
Semantic Segmentation

Computer Vision Project

By : Neirouz Bouchaira

Table of Contents

Introduction - Context and Objectives of the Project

I. Construction du Modèle

 1. Data Download and Exploratory Phase

 2. Baseline Model - UNet

 3. Model Compilation and Training

 4. Model Testing and Performance

 5. Qualitative Analysis of Test Results

 6. Improvements: epoch=100, testing multiple thresholds

II. Architecture and training changes

 1. Replacing Max Pooling with Convolutions

 2. Importance of Skip Connections

 3. FCN and Auto-encoder

 4. Threshold for inference

III. Final Model

IV. References

Introduction - Context and Objectives of the

Project

In the field of natural resource exploration, salt deposits are a major target for oil

and gas companies. However, interpreting seismic images remains a complex

challenge.

This project is part of semantic segmentation, a Deep Learning technique that

assigns a class to each pixel in an image. Applied to seismic images, semantic

segmentation aims to accurately identify areas containing salt deposits.

In this project, we will explore the UNet architecture, a convolutional neural

network particularly suited for image segmentation. We will examine the impact

of various architectural modifications, such as replacing max pooling with

strided convolutions and removing skip connections, on the model's

performance. We will also study the importance of choosing the inference

of the model

threshold and propose strategies to optimize the precision and recall of the

segmentation.

The ultimate goal is to develop a high-performing and robust semantic

segmentation model capable of accurately identifying salt deposits in seismic

images. The final model has an accuracy of and a loss of.

I. Construction du Modèle

I.1. Data Download and Exploratory Phase

Data Download

We downloaded the images and masks from the directories

competition_data/train/images and competition_data/train/masks . The

image and mask files were sorted and loaded using the os and

tensorflow.keras.preprocessing.image libraries.

Exploratory Phase

After loading the data, we split them into training, validation, and test sets with a

distribution of 70%, 15%, and 15% respectively. The masks were normalized

between 0 and 1 to facilitate model training.

Dataset Statistics

Training set size: 2800

Validation set size: 600

Test set size: 600

Image size: (128, 128, 3)

Mask size: (128, 128, 1)

Data Visualization

We visualized some examples of images and masks to check the data quality

and ensure that the masks correctly correspond to the images.

of the model

I.2. Baseline Model - UNet

The U-Net architecture is a type of convolutional neural network designed for

image segmentation tasks. It consists of two main parts: an encoder and a

decoder.

The encoder, also known as the contracting path, is made up of several

convolutional layers followed by pooling layers, which reduce the spatial

dimension of the image while increasing the number of feature channels.

The decoder, or expansive path, uses transposed convolutional layers to

increase the spatial dimension of the image and reduce the number of feature

channels.

A key feature of U-Net is the use of skip connections between corresponding

layers of the encoder and decoder, allowing low-level information to be

transferred directly to the decoder layers, which helps preserve fine details in

the image.

We will start by creating a U-Net model for 128x128x3 images that follows the

given architecture:

I.3. Model Compilation and Training

To compile the model, we used the Adam optimizer with a

binary_crossentropy loss function and the accuracy metric (defined with a

threshold of 0.5). Then, we defined several callbacks to adjust the learning rate,

stop training early, and save the best model based on validation loss. The model

was trained for 100 epochs with a batch size of 32, using validation data to

evaluate performance.

Define the loss function and optimizer

criterion = nn.BCELoss()

optimizer = optim.Adam(model.parameters())

Learning rate scheduler

scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=5)

Early stopping

class EarlyStopping:

 def __init__(self, patience=10, verbose=False):

 self.patience = patience

 self.verbose = verbose

 self.counter = 0

 self.best_loss = None

 self.early_stop = False

 def __call__(self, val_loss):

 if self.best_loss is None:

 self.best_loss = val_loss

 elif val_loss > self.best_loss:

 self.counter += 1

 if self.verbose:

In [28]:

 print(f'EarlyStopping counter: {self.counter} out of {self.p

 if self.counter >= self.patience:

 self.early_stop = True

 else:

 self.best_loss = val_loss

 self.counter = 0

early_stopping = EarlyStopping(patience=10, verbose=True)

Training

During model training, several metrics are tracked to evaluate its performance.

