaoILuLJkWdS0bczju96yODmfOdvpOBHEwLsqG0yhJjCZgrLSGWBVdozO9WWdw1GlS6pKU1fxM3/981/w+NGGH/3RPwTgF//v/8HueE0vHI6Ghg8/+iPORFPkk1//S5yPCvXKTLiT0QZKKb2OY1wsppMJymRSWWECwQ6MomFqqppmucIE8ZDtduA1ZVhRi0FTUR5x1rJcnss3lrj+blIIL+CDj36fy1fR+Pq4v6JenlOfCNbgXNyAgsqbxGLziG7o6TrBbryUROUa9Ra6XnF3JwJOvIncFfF18dZivadI3dgG+g7efPkx9R/KJqEe0d18THkaj0vXv4uzQ56zceNUMzJh7Ai/Lzoc0/TJq1ZyaLnxHQrtyYLePkzarfkTIn8hPtDRaHtWmUUFL4uFLB4qpv6EkEvu7zK+AwHkSOpSKpJZ3IxbGmXp02pHxEVmDFAVAOVz8cUTDadVNrCJE2AuphKLOMIlEcxEhTkxZw4ExXclZisQ83Ot7jlj3cMWRAYgknXSohW/s5Ou2WOvKTjBIYzI4Ybj7ppOtrEx1CxXy9war8LAcbfLWIExkUJcl4abt5FYtjx7werkNBOIyrLCe4cRCrY2AXyProSeTgFYlGARSheYxRnD6PFe2tCNIfghMzevL19xtd2zOYu074/+4E/47Jd/ySA0+uff+wHnjx/y6c9/CkTBYKUheHUv4AsojJhTVfC3JlxZmIwNVEZFIFPFBakwBU1dYEICFeF4OGIUVCKKXNUr+uM+06frxZrO29xOH9qeeqV4/Dw2192+fcvQ7SjL+P6Y53thX8q8qFb0x8u8OKfvTjfybvSUGooEBA+Wq+s9C4k2i6KiLMFI5FculqzOH1CXOoO/66d/D46fUYgxF6VmCDqrrsUCwiT1EA3P5oSxuBV766eqm4ryl+l1Tt03NcuWq/k3ibBVim58mAGsEsWqWGVKOYATMecQZBF5x/Ee83g/3o/347ca374lP4ANYoYzpVoSAcxAkBByA1xuwU9JT2r6MSp6xMri50PABo+RhC+YQNBzYymPCsndNoXq6ftS2JcsFyRaIUSvjNkCGytGieWa9EBmCHfwlEbKZIBzJT5U6NRcp2uK1XNWp7HMunRXmKKgKmKFYbEIuKCoq3gsy7WC6hRnx2ym9Gi5BG8nO0Q3EtyQeQjWecqymp1Oz9Ae0S7uxvX6NPZWjB29YBjeFhitWYmQ8PPvfYjzX/Lpx78AYPSwOb/gsIvHtd1e8fb1J+yPEbuJ+p5R3CZ7/zp3j44eeT71jOFoCd5mm0eCoakWnD18JOeiYjzcoQphqC5PCWHEWo+1iX9S4/1tZts25RrXbKhXUeowOM/Q3YKT0uxqweGuQ4sPrVIGo8rYhyN9OgpNsP09s692tCQ17lIFTqrJGKmqNNZrdjuh6teOEMpMC7fdW2jfcH5+Thti6tlsHlOWj/GtlOTrXqphkzAPhDmdOWJuWapBvFWUQifeETFq8CIhEWxkwVZlsk2I/itT34q6N7ellitzeSp9zzU0jIoRTTx3vPP49oDp7NCNnvgTCC2WvwV2hkl13Dm8mu5KFUQ3TN7iiA5bLuETHkKYqVUHpJYeciiYwrM5gex+FhMB1mxGjESS8mdnPU5FwG/qQvSsq5I6XTBGqrJAhcjj8P0KzDXWxZsu2DvaHooncbJrXbHabHj8JE7uu0+vKWpNKAoW0tviA+iiFFUncshdNal0u8CYkqFPCuE9+EDZJA+WCu8jdlJUEUQtcBSjYrePPTWb01MWzes8WW/ffMk4uAxQt8ch6qoKmc0Hz7w7c34ZE49D65KqqvLiPA4DIQQqwQrOTk45O91ExA6w7Q1lXeb+JGNKrF4wBOhs/K7TkzVqf5s1NqMlWs/okh/uBdpohkOk2S8WGjsMtMKjqeoFoXWUjc8aLP3dW1zfMko38GihKhVW5omR5smlCByPzlFoxVb6mYwB+mlz2iwXmLrAeSUENfDDDbb+IHoIAzp0+FBgbSJexZTCCOhqgKjnkRFUKUCQweKgZ4p2xA3TB4sRsCYq+U/3hCTn+S1aC6YS/GxhiNWAiU2iJDUPWRfnXca353kQ2+p1KlDP+1SACQWW3Cy43ITjxe07Y6wIgCQnLi4yc4+4BMimBWkClrj3v7P9JYR0PfLfjZoJtuj06Xk7ILiAVz4/o/AMg2OzTBUDj3YtfhTW5OElu5svefs6AmW3O0tRr1lIr8Wx+4rV5pwP5HTf7izbrsceDtTiULY6e0xdLxjzTalRY4sf4yRzf9YKAAAgAElEQVQxzSoK9AqT0zsXF1ojgi6mwbmBenWOL+Jzdzef8fZ6Ny2C3tL3HU+exn6a2+vXHHe7jLOMdpDTmCLD2KGllMZm0ldkKeXmRhNz/qRwb52lMIqTZTyGsjQsVlNrvHMDhKmr2Q2HuNMWTY5AR+somlOckK9it6rPdg/jaNGFyXKK43FLs1xO7fWuJ6hA2VzQ3sYFxg4HglG5Xd4RI9s+E6ADo/NUVTyG3Q5aa5HAkMH7iDLJ431raUrLenWKE37JePcl1cM/JvXtKDyFDgwScQcv+F7CXbQ4Dsi50NKAqblfTbkvSqEIVuX+JWMKijB10qkUYaRO9FlPWc4KEkEq/XSi6plnft/+3eM95vF+vB/vx281vn21xfsZYhxk5YvJwj1pDRWkbKbyohdCTEtS9KCVlhKbvEU8K4KaRRVBM0Uz6bkw6XVwP9IIOV+fymUq6yggi/T98u83gxkXFN3o6cUkuSkNOmhS306wjnHwUMSdUBUd6Boj3qpX+5ZHp88piriTbs72+O3AZXvL16/jzvjge1Kik03JjnvsaFmKVYDRCqcMXlIjJWFoKsvGSpBGG8MgYbS1GjvafL62uzt0WVFIFLDZnNMejtzcRDHirAGRK1dRYzYEn4V2Ulk89wo5Swjhnh2iUQYlmEhZFng/ZoEhbwNGK0YpDx/2O1QInD2s8mdYa6maJcNRIruhx1Nmjdh6DbYfaMRTxaotIUAt4q3trmNx/izqVIgOKiHgxzFn0S4EbEh9TnFaaTylSeXgGkLPKG/oBoXSHmPi6wtVogNoXaMrsc7c36DdAZrY1u+lipEqTy5FA4m7gYUQMs6iTIxEAhPeFmbs0enaTBiIdQGlQ2akIuzpKbWXd+j7Wqr5i+QzY3VU/dtNW4J3BO+w38iOs0Br9lgh8+kziClLTCYcScOaT+CbeFQwWzxSSRhksgvekX90PiezROXeR4giu5mJpcxKW8gClo+XGNIZpTO46X0h7xEOgGmgqFAC2OEtdbXhKD6zw6hoVhd0Y7w5mtPHLMMN5XbLg4exhPno0QOCs3idJoWLLdKiUuUpOWwvM09BqYKqLNBDyq+jMpSzHUF0NxfLFRsbOF5GMeLbqysMjvYYP+P07IKhG+illLs73kZtFjkVRVFJOjIXiImYUmoHSFhH4s0UumCxWDCIWI0x65h3y45hreft9R0fvog3mPIjRmusdVR1AvRAm4JqEdO+m8vP6PqOvhWx4s051XKNLuLfm/VjhquXKAGbFw8+ott+TVlMPrG2b6OmRwa9fb5ZIS7CZrZ6L+uCQhvEAge0obWBfieOfaOl1pquO7BaR1Kddz1qvKK8+Hfk3BSUZcG+S74ubtLYJWrZotSUxaSmTwWpE07JYpEWnNgbo6c00Yo8xNwMhjnwKVBCUJlsef9v5O+M5dp/i3oezsd/hGhUE3LuFQ8usdqShWRI3bZyzPdr1GJbmR3ifH4uvlzf01Qm54Oz1TkkYtgkIRj7W2bRxSyv9yHgvWP6q0Kn6EU+0+IZXLKBiH0owbXZ3tCNB4KzlIUwY/VA0yw5CjEqYPDaoIqYs68vHtB1B569+Ih9G4llVV3iQkALuOZtT/COYhGJUoe7a7ZXrzGS9ysdOD17Tr0QBmWxpOs6vNMgrMrVuma727Hfxe94+OgJL1++5PQiVj5urt+CJvd/1LanH4Z/xQQK98/fvHFRlMXKVH3RiqosWS5FEc3D0FvuVDyGzeYDjNZ0AjYsCkVT1wzDQFlG7KAqS7puoKxjL4vWNUpbelFCb/dXVPUpy02M9J794MdsHv+QO8E3Dle/pj1cU51/kKNc5yxhxjsKsjtP7E8oDAyCKRk9UJYaPaY+Ks+qLhjGeB52neO0crjjLX4QBu/JI+z2Mx58X5oZzQfcHXoq2QB0ofFuxrDWhWxUE4aXTaLyPXLfTjXaUarMGbLWQvAEiXK1LueSN3K95HNnmEeYFTMiXOmzQPO7jveYx/vxfrwfv9X49mmLKgiqiCu4mpnRzJSNIO5Qcx4/IGHUtMzG1/h7+ovJlyK+QN6T0GkJ51JbvXyz5OnpLXHlnpiFetaRGIFv5+elyEDQEVOYU9a1Ufm4RqeoVUDrhHgb6rJAE0Nabwe645btLoari3qJ9TprbDZVw+Mnz9ltX/PZx1Hr83f+3f8UZ/tclej31yxOn2KkGnN8c0vbd3Q3sVO30IZHT39E0UQGqvWKolygFqd0YjbVtUfeXL6hks7Qbhxx45B/q7Uj1XJJcRePa7k6oyxHrPArnPMMYxctOVMOHjzGGIrcg1Ng/ZA7jhdVg3c+4xF1XVKgONnEknLf9zx7/nxKco3FozGmpuvirr9YnuK9JWnVjj5w2HVUq1glct5R1AsGCRvubt+yPjnheB2tGoIHRcFxd4ORaM8NPVqZqMIVf0g8D/K7Gu2pq+wrRTceOanh6i4+sao146ziduw9d13A64KmkfN3ckpz9hHuIAzT1VkspaZKk40RrklXwCicVvei5qD8/BYRqtQ8oo/3UOp58S5yQ1J2RalmMp2pK1czp7BHK1himibXOVLnPeHfIPL49ouHhPc6mmbOgB7uhUAqPzuNSM6aQrCIM/hZI1xcPMxcCDX4e+XZWGKapN0CsZ3ZZw0QL3of6QOchH354+QKTaXlINhLisvicZFl8pbVSBlglBzKeRhdm31OD/tr9t1Ivfq9+HcTS6QJ81huHlOZLzjeKD783ehnsqg9wXq8iCw7QJuSsYvh/ugC7eGSr6Wf4/lHf4zSM9NwVWLK6K+628XJezyMPPrgBW+3kcT08ce/Qakiv8d1lkJX1OJ/67yDkiw07FO+Hcj6oEYbyqq5p/ugw5THI5yD9hhTtvZw4MHFGTpMokfH/YaTk7igqbKm7VtWq00Og/eHA1WhaGp5jVkQQptJY95D51qCPH61/ZQXP/hdlidRfOnq619RNwucHRmFeu+sw9k+bwBGKUqVWtGinm5dkIHdrh1pSp04ZFjnqQs4itr9uilwDt5ctTx5GH/r6dMKFk84qngcoXc4TxZEJmPxgmcELfTzlJJkBBPU/Xsl8zbmaT9EzCT47NOirSVi2+l+kIRHTeZUBFAu4BKXJMwoDe++dnwXkQezXGpWJxYQM1vt5SrMpJZF4nFMWGfERrIZVCB2AZE/8z5KnI8iRxOZbpKGRENeujid6Hyk1Tke8/wXiaqSVnmXinloYBikl0UdKcIl/T7m2LvtDVdvX/PmTXzsgmG9bChEwWUYB263WwrpvSi1QtUrNhcn3FzHyENpgy5UVq6SI5vIP92Bw+7A2flH8fjVSN/eooXTEUoFKtC3e8oq4g2VH8A7Cjk3j548oh/GrItaLhfcfPU2YxzGaMauZxRTakKgMCXjOORqizGR0Zg0TAOeuqzv7XVlvWIltgm4EW3MRIxSKlZfpMIQAlRNjdaB0/N40+Etrj/k6KRanOAoGcSas93d4IqCxTpiIsvlhuOh4+Q0gs/OOlp7Q1EvcwMZyhNUQ9XEi92YWyodkKCAZQFlCaMs8G2nWC+masy+cyxWJVrecBxhXWu6IfDyVQSkl+df8vD8d3MEGqioCzLm0VuwNmRdX+tcVMubbhlZhKce8Djjp7vaS6PivCeGWY9M7Jdx2bI1sThgWqSiUNlUoVSyIDkCjndfPb714jEVQRPgmQRz5Kb0099yRXRGU1dqajtOYq3fjFB8XhgkXJuVmOLz0wLjSahy8rEQ8DSvsvFEZqpgJp2lYyD/hqz2DijvOfTxMzd6D7pldPEH3d1e8ubyLaGMjNLz8xNC6BmHOImKqmK7a7k4j4tH1/Us6hoIPPwgLgYn6zUEjxcWUgCGYRLm6YYjq/Ujtrexke7Tj3/Gs4/+iEqaspx1KG1w1lM1osDedyhCLot27ZFuf8uNON254Dl2Xb5G1npG59FStbC2j+dNKXSmbVe5FAxQlGXsvJVrVOiCqqqF2g7L1YrVuqEWUBYzoIzOn2cUtIc95WaDlapP0SypF+t70WBRlNRPfj++Z91ye/uawz6Wct14ZLNZYyViGvojECnvRtKrslqjq5rCxxvd4Km1QjIOljUordmLePG+taxrxein3XnXOTbLeExVXWOdRleavo/PvfnyJab8Z5zZ+Duq849Ybz6i9SLsPFqRHhSSZN40p6g5WlbOQoCUXmW1N5n/s8Y4Bbka45RH+xkVQUVZQxVyY67cbxJdI1EHcRq8e63lPWD6frwf78dvOb4zMSBQ90phIAFT8mTx099SuBQkHcjvyGUpeRjkPRPEEc1/MstMC94xCcB6wS+KuYap1jmXJUQN1bxq+pjbh1m24H2IoIMcpxYJxVUZd5RGbXE+sL8Vj9eba3R5zkrKqtViSbu/opEW81cvP2e9eZaFcbv9HeXpgtMHT+mOfwVAWVe4lC4QQ9mhPZDW90Jrvr7+mpcvI2B6/uj38EpHESbA9j3KNHhn6Q6ia9oPHI4dd9uonTH0PU6XWTdj//YVZVHlvB4fBZDPTmM6sL27ZrfvMdpMXsBKzJ/nJfmQ+8twwaG1yf0c222HMRfZVe10s8Ioz1FAxdVqhVaB/njkRNIQ2x5wwVKtY+rjnGN3/RL0Z/Ewywcszp5iVARQjdvjRpeJUmXzEGv3FM0ipwwhBJw9sN/FaKXUUeDpZBEPfNnE39CPkqb0oIKjFFJYP6roASwRVRFG6rJGF5pSyuVmcYquTrJeqypW9K5kL1INzsXIWc98iTwhb/daRbe+yOVQ+bd/Iw9n3u4S0+4ip57OuygrkLI1Fe+9wBRJz+kPQE5xiqAp/g3iiW+ftmiksUy0N+ZIxAyH1DoBPVO4lJqsVPakN/KSiaMR1NRIF6JabL71vfBE4s0/6ZrOXcaTqOxkNKUzQBSfMFM/AKIwlXOglGcGTOlZFoKXmCWuvcVK92q1eEAzHvESInvnKEzDdhsb0q6uO55/9IDbm4hvdK3n0aPfp7v9FU1acKqCw/WnLE6fyWeMHLub6JlCxETKxQXf/2EkJG23L/nJn/1v/Cf/6L+Lfzc1pizwKIpSJm9nGVGshA/RHFo2p46uiYvgmzcv8d7nG72sa0lR4vubZknbHSlMOTm5a0VVLfI1tG7AGEMpN4yzlmFo2Yg6elVGYPHtTVzAzjYrDDqD5O1+S2k0uq5zXw9+wA8dQQSNvR+pFqd0Ig69u3mNc29pVhHbWZ+cQNHkG6pYNrjDMZpsreICbgpNWTQsRZ+jLqPVYyKBNbXiMGgE8uBoYXA+YyIuBJSZ+EJlAarwUBR4Ix405ZJyuaE+iQQ4q9ccjgNdlgGbgYPENEIplTLsGYlrwrq0ToxsWbxlbmZ1dAXgZyRJJcbgPr++MLG+k8mXPpLnsiBWQKqc033zLuM7YJiK0hRRYSp9eSCpkk+VlNjuPqPOZpxhvkxOOWAszcKcs6QwU6k1JMBVo5JVXcoc04mSz80kG+9gZjcZpDU55ISQyJqdqXfH98HBit9q0WBQmEXEOFTZE2hz5KCNwbqR7XWc7I8eP6e9u8xt7EqN7He31MqwEZBwf/UxFKc0gmEEa/Fjn3fo9dmHbFrHl1/8EoC/+emf4X3NH/z9qAp28eQZY3/EVCfUIstfDhZ/d0DJ5F4sNlTVnjdfx4ipKBpWmzNMiDv+bn9DYYpsMTH2AyfLU1brDW0bF8r2eGC1PqFLC6du8CFQVvHcDP0BCDgBflVTcLJuaKSiY73i0HWsZYFr9zt6AmPf0Ygvr7cjlSE34/WHK5xzHA4C0uqKYRhQUpIuwoGu6BnrCGDcvv4YU1QEFKMsQE19jvOeUqwFFgUUWlFVU/dqP04GZEMI9NaTVPXLAmzQov4fhasWdaCuF/n81pWmXl8wFpGENwyGPkRD1TiHIrY20f9lfjMNpRODWl6jAT+RLdMGPL+vpuchKM3oLGWqNmozOTDOIhg/ay2PeIfCBhcNtN5xvMc83o/34/34rcZ3IEPoRfchoD25qqGUmfga8QnRH5l0SGOeNq2iPsT8bs4VUUyvT3T0HFopESFCoXRyvb8fdiWBZZfTmtS8JzllcMQW8VQlkt0hZMiDEKJptfXJD7eBckOwMQpwzrM4eZQ1SvuuY7fbY6SpzfuO3c5zcRFD+U9++TPW6/+AkwcntK2UH49HlhcLSNELnu5wy176UB4+e4r/4q+5fh2JUKODuqz4+tUnAJycndF1A7UqCUrCaG1o6oa2j8fVLCqUmqwhS1MyqoFCIhWcp1k0LIV4FjCcLGs2p2s6kaR48/oSbabGuEN3ZLFY4qSis1ic0FQ1zTJGIuvVOn6+hI91vaAqFjjRLSnqhsoYjAbbJz/bDrU5Z5DoZnfzlkPb5XPhgLKqp/DfFFTNGpuMkrzGdi1Fs8iNmmPfY/0kxaBD7IhP7ooe2Hc+l7V9pq5LabeqYnOi7LcjGq8aymqZI+Hd9hZ7+Irq7O/J3NIEpyYuTparkHnFhPvF65V4Umr2olilDLOK5HTEsUIUZnCB0orgTLyXmDV/xC+T9yYb2GQsJX5LPkR1r3cc34EYUMQLkupX4kbEEzUtHknPY66lGJCUZ+a54ufrDd/4zUxV6/h6L5nOlEOnfDHMTtS9Umz2eJmpqYep8zSKDUWWX1qkUsOfiHXT1iUnaGoJs4O/ot0PVAJEOg+bB+dcX8ayamE06/WC668j4DcMPd7FTtS0wHoX6PZvWZ1GfGIYe4rqNONBfuwJRcn6LHIZHneO3a7jn//z/xuA04dPefzwMUO3x4tHigpRT0LLRKs0NIuG0wsRKRIw+e4q8lOaZsHm/IyluM/XteH16y+4vvmC/SHeuI8evWB9csZyJczWr15SaIURD5W6WbJcLLJYdPCBplmjJew2dYVWAVMIFuG76DcTPKMscgoVm9jkuDsLt7suN5gpraOe6EJMtgpNWRSZpDeOA1VlUHbAiNjSsT2glKcpJ7BS6YlcqFCx01bSLediKJ94ItbDoionk2ql6EfY7g5slvE2ugs911/+nGfn4tuy+GN666aNifCNzS0+TrynZErNjMuU5++MWhC1ORL4KZo4s/msZqzVoASknXWWA2gzu2fS/aEmnZZ3Gd/B4qGJi0Jc+xKLTTE18ZCeCYkHPluJAxPYSZAO2IR56Hs176TG/k1XcWaKVyEEdCCvxC54OUkJAwncXzhCRKFntpjpX5YZDJ7Bevay/R4bzaKoCW7aMZYnK7a3V3LYC5zrWYgtwtn5GYui5/JlVLpaLM/orSdUZ6hBGKSHa/YdXDwVyjuG+vwFrQjiLNpzluuHbM4iGPf6y0/xYcAKDvPq5Rc8enBGdMuU3+41pYaLs4hpfPbqaw67WxrBG7pFzbC/o5Ibf7E4wTDw6cc/A+DQHvn69Su01vR9/O3744Gz9SkPHkXg9smTpxwPh5wr12VNWVa5G1hpzXK1xCTQ20UGZNrxgx2JBl2aUTpxm+WC7rDlzZe/iudGrSjXD/G7GHUtmxJdFpk7slyXGK3Z3sUobrAjFIFFpXL3qdY1Y3czdZ8qRTFzRw1CdEicI60EN0ssYiFQSf8Zo3UsywE3eq6v4qJVncHxuOTwJh538+JD+uI8z1fvkhj3rOrBNNIWp75xE0c8P22OSZJC5b+FMFmLqNSqkRpRvY88qXss65QBTNG29x6lp+rou4z3mMf78X68H7/V+A56W2a9IPeej8zEFFUo4XAwr1srxItjVj1RKjPhCB6tJ2aqytyNVBmJ5SU1K3xP+Ii8J8Sgbl66nanfA8lfxuTXJ0natEP0dsCOA1YqOrfVkvVJgxadzuX6nO2byyxZtzxp+Ow3f0O9jClGScvtq88paymZrhdsb2/oHm0y/RndYIqGVuwnV+c/IPiW/hj7Umz/hLquMfKdp48+oGlDLgf/7//r/8Lv//iPUKbKUVdVlAQUN29jxNO1B4wu8CHmX93hDuNstoi4/OKX7A47tnfxGA59bCYbrEVJzXJ/PHA87rNR1Ivn3+fiwYNsO5FkCU/XqVRb4qxFBbGIqEvs6HL0o8oK73sKpXASebjO49zIzV38jm27Z3V2xtMPfwzAcX9JVZbUIhlYlQZ0xW53yNc0hOiLPIifrTGnjKOnF9ZvVWoKMxN2tgrrJnU+rXX0RMnpQnycPGONVgzWsahUtmNwzkfsrZTelnGkMoOYP8Woxs15TSI4mPgXWmmi8NIkU6Gkmhi0z+8wOqUrKXKGid6g0Ebn6+VDSpemiF4LRSJ3f0njo9KTnOG7jG+/eLiRYMdYQ1azvEupSMyaHYx3DrzNvA0vxtgZQEXd02+E9OPTh4YUp8XXS4dtYGoqSj0WPgNfgGgVQLoY04nTysR+gBlIGz8n4IX/EKvfLqs3dYNlGB2l5O3H/Wcc9kc2508B2N5eEjycrGO+XaqRtu04HuPN8PryhmLxgKcPFyxUvLGd6+nHK67fxjSkXD1m0VRgRcPi8Jb1+XMa6ZA9Pf+Abjnys5/8nwBY/YRDN7Bar7O4T6CnGy2daIaEsY/YQhdJZCY4Km3Z3UTK9s31FTfHI5WIBldlmZu60kKatOrvDvEzP/n0Vzx79oLzhx/INQZMgUvnrjDRUU5A2soYrO0Zj/GmLlT0dQnKZS8Y7IEvX33FqzsBOzuLHd7wQFy0nn70h3TbS2rh3ayaBXc3r3N6UFeLqIYfNMhCGcJAbzWDqJEt6orSuEm5zSq60VHIBtGUBqVN7jxtCgMh4ISzUZk4W4fR0Ui51+sK21sKaW4c9IbWqmm+qngGZ5Mv4nWyeHif0vA5iSsQmPgl+dkwpS3zokPCIKfXF1g/YoKfunm1ET7TvI8qzvMsYP4O4zuQIXQRgAwihWYmlTDnJ4UvH5JU3XzlTWBQfHTfijLlgFN/gfIilyZ/D0hN3CeJw3TqppMLENS0JGmRQkyLTAge71TOKWNVJghHJX5mWRSYNBkB5xWDM2jJjwvtWC7P6Pt4o29v3mBMw5MHkQB2++X/w9vXl3TJ2tAaHp2vcGNPaGJFpl5VXH35OcUiksTubi6pP3hGIQD00O0wRmfhns3FB2w/+UtW6/gdvYd/9mf/F//Ff/Wn3NzGaGUYRsbRZqKZ1or97WtuLi/l/BqWZcWlKJ5ZH1iUdb5CRhVYAloXhFnPjTE682gG5/j6668Iwq66+OCZnKc4tU5ON1QFmDLIuQyUZY0XFuxoD4zDkbqpMaJY9urylj//m7eEMi6+Y7unfLRkL5jS+dlDLj54AYfItjXGcNy+YZBFsl6cgOqxdqCWCGccDvhQYXs5jspjjMIJbtX1kV2aSGFlqanKcmq4VIFC59sPJbdZYRTWJXwh7uKdNEyuH1zR6mczIyUBaM00N0FNjaB5X5ykOqOwzzcWkzBVXbwYo2UmN6m/bHoc0NjgpooNcW7n94gmxT3y5DuM95jH+/F+vB+/1fj29HQ1Ex9WbmKtqVgGTOy22HMCBPJzCpNIpd/81Pgewj2J+BjW3TdsUjqGdJMmAnAPg5GcMbcZzrRBSFmVzzX4zCWZdwjraPCUV3utsWqFrmJpdtE0+G3L/k7MkqzmxdNz3P7XAHz95ZeU5Yq7XUxRnj55wQcPY3Vm+cEzOcqeuj6HEMPqu+vXrJaGSmjeKliC69iIj2zwbzHK8OFHUQ/k888+469/9hc8/+iHPHvxOwDsdjuhn8eooO+ODMd9rmo8enSB3e1YSA/Oollw7Ifp/IaBzM3N9H5FUy1yOO8JtP3A6zcxCticrSmaMyrBUfr+SKXLXFp0BIpA1A8F3GjxIVqTfvoyMl//6U8u2baWs1OxelSBwR6pm4gZtftLVpVl80Bo4Ic36DBgTMIvjhRViaIE8ZY97o9os2D04qHrA6WZrBRu28DgAqdZrNjI/JS0zYMqNVlnWEXswXmfzceVDpSFjuLJADawqByHUT7Tx4h4kh2Mc22KQ1Ru2Zigu29QD1SKUFLqnlLJab47f48mgormKBk3ScF+hgu0zgUcrd89nvj2vi26xOiSSYUo3XCSYOTcK6ma6xkvP4KlKoE9pLRhyu/mpdkYzs3yORESSuUqIDbgqRlvPzNDZuXd+Q8QWCa/3MSL5Tz5uDTSPCevsT7QjnCWUiU3EJxlkHLmiw/OOSl2fPYyllkfv/gB7faSZvkCgM3FKbbfo1WRgVqcZnn6CCtq3yFUHO/uqJdCgVcBvKORtGWnHefnj/CyMCwazd62/E//4//An/43/y0Av/PDP2Tfdtg+5uD98UhRr/j+9yOgd7re8GboqUVnZL08QamWVoyRrAetPdr77KWzbtZURZ1Jd9ZbqlJnHOvlF5/x7FmgE9R7WZ9CKPL59/1A58fsiKaLJSdl4NWbLf/0L2PT2pvDKDqnkVvy7LSiKUpKIbM1VYHrtvg2HmezOKWu1xxHWbydYxwOLFen2e/2brdluRyjyRjQj5aimMSUOptutDgKpRmdp5TfMaa5kqZNIGraapP3t7ooMGWdxaus0nSjyrIKPqSFQD5DSrIqN49OpdcsU6G00NgTsK4wKuTjjmOmg0q6JyY5CVFryalmusPSe9K9kppK33V8dzwPAW78rJv1nqN9Mo+OK4K8Iv53CCkacCQBaYgnzED+0U5FNHlWKJktHCk3lT9N6438XUApWTwme8SMvOQPDRDNeTKIKjWhVOQhKl4PYtastcbgef4o5uiLKvDxb+54/OIHADxsjnzuLcbEvxvlMabCGMUghkFFc45q20nl63BNd7LIwONidUZZrbMVQFWXnJysabuImZT1ArcPfPzZF/yTf/I/A/AP/8P/jB//+EccBNysmjU/+MEPOF1FnGR3e8tdvZBGNyIvxdR40fvwDpwe8MbQCOv0bH0GeHoBHqsAAYcS5HHsW/q7G05OIrdkHGWiS5+KUj7eJcluIBj++jef8dnrget9XCwiNjlFnYvCsF4sqYVkURhDWWm8YExOOU4efcTh+HMArK5ifu87CrFF8K6m7Um17pQAACAASURBVBWJqNEdB5pa0Wfxpei8lgBDowd8qKeGwBCoNLnHxCuDC47SFITEPPaOelVjNlFBLs4zhw1TJS+3IceTIRUOeagDwSWuyYRZzGdo0k65Z5GQKi7yDpgtAlI9jNGJLGreEjQUswqkC9HHYOTdF4/3mMf78X68H7/V+A6Mrh1jcDGsUvPgCVn90u4dcsowhVRphUyrpJeELsUk90u96SPnDFMIEnbp+6+R/59ek7VE7j0fj0UxhW4uV3ailUR8kYHkiSuf0bmCXYiRxHrzmA+LjsvLaJ70q8++ZnPxnA+fxe7Kl5/+lM4uWAqNudvfcHoSja4TS7Vcbxi2W4L06HS7jvZo6aWbtaqaKLMvqdKiXuDWpyx3sbLy4PFTdsMVVVXz6k2sSvzFT3/B3dHyi1/8NQD//T/+r/n7f/In3N3E9MD3lma14UQqNqMFpSq6IfFbxmik7DwLiTxOTs+xo8WYGDFZO2DdSGFiFFZUJWPXY1zqut3grM0MU2tHcHvKIj7+m9+85J//4ivqqqaUFGOwMY1MXJCqMhQlNOLrUupAoSxOPHUP22tW59+jkJSu3V7TrE6oajgeYnSyt4HHZzUHscNwxEhytClkh1U9tcIvirhXlyJyHXRUyzVS/fLB4bxBe0MjlhtNbahLgxFP42v1jN6OOUpIU33q7QoxSMhRRvpvATYQTVU1RSLeR83ScpLli+9IczPeeNMNIN+XsZT4Y/AhMCZFP6XwIUpVZJ3wdxjfgQyh/GduwZbHpMasgiMGRpNYrsJHfdD0WaJFkFAJpbRIo6W4bp5exHQiu8Hl/gE5hlnb/786EJv+PgeoCq0gKCxTaVZpjw7fEHfG48Qhbn3+gpvtv+STT38DQLO44OHjC+7u4k38xasti/UTLt9EPsX5+gxtSjAVWvRGBzvEUp9I2A37LYftV7QX8TuW69MoiCx0du8DddNksPPs/AL/+dcYXWeexur0nNEq7nYRC7i+OXB2fspBSGBFtaBqVlkLdOWBrmUhIOLN3S1tv0PrkpX0iKzW5xwOB5RQ95uwYhiOBJESKEzBQlvGu7io3QxHQoBFHV9/9uAhm6UntCLK/PkblIm6pnPB7BBgJbhjVXjKYhJ0qkog2JzSBQvdzRecCYC6u7uhP95SFwuCjilZPwwE7xA5DzodqQRJm7jQgbI0GDHk1sqjlc2ksFEFRuco6zTPSnzQOBuygdhyuaA5/RHORJBbYyP+kbkFSmgEs6KCmlzaEpFLm6lIoLQAot/gfWQ1dRXbMeZp9z24QDo85yQIaz3ej0xmXhEn8R46WVzfZXwHRtdKyCf63oIHCLszDq+i5LBiIhz54IXMk96g8gIC0vM3r6wINTTcfxKYmzrNo5J08lTOXT0zdfZ0bIRsSqWj5ZOQ3OQr0j+degEiQajX8aYL1QXKHjg/TfoeK4Zuz9ur2Itxt+vph684yGLy+OwhithbUazie3x/h/ID7TZWLY7tFnddcP5EHOJMQ7t/g5ILHsaepjljcxKjhuPuhvNVxenJilKMofrjgcuhp+/EMNo7TOizkthisaRZbjCNLCZtR+kVxzaKFtmxgxBFdC4exarQ+mSDDppeGKajszTmBC+PtY5Od7UQvr6+vuLjT17xB9+P73/x439AuPuS3XU8F3e9y1yeLPqkIhUidbgu64JlXedqiqZn6Pt8PbxV9N1AaWPkd/L4e+zffIYb9hyFaLZcNhzu9pw9kIqNhaE7ZvWxs3WF0QHbx7lZqBgxpEbPqlD0FrwojZW1xgWD9Q6X+noWC9TF73Ewz+P5DmQ1+Xjc0ZUuk7OUuscmLZL7gJ/ja4IRJak2H/+YO3WDjc2eCdPzHj0TwAlEUzPn3GQEHqJdA6JsV1R1ZEtrzWgnfdq/a3wndpPeu3gi0JP8mZ6IKiAdnJK6pFpgzGrsrEwaceBEvoo89Sl1yVBTuhhaM/euja+JKcq8lJiji/Qa6caNxzBbIeQdiTQ/XYL4aO5p6zxUMnmNMpyentHU8cTf7QaWteHTT17J9xXs+y2VKI0RHKpYUzRLSnF3O24/p+/uOO7jjT6MltIXmDIuUIfdW4LrqRcxUtGmRHuXF4LV+oLHj855/HDHq7dx91ifXLA8e8jLV58DsLu7BGepxNKgrA4s16dsTuPru0OPV4ZSAFRMSVHUrFYPOT2LKVhTFzgbshdtMbb0w0gtN7ZyPaUyiDYQ/duezWbNB9//3fj+ZcXd246v30o60Vvq0lCoqWITu4ENaxH3acqCqtI0lVQ+uiOHznKyFqe79QntfsdeLCdUXVKtntAfPkGZeL62d0fGdmCxiNfs0dPHHLZ39OIV872//1/i2ju++nlk7JZlwJQVxyHtzh6PyUQ/XViUjoS5hdDkl8saX57T+0QmdODdtNkpRQg2t8tD6oBPC0Gqxkw3uvMe7x1BIqIUJU9SnOGeTWQKoif1vSCl+ikaz5BCFhaP6ZgumoRrv9N4D5i+H+/H+/FbjW9PT3c2hkBi+jQnj3smCqwigjIRnpjhDX7SIlCiUZq8MeJDlWveBHevZBozkhSPpFzU56a8PGYkG58A1NwklCIiCfvSLjEDshAMN4WKqZkp033rM6rmlPb4CwBWm4f85ld/ze42RiL1okKHnpNNTFGq8z9k+fTHqLBn7GOKcHv5S4becPcmht56ec7y7AmXr2J7vBtfUD3/HQ538e/N+jHnD9csluIFUxU0i4aHD064OsYd+4OPfo9h2LOSsunN9sDhbkQT/27KmrpeUot+x/L0nHA48kBSlKvrN3g3YsqKRkR+V3WJ7zs0MTUa5bqlNF0bhaGnSlGDKVle1JycSpk6tBi758vrmCq11tKUhllQh9aa0kyYR1lqShPQXmQBuo5htDgff3uBAcZ8jQ83r8S6oWZwcYrbweOU4u4uRjzLMaCKksUmRmEf/PDvoaszvPQS7V7+hGBqtKSJzrtItpKy7DhCUQRKbTldi7H42VO60TME6S2StGAOzkvpQOaRksa2KUqIt9GU6kSZTzeLGgIanT2BCLE/y+fgRqFDyKVzlMJXoPQkzhW1TDSpsUebgqArdLHAf4NE+a8b34HpU3QpQ+l7BtIqqDk3ixSdZa6HPOuVJszCOKXupykwFz6RdCXhF+liKE3uKhROxz1PnDCZ7Tnvs1OdvCEfCyDKTMk8e2Lk5YsIWTxWJCuoCsehv2UjYrtvbt/w5uurnE8rd+Tk7ITnf/ynAJz/6D+iCC3a7rj+dRTzubv6kt5foAppfHv0fa6+/MvMVtxsntLur3J15vbuLZiSi/OYThSFYrlY8fTxA17eSAXm7JRm/RF/8y//PB5osWK/bTl7FHGSomqicpgsQNv9ET06NpvIYr24eMLl657FYs0yNfnhaepFnvBuHGjKEictxcp70UGNU+v8ZMmAYSWK7Kq/oT+2fLUTJTEdiVKVjqQqgCF4zhYVlTAiTQlFGBikc3cYjhilCaJGtu+29G2XSXoE6HbXLCrNQdTdPFBXk/mUNnBzc8vmLJ7vdveasxdPefEP/jEAX9sdb2+u6Ma0kQVKo3LntC8M3gVKYzMYrNfPcZipg1glU+pphimlJYVnxsWYKpLxtN7fhGPHa3yktZmcAOQzzYxo5oVpNidSalQmm03fN6mPBWdxskEW/wa5yLcniWkNWmdaayZ0hShLGPKNHm0eVZhTaYOstvOVeV4fMXIS7q+GuUVf0rgohpI+Mshp+f/Ye49nW7LrzO+3TZpjrnmm6r0CUIQr0BvRqpvNCHYPNJBCA4VabqaIlkKa6c/SQCOFGB2atNQR3ZSaVNB0EwQBAiBQAMo+d+0xmbmNBmvtnXkfWmARVeLobkThxb33nJN5MnPvvda3vvV9uZ6HEGX0PfpfuUYph7liw5xL5pxmkaKymJT3pKwq7PoeHJuTM3L6AQAfvfchbeuxg1Q5Tk/f5Cu/9z/y4Mu/pd/vQB4Gxv0LsraI5+joTx5VUeXLD/+SmBrWZ4Lcj8Oe3XWi1ZJpDJbbq4vqg7rZvsF2c83nn8J331ex4t0lq+2GR09/BoBv/Ns/xv+z/2kmaFWyXtHis6RpJAc5pwen54Tjnq7t8IrN+DSAbSqQ6J1jHI94BUhtnjA2kDV5fny+4YNnR24/kkqT70Z+9PGeSwUPvLfEmLCtx5YyeYBHp76KE9tscG7N8fBMr9VE323Z38rCEOLE7dEyKZi5aoXRejgGRnW5HyKMEdYH2QC6pqHreybFPBxAGlmdy8K6efrzHKa/4N0Pr8uDQt/kylhNUSba2dZwqg2QMTtwHU2d6LY8oPocAdbMrGLjsLYuJVX6cIkXVrJDYTvrYnuHamCoVASbBX+sP1eRrLnTXEs+dVIYDCZNBHItf3+ScY953I/7cT9+qvEZVFus/EdZEUsjUSRiKn4BsgrOjHtqalAJXBnlgsjKvDQBluHALIV9NELIS0Mp9G/zyj0v31pmNfMLSx9CtfyrZJvF6k5WPGdRbclGazLQGINzhklbxFs70DUj67d+CYC3/8F/y6Mv/iIx7PXNkUgDfsVqJSnC5975ba4Pt3z0N3+mx7c0qx6jYMLt1Ud490blhUzjDbe7y8pvefK5U/rO0+SBjepcTMdrwvGMq+dS9fnyl97h/MFDdqr1GQOs11t8e6vXG0zKktADhAnvPI1tMHFO63zjYK8RWgykGGvY3DYWEgSN788fnvPo8IIfffPfyWc+fcKPXl1TElUvl5ZMqg/j6arlfN3ivZYSXdIKg0Q3edph2omDykIep0x2ljGrtWQGZ1rGKVYSWCFaDSUSGQZCgDQJLrV/+QMefenXK0lw/fgrPO02vP/8/wTgxbNnHHKm70u/08DKw8PTFdunvyC/236BbB3ezqmRyalKImAtxjoWJUlyLSGqWHHKQkFnfg5hEbxUj1nF8LRZdCaiiT5IrFFFnM2xF70t5Lwglknk/feu5yH4AbV8FHNJCqMuDuVLOWnfMa+LrKbFglO+jObPAM4vlg8BKpeUjmygMlNBQNlsZvNtY2fAVX82mmotx7JrMecoKVTxU8WS07yQZSuLYOmLeH7saNtf4enPa7PY+gfY06/w6Gv/GIBme0KIh1nsOEE0Le3qIVnFfZo4kp5/i6YTbCH7BttsK+syjgdCCEzaODcOicN+z3AqEz+Mowgtr3p+4WvSVXsde26u3qvszv/kP/0v6VrPy1eSlux2B5p2buwiZ5yZ08IQEzEE1usTvPaEOAudawiKHRxyhjgQdJJOPtK6PIfLY+Tp53rGg2A3L292vHdxU7+XNYYQErb3JH123jjpWa0a1it5T98ahv3Lmf6YLTe3B8ZQyvHiNq+EVMnfc2KIs0iUN0ZT2Dk9Nfp9AV6+902+8g//KY2RY+Y3f4a4OeErPyts3N31vxJVND0H8ZaJnD98k2YrAHPu3yQZPxuk62aal2jwwvulpA9LDY2yLNxtVVmkzEb+aObHFWPtTLDLtqby5e+5EM2W8wAqZSIZyNZhc7wDXP9t4zOQIQzkHDDRQI6YhZixtXk23M1BIhHjmDlast/P78h3AdOUxYDpDmNu7rqFglGY+lAUOnq92lmqPFVuLguYm9IMyt6h7gI5C1HM5kJFFj+tZUNfXqiTvTh2YL6C+/LbAHz+i4bsWtDJkMKoi2is5ygt3Z6sJkQ31+8TRqpZUtN4Qso0jfI6TGLYX1cEP5oW61p2KgNwefGK9eqEh2+uYSvn/W+/9S72GPhn/83/AMBX3/4qf/lnf87tUXbbZnPC8xe3XF4KPwID2bVy7kjHdOc71usT1spkJew4hkBQfKFtO8ZbU29JCBM5RdZNr/cHsaHQmf0XP3rBPgRajUhjzjTZ4M3cSPlkA3m6JPkSafRM45FBu2ytNRwny06FfZyTKlDZffe7gc5rlU4fwMYZ4szup2ks2EyjpuD7Fz/i6tl3ePC5/wCAbr1lIvHWzwpO9cNv/wW3hz1OUXIXE5t+pFtvsBo9jkYNyEo0mzPgQdv6M0afvxoGSxGhPnd6D7BzoaGAm4U4mTLGZfydOQCzRCeAXSxIRVScOwdaFhEygPOY5DD2k/PT7zGP+3E/7sdPNT4DnkciRUV8zTJfkmigGt1YobHf8YHCQg4somZFRXTlLmWuihLL8lnZdYhmSFqw58oqXRh5FgPGUSwtk5ForbIZtXRca+Azj5WwDP3yTKN3Vq1/dLV3NhGGkXHR+0Kc6t9n3ZFSZ1c5u+EF48X36+UaU2SrJdGLqz1t52t5OMXIeNjV6sDp47eZ4pHrVx/Xz/zZX/pdvDe8Ogr2YmPPf/1P/zve+8bXAfjDP/gDjtPI7a1EK+2jR+R+jVHm63DcM465etU6k2l8R9v2NW0ZjpExxLpjYxOHbo3XXf9kdcp2vSaoTipm4Ls/vOb7L6Rq8eI40Li5mrBtLL2HzhuCljxPNxu8GdiqL0tMkWmaavq5PwLW0KllxP4YMfuRjXrXpjxwGCa8mc28ukbuQ9tqumRhvfazLskx8OJv/pTtY8EvSJlsPQ/e+iIAX/2l3+F73/w3BI0qNoycna/xq22lyVvfcseAqVDR87xHG0uNekvUUf9qigiVmSNn9XiuGrs5Q4RYn1+5lKZaRujn1mdP+BL5TmNYqqzwclLWGIz3WP/JKaafgZ6HDPGHmEVJcp3Yhbxl1G19eSEEzCk3MGXIuEUIptqjcx2WpZiK/OYuwFN8WErHgAGcCVVTwWZx0woUwFTOtdxPkwXkEh+aUiosWWipi2teWqjKVo5ZPELk3/mxENWsXIGzGCOtGfDjh5xsZLHY3YycnTzg1aXk2M55jJ2/W8axPwZOT0/1N4Fxf0uyMmFW/RnOd7SrFZut4CLvvG0ZL19wdSW8j8uPf8hud0vUtOTVfkfICbcV3MX7joytOXrjO1IHbdczKYcijBPWWPoTSWNurwKf+/wX+eJbInTkrCxCNx8LJT5Nr/jR9ZELBTe9tYQY6z3ctoZNawgp8uRMFotVlyC7qhQfxh0hRqJqhU7JkJg9ddernsNhqACrsYYwZRpvcPoa7wRoX6uz9ckmsRtiTZ+61YrDR99l2Mui51dn4Nrah/WFX/sn3F59zPVzKcc3tsd1K4zvsAWjS0HKtXPx9Q7cj26GZkEdX+Cl8jeE5BXL+pKli7bQBsTjRgmXKJZRQVTZRJydCwby9UUVr867NIlYl1l8BuYOePtJxqePPMoCoSdZCS/GEI1ZVE6c1LgRBBjk4sVFHdxmaa8vjNNSqa6fWdyxamNdxJUJvTypnOtExmRIs8hLYpJFSt8Qahfv4obrAtIUXKuAsvqeaOQByLX2bgWfWbiJkeePNBUCKw+ypYkjLh04pjJRPTfjwEHVsVbrc6YwUaKwYTyQFlKIw/GgBtMC8I3DBc8++CZf+tnfYqMLknuy5sO/+lO2p9KoZeMIaaoO6sY4nMkcXolZEn5FtznFumLu3GBbiRgn5aMkHP1qS78W3sfpySlvP3laLST2uz1hd8FH3/4L+UgDj84e8v6rq/rdvXWc9jKJvdeGOGN5oFgNPtM3K8IoE/k4HBhDImVZTJqmEdGirOQsB00Ho+IwMYqwcTQZWz4Sy8nasunku+8OE33XEbX64tqWeLjgePm+XP/+AVhPVL5Kf3LCO//oP+cHf/wHcv1f/ZAQLCYszcFm8yQQLMLCna5ay3ISy5NeXRLzbJw2b7BSSHgNoZgJXqmQyApOmEjGVNW1uVqTa7+MqO1RXfxKtJ5yqqpnn2TcYx73437cj59qfGZpi+Rm7k59Oi8wDhEzlp1+bnU3Ghaa+ecQanux8DqgsOvI2sGrf8/KJXELndNicVnR6WJFWWrcrxkGSy6oiSIlzBPKfM1NpX47l8eswTiLc7O5trUW6g6kWEq5NLbEHhqpGCNaE1dHdlfSq3Jzfcnlq2esVkI3l1p/Syg5eRAbxmxl9z0MgYyh1531+tUHxGnHky98jXPtgH324Xf57v/9L/jqPxZavM8JF8ZaRo1RfB/L90omEWLEKwaSrafdbnHeMxzVUtE51qfnbLeSLq29pe9asmqpdm3H890F46n8ffjoI37pnS/xzR9KGrPuWrarhrOuhHHSXv7Gww0Ptf+lb2HVO8aD4lTJMQbLoJti33e0rqu2FDFMtF3DcCz2EIYpGVpSjaJWTjRFbpVhKn1UY/WmTcB5B8ePBR9qHn1VxLUL83gaWJ894qu/918BcPvhX9NwJG4ajloyjj6BcaLxoc9aNswVSCPVxjopchIm9oI2UKp4c7FkEUXD4tku0btEPJUrophJjCUtd/rzxLLzNjOzT1PO0tafeU0b9SePzwAwlfbhqs+4KDGJXof8HDGgk7wCkTnijGPSMDrFgLV3HbVKi728IOk8XuAcWdKI5XFL+bW8QLLdBaiRZ/Co0NaWN9AYadirvBMrH1jBXi0nl5KctSVNmcu/UiLTBck6wXXKSfmWdLjm+OoHdVIed5dY2zAMxUOlwzSW4171R5ue1eaEa3WKD9PIg4dbJnWWn4aBTOLm4kPWasA9xSt44wEkSTk6wKY5xCUmpkwlbJkkD1HR/Wy9p+k2eOfqPUnZYV3DVqUBVt7QNw1uLRP/5sV3aB5v4bksQKOF1sHb56rQvlph0q6G4dlA2za8/ea2Otd5M9G1jnFfFgOH9Y5Gr/cUDckk+rZcf0/KE6aE6sHSNh2YoXrTppQ5jImoG8I0SfrbK4CacsY5z/BSVNdOwn9Mdp0oiwPOWmKcaHpJ186/+puQE1NKsyJXLJtPSRUSccFLshaSCYtSLvrvAgMpZdTXfrcc1syaN3WUKaLFgEISm6KkF6JBoy9VX5c7qdFrPV6fZHzqxSNOA9G7qvpV52hKYBZsFv2b9IzojwpW1ouTSzNMiUQEpKwgrGFeSMqrfkyP4+6w1qnYT3mdLBxzY5ycdxV019gpmnnBcaV+X45rRd2saIZYayXXnQ+qeeWcU4ZkxYpQv0g+vsLkkV4Vumx+RY6I1CCQnWcaJsZJJv52+4Db25EXKiF4froiT4G9mi0Z39AZy83VKx6cC2kppBH3tZ/BrAVk7VYnsLupzXWkhDENjXbVogQ6X5XoE23bk8JUAbv+bEPb9rXasmktq75hUBGd25tnNI89H34kFZ8HJvPy+oJVo5853ZJtrkD6GAJferjG5UhSUWX8DdPR4qw2wk0ZYz1N6clpemKaTdUxhphcnYyusRgiacp02ul1PSQ6b7FlqbSGIRpOGsWcLNicCLeqwXL7Lv7N3yKHYmFpSZiKF5EStkz2cpezEYiqbhoilF2npXKSaqOnnrt9fSGA2vwW0gzUy1mYuxsqWtGs0Uwmxdk0KpkkwkrO0vg5Us7yFQAB8Ofd9v9jIv17xj3mcT/ux/34qcanjjymOOKDr7lY5U9Yg81poT8qsn5ifaCRhaY2pTO0pAklFysybby+Mi8wk5l+nu98xnLXt2TtKZDzwlBzwqx4R9nFDKVkbGvkERWWKbtBThK5jPoZXutDszScSAKU7sqYkhgbFUtLDMY5Th68xah2AcYkrKeG5sM0Mo5jTSEOU+D5R+9xdlIYp46rm6Hm9A82DTkcub16we2NVE+cmTi+9w3sr/8aAOunb2OvXmL1xExIODe3qWff0rRrkkY//fYB3hqyaYjKbO27NU3b4UsZ2liybdldS6RxDFd02fPilWA5L8eMHa7o9VoexAyGSY/x+dOWR+uW8Xhk1c/085xyZYP2K3h1QzWSMjbjXZ6LGMkyTqlqWnjriebIEHOtOrjGisl0np+TrrV4ffa8zSSUKQ1cfv1/4Y1/8AS7+by+fpL7u9TKNVmiiBoBaTtGYTPLBVrgazWhKWcO2VSeSKGqF+PpchzH3NJhauQs7wmaFhVcZOnZAoIxthacdRTrBYwTBcBatRQ8zvLvSYd+wvgMGuMmUpqwyuFYJMfkBWjo1NnNW+5cCAO1ZyE66iQHBTOtnTliWfpLyiQuhzN2bpiXPpmlnoGqQpcPTXLDCs8j5bkmrgfV1uhFOmWk9TzW85DPKwvOMEX6xs7NSEVnpMgUaE9FcSdzDlb9GndsSfp9V6enJLPj+lY+ZJoGYjA4lQR89fICa3LlPhyHAMbx8EQ0Oa13NE3Ly+c/Yr2RNOXp489xc3XLD95/F4C3v/iLfPDBB9VDJYwDOVO1OFb9KU3TYhUw7fsVzhq69ZZYpAOmica3M57jHClbPv6+YAXtaebD997lIy3N4jyb4HjY60JrDGNMnCkB7IuPN+Sc6HqPt4XYJ4t7edhPNw37IbFXevqqWZHdQrjBGLzz7JVL4hqDMS0pHetG46yRln1dYZwxbDpb061+65RCoGS461dcff1/5vw3/3u5p80ZTsv49Z4WAmTlJQnQWSAlkda4q+dxx485awnWLrC1H8M4jGq3zkUF62aipDEGu8ALQha8rj7x6rAYY6K43xUxruVhTDm3v8/Fw3mP9x5XV0/9R6ses0aoWdLf5FdVA0RfkrnTvJOFUUbhOkR9cV0IClBJvrPaGuYbVhYCFueXs6kgYcoC8tbKCAWNXt7kcvFnfKUY6ch7LFOcNRRADpcXT434+MhRfY74dE1IcPLwLTmPMHB7eTV/jxwJ0czGRhG6fsOgmprZwGrdsVrLJHQWLi8uGY4D7TuqnpUSb7z5Nt/9tnTqvv0f/Srv/Obv872//oZ85rDHjEM16vKI3sp6K4tPniba1SneN3Qqqty2LY0Rl3m5hy0ff/evudwLP