AAA

ECOLE
CENTRALELYON

ECcOLE CENTRALE LYON

UE PRO
PAR 133
REPORT

Al for Integrated Electronic Circuit

Diagnostics
Supervisors :
Students : Emmanuel DELLANDREA
Baptiste GRIGNON Alberto Bosio
Neirouz BOUCHAIRA Project advisor:

Denis MAZUYER

May 2023

CENTRALELYON

Abstract :

This research project focuses on the application of artificial intelligence methods for fault
diagnosis of integrated electronic circuits. In particular, it is about the application of
machine learning models based on convolutional neural networks. The industrial objective
behind the research project is to be able to be able to trace the position and nature of the
fault, from a series of simple tests on a faulty circuit, in particular if the fault does not
manifest itself at each test. In this case, we call it an "intermittent fault". The presence
of intermittent faults makes the diagnosis much more difficult and they are not taken
into account by the current industrial tools. In this study, we propose a fault diagnosis
method that includes intermittent faults, based on convolutional neural networks. We
then evaluate the performances of those models in different cases, including against the
standard industrial diagnosis tool.

UE PRO Report - PAr 133 1

CENTRALELYON

Contents

Contents
Summaries and acknowledgements 1
1 Introduction 3
1.1 Context e 3
1.2 Project Objectives 4
2 State of the art 5
2.1 Electronic circuit faults L 5
2.1.1 Fault model)
2.1.2 Permanent faults and intermittent faults 6
2.1.3 Grouping into metaclasses 7
2.2 Neural Network Architecture 9
2.2.1 Deep Neural Networks (DNNs) 9
2.2.2 Convolutional Neural Network (CNN) 10
2.2.3 Vocabulary 10
3 Approach 11
3.1 Study circuit and simulationo 11
3.2 Database Creation 11
3.3 Database formatting by hierarchical clustering 13
3.3.1 Hierarchical ascending clustering (HAC) 13
3.3.2 Database formatting oo 13
3.4 Neural network models o 14
3.4.1 Convolutional neural network used 14
3.4.2 Hierarchical approach 0oL 15
4 Experiments and results 16
4.1 Trained models 16
4.2 Performance of models compared to the training activation rate 18
4.3 Performance of models faced with new activation rates 20
4.4 Performance Improvement by Using an Activation Rate Distribution 21
4.5 Diagnostic test: CNN model versus industrial tool 21
5 Conclusion 21
References 23
Annexes 24
UE PRO Report - PAr 133 2

CENTRALELYON 1 Introduction

1 Introduction

1.1 Context
Production of electronic circuits

Every year, hundreds of billions of electronic circuits are produced for applications in all
fields. The manufacturing of an integrated circuit begins on a wafer (figure 1). These are
disks made of semiconductor material (Silicon in most cases) on which the circuits will
be etched.

Figure 1: Wafer at the end of manufacturing

Test phase

When the manufacturing of the circuits of a wafer is finished, they are all tested using a
pin called the Wafer probe. Indeed, the appearance of errors in the production of printed
circuits remains frequent. However, it is necessary to be able to guarantee the quality
and reliability of the components produced and to get rid of the faulty ones. This is the
stage that our application project focuses on.

Challenges

Our application project focuses on the diagnosis of these faulty circuits. It involves pre-
cisely identifying the error present on a faulty electronic circuit. To do this, we apply
different inputs to the circuit and record the outputs. Industrial tools already make it
possible to trace the origin of the error using these tests and the structure of the electronic
circuit. However, industrial tools are not always reliable because they do not allow us
to identify errors that do not systematically appear in all tests. We are talking about
intermittent faults.

The challenge of the project is therefore to examine whether artificial intelligence
methods can be used to increase the accuracy of diagnostics and take intermittent faults
into account.

UE PRO Report - PAr 133 3

CENTRALELYON 1 Introduction

1.2 Project Objectives
Previous Projects

This application project is in its third iteration. The previous group [5] has succeeded in
showing that methods based on deep neural networks and in particular on convolutional
neural networks (also called CNN, for "Convolutional Neural Network") can be interesting
for the diagnosis of electronic circuits. Indeed, after having divided all possible faults into
groups, they managed to predict with a high success rate to which group of faults any
tested error belongs.

Objectives

The general objective of the project is to continue the research already started by the
previous group on the application of CNNs to the diagnosis of electronic circuits. In
particular, it is a question of establishing and testing a method to more precisely identify
an error within the groups established by the previous research group, potentially up to
finding the fault itself.

In addition, the difficulty in identifying an intermittent fault depends on a parameter
defined in the state of the art section, called the activation rate. However, the neural
networks used for identification must be trained with an artificially created database
presenting a chosen activation rate. However, the activation rate of the errors that these
networks will be confronted with is not necessarily known in advance. It is therefore also
a question of establishing methods for training networks to improve their robustness with
respect to a diversity of activation rates.

Finally, it would be interesting to compare the performance of the networks that we
will have trained with the existing industrial tool through the diagnosis of any intermittent
fault.

UE PRO Report - PAr 133 4

CENTRALELYON 2 State of the art

2 State of the art

2.1 Electronic circuit faults

Sources: [5] and the explanations of Dr. BOSIO.

2.1.1 Fault model

Stuck at model

We model electronic circuit faults using a so-called "stuck at" model. The principle
is to consider that faults can be located on the inputs and outputs of each component
of the circuit and that each of these wires can be "stuck at 0" or "stuck at 1", i.e. the
Boolean value present on the wire is stuck at the value 0 or at the value 1, regardless
of the operation of the rest of the circuit. The set of stuck at 0 and stuck at 1 wires
constitute the set of possible faults.

0
N1

RN
RN

17

Figure 2: Example of applying the stuck at model

Let’s take an example using the figure 2. Each lightning represents a potential fault
location. It can be noted that 2 faults of the same nature ("stuck" to the same Boolean
value), present on the same wire are inseparable. We then speak of equivalent faults.

Fault matrix

We define a test vector as a vector of Boolean numbers to be applied at the input of
the real circuit in order to perform the diagnosis. For the example circuit (figure 2), the
potential test vectors are:

Test vector

||| O b= W[N —| B

For larger circuits (with more inputs), the number of potential test vectors explodes.
In these cases, we choose a reasonable number among all the possible test vectors, so as

UE PRO Report - PAr 133 5

CENTRALELYON 2 State of the art

to maximize the number of faults that this set of vectors can reveal. We consider that
a test vector can reveal a fault when, when we apply the vector as input, the output of
the circuit presenting the fault in question is different from the output of the non-faulty
circuit.

For each test vector applied to the circuit, we obtain a row vector of Boolean values
corresponding to the outputs of the circuit. Thus, after having applied to the circuit the
set of test vectors chosen previously, we obtain a matrix whose rows correspond to the
test vectors, and whose columns correspond to the circuit outputs. This matrix is the
characteristic of the circuit that we use for its diagnosis. A circuit will have a different
matrix depending on the fault it presents, or whether it is non-faulty. By extension, we
will speak of the matrix of the fault "X" (where X is its identifier) and of a non-faulty
matrix. Furthermore, we will consider for the moment that a circuit can never present
more than one fault at a time.