Accuracy measures the percentage of correct predictions on the training data.

Loss quantifies the model's error, with a lower value indicating better

performance.

Validation accuracy and validation loss are the equivalents of these metrics but

calculated on the validation data, allowing the evaluation of the model's

generalization.

The learning rate controls the speed at which the model adjusts its weights; a

rate that is too high can lead to fast but unstable convergence, while a rate that

is too low can slow down the training.

The training took approximately 20 minutes.

for epoch in range(num_epochs=100):

 model.train()

 train_loss = 0.0

 train_correct = 0

 train_total = 0

 for images, masks in train_loader:

 optimizer.zero_grad()

 outputs = model(images.permute(0, 3, 1, 2))

 loss = criterion(outputs, masks.permute(0, 3, 1, 2))

 loss.backward()

 optimizer.step()

 train_loss += loss.item() * images.size(0)

 # Calculate accuracy

 predicted = (outputs > 0.5).float()

 train_correct += (predicted == masks.permute(0, 3, 1, 2)).sum().item

 train_total += masks.numel()

 train_loss /= len(train_loader.dataset)

 train_accuracy = train_correct / train_total

 train_losses.append(train_loss)

 train_accuracies.append(train_accuracy)

 model.eval()

 val_loss = 0.0

 val_correct = 0

 val_total = 0

In []:

 with torch.no_grad():

 for images, masks in val_loader:

 outputs = model(images.permute(0, 3, 1, 2))

 loss = criterion(outputs, masks.permute(0, 3, 1, 2))

 val_loss += loss.item() * images.size(0)

 # Calculate accuracy

 predicted = (outputs > 0.5).float()

 val_correct += (predicted == masks.permute(0, 3, 1, 2)).sum().it

 val_total += masks.numel()

 for i in range(outputs.size(0)):

 val_outputs.append(outputs[i].cpu().numpy())

 val_outputs_batch.append(outputs)

 val_loss /= len(val_loader.dataset)

 val_accuracy = val_correct / val_total

 val_losses.append(val_loss)

 val_accuracies.append(val_accuracy)

 print(f'Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Trai

 scheduler.step(val_loss)

 print(f'Learning rate: {scheduler.optimizer.param_groups[0]["lr"]}')

 early_stopping(val_loss)

 if early_stopping.early_stop:

 print("Early stopping")

 break

val_outputs_original = val_outputs

I.4. Model Testing and Performance

We plotted the training and validation loss curves, and then the test loss curve to

visualize the model's performance over epochs.

For this first model with a UNET architecture, we have a Test Loss of 0.2294 and

a Test Accuracy of 93.16%.

Efficient Learning: The UNET model learns efficiently, as shown by the

decrease in loss and the increase in accuracy on the training and validation

sets.

Slight Overfitting BUT Good Results: There is a slight gap between

training accuracy and validation accuracy, indicating slight overfitting.

However, the gap is relatively small, suggesting that the model generalizes

well.

► Training was stopped early using an early stopping mechanism based on

validation loss.

Points for Improvement to Consider for the Final Model:

Overfitting could be reduced by using regularization techniques such as dropout

or L2 regularization.

I.5. Qualitative Analysis of Test Results

Qualitatively on the 5 examples, the model seems to predict salt deposits well.

I.6. Improvements: epoch=100, testing multiple

thresholds

Initially, when testing with 50 epochs, I reached the end without using Early

stopping. Therefore, I decided to retest with a higher number of epochs to

ensure the model reaches its best performance.

I wanted to test my model with different accuracy definitions depending on

the thresholds. So, I tried values other than 0.5: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9.

Since the training took a lot of time, I considered retraining with these thresholds

but did not do it. At the end of the notebook, I determine the optimal threshold

for training and testing.

The threshold with the best results is 0.6, but since the difference is small, we

keep 0.5 for the rest.

