Semantic Segmentation

Computer Vision Project

By : Neirouz Bouchaira

Table of Contents

Introduction - Context and Objectives of the Project
I. Construction of the model
1. Data Download and Exploratory Phase
. Baseline Model - UNet
. Model Compilation and Training
. Model Testing and Performance
. Qualitative Analysis of Test Results

o Ul B W N

. Improvements: epoch=100, testing multiple thresholds
Il. Architecture and training changes
1. Replacing Max Pooling with Convolutions
2. Importance of Skip Connections
3. FCN and Auto-encoder
4. Threshold for inference
lll. Final Model
IV. References

Introduction - Context and Objectives of the
Project

In the field of natural resource exploration, salt deposits are a major target for oil
and gas companies. However, interpreting seismic images remains a complex
challenge.

This project is part of semantic segmentation, a Deep Learning technique that
assigns a class to each pixel in an image. Applied to seismic images, semantic
segmentation aims to accurately identify areas containing salt deposits.

In this project, we will explore the , @ convolutional neural
network particularly suited for image segmentation. We will examine the impact
of various , such as

and , on the model's

performance. We will also study the importance of

of the model

and propose strategies to optimize the precision and recall of the
segmentation.

The ultimate goal is to develop a high-performing and robust semantic
segmentation model capable of accurately identifying salt deposits in seismic
images. The final model has an accuracy of and a loss of.

|. Construction of the model

|.1. Data Download and Exploratory Phase

Data Download

We downloaded the images and masks from the directories

competition data/train/images and competition data/train/masks . The
image and mask files were sorted and loaded using the os and
tensorflow.keras.preprocessing.image libraries.

Exploratory Phase

After loading the data, we split them into training, validation, and test sets with a
distribution of 70%, 15%, and 15% respectively. The masks were normalized
between 0 and 1 to facilitate model training.

Dataset Statistics

» Training set size: 2800
» Validation set size: 600
» Test set size: 600

- Image size: (128, 128, 3)
« Mask size: (128, 128, 1)

Data Visualization

We visualized some examples of images and masks to check the data quality
and ensure that the masks correctly correspond to the images.

of the model

Examples of Images and Masks
Image Mask

Image Mask

[.2. Baseline Model - UNet

The U-Net architecture is a type of convolutional neural network designed for
image segmentation tasks. It consists of two main parts: an encoder and a
decoder.

The encoder, also known as the contracting path, is made up of several
convolutional layers followed by pooling layers, which reduce the spatial
dimension of the image while increasing the number of feature channels.

The decoder, or expansive path, uses transposed convolutional layers to
increase the spatial dimension of the image and reduce the number of feature
channels.

A key feature of U-Net is the use of skip connections between corresponding
layers of the encoder and decoder, allowing low-level information to be
transferred directly to the decoder layers, which helps preserve fine details in
the image.

We will start by creating a U-Net model for 128x128x3 images that follows the
given architecture:

input

: output
-
Imat%g T) . - ' segmentation

| map

ey

e N
I‘I’I - I’I’I = conv 3x3, RelLU
it [2 = t‘ &

copy and crop

Tefielll mmemen # max pool 2x2
B | ' 'K 4 up-conv 2x2
I
S b = conv 1x1

|.3. Model Compilation and Training

To compile the model, we used the Adam optimizer with a

binary crossentropy loss function and the accuracy metric (defined with a
threshold of 0.5). Then, we defined several callbacks to adjust the learning rate,
stop training early, and save the best model based on validation loss. The model
was trained for 100 epochs with a batch size of 32, using validation data to
evaluate performance.

Define the loss function and optimizer
criterion nn.BCELoss ()
optimizer = optim.Adam(model.parameters())

Learning rate scheduler
scheduler = ReducelLROnPlateau(optimizer, mode='min', factor=0.1, patience=5)

Early stopping
class EarlyStopping:
def init (self, patience=10, verbose=False):
self.patience = patience

self.verbose = verbose
self.counter = 0
self.best loss = None

self.early stop = False

def call (self, val loss):
if self.best loss is None:
self.best loss = val loss
elif val loss > self.best loss:
self.counter += 1
if self.verbose:

print(f'EarlyStopping counter: {self.counter} out of {self.r §§

if self.counter >= self.patience:
self.early stop = True
else:
self.best loss = val loss
self.counter = 0

early stopping = EarlyStopping(patience=10, verbose=True)

Training
During model training, several metrics are tracked to evaluate its performance.

Accuracy measures the percentage of correct predictions on the training data.
Loss quantifies the model's error, with a lower value indicating better
performance.

Validation accuracy and validation loss are the equivalents of these metrics but
calculated on the validation data, allowing the evaluation of the model's
generalization.

