From caa446757e367dacba9de0de2348a09dc9110ffe Mon Sep 17 00:00:00 2001
From: Benyahia Mohammed Oussama <mohammed.benyahia@etu.ec-lyon.fr>
Date: Sat, 22 Feb 2025 13:17:32 +0000
Subject: [PATCH] Replace a2c_sb3_panda_reach.ipynb

---
 a2c_sb3_panda_reach.ipynb | 1194 ++++++++++++++-----------------------
 1 file changed, 433 insertions(+), 761 deletions(-)

diff --git a/a2c_sb3_panda_reach.ipynb b/a2c_sb3_panda_reach.ipynb
index 08a6af3..9a6bbcf 100644
--- a/a2c_sb3_panda_reach.ipynb
+++ b/a2c_sb3_panda_reach.ipynb
@@ -14,25 +14,29 @@
     },
     "widgets": {
       "application/vnd.jupyter.widget-state+json": {
-        "3f7b5667346b4ab38b568d07b2390a1d": {
+        "6d61991108934e0d8e819af335834917": {
           "model_module": "@jupyter-widgets/controls",
-          "model_name": "VBoxModel",
+          "model_name": "HBoxModel",
           "model_module_version": "1.5.0",
           "state": {
             "_dom_classes": [],
             "_model_module": "@jupyter-widgets/controls",
             "_model_module_version": "1.5.0",
-            "_model_name": "VBoxModel",
+            "_model_name": "HBoxModel",
             "_view_count": null,
             "_view_module": "@jupyter-widgets/controls",
             "_view_module_version": "1.5.0",
-            "_view_name": "VBoxView",
+            "_view_name": "HBoxView",
             "box_style": "",
-            "children": [],
-            "layout": "IPY_MODEL_0f51145e9c15467989d030b9e1b947f4"
+            "children": [
+              "IPY_MODEL_ff4ff90b3269452f925a9cc7bf654f79",
+              "IPY_MODEL_1c17dd22b2cf4dd4abdc39f99879c2f7",
+              "IPY_MODEL_762549d8d25247c58c464ef62e9aab8e"
+            ],
+            "layout": "IPY_MODEL_c7e7e1dc8e6f4f8b8ea847af948d2f47"
           }
         },
-        "3ced1c1a58d84a3395078079d6370d60": {
+        "ff4ff90b3269452f925a9cc7bf654f79": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "HTMLModel",
           "model_module_version": "1.5.0",
@@ -47,80 +51,37 @@
             "_view_name": "HTMLView",
             "description": "",
             "description_tooltip": null,
-            "layout": "IPY_MODEL_103a4ca31ac2476dbc8a4ce460618f52",
-            "placeholder": "​",
-            "style": "IPY_MODEL_baf728550d404abc8659c10dafd44e1f",
-            "value": "<center> <img\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svg\nalt='Hugging Face'> <br> Copy a token from <a\nhref=\"https://huggingface.co/settings/tokens\" target=\"_blank\">your Hugging Face\ntokens page</a> and paste it below. <br> Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. </center>"
-          }
-        },
-        "ac2457e2f97f44f49b315770cf84223d": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "PasswordModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "PasswordModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "PasswordView",
-            "continuous_update": true,
-            "description": "Token:",
-            "description_tooltip": null,
-            "disabled": false,
-            "layout": "IPY_MODEL_26c823e5848b4d99ad328c0453aa44fa",
+            "layout": "IPY_MODEL_27d486263dce4f03b3f09aecd81db84c",
             "placeholder": "​",
-            "style": "IPY_MODEL_84cb0c3d062e40168125e45412f06057",
-            "value": ""
+            "style": "IPY_MODEL_6a37859f52b34c75b5134b191ba2713b",
+            "value": "Upload 2 LFS files: 100%"
           }
         },
-        "0c12d189ce1f49f7be9beaa01647cdda": {
+        "1c17dd22b2cf4dd4abdc39f99879c2f7": {
           "model_module": "@jupyter-widgets/controls",
-          "model_name": "CheckboxModel",
+          "model_name": "FloatProgressModel",
           "model_module_version": "1.5.0",
           "state": {
             "_dom_classes": [],
             "_model_module": "@jupyter-widgets/controls",
             "_model_module_version": "1.5.0",
-            "_model_name": "CheckboxModel",
+            "_model_name": "FloatProgressModel",
             "_view_count": null,
             "_view_module": "@jupyter-widgets/controls",
             "_view_module_version": "1.5.0",
-            "_view_name": "CheckboxView",
-            "description": "Add token as git credential?",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
             "description_tooltip": null,
-            "disabled": false,
-            "indent": true,
-            "layout": "IPY_MODEL_b429ff12b601414fadafc853267c33e1",
-            "style": "IPY_MODEL_a8bd317ec463499098dcbe269fd4f800",
-            "value": true
-          }
-        },
-        "a6b4a31524cd4be0b459878382c61a22": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ButtonModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ButtonModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ButtonView",
-            "button_style": "",
-            "description": "Login",
-            "disabled": false,
-            "icon": "",
-            "layout": "IPY_MODEL_077a5a18eaff42c49048bf08eab4d577",
-            "style": "IPY_MODEL_b6e728ed5dc941a785aaab6a8fe50a8c",
-            "tooltip": ""
+            "layout": "IPY_MODEL_f50ca1404d144bee822cde37c6f12269",
+            "max": 2,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_8da6812db4a6404da45478044e505f63",
+            "value": 2
           }
         },
-        "78f75b1f93c34f02a9cb5461e85f25d7": {
+        "762549d8d25247c58c464ef62e9aab8e": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "HTMLModel",
           "model_module_version": "1.5.0",
@@ -135,132 +96,13 @@
             "_view_name": "HTMLView",
             "description": "",
             "description_tooltip": null,
-            "layout": "IPY_MODEL_c3dd0417e5974de2b6e79f0fd819e6ef",
+            "layout": "IPY_MODEL_16894af4103f45d0b6bc2507e2b4a490",
             "placeholder": "​",
-            "style": "IPY_MODEL_109c69948eed41f49d0ed4cbb1ca1470",
-            "value": "\n<b>Pro Tip:</b> If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. </center>"
-          }
-        },
-        "0f51145e9c15467989d030b9e1b947f4": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": "center",
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": "flex",
-            "flex": null,
-            "flex_flow": "column",
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": "50%"
-          }
-        },
-        "103a4ca31ac2476dbc8a4ce460618f52": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "baf728550d404abc8659c10dafd44e1f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
+            "style": "IPY_MODEL_6972787de81d4e5ba9cb618c0a644869",
+            "value": " 2/2 [00:00&lt;00:00,  1.69it/s]"
           }
         },
-        "26c823e5848b4d99ad328c0453aa44fa": {
+        "c7e7e1dc8e6f4f8b8ea847af948d2f47": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -312,22 +154,7 @@
             "width": null
           }
         },
-        "84cb0c3d062e40168125e45412f06057": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "b429ff12b601414fadafc853267c33e1": {
+        "27d486263dce4f03b3f09aecd81db84c": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -379,7 +206,7 @@
             "width": null
           }
         },
-        "a8bd317ec463499098dcbe269fd4f800": {
+        "6a37859f52b34c75b5134b191ba2713b": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "DescriptionStyleModel",
           "model_module_version": "1.5.0",
@@ -394,75 +221,7 @@
             "description_width": ""
           }
         },
-        "077a5a18eaff42c49048bf08eab4d577": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "b6e728ed5dc941a785aaab6a8fe50a8c": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ButtonStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ButtonStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "button_color": null,
-            "font_weight": ""
-          }
-        },
-        "c3dd0417e5974de2b6e79f0fd819e6ef": {
+        "f50ca1404d144bee822cde37c6f12269": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -514,43 +273,23 @@
             "width": null
           }
         },
-        "109c69948eed41f49d0ed4cbb1ca1470": {
+        "8da6812db4a6404da45478044e505f63": {
           "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
+          "model_name": "ProgressStyleModel",
           "model_module_version": "1.5.0",
           "state": {
             "_model_module": "@jupyter-widgets/controls",
             "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
+            "_model_name": "ProgressStyleModel",
             "_view_count": null,
             "_view_module": "@jupyter-widgets/base",
             "_view_module_version": "1.2.0",
             "_view_name": "StyleView",
+            "bar_color": null,
             "description_width": ""
           }
         },
-        "2413865780aa4335a8b746e54a64e6c0": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "LabelModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "LabelModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "LabelView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_da8ef54ed8bf4a938902ad3229687248",
-            "placeholder": "​",
-            "style": "IPY_MODEL_0e3731e78b6944d998978453792cbbef",
-            "value": "Connecting..."
-          }
-        },
-        "da8ef54ed8bf4a938902ad3229687248": {
+        "16894af4103f45d0b6bc2507e2b4a490": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -602,7 +341,7 @@
             "width": null
           }
         },
-        "0e3731e78b6944d998978453792cbbef": {
+        "6972787de81d4e5ba9cb618c0a644869": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "DescriptionStyleModel",
           "model_module_version": "1.5.0",
@@ -617,7 +356,7 @@
             "description_width": ""
           }
         },
-        "6d61991108934e0d8e819af335834917": {
+        "a8e9b502235f41d5a7ad8123930de1f8": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "HBoxModel",
           "model_module_version": "1.5.0",
@@ -632,14 +371,14 @@
             "_view_name": "HBoxView",
             "box_style": "",
             "children": [
-              "IPY_MODEL_ff4ff90b3269452f925a9cc7bf654f79",
-              "IPY_MODEL_1c17dd22b2cf4dd4abdc39f99879c2f7",
-              "IPY_MODEL_762549d8d25247c58c464ef62e9aab8e"
+              "IPY_MODEL_36a12edbe1dc46698281df358da6efcb",
+              "IPY_MODEL_4e47f601850b491e9689eda4790a1f1e",
+              "IPY_MODEL_dd86d2da096840ed9d8d00d78a5bfafb"
             ],
-            "layout": "IPY_MODEL_c7e7e1dc8e6f4f8b8ea847af948d2f47"
+            "layout": "IPY_MODEL_154f069b8e3c45d7a16048693c00bde3"
           }
         },
-        "ff4ff90b3269452f925a9cc7bf654f79": {
+        "36a12edbe1dc46698281df358da6efcb": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "HTMLModel",
           "model_module_version": "1.5.0",
@@ -654,13 +393,13 @@
             "_view_name": "HTMLView",
             "description": "",
             "description_tooltip": null,
-            "layout": "IPY_MODEL_27d486263dce4f03b3f09aecd81db84c",
+            "layout": "IPY_MODEL_712385168317430e8a0125e52cb27455",
             "placeholder": "​",
-            "style": "IPY_MODEL_6a37859f52b34c75b5134b191ba2713b",
-            "value": "Upload 2 LFS files: 100%"
+            "style": "IPY_MODEL_ab34233e20e34d128cc83782e132be61",
+            "value": "a2c-panda-reach.zip: 100%"
           }
         },
-        "1c17dd22b2cf4dd4abdc39f99879c2f7": {
+        "4e47f601850b491e9689eda4790a1f1e": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "FloatProgressModel",
           "model_module_version": "1.5.0",
@@ -676,15 +415,15 @@
             "bar_style": "success",
             "description": "",
             "description_tooltip": null,
-            "layout": "IPY_MODEL_f50ca1404d144bee822cde37c6f12269",
-            "max": 2,
+            "layout": "IPY_MODEL_4259df2b4ca145c090f57f39cb5abce8",
+            "max": 60133,
             "min": 0,
             "orientation": "horizontal",
-            "style": "IPY_MODEL_8da6812db4a6404da45478044e505f63",
-            "value": 2
+            "style": "IPY_MODEL_9be5aa817fbc4312971fbbb39718770f",
+            "value": 60133
           }
         },
-        "762549d8d25247c58c464ef62e9aab8e": {
+        "dd86d2da096840ed9d8d00d78a5bfafb": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "HTMLModel",
           "model_module_version": "1.5.0",
@@ -699,13 +438,13 @@
             "_view_name": "HTMLView",
             "description": "",
             "description_tooltip": null,
-            "layout": "IPY_MODEL_16894af4103f45d0b6bc2507e2b4a490",
+            "layout": "IPY_MODEL_712ec2aa1be0432e94a5d632a8351b52",
             "placeholder": "​",
-            "style": "IPY_MODEL_6972787de81d4e5ba9cb618c0a644869",
-            "value": " 2/2 [00:00&lt;00:00,  1.69it/s]"
+            "style": "IPY_MODEL_a35316a341f949b0b1085201a6cfb8f5",
+            "value": " 60.1k/60.1k [00:00&lt;00:00, 64.3kB/s]"
           }
         },
-        "c7e7e1dc8e6f4f8b8ea847af948d2f47": {
+        "154f069b8e3c45d7a16048693c00bde3": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -757,7 +496,7 @@
             "width": null
           }
         },
-        "27d486263dce4f03b3f09aecd81db84c": {
+        "712385168317430e8a0125e52cb27455": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -809,7 +548,7 @@
             "width": null
           }
         },
-        "6a37859f52b34c75b5134b191ba2713b": {
+        "ab34233e20e34d128cc83782e132be61": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "DescriptionStyleModel",
           "model_module_version": "1.5.0",
@@ -824,7 +563,7 @@
             "description_width": ""
           }
         },
-        "f50ca1404d144bee822cde37c6f12269": {
+        "4259df2b4ca145c090f57f39cb5abce8": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -876,7 +615,7 @@
             "width": null
           }
         },
-        "8da6812db4a6404da45478044e505f63": {
+        "9be5aa817fbc4312971fbbb39718770f": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "ProgressStyleModel",
           "model_module_version": "1.5.0",
@@ -892,7 +631,7 @@
             "description_width": ""
           }
         },
-        "16894af4103f45d0b6bc2507e2b4a490": {
+        "712ec2aa1be0432e94a5d632a8351b52": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -944,7 +683,7 @@
             "width": null
           }
         },
-        "6972787de81d4e5ba9cb618c0a644869": {
+        "a35316a341f949b0b1085201a6cfb8f5": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "DescriptionStyleModel",
           "model_module_version": "1.5.0",
@@ -959,7 +698,7 @@
             "description_width": ""
           }
         },
-        "a8e9b502235f41d5a7ad8123930de1f8": {
+        "6a2b7bf8d6a64bbb9c00eb45f7b08592": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "HBoxModel",
           "model_module_version": "1.5.0",
@@ -974,14 +713,14 @@
             "_view_name": "HBoxView",
             "box_style": "",
             "children": [
-              "IPY_MODEL_36a12edbe1dc46698281df358da6efcb",
-              "IPY_MODEL_4e47f601850b491e9689eda4790a1f1e",
-              "IPY_MODEL_dd86d2da096840ed9d8d00d78a5bfafb"
+              "IPY_MODEL_bc6d8aec4dc54a2291f82140d201fe1e",
+              "IPY_MODEL_c935b22d57734f5b8a162662943de244",
+              "IPY_MODEL_784c04403a5f43c49573f76e1c567709"
             ],
-            "layout": "IPY_MODEL_154f069b8e3c45d7a16048693c00bde3"
+            "layout": "IPY_MODEL_6d5890fc7bba4ffe8ec28ec5d199fd3d"
           }
         },
-        "36a12edbe1dc46698281df358da6efcb": {
+        "bc6d8aec4dc54a2291f82140d201fe1e": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "HTMLModel",
           "model_module_version": "1.5.0",
@@ -996,13 +735,13 @@
             "_view_name": "HTMLView",
             "description": "",
             "description_tooltip": null,