+LhkxVf//q3aj79ubM1t8NQla+8NZhx4ovnavvYOlI2eOux2o1KPNxx6Gu85Wwda7VlmAZ675hCWZwnrG1oXDG1jnhjcX4mKcakhCy9JZsusxsDXVlcvCFlVytmxq0ZLz5k963/FYDTX/gvCLa/A/SifIkZIpfJXB9hY9RatUKVik+Uv+uTpvfc5dKdnhcQhDxllVRts1T+dEe1BvIsCgbkfjwHbAAAIABJREFUYsSob5enUmCNMB+WWY/G6oaeUv77bYxzCEvzdRuFKhVfw8RUeVLlYnnvlrHcjwG9RgtKc6WkWDwUNHtZXSmrv7vzkKSsyHPVaZM0KC4m9rK+M+sp54oIOT2Hwhe0ufhpzBGQ3OCSMiVyMrONpjH1XAFau8eMF6xOP08cpbqyv31FJFcwLYVIjA7UXgA8IUHQ3dd7z8l2W7/38xcfMQ2Rp289xevEbvotP/fLv4Z5LB65f/in/zu/8bO/y9s/92v6ng+43d8ylKgCS7Pe0qmEYIyJVb/h5PwBXs+rax3rflXlJZ9/71v86N0/oXkqj9JH73/A99/9gAdbWdQO40iImUlLuTdjYGsNk1aZzIOGzjfkNJcSp5hEkqAp0eNE6+dJNoZAM3m8lQXtMGQcqaYg0xTASSRWurzHoAJ7pfLhMrsbw+a0gJvS7ZpQqv6Q6Po1+eJv5Ocf/B80b/8+uFV9bgqknmqabe88ewVkrtWt4lOrzWfCwV46KyqZ0cRZvtNASrYuFga5NiXyKwIV5RCtkzQ+LSp/KYula12Akk6DBfu7PMN/h7XjHjC9H/fjfvx049NjHqANbVnKV4s8P7OMQPSfOJdvhUzj6spsrbbs3ylDzW829Xflt2VHnzkYuXhflGNopSvqrhVzuuvzqefKMlDKGpaWc7ZizGMX3yXlZfhp8M5SE6qcyNmSaw+DgFhOQ/cuX0gZj8zuWhrbjOvpNo5xeKWHSDRupjIbMtNwZEpyy954c0vrHc8/Fm+Y3W7HyfYBIY0VN7JNT/9oTXwhXBD8nq9/74/4lZ//RwC85Z6wHx6wO0g0M4yDSAIoZduSOd2ecLpZsVY6ec6ZfHvBex/rjuz2TOvITkuzV9fXnPSralz0ahfEHd6oILJJhJS41Xb6pzR0bc843s4u98kTYsYoJ8N5g/OGTp3ZxlHu+1T8b/FiSq33x3tL1vs8FWAcI0CrPmshGvWFmZsXwWA0mgk5c7Mfq0fv+PJbtNs38Q+/BkCyDca0ClSUY5QoWO+71ZTYzH/ntfRaGiz1sckJchBsq74mkZnlH0TYJzLPhhm8LffMWDMT//RBNssQv/BEloCpMeSU1Kbhk41PzzBNCVIiKQmlKoojE7DqgBqryVmeU5kSphfdjATYuzx+a9yPATzzhJJJJtz/1+vUJexLdxHkXChjiwXEzGGffKaI2cxCtWjKVNKlu6ZQIWViTHTlaiYYw4TNpUcnMSXotJLSpgMYyzRNdFt1rA+R/OoZuyK600wq+lLSvsBuiFUtfdt7ri5fcakM1a5rub3+GPI1x/3PyWk/bjh//Aa7PxMVr7OTh4wx8O7lhwA83Z7B8Yqtiu6cnr1BxnK8lcXG+TMePjzHTQNH1fw4Hl7yN9/4I+wjVR3/6pd49u/e5Qff/b6cZ9dwsm55pirluyHwYNPwcCOLz+NHa6Y0MY1HvZcJZw2WwKgKZlMyNL5VVzMYxwgp1IkfR0Nq7ULp24Az2gskPTnTIOzRVMWoVKNlkWpaOxPmEgK2ly7mvm0ZQ2SvQMtZG4kXf01z8kSuzeqJgPPW4Bds5ZRnrKZgZxW8zApkFq6ISbIxzYq6oMpfNf3X/pdl9TCnRXphdBHSX4gn1FwBMrpIGDun/zlJN/yCSalYzSKd/wTjMzF9yinohWI+IWPvULSTGtMsmW51rS4LjslkM1saiEjPounHCMhTlKWzKRHOTOed/W/rIepry2cKOKR4RFYyzwJ4sRhMnpuq5PbnCptEJe60lfNliDES9Aa3PrO2uSpjWQw5+4pqNXmg7bY0vcUGpaMfL+UGF2Fha3AkRn3Q9kexWzzfyg4+jQfGsbS3wxQmrHGyaxfXs27Lydk5jx6IqPLzFy+4vrjCeKmE7B895dit+fiv/xyAVX9C3zQMKiy82Z4xjR9i1x1//C//N7mPzvDyxQsePVSh5hcf8Pz5K+xaSsi7cSJNsZaQv/zYsmnbWkpcnz2kbxw5y+JysukI08BhCHOe7xyRuRQrql8wFgOm3DAOsDqRG5Ai2GQIRRkrZ6yzmGQrbT6mTOPmylrOatzli+CTu0M1cN7S9CekJBIIQ3C424/xz/9E7uFbv4drHykEWjm6wv5MpQ1BH+08HzMtFhMplxq0XFKfTYOpFci51LssES/A+DRveHpxtNFQF8UExqm6WKnIxCyRuK5hzoqbY0ypdrh/knGPedyP+3E/fqrx6Xtb5sDhjiiPsQaTUiWzWLK2Hi98W7SqkRd03RzuNsoZmzGprLqKbxfH9SThqDGzzKDoPszIe3EId1WIRyKVUloWHY7ZSrI2HpmFyZN1spssCEIp5UU+HWlsnCOmZFj7hYgtYIzHG+0xcYnWrwTd72THNr7DuBXGaenVjVhzZJx0B8mZzcpTvGpvry/J1mmfAvSrNbZZMYyZi0uJLN467uhT4nd++z8E4F/9mz/i/Y8vCB+/C8CbX/5lfvBqYuckdTppOj549SEfvS94RthfY8lsHj3i5ZX6rBiHdWsurmVH/vjld9gfbyqe8+BkzeQCq14ipHXXcnl5ydmZ8FHOHzwAMq1WLcbjDbtjJLKqpLqudcQ45+jWSPWJhU5NyomkDWhYMC6XDZxsDNY5zDRXwJJiAUF3dK8eseX5NFmiWqsWEj5HNo+f0m6fymfuPybmPZN6CXv+kO6NX4P1m0QtMSc1sk41zZayaVxs5oVeXh4Ms5BqkHQkK62gUAs0rlj0ulg7P++pCIDXlD4p7iI/F45IZNbyjTmpcPIcoacSwb9e8vwJ49MvHimKKKyRslO5GRQAqmYxWl4yC8BTyS2zM5tB+HTlKRA3raI7IK0v8wIFkHGIUlg5jsSKZeI7xSpKmTUmbToqi1wJFcv7tYYuqEjBYtTVqzAeG8cw5drn4K1wQMp5BsVg1uZS3z/h3AOs9rY0plOjqljxnW7zhH414N0zfU8gpfmGO5NZtYZRNS7GMZNsj2/lwd0fjpjjSOsb3n/vOwA8fPIzNKsHnCuX5J133uGvvvkNnquT3eFf/3P6Bz9T+37+6i/+Hy4vPuagfjM5SUeyu7iurNTOWZzJXO8ltYlhwgJONwBnRlZti9WUbbebePjwEV/94s8A0HYNbWu5Vt2My90NbdvReFdThhgTjXekoGlJGgkx0pb5FBO2gVFV1YTz0hNt0atIWN9jjCMjC7azosrmFXdyzmBswlR3QumBKk2aq94Sds84eUuUxdqHbxEOr8gHwZjG4YC9+A5tPtBs5fpOZi2fY0oqGQlTqOmCQeZBAcvqY1h7vQRgzcvmxVw4H68tFjUNVxylrANxkdLUtznhNuXXUvUF8xXVBfkxNvdPGJ8eMNUDWnRFLLutEQr2rCAo01EW0nmXX6LVYLFmJq+IuPJi5TYZcrxzDPHHmXdgkwFvFui0PhxpzksNLC5c1ginfJ2Cn5iqRpZ1EywXP2HofWZYKIkZI8I3IIStkF1dTPz4Ht48x6+e6DnKE5My2EYa43wz4tu+yvk5FyViqguWxeaJw14XKBq6flbEzsnQrXq6vmO9EjDz+YffZ/vwzbrDfPELb/Orv/wrfOubYov53gfv456/qBMm54mu70lq+pRsZByPJGuJg0zUMSdijrhCbEJ2c4U4ZFFNExsllT169JCf/eqXWWskgnNMwzXXKsLctiu8b8gpYsyk17fgHHIepEyYMlMRlE6GFBK+KbyOCG2WFlK9h7gR10ATXL0+KUGrQNUYkviV+bq7YXImKkaSXE+TBoaPBA/afOm3ad78GukoGBXjJXG6JhyuMK5YfmZy05KqqRMSFZUooQCqFfCXzTbVzVL+L+VcafIFEF1O9KWaXnGkK1hFzNIZXZ97lUWMi0jDqsOiN4VAJ0plKSVivMc87sf9uB//P4/PAPMIpBx0pZs9M0uZozTfZGkiqTwK+RtgEnOtXenk1Z9DEfeCRudCN1fPWG2Vx8bXhJXvGFrW1VqOme/W3rNERUV9zVhNq1LdD2ico/G+7hAxJrom46v1oITAZXfYOjnupCbLfR5xxw9wSdIBs3ooKLtRrgByDr610jYPeHeJNQFln5NI7AeIRbuycUyRKkhkvcM6Q9M2vHohKUHT9ewuPsBpNeCtr/wOv/mbv82VllFfXrzk6vIVt9eCkcQkJT3nNKQKAeekaax4jYSYVGCmGD4f2Ky2bNcSWYzTxLbvePRAcJS3P/cG1mWyLX4nB15dPKM8epv1mv3xSM6GRvGGnCdyjmKgDpAjY8xMin01PhNCwvk5hx/HSawWQcSvp6QpazGOcuBmz9eYwBtfd/jsFRvTezpNE5vVqgr57F9+l03TsDqX9CtOb5LDHsYLomqqYMH689KqgkOkOGuR9bXeEXP3/6QpLitnas5agNkMu2h5zJGHvm5hwm6g8tmzRXuuTE1PBQaZU+KUIjEKg/fvUm35DHgekWrwtBApSSlh0lQvQlIuROkK1G/K3E0iwJjUm2fMw5iMyXN4ZZhr2MkaTIoo11Y/wwgno6Qcr0NAKWlZeVG7XQK9GLxyAmIFmDI2BlbaCGGtVOYLZTsaIR8VXkgi4UysE8zYBpMCqGOcyWcYY5nGXTURanxH45u5Z8Fa+o1jf5RjHI+ZkCyxqD9FQ+ssrfJCDA7f9Bz211jFaq4vX3F98ZztuaRLUwg8efqUJ0/l5/c+eISzvjxdXF2+kPtU+BZhwpCJ2VYtz5Tia2leYtW3nGg/zPFwy9e+/CUeP9b+mDhgrKFTEZ333v0hz1+8z/ZE/F1tu6bFkMIR58oCYzDWMxXb1CSnuB/KjEnELLR3vUGkGHCu/AzHONF4fT4A46BxeeZo5Yz3lrE0CR6h73p80+j1tJAnXFPSyI60e0FWgNt2D/CrR4zhEUH5JTEfsGPAlB6bZIgLNXXRMDWEsvnNFC/9s9GO7sUU0cdzOczil683shl99udjJmyOSqEvz5Zn6fNikyXnQDJ3WQ5/2/gMeB5mdlOzCVdUlSgXQs4mqkoVi8VDihqGWfk5Ss26foPIFDK2qoi/1gCXtW17odKVrSvruJ5fUpdweU9yki8vhzVGLBQBZ6xOmLS8rUDWCgB0vsEai3aIM02ZVTvfnBANPk94Betsc45xz7hzX9JITqFWV6x1dG2PNs3S9j23hxsOB/nMIUitvgB8rbM456pgrWsE/3Cuq673m9MnYBvGvQgIXb98F9f+Ar/0K78BwLvvfh9y5KCErZgz0zQwugMAx9sjzjpiDASdZM5YlVDQbtT1ihgnUpD3fO2dL/H259+qeEWOglNdPHsPgI8//ABjPZ2aQuU8kiaRFmgU/I1xJIZQBY1NTIyj4aiudK3XHpAamTiCRhogu2+MSXuFFHeyCZNNvYfeGl2UStTrSMngdDG2CJnQ6ffoe4f1kAcBwfu2ISMLpFE1+kNsIIPVKpCzpUFSbzmiYm6L4djcQaffY145KhFScfrqemhFPGi5ZCwdEclKeFsQGkWYKs7PXw4Y4ysu4q3BeOkJSwW8+gTjHvO4H/fjfvxU49NHHsbIKmfE8DrWSkjSnpPi2ymLqlDJS8hlIMeFBPzdkKwwMksaZo1lpq6Dc9LHIjniTFUWQZVCDZeUpNZzjOaBca6+OOcqL0S2iYhh1l9tvFh0F/m+nEM1yAZY954cRzpXducGcoePskvZeIvxfa34GN8Q97eQrGI+WjlqPOszSSlWN0fa65tawbFkjLO1ZwSC+JjUypXomq5XLW0voXW/Pcc1K4571dZ48X36k7d4+vRLAPziL/0q/9cf/msePn5TvleaiGPLoMLDpAljPbvDrhos9U3LYTjSFEtKk/ncW1/g539eej5ONy2tsxjtwcnRsLt5yYfvfU/PM+FsW/1UQpjIORAnKF4XrmmJeSKpMc7hkBijIWupOyYRYCplOGstQ4y0hQ9kpJdjirP2iydJhaXuyFp103KwbR3Wm4ohmbwHbI2o0viSfnNCo9chDbekMLHuTphKZJEMU55lAHI2kqrrHcuAXTCoBYube6RK28NdTE6qIPWpz6VyUj5TQo2l0VQuH06JQlQdcRHhxBQoRmjGiqRmNZz6hOPTYx5GeBYV6InlpJXjb2cCGEjOPJdRpSW/TGQDWLdcPIQGPnfPR6yx2EIAK5SSnIlF0CBqj03RccjcwUAsFkyuxkZyr14HsjKNLc3O8nPXNQyqsRmjYbNyTCVlMBnrDFbTlDU7RrMC1+n3DMSwBzVRNsaQwkBKfq7xW89q9ZDTM8FFrp5/SNNY1l39Wowpz4ruFgih+rkavT4Yx/4g53H4+AOGkDk/VZ1Ud2R/+SNWW8EbfvGXfw3fbfj2d6R0G8NEGAb2Kizcr3r2+1usgUmVxDbrtZhDqbv82dmWN58+Za1ubY03pBwIyhWJwxXDeEOnPi9jmGhaRKgHiKMjTBNta0lR07wsN1eVBRiGRIy+LjgG6QsqU8r4yDiBrgN4G3HWiyKarvEpF9q6LiYeYpxbCAxBwvuSjjUNq9WKVoWRSAO9tzTawDSqiIZJO6K2FPRth02GUR/FMUghYZbxzepVW35S9K3O10JQnHtVrBERqjtTepHWlIy9LB5W2zkqDyTJ4rF0FACZM6V3SCaS1ebP1wCWnzA+g8XD1P8Sc29AMUkqu3UylhTTvLoiX3jZ/yKUkXz3Qi2IZgVQtZVAUy5KqqQkIfuYuv64oqVRryZQIcV60JoLGyPVHusN66rObWgcNL2qTI2JEAPrTqXgQsKZY+U+tNzQcU3IMvN9cwL+FWhlJcVBVM/ttuar3q9o+w29GkqvT8/Z3h4YRsEregw+GYapVI0MWEOj55hjIBrPzXHieCkL0MnZObgX9CuZuN0UuHrxI6ZBdtP2/At88fNPOFH3tyePH7I/7jmqHSXOc/XyGddX19zeSrfv8faGbnUqiyHwxqNHPH78mL7XhTJPDDdXHHcX+hhM2JiqU1ucVqQUsGmOoHKeMHGOUqc0kWPCeDlv6xxdk6sNxThJfFtFmbNMhsMo7z/pVHXfgtMcPhHx3tIqICrEv4BbdKN678kKfrrO0jae9cmZnFM80K232IqNdeB7xtjitbEzZiCmytUxzpUSot6zvIAt1XR9sdNbI86FudiFgJIWZ2DUqWlU4UIZ5YXUhj9r7iwUVjMD3YblQBlSDHMFx2blYS0Amk8w7jGP+3E/7sdPNT470yfuhv85ZZULnaseuaDJNR0AFtx+USlclJlUQ2PZjrxcVQ2GHCLZ2VrDtgj3I5vCFdHIo1DNTelr0KMXZl5JnUwGEmOAQoo86dtaAgPobCTnhKfwTQIupcqnMMbT5Eu83et3n4h4nIoZ5/GGNA00qzMGpXnTe4xf07bCDj09ecxNd0GnsXskcjjOOIxscpmsFYdpSsRpYorH2YLyeKRpxtp5i3Vc3VwAkjLsb57RrJ4QlOvwcG3YNC3T+oFeOs+DkxUJall0d3NNzpG2aJO4DHEgThLNPPvo+zhjWes5xAnGPBDVQqJftUxDJgepw7qu0Xtsatk6htKprcfoN+TDLauiUhh0Jy2V2ZTpGlPPcYpJdGGy+OICZJvoWodvShqSMbgqcdD2K5rGYku52BqysazUeJzBMuze5+H2F/XtAdMkjO/wet6HydA3tlb+DkMgmVnXxWWnFcjys+QjJQIImp5Ih8VcYYw5LWQ+l3MHLa+aOxFMynd5TklbMmpVJtu75k5Z0qS8nHufYHx6wFSJL9ZZPalC4baLxaJkNh5I5JJiaJ27phRa5J49VFBwqIRglkicabZONRqywRSKtUVA1WoOg5TPijalbcgsenBswpBrb0aIUUSagZIwGwyrdr45q7bFmITPMgFi2mPigLeasxtDigmbDvW8Z8llOOwuwThinDjupFdiipaTbqvXCHFrW29oNYWYYiD6wKD06RASU7SVh2CBcTrSr09EcAnRrdxszwhKmEih42S1wWibeYwjx2HPoBN7f3vLGGZV+GZ1grGePE10vZQl+9NWQmXFPKbxyLvf/Sa3l9Iwdn56wiFMrN+Ufg/fTOTcM12UHpNM4/IMFCMauIlEVIXoaYykHGlLbpki+B4UE4FJTJpK06VJGDs7r+WUCCZjrRfNDb0H1jRVQNoaR7f2eCWmubaRNnwlnnkn6exwFALY6cmWNOxosoDPxvcc2dCYsYL1vmlxOYnQMgLkOkvlKYUkDWy2gsVlQs/lYwFMbb2Ho14Tr9+tWqhXARojlHTK0MWirj1qOmUMJdEQFXg/LzimeMG8hq38LeMzwzzKyZYvUZreZoC36HOmSlBJUcHTUrkoE75UV+xcqZFfCJpcFZC0G9akTC4EIe0qrCek4JKtnbsRsLUXRl5vau7bNaJvkBfq6U3b0PiE1x2bOMkEzMpezNcYk7CKA1gjLvBZQUZjLN36cXUrS+oSP4wHonIX8vGa6XhFv5Ycu20bmnbL5lR6KY7HH5HDjhy1yoEI6GQFvTIOZxzDccBV9fOOMO740buyQJ09eMLDR6c0jTJf+xabbiU8AEy4gBGyIn7H/XO6zTlhd4XZSDQSpiPONXz4niwWH370Hi+ubzns5bv/zq8/BAsXLz/WY25pukbMqYEwHTDWCOMTMAqCZ2zlXARd+6dKo5SqSfmMvsvsFm5KBlGurYLaKTJOog+y1XBl1Tu8bSqRz1kUL9J7bJKwS4uqnXM0TTNbRZJxzhIn+Z7d6jEuJkI4EOxj+Z0NojOrz+u2czhnKLSiKchGNeovhhS1mVT5K41njIkpJsZpbiFu26ZWaFJKd4iUpe9qAWfcqeCUOeiMIZUmwBIxV6eCXKOOv9/IoxwwpztYiynLWPUykZPOi/App6SrYAErjTpW3k1T6rGyALL1dxq7JtJigRF0e1YulzSkUNpNjhjr7p5rNrXT0VmHd5lt39TPiCHQrX3ZLCHusPFSaNCAiXtsOtbPtHmkuK8BpDBgvK8THeOwviEfj5VM5YwhxSO2lcVitX1Av7phdSpl1Cdf/g1ePn/Gt7/+xwBc3R7Y9NsK6OEcr169IpvIRn1kTT5y+fwHxFyUyleEcMRr09rjRyes/FAXY2Mdzkca/V7DMUJck8KO1kjk4X2CPDDspQx9dfGSxjccdFIOhwPn52dcvFRZwhcDb7z5lJWKBV28vKLrNzW89NYzRCpdv3wX56neLiQ4DGMtozrXYM1YFdnjlHHO0LUFwLZY6/BNh3dzCz5m9oJx3uLdwg/FZbyNNCUycZaYYm238NaDNUQFVG28pc0O156xsVpZSnDEsV0rqGrhqD67gDoL2lrl6L1lHALbtard50jSamFpfWgaeQ4HvRbxxwoKsjktS7tkFgxrqU5JOlQeULv4q/xb4Ffzd4g97gHT+3E/7sdPNT4DerrQX7PJSjeXsZRjkxdm9WWZc1uh6y5MnnKhn8/RCtlUSrYxGeyiPwHxoDVxJtGUUljJdY0xuAVwa0TwYBF5iA9qwUS8s3Te4G3mdFU4FIEwTXTaZGVswtiISXv9iAHiAbusm+eFeJBtVIdB05ymJ8ZMTBdoyg0kxuORQTUqsB3GNZWHsGoT7/zy73LyVPQl/vKP/zmXz19yUCPs1ekDHr/xJuOwJyqx6ebiyBADDx99Tu+JZThOdfdMcc0+O3q9vn2/guMt07AAj03EO0+r6PE0jOQYWakm6Waz4nAca5n6eBxxztbU6PLlM7pVR9NJ2bVpOjFGtwXAtnjv2A/jTB50DaZxdIXjMgw0MXEcdNc3DrfgJGRriFmIYACrvmW/CzgTaRU4GaeIMYlWAVNvPY3rKk7ifcTaWO0yZPc2VfpwnAJN0zENhZ9yQ9uuseYVCQWH3Yq+aWs7xTE1uGAF4wGM81iTq2fs8Wpi0yVy1Pu1S9h2hffSqgDSX7Q7DItYXJ6v+vwqllGgAIP2qSzymBijaKWWsMsYyEspTkmFnLV/p8jjM0xb7h527mIt+ISERiGERdcsZGdwtll8mpvFiJXsckftfFGtEbFZXUCKBkgKIl1cwjhNn6rYj5zcjFqbDEQsxQQ40vmOvnX1BnQ20zBglNhk4ggpyH9oiOg6KPhDCpqxzQ1+NG09b+97pnCLb3qysiKPxz1xeEZSItnhsOew32FU72PrOj7+3r/g7A0RN/6Hv/+f8ed/8i95+aH0jBx31/i2ZdWvmTQvv92PbFcrAfWAw+1zxmHi5FxUvT569oLNZsXZU9EjTWGH901Na4R/MYgRtl7PmISNuNXUaLteQU680k7dcZqwaaLVxaPtPDdXLzg7E8ykbXsOw2H2NIkTzhkSniK+JDoutsbFtvX4GPG66A2HnaSMyji1zihbuWBpSUh8YWJ/KICjA1Kd/L0X8L6kB06fkVp9C45pTDRq0H087PHOcjzIs7ta7bUC0mJ86TdqsNYRdZI2xmBNIqhOKjYzjLDT3pe+a2hIvHylDZO2obFWhHr00RkDWOcrDwljwbpZoa82gsqoYt+1TRyZZ6YYUEmak1VNrIz6tk8OeXz6xSOGRAwiN2jcQiUsZ1Kc2+dJUlaKpApCWc295rXBKv6qF8aV52fGL2IINbyxRvCKZE1lBvryAJaPzJnwY1WfTCrUXD23iZJTWnZ2pGs7tr2bXxPSDICmUY83n50hkVVaL8dp0dyn38s6vJZhx+GI9y3DMBG0gjAdLtkdDqQkE3eYJkI0OCO7Utedstp+getXYrXQ9De884u/Xo/w8fvvctiP7Pf76iJ3frYBHLudTuzxCtevWelDc9J1PDzdYDS6CTFhXIe1kx6zBWuJMTINBZhNjHGqxLO+awiTr1jBNE1gXN1dV/2Kw/6WUZvvrHeko60izSkmiQ6SqyLUKRmOQ2TVFdWvFt8Y7LEwetVGslL7LSmaWpJOKWFdZrNuuD3M323VO5yyfkvVrUSovukwJlXrzRgTIUjEKc/FSiawbgj744RrDb23dXOzJkI8kmKp8GSsafDafrGPnoij1QpZ4wzD0LA50QaNcTn5AAAgAElEQVQ760nJcJgCU6WwG4zxVSoAY0XOsxItDSyi9RQFRF+K+lgnnzvrVhSHAp0UKWF0QXrdluQnjXvM437cj/vxU43PjOeRjfRdzA078v8loFJZVmkoK5VZbcgpry4ap5XXUdp5XlsM7zTWlYMVB/okPTXVc6WUshZScEu70JxFOqC2brvEjqB1b8mPz1eqg1opwcJpKdWBagVYhW8tOF9Lpikr8akUiUIgxUSYDlj1D227hpAyQTkY43DE+lXNU4f9BcPxFtdIWfDi8hn73QdslMS0PnnI7vaabIyYYCN5PtiaPjnnmYYDFy+lUrJenxGi4xg1Z9fvWHAY5x3H40GrRtr0ZxtCGHGKWaw3p8SUWLcS3UxTYBj2+LKjO48hMxx29TONsRwmxRoyOC89JyEX3Kljt7+px1i5hq5rGTRlyOZKSrOLakHMMw7QdZ4YBiCz1grMFCRttrrrp5zIcaz9MdY0tN2K4EqfVcJ7xLgJCOOB0c26JGEYGIYBMLR6HjaB8atKLXdMYOFYmjSzwxtTmxujs6Jrq7jfcYgcQ2CMC0NtjGIcBbOTNL1IU8hzmmoFJ4dR+l1sqfB4EfDOS+HxwgMplSYvz1ktkX6y8RkoiUXBMLSWXA4ueVucv7QCqMbM3ZGlV6UuBnXhyPWzS5dhHcZUctCsKE0l1Yjop3kNUFpclAxgqpdnypo66eunmLS7MPNcFcKnyXPeG1TUS2+crWCvEOIstpQ8XUPGEkoIHAIRV1OZYHsSe3zbEbTmLlOhYTxKmjIc90whiCYHYHxHHPbcXLwEoD97yvFoOd5Iz8lq1WHdKc61GA1xb2+v2O8GvKYUzrf4dlPNtdv1I1Jzzr7IYmSPRcSF5RcjXb8ixrHiCzmBGUw1B+r7lmHoaBRQ9Y3hcDxwoh19TddjbnJloOYofItyTjFZhilhbWLS69f1LU3bM2v9NML10L4SotwvW3EYWQyKx02TxCxsmiJOJ2rrraSThYThDGEYcNqfNB1vsCYyafOjb1fE1GCU8OUtjMNY8aAYEuPhViCFWDaAjMPXdArXMgVf+T0w4a1l0mfxeIQpRo7q0LebAiHINlu8fY1xd3pbalOpKymd3JQyhyb5I76mZ7L4LOkLGV1cys+mYD2BWED/TzA+9eLhjcEboxWOxSzPRindhXHKjFUU1Pc1SopR4LUK/ljJ02bDJqvgT/m55H3zeiky9HkWRDZWRYhKdCBkpLzI2ITOW6If/YxxXv1tDthsSPrsrowhh5kx6kwj/U/lwueEMZ6oQsJhGsnZEkvjV0gMwwSmY4qCBbj2nHVjMRo1NO2G/XHHOBUj7Atcd8L+mTrEra/p3MDZueAoh2NLc9iJTKCXB2f1sGfYHri+udbvCZ1rcHqe07jn5tbVnW+zOSUx4AstfPOInAbG/S1WJ800jcLgVCKZ9wbnXY1ujMmMw8igIKJvJNIISkcnj2SgLQI6OIZgaUysC2mXoGtW3O7kvPtuTUh5JjWpcl2566W9vmwg0wR9a4nR3mld996RtdKXm4Txi0g5G2KYnQdjiFjTVUJXmvZwssUddaU1kWwmYriu0UjKEklZnbgxeoJNFLwUA2N27EfFQIZISIaDAqgxgTgJxjmqRnhKS06Gc55WIyqbIyFkQomKbYuxTa30JV0khH5O/QxjLFEB/xQzKU44xyz9+AnGPeZxP+7H/fipxmeAeURBrCUWqr9PSaOIhRiQ+P7m5RIILFYwKynK0nf2bgu/pj3LysnMf6//ZjuLBpmE4ijaNp3Uq3YWVdDScarnYoxhTLOZ8D5bvHVYbVIzeYfPgEYNOKfSfFrpmUYShqjckcBRuTD14pCSIcaRrjShhSO31y8Y1JLg6nJHwNBog9/NxXPO3/wC3VYauXbXLzl9+IDDRxKJ7G8OTNOR4zESahriWJ+dc34muMjxcCAMr7iZVIjZGsIU2TwQVuswDXQ+sToT8eJVt2Y6XkJfSp0wjSPWZlJSmcFsREJRv9uqdQzHQ43kNtuGfrXmVr1iRMB3rClHY3oia8ZpZIxF8m+N855UtEHjgCETRu3JUV5CuYUxCjOyWGMcx0jjRY6yiEIZa5QWr6zUMNI2q4pjRRzOWKybn6MQDjReStLZWKYxYLR/KTtHtg7XdJVWH1PGxDkiNk78jA+alowRDtPExbGk8iV10HKxk1TLmAV93yKRcy5CSQbnbBVKmlIUA6zKEdXovFhaRjEjS+QF70qqj3MT6wQmCo5XqqOfYHwGvS0q1IiCp/X3+k8lrxgonI2av8Vah5YPqK+UH7UTtxgBG2uUoq5/z1KcX5o4Ob0hszxkKUdVeXQsqT7cETEsmlMuVSLLialOQrjKGVDqsl+x4VgBvRgHYsgzX8V2pDhV4prxG6aw5+byAwC61SPa9SnHw03VTj1OmRAmBuUhTDFyuj0H5ZZM08Tu5pL1Rujoz9/7Nq71dMqk8jfXTDEICU9LhTFmXjw71JSjaxuMtcLbAMYxERjo9dq4aDl743OcKr16GPZgGvre1pJmCiMpxoo70Xji9AqrKcemW7G7vWGv3cK+2eC9YaUYSBgPkuKVPiACiUTCVhJYs9ux3Z6StDQeDju8c0yDvCeGhPWuPmMxZYyb94+UMsMYccYQdCV13uF6OxvhGEOIY00xwhRETLo2bQas7SlS6O1qjcl5/rzjiDOewRxmTxXryXZ+9lIeScYSFXgPyRNTw8qXFMNIv0vRwlU6QyDUDaBtvCyEBaOLkTyNVYhq0PS5KSr6Rr1za5e5LByiIVwoEuaOtqq1Dm+9qOL/ffI8nLU4a6WikFM9aWMVUKxno/nnAtOYV14durDk138uNydqN6GZ/wyKUZQFTNuT69+0k7Gg5sbIxUp3Djs3SNVdwxh8DYmk0/Rm0DyTLdZOtNqX4q3HpKFiHsY2ZOcpT0COgWb1gK6AdVm+gnUNw1F3MuOw7Vl1hDPWsdmccHOjoG06MAx9BecurgcO4ZqnT4Twtd6eEtOtuL3VxUMMuG92Qzksvm04OdMIanjFo6dv1/6Np08/z+l2xaCyhdO4Z7PZMo5HhsOtfpejmAVV17NAGA7VXtJbkW0cx4IVJCabccow9W1Lmnb1mFNIxPEa71dYXW7HYU/sPFlX74lRoiS1OIjZ4O5UHJyak+vtioYwZQ1p5Z7d3o6Y3KlQNbQNpDSQU8GhjhytqUxZ6yLWR1EjQ4hpbb+ti2YsbnDWErUSlcxIxuPUjMplc8fuwSM2pCUKvh0sISWisliHSXpbnKGaUfVWHAOKil2IibSoFpqUwc5FhySelbNEhTHgJOrKC2lO2fhmANUbq3PjkyMZ95jH/bgf9+OnGp868jD6v6R5VMEOUtTW+7qTQ1npKostad61iCQy3MEvWLxPOnJnSyejVF6snfEWFYCtOg7OKUejrMySwRQsJr8WxcysFFtLbF6qv4xaPrs2FtuecoZwF0wcaZsNJt+tthhlWcbplnS8nEV6xoHDYcftzTVZeR3WOS6vLjGaY7/15A3SdFtz2xwM42HH4aBRhO95dbVjeyrsxK4x5PMH4Az7nZ7HMGGmRLOWSMM5h2t7jIbq54+f8uStJzx4LOXgvrVcvny/7ign2y0xTCKbWHgariHaRLuS77a/umIaDjw4O9PzPDKGsYpap2kgZxEBArlVru3IqoUSYmTVZvbTQFPy0XggHCyDyiWKZGFi1ErUPhiySayaUlM20p1d9HJNJkwJ/GxsFCIMhxH7cD4PIrXF3riG25srVmpH2XiHyYOkR4CzhpgGrEpJ4oX+nr3DFsGhMGlao9FkyphmTSrcEZdI0XOrXjz7YRQzq1mLG9dIku6Y8YlhitX6Iia1Yy0VZ6dJeHmQrXxQxdespdhTLrvVl/aTxkAkk5NhWrSj/W3j09PTcxZTJAzJzCIk4io/h2wmF3c3FmVS9eUsUzYuWutB/UvtzNdHS6+VbaXNeAugNhtNYfL8OwPM6uq+upnLeUqJuArIkiCrdEBZtFJJdwpPw3I7GowXsPPUBPK0x/sCqB4hTRVIc23HdHvDbl+c2SLW9eJfspKJfHt9g/UbzjaCR7imEXp6Ff01hGBRWIDd7cSUMje3MgnP1tJ2vto8wDht+QYGVbMCsE1P227Ynsp5b88fsFk1pKOc19X+FV2/4mQj5d+cJ4ZhL6pnpd8ljIzWYRtJQw67H7LedHRK5b+6vGW3Hznbyus3q5ariwsGTfHOH79J0/jqsuZubrnZ7fBmYq2CS8cJjoOQuECwwuMUGeIMCmbSXI53hhRz9TS2JLKBnC07XXBaZ1ivAVMEhbzaJKuZdvZA5lBKsV3GuoakcgYhGlo7kQuHw65lYoZA1M8cTZICgja1Nd1ankXtV5oyDCERSs5sEA5G8TS2DmcNmVTbJ1IS4eushMRcNErvPJum7n5Z52JNY5KUfVOaqQelhX+pyCeLY7qrMPa3jM+gMU7+s0vgkxk7qLX4RWXkrnBQnqXocxblpYV1Xv5/2XuzJsmS80zv8e0sseRSVb2gQYAEydFopP//NyQzXYxsaNSQA3Q30F1bZsZyFt904Z/7icJcoIFuUTflZiQ6KzIjTpzF/fP3e5cbm8JcP4wbzEQV0HSbdNQnGGySya1OHu0Q62ekSEyhTVCGVAKCbr6jQn8S4h1jZEUxadnHuy/Y5beoIB0FEWHV6gelcd3I0LoDnmVeGJyi7wTNP0SMc3Rdec+P735gul4YJKHMBsh0xCcxFo4Lu3HESBTAHAMmR5LqyLLSOWPpd4fmg5Eo3YFe9uSEmWnyDGP5jN3uHud6Vl9Zri+kGOhs17oUl5d3DOOBS61EcmC3H1tq2vNpYVo99xL+3O12mPOJIM5j59MT4zg0HUo/jFwuZ1JKraMzGM00B+phqpi4rMXyD2CwuZjuVMpFLjEL9feNLmCqMobOll867mA3mhssIKM7g+2r3igRNSQJxl7WiO1MWwDw4FePtYI9JOiHI9mkFo6t1FgsLlMlwClsdkQB2n3M+KRaZ8QYGK3d7tUY8TGzFqv38h4Vz7vpMKbbhqWqz1pdLFOZWDeK6v9kilz+d+uqFO5Tlq7pT++2fMY8Po/P4/P4m8YvQE+vM2HaZMOUSsMo8+dgQtl/VYdAlbj11lCVJlsRb9my3BDjpMrZSjRSAr3xOApLdascUk4Sjl33wwqV7YbU51iCuusxaMh/Htr5ZxT5lBQezbkGB+sBa19DKtRxly7Fa6JyCNaFnAOufogPOBa0G9tuap1OkA2rr8stdOMD3bg5Wy2XMzGUFd91Dus6jneFk7FML3z88JY1aB7efC3fJRc+g1QnznQY19GJWtX2Pc6Njbl5enmP1qbFFfSdZbffYYi8l7jIrAeMtlyffyyfYSxGWz4+F3ziw4tHmdSMhjM9Sht6iZTouwGFbpVKiJnj3RE9razCvAzeY3IqPqLA5DNLNBwlMyUSiMFS1z6tM4sP7Gv+py73TlaJ/b78zuFgSiehbj0zEBOhdpGSA2UYxPGMVNbmFmGgNUp8Q8oFy+R8LRaVgpPEGIhph632DoIt1NZ5SqXDUXVXPiW6XtMLFna9Xnm+TtItrOu6hvpcIK3aG/8Oanaz2iqGfMPhKDadqujGbmwdb2nZW+B1+tSD5y+MX0YYl7IYH98+dJlIRkvZVyni6SbtqpRSqrVZS421TQSp1mdNH1MMj2+3jDmn0qKr/hDaoIxpk0ct6JrxWs6gPHU2SCQM6pMarObs1nZizEVr0KzhrMaq2AhGHyeD3Q0oU0BDnRPZP5ULBuKpOW3HqEoine1HgkwGu6FjDYZZeB5pmRn2Q3PNNn3PdPqArQBeDjy+/ppxXx7K8/mZb7/7yOGwx7lCHIvRs7u7b7Ly7CEvKy8vFXsp56viKq4fePXFr7i7L/4enXMoFj6+/UNrKY93X/Dhxz+0LUM/Hvn4/i3v3pWHUGvD4/3Y7AuWNaKMw4u2xbmlPNhy7ublyrSCj66R7nLyZBRnmUx8UnRdt22FlSHIogAQUsKYqq0qIKLtHMpEjtXPtXOAx1XVn0olnKrSz1MQj4tyPYbdAWv7do2ruNI2TUkxwc4pkkXQl1IJAlM1+0V5jILQFi4vW/GahyvpAHIvGq0YnP3EziGmMsGmllZYJpNbKUiGm9zb/MnkQUyNu3Ir5yiujH8GLdzQIn7K+AUwj7LHKr3lrYpIORcmYr3A+YZD0TZ5CsW251OyMNSbICS/OSIhfA62mRIE8kiZzdshY9OmDUhoEQfVzy6VTT3ZurgNbW0Xve0NG/swlRt1A5MUXa/Z2XpBfbmoujpzj+js8cLZKC5Otk1Qy7KSTU+KC1o4Ah/ef4c1I9drZWJqUppwWjAP22GtbsKsL/7ua379D//Mux//DYDv/vAt2nW8+fKLlrw2z1eupwunUCaLbtyTUm6J90Yb7Hikk8T6xze/4fHN14w1FW1+5uX9tyzThKtYzA//jvcBtyus1ae3P3I+TU3INQ4OqxQp1BiFicPhyIu4p394euH16zfY6vexM/zpwwspe16XeRC/GC4L7XxZrQlJUTOYT0t5JnSqOBU4s0UcxAQ75zC6a5Wbc5qcLUqqma4ficHj12oGrAghsa5Tu7fM3mAEu/EhM3SKLK2RZXnBWItyjnADaiutihENYPNM0lNLJ8QMYLeAadCEsKUBpEyrctXNIqw0GzNW4uNaioLwXSqYn3NBPT4tMiTh4GbyKM/QNtlulch/4ORRR/nOt/Z+UgbVyUSKNXVjK1hqldSA1JzKed+6rkrqy/oZ5SHX7bxKAvgN5T37SNSq2dwVyaDeWlc3x1beszBkP83oVMXdqoJrui48dcIpeaT19UMPo5nodJDfN1hzRMsD4peLbK+EoKQMrj+yXJ8aPnX/6gsUlpfz78vPx1fYYaA/lCrA4HnuPrAr+B7d4TUvT++5PpeJwRjN/f09KeViMAxgesI6c57K74Rs6PuhuXkvQdGZyL2k0+8Oe5xOnGRLcn7+gbBMdP3I6WNxQ/ceVLfn+vxWrlnEh9yIUX3vGEeLa1WaZdwPXCcRiy0e2+1aPMHzaeHlktAqMsrssIaMs6ltES4rWLttPRcfyqmsFZMSN3y5hOfJMwwRZRLVnUwbTVhTMxJOKdMNR/pdZQlntF+bmDEnuF5e2Mln2ujwDHT7o9whPTlKtkzrqgp4KmZKxnbFLb7e72osQjtVq96ytY3LRl9PFPbnFkOqixFVXRy1EtU37V4rt/6299cpf5KQqGXrc/twftJUaRXyxkL9KeMzYPp5fB6fx980fn7lURHT2h/dOOMFLGq95JKPopRu+bVKerwtL1SX96jAa6a8X9uZqULdrWVETgklvI7G3EgZSX6Sv5F/q/9gTPkv8acoPXJuy53SxtN6Y6OInqZiA0Zrdr1l15eSeN9rdlbjajWTAzobMAf5/Z5FPVGXk93hi5KHa1ILrk7A5XxmLyHU3W7EaYMWEpkPCy/PH1iWuvr+iOt3WDkGrTXXywuvX/8Dg5gTz+//BFaT7U6OK2M1XIR8tTs+8vf/+I+8EoBVa82Ht39gFlNloxPdMLBcL41U1+0PrPO1Fben8xmtNQcJug5ppR8G9vtRrjtMUwZVft7tSmDV+48FWzhfJ9YQ6ExmWitpKeMMnM91r27pbvJPEprRqk2mohWd2QKeus5ynRf6g2viuhwVQ9+zyDbFrwta940Dk5OFFLfgKOH1BJEcmGRYV0+inBtnS4BUzomw1BAtT5d127asIeLsAJK5m5UuHIy6LQ+KNa6EigtKBXFrBViTFz8tCLYth1IZY8yNmXGmWBWG9nqzNW4+OLFs/+U9GvT6Z32CvzR+gW5LicNTcogtL0L2brphD0kAz9ROhFbl9a2bUsq4W8S38Cvap4lYbjtxSmXpTdcyrXA/cptgcmM71uMyksFRP7N8B/lzFM5qcWGXSY2SdNYLo/Fup3m1ty2O0tpMZx0mlZI2REsOKy1cxxiMeWhsUdcdWOYTVo/MwnDU7sAw5pYF4+eJqDJOgEetDX6+EOQBG+/uuHt8zYd35e/neeFw95q7h0fmc9lirPNSjH7kjuhFkfnb3/0TAPv7r3B9z7u3fyy/v85Y45qRj2ZlWRZ8zAzHwkJdl4Wnjx95efpRrn9xE7tcxEk+Kfb7A+NYiFIfP7xlWVacCABdZ1nWiavwRJQyGJ2wWmPFnd6YxLJ84hOGQRGjkMKUYuwcSchZTpXQ6oq77Hc9MQTmeWUn+I2PqbjAi8Ym2liiKOXJSXFC5VTuDUo3q4g5y0VeY8LEdVsbY0AtV7qhpxMcSuXii1FTE03KhRBYGyHGEFWHDxWIL4pkV7HNnMgxi1ZLficWP9XNVAvg9gkvC5uWmbScg3wTBl/8bWpzAeQRKSirvIOQyv6amYNf0IawtIxU29eXL3DTKREFLJIat42NDVpwh5sqAVC3/y0Tbpug6s95m81v/399zwzt9dKu07RYR6K0Vds3ahLmei6NhmNveBzLcR97z6AnnACkxnSleJELaHNPtJksakrtIDtHWIWJ6Fciipfnd1wvZSV79dVvWdcrvjpr7+4Iybe4QZMi427fVteHr36NNZrpUqqIlBTW9Szzua0oPkx8+Bhxgmk83L3mct3iJY0bWf3AJA/+2GuOx6FFAUzeo83AeHzFu3dlQvrw9gfWy3uGmqGrNH3nuF7Ludnv98XBPVYn+ZVxtBjBf4IvHZ5xKA/cy3nBktn1BiGlMq0FRFTbmojRibXKBYzlumZGAay7TtG5TCWHZuC4H5mnC6t8166L+BhwUoVpDD6E1g3UShHDzKaqzTjbtxjSnBXzMhFqFMa4x5oSt1kNr5xzqBzaz6SIThM2Vw+6HmNcI8OtIRO5sbdMmWQ/zZHV2qDz1iRo4GolkcXUHNShPBvmpgGQas1/Y4hVoJaKBpWfFQqjFPGvmEA+Yx6fx+fxefxN4+djHllDNsLHzxvtu86EsmVwWZVgqJtoyEyV5NfWKNz6MWYyKsdth5GKlDjf1hey7bmlp2+U3fp6bt2XEr6dtui9DKjc8IwWzq2gF03+wwAP3crRlb1t7xy236FdFVlZwQQqHV1h420MRYKsCbna+BtCUGh3x8OXBW/AODI9oRKM7A6nDfjiixFT4uGr33H9/jsA/DqRVORF6OrKOOb5QsqPDGIw5MwHcvxAL+3Gpw8fS2yBGB4/vX/H/nBHL/4eSsP7dx9YRf7thgNuUHz44x94/lDiI41K3D/ct4iCsd+RsiaIrPzrr77BWNu8TcKuR2lLkIpqv7/jcnmmGyRDdg3kaNgPiZaDozQ+07orh07hrGKueo+cWUNkcFW0VoLWD331IfHc7Q370bXr3LmhGOnYSiY05JxZRGho3UA37MmpespmfFiaEHEY7rD9AS/dGONXoMdoCHXrqUdMHpp3TI4rwXckdZbvZYCO2NZshcI0OkPMWXJ7t615xQlrQZ9SKt2/G6JkCLdZzCXX95P7X4iWG7EsF0sD+SkVly5i3qgVP2X8AjyP4gdavuxW/peJQmFrG7bqUbjheajSUlLtNfHhaD3q3B7u+mmZ0CaCts25ORFKWISNY6pLFsXG0NBkVMuTsVqT1RbwpCiKxN5pvj6Uk/2qm+nNpQUZ6a7HdkMTh6E1KYZiFAwlgc7ckJpywq8T1h3kdUAZ/BpaWU0InK+e8fh1O3+Xy0d2Y8FRTI6s03vmszif7x9RlgZkBn/leH9kf/cKa+XmNRZru7K3B2IKPN7tmK9lWxKePvD8/LFwUCj7ftf1DLviLJanE6fTt6zTiUEA0OPhwNBronzGeHzFj3/8A05EbcfHN5IxUh666aSJic20yFiM25NkuzUtnsNoyWnmaZJrYDsScBjKJDb2qrBkg9yuecUYU3JzAWNTERk2p/TANHleP4zNUMiHFWV6TOPwZKzt8NJeX5eJbtijhURmoEyC8nNYiyN8EvXdabpwON4xjj1ZxHMpyn1QsS2l0NZi5LonM5LQDRNJKOKNSrz8m3CZGuBf8Iuq8NY1CK1NJgC5cVxSKjBCJTRqzQ0Zog7dJpTy1+U5StwqXv7y+PmSfJWEZl4OY0OrhT1XJ7tYyCz5pkzISchl1SaemwmEyq24UczqXJ0Kgdrk0YVA0/5GgzKkG9JMMyKiTnablWGQz6hMTqUyx17z5Zh4kJu3cwbnXmO7soLbrkcZS1UHx5zISaNFuFUwFQ1i1Zd8LKw+uyXjRbej21VvMrhcLuwPX7J/LLyO08fvGXZH5rkAi8t0Zp0947HQ0VNKZD2gZQ+/O1iOd69ww9hCm5RKhKzwEmH51etjMQHO5T2v54903YEgEvJut0e7O15OZaX8+OFblHG8fnzFUewP748jfp24eyjHucwLy/mFN1//tpwbZ+n6jnXeZOnj7rgxNSm2eG8/lM/4w1vP1w8D06IZBNy80warFlxfLlI/9KBd4+oYa3DGYHWNSShY1tDVycUzLQspDuyGo1yTyPP5jORhYZ0jxogT8+I8TwR/QdfgrpzQQN8Lrb6/EzvEQuKbfebl6R3wyCgBWE65ZvkAxQ2OdUKZMlGabsAYWuVR7AUj6aYSybH4qm2uFOaT+5VCL6U+BapW2ZVGf/Ps1F9o5sf1H2/MhIDGVv8zuPEvjs+Yx+fxeXwef9P4BbotgZy97Ms2r0unTZmZ6n5OZeFs3HRCsip+ipV3nLYWVXlzJRWMVCayJ2uekapUKqVRWysHkenfBEJFdYuT5E967Uop+s7wIO3J+1Fz5xZGtW4+C27AjXd0gyD1uiDiVdyVUIJ/3HSRMiQxjklGo7DbvlR5TIaugyxdn8WDHe5bju8w3jErTRYmps8LynXkVJidaIOPCWSr5EwmJc/d3SPTtWS5xFwqrSqH18ZgXccqXZ/n00rmyl78PegMl/MPXK+ndn4fH+/ZHY7c7Su+kznev2oL1Mv773l8/QWPb8pWx3aKHBeWuRs8LBsAACAASURBVFQWw/GRzh2YxNNUWUdKiZi39vEaSzfjfmfbNXLONGtDpQ3G9s3m0WRwepMPoDqMyjgJdBp2jjWsrMvMIPT03e4RFFxPpeoa9wf8ulRfYbQuOTshijmQtaQ1k2Pd3va4bsAMpXQZ7cw6n/DLtUVtBuuxnaUai+QQyI5mzKySwntNvFnetaZFXYSY8CkUpmd7vWi96r1YWq/bfaZ0Eb3d9i/N7R4lS8FR+UwgnrGZdIv7tf/4D8U8KixReta6UYYjKYXG6VBZC1ZxowgUU5Oct5/JkRaao5SIfGSPKCrdW9KYUjWLtnxpI+3h9ltaiVlRdQ4rgKxQxXh1GPjV457Hu1J67nuNMWXrVD9Xa42xtuE2YV2IITaCkdJKeGZy8wsGUmlmGV1a6kL4iimStUb3fdNWGDfiw8oima7H/SvmZWrelcPujnV+Yn84yHsErucnBjEPyji++Oo3HB9e8/ZP/x2Ap+cZnRWjgJOH4z0avxnLqMRuN1IDuk8ff2Acx6aqvbt/g1GKziiOElRtdNmVv/uxAKjj/R3745utIk5FGNbLQ9YNR6bTqTl2xbxnWX3T1zjr6Bwchr4pccM60/cdg+AkIXqUNsxTeY/OaTpXsA2A2Fts3qjVu75nNQsphDZxZgL7wxEvGNM0zWgyIYlgr9sXfKw9YWVhq4tQCBG/Ppf8XqDrHHrYkXIgyb21+AU9a3Sl5lNEaakeg13Q3dLycsEQw0a711phMUR1MxXU+7D9Trm/mxAu39IlKo1h40rp+iZsavaciyjvz4Ok/trxsycPrQxamQKEKd3s02KIhJQ34FKJLFgbskz3KVd9S2W6larA6qp9SaTI1imhzMLNzUlmrozaDIVSRqgc5WPRmBuZuVaasVO8kZX09UFzN2aECoFxDu16tO1wQgpTKIjrJnTLsmmsFRCgXS/xC0iXJW4h3xgwlizGNJpiZJzj0iZK1w+ElBpuElVxdmqp7cpy9/jNZm4cSvhPBd+U3fPm1//Iskz8+FZIYr5UhQdR3vbjHr9csMKxGPKAc4ZYb+4UmOe5OXStceX+sOdX33xDV+XwYeb53YcSLAQM+y/JGnpxH7NGU9ZWEZBdJ1JO7B8KVnN6PmO0boBeJjMvATN2ePHAM6qApFFUtn3XMydYZcLZ7xxdp5lrjlRVmso94LSmdxaIRFEU6xSww5FROlHL+kRBvOo1g64/MkuFZKwB12OEHaoyxHVmWgTHAgbnsKrbmgFZs/oJF137HXTXcKmkXHGxq4LLmIkhNdUtUtGi1I32qkSGbtymDClt1Yc0A3RbK/Wm9+IGeNXbJFGEc/+zglbdUEF+yviMeXwen8fn8TeNn115OGvprAMVSdm3fr5ShrjRPmTPJSz7WhnK6y0oWkHWmhbtmQ0Rj0rb9oGbki62mTM32/5SjGymLTqBtTRk/mG0vDl0PPTibamnYjHXYgTv6XRHNpuJi0qB6GfWqZS4cb6WlUHaeHbYYa1rq21OCa27T1aLNXmMlS1GWouxcC75tACX6wlrHHU+P59OxcOhZsPkjHU7+n0xPHbaoE8fmSZZ5XLi+9//Ky9P7/n4TkyJjGE/9jy8KfEM/e6B6frU/FJeLgtfPA5YJxL+aWJeFqJsa377D//AP/zuN1ijuYre5XJ5IYTIeCzdlnE8sjvsN6PmXKjUNbwqLDPOODqRAy/TyvU6QY01TKmEMRHalmE3giY0VmrXd5xOqe3lO1PwtVrVzj6w390Et+SEdZaYG9eTZb4y7B7K9gQwZkLl3Hxe1nWl0z2DWA1cLyd63RPEMiGsc8HnasZugKASrtPt/o1ZdEzCDdH6jHYD1pTP1NZz60eTcrwhMAAim4/55quIZWDD7GqnpS37uXjiVOYpSMzC1nbJOeP9Zm6RyU02sn3G9tpPHT9f2xJj623nnNqXRKliKts4GWUvVnxKZZuiSj99c2sqNOFmPAwoZdE3fow1dOd2GFXakuVztHyOkK1USdca5OS+6QPH/IyNgpQpQ1YjRlp0xrpyIFmRaoZoWFnnmSB1clg8mdT8Ro3rJZRbrqgxhVtSnbv9inP7BobmmAhKE0Lm/FJ4G0j6WJaga43B9Qe6vjyEKifWkLHDq/bz/qHj5blspV5OJ/zlD6xx62XvxoH7V4/cSwJcCWLS7ca6nM6MNvDmtej89wOn85Vf/+obAH73u9+QcubHH3/g/FKAxv39Gx6/+YJB2pNWlWsSfWugk6PfBGk58fL0jH/3rhzT/T220xvtOwa6wTK6hOwk6UzZDltXw7Uz8xxwTaNTJANOCF8hlBCqOoHFXMKyl/ncwEzvF+b5hOnL5Ku1IqwKJ2bFiuLR0cs1HfcPIp6T+8o4UvItS0Zp8TeNMIheRltA6RbinVFE79HmLF9sj1Xb4+mFOn6rKcnCW6oNgBYk3/KQSj5w+/0EyugN88jqE7LmzRuTbvhUdetSf7416Pqp4+e7p6dEELFahQKggIZaqUZeKaeldlu2zscns14TvFWORiBH3wAkjUZn0/j3StSuBaTdVLIJ0/gmiszoLK9HITXF92gVQFy/lDngdvc4sclzriSyp+hb6O86X5kuH4kSd4jKdG4jgaWUMKZrlYhRBbyLApAqYws2I7yPQo7TrH5tBsbD/jXXy0tLocNBzB3V3dt1Hefz5SbeYcbYnn4sD/4YMjFeGIyh72pnxNENI1YAU0dkmV3TgFhrIavW+Xj84hv++X/7isOhnJvLdeXl449cL+cmjHv8+neMvSVLcPU0vTBfzgyi7jVWY53jehZD5A8f+PjhT404dbj/3/nt331DnAv46Uzg7mgZXdgIhUpAaLmGswQs1Qe5c8WfxdbgKK/JSbdFKUWP7TqsdQ3ItaZnvpzZd6WyGHdHTv5KjDX6wmKta5hG12tsv7sBTBdCok1GmURIEYvDi9zXaYPrDFqYr9r1ZO1IepugYgrkm0jLHDOx6mmEA5WUvukW5lbNQX0GdHvOolKlI9Tcf9QnTZMchUvF9m9R+Fa1YjIUYLgC/z91/AL09PLBGUC7zagHJa3J2lY1pKRk67GBm7czndKFbdcs99NCSUSvR1sS16ugR2toarmtB4M1ubFWB6f5Yp85mrJC2zyTA3gh++BWem2as1XOmeAnQdfFRXy+4qdTW9ms60gpEqQzgiqbpmpxp5Ulq9DS6nMMJdu1tuwE6DTGMO5LJbGuMzkpnKxi03RCWYd2cuMZhzYzHwQMvbvbocLSwOOuH3DLUmT9YliTc8BZ3Vqxu/0Db9/+0GwJu85hu66V2aTI27fPfPHFo3zPAaU0bjiyuy+tWKMy+CvTc1Hini5nDodHjg9vAAhh5XJ+BlMmrOPDl3TjrpnsnJ9fOBw7vnpTJr2HvUXpTI40S0ByxijNKpVfCpoQAp2wWI0qGcjSnOEyX1kTOGGYxhQKFkpuKtnS19Osy6V9N9vtGwNVa0tOoU1A1+vEOOomj1caVNLMsnUdeos2Dq0trqss31JLVOqB3VlwO5Q44GczkLVrt6rRhXafpJopJj9ayom6+H1Kb9D5U7BT38Sb1N+/9RPOsm25ZW6T+YR1naX4+Ws9TD8Dpp/H5/F5/E3j5/M8lC28AZUgx5tti1QDFQxFgykGxvzZ5Fbduwv4k9gkzWUrU7kjGl1WgIaJJOHop5utThHq7foyL365h3vzRB+LFV9KqxyvlIrrhJ0vaDHKTTmyLDMp0bgIPq5oa3HStivtf91abGm5MmhHZRwlbctqIfyJUobblj62XE/kHDk8fN14ByFGjLWNl+CXlX53xyDbqWW6kLTGiJ4mpswwjA1ncYPFTI6UU6tetIr0uwP7Y9mGfPdv/8L1mhgFdD1dfixiQ6mQtErk+MLTx3J+f/e//BeUGfE+YoTCbsOZ929/36TpD1/8PcN4z/VSWpxPYiZUW8halTDn87lUftN0YVnueTzIahxO+GUihrxtW7VljbkFXxuTWX3g/iAtzuzpnaUGxiWl8D6jxsrlUSiVWLxv3A81aLS1rHW71Bm6flcsIpE2punbfaETLPNEJ/R1ozTO5mbe5EOk68byd3IN+mEEo4hyH8QAnd58Z3N3IKmRKBVWFMOseu8aXbYj+gYGydoUkDVuVPyUcquCjS4eLVu4WiJC29pradHmvJlZVW7IJhgolo8qq//Y0KfaHFak0j2o5VY2xd7jhrev2ZLN68i3qtoUUTm28p62w6k9ay8ocWWTloddo3GigB2H4vD10JW/OfKRPr00vGH1AZ8jnSDgvXWCRpfXtdZoZfBx2oyCbYexe3SdLKKvjXM5ToX3C9SSOHUYaxoXQmtHCJ6wPLe/H/evyVk17ohSCq1zM+CNMYG2GNHTxMsL87I2AotCY7qBWFW4q2d/uOf09I51EvHc8cjd4xcECXH6+PTE0/N7Xr8q+MXXX7/h+vTxJhUtEQJIRhSX68p/+s//hevlB5RsO96//w6lLff35T2MslxOH7g8FdLYfDmzLJeGcYzjHusMDw/S8ek7vJ94eimTpM0WlEObiMo1dFox+UAns8O8eGIKDPIQeu9xux1RcMgYtYSsCxPZGNDQ9wOzGEpblzDK00nMQfAnYrAFIIdiGp0CWgteZAtwGaoviXE4bTgIUOxjJJJY/Nq+635/pBt2ONlqamMhBnIVP+oVZbuGxyVx4Gt6MAr3I98Q3sqCvJHVYipmP9u9BznFxmvSYrh74wVU/i1v3cPqNtbC1eTUZZVvMMq/PH6Bbku1hc8yeTQ3WIxxrcgodcinyHJ5QckJQSaNSNX2aQVJs4FBKcDNBBRzYuwdXzzsefNQJoPBaVjPZIl21PGZFFeCrBhrLC3PiogbY0k5Nqq5dZ1cULOd7ATLNJErWOk9Rm8VETkRU6AT8PL4+td0w6tGbvN+IfmpMVa74Y6YEtPpmbDWSIKBEPQG9GoFKeNcJSkp1utL6+CYYU8KcLgrWMQf//3/5vHNr7l7fM3zhyLT74cjShvOz2UyWaYzmsRVOjzjbuDV119vAr64ou0jIVVg0vLy9AfW5dJS77thh1aKRQR7c3rmev6IHUo1M969ok/Hdg2fPz4R/NpUtfcPrwl+5uXDd3INF5x850Vk/euqGMYdsh7wflq5G2/FjRmjEouv7j+ZELc9vNMWHyPGmOYclmJGG8WyyL3lDEpHUqzsqoGc16ZyNmaQe7diYQoffKseO2vK9c2QJH1+WiJZBZAcXjtYwUykmskTZAu6WjSWqqFWM6VayyS1EbpyivKM3BgMKVpbu8aT1EcIlUHfSPIVKDFErtKPGwJ3Oa5qmCXH9FPHZ8zj8/g8Po+/afz8yiOsJKPBKLGOK0MrjUq+6FEoGIGubSQZSilI8UY+DOQtEKiQ23Ojeav6uvzBw3HkH795xZev9gxiBLlenlnWJ9ZU9uApZaIyrbKIMeH6Lf4hpoTDbCHVpiv5MVm1nn7OhdgTJLMjTFeCX5pgzzpF322dpppyV41lor+itG6fEUMkrFdiWEppS9G2XC4/tDR067qCmstKqIzGGcMq7xnQZG1JodKpHc/PH3j91T+xrv9SzsUyEdOW3kaY6Z3BioDMryvXyxO/+a3I6buR08sTi7Qr3394z7zO3N3do8RfdL18xFjVwrKf3r7FunE7f2Sc2TeP08P9I851eDEJXuYLzipevSlcknV+zzpfSEE1kt2wcxgDy1rxoLK9rFWDsYV+Pa31vqhBRwKCaIeKiehnOmlbe7/I9kK4O2tE233Tx2idCl9DtiDXZcE6w9bby5iK2VG4JFZpbNc1rUqWIKpFwrXNdZYsYtmmiGS/VrQxCg8pbrRxlBJf3608SHHjQGQRuNU2tsrFE/iWaZ5TupFKIKYfCiVdIGey0Cpq20csHsh/VTXx8yePArdgxLH8kxg8RWt1RWk23wbuljT6eMO/Vxit2943eo8xetuXZlBG8eVD2R787tePvLkf6K3CS9J7mn4kT08ge9WYMiEmlmXr56MSMQgZay3HqIUsZN1QeuvcsPZSYV9O58Lc9PNESjS9x7EbsfK+AMmf8fMOLXt260bCem0XPIaJdb5inMNJK3Fdp6KwbBfdlhSzZvqyoo2lqwrMEFBuwAgOMHQdL6dnlunE8bFsZd79+Cdy0hxe/6oc58Mrnl4uzVjmuD9weln48GNpu375m3/m9Zd/z/n0JJ/p2e8fGYc987lMBsNuRzfuuEiOS9fvOL7+bWvFTtOV64fvcH0Vf8GyTC1ScRhe45cztZQf9D1WORYuOOGK+BAgrpyuwvPwCzkrSX2DsYdMJPhKDJRt5g0nQ6tIRDX4zNoOH7dwpBgzmogyg3zmiloXOsm86UQv9QnnKDuQ821MEXgqrdtCpMRkp/5NDJF1PuGaU1uP6vubdDfI0bfnIWcjRGzV0iOVUiStWxwqqtDH6vdQGSFnyn2SEyS45ZOSsyQT1AeNTzkdhWdBIn7S9v1L4xcQxm2mP1qZtmcS+kfrjBQmhPSnUxWI+U8UfSVTUzdsIKwrqrNtVbs/DHz15sA3rwqP4ThodF6Zz1fmU7mZw/WZuEZC3RPmiPdLswy0bgRjUdItSGHF6wkt2INxHSlmol+YBZm/Xl64vLwnC/BYiTdGRFbadJR8VLkJ/Ewm4rqDfI8FpSwpC2i7XtCuo+v2zILNxLjSuYFVDJF9vOK6PVpVZ6tyozo5F6wTyXs6OYbd4SPX6cz1/MR4KIzSYdjx9O579neFS3L31d/hfviRy0W+x2HPbtxRTX+n0wdCLKn3AEoNxDhzOs3sZDIwynJ6/z2D4DuHh98U0FomBx8CB5m8AFIM5Bzw0kWK2qDQresR/ULyM1qlYjFAOY9nb/j2XSWSZXZOMUp1OXQOHzOzVIKD00Lqk3vNGNY10He6YXDaOHQO2wSPIYZEJ8C60tXZq7xn3w+sy9omAk3Bx5qIUzmctUBqNhRKGeFpCDZGccOvvCVybJNsGbYQBmMF4iOF8aw/qdCNUuRmHRbE3KdOOJBuflZ8GkVSDcBL5tgNv+om3xnEZCvxWRj3eXwen8f/9+MXiJsUPketr2s5Je2hOrQu1UfOqTBHobRia2QDpeyLKVBrNuMUu7HjV1+UlfOr13c87Huq2xzR46cL08uPxKV0GGJIIMntUNB82/coVQOOJdNCbdqW0oqV13MiJc+6zqxLWfnW5Yq1HbnubYMvOIe07SCitCsVCIAqBsAtJ4OMsZbpJEa5pqd3A94vrGv5t364Yzl/ZFlebo7rsWl5tHUYbTGyvUrpyjI9k6W12B1fMV5fWK5Lo1y7fkfI8O6P/wOA4/2X7I4PLL6cq5wzpu9ZppovY4n+wklCoQ739+zHAdfbVka/fPiW4Xjg8PrvyjUyGj8tLGulq18kzOuGdZkDTs6dIoKKOCn/SSsah19So0tnOv7th4kgK/Jdrxh6U0mrGK2YvWaR160uEvZauaBsyS9RmXGQ+zKvKNM15qU1ijlEomxvU8po7VqkgVZB2Jrlz7V2aKNbXm7OKxFwdte2CNoY2UIIzhfFV6buFrIvwdjNFIrCeWqZLFl4UJtOSpWSdsNalBaNVKU3FOvPahaUs3DRb6QeN8YYcn4rMfvT6kTftHh/yvgFs2rloFsrVhWzniaM0xiy9JI3sCffuHzlRl4pP9/dHfjHr1/x+r7sQ3e9xuhA9FVgFvCLJ8al2lyQskKbbjPqsQoVFbV1aIxQeG/qQmOH9lBq48ghCsejnJ5hvCPGgBc6epa5pxK6OtNjuxGtq+5Bg7GN/Ka7jun0oV3Cfv9A8gvzdKYfC4HL2p6X+bSVya4j50AIIoyzHTnHltLOeM+yTK10nKYru/0D0/nbhpuQFrzfiE+9Dzy+/przqXBL1iVyOHTM9dbSDtcZri9lK/XH379w/3DkeNwTVxHGHfa8+vofW/bIh7ffs65rA5Ov1wuu63n58IN8L4fpuhZmtRuGQtSTc5fiQopLAYdTec8f3kdezguv9uV7dC6xG2jBRoU/o5q2JeRYFgtZwEIqStx1nRmyTFLKEKPaIEGdMUbha+vbOBYfikYJynZCS/YsYLQjhIzrtoQ+pXUBvataGoVzPUq+K6bcj/U98HPJ+pGt54pmTbE9IzqLcXdK28KjxSyrTSYCxt/cvzGljUaPPEfyWkhJlvdbH9SCjag22WppB+f/f0hilexSjYS1Vigjcn2KArJE3226k5SFiJPqLFpmvt1QDuurVwcejx1DJysjAb/ERt7SWZHigso37ERVjIlzqzQSKS1Nu1KAprzN7MZhXNdcs3MuQT7BB0zrhDjyPG0cFpVFPyHgprpH64EglYrpD3Td0MyErucn/LrQixlvSoFlPuG6AScA3Xw9F1KYHEfXDcKUFPahtSUEXJ5z6xwpLHipXJbzCa0Su8Ordhz7/YHTDz8wi2zfzxNK6RYv+e5P39N192SEszGv7Hb3LbDJ2sjl/ELOkV/9+u8BONwfcM7x9PYP5T2nM6bbs67lGu7v3nD68AeI9Vw8slxPjecxTQuKlY1mrMm5Y1o8LyKme7mm4pguGMduMDi7EbboLaA4yn0yLSs5xlLVUDApYzWdVSR5cG1nCxkwVRGbxdmeZa0GRCXwaA3VjczRO4undtwUxjq8TJLdOGCtKyrwytOICa0TfY3kMJqYDatgHn0MuAzaVNJjJlhTIcBPgp1U4zYhFZm8lisLu0561SD5Bjtkw0DIkqpY6v7yT+lG/V6O/K9S09bxGfP4PD6Pz+NvGr+AGVChhneuWL9V+/vOGfq+p6sZpdZK7uzWlE4xkm7kxiWIWdFLeM+h1/Qubnm3MeO9byVayoGUltL6ar6cQk+WFcb7VZih9T1EQyDvadwA2jU1oV8X1uVKSrkFBJVee2irGCkRQyBVPwkgxAUjS8iwe43tO7xUAMHP2P7Y+vvrcioYSjat1PbrFW5yebvxnmm6bPToFOm7sfFClAqk5Imp8kAyYSmq0FbCGsswDnx4LseRrithvqKkC2T7Ee99i1F4ev+eL776slHindV8+cUDu92erpcIgxQ4ffyufTc7HFiDQtXKLQVS8BxfFx7Hcj2VqrNFcxZ1dc24Cavi9PLC6hdq+HiIC1ZndtIJ6fuCG9Szk5MCY9kfynZhWQMhbbaPOZfg55wVSTofKSuUGvDr1pWwnWrHlbLCmq26SdlilW509hgTypi2XfB+xhmN0n1rxTqdCatvoVnd4LData6GNgqtE9bUqkFjk+XStFqhab+Uqfe4VOiNhS0cqoYO3CZEb9uV+nLpxAieUv1kUv5ka1MoFRqj1H8sz+PV3cAwjOyHnt3QMUqvfugsvduSrkRsX8xKKu07RlrOLUAKpBTppOzrBofRpjmGRVUAvnYT+YmkMkmpJshQYgqzLrKnDgGtTcuJ1QrQFt1tfJQUC0AKxbgnZYUxpm1tUgpFVyNl5TxPXK4nxp0EIfkrKjpSDUkeD+QYWxlq3J6wLuTq/q0tPqzYrmeWwGcoqe/7uwf5UZFSKO1FIMSAcW4j+nQjnN43ynGKEW0c6/Vj8Q8Bdt0OZ0+sL4UKzrjDdT1Pgkege15Oz3z1698B8OOP3zLNnmEok8vHpxf6MRPTxF0Nc04BUtrsBsxIXmeM4CqXl/fsH75qeppCUDON23A+nfHBM01ePvM9D3eau/2By1wFY5rjmNkNtYyHpDLGbeY/JIMRXMAahY8bRVspU+wgbhaJFGtbtW4xFCbHJgcIMeKsaffrvAb2o8XWhDktHI76C7nwkFC2+aS6zhUhY/WuVblMHKp69m5pieU+SAyGJqTLWfxx2LhPVX7fcBFpRGyt2iIMrSbK2yRbJ8lyApW6MfzRBQOp+EbVl2X1KZbyl8YvMHkc2I0jd/uBsXf0rpxcoxOa0DgdqjpA36yWyL/VL55jIT5Zcag2tivgalVoZiv7zkn+PjROfmMOhoWY/GYhqHVZhWRFUdKbrylpOSf8fBYRTeWmaHIOrUIKYYG8NsAhUTsyteevSVnTy0Nnu76QeeQhTstCC+dB9sZ2KD3/6hFie6IbGlh8uZ7K3laOwVlDDrqpf401GKs2opToJIK1LGLia68nHr/4DX/6/f8DwHp5ont81QBUZ+84TS+t6hq6jqcPP/Lm618D4H/8Dr/eYe7vt8SyDIvPGNFnLPMKOrFcCoFuHPdkozAS8q2UY12mpoXxfqXvDZOk1r15M3J/3LHOvn0X5+DNvWVLcS8Poa+QU4rkODezba3BJ41vs0fAGkcm4aW7EpPwH+TZDwlUSM1gKOdi/1e7bjEmlhCbirnrDSGsN0iBQmlbWKXiwJ6WALnDyiTXuQ6lDalyS1LRQGVhOysiSW+Vt1GA0iSVG4s6xdAATTnQUjVs1idw09HJqVgbtrjXXFisOZeFGwpWUXSdW3ODxtL96ZPHZ8zj8/g8Po+/afzsyuPxbmC3GxkHR290K7NJK6Slse1yLPyOHPwNy66sKLUthXao/g7lxAkLjQ9L89w0plQdUSzwuvEISrHMS9vbmn4kzal5afiwkNLWOfHeA5lqAzlPJ1AzTjxPleuJ0TPP51Y5QGZdfalAQExmLeO+bDF0tyMrvfljmkIt902haUlas14+yN+r1iHaLPYVrjtyPhWvT2JxActJjisqMiv9WLozYT7TDwcmMSYuq1PJgd0dy5c7P/+J8fiKR6kk3n77bzjT4+R7xRQYd0eCcDRef/Ebfvz+33l88xsAnN3z7t17tFE8pPLdjIauf2j8FGMjcV0YRsl1sQPrGlmXclzXyxNGqRbYNAwjy3xmEFzLuh7v1+K9IbyDrx4s1io+PJfjOu4UPsTWjt91hkXwMQCnS7eh2tvGmFFdAmtatmwKAe027o1PqlgIxspxKQpwJ6WJsQYfI7NwXpQaMdahpLrR2hBSLG5grmIvC/Pi2VHbvWCcRVd9l9AQqpFzJBEyraooUZQKjSLKl8lIQNkNo5R0s22hOIdtWnbE2Jnt42mEFwAAIABJREFU9RS5tb4QL4vtZ/lDdavG/QnjZ08eu6FjP3RFPp0WcqwZIJ4Yp5sth/iChk2arpRF5dwAJTs8oIb7tm2BhFUGLwDUPK+4rmsEo87toXPYbmyGK1or/DJzeS7Jaufn96zXc+vPZ3wxm6lgZoyY7tjATnzx1PB+xuQq9rLkTAPTwjJjrW1y+RRLwJWqWbWlc91k/ykloZ3LjWk0MWmm64l6Aa3rCctLOzfaFeJa1WuseWU4DM39ez6/JUWNE21G7osfR8wZJSBsTpHL+Ym+6na6HtM5BgnPfvrwTHJje4BevfoG86d/4/0ff9+O++XpLdPlifXXpb17d/+GzJm+q8bCgX53R5IW5zIvzNcz00VsH60jRd/wo3WZCd43c2MtQnBrO+7FwOnQJb794cIqpsq7sZhFm/aQaaJI08tnaEJKDfOIQQBQ65CP4bwsuJQ246mYRVAnIsEUMWhsbeUaizWmkci8V2i92zhKVmNySZmzJspx7vDr1LYDJXU+YKu/LoXg1bYUlO18qo+h6TAK4ro0PKLRLtpkkWWrVGn3gqc0S/ZK+hJcUD4p54irTvzU791gVRG1fmp5+JfGL6BtiWgVyXEpYrPaHYgrzTsRQOWSAG66LaBJabQ22GqH3+9JWjewLedQEsvqHZAy2Sf6+7IK9v1ANzygH3UDlFDFJzXFfwJgmU7MlyfiKpqR+UIKkVmiAcpFcnjZk2O6ojX4ZF9ZJhwnBKKoV0IMzQ8z+JE0bq5eqsZMyHdf15kY1xaUvS6e6/ktKMewL96f6/SeGObG89B2IKeEX4tIzfUHjOlYpxd5j5V1WZuQy4cVrUtFUrstOSWe333LIPySsJyI4StUndTwnJ8uDK6i8N9wfPUl7yUNznV7+q5nPBwZpbJwXYd2jlVWxqE/svqFq5y/sKxM1+eGHWhyYT/WLAwTsTvbTHem65WUNNZpdl054e8+en58jjweq09GZnCavquiwQK+d+IdOkRFydUun7GGSIqWpFIDmK0ZSTG3h0qZ6uRfJ9oC4Nea2Jhiol1NmUm5gO43APUw7lBOt5gJoEQ31IWI3NSqUMyhc07E6izvxjLBiEFy8fkIJEKbDEIqfqb1PXKuWphKIpMQqer/Ks+ZhL0WPI4Sb1E5LiCJc6YSOMukofnrcIyf754eJmJQqDiT/drKU6XAKNfQ6UwoFzLn2pHDaIs2XQEYgWgcpVNVZ9Fij6aFbj04C2ZglAyQYXCQCxnt8lIo15fnZ7r9A8OhTDC2f+B+/5rLS+kwvLz/P1AYxn0tsw0+w7KIGC9kWC4FYJVKwmiDCmYzlQWM6drz4FMEZRsIm1Ih8TTQVnpNtYU3nT+gzEC/uycK+OvXVdqG5T363T0vH7/fckZsz7rMXM9l8vDLSjceGtU/SfyesZYUaueoVH9TZeTmIhdcxGlsHDtePj7hl3I+p9OJ8fgVjxV8i4Z+6Hh89ZrdXqq9caTrusainK4XlmVmmspnrtMJ62xbEYvLeqkuoGy/QjC8SJSDUon96LA683Qu1+CHj76swELCc/sSAeoqcxZFShHrastTodUW6RGzJiUthsJCUnSwrr5tY3LWBSCt1Uu9TytI7le6zrVMY2MMqO2hDOvKqhXdsKeTSc0vE0ZDvy/XrChuXaseQkwYo6hCRKWKC96t8U8Wlme1kAiUe7QS0XLON4pZyEEiW6sTuiodx3rcmVwQ5aRI1aW90ukrRUJ/KsT7qeMzYPp5fB6fx980fr6fR5LSTLIjKukG4V4oKfV13VepLTfWmGIQFFUNiB4KXqA2wIm4kkX0s85XxrsjnWAiSpsSTaAMpisr+PX8P3j/7h27xyLcevOrXxOmK86VSuP13/2v/PDv/xcvfyz6jd39l5jhvtkU5rQKjduUVQLprS/pEzm1Urml3pMz2vRtrxtixpotwNivV+I64+eqjTHYfk+OK7NsQ8ASwkIveETxkuhb3EBIJbG9gsV2V8Di9SqVR1ZEf2Z/98B8KaBrPmW6ft+MeJy2WKsbj+a6rvS7kcu1VAGH9YxTd/RjIY0t1xf6fuDj+ycW4TIcA1z1lelSzp+1HSl4Fgmr2u3ucIMjye8HpVmXCS8WgykZ5mluMRWHu5HgA9+9fWlRC1BC02ukgXMKZ1SrZnzMEqxVftsZxaLNTXuTEhCuHUoIWTWsvAZ55VQq39Ba4aJ4Spu/aMq5tcpjinTdBn5aPRC8x9m1BUdZt4O4kFfhZAw7oZJXjMMU/9tcK1roVKneAOZwxRi35dBC0RApi1Kb/6jSplFJSoWxtXJTDgVfrG+gdfEJyanhNSQxDN98HUWfl9v5+Cnj57unZ0XOGmV2YHIrA5VWRa3agMyiezFG03hsEupUS0lyIR9VYk4KmpQTQU6FGYayd5PyPzrIwaOdxQu4qfdf49yF92+Lec3u4TXL+QPTtQCkd4+vuPvyP/HxX/5PAD58+z27u5lVfDXGoccNA6YbG+MxCdibG9JuMdZgZd9e2Hpb5wRxd/JCTIshEYX1CIXTQUos00vL7Mg54TrXOjyrXyniX/leKnC5vNtKTtPhl3PzX3Bdh6Fn6Dv8Um7m4Ges7UVLAijNsky46r3x4T1D1/H8XLZ8y+WEsWNzQn/58ANd51jDihVHrreX71mmj3z99/9ZrlFiXi7sJOh63O0hB+ZUyW1lwmgTawi4zjKOZVu5LIHvfvjAunoOO9G/4OmcZhQA1ZlYsAm5+X2IhatQJw8L1nDjYVHAyhASrvl3lK1TC4BOqXht3B6X1tuDrhUhZDrhLaUIPiR0zY4xRQG+rlNzarPWNTVxuaix+LjI9jWFFWXHJhK0qhgXO1N+XtZAzJGYM7oauCpbuEx5m1jJqZEDnSo8kYqRRMAnmrK3eOwA5G17lHNxaG/dF729NT99/OzJw9ix/J8pafTVINYYh3Vdoy0blcUsJxenaiCsvkQVUlPRhgLINczD43MiyUOYdceiV+blB/muBrTBB8VODG+UNqzesQig98O339L1mnkqk8d0uXI8jswiiPrTH7/jYZ6Ja3lg9OuvuP/i79nfvW5pbst8Ia1XViFfZWVQyjbjmCTJ5o3tWf6xqRhTLmFItSMU/Fq6KqZr5r+Jwmqdp7Oc1w6lLV7wnvnywnx5QtcEOTuQgifLZ477BxgH/Dpzukgb1XX0fd86YOSV69MPDaAmR3IIjOKItkxn3DC2Nre1PfN04nD/0CjVScHhq99s6XnZ8/j4yCARBSEkLpe5AbspFoCwYmG7cQClmMSQ6P3zmXlZuRu6dudqVcL3erFL7K0hZLXhAD6Ve6lWDVrTaRohTKkiv4wpgr+heWtDW6fk3zZwuTCVazWjVOm0ZOmoWauJwbPKbN13PX0/ENeltfBd16Ewm/uY0sIaFUHf6kv7vau2kAHdxYbVWG1Ygi/dryr0NLFU4K3ITYK5VWV6ROW5KG+Rjk5Wzd6AXADbzE1Mqy4K29rLKB2cjLntEvyE8Rnz+Dw+j8/jbxo/Xxg3HHDDHm0NznVYs8mRtbbbDEixY8sxCVELVr8Qotoo164rdPJY9/EBciDUlmiasTkxnwvZ6vTxhX73yOHV10wXCe9Rhm53YJDK43y9sGMPVpLKVeC7f/+v/Onb/w7A+3cfyTmiq6hKjRy/iOwY6CROYH//FbvjG+z/+K/lb378vsRN1pwWa5iuH+kuQk93PVllghCpiBNdNzTSGNqSksI6R4x1H5qLzkVmfqPL/nh6eVdfpu93xUaRooFIMTJKeNJ+/8Dp+Tte3n2gLlOHw13BmaT6U0rjlwurVGGrmDg3LGE5MV+HZptnrEV5RY6e67XwNg7H1+yGEaPL+XL9AWtd0xKdXp6YpxPW1BU9oHVkN5ZrPC+ZefWcLtKtWVecNQx9x1UqTGsNu8EVQRwUC74Ak5y/lFLxLJGls4jNVPNLSShizFhjG0/Gpyw4Ut1WJMA0E+sQA8nkthfqTOnYLLJFdm5XbCaqqDMVLVE37tt9EP1MNxxRVcafIiq7m5yWFb9cMWIPEbqeqEZ8qBheqV7zTZGQ0p9VDVIytO6LMqUCr3u4lFE5bbSBXPKiy/eWLa9SQnHf3ldrkYE0yvpfHj978rBuh+12WOcwZgNDq8Fq3efHEIm+sEvrHjCknuHwwO5YHjpnEst8YRbdQ1hmwuobYeb6/BF1veLlS5+nicMX/8T9628aVnC6XDEZHl4V/sT1eiL60LYQf/z9v/L0x3/l+blMQP/9v/03yLrd7Mnc8fT0Ed3fEyo4dp3x0xO9ZIA41/P08cfmH6Eonqe5KR+Lx2lNblOmY76eWn8/+vj/svcmT5Zk15nf707u/qaIyIwcagKqQIAACIKtFsWmkTTRxI26tzJt9Y9q0QtZm8ykVrPVnAkCBGrKyinGN/l0Jy3u8KK4YREFcZXXrEgLZOYLfz5cP+c734A0LT74ajAUvEXhUbl/9iFyuH9d83KXZ0/wbqRsDG4+orSmy9gBUjAc9ylZLt8T3WbDMEwpzR1QbfLgPB7y77SWpl3UsZ71Hjv2NIvUXoV5ZrlcslyvKmYx7LeMQ8/ZeQKgGz8xjfdM+QGKMdDq020lhMd7yT6nv/X9jBQNw3gSKrY6OdaXrFqjBItOVsB6mi0hSmxxS88BY+TMFWMUUvs6Rg0+GcOEmLgV9f7zsXppkDGq0jKIGFLkSf7TGJP725zPv3OepukqaSxGgbcTul1Ws2c7DSil0MX8OYs0izDOmFXKIsptTHAzWofsDJaeXa1USg7MCm4fEuBaNgOpZXZLz/9GRKRs6nGHmHCUck2R4oR7FAez3J6cgNzMTZLyX2Ql9u1JYsUAqAC31dgnseDKxCFYi3OBEATFIl83Lcv1hvU6MzXtgPMWYdOb0fY9QRhiJtF4scNPR6bCPDz/gMv3P2Z18bgQWRGmoz+OWFcS4Fom75iyu/qbr37J/nbL5bNEwX705C0319c8fpYYlKppcD7N5Kds0rsf97z97K8IY+JHbB49xghX3+hS5ndefkhDDGjV1A3Lhykb9GRnrOWSYEMyBc43RdOtEoCXMY3DzRfYcUuTncYgoLWurlRuHpHNGqHKjXtg6nfY6Vgrptl65mmsQq3N+hFHf4vJ3Pzz9RJr58ovIgSCnfBVSRohQn8c6kvBO0+YHVOuNLRMhkwmT8AWiyUQq3n0NDusi/VhiD4wB5umc4BWkabVuHASiDWtYtlq+rzBxOhRPAANpSAqUa0ahEhkLy9LWJhEaoULttonKqmZna8AcwIhody4MceGnAyAI1pJwgM7xUYnlXf6nck13dqTM7xsFDEnAgA5vtFXrpNzDtW29b7xwWFCz6rJjN8hvXfkAyGcTAdXDiodo4zEjO9Y79GCelxKNwkHKf+gUDhOVJvE6s6Gz+n8FpuMf0JZ/2fWO8zj3Xq33q1fa317hmnwuOCRjkQHrjkXyQcj1rbFJeOfEJEy7dSrswu6RXcKd+6PjMcdw5A9Nl3AeceUxUk+wn67ZbtNE4nv/vhjmrZJloG5RcB5kLIK4RpjOATY3SfJuG6XmMUZ0aTpzL/94/+Zz3/xd5UdOg49h90dQUjOzlKEAXFkmI5cffELAM7vz/nw+z8kZAGU9y7JrYtwLqS3TNUjeI9qFtVkZx6PjMcrlF6i23X+jJkoJeMxGznPR7rlI7r143xce5p2w83dL/P5jWilcBkH6Pf3hBBpm0WlYM8+YpbrOimZRGSjG4ROLZtULfO4Y8xVxDw7vA+EKsqCpmnY3r2ly+HYUgq6tktBX4AxGqUW1ThJRM/QHxkyp8W6NK4sb08pNMdpoOS2GKVRAg6Dq2/PRZtGu0M27lk2BufdA68JlXr48oYPyXyqRjKi0ghWqsoCLjaZpZpXUuCiR5cpRfbgLb8jhJD8PUrF5QOzm2m6PAb3joXuECJUjCgqhVKnLFqjDXaacbmC0m3A2VAtMT2O2DhMnnZpHRmnk39puQZwartzHNJJ4uEsVkRiZkMLmWw+VQ1giYme/iAv6WE8Sjk5MQvl/gXDlm+/eTjncNYhVfyaY3qMOdm7pKYFh3fJO7HLaeZd16G0Ysrg2TgOTNZxPKT++frtFetH79Otk3pVuZbt7Q3DVHwbPP1hy+54yzjlG23ZQjwRtIie8XDNsLvNxxs5e/oBpejq+yMxNtUgpz/uGXdb1pfvMZw/A+Di8hFNd4ZZpof/7esXODfz0fd/D0jYRgiOMatmVbNgc3FZx4BaNyDMKSnMTZhuTURXdaogA8QlNPniA5CSMatshZDMw66Cy6bVhGDp9/l72Znl5hltd8b2JnFc5sMt588+YrVOZfFoFiBaVJs2xdurl5w9/yHNIZPKRMthf8PUp5t9nGasHZEy0h/u8/lUTE1f3cdixhRKGT1NE2Gytb3yPmJ0rEl4wXlkjJiS+dpKnPcMk2W9yP6tpmOeAzHT09VCMc5jba+MlNkU+ETBVuKUAkgM6SGI4mQGFEs7UEx10jkv14iKC+S/n30+TVNCuTyzdbTdiSZu7cSy604mOyKDssWHRECzXDMWScF4REaDKwCq0xgpaNtsgi3SBhiCOG0OMWE89TNjAjtDvZcGlG6qi5r0AmRS7AIpaD4nBvgHO6mQAhnKd424qSeKHNj+Dde3J4l5n5iPRPCi9oxJaeopXLcQAt4HdLPk/FG68RarBdOwq+j/NA4Mw5ExT06cc0i9ZJHfvm9f/Jw3Lz/lH/4+Pejn73+Pr778FT/7+8+Yp3RBPvzBj7h4fM5FDr5eLFY4N2MzWFmk621+g7BcYl98zpB5H/1wg3ewuXwPmzUi8+RYLM5YnyVcJMyOcbJcv07q08vnHyAIDNnkaLF5Cuhqh59wDVsnT0o1zK4nhAlZ3LDaFXZyJxagbPHzoZLs/GwZhgO6XeYTHJn7LUoWnYKn2Vwk1/J8M28ef4hUC6TJStz5yO3dW+7v0818f33DM5Y8e/rd9BlKoZoFImHNbG9vOB62qMVpArC975lGz9WblDLnAWMWFIdGqTyNOrnTL7oFzgfGsRhARVr1gL2rDP04YbSi6bLyWUqOh6laFUaWBG9OalQhs/VkPhUStIyntPkoECcKZjrOkI6okBhjASErQSrJ2kV9O6cKwGSBn5MeHyJjJhsu1yuCG5ktLDIrWGsND0ykYvRIqVhu0uZgp2NKZSubnJSM444um0Vvlk8ZncWNrkIPMSb1sKhApszVXDFOSo53pzojEsMpGQ+ZWNxpMypiuqQxK58YYsB6h9A6PcffcL3DPN6td+vd+rXWt29bvMd5n3b6ePIVSPbuybIPcrklFKZdslznt2eM2GGsnpumXWGaI4uzFFe4fvYxzkVe/OpnABzu3zCNR/ptKss//Ye/RzBy99Vn6FxJ/O3/9TmrJ+/z2z9J9OnHj59gjKjKRqVbYpCEkEvkxYLN0w/Y5/Gw9APd2YZoloRM8d3v7pGPzlheJFMdITXH/R1D5gDs77ecPVb1beGdJ/KgdaJE++VSUhsMS+w0IfO0xLuZYTiidKGjR6RZcNylKuH26lNihDZT4m+vvmCxecxylc7l0O9TwLGUtJv0Jux3M3MI7LLW5eUv/4F20dTJiG4WHG7fsFqnn7v1ezQX3+Uss3UXTyfG45bQX4FN1WC3eM3rV29r32yUwTlb31feweAiy2Vmrdo5lQa5HTNGEeNccS+iZLaORglMrqKmfsDOM4scrTCOM6N1tObkU4s4TV9K9k+pNkKeokhBVZtKpVP1IU5v5JC9MdKtmBirtXrJlTOUMLCUoxxq++WSj2uMuBxVKmWHNl2dYoigIJ7wCqlavB8qw9qYxBKe83RRNYJGKwbpqoRDx4TV1ElTAC1Pz5WgyWPWeqcR/WlqJDLOGOMpSCozCeqSUiFNC1KdquVvsH4Dwrjk4l2iJU5GKAAP8lGkIDiBabpqBDNPR2SzqiYvx+MRHzUhE7pEMByPb2rietMt8VGzPM/A4+z47vd/wOwbYi4vD3/7F1y/2FdB1I9+/CPaRtEfCg8hoheKMffw/evXyUQnC6K06dBNx3G/Q26yrL/rUvZp9ihtuwUegyS1Na9efsFkHc+/80k6KTJgtKianYTFncpEESPeJm8Imx/Kqd+jdVvbEgEc715wvHsBwGr9CFRHv7vJx9Dw+L2PcWN5qCPDMOB95OZ1MkLyLrDcwMtf/jUAt7e3fP8n/46Q+RFjt8UIXcV1N7dfoqXieJ5wlMlOaLOiUQt0pop/8MlP2Dx6zJuvUm7LMCTeTshYwqJpEgZQ2oOYQO+iEREiopWhzQDfvh+JIdAtDSXPxzqHEJG5ZKSYlIFc+BCJ96Crp6mMiZAoC1fHh2SMTTgFRfmQaA754QjRZ9EYD9bpByH011zuIsl1v+hBvB3RaoFQ8vSCDBbQEIs2a8RGX1+OwfskkFTp77frZwQELnN91GJERImIoYZqETXEkw9JFBGlJSIUt/p/InILgchJGvHw/59MuAQlWC7/o2TaVHChb7h+A4Cpxzmf9QQ8OCKRAKtyMDH1WstVV8lUKd1NM2XMY+z33N685dWr3E8HRddG7u8zWMct9/dHzt/7LQBWF09YPfqA98SaKFLlMdxvefnpL9hfpc+4e3ZOozTH3Kvudnsc9zXM+S///M857rdsss3/h+9dcvn4Od1qWbkMzjs8kuX5cwAa6Tm79Az3L4HkE7Hd3tXksMfv/ZSYTYkg+U0kLUUBcR1SKdw8Mo9Zy6IMUqlKPPPTEcLE5sknAEyTZTje0W0SOet8+T2sfYDlSMNs77i/foXIHh+Xz3/IbPeIvMkppbl6+TmLHJO5XBnOHn1QMaa7t79CiZntdfoe548uUSvH0Y5Vu7JYnvH0gx+x3KRzsb274u3b10xzYegKlAzMWfDnvcc0mi6T35xzSESNp3TOsuoURomqqvUhmeA0uoi70r1UiHxCSqQUVSHrI+goT0xaZkTgwXadHnxHOCXUi7SPnGwgEy/jNIIoPhuh/nvvHdVSJEejCmlO7luCbLhdeB7JmV9SojXT/S5KHKWziKgr2BzsiFIbtBT0uaoVUqfv/7BUiCdeR/gntoExa8gKRhJLINqDHT3FO5zYtMW0S3KK7fgm6x3m8W69W+/Wr7W+fdxkbldijATBqfITInsfnEZfQibUt27+ymTKeqZc+8RMHA85iFmviFGw26aefe53TOMRJRN6rcyCGBQXF0+5uUvckGZ5wWpzXq3+767fIqXm9ib9+fXtFXe396w3qTV6+eZzfH/k/L30Jt08/Q5nzz7GNJrjPrFSp3lGGcvxkMeqyxai4Jg9LKRp2e/3leX6i7/5L6zOLjk7y8a4wzGHRqVe1w57IgoRqPknUgp0szxZLExpLDsOxeIusjp7UnvfsU8xkKt1qkSO+1tiEDz/+Cf0eWS8ffuK66uXTJka7r3FGM2Tj74HwPmTDxjHiSBTW9h1mqEfeHyRqoTVquPR86f44Li/Ta3Q3e7IwjpUZv0uz97jiRcc9qk6vNtu6bN6FLI+Rmi8L1oX8JyCmjsTQUTG+aTHsC5J8ItzWITcbuQJjTTJe6L4eIbMrSl5QFkt60N8EOdg0NkGMN2PINSDLBP4mjJaRPFPXvY5P6X8++yhEYulX/7MEGWVSkhAylivezIjdtXUOsWQBHAZf4vQ6uRdUggXIgZqmExe4QRxpKonxlrtxOhzeNOJOetChCjqYCkEl+whi9mzkPgYkwGz4huvbz+q5WQkkh0rgXTxAoJYAKZsMDvNM9GnG0+ItKkM+SGcLVgXiZmwdb+9Q4qIK8YywbPYtLz44ufpM/VjPvnh70JwzGPaHKKdkChKsPXV1VsOuwNfvUrj3Xme0UrQ9wk78Nby09/9HZ5/8AkAy8fvI5oNy/OzSvMe+z1KGXZ5M3Gzxk47yKCfXpwxjTfVQ2F//xU//8v/xPc+TqNdEY7gfQ2tDmEiRo21HmEyh2X5HGU6fJbPzy7QH/aYrF0xQmCnnjkT5qSAbv245orMVy+QuuPi6XfwMY9FXQ/DjmFILYIyhicffECbJfm3r99yf/slNtsAMA/Y2TO4fH1si9pbzi+f8/Q7mRvy5gW77TUhh1Wll8IJSFRR4KWEUpqHpOUp1nmtVmgjKxHNxoh1nrbR9b3TapWJUGX+m0ru6lMbUyhSARW9Byfdg40hJN6HEBWDsy7ktqKQ2b7OhopEpBC1pZBSIIXk2BcafZJhlBG0iJHgPI021SAohNSmFcJcyFqZYpTt/Ezy54j1z83ijJIwQA6l8hGMOh0XggfkS5EBjDK2FvhgH2we6SVdWmZBcpn3Jz5+MuaKJ4q7j2k0rGWTn5pvtr715jE7j3Zpns2pjUqgVfy6ai+G5O1wusiRaZ7Z59T2Q98zWcc28xAOhz1+HtjdpLfe0O/wPnB/l81rxGe8fvmKy8tHrJbpbXkdPJJQTZN/8emn7A8DY96AFq3GaMWYe8oPn5zTj6F6ing7cf/2JfqBN4nUCwSem1efA3BL5OzyCVKmh1B3HtnsORzS5hIiXL38lGDTz88uO4TvaTKb1Dqwdo+bjgzHpO6NNCwvf8DycXJAO25f0nbnJ3B57rF2wHQJUJUoYlBcvUhKXzseuL9+ydgf6kZ6e/UVh6E/uY6bButccrUHdrcv2V6/Zdyn8znMnsEGvvz80/S91BcorVl0S9aZFNYtl4xDj/ZpwzE6GToX85pFJ2CieppGIdLvf+BaNcyuih1lBiFFlLRdee1JrHUnYtmDpPfyIUKqypuJJP/fgol4l6JChSjbeXrWnKf+m5QsWDxmgOKEU1irMk1nivGUzPfNyZQnCen8AwVrQCUHslxJp2gIX1mqRnRM07G+IMTY00RF05RYkAnXCBC6bijpGTptBgiR1br5KCIPohUy2dD7WpWFkAhmUqmvRYmE1C6kH72FEPF4/L8mScyTAKsYYlYMltFXEjpVa3gfM1PuVF7a2bHf7ri5zSXv/R2DRg/1AAAgAElEQVSvvnzB9ZtURiME87Dn2KeTfXe3Zbs9ViXkfvoFP/tvZ7z/vd/CqCyd7gyogMxTjHE4sB9dzdCNwO3+yPkqbTbWW15++hkhl5I/+J2f0piRcX9VjZlDhOhndBZeDX3P8T6NnQGcnbCOXPEkwdHoBVd50xsPDR++/4irz9NGYdoumRjNNhkuA9Nwyzj+JW8+/b8BWD76bc4ef0LMaWTRj2ht6FaP87kbONy/PGUBN48Z+luuPv9LhryJzfPM7Bwij3eXq0e03UUljQkhwVtC2fBjpDWSxXm2SFANIVgUAzev08apdEsQpsrOH58vIUZ8fsiUEjQKYlvevhLvfY136KcA5FKaBKA2WmXpOPl3OII/EZ18yPnCZboiJdaHatoVXUjRFxkwNVpV+X2kiOUSFX4qzNfoaYw5TSNCIMiTKXDMk8OvxUMicA/o7EoJoo8EWajiLjn3l2hI04IwuBIzKjRN0+GK5YQd8UIQig2nOEfLRAqztqitPUK5GmUqUklWXcGklGgh6hQpmQ+dDJQJNjvBn4h5RIMID2nwBqlK6/PODOjderferf+f12+A5yESF18IfPTJ4JW0M0ulH/DpU0xEJDKNaec97La8ef2KL3KZ/Pmnv2J/95plU/q5VD6Wfm8YJ4SEfi7t0Ja3L37BPF2xvU9v24+++yOWF4948+lnAKwXDf2UKNPpeFPmRdmFt/uetjWQc10+/4e/Y/rOx7SNZlmo9TEmuXsuR7tlS7+/QeTx72K9wDSG6ZC/135PFIZVjnd4+eLnNN2as4uklZn6e8I8cXN9i8r98jAeEuhXMl2//BLRnvP0w/fzuZA0i80DEp5ndfa8Cvq2969AdAglWORxrmwWTPOX7O6zBeMwcrx/y/YqcUf63Q1KzrSZNOZsoOk6FutUcY1j4PzsEiUlw5xB63lmtZRMGYh8e3XL+WZJyG9446HRqoLH1oEXogYOQRrDLjJvJCjFaAPD7HG5zZV4ztarSujy1mP06T5AGKSwiAcAaSRWrw2tZeUZlXLfB4fkZHYjSdVxOc7gA1qLWu3E4JCqObGt8CAbSmydc562yYhfqYhMytf1uWpwStAtV7XyS3nNBpUNkyEilUHqTJoULUoKNIGiBwjBpjd8OdBiWVhA2WwiXjAmn8PjRQma0hKtNMq0J5IYEHCIEsSuE49GRIUKp+f1n1vfevOwLmJdBOkTaFZ6WaX+CSgV6ZRmth4zFy/KI2+++Gv+7s//HICvvnrLarNi+UFimM7zEaVkFY+12iA4mcZYH3n9+iuEmbjfp4du+zd/zW998gE3+3Tyt71D66Z6fab2IwmdALSRNHrNxaMECLrpwP2rT9ksFPYiTXViCLhppMn8iCgk0zjgsu/p1DcsVx0qBzDFCG52zL6Ishw//9v/wk//h/8JgLPLNfvbVwgJx33atLwPOD9xyBtSv73F/j//O3/0H/43AJp2lUhTMYdVzRP3t284f5JYr/3uhptXX3D5nd/jcJfA4Nd/95/Z7Qb6nEj/+HlD12qOOUjqyXvP6Hfb6p7u/Yzplow5wLs/bLEusl6tWa/TDX93PzOMM48u8iRpSl4XXdaljNNMjOkBTtfIp74jP8StMcRprtGQSis2nU5ThypHUYzTTNOmz+yakn1SxnQhPzCnl0wU6RwCtI1GaImztnrbJLwwVB6DjwIZk29L+vOQ//3JxDryQJvlU7CYVCf+ivOBrmvwvvxvCilNdSuz3qPsTFNMwE0DiLrJKWXQuq3qbLxF4lksGpY2A+Gzyhk0+btS1MHl54QnlZ8VyS39YaATFFOhYnqT0KOHpmGJo/VA6/MN1m+EJGadx+aEuCIkwgUIHlGIPVEkWvJ+T9PkUasC7w9VERiCZbYT93fpoVytO2ym7gKslgvC3icLOqA1qfe9vdnSLPPNe9zys5/fs8smwD6k0Vl1dReJojzn3nepNI1uMW2idC+WLXN/z+7+qrq2z7NDa8MiT1ekjdgomXPvOux63LyskZZEDy3cXaXkNaThsHvNL/7uLwD4wY9+j+X5c55IwxuXqq7b6yvsHOrNrNsFV1/9HX////6fAPzk9/8I0zR1I93evmCYRsJVIqodDntUa3jz2T/S5w0oKkOIgkzU5DhGPth8xGKTlG+CgLfh5Fa2XHLoD2x3CWdZtBoZLeOwqzT4y8sLrq7v6xTiyeNz5nGojlvLRcfxcCA2xflcEFWyBwAYrc8ucyfqowsxVYJ5g5EisSRDprRLKSHKSp2OfiT4UyUiZM6Qy+fO2+QQ1jTmNM4VadRapjzJuUESy4NuA0raaiQc/JyNjjI2E30CcOvUQ+J9elDLLe9jwLkZo7ODXEyRJD5vOGEOKUCsAL3R4WNbX7LWjsmMKXYsuhIc1TGOI8KfhJ0Jj8mbno+IcNo8SiZtwXKESNT25BSfz4VMYrqye0QSszQ+dAz6Busd5vFuvVvv1q+1vnXl0c8TUSmsszTG1EzSmFPMizJaAiKkKqW89TWCxfpJnSDE+CW7+yNNNvY5O98wO1sDo621tEaj8vhSm8gwOQaXTFQAVmcN8+h40qa+X2tJfzxwyJJwoxO1uUw5jNJoLHPmLchO07Utt7e3vLpKZKt+Sm+kJk9f2nbB8XDHcpGOY9XA1B3YbDb1dxIjWmeOhlnQth2HTHZ7++Yl7+uPkHpVKe3tckW3PFG0nZ2ZhyMvP0u6lO//mz9hdXbG1cvEcTkerrl4+n22N8kW4PaLv8U5weGwo89Vl1AdzouaG/vqxec8++j7fPhhIsRNQ8qULbjUMHj6w8TjbGegtUTJJo8HM6mrW/LkwnE8pvYpEeg0WcPGPFqkUjXkyTTia0Y9k51p9An5T22ByPKF4tOSKsZoy5syIIXC53OjpMJDrV5CCLkUP5XoUoJSba04Ex9F0eRf4VyK3izVSvQB7yKSEm6e7tdCA3cu4IOrJjtCSpx3WOdpsum3ViG1M5kWoLTBOld9aZEJGyziR+8mcMfK1QGD84EgqOHXMXHoHviOfD3JPoVan1bM/UjFbohJxyLEqeuTaYoUT6cbvvYp32x9681jHCaIEt1oIrKCikpIHCdfB6Mk6/Wa880aU9yZgkQ1j5iya/awT+1KOfmIyDRbhrG4qXtEIzhbppvbe4fSAmkDw5Q+o+uWrJaRYUg/z+NI12iabEo7jH0Cu3JPrmU60WOfcIC2vUR3musvrnh9m/GIkPwsNznYyGjDOA1IkYVyUnI89PXmXa4WRHci8lw8vWSe5+qm/rO//guiUHzne7+NWSSSWDOnVLU5j5ilannvez/l1WdJUfz2y5/z9P0POd6kkenFkx8Qo6hGM9M0gOgYhn0VAZoFrM42PC3uV7Zn+/bnbNbpuDePzhi++gKXhVyH45TwgnxzLjeXCARj31cWcO+ONM0Sk8+3nQaiUSyX2dXdeXCi9v3EgBCWRVvwH8HkAosiWCM/GPL0gEiViFDOF6Dc0+oT0TIIhZJUc6UY03UUptACfMpM8bFu+D5zjIoyd5wsIob6Eok5JKoySYTAe4+k5A+TDYjyrZkJY847VBapiaxKLfwmLTsiyeQKoOkWCZjMG1YQOrc2RVgHIjiUEVhf2LRgGo0vMwKRsBdX2pgYAJUYr0DMT514QBJLNApFfOj6UXYlKPPfwvbkm67fUGKcQApNyH0kpMSuMM91B1x1C9rGoASVdSpEuqhzZkCKmEJ+i2Hv2O8Yh77u3DpEQji5QanGIFsFDpbr9JltZ4jBEo/pgo3zQPQSmXf3rut4kBpJIzWmbWq0YfQT2+2Rl9dbbH7baqXo2haTp0DTMGA0p61bNQTruHqd8IfHT5+xXrUI0gXevj0y25GvXqVKZh4t5482dIsNNZWOBYt1w3KdQVq1Ythf1Xn99uqXyLhH57T6fr9ndtfs7hJztlmeMx2O+PlA16UHZrEwjE7RZYsDrWCeR/72rxKX5E///f/Ksw8/5pDlAIjAYrmq0vb9/S2Xzz9BSMPYF+5IwBNoFgXkc/nBKwpYwzzO2JKupGWavsQCZkb8fApoWhiJ9xEVHwQuxYSBaF1IX4lyXYKOordVqQpkPtFp84k+pmmfiPiMcSjTAaIGNDU62fKdmJkiTbsyQKRUAroLrd5aiZ1GVCmxsi2AAFzGe4RYpDTAwhiNDqVWdcOx8wi6qdMYnynwxoR6jCIMiLCikG+UyIQ4Heu/cYEHTmPJzPihzaOQoapjI4kinwDRfMJ8CcsueJCsNgcPq5p/br3DPN6td+vd+rXWt648hJRJ2xAFSp7yWq2zqZjKPb2Qgtk6htmxzuzDtvWIOBNseRsobIz4kHbmN1db+v1M25xGds6fdAlSKpy1DEfH+iLPypF4T81jffqkYzhMbA+pEpkmQdvoKihbrdtkn5hLz+BnxnkkCoHJFVCnFYLIIWtbrPesRYtNH8kgA1pK5mwKc/32C+TT57SP0/h3snvGfqTPE4pnzz/iyXd+yDT16OztIJXBR1lR9hAb5mnG2zJS1rhpS8xv+MNhjxctfsqTlSDY33/F+uxJYjYCbhwRwWEzVby5eIYWLetloq+/+Mef8aPf/2MGWzJV/itaRYxJbc049Fy/eYFu1jSZTWtiMuop3qAp81QTQhkNJn+JNjN6xzmNZYuvho8CLeWJYRqgbVL14fKrUeeKVFUugwBFDTj3wSOQyDx9UcisSSk0/JwP26hKHfDOok2HyixU5yLDZGsr5H2ACLZodLRGyojL7VmIGucUweU3sw5okQ2gioeNm1L0qsheG96SuCZFL9OmAO+SzWMnxvGY6OEkv5pGXCQfkvxdnJ8gnKyfBYBQhGpSZBHRPZjgCJKdwKktFCFVWHUKK7I5UxljZ92LkOJfVE78BtqWmP8LgHygbIzotq1BSRHJrk/jXJVBqfVqjZYSW5PiPc+enRFjegj3t3eAw+e/bwMQwRULyBCZ+4FpnFiepZt7sVnTHwJdl8DL9abjbDOgrxOmse9n+iGwfpzag0cffIfYb9nepD8PpPtt0eoHqWeBcT7W76ykIMTIXNKVep96z/xz20i8PRJJv8Noxcv9KW8mmhWLyx+zNBP9Lo1znb1HNy02P4RKCsZ+i8rBI/2h5+LRhxzus+FxgPu7LxD5EHa7G7w0rNdPajKdC5b9fks8ZPKUaVms1jy6TNyQz/7xL9geJ77/wx8D8MHHfTJxLlwdbZjmid32LfOczu96uURIsFMp1ZOxc81HaQzKNOhyYKJlmmaajHPNLjK5SKNOClqpFFqp+oCkUlyeNqicdlbbEpH+XTzZjwIy9WVAmGeapknCtAwWRxHxfkDnl9liscSHA9YVjkZSldop/dyZTC8oBt7OEoI5jfi1SpuWoG5yAk/0FpnH/iF6pvFAu0ibMbLBh4Cu+T2PCKLBTWkzD8ES8rGULGBnR7RpUaK0t5E4zhUnEfhMg6igSGqHcjssZaLqx0Cl9wsJIp68Ywg+tXmok9/JN1jfnmGaRTZCJoCp9EzGtGizQMg8KfHFat/UL6a1oe0a2rbM5y0//Z3vc7FJn/HFF5Hj0bI/ppv/btsj1ZJumS6OsxPdUhGkJmZ0X2vNo/Nz9vv0tm2X5ywvHlG2Wb3dQxy5ep1YllppnjxeUJ5CFwVCNszTxFx35qTbKRWQzqldtk6SIiL6amYshaIxCmNyyDczw+Q4ZGxnHGeOY2TRLYgxX2TdMtmAXqSH1LsRKQQ6YwvXrz/n0bMPmXMvPM0RITsOWR1snadpklP3Ppv7zPPEOM5EkX7vcfuKxeJDpjGdz/X5U15/+t8Q0109huE4pWoM6FaP6VaCxtzy9nUyVwrzxPmjc0Q+rv5wQADTlDbfOOn0YBZxmIpMIoGk6forhhjIXkEYo/A+TUMq5pF1LEpX+BIpRI3oUErSNPoUWq3N15zE3Jy4DkqesJYQ0gY1Z9eupu1YtoukjgbG7Lhu8wZvZ4WSsU5rjIzM04iS+T5xDboJBB8QTYk90Ol3Zi2L1A0xhFqR6pAe8mz0j5QGpTpsvMuf2WMCROmrJkeJ9H3LlGfyHqkecmBEmgg9gCqkj1U/Y20gCoXUpm7G5JewKJqaUrnEUN3vvsl6h3m8W+/Wu/VrrW9deSihUCKXRg8Ypsa0aR5f0OyQwm6axtTMDpCszi4o22bXLnn+/CkxW9GvN0+w4z0hj3Jn69jdH3iWPU5XZxdotaJbjPS5OgmzY7FqWC7SG0ZGwWJzwWUJC44eP4ca3Pzzv/9rvlwtWLUFndYMQ89g53qcC6OyhiQdZ9t0aUqUS1iJotGqyrtVZvDJbI0YYkDJWAYrvHz5gr//q7/hex+t0T69+dZnF/TXr+mPuVqRAdOe0XSp9en3N+y3u6S3AF599jnbw3AKHAJMZzn2d3VM2nWGZiFrySu0pl0/YvKpSliqjuaDwNinN99ydcZ4vEbphNUsVIuUmtXFh1zkNmV3d81xLzi7SJjRZrPmcNjR5fZ0GCfsNNSx9WwtWktcxgqc80gpa9SFMjIpQ5WsWS8xG9dU2b7Iytp81whSBVMmZAGJswEpinJaJ36ElOj8vw3DQAwamfurw+6G1eq8WjcYkXAcnyu7cZpojazy+tYYEBGf3+jeRbwWtFoSfDFAXoFIFU46jpjwiRINGcbEgcmeLChF255hchjYyYPkwURRhqR8zl9eRUcjYm3H0gl5YGKETB44udKPPtkl1BwlAJ+8XQu7VggNwRFkrGrdb7K+PWCaqPUEH1BaVUKXlDKLdPJNomROynoIqnounzzjT/7sz9KHxSPPnj7m1YuvgARSzbND5/KfIJjmEZvLwGloMBcb2naF48R3aFvNKiecWRexc6BdJj7F5uLIbC0XWe9xGO64vh+4rye/SNMVTeGCaIFUsiaTj6NDKYnLJa4j6TlKIJCQAW0MPpevzgvaxYLWpAs6u56//a//kcOr5/zWJ4kqvlqfIaJlzCFOSmVwUWWacrzh9ad/zSe/80cAXDw/41e/+gcs6c8Po2O17FkuBU0WXlmf+CLluIWQHLdH5jEdx93VK1artkrb2+WSTXyCnYr2ImEPbhpZb57laxQYh57dNp3vR0+esorQH9PPbWOw1le+QIwR70+4QAzQaDhmUt84S3RMbUuXNwPnI94LhC7+tz65dBVn8yCIztLUUj09GCWJzWiFcx6jqfKIxWrJfndH16bzpaRhGvvKeUktnqvCQ+8FUcn6UIZg6dqmjkCld0TnEN2iZudomSwnav5wu0i6l+I05h3B2Zrb4t1IbBbotqTxzZS0t5BfEi6xvmqId0RkkLQA0OnFIeIJK4sxnjJ1dYMXEkJEUlqdgJKGUIl6khg83rmKWX6T9RsQxjmUcyilaFVbiSg+JKGcqh4LBq0NPvhqjns8RDabFX/2H/4XAG7efM6rF58T8hvceksQii4ntWlxx2bZYEz687ubW3TbsTlfoDOPQ0uFkIq5+Klpw2wjq5K0tjhnsZk4y5vHZuiY/PA1l2mRRgj1u7iQ2I1lT5Yi0iAqwm2tBaPqd5XaoHVTzXL3+yNSNCwz/2J/N9Mpx6Hf4326caZ5JITAYZc8QNarNfPxPqHxJLfuIV7x1ad/BcCzj3/CT/8w8OJXSRtzEZc8Wi859GNF2ufpSGM6ulXRSTQc+i1dNi8W2yucd6zOUnUzThOX731SWazjNHL5/D3mfs+bF4nJapoFHbE6mu22d1ycP6kq0HkcMUYz5SmFECmprBg1t03yn8jPeQIqpeAwWaTIERANzN4TC0FLJDZnQfza1hDi6XoY06a4znwRjdYcx5HQGFwoIU3ndM2SPuNBy+Waad7TZBvI1XJJ5EipLoPLWq3KwxEJf8hqYKNbpEp2iMUpTJsmDV+K7WDTYtp1ZdtqBYE0HYHi/yKQJm32UnbpO4sqYcuueoJQmK1KIr3HZkMhHyJIVdW+QabYpqKg1cagkpMOpXxJzoai6nRCSE7zRH/iLn2D9Q7zeLferXfr11rf3gA5L6VS+HBh7IWQets6xpIa6wNuHpnilH/5mrPzNXPWMPigEVIw5t53tx8JQtVohuNkWW7OmfN4bbYj+/2W9XqBaYq+oENqyTyfwpqltVxnjKNbtjTNmvV5OobzvmeYHPuh+KRmhWEU2MryS5u0ruHODU3bVSxhvx2QyLrbS90RpapvD+8D02TpMk18ubC8vr9Dak3IjMd5POLcWN/ohxCZjrd1VDhbi46CYw68ev2PE08+/BE6K31397dcX9/SaI3LGTR9bxm14lnW3BymmY1p2GcZwHvf+THHu9eUYKOmabCz5clHvwPAmy9+ztQPnD1+zm5XsnyPSGmq58c0Tdxv71mvUwUVhWIaRkovFFwSUcTcwlmvkcrQ5hZkCjHFGkhVWxmhJFLIqmWJUiKEZs74DjayaESKSiB1CcroyiaVUhFCyFySTKvvkw2kznYQs53QesVYJiGNwlhdGaZaG3x2VivfKwSHzhwOtEaoFqnaynbVbZf4OiXcPXgUgSbfm9N4xAeHyVWwkC3eR6Qqo/EOIQQCX93yQkyTvdJ6Jv+PDjI3KgaPFKb6fHg3k6qZzFt6MDwpdH4pkj2BKpaLhKps/5esb715SCnzf8nz8WGvm8hj6efZOQSBaTqiRaEAX9A2aZwFCfjaDzOvX6Sx4PX1jrPzrt7shCy7zn+/7RR+HjkcB84zgCeURrUtbSZf3e/uAcXUp88YBp3EcdmAZbEcaBqLruHZkUgyuy3HrqRAKlE1Oa0xtFrjXC6JO0Vr5MmgRRhiNNWDQZuGdrGo7cT7z1t8fMv+eGA4pk2tP9wx7HfYPulpbg6v6drAImtytFZ47wg5D/e4v0Fdv64X/bi7RclkvvPqJpHZjoOnNY4PPszjctfTzx6Rz//b11e0bYdSGSNB4ObIWZbfd+unvH31GbrbcHb5nXQJ/Fc47ytnoO0UwVnGMZ2LbrFiGqdKcgpEfAyVKBVDAkPLRutDIMQkAZjzzT1ZkR5a8eAzhDy1EDEwe4HK7YH2Jj9g6ZiUECAV8zxXqv54PGLOl6eHarYE4Sr+plEsFh27rD+SSqKNxIsC5rcJJC/PWJD4GLB2qIFXoj2ja5rqHB+FQCiDynSFTmnGfofN7MK06XUPDJF9zspNMvt8wvIxFq2LISqDyNdM+BGhzANsJuJdqEY/4HPgU6xtnxAqt+W+/o6kQhP193yT9RsATNMb17tAYKoXvITf2Hy2jdGEELHzXLUri2WH1oLDLu2i9/f3vP7yU65ep7fr8uwx2rj6GVIIonPZnRuEMkzjyM3tjm6dgceuTUE5OjMFZWC/O2S2H0zzHiF0ZXYSZdJN6NLrJjasVqKi+1ppxANmoJLg3Q4R0422WrY0SlZeh1AaGyQivyhnH2kXG3xmclo7c3m+It7PVRQ49lvevvmymhf7OLHqLoixuGM1mFZXT1ghNbdvP2WxSZORR0/ep++PvH3zliarU48xImSsE69OC7ybWWYw+fr6C6a2xTSL+hnjeEDc5GuLwobIF5/+jO98kqoRqRcEe6z6F61aTNs88NwMNKYl5De4lBKlDaponnwy6FEF9BhnokgTKhmKf4rHqOZBcHWK7oxlmhI98+xR+eZvG41C4fL3dEBrNP0402UDp0BMxs0mbYyT3YO39VFxLulpNpls2PczyJPg7DhG2ralaTNzdhhROkJwTJlAGLxHP/subRYJJs+Mk/u/EAppFpV74uaRkYgpaQKcIRqLj7JWj8QElcqaNpWEbkX4pkRiRRe+UEi5E3VzL/9G1P+bfEdUPMUzeJ+c5Ush8E3XtzdA9h7vfQJcxIN4SS/wJ9A9Z8MKvA9sskPXcrlgmi232Q391YsvePPyCp9HnKv1JY2aadpUiYg5IJRkzlOOplFIZZmOB67fprKaeAmrDpNHcIuuYxru2OdpgJ0tiKYSd6Z+YrKh0qUjqdLQUlSLwBQcFk4PjLAY6TC6AF0Co3XdgKROF7EyPa1FhMhimZB9PY8o5TnbLFiep5bieLjn9vaK5cLk406AXCnFY/Q0sqXJ0wLZnBHiPcccP2mWjxGy4enT56xym7daHRlGV20fm9bg+z1NmyYnq03D/fUdqslvQiF49Ow9xhzFMPcH7DQy2z03b9M10KZjmu6q4LEf7ukWS4rasDENQpqTQa/OpjNFwBkNUpk6gdBaVyGccGWzCAyTY7UoIrQ0Qi0cSiUlRF+v2ThPtM0iu5XD7F1yRycmMJu0+fbDni4/VdqolBWc71fnLDHIuqktli3b/YEmTw/btmGaBrrsgK9NS3/cIYSsLcbxcIPUknVM1pHL9SPaxQpXVOPHPXYeHgC7WUbg0vn3vk2K2wf2AjHYRGnP1Qsi4vDIYiLuLT7GSviKUSK1/loMhUDUlgVSi5fiO8tFySDqCUP9RusdYPpuvVvv1q+1vn3l4Xz6LyZZU6W8iuS3UUK3w6yRSvJovWK1OgVVC+HYbRO34dXr1/gQsGPaJTePnhGGW2Te4yQwu4lxTj+fn7VgFP0s2ZxlDU20HA6uZlScn3dcnJ8hs9ju9mbmMBy4zVaHs0uhwKboJmT6PTJC2xaAVCMENBnYaozCqIbyOo3BpV07nxOJwbsJn8eTUknmqa9lmDaKxjRoFXAZwNttb2jMg5SyKJBKVVLSNFoIfaX7G+04u3jMbSYo9YdrTPMIZEeXM2xW6w3DcUcUGRRU5yitOGYZ/+Xlh/h5JuYSedhd4ecJs0gVlcq2dCIEbt6mUe35xSXOuYrnSKEZjn02A4ZxPNK2ywqYxuiyz2b6WimQKFa5vTaSEAJaUVubEFPvPmciWdPKTJ7K9P+QK9zyds3aqsLpcDYipU84Sq48jDJopRiGdC7WmxXCGOacR9xoAzGeQEWtOVuvOO7z+XUjqjFYm9rK1WpN060Zj/c10Eop6HfbE6/DOeLZE7rsA7Mymumg6PM43rke0bToLl2vSCZpSVM1JoJYMq/Sz1fA7GgAACAASURBVDGNkX3GvoSU4HwdVCQvFKpVR6qoEp5RWp/gA5OfanWjZDJRTiZB/4qYh/cW7zQ+Zm+nB36kSa+QBVCzTIniPtBmEMtow2qlsdksZRws12/fEkUWYZ0/4ouvfllDlFujGJytmoaAZLVcMoe5mhAFN7Lb3zFkN63n73/E5eWC1VlyKxPK4F7fVpFV26R0sjn/exEiXSN4dLGoTEElE/nttDl4iO5kyCJyy5YDje000SxkRr5zH8pUgTKtljRaptJ3d53/zT6xULN2ojFdJv5k5EUKopTYrKJVZoFebrh89jEA99cvOexuCGJZzZ6bZsXm4oO0cUFOdVNM2ZtjXGyQsqnhVm3bcOwP+FxGm2aJ1h3WWmxG92+v34AUNeWvbVZEZ7FjOn/LZeJxlHvQ2YDSD+8LyWxdnR4Qk5gyRonOnhWTjSnIOp9x6yJJpJs3ayHSRlOmW3naUJi1PjpEUInIV4x2ZJqgFJDweDzSdW3FDry3aNNWZibWIaTi/FEiF97f32GnoZoZ9/2eru1YbR5Vhm4MSXNSSIzz8R4ZfW1L2tVjlufP0RljmvavEwM0t+nSnOFZ4IsCFLIHqaiakxgddh5Pka3SoJSsJszBWoQOhIrYKaKwRDdXHCWSsvZ0mfpolaY8/9qYh7WpJ0OIbAqTv4SfE6st30WORK7yU8+bsosCkjV3GTC9fv2K6y9f88l/9+8A+OrzT5kmx2KdTvY4eeys6xsqCsGi69jebXnz1WcALFpDPx457g71OMbxSXXz9j4idFOdxaZ5hkiNZrh4tGDTGcxiWcfMdpqQhAr0xpB399ovJ9ewsplIncqXQm7zdkLQnujrIqWbjcebarJDjIgoWOZxrjYGIUK9mFIKYgiotlgHWOaxp10kzOSjT36P7e41129e0x/SNRjsjJCXmEXCmJy1iOmYYg+B+6uUCDeO6e2rdQJPy6Zn5wHrfKJi57vVuiHR7/OD3R93ScRWnMGERsupSt1j5pWHrwF4ot781llma7G+oa2uXzDPtl5nYiKaFfc3RDEvLFOKZAlR6Nfz5MAkVmtxVHekzyuTkDA73GzrZjAOR5R8SArz2OC526brs1p0CXjOX0RpQ/AWGSPrDNbHMOT7ogCTMy5MyIxBDVbguqHeV6Z7TPB9tSGMosEGgfPu5IYuVY6gyONfN+d4yby5qCVeyLop+jATpxmd5QJNY3Be4Lw/RVMolSY0lUYv/kWbRlnvMI936916t36t9e2zasc+m/Ok0qmMFsu82tfZsqRRmiAju22aELStQgrLy9epB3zzy1+w2ZyxvUuj2sl6Ls5WKUwHsINk9DHFNZJKNudh0UWevZfGj4fDwDBYNjmhvmkCN9dv6bNPg5GC4B06gzHdpmO9UJyt0xt8db5hOB5w1te3VNMsCXasMuim1cQg8bGEJo/EIKtGBBxzv0c02eSlbYhRnUaPbqLfb5MBbrXMD3RdV79bDGn0FyqxR6KbBld8M3QkBIfLEvNRGc4ff8zF+fvc3iQ7xPu7O6w9MOY3zvrivVQmV+LUEW9BZx3FNI2poM2VodYGKSOTn6pozfvA4KYq726bJBgrpLyttwiV3tTpwBUu2wKWVfp0SJwNIZIF4MO/4+NJGKdUMlAuUZGNBmnkqTIRHud0zYKRUuN8pGlOEgIXkkapVCLGGIZpRMic/atXHIYj61Ue7SqF0pIS/Xy33bFcdpU3Qgwo3RBjqOZVyrRE72r1raLABwmqTEo8duprpIcgWQSWwPQgDQiDkKf825jtAkPN7Y2ksOxCgkxj1tN95FFK1wkQQqCkJmpVNTVKKRCyfkYIycc32TJ+c0n+t29b5gGZIaMYQu11UzbECURUggzIqFMYtpsZ+pGb7K1xPNyAvGC+SmXzo6fPCW5gzorO+6NL+am5f97d3fLk8XP+ze//hHXGNK5vblh/8RWvXicQ9jhYrLU1EbxdNHz348esz9NNE0l9YnHCakyH3gjmaXog5nLYkC4AQNu0RO+rcbCRiQFaQColSZhI9orQ6gylDTHjBvPcMxzvMbpKEjBaYVqNaRK45qwlxrne/EpprPM4Wy6uRukFZJ/Uye3Yb/doBWePk3bl7PEzhn3P9VUSGs7DLe3qUQVhlwTG0eIyFtMYw+xs1WKMw4RpW9q2oc+EOBdCbiOyz2kfWbWm6nhC9ByPA11TyG0Sbx1RnY6b+CBtHoGWihj9yQdDRAghhReRNiyl4mm0GCD4iMpCOqUkIcKUwdFxtBgjAHMKn7IW60IdjyohMULUzbddLonBcMzet5vzcyIBkT1cNmdgh2O9B0zTJB8XpR7k3QpMs6jfw88zUc1YnX7uFg1S6ZqqGLxFYghZ0xOiJgoJKMqkQZQkvPyZIQBSJRczwIWIFBJXMA4hiVAd8UX0EEGqBqPLODdmvk3hDAm8dzgfmEvG7TdY395JzDmiVPgsFBO5ExJSIMWJK5GM4lLYz2lXFYzjkf4mcQiUt/T7HZcfpzl5CAdu7waubxJ+cRhn5mlX6b5/+j/+IX/w+7+DNGukSjfFk6czP/7Jf89dDkO6vr5lGAa6jGhfXi6x41QNhubZMhy2p7ecVkjVoZWucYfgcdMRkYk4TbNASvCZx8FikSXfpyqLKCrXwXrP7KZKRffDkN86gk6dLrrWqjIFjUnq1BJN6N2Mm/p6nPM8YrqBQDGnASUjh3lkzKzVzfkFqlnz+Glih1rbJybmMmEgu/lItzAcdukz7NwThaHNOMDgJ47HHaZpaDMW40PP7H3FskL0HEZPl2nci1ZinWN8YC0ZXIRQ7guwwdfv4UNAK5lxpDyBkSqZ8BT6dMbTygTCS1DB4TPfR5gWo0SNc5hswPnIYhHq5uFcwoxK6JPpulR95ICseQDTmFrp7bdbFptVlQcoIWjXZyd5vXMYozFS1sme8xHnfZVKINNrtWAN43jAmJaCFsQQ0J2pcZQheKLwIGTFlIjpeSlWDDFMiJhiKtNxpeD4SmcXgnkaMfl6KJ3AZylOEv5ITMTH/BkxBpy3BOfq+fkm6x3m8W69W+/Wr7W+deWhVTJyETkY6ISQx68FzfjoCUSkFyfuR4xM4wGfKdnRe37yB3/An/775Fnxn/6P/8h//vPP2e+zfH7V8Xv/9nf5wz/5YwA+/vgD+uNEpEXKwgRcA5H1J6mN+d73BT64aj839lv2uxuiyJmwxwGVzWYgibLcMCDa9YNy1OEXXTVxkUrQLTZVL6OaBqU6+qxLIQTm4LnNU6SFMWhpa4wCISB9JAaBborJr0Kopn4P3Wics7U9CMGyMIY+y7ldAMEpszT4ASk7pG7wIcdg9jvGuzcpDgA4u/wuPkRivkbjoWOejiyypeCxn1MpnS+hMZrZWaZpJuQ7ZZF7/mO2VAwA4pT5ChIlFWP2DOk2C2QOQ6L+DYHLtgwxxGpWU1sZGZJHb+m/oyeESBGqWxto9GkUDg1KaUwecxstmOaEF7X5uyfKQCDEzPr1Gmk6jMk8mqlHqgVa/3/svUmTJUlyJvapmpn7WyIil9qA7gYGwGCGy8xheKDI3HjgjRShCPnjKUJyOBgA00B3V1VuEfGeuy2qPKia2UteOruqBKdwkRKpyIx8iy9mqp9+S2+VCq6Pn7xSMCa1xDhCwaEFLe/QplidFXy6e0BtbXzuwItjQ4PkglbrMCKOgS2/trcTsOqD7EnxfwNA5zUDG2WgU/XBbkLdDbZaRikbesauiRIZjfINByuaE6HfjyriXJDxuH7R8fOdxAIQIsAiEJ4tCUBoIuPDEBSkZsQKL6Fqa0DNKN6D8/Et/uP//L/gN//qVwCA/+N//wr/8X/8T/jhD4ZfvP32V/jm138zHvT3738Hroq48Bj9tVYRQrQyGMDzdgUoIgYDwo7nCFK4aS7QhLAcTjNIOERc5Q8ABZC3DDU/43x3B6xdt5MRWaEObl6vFct6BPnNu+cNH542fP/OFsVIAffnZZTdiYCH1Rah4GW1ub2H0YeKAKXUMb4krGAVHD0D1lLsmuXYwMDNvJsvyeIanJKfjVjni/P3//B/Iq53UM9SjTFC24LiRKl1WcGePQwAouYgn3MevI4cnBMwqmoFgW4IXow1xkHg2mqGiqL6SrwQA6CR2wKCtRuKG1KdtbxjQRJz7x1ZtdoApfGziIm/OnUkBWATQakV6zL1SEAYRL1WN7SyzRYDDdpmDjIRoVVB9sUmRoZKxe540NmlBqXseHw0nkdpgvtXbyG1YxoNtM50ekKwtIEuDI0BiEeQt9xRzbRaaYpFFfbdtbulh8Vyj3Tqfgxf7KrAYKpdvlmwREykNzQCDSptvoeq4ZM35LIvOX6+qtZ8iAA2tGNy6v9/PHkXSarKEDDlXMBVUHwXOr35Db769jtsrnAVusef/+pv8Ks//yv7fRyQC2O72sPAYgzHmq8D8+C0uFCv7/IABRqiIA5HxOWAxU2Uj0iWpqXzZK/YUPOG5tqVQoRzIhCZriRvuwGkDlI9Xz/iw+Pz0NN8eLri3funcXEe847rvuPgJkbf3SuOp7M9rF1Mx8n4E94/N8kGZN1Y8dVWcfAFq2j1B9dPb1jBVCyoSPo8P0JUxi6ftwuWckU42GSq5gwmHjEVbdtdHj8nK4EJMYQxaWoe9tzvzQgMnMauu0AgM+axFp+2+OmFIjsrGTAd0ADQux5GGpin6lNUQSoDMA0wQDX0CYNYgDVj4irMhJwbZO0CPZ+yDQtMQGobC3pMK0R2cPSJjgTsOiX9BtBGnyICl+sjTucHHE/3IK9It+cPIBUcPNZDJaPljOiAKAKD4xnBoy04LUA4TcyjZrAqlGRskGgNYIL44kAeVNW6c795340YCmWAbuw/OzJhBYzMP2EaVS6gPvESBJkV4h87XjCPl+PleDl+0vELGCC7LTzBM0/6SudmLTds0u4r0HkGJWfcn1ZTugL49d/8a9y/ehjTAiUgF5lZElEtStIZkgEBFAJazpPFjWClV19BVbBfLlid7RliwLKeRl7HoRLSchijLQVwt34Lbjs+eTj2h3zB6e4eyceNj/QIxIx/+Hujlmta8PjpceyMz9cNaU1jpHw+rAAavjnZz3cHRYgJlA4j9JiIENMB3KuA54yUls+iOa1qs6+1RMs97W0O2L6bVhl2iBQIkIox0AmEy37t3RdSvMN1v47+mgOBRJF6rKM2lGpj4mWooxuql8GAlbmsOjgsdp11RAVAFKxD7gEoI9d805ObbD0Q9U0eVdUnd/3eERuL9vgM7lmrPskLARU8OEWRCUu0z5p96rOuC3KbUwrV4LiXl+6iAOJos5clQLTN+6JVi5PwyoVF8PzpHc73X+N0ZxR25ke0mrG78dS6HtDyBdKzmVktbqGzhhePJhm9vWXdWtnVafXebHRGKY8T6dejOlbh5yYewaENr5lSG2Ky1mnEKgQztBp5wt6yKPUYyi87fn5ui4oTfdh7poEyGgCmHaTh8YWHYVArID7hf/pf/zcAwN/+7b+H1mkcQyFBlzkua00geUPwE9vIFqlwI0GuLdtD1cs1NU1HN2xRADEdkZKVmscDYz3eYe9jVxBOyxnHBTg9uwZk27EeT1hjv6ARX68RFw+Z/r/+y3uAGR8eO48j47SkMc58e5/w6ixjzh7QrM+nMBLsVQVhOU7f1NYA8PRxUMGSlvE9e+5Gd63SZsY2vdUA4Er4OQINIdgC17NUWZEOaeiAVBkcaDh4EQUQVwPCHZshUZPydLr0CGSmcZ05TBc1FRl5xv1+KXmOenu/DdKBgzApAk9imdHfJ0WbvAXu9xo7wFhyd5IXIz1BsPmfxRSRUoC6oMx8VRVD6U5iQdcdiCTL1emGwGXfjDbezw0nVBF8+Pgjzr7An89vsG+fRmbKogfwcjK7CpjVA5Ea1gGA0gFNA6iDyURAiCAyU2g7Xw2iPNcXpc8wp9B3hi7hVwKnI6g7jdUdTaLrjZw23wRc6yQ1kgHv9Ccipj978ajSEFoDqwKgMaGwzzkZfgSBQyNz9dSGmhV/9d/8DwCA+4e7z1B54gUhCcRJTHW7gNs2dpigCtFmIdtdeFWvoBbHrpX3AgoBtU9K+IR4XMYOtB4WE711kx2KOBwDDmsynwpYKPPz04bDyU2MHl6BasO//+//LQDg7vSf8c/fP2NxIGzfEu7OKx7ciCaF6tqfzvBjFyFFD2AGQIywrNgeXZMjDUtakfuaJgUhxKGebMRYYgT1n6UCZg+F4nySIAyROkRTUGMbRrf6BwUELIhsb7LnHSGsI6WuwcA41TZutKAMkTAiDETM2Xzcw67E7Q9dZI//TFMHpDdsUiIFs/rC1z+mIjJj6QZNapaWXcQWg7Mqb6qhrHUY94gYV0SEBi+jlop1jWOiE2NCqTu86HU+SBsvSoGxbRuWHtyVTKA27QGb1ULEeHKvmL00nI/3gDi4nK/+ILgSWhnKEeL4HDg5Kazznnxx0GbiS9g/Zxp1muE/NLVEAH8ebE8WAhWdbFiaGpisGNdERIxj4hhcXBIIwVLl/oTF4wXzeDlejpfjJx0/X5Ivpri0HvRGn6Dk3g2+w6Bn2uowrhUxE+PLkztfHVasMQykObjx7YgMRLUWyZfHqoJadoTl7KFMJskH6nCQapIRD6/nGNDn5B0rSKczwHEGChHjcDjgdGC0aq/53XfAj/E9jiebtiQCLo/fA9V2lH/913+N777NuDhbcc+mirw+WxVx3TPyfgF3LUxYoCEgpXX0nSFZ5uvIgA0LQjpAdnsNJkJDRBttofm5jtKeGornbvAo5wO0NcB5H6AFQMD18uzXZANzgvSwpSYQLWPmyUxgARDmdQ28QESnipYVpbUxeSLAIzemYlMx1dVbtsDl7rHZ9UPEESHMKkHi3OVZxPgMnR8RA9juBvtMTfH4tI2/JyLv1PRm6lPhun57j9ZMA1P6eN1yh8ZER639evJrejwuSEscLfQSAoiSfR+vc6ntaCUMqTukQOs2KO21FiQP6fZPh3YzlSQQ1Nv9fr4Z1lJ1prY0q+4nSxt+rTrV3MwFxfkptF/MV6SRSQsA55nMuaxxPMRZvP+C2hYDQc0jEu6ZCXhqGjAs1wzuMmRGbubLpebh9aC1oVEdF8j6f8UYN9ECYP6+/U6D1AxaOs/AwLVO205H06H0JLsYI5hl3OwprRDwCKsKJAgxItx4kh6OD1gOr7F7+HB7focYBMuDSbG37YpYn7F6W7IcGdenC9LaqeQ7lhDHPF81eIKXhRH177pdPtx4lia0midNmS10eS68DbW22S6IpZsRZOAggc0moOM9ISQ0qePBZw5mnYCuZxC0VoYXhPKCEAwQ7UY7gaNpIzpySwwqZZTVJLaJdCZUbWJUfv/71hpiIJRuoBPZAog8D9he0lq8vpiIl+4pduzGdCS9Na1Vcb1cR8JfSmbqwzwtAgMbuNif1FKa6Zm6ZUQrYAkDhG2tIaQDogPr+2Uzgtj4XoolEQ6HBZsD603gQHxvT8kp9r4QECGAxzNRm6BSHS78pqXyzbXzjkhAmCNlghmN94ArFes1+qInjT7bYFNI2PKGKjefiyKgGC0d0KCsaKUO68wvOX6+ATK7A5Fa/zp2QvWV7HbODP0MkCFShNZG4rdoG8AfAEem0+D1h5BRxq4CgMIwG+qvm5YjAtPUhIiAlLAcjduwrAta3cZNktapNQDMOFdUENPdSDdvImiIyNvf2y/JBlrejCS7Q3gEpwXabL7/6fHJdk8P5mFSIE7AWMgYlsvC4wEoeYPWOox5RAWt5XGzArBJ08CUBEAdLmAqNrFowNhtVRtCJPTEAqu+dNyYzKao7ItJhGDbZXJiXPjFvNwY8DIIikIdRwHCsg7ujtQyzi1ghmIhBPM8gTNpmUYMZAoEsJr+pX9uMfWojpcxsC85u5WRUco0vMm7YC9l4GsxmoqKWcG+4CgzQDqqWjMg0jGZCmyOZq1jdMQoeRuG00z2HTt2Y1V0RYgr1qN7w1wzci5jUsK8oGlEHMmBGc2FgH7qQDq9TVSrL3Y6AGZ2BXL3iilYoJSm5sa5QL2CqiIQacN7JsQE5oAA3MRLqhHHho5FocKjM/jS4xdrW3pGZk+KFxEjinEnQZGXKVNuDJ8ETBpyP+md0LWAeAEFR46ZETiiOmIOqSAE27XGbpsg1W4uwHaY5XhC7p75IYNJQX4BT+cH1P3qwBWQlggiwuHu7QAaW1PU7RHFKe4ZRxzvXuPgeYdlS7h7AD65AVF8vuCQCLuzE9fVnON7AlotFZoUS0pjcZVWHAhzU9x8gbY22q3gD11/8M1Be6KG5jgFH/dNiYBSGGBnztkIdH669+fdU9Z98eCIGBpq6+/RgO4aP1qGZPJw/zmQmdd0d+LmLMpxE/ou12/2Hk3aiWUhJKgCHOJ4+JmbjUn9JQLE69ZedgcADbtf47yLTVhuQNsxneiTJ7VYirFAgdBqHQB9igFMmLlDpFjWOK65YD50dh68etSG5IxdOjByyeNBP+BgGT7+WSITKIhXAfARtoz7jKyftvfz69yYQa0O6kFtGyjKVHRHBisNABtiVUqrfQMwkh8zRous5JPLTmdo5MDsLavzjx8vgOnL8XK8HD/p+PmYh5hUmoP1qZ0Wa/P7MFZQFcuJYAqjEidi854M4w+s6ujAIi9ASIi+ssuyQ9sJwTNCrKxPAKZHCJEaYFjcfyIrBAy3jcSCs2XJdpMdTojrXHEPxxUpLRC52aGv71Hzjhas9TmuCW9fv0LNHUw74/n5Ga2ZxiEEhTJw9HL2dFywl4btJn9mCQtAcdC+pWbE5YDNLeuIGRCeXAYiEMURrhRDtJQ67n4Vz1BShBCHD6ft1mGEURXNZhbcLQVzNtp2nKV75GmYI2Iydo4RycHGGBezcvQZcuMdWjBJY85qkI5yNEWtbVSVMSQwxKwaYWW5CBApovi5CNFaiGkOJAiJp57GYz3K3tP0zJRw9P1iXBcmmlxBKFppIyPX7sZZ9eYiOK6WCwsYXyJnwRJ74qGNPy+PTgx03Apt8MawrgfX2fSRcQVLRXJdFQdCimFgX40ZUhW59KrM+CkEhfg1M++TND1L4dggd9q8mzmN4l3RavYcXAOildiIdt2MiiNU65ADqBt3IfDUxHzB8fPjJon9Pyv7Bv+tkTXVXRSkQKDgisl+o5l34lBTkl3Ujmk0yZ/5f6T1HiqK4gtDBKEWI5XRQP8ZGhdQdBNfFsQl4t4T5UQKcs5InevAy2fnLC1Hb6UqWu7q1Cd8eCxjYfz6L36NEDHQ6toq8n5BchxgY8LhuOB0tECm1hQxFyzuZlZKgdCC0oDsOp0QAQSaSeYpYdsvc2EFoUkbD1RaI0hlPOjNiVaiMtB8kIGincUaSkHbLw48A+tq37OD3LkWzCggB59VEfiA47FjSAVLCuNz1BLs/MPOVZViWEmzz9C0Aa5VAQz/ocgIqd96xqBkwligWq24vYUtR4cHvnXZdpRSh3CuC/M6g5KSpQJ2UZj9oS0utZfzZFhPpxztpaGJYBmYhhgPyVu4NUS0vOHg3rfmM7pYrKW3lnGJWNfzuD+VGlSuUH+QOb42JjB3o2ZbhLrRMyRD2CaBDV3jxGAN4xlRbebcpxPzyKg3Tm92/rvXKgVYmmPZ0HrANgdwmBuTdv4VZIrnvuD4BSqPCpUAcPA+sk9XrN+a4zMfy4DHKJDYuaA0FxPF7FMNNW7DbAWIQLiCnFgVNEHk2a33/WYt1cCgoUi2QJzqJ3e7PCKEiMPBKMUhMJZ0nOwYNkp4zhd8+mB2iL//4T3yLvjLv/pLAMDhcELdHoep7369gG5W8iWtOB7vx4N/vVyQjhXFjYZLbWgakPeMkg0nOd29xnZ5HkK5tm8QyYguzrNqoiHdmDA3tLEjMSUjdVFAp02qFqNX+6K2HFaU/IzqQC7BpgdTIUsAWcwiAJS9uu2/IPa0PE0AMRa9jvfdCxD7xEwaYlqwu2S/lYwYpsEusVlWdmynVQOFOfAcQ5OaQdANBhZjGBXTda+DLAUYKKu3JlOkaD796wFh7O7gt9WMaJt4TySUJqMyMSd7HiPSXLJVBmOTis7ypTk9KQawdrMqMhBr/JsYFwReB+ahPi5NoT+wwXb/wHOszwwpjK5E5yVCWxm2hKrm1JZ9SkIgJKaxMJRqMSStxZvFQqcDPbx78EjQP8UI+QXzeDlejpfjJx0/f1QL4xZIK8716FOPCOJp4KI+ZbE+vVceauNEmm1LL7H7zxwCgo9qm8cIRt+1JFa0sBlno+MibbPX8dFsgLVUz4+mUwlLwOH0gPOdEb7WNQKtInQ6735BqxlPzx/xdHWzFCR89dUDHs5m36etoLUy8lmhBVXy0Kmkwx1iPI1YhcMpQbVhYw9RbhZFKSLDe4PDGflyRfSqYS8fkdYz9IbAFcKthsRo4F3DU1sDh9Wp333mX0EURuZKSgtCTCjdRIdswlNK/33Fsgb05rP334EJHLsnafIIwz75aGi8jp6bDgwpu5tiw0eGs59lBihEELnnBRoik5HZWr93gs8x+31iO/7IJmkCaeo+pfarSkDvQVQUVcz/o3uTBCKkJQxz4hgCAk/NiIk7dXAfzGKEICMbpgcreVUHRYhmrdk/p5LFP0T3PeUQ3YzY74uUsB5f4+otXc47rvtlELwOywJm+6xL6HT+hiwyIkDPd69AidFTdmuraE0HtR8qUFb0CxJCwvGQENKK7G04teb36iQDSu8K/oR64hcIurYZvDogQ9r7lN6+9CG2dSsEGgxIqC0OXT+QYgKFaDcS4MG78YYbwgghDZUiWjWvg3YzInZzml7Pf/z4PfL1gjffWctxPL/G/as3uPPFI1+fEOJxaF9a2fD4+BE//PAjnp6MiXk6nfH1N1+NUeB+vRqBy79jK1dwa6DFF6zja5Dk4dOwpIhaM2KXNIj1ujVWHNxUZtsbOEXIpZsmR4SUkD0RDmO8PC+ugXPe4jVLSBOq869e7AAAIABJREFUI4XO7o02HuS8b2iCGw7BWOv93Jm3SvIFPCZjk8ZlwXJw0I9sPDy1FxtAPNLja1FULUhLZ11GX9Ds70MwILqXxymwnUeWQYgTIm83+yJmG01zI55WxUFRP58h2urRwTIlE72FMZmFqLXRHYMTEaREwxi7wZy9ZiaQtYATiA+2UY62x5PuYpzOYYFtAfEWLnFCSiuit9lsjDuoJ+HtWzZdkPRFsEAlQMiuPQAH/58hDs7nzcyrOgieS0GpbebiDKMk/x5NzON0aHdsk+AQBu/D2KWdu/IviHmI2H/m/jQZe36PDRwALiJSwpD9UjOp9DqCjhaQNqgDO6QRUuWzhYiIB7En6yMUAhHC5g9drRWsbUx0jseIr775S9x/ZSbAcT1iXSMurpgNYYG2NghdHz6+ww+/+y2UF/z6N78GAHz7Z38BlYq82epfyhUQHS7kuRYgHhEOBsqGdETZMnjtQdgJMSR0GFD3AgoFaV1QmwG3lB8NG/AdeT3fQcokHIUYrbm/YUQG2JTGzq6xQ62v96rAUfZuHKPGvhoYU2tORx4PhC3Epb9nYsSUEJYVi4+rApt7Vjr45yaCSoGEPmULsN3Zr3ERNDWhm1/Ez2INORirU5Qg3vsbPNgGN4SJwXAjZfTnnwZr1e4VQl8qBEARRaLJWhUx9Xenw2s3+uEuyTdH+CHkFEKMc0rEIcJsr/wzBnYVbhjsZECMJdqrw5AANrtDe5FkA4F+brQhKMD9+ghwuRgmNKZRIULVzJkBM6muZcPi1g3sLgF9MRZdQJAbZzdBk4aIgOgSjlI2aJt8/1ZtiCFy41D/BccL5vFyvBwvx086foHKw5hqzAkQ7taKxg5UnaNaN0O+LY2YgfPxhJPvYgxBa/uUBROj1jxqz26Io4MoEhDTCSCFklUBMTLuH94ieZktCNguGx4/GQcjLlc8MeHVvb1nbRUtV3xyKfx2+QHf/tlv8NU3fznKuvfv3iNyHlVBaw2QiuKciyaM5fjNiA2EFsQ4zYwBRsGG4B6nlZqPUI9gl8MnJuzaED0+knnBtZQx0rSqIozdWFpDCGFkmygptG2ItM6oR7WQ4x4nUEVR62RJ2iW5sTJkRi0NzB3PYIRoQq/+W2FdINDPfFtE2rD259ywY067ApvXxvh9KKTJ6DCELUArUhgUd1WxKUPzEacnPYvraQIZr0hu21++nRo5bwF0QwtwUWavYrXZNxoVkBp/xV8zdIp8v6FBoIAxAVINWJcDWisIPvZnnh4u9k8CQoxg7tMXm4j1kfTp/GCv5xYKkjM073je9zGp45gs6wWzAhVp2C4fAADH0yscjg+f6WXs63f8iBG85Y2px7Y+oe0XRMeDqto0jTzS9EuPXwDzsP+aCFqYPSTgpZR/KYL9b9NpBHM4HPHq4RVWf9CJMrQ0wHkIqgGBBaLTabvKFLXF9ABQQdNtpCepAu/ePyGmLvC5AtKGN+hWNrx6eMDuuEApFzx9ejS9C4C7V2+Rjm/xj7/9LT78aMl2y0r47ptXQzOS8wZoGY7sYX0NXs7joZQqiGEZQLCKOUjRGFeyzfK1IHoLZvgOjdEsAIQUoWrnouYNKcbhjMWBbMHQaWIUGCNkGQA4nVDr1UPI/VJoG5m5quZ4P5zjKVhKnbcgBAE8l6RzEdJyciKSp88vC5hpGPFUqaAShi8q1JLfe1ndRCA5jxK6igF8TAHknAryxaO7WKRoNIDs+g3zRsHwI+1Y31yeGDEYff9zsxyd353IWrje17Bxk7rmkheGimUKAwbWpzA1PtIaNC5YDssAZYmjtSk36l4aWbOwsXirAHetlhkyd69WzQXKDE5TYtAUaEo4dG3WskDrjtw3rlqQyj6EcgJ1Wn9fnS0wqhGP5ybwgn2/zmCoEFBqhYbp+fElx88niTEbx0MBkjZ2KNNa6BSxifatboi/zscjTud7sPeMLe8GPvWdsxnCPeIFVH22PvtBOEHr8ske9MvliiaE473xONZ1MaKZr8Tn4wk1X3F5NjD08eMHhHjA26++sc+gCf/wX/5fPD1/HC7YX69vPSHOV+qS8fT4Aw4eIL2sb6HgoUhclhWt7QMAjNEk3v2uCjGBRCB1H+eCmJ0p6AsQKZb1MMDjEBMUGAtBoGj8lr6zKqFmWH/rN1Ldr5C2j38jHW/ouglV1KZjgVdUcJg4gXFuEpbD3TjnISbwchhmSgRFyRk598DugCXFUREBBFAcHA3JO2KamhxWBZid2NYxj2CVQo9HjBGt1s/0KpHCwAVaqQCHG0ElI8CqjG6HyNGnKZiVhvZ7EgYErwsPtieI3Y3MF80UjQnb8Q0V7LkgrQekGyUuwmT0hmjsw7FAqSKQovgNXpoAbRsRCHXPUFLbTL1qLbWiIaB/LC0NKSxwrhogDTVfoW1GeKjSuN8h2UhsRRAP3TX/iFplONqnsPhiTTd16B8/XjCPl+PleDl+0vEL+Hl4Lwk1M1z/cwr0Gb6hZKYwpJPZdnc+YklhUG2tHbjlhmQAcwzFIYAoQmVKiQGnu/cdxmgdo6VotSBEwsPrt/5PKqSFoWY9nd+iCPBff2th2+X6iG2/Iu/PiI436FdvUGsZ9n5SnsFESKdv/bse8Hx5msYzAHKVEdsoWtBaHRETRO66GROoRxAE8w/t4sjIAYQVNVgbEtMKVRm7mqpAmoyQ6povqDWbLsQ1+K1kCHRk2AQ2TGpQ2qvxcvom1UQQIo3pFrthUVrPo1znuOLAaZTN0hoaCtTbg+V8jxAewNI1Nxm1VGTnxMRoOo2ufQkqYF4BDiMzF+Q9SMeMOCDn50nNjzaB6CzLGE0K0dsvhoKjjVZ7ZEEMBAjdKLqz4QqjyyZw5PFAGI8jDUkCpwRUjJycJa7Y9yvyXnByc23Is2Uy96qqU+B7C9KKRXZEHzkXU6P30fredqhTGWZ1HaBNhxF2loqwLjPuEwSooPr55Wb0ho5zmY2DAlIgrRtjL2bD0HGpYBYGdMOG/ZLjFyCJeXdFAuj0hiD0lcRuqtIaVAVpifj6rZX733zztWXIdqMTYjTQ4GwEXgAKKI5HmLBpGaW8NvHaOqINjThj2zOCE4aW4yscjyccjjNA+v2HK65+8z8/fURrZTi2t1JBKSHEhMU9TGMMaDpHntZu3EFh+MS2bdi2K+7u7PevlwwOPABXac1McHp7Vm1RBPPU1MQVWwhA6OfCyt846OgJpbYb9+9mI+PuxJ0WsN8octO3aptjUuN4TEp7E8MjRqlK1v70z5mWk5H2CMPNrYlxdXo7mssOEcJyMKA3uiNadUc0dbJXGG8hlh7f6dVrNBCwKUS6WTbM18U3HnMIn+5lBo7yMEwmZhBPSb+0AiZyb9tevvd2xRckEft9/1ylChR1mBNLI/eZ7S5ggnW9H1YPDYy4LKglo4qPsdezEclu/EwIGOPPqArSiur40PXjJ5dezHEwcUCtguYhWwZgKhB7m0hoe0PoRLRoAWfiznmiZBhHl4DQAlUz0CK3CghElvI4bBECiAJuHcy+5PjFVLXkaPd8azWyjj9wuRakyPj67Vv8xW+MsPXq1RsEAvarcTRysUlL7OxFVJ+s9AvPEClTiaq2YKWw4uj9nKrgGE6jemnScL1seHy04Otan7E9PyL7jr/njBAXqHTfDBM4NQ03qsNmYJ3/3BRoLSL1qIUnU7T2m6TkivVwHMh8k+q7omMNIhAxVecYHDEBCCO8h0MEEw+CESlB5IJGHZRVpDh1EiY+M8PjzvOoTX0n6UQyx6BuDJua8EDyIxNCwiDDxXRAiAfs1ysOLoyrJRtY6wtUKztao4ElqBi2kJ3JaWFcPPgoTDaVCM6Yc/kHtu06IjlABOUI6i7vWsGBB3NzREUMxy73EOlGP6TG1GQFy7wjiWns0GZef7PZEaFKA4fb6cys7LqrSF/M9z0bYBtoMI1PxzurCP1eIj5Ypaw9SHzHkhYUv98//OGfsD68wfn+3t8hgYggaKNyrrUixDiAW0u4B8Tvk7gsJi4d+jBYUIUzl4kjWFev7m8mMCEgduyLrFZqrX628fyx4wXzeDlejpfjJx2/COYhKka5vkGnoYymGHJlkoq7w2u8ffU1Fp+Lt6bI9Yp87QE1uzlLdXac62bGCifu9DTAa2slFIQifSITILVg322akrcLtusz1oNPRo4HxMMR+bmPNAn7dkXrIVCnB6gGNCnmoAXTQRjWcvF/ExDX+xFs/fHTB3z37Xe4XGy3uF4vWA+H6ZtRK+RmJAq1/hI3wUVChLQsg8NiGh5GdNyEOaCUMvUccnWG46zKzNFNUZwPkZKpSKdfhE2rWvXpAMzvstviMZntYHecYk4I6YhaG7pjXa0ZiQ/o+w6RIu+PY+yXeUUrZWIkS4CiDVYwYgEvpznlgEIlI3AYu6W0BqEG6qU3AijokOR3ClH025fJ2jyMtkaHJkd5tj6EmZkCEq8MvXSP7Hk0dnCKXnWMuat5rjh1n90fNqX5CFlIOI9/Iuroh58bwY5SA4LLGAoKpGQsPilJyUK61zCNmavn0narTooBKSY0n+yFQIjHEyicbt4zItJs8RheN/XrHKxdbr33rM0Mw0UHhPAlxy8mjOvox/SSCGaJ1vM7gmkHHp8+oqOCx+MBS5r2coaPELyjwHFZoVLQnDoOf4cezKNwgVpuI6z5+vzelBf+kmW/Wn/bffLUDFR09NNiPAS/CUQUHCJO5zPOngQmIDAvCA6W7U2RKOLjRxsPn893qK3hevV8mSpIaRn0daYEpW0KSciEZq3mcUGJosnefeGs4mPY4aEZrETtWba1QLUgkmfX7juqsHmH+Kg2RfY0vmnfVytQcgfTekj11Lok5pu8XEEiBsfjMCFK68GuX+dnkQHeveXQ0iBFEOKdv+cCEkDUrs9yPCIeXo3Wk7Sg5moGx34NKjNQCazd5Le5uY+3QkT2PHbylTTr17txT2nOZ+EBxgfPn+kh0yafmLlCKi7IG4REBlEYRD+F+YoWx2pCCNBqi+IkVtnod8ra3WOkU+DLBlRCPBl4v54eoBzGyJQ5Yl0WJJqvSVcy7Yovtsvh3oLc6cnfkUCIA5tRqYYvjfvKWmHjrPRFyjxYSm/z2gZ2IuC0lf7jxy9ggGwfhDtb7KafZvcr8N9EaxUfP77Ds4fkvHn7FR4ezjh4L0skKLXhsPTFQd1v0cEgAVI6ot+5rTWUUrHtV+x+c+frE1QTSvd8rBWBlwF2JuMGDXVlaw0MnonhoboD2ILrxRaDr96ckeIyfFDjcod3P/6IzcV0r169xdPTEx4/2fd69fo1wITdXbUXFjOplY55EFKMYJpu6CEmSFuGFQ+jIsYDYvLvXgqW9YjshkIhVYhiRnGSm+UwI3aWbzNsZezYqii7TPHT2Gm7sMtAwunIlVFzwYEDGPag5n1DWE7DIY7CivXu6wGyUmu4XC/DzazuF2OperD44XRvoF/rCk9CyxlhWeeu3wQZO8gXRqkZ0DYmHUay0ynsEjaild97MdmmY57HXmmoRyR0azFnU4axUBaI6iTthQRRGlMNJmPf9viCJU2NSsdBOug3rGGI0WrF1q9x2dBKHNyT9fwKDQFp9Qo3JqgSmuyDGxKXFRoVyl19vdim0n9mq9RqV0ozjckmACgEQew+2TvBMLNFmfr5q5Sg0ReOLyeY/vzFwwxEIoDPSTVgQ+ZDmCVxrXaBsiPD8dMnnNYE7TbyHAGqN1aGhBgi6jAJrtipQTsgWBtqaSg1I/tEZi8V0nYUVy6KCLAI1uWVf94jRKYrWKvFbiJnPFJkix+oV7z95m8BGElp3zewVzzXLePTp/f481/9awBGTMv7M5qPch8e3mC7bqjePnBS5CbDbJdg0wIzRfaHkCNCOkPRM1Yqgme3AEaYS4d7KHzypIpaZcQnUggICOA6CVlwUVQH02ox5L6b7ggUgcNwCA9sJW8f7Zo7VcN+