II. Architecture and training changes

II. 1. Replacing Max Pooling with Convolutions

Using convolutions with a different stride can indeed replace max pooling. By

using a stride of 2, the size of the feature map is halved, similar to the effect of

max pooling. However, there are notable differences:

1. Information retention: Convolutions with stride can retain more spatial

information compared to max pooling, which only retains the maximum

values.

2. Additional parameters: Convolutions with stride add extra parameters to

the model, which can increase learning capacity but also the risk of

overfitting.

3. Computational complexity: Convolutions with stride can be more

computationally expensive compared to max pooling.

In some cases, convolutions with stride can improve segmentation accuracy

by retaining more information, while in others, max pooling may suffice and

be more efficient in terms of computation. As the computation time is

expected to be more significant, I set 300 epochs.

class UNet_maxpool_to_conv(nn.Module):

 def __init__(self):

 super(UNet_maxpool_to_conv, self).__init__()

In []:

 self.encoder = nn.Sequential(

 nn.Conv2d(3, 16, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(16, 16, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(16, 16, kernel_size=3, stride=2, padding=1), # Replac

 nn.Conv2d(16, 32, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(32, 32, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(32, 32, kernel_size=3, stride=2, padding=1), # Replac

 nn.Conv2d(32, 64, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(64, 64, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), # Replac

 nn.Conv2d(64, 128, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(128, 128, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1), # Repl

 nn.Conv2d(128, 256, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(256, 256, kernel_size=3, padding=1),

 nn.ReLU(inplace=True)

)

Results

Similar Performance: Both models (max pooling and convolutions)

achieve comparable levels of accuracy and loss on the test set, indicating

similar effectiveness for this task.

Training Time: The model with max pooling trains much faster (20

minutes) than the one with convolutions (several hours), suggesting lower

computational complexity.

Choice Based on Needs: If training time is crucial, max pooling is

preferable. If slightly higher performance is required and time is not a

constraint, convolutions could be considered.

II. 2. Importance of Skip Connections

Skip connections are crucial in the U-Net architecture because they allow

low-level information to be transferred from the encoding layers to the

decoding layers. This helps preserve spatial details and fine features that

might be lost during pooling and convolution operations. If we remove these

skip connections, the model might struggle to reconstruct fine details in the

decoding phase, leading to less accurate segmentation performance.

Results

The results without "skip connections" are catastrophic

The model fails to learn, with high loss and very low accuracy compared to

the "Max Pool to Conv WITH SKIP CONNECTIONS" model which works very

well: It achieves very low loss and very high accuracy, proving the

importance of "skip connections" in this case.

II. 3. FCN and Auto-encoder

It is not strictly necessary to use an auto-encoder architecture for image

segmentation. A fully convolutional network (FCN) architecture can also be

used for this task. An FCN consists of a series of convolutions applied from

input to output while maintaining the image size, i.e., width and height,

throughout all convolutions.

However, there are significant differences between the two approaches:

1. Detail Preservation: Auto-encoder architectures, like U-Net, use skip

connections to transfer low-level information from the encoding layers to

the decoding layers. This helps preserve spatial details and fine features

that might be lost during pooling and convolution operations. An FCN

without these skip connections might struggle to reconstruct fine

details in the decoding phase.

2. Dimensionality Reduction: Auto-encoders reduce the image dimension

through pooling operations or convolutions with stride, allowing them to

capture features at different scales. An FCN that maintains the image size

throughout the convolutions might not effectively capture these multi-

scale features.

