From cfaf9737cbb14ee2cad40813abcdf529ce3895ca Mon Sep 17 00:00:00 2001 From: Malo Bourry <malo.bourry@ecl20.ec-lyon.fr> Date: Fri, 20 Oct 2023 22:09:51 +0200 Subject: [PATCH] Partie knn finie --- __pycache__/read_cifar.cpython-38.pyc | Bin 0 -> 1871 bytes knn.py | 42 +++++++++++++++++++++++--- read_cifar.py | 6 ++-- 3 files changed, 41 insertions(+), 7 deletions(-) create mode 100644 __pycache__/read_cifar.cpython-38.pyc diff --git a/__pycache__/read_cifar.cpython-38.pyc b/__pycache__/read_cifar.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d01a55faa65f9a5c3e47242daef27b820c55d340 GIT binary patch literal 1871 zcmWIL<>g{vU|=Y_W0Wew!NBks#6iX^3=9ko3=9m#c?=8;DGVu$ISf&ZV45k4DU~^e zX%1rwa|%lfOB72AYYJNnLlkQ&V-_12v!}4nVNT&l;cQ`v;z;F8;mT$z%1UKzW{6>m z;)>!<<w)g9<xb&lW{zQr;)&vo;)~)>6-eP}W@KbYVGL%_<b4TpiJvCpE#88}l8pHL zwD_dNlH`nJMvyoZvobI+a56A3ID;G+!N9;!!jQsP!ywL(!qm*vFH*}`!kEQW19oID zQ!P_CgDFEGLl8p*LkV*hOAS*Bt0aiUn!?u0RLcw%V+V_|fyG#Am}^+ln1UHJIsAS} zrX-dm>L+KWB^K!#8t8&ulUl4>P^o{5sVM0dYf@!NYVk_OTO6r*$@wXndFh`);Rn*B z$#{!3rKGYT^)nj-14B+?Qff}ICi^Xx{DRcHTWkfH$=Nxnw^(xW6H{(6<rUmwO)M%( zth~jZmXn`YVr+DaH8Zco%tVv5h>3xL;TBU`{w<c2%;b_=EFiOQu|dpR$xtN5z`*dU zBiSk@v^ce>IL0?ICqKp|Ke;qFHLs*N#yK^wq$n{bHO951G$pk-#yP(fq{!c;IL0%t zq$oe7G`S=*KTjdCRKX=RwLrlqHL)l!GcP?RGdD3kH9k2fvA8%hEi*Y0qzWRaizZl< znwSy~4j{dP%3A^mE+pze!BGrOaf||t609POB8){63=9m((AWf191IK$AT{79m1AUJ zNMWpHNN1>JOlPQNDgi|-qYFc9L@jd-LkhDvLkVLIa|(+%Lo=f|LoG`QQw>WBD>&*| z!O_W@!j{6`%T&vTi254F1*|n}DIAgv3mF+1YM8)0P6)41q=q4dOPryWy@aWTof4Bu z*cPzYFqW`oaV%u2Wd!q>O4zbE7c$i{m9Q<~0?94lu3=2!UI^lYSS$;fL>Nlgz@j`0 znbMfRGF&wfc_z3@rWCMBkP1*f@hf6xU|@I&BC2@wK}iA<+VL+zIi&~`=tZD>QUpqS zMWEm<0)=lCw|+@#aS23i5lHDvQ1a5`xy4$Pn3tY<i@CU@sEC_^fuV>8MDT*r9$R8T zL26z~5g$l|A0z@vq=sfif?!@zYH>zlLFz4*;>@a4O^#cfDVas7$tC$kl|>>TJ)$60 zjG0kf;5-e^LPbI#31J2XhA4ipD3Y^4DH@!ti^M@1xezG|WO=a?D8(?cFtISQF!C^p zF!C@;F!3=8Fmr%djC@d7q{6_!pvjEn0M_DyoXnDBP>_L40AWy&u)|7{1>lk-i*W%{ z3Bv+VLStOWw2%>$<Z75D8ERQ-7{N4a4ND4R2@66^4U-5%Gh-{0BttD*4J%xZF@<p< z6OtTz4GX5O6b7(9jv7{|9Fi`m9A^z%4SNko4QColFoPzOA2`-DS;4V!i>)XzFC{<s z7I#5vQEq7oIF}YFf<lcsGp|IG3*r4DRZv*-6=#&DrRAii#AoKEq*g@n!ug;i6vYqc zLW-ALTp;22lA^@SyjwgFF({7{B9mHNa*G=#ky=~=i8pWzf+LR?9O&^N#l@*5>Yx%^ z02K0!B8(i29E>s$$W){Yax+JKd~RZ9UVMD|teGJ2(!NLv6pMnlSo2DA3o5~Wh9pc` zQ1Ss4Bj9+x#h#Y}DLz@j#V6djyu{qp_;{pH&;;qz0ukCELI-3mYe7+F9<s|3&gZbn g%}*)KNwouIm12;~IT$&Z__#SF#CSLuxfn$l0qtwa*#H0l literal 0 HcmV?d00001 diff --git a/knn.py b/knn.py index e499927..b39e134 100644 --- a/knn.py +++ b/knn.py @@ -1,4 +1,6 @@ import numpy as np +from read_cifar import read_cifar, split_dataset +import matplotlib.pyplot as plt def distance_matrix(matrix_a: np.ndarray, matrix_b: np.ndarray): sum_squares_1 = np.sum(matrix_a**2, axis = 1, keepdims = True) @@ -10,11 +12,43 @@ def distance_matrix(matrix_a: np.ndarray, matrix_b: np.ndarray): return dists def knn_predict(dists: np.ndarray, labels_train: np.ndarray, k:int): - return 0 + labels_predicts = np.zeros(np.size(dist, 0)) + for i in range(np.size(labels_predicts, 0)): + #On extrait les indices des k valeurs plus petites (des k plus proches voisins) + k_neighbors_index = np.argmin(dists[i, :], np.sort(dists[i, :])[:k]) + #On compte la classe la plus présente parmi les k voisins les plus proches + labels_k_neighbors = labels_train[k_neighbors_index] + #On compte le nombre d'occurence des classes parmis les k + _, count = np.unique(labels_k_neighbors, return_counts=True) + #On associe à la prédiction la classe la plus presente parmis les k + labels_predicts[i] = labels_k_neighbors[np.argmax(count)] + return labels_predicts + +def evaluate_knn(data_train:np.ndarray, labels_train: np.ndarray, data_test:np.ndarray, labels_test:np.ndarray, k:int): + dists = distance_matrix(data_test, data_train) + labels_predicts = knn_predict(dists, labels_train, k) + #calcul de l'accuracy + accuracy = 0 + for i in range(np.size(labels_predicts, 0)): + if abs(labels_predicts[i]-labels_test[i])<10**(-7): + accuracy += 1 + accuracy /= np.size(labels_predicts, 0) + return accuracy + +def plot_knn(data_train:np.ndarray, labels_train: np.ndarray, data_test:np.ndarray, labels_test:np.ndarray, n: int): + accuracy_vector = np.zeros(n) + for k in range(1, n+1): + accuracy_vector[k] = evaluate_knn(data_train, labels_train, data_test, labels_test) + plt.plot(accuracy_vector) + plt.show() + return + + if __name__ == "__main__": - A = np.ones((3,3)) - B = np.ones((3,3))*2 - dist = distance_matrix(A, B) \ No newline at end of file + data, labels = read_cifar() + data_train, labels_train, data_test, labels_test = split_dataset(data, labels, 0.8) + k = 5 #Nombre de voisins + accuracy = evaluate_knn(data_train, labels_train, data_test, labels_test, k) \ No newline at end of file diff --git a/read_cifar.py b/read_cifar.py index 5d1e780..df7393f 100644 --- a/read_cifar.py +++ b/read_cifar.py @@ -31,9 +31,9 @@ def read_cifar(): dict = pickle.load(fo, encoding='bytes') data.append(dict[b'data']) labels.append(dict[b'labels']) - data = np.array(data, np.float32) + data = np.array(data, np.float16) labels = np.array(labels, np.int64) - return np.reshape(data, (np.size(data, 0)*np.size(data, 1), np.size(data, 2))), np.reshape(labels, (np.size(labels, 0)*np.size(labels, 1), 1)) + return np.reshape(data, (np.size(data, 0)*np.size(data, 1), np.size(data, 2))), np.reshape(labels, (np.size(labels, 0)*np.size(labels, 1))) def split_dataset(data: np.ndarray, labels: np.ndarray, split: float): @@ -50,5 +50,5 @@ def split_dataset(data: np.ndarray, labels: np.ndarray, split: float): if __name__ == "__main__": data, labels = read_cifar() - a, b, c, d = split_dataset(data, labels, 0.8) + data_train, labels_train, data_test, labels_test = split_dataset(data, labels, 0.8) print(1) -- GitLab