fcLx/OCfoyJvG5K706/LAXSgsfOFuOL4umDbbXpV90cwltEucIwIBLRM8zOEAObTrChbM8MbzHgBThZz2c+VEk/zHxVoxdhtGVb9GWjqD7ZUMHjEYyIwpDZjhaIbOTeMdowDSGm0Y8u6IqKi7H2qERB5MVXs8DY05nBffFttNnXze7M7o/dR7t35HrU1HNY+QQO0XpH362hTGDYW1tjH/urXsW+w9hm78xgpQ4SHyxpga5qlxHW2tyAJIaRecfqolm+rpj9+vACmL8fL8XL8pOMXI4l1EAs3c2K9Hd2qAYdBZPD2ny+P2J4jDqt9jOVwAsdlpoh7CE7HdUrJQK2jssp5R6k7as5jlxchlL0O7QXcDGj4OMAqn+75aCHdGCPP8vwJxIS/+bf/AW++/g4AsF9/QC0bVrfn+/jhB7x5+xs8PfWEuAtKvuDOKfHH4xG/+90/4eHBSvVWd+zXbVZhIaKK5fwO79UWnDjWecf8eRtICRwXM06G0Rb27XloMWJkNA0AM8RDnPZqc/uSe24ImanxTRCX6MR/lCJuGNtopUDKBpKCfDX6+fH8FYCpbQnrCTGkGVnQGkJacTrb5yzLGbJfBg0/cEBreXAMAEFYDlb5dTPn7WpYUBfoxQhGgrZuPxBhgdD9JSpEywDaSQGOprnpdj/2u3yDr7GNaftoHIvFF9z4izJj2GoWIQOv924AVb09wCSaUXQeTOebWIDZID2mLj/o+MURFkY8W4xaK5pn2vbPSZSGl2p1icZgTpp57QCkiYyQ2b8lQdxmcIKhMbID4zT+jRljT07Klxw/X9tiywYAQRWeUYekNoEZ5isVJAJ4QFQ/RMoIaw7M9vvjQbcFaRjEkqCWy9AwlKwGANYKcXAtHV/h8vg4uAtMwftIX1xKQ25llHBMCRwCqpvWhhTxF3/77/Dw5lv88IMBosfFCF67l+Kv33yDSwY+vvu9ncQYUCXjq6+Mcfru3Tu8+/4PeLjvxLQKhGA6Elhiu0r2C+U3fIhAE7RyA26WMsVLKUBFQL54HM4PKPsjsn/PXNjAydSGaU4M7h7e8QkYKWyQCMUW094ftybOZpgszJIfkfYzlFyR+fwR5ze/gvpFzDmDKYwFn8jKaPZSPoYj6DBvZlOXrOhJVEKEuB4QwmHmiMQG4sNNhGIEMyFf/VVUHWPpCyvbl7nZuAhGuAr9PpAGRZ1EMm1+n/VzkwCug1TGHNw7pr+etQqri0pKaabAZR7TKVEyLlK54SFJm0ZIxGi1DbOgJgFFEnIHLkUAPbleqT/Y6oLSvsDo4Fb1a2otlp8aMZyRxx+oe+7o4IrEGJ2t3dsWHgLJP8EL6JdzT1dRBBYMthwRhGYsIQdb6UMIo88/Loy7Y7IYP3Rj4IKjmwNJM3AsuZS4xiv2veHaR7t7QxFGLnWQavbrs2EiA7XyTFsHSEkKpLYbabXtvKd76+n/zX/7H3C8+xb/9Nu/GwvQYbkz+X2nm5eCH//5P80dujK+/vbXo/f9wz/8Z4uR9L/fvTKqPjJdVjOSUYRBOxaN4Bgg7bmfWKR1SspLvkBrHVXCcrhHe/gaef9H+5pFEBajU/O4AXZExcB3JAuWBGR3EFcoUuCxVFhOKgZRiIggtSBf32NxprAcA67PP+L86s8AAJEEueSBgcTeP3c1NTEUM8aRiaFUUcnzcnkxm76bu9aueYTyTM8z6n0XpdnrzigBhSJ99u/hSt5wM/mAxjGtqi1D9Ha6YAPNTkxjTm4IPVmsrbXBggWMMtCkTXMrVeAmARGtQbWAHazZAaTDAez34rXocGCzF4h+vmiGZCnMF7lD2x401XGqEfY11goxhXm4OZ+dLt+JeSECgjHGVnsIvND98tXjBfN4OV6Ol+MnHb9A5WF9eYzRd48blBdGsOq/xmQr/erW9PfHhGVdhuGNghEQ0fUwTQSsM8yn1oacCzbnU2x7xrbvyHlH9lgDqdm8M4Ys2uIFsvf9HIxo1neLuEa8evMV/vKv/zt7z6r4x7/7v6GQYRXw/PgJp7szumzq6eNvAZ3TlOPd13j77W/wwx+sjblen3C6O6OUacJju7m3W2UHxMh1fUKDYMSrTqArebeRZJ9SCEF0ovBNgOPDd6OqeHr/e6AJIo5I0anN5QrOzzfWnhtUGKW3lqoIbAnpgF0f1Tro35YFW6F1Q93e2e/Eb4FUsX/6nZ2/V98hJh7W/02sZO5hScwWs0B9AqFd+t0JXla5itKoToh20JImSUwUHBKKb3U9zKmbZbdWEOIcQTOZiTPzreeHGf10voRlutTh50pIaJLB3P1Gk8VGdtJeSMZbku4PS2CO0JuYD0KzCVqneGs1Ul3Py4WY1d/wvJmTF3tJi5uwSsDbbNgEZea26CTFoVfO7YYSoSCWyRMhQgyrPaYzj9MxEPv/Kpbbq6w3otM/fvz8US3ZfyFE8xFA98usUMZ0YnJNBccw5uLresC6HoEeehxXMKeRsXK5XiBtEpBytYCd4qPefduwXZ+R9zKJgGEBBRrMzBAXKy37yQQhcMDi4ObD66/w7dd/hk/vzJnp8fkRISWQ8tDLLOuK7XKFoitcD+B4HF4ar7/+c+Sc8fvfmX6GiLAuh3GTkI/Teo9ZSkbwXrnzIWJgpOUI6aPX5kSsnvUbXLXsRj0hMLZ9Qzh8bZ/hzx+wP72D5jL8WPPGWGJCjNYixMio+wwSL0EnZAXHl1obNztDoFJAOpXM7foejRjp3vxanz/+gNPD2+EQXvcrGIraAdKQzMzZNxGBK5qdEQnNULU/02H6ROB4HC2Fij2U3VyJ/XwMr1BpiOkMSF/ABCGmz8RfFuQ1w7ATR8/96bSABCltgLY2UJ8eLBxMd1I6i9WxBeUbPKIBUBlq3wALWZ+O7dkc6boyupGf/N6S9Ace496CKPTGxxduND60RGpntP81u/P8WJIooorl+PV2tlUn0PUcXzKsJFIYvKMvOX7+tAUd/BVHevsDYyBWxxbg7LVWFRrdXXoJQEyDrNI9DLvQ6Icf/hn75Xl2pcyA0Jhh7/mKnIvR473nDesJIaRB/iEC0Oq4oOCI+7t7vHltGEdc7/DDhyc8P5pNIYeEoIzT3etBhPrd775HChuOrrIFLeB4N8Rdd/df4fvv/3nY6B0ORxAveL545GXNuO77qMJCE4ACDhFj56u1QknHjpI8enIEG3GAIAxsgVkRSgZ6+HbOCIc34KVCqy1yogBSGyFZACNyBtxOcSvFd8re1yvqDe5owwibFhB3k5yGsr0fgr50eo3H998jrPfj/ErL4GpVQYqKGisW/9xEFhvQ4xBBizuNJUh35AoBKS4DD9JgOXbDkUsJ1DLg5EGK7vAljnvUK5Z0Rgw8Hrrask0k/HdErPbpWJkCCBonFmY5IAOLYTfLGZhsCH7Pz6iK2orhHo6bCM0YVsBeinSyyARwt387WmsuyefxHPk/GqC3ufN5tdHPBeZn0GY19QRxHaQmutlA2aqMAQuapaPSzTn+guMF83g5Xo6X4ycdv8Cotk9YrCvr2D2xzZXHSi4NpcF8JU+WmbKkhBAOk8ugFfte8fjR+usff/f/4Pe//fthfHt//xWW86shumo4AClZJGBnJ3KAhgDp/TMaiAlfPVil8frN1xAkXBw3eXr3A5SAw9n0BssSAUS8e/cB22blvkLw+tURyn3Xsv7x1WtrGR6fnrFdtxvGo+1QXRTY3Hek7wa1VYs29GxZe9GGVq5DeLWkBenA2P0zVFELS/J5vsUIrAhH32GYkfcriiiWZOf3cAZK3sBpBmnldIWw0ehDYTS5CVNSIIjMHYrgkvV6E1UoZji0W5uXWwEfX6FtH/zvI2JcAfdWFTCY1vGaCGriLe1s0BWiO5RD14+B2MLLcTMpCWGGPVdRECcoPBS8l0Gj4yA0JsTlALrJdFXJ415jFhDSmPw1KXYn93MBw/Fm5GVEIx15KqYL6tT/2UKIFKTbloN03K/QhibZ2xWglobWboWfbrlJOuUSlmsyrQyJh62k/WjtmNZZWYPDxFLIzg+xR6PAxuM+W/LPRT5ZihhuVF9w/Hxti7onJrnCs38eVZRSbjJDTBUZKIzsjJRWhJDGTdNaxXW74KNnxH56/wOePv6A/dluzOvHP+D+m79COruDF68AOdlmuI9VK7f9ihzWM87HdTx0P75/wuPj88QaYsCyHoYO5fHxGdv1ar4eHWwToOxACvYeW844ne+Gv8T3f/geTx8/DH3BuqwYJwJAzhUhrAPr+fjxChGgrMvQDJM0hJTGCA4gUIjDkb0142N0fQwTg8IyqOTMDctKyNtlfI4YEkAF0dPwAidQ+DSASfOI1c8WOWYeICwqzFcj8MCyuhBSe7IfFUj+AIq2YBGJtRuuSyEhoClqdc2I+2TM1PcEUnOw72ClSDQqf19spYGFIW6+pFCAG9CzYhCsXeqlPRicTNbQVcikCm5XUP+uKgAnxN4ytwzoNsDlIGr3TK/tA4M1IURXhLvehkMYzmzqYGj1F1mCu6lrJ7fZwtmkLyaCgEkb6KpmoI0WzizbMXgdaj3L/FydljDTqUA0uVSqZFPqm7bPnPcmAbFUteuhPKCDLzl+PuZB6v2ZS6b9Q+/7Zg5Q3ZTWDWVjAM4nuwnSstouUbthUMb1+ojnJ1sstusFWjbQANIaSm4Da+uEtJzzQKdDDBbx55jHnhuenj4NGzyCgHROgVgD9m1HqaZSlNoQAkGqTttBUXzMGcz2IKf1iLQc8fjRdvBP7y2VroPZx9OdvaYDu09Pn7Aux2G5f71csR4OKBVDzyH5grg8DMCqVoFQGMzBtB5R8zaYnRoIIa6ggVeY2jitp7F7EgghzsT5eLizHWc4i6mR5vzc1FbBYcXSd+NWnYHLN7wNDwgaN6JL+RxnIVZQPI8JjkqwCUt3Pm+7uVx1M+nuHC5yY75gO7oOMDOgNl8kYABlIICDLyYKCK3wAhWJG0QJMR7RxMVg3BDSMoySSBgIK5rvtJGD3UOdoxHMpb+NHR8IiKCPZI+xAAAgAElEQVToD7FrhogCQk9ii9EtBvoCRSCOiNSjAjeEFFDR7z2PkBhiax7hS108JzA28YhWqKb0ityvh+lsujM6kbGGx0DHA7boRizXxZeTEGe4yQ12/kXHC+bxcrwcL8dPOn4BPw+zzQ8UgGaoNmC7FqtM78oYQQDuTwecz1ZG2+RAB3LcmiCXaeRTtye0chMCxYvnn9zEFcRgmTFtsijLXsaITl21GbuGRAkibeZTtM1NZP1zagX7KtyjFIgjpFbsxV7zdH9GKRlPH21CU67PkFaxeHhVTAv2uo+MldYySkuD99FKRQkCfc44nzwoii5o9TrHeCIA8wjgFjwDrc0dqTWUKlhWz7xhsulMCMPcR1oFL0do966MK/jAw8oQTU1ZuXcfjCsUafh8BmleeYQ5IRDDatC9VOEl9WCDFkh5AkWbvhSJoLoD7sXR1HCQ20zUODJefWcMwSKX+3dV2FSht8SOgXS9h6p5xI5wJSSoZuTGgJ78u2xAjDinjnFkIC0Iyd6zlGJkaVe2SxPTt3g1adMhnthD2SzMneLQarF7w/TKrtbdfh5ZzCcgPiCre9mSja47FtHfVxSjxVC1CnLoj0S9GurvadVGn870Dqa7L5rtYwBoMkqaVzbtBseKMd52Ml90/AKhT3YCRcRIML00IiP9TBqtfbL1sAz+RIirUYQ7SCM7ynbF7vTznC2w6XN3Ix432eJfuLY2DVnceTr4yY0hADI/lzRLChs/q528/nCkxfJRSt7Qun5ABSAexKY9F1yf3g/cRFTQVHB0IPhyuSAENv4JgFKAZTWymX3vYJkqlZGWDh4fUeuOsNhDV5sgUTMzGQBECzhWSPcG5QDNO3bXwqRwAIUKbXVmqrA5VXWgtsFMjVN3BOdsN1uX04eAvVbMjJbD8FIZIio1ox14aa58Z3qaUXtHQNoAVEErhI+DeNazcbvwi0AosEzXKTCz0jv4ezZVT6lzLCFFlCYDOyCQj599A4H5vohWVLWWQcMdjnEDoRtLucNWtzwgQtYGTj2DN0NlCvjsPg7wDhoxJHBMUAWqi1MCRygqOt5ltPtqZDM45nFj1t2p7Z1AZ0HctuF1fZGqg6eTuDE0Sf1zqQdr9YPDpN3bdevnzlsfaRBguPkz2QYbwvov654u0pxoo3bOxlzcXMFGSppzek6HFakn1gwbfMcu9iu2pw+4emh1KxmiU8zERhn8LNKvlALonFpok2EiDNj6bCh4V922z3Y9qKBpxbp6ZCAF7PvFXMF9IhCZsBynO/cPv/89gDqiGeKSUDfg/sEmNj/++A5v3rxFyVZ51JyR9wQSxxb2ihCtt93cunC9P6DWxxuY1WwcqXW7udVuTleatirGj+mEr1pBIYFU5uK6nG337GzFmiEhIDiBDiFBWh2anBYSqGzDAg8kSGmF3c7+gCAZCD4Q/4qmy3TkgmAGPgHQjKBA9T9r1bGafvMzdaLQrBb9gRm4v22/43MWEZTSxo7NNqAYkRNhsYjGNRGqP5hLYiwhQqoDubzbFMNL44QElTbCyBsBoeq8fykCIHRNd1yO5l8jiuwLkhJbpdZd68gWhH6/LimAKGG/YR5bOJN9xqZk54WmHqkr1ue0xXki3bxY6mf4KTM5d6TzrYKB66Cb32EbZviiFiO7WPJPKDvwgnm8HC/Hy/ETj59feehNT2o8Pf8bhTFM7acmDXeHA+7OZ6TuWUHkJsY+Ar0+48Pjj9gee+Vhu2if1fd4h973t1IMfWYeJa26wrd7ZOY2GXRAN5Qt6Ks9KbAcDgi+A+3laoHQQgOLiTHheLrDp4/ujpWviCkN3ESq4v7+fsQ5fHz/Dqe7O/TxsalTZahV9/2CRQ8AK3K2Kc+yBJyWFcUZj+AVedtxvHN2KNmYT3yUVptAlMZurGIZtIEP2D3z45rNgrHTttWxBXacRFsDlRt7gqSIvAAwzKnzP4gjJnVBEWneNgEVRQiNOpfEeQrjLlhsTOoeI5HhLmB97Bocc2oI6KPxZhOUoXxW8y0duh5vfTAnU0bL9ozjbA5quaUxs9/zjsABx9Uc5U7LFSRljEmJA0KK817TAE3rZ/KKWsqoADgdTFovDNq6QrghBho8DnWOxQiO4gVC67RZcLm+YlbgCrbWdBQB9i37hER7hd9bNOmeIn2C0sBCs/1gb2Ho5iVrAbQh8pxQWgyp3ASS//HjF8qqZWjdYW3KzRhIZVxwIuDuLuGwHubviOkA+s3+/PwB14/vUfxnEQvvwTBGUXtNX2xqzW7nd8OpFgHpHE+qCHJr0xNEZfbt6PZyNBLvSxOUDIAw2pLD6YQff/wRtWfRxoBLLmPcW1vGw9tv8PTBKe4Q1H3Hnrtvg+D5+oxI3Ve1obYNRDMZbN8qzqe7sXikw9F6f7/Rtu2CWstN+phhK6dz79EZJN1Yyc2Wnp4gzEjuAcLEaJLH+JdDMt5Ix5xqBfOC4UdULrCUtTnE654g/XMYaTsPsV3BCqJBP0KVvlj4woBmi9n4WdG0ABxuIA/2jaXfYwHCPAybSBUkt1RqJ5512wA1X1RUHcS+QAF3x8n7UCQQ6hDX2Vg4IrPzf1JArdfxPQiKKsWuC+yBJ00QEl9w7Z7XKFNY2KqR7DowyQEV54GlOfQ78CSFWjYz0+ApmV4MQ5eiBHvebhYo26Q7bggPxfLzS8bzoPG79sgmBLDzjmJybxTCn9S5/IJmQG4qM1xfPIbSF4rzacE3r+6xrsuYN7cmKDVjvxi49vzpB2zXR09UswmCNNiTAtgDTwGtp2OJIAYLW+o7srQKSAH1jpnMf6P5DhNDsgWkp7cJUC9PyP73pamrEMPwEbk8PmK/PA3wtxEgrQzgi0NErYLd4xxCiNj2baiBt+sVzDrMc5+fr0ghgBhDmVsFOBzPg0C3b1eEuA58Zt83XC7Pw6D3ul+hsg3j4UAAyGIWV9eR1GXH5bqPqIWYbBLTzxUHBmobyDzFfq5dkZzO0LpZH913T7FktfFAuLYjUldjBmTpWhoD7+yh7u70V+gNkA4oeGAofeRlIrQOmIJsU+o+nZBexQ05qyXGDeIUQWkBkwwxnTnPYzjzN0o4BB2anb579/MLVjSZDFQpGRzj9BARY6GGG9YvtWqVlPYAsQCFIHJfrPnzBHuFr/MTLyKYgHIsi2rPVcd/TB/WZrUYYMOBMZky858Rsk6E7qp1mxDHrIPNHJdk5kccwfwvqKqlJqAmbmOmN6Mev2iO5L++P+F8urNVrq+00rBvO65bz1jZIE3GqbITEEaVQGoktB6zAGIU0b5sAQDavqOUC1JPa6MAubkYFYR1XUYbc902SKuDubmuJ8S0gEJAdvf0vD2CoZBu56eKUiv+1d/+OwDAq1dn/OPf/T0+Oa1+OZ6QSp0LmAJoCuFuurzj8d0zznf3w1Wq5A3/zBF/8VdmslO2C/a94Oiu400yHh8/QnzHuVyfcH9/jxDchZwtQkEpoPbpyXLAIorr1aMfKSKsC4ZhE7Mlubcu77YpB/oOzwyOB7PT6+BksGpptDRE4LgMsJKlgDlhr74Ase3ac9QLA8FDbxdMGKkQpD5dkertgT+oZMDfmL5A/WGZVW0HGu3nbhLEYypRckWtNNy0QiDgGHEfu0rZqqU+GbF0PRpVgk2l4phkiYUImRyiLyhVPVfIq0MVLExQ7QlyZxRe0CPvGWqv0e9eterQNoxZKavUEcEhDZ9lF4mYkr2DsoHZiHp92qJmLGTEut6Cmbr94KZbISazoBSZVP8vOF4A05fj5Xg5ftLxCxggy+BJ0C3B1XvW6KbB96cjlnUBOAFjbFdQ8j55HcWAohG04/6bvXSMHND2J4jrCwjB0FqatYeI+X3knj2rACggrE6Jj9HaJQ9i3vOOhoC4dKqzlXPX69UCowBoqyDUmyySAlXGhx8N2D2eHwDych4GDj89fRrtVSk7YlzGCLmVCoqK5+vHYXiTDid8/PF3eHiw73Z/t+Car3j/3j5njAxtGf/0WzPhsfT02aDGyFAhLGWOPA/rAuKIZXU/lD0j83GGK7WKENKoFnOulh/TS+CaId1PU7rMHGBKI5GsdUyja11qQdQNhYy/UmtCCjpKeUIDSRukPnZ9EmNiFuq4yrDEIwPfZ6CY/9mEDty7c2IHqmY1QDe4CJqOlLQoBFn6CBYg1ltvYghbOd+rBItYq9NX1W5UGJfP/iyrWSr0yllhvqRrN0Zazgi8IIUbDseNhyB7lowqBrVAezvn31VaAwWa30us4hp0BigIgsB9HGxcIebp48scEDhOXRUYgQ17CeFmzP5Hjl/MSYxBHr47ISZSxflgb3E6H0ExfnZiSmvYyz4eZJGGEA4IwR7aVjJUbpyttILbNngKBrjasjHUqTBBU+nuY1KRsI+0t7ZbGPTuXAYKqwn2uGMgivc//oBa9qkILp5aNzwzGxSC9+/+q30OFFyfHgGy19guz6ilYTl0p6tsYjX/TI+fPhqRKfDIsOH/r71vbZYjya07QGZ19+UlhzOjkRWWpQ/64P//n7Qb64d2dkneR3dXZgL+gEdmj2wt95KxYYc7I2aC/bjVVVlZSODg4KDtIDB+/NlUyj/88J/B3DJIH1JwPB7BXmR1fu7o1x2P713fdd+Nn/HDu1SGH+0I1Y7qxmTbDmi9ZWtCewgHhALjsIKq6GHToBaeEGWWQYa5wOEWl2pCR7LgP9QbDuQ6I1rQBmf9RvHqztl4qs8QxN8qvqamWhZB+oDorP51dp99Hh5+Yh7zdSpweehaA1QVoI3JQypFnb0ZfVzUqk695wqVDcpIYefeO4rYugschMAAb9Bosar20IdxqfVozbdTMEuhzLm+xxDIEAc3PexgK1abhXFmIBIxysctsm47WK/AcENbttzI4xi1eH+W+I0gVNYtjfrXjO/geQz7D7JciWUYjlvB3/3k7Qge34PKAX307KB+vZxxfX3B1TMMxIy6bThny8WGPhpOJ6dojytIrXQdsE1BxNJ4ssTHCqSEIGCofPT23M+vGGTFWoCDnejZHa63ZsrmKlNlys95pp0Fp4dHfPxox/jjf/8d+t6gNGn2RDT79LIJHz09GTDcRwMBeDpfsyhw2w6oteJ3/2oG6eH9D3j3QNgd39nHFZUr3jm1/9Pn/wbpHewG68vrJ7RrQz0eEVrlz58/gcoR+9XSwe8eP+D4cEiltnI8WqZDoy1mMS/Or7MeTijSrVlXZM1QoHKdO6Gop/ns3u+dbXelENW5ovdD4lYKwxHUC9ZICWUzMZ+Jl9n9lCUrMcYUljIK9tx9CS50s5QgENyYJDOWQTwNjEIxpCQFniDgQlkewLDewNkagxjqQC7gxWREhllEX1gQQAXKrrC+N1Qr7rffFEVrkmUKVKzBVnoZ6RkAqfIlRj0PjE5VwRhpvMFWTh/HYGnQommQCC5HoDMhzDCphdhUTB7RPZ/chP/yuGMe93Ef9/Gm8e1hSwqJkP87ai0I//DL+/Q8TqcPEFW0fk6x4tcvn3F5+ZQI7/FwwLg2Sy8B0NFQtlPqanAh8wLc89jFOPu8yMXBU5FJ/oHpJ5w9U6KiUBKQo+77+bOJCkeLgxb9VBb8RiMOj2s2+YGXs3kzz19+xeVymRILdCsG9O7dD/jll1+weV69F8b1crWGQG6+9/2Cw/Fjksb+8Lvf41/+67+A3CtAZ0it2cT6dKjY28Cz9/19fXrBtm1oTbB7YaG2M5heIZ5BuLw84/DwHj/9/HcAzHWvldN7YXRstcxWh94+9LAVDI6UcrfCK/9OHwPQpR6mbO4ZegxOwIEJTYODERwOz84s6ckZ56vvtguGMWaqcc5xfA4Lc1YMBL4k460Q+U0vAQBKeia1VGsSnr1r7Y+zTgiWno3f3A4H9KFgUZRoxCX6m2yhhX0tOkqDzDPmed4peOzXzVbJNsNEKFSWa6NoJh+1XMbPCBkAAVDqO2hgOZ6JIp0asLUWHMohw0Ihnaz3r+eIfQ89DwsLmKoRiBwA/PjjA/7T3/8dHt8bo68UByGbWuNiACqvKJVw8nRkrQe0dgb75Bcq2E4fMk2l5YBrE5x3r9xV07BgloXcIug6Zq2FqE9K9AMV4/l7Y6Qu1j0utERVo3/FTO+KqvWSjXTYgXF69w5PT5aaNbIalpSy3YTTydzXy/kLWv+Y7up2eICCoFd1pS57GEupqTfx6df/gV9//BEfP9gxnp4+g/U9qqurl+2EYx2pNCYqUCXs56d8T0dDIWS/E1XFlz//MVOJH3/6GWMUJwkBzBVVCanFERoRQD64h1Kh5YDurFW0HaNXqIdCrATaHmYqF0DhqdXB3gEtjBGzHbuPPnvseuAVQLk6KS3VyACo8s1DZ/1OpvEhtoc9ewETZQ1M/G5rHd2rbk+FwTyBXFUrpiwuUEQARGfVM3OByO4M1Im9ROElEL1/KfU7rq2hQWbBJQZuogSaYG+EbMbO1dxkrMsfp2IfvM9LsIi5FChN5Tjyui8CIME6LRVdl7nwvr8TwP268d0AU8vlk8v4AT88fsD7x48oToXe20DzxsLbgxmUEwAtV1ycibn3J3Q9YWeTDMS7d2i0IW7OtQOtKfbEHgwnWZXTCgHqEviAF9MtiLaZ2Fko17rxCVYpO6voVKzqTaqS5dn1eML5fMHZd/1SGAzKEmej0c/GRwWK5y+f8fDBMhCffv3ViTuE/eoPoQLP8pSGlbngT//2b4D+7KctaNfnxCuODyfs1322ktwH2vUZtbyHBsnOvZ+gxYONDHR9Ne/mMyoeHh/gMAr260B5d3QlNHiltG1J5NwPcS7PwQ1OrRv2a4dWz+jszXoOufShjOZd27w4D+Rl/mEYxERxAIx8jzyD4DfVPdrZHpH+N4t8Lvz4PESL8z0ZUyiLXAxJQt7BCth48W7syQ4cy+5JEKtEOoyDIZmFK9sB/TpZqYAJI5VUXTtAqCBaYKbcY/6me2A6RZEr2DaUdD0Yy05p5SEi2SFOA2VZBJCZnH7uhk+omJHPubFGbFYSgK8ed8zjPu7jPt40vt3z8Mo4cc8jkfpagfqQrQ2fXq54fjqjMGN3Svb5PPDyfMaLl6W/vLzi+bng1Xdb3WCpTA8HZFibhRCiKWx1F8xj7q4EsDJovTKZBXpEnLuQvWGvN56WGvAdMZSMpAPg1CBVGTi/vmbxEZH37ljYeapq8ogAKgten/+Ew2bs0YeHR7y+PqHt+8wgwFKU0ZKSmfDl0x9NSBoWuR0PB1z9mMoFp9M7nN2L2NsFp+M7XM6XTBVGnURQ8S39TLNW6PyM8+tnlPpf7DdJ8Pnzjp9/+dnn24gPTDV3PtEGXjIhzBXMmlR9Kozz6wUOzYBos94vySp23kgUdmkD6dGxiBmGFCqIHbarpMiNf8Hu25xtm78oWnO3ZSy7aPInEkcxjMWjV5RyAnNDCZnBHinY8CYV23ZcxJo6dChEWmJKpVhfZMWigSI7ql8rlw2ihK7B4DUKfraSdKKJebp2XjsGWBVbqmqZtzMjPCvmi3U0TLB0SgyqQov1xeF8KIzjEavVIL4I+b4+2/Id9DwsBLCUX4Vn4PDnL2co/wpiKxb7/PkZX55fMBY37+X1jHbZMwYcQ0ygJC5STU06Ym929y0WUdmsGZEIZS5dVSAUjiEA6T659vnheLQmPBQCLsZVmHRecXd0Lj72psoh5tyul5mq898swBQYctc+i5vAAAu+uPLY6fE9tsMJ9aeCpz/Ze0TFFgxPN/pyecHxbCHE6Ir3Hx6zWI/JGlElDqBAv1yAui8LoINRUxAZRBijY1wCzGS0fsXTn+0cfvzlF7w8/xnHZ/vNbauGPhCnJqx1lZv0aFUC8YYWaelajIiVdVoKkYoSGhcq6CjoPXK9asSxOjEmgoseRxpVDXdawxLC1Lwg8msLCjwZXoYQ0oHjVkQT6PXg4dwCrzAwmrLHSvMQJYxHcYAxUvzFlcamEtiQBuaRm8bpsIF1NpISwCpp/TrZwcysGyIzHKwyeR5EVvwZ56Hdvs/Rt3d4SOevE7uI31B06RAQthBgIuvhS7jd7JJs95Xjm43HuQ0MeBcybVl78fz6Rxz/5+f83rXt3tx5gkG9A8tjDtVYnPZ66LjhEBBFC8IZI0ZTnThmNJ+K2NVINnHjkQuy5NYoKIzMo5MylBhc5k1tzQDRONdaGaKMdF4I2UrTfhPO85hVtVwPqdx0UOuWPjrjx1/+AQDw5dOfQFyyvkM9XRCYSPMFeXzwZsXEkD69smPdbCm4chQAjG5l9dXxiFqP3hE9jOArBEiA9Xr+gFIPePls9+2nX37G6AO7dHx4dLlELpYlikK4Ul0OIJo4AVzLBAKV0XrHiA2AAZNlh19XA1FDLVsaBxPwXRA9uPFYGJKqPcFlpuICyn6KPBuDpRIYbFqy6bcqRATn14k5lXpIAeRSTOMsNgCu1bMvwSc64nCwQrjhEgYCq/OpoTA3CNvhlHIGxAcUJWwy1y+RzqbUljYygDqMBcjlCCZPhrgmlgMdIG/MZbfHZRGjDsgrnMuyLpjICXE+R6HmjrVK7C+PO+ZxH/dxH28a3+x5tD3cfM/P+/syBOcuN65oIXVJNLeAxTgXSE/ExVFSEp49bx6upTH44u9VRmZCknDnKTpZ0n6Ft/RmWu9g4omRKKMSQyKMOR0hvWO/XtNLOW7V02dLPCiEEs6L8u2OL8ZOneeplg72168vn3F6fI+Xlz+hDc9abCe01pJnsDfT7jhHfY0AennB7tKGp4cHa+odlaUgz2YtrqhnSqIGRlhvkvlj7Bb37+YVPH36FR9//gW7N8Qyr8CqnV99JzseLOUp8HLusqFog+4Rp5gA8CUai3NB99oKwHY5BmedTymAonv2Yk5vcSzKb7xVNWeoJDeeHjwVmYz3YR4p1jBQHUtIz2OAwJk+v/aB9w8b4JyM/vIC1QEq09PjwpMnUhnH0wNae8l1oswg5Vn/osNbNER5hXiIPL3kIcter8MzH1PnRQC0PrLSmT27mJW6EJPUWSpmzduK37CD1NNSt8I+Nf6zpBJOz181vgPm4WGId32P2AxUHBfw8/V6iDXFZuKvwPRxrQho1lFYmflKHlpTaSI+OZg3RInBjAw5jHyEnBhCGDp7XUoFiFEjLh1Wt2C6Fh5CRCgVtRbCprIeqVhj4jhM5ilkxSznBlmDpazFGDi/vOCHjz/iy6dffbo2iAiaX8fhsDkWHa659U65uDEptQC6Y+xuXJSNczDXDYjZFkzgvmJgW86vdygbHhJd8Rlt/wHspKfn52e8+/AILhVfXKvk5/oI1utspo1HEJepczEGDrXg6i4xmFCYF26Dixn7XCnMiNE4JN/EODclAWgTBKZcJwRfM2EE3bWPGIPIovnVkAp5PB9hK9tGFBor3UPbPgyAVrYQpERdyubaHoG3lWISFEx57eJkrvkgj5vEKvkzEdoyVpslaQTNaAwQ1aS0CxQyekoJcLGNL6QcrG/MOlc8FzfM6KFYt8HCk/9xY6n9skRmaPg147vxPMACDORFEtsDnUxP9YdIZ40CNLQ4whNhVx6LiZEbEg2R3iwKQ+DjYYjdtGNoy7w3wcAuJPhmKu8RL0MEQzml4UQV0jvGAjqBQu0pwLMwLLGS4lz8BjNDhBaFdstEzd1goLWG4+kRD96u4XI+e+OmmQ0oTMlhKczgBZm/vp7x/v0RLTNR83QojZbL9/mlEguY4uG0eWSqi8J9weuXX/Hxp7+337iecXiweLp7Ad+nz2f8/PEIFXvI2uUJZTthRFsJAMKzTkVFwd4U2t/AKj1p9XADVBXVl6Otg+khGQA4JfLs2JoPkKirsft1WxaO83v+JRBFayO7HYJZNHu5dvQT3+hiKEuS+LLRdRbSVRC84tmzf1fdjRGaTagVWgFZ1jOJJBamjutMspttflDNIkDDAZGYHQkDOtJgwdeu+HovGsZo4hilVnA55pwbK3u2XvDVYO0mxtcbjzvmcR/3cR9vGt/sefChoGwFGIRSFMm5R4QpMwMBKFofM9Yik+aLJjniTNBIIRGZ+lYJJF/Mm8mepGwhiu1Mky1n9PZJOzVth5BXGyCMxAq6qvUIjWoHZqAWkHDWkbSu9j0/QoFiSEXsaqqKIRmwWXtRiTacZumpzLJ0dZ7C89Nn/PDB6J20XwAslaJcIGPk3DDUU6ZTN7U1xsHp6ufXq4dufOO+BzUZAGgQeFtKsYkBpmwKzsQ4X87YzpY9qMcTLi8XbNv0Ts6vr3jeCO9cbkD2K6TP3jCyN7Q2I2olyyhMFiXbEsnMCWNIh4xZ2jBkZBmBT5idL+K++2/FPaM43G1otDaKsmPITSgDHRieMj6/7hgfT6mYBk//zgiAbP6dLcqlOOW9ZOWtuHxEhJqFyKpmY2X0hu04MmwcA3A0x6/LrkEhKRVJaiszwolBw7NQHnpqh2VtApsxfszMWALkjaVmulczJe0T4dnS6e19zfh242HF01bIJGORpzPgaKZMAag1YVpLrc0t9MkGo5QpWjIvNr4NqA5Up0/31pxotUymUOb07Y/Mjaw1MI0waH5zWKFUF56Ig1IMhMQAo1lhUfYVIWcJx2K3b4XLG2ApwWN4stclHyAD8xSKiwOg9XDEvl+nCvzQm3BMRJz8NOdkv+44eA8cBZJijQx9fDFF7Ge5XEzeTEmALn4DVPF6Njzjw/aAS7tiqyU1QkCMz19esJVonl3QW0fLQjkDi/fQS8E8PoAMD0MXAwKwVFjXtyl/qDKREULQxmP+o5bF749aJ73AlMYwfktQve08fZPIUnfbqOLU/vz0gl9+fsCDrxMmBpPOkK5Ur9+a5feEglIPKA6qatx351zIuKLT7KOzjQYZ1yyFl8FJLwf8tnGBOtDqi8eejtxU7KpTwwRhF2e4qyuOyOzyifNR/60IkTgJj2liOl8zvh0w3btXSgY5KuJnBgLAg0OaOhwjiR2bEI15AVi/OZHM0ZtM1czfyxgGsO0tXyMmaF8AABzDSURBVPfhiyswDbICM1kMkOkZ+DHUqxTjvFyjIbwEETGSDmYhlnrNQ8SyPRmrC7bgpVx+UL9ZU8hn7UqnEKDYOQ1n21ZmFNrmg+bckdy0pAMYuTtbVkqTO0JcrDZjKRAjZ2Fmu4BiBVZcY+cOTsF8KJmRHdovr2eUreL19ZLqY6KCPgY+fTbM46ePDwD2vNbWFWDOVhZtH27EAjuAz0PcAIZCMcYVRbyTIDsZK9siEGJHRvy5zgxEaJyuICx02M4eYDFZUV5UDJvzV1D98+6NyR+O5lmUFEKeD2WtB2tTCaCWI24aSgOmOEe3jcSB2bB7CKH1Ao5MCYUAUDSJYmOErqpoas3BMpsI5z0tHBjTng3DKf6I2etaN2x1Q1meM1W1Z2kV0CI2YaK/pfEAsUvr2wUm/VcVkIESll8cLIXmdQ/RBKwA2x10mey6HbC3SwrmwF3TJAB5ARETZctE6zM7QVcTKpppVgUALrmYjbE6DYOFPPIbFF3BOvuGUFByFnINlmItIpNkzDAGALjOTJPa54cyiWd2I9kqhG12bC4X+vrKpKVisgMcmlKFzQNcwDTfo6bSFRnlOtii1tZhCZWiKMt/83J9xZHeQRigVL8iiDC+vETq8Iof3m+okUpUQbtKAudaCa3/hh1KNHuZhEHtHVL9GKX6OUVVr7hwcsy/OuiNPKbqmNsx2LNKnOEsYIzQqbCuKBRtJWxuLteG94+u/M7WfznBZioYY0ymrXsIpCM77JXDEf3yAiRLtaLrSNUvGYRWePESbMOZ62JgiIdlOg2QefHhMXkvo/UhX8oagB1bqWl8BLa2RBf1Nw8V143dyJSEv8Z63AHT+7iP+3jT+C6pWiKzWJaCm+k08zJmepKJXCIu0nQD1qN0DXUEm8eZ+76nHkcck7lkSk5FEnAKMZQowQ9cjKigsKYgS2g80II/GPU8CDQmhGs5/QDPFGO0JCmBCzDmzgcNnMZ38JAw1NWrmKBsLZbbZZo6IqI641UATNZwu3iulquX+S+cABBnTK7Dwom1j2/h4oBl7DgHECatnrkaILdgJKYm6fes7zifgXcPj2g9uAkKXTy35+cGEeD9OzuP49axN4WrPhpewpO0F7ycGzoBF5D0LDATOWAVONYQ+Y3pFrmpr7F7WCbQzhPPSF6Q6i0epLCmTF7sOIbg9bzf8H9aG3OdiKC7xi5g3QohFpLFMblsjtdEcaN5J7zUnYzRJ0ER5k0m8YzCi94SyAXNENV+qjjdwS+L2J+DkA5QEAk2l0QgWLg8ZAHf2Yh6qx6K0SamMNHXjO/Q9IkdYZ6kKGByG6J3G3vPFSu0su+YC6i3i0AF6jnuQhYO5FT7mohJIFebjgcPcLd4BdTdoM0HiEE8yUGAubKOk5mClHMjggvS+/CQ5TcTGwuRFBDKDA5T8RqSWRszkS0AHr4NwXKzzBkPUhLzduua60ApJWNbGbaAhk7moYQhTB6Mfyc7nzuvYzXWNAMshVrtRj5gJrx73RtOh8iIGdYUpDodij9/vqB5A+kffzjg8eGKz8+OD3VCIZ6ZJw9tk0gFAZXNs0kTSGfMNo1xd+N+kBdHyrLeQOvfRyg2lszdvC6/OAvqYh2Qol33DLtLKaAxjaRKR6m2Edn8WwFiKbNCW8QevqhXFRD4hphlxiFwEtMt4ds14OF+TE9xmlnyZMiwmjhv9XCElrBGB6A1gGLDR1QUgR6uIcwyHQak/i0L49TzCiNk3vJkLJ6ey5YAHVCSJdVK4ELZH1RUDPmVWYHJ4HygoEZySuQZlk5se5uAkpPTpiJUTPBMHYr3QgXc2ECXruRm+bHQ0ccYZt0jjlT594sXlAVQmoBqeBoHExjiaHnQQGSivpEOBgCRloJDpuY905UMTnahzXt0FgujybmL6nKevLR6jMZcEdamilkCZ4Su0THdxhCFtB0qdp5W1StoYzJ4QYovz9Y+Q/CIHx4PeDhFa4sOopol5a0LovMfAC+oMy9Ks6DMZSITMHXvMnApYs+arbsxAQmoMogpqf4xP6CS92hoN4wnmMjMeHm94vnVvJ+ffzhBeKDH51DUcshMCtBRjidoG3O9EgFUISEd6ZmuKKbjut3cj2TR+nUNja14MYQEB3nDoIen7sbBXZMeXsRQQFuqxwW9gTAry1XVm1xNAyK+1ui3G+R/MO6Yx33cx328aXw/GUKyMCIa8oqnCSPbYoVIJtoz3Wq+SWGKGv6crqLH68EkH7AdInRRVK0O5VYY1zCP2KWsIGrWuth3ZuwL8hAgXE+q6SZHmbmwoMskGLG77qsHZPl93wmzgZDv1vWIoQPDY3ou7NafsG1TX9Ti1XA3zXmPuWFw9vSwY1RLUU+Xy7yKBWcynk1N4hP5nCUFmay7vEp4JgJimelgsBOhOH+ndyM5hbeIsvn9tNdPLy8ATjhtoTdxRRtTvIZLAQsmngRPWcs1pQ51NAhptrKwNcL5NxbumRSDzZVlxmYt5NTknN4iu6boJKfZXZsci94HXr0Fx48frC1nXHfZjt7j1a/j+IA6CETX3KstVU7o4Un3jsJ1lvFD8PBwzJC5dcpQB/B+wxbtZ1jXu0lqZsZMzevMHrpiRYKRXh8wwmJpxtXR07u484k1Epf8Hbt2QhSkxnx8zfj2XrUUQCZ58ZuNMAyZSyajfNVS8rkd1i14clLVU4E6iTn2ZrirxcHIoGqSpywndjDcEIQBGug+KfBjMFZQZIiL0AbjjswUAJhaEKWYzmYCYxWdMGsFyDQjNR9aQuGJAQ3ZAaIZfoEgo98UlIkM79o1cREDttwgBfckHkJVMG6LBgsRugOadv7sylJ+3m490shFmjBJS2YYJ3chqlcXW+sV1GFITRdjzjep4vn5An1850eotj7S4LMDw3ORJukrmjqN5ozcMPiOzSx9Y5kW/gpX132JubMv3UAixeo+sBgLXXU8HVC7Xl0TdgzUeoB4TQ+IsB0Oed1jCAqxqcf7KLyhKTC70BFErlB/kI/l70GHDZ+evHcwrIIyzkFgQD8RTXqCRnp+3mdb8H5asDqhrKtygx/ckaFxb4wsNqdnVu4SGcYznKfyteM7AKZ+A9zqJi9BDPVNV0QjRlfnFyB3hrQvLvY6KcTqhUbz+8OVvgCgoBg4hKW4zq1ZWma141evFDWOQV8WIgG0gUs8ULZwaAES4yonssuexfFXxCDIEsvaCEk7DDHcJA9nFGJashCKglIZIkEgMkMSnxcuYV3tN73QLg5pnAUzNSG7H3T/mXlyyrxfhjX3nqCs49HYkqHt86iaDFN13ghF57RmGYoghVkBmeJ8cemA09E4CMklsfu4soxtV5xEPpUdOrbcsUF8k51RGQATKFXCKe8QAK9E9QxN3CMRdCxGkACmWbgZa/Hlxchv1/YRh8cHeD9ukwjgLcljvV/Q+g6Rdkt5X7xglYspqMUmA+C6W4mG/2h67DHf5vEqJOcrNpfY0OxcRuJxzdpdZAmHMVx3N2q17XiA8UYkpfEoN/24dkBnhfxXjjvmcR/3cR9vGt8B84BhHnDPIdNUHQRN3ECZoEN8Z/TdNrOfHt9ZfnSmrpwrEfGfkJgmQbj23Vw2XTyNPuSW20/VUluY3ks4qfb5bdrKmhr5rr6w7SzEmJfMTLN4CcvWDfcSAmCAuY4AFpdQUKplCGIzCOZlSPtbe8WRMTfTTF0CsKzVIoRbuaBwcUbhDMForQkhZEPjmAsCL+cQFwv/TYuNBTIZobDyenUih4i4W+3YgGMPoVnR+0AtJbMzquaFyRry1QpCyXBLpKFiNlNy8u0SFjIgkrUwY1jaP/gSqqYDSqF64/fILiE8PfdeOTI2FSJIcSAV51xg3sM2BAG4iQz0dvG0qnsF1TzvCAsrG7AQ5zXGjj5GZrkwrOFVrJOoW4l5iXtBoPRAAMUQzWsXVbBiYl+kJrvgr0cX9Laj1iNikKeyI6WsJOi942/et6WyCekICiBjSfuJ64lGOMAO6smCL+gN8AU4aBMPLVdI35PqXLnACFnhQsNi0Tof7PPF1BNKPgmax43XJsoSv2cCRLkwycOgxU1mdpxmEaOxBRxGTsyfzC5fLgoT2g+1Wvc4f0qLaymYEK09MCVEc7KwUFF4yy5fUbyUZs8xlLzKJW0boaIBpisWUzKNa6dtBY0JBCOAOlrm1y9zUZe3Arq4r+TnhfzcdDPc4PcBHCYRTYbzK5ZQVMXWxkzf3lZFi1rIR5myd/x04UfI6JNLAkvFqs7NS8pmoWqmVR2ni5odT6/nJiPDyh/ywqw3ijgW0doV/XqB9JYpeGEzBtG8vPodmXUnF4x2Qcn1fYsL6hgB1c/7JPDwdWqAmOh4GEFGFwWXGX4NFXtWAKB17Ocn4JFzLmqJGihfW54KJlr6F33F+Haeh6tTkfhOvcSUqr/NGnuz4VmbDl06aE3mXOzkhiPEMYYosHQWU7fKxVl2MRy0BuC9j3XGjkHQSpEiYjMgGXceoKO7cZlkKzv9GbdbcdJs9wBCloiPQMCDSCsFxnEJS19AEAOPg8RUXDB5EUoiLagHi7G3U8Hz5y+5M7IvsNjFDocjxn51DsrsLg+di0SzAfRU6xZRUJl3iQiT56Fq+QYuWcBnWTMsotTO1ckCMgPzppix4tp6PmDBtp2KcOyKcgJk28Yx1dvguJACE1p3jG1t0LSM7H4mI1tX2FMoy7WyG6NZvzRU0sBfrjuMpBegohmiEKK+nl9Nta4WsHtV7XJFKVsayj7MUYlTaDvQWdBj0yF4d8EwWLYJ6QLOG5q3KodNgqTdQ2OGpEDWCCNoY4yB/XJBOZxQT4/+N/Y+rb+RRunrsy13zOM+7uM+3jS+3fNQ28WnW2Xvi++MEbYMEa/WXL2R4rnncLki5TSDbzLdvHyNUkA861RIgeveMjXFINRSFjq0IcnBXlQPp+IkUnXNzahI9xTmbNodSvZ5baq2o8R5ls2wlyVtuor+msu95VWVUnCoJ4i0PGZvHX0MbOndMIY0nC+20+17QRdk71TzJgJvANpubQCIyyKSU2528KHW2nGG067FErUupXjri7kbQweGInvWhE4LLedpPI3pMVmDbH8JLxOPMIThrnjs6AUhGsXsPWq4m5hzZH1cxnDG406jnmkkRH8Tuz8Cpoq6bdm4S8TOM6qWs3ZpphxQSPM89+sFgom/MRXoUKiX5G9bhY4jRrX2mnYagZPNvA9kLJwjE3nuEb6GcuKIWhiCSLdwN7g5avc5cRKXuciQ4zchXOjFhgfB1TzP3hqOp7keo8HUPO+Rz/LXjm83HmNAeXgIgpsH3bpz26uVk3Dj8Cw8DjMklPqjq/5mDJGlvNviEUyxmPhpRUlBWG9KFcbDDVQKyZClc4fHqaoOZoayEiyuXHGRwAFWoFRlccWF0UbLBzvS2GUh+vTWzN0PV1yNN5B/A9O7jHqEIYpCNQWSrMl3wYju8w5Oc9HlvJ3qvTQdAsbsIyLNLLCnH0UtxRnK5qZmr4t+CbBttjiTf8KTYwAYnjORB79HPj/2eQV40ZaAGiZAmOXuo2L0lg2ayCdclusiD7mA6BS36H2IQp3/s5SEeD+dAGXj/sZD2E35yy/lfGloXXBYVNmAjuJFUJtsGPSCWivKHiQ88vXuIV43la9IfRc0QPrUnnHB4Zhv4uK400zBD43jRgjt1z7z2iAta0Dn9jnmpngXgpEbvCyUewAL/id/Y+OhrsyVLDU7sQIT3clCmwUgi8mE55ZjproUP054DYbT6XoI0hR0EVWrUIVOMM0V2AO4VVEM6WhBukF0o58EGRpTxAigjO8n/4Fuq2ShNyChiaENA43jPHmtHBWzUklcM4S895E7ehTF1YN7FmO3ZlM1OtgXE45Jt02dPeo7q5oOiWpimfk4BXOzlGp8hdR5V3Cp6amE8W85v3DDPLMpBqwtbSjUgOEJLHrtzEwW3ABxBtJiSgkO9bofvlm4oh3DO92VcnCjP0Ham9+EgfBJlCrOKrbJznupOhZDR4bfLIS5gYEa9xCEQ62L3kq8G/jEju14wqV1IDVYvINAiv2IFaSFJzes+lvFWcXhVec9BBAFgWvDK8gsdaFyu4Gy/U5YPSpWT1MDzxBbb4od17PVH53evfPCSjuGJTxMk2fdCP7SuGMe93Ef9/Gm8R0YpsG0N9co8AgKF3CJKUM3MnuMIphuoc4Ur6crv6ZE1atER5DpvGFOcCTgR4VKysp3GRi93XgvTEgpPiJA0TFTj0aLtsrYuJYdIelnpyVegxMxJCXCH79RnDKd5808w5xo9GOagADM3S/E2C+X/A2lLcWfRQElQnXdvJ70ZT/k0KndsfAddNnZLIizDAxgoWSXghGBBpExwcPlJQBkc56ZIt/1p2Nt1xU79GzbmVslwCO/reIs1CUErMXSiIkxkUstBNuWGWCdYd9vCSnpwbu36Z7P2os1qr4nm9PCs9xnycrv1dfeaSt2/VGH0gaOVBCKapULrl1szce1kXpa2dfeaHh3eFhqufQmE4VhszixnOjjspxntltdPDeZfiDyfgSXxJTLNNLvgfkMwWhOi9dHC729v3Anq78pxBnuf834DsbDAE9Xopw3Ug1XyP4TnoayRtL+HcKNXmPxcvrUQyC4IfBf8ngvRU1oxqwruUWVESlPGSZWo9MeGXCYeXHXM02xmjHxDg28wa4xlMttEc7FngbMf99u5nxmycvOV+qv0bwBdrdaukBowRKInF8y/f+Nl/4nbAVQM+vHCRpmTYi6kJLH1EPUigvjtqvxBQIDYVflTg1OkvCL06AQAj3On7CFV+ZyBtGNsSCZTajtcia4yVCspLW4VlpKHVJaAIvB16WMIW5Xzrf9YywPKqnxWZbpvEnpq5oZPDjvY9uq9XZJ8Y0O1dkbGDKwX14xWkNzKj6TgqRlkZqI4rKfcXBhng0HByaDOGl4nybZUCYGFkMB6KK54s/ANLT2lyv9AWRdEONKo1laJBX26wu48IK1TDwoxKW+ZnwXDVOrqRh+pRPYMVwgYkiFFcctwCJZpei6M9LCpBwyHImfu1rB4mX4igkdEMAnFstCVFPTjoW4bQfTxQiyUBwmdi3nBhAWBqkCvY2bQjjSpdIx3ot6BP/9ufNZRD3jVBfDEc2dDlFdnDUNlmmi5TeG3AJaxhKMHcq7kcmMfx3ESMNp2peaCFkoqlEaSRdypnl/iGiVdrYFrjODY4swT8kzBbPxuBEBeeEpuFfSJtbDpXijpgn71bLNbnmweg5NAxY4jD9Q6fXd7Md+vzyud+M+jYX65pbv2G7sc/fyesbl+QWHo13c6eHBPEhEbUszL0P2FGQiKNr+vBD9qrX0jI1KBO82wR7rWfxqFvFtIkwPFba5ivQEk+Map8EFdO1uCHIp0rkWrYhwacQ1rqj1YdFjtRtDPPkiXzO+vfWCZxIs9JjMN0mEPkBGd++I8wbaOp27lHVaWypggRRjASbolYplcXzV6Tmo3lrmUsCj5oNetyOIkB3Q4O5rpuTU+pyKSHKSVCKVGOdJsdbyvPhm0j3TlDshW4FedHVne+hH6pe7a66LVFyoWYeHO8b01ODGWCdwaUbACvQKTSMHFUimMAm9i/fXsVCJMI0cw9PuWYVrGwPpAtB5FiOvTW1+omOZQkzI+sYrU5SZeLJdPOeO3UOSJf1bLD3r96j4pjQfKvWQzF95pi8lLxVgEk87I26agahZpGb9VDL8UsUgQK/OIN2vAHUc6wf/2O5V7N6Xy8XCAJ2Fb6NfIaOlor3KwFamoLT0Kx5qx6ZG1jqfr35NPv8eDoY6WFyreWnTS7gJlXxSk2wI2ztiA64qABfPuoUHypA1+0fxHHKey9eMO2B6H/dxH28a303PI4CgycGwMV3N+P7a7Nq2MF5cMEdK7HXiCO4VYBGyAYBihXhWcBc7XezEQbKx0Ck9AyL0YXu+HSKsvn3chutecriDyNTuqtfBy26gYueyIGfeZMhfs1Hoo1WDeIhiPUjjvDxoT8owLWSe384bwFRdSi/esZS0pbeDJAar5UiZxzj8ApDqrYu7diPL91dAOgHscMMcaNQZ56ssfXSi/+4abjHn5yrqnoeCtOZchAYFgPQeMowJOYJFPBqYOiTEFo7wcq2m2zk9t3Ad0/1nuqn74VJRyubhOJy8VdC64Rv7+Qn79dkUFf2YrTXslz35KZamFWCLcgBgo46Dc0XOKAAvXRUxn5cMo/1/GYmKFRVO/M08v/SKg80YYHOtXkoxMTqAUMqW9AQBEmf8a8a3N31KDYDbiry1nsJeuz7FgkYTrCvXWjEoY+VTOCC0uKdeHBNvQBE8fXuLixWCre69hSnmSlqWgidjD676nhAIYQxTy6rOsSCwFT1F4RaTt0j0B7uspCMXVvGiM2CCgmkKZcDsDeffzC7ycRoG6a1IPcnIgj91Udsp5CypjhXtD4ksf68pWGOYRuAkFmPfYhamu7mgoaTe9GqZL5pfgU5h3fgchOxQZhyZnvcwMgmr6K/dfsVILRMjwMXfjNFdP3RODaFm5S5WnAa2JouHwDHnvY8bASH7bKn6ticob0BlgkpHJLW2ekAfHaOZ0pj2hjEGervmZLTLE1q7TmNAaryOfCwe0a5nUGAgrnEaurREMJ6Gz1vOKNFChTa8J/sjuWD3vGe+eZTgkhSw37MAQ7fDCSpT9xSqqJuxWP+KZMv3oqeb8YBOQVnfUIDFiEg+IPGQWdl0qDGRU5CnorVb0vQ/FMpiEwY3sMO6gKe3AkrgCbA4MgyKnZdlOVYZevNmJH+DIwacgTlK2VJQ1wSUSxYHGzYAE58FDCCUmS6uNUrloxo42lRMo0cw6cK5g3i1axCIxtxtYt6JCRsvwj8aGIL/jadtJ9NVQHWujmm0J8C6THd6OyueEwS53NFleGYojmF3d6R9N9bwurFYzE45N+yU6jRylLCgf78ZluLzbwD1vIdQOLFtZS4LKq8yBrbxTJaqebwr0E46PdQuA613nLwn74BCesPwFh6tXzFah3bBfjaD0i7N2K0S5fLO5l3U9EbfIQjFNMDEr1aUDzeYh6iV4KfwFNuzFG07w8NKiYFSwOUwsyYc+J3g+OAd+cqWgld2TN+oaGmG9hXjjnncx33cx5vGmz2P2Eku51eM3i0E4ZItD6y36q3GJmA7bGyEMiw7M9semA4n09xhh5fQ29/Ci7Qc3VZ18Vf3fPxbN6XFEiKFkscQadj7TK8pkC0sVQTCAC9xven7irmosF1vLV0eFM2n/HVrBgsE32DvnjKL8x5LTD7Rf0bCEx6DLzu+uleUHtQAcwW70LB08fBAk1tDngrMTBRwE6JEsWC2pYDelIgbMW7Wodib7tvP6bbwMbNdkT1wf5/t2mg6N66VEde1gQdZO4qMT3GTGZEhuO4XiG75OfEsarM1tDRC8gxTw9yRQQQaU7qBmNCZgEWewHQ87Zhfnl9xPp+zNYYMRbt8xsvzrwCA89NnXJtiv+w4v34CAFz2C65DM/vSW8cgArscpV4u0HLFruapDPXmqDo9Dld3zszRCMUsJweObjjKcO97KLnshDdMV9NZnRQJny+iTI9v1PweRgbHykhUxbJMwI2n+H8apH+NdNAyfv/73+Of//mf3/Kn93Ef9/F/+fjd736Hf/qnf/oPv/Nm4yEi+MMf/oAPHz4sdOH7uI/7+H95qCqenp7wj//4j7/hLv378WbjcR/3cR//f487YHof93Efbxp343Ef93Efbxp343Ef93Efbxp343Ef93Efbxp343Ef93Efbxp343Ef93Efbxp343Ef93Efbxp343Ef93Efbxp343Ef93Efbxp343Ef93Efbxp343Ef93Efbxp343Ef93Efbxr/Cy7cqSGIm3DkAAAAAElFTkSuQmCC",
