Data-Driven Methods for PE and VC

Neirouz Bouchaira®

Abstract This project aims to extract and enrich data from the *Our Startups’ section
of the Plug and Play Tech Center website. The objective is to identify relevant star-
tups for potential investment by gathering information such as company name, website
URL, and description. Additionally, external sources will be used to collect data such as
LinkedIn URL, founder information, employee count, employee growth, headquarters
country, and founding year. The project will categorize companies based on software/IT
services, hardware, B2B/B2C focus, vertical/horizontal software, and Al capabilities.
The output will be a well-structured CSV file and Python code for easy comprehension
and reproducibility.

Keywords: Extract; Enrich; Startups; Data; Web scraping; External sources; Catego-
rize; ML

1. Introduction

Private equity (PE) and venture capital (VC) firms play a crucial role
in funding and supporting startups and emerging companies. The success
of PE and VC investments relies heavily on identifying promising startups
with strong growth potential. However, the traditional methods of sourcing
and evaluating startups can be time-consuming, manual, and often limited
in scope. This is where the utilization of web scraping and data enrichment
techniques can provide significant advantages for PE and VC firms.

1.1 Benefits for Fortino Capital

®

(ii)

(iii)

Efficient Deal Sourcing: Web scraping enables firms to extract a large
amount of data from online sources, saving time and allowing them to
review more potential investment opportunities.

Comprehensive Data Collection: By combining web scraping with
external sources, firms can gather extensive information about startups,
including team backgrounds, growth trends, market positioning, and
financial metrics. Enriched data provides a deeper understanding of the
startup’s potential.

Data-Driven Decision Making: Extracting and analyzing data from
multiple sources enables firms to make more informed investment de-
cisions, reducing reliance on subjective evaluations.

Submitted on June 3rd 2023

"neirouz.bouchaira.pro@gmail.com

neirouz.bouchaira.pro@gmail.com

1
2
3

Neirouz Bouchaira for Fortino Capital, 2023

(iv) Improved Due Diligence: Web scraping and data enrichment support
thorough due diligence by providing information on management teams,
industry relationships, customer base, and technological capabilities.

(v) Enhanced Portfolio Management: The extracted and enriched data
facilitates ongoing monitoring and management of the firm’s portfolio,
tracking performance, identifying growth patterns, and making strate-
gic decisions.

2. Data Extraction
2.1 Libraries

The code includes the necessary import statements for the requests li-
brary, used for making HTTP requests, and the BeautifulSoup module from
the bs4 package, used for parsing HTML content. These libraries are essen-
tial for implementing web scraping functionality and extracting data from the
website.

import requests
from bs4 import BeautifulSoup

2.2 Methodology of Extraction

The methodology for data extraction in this project involves utilizing web
scraping techniques to gather information from the *Our Startups’!. The code
begins by defining a list of user agents, which are used to randomize the re-
quests and prevent detection or blocking. A GET request is then sent to the
target URL with a randomly selected user agent from the list. The response
from the request is obtained, which contains the HTML content of the web-

page.

Set a list of user agents

user_agents = |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome
/90.0.4430.212 Safari/537.36"',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome
/91.0.4472.124 Safari/537.36"',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome
/92.0.4515.107 Safari/537.36"',

ISection of the Plug and Play Tech Center website.

10

11

Data-Driven Methods for PE and VC

Send a GET request to the website with random user
agent and delay

url = "https://www.plugandplaytechcenter.com/startups/
our—-startups/"

headers = {'User-Agent': user_agents|[randint (0, len(
user_agents) - 1)1}

response = requests.get (url, headers=headers)

The HTML content of the webpage is parsed using the BeautifulSoup
library and stored in the soup object. The prettify() method is then used to
format the HTML code for improved readability. Printing the soup object
allows for inspecting the parsed HTML and verifying the successful retrieval
of the webpage content.

soup = BeautifulSoup(response.text, 'html.parser')
print (soup.prettify())

The code snippet uses the find_all() method of the soup object to extract
specific elements from the parsed HTML. The classes names used in the
code were obtained by inspecting the website page manually. The ex-
tracted elements include startup names, website links, and descriptions.

startups = soup.find_all('div', class_="pnp__startup-—
item—-name")

links=soup.find_all('a', class_="pnp__startup-website-
link")

descriptions=soup.find_all('div', class_="cell
pnp__startup-description")