-            "layout": "IPY_MODEL_712385168317430e8a0125e52cb27455",
+            "layout": "IPY_MODEL_9b3b33372de845548d0c1b9828848a9e",
             "placeholder": "​",
-            "style": "IPY_MODEL_ab34233e20e34d128cc83782e132be61",
-            "value": "a2c-panda-reach.zip: 100%"
+            "style": "IPY_MODEL_35d6783f4a15490eac21294c34c7fcf1",
+            "value": "policy.pth: 100%"
           }
         },
-        "4e47f601850b491e9689eda4790a1f1e": {
+        "c935b22d57734f5b8a162662943de244": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "FloatProgressModel",
           "model_module_version": "1.5.0",
@@ -1018,15 +757,15 @@
             "bar_style": "success",
             "description": "",
             "description_tooltip": null,
-            "layout": "IPY_MODEL_4259df2b4ca145c090f57f39cb5abce8",
-            "max": 60133,
+            "layout": "IPY_MODEL_88888151497342c292fd94550148ee66",
+            "max": 47343,
             "min": 0,
             "orientation": "horizontal",
-            "style": "IPY_MODEL_9be5aa817fbc4312971fbbb39718770f",
-            "value": 60133
+            "style": "IPY_MODEL_9a5d6c9895514acb848ea6634b24525f",
+            "value": 47343
           }
         },
-        "dd86d2da096840ed9d8d00d78a5bfafb": {
+        "784c04403a5f43c49573f76e1c567709": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "HTMLModel",
           "model_module_version": "1.5.0",
@@ -1041,13 +780,13 @@
             "_view_name": "HTMLView",
             "description": "",
             "description_tooltip": null,
-            "layout": "IPY_MODEL_712ec2aa1be0432e94a5d632a8351b52",
+            "layout": "IPY_MODEL_03d6c1a89ef645baa33fbbc1507a30fe",
             "placeholder": "​",
-            "style": "IPY_MODEL_a35316a341f949b0b1085201a6cfb8f5",
-            "value": " 60.1k/60.1k [00:00&lt;00:00, 64.3kB/s]"
+            "style": "IPY_MODEL_2a1d341119bb42f5b53740cfe892e539",
+            "value": " 47.3k/47.3k [00:00&lt;00:00, 65.4kB/s]"
           }
         },
-        "154f069b8e3c45d7a16048693c00bde3": {
+        "6d5890fc7bba4ffe8ec28ec5d199fd3d": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -1099,7 +838,7 @@
             "width": null
           }
         },
-        "712385168317430e8a0125e52cb27455": {
+        "9b3b33372de845548d0c1b9828848a9e": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -1151,7 +890,7 @@
             "width": null
           }
         },
-        "ab34233e20e34d128cc83782e132be61": {
+        "35d6783f4a15490eac21294c34c7fcf1": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "DescriptionStyleModel",
           "model_module_version": "1.5.0",
@@ -1166,7 +905,7 @@
             "description_width": ""
           }
         },
-        "4259df2b4ca145c090f57f39cb5abce8": {
+        "88888151497342c292fd94550148ee66": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -1218,7 +957,7 @@
             "width": null
           }
         },
-        "9be5aa817fbc4312971fbbb39718770f": {
+        "9a5d6c9895514acb848ea6634b24525f": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "ProgressStyleModel",
           "model_module_version": "1.5.0",
@@ -1234,7 +973,7 @@
             "description_width": ""
           }
         },
-        "712ec2aa1be0432e94a5d632a8351b52": {
+        "03d6c1a89ef645baa33fbbc1507a30fe": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -1286,7 +1025,7 @@
             "width": null
           }
         },
-        "a35316a341f949b0b1085201a6cfb8f5": {
+        "2a1d341119bb42f5b53740cfe892e539": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "DescriptionStyleModel",
           "model_module_version": "1.5.0",
@@ -1301,74 +1040,113 @@
             "description_width": ""
           }
         },
-        "6a2b7bf8d6a64bbb9c00eb45f7b08592": {
+        "1f610cc84b7e4aab87bccbad40d5791c": {
           "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
+          "model_name": "VBoxModel",
           "model_module_version": "1.5.0",
           "state": {
             "_dom_classes": [],
             "_model_module": "@jupyter-widgets/controls",
             "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
+            "_model_name": "VBoxModel",
             "_view_count": null,
             "_view_module": "@jupyter-widgets/controls",
             "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
+            "_view_name": "VBoxView",
             "box_style": "",
-            "children": [
-              "IPY_MODEL_bc6d8aec4dc54a2291f82140d201fe1e",
-              "IPY_MODEL_c935b22d57734f5b8a162662943de244",
-              "IPY_MODEL_784c04403a5f43c49573f76e1c567709"
-            ],
-            "layout": "IPY_MODEL_6d5890fc7bba4ffe8ec28ec5d199fd3d"
+            "children": [],
+            "layout": "IPY_MODEL_79c6fd613984441793b8b5090f94929e"
+          }
+        },
+        "3ac1285d3225493f8c62ef66d3b559ab": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_8548847477624df588d0b1ed5d2d0c5a",
+            "placeholder": "​",
+            "style": "IPY_MODEL_a96107d6b7b34708a9e22a6f3a432d04",
+            "value": "<center> <img\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svg\nalt='Hugging Face'> <br> Copy a token from <a\nhref=\"https://huggingface.co/settings/tokens\" target=\"_blank\">your Hugging Face\ntokens page</a> and paste it below. <br> Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. </center>"
+          }
+        },
+        "8cd3f37563e54641872e5c0f7dd6c408": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "PasswordModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "PasswordModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "PasswordView",
+            "continuous_update": true,
+            "description": "Token:",
+            "description_tooltip": null,
+            "disabled": false,
+            "layout": "IPY_MODEL_3c0d5cf98b9f4afaa075c4d1ba9c3a3a",
+            "placeholder": "​",
+            "style": "IPY_MODEL_2a5ddb2ce1344b71add257bb11f0b7a9",
+            "value": ""
           }
         },
-        "bc6d8aec4dc54a2291f82140d201fe1e": {
+        "896772af72164a9689e16ea8011922c3": {
           "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
+          "model_name": "CheckboxModel",
           "model_module_version": "1.5.0",
           "state": {
             "_dom_classes": [],
             "_model_module": "@jupyter-widgets/controls",
             "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
+            "_model_name": "CheckboxModel",
             "_view_count": null,
             "_view_module": "@jupyter-widgets/controls",
             "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
+            "_view_name": "CheckboxView",
+            "description": "Add token as git credential?",
             "description_tooltip": null,
-            "layout": "IPY_MODEL_9b3b33372de845548d0c1b9828848a9e",
-            "placeholder": "​",
-            "style": "IPY_MODEL_35d6783f4a15490eac21294c34c7fcf1",
-            "value": "policy.pth: 100%"
+            "disabled": false,
+            "indent": true,
+            "layout": "IPY_MODEL_b17371a0c66745b9b598c2c75183df85",
+            "style": "IPY_MODEL_1b4167cd168e43aa952c68d640de55a4",
+            "value": true
           }
         },
-        "c935b22d57734f5b8a162662943de244": {
+        "7cc3c7f5f01e4a2b815caea16b30e511": {
           "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
+          "model_name": "ButtonModel",
           "model_module_version": "1.5.0",
           "state": {
             "_dom_classes": [],
             "_model_module": "@jupyter-widgets/controls",
             "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
+            "_model_name": "ButtonModel",
             "_view_count": null,
             "_view_module": "@jupyter-widgets/controls",
             "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_88888151497342c292fd94550148ee66",
-            "max": 47343,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_9a5d6c9895514acb848ea6634b24525f",
-            "value": 47343
+            "_view_name": "ButtonView",
+            "button_style": "",
+            "description": "Login",
+            "disabled": false,
+            "icon": "",
+            "layout": "IPY_MODEL_7c32798612ad464182a499ff8f06282b",
+            "style": "IPY_MODEL_23782e0b596849efa260ec439799bd5b",
+            "tooltip": ""
           }
         },
-        "784c04403a5f43c49573f76e1c567709": {
+        "9f022b9e709e4d38a469eb8c7880d87a": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "HTMLModel",
           "model_module_version": "1.5.0",
@@ -1383,13 +1161,13 @@
             "_view_name": "HTMLView",
             "description": "",
             "description_tooltip": null,
-            "layout": "IPY_MODEL_03d6c1a89ef645baa33fbbc1507a30fe",
+            "layout": "IPY_MODEL_b5f37fa4b289421da988fadee7f1ee8b",
             "placeholder": "​",
-            "style": "IPY_MODEL_2a1d341119bb42f5b53740cfe892e539",
-            "value": " 47.3k/47.3k [00:00&lt;00:00, 65.4kB/s]"
+            "style": "IPY_MODEL_be97cbd3440e4896ad520cb74a6fcbfe",
+            "value": "\n<b>Pro Tip:</b> If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. </center>"
           }
         },
-        "6d5890fc7bba4ffe8ec28ec5d199fd3d": {
+        "79c6fd613984441793b8b5090f94929e": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -1402,13 +1180,13 @@
             "_view_module_version": "1.2.0",
             "_view_name": "LayoutView",
             "align_content": null,
-            "align_items": null,
+            "align_items": "center",
             "align_self": null,
             "border": null,
             "bottom": null,
-            "display": null,
+            "display": "flex",
             "flex": null,
-            "flex_flow": null,
+            "flex_flow": "column",
             "grid_area": null,
             "grid_auto_columns": null,
             "grid_auto_flow": null,
@@ -1438,10 +1216,10 @@
             "right": null,
             "top": null,
             "visibility": null,
-            "width": null
+            "width": "50%"
           }
         },
-        "9b3b33372de845548d0c1b9828848a9e": {
+        "8548847477624df588d0b1ed5d2d0c5a": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -1493,7 +1271,7 @@
             "width": null
           }
         },
-        "35d6783f4a15490eac21294c34c7fcf1": {
+        "a96107d6b7b34708a9e22a6f3a432d04": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "DescriptionStyleModel",
           "model_module_version": "1.5.0",
@@ -1508,7 +1286,7 @@
             "description_width": ""
           }
         },
-        "88888151497342c292fd94550148ee66": {
+        "3c0d5cf98b9f4afaa075c4d1ba9c3a3a": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -1560,23 +1338,22 @@
             "width": null
           }
         },
-        "9a5d6c9895514acb848ea6634b24525f": {
+        "2a5ddb2ce1344b71add257bb11f0b7a9": {
           "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
+          "model_name": "DescriptionStyleModel",
           "model_module_version": "1.5.0",
           "state": {
             "_model_module": "@jupyter-widgets/controls",
             "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
+            "_model_name": "DescriptionStyleModel",
             "_view_count": null,
             "_view_module": "@jupyter-widgets/base",
             "_view_module_version": "1.2.0",
             "_view_name": "StyleView",
-            "bar_color": null,
             "description_width": ""
           }
         },
-        "03d6c1a89ef645baa33fbbc1507a30fe": {
+        "b17371a0c66745b9b598c2c75183df85": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -1628,7 +1405,7 @@
             "width": null
           }
         },
-        "2a1d341119bb42f5b53740cfe892e539": {
+        "1b4167cd168e43aa952c68d640de55a4": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "DescriptionStyleModel",
           "model_module_version": "1.5.0",
@@ -1643,147 +1420,7 @@
             "description_width": ""
           }
         },
-        "9e3d5f4cb5684ada9262f30d087c8f67": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_4236f5e1b7e940b08b9ac502730a351d",
-              "IPY_MODEL_0deaab8cfb5447c79614291adafd13f7",
-              "IPY_MODEL_3b68a95ffece4b60abf1514e739f53c1"
-            ],
-            "layout": "IPY_MODEL_ac9a9cf4d04a4597a9b0fe7101ca1719"
-          }
-        },
-        "4236f5e1b7e940b08b9ac502730a351d": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_e343f4348366432bad1cebd87c55fd9a",
-            "placeholder": "​",
-            "style": "IPY_MODEL_82457bbcee434f7493784ea210e4f2d3",
-            "value": "a2c-panda-reach.zip: 100%"
-          }
-        },
-        "0deaab8cfb5447c79614291adafd13f7": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_f452220947814f8aa05e383e998e5f73",
-            "max": 60133,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_482116316836486199f005ace5fdc5db",
-            "value": 60133
-          }
-        },
-        "3b68a95ffece4b60abf1514e739f53c1": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_532fc081a7254e199ecf277fd521b8ff",
-            "placeholder": "​",
-            "style": "IPY_MODEL_7aa87a6fa40842fba45eacfb5a0faa60",
-            "value": " 60.1k/60.1k [00:00&lt;00:00, 1.18MB/s]"
-          }
-        },
-        "ac9a9cf4d04a4597a9b0fe7101ca1719": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "e343f4348366432bad1cebd87c55fd9a": {
+        "7c32798612ad464182a499ff8f06282b": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -1835,22 +1472,23 @@
             "width": null
           }
         },
-        "82457bbcee434f7493784ea210e4f2d3": {
+        "23782e0b596849efa260ec439799bd5b": {
           "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
+          "model_name": "ButtonStyleModel",
           "model_module_version": "1.5.0",
           "state": {
             "_model_module": "@jupyter-widgets/controls",
             "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
+            "_model_name": "ButtonStyleModel",
             "_view_count": null,
             "_view_module": "@jupyter-widgets/base",
             "_view_module_version": "1.2.0",
             "_view_name": "StyleView",
-            "description_width": ""
+            "button_color": null,
+            "font_weight": ""
           }
         },
-        "f452220947814f8aa05e383e998e5f73": {
+        "b5f37fa4b289421da988fadee7f1ee8b": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -1902,23 +1540,43 @@
             "width": null
           }
         },
-        "482116316836486199f005ace5fdc5db": {
+        "be97cbd3440e4896ad520cb74a6fcbfe": {
           "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
+          "model_name": "DescriptionStyleModel",
           "model_module_version": "1.5.0",
           "state": {
             "_model_module": "@jupyter-widgets/controls",
             "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
+            "_model_name": "DescriptionStyleModel",
             "_view_count": null,
             "_view_module": "@jupyter-widgets/base",
             "_view_module_version": "1.2.0",
             "_view_name": "StyleView",
-            "bar_color": null,
             "description_width": ""
           }
         },
-        "532fc081a7254e199ecf277fd521b8ff": {
+        "4986e05ae42e4a9c9a5e48a78eb77f99": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "LabelModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "LabelModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "LabelView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_e5787040d1bf465f88c4fc52c5ae4a0d",
+            "placeholder": "​",
+            "style": "IPY_MODEL_4b7ae62211854ae198b04f1f198f9382",
+            "value": "Connecting..."