-      "text/plain": [
-       "<Figure size 640x480 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "import json\n",
-    "from PIL import Image\n",
-    "\n",
-    "# Choose an image to pass through the model\n",
-    "test_image = \"dog.png\"\n",
-    "\n",
-    "# Configure matplotlib for pretty inline plots\n",
-    "#%matplotlib inline\n",
-    "#%config InlineBackend.figure_format = 'retina'\n",
-    "\n",
-    "# Prepare the labels\n",
-    "with open(\"imagenet-simple-labels.json\") as f:\n",
-    "    labels = json.load(f)\n",
-    "\n",
-    "# First prepare the transformations: resize the image to what the model was trained on and convert it to a tensor\n",
-    "data_transform = transforms.Compose(\n",
-    "    [\n",
-    "        transforms.Resize((224, 224)),\n",
-    "        transforms.ToTensor(),\n",
-    "        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),\n",
-    "    ]\n",
-    ")\n",
-    "# Load the image\n",
-    "\n",
-    "image = Image.open(test_image)\n",
-    "plt.imshow(image), plt.xticks([]), plt.yticks([])\n",
-    "\n",
-    "# Now apply the transformation, expand the batch dimension, and send the image to the GPU\n",
-    "# image = data_transform(image).unsqueeze(0).cuda()\n",
-    "image = data_transform(image).unsqueeze(0)\n",
-    "\n",
-    "# Download the model if it's not there already. It will take a bit on the first run, after that it's fast\n",
-    "model = models.resnet50(pretrained=True)\n",
-    "# Send the model to the GPU\n",
-    "# model.cuda()\n",
-    "# Set layers such as dropout and batchnorm in evaluation mode\n",
-    "model.eval()\n",
-    "\n",
-    "# Get the 1000-dimensional model output\n",
-    "out = model(image)\n",
-    "# Find the predicted class\n",
-    "print(\"Predicted class is: {}\".format(labels[out.argmax()]))"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "184cfceb",
-   "metadata": {},
-   "source": [
-    "Experiments:\n",
-    "\n",
-    "Study the code and the results obtained. Possibly add other images downloaded from the internet.\n",
-    "\n",
-    "What is the size of the model? Quantize it and then check if the model is still able to correctly classify the other images.\n",
-    "\n",
-    "Experiment with other pre-trained CNN models.\n",
-    "\n",
-    "    \n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "5d57da4b",
-   "metadata": {},
-   "source": [
-    "## Exercise 4: Transfer Learning\n",
-    "    \n",
-    "    \n",
-    "For this work, we will use a pre-trained model (ResNet18) as a descriptor extractor and will refine the classification by training only the last fully connected layer of the network. Thus, the output layer of the pre-trained network will be replaced by a layer adapted to the new classes to be recognized which will be in our case ants and bees.\n",
-    "Download and unzip in your working directory the dataset available at the address :\n",
-    "    \n",
-    "https://download.pytorch.org/tutorial/hymenoptera_data.zip\n",
-    "    \n",
-    "Execute the following code in order to display some images of the dataset."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 17,
-   "id": "be2d31f5",
-   "metadata": {},
-   "outputs": [
-    {
-     "ename": "FileNotFoundError",
-     "evalue": "[Errno 2] No such file or directory: 'hymenoptera_data/train'",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
-      "\u001b[0;32m/var/folders/c_/bcjgdb5j6wq89qpwvs1rl29h0000gn/T/ipykernel_27875/1654466997.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     34\u001b[0m \u001b[0mdata_dir\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"hymenoptera_data\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     35\u001b[0m \u001b[0;31m# Create train and validation datasets and loaders\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 36\u001b[0;31m image_datasets = {\n\u001b[0m\u001b[1;32m     37\u001b[0m     \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mImageFolder\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata_transforms\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     38\u001b[0m     \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m\"train\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"val\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/var/folders/c_/bcjgdb5j6wq89qpwvs1rl29h0000gn/T/ipykernel_27875/1654466997.py\u001b[0m in \u001b[0;36m<dictcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m     35\u001b[0m \u001b[0;31m# Create train and validation datasets and loaders\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     36\u001b[0m image_datasets = {\n\u001b[0;32m---> 37\u001b[0;31m     \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mImageFolder\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata_transforms\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     38\u001b[0m     \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m\"train\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"val\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     39\u001b[0m }\n",
-      "\u001b[0;32m/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/torchvision/datasets/folder.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, root, transform, target_transform, loader, is_valid_file)\u001b[0m\n\u001b[1;32m    307\u001b[0m         \u001b[0mis_valid_file\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mCallable\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbool\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    308\u001b[0m     ):\n\u001b[0;32m--> 309\u001b[0;31m         super().__init__(\n\u001b[0m\u001b[1;32m    310\u001b[0m             \u001b[0mroot\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    311\u001b[0m             \u001b[0mloader\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/torchvision/datasets/folder.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, root, loader, extensions, transform, target_transform, is_valid_file)\u001b[0m\n\u001b[1;32m    142\u001b[0m     ) -> None:\n\u001b[1;32m    143\u001b[0m         \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mroot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtransform\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_transform\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtarget_transform\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 144\u001b[0;31m         \u001b[0mclasses\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclass_to_idx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfind_classes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mroot\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    145\u001b[0m         \u001b[0msamples\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake_dataset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mroot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclass_to_idx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mextensions\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mis_valid_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    146\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/torchvision/datasets/folder.py\u001b[0m in \u001b[0;36mfind_classes\u001b[0;34m(self, directory)\u001b[0m\n\u001b[1;32m    216\u001b[0m             \u001b[0;34m(\u001b[0m\u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mList\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mList\u001b[0m \u001b[0mof\u001b[0m \u001b[0mall\u001b[0m \u001b[0mclasses\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mdictionary\u001b[0m \u001b[0mmapping\u001b[0m \u001b[0meach\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mto\u001b[0m \u001b[0man\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    217\u001b[0m         \"\"\"\n\u001b[0;32m--> 218\u001b[0;31m         \u001b[0;32mreturn\u001b[0m \u001b[0mfind_classes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdirectory\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    219\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    220\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mAny\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mAny\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/opt/anaconda3/envs/infa4/lib/python3.8/site-packages/torchvision/datasets/folder.py\u001b[0m in \u001b[0;36mfind_classes\u001b[0;34m(directory)\u001b[0m\n\u001b[1;32m     38\u001b[0m     \u001b[0mSee\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;32mclass\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0mDatasetFolder\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdetails\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     39\u001b[0m     \"\"\"\n\u001b[0;32m---> 40\u001b[0;31m     \u001b[0mclasses\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msorted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mentry\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mentry\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscandir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdirectory\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mentry\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_dir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     41\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mclasses\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     42\u001b[0m         \u001b[0;32mraise\u001b[0m \u001b[0mFileNotFoundError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Couldn't find any class folder in {directory}.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'hymenoptera_data/train'"
-     ]
-    }
-   ],
-   "source": [
-    "import os\n",
-    "\n",
-    "import matplotlib.pyplot as plt\n",
-    "import numpy as np\n",
-    "import torch\n",
-    "import torchvision\n",
-    "from torchvision import datasets, transforms\n",
-    "\n",
-    "# Data augmentation and normalization for training\n",
-    "# Just normalization for validation\n",
-    "data_transforms = {\n",
-    "    \"train\": transforms.Compose(\n",
-    "        [\n",
-    "            transforms.RandomResizedCrop(\n",
-    "                224\n",
-    "            ),  # ImageNet models were trained on 224x224 images\n",
-    "            transforms.RandomHorizontalFlip(),  # flip horizontally 50% of the time - increases train set variability\n",
-    "            transforms.ToTensor(),  # convert it to a PyTorch tensor\n",
-    "            transforms.Normalize(\n",
-    "                [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]\n",
-    "            ),  # ImageNet models expect this norm\n",
-    "        ]\n",
-    "    ),\n",
-    "    \"val\": transforms.Compose(\n",
-    "        [\n",
-    "            transforms.Resize(256),\n",
-    "            transforms.CenterCrop(224),\n",
-    "            transforms.ToTensor(),\n",
-    "            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),\n",
-    "        ]\n",
-    "    ),\n",
-    "}\n",
-    "\n",
-    "data_dir = \"hymenoptera_data\"\n",
-    "# Create train and validation datasets and loaders\n",
-    "image_datasets = {\n",
-    "    x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])\n",
-    "    for x in [\"train\", \"val\"]\n",
-    "}\n",
-    "dataloaders = {\n",
-    "    x: torch.utils.data.DataLoader(\n",
-    "        image_datasets[x], batch_size=4, shuffle=True, num_workers=0\n",
-    "    )\n",
-    "    for x in [\"train\", \"val\"]\n",
-    "}\n",
-    "dataset_sizes = {x: len(image_datasets[x]) for x in [\"train\", \"val\"]}\n",
-    "class_names = image_datasets[\"train\"].classes\n",
-    "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
-    "\n",
-    "# Helper function for displaying images\n",
-    "def imshow(inp, title=None):\n",
-    "    \"\"\"Imshow for Tensor.\"\"\"\n",
-    "    inp = inp.numpy().transpose((1, 2, 0))\n",
-    "    mean = np.array([0.485, 0.456, 0.406])\n",
-    "    std = np.array([0.229, 0.224, 0.225])\n",
-    "\n",
-    "    # Un-normalize the images\n",
-    "    inp = std * inp + mean\n",
-    "    # Clip just in case\n",
-    "    inp = np.clip(inp, 0, 1)\n",
-    "    plt.imshow(inp)\n",
-    "    if title is not None:\n",
-    "        plt.title(title)\n",
-    "    plt.pause(0.001)  # pause a bit so that plots are updated\n",
-    "    plt.show()\n",
-    "\n",
-    "\n",
-    "# Get a batch of training data\n",
-    "inputs, classes = next(iter(dataloaders[\"train\"]))\n",
-    "\n",
-    "# Make a grid from batch\n",
-    "out = torchvision.utils.make_grid(inputs)\n",
-    "\n",
-    "imshow(out, title=[class_names[x] for x in classes])\n",
-    "\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "bbd48800",
-   "metadata": {},
-   "source": [
-    "Now, execute the following code which uses a pre-trained model ResNet18 having replaced the output layer for the ants/bees classification and performs the model training by only changing the weights of this output layer."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "id": "572d824c",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import copy\n",
-    "import os\n",
-    "import time\n",
-    "\n",
-    "import matplotlib.pyplot as plt\n",
-    "import numpy as np\n",
-    "import torch\n",
-    "import torch.nn as nn\n",
-    "import torch.optim as optim\n",
-    "import torchvision\n",
-    "from torch.optim import lr_scheduler\n",
-    "from torchvision import datasets, transforms\n",
-    "\n",
-    "# Data augmentation and normalization for training\n",
-    "# Just normalization for validation\n",
-    "data_transforms = {\n",
-    "    \"train\": transforms.Compose(\n",
-    "        [\n",
-    "            transforms.RandomResizedCrop(\n",
-    "                224\n",
-    "            ),  # ImageNet models were trained on 224x224 images\n",
-    "            transforms.RandomHorizontalFlip(),  # flip horizontally 50% of the time - increases train set variability\n",
-    "            transforms.ToTensor(),  # convert it to a PyTorch tensor\n",
-    "            transforms.Normalize(\n",
-    "                [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]\n",
-    "            ),  # ImageNet models expect this norm\n",
-    "        ]\n",
-    "    ),\n",
-    "    \"val\": transforms.Compose(\n",
-    "        [\n",
-    "            transforms.Resize(256),\n",
-    "            transforms.CenterCrop(224),\n",
-    "            transforms.ToTensor(),\n",
-    "            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),\n",
-    "        ]\n",
-    "    ),\n",
-    "}\n",
-    "\n",
-    "data_dir = \"hymenoptera_data\"\n",
-    "# Create train and validation datasets and loaders\n",
-    "image_datasets = {\n",
-    "    x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])\n",
-    "    for x in [\"train\", \"val\"]\n",
-    "}\n",
-    "dataloaders = {\n",
-    "    x: torch.utils.data.DataLoader(\n",
-    "        image_datasets[x], batch_size=4, shuffle=True, num_workers=4\n",
-    "    )\n",
-    "    for x in [\"train\", \"val\"]\n",
-    "}\n",
-    "dataset_sizes = {x: len(image_datasets[x]) for x in [\"train\", \"val\"]}\n",
-    "class_names = image_datasets[\"train\"].classes\n",
-    "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
-    "\n",
-    "# Helper function for displaying images\n",
-    "def imshow(inp, title=None):\n",
-    "    \"\"\"Imshow for Tensor.\"\"\"\n",
-    "    inp = inp.numpy().transpose((1, 2, 0))\n",
-    "    mean = np.array([0.485, 0.456, 0.406])\n",
-    "    std = np.array([0.229, 0.224, 0.225])\n",
-    "\n",
-    "    # Un-normalize the images\n",
-    "    inp = std * inp + mean\n",
-    "    # Clip just in case\n",
-    "    inp = np.clip(inp, 0, 1)\n",
-    "    plt.imshow(inp)\n",
-    "    if title is not None:\n",
-    "        plt.title(title)\n",
-    "    plt.pause(0.001)  # pause a bit so that plots are updated\n",
-    "    plt.show()\n",
-    "\n",
-    "\n",
-    "# Get a batch of training data\n",
-    "# inputs, classes = next(iter(dataloaders['train']))\n",
-    "\n",
-    "# Make a grid from batch\n",
-    "# out = torchvision.utils.make_grid(inputs)\n",
-    "\n",
-    "# imshow(out, title=[class_names[x] for x in classes])\n",
-    "# training\n",
-    "\n",
-    "\n",
-    "def train_model(model, criterion, optimizer, scheduler, num_epochs=25):\n",
-    "    since = time.time()\n",
-    "\n",
-    "    best_model_wts = copy.deepcopy(model.state_dict())\n",
-    "    best_acc = 0.0\n",
-    "\n",
-    "    epoch_time = []  # we'll keep track of the time needed for each epoch\n",
-    "\n",
-    "    for epoch in range(num_epochs):\n",
-    "        epoch_start = time.time()\n",
-    "        print(\"Epoch {}/{}\".format(epoch + 1, num_epochs))\n",
-    "        print(\"-\" * 10)\n",
-    "\n",
-    "        # Each epoch has a training and validation phase\n",
-    "        for phase in [\"train\", \"val\"]:\n",
-    "            if phase == \"train\":\n",
-    "                scheduler.step()\n",
-    "                model.train()  # Set model to training mode\n",
-    "            else:\n",
-    "                model.eval()  # Set model to evaluate mode\n",
-    "\n",
-    "            running_loss = 0.0\n",
-    "            running_corrects = 0\n",
-    "\n",
-    "            # Iterate over data.\n",
-    "            for inputs, labels in dataloaders[phase]:\n",
-    "                inputs = inputs.to(device)\n",
-    "                labels = labels.to(device)\n",
-    "\n",
-    "                # zero the parameter gradients\n",
-    "                optimizer.zero_grad()\n",
-    "\n",
-    "                # Forward\n",
-    "                # Track history if only in training phase\n",
-    "                with torch.set_grad_enabled(phase == \"train\"):\n",
-    "                    outputs = model(inputs)\n",
-    "                    _, preds = torch.max(outputs, 1)\n",
-    "                    loss = criterion(outputs, labels)\n",
-    "\n",
-    "                    # backward + optimize only if in training phase\n",
-    "                    if phase == \"train\":\n",
-    "                        loss.backward()\n",
-    "                        optimizer.step()\n",
-    "\n",
-    "                # Statistics\n",
-    "                running_loss += loss.item() * inputs.size(0)\n",
-    "                running_corrects += torch.sum(preds == labels.data)\n",
-    "\n",
-    "            epoch_loss = running_loss / dataset_sizes[phase]\n",
-    "            epoch_acc = running_corrects.double() / dataset_sizes[phase]\n",
-    "\n",
-    "            print(\"{} Loss: {:.4f} Acc: {:.4f}\".format(phase, epoch_loss, epoch_acc))\n",
-    "\n",
-    "            # Deep copy the model\n",
-    "            if phase == \"val\" and epoch_acc > best_acc:\n",
-    "                best_acc = epoch_acc\n",
-    "                best_model_wts = copy.deepcopy(model.state_dict())\n",
-    "\n",
-    "        # Add the epoch time\n",
-    "        t_epoch = time.time() - epoch_start\n",
-    "        epoch_time.append(t_epoch)\n",
-    "        print()\n",
-    "\n",
-    "    time_elapsed = time.time() - since\n",
-    "    print(\n",
-    "        \"Training complete in {:.0f}m {:.0f}s\".format(\n",
-    "            time_elapsed // 60, time_elapsed % 60\n",
-    "        )\n",
-    "    )\n",
-    "    print(\"Best val Acc: {:4f}\".format(best_acc))\n",
-    "\n",
-    "    # Load best model weights\n",
-    "    model.load_state_dict(best_model_wts)\n",
-    "    return model, epoch_time\n",
-    "\n",
-    "\n",
-    "# Download a pre-trained ResNet18 model and freeze its weights\n",
-    "model = torchvision.models.resnet18(pretrained=True)\n",
-    "for param in model.parameters():\n",
-    "    param.requires_grad = False\n",
-    "\n",
-    "# Replace the final fully connected layer\n",
-    "# Parameters of newly constructed modules have requires_grad=True by default\n",
-    "num_ftrs = model.fc.in_features\n",
-    "model.fc = nn.Linear(num_ftrs, 2)\n",
-    "# Send the model to the GPU\n",
-    "model = model.to(device)\n",
-    "# Set the loss function\n",
-    "criterion = nn.CrossEntropyLoss()\n",
-    "\n",
-    "# Observe that only the parameters of the final layer are being optimized\n",
-    "optimizer_conv = optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)\n",
-    "exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)\n",
-    "model, epoch_time = train_model(\n",
-    "    model, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=10\n",
-    ")\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "bbd48800",
-   "metadata": {},
-   "source": [
-    "Experiments:\n",
-    "Study the code and the results obtained.\n",
-    "\n",
-    "Modify the code and add an \"eval_model\" function to allow\n",
-    "the evaluation of the model on a test set (different from the learning and validation sets used during the learning phase). Study the results obtained.\n",
-    "\n",
-    "Now modify the code to replace the current classification layer with a set of two layers using a \"relu\" activation function for the middle layer, and the \"dropout\" mechanism for both layers. Renew the experiments and study the results obtained.\n",
-    "\n",
-    "Apply ther quantization (post and quantization aware) and evaluate impact on model size and accuracy."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "04a263f0",
-   "metadata": {},
-   "source": [
-    "## Optional\n",
-    "    \n",
-    "Try this at home!! \n",
-    "\n",
-    "\n",
-    "Pytorch offers a framework to export a given CNN to your selfphone (either android or iOS). Have a look at the tutorial https://pytorch.org/mobile/home/\n",
-    "\n",
-    "The Exercise consists in deploying the CNN of Exercise 4 in your phone and then test it on live.\n",
-    "\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "fe954ce4",
-   "metadata": {},
-   "source": [
-    "## Author\n",
-    "\n",
-    "Alberto BOSIO - Ph. D."