If we take the example circuit (figure 2), to which we apply vectors n°l, 3 and 6, we
obtain for the stuck at 1 fault at the location in red the following matrices:

Ut

Fault Matrix Mon-Fault Matrix

Figure 3: Matrices of the example circuit for the fault in red

It may seem strange to speak of a matrix when they only have one column, but this is
because the circuit taken as an example has only one output: the matrices have as many
columns as the circuit has outputs. Furthermore, an error is identified based on 2 things:

e its position on the circuit

e its polarity: stuck at 0 or stuck at 0

Finally, we can say that circuit diagnosis is the process of tracing the fault
position and its polarity from the matrix resulting from the application of the
test vectors to the circuit. The matrix constitutes the "signature" of the fault present
on the circuit.

2.1.2 Permanent faults and intermittent faults

Some faults do not appear each time a test vector is applied, which makes them difficult
to diagnose. We speak of "intermittent faults", as opposed to "permanent faults" which
are always present.

We can try to characterize an intermittent fault by its activation rate T,. For an inter-
mittent fault:

T number of test vectors that activate the fault (1)
‘o number of test vectors applied

UE PRO Report - PAr 133 6

CENTRALELYON 2 State of the art

A vector "activates" the fault when it highlights it. If we refer to figure 3, only test
vectors 3 and 6 can highlight the fault, i.e. only lines 2 and 3 are different between the
fault matrix and the non-faulty matrix. We then have 3 possible scenarios:

e T, = 100%, the 2 test vectors activate the fault, the fault matrix is the one presented
in figure 3;

o T, = 50%, only one of the 2 vectors activates the fault, the fault matrix can be one
of the 2 presented in figure 4;

e T, = 0%, this is the case of the absence of faults, the matrix is the non-faulty

matrix.
0 0 0
0 1 1
0 1 0

Vector 3 activates the fault Vector 6 activates the fault Non-faulty matrix

Figure 4: Faulty matrices of the example circuit for the fault in red on the example
circuit, with 7, = 50%

Here, we have given a simple example but when the number of test vectors is larger, the
number of possible combinations explodes, even if we know the activation rate (which is
not the case in general).

The current approach used by industrial tools is to list the matrices of all permanent
faults and compare them to the matrix obtained as a result of the test until a match is
found. However, if the fault present on the tested circuit is intermittent, this induces
variations in the matrix obtained as a result of the test compared to the matrix of the
corresponding permanent fault that we are trying to find. The diagnostic tool will there-
fore not find a match between the matrices and the diagnosis will fail. Furthermore, the
lower the activation rate, the more the intermittent fault matrix is different from the
intermittent fault matrix and therefore the more difficult the diagnosis is.

This observation justifies the study of other diagnostic methods to take these in-
termittent faults into account. In particular, methods based on neural networks have
generalization capabilities that could allow them to diagnose intermittent faults.

2.1.3 Grouping into metaclasses

Definitions:

Generally speaking in machine learning, a classification problem consists of finding
the category of an object based on information that it carries. For example, we
have images of animals and 2 categories: cats and dogs, and we seek from the RGB matrix
of the image to identify which images present cats and which images present dogs. We

UE PRO Report - PAr 133 7

CENTRALELYON

call a category (cat or dog in the example), a class. The problem we are dealing with is
also a classification problem but the classes are the fault identifiers and the information
is the matrix resulting from the circuit test. We define a metaclass as a class that
designates a grouping of permanent faults. We can define metaclasses to reduce
the number of classes that the neural network must classify. Indeed, a circuit
can potentially have thousands or even millions of different permanent faults and it would
be far too costly in terms of computing resources (or even impossible) to train a neural
network that directly classifies the fault. We therefore initially just classify the metaclass.

Construction of metaclasses by the previous research group

duw=]0-1|

0 1 0 1 1 0
1 1 0 1 0 0
0 0 1 1 0 1

N(F,M)=2 | di| =2 | Fij- Mij|
ij ij

Figure 5: Definition of the distance for the metaclasses of the previous research group on
this subject

The method of grouping faults into metaclasses, used by the previous research group
on this subject and based on the norm 1 of the difference between the matrices of
permanent faults, allowed them to group the 3609 possible different faults for the ¢7552
circuit (which is the study circuit, see approach section) into 121 metaclasses. The 1-
norm of the difference is calculated as the sum of the differences between elements of the
same position in the two matrices to be compared, as shown in Figure ?7. The matrices
with the smallest norms were placed in the same metaclass, and all metaclasses contained
approximately equal numbers of faults.

UE PRO Report - PAr 133 8

2 State of the art

CENTRALELYON 2 State of the art

Set of faults for the C7552 circuit

121 meta classes that constitute
* the set of faults

* 3609 fates grouped into 121
metaclasses

Figure 6: Classification of faults by stage for the c¢7552 circuit

Hierarchical method:

The previous research group proceeded to a grouping of the classes to have a total of 121
classes instead of 3609. Then, they carried out the training of the model which identifies
the metaclass of the fault. The classification stopped at the level of the metaclasses (stage
1 of the figure 6) and there was no downstream classification work to determine the fault
more precisely.

However, they posed a hierarchical method which consists for a matrix whose fault
we want to determine to first determine the metaclass using a "main" model. Then, using
"sub-models" (one for each metaclass) that also take the fault matrix as input, but this
time we know the metaclass, we classify the fault precisely within this metaclass. In this
way, we reduce the problem to a branch of the tree of possibilities before going to the
end of the resolution. This method replaces the use of a single model with an absurd
number of parameters with the use of a larger number of models, but each of which has
a reasonable number of parameters. We will strongly take up this concept (see approach
section).

2.2 Neural Network Architecture

Sources: [2[, [4], and [6] Artificial intelligence (Al) is a branch of computer science
that aims to create machines that can replicate some human cognitive functions such
as perception, natural language understanding, learning, and problem solving. Machine
learning is a subdiscipline of Al that allows machines to learn without being explicitly
programmed. Machine learning algorithms can be trained on large amounts of data to
detect patterns and establish relationships between inputs and outputs. Deep learning
is a branch of machine learning that uses artificial neural networks with multiple layers
to perform complex tasks, such as image recognition, language translation, and speech
recognition.

2.2.1 Deep Neural Networks (DNNs)

Deep neural networks (DNNs) are computational models inspired by the structure of
biological neural networks. They consist of multiple layers of neurons connected together,
where each layer performs computations on the input data to produce more complex
features.

Traditional neural networks are typically shallow, with one or two hidden layers.
DNNs, on the other hand, typically have many hidden layers, sometimes up to several

UE PRO Report - PAr 133 9

CENTRALELYON 2 State of the art

dozen. This additional depth allows DNNs to capture more complex features in the input
data.

DNNs are typically trained using the backpropagation algorithm, which involves ad-
justing the network weights to minimize the difference between the network’s predictions
and the target values (the cost function). DNNs typically require considerable training
data to produce accurate results.

2.2.2 Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a type of neural network that is particularly
effective for image recognition. It consists of several layers of neurons, each with the task
of detecting features of the image, such as lines, angles, textures, etc.

The operation of a CNN is based on the use of convolutional filters, which are mathe-
matical patterns applied to the image to detect specific features. Each layer of the network
uses a number of filters to analyze the image and extract relevant information.

The CNN also uses maz-pooling layers, which reduce the size of the image while
retaining the most important features. This simplifies the analysis of the image by the
following layers of the network and reduces the computation time required.

Finally, the CNN is trained using matrices and their corresponding label (e.g. the fault
matrix and the label 'fault-name’). The network then modifies its weights and biases to
minimize the prediction error. Once trained, the CNN can be used to predict the label of
new matrices.