The learning rate controls the speed at which the model adjusts its weights; a
rate that is too high can lead to fast but unstable convergence, while a rate that
is too low can slow down the training.

The training took approximately 20 minutes.

for epoch in range(num epochs=100):

model.train()

train loss = 0.0

train correct = 0

train total = 0

for images, masks in train loader:
optimizer.zero grad()
outputs = model(images.permute(0, 3, 1, 2))
loss = criterion(outputs, masks.permute(0, 3, 1, 2))
loss.backward()
optimizer.step()
train loss += loss.item() * images.size(0)

Calculate accuracy

predicted = (outputs > 0.5).float()

train correct += (predicted == masks.permute(0, 3, 1, 2)).sum().iten
train total += masks.numel()

train loss /= len(train loader.dataset)
train accuracy = train correct / train total
train losses.append(train_loss)

train accuracies.append(train_accuracy)

model.eval()
val loss = 0.0
val correct

=0
val total = 0

a8

with torch.no grad():
for images, masks in val loader:

outputs = model(images.permute(0, 3, 1, 2))
loss = criterion(outputs, masks.permute(0, 3, 1, 2))
val loss += loss.item() * images.size(0)

Calculate accuracy
predicted = (outputs > 0.5).float()
val correct += (predicted == masks.permute(0, 3, 1, 2)).sum().it
val total += masks.numel()
for i in range(outputs.size(0)):
val outputs.append(outputs[i].cpu().numpy())
val outputs batch.append(outputs)

val loss /= len(val loader.dataset)
val accuracy = val correct / val total
val losses.append(val loss)

val accuracies.append(val accuracy)

print(f'Epoch {epoch+1}/{num epochs}, Train Loss: {train loss:.4f}, Trai

scheduler.step(val loss)
print(f'Learning rate: {scheduler.optimizer.param groups[O]["1lr"]1}")

early stopping(val loss)

if early stopping.early stop:
print("Early stopping")
break

val outputs original = val outputs

l.4. Model Testing and Performance

We plotted the training and validation loss curves, and then the test loss curve to

visualize the model's performance over epochs.

0.5

Loss vs. Epochs Accuracy vs. Epochs

—— Train Loss
— Val Loss
——- Test Loss

—— Train Accuracy
— Val Accuracy
0.75 === Test Accuracy

T T T T T T T T T T T T T T
10 15 20 25 30 35] 5 10 15 20 25 30 35
Epoch Epoch

For this first model with a UNET architecture, we have a Test Loss of 0.2294 and
a Test Accuracy of 93.16%.

» Efficient Learning: The UNET model learns efficiently, as shown by the
decrease in loss and the increase in accuracy on the training and validation
sets.

» Slight Overfitting BUT Good Results: There is a slight gap between
training accuracy and validation accuracy, indicating slight overfitting.
However, the gap is relatively small, suggesting that the model generalizes
well.

» Training was stopped early using an early stopping mechanism based on
validation loss.

Overfitting could be reduced by using regularization techniques such as dropout
or L2 regularization.

1.5. Qualitative Analysis of Test Results

Qualitatively on the 5 examples, the model seems to predict salt deposits well.

a8

e

Test Image Predicted Intensity Predicted Binary Ground Truth

Test Image Predicted Intensity Predicted Binary Ground Truth

.
»
.
P
- " o

Test Imge Predicted Intensity Predicted Binary Ground Truth

-

Test Image Predicted Intensity Predicted Binary Ground Truth

Test Image Predicted Intensity Predicted Binary Ground Truth

-

1.6. Improvements: epoch=100, testing multiple
thresholds

 Initially, when testing with 50 epochs, | reached the end without using Early
stopping. Therefore, | decided to retest with a higher number of epochs to
ensure the model reaches its best performance.

» | wanted to test my model with different accuracy definitions depending on
the thresholds. So, | tried values other than 0.5: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9.

Since the training took a lot of time, | considered retraining with these thresholds
but did not do it. At the end of the notebook, | determine the optimal threshold
for training and testing.

Loss vs. Epochs Accuracy vs. Epochs

—— Train Loss
— Val Loss

0.5

0.4 4

0.85

—— Train Accuracy

—— Val Accuracy

——- Test Accuracy (threshold=0.3)
——- Test Accuracy (threshold=0.4)
0.80 7 -=—- Test Accuracy (threshold=0.5)
——- Test Accuracy (threshold=0.6)
=== Test Accuracy (threshold=0.7)
—== Test Accuracy (threshold=0.8)

Loss
Accuracy

0.3

0.2 4

0.75 1 === Test Accuracy (threshold=0.9)
T T T T T T T T . . . T T T T T
o 5 10 15 20 25 30 35 4] 5 10 15 20 25 30 35
Epoch Epoch

The threshold with the best results is 0.6, but since the difference is small, we
keep 0.5 for the rest.