3. Computational Complexity: FCNs that maintain the image size can be

more computationally and memory-intensive, as they require many

convolutions with large feature maps.

class FCN_model(nn.Module):

 def __init__(self):

 super(FCN_model, self).__init__()

 self.conv1 = nn.Sequential(

 nn.Conv2d(3, 16, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(16, 16, kernel_size=3, padding=1),

 nn.ReLU(inplace=True)

)

 self.conv2 = nn.Sequential(

 nn.Conv2d(16, 32, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(32, 32, kernel_size=3, padding=1),

 nn.ReLU(inplace=True)

)

 self.conv3 = nn.Sequential(

 nn.Conv2d(32, 64, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(64, 64, kernel_size=3, padding=1),

 nn.ReLU(inplace=True)

)

In []:

 self.conv4 = nn.Sequential(

 nn.Conv2d(64, 128, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(128, 128, kernel_size=3, padding=1),

 nn.ReLU(inplace=True)

)

 self.conv5 = nn.Sequential(

 nn.Conv2d(128, 256, kernel_size=3, padding=1),

 nn.ReLU(inplace=True),

 nn.Conv2d(256, 256, kernel_size=3, padding=1),

 nn.ReLU(inplace=True)

)

 self.final_conv = nn.Conv2d(256, 1, kernel_size=1)

 self.sigmoid = nn.Sigmoid()

 def forward(self, x):

 x = self.conv1(x)

 x = self.conv2(x)

 x = self.conv3(x)

 x = self.conv4(x)

 x = self.conv5(x)

 x = self.final_conv(x)

 x = self.sigmoid(x)

 return x

Create the model

FCN = FCN_model()

The model took 40 hours to run, so I had to stop it manually. The training

and validation accuracy are worse than the encoder-decoder

models.

II. 3. Threshold for inference

To define precision and recall in our use case, we need to understand what

each metric represents:

Precision: Precision is the ratio of the number of true positives (pixels

correctly classified as salt) to the total number of pixels classified as salt

(true positives + false positives). High precision means that few non-salt

pixels are incorrectly classified as salt.

Recall: Recall is the ratio of the number of true positives to the total

number of pixels that are actually salt (true positives + false negatives).

High recall means that most salt pixels are correctly detected.

Strategy to Improve Precision and Recall

Threshold Adjustment: Instead of using a fixed threshold of 0.5,

dynamically adjust the threshold based on the results of the

precision-recall curve. The optimal threshold is the one that

maximizes the F1 score, which is the harmonic mean of precision and

recall.

from sklearn.metrics import precision_recall_curve, average_precision_sc

Get the model predictions on the validation set

model.eval()

val_predictions = []

val_true_labels = []

with torch.no_grad():

 for images, masks in val_loader:

 outputs = model(images.permute(0, 3, 1, 2))

 val_predictions.append(outputs.cpu().numpy())

 val_true_labels.append(masks.cpu().numpy())

val_predictions = np.concatenate(val_predictions).ravel()

val_true_labels = np.concatenate(val_true_labels).ravel()

Calculate precision-recall curve

precision, recall, thresholds = precision_recall_curve(val_true_labels,

average_precision = average_precision_score(val_true_labels, val_predict

Plot precision-recall curve

plt.figure(figsize=(8, 6))

plt.plot(recall, precision, marker='.', label=f'Average Precision = {ave

plt.xlabel('Recall')

plt.ylabel('Precision')

plt.title('Precision-Recall Curve')

plt.legend()

plt.show()

Find the optimal threshold

f1_scores = 2 * (precision * recall) / (precision + recall)

optimal_threshold = thresholds[np.argmax(f1_scores)]

print(f'Optimal Threshold: {optimal_threshold:.2f}')

In [10…

Optimal Threshold: 0.53

III. Final Model

Our most optimized model to maximize accuracy and minimize loss is a

UNET model with the following characteristics:

Architecture:

Use of convolutions instead of max pooling.

Training and Testing:

Threshold of 0.53 for accuracy definition and testing.

Addition of weight decay (L2 regularization) to minimize overfitting.

IV. References

https://arxiv.org/abs/1505.04597

https://www.depends-on-the-definition.com/unet-keras-segmenting-images/

https://towardsdatascience.com/up-sampling-with-transposed-convolution-

9ae4f2df52d0

Transposed convolution: Up sampling with Transposed Convolution

This notebook was converted with convert.ploomber.io

https://arxiv.org/abs/1505.04597
https://www.depends-on-the-definition.com/unet-keras-segmenting-images/
https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://convert.ploomber.io/