2.2.3 Vocabulary

Metric: a measure that quantifies the performance, quality, or efficiency of a system,
algorithm, or application.

Accuracy: is a performance measure used in machine learning to evaluate the accu-
racy of a classification model. It is calculated by dividing the number of correct predictions
by the total number of predictions.

UE PRO Report - PAr 133 10

CENTRALELYON 3 Approach

3 Approach

3.1 Study circuit and simulation

For our study, we use a circuit model provided by the tutors and whose name is ¢7552. It
is relatively small in terms of the number of logic gates, has 108 outputs, and a series of
55 test vectors allows us to highlight the 3609 permanent faults that it can present. An
example of a fault matrix is given in figure 7:

Figure 7: Example of a fault matrix (0 in white, 1 in black)

This representation highlights the similarity between the matrix of a tested circuit and
a black and white image, which justifies the use of convolutional neural networks, mainly
used to recognize patterns in images.

It is then important to note that we do not have the real circuit and that this study
is conducted entirely using simulation. Indeed, we have on the INL servers the industrial
software Tetramax for which we have a model of the ¢7552 circuit. This is the tool that
allows us to find all the permanent faults as well as the list of 55 test vectors. It then
allows us to simulate the circuit outputs for each of the permanent faults and therefore
to determine all the permanent fault matrices.

3.2 Database Creation

We previously discussed the fact that the number of possibilities for intermittent fault
matrices is exploding. The advantage of using a neural network model is that it can be
trained on a database containing only a sample of these possibilities and if the sample
is sufficiently varied, the model generalizes to other examples on which it has not been
trained. Therefore, it is vital to judiciously create the database on which to train our
model (in fact, we will create several databases to train several models).

To do this, we introduce a new parameter n, which is the number of samples. This is
the number of matrices of intermittent faults corresponding to the same permanent fault
present in the database. A database will therefore always contain 3609*n matrices.

UE PRO Report - PAr 133 11

CENTRALELYON 3 Approach

In addition, we must choose the activation rate that the intermittent fault matrices
present in the database. The previous research group only explored the possibility of an
identical activation rate for the entire database. We will further explore the use of activa-
tion rates chosen differently for each matrix, following a certain probability distribution.
However, we lack information on the probability distribution of the activation rates of
intermittent faults in real circuits. We therefore assume that since the manufacturing
techniques and tools are uniform for a sample of a circuit, the intermittent faults will
present similar characteristics, and therefore the activation rates will be roughly grouped.
This consideration led us to use the following distributions (beta distribution for different

parameters):
Fonction de densité de probabilité de la distribution beta 'avant' (paramétres = (6, 2.5)) Fonction de densité de probabilité de la distribution beta ‘arriere’ (paramétres = (2.5, 6])
25 25
20 20
15 15
10 10
05 05
00 0.0
00 02 04 06 08 10 00 02 04 06 08 10
(a) Probability density of the distribution (b) Probability density of the distribution
that we will call "beta forward" with that we will call "beta rear" with
parameters= 6, 2, 5 (original French parameters= 2, 5, 6 (original French

figure) figure)

Fonction de densité de probabilité de la distribution beta ‘'milieu’ (paramétres = (4, 4))

(c) Probability density of the distribution
that we will call "middle beta" with
parameters= 4, 4 (original French figure)

Note, however, that even for a database with a fixed activation rate, the product
T,*"number of vectors potentially activating the fault" is rarely an integer. For each
matrix, the integer part of this product gives us the number of vectors that will activate the
fault (which we then randomly choose for each matrix with a draw without replacement
following a uniform distribution). Consequently, even for a database with a fixed rate, we
will observe small variations in the activation rate between faults.

Finally, we randomly mix the database and divide it into 3 parts: 60% which are used
for training, 20% which are used for validation (i.e., to verify that the model does not
over-specialize for the recognition of training data, inducing worse performances outside
of these data), and 20% which are used to test the model after training.

UE PRO Report - PAr 133 12

CENTRALELYON 3 Approach

3.3 Database formatting by hierarchical clustering
3.3.1 Hierarchical ascending clustering (HAC)

Hierarchical ascending clustering is a data classification method that organizes ob-
servations into successive groups, thus forming a hierarchy of groups, hence its name. It
is based on measures of similarity or distance between observations, and groups those
that are most similar or closest to each other. The groups formed are then used to create
larger groups, until the complete hierarchy of groups is formed.

In order to obtain different metaclasses, it is possible to cut the clustering tree at a
given distance. This method is often used in hierarchical clustering to obtain a given
number of groups or classes. This makes it possible to simplify the visualization of the
tree and facilitate the interpretation of the results. To do this, it is first necessary to
construct a dendrogram from the distances calculated between the different groups. Then,
it is necessary to identify the height corresponding to the desired distance to obtain the
groups at this distance.

The groups obtained following this cut are subsequently called metaclasses. We can
then proceed to lower cuts giving us other groupings included in the previous ones. The
metaclasses thus group several subclasses, which can be considered as subgroups of
faults. The hierarchical classification thus makes it possible to structure the fault data
into several levels of grouping, from individual faults to metaclasses, via subclasses.

We will then use the hierarchical method mentioned in the state of the art section for
the classification of faults: we start by using a first network to determine the metaclass of
the fault. Then, we have one network per metaclass, and we ask the one of the metaclass
that we determined in the previous step to determine the subclass of the fault and so on
until we go down to the identity of the fault.

However, this requires training a very large number of networks and it is not really
necessary for the tests so we will stop at the prediction of the first level of subclasses
(which for our division is equivalent to the identity of the fault, as we will see later).

3.3.2 Database formatting

The Database formatting is done using the CAH, using the norm 1 of the difference as
a similarity criterion like the previous research group. That is to say that we make a
copy of the database where the identifiers of the faults are changed by the identifiers
of the metaclasses, and another copy that we subdivide between each metaclass and for
which the identifiers of the faults are changed by the identifiers of the subclasses (as many
sub-databases as metaclasses).

The difference with the work of the previous research group lies in 2 things. The first
lies in the fact that our metaclasses do not each contain a roughly identical number of
faults but that the number of faults per metaclass (and per subclass) depends on the
number of "children" of its branch after the division. The interest of this method is
that when we seek to discriminate between metaclasses or subclasses at a given level, the
differences between them are roughly equivalent. The second lies in the fact that the
previous research group had no concept of subclasses. Indeed, we realized that to have
reasonable performances, these intermediate groups are necessary.

To clarify these concepts, here is the dendogram of the permanent fault matrices of
the ¢7552 circuit:

UE PRO Report - PAr 133 13

CENTRALELYON 3 Approach

Hierarchical Clustering Dendogram

T
Distance

100000

BOODO

€0000

40000

20000

. Y P vy T P = N N = W V1 P ey

e e e s
Figure 9: Example of a dendogram obtained by CAH

We can see it as a tree whose leaves are the faults and whose nodes are the successive
groupings of 2 groups (the elementary groups being the leaves). The ordinate of the nodes
is the distance between the groups at the time of their grouping.

For our databases, the distance at which we cut the dendogram to form the meta-
classes is 13000, which gives us 20 metaclasses. The distance at which we cut to form the
subclasses is 700, which gives us 603 subclasses distributed between the different meta-
classes. Most of these subclasses are clusters of less than 10 faults and a good number
are clusters containing only one fault. We therefore consider that for the tests there is no
need to go further with a new level of subclasses. The number of subclasses per metaclass
and faults per subclass for our clustering is available in the appendix.