+          }
+        },
+        "e5787040d1bf465f88c4fc52c5ae4a0d": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
@@ -1970,7 +1628,7 @@
             "width": null
           }
         },
-        "7aa87a6fa40842fba45eacfb5a0faa60": {
+        "4b7ae62211854ae198b04f1f198f9382": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "DescriptionStyleModel",
           "model_module_version": "1.5.0",
@@ -1997,7 +1655,7 @@
           "base_uri": "https://localhost:8080/"
         },
         "id": "2nCK-hBUz1ho",
-        "outputId": "b49826cc-6f6b-4dcf-81ce-3a6dc604e417"
+        "outputId": "6cb32fb5-29a2-47c9-a933-8c24ed33ae1a"
       },
       "outputs": [
         {
@@ -2029,7 +1687,7 @@
             "Requirement already satisfied: pydantic<3,>=2.6 in /usr/local/lib/python3.11/dist-packages (from wandb) (2.10.6)\n",
             "Requirement already satisfied: pyyaml in /usr/local/lib/python3.11/dist-packages (from wandb) (6.0.2)\n",
             "Requirement already satisfied: requests<3,>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from wandb) (2.32.3)\n",
-            "Requirement already satisfied: sentry-sdk>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from wandb) (2.20.0)\n",
+            "Requirement already satisfied: sentry-sdk>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from wandb) (2.22.0)\n",
             "Requirement already satisfied: setproctitle in /usr/local/lib/python3.11/dist-packages (from wandb) (1.3.4)\n",
             "Requirement already satisfied: setuptools in /usr/local/lib/python3.11/dist-packages (from wandb) (75.1.0)\n",
             "Requirement already satisfied: typing-extensions<5,>=4.4 in /usr/local/lib/python3.11/dist-packages (from wandb) (4.12.2)\n",
@@ -2077,7 +1735,7 @@
             "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch<3.0,>=2.3->stable-baselines3) (1.3.0)\n",
             "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3) (1.3.1)\n",
             "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3) (0.12.1)\n",
-            "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3) (4.55.8)\n",
+            "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3) (4.56.0)\n",
             "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3) (1.4.8)\n",
             "Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3) (11.1.0)\n",
             "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->stable-baselines3) (3.2.1)\n",
@@ -2088,30 +1746,30 @@
             "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch<3.0,>=2.3->stable-baselines3) (3.0.2)\n",
             "Downloading panda_gym-3.0.7-py3-none-any.whl (23 kB)\n",
             "Downloading stable_baselines3-2.5.0-py3-none-any.whl (183 kB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m183.9/183.9 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m183.9/183.9 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hDownloading huggingface_sb3-3.0-py3-none-any.whl (9.7 kB)\n",
             "Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m51.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m86.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m39.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m76.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m23.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m39.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m64.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m106.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hDownloading pybullet-3.2.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (103.2 MB)\n",
-            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m103.2/103.2 MB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m103.2/103.2 MB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
             "\u001b[?25hInstalling collected packages: pybullet, nvidia-nvjitlink-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, panda-gym, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, huggingface_sb3, stable-baselines3\n",
             "  Attempting uninstall: nvidia-nvjitlink-cu12\n",
             "    Found existing installation: nvidia-nvjitlink-cu12 12.5.82\n",
@@ -2182,7 +1840,7 @@
           "base_uri": "https://localhost:8080/"
         },
         "id": "NiIjvtLfasLj",
-        "outputId": "7e04ad74-0ebb-491e-b6ca-e08e18eb35c7"
+        "outputId": "aecedc70-ab82-42c0-d0b6-43050f23cf53"
       },
       "execution_count": 2,
       "outputs": [
@@ -2190,9 +1848,11 @@
           "output_type": "stream",
           "name": "stdout",
           "text": [
-            "\u001b[34m\u001b[1mwandb\u001b[0m: Logging into wandb.ai. (Learn how to deploy a W&B server locally: https://wandb.me/wandb-server)\n",
+            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m20.8/20.8 MB\u001b[0m \u001b[31m66.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25h\u001b[34m\u001b[1mwandb\u001b[0m: Logging into wandb.ai. (Learn how to deploy a W&B server locally: https://wandb.me/wandb-server)\n",
             "\u001b[34m\u001b[1mwandb\u001b[0m: You can find your API key in your browser here: https://wandb.ai/authorize\n",
             "\u001b[34m\u001b[1mwandb\u001b[0m: Paste an API key from your profile and hit enter, or press ctrl+c to quit: \n",
+            "\u001b[34m\u001b[1mwandb\u001b[0m: No netrc file found, creating one.\n",
             "\u001b[34m\u001b[1mwandb\u001b[0m: Appending key for api.wandb.ai to your netrc file: /root/.netrc\n",
             "\u001b[34m\u001b[1mwandb\u001b[0m: W&B API key is configured. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
           ]
@@ -2210,7 +1870,7 @@
           "base_uri": "https://localhost:8080/"
         },
         "id": "c2HWR0VVay1J",
-        "outputId": "45819f92-3c99-4db3-b43f-0d079b8ff89d"
+        "outputId": "fa32ba9f-d6c6-4c5a-f2ac-dd5a94d253df"
       },
       "execution_count": 3,
       "outputs": [
@@ -2218,6 +1878,7 @@
           "output_type": "stream",
           "name": "stderr",
           "text": [
+            "\u001b[34m\u001b[1mwandb\u001b[0m: Using wandb-core as the SDK backend.  Please refer to https://wandb.me/wandb-core for more information.\n",
             "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mbenyahiamohammedoussama\u001b[0m (\u001b[33mbenyahiamohammedoussama-ecole-central-lyon\u001b[0m) to \u001b[32mhttps://api.wandb.ai\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
           ]
         },
@@ -2242,20 +1903,13 @@
       "metadata": {
         "colab": {
           "base_uri": "https://localhost:8080/",
-          "height": 142
+          "height": 125
         },
         "id": "aYyAj3xmay39",
-        "outputId": "053b9435-91e4-453b-e8d4-d05cf87889b2"
+        "outputId": "a618ea26-8da5-4e05-ddda-fc22d1d882c5"
       },
       "execution_count": 4,
       "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "\u001b[34m\u001b[1mwandb\u001b[0m: Using wandb-core as the SDK backend.  Please refer to https://wandb.me/wandb-core for more information.\n"
-          ]
-        },
         {
           "output_type": "display_data",
           "data": {
@@ -2263,7 +1917,7 @@
               "<IPython.core.display.HTML object>"
             ],
             "text/html": [
-              "Tracking run with wandb version 0.19.6"
+              "Tracking run with wandb version 0.19.7"
             ]
           },
           "metadata": {}
@@ -2275,7 +1929,7 @@
               "<IPython.core.display.HTML object>"
             ],
             "text/html": [
-              "Run data is saved locally in <code>/content/wandb/run-20250212_162547-c3mc1c3z</code>"
+              "Run data is saved locally in <code>/content/wandb/run-20250222_123109-b2z65msz</code>"
             ]
           },
           "metadata": {}
@@ -2287,7 +1941,7 @@
               "<IPython.core.display.HTML object>"
             ],
             "text/html": [
-              "Syncing run <strong><a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/c3mc1c3z' target=\"_blank\">zesty-violet-12</a></strong> to <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/developer-guide' target=\"_blank\">docs</a>)<br>"
+              "Syncing run <strong><a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/b2z65msz' target=\"_blank\">swift-darkness-23</a></strong> to <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/developer-guide' target=\"_blank\">docs</a>)<br>"
             ]
           },
           "metadata": {}
@@ -2311,7 +1965,7 @@
               "<IPython.core.display.HTML object>"
             ],
             "text/html": [
-              " View run at <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/c3mc1c3z' target=\"_blank\">https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/c3mc1c3z</a>"
+              " View run at <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/b2z65msz' target=\"_blank\">https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/b2z65msz</a>"
             ]
           },
           "metadata": {}
@@ -2320,10 +1974,10 @@
           "output_type": "execute_result",
           "data": {
             "text/html": [
-              "<button onClick=\"this.nextSibling.style.display='block';this.style.display='none';\">Display W&B run</button><iframe src='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/c3mc1c3z?jupyter=true' style='border:none;width:100%;height:420px;display:none;'></iframe>"
+              "<button onClick=\"this.nextSibling.style.display='block';this.style.display='none';\">Display W&B run</button><iframe src='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/b2z65msz?jupyter=true' style='border:none;width:100%;height:420px;display:none;'></iframe>"
             ],
             "text/plain": [
-              "<wandb.sdk.wandb_run.Run at 0x7e4ea89e8910>"
+              "<wandb.sdk.wandb_run.Run at 0x7b924fb1fd50>"
             ]
           },
           "metadata": {},
@@ -2344,30 +1998,30 @@
           "base_uri": "https://localhost:8080/",
           "height": 17,
           "referenced_widgets": [
-            "3f7b5667346b4ab38b568d07b2390a1d",
-            "3ced1c1a58d84a3395078079d6370d60",
-            "ac2457e2f97f44f49b315770cf84223d",
-            "0c12d189ce1f49f7be9beaa01647cdda",