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "infa4",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.8.13"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/hymenoptera_data/train/ants/0013035.jpg b/hymenoptera_data/train/ants/0013035.jpg
deleted file mode 100644
index 1ed58c4484104e7898d5baf05bb245284f85a61e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/0013035.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1030023514_aad5c608f9.jpg b/hymenoptera_data/train/ants/1030023514_aad5c608f9.jpg
deleted file mode 100644
index 4a4c59192c48cd174b1797bf7f8168efa2a4dcc8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1030023514_aad5c608f9.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1095476100_3906d8afde.jpg b/hymenoptera_data/train/ants/1095476100_3906d8afde.jpg
deleted file mode 100644
index 0ed98e07d65e5a1f7d321af9a77fb57bcbdfb530..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1095476100_3906d8afde.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1099452230_d1949d3250.jpg b/hymenoptera_data/train/ants/1099452230_d1949d3250.jpg
deleted file mode 100644
index ba8b2f76441f836522753527c6732511d7085d82..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1099452230_d1949d3250.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/116570827_e9c126745d.jpg b/hymenoptera_data/train/ants/116570827_e9c126745d.jpg
deleted file mode 100644
index ac4630e95c63dd970864dd76dc8e01b5157d676c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/116570827_e9c126745d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1225872729_6f0856588f.jpg b/hymenoptera_data/train/ants/1225872729_6f0856588f.jpg
deleted file mode 100644
index 5c66fadba995ca273a28003924be4d488d00ae2b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1225872729_6f0856588f.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1262877379_64fcada201.jpg b/hymenoptera_data/train/ants/1262877379_64fcada201.jpg
deleted file mode 100644
index d2e12b2bdac4850ffe8077aecd68da31622a38a1..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1262877379_64fcada201.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1269756697_0bce92cdab.jpg b/hymenoptera_data/train/ants/1269756697_0bce92cdab.jpg
deleted file mode 100644
index cbe0880f3e919b06afa90287009727c2d22107de..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1269756697_0bce92cdab.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1286984635_5119e80de1.jpg b/hymenoptera_data/train/ants/1286984635_5119e80de1.jpg
deleted file mode 100644
index e02f0c1337fdb46d3809d22d0df960d65b8c6f07..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1286984635_5119e80de1.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/132478121_2a430adea2.jpg b/hymenoptera_data/train/ants/132478121_2a430adea2.jpg
deleted file mode 100644
index e4a99e3cbb8306fab7b3b7326ef33cbc90fc9d67..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/132478121_2a430adea2.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1360291657_dc248c5eea.jpg b/hymenoptera_data/train/ants/1360291657_dc248c5eea.jpg
deleted file mode 100644
index 2fde3742a331bb0d99dfd48138839fe262af0d3c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1360291657_dc248c5eea.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1368913450_e146e2fb6d.jpg b/hymenoptera_data/train/ants/1368913450_e146e2fb6d.jpg
deleted file mode 100644
index 2760d73d0a393766da850c656f8438e3b543e40b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1368913450_e146e2fb6d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1473187633_63ccaacea6.jpg b/hymenoptera_data/train/ants/1473187633_63ccaacea6.jpg
deleted file mode 100644
index 74594d98cb17943dc9b2ad44b65e3b1df62d922e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1473187633_63ccaacea6.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/148715752_302c84f5a4.jpg b/hymenoptera_data/train/ants/148715752_302c84f5a4.jpg
deleted file mode 100644
index 227c52dcdd19e5818b4556df74732ba916ad1e8b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/148715752_302c84f5a4.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1489674356_09d48dde0a.jpg b/hymenoptera_data/train/ants/1489674356_09d48dde0a.jpg
deleted file mode 100644
index 5f02bba2e0a2a40f51f0af18c8522ab4d4742c89..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1489674356_09d48dde0a.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/149244013_c529578289.jpg b/hymenoptera_data/train/ants/149244013_c529578289.jpg
deleted file mode 100644
index 8e232600aa1bbb7aae093d2ea7a70ca46042d364..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/149244013_c529578289.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/150801003_3390b73135.jpg b/hymenoptera_data/train/ants/150801003_3390b73135.jpg
deleted file mode 100644
index cdcad1a71527715cda17d0b0ecf833bfe45195d2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/150801003_3390b73135.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/150801171_cd86f17ed8.jpg b/hymenoptera_data/train/ants/150801171_cd86f17ed8.jpg
deleted file mode 100644
index 3594ff84d10986834ed5ee7e20553fb2ba1ff900..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/150801171_cd86f17ed8.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/154124431_65460430f2.jpg b/hymenoptera_data/train/ants/154124431_65460430f2.jpg
deleted file mode 100644
index 9ce2836b33770bb1fae27fcb66ca2a4980370390..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/154124431_65460430f2.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/162603798_40b51f1654.jpg b/hymenoptera_data/train/ants/162603798_40b51f1654.jpg
deleted file mode 100644
index 7170c951b2c43e4fbd064894b0d6de7dd19575b0..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/162603798_40b51f1654.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1660097129_384bf54490.jpg b/hymenoptera_data/train/ants/1660097129_384bf54490.jpg
deleted file mode 100644
index 64f4caceede19c647b031ab58d5e9fd6335edfd3..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1660097129_384bf54490.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/167890289_dd5ba923f3.jpg b/hymenoptera_data/train/ants/167890289_dd5ba923f3.jpg
deleted file mode 100644
index d51d6cc1e1ff33ec7a244253c8a09092b9a1a45c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/167890289_dd5ba923f3.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1693954099_46d4c20605.jpg b/hymenoptera_data/train/ants/1693954099_46d4c20605.jpg
deleted file mode 100644
index 6efed1a8881a05a189e21d5d06ab118689c33d5d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1693954099_46d4c20605.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/175998972.jpg b/hymenoptera_data/train/ants/175998972.jpg
deleted file mode 100644
index 6cc4cff82bd9d110a61558edf5ae130d2b189c85..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/175998972.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/178538489_bec7649292.jpg b/hymenoptera_data/train/ants/178538489_bec7649292.jpg
deleted file mode 100644
index 58bec942f2aa3e80ed4eff823ca419b85eed7b56..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/178538489_bec7649292.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1804095607_0341701e1c.jpg b/hymenoptera_data/train/ants/1804095607_0341701e1c.jpg
deleted file mode 100644
index 26faa3264a7bc3dd230ffb80715b78a3444ed751..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1804095607_0341701e1c.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1808777855_2a895621d7.jpg b/hymenoptera_data/train/ants/1808777855_2a895621d7.jpg
deleted file mode 100644
index 5088c8855568ba7a74f5f5f62a30e0cfafbf80bd..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1808777855_2a895621d7.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/188552436_605cc9b36b.jpg b/hymenoptera_data/train/ants/188552436_605cc9b36b.jpg
deleted file mode 100644
index a173de97ad6b5e3dacd50305441febaefaadcda2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/188552436_605cc9b36b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1917341202_d00a7f9af5.jpg b/hymenoptera_data/train/ants/1917341202_d00a7f9af5.jpg
deleted file mode 100644
index f19dd1fba329dc519573b602627d56c66e8631a7..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1917341202_d00a7f9af5.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/1924473702_daa9aacdbe.jpg b/hymenoptera_data/train/ants/1924473702_daa9aacdbe.jpg
deleted file mode 100644
index ee65a159816f8a9de176ae47ecfe59d9328968b3..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/1924473702_daa9aacdbe.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/196057951_63bf063b92.jpg b/hymenoptera_data/train/ants/196057951_63bf063b92.jpg
deleted file mode 100644
index 0434a341a4b48a21d90c400ca28727826fa80293..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/196057951_63bf063b92.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/196757565_326437f5fe.jpg b/hymenoptera_data/train/ants/196757565_326437f5fe.jpg
deleted file mode 100644
index 1fb54346b1e1151208157aa486d937020a387ae9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/196757565_326437f5fe.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/201558278_fe4caecc76.jpg b/hymenoptera_data/train/ants/201558278_fe4caecc76.jpg
deleted file mode 100644
index 098a7c84d72f2a4f5b626cc8032e74acb148c0bb..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/201558278_fe4caecc76.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/201790779_527f4c0168.jpg b/hymenoptera_data/train/ants/201790779_527f4c0168.jpg
deleted file mode 100644
index 826ea5ec8f7a852fb0d5379f8bbd80e0755a9dbe..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/201790779_527f4c0168.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/2019439677_2db655d361.jpg b/hymenoptera_data/train/ants/2019439677_2db655d361.jpg
deleted file mode 100644
index 660952c0f67b697453379d550efe785d947ecbba..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/2019439677_2db655d361.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/207947948_3ab29d7207.jpg b/hymenoptera_data/train/ants/207947948_3ab29d7207.jpg
deleted file mode 100644
index 4c6e9c8e05030be1185f8023e37b580e64660609..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/207947948_3ab29d7207.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/20935278_9190345f6b.jpg b/hymenoptera_data/train/ants/20935278_9190345f6b.jpg
deleted file mode 100644
index 8282af6c9dbe83c1f43410f48146bf0471227f4c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/20935278_9190345f6b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/224655713_3956f7d39a.jpg b/hymenoptera_data/train/ants/224655713_3956f7d39a.jpg
deleted file mode 100644
index d6a63d909a2d7c3d5a48661847e4d51e63080bd0..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/224655713_3956f7d39a.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/2265824718_2c96f485da.jpg b/hymenoptera_data/train/ants/2265824718_2c96f485da.jpg
deleted file mode 100644
index 0034ebe8e9e6ed7ddb1ebf94447d899a88177a94..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/2265824718_2c96f485da.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/2265825502_fff99cfd2d.jpg b/hymenoptera_data/train/ants/2265825502_fff99cfd2d.jpg
deleted file mode 100644
index e137365215ad708c99dc1e9ba8d30888c71ae0b6..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/2265825502_fff99cfd2d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/226951206_d6bf946504.jpg b/hymenoptera_data/train/ants/226951206_d6bf946504.jpg
deleted file mode 100644
index 7a196133580340b5859cef7c227dbc002e6d2c9a..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/226951206_d6bf946504.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/2278278459_6b99605e50.jpg b/hymenoptera_data/train/ants/2278278459_6b99605e50.jpg
deleted file mode 100644
index a7e300bf6770f3ca48d14a83c8aac51cec596080..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/2278278459_6b99605e50.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/2288450226_a6e96e8fdf.jpg b/hymenoptera_data/train/ants/2288450226_a6e96e8fdf.jpg
deleted file mode 100644
index 78abe7c8f7fb9f484b0ef6f23c5bbbe01572f2a9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/2288450226_a6e96e8fdf.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/2288481644_83ff7e4572.jpg b/hymenoptera_data/train/ants/2288481644_83ff7e4572.jpg
deleted file mode 100644
index 441fbd91bd8981d3f32556cc4521c206970e0555..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/2288481644_83ff7e4572.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/2292213964_ca51ce4bef.jpg b/hymenoptera_data/train/ants/2292213964_ca51ce4bef.jpg
deleted file mode 100644
index 6ed2838971182d5dcbfdb8853e2a8299a31c435d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/2292213964_ca51ce4bef.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/24335309_c5ea483bb8.jpg b/hymenoptera_data/train/ants/24335309_c5ea483bb8.jpg
deleted file mode 100644
index e2f94e136a22ccbf100c399f0d3d2ecb154823ec..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/24335309_c5ea483bb8.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/245647475_9523dfd13e.jpg b/hymenoptera_data/train/ants/245647475_9523dfd13e.jpg
deleted file mode 100644
index 72520298a84519cc72004c0a7ffc680e87b970fd..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/245647475_9523dfd13e.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/255434217_1b2b3fe0a4.jpg b/hymenoptera_data/train/ants/255434217_1b2b3fe0a4.jpg
deleted file mode 100644
index fff6f01311954036faeb848432b8b58e77bf6e33..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/255434217_1b2b3fe0a4.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/258217966_d9d90d18d3.jpg b/hymenoptera_data/train/ants/258217966_d9d90d18d3.jpg
deleted file mode 100644
index c2cc3e0f3125de809e141e39c96dcee7f3b0404d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/258217966_d9d90d18d3.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/275429470_b2d7d9290b.jpg b/hymenoptera_data/train/ants/275429470_b2d7d9290b.jpg
deleted file mode 100644
index 1d9a88bb02200774b6a7c778678834075e65a298..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/275429470_b2d7d9290b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/28847243_e79fe052cd.jpg b/hymenoptera_data/train/ants/28847243_e79fe052cd.jpg
deleted file mode 100644
index ebcefd4baebfaa7c84ba3dad45585e23167b0ff0..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/28847243_e79fe052cd.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/318052216_84dff3f98a.jpg b/hymenoptera_data/train/ants/318052216_84dff3f98a.jpg
deleted file mode 100644
index 53ebb68bd8959272005a36b9d20b23cfdac77cb4..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/318052216_84dff3f98a.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/334167043_cbd1adaeb9.jpg b/hymenoptera_data/train/ants/334167043_cbd1adaeb9.jpg
deleted file mode 100644
index f0c1c6d03c749cdde61ac3ee34c7ca75452ac66b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/334167043_cbd1adaeb9.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/339670531_94b75ae47a.jpg b/hymenoptera_data/train/ants/339670531_94b75ae47a.jpg
deleted file mode 100644
index 32857f2923dd58ed43da7b3b252df8d138bdb057..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/339670531_94b75ae47a.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/342438950_a3da61deab.jpg b/hymenoptera_data/train/ants/342438950_a3da61deab.jpg
deleted file mode 100644
index e8255cbe9dcf460a4408af4984fde4867ddbbaba..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/342438950_a3da61deab.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/36439863_0bec9f554f.jpg b/hymenoptera_data/train/ants/36439863_0bec9f554f.jpg
deleted file mode 100644
index c43edcbb3123abcd592af5195867bdd713b5cfc9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/36439863_0bec9f554f.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/374435068_7eee412ec4.jpg b/hymenoptera_data/train/ants/374435068_7eee412ec4.jpg
deleted file mode 100644
index 7c5e0bb769b72d4d7d9d792fb96d2d6512a9337c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/374435068_7eee412ec4.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/382971067_0bfd33afe0.jpg b/hymenoptera_data/train/ants/382971067_0bfd33afe0.jpg
deleted file mode 100644
index 802677bcff7509e0c49551fda8d7e2f5f94ebde0..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/382971067_0bfd33afe0.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/384191229_5779cf591b.jpg b/hymenoptera_data/train/ants/384191229_5779cf591b.jpg
deleted file mode 100644
index 1e4342332e3ca023568b95fbfd686c2d462e3199..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/384191229_5779cf591b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/386190770_672743c9a7.jpg b/hymenoptera_data/train/ants/386190770_672743c9a7.jpg
deleted file mode 100644
index fe646978e9f1275adc1c11be2c0dad09a7c025f9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/386190770_672743c9a7.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/392382602_1b7bed32fa.jpg b/hymenoptera_data/train/ants/392382602_1b7bed32fa.jpg
deleted file mode 100644
index 51ff037bca7b611e3c822c9d487367cb83550c7a..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/392382602_1b7bed32fa.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/403746349_71384f5b58.jpg b/hymenoptera_data/train/ants/403746349_71384f5b58.jpg
deleted file mode 100644
index 34baead4693edd6d1dea7bd95a8c128a01a88966..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/403746349_71384f5b58.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/408393566_b5b694119b.jpg b/hymenoptera_data/train/ants/408393566_b5b694119b.jpg
deleted file mode 100644
index e244086ff8a2c2510d6517d604ca34f7953ced31..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/408393566_b5b694119b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/424119020_6d57481dab.jpg b/hymenoptera_data/train/ants/424119020_6d57481dab.jpg
deleted file mode 100644
index 03f4f0f7ff0c59cc254a73921ad294f280aba24e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/424119020_6d57481dab.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/424873399_47658a91fb.jpg b/hymenoptera_data/train/ants/424873399_47658a91fb.jpg
deleted file mode 100644
index f3204bfd30d80710ba92bf4ec64e6aaf62aa058c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/424873399_47658a91fb.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/450057712_771b3bfc91.jpg b/hymenoptera_data/train/ants/450057712_771b3bfc91.jpg
deleted file mode 100644
index 5669d0f04e19e1ee845004cae4aa70d932126350..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/450057712_771b3bfc91.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/45472593_bfd624f8dc.jpg b/hymenoptera_data/train/ants/45472593_bfd624f8dc.jpg
deleted file mode 100644
index df61eaa1035c0e04035949909a5f5bb273a80cb6..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/45472593_bfd624f8dc.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/459694881_ac657d3187.jpg b/hymenoptera_data/train/ants/459694881_ac657d3187.jpg
deleted file mode 100644
index 17778f5df7907f31e2ad26c8a3bb4d963895e082..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/459694881_ac657d3187.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/460372577_f2f6a8c9fc.jpg b/hymenoptera_data/train/ants/460372577_f2f6a8c9fc.jpg
deleted file mode 100644
index a5d2de2d7f53e1e79671bf9fd8db50356dbe1ed2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/460372577_f2f6a8c9fc.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/460874319_0a45ab4d05.jpg b/hymenoptera_data/train/ants/460874319_0a45ab4d05.jpg
deleted file mode 100644
index dc5668544444b05423042716f6e8e7e535d82a34..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/460874319_0a45ab4d05.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/466430434_4000737de9.jpg b/hymenoptera_data/train/ants/466430434_4000737de9.jpg
deleted file mode 100644
index 7161dcd71314661ea0a7352f2cbd175c17c2c88d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/466430434_4000737de9.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/470127037_513711fd21.jpg b/hymenoptera_data/train/ants/470127037_513711fd21.jpg
deleted file mode 100644
index 705ccb7f4a3e6be3442db182c3b9fde8ba314bbe..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/470127037_513711fd21.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/474806473_ca6caab245.jpg b/hymenoptera_data/train/ants/474806473_ca6caab245.jpg
deleted file mode 100644
index c8b4dd0d3c0f56c686ab6c4a27bb38312c4d16bb..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/474806473_ca6caab245.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/475961153_b8c13fd405.jpg b/hymenoptera_data/train/ants/475961153_b8c13fd405.jpg
deleted file mode 100644
index 14b01c4be2e3d6959e83e69fa23c99e7486c7cb5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/475961153_b8c13fd405.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/484293231_e53cfc0c89.jpg b/hymenoptera_data/train/ants/484293231_e53cfc0c89.jpg
deleted file mode 100644
index 5ecd1051b504132a10d2fd4ba1ae22be569688b3..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/484293231_e53cfc0c89.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/49375974_e28ba6f17e.jpg b/hymenoptera_data/train/ants/49375974_e28ba6f17e.jpg
deleted file mode 100644
index de0b3930fc67f35c01417cd0819c933800a25af4..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/49375974_e28ba6f17e.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/506249802_207cd979b4.jpg b/hymenoptera_data/train/ants/506249802_207cd979b4.jpg
deleted file mode 100644
index 589a454a9a71daaed4ce9d15d7bc78f9bbcdb691..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/506249802_207cd979b4.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/506249836_717b73f540.jpg b/hymenoptera_data/train/ants/506249836_717b73f540.jpg
deleted file mode 100644
index f92ff676e7d06c2b19e26bb543f1f4d6d2e5313c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/506249836_717b73f540.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/512164029_c0a66b8498.jpg b/hymenoptera_data/train/ants/512164029_c0a66b8498.jpg
deleted file mode 100644
index a30f930c5900fbbfc191878c33027f65a049886a..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/512164029_c0a66b8498.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/512863248_43c8ce579b.jpg b/hymenoptera_data/train/ants/512863248_43c8ce579b.jpg
deleted file mode 100644
index 9eb0290ff64505d628fc71dbf4fd4fa1144db31f..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/512863248_43c8ce579b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/518773929_734dbc5ff4.jpg b/hymenoptera_data/train/ants/518773929_734dbc5ff4.jpg
deleted file mode 100644
index e1fe3e731558fc532f866d23fd2b38577a64dfba..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/518773929_734dbc5ff4.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/522163566_fec115ca66.jpg b/hymenoptera_data/train/ants/522163566_fec115ca66.jpg
deleted file mode 100644
index 111203b7bb87b7a2ecaeae0bf95fe596223dd89b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/522163566_fec115ca66.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/522415432_2218f34bf8.jpg b/hymenoptera_data/train/ants/522415432_2218f34bf8.jpg
deleted file mode 100644
index d8a042fbdbf5a3cf341202b024c27d0d7d21d011..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/522415432_2218f34bf8.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/531979952_bde12b3bc0.jpg b/hymenoptera_data/train/ants/531979952_bde12b3bc0.jpg
deleted file mode 100644
index 1167dd80b98aac759a2632ebe3b5097b6fc5e2dc..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/531979952_bde12b3bc0.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/533848102_70a85ad6dd.jpg b/hymenoptera_data/train/ants/533848102_70a85ad6dd.jpg
deleted file mode 100644
index b549b3df93da3aa58ac673275b0fe16b5c4b38bb..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/533848102_70a85ad6dd.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/535522953_308353a07c.jpg b/hymenoptera_data/train/ants/535522953_308353a07c.jpg
deleted file mode 100644
index 0d8a4fb7bd388340c0712ae3b5e00f163f389b0d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/535522953_308353a07c.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/540889389_48bb588b21.jpg b/hymenoptera_data/train/ants/540889389_48bb588b21.jpg
deleted file mode 100644
index 0223809f10c466c089317b932b2c9378a1dfc5bb..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/540889389_48bb588b21.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/541630764_dbd285d63c.jpg b/hymenoptera_data/train/ants/541630764_dbd285d63c.jpg
deleted file mode 100644
index 2eeb10f4d6bafecb098dbccd064ec1f9deff677a..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/541630764_dbd285d63c.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/543417860_b14237f569.jpg b/hymenoptera_data/train/ants/543417860_b14237f569.jpg
deleted file mode 100644
index 232ada383bf515c26583e6432e2b712766adb69e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/543417860_b14237f569.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/560966032_988f4d7bc4.jpg b/hymenoptera_data/train/ants/560966032_988f4d7bc4.jpg
deleted file mode 100644
index 584fc62798b198617e122a61b66354b433616b1c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/560966032_988f4d7bc4.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/5650366_e22b7e1065.jpg b/hymenoptera_data/train/ants/5650366_e22b7e1065.jpg
deleted file mode 100644
index 0ac9a90a8a7d5c1e8261c169a02660bcf14976a8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/5650366_e22b7e1065.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/6240329_72c01e663e.jpg b/hymenoptera_data/train/ants/6240329_72c01e663e.jpg
deleted file mode 100644
index 4696d95997b86c359dbdb42dfe82034cd02d7c8b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/6240329_72c01e663e.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/6240338_93729615ec.jpg b/hymenoptera_data/train/ants/6240338_93729615ec.jpg
deleted file mode 100644
index 687738ab2f1a002ac1c7f30ded29aec00cdaf856..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/6240338_93729615ec.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/649026570_e58656104b.jpg b/hymenoptera_data/train/ants/649026570_e58656104b.jpg
deleted file mode 100644
index 47fbc0bf2851af2d0f4ade1fd30e55440cc088b6..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/649026570_e58656104b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/662541407_ff8db781e7.jpg b/hymenoptera_data/train/ants/662541407_ff8db781e7.jpg
deleted file mode 100644
index 406d73eb0811827eba6f57dfc3e149ee784fea3b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/662541407_ff8db781e7.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/67270775_e9fdf77e9d.jpg b/hymenoptera_data/train/ants/67270775_e9fdf77e9d.jpg
deleted file mode 100644
index 7e562ba922e04b922cbe24c47efef699189d139e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/67270775_e9fdf77e9d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/6743948_2b8c096dda.jpg b/hymenoptera_data/train/ants/6743948_2b8c096dda.jpg
deleted file mode 100644
index 261ca15fe7a3d41eaa3b32e4a87f3640510b6ae5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/6743948_2b8c096dda.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/684133190_35b62c0c1d.jpg b/hymenoptera_data/train/ants/684133190_35b62c0c1d.jpg
deleted file mode 100644
index 25cde6a4ef934f1a8a1353c44376f5bcc74a979b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/684133190_35b62c0c1d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/69639610_95e0de17aa.jpg b/hymenoptera_data/train/ants/69639610_95e0de17aa.jpg
deleted file mode 100644
index 42cbe06e3e27b03643449d7e72b7170b85355d2d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/69639610_95e0de17aa.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/707895295_009cf23188.jpg b/hymenoptera_data/train/ants/707895295_009cf23188.jpg
deleted file mode 100644
index 72acd23d6d0fa5f96cd9791201078d48af15350f..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/707895295_009cf23188.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/7759525_1363d24e88.jpg b/hymenoptera_data/train/ants/7759525_1363d24e88.jpg
deleted file mode 100644
index aaeeb2c0ab90b9ae5ac526958ccc2ccd59946868..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/7759525_1363d24e88.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/795000156_a9900a4a71.jpg b/hymenoptera_data/train/ants/795000156_a9900a4a71.jpg
deleted file mode 100644
index ae8fb961577c0ef77e16cdb66bd79d83102be6a7..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/795000156_a9900a4a71.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/822537660_caf4ba5514.jpg b/hymenoptera_data/train/ants/822537660_caf4ba5514.jpg
deleted file mode 100644
index 4470efd633df25492789af7fed7c4f655555fb00..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/822537660_caf4ba5514.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/82852639_52b7f7f5e3.jpg b/hymenoptera_data/train/ants/82852639_52b7f7f5e3.jpg
deleted file mode 100644
index ee6ed24ae4bb925a208baa3ac91d7b18a2731fca..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/82852639_52b7f7f5e3.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/841049277_b28e58ad05.jpg b/hymenoptera_data/train/ants/841049277_b28e58ad05.jpg
deleted file mode 100644
index fc646d8caef0bffebc7fdbd4e6f640b2e962d30e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/841049277_b28e58ad05.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/886401651_f878e888cd.jpg b/hymenoptera_data/train/ants/886401651_f878e888cd.jpg
deleted file mode 100644
index 02faad9fd24d6acd69c09c587c586978e685e3e8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/886401651_f878e888cd.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/892108839_f1aad4ca46.jpg b/hymenoptera_data/train/ants/892108839_f1aad4ca46.jpg
deleted file mode 100644
index a9c8894843df077af55e8aa40aba0dccfd66ee8b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/892108839_f1aad4ca46.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/938946700_ca1c669085.jpg b/hymenoptera_data/train/ants/938946700_ca1c669085.jpg
deleted file mode 100644
index 921f49d8343193b055ce76f3dd601ac424367430..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/938946700_ca1c669085.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/957233405_25c1d1187b.jpg b/hymenoptera_data/train/ants/957233405_25c1d1187b.jpg
deleted file mode 100644
index 352011229c96b6ff6f64c4c05bd4656746135a02..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/957233405_25c1d1187b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/9715481_b3cb4114ff.jpg b/hymenoptera_data/train/ants/9715481_b3cb4114ff.jpg
deleted file mode 100644
index f10a109ab3e09bcc3e232bae9bed051be9e05e37..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/9715481_b3cb4114ff.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/998118368_6ac1d91f81.jpg b/hymenoptera_data/train/ants/998118368_6ac1d91f81.jpg
deleted file mode 100644
index c777c2e4ca2f0b30e032127551ce1d441f32d1d4..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/998118368_6ac1d91f81.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/Ant_1.jpg b/hymenoptera_data/train/ants/Ant_1.jpg
deleted file mode 100644
index 405b720367e8946a40a0c0ac1c6223ecbc335839..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/Ant_1.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/MehdiabadiAnt2_600.jpg b/hymenoptera_data/train/ants/MehdiabadiAnt2_600.jpg
deleted file mode 100644
index a610fc2c72f9602c4c17565b71ea29f132b2c04c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/MehdiabadiAnt2_600.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/Nepenthes_rafflesiana_ant.jpg b/hymenoptera_data/train/ants/Nepenthes_rafflesiana_ant.jpg
deleted file mode 100644
index 8677c4e8f79cf7e13bf13bab1c8e8f7606f1e243..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/Nepenthes_rafflesiana_ant.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/VietnameseAntMimicSpider.jpg b/hymenoptera_data/train/ants/VietnameseAntMimicSpider.jpg
deleted file mode 100644
index 65a13986620c7bf6060898c722387a0abc11f958..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/VietnameseAntMimicSpider.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/ant photos.jpg b/hymenoptera_data/train/ants/ant photos.jpg
deleted file mode 100644
index 2afb7599803ab887b68b84cc7f220ee56a0af398..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/ant photos.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/army-ants-red-picture.jpg b/hymenoptera_data/train/ants/army-ants-red-picture.jpg
deleted file mode 100644
index 869759117cece72c911ab72dd001c5ca79a4e38b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/army-ants-red-picture.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/formica.jpeg b/hymenoptera_data/train/ants/formica.jpeg
deleted file mode 100644
index af83327233be73099c700fce654749842aad4a9d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/formica.jpeg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/hormiga_co_por.jpg b/hymenoptera_data/train/ants/hormiga_co_por.jpg
deleted file mode 100644
index 571a70892ba9a1ec4e7c383defef018e83279f8d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/hormiga_co_por.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/imageNotFound.gif b/hymenoptera_data/train/ants/imageNotFound.gif
deleted file mode 100644
index bdeaae94004e06c6a35d147ec58fb35062076b52..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/imageNotFound.gif and /dev/null differ
diff --git a/hymenoptera_data/train/ants/kurokusa.jpg b/hymenoptera_data/train/ants/kurokusa.jpg
deleted file mode 100644
index 37242bc501f9ae2ebc14747f542153a63905246a..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/kurokusa.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/swiss-army-ant.jpg b/hymenoptera_data/train/ants/swiss-army-ant.jpg
deleted file mode 100644
index 0305afb267041d13ddb14bd91c68f85d37b60fa5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/swiss-army-ant.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/termite-vs-ant.jpg b/hymenoptera_data/train/ants/termite-vs-ant.jpg
deleted file mode 100644
index c5cacc47d39ea214df730cf826d1a354d7d5d9ac..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/termite-vs-ant.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/ants/trap-jaw-ant-insect-bg.jpg b/hymenoptera_data/train/ants/trap-jaw-ant-insect-bg.jpg
deleted file mode 100644
index 7f3ca1255c3d537fc84bdf8c8f42efc01e4bf7d1..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/ants/trap-jaw-ant-insect-bg.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/1092977343_cb42b38d62.jpg b/hymenoptera_data/train/bees/1092977343_cb42b38d62.jpg
deleted file mode 100644
index 09b3e744099c40859c030f90aa0e61597b2a7876..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/1092977343_cb42b38d62.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/1093831624_fb5fbe2308.jpg b/hymenoptera_data/train/bees/1093831624_fb5fbe2308.jpg
deleted file mode 100644
index 0900774b0047a1e378cee71d55e36309761bfc20..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/1093831624_fb5fbe2308.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/1097045929_1753d1c765.jpg b/hymenoptera_data/train/bees/1097045929_1753d1c765.jpg
deleted file mode 100644
index 7ac90d8a081514ba095989be23f55ba48e0b87ed..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/1097045929_1753d1c765.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/1232245714_f862fbe385.jpg b/hymenoptera_data/train/bees/1232245714_f862fbe385.jpg
deleted file mode 100644
index 8a108822bc445f14de05cc11e683b8d1904b1a8d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/1232245714_f862fbe385.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/129236073_0985e91c7d.jpg b/hymenoptera_data/train/bees/129236073_0985e91c7d.jpg
deleted file mode 100644
index f5edf9adcf31d65948ea6fd665b594b06977e879..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/129236073_0985e91c7d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/1295655112_7813f37d21.jpg b/hymenoptera_data/train/bees/1295655112_7813f37d21.jpg
deleted file mode 100644
index bae326622e4ffdf37b0f3d315f78fa32b5429203..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/1295655112_7813f37d21.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/132511197_0b86ad0fff.jpg b/hymenoptera_data/train/bees/132511197_0b86ad0fff.jpg
deleted file mode 100644
index f848546a7f387267f6f5caa74cd33aa0e0f5f6ee..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/132511197_0b86ad0fff.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/132826773_dbbcb117b9.jpg b/hymenoptera_data/train/bees/132826773_dbbcb117b9.jpg
deleted file mode 100644
index e1eaa9b3c2ee00bb97d595470cbfce48bae07d35..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/132826773_dbbcb117b9.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/150013791_969d9a968b.jpg b/hymenoptera_data/train/bees/150013791_969d9a968b.jpg
deleted file mode 100644
index 32105135eb8cffb4661bf86c47dc25e2d39d9140..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/150013791_969d9a968b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/1508176360_2972117c9d.jpg b/hymenoptera_data/train/bees/1508176360_2972117c9d.jpg
deleted file mode 100644
index 588d921e08dc9a36b00f878b28235dc5ec9abda0..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/1508176360_2972117c9d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/154600396_53e1252e52.jpg b/hymenoptera_data/train/bees/154600396_53e1252e52.jpg
deleted file mode 100644
index 5cf832252a5097337af79d0e170164854bec248d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/154600396_53e1252e52.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/16838648_415acd9e3f.jpg b/hymenoptera_data/train/bees/16838648_415acd9e3f.jpg
deleted file mode 100644
index cc74b74c2677f391e2276e4b02597379cf5514f9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/16838648_415acd9e3f.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/1691282715_0addfdf5e8.jpg b/hymenoptera_data/train/bees/1691282715_0addfdf5e8.jpg
deleted file mode 100644
index 137a815ef79af59d36c3ebf33a3365d3593e6215..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/1691282715_0addfdf5e8.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/17209602_fe5a5a746f.jpg b/hymenoptera_data/train/bees/17209602_fe5a5a746f.jpg
deleted file mode 100644
index 78a75bdb2a93e9e0559057448d52a9fbc8460f3c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/17209602_fe5a5a746f.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/174142798_e5ad6d76e0.jpg b/hymenoptera_data/train/bees/174142798_e5ad6d76e0.jpg
deleted file mode 100644
index 6a41abfbe10dc4f467cb92c2ef4830dd57a7c80e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/174142798_e5ad6d76e0.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/1799726602_8580867f71.jpg b/hymenoptera_data/train/bees/1799726602_8580867f71.jpg
deleted file mode 100644
index 3ed1d50e29b036710921dae6f641184cc5f6f920..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/1799726602_8580867f71.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/1807583459_4fe92b3133.jpg b/hymenoptera_data/train/bees/1807583459_4fe92b3133.jpg
deleted file mode 100644
index ffd3001c6962f32d2e71b3067303aa55ffc35641..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/1807583459_4fe92b3133.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/196430254_46bd129ae7.jpg b/hymenoptera_data/train/bees/196430254_46bd129ae7.jpg
deleted file mode 100644
index 8f085c719e7d6d483bc2add66795100049a336bd..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/196430254_46bd129ae7.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/196658222_3fffd79c67.jpg b/hymenoptera_data/train/bees/196658222_3fffd79c67.jpg
deleted file mode 100644
index 6221953cb87cd275a8945566af4472a7c95f746b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/196658222_3fffd79c67.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/198508668_97d818b6c4.jpg b/hymenoptera_data/train/bees/198508668_97d818b6c4.jpg
deleted file mode 100644
index c57cdbe4c904dd1b3264a2d4cc71c77dfda6e888..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/198508668_97d818b6c4.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2031225713_50ed499635.jpg b/hymenoptera_data/train/bees/2031225713_50ed499635.jpg
deleted file mode 100644
index f79dac13af2c527809b1e4e61c17d28ce92da0a0..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2031225713_50ed499635.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2037437624_2d7bce461f.jpg b/hymenoptera_data/train/bees/2037437624_2d7bce461f.jpg
deleted file mode 100644
index 1d103d0628ff6af0f2d2a62bce828f65cf459289..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2037437624_2d7bce461f.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2053200300_8911ef438a.jpg b/hymenoptera_data/train/bees/2053200300_8911ef438a.jpg
deleted file mode 100644
index c7de1a9cd2f9effb18b492c15fa893be4b327280..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2053200300_8911ef438a.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/205835650_e6f2614bee.jpg b/hymenoptera_data/train/bees/205835650_e6f2614bee.jpg
deleted file mode 100644
index f2edf6801f48615c06eb4609ec1beb18c95f057e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/205835650_e6f2614bee.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/208702903_42fb4d9748.jpg b/hymenoptera_data/train/bees/208702903_42fb4d9748.jpg
deleted file mode 100644
index e3d0362634017c90e2332138073bfd1949d74c25..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/208702903_42fb4d9748.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/21399619_3e61e5bb6f.jpg b/hymenoptera_data/train/bees/21399619_3e61e5bb6f.jpg
deleted file mode 100644
index 372e27920aeaa0146d2d22b982768fb712766e59..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/21399619_3e61e5bb6f.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2227611847_ec72d40403.jpg b/hymenoptera_data/train/bees/2227611847_ec72d40403.jpg
deleted file mode 100644
index d15103e087323d9a681faafe9cc9e26e2963c6bc..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2227611847_ec72d40403.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2321139806_d73d899e66.jpg b/hymenoptera_data/train/bees/2321139806_d73d899e66.jpg
deleted file mode 100644
index d08f89e559d20d6ae90a886d89d689290b3e4be7..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2321139806_d73d899e66.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2330918208_8074770c20.jpg b/hymenoptera_data/train/bees/2330918208_8074770c20.jpg
deleted file mode 100644
index 580e38bc47f182a53dd4666759c3bde2636bad57..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2330918208_8074770c20.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2345177635_caf07159b3.jpg b/hymenoptera_data/train/bees/2345177635_caf07159b3.jpg
deleted file mode 100644
index 579f4f0bd3599f55787b8d797c2cd0f511cf7db7..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2345177635_caf07159b3.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2358061370_9daabbd9ac.jpg b/hymenoptera_data/train/bees/2358061370_9daabbd9ac.jpg
deleted file mode 100644
index f928c6d0bf43e7a1f41c268a39a5f0c7e2f3258c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2358061370_9daabbd9ac.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2364597044_3c3e3fc391.jpg b/hymenoptera_data/train/bees/2364597044_3c3e3fc391.jpg
deleted file mode 100644
index a5f762e40ce825a15a557da6871e3cb3985fa9f7..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2364597044_3c3e3fc391.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2384149906_2cd8b0b699.jpg b/hymenoptera_data/train/bees/2384149906_2cd8b0b699.jpg
deleted file mode 100644
index 8398639156ff4fd29e92d35d9e373bffd6d51fbb..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2384149906_2cd8b0b699.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2397446847_04ef3cd3e1.jpg b/hymenoptera_data/train/bees/2397446847_04ef3cd3e1.jpg
deleted file mode 100644
index 759654bd3599861de255f1a652cd85373f02c702..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2397446847_04ef3cd3e1.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2405441001_b06c36fa72.jpg b/hymenoptera_data/train/bees/2405441001_b06c36fa72.jpg
deleted file mode 100644
index 455c42399e1ce6e86484519dd603e3b96a4c10c5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2405441001_b06c36fa72.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2445215254_51698ff797.jpg b/hymenoptera_data/train/bees/2445215254_51698ff797.jpg
deleted file mode 100644
index c94f2adad84dd7e64fde4a4fe382251d8d486003..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2445215254_51698ff797.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2452236943_255bfd9e58.jpg b/hymenoptera_data/train/bees/2452236943_255bfd9e58.jpg
deleted file mode 100644
index f91affcf363bc5b1666dcb637af36f21d182c1ca..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2452236943_255bfd9e58.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2467959963_a7831e9ff0.jpg b/hymenoptera_data/train/bees/2467959963_a7831e9ff0.jpg
deleted file mode 100644
index 8056e4074def9703ac174aa4fee38806ec9675cf..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2467959963_a7831e9ff0.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2470492904_837e97800d.jpg b/hymenoptera_data/train/bees/2470492904_837e97800d.jpg
deleted file mode 100644
index a9ba84563e3d9663a811d905fdd5b89f79084999..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2470492904_837e97800d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2477324698_3d4b1b1cab.jpg b/hymenoptera_data/train/bees/2477324698_3d4b1b1cab.jpg
deleted file mode 100644
index 05772d3c47f18358e7ddbc0e8c4378038131f9cf..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2477324698_3d4b1b1cab.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2477349551_e75c97cf4d.jpg b/hymenoptera_data/train/bees/2477349551_e75c97cf4d.jpg
deleted file mode 100644
index eb2fd67b447615ab89c6b06f602c68db4e9aa739..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2477349551_e75c97cf4d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2486729079_62df0920be.jpg b/hymenoptera_data/train/bees/2486729079_62df0920be.jpg
deleted file mode 100644
index cea322507dfe10dd1ebccacac9e5a50b82cf26f5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2486729079_62df0920be.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2486746709_c43cec0e42.jpg b/hymenoptera_data/train/bees/2486746709_c43cec0e42.jpg
deleted file mode 100644
index 1b2019eaf428e433c9b3b80cc7c94ff27fd54319..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2486746709_c43cec0e42.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2493379287_4100e1dacc.jpg b/hymenoptera_data/train/bees/2493379287_4100e1dacc.jpg
deleted file mode 100644
index 7ba3429126fdb168ca5b8701b3eddf5f004d3a7c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2493379287_4100e1dacc.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2495722465_879acf9d85.jpg b/hymenoptera_data/train/bees/2495722465_879acf9d85.jpg
deleted file mode 100644
index 901540d383a122eaeeb80e1e793d8f720b536ef0..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2495722465_879acf9d85.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2528444139_fa728b0f5b.jpg b/hymenoptera_data/train/bees/2528444139_fa728b0f5b.jpg
deleted file mode 100644
index 4b1fb1be3987f6e59455f722ff82d30535188302..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2528444139_fa728b0f5b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2538361678_9da84b77e3.jpg b/hymenoptera_data/train/bees/2538361678_9da84b77e3.jpg
deleted file mode 100644
index 5f8e7c29c7d184fe44195eacf82d1277c2000a89..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2538361678_9da84b77e3.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2551813042_8a070aeb2b.jpg b/hymenoptera_data/train/bees/2551813042_8a070aeb2b.jpg
deleted file mode 100644
index c6fd5f259defc0df046a9639b36f6663a4b04a71..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2551813042_8a070aeb2b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2580598377_a4caecdb54.jpg b/hymenoptera_data/train/bees/2580598377_a4caecdb54.jpg
deleted file mode 100644
index f479b518cdd16b9243e8efd393676f9ca11a5ea2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2580598377_a4caecdb54.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2601176055_8464e6aa71.jpg b/hymenoptera_data/train/bees/2601176055_8464e6aa71.jpg
deleted file mode 100644
index 51a4dbd704d24ea1083b57b662dff1d57ffc8ad4..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2601176055_8464e6aa71.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2610833167_79bf0bcae5.jpg b/hymenoptera_data/train/bees/2610833167_79bf0bcae5.jpg
deleted file mode 100644
index 16dd146dbc16e33e83e64eb5e4206f7b8b68b795..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2610833167_79bf0bcae5.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2610838525_fe8e3cae47.jpg b/hymenoptera_data/train/bees/2610838525_fe8e3cae47.jpg
deleted file mode 100644
index 1bbd2651be6a42aad8cb92d643c47f0f5e1a895b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2610838525_fe8e3cae47.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2617161745_fa3ebe85b4.jpg b/hymenoptera_data/train/bees/2617161745_fa3ebe85b4.jpg
deleted file mode 100644
index 6ec5173eb86517ae43f1915f16446f1ceb340e74..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2617161745_fa3ebe85b4.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2625499656_e3415e374d.jpg b/hymenoptera_data/train/bees/2625499656_e3415e374d.jpg
deleted file mode 100644
index 54b26a6485660b48b900a8c1b02817bc461e4ed6..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2625499656_e3415e374d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2634617358_f32fd16bea.jpg b/hymenoptera_data/train/bees/2634617358_f32fd16bea.jpg
deleted file mode 100644
index 8a0600fe956a69d7170c3974ec52e8a2295e3b08..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2634617358_f32fd16bea.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2638074627_6b3ae746a0.jpg b/hymenoptera_data/train/bees/2638074627_6b3ae746a0.jpg
deleted file mode 100644
index 13b8dc26fe2aa4fa6a85847310268a8b4219ba38..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2638074627_6b3ae746a0.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2645107662_b73a8595cc.jpg b/hymenoptera_data/train/bees/2645107662_b73a8595cc.jpg
deleted file mode 100644
index 95572fa2704453d81d22c485256e6fee346c3896..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2645107662_b73a8595cc.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2651621464_a2fa8722eb.jpg b/hymenoptera_data/train/bees/2651621464_a2fa8722eb.jpg
deleted file mode 100644
index b124273c7c371a035b8a5b3302f60c8268ab4744..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2651621464_a2fa8722eb.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2652877533_a564830cbf.jpg b/hymenoptera_data/train/bees/2652877533_a564830cbf.jpg
deleted file mode 100644
index 1cc7d314ff85b2c60dfd8312c1b5c5321d70ffd2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2652877533_a564830cbf.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/266644509_d30bb16a1b.jpg b/hymenoptera_data/train/bees/266644509_d30bb16a1b.jpg
deleted file mode 100644
index 8dd6c208d0e34012ac9d70cb6d4bfe4c51080c93..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/266644509_d30bb16a1b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2683605182_9d2a0c66cf.jpg b/hymenoptera_data/train/bees/2683605182_9d2a0c66cf.jpg
deleted file mode 100644
index 6c8fee572502714bde3623e43b44c8887e3de7d8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2683605182_9d2a0c66cf.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2704348794_eb5d5178c2.jpg b/hymenoptera_data/train/bees/2704348794_eb5d5178c2.jpg
deleted file mode 100644
index 02b9944193f322dfa07156b0d3d6f730269d7dd6..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2704348794_eb5d5178c2.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2707440199_cd170bd512.jpg b/hymenoptera_data/train/bees/2707440199_cd170bd512.jpg
deleted file mode 100644
index 7ffe7c62edc89ed6be15ac2fc8902746b936e4d8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2707440199_cd170bd512.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2710368626_cb42882dc8.jpg b/hymenoptera_data/train/bees/2710368626_cb42882dc8.jpg
deleted file mode 100644
index 10e78f2a4c083132d7d5de31a040eefdd35d71ee..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2710368626_cb42882dc8.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2722592222_258d473e17.jpg b/hymenoptera_data/train/bees/2722592222_258d473e17.jpg
deleted file mode 100644
index 520be10247a8722052f50e82c6d0e5ce54c2d2e8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2722592222_258d473e17.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2728759455_ce9bb8cd7a.jpg b/hymenoptera_data/train/bees/2728759455_ce9bb8cd7a.jpg
deleted file mode 100644
index 7e5112f9167edcf1bd1deecc6bd188f55867ff22..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2728759455_ce9bb8cd7a.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2756397428_1d82a08807.jpg b/hymenoptera_data/train/bees/2756397428_1d82a08807.jpg
deleted file mode 100644
index 01d4d73bc93099ee76f181059f6e3bf5029a4ebf..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2756397428_1d82a08807.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2765347790_da6cf6cb40.jpg b/hymenoptera_data/train/bees/2765347790_da6cf6cb40.jpg
deleted file mode 100644
index 821151272bbdbc7cf2b911463d5e1955e1de13b5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2765347790_da6cf6cb40.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2781170484_5d61835d63.jpg b/hymenoptera_data/train/bees/2781170484_5d61835d63.jpg
deleted file mode 100644
index b25d8c8e1a8616407a0c28999068d000a7d955be..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2781170484_5d61835d63.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/279113587_b4843db199.jpg b/hymenoptera_data/train/bees/279113587_b4843db199.jpg
deleted file mode 100644
index bc84ca8e26c9f667214d50a75aad3ea08120156e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/279113587_b4843db199.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2792000093_e8ae0718cf.jpg b/hymenoptera_data/train/bees/2792000093_e8ae0718cf.jpg
deleted file mode 100644
index f7829a615adb7672b4818a7ce716a7b51696db63..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2792000093_e8ae0718cf.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2801728106_833798c909.jpg b/hymenoptera_data/train/bees/2801728106_833798c909.jpg
deleted file mode 100644
index 49c3d5e542aa047fa8fa15e7e4536a3f6cb44c09..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2801728106_833798c909.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2822388965_f6dca2a275.jpg b/hymenoptera_data/train/bees/2822388965_f6dca2a275.jpg
deleted file mode 100644
index 76885b02a0c97958ae46af46ae4fa7175309c88f..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2822388965_f6dca2a275.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2861002136_52c7c6f708.jpg b/hymenoptera_data/train/bees/2861002136_52c7c6f708.jpg
deleted file mode 100644
index e0a83ed7fb2235c1ebd5ae2a549eb74d5125c853..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2861002136_52c7c6f708.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2908916142_a7ac8b57a8.jpg b/hymenoptera_data/train/bees/2908916142_a7ac8b57a8.jpg
deleted file mode 100644
index 349dc97b6260bafdc05479dda05d13f7e4bf34d2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2908916142_a7ac8b57a8.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/29494643_e3410f0d37.jpg b/hymenoptera_data/train/bees/29494643_e3410f0d37.jpg