II. Architecture and training changes

II. 1. Replacing Max Pooling with Convolutions

Using convolutions with a different stride can indeed replace max pooling. By
using a stride of 2, the size of the feature map is halved, similar to the effect of
max pooling. However, there are notable differences:

1. Information retention: Convolutions with stride can retain more spatial
information compared to max pooling, which only retains the maximum
values.

2. Additional parameters: Convolutions with stride add extra parameters to
the model, which can increase learning capacity but also the risk of
overfitting.

3. Computational complexity: Convolutions with stride can be more
computationally expensive compared to max pooling.

In []: class UNet maxpool to conv(nn.Module):
def init (self):
super (UNet maxpool to conv, self). init ()

self.encoder = nn.Sequential(
nn.Conv2d(3, 16, kernel size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d (16, 16, kernel size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d (16, 16, kernel size=3, stride=2, padding=1l), # Replac

nn.Conv2d(16, 32, kernel size=3, padding=1),
nn.ReLU(inplace=True),

nn.Conv2d(32, 32, kernel _size=3, padding=1),
nn.ReLU(inplace=True),

nn.Conv2d (32, 32, kernel size=3, stride=2, padding=1l), # Replac

nn.Conv2d(32, 64, kernel size=3, padding=1),
nn.ReLU(inplace=True),

nn.Conv2d (64, 64, kernel size=3, padding=1),
nn.ReLU(inplace=True),

nn.Conv2d (64, 64, kernel size=3, stride=2, padding=1l), # Replac

nn.Conv2d (64, 128, kernel size=3, padding=1),
nn.ReLU(inplace=True),

nn.Conv2d (128, 128, kernel size=3, padding=1),
nn.ReLU(inplace=True),

nn.Conv2d (128, 128, kernel size=3, stride=2, padding=1l), # Repl

nn.Conv2d (128, 256, kernel size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d (256, 256, kernel size=3, padding=1),
nn.ReLU(inplace=True)

Results
Loss vs. Epochs Accuracy vs. Epochs
—— Train Loss (Conv) 0.950 1
—— Val Loss (Conv) [e === ===——====_|
0.5 - —=-- Test Loss (Conv) 0.925 7

=== Test Loss (Max Pool)
0.900

0.875

>
@
£ 0.850
(¥}
<
0.825
_____________________________________ 0.800 A
—— Train Accuracy (Conv)
0.775 A — Val Accuracy (Conv)
_____________________________ ——=- Test Accuracy (Conv)
0.750 === Test Accuracy (Max Pool)
T T T T T T T T T T T T
0 50 100 150 200 250 0 50 100 150 200 250

Epoch Epoch

II. 2. Importance of Skip Connections

Results

Loss

Loss vs. Epochs

0.7 A

0.6

0.5 1

0.4

0.3

0.2 4

—— Train Loss (No Skip)

—— Val Loss {No Skip)

=== Test Loss {No Skip}

=== Test Loss (Max Pool to Conv)

T T T T T
75 100 125 150 175 200
Epoch

Accuracy

Accuracy vs. Epochs

0.9

0.8 -

0.7 -

0.6

0.5

0.4 1

0.3 1

—— Train Accuracy (No Skip)

—— Val Accuracy (No Skip)

=== Test Accuracy (No Skip)

=== Test Accuracy (Max Pool to Conv)

T T T T T
75 100 125 150 175 200
Epoch

lI. 3. FCN and Auto-encoder

It is not strictly necessary to use an auto-encoder architecture for image
segmentation. A fully convolutional network (FCN) architecture can also be
used for this task. An FCN consists of a series of convolutions applied from
input to output while maintaining the image size, i.e., width and height,
throughout all convolutions.

However, there are significant differences between the two approaches:

1. Detail Preservation: Auto-encoder architectures, like U-Net, use skip
connections to transfer low-level information from the encoding layers to
the decoding layers. This helps preserve spatial details and fine features
that might be lost during pooling and convolution operations. An FCN
without these skip connections might struggle to reconstruct fine
details in the decoding phase.

2. Dimensionality Reduction: Auto-encoders reduce the image dimension
through pooling operations or convolutions with stride, allowing them to
capture features at different scales. An FCN that maintains the image size
throughout the convolutions might not effectively capture these multi-
scale features.