-            "a6b4a31524cd4be0b459878382c61a22",
-            "78f75b1f93c34f02a9cb5461e85f25d7",
-            "0f51145e9c15467989d030b9e1b947f4",
-            "103a4ca31ac2476dbc8a4ce460618f52",
-            "baf728550d404abc8659c10dafd44e1f",
-            "26c823e5848b4d99ad328c0453aa44fa",
-            "84cb0c3d062e40168125e45412f06057",
-            "b429ff12b601414fadafc853267c33e1",
-            "a8bd317ec463499098dcbe269fd4f800",
-            "077a5a18eaff42c49048bf08eab4d577",
-            "b6e728ed5dc941a785aaab6a8fe50a8c",
-            "c3dd0417e5974de2b6e79f0fd819e6ef",
-            "109c69948eed41f49d0ed4cbb1ca1470",
-            "2413865780aa4335a8b746e54a64e6c0",
-            "da8ef54ed8bf4a938902ad3229687248",
-            "0e3731e78b6944d998978453792cbbef"
+            "1f610cc84b7e4aab87bccbad40d5791c",
+            "3ac1285d3225493f8c62ef66d3b559ab",
+            "8cd3f37563e54641872e5c0f7dd6c408",
+            "896772af72164a9689e16ea8011922c3",
+            "7cc3c7f5f01e4a2b815caea16b30e511",
+            "9f022b9e709e4d38a469eb8c7880d87a",
+            "79c6fd613984441793b8b5090f94929e",
+            "8548847477624df588d0b1ed5d2d0c5a",
+            "a96107d6b7b34708a9e22a6f3a432d04",
+            "3c0d5cf98b9f4afaa075c4d1ba9c3a3a",
+            "2a5ddb2ce1344b71add257bb11f0b7a9",
+            "b17371a0c66745b9b598c2c75183df85",
+            "1b4167cd168e43aa952c68d640de55a4",
+            "7c32798612ad464182a499ff8f06282b",
+            "23782e0b596849efa260ec439799bd5b",
+            "b5f37fa4b289421da988fadee7f1ee8b",
+            "be97cbd3440e4896ad520cb74a6fcbfe",
+            "4986e05ae42e4a9c9a5e48a78eb77f99",
+            "e5787040d1bf465f88c4fc52c5ae4a0d",
+            "4b7ae62211854ae198b04f1f198f9382"
           ]
         },
         "id": "ja19EsqZaWF8",
-        "outputId": "2613508b-648e-41a9-94d9-b735450a314d"
+        "outputId": "25f4b410-63b0-4a0e-df54-b85141cfcde5"
       },
       "execution_count": 5,
       "outputs": [
@@ -2380,7 +2034,7 @@
             "application/vnd.jupyter.widget-view+json": {
               "version_major": 2,
               "version_minor": 0,
-              "model_id": "3f7b5667346b4ab38b568d07b2390a1d"
+              "model_id": "1f610cc84b7e4aab87bccbad40d5791c"
             }
           },
           "metadata": {}
@@ -2514,7 +2168,7 @@
         },
         "outputId": "7470d022-8f19-4235-d42b-b680f4097e26"
       },
-      "execution_count": 8,
+      "execution_count": null,
       "outputs": [
         {
           "output_type": "display_data",
@@ -3262,8 +2916,10 @@
         "import numpy as np\n",
         "import matplotlib.pyplot as plt\n",
         "from stable_baselines3 import A2C\n",
-        "from stable_baselines3.common.vec_env import DummyVecEnv\n",
         "from huggingface_sb3 import load_from_hub\n",
+        "from gymnasium.wrappers import RecordVideo\n",
+        "import os\n",
+        "from IPython.display import Video, display\n",
         "\n",
         "# Initialize Weights & Biases for evaluation\n",
         "wandb.init(project=\"panda-gym\", name=\"evaluation\", config={\"num_episodes\": 100})\n",
@@ -3275,43 +2931,69 @@
         "model_path = load_from_hub(repo_id=repo_id, filename=filename)\n",
         "model = A2C.load(model_path)\n",
         "\n",
-        "# Create evaluation environment\n",
-        "env = DummyVecEnv([lambda: gym.make(\"PandaReachJointsDense-v3\")])\n",
+        "# Create video folder\n",
+        "video_dir = \"videos\"\n",
+        "os.makedirs(video_dir, exist_ok=True)\n",
+        "\n",
+        "# Create environment with video recording\n",
+        "env = gym.make(\"PandaReachJointsDense-v3\", render_mode=\"rgb_array\")\n",
+        "env = RecordVideo(env, video_folder=video_dir, episode_trigger=lambda e: e % 10 == 0)  # Record every 10 episodes\n",
         "\n",
         "# Run evaluation\n",
         "num_episodes = 100\n",
         "success_count = 0\n",
         "episode_rewards = []\n",
+        "truncation_rewards = []  # Store reward at truncation\n",
         "\n",
         "for episode in range(num_episodes):\n",
-        "    obs = env.reset()\n",
+        "    obs, _ = env.reset()\n",
         "    done = False\n",
         "    total_reward = 0\n",
+        "    truncation_reward = None  # Initialize reward at truncation\n",
         "\n",
         "    while not done:\n",
         "        action, _ = model.predict(obs, deterministic=True)\n",
-        "        obs, reward, terminated, truncated = env.step(action)\n",
+        "        obs, reward, terminated, truncated, _ = env.step(action)\n",
         "\n",
         "        total_reward += reward\n",
+        "\n",
+        "        # Capture the last reward before truncation\n",
+        "        if truncated:\n",
+        "            truncation_reward = total_reward  # Store the reward at truncation\n",
+        "            success_count += 1\n",
+        "\n",
         "        done = terminated or truncated\n",
         "\n",
         "    episode_rewards.append(total_reward)\n",
-        "    wandb.log({\"Episode Reward\": total_reward})  # Log reward in Weights & Biases\n",
         "\n",
-        "    if total_reward >= -0.25:\n",
-        "        success_count += 1\n",
+        "    # Store the threshold reward if truncation happened\n",
+        "    if truncation_reward is not None:\n",
+        "        truncation_rewards.append(truncation_reward)\n",
         "\n",
-        "    print(f\"Episode {episode+1}: Total Reward = {total_reward}\")\n",
+        "    wandb.log({\"Episode Reward\": total_reward, \"Truncation Reward\": truncation_reward})\n",
+        "\n",
+        "    print(f\"Episode {episode+1}: Total Reward = {total_reward}, Truncation Reward = {truncation_reward}\")\n",
+        "\n",
+        "# Compute the average truncation reward (if any truncations occurred)\n",
+        "if truncation_rewards:\n",
+        "    avg_truncation_reward = np.mean(truncation_rewards)\n",
+        "else:\n",
+        "    avg_truncation_reward = None\n",
         "\n",
-        "print(f\"\\nTotal episodes with reward >= -0.25: {success_count}/{num_episodes}\")\n",
+        "print(f\"\\nTotal episodes with truncation: {success_count}/{num_episodes}\")\n",
+        "print(f\"Average reward at truncation: {avg_truncation_reward}\")\n",
         "\n",
-        "# Close the environment\n",
-        "env.close()\n",
+        "# Close the environment safely\n",
+        "try:\n",
+        "    env.close()\n",
+        "except Exception as e:\n",
+        "    print(f\"Warning: Unable to close environment properly: {e}\")\n",
         "\n",
         "# Plot Total Reward per Episode\n",
         "plt.figure(figsize=(10, 5))\n",
         "plt.plot(range(1, num_episodes + 1), episode_rewards, marker=\"o\", linestyle=\"-\", label=\"Episode Reward\")\n",
-        "plt.axhline(y=-0.25, color=\"r\", linestyle=\"--\", label=\"Threshold Reward\")\n",
+        "if truncation_rewards:\n",
+        "    plt.axhline(y=avg_truncation_reward, color=\"r\", linestyle=\"--\", label=f\"Avg Truncation Reward ({avg_truncation_reward:.2f})\")\n",
         "plt.xlabel(\"Episode\")\n",
         "plt.ylabel(\"Total Reward\")\n",
         "plt.title(\"Total Reward per Episode (Evaluation)\")\n",
@@ -3319,31 +3001,17 @@
         "plt.grid()\n",
         "plt.show()\n",
         "\n",
-        "# Finish Weights & Biases logging\n",
         "wandb.finish()\n"
       ],
       "metadata": {
         "colab": {
           "base_uri": "https://localhost:8080/",
-          "height": 1000,
-          "referenced_widgets": [
-            "9e3d5f4cb5684ada9262f30d087c8f67",
-            "4236f5e1b7e940b08b9ac502730a351d",
-            "0deaab8cfb5447c79614291adafd13f7",
-            "3b68a95ffece4b60abf1514e739f53c1",
-            "ac9a9cf4d04a4597a9b0fe7101ca1719",
-            "e343f4348366432bad1cebd87c55fd9a",
-            "82457bbcee434f7493784ea210e4f2d3",
-            "f452220947814f8aa05e383e998e5f73",
-            "482116316836486199f005ace5fdc5db",
-            "532fc081a7254e199ecf277fd521b8ff",
-            "7aa87a6fa40842fba45eacfb5a0faa60"
-          ]
+          "height": 1000
         },
-        "id": "08q4PHoA-3S8",
-        "outputId": "97ce96ad-8974-457e-b2ad-4ac4765de384"
+        "id": "o0EsUC_8pFK-",
+        "outputId": "3b2ddb53-a19c-4a06-afc3-e9a314253697"
       },
-      "execution_count": 9,
+      "execution_count": 7,
       "outputs": [
         {
           "output_type": "display_data",
@@ -3352,7 +3020,7 @@
               "<IPython.core.display.HTML object>"
             ],
             "text/html": [
-              "Tracking run with wandb version 0.19.6"
+              "Tracking run with wandb version 0.19.7"
             ]
           },
           "metadata": {}
@@ -3364,7 +3032,7 @@
               "<IPython.core.display.HTML object>"
             ],
             "text/html": [
-              "Run data is saved locally in <code>/content/wandb/run-20250212_164242-t9lvsavx</code>"
+              "Run data is saved locally in <code>/content/wandb/run-20250222_123531-s26hyj9k</code>"
             ]
           },
           "metadata": {}
@@ -3376,7 +3044,7 @@
               "<IPython.core.display.HTML object>"
             ],
             "text/html": [
-              "Syncing run <strong><a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/t9lvsavx' target=\"_blank\">evaluation</a></strong> to <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/developer-guide' target=\"_blank\">docs</a>)<br>"
+              "Syncing run <strong><a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/s26hyj9k' target=\"_blank\">evaluation</a></strong> to <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/developer-guide' target=\"_blank\">docs</a>)<br>"
             ]
           },
           "metadata": {}
@@ -3400,131 +3068,126 @@
               "<IPython.core.display.HTML object>"
             ],
             "text/html": [
-              " View run at <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/t9lvsavx' target=\"_blank\">https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/t9lvsavx</a>"