deleted file mode 100644
index 506b964bca9a13a5add0b6d749d5d013e0b54e19..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/29494643_e3410f0d37.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2959730355_416a18c63c.jpg b/hymenoptera_data/train/bees/2959730355_416a18c63c.jpg
deleted file mode 100644
index 4cabb8417b1715ee35f77c93dd6d168316ff9a08..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2959730355_416a18c63c.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/2962405283_22718d9617.jpg b/hymenoptera_data/train/bees/2962405283_22718d9617.jpg
deleted file mode 100644
index f829cecf3d68eaedb41159b177e66451cf6b9eb3..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/2962405283_22718d9617.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/3006264892_30e9cced70.jpg b/hymenoptera_data/train/bees/3006264892_30e9cced70.jpg
deleted file mode 100644
index 11f2e291f8b6bb212865f414faafac5e27cbfcc2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/3006264892_30e9cced70.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/3030189811_01d095b793.jpg b/hymenoptera_data/train/bees/3030189811_01d095b793.jpg
deleted file mode 100644
index 3875f70b6ab5a7e44e6785a485b7587df0439239..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/3030189811_01d095b793.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/3030772428_8578335616.jpg b/hymenoptera_data/train/bees/3030772428_8578335616.jpg
deleted file mode 100644
index 58368032493e62ff672cc45ebc0eb3e26f36cda9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/3030772428_8578335616.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/3044402684_3853071a87.jpg b/hymenoptera_data/train/bees/3044402684_3853071a87.jpg
deleted file mode 100644
index 582ea257a52114a29519d9c23dfdf0bbb1ae2f84..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/3044402684_3853071a87.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/3074585407_9854eb3153.jpg b/hymenoptera_data/train/bees/3074585407_9854eb3153.jpg
deleted file mode 100644
index 36104e0b350cc7d8265bd81d4e81c803172395ef..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/3074585407_9854eb3153.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/3079610310_ac2d0ae7bc.jpg b/hymenoptera_data/train/bees/3079610310_ac2d0ae7bc.jpg
deleted file mode 100644
index b85c157964d1d3ab4e198b48073cd5fde5a5e180..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/3079610310_ac2d0ae7bc.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/3090975720_71f12e6de4.jpg b/hymenoptera_data/train/bees/3090975720_71f12e6de4.jpg
deleted file mode 100644
index 1ba723fae29647f9747fe646cdd19331215aba55..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/3090975720_71f12e6de4.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/3100226504_c0d4f1e3f1.jpg b/hymenoptera_data/train/bees/3100226504_c0d4f1e3f1.jpg
deleted file mode 100644
index c63ef5233f61edefef4e45f4abca8ba93e08c35b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/3100226504_c0d4f1e3f1.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/342758693_c56b89b6b6.jpg b/hymenoptera_data/train/bees/342758693_c56b89b6b6.jpg
deleted file mode 100644
index 74041ef7bcd9884b8a6d39614741255b2b96ff56..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/342758693_c56b89b6b6.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/354167719_22dca13752.jpg b/hymenoptera_data/train/bees/354167719_22dca13752.jpg
deleted file mode 100644
index 1ae977c8438dad197cdd00a782057c4b44657e50..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/354167719_22dca13752.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/359928878_b3b418c728.jpg b/hymenoptera_data/train/bees/359928878_b3b418c728.jpg
deleted file mode 100644
index 99101a04de9e676dcbb3f707da260229dc887c5d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/359928878_b3b418c728.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/365759866_b15700c59b.jpg b/hymenoptera_data/train/bees/365759866_b15700c59b.jpg
deleted file mode 100644
index ecff8f1893ad6eeeb92ce956eb5c5d0f8ae28f2e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/365759866_b15700c59b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/36900412_92b81831ad.jpg b/hymenoptera_data/train/bees/36900412_92b81831ad.jpg
deleted file mode 100644
index fd44755a82dcb9b418e9a5b7b23c9170ee8bb47e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/36900412_92b81831ad.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/39672681_1302d204d1.jpg b/hymenoptera_data/train/bees/39672681_1302d204d1.jpg
deleted file mode 100644
index c1131c54788ce1a1efc0cc2bb71d36f68174ae6f..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/39672681_1302d204d1.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/39747887_42df2855ee.jpg b/hymenoptera_data/train/bees/39747887_42df2855ee.jpg
deleted file mode 100644
index 6a3a8e9efcc52df4513e2f41985f5381e09ca325..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/39747887_42df2855ee.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/421515404_e87569fd8b.jpg b/hymenoptera_data/train/bees/421515404_e87569fd8b.jpg
deleted file mode 100644
index 332b8d942b8fa4e4d0b4c0288ba9032b7a2616e8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/421515404_e87569fd8b.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/444532809_9e931e2279.jpg b/hymenoptera_data/train/bees/444532809_9e931e2279.jpg
deleted file mode 100644
index 674c4c062f0305676b5cf20daa6608878fba2ff5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/444532809_9e931e2279.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/446296270_d9e8b93ecf.jpg b/hymenoptera_data/train/bees/446296270_d9e8b93ecf.jpg
deleted file mode 100644
index 3f5d0a0b1f9942b2a071d4a0c0e25d2e568f9c25..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/446296270_d9e8b93ecf.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/452462677_7be43af8ff.jpg b/hymenoptera_data/train/bees/452462677_7be43af8ff.jpg
deleted file mode 100644
index 293ebe22b13ef4fed4a0b451812583f08c10fac5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/452462677_7be43af8ff.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/452462695_40a4e5b559.jpg b/hymenoptera_data/train/bees/452462695_40a4e5b559.jpg
deleted file mode 100644
index f31eb380b7e1334631d734a295acc171565bc2ca..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/452462695_40a4e5b559.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/457457145_5f86eb7e9c.jpg b/hymenoptera_data/train/bees/457457145_5f86eb7e9c.jpg
deleted file mode 100644
index 3f0cc779ad92f8080a5ede6eb6606eb18f2afdf8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/457457145_5f86eb7e9c.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/465133211_80e0c27f60.jpg b/hymenoptera_data/train/bees/465133211_80e0c27f60.jpg
deleted file mode 100644
index 82441839aa8a0c54917a239647441f2e86bc8e4a..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/465133211_80e0c27f60.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/469333327_358ba8fe8a.jpg b/hymenoptera_data/train/bees/469333327_358ba8fe8a.jpg
deleted file mode 100644
index ea62084a9d1c38a1a25ba8d31bc7895aed9fc653..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/469333327_358ba8fe8a.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/472288710_2abee16fa0.jpg b/hymenoptera_data/train/bees/472288710_2abee16fa0.jpg
deleted file mode 100644
index 98c83c8565d7c002030d6e6074d997f9ce1116a7..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/472288710_2abee16fa0.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/473618094_8ffdcab215.jpg b/hymenoptera_data/train/bees/473618094_8ffdcab215.jpg
deleted file mode 100644
index 78d1af23a9765243fb3cd0a7f1eaec6ef646780d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/473618094_8ffdcab215.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/476347960_52edd72b06.jpg b/hymenoptera_data/train/bees/476347960_52edd72b06.jpg
deleted file mode 100644
index 6a24fa0585ac3e3edb8fb8bb545ab524242c6168..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/476347960_52edd72b06.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/478701318_bbd5e557b8.jpg b/hymenoptera_data/train/bees/478701318_bbd5e557b8.jpg
deleted file mode 100644
index f2184d67d02f7239b5486eca9dc32ffb80e49ffb..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/478701318_bbd5e557b8.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/507288830_f46e8d4cb2.jpg b/hymenoptera_data/train/bees/507288830_f46e8d4cb2.jpg
deleted file mode 100644
index 8db2dc55ad7bd217dca35f02085d90d5312c04a3..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/507288830_f46e8d4cb2.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/509247772_2db2d01374.jpg b/hymenoptera_data/train/bees/509247772_2db2d01374.jpg
deleted file mode 100644
index ee2d37e9946e5721df0bac396fe72d0000710dd9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/509247772_2db2d01374.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/513545352_fd3e7c7c5d.jpg b/hymenoptera_data/train/bees/513545352_fd3e7c7c5d.jpg
deleted file mode 100644
index 53ec08ba4a8bde0392da6cfb498a23d61d1ed280..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/513545352_fd3e7c7c5d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/522104315_5d3cb2758e.jpg b/hymenoptera_data/train/bees/522104315_5d3cb2758e.jpg
deleted file mode 100644
index 501b71915a57b4e1f422a0414b834be98e6e59b4..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/522104315_5d3cb2758e.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/537309131_532bfa59ea.jpg b/hymenoptera_data/train/bees/537309131_532bfa59ea.jpg
deleted file mode 100644
index 252aa08f17f2f4e5699b222bc549d4d420d13032..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/537309131_532bfa59ea.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/586041248_3032e277a9.jpg b/hymenoptera_data/train/bees/586041248_3032e277a9.jpg
deleted file mode 100644
index 8ac6e82c6bb300ab140a60eeb41b754f376c07bd..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/586041248_3032e277a9.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/760526046_547e8b381f.jpg b/hymenoptera_data/train/bees/760526046_547e8b381f.jpg
deleted file mode 100644
index 673cdc96f7ecd05a6579e228ac57aec13bbbe764..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/760526046_547e8b381f.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/760568592_45a52c847f.jpg b/hymenoptera_data/train/bees/760568592_45a52c847f.jpg
deleted file mode 100644
index 6e121078549292cbff91becf157a733629948ed1..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/760568592_45a52c847f.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/774440991_63a4aa0cbe.jpg b/hymenoptera_data/train/bees/774440991_63a4aa0cbe.jpg
deleted file mode 100644
index dcaa0ce35801610a474e853b805b34454ed7d2ab..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/774440991_63a4aa0cbe.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/85112639_6e860b0469.jpg b/hymenoptera_data/train/bees/85112639_6e860b0469.jpg
deleted file mode 100644
index 7f2a3dcb0cd59139def8d9150e3fc436c5b29f35..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/85112639_6e860b0469.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/873076652_eb098dab2d.jpg b/hymenoptera_data/train/bees/873076652_eb098dab2d.jpg
deleted file mode 100644
index 9a9066d6a3c3187f6ce327562853751e6d9a28a5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/873076652_eb098dab2d.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/90179376_abc234e5f4.jpg b/hymenoptera_data/train/bees/90179376_abc234e5f4.jpg
deleted file mode 100644
index e179099575d27b65967a06dbc7d8fb5c2a3fc31c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/90179376_abc234e5f4.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/92663402_37f379e57a.jpg b/hymenoptera_data/train/bees/92663402_37f379e57a.jpg
deleted file mode 100644
index 9049b224b8aa7276f68b2583d7a7a521e6e62d4b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/92663402_37f379e57a.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/95238259_98470c5b10.jpg b/hymenoptera_data/train/bees/95238259_98470c5b10.jpg
deleted file mode 100644
index bebf64d799bdebb0e3b1034c40016a96b01fa3f3..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/95238259_98470c5b10.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/969455125_58c797ef17.jpg b/hymenoptera_data/train/bees/969455125_58c797ef17.jpg
deleted file mode 100644
index 3e7cb68de7300302868b6fa70fbd5187d52f495a..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/969455125_58c797ef17.jpg and /dev/null differ
diff --git a/hymenoptera_data/train/bees/98391118_bdb1e80cce.jpg b/hymenoptera_data/train/bees/98391118_bdb1e80cce.jpg
deleted file mode 100644
index 6c7627d474914851b3b4c3939e51f62528b39970..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/train/bees/98391118_bdb1e80cce.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/10308379_1b6c72e180.jpg b/hymenoptera_data/val/ants/10308379_1b6c72e180.jpg
deleted file mode 100644
index 245e625845cf7f56c8519f7eef695fca3e239db5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/10308379_1b6c72e180.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/1053149811_f62a3410d3.jpg b/hymenoptera_data/val/ants/1053149811_f62a3410d3.jpg
deleted file mode 100644
index ab0b126b8394d777c8843cec58fa4d97c43ecf39..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/1053149811_f62a3410d3.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/1073564163_225a64f170.jpg b/hymenoptera_data/val/ants/1073564163_225a64f170.jpg
deleted file mode 100644
index 19450cd4a12e59b1df2b46f0b0da7d87e5af6b0d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/1073564163_225a64f170.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/1119630822_cd325ea21a.jpg b/hymenoptera_data/val/ants/1119630822_cd325ea21a.jpg
deleted file mode 100644
index e2f4556433e0ea5ec294d028016e9a244347871d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/1119630822_cd325ea21a.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/1124525276_816a07c17f.jpg b/hymenoptera_data/val/ants/1124525276_816a07c17f.jpg
deleted file mode 100644
index e097df338eb23277a594ea157b8b707b7ed7838f..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/1124525276_816a07c17f.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/11381045_b352a47d8c.jpg b/hymenoptera_data/val/ants/11381045_b352a47d8c.jpg
deleted file mode 100644
index b0b0ea0ae532655b6bf965566a5e7be0b43131e8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/11381045_b352a47d8c.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/119785936_dd428e40c3.jpg b/hymenoptera_data/val/ants/119785936_dd428e40c3.jpg
deleted file mode 100644
index 4f3e0618257429f359a8d58297f7660745e81643..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/119785936_dd428e40c3.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/1247887232_edcb61246c.jpg b/hymenoptera_data/val/ants/1247887232_edcb61246c.jpg
deleted file mode 100644
index 2217b7f81448ab824af30961797149dd6e71a6c1..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/1247887232_edcb61246c.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/1262751255_c56c042b7b.jpg b/hymenoptera_data/val/ants/1262751255_c56c042b7b.jpg
deleted file mode 100644
index 95b6bc523f1429e83360bc12f41ea333e9296c33..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/1262751255_c56c042b7b.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/1337725712_2eb53cd742.jpg b/hymenoptera_data/val/ants/1337725712_2eb53cd742.jpg
deleted file mode 100644
index 21711a3bf6ef5924d4b92a4a9f5b78a2cc9811b9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/1337725712_2eb53cd742.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/1358854066_5ad8015f7f.jpg b/hymenoptera_data/val/ants/1358854066_5ad8015f7f.jpg
deleted file mode 100644
index 7b1c5414b49ec85ada188aba096e853daa382ca8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/1358854066_5ad8015f7f.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/1440002809_b268d9a66a.jpg b/hymenoptera_data/val/ants/1440002809_b268d9a66a.jpg
deleted file mode 100644
index 1e2bb64e7488e91b5b5721be32a90daa48b22167..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/1440002809_b268d9a66a.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/147542264_79506478c2.jpg b/hymenoptera_data/val/ants/147542264_79506478c2.jpg
deleted file mode 100644
index 8ca81f7521adb901503cbd4ee3d3f4b3c50e09c8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/147542264_79506478c2.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/152286280_411648ec27.jpg b/hymenoptera_data/val/ants/152286280_411648ec27.jpg
deleted file mode 100644
index b062a94052c4ccd0ce5ff426f626d39b35e92d30..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/152286280_411648ec27.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/153320619_2aeb5fa0ee.jpg b/hymenoptera_data/val/ants/153320619_2aeb5fa0ee.jpg
deleted file mode 100644
index be7b5c49de4776567d36f2327719f6ee5beee151..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/153320619_2aeb5fa0ee.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/153783656_85f9c3ac70.jpg b/hymenoptera_data/val/ants/153783656_85f9c3ac70.jpg
deleted file mode 100644
index 7ace64f05df8e184dc9c4cb0a9075a69d97d8a6d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/153783656_85f9c3ac70.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/157401988_d0564a9d02.jpg b/hymenoptera_data/val/ants/157401988_d0564a9d02.jpg
deleted file mode 100644
index b004b12916cebb22ae2e79f97096381aaec2b91e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/157401988_d0564a9d02.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/159515240_d5981e20d1.jpg b/hymenoptera_data/val/ants/159515240_d5981e20d1.jpg
deleted file mode 100644
index 65db180b6574441ab52e300e3a1ef1b1ea754333..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/159515240_d5981e20d1.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/161076144_124db762d6.jpg b/hymenoptera_data/val/ants/161076144_124db762d6.jpg
deleted file mode 100644
index 561e1d68b1078bf1478b668304d9dc9c846b60f6..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/161076144_124db762d6.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/161292361_c16e0bf57a.jpg b/hymenoptera_data/val/ants/161292361_c16e0bf57a.jpg
deleted file mode 100644
index ba8ca541b79c81b58fc0da526a5a0b83c3ac5388..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/161292361_c16e0bf57a.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/170652283_ecdaff5d1a.jpg b/hymenoptera_data/val/ants/170652283_ecdaff5d1a.jpg
deleted file mode 100644
index 000405927fb9a229bb15dd834349b81b12ecf5fc..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/170652283_ecdaff5d1a.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/17081114_79b9a27724.jpg b/hymenoptera_data/val/ants/17081114_79b9a27724.jpg
deleted file mode 100644
index 68b7f965d8ffa56be6bf6928aa346fcbb8eb4931..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/17081114_79b9a27724.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/172772109_d0a8e15fb0.jpg b/hymenoptera_data/val/ants/172772109_d0a8e15fb0.jpg
deleted file mode 100644
index 362183866cd94f1b500994e75adedd13bd74739e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/172772109_d0a8e15fb0.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/1743840368_b5ccda82b7.jpg b/hymenoptera_data/val/ants/1743840368_b5ccda82b7.jpg
deleted file mode 100644
index 73edb428336b4c77d988937f8efed1da0b3b5f31..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/1743840368_b5ccda82b7.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/181942028_961261ef48.jpg b/hymenoptera_data/val/ants/181942028_961261ef48.jpg
deleted file mode 100644
index e5a6ea92b3ef150f688982651012ff2c07b16197..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/181942028_961261ef48.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/183260961_64ab754c97.jpg b/hymenoptera_data/val/ants/183260961_64ab754c97.jpg
deleted file mode 100644
index 1e2d2166a4e288842df50713a9bb2e9ea6917a8c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/183260961_64ab754c97.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/2039585088_c6f47c592e.jpg b/hymenoptera_data/val/ants/2039585088_c6f47c592e.jpg
deleted file mode 100644
index f47f95608b20afd2fac2fe62b5d5b7c136dc661f..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/2039585088_c6f47c592e.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/205398178_c395c5e460.jpg b/hymenoptera_data/val/ants/205398178_c395c5e460.jpg
deleted file mode 100644
index c27d93ea452dc508dfe519ba6e1e45e4779d6f7c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/205398178_c395c5e460.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/208072188_f293096296.jpg b/hymenoptera_data/val/ants/208072188_f293096296.jpg
deleted file mode 100644
index fc9b866a6b51c8a5ab248a5360a07690f5ce967d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/208072188_f293096296.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/209615353_eeb38ba204.jpg b/hymenoptera_data/val/ants/209615353_eeb38ba204.jpg
deleted file mode 100644
index 72f5d167d9d7730a4dcc8320fca3b918202ad1c5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/209615353_eeb38ba204.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/2104709400_8831b4fc6f.jpg b/hymenoptera_data/val/ants/2104709400_8831b4fc6f.jpg
deleted file mode 100644
index 93e1232a5576ee6cb2bf64c912196be828bb0509..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/2104709400_8831b4fc6f.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/212100470_b485e7b7b9.jpg b/hymenoptera_data/val/ants/212100470_b485e7b7b9.jpg
deleted file mode 100644
index 924808221f71f364ed3cdf8a30ec0706efeb074e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/212100470_b485e7b7b9.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/2127908701_d49dc83c97.jpg b/hymenoptera_data/val/ants/2127908701_d49dc83c97.jpg
deleted file mode 100644
index 85384e8d7f5c1e05f05fbacb8742346c0de6fea4..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/2127908701_d49dc83c97.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/2191997003_379df31291.jpg b/hymenoptera_data/val/ants/2191997003_379df31291.jpg
deleted file mode 100644
index 6ffe10e916150131a1088dcb0b389332b6db72b9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/2191997003_379df31291.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/2211974567_ee4606b493.jpg b/hymenoptera_data/val/ants/2211974567_ee4606b493.jpg
deleted file mode 100644
index 71df3255c838281a4c68aef396594c081750c276..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/2211974567_ee4606b493.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/2219621907_47bc7cc6b0.jpg b/hymenoptera_data/val/ants/2219621907_47bc7cc6b0.jpg
deleted file mode 100644
index 0b7b1ddf3574e802ab1461ced247def467a13554..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/2219621907_47bc7cc6b0.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/2238242353_52c82441df.jpg b/hymenoptera_data/val/ants/2238242353_52c82441df.jpg
deleted file mode 100644
index 636720b9a819ddc659e751cc11803f85640d1ebb..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/2238242353_52c82441df.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/2255445811_dabcdf7258.jpg b/hymenoptera_data/val/ants/2255445811_dabcdf7258.jpg
deleted file mode 100644
index b6ba191405017856ece0bd47c05cfd96be36d3f6..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/2255445811_dabcdf7258.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/239161491_86ac23b0a3.jpg b/hymenoptera_data/val/ants/239161491_86ac23b0a3.jpg
deleted file mode 100644
index 582bb010179f8ff286464f4153f03f4130761095..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/239161491_86ac23b0a3.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/263615709_cfb28f6b8e.jpg b/hymenoptera_data/val/ants/263615709_cfb28f6b8e.jpg
deleted file mode 100644
index aae43659858985490d891bb59ea710b3ef1813ea..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/263615709_cfb28f6b8e.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/308196310_1db5ffa01b.jpg b/hymenoptera_data/val/ants/308196310_1db5ffa01b.jpg
deleted file mode 100644
index fd19a0a2f2d17743878a7e68571e14da5959830f..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/308196310_1db5ffa01b.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/319494379_648fb5a1c6.jpg b/hymenoptera_data/val/ants/319494379_648fb5a1c6.jpg
deleted file mode 100644
index 1fdfed36fc4c7b9f0a00fdd79818e6b8578a0b16..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/319494379_648fb5a1c6.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/35558229_1fa4608a7a.jpg b/hymenoptera_data/val/ants/35558229_1fa4608a7a.jpg
deleted file mode 100644
index 52cdd89929d4ac04ef68f4bd1151984437489a35..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/35558229_1fa4608a7a.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/412436937_4c2378efc2.jpg b/hymenoptera_data/val/ants/412436937_4c2378efc2.jpg
deleted file mode 100644
index 87be38dd7ab2a4ffe6566a373085d22d98183703..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/412436937_4c2378efc2.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/436944325_d4925a38c7.jpg b/hymenoptera_data/val/ants/436944325_d4925a38c7.jpg
deleted file mode 100644
index e890eb0cec4c9f1942fe293ed54d13b98f5eff5c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/436944325_d4925a38c7.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/445356866_6cb3289067.jpg b/hymenoptera_data/val/ants/445356866_6cb3289067.jpg
deleted file mode 100644
index 963da0220dc253519bc84e1cfca6621c04b3504a..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/445356866_6cb3289067.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/459442412_412fecf3fe.jpg b/hymenoptera_data/val/ants/459442412_412fecf3fe.jpg
deleted file mode 100644
index 9cfddddc7d94682c76eb826dc46b3e9f1e53c9d9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/459442412_412fecf3fe.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/470127071_8b8ee2bd74.jpg b/hymenoptera_data/val/ants/470127071_8b8ee2bd74.jpg
deleted file mode 100644
index be92405a488568c89160d781c10f3115ebcc81b8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/470127071_8b8ee2bd74.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/477437164_bc3e6e594a.jpg b/hymenoptera_data/val/ants/477437164_bc3e6e594a.jpg
deleted file mode 100644
index a7e67df7aef8b2f907fd6b8462e9f22fa1fb7e11..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/477437164_bc3e6e594a.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/488272201_c5aa281348.jpg b/hymenoptera_data/val/ants/488272201_c5aa281348.jpg
deleted file mode 100644
index a773e7f9563d8958c5b29f18a0497e47660ee567..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/488272201_c5aa281348.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/502717153_3e4865621a.jpg b/hymenoptera_data/val/ants/502717153_3e4865621a.jpg
deleted file mode 100644
index 46f98021403f3695d80586056bd001974032f4ac..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/502717153_3e4865621a.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/518746016_bcc28f8b5b.jpg b/hymenoptera_data/val/ants/518746016_bcc28f8b5b.jpg
deleted file mode 100644
index 5d74771707125788765cb9d8839370fdff0ff7c9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/518746016_bcc28f8b5b.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/540543309_ddbb193ee5.jpg b/hymenoptera_data/val/ants/540543309_ddbb193ee5.jpg
deleted file mode 100644
index 4c622e22d3b30259497d5f98f6e6b0cd5c97e787..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/540543309_ddbb193ee5.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/562589509_7e55469b97.jpg b/hymenoptera_data/val/ants/562589509_7e55469b97.jpg
deleted file mode 100644
index 19be9b9554de6bc91219b538fa8a0d70a2e58fa2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/562589509_7e55469b97.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/57264437_a19006872f.jpg b/hymenoptera_data/val/ants/57264437_a19006872f.jpg
deleted file mode 100644
index 2e35e9564e22e208d0e7f394df5c4629264e485d..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/57264437_a19006872f.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/573151833_ebbc274b77.jpg b/hymenoptera_data/val/ants/573151833_ebbc274b77.jpg
deleted file mode 100644
index c0ade314c9d5aa351b4b0a6f21efca2d701fbe18..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/573151833_ebbc274b77.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/649407494_9b6bc4949f.jpg b/hymenoptera_data/val/ants/649407494_9b6bc4949f.jpg
deleted file mode 100644
index 53fa76db6a83fa68cd54810738a0788188e4f0d4..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/649407494_9b6bc4949f.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/751649788_78dd7d16ce.jpg b/hymenoptera_data/val/ants/751649788_78dd7d16ce.jpg
deleted file mode 100644
index ed6ead8e9962feb79d8f22b7e9723444d05f77d2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/751649788_78dd7d16ce.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/768870506_8f115d3d37.jpg b/hymenoptera_data/val/ants/768870506_8f115d3d37.jpg
deleted file mode 100644
index 3cd29b50175925e8a8a3c840b9f39ee0721987e0..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/768870506_8f115d3d37.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/800px-Meat_eater_ant_qeen_excavating_hole.jpg b/hymenoptera_data/val/ants/800px-Meat_eater_ant_qeen_excavating_hole.jpg
deleted file mode 100644
index c60b5c7e7fd979a28c2eb6978d158138f0fee923..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/800px-Meat_eater_ant_qeen_excavating_hole.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/8124241_36b290d372.jpg b/hymenoptera_data/val/ants/8124241_36b290d372.jpg
deleted file mode 100644
index 086777f038fb2daa4cc48d9dbeb898e7e6e80a43..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/8124241_36b290d372.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/8398478_50ef10c47a.jpg b/hymenoptera_data/val/ants/8398478_50ef10c47a.jpg
deleted file mode 100644
index fdf969b9828c0b1903218ca8aff402ce28eb3b18..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/8398478_50ef10c47a.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/854534770_31f6156383.jpg b/hymenoptera_data/val/ants/854534770_31f6156383.jpg
deleted file mode 100644
index eedb39cb2f9ae1afb7c91f744bb0756ea3b06484..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/854534770_31f6156383.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/892676922_4ab37dce07.jpg b/hymenoptera_data/val/ants/892676922_4ab37dce07.jpg
deleted file mode 100644
index 1a67b9a80ddd63e41a840f2851997486eadb6f70..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/892676922_4ab37dce07.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/94999827_36895faade.jpg b/hymenoptera_data/val/ants/94999827_36895faade.jpg
deleted file mode 100644
index c5bfd9c4842c5590443c74ebca2d56e4f13615b1..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/94999827_36895faade.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/Ant-1818.jpg b/hymenoptera_data/val/ants/Ant-1818.jpg
deleted file mode 100644
index ce68084d3ee3a0a4bed7e439a1b59b2ac0c26743..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/Ant-1818.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/F.pergan.28(f).jpg b/hymenoptera_data/val/ants/F.pergan.28(f).jpg
deleted file mode 100644
index c4103c362ed26509b825179c422229ae7b4783cb..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/F.pergan.28(f).jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/Hormiga.jpg b/hymenoptera_data/val/ants/Hormiga.jpg
deleted file mode 100644
index a4823c7a2c2f21a48e8aa9931615d9c1e47c75f3..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/Hormiga.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/ants-devouring-remains-of-large-dead-insect-on-red-tile-in-Stellenbosch-South-Africa-closeup-1-DHD.jpg b/hymenoptera_data/val/ants/ants-devouring-remains-of-large-dead-insect-on-red-tile-in-Stellenbosch-South-Africa-closeup-1-DHD.jpg
deleted file mode 100644
index 4d10aec5ffb839fa8707798fc013cf464e13d138..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/ants-devouring-remains-of-large-dead-insect-on-red-tile-in-Stellenbosch-South-Africa-closeup-1-DHD.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/ants/desert_ant.jpg b/hymenoptera_data/val/ants/desert_ant.jpg
deleted file mode 100644
index 65e51d908e5689b124b799aa07e27fc4e75a7491..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/ants/desert_ant.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/1032546534_06907fe3b3.jpg b/hymenoptera_data/val/bees/1032546534_06907fe3b3.jpg
deleted file mode 100644
index b8842f650350a231cf9429becc851a6c2c7eab67..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/1032546534_06907fe3b3.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/10870992_eebeeb3a12.jpg b/hymenoptera_data/val/bees/10870992_eebeeb3a12.jpg
deleted file mode 100644
index 332d3e5ea31da23f7113e122ef3c00a22067752c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/10870992_eebeeb3a12.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/1181173278_23c36fac71.jpg b/hymenoptera_data/val/bees/1181173278_23c36fac71.jpg
deleted file mode 100644
index 096ed5f8839675c9b545a38b129501e5a5af9fbc..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/1181173278_23c36fac71.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/1297972485_33266a18d9.jpg b/hymenoptera_data/val/bees/1297972485_33266a18d9.jpg
deleted file mode 100644
index 181869ed02d3cd5ba32332ad103db470625d8dfe..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/1297972485_33266a18d9.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/1328423762_f7a88a8451.jpg b/hymenoptera_data/val/bees/1328423762_f7a88a8451.jpg
deleted file mode 100644
index 3ed193c3bdc4c42de9bc47c2771c07666396320e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/1328423762_f7a88a8451.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/1355974687_1341c1face.jpg b/hymenoptera_data/val/bees/1355974687_1341c1face.jpg
deleted file mode 100644
index 2ce59b7baeb487ea0bda3c2e1ec120769dc75cab..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/1355974687_1341c1face.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/144098310_a4176fd54d.jpg b/hymenoptera_data/val/bees/144098310_a4176fd54d.jpg
deleted file mode 100644
index 01ccb759be2fe4ec7935926dd2dcbfd159ffedeb..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/144098310_a4176fd54d.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/1486120850_490388f84b.jpg b/hymenoptera_data/val/bees/1486120850_490388f84b.jpg
deleted file mode 100644
index 0c0978dbad50d314efefc0de0838b9c0b640a7e0..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/1486120850_490388f84b.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/149973093_da3c446268.jpg b/hymenoptera_data/val/bees/149973093_da3c446268.jpg
deleted file mode 100644
index 967aff253b9cb3629664bb91cd81f12b86ddd128..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/149973093_da3c446268.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/151594775_ee7dc17b60.jpg b/hymenoptera_data/val/bees/151594775_ee7dc17b60.jpg
deleted file mode 100644
index 12c1ded5820c8b10cce76e5b1b5f38cf091da946..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/151594775_ee7dc17b60.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/151603988_2c6f7d14c7.jpg b/hymenoptera_data/val/bees/151603988_2c6f7d14c7.jpg
deleted file mode 100644
index b19f13fb722b7875b4f93b990833822456ee63ee..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/151603988_2c6f7d14c7.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/1519368889_4270261ee3.jpg b/hymenoptera_data/val/bees/1519368889_4270261ee3.jpg
deleted file mode 100644
index 5331dae45991ee54b2ff75134686fde7877432e2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/1519368889_4270261ee3.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/152789693_220b003452.jpg b/hymenoptera_data/val/bees/152789693_220b003452.jpg
deleted file mode 100644
index 4fd9545d69002cd9b0d6b57642fa776bb3157d07..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/152789693_220b003452.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/177677657_a38c97e572.jpg b/hymenoptera_data/val/bees/177677657_a38c97e572.jpg
deleted file mode 100644
index 278594e25ff86c697241b57ae9243a72e17557ea..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/177677657_a38c97e572.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/1799729694_0c40101071.jpg b/hymenoptera_data/val/bees/1799729694_0c40101071.jpg
deleted file mode 100644
index d7ba0c2577911df9be0fea2f540f6ac79a1ed2cf..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/1799729694_0c40101071.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/181171681_c5a1a82ded.jpg b/hymenoptera_data/val/bees/181171681_c5a1a82ded.jpg
deleted file mode 100644
index 7b0e13204e1b5f965e0904383577da0a03a52823..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/181171681_c5a1a82ded.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/187130242_4593a4c610.jpg b/hymenoptera_data/val/bees/187130242_4593a4c610.jpg
deleted file mode 100644
index b9bd44b1cf05686a34be9c08fffd68b7818f46d4..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/187130242_4593a4c610.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/203868383_0fcbb48278.jpg b/hymenoptera_data/val/bees/203868383_0fcbb48278.jpg
deleted file mode 100644
index 74a22f6a06bf57203b5eeb138dcd0737b7c4a0c8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/203868383_0fcbb48278.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2060668999_e11edb10d0.jpg b/hymenoptera_data/val/bees/2060668999_e11edb10d0.jpg
deleted file mode 100644
index b5c73a28813f2be36f7ddf28e0bffbfc072b03be..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2060668999_e11edb10d0.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2086294791_6f3789d8a6.jpg b/hymenoptera_data/val/bees/2086294791_6f3789d8a6.jpg
deleted file mode 100644
index 978d8777ae9a65e9404f6dea9830a74afbfdb806..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2086294791_6f3789d8a6.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2103637821_8d26ee6b90.jpg b/hymenoptera_data/val/bees/2103637821_8d26ee6b90.jpg
deleted file mode 100644
index eb0f2c69488d0aa1338f6baee269073302d6e67b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2103637821_8d26ee6b90.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2104135106_a65eede1de.jpg b/hymenoptera_data/val/bees/2104135106_a65eede1de.jpg
deleted file mode 100644
index 1682beb65f1741b22cfa4c16f15c481bb59ea86c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2104135106_a65eede1de.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/215512424_687e1e0821.jpg b/hymenoptera_data/val/bees/215512424_687e1e0821.jpg
deleted file mode 100644
index 12db3a1ed677883a2b3efe4fb167fcfdf789d6f8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/215512424_687e1e0821.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2173503984_9c6aaaa7e2.jpg b/hymenoptera_data/val/bees/2173503984_9c6aaaa7e2.jpg
deleted file mode 100644
index 46f88f03cd580265a880fd241ce90dbacac6e382..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2173503984_9c6aaaa7e2.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/220376539_20567395d8.jpg b/hymenoptera_data/val/bees/220376539_20567395d8.jpg
deleted file mode 100644
index 052ac9b31a631800b4209dfd88f5fc258973ad6f..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/220376539_20567395d8.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/224841383_d050f5f510.jpg b/hymenoptera_data/val/bees/224841383_d050f5f510.jpg
deleted file mode 100644
index 19eac86f82e10ad32cfe9b93c7c50edb17300eae..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/224841383_d050f5f510.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2321144482_f3785ba7b2.jpg b/hymenoptera_data/val/bees/2321144482_f3785ba7b2.jpg
deleted file mode 100644
index fdd6d4a74bc8a617750095b45ee895d78bded7d2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2321144482_f3785ba7b2.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/238161922_55fa9a76ae.jpg b/hymenoptera_data/val/bees/238161922_55fa9a76ae.jpg
deleted file mode 100644
index 80cf278afa08123e0e2562455dc391155b86f64c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/238161922_55fa9a76ae.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2407809945_fb525ef54d.jpg b/hymenoptera_data/val/bees/2407809945_fb525ef54d.jpg
deleted file mode 100644
index a3f9a6a21546377222213a032ca48944c52af7a2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2407809945_fb525ef54d.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2415414155_1916f03b42.jpg b/hymenoptera_data/val/bees/2415414155_1916f03b42.jpg
deleted file mode 100644
index b22f3e3f28107a01ee9242889617af23f0bc8fd6..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2415414155_1916f03b42.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2438480600_40a1249879.jpg b/hymenoptera_data/val/bees/2438480600_40a1249879.jpg
deleted file mode 100644
index 90b10f17c8d50266f9776435b8b045c733d87f75..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2438480600_40a1249879.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2444778727_4b781ac424.jpg b/hymenoptera_data/val/bees/2444778727_4b781ac424.jpg
deleted file mode 100644
index ba648092b75bbd230e6fb580abe10677f6b0b909..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2444778727_4b781ac424.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2457841282_7867f16639.jpg b/hymenoptera_data/val/bees/2457841282_7867f16639.jpg
deleted file mode 100644
index 48573f9f1a12438f523da14022113f4cc5557c32..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2457841282_7867f16639.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2470492902_3572c90f75.jpg b/hymenoptera_data/val/bees/2470492902_3572c90f75.jpg
deleted file mode 100644
index 793e4a0218a603ebe85dcc26f31773e0cbddfb36..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2470492902_3572c90f75.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2478216347_535c8fe6d7.jpg b/hymenoptera_data/val/bees/2478216347_535c8fe6d7.jpg
deleted file mode 100644
index 91fc29a02e9f45d244c673cbc5dd1004b9bfa3be..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2478216347_535c8fe6d7.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2501530886_e20952b97d.jpg b/hymenoptera_data/val/bees/2501530886_e20952b97d.jpg
deleted file mode 100644
index 729666fce2839811f04a7dff54537535d14db384..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2501530886_e20952b97d.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2506114833_90a41c5267.jpg b/hymenoptera_data/val/bees/2506114833_90a41c5267.jpg
deleted file mode 100644
index 3ab72fab07ecefb58958a4dd350b97eb730abce8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2506114833_90a41c5267.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2509402554_31821cb0b6.jpg b/hymenoptera_data/val/bees/2509402554_31821cb0b6.jpg
deleted file mode 100644
index 30a0a186391aa1100c44b26864dbb5ddc885b60f..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2509402554_31821cb0b6.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2525379273_dcb26a516d.jpg b/hymenoptera_data/val/bees/2525379273_dcb26a516d.jpg
deleted file mode 100644
index 6bc55ddf81ccfb0781f40739ac5f63062a0c2920..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2525379273_dcb26a516d.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/26589803_5ba7000313.jpg b/hymenoptera_data/val/bees/26589803_5ba7000313.jpg
deleted file mode 100644
index 8c380e435fdfe0315e187cf2f9d9f7b0b903bd70..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/26589803_5ba7000313.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2668391343_45e272cd07.jpg b/hymenoptera_data/val/bees/2668391343_45e272cd07.jpg
deleted file mode 100644
index 2ed62997fbfcc821a27b8c24a4201402ec07f44e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2668391343_45e272cd07.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2670536155_c170f49cd0.jpg b/hymenoptera_data/val/bees/2670536155_c170f49cd0.jpg
deleted file mode 100644
index d428c841ce5ae4a085604c3103e68500c56b1f77..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2670536155_c170f49cd0.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2685605303_9eed79d59d.jpg b/hymenoptera_data/val/bees/2685605303_9eed79d59d.jpg
deleted file mode 100644
index a34e0597d34b83ae522dc259ccca26b8b3b7d9f5..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2685605303_9eed79d59d.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2702408468_d9ed795f4f.jpg b/hymenoptera_data/val/bees/2702408468_d9ed795f4f.jpg
deleted file mode 100644
index abdeb17dcba6e80730a55a52cb368a040fea4f37..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2702408468_d9ed795f4f.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2709775832_85b4b50a57.jpg b/hymenoptera_data/val/bees/2709775832_85b4b50a57.jpg
deleted file mode 100644
index 02db3e8d74c3de437b94e001f02a762b4df03a60..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2709775832_85b4b50a57.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2717418782_bd83307d9f.jpg b/hymenoptera_data/val/bees/2717418782_bd83307d9f.jpg
deleted file mode 100644
index e7985c3bd0e6675bcb9fead39813f779d3b2f8ce..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2717418782_bd83307d9f.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/272986700_d4d4bf8c4b.jpg b/hymenoptera_data/val/bees/272986700_d4d4bf8c4b.jpg
deleted file mode 100644
index 2d59a58b603b6831650ba653674518cdfb96401e..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/272986700_d4d4bf8c4b.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2741763055_9a7bb00802.jpg b/hymenoptera_data/val/bees/2741763055_9a7bb00802.jpg
deleted file mode 100644
index eb1fc6e6abd55d0d6efabce4f437e6e365051527..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2741763055_9a7bb00802.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2745389517_250a397f31.jpg b/hymenoptera_data/val/bees/2745389517_250a397f31.jpg
deleted file mode 100644
index 6fa8e8cb8cbff11083663d4d05ec6aa33b4a954c..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2745389517_250a397f31.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2751836205_6f7b5eff30.jpg b/hymenoptera_data/val/bees/2751836205_6f7b5eff30.jpg
deleted file mode 100644
index c339139db66d3e2d5a6ace578a7098a9b700dd84..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2751836205_6f7b5eff30.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2782079948_8d4e94a826.jpg b/hymenoptera_data/val/bees/2782079948_8d4e94a826.jpg
deleted file mode 100644
index 22506424c5a1eff94070dcbbc30ae799686475b6..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2782079948_8d4e94a826.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2809496124_5f25b5946a.jpg b/hymenoptera_data/val/bees/2809496124_5f25b5946a.jpg
deleted file mode 100644
index 161b22fe2b96198de4768062dbf9eebaa59f6331..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2809496124_5f25b5946a.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2815838190_0a9889d995.jpg b/hymenoptera_data/val/bees/2815838190_0a9889d995.jpg
deleted file mode 100644
index c92a5cd7335424090cc0e09a7b888974f4f56b23..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2815838190_0a9889d995.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2841437312_789699c740.jpg b/hymenoptera_data/val/bees/2841437312_789699c740.jpg
deleted file mode 100644
index f2d924684f9f40a36f1c99e05b9beb800fae5182..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2841437312_789699c740.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/2883093452_7e3a1eb53f.jpg b/hymenoptera_data/val/bees/2883093452_7e3a1eb53f.jpg
deleted file mode 100644
index d22fb18dd69b2ced22039359513b8f36b2a3ce11..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/2883093452_7e3a1eb53f.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/290082189_f66cb80bfc.jpg b/hymenoptera_data/val/bees/290082189_f66cb80bfc.jpg
deleted file mode 100644
index f6a348f6bfd6130039c50e4cf9b855d1196e978f..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/290082189_f66cb80bfc.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/296565463_d07a7bed96.jpg b/hymenoptera_data/val/bees/296565463_d07a7bed96.jpg
deleted file mode 100644
index 9ec524f96505164cafd17f25cf106dcf51d55276..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/296565463_d07a7bed96.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/3077452620_548c79fda0.jpg b/hymenoptera_data/val/bees/3077452620_548c79fda0.jpg
deleted file mode 100644
index 7a5b8cfddca097297ec841c7ca259160fe1dcb6a..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/3077452620_548c79fda0.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/348291597_ee836fbb1a.jpg b/hymenoptera_data/val/bees/348291597_ee836fbb1a.jpg
deleted file mode 100644
index 214170feb8f5eceb01082e3543a5df3c08e76389..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/348291597_ee836fbb1a.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/350436573_41f4ecb6c8.jpg b/hymenoptera_data/val/bees/350436573_41f4ecb6c8.jpg
deleted file mode 100644
index 51701d7fd72e5eed155e8a24100598e8d7ab75e8..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/350436573_41f4ecb6c8.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/353266603_d3eac7e9a0.jpg b/hymenoptera_data/val/bees/353266603_d3eac7e9a0.jpg
deleted file mode 100644
index 452bc53768878a9e7d0fd5ed901d2febba4584c6..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/353266603_d3eac7e9a0.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/372228424_16da1f8884.jpg b/hymenoptera_data/val/bees/372228424_16da1f8884.jpg
deleted file mode 100644
index da8edc7feaec7852a14d3297f10fc64f1d8462a4..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/372228424_16da1f8884.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/400262091_701c00031c.jpg b/hymenoptera_data/val/bees/400262091_701c00031c.jpg
deleted file mode 100644
index c2c12656f0cba98040f5b93ccdf8bc12dda5e978..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/400262091_701c00031c.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/416144384_961c326481.jpg b/hymenoptera_data/val/bees/416144384_961c326481.jpg
deleted file mode 100644
index ccade5614309a7743bbdea3f5e91dfbcbc4a98a9..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/416144384_961c326481.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/44105569_16720a960c.jpg b/hymenoptera_data/val/bees/44105569_16720a960c.jpg
deleted file mode 100644
index 22b0eb251f1c01f313b996a92f75bfb8e81c73b3..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/44105569_16720a960c.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/456097971_860949c4fc.jpg b/hymenoptera_data/val/bees/456097971_860949c4fc.jpg
deleted file mode 100644
index ad69f6abbab5ec60b360a8566124e15d563d2246..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/456097971_860949c4fc.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/464594019_1b24a28bb1.jpg b/hymenoptera_data/val/bees/464594019_1b24a28bb1.jpg
deleted file mode 100644
index b92799720ecaff0536ed213267a7ecdf7ab1349a..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/464594019_1b24a28bb1.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/485743562_d8cc6b8f73.jpg b/hymenoptera_data/val/bees/485743562_d8cc6b8f73.jpg
deleted file mode 100644
index 7b84840d9dd6741f6f9c301da262cf5388c35fc3..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/485743562_d8cc6b8f73.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/540976476_844950623f.jpg b/hymenoptera_data/val/bees/540976476_844950623f.jpg
deleted file mode 100644
index 351ceaf0f1076f7c8ae713d00ddfbe21f1b21187..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/540976476_844950623f.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/54736755_c057723f64.jpg b/hymenoptera_data/val/bees/54736755_c057723f64.jpg
deleted file mode 100644
index 5c97a1b2d03256028d5041934b7c389d53a3a786..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/54736755_c057723f64.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/57459255_752774f1b2.jpg b/hymenoptera_data/val/bees/57459255_752774f1b2.jpg
deleted file mode 100644
index e0647f89530a8411f350bfa7a27cfa352e9b856b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/57459255_752774f1b2.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/576452297_897023f002.jpg b/hymenoptera_data/val/bees/576452297_897023f002.jpg
deleted file mode 100644
index 44320db8785a493deee33cab36142b39baa2854a..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/576452297_897023f002.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/586474709_ae436da045.jpg b/hymenoptera_data/val/bees/586474709_ae436da045.jpg
deleted file mode 100644
index 78df2eb7d6dbcb4e285c15aca69e4ceaacf96e69..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/586474709_ae436da045.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/590318879_68cf112861.jpg b/hymenoptera_data/val/bees/590318879_68cf112861.jpg
deleted file mode 100644
index 167ab65e74388426c1565cfdebee916be6d83f33..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/590318879_68cf112861.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/59798110_2b6a3c8031.jpg b/hymenoptera_data/val/bees/59798110_2b6a3c8031.jpg
deleted file mode 100644
index edd6fb3eca86ae089aece1ed502e357cd4700a76..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/59798110_2b6a3c8031.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/603709866_a97c7cfc72.jpg b/hymenoptera_data/val/bees/603709866_a97c7cfc72.jpg
deleted file mode 100644
index e0bc973ec0871c03f5a2b9bcdbfdfa582cab609f..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/603709866_a97c7cfc72.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/603711658_4c8cd2201e.jpg b/hymenoptera_data/val/bees/603711658_4c8cd2201e.jpg
deleted file mode 100644
index eeb11a53485a121e753b9cf1b5eda536bf410743..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/603711658_4c8cd2201e.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/65038344_52a45d090d.jpg b/hymenoptera_data/val/bees/65038344_52a45d090d.jpg
deleted file mode 100644
index fccf434ac9bce3dd9313196af14b04ec40dd9995..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/65038344_52a45d090d.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/6a00d8341c630a53ef00e553d0beb18834-800wi.jpg b/hymenoptera_data/val/bees/6a00d8341c630a53ef00e553d0beb18834-800wi.jpg
deleted file mode 100644
index 346e66661d13d0899c5d4537e5b155c4568f7975..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/6a00d8341c630a53ef00e553d0beb18834-800wi.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/72100438_73de9f17af.jpg b/hymenoptera_data/val/bees/72100438_73de9f17af.jpg
deleted file mode 100644
index f9b4f9b0b5d89eecb87139238f81b056ac57f964..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/72100438_73de9f17af.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/759745145_e8bc776ec8.jpg b/hymenoptera_data/val/bees/759745145_e8bc776ec8.jpg
deleted file mode 100644
index 1ec856957f062e4d3debb5cdaca0897de94cfcbc..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/759745145_e8bc776ec8.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/936182217_c4caa5222d.jpg b/hymenoptera_data/val/bees/936182217_c4caa5222d.jpg
deleted file mode 100644
index 1bad8f829314176504f9420ed456e314d6dd8cf2..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/936182217_c4caa5222d.jpg and /dev/null differ
diff --git a/hymenoptera_data/val/bees/abeja.jpg b/hymenoptera_data/val/bees/abeja.jpg
deleted file mode 100644
index 8bc7006bfa966e0ae32b0be7dfaad6968a5b7c3b..0000000000000000000000000000000000000000
Binary files a/hymenoptera_data/val/bees/abeja.jpg and /dev/null differ