3. Computational Complexity: FCNs that maintain the image size can be
more computationally and memory-intensive, as they require many
convolutions with large feature maps.

class FCN model(nn.Module):
def init (self):
super(FCN_model, self). init ()

self.convl = nn.Sequential(
nn.Conv2d(3, 16, kernel size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(16, 16, kernel size=3, padding=1l),
nn.ReLU(inplace=True)

)

self.conv2 = nn.Sequential(
nn.Conv2d (16, 32, kernel size=3, padding=1l),
nn.ReLU(inplace=True),
nn.Conv2d (32, 32, kernel size=3, padding=1l),
nn.ReLU(inplace=True)

)

self.conv3 = nn.Sequential(
nn.Conv2d(32, 64, kernel size=3, padding=1l),
nn.ReLU(inplace=True),
nn.Conv2d (64, 64, kernel size=3, padding=1l),
nn.ReLU(inplace=True)

e

self.conv4 = nn.Sequential(

nn.Conv2d (64, 128, kernel size=3, padding=1),
nn.ReLU(inplace=True),

nn.Conv2d (128, 128, kernel size=3, padding=1),
nn.ReLU(inplace=True)

)

self.conv5 = nn.Sequential(

nn.Conv2d (128, 256, kernel size=3, padding=1),
nn.ReLU(inplace=True),

nn.Conv2d (256, 256, kernel size=3, padding=1),
nn.ReLU(inplace=True)

)

self.final conv = nn.Conv2d(256, 1, kernel size=1)
self.sigmoid = nn.Sigmoid()

def forward(self, x):

x = self.
x = self.
x = self.
x = self.
x = self.
x = self.
x = self.
return Xx

convl(x)
conv2(x)
conv3(x)
conv4(x)
conv5(x)
final conv(x)
sigmoid(x)

Create the model
FCN = FCN_model()

Il. 3. Threshold for inference

To define precision and recall in our use case, we need to understand what

each metric represents:

* Precision: Precision is the ratio of the number of true positives (pixels

correctly classified as salt) to the total number of pixels classified as salt
(true positives + false positives). High precision means that few non-salt
pixels are incorrectly classified as salt.

« Recall: Recall is the ratio of the number of true positives to the total
number of pixels that are actually salt (true positives + false negatives).

High recall means that most salt pixels are correctly detected.

In

[10..

from sklearn.metrics import precision recall curve, average precision sc

Get the model predictions on the validation set
model.eval()
val predictions []
val true labels []
with torch.no grad():
for images, masks in val loader:
outputs = model(images.permute(0, 3, 1, 2))
val predictions.append(outputs.cpu().numpy())
val true labels.append(masks.cpu().numpy())

val predictions
val true labels

= np.concatenate(val predictions).ravel()

= np.concatenate(val true labels).ravel()

Calculate precision-recall curve

precision, recall, thresholds = precision recall curve(val true labels,
average precision = average precision _score(val true labels, val predict

Plot precision-recall curve

plt.figure(figsize=(8, 6))

plt.plot(recall, precision, marker='.', label=f'Average Precision = {ave
plt.xlabel('Recall"')

plt.ylabel('Precision')

plt.title('Precision-Recall Curve')

plt.legend()

plt.show()

Find the optimal threshold

fl scores = 2 * (precision * recall) / (precision + recall)
optimal threshold = thresholds[np.argmax(fl scores)]
print(f'Optimal Threshold: {optimal threshold:.2f}")

Precision-Recall Curve

1.0 —=— Average Precision = 0.92

0.9 7

0.8

0.7 1

0.6 1

Precision

0.5 1

0.4 1

0.3

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Optimal Threshold: 0.53

l1l. Final Model

Our most optimized model to maximize accuracy and minimize loss is a
UNET model with the following characteristics:

Architecture:
» Use of convolutions instead of max pooling.
Training and Testing:

e Threshold of 0.53 for accuracy definition and testing.
» Addition of weight decay (L2 regularization) to minimize overfitting.

Loss vs. Epochs

Accuracy vs. Epochs

—— Train Loss (final) 0.94
— Val Loss (final)
—-—- Test Loss (final)

0.40 1

0.35 1 0.92 1

0.90 4
0.30 1

Accuracy

Loss

0.88 4
0.25 1

0.86 4
0.20 1

0.84 4

0.15

— Train Accuracy (final)
—— Wal Accuracy (final)
=== Test Accuracy (final)

T T T T
o] 50 100 150 200 250
Epoch

V. References

https://arxiv.org/abs/1505.04597

T T T T
100 150 200 250
Epoch

https://www.depends-on-the-definition.com/unet-keras-segmenting-images/
https://towardsdatascience.com/up-sampling-with-transposed-convolution-

9ae4f2df52d0

Transposed convolution: Up sampling with Transposed Convolution

This notebook was converted with convert.ploomber.io

https://arxiv.org/abs/1505.04597
https://www.depends-on-the-definition.com/unet-keras-segmenting-images/
https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://convert.ploomber.io/