3.4 Neural network models

3.4.1 Convolutional neural network used

CNN architecture

The convolutional neural network used to predict the metaclasses (figure 10) is com-
posed of several layers, each with a specific functionality to extract the relevant features
from the input fault matrices.

The first layer is a Conv2D layer with 128 filters and a ReLLU activation function.
This layer convolves the input image with a set of learned filters to extract important
features from the image. Next, a MaxPooling2D layer with a pooling size of 2x2 is
used to reduce the dimension of the Conv2D layer’s output. This layer preserves the most
important features of the image while reducing the amount of data. They are followed by
a second Conv2D layer with 64 filters and a MaxPooling2D layer.

A Flatten layer is then used to transform the output of the last Conv2D layer into a
one-dimensional vector. This vector is used as input for the fully-connected layers that
follow. The first 2 of these fully-connected layers (Dense) have 64 neurons and use ReLU
activation. These layers allow the neural network to combine the features extracted from
the Conv2D layers to produce higher-level features.

The regularization function 'dropout’ is applied with a regularization rate of 0.2 in the
neural network model. This means that at each training iteration, 20 % of the neurons of

UE PRO Report - PAr 133 14

CENTRALELYON 3 Approach

the previous layer are randomly chosen and ignored during this iteration, which helps to
avoid overfitting.

Finally, the last Dense layer has a number of neurons equal to the number of classes
we are trying to identify. This layer uses a softmax activation function to produce a
probability for each possible class, which allows us to determine the final class to which
the input data belongs by choosing the one with the highest probability.

Sortie:
métaclasse
0
1
Exemple de Conv2D Conv2D Dense | Dense Dense 2
matrice de fautes 3
o o™ (=)
1110 & & 38“'
1000 128 2 2 S =
010 1| —| filtres S| |64fitres| | S E <
0011 = oy - o i g nombre 2
Kernel g Kernel g & | |de meta- 21
(3x3) (3x3) 64 64 classes]
Relu Relu Relu Relu Softmax -
n

Figure 10: CNN architecture for metaclass classification (original French figure)

Model Training

In this model, the Stochastic Gradient Descent (SGD) optimizer is used to minimize
the ’sparse-categorical-crossentropy’ loss function. The SGD optimizer works by adjusting
the model weights and biases using the gradients of the cost function with respect to
these parameters. The ’sparse-categorical-crossentropy’ loss function is used because it is
suitable for multi-class classification tasks.

A metric for evaluating the model’s performance is specified: the accuracy. The
accuracy is the proportion of correct predictions out of the total number of predictions.

Finally, we define the number of "epochs", that is to say the number of iterations:
predictions, calculation of the loss function, then correction of the parameters by back-
propagation, on 150. In addition, at each iteration, all the training data are used.

3.4.2 Hierarchical approach

We train a first network whose structure is as presented previously to recognize the meta-
classes using the formatted database presented previously.

Then, it is a question of training the networks allowing to determine the subclass
within the metaclass (one network per metaclass). These networks also have the same
structure as the "main" network. At first we hoped to train them by transfer learning,
that is to say copy the parameters of the "main" network on the "subnetworks" (which
classifies the subclasses), and re-train them using the "subdatabases" formatted previously
by modifying only the parameters of the last layer, the classification layer. This approach
gave bad results, so in the end we trained all the parameters of these networks from 0.

Once these networks are trained, we can for any faulty matrix, predict its metaclass,
then its subclass and thus know a fairly restricted group of faults that the tested circuit

UE PRO Report - PAr 133 15

CENTRALELYON 4 Experiments and results

having given the matrix in question is likely to present. We can call this prediction process
using multiple models with different parameters, a metamodel.

4 Experiments and results

4.1 Trained models

Taux d'activation Caractéristique ta n
10% 30

30% 30

50% 30

Constant 0% 30
80% 30

80% 10

80% o

90% 30

B arriére 30

Distribution B avant 30
B milieu 30

Figure 11: Databases used for training (for the beta distribution, arriére: rear, avant:
forward and milieu: middle) (original French figure)

We used a "metamodel" introduced in the previous research groupagraph. This model was
trained on several different databases, each of them characterized by different activation
rates and numbers of samples (n) (figure 11). These characteristics were used to create
eleven distinct "metamodels", which differ by the specificities of the databases on which
they were trained.

The cost function is what the algorithm seeks to minimize during training. Here,
it is the cross-entropy function, which measures the difference between the predicted
probabilities and the true probabilities for each class. This cost function is widely used
for classification tasks and allows to measure how well the model’s predictions match the
training data. We also used the accuracy metric to measure the precision of our models.

UE PRO Report - PAr 133 16

CENTRALELYON 4 Experiments and results

Example database: T, — 30 %, n — 10

model loss
251 % — frain
validation
201
|

" 15 1
- 1

10 - \

Sl |
oAl |
05 %\M

0 20 40 60 B0 100 120 140

094 — train

validation
08
0.7 1
06 1

05 A

accuracy

04 -
03
024 J

0 20 40 60 B0 100 120 140
epoch

Figure 12: Model cost and accuracy function for metaclass classification, database: T, =
30 %, n = 10

For this example (12), the training and validation cost function converge to a value of
about 0.2, which suggests that our model has reached an optimal solution for the neural
network parameters. Similarly, we observed that the training and validation accuracy
converged to a value of about 0.92, which indicates that our model is able to generalize
well on new data.

The validation curve is not used directly during training but to check that there is no
overfitting. Indeed, we evaluate the model metrics on the training part of the database
and on the validation part during the entire training. We adjust the parameters using
the cost function calculated on the training part, the validation part has no influence.
On the other hand, if the training and validation curves move away from each other, this
indicates that there is overfitting: the model is too specialized in recognizing training data
and loses its generalization capabilities.

UE PRO Report - PAr 133 17

CENTRALELYON

4 Experiments and results

To differentiate between the accuracy of a model and the accuracy of a metamodel,
some figures will mention the "total accuracy". This is also the number of successful
predictions divided by the total number of predictions, but for the entire prediction process
of the metaclass and then the subclass.

4.2 Performance of models compared to the training activation

rate

First, we examine the performance of the metamodels on the "own" data sets. That is
to say that for each of the metamodels, we calculate the total accuracy from the part
dedicated to the tests of the database that was used to train them. The results are
presented in figure 13:

Totall%ccurac}f des méta-modeéles sur leurs sets de test, en fonction du taux d'activation (par défaut, n = 30}

08

Total accuracy
=
[=2]

Pl
e

02

0

n=5
* ° .
n=10 L]
@ beta’avant' L]
@ betaamiere” .
@ beta ‘milieu’
L
.]
aF
L]
o 20 40 (] BO 100 Distribution

Taux d'activation [%]

Figure 13: Accuracy of metamodels on their own test data as a function of the
activation rate (for the beta distribution, arriére: rear, avant: forward and milieu:

We can notice 2 things:

middle) (original French figure)

e at an equal number of samples, metamodels trained at fixed rate have a higher
total accuracy than models trained when the activation rate increases. This can
be explained because for a lower activation rate, the number of possibilities for the
fault matrix increases, and with the same number of samples, we cover a smaller
part of these possibilities.

UE PRO

Report - PAr 133 18

CENTRALELYON 4 Experiments and results

e at an equal activation rate, the greater the number of samples, the greater the total
accuracy. We can explain it with the same logic: the number of possibilities for the
fault matrix is the same, but with fewer samples we cover fewer possibilities.

