import numpy as np from read_cifar import read_cifar, split_dataset import matplotlib.pyplot as plt def distance_matrix(matrix_a: np.ndarray, matrix_b: np.ndarray): sum_squares_1 = np.sum(matrix_a**2, axis = 1, keepdims = True) sum_squares_2 = np.sum(matrix_b**2, axis = 1, keepdims = True) dot_product = np.dot(matrix_a, matrix_b.T) dists = np.sqrt(sum_squares_1 - 2*dot_product + sum_squares_2.T) return dists def knn_predict(dists: np.ndarray, labels_train: np.ndarray, k:int): labels_predicts = np.zeros(np.size(dists, 0)) for i in range(np.size(labels_predicts, 0)): #On extrait les indices des k valeurs plus petites (des k plus proches voisins) k_neighbors_index = np.argmin(dists[i, :], np.sort(dists[i, :])[:k]) #On compte la classe la plus présente parmi les k voisins les plus proches labels_k_neighbors = labels_train[k_neighbors_index] #On compte le nombre d'occurence des classes parmis les k _, count = np.unique(labels_k_neighbors, return_counts=True) #On associe à la prédiction la classe la plus presente parmis les k labels_predicts[i] = labels_k_neighbors[np.argmax(count)] return labels_predicts def evaluate_knn(data_train:np.ndarray, labels_train: np.ndarray, data_test:np.ndarray, labels_test:np.ndarray, k:int): dists = distance_matrix(data_test, data_train) labels_predicts = knn_predict(dists, labels_train, k) #calcul de l'accuracy accuracy = 0 for i in range(np.size(labels_predicts, 0)): if abs(labels_predicts[i]-labels_test[i])<10**(-7): accuracy += 1 accuracy /= np.size(labels_predicts, 0) return accuracy def plot_knn(data_train:np.ndarray, labels_train: np.ndarray, data_test:np.ndarray, labels_test:np.ndarray, n: int): accuracy_vector = np.zeros(n) for k in range(1, n+1): accuracy_vector[k] = evaluate_knn(data_train, labels_train, data_test, labels_test) plt.plot(accuracy_vector) plt.show() return if __name__ == "__main__": data, labels = read_cifar() data_train, labels_train, data_test, labels_test = split_dataset(data, labels, 0.8) k = 5 #Nombre de voisins accuracy = evaluate_knn(data_train, labels_train, data_test, labels_test, k)