2.3 Pre-processing

The name of the start-up is extracted like the following structure: *<div

class="“pnp__startup-item-name”>Trulioo</div>’. Moreover, some startups are
extracted twice (from the webpage and the pop-up of each company descrip-
tion). Pre-processing is, as a consequence, necessary.
The following code snippet iterates over the startups list and extracts the text
content of each element. It filters out duplicate startup names and names that
end with an ellipsis before adding them to the startups_list. This process en-
sures that the final list contains unique and complete startup names extracted
from the webpage.

startups_list = []
for startup in startups:

3

o U W

© W J oUW N R

R e s
o s W N R O

Neirouz Bouchaira for Fortino Capital, 2023

#keep only the text between the > and < characters

startup = startup.text
if startup not in startups_list and not (startup.
endswith('...")):

startups_list.append (startup)

The code snippet creates a list (links_list) to store the extracted website links
by iterating over the links list and using the get(’href’) method to retrieve the
URLSs. The code also creates a list (descriptions_list) to store the extracted
descriptions by iterating over the descriptions list, extracting the text content,
and removing newline characters.

links_1list=[]

create a list of all the links

for link in links:
links_list.append(link.get ('href'))

print (links_list)

descriptions_list=[]
for description in descriptions:
#keep only the text between the > and < characters

description = description.text

#remove the \n and \t characters
description = description.replace('\n', ''")
descriptions_list.append (description)

Remark 1. A dozen of spaces are in the beginning of each *Description para-
graph’. Those spaces were not removed because they don’t intervene with the
understanding of the data.

2.4 Results

The final result of this phase is a CSV file.
The code snippet creates a Pandas DataFrame (dataframe) from the extracted
data and exports it to a CSV file named ’startups.csv’. The DataFrame consists
of columns for startup names, website links, and descriptions.

import pandas as pd

data={'startups':startups_list, 'links':1links_1list,'
descriptions':descriptions_list}

10
11
12
13

14

15
16

Data-Driven Methods for PE and VC

dataframe=pd.DataFrame (data)
dataframe.head ()
dataframe.to_csv('startups.csv', index=False)

3. Data Enrichment
3.1 Linkedin link

To enrich the data, a function is created to extract the LinkedIn links of
each company. This function opens the website of each company, extracts all
links from the webpage, and filters out only the linkedIn links .

def linkedin (link) :
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome
/90.0.4430.212 Safari/537.36"',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome
/91.0.4472.124 Safari/537.36"',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome
/92.0.4515.107 Safari/537.36',]

Send a GET request to the website with random user
agent and delay

url = link
headers = {'User-Agent': user_agents|[randint (0, len(
user_agents) - 1)]}

response = requests.get (url, headers=headers)
soup = BeautifulSoup (response.text, 'html.parser')
#import a list of links from the website

links = [a['href'] for a in soup.find_all('a', href=
True)]

linkedin_link = [link for link in links if 'linkedin
" in link]

return linkedin_link

An exemple of the output of the function is the Figure 1:

2only the first linkedin link is going to be kept.

5

Neirouz Bouchaira for Fortino Capital, 2023

Figure 1

The CSV file is then completed by a Linkedin column that is made using
that function.

Remark 2. It is not garanteed that a company puts its Linkedin link on its
website. For that case, a link following the template
“https://www.linkedin.com/company/’+ name’ is added.

for i in range (startups.shape[0]):

try:

startups['linkedin'] [i] = linkedin(str (startups
['links'][1])) [O]

print (linkedin (str (startups|['links'][i])))
except:

startups|['linkedin'] [i]="'https://www.linkedin.
com/company/'+str (startups|['startups'][i]) .replace ("'

','=").replace('.',"'"') .replace(',',"'") .replace
("(',"").replace(')','") .replace('&',"'") .replace
('/',"").replace('\'',"'") .replace('\"',"") .replace
('!'",'") .replace('?',"'") .replace(':"',"'"') .replace
(';',"") .replace('+',"'") .replace('="',"'") .replace ('@

v,vv)

3.2 Number of employees

Methodology:

- Setting up ChromeDriver: The path to the ChromeDriver is passed in ex-
plicitly using a variable, as well as an option to run the browser in headless
mode for CPU and performance reasons. The Chrome driver instance is cre-
ated using webdriver.Chrome().

- Logging into LinkedIn: The login page of LinkedIn is accessed using driver.get().
The username and password input fields are located using WebDriverWait()
and the respective element locators. The username and password are entered
using the send_keys() method. Finally, the login button is located and clicked.