We can conclude that to obtain the best results we must maximize the number of
samples. However, this can be difficult because we often encounter memory problems.
To give an example, a database containing n = 30 samples weighs less than 5 GB, so the
RAM allocated to the training program must be at least 5 GB. By increasing the number
of samples, we can quickly run out of memory. With the resource at our disposal, it was
not possible for us, for example, to train a network with a database at n = 30.

The activation rate of real circuits is not known a priori; however, these results show
that the activation rate of a fault represents the difficulty in diagnosing the fault: the
lower it is, the higher the difficulty.

For databases containing a wider spectrum of activation rates (distributions called
"beta forward", "backward" and "middle", or even approach part), we make a similar
observation: the larger the point around which the distribution is centered, the greater
the total accuracy.

Finally, we still note that the results are rather encouraging: the minimum total accu-
racy is greater than 50% and the maximum total accuracy exceeds 95%. However, these
metrics are calculated with data that have the same activation rate as the metamodel. In
reality, this would be equivalent to knowing the activation rate in advance, which is not
the case. The question is therefore the following: How do metamodels perform when faced
with databases with activation rates different from those on which they were trained?

UE PRO Report - PAr 133 19

CENTRALELYON

4 Experiments and results

4.3 Performance of models faced with new activation rates

Total accuracy pour le modéle entrain avec 10_n30 Total accuracy pour le modéle entrainé avec 30_n30

(a) Total accuracy for a model trained with an
activation rate of 10 % (n = 30)

(b) Total accuracy for a model trained with an
activation rate of 30 % (n = 30)

Total accuracy pour le modéle entrainé avec 50_n30 Total accuracy pour le modéle entrainé avec 70_n30

.
o

(c) Total accuracy for a model trained with an
activation rate of 50 % (n = 30)

(d) Total accuracy for a model trained with an
activation rate of 70 % (n = 30)

Total accuracy pour le modéle entrainé avec 80_n30

°

Total accuracy pour le modéle entrainé avec 90_n30

(e) Total accuracy for a model trained with an (f) Total accuracy for a model trained with an
activation rate of 80 % (n = 30) activation rate of 90 % (n = 30)

In a second step, we compare the different trained metamodels to the test databases of
the other metamodels: we then obtain the total accuracy of the metamodels as a function
of the activation rate from the test database.

We notice that generally, the graphs present a "peak" at the level of the activation
rate of training of the model, a decrease to the left of the peak, and a slower decrease to

UE PRO Report - PAr 133 20

CENTRALELYON 5 Conclusion

the right of the peak (we see it particularly well on the figure 14c).

We can say that the larger the area under the curve, the more efficient the model is,
because the more it will be able to have high accuracy over a wider range of activation
rates. In this sense, we can say that metamodels trained at activation rates between 50

4.4 Performance Improvement by Using an Activation Rate Dis-
tribution

We first note that the area under the curve for these metamodels is significantly larger
than those trained at fixed rates, so we can say that metamodels trained with fixed rates
distributions are generally more efficient than the others. We also notice that the shape
described by the curves changes: we no longer have a peak but instead we have a plateau
on the right and a regular growth on the left. The more the distribution is centered
towards the right, the higher the plateau and the steeper the part.

Finally, we conclude that using a distribution for activation rates does indeed improve
diagnostic performance, and that in particular a distribution centered around 50

4.5 Diagnostic test: CNN model versus industrial tool

Finally, we still have to compare the best of our metamodels (the one trained on an
activation rate following the "beta middle" distribution) with the industrial tool. The
diagnosis by the tool is heavy and being at the end of the project we were only able to
test it for a single fault (more experiments on this aspect would be necessary) chosen at
random: the stuck at 0 fault on the U1446/7Z wire. Moreover, this fault is the only one
in its subclasses so our metamodel can potentially identify it precisely.

To begin with, the industrial tool and the metamodel find the fault from the permanent
matrix, which is expected. Then, we generate an intermittent version of the fault matrix
where only 6 test vectors out of the 21 potential ones activate the fault, i.e. the fault has
an activation rate of about 30

This result is nevertheless to be qualified because if the fault was not alone in its
subclass, we could only have restricted the possibilities to faults that are members of this
subclass without having been able to identify it precisely (during a test, we could however
know if we have identified the right fault group or not).

5 Conclusion

In conclusion, during this project we developed a method for diagnosing intermittent faults
in electronic circuits, which industrial tools do not yet take into account. To do this, we
grouped the faults using a hierarchical ascending classification method, from which we
deduced two levels of fault grouping: metaclasses that contain subclasses, subclasses that
contain faults. We then trained a battery of neural networks to determine the metaclass
and then the subclass of a fault from its matrix.

Finally, we studied the performance of these models based on different parameters,
which allowed us to conclude that training the models with an activation rate distribution
centered around 50We have also shown that our model could successfully diagnose an
intermittent fault, where the current industrial tool fails to do so. This result, although
currently limited to a single test, is encouraging for the future. In the future, it would be

UE PRO Report - PAr 133 21

CENTRALELYON 5 Conclusion

necessary to go all the way with the approach, by ensuring that the subclasses of the last
level only present one fault, for precise identification. It could also be interesting to look
at the case where the circuit presents several faults, or to perform tests with a physical
circuit.

UE PRO Report - PAr 133 22

CENTRALELYON References

References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Mar-
tin Wicke, Yuan Yu, and Xiaoqgiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep Networks
with Stochastic Depth. 2016. Publisher: arXiv Version Number: 3.

[3] NVIDIA. Cuda toolkit documentation. Disponible & https://developer.nvidia.
com/cuda-toolkit (06/04/2023).

[4] Josh Patterson and Adam Gibson. Deep learning en action: la référence du praticien.
First interactive O’Reilly, Paris, 2018.

[5] Kévin-lam Quesnel and Nantomiaro Ralibera. PAr 135 : TA appliquée au diagnotic
de circuits électroniques intégrés. Technical report, April 2022.

[6] Bharath Ramsundar and Reza Bosagh Zadeh. TensorFlow pour le deep learning: de
la régression linéaire a l’apprentissage par renforcement. First interactive O’Reilly,
Paris, 2018.

UE PRO Report - PAr 133 23

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

CENTRALELYON References

Annexes

Project management

In this research project, project management was a key element in achieving our objec-
tives. We found that despite the initial use of the Gantt chart to plan our tasks, it was
important to remain flexible and adaptable, especially given the evolution of research
tracks. Indeed, we have encountered new questions since RVP2, such as the use of con-
stant activation rate databases or distributions for training our networks, as well as the
addition of the classification track using Transfer Learning. These questions required
adjustments in our schedules and a reorganization of our work. Despite these changes,
we managed to move forward with our experiments, although we were somewhat behind
schedule due to the creation of the datasets taking longer than expected. Project man-
agement was therefore crucial to address these challenges and achieve our main objective,
which is to study the application of Al for the diagnosis of electronic circuits.