+              " View run at <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/s26hyj9k' target=\"_blank\">https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/s26hyj9k</a>"
             ]
           },
           "metadata": {}
         },
         {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "a2c-panda-reach.zip:   0%|          | 0.00/60.1k [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "9e3d5f4cb5684ada9262f30d087c8f67"
-            }
-          },
-          "metadata": {}
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "/usr/local/lib/python3.11/dist-packages/gymnasium/wrappers/rendering.py:283: UserWarning: \u001b[33mWARN: Overwriting existing videos at /content/videos folder (try specifying a different `video_folder` for the `RecordVideo` wrapper if this is not desired)\u001b[0m\n",
+            "  logger.warn(\n"
+          ]
         },
         {
           "output_type": "stream",
           "name": "stdout",
           "text": [
-            "Episode 1: Total Reward = [-0.04472059]\n",
-            "Episode 2: Total Reward = [-0.10676342]\n",
-            "Episode 3: Total Reward = [-0.09835679]\n",
-            "Episode 4: Total Reward = [-0.2539612]\n",
-            "Episode 5: Total Reward = [-0.1066384]\n",
-            "Episode 6: Total Reward = [-0.19945845]\n",
-            "Episode 7: Total Reward = [-0.15216666]\n",
-            "Episode 8: Total Reward = [-0.16414386]\n",
-            "Episode 9: Total Reward = [-0.12051648]\n",
-            "Episode 10: Total Reward = [-0.14884512]\n",
-            "Episode 11: Total Reward = [-0.05850235]\n",
-            "Episode 12: Total Reward = [-0.16872416]\n",
-            "Episode 13: Total Reward = [-0.16940843]\n",
-            "Episode 14: Total Reward = [-0.10928418]\n",
-            "Episode 15: Total Reward = [-0.07856377]\n",
-            "Episode 16: Total Reward = [-0.22169106]\n",
-            "Episode 17: Total Reward = [-0.16387708]\n",
-            "Episode 18: Total Reward = [-0.13386156]\n",
-            "Episode 19: Total Reward = [-0.14765243]\n",
-            "Episode 20: Total Reward = [-0.06929311]\n",
-            "Episode 21: Total Reward = [-0.05524373]\n",
-            "Episode 22: Total Reward = [-0.13049327]\n",
-            "Episode 23: Total Reward = [-0.09083344]\n",
-            "Episode 24: Total Reward = [-0.13329016]\n",
-            "Episode 25: Total Reward = [-0.1283052]\n",
-            "Episode 26: Total Reward = [-0.1159297]\n",
-            "Episode 27: Total Reward = [-0.20777996]\n",
-            "Episode 28: Total Reward = [-0.18561581]\n",
-            "Episode 29: Total Reward = [-0.11776786]\n",
-            "Episode 30: Total Reward = [-0.13314064]\n",
-            "Episode 31: Total Reward = [-0.11869599]\n",
-            "Episode 32: Total Reward = [-0.14789824]\n",
-            "Episode 33: Total Reward = [-0.15782449]\n",
-            "Episode 34: Total Reward = [-0.09402192]\n",
-            "Episode 35: Total Reward = [-0.17043531]\n",
-            "Episode 36: Total Reward = [-0.08945253]\n",
-            "Episode 37: Total Reward = [-0.11386164]\n",
-            "Episode 38: Total Reward = [-0.27060142]\n",
-            "Episode 39: Total Reward = [-0.11775041]\n",
-            "Episode 40: Total Reward = [-0.08200994]\n",
-            "Episode 41: Total Reward = [-0.14582345]\n",
-            "Episode 42: Total Reward = [-0.208898]\n",
-            "Episode 43: Total Reward = [-0.17276706]\n",
-            "Episode 44: Total Reward = [-0.1985873]\n",
-            "Episode 45: Total Reward = [-0.19449484]\n",
-            "Episode 46: Total Reward = [-0.15305957]\n",
-            "Episode 47: Total Reward = [-0.10283145]\n",
-            "Episode 48: Total Reward = [-0.07145833]\n",
-            "Episode 49: Total Reward = [-0.18296511]\n",
-            "Episode 50: Total Reward = [-0.14882986]\n",
-            "Episode 51: Total Reward = [-0.13916506]\n",
-            "Episode 52: Total Reward = [-0.20243222]\n",
-            "Episode 53: Total Reward = [-0.18301834]\n",
-            "Episode 54: Total Reward = [-0.25047064]\n",
-            "Episode 55: Total Reward = [-0.193049]\n",
-            "Episode 56: Total Reward = [-0.03794951]\n",
-            "Episode 57: Total Reward = [-0.06855035]\n",
-            "Episode 58: Total Reward = [-0.18995911]\n",
-            "Episode 59: Total Reward = [-0.09545821]\n",
-            "Episode 60: Total Reward = [-0.22003794]\n",
-            "Episode 61: Total Reward = [-0.11422175]\n",
-            "Episode 62: Total Reward = [-0.16004996]\n",
-            "Episode 63: Total Reward = [-0.15424305]\n",
-            "Episode 64: Total Reward = [-0.20308198]\n",
-            "Episode 65: Total Reward = [-0.11592185]\n",
-            "Episode 66: Total Reward = [-0.17106031]\n",
-            "Episode 67: Total Reward = [-0.1775162]\n",
-            "Episode 68: Total Reward = [-0.16606207]\n",
-            "Episode 69: Total Reward = [-0.12172002]\n",
-            "Episode 70: Total Reward = [-0.18731424]\n",
-            "Episode 71: Total Reward = [-0.08676367]\n",
-            "Episode 72: Total Reward = [-0.1673073]\n",
-            "Episode 73: Total Reward = [-0.15558963]\n",
-            "Episode 74: Total Reward = [-0.14130649]\n",
-            "Episode 75: Total Reward = [-0.13302208]\n",
-            "Episode 76: Total Reward = [-0.1876965]\n",
-            "Episode 77: Total Reward = [-0.07837165]\n",
-            "Episode 78: Total Reward = [-0.09133174]\n",
-            "Episode 79: Total Reward = [-0.16321489]\n",
-            "Episode 80: Total Reward = [-0.1461836]\n",
-            "Episode 81: Total Reward = [-0.24793966]\n",
-            "Episode 82: Total Reward = [-0.191429]\n",
-            "Episode 83: Total Reward = [-0.18228774]\n",
-            "Episode 84: Total Reward = [-0.12051388]\n",
-            "Episode 85: Total Reward = [-0.11825976]\n",
-            "Episode 86: Total Reward = [-0.22681512]\n",
-            "Episode 87: Total Reward = [-0.1000689]\n",
-            "Episode 88: Total Reward = [-0.21699966]\n",
-            "Episode 89: Total Reward = [-0.11703768]\n",
-            "Episode 90: Total Reward = [-0.13437016]\n",
-            "Episode 91: Total Reward = [-0.09144981]\n",
-            "Episode 92: Total Reward = [-0.19044416]\n",
-            "Episode 93: Total Reward = [-0.04268857]\n",
-            "Episode 94: Total Reward = [-0.12969531]\n",
-            "Episode 95: Total Reward = [-0.21565194]\n",
-            "Episode 96: Total Reward = [-0.08801076]\n",
-            "Episode 97: Total Reward = [-0.20564301]\n",
-            "Episode 98: Total Reward = [-0.23380174]\n",
-            "Episode 99: Total Reward = [-0.13280633]\n",
-            "Episode 100: Total Reward = [-0.22274086]\n",
+            "Episode 1: Total Reward = -12.330416902899742, Truncation Reward = -12.330416902899742\n",
+            "Episode 2: Total Reward = -7.438601955771446, Truncation Reward = -7.438601955771446\n",
+            "Episode 3: Total Reward = -7.99461267888546, Truncation Reward = -7.99461267888546\n",
+            "Episode 4: Total Reward = -5.936902545392513, Truncation Reward = -5.936902545392513\n",
+            "Episode 5: Total Reward = -9.3701601177454, Truncation Reward = -9.3701601177454\n",
+            "Episode 6: Total Reward = -7.898426979780197, Truncation Reward = -7.898426979780197\n",
+            "Episode 7: Total Reward = -11.39137826859951, Truncation Reward = -11.39137826859951\n",
+            "Episode 8: Total Reward = -9.334654226899147, Truncation Reward = -9.334654226899147\n",
+            "Episode 9: Total Reward = -7.807370632886887, Truncation Reward = -7.807370632886887\n",
+            "Episode 10: Total Reward = -0.045403968542814255, Truncation Reward = None\n",
+            "Episode 11: Total Reward = -9.252317532896996, Truncation Reward = -9.252317532896996\n",
+            "Episode 12: Total Reward = -5.457004480063915, Truncation Reward = -5.457004480063915\n",
+            "Episode 13: Total Reward = -10.861534595489502, Truncation Reward = -10.861534595489502\n",
+            "Episode 14: Total Reward = -5.093386605381966, Truncation Reward = -5.093386605381966\n",
+            "Episode 15: Total Reward = -3.9243303686380386, Truncation Reward = -3.9243303686380386\n",
+            "Episode 16: Total Reward = -3.915019504725933, Truncation Reward = -3.915019504725933\n",
+            "Episode 17: Total Reward = -3.334887094795704, Truncation Reward = -3.334887094795704\n",
+            "Episode 18: Total Reward = -7.133811637759209, Truncation Reward = -7.133811637759209\n",
+            "Episode 19: Total Reward = -10.472936138510704, Truncation Reward = -10.472936138510704\n",
+            "Episode 20: Total Reward = -3.7241543605923653, Truncation Reward = -3.7241543605923653\n",
+            "Episode 21: Total Reward = -10.306911543011665, Truncation Reward = -10.306911543011665\n",
+            "Episode 22: Total Reward = -8.239186570048332, Truncation Reward = -8.239186570048332\n",
+            "Episode 23: Total Reward = -4.929756365716457, Truncation Reward = -4.929756365716457\n",
+            "Episode 24: Total Reward = -11.338424906134605, Truncation Reward = -11.338424906134605\n",
+            "Episode 25: Total Reward = -4.740497775375843, Truncation Reward = -4.740497775375843\n",
+            "Episode 26: Total Reward = -10.669795244932175, Truncation Reward = -10.669795244932175\n",
+            "Episode 27: Total Reward = -9.724496230483055, Truncation Reward = -9.724496230483055\n",
+            "Episode 28: Total Reward = -8.491846114397049, Truncation Reward = -8.491846114397049\n",
+            "Episode 29: Total Reward = -4.465587489306927, Truncation Reward = -4.465587489306927\n",
+            "Episode 30: Total Reward = -11.19448609650135, Truncation Reward = -11.19448609650135\n",
+            "Episode 31: Total Reward = -4.325973592698574, Truncation Reward = -4.325973592698574\n",
+            "Episode 32: Total Reward = -4.037351161241531, Truncation Reward = -4.037351161241531\n",
+            "Episode 33: Total Reward = -6.567140996456146, Truncation Reward = -6.567140996456146\n",
+            "Episode 34: Total Reward = -5.43791987746954, Truncation Reward = -5.43791987746954\n",