- Scraping Data from LinkedIn: The code iterates over the LinkedIn profiles

6

g w N

o © 9 o

10
11
12
13

14

15

16

17

18

Data-Driven Methods for PE and VC

of startups stored in the ’linkedin’ column of the ’startups’ DataFrame. For
each profile, the *about’ page is accessed using driver.get(). The page source
is then parsed using BeautifulSoup to extract specific information like the
number of employees, founding date, keywords, and industry.

- Storing Data in DataFrame: The extracted information is stored in the ’em-
ployees’, *founding_date’, "key_words’, and ’industry’ columns of the ’star-
tups’ DataFrame. If any of the extracted information is not available, the cor-
responding DataFrame cell is assigned a None value.

- Quitting the Driver: After scraping data from all the LinkedIn profiles, the
driver is closed using driver.quit().

Remark 3. This methodology outlines the steps involved in scraping LinkedIn
data using Selenium and BeautifulSoup, specifically targeting the *about’

page of startup profiles. Additional preprocessing or analysis steps can be

performed on the extracted data as per the project requirements.

Remark 4. I used my linkedin information that I deleted in the following
code.

Create a Chrome driver instance

chrome_options = Options ()
chrome_options.add_argument ("--headless")
chrome_options.add_argument ("--path-to-extension=C:/

Users/Neirouz/AppData/Local/Google/Chrome/User Data/
Default/Extensions/fmkadmapgofadopl jbjfkapdkoienihi
/4.10.1_0")

driver = webdriver.Chrome (options=chrome_options)

Open the login page
driver.get ("https://www.linkedin.com/login")

Find the username and password input fields

username_input = WebDriverWait (driver, 10).until (EC.
presence_of_element_located((By.ID, "username")))

password_input = WebDriverWait (driver, 10) .until (EC.
presence_of_element_located((By.ID, "password")))

Enter the username and password

username_input.send_keys ("neirouz.bouchairalRecl2l.ec-
lyon.fr")

password_input.send_keys ("*xkkxkkkkkkkkkkx")

7

30
31

32
33
34
35
36
37
38
39

Neirouz Bouchaira for Fortino Capital, 2023

Find and click the login button

login_button = WebDriverWait (driver, 10).until (EC.
element_to_be_clickable ((By.XPATH, "//button[@type='
submit']1")))

login_button.click ()

for i in range(0,len(startups)):
link=startups['linkedin'] [i]
driver.get (str (link)+"/about")

print (i)
soup = BeautifulSoup (driver.page_source, 'lxml')
emp=soup.find('dd', {'class': "t-black--light text-

body-medium mbl"})

#save the number of employees in the dataframe in
the column employees
if emp!=None:
startups|['employees'] [i]=emp. text
else:
startups|['employees'] [i]=emp

driver.quit ()

4. Categorization

Since a training set is not available, an approach is adopted where a code
is written for each category of interest. Clustering techniques are then applied
to group companies based on their descriptions. This allows for unsupervised
categorization, where companies with similar descriptions are clustered to-
gether. The resulting clusters provide a way to identify patterns and simi-
larities among companies without relying on a predefined training set. This
approach offers flexibility in categorization and can uncover hidden relation-
ships within the data.

vectorizer = TfidfVectorizer (stop_words='english')

4.1 Pre-processing

The first step is to convert the preprocessed descriptions of the compa-
nies into numerical vectors. This is achieved by using TF-IDF. These vector
representations capture the semantic meaning of the documents.

W 0 g oUW N R

e el
w N = o

Data-Driven Methods for PE and VC

4.2 Clustering

The K-means clustering algorithm is applied to group the startups based
on their vector representations. The algorithm identifies clusters of similar
startups without any predefined categories. The number of clusters can be
specified manually or determined automatically by the algorithm.

Remark 5. Only the categories

1. Software / IT services / No software or IT services

2. B2B / B2C / Other

3. Al-core / Al-enhanced / Non-Al

are kept for a simplification of the work. As a consequence, we have 27 clus-
ters.

Perform clustering

num_clusters = 27 # Number of clusters to create
kmeans = KMeans (n_clusters=num_clusters)
kmeans.fit (X)

Assign categories to the clusters
cluster_labels = kmeans.labels_

Assign categories to individual companies
data['category'] = cluster_labels

Save the categorized data to a new CSV file
data.to_csv('categorized_companies.csv', index=False)

4.3 Supervised learning

Another method for categorizing the companies is through supervised
learning using a pre-trained NLP algorithm, which can be further trained with
the available database. The process involves manually categorizing a subset
of companies, typically around 50, and using this labeled data to train the
spaCy model to categorize the remaining companies automatically.