GANTT
I _Intitulé | Omobre | Novembre | Décembe= | Jomwvier | Fevpier DOOOUNNASRO] Aur)l |
n. Tachs n°! Sous-tiche 4.5.13@.1‘325 39153203 2930 6 7113348 [3411003370824/ 30 7 114l I 128 713411108 4] 125
B 1 Préparstion RVP1
q Gestionde 3 prinaration RVPZ
projet 2 Preparation soutenance
4 Rédaction du rapoort

Prise en main de la
Bibliographie CNN
Bibliographie et Prise en main des

(SN

formation 3 bibliothagques
informatigues
nécessaires
Création BDD pour
Implémentatic ~ classification mataclzsses

WEEX

n mplémentation et

entrainement CNN

Exploration de nouvelles

CAH et création de BDD

mplémentation CNN

% pour 2 classifications
consécutives

ELrim o PR Yo
Corgis de No#l
Examens 57
Corgés d'hiver
Congés de printem s

"

Sautenances Stage Execution
i o o Touss aint

Validation de |z

Finalisationdu r'.et"fo:lo_ll.oglle pour le
4 et circuit utilise
~= Anzlyse des résultats &t
production finale

Figure 16: GANTT final (French original figure)

The final Gantt (figure 16) is a visual representation of our updated project schedule. It
shows the various tasks that have been completed. Our project’s final Gantt chart includes
several key tasks, including bibliography and training, implementation, and project com-
pletion. The Gantt chart was updated regularly throughout the project to reflect changes
in priorities and timelines.v

Changes from the last review with supervisors

The implementation subtasks were revised, adding an exploration of new paths based
on RVP2 feedback to find improvements over the previous research group. Once the
tracks were found and validated by the professors, we worked on hierarchical ascending
classification (HAC), two-stage classification and analysis of the results obtained.

UE PRO Report - PAr 133 24

CENTRALELYON References

The subtask of generalization to other circuits in the project finalization task was
finally abandoned. We chose to focus on the track of 2 consecutive classifications and left
aside the generalization to other circuits.

Code

The codes used are all available on the project gitlab: https://gitlab.ec-lyon.fr/
diagnostic-de-circuits-electroniques/par-133. Only the databases are not on the
gitlab because they are too massive. The library used for neural networks is tensorflow
[1]. The acceleration of matrix calculations by using NVIDIA GPUs is performed by |[3].

Distribution of faults in metaclasses into subclasses

Size for metaclasses corresponds to the number of subclasses inside the metaclass. Size
for subclasses corresponds to the number of faults inside the subclass.
Metaclass 0, size 59:

Subclass 0, size 14
e Subclass 1, size 11
e Subclass 2, size 23
e Subclass 3, size 10
e Subclass 4, size 11
e Subclass 5, size 11
e Subclass 6, size 34
e Subclass 7, size 13
e Subclass 8, size 8

e Subclass 9, size 36
e Subclass 10, size 16
e Subclass 11, size 7
e Subclass 12, size 14
e Subclass 13, size 17
e Subclass 14, size 42
e Subclass 15, size 33
e Subclass 16, size 14
e Subclass 17, size 52

e Subclass 18, size 15

UE PRO Report - PAr 133 25

https://gitlab.ec-lyon.fr/diagnostic-de-circuits-electroniques/par-133
https://gitlab.ec-lyon.fr/diagnostic-de-circuits-electroniques/par-133

CENTRALELYON References

e Subclass 19, size 12
e Subclass 20, size 15
e Subclass 21, size 7
e Subclass 22, size 7
e Subclass 23, size 3
e Subclass 24, size 6
e Subclass 25, size 12
e Subclass 26, size 13
e Subclass 27, size 12
e Subclass 28, size 9
e Subclass 29, size 14
e Subclass 30, size 18
e Subclass 31, size 5
e Subclass 32, size 20
e Subclass 33, size 3
e Subclass 34, size 4
e Subclass 35, size 1
e Subclass 36, size 3
e Subclass 37, size 3
e Subclass 38, size 3
e Subclass 39, size 4
e Subclass 40, size 2
e Subclass 41, size 2
e Subclass 42, size 2
e Subclass 43, size 2
e Subclass 44, size 13
e Subclass 45, size 10
e Subclass 46, size 8

e Subclass 47, size 1

UE PRO Report - PAr 133 26

CENTRALELYON

References

Subclass 48, size 11
Subclass 49, size 1
Subclass 50, size 3
Subclass 51, size 11
Subclass 52, size 5
Subclass 53, size 5
Subclass 54, size 7
Subclass 55, size 5
Subclass 56, size 6
Subclass 57, size 8
Subclass 58, size 10

Metaclass 1, size 18:

Subclass 0, size 2
Subclass 1, size 4
Subclass 2, size 1
Subclass 3, size 3
Subclass 4, size 4
Subclass 5, size 1
Subclass 6, size 1
Subclass 7, size 2
Subclass 8, size 6
Subclass 9, size 2
Subclass 10, size 3
Subclass 11, size 1
Subclass 12, size 1
Subclass 13, size 6
Subclass 14, size 1
Subclass 15, size 7

Subclass 16, size 4

UE PRO

Report - PAr 133

27

CENTRALELYON

References

Subclass 17, size 1

Metaclass 2, size 39:

Subclass 0, size 15
Subclass 1, size 19
Subclass 2, size 12
Subclass 3, size 11
Subclass 4, size 17
Subclass 5, size 14
Subclass 6, size 17
Subclass 7, size 37
Subclass 8, size 37
Subclass 9, size 14
Subclass 10, size 24
Subclass 11, size 13
Subclass 12, size 22
Subclass 13, size 49
Subclass 14, size 29
Subclass 15, size 35
Subclass 16, size 5
Subclass 17, size 10
Subclass 18, size 7
Subclass 19, size 10
Subclass 20, size 13
Subclass 21, size 20
Subclass 22, size 18
Subclass 23, size 6
Subclass 24, size 2
Subclass 25, size 6

Subclass 26, size 3

UE PRO

Report - PAr 133

28

CENTRALELYON

References

Subclass 27, size 1
Subclass 28, size 3
Subclass 29, size 4
Subclass 30, size 12
Subclass 31, size 4
Subclass 32, size 17
Subclass 33, size 11
Subclass 34, size 31
Subclass 35, size 8
Subclass 36, size 4
Subclass 37, size 15

Subclass 38, size 1

Metaclass 3, size T:

Subclass 0, size 15
Subclass 1, size 24
Subclass 2, size 25
Subclass 3, size 16
Subclass 4, size 23
Subclass 5, size 22

Subclass 6, size 31

Metaclass 4, size 36:

Subclass 0, size 7
Subclass 1, size 6
Subclass 2, size 4
Subclass 3, size 11
Subclass 4, size 4
Subclass 5, size 8
Subclass 6, size 6

Subclass 7, size 6

UE PRO

Report - PAr 133

29

CENTRALELYON

References

Subclass 8, size 2

Subclass 9, size 7

Subclass 10, size 6
Subclass 11, size 8
Subclass 12, size 7
Subclass 13, size 5
Subclass 14, size 5
Subclass 15, size 3
Subclass 16, size 3
Subclass 17, size 2
Subclass 18, size 2
Subclass 19, size 2
Subclass 20, size 4
Subclass 21, size 4
Subclass 22, size 6
Subclass 23, size 4
Subclass 24, size 2
Subclass 25, size 2
Subclass 26, size 1
Subclass 27, size 1
Subclass 28, size 7
Subclass 29, size 4
Subclass 30, size 1
Subclass 31, size 2
Subclass 32, size 1
Subclass 33, size 2
Subclass 34, size 6

Subclass 35, size 1

Metaclass 5, size 36:

UE PRO

Report - PAr 133

30

CENTRALELYON References

e Subclass 0, size 2
e Subclass 1, size 1
e Subclass 2, size 1
e Subclass 3, size 1
e Subclass 4, size 2
e Subclass b, size 3
e Subclass 6, size 1
e Subclass 7, size 1
e Subclass 8, size 2
e Subclass 9, size 4
e Subclass 10, size 2
e Subclass 11, size 4
e Subclass 12, size 1
e Subclass 13, size 4
e Subclass 14, size 2
e Subclass 15, size 2
e Subclass 16, size 3
e Subclass 17, size 2
e Subclass 18, size 1
e Subclass 19, size 1
e Subclass 20, size 1
e Subclass 21, size 2
e Subclass 22, size 1
e Subclass 23, size 1
e Subclass 24, size 1
e Subclass 25, size 1
e Subclass 26, size 2
e Subclass 27, size 3

e Subclass 28, size 3

UE PRO Report - PAr 133 31

CENTRALELYON

References

Subclass 29, size 2
Subclass 30, size 2
Subclass 31, size 1
Subclass 32, size 1
Subclass 33, size 1
Subclass 34, size 1

Subclass 35, size 1

Metaclass 6, size 53:

Subclass 0, size 3
Subclass 1, size 3
Subclass 2, size 3
Subclass 3, size 2
Subclass 4, size 3
Subclass 5, size 2
Subclass 6, size 3
Subclass 7, size 1
Subclass 8, size 1
Subclass 9, size 1
Subclass 10, size 1
Subclass 11, size 1
Subclass 12, size 1
Subclass 13, size 2
Subclass 14, size 2
Subclass 15, size 1
Subclass 16, size 2
Subclass 17, size 5
Subclass 18, size 2
Subclass 19, size 2

Subclass 20, size 4

UE PRO

Report - PAr 133

32

CENTRALELYON Roferences

e Subclass 21, size 2
e Subclass 22, size 3
e Subclass 23, size 2
e Subclass 24, size 1
e Subclass 25, size 3
e Subclass 26, size 2
e Subclass 27, size 3
e Subclass 28, size 4
e Subclass 29, size 1
e Subclass 30, size 1
e Subclass 31, size 1
e Subclass 32, size 2
e Subclass 33, size 1
e Subclass 34, size 2
e Subclass 35, size 2
e Subclass 36, size 2
e Subclass 37, size 2
e Subclass 38, size 2
e Subclass 39, size 1
e Subclass 40, size 2
e Subclass 41, size 3
e Subclass 42, size 2
e Subclass 43, size 3
e Subclass 44, size 1
e Subclass 45, size 2
e Subclass 46, size 2
e Subclass 47, size 2
e Subclass 48, size 3
e Subclass 49, size 3

UE PRO Report - PAr 133 33

CENTRALELYON

References

e Subclass 50, size 3
e Subclass 51, size 2

e Subclass 52, size 5

Metaclass 7, size 26:

Subclass 0, size 4
Subclass 1, size 5
Subclass 2, size 6
Subclass 3, size 2
Subclass 4, size 5
Subclass 5, size 5
Subclass 6, size 7
Subclass 7, size 4
Subclass 8, size 4
Subclass 9, size 2
Subclass 10, size 3
Subclass 11, size 11
Subclass 12, size 12
Subclass 13, size 8
Subclass 14, size 2
Subclass 15, size 4
Subclass 16, size 16
Subclass 17, size 14
Subclass 18, size 10
Subclass 19, size 7
Subclass 20, size 5
Subclass 21, size 6
Subclass 22, size 6
Subclass 23, size 8

Subclass 24, size 5

UE PRO

Report - PAr 133

34

CENTRALELYON

References

Subclass 25, size 9

Metaclass 8, size 33:

Subclass 0, size 3
Subclass 1, size 4
Subclass 2, size 5
Subclass 3, size 5
Subclass 4, size 2
Subclass 5, size 4
Subclass 6, size 3
Subclass 7, size 5
Subclass 8, size 3
Subclass 9, size 5
Subclass 10, size 3
Subclass 11, size 7
Subclass 12, size 5
Subclass 13, size 9
Subclass 14, size 3
Subclass 15, size 5
Subclass 16, size 5
Subclass 17, size 5
Subclass 18, size 1
Subclass 19, size 3
Subclass 20, size 4
Subclass 21, size 3
Subclass 22, size 5
Subclass 23, size 9
Subclass 24, size 5
Subclass 25, size 9

Subclass 26, size 8

UE PRO

Report - PAr 133

35

CENTRALELYON

References

Subclass 27, size 2
Subclass 28, size 5
Subclass 29, size 6
Subclass 30, size 4
Subclass 31, size 2

Subclass 32, size 3

Metaclass 9, size 33:

Subclass 0, size 19
Subclass 1, size 21
Subclass 2, size 34
Subclass 3, size 7
Subclass 4, size 5
Subclass 5, size 1
Subclass 6, size 23
Subclass 7, size 8
Subclass 8, size 16
Subclass 9, size 3
Subclass 10, size 2
Subclass 11, size 1
Subclass 12, size 8
Subclass 13, size 8
Subclass 14, size 13
Subclass 15, size 41
Subclass 16, size 32
Subclass 17, size 21
Subclass 18, size 37
Subclass 19, size 16
Subclass 20, size 52

Subclass 21, size 5

UE PRO

Report - PAr 133

36

CENTRALELYON

References

Subclass 22, size 3

Subclass 23, size 4

Subclass 24, size 11
Subclass 25, size 20
Subclass 26, size 19
Subclass 27, size 22
Subclass 28, size 38
Subclass 29, size 17
Subclass 30, size 18
Subclass 31, size 9

Subclass 32, size 47

Metaclass 10, size 12:

Subclass 0, size 8
Subclass 1, size 31
Subclass 2, size 40
Subclass 3, size 20
Subclass 4, size 10
Subclass 5, size 26
Subclass 6, size 10
Subclass 7, size 21
Subclass 8, size 19
Subclass 9, size 13
Subclass 10, size 10

Subclass 11, size 28

Metaclass 11, size 44:

Subclass 0, size 8
Subclass 1, size 6
Subclass 2, size 9

Subclass 3, size 3

UE PRO

Report - PAr 133

37

CENTRALELYON References

e Subclass 4, size 7

e Subclass b, size 2

e Subclass 6, size 5

e Subclass 7, size 5

e Subclass 8, size 2

e Subclass 9, size 4

e Subclass 10, size 3
e Subclass 11, size 4
e Subclass 12, size 2
e Subclass 13, size 3
e Subclass 14, size 3
e Subclass 15, size 4
e Subclass 16, size 4
e Subclass 17, size 4
e Subclass 18, size 3
e Subclass 19, size 3
e Subclass 20, size 5
e Subclass 21, size 4
e Subclass 22, size 11
e Subclass 23, size 14
e Subclass 24, size 7
e Subclass 25, size 3
e Subclass 26, size 4
e Subclass 27, size 6
e Subclass 28, size 8
e Subclass 29, size 20
e Subclass 30, size 14
e Subclass 31, size 5

e Subclass 32, size 6

UE PRO Report - PAr 133 38

CENTRALELYON

References

Subclass 33, size 18
Subclass 34, size 30
Subclass 35, size 10
Subclass 36, size 18
Subclass 37, size 10

e Subclass 38, size 7
e Subclass 39, size 6

e Subclass 40, size 8

e Subclass 41, size 18

e Subclass 42, size 6

e Subclass 43, size 16

Metaclass 12, size 3:
e Subclass 0, size 1
e Subclass 1, size 1
e Subclass 2, size 1
Metaclass 13, size 1:
e Subclass 0, size 1
Metaclass 14, size 4:
e Subclass 0, size 1
e Subclass 1, size 1
e Subclass 2, size 1
e Subclass 3, size 1
Metaclass 15, size 50:

e Subclass 0, size 1

Subclass 1, size 1

Subclass 2, size 1

Subclass 3, size 1

Subclass 4, size 1

Subclass 5, size 1

UE PRO

Report - PAr 133

39

CENTRALELYON References

e Subclass 6, size 1

e Subclass 7, size 1

e Subclass 8, size 1

e Subclass 9, size 1

e Subclass 10, size 1
e Subclass 11, size 1
e Subclass 12, size 1
e Subclass 13, size 2
e Subclass 14, size 1
e Subclass 15, size 2
e Subclass 16, size 1
e Subclass 17, size 1
e Subclass 18, size 2
e Subclass 19, size 2
e Subclass 20, size 1
e Subclass 21, size 1
e Subclass 22, size 2
e Subclass 23, size 1
e Subclass 24, size 2
e Subclass 25, size 2
e Subclass 26, size 1
e Subclass 27, size 2
e Subclass 28, size 2
e Subclass 29, size 1
e Subclass 30, size 2
e Subclass 31, size 1
e Subclass 32, size 2
e Subclass 33, size 1

e Subclass 34, size 2

UE PRO Report - PAr 133 40

CENTRALELYON

References

Subclass 35, size 1
Subclass 36, size 1
Subclass 37, size 1
Subclass 38, size 1
Subclass 39, size 1
Subclass 40, size 1
Subclass 41, size 1
Subclass 42, size 1
Subclass 43, size 1
Subclass 44, size 1
Subclass 45, size 1
Subclass 46, size 1
Subclass 47, size 1
Subclass 48, size 1

Subclass 49, size 1

Metaclass 16, size 11:

Subclass 0, size 2
Subclass 1, size 1
Subclass 2, size 1
Subclass 3, size 2
Subclass 4, size 1
Subclass 5, size 1
Subclass 6, size 1
Subclass 7, size 1
Subclass 8, size 1
Subclass 9, size 1

Subclass 10, size 1

Metaclass 17, size 43:

Subclass 0, size 2

UE PRO

Report - PAr 133

41

CENTRALELYON References

e Subclass 1, size 2
e Subclass 2, size 2
e Subclass 3, size 2
e Subclass 4, size 1
e Subclass 5, size 1
e Subclass 6, size 1
e Subclass 7, size 3
e Subclass 8, size 2
e Subclass 9, size 2
e Subclass 10, size 2
e Subclass 11, size 1
e Subclass 12, size 1
e Subclass 13, size 2
e Subclass 14, size 1
e Subclass 15, size 1
e Subclass 16, size 2
e Subclass 17, size 2
e Subclass 18, size 2
e Subclass 19, size 2
e Subclass 20, size 3
e Subclass 21, size 1
e Subclass 22, size 2
e Subclass 23, size 1
e Subclass 24, size 1
e Subclass 25, size 2
e Subclass 26, size 1
e Subclass 27, size 1
e Subclass 28, size 2

e Subclass 29, size 2

UE PRO Report - PAr 133 42

CENTRALELYON

References

Subclass 30, size 2
Subclass 31, size 4
Subclass 32, size 2
Subclass 33, size 1
Subclass 34, size 5
Subclass 35, size 3
Subclass 36, size 2
Subclass 37, size 1
Subclass 38, size 3
Subclass 39, size 3
Subclass 40, size 3
Subclass 41, size 2

Subclass 42, size 2

Metaclass 18, size 43:

Subclass 0, size 2
Subclass 1, size 2
Subclass 2, size 3
Subclass 3, size 3
Subclass 4, size 3
Subclass 5, size 4
Subclass 6, size 1
Subclass 7, size 1
Subclass 8, size 2
Subclass 9, size 2
Subclass 10, size 1
Subclass 11, size 3
Subclass 12, size 4
Subclass 13, size 3

Subclass 14, size 2

UE PRO

Report - PAr 133

43

CENTRALELYON

References

Subclass 15, size 2
Subclass 16, size 1
Subclass 17, size 1
Subclass 18, size 1
Subclass 19, size 3
Subclass 20, size 1
Subclass 21, size 2
Subclass 22, size 3
Subclass 23, size 2
Subclass 24, size 2
Subclass 25, size 3
Subclass 26, size 5
Subclass 27, size 2
Subclass 28, size 2
Subclass 29, size 2
Subclass 30, size 2
Subclass 31, size 4
Subclass 32, size 2
Subclass 33, size 2
Subclass 34, size 3
Subclass 35, size 2
Subclass 36, size 4
Subclass 37, size 4
Subclass 38, size 3
Subclass 39, size 5
Subclass 40, size 9
Subclass 41, size 2

Subclass 42, size 4

Metaclass 19, size 52:

UE PRO

Report - PAr 133

44

CENTRALELYON References

e Subclass 0, size 1
e Subclass 1, size 1
e Subclass 2, size 2
e Subclass 3, size 1
e Subclass 4, size 2
e Subclass 5, size 1
e Subclass 6, size 3
e Subclass 7, size 1
e Subclass 8, size 1
e Subclass 9, size 1
e Subclass 10, size 1
e Subclass 11, size 1
e Subclass 12, size 1
e Subclass 13, size 1
e Subclass 14, size 1
e Subclass 15, size 1
e Subclass 16, size 1
e Subclass 17, size 1
e Subclass 18, size 1
e Subclass 19, size 1
e Subclass 20, size 1
e Subclass 21, size 2
e Subclass 22, size 1
e Subclass 23, size 2
e Subclass 24, size 2
e Subclass 25, size 2
e Subclass 26, size 2
e Subclass 27, size 1

e Subclass 28, size 1

UE PRO Report - PAr 133 45

CENTRALELYON References

e Subclass 29, size 2
e Subclass 30, size 2
e Subclass 31, size 1
e Subclass 32, size 2
e Subclass 33, size 1
e Subclass 34, size 2
e Subclass 35, size 1
e Subclass 36, size 2
e Subclass 37, size 1
e Subclass 38, size 1
e Subclass 39, size 2
e Subclass 40, size 1
e Subclass 41, size 1
e Subclass 42, size 3
e Subclass 43, size 1
e Subclass 44, size 1
e Subclass 45, size 1
e Subclass 46, size 1
e Subclass 47, size 2
e Subclass 48, size 2
e Subclass 49, size 2
e Subclass 50, size 3

e Subclass 51, size 1

UE PRO Report - PAr 133 46

	Summaries and acknowledgements
	Introduction
	Context
	Project Objectives

	State of the art
	Electronic circuit faults
	Fault model
	Permanent faults and intermittent faults
	Grouping into metaclasses

	Neural Network Architecture
	Deep Neural Networks (DNNs)
	Convolutional Neural Network (CNN)
	Vocabulary

	Approach
	Study circuit and simulation
	Database Creation
	Database formatting by hierarchical clustering
	Hierarchical ascending clustering (HAC)
	Database formatting

	Neural network models
	Convolutional neural network used
	Hierarchical approach

	Experiments and results
	Trained models
	Performance of models compared to the training activation rate
	Performance of models faced with new activation rates
	Performance Improvement by Using an Activation Rate Distribution
	Diagnostic test: CNN model versus industrial tool

	Conclusion
	References
	Annexes