To train the spaCy model, the training data is prepared by associating each
company’s description with the corresponding category and subcategory la-
bels. The categories and subcategories defined earlier are used for this pur-
pose. The training data is then shuffled to ensure randomness during training.
The training process entails updating the pre-trained spaCy model with the
prepared training data. The text classification pipeline within the model is re-
trieved, and the defined categories are added as labels to the pipeline. The
model is trained for a specific number of epochs, with each epoch going

9

© W uJ U™ W N R

s sl
w N = o

14

15
16

17

18
19
20
21
22
23
24

25
26

27
28
29
30

Neirouz Bouchaira for Fortino Capital, 2023

through batches of the training data. The optimizer is employed to update
the model parameters based on the calculated losses.

Once the model is trained, it can be tested using example texts. The trained
model is applied to sample texts, and category scores are obtained. By apply-
ing a threshold (e.g., 0.5), the predicted categories are determined based on
the scores. Categories with scores above the threshold are considered as the
final predicted categories for the texts.

import spacy

Load the pre-trained spaCy English model
nlp = spacy.load ("en_core_web_sm")

Example company descriptions

descriptions = [
#descriptions of the companies

Define the categories

categories = ({
"nature_of_company": ["Software", "IT services", "No
software", "No IT services"],
"hardware": ["Hardware", "Hardware-—-enabled", "No
hardware"],
"business": ["B2B", "B2C", "Other"],
"industry": ["Vertical software", "Horizontal
software", "Unknown"],
"ai": ["AI-core", "AI-enhanced", "Non-AI", "Unknown

ll]

Prepare training data

train_data = []

for description in descriptions:
doc = nlp(description.lower())
category_labels = {category: 0 for category in
categories}

Check for keywords in the description and assign
labels
for category, keywords in categories.items():
for keyword in keywords:
if keyword.lower () in description:
category_labels[category] = 1

10

31
32

33

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Data-Driven Methods for PE and VC

train_data.append ((doc.text, {"cats":
category_labels}))

Load the existing model or create a new blank model
if "textcat" not in nlp.pipe_names:

textcat = nlp.create_pipe ("textcat")

nlp.add_pipe (textcat, last=True)
else:

textcat = nlp.get_pipe ("textcat")

Add labels to the text classification pipeline
for category in categories:
textcat.add_label (category)

Train the model with the prepared training data
nlp.begin_training ()

for _ in range(10): # Number of iterations
losses = {}
for text, annotations in train_data:
nlp.update ([text], [annotations], losses=losses)

print (losses)

Save the updated model
nlp.to_disk ("trained_model")

5. Suggestions

e Data Sources: To gather comprehensive information about startups,
consider expanding beyond LinkedIn and exploring additional sources
such as Crunchbase, AngelList, or industry directories.

* Feature Engineering: Extract and derive relevant features from the
available data. Besides basic information like number of employees and
founding date, calculate funding amounts, identify key technologies or
products, and analyze the geographical distribution of startups.

» Sentiment Analysis: Perform sentiment analysis on company descrip-
tions or news articles to understand the overall sentiment and public
perception surrounding startups and industries.

* Topic Modeling: Apply techniques like Latent Dirichlet Allocation
(LDA) or Non-Negative Matrix Factorization (NMF) to identify key

11

12

Neirouz Bouchaira for Fortino Capital, 2023

topics or themes in startup descriptions. This can provide deeper in-
sights into areas of focus or expertise.

Network Analysis: Explore relationships between startups, investors,
founders, or industry influencers. Analyze the network structure to un-
cover patterns, influential players, or potential collaboration opportuni-
ties.

Benchmarking: Benchmark startups against industry standards or key
performance indicators (KPIs). Evaluate performance relative to peers
and gain insights into the competitive landscape.

	1 Introduction
	1.1 Benefits for Fortino Capital

	2 Data Extraction
	2.1 Libraries
	2.2 Methodology of Extraction
	2.3 Pre-processing
	2.4 Results

	3 Data Enrichment
	3.1 Linkedin link
	3.2 Number of employees

	4 Categorization
	4.1 Pre-processing
	4.2 Clustering
	4.3 Supervised learning

	5 Suggestions