+            "Episode 35: Total Reward = -9.746163427829742, Truncation Reward = -9.746163427829742\n",
+            "Episode 36: Total Reward = -5.587778821587563, Truncation Reward = -5.587778821587563\n",
+            "Episode 37: Total Reward = -11.029212862253189, Truncation Reward = -11.029212862253189\n",
+            "Episode 38: Total Reward = -9.79325357079506, Truncation Reward = -9.79325357079506\n",
+            "Episode 39: Total Reward = -10.255291074514389, Truncation Reward = -10.255291074514389\n",
+            "Episode 40: Total Reward = -10.17457777261734, Truncation Reward = -10.17457777261734\n",
+            "Episode 41: Total Reward = -9.76257972419262, Truncation Reward = -9.76257972419262\n",
+            "Episode 42: Total Reward = -7.560746073722839, Truncation Reward = -7.560746073722839\n",
+            "Episode 43: Total Reward = -7.421035185456276, Truncation Reward = -7.421035185456276\n",
+            "Episode 44: Total Reward = -4.329387791454792, Truncation Reward = -4.329387791454792\n",
+            "Episode 45: Total Reward = -8.956344172358513, Truncation Reward = -8.956344172358513\n",
+            "Episode 46: Total Reward = -7.634533554315567, Truncation Reward = -7.634533554315567\n",
+            "Episode 47: Total Reward = -4.648341238498688, Truncation Reward = -4.648341238498688\n",
+            "Episode 48: Total Reward = -5.358693726360798, Truncation Reward = -5.358693726360798\n",
+            "Episode 49: Total Reward = -5.256292395293713, Truncation Reward = -5.256292395293713\n",
+            "Episode 50: Total Reward = -10.259695574641228, Truncation Reward = -10.259695574641228\n",
+            "Episode 51: Total Reward = -8.46430104970932, Truncation Reward = -8.46430104970932\n",
+            "Episode 52: Total Reward = -12.68241798877716, Truncation Reward = -12.68241798877716\n",
+            "Episode 53: Total Reward = -10.03714995086193, Truncation Reward = -10.03714995086193\n",
+            "Episode 54: Total Reward = -9.390622049570084, Truncation Reward = -9.390622049570084\n",
+            "Episode 55: Total Reward = -3.6870924681425095, Truncation Reward = -3.6870924681425095\n",
+            "Episode 56: Total Reward = -2.590249042958021, Truncation Reward = -2.590249042958021\n",
+            "Episode 57: Total Reward = -10.292054265737534, Truncation Reward = -10.292054265737534\n",
+            "Episode 58: Total Reward = -3.809460587799549, Truncation Reward = -3.809460587799549\n",
+            "Episode 59: Total Reward = -6.417629435658455, Truncation Reward = -6.417629435658455\n",
+            "Episode 60: Total Reward = -9.903368830680847, Truncation Reward = -9.903368830680847\n",
+            "Episode 61: Total Reward = -9.433162242174149, Truncation Reward = -9.433162242174149\n",
+            "Episode 62: Total Reward = -12.234330296516418, Truncation Reward = -12.234330296516418\n",
+            "Episode 63: Total Reward = -6.230593271553516, Truncation Reward = -6.230593271553516\n",
+            "Episode 64: Total Reward = -7.767891377210617, Truncation Reward = -7.767891377210617\n",
+            "Episode 65: Total Reward = -5.734282039105892, Truncation Reward = -5.734282039105892\n",
+            "Episode 66: Total Reward = -6.636941626667976, Truncation Reward = -6.636941626667976\n",
+            "Episode 67: Total Reward = -5.25225392729044, Truncation Reward = -5.25225392729044\n",
+            "Episode 68: Total Reward = -6.527664542198181, Truncation Reward = -6.527664542198181\n",
+            "Episode 69: Total Reward = -9.186537191271782, Truncation Reward = -9.186537191271782\n",
+            "Episode 70: Total Reward = -8.276378333568573, Truncation Reward = -8.276378333568573\n",
+            "Episode 71: Total Reward = -5.645369186997414, Truncation Reward = -5.645369186997414\n",
+            "Episode 72: Total Reward = -7.278434291481972, Truncation Reward = -7.278434291481972\n",
+            "Episode 73: Total Reward = -5.579865328967571, Truncation Reward = -5.579865328967571\n",
+            "Episode 74: Total Reward = -6.590580552816391, Truncation Reward = -6.590580552816391\n",
+            "Episode 75: Total Reward = -8.604996785521507, Truncation Reward = -8.604996785521507\n",
+            "Episode 76: Total Reward = -5.933413483202457, Truncation Reward = -5.933413483202457\n",
+            "Episode 77: Total Reward = -9.150287717580795, Truncation Reward = -9.150287717580795\n",
+            "Episode 78: Total Reward = -7.877498239278793, Truncation Reward = -7.877498239278793\n",
+            "Episode 79: Total Reward = -9.337234199047089, Truncation Reward = -9.337234199047089\n",
+            "Episode 80: Total Reward = -8.02486552298069, Truncation Reward = -8.02486552298069\n",
+            "Episode 81: Total Reward = -9.83842833340168, Truncation Reward = -9.83842833340168\n",
+            "Episode 82: Total Reward = -9.059891402721405, Truncation Reward = -9.059891402721405\n",
+            "Episode 83: Total Reward = -9.86920890212059, Truncation Reward = -9.86920890212059\n",
+            "Episode 84: Total Reward = -8.623764723539352, Truncation Reward = -8.623764723539352\n",
+            "Episode 85: Total Reward = -7.960148394107819, Truncation Reward = -7.960148394107819\n",
+            "Episode 86: Total Reward = -8.71947793662548, Truncation Reward = -8.71947793662548\n",
+            "Episode 87: Total Reward = -6.112355023622513, Truncation Reward = -6.112355023622513\n",
+            "Episode 88: Total Reward = -7.338854789733887, Truncation Reward = -7.338854789733887\n",
+            "Episode 89: Total Reward = -6.079448983073235, Truncation Reward = -6.079448983073235\n",
+            "Episode 90: Total Reward = -5.677617602050304, Truncation Reward = -5.677617602050304\n",
+            "Episode 91: Total Reward = -6.817344158887863, Truncation Reward = -6.817344158887863\n",
+            "Episode 92: Total Reward = -4.7121462225914, Truncation Reward = -4.7121462225914\n",
+            "Episode 93: Total Reward = -8.303785011172295, Truncation Reward = -8.303785011172295\n",
+            "Episode 94: Total Reward = -9.318224221467972, Truncation Reward = -9.318224221467972\n",
+            "Episode 95: Total Reward = -5.489169955253601, Truncation Reward = -5.489169955253601\n",
+            "Episode 96: Total Reward = -5.069115057587624, Truncation Reward = -5.069115057587624\n",
+            "Episode 97: Total Reward = -9.525949344038963, Truncation Reward = -9.525949344038963\n",
+            "Episode 98: Total Reward = -8.347278237342834, Truncation Reward = -8.347278237342834\n",
+            "Episode 99: Total Reward = -10.47582121193409, Truncation Reward = -10.47582121193409\n",
+            "Episode 100: Total Reward = -9.687124326825142, Truncation Reward = -9.687124326825142\n",
             "\n",
-            "Total episodes with reward >= -0.25: 97/100\n"
+            "Total episodes with truncation: 99/100\n",
+            "Average reward at truncation: -7.6819928002101605\n"
           ]
         },
         {
@@ -3533,7 +3196,7 @@
             "text/plain": [
               "<Figure size 1000x500 with 1 Axes>"
             ],
-            "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAHWCAYAAAAVazrYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXe4E1X6x7+Tntt7ofcmTUGaCKggVxTXviquDd21rd1Vdn8rYoFl1+5adxXXtliwoYCiiIhSpSxIr8LlVm6/uakzvz8m52SSTJKZ9OSez/Pw6E0mycxkcua85/u+35cTBEEAg8FgMBgMBoPBYDDihibRO8BgMBgMBoPBYDAYnQ0WiDEYDAaDwWAwGAxGnGGBGIPBYDAYDAaDwWDEGRaIMRgMBoPBYDAYDEacYYEYg8FgMBgMBoPBYMQZFogxGAwGg8FgMBgMRpxhgRiDwWAwGAwGg8FgxBkWiDEYDAaDwWAwGAxGnGGBGIPBYDAYDAaDwWDEGRaIMRgMRhxYvXo1OI7D6tWrE70rSQHHcXjkkUcSvRsJ4c033wTHcThy5EhcPzcW57ytrQ0lJSV49913o/q+4XDkyBFwHIc333wzIZ8fj+91165d0Ol02LlzZ8w+g8FgxA8WiDEYjLSF4zhF/5QER/Pnz8enn34a830mkznyT6fToWvXrrj++utRWVkZ889neEMC6ED/Fi9enOhdTCjPPfccsrOzceWVV9LHHnnkkaDnrLq6OoF7HDnxGgvkGDJkCM4//3w8/PDDCfl8BoMRXXSJ3gEGg8GIFW+//bbX32+99RZWrlzp9/jgwYNDvtf8+fNx2WWX4aKLLormLgbk0UcfRe/evWG1WrF+/Xq8+eabWLt2LXbu3AmTyRSXfWB4uPPOO3H66af7PT5+/HjV7/W73/0OV155JYxGYzR2LWE4HA4899xzuOeee6DVav2ef/nll5GVleX3eF5eXhz2LnYEGgvi9b3ecsstmDFjBg4ePIi+ffvG9LMYDEZsYYEYg8FIW6655hqvv9evX4+VK1f6PZ6MnHfeeRg9ejQA4KabbkJRUREWLlyIzz//HFdccUWC9y407e3tyMzMTPRuKELJvp555pm47LLLovJ5Wq1WNnBJNb744gvU1dUFvB4vu+wyFBUVxXmvEke8vtepU6ciPz8f//nPf/Doo4/G/PMYDEbsYKmJDAajU9Pe3o777rsP3bt3h9FoxMCBA/Hkk09CEAS6DcdxaG9vx3/+8x+aXnX99dcDAI4ePYrbbrsNAwcOhNlsRmFhIS6//PKo14mceeaZAICDBw96Pb5nzx5cdtllKCgogMlkwujRo/H555/T55uamqDVavH888/Tx+rr66HRaFBYWOh1nLfeeivKysro3z/88AMuv/xy9OjRA0ajEd27d8c999yDjo4Or324/vrrkZWVhYMHD2LGjBnIzs7GrFmzAAA2mw333HMPiouLkZ2djQsvvBDHjx9XdMwkLfD999/Hn//8Z5SVlSEzMxMXXnghjh075rf9hg0bUFFRgdzcXGRkZGDy5Mn48ccfvbYhaXO7du3C1Vdfjfz8fEycOFHR/oSC4zjccccdePfddzFw4ECYTCaMGjUKa9as8dpOrpZo8+bNmD59OoqKimA2m9G7d2/ceOONXq9Tcq0C6s55ZWUlbrzxRpSWlsJoNOKUU07BG2+8oeh4P/30U/Tq1SssVaampgY6nQ7z5s3ze27v3r3gOA7//Oc/AQANDQ24//77MWzYMGRlZSEnJwfnnXcetm/fHvJzpkyZgilTpvg9fv3116NXr15ejz355JOYMGECCgsLYTabMWrUKHz00Ude2wQbCwLViL300ks45ZRTYDQa0aVLF9x+++1oamry28+hQ4di165dOOuss5CRkYGuXbvi73//u9++6/V6TJkyBZ999lnI42cwGMkNU8QYDEanRRAEXHjhhfjuu+8we/ZsjBw5El999RUeeOABVFZW4plnngEgpjjedNNNGDNmDH7/+98DAJ18btq0CT/99BOuvPJKdOvWDUeOHMHLL7+MKVOmYNeuXcjIyIjKvpLJXX5+Pn3sl19+wRlnnIGuXbvioYceQmZmJj744ANcdNFFWLJkCS6++GLk5eVh6NChWLNmDe68804AwNq1a8FxHBoaGrBr1y6ccsopAMTAiwR8APDhhx/CYrHg1ltvRWFhITZu3IgXXngBx48fx4cffui1f06nE9OnT8fEiRPx5JNP0uO+6aab8M477+Dqq6/GhAkTsGrVKpx//vmqjv2JJ54Ax3F48MEHUVtbi2effRZTp07Ftm3bYDabAQCrVq3Ceeedh1GjRmHu3LnQaDRYtGgRzj77bPzwww8YM2aM13tefvnl6N+/P+bPn+8XyMjR2tqK+vp6v8cLCwvBcRz9+/vvv8f777+PO++8E0ajES+99BIqKiqwceNGDB06VPa9a2trce6556K4uBgPPfQQ8vLycOTIEXz88cd0G6XXKqD8nNfU1GDcuHE0gCwuLsby5csxe/ZstLS04O677w56Tn766SecdtppAZ9vaGjwe0yn0yEvLw+lpaWYPHkyPvjgA8ydO9drm/fffx9arRaXX345AODQoUP49NNPcfnll6N3796oqanBq6++ismTJ2PXrl3o0qVL0P1UynPPPYcLL7wQs2bNgt1ux+LFi3H55Zfjiy++oOcv2FggxyOPPIJ58+Zh6tSpuPXWW7F37168/PLL2LRpE3788Ufo9Xq6bWNjIyoqKnDJJZfgiiuuwEcffYQHH3wQw4YNw3nnnef1vqNGjcJnn32GlpYW5OTkROX4GQxGAhAYDAajk3D77bcL0mHv008/FQAIjz/+uNd2l112mcBxnHDgwAH6WGZmpnDdddf5vafFYvF7bN26dQIA4a233qKPfffddwIA4bvvvgu6j4sWLRIACN98841QV1cnHDt2TPjoo4+E4uJiwWg0CseOHaPbnnPOOcKwYcMEq9VKH+N5XpgwYYLQv39/r+MuLS2lf997773CpEmThJKSEuHll18WBEEQTp48KXAcJzz33HNBj23BggUCx3HC0aNH6WPXXXedAEB46KGHvLbdtm2bAEC47bbbvB6/+uqrBQDC3Llzg54Lcs66du0qtLS00Mc/+OADAQDdV57nhf79+wvTp08XeJ732v/evXsL06ZNo4/NnTtXACBcddVVQT/bdx8C/auqqqLbksc2b95MHzt69KhgMpmEiy++mD5GvuPDhw8LgiAIn3zyiQBA2LRpU8D9UHqtqjnns2fPFsrLy4X6+nqvba+88kohNzdX9vsnOBwOgeM44b777vN7jpxjuX8DBw6k27366qsCAGHHjh1erx8yZIhw9tln07+tVqvgcrm8tjl8+LBgNBqFRx991OsxAMKiRYvoY5MnTxYmT57st4/XXXed0LNnT6/HfI/XbrcLQ4cO9doXQQg8Fvh+r7W1tYLBYBDOPfdcr/3/5z//KQAQ3njjDa/99B0zbDabUFZWJlx66aV+n/Xee+8JAIQNGzb4PcdgMFIHlprIYDA6LcuWLYNWq6VKEeG+++6DIAhYvnx5yPcgigwgmhecPHkS/fr1Q15eHrZs2RL2vk2dOhXFxcXo3r07LrvsMmRmZuLzzz9Ht27dAIhqw6pVq3DFFVdQtaa+vh4nT57E9OnTsX//fuqyeOaZZ6KmpgZ79+4FICpfkyZNwplnnokffvgBgKiSCYLgpYhJj629vR319fWYMGECBEHA1q1b/fb51ltv9fp72bJlAOB3fkMpLb5ce+21yM7Opn9fdtllKC8vp++/bds27N+/H1dffTVOnjxJz0V7ezvOOeccrFmzBjzPe73nLbfcomofHn74YaxcudLvX0FBgdd248ePx6hRo+jfPXr0wG9+8xt89dVXcLlcsu9NzCu++OILOBwO2W2UXqtKz7kgCFiyZAlmzpwJQRDoOauvr8f06dPR3Nwc9PptaGiAIAheCq0vS5Ys8TtfixYtos9fcskl0Ol0eP/99+ljO3fuxK5du/Db3/6WPmY0GqHRiNMVl8uFkydPIisrCwMHDozoN+aL9HpvbGxEc3MzzjzzzLA/45tvvoHdbsfdd99N9x8Abr75ZuTk5ODLL7/02j4rK8urftVgMGDMmDE4dOiQ33uT8y6n0jIYjNSBpSYyGIxOy9GjR9GlSxevST7gcVE8evRoyPfo6OjAggULsGjRIlRWVnqluTU3N4e9by+++CIGDBiA5uZmvPHGG1izZo2XG9uBAwcgCAL++te/4q9//avse9TW1qJr1640uPrhhx/QrVs3bN26FY8//jiKi4vx5JNP0udycnIwYsQI+vpff/0VDz/8MD7//HM0NjZ6vbfvsel0OhokEo4ePQqNRuOXujVw4EBV56J///5ef3Mch379+tF0zf379wMArrvuuoDv0dzc7BU09O7dW9U+DBs2DFOnTlW9rwAwYMAAWCwW1NXVedXgESZPnoxLL70U8+bNwzPPPIMpU6bgoosuwtVXX02/c6XXqtJzXldXh6amJrz22mt47bXXZI+ltrY25PEKQdI6J02aFNSso6ioCOeccw4++OADPPbYYwDEtESdTodLLrmEbsfzPJ577jm89NJLOHz4sFdAW1hYGHIflfLFF1/g8ccfx7Zt22Cz2ejj0tRTNZDvxPfcGwwG9OnTx2986datm99n5efn43//+5/fe5PzHu6+MRiM5IAFYgwGgxEBf/zjH7Fo0SLcfffdGD9+PHJzc8FxHK688ko/FUYNY8aMoa6JF110ESZOnIirr74ae/fuRVZWFn3v+++/H9OnT5d9j379+gEAunTpgt69e2PNmjXo1asXBEHA+PHjUVxcjLvuugtHjx7FDz/8gAkTJngpD9OmTUNDQwMefPBBDBo0CJmZmaisrMT111/vd2xS1SLekH35xz/+gZEjR8pu42ujLlU/Eg3Hcfjoo4+wfv16LF26FF999RVuvPFGPPXUU1i/fr2sBXykkHN2zTXXBAxghw8fHvD1BQUF4DjOL0BXy5VXXokbbrgB27Ztw8iRI/HBBx/gnHPO8Qrg5s+fj7/+9a+48cYb8dhjj6GgoAAajQZ33313yN8Yx3GywaKvOvnDDz/gwgsvxKRJk/DSSy+hvLwcer0eixYtwnvvvRfRMSolkOOi3P6T896ZXCkZjHSEBWIMBqPT0rNnT3zzzTdobW31Uhr27NlDnycEWnn+6KOPcN111+Gpp56ij1mtVj9XtEjQarVYsGABzjrrLPzzn//EQw89hD59+gAQHdSUKDVnnnkm1qxZg969e2PkyJHIzs7GiBEjkJubixUrVmDLli1eDnY7duzAvn378J///AfXXnstfXzlypWK97tnz57geR4HDx70UgVIiqRSiOJFEAQBBw4coIECUX9ycnIUnYtY4ruvALBv3z5kZGSguLg46GvHjRuHcePG4YknnsB7772HWbNmYfHixbjpppsUX6tKzzlxVHS5XGGdM51Oh759++Lw4cOqXyvloosuwh/+8Aeanrhv3z7MmTPHa5uPPvoIZ511Fl5//XWvx5uamkIGIvn5+bKpfb5q1JIlS2AymfDVV195Kc/SVEqCUhWKfCd79+6lv1cAsNvtOHz4cETX6uHDh6HRaDBgwICw34PBYCQeViPGYDA6LTNmzIDL5aI22YRnnnkGHMd5OZVlZmbKBldardZvxfqFF14IWA8ULlOmTMGYMWPw7LPPwmq1oqSkBFOmTMGrr76Kqqoqv+3r6uq8/j7zzDNx5MgRvP/++zRVUaPRYMKECXj66afhcDi86sPI6rz02ARBwHPPPad4n8n5k1rnA8Czzz6r+D0AsRF3a2sr/fujjz5CVVUVff9Ro0ahb9++ePLJJ9HW1ub3et9zEUvWrVvnVVN07NgxfPbZZzj33HMDKh6NjY1+1xBR9kiKnNJrVek512q1uPTSS7FkyRLs3LnTb5+UnLPx48dj8+bNIbcLRl5eHqZPn44PPvgAixcvhsFg8GuULPcb+/DDD2kNZDD69u2LPXv2eB3P9u3b/doaaLVacBzn9bs9cuQIPv30U7/3DDQW+DJ16lQYDAY8//zzXvv/+uuvo7m5WbV7qJSff/4Zp5xyCnJzc8N+DwaDkXiYIsZgMDotM2fOxFlnnYW//OUvOHLkCEaMGIGvv/4an332Ge6++26vOptRo0bhm2++wdNPP01T/caOHYsLLrgAb7/9NnJzczFkyBCsW7cO33zzTVRrVwgPPPAALr/8crz55pu45ZZb8OKLL2LixIkYNmwYbr75ZvTp0wc1NTVYt24djh8/7tVniQRZe/fuxfz58+njkyZNwvLly2E0GnH66afTxwcNGoS+ffvi/vvvR2VlJXJycrBkyRJVqWgjR47EVVddhZdeegnNzc2YMGECvv32Wxw4cEDVcRcUFGDixIm44YYbUFNTg2effRb9+vXDzTffDEAMKP/973/jvPPOwymnnIIbbrgBXbt2RWVlJb777jvk5ORg6dKlqj7Tlx9++AFWq9Xv8eHDh3ul8A0dOhTTp0/3sq8HINsvi/Cf//wHL730Ei6++GL07dsXra2t+Ne//oWcnBzMmDEDgPJrVc05/9vf/obvvvsOY8eOxc0334whQ4agoaEBW7ZswTfffCNrPy/lN7/5Dd5++23s27dPVpn56KOPZNMqp02bhtLSUvr3b3/7W1xzzTV46aWXMH36dGpeQrjgggvw6KOP4oYbbsCECROwY8cOvPvuu14qUyBuvPFGPP3005g+fTpmz56N2tpavPLKKzjllFPQ0tJCtzv//PPx9NNPo6KiAldffTVqa2vx4osvol+/fn41WoHGAl+Ki4sxZ84czJs3DxUVFbjwwguxd+9evPTSSzj99NPDbizvcDjw/fff47bbbgvr9QwGI4mIq0cjg8FgJBBf+3pBEITW1lbhnnvuEbp06SLo9Xqhf//+wj/+8Q8vG3RBEIQ9e/YIkyZNEsxmswCA2lc3NjYKN9xwg1BUVCRkZWUJ06dPF/bs2SP07NnTy+JarX29nJW5y+US+vbtK/Tt21dwOp2CIAjCwYMHhWuvvVYoKysT9Hq90LVrV+GCCy4QPvroI7/Xl5SUCACEmpoa+tjatWsFAMKZZ57pt/2uXbuEqVOnCllZWUJRUZFw8803C9u3b/ezCL/uuuuEzMxM2ePp6OgQ7rzzTqGwsFDIzMwUZs6cKRw7dkyVff1///tfYc6cOUJJSYlgNpuF888/38s+n7B161bhkksuEQoLCwWj0Sj07NlTuOKKK4Rvv/2WbkOs1evq6oJ+tu8+BPonPQYAwu233y688847Qv/+/QWj0Siceuqpft+5r835li1bhKuuukro0aOHYDQahZKSEuGCCy7wssEXBOXXqppzXlNTI9x+++1C9+7dBb1eL5SVlQnnnHOO8Nprr4U8NzabTSgqKhIee+wxr8eD2dfL/QZaWlro7+qdd97x+xyr1Srcd999Qnl5uWA2m4UzzjhDWLdunZ81vZx9vSAIwjvvvCP06dNHMBgMwsiRI4WvvvpK1r7+9ddfp9/boEGDhEWLFtFjkRJoLPD9Xgn//Oc/hUGDBgl6vV4oLS0Vbr31VqGxsdFrm8mTJwunnHKK37HL7efy5csFAML+/fv9tmcwGKkFJwgKOlkyGAwGgxFnVq9ejbPOOgsffvghLrvsskTvTkg4jsPtt9/ulz6Yzjz22GNYtGgR9u/fHzD1khFdLrroInAch08++STRu8JgMCKE1YgxGAwGg8EIi3vuuQdtbW1YvHhxonelU7B792588cUX1O6fwWCkNqxGjMFgMBgMRlhkZWUp6jfGiA6DBw+G0+lM9G4wGIwowRQxBoPBYDAYDAaDwYgzrEaMwWAwGAwGg8FgMOIMU8QYDAaDwWAwGAwGI86wQIzBYDAYDAaDwWAw4gwz64gCPM/jxIkTyM7OBsdxid4dBoPBYDAYDAaDkSAEQUBrayu6dOkCjSaw7sUCsShw4sQJdO/ePdG7wWAwGAwGg8FgMJKEY8eOoVu3bgGfZ4FYFMjOzgYgnuycnJyYf57D4cDXX3+Nc889F3q9Puafx0gP2HXDCAd23TDChV07jHBg1w0jHJLtumlpaUH37t1pjBAIFohFAZKOmJOTE7dALCMjAzk5OUlxsTFSA3bdMMKBXTeMcGHXDiMc2HXDCIdkvW5ClSwxsw4Gg8FgMBgMBoPBiDMsEGMwGAwGg8FgMBiMOMMCMQaDwWAwGAwGg8GIM6xGjMFgMBgMBoORUARBgNPphM1mg06ng9VqhcvlSvRuMVIEh8MR1+tGq9VCp9NF3LaKBWIMBoPBYDAYjIRht9tRVVUFi8UCQRBQVlaGY8eOsd6sDMUk4rrJyMhAeXk5DAZD2O/BAjEGg8FgMBgMRkLgeR6HDx+GVqtFly5doNPp0N7ejqysrKCNcBkMKTzPo62tLS7XjSAIsNvtqKurw+HDh9G/f/+wP5MFYgwGg8FgMBiMhGC328HzPLp3746MjAzwPA+HwwGTycQCMYZieJ6H3W6P23VjNpuh1+tx9OhR+rnhwK5wBoPBYDAYDEZCYUEXI9WIxjXLrnoGg8FgMBgMBoPBiDMsNZHBYDAYjDTGxQvYeLgBta1WlGSbMKZ3AbQaZoLAYDAYiYYFYgwGg8FgpCkrdlZh3tJdqGq20sfKc02YO3MIKoaWJ3DPGIzok4qLDkeOHEHv3r2xdetWjBw5Miafcf3116OpqQmffvppTN4/FejVqxfuvvtu3H333YneFS9YaiKDwWAwGGnIip1VuPWdLV5BGABUN1tx6ztbsGJnVYL2jMGIPit2VmHiwlW46l/rcdfibbjqX+sxceGqmF7n119/PTiO8/tXUVGh+D26d++OqqoqDB06NGb7GQ2mTJlCj89kMmHAgAFYsGABBEFI9K6lNCwQYzAYDAYjzXDxAuYt3QW5KRJ5bN7SXXDxbBLFSH0SuehQUVGBqqoqr3///e9/Fb9eq9WirKwMOl3yJ6ndfPPNqKqqwt69ezFnzhw8/PDDeOWVVxK9WxSXywWe5xO9G6pggRiDwWAwGGnGxsMNfpNSKQKAqmYrNh5uiN9OMRgKEQQBFrtT0b9WqwNzP/8l6KLDI5/vQqvVEfK9wlF3jEYjysrKvP7l5+fT5zmOw8svv4zzzjsPZrMZffr0wUcffUSfP3LkCDiOw7Zt2wAAjY2NmDVrFoqLi2E2m9G/f38sWrSIbr9jxw6cffbZMJvNKCwsxO9//3u0tbXR510uF+69917k5eWhsLAQf/rTn/yOi+d5LFiwAL1794bZbMaIESO89ikQGRkZKCsrQ8+ePXHDDTdg+PDhWLlyJX3eZrPh/vvvR9euXZGZmYmxY8di9erVAMTvtLi42OtzRo4cifJyT4r02rVrYTQaYbFYAABPP/00hg0bhszMTHTv3h233Xab17G++eabyMvLw+eff46hQ4eitLQUv/76K2prazFz5kyYzWb07t0b7777bshjSxTJH34zGAwGg8FQRW1r4CAsnO0YjHhidfA4deHK0BsqQABQ3WLFsEe+DrntrkenI8MQ/anxX//6V/ztb3/Dc889h7fffhtXXnklduzYgcGDB8tuu2vXLixfvhxFRUU4cOAAOjo6AADt7e2YPn06xo8fj02bNqG2thY33XQT7rjjDrz55psAgKeeegpvvvkm3njjDQwePBhPPfUUPvnkE5x99tn0MxYsWIB33nkHr7zyCvr37481a9bgmmuuQXFxMSZPnhzyeARBwNq1a7Fnzx7079+fPn7HHXdg165dWLx4Mbp06YJPPvkEFRUV2LFjB/r3749JkyZh9erVuOyyy9DY2Ijdu3fDbDZjz549GDRoEL7//nucfvrpyMjIACDawz///PPo3bs3Dh06hNtuuw1/+tOf8NJLL9HPtFgsWLhwIV577TUYjUaUlJTgiiuuwIkTJ/Ddd99Br9fjzjvvRG1tbVjfXaxhgRiDwWAwGGlGSbay5qJKt2MwGPJ88cUXyMrK8nrsz3/+M/785z/Tvy+//HLcdNNNAIDHHnsMK1euxAsvvOAVUBB+/fVXnHrqqRg9ejQA0WSC8N5778FqteKtt95CZmYmAOCf//wnZs6ciYULF6K0tBTPPvss5syZg0suuQQA8Morr+Crr76i72Gz2TB//nx88803GD9+PACgT58+WLt2LV599dWggdhLL72Ef//737Db7bTp9p133kn3e9GiRfj111/RpUsXAMD999+PFStWYNGiRZg/fz6mTJmCV199FQCwZs0anHrqqSgrK8Pq1asxaNAgrF692uvzpcYavXr1wuOPP45bbrnF67w5HA689NJLGDZsGFpaWnD8+HEsX74cGzduxOmnnw4AeP3112WD3mSABWIMBoPBYKQZY3oXoDzXhOpmq2zKFgegLFd0lWMwkg2TXoOdj0xT1DB34+EGXL9oU8jt3rzh9JDXu1mvVbyPhLPOOgsvv/yy12MFBd6fQwIe6d8kFdGXW2+9FZdeeim2bNmCc889FxdddBEmTJgAANi9ezdGjBhBgzAAOOOMM8DzPPbu3QuTyYSqqiqMHTuWPq/T6TB69GiannjgwAFYLBZMmzbN63PtdjtGjBgJQRDAcfJOk7NmzcJf/vIXNDY2Yu7cuZgwYQLdtx07dsDlcmHAgAFer7HZbCgsLAQATJ48GXfddRfq6urw/fffY8qUKTQQmz17Nn766Sf86U9/oq/95ptvsGDBAuzZswctLS1wOp2wWq2wWCxUNTMYDBg+fDg9vt27d0On02HUqFH0fQYNGoS8vDzZY0o0LBBjMBgMBiPN0Go4zJ05BLe+swUc4BWMkSnW3JlDkt7am9E54TgOGQadokDszP7FihYdzuxfHJPrPTMzE/369Yva+5133nk4evQoli1bhpUrV+Kcc87B7bffjieffDIq709qrL788kvkFBajpsUGp0s8cwajAXuqW9Elz4Rcs8Hvtbm5ufRYP/jgA/Tr1w/jxo3D1KlT0dbWBq1Wi59//hlarXdASxTDYcOGoaCgAN9//z2+//57PPHEEygrK8PChQuxadMmOBwOGtgdOXIEF1xwAW699VY88cQTKCgowNq1azF79mzY7XYaiJnNZnAcl7Lujcysg8FgMBiMNKRiaDlevuY0lOV6px+W5prw8jWnsT5ijLSALDoAnkUGQrIsOqxfv97v72CpcsXFxbjuuuvwzjvv4Nlnn8Vrr70GABg8eDC2b9+O9vZ2uu2PP/4IjUaDgQMHIjc3F+Xl5diwYQN93ul04ueff6Z/DxkyBEajEXsOHII2rwu69OiNHr37oEfvPijr0g0OF4+jJy1o7rAHPaasrCzcdddduP/++yEIAk499VS4XC7U1taiX79+Xv/KysoAiAH2mWeeic8++wy//PILJk6ciOHDh8Nms+HVV1/F6NGjqdr3888/g+d5PPXUUxg3bhwGDBiAEydOhDzXgwYN8jvmvXv3oqmpKeRrEwELxNIIFy9g3cGT+GxbJdYdPMlsiRkMBqOTUzG0HGsfPBs5Jk8CzJvXn86CMEZaEWjRoSwOiw42mw3V1dVe/+rr6722+fDDD/HGG29g3759mDt3LjZu3Ig77rhD9v0efvhhfPbZZzhw4AB++eUXfPHFFzRomzVrFkwmE6677jrs3LkT3333Hf74xz/id7/7HUpLSwEAd911F/72t7/h008/xZ49e3Dbbbd5BSHZ2dm477778NAD9+PzD/+LY0cOY/eO7Xhv0Wv4/EOP7f6JJmtIlekPf/gD9u3bhyVLlmDAgAGYNWsWrr32Wnz88cc4fPgwNm7ciAULFuDLL7+kr5kyZQr++9//YuTIkcjKyoJGo8GkSZPw7rvvetWH9evXDw6HAy+88AIOHTqEt99+W5FV/sCBA1FRUYE//OEP2LBhA37++WfcdNNNMJvNIV+bCFhqYpqwYmcV5i3d5WVXXJ5rwtyZQ9gNl8FgMDoxWg0H6XzqyEkLBpXnJG6HGIwYUDG0HNOGlGHj4QbUtlpRki3WQMZaCVuxYoWXBTsgBgN79uyhf8+bNw+LFy/GbbfdhvLycvz3v//FkCFDZN/PYDBgzpw5OHLkCMxmM84880wsXrwYgGgf/9VXX+Guu+6i7oKXXnopnn76afr6++67D1VVVbjuuuug0Whw44034uKLL0ZzczPd5qH/ewROQzZef/EZHP/1CLJzcjF46AjcdMc9dBuHi0e7zYUsU+BQoaCgANdeey0eeeQRXHLJJVi0aBEef/xx3HfffaisrERRURHGjRuHCy64gL5m8uTJcLlcmDJlCn1sypQp+Oyzz7weGzFiBJ5++mksXLgQc+bMwaRJk7BgwQJce+21AfeHsGjRItx0002YPHkySktL8fjjj+Ovf/1ryNclAk5I1aTKJKKlpQW5ublobm5GTk7sb24OhwPLli3DjBkzoNfraSND3y+SDD0sBYUB+F83DIYS2HWTHgz4y3LYXWKj0wemD8TtZ0WvpiUQ7NphKMFqteLw4cPo3bs3TCYTeJ5HS0sLcnJyFNWIJTscx+GTTz7BRRddlOhdoTRZ7Pi1wRJyux4FGcjL8K8VS0YScd34XrtSlMYGqX+Fd3JcvIB5S3cFbWQ4b+kulqbIYDAYnRRBEGgQBgAH69qCbM1gMNIdncJARel2jPBhZzjF2Xi4wSsd0RcBQFWzFRsPN8RvpxgMBoORNNicvNffh+raA2zJYDA6A5lGLfTa4CGAXqtBplG9nT9DHaxGLMWpbQ0chIWzHYPBYDDSC99A7GBdW9BeQQwGI3okYwUQx3HokmfC0ZOB0xO75JnYGBEHmCKW4pRkm0JvpGI7BoPBYKQXNqeL/r+GA1qtTtS3BbemZjAY6U2u2YCehRnQ+ARbeq0GPQszZPuIMaIPC8RSnDG9C1Cea/LrnUHgILonhuomz2AwGIz0xOYQFTGTXoNu+WITVFYnxmAwcs0G5GWIRjoajkOfoiwMKstmQVgcYYFYipMKjQwZDAaDkThIaqJRp0XfYrFZKgvEGAwGANraQhDE2jGWjhhfUiYQa2howKxZs5CTk4O8vDzMnj0bbW3BbyRWqxW33347CgsLkZWVhUsvvRQ1NTVe23Ac5/eP9GtIFRLZyJDBYDAYyY3dHYgZdBr0Kc4CwAw7GAyGCO+OxAQISMJytrQnZQKxWbNm4ZdffsHKlSvxxRdfYM2aNfj9738f9DX33HMPli5dig8//BDff/89Tpw4gUsuucRvu0WLFqGqqor+S6ZeD0qpGFqOtQ+eTVc77502AGsfPJsFYQwGg9HJITViRp0Gfd2BGFPEGAwGAK/gy8UisbiTEq6Ju3fvxooVK7Bp0yaMHj0aAPDCCy9gxowZePLJJ9GlSxe/1zQ3N+P111/He++9h7PPPhuAGHANHjwY69evx7hx4+i2eXl5KCsri8/BxBCthkPPwkwcrGtHaY6RpSMyGAwGQ5KaqEEf92IdU8QYDAbgUcQAgOcFgDnWx5WUCMTWrVuHvLw8GoQBwNSpU6HRaLBhwwZcfPHFfq/5+eef4XA4MHXqVPrYoEGD0KNHD6xbt84rELv99ttx0003oU+fPrjllltwww03BM2RtdlssNls9O+WlhYAgMPhgMPhiOhYlUA+Q+6zck3iL6iuxRqXfWGkDsGuGwYjEOy6SX0sVtEh0aDVoGe+EQBwrNGCNosVRn3sZl3s2mEoweFwQBAE8DwPnuep3Tt5LJVZvXo1zjnnHJw8eRJ5eXlx+9w333wT9957LxoaQveQlYpgTp6Hnhfnv0eOHEHfvn3x888/Y+TIkbKvTdTxyRGr60ar1WLJkiWy2XLkenU4HNBqvcdSpeNeSgRi1dXVKCkp8XpMp9OhoKAA1dXVAV9jMBj8LozS0lKv1zz66KM4++yzkZGRga+//hq33XYb2tracOeddwbcnwULFmDevHl+j3/99dfIyMhQcWSRsXLlSr/HGms0ADTYsnMvlrXtjtu+MFIHueuGwQgFu25Slx0NHAAtOtpasOH7b2HWatHh4vD2Z1+hSxxuWezaYQRDp9OhrKwMbW1tsNs9bRVaW1sTuFehyc/PD/r8gw8+iIkTJwIQj0WjiV81kNVqhSAIVCgIhsPp+f/W1nY43JEB8WFob28P+D4Wi8X9usDHN3z4cBw7dgwAYDab0atXL9xyyy249tprlR6OKmJx3XR0dMieA7vdjo6ODqxZswZOp9PrOXJuQpHQQOyhhx7CwoULg26ze3dsg4m//vWv9P9PPfVUtLe34x//+EfQQGzOnDm499576d8tLS3o3r07zj33XOTk5MR0fwExyl65ciWmTZsGvV7v9dzR7w9hddUB5Jd3w4wZQ2O+L4zUIdh1w2AEgl03acCOamDv/1BaXIDzzz8di45vwPbjzeg66DScNzR2afns2mEowWq14tixY8jKyoLJZIIgCGhtbUV2dnZSO/hVVlbS///ggw8wd+5crzlrVlYWNm/eDADIzs5WPD+02+0wGCKzjzeZxGbMSj6z1toO8GIdqTkjA9kmMTTIyhLrSTMzMwO+DxEfgh2fRqPBvHnzcNNNN8FiseCjjz7CXXfdhb59++K8885TfWyBiOS6CXXOzWaz7PFZrVaYzWZMmjQJJpO3YZ6SIBhIcCB233334frrrw+6TZ8+fVBWVoba2lqvx51OJxoaGgLWdpWVlcFut6OpqclLFaupqQlaDzZ27Fg89thjsNlsMBqNstsYjUbZ5/R6fVxvNnKfV5RtBgA0dzjZjY8hS7yvU0Z6wK6b1MUpiJMSo14HvV6PviVZ2H68GUcbrHH5Ttm1wwiGy+UCx3HQaDTQaDQ0rYzjOGg6OgK/UKsFpJPf9iB1jxoNYDYH3zYzU9V+S/0J8vLywHGcn2cBUYm2bt2KBx98ELt27cLIkSOxaNEiDBw4EADwyCOP4NNPP8Udd9yBJ554AkePHgXP82hqasL999+Pzz77DDabDaNHj8YzzzyDESNGAAC2b9+Ou+++G5s3bwbHcejfvz9effVVjB49mn7uypUrcffdd+PYsWOYOHEiFi1ahPJy0cSN53k8/vjjeOmVV9Fwsh59+g3AY0/Mx+UXzfTad/K9AMCyZcvo+40bNw7XXXed3zZy5OTk0HPz0EMP4R//+Ae+/fZbnH/++QAQ9Fibm5tRUFCADRs2YPTo0eB5HkVFRRgwYADWr18PAHjnnXcwZ84c7NixAxzHYc6cOfjkk09w/PhxlJWVYdasWXj44YfpOBTonO/fvx+zZ8/Gxo0b0adPHzz33HNBj0+j0YDjONkxTumYl9BArLi4GMXFxSG3Gz9+PJqamvDzzz9j1KhRAIBVq1aB53mMHTtW9jWjRo2CXq/Ht99+i0svvRQAsHfvXvz6668YP358wM/atm0b8vPzAwZhyU6+uzFfo4Xl5DOU4eIFbDzcgNpWK0qyxebfzOiFwUgfpGYdAKhz4qF6ZtjBSHLcqowsM2YAX37p+bukBAiUDjZ5MrB6tefvXr2A+nrvbWLoGPiXv/wFTz31FIqLi3HLLbfgxhtvxI8//kifP3DgAJYsWYKPP/6Y1hpdfvnlMJvNWL58OXJzc/Hqq6/inHPOwb59+1BQUIBZs2bh1FNPxcsvvwytVott27Z5Tf4tFguefPJJvP3229BoNLjmmmtw//3349133wUAPPfcc3jqqafw8N+eQf8hw/DJ++9g1hWXYuQvv6B///5+x3Ds2DFccskluP322/H73/8emzdvxn333afqPPA8j08++QSNjY1eClSoYx05ciRWr16N0aNH02Br69ataGtrQ1ZWFr7//ntMmjSJvl92djbefPNNdOnSBTt27MDNN9+M7Oxs/OlPfwp4znmexyWXXILS0lJs2LABzc3NuPvuu1UdXzikRI3Y4MGDUVFRgZtvvhmvvPIKHA4H7rjjDlx55ZU0wq6srMQ555yDt956C2PGjEFubi5mz56Ne++9FwUFBcjJycEf//hHjB8/nhp1LF26FDU1NRg3bhxMJhNWrlyJ+fPn4/7770/k4UZEfqZ4YTe220NsyWAAK3ZWYd7SXahqttLHynNNmDtzCGt9wGCkCVL7egDMwp7BiDNPPPEEJk+eDEBUhM4//3xYrVaazma32/HWW29RcWLt2rXYuHEjamtrqTDw5JNP4tNPP8VHH32E3//+9/j111/xwAMPYNCgQQDgFzw5HA688sor6Nu3LwDgjjvuwKOPPkqff/LJJ/Hggw/ivN9cCicv4J4/z8O2DT/i2WefxYsvvuh3DC+//DL69u2Lp556CgAwcOBA7NixI2SJESDWy/3f//0fbDYbnE4nCgoKcNNNNyk+1ilTpmD16tW4//77sXr1akybNg179uzB2rVrUVFRQZ8j/N///R/9/169euH+++/H4sWLvQIx33P+9ddfY8+ePfjqq69obDF//vyopk/KkRKBGAC8++67uOOOO3DOOedAo9Hg0ksvxfPPP0+fdzgc2Lt3r1dx3DPPPEO3tdlsmD59Ol566SX6vF6vx4svvoh77rkHgiCgX79+ePrpp3HzzTfH9diiSQEJxCwsEGMEZ8XOKtz6zhb4rgFWN1tx6ztbWDNwBiNN8Chi4kp7X4mFvSAISV2Hw+jktAVZLPBxqYNPCYsXvmllR46EvUvhMHz4cPr/JDWwtrYWPXr0AAD07NnTK0Ns+/btaGtrQ2Fhodf7dHR04ODBgwCAe++9FzfddBPefvttTJ06FZdffjkNugCxfkv6d3l5OS3zaWlpwYkTJ3DGGWeAl0wCTh87Hrt3/yJ7DLt37/bLQguWYSblgQcewPXXX4+qqio88MADuO2229CvXz/Fxzp58mS8/vrrcLlc+P7773HuueeirKwMq1evxvDhw3HgwAFMmTKFvvb999/H888/j4MHD6KtrQ1Op9Ovxsv3nO/evRvdu3f3Si9VenyRkDKBWEFBAd57772Az/fq1YtaVxJMJhNefPFF2cgeACoqKlBRURHV/Uw0ee7UxKYOB1y8wFLMGLK4eAHzlu7yC8IAQADAAZi3dBemDSlj1xCDkeLYSSCmFyejPQozoNVwaLM5UdtqQ2mOKdjLGYzEoaZuK1bbRgFpyiBZ+JBarGf67E9bWxvKy8uxWppO6Yb4HjzyyCO4+uqr8eWXX2L58uWYO3cuFi9eTFs6+dYocRznN08GvDMyY5WdWVRUhH79+qFfv3748MMPMWzYMIwePRpDhgxRdKyTJk1Ca2srtmzZgjVr1mD+/PkoKyvD3/72N4wYMQJdunRB//790dLSgnXr1mHWrFmYN28epk+fjtzcXCxevJgqeQTfc54oUiYQYygjP0NUxAQBaOlw0FRFBkPKxsMNXumIvggAqpqt2Hi4AeP7FgbcjsFgJD8kNdGgFQMxo06L7vlmHDlpwcG6NhaIMRhJxmmnnYbq6mrodDr06tUr4HYDBgzAgAEDcM899+Cqq67CokWLZHvr+kLMM9auXYuZfUfQxzdtWIeJE8bJvmbw4MH4/PPPvR4jZhlq6N69O377299izpw5+OyzzxQda15eHoYPH45//vOf0Ov1GDRoEEpKSvDb3/4WX3zxBU37BMTewz179sRf/vIX+tjRo0dD7tfgwYNx7NgxVFVVUdUynONTS/yaGjDigl6rQbZRjK8bWHoixcULWHfwJD7bVol1B0/CxceuKDcVqG0NHISFsx2DwUhebA5vRQyQ1okxww4GI9mYOnUqxo8fj4suughff/01jhw5gp9++gl/+ctfsHnzZnR0dOCOO+7A6tWrcfToUfz444/YtGkTBg8erPgzHnjgAfz973/His8/xpGD+/Hsgkewa+f/cNddd8luf8stt2D//v144IEHsHfvXrz33nt48803wzq+u+66C0uXLsXmzZtDHithypQpePfdd2nQVVBQgMGDB+P999/3CsT69euHX3/9FYsXL8bBgwfx/PPP45NPPgm5T1OnTsWAAQNw3XXXYfv27fjhhx+8grlYwQKxNISoYE0sEAMg1kJNXLgKV/1rPe5avA1X/Ws9Ji5chRU7qxK9awmjJFvZCrjS7RgMRvLiWyMGAH3cdWIHa5lhB4ORbHAch2XLlmHSpEm44YYbMGDAAFx55ZU4evQoSktLodVqcfLkSVx77bUYMGAArrjiCpx33nmYN2+e4s+48847cffd9+Cpx/6KS6edgZ9Wf4tX3n5f1jERAHr06IElS5bg008/xYgRI/DKK69g/vz5YR3fkCFDcO655+Lhhx8OeayEyZMnw+VyedWCTZkyxe+xCy+8EPfccw/uuOMOjBw5Ej/99JNXz+BAaDQafPLJJ+jo6MCYMWNw00034Yknngjr+NTACXIJowxVtLS0IDc3F83NzXFr6Lxs2TLMmDFDtk/Bb/65FtuPN+Nf147GtCGlMu/QeQhkSEGqnjqTIYX0utFodZi4cBWqm62ydWIcgLJcE9Y+eDarEevkhBpvGMnPnz7ajg82H8cD0wfi9rPEAvnFG3/FQx/vwKQBxXjrxjEx+Vx27TCUYLVacfjwYfTu3Rsmkwk8z6OlpQU5OTlBe1MxIsfu5LGn2tN42KzXon9pdgL3KHwScd34XrtSlMYG7ApPQ/KZcyKA0IYUgGhI0RnTFLUaDnNnDpF9joRdc2cOYUEYg5EG2H36iAFAH5KayBQxBqPT4qvF8EybiTssEEtDiGFHZ+8lpsaQojNSMbQcN5/Z2+/xslxTp1IKGYx0x7ehM+CxsD/R3IEOuysh+8VgMBKL7zq0i5ffjhE7mGtiGkIDMYsjwXuSWJghRWgq3YGqTsPByQuYOrgEr/5uNFPCGIw0Qq5GrCDTgLwMPZosDhyub8eQLrFPq2cwGMmF4M4P4iAuTjNFLP4wRSwNyXf3EuvsihgzpAiOxe7Eqt1ic8cLhovqV4ZBx4IwBiPNIPb1UtdEjuPQp8ht2FHH0hMZjM4IUcS07poqXhBYMBZnWCCWhrAaMZExvQtQnmtCoLCCA1Cea8KY3gXx3K2k4bs9dehwuNC9wIwJ/YoAAC3Wzq2iMhjpCLWv13nf8omF/SFmYc9IAph3XPwh51wnWYDlO2HdfLhE45plgVga4klN7NyBGDOkCM6XO04AAM4f1gW5ZlFFbe5ggRiDkW7IpSYCEsMOpogxEghx1LRYLAnek84HiSM0Gg4aTpwLMUVMOeSajcQVltWIpSH5me7UxE5eIwaIhhQvX3Ma/vLJTpyUpGqW5Zowd+aQTmtI0W5zYtUeT1piq9UJAGhhgRiDkXYQ10SDnyImpiYeqmeBGCNxaLVa5OXlobZWvCeZTCbY7XZYrVZmXx9jrFY7BKcdvMYFuAQIPA+LxQreoA394iSD5/m4XTeCIMBisaC2thZ5eXnQasM/XywQS0OYa6I3FUPLYdRpccObmwAA90wdgDvO7tdplTAA+HZPLawOHr0KM3BKlxzsqhL7iLS4AzIGg5E+0Boxn0CsjyQ1URAEcFznHRMZiaWsrAwAUFtbC0EQ0NHRAbPZzK7JGGOxO9HQ7oBJr4GLF+BwCRBajX5jRSqQiOsmLy+PXrvhwgKxNKTAXSPW1OEAzwvQdOKAg2CR2DP3KDR36iAMAL78nzstcXg5OI5DjklUUZkixmCkH4FSE3sWZkCn4WCxu1DdYkV5rjkRu8dggOM4lJeXo6SkBB0dHfj+++8xadIk1gg8xizdXolnv9uPM/oWoa7Nhn01rZh/8TCM7V2Y6F1TjcPhwJo1a+J23ej1+oiUMAILxNKQPLdroosX0Gp1IjeDDWTtNo/SY+nkPXPabE58t7cOgFgfBgA57hoxm5OH1eGCSZ96aQkMBkMeGojpvVe59VoNehRk4FB9Ow7WtrNAjJFwtFotjEYjnE4nTCYTC8RiTKtDg8pWFzoELay8FpWtLjQ7OJhMqecmrdVqU/K6ST3tkRESo06LTHd+b2c37CC0SgKxzt68dNWeOtidPPoUZWJweTYAINuoA1HyW1l6IoORVtgc8qmJADPsYDA6M9Jm71kmUZtpY3OAuMICsTQlz10n1sACMQBMEZOybGc1AE9aIiA6JmUbxUGYWdgzGOmF3SVv1gEAfUvchh0sEGMwOh1WySINmQO02dgcIJ6wQCxNoXViLBADwAIxQocTWLO/HgBwwfAuXs+R9ERWJ8ZgpA+kAB/wrxEDgN6FYiC2/lAD1h08CRfrIcRgdBqk9aNMEUsMLBBLU0idWEM7m1QDvqmJnW+QcfECNhxuwNJfNXC4BPQtzsSA0iyvbahhBxuEGYy0gVjXA/6piSt2VuEfX+0FAOytacVV/1qPiQtXYcXOqrjuI4PBSAzEUdWk1yDLrYhJ50uM2MMCsTSFKWLedGZFbMXOKkxcuArXvLEZP9aIP/maFhu++qXaa7scszs1kSliDEbaQCZagHcgtmJnFW59Z4tXf0UAqG624tZ3trBgjMHoBMgpYu0sEIsrLBBLU0gvsQbWSwyAt9RucXSeQIxMtqqarV6Pt9mcfpMtjyLGAjEGI10gEy2thoNOK97yXbyAeUt3QS4JkTw2b+kulqbIYKQ5NofHUdVTI8YCsXjCArE0hTZ1trBJNeA9sHQW18Rgky2CdLJFasSamSLGYKQNdokrGmHj4Qa/xRkpAoCqZis2Hm6I9e4xGIwEYpU0e88kqYmsPCGusEAsTcnPFCfVjUwRAwC026WpiZ1jkFE72fI0de4c54fBAMQFi3UHT+KzbZVpaVZBUhOljom1rYHHBSlKt2MwGKkJVcR0WlojxhSx+MIaOqcpHkWMBWKAd2piZ1HE1E62aI0YS01kdBJW7KzCvKW7vBYsynNNmDtzCCqGlidwz6KH1eGviJVkK2vWqnQ7BoORmniZdTDXxITAFLE0hQVi3rTZPMFXZzHrUDvZ8ihiLBBjpD+B6ifTzaxCWoxPGNO7AOW5JnABXsNBDEjH9C6I/Q4yGIyEIR0fso3iHIApYvGFBWJpCklNZPb1ItIGhZ0lEFM72aJ9xNhqGCPN6UxmFTZJDQhBq+Ewd+YQAPAbH8jfc2cOgVYTaPRgMBjpgE1SQ8oUscTAArE0hShiTRY7BCH1JxOR4HTxND0HADo6iWuidLLli9xkK8fE7OsZnYPOZFZBzTr03rf7iqHlePma01CW662cl+Wa8PI1p6VNaiaDwQiMzT0fMkr6iLXZneDTYBEqVWCBWJpCAjEnL3T65nztNu/Aq7OYdQCeyVZhlsHrcbnJVq6Z2dczOgedyayCrHgbtP63+4qh5Vj74Nm4bnxPAMC4PgVY++DZLAhjMDoJXqmJ7sVYQehcbX4SDTPrSFPMBi3Mei06HC40tTto/U9npM0n8LI6ePC8AE0nSbupGFqOTIMOv3tjI3L1Al783ekY36/EL+2IpiYy10RGmtOZzCrkasSkaDUcBpfnAACyjDqWjshgdCKIImbSa2DUaaDTcHDyAtqsTqqQMWILU8TSmPwMd51YJzfsIF3izXrPRKSzpCcSiH1/gQkY27tAdrKVwxQxRiehM5lVSFOPAmE2iGNjZxsXGYzOjnShhuM4T52Yjc0D4gULxNKY/EzmnAh4mhNK0/M6i2EHgahcJm3gvG9SI2Z38rCyCRkjjVFbP5nK2GQaOvtici9SdZbWHgwGQ8R3fMhiTZ3jDgvE0hhqYd/JmzoTRSzbpKeqWGebcBCVyyyfnQQAyDToQOadTBVjpDukfpIsQBDSzawiVGoi4MkW6JCYGjEYjPTH6qOYs6bO8YclgKYxHkWsc0+qyYCSbdQhwyDWzVkcsR9kXLyAjYcbUNtqRUm2mOaUqBV2YklvDvKL12g4ZJv0aO5woKXDkRb1MQxGMCqGlmPtgXq8s/5XAMD4voV4Z/bYtFDCCMQ10RBEESOpiUwJZ6ghme5xDPU4XTycbndEslBDDDvaWSAWN1gglsaQGrHOroiRQCzTqBUnHO2xT01csbMK85bu8rLILs81Ye7MIQlZaW9VoIgBQI5Zh+YOB5qZYQejk3Ck3kL/P9OgTbuJpFwfMV86a6YAI3yS7R7HUI/d5VHATXqWmpgoWGpiGkNTEzt5jRhZ2cky6ZFhiP2EY8XOKtz6zha/PkXVzVbc+s4WrNhZFbPPDgStEdMF7w1C3DVZaiKjs3Coro3+fzrWjipJTaQ1YkwRYyggGe9xDPXYJKnIpL1FJktNjDssEEtjqCLWyQMx0iU+y6iF2SAOMrGacLl4AfOW7oJcuEMem7d0F1xxbpaoWBEjgRhr6szoBHTYXTghmUymZSDmkG/oLIW5JjKUkqz3OIZ6yCKNTsNB5w7ESGpiG1PE4gYLxNIYWiPW3rkn1aSPWKZBhwz3ym+smjpvPNzgt0ooRQBQ1WzFxsMNMfn8QFCzjhDJyDnuDVrYIMzoBByub/f6Ox1T89SkJtqdPJtAM4KSrPc4hnrkxgZm1hF/WCCWxrDURBGqiJl0MU9NrG0NfIMKZ7toQfK9TUwRYzAoJBDTa8W6sHRUhBSZdUh6LDLDDkYwkvUex1CPlarlnt9/llGcA7SyQCxusEAsjSlgfcQASGrEjDqaghOrFCSlToPxdiQkgVhGiBqxXNbUmSHBxQvYcLgBP9dz2HC4Ie3UElIfNqA0G0CapiYqqBGTroinYzDKiB7Jeo9jqIcoYiapIsZSE+MOc01MY/Koa6IDgiCA49LLDUwpbTZxsMkyShSxGE02xvQuQHmuCdXNVtkceg5in6IxvQti8vmBIIFVSEWMBGLMNbHT4+2KpsVb+zennSvaIbciNrRLLn450YKOGKUsJxIlqYkaDQeTXgOrg0/L9ExG9EjWexxDPXSRRqKIZbPUxLjDFLE0hihidhefliu9SmmziUFIplGHDGrWEZtBRqvhMHfmENnnSBg8d+aQuFpkC4JAFbHQZh2kRowpYp2ZzuKKRgKxU7rmAAAsDhcEIb1UP48iFvx2T9ITWWoiIxjB7nGEeN/jGOFBjXyYIpZQWCCWxpj1WloX0NCJe4m1SxSxWKcmAmKT2DkzBvk9XpZrwsvXnBZ3NcFid9GUstBmHaxGrLPTWVzRBEGgqYmndMl1P+YJXNIFm0wdiBzMwp6hlIqh5Xj5mtOosQMh26hLyD2OER7BzDpYjVj8YIFYGsNxHArchh1Nls47sW6zScw64tS4tDzXTP9/YFk2/nvzOKx98OwENXMWj1+r4WAI8YtnZh2MzuKKdrLdjlarExwHDC7Ppo+nW/YAadqqVBFjqYkMJVQMLcdVY7oD8FieF2UZMP2UskTuFkMF1KxDUj9KFTEbmwPECxaIpTmkTqyhExt2kEAs0xAfRQwADkqaxOaa9BjftzBhqRokzTDbqEOoMkGqiLG0hE5LZ3FFO1QnpiV2yzcjw6CjDU1jlbacKMiqdzDXRIApYgz1kIn85aO6w6TX4PBJC7Yda0rsTjEUQxUxSY9BWiPG5gBxgwViaQ6pE2vqzIGYe0DJNklrxGI72SCTPACwOhM7sSHNnMmqZTBoHzGmiHVaOosrGklL7F2UBcDT1DjdaqTk6kDkSNfjZ8QOch8tzjZSJeyTrZWJ3CWGCuQcVYkiRko6GLGHBWJpDukl1llrxFy8QFd4M71cE2O72iNVxMhEKFEQB0RFgZjJY1+fbqYFDGUQV7RA4ikHoDwNXNFID7E+RZkAQMeGdEtNVGJfD0hSE1kgllBcvIB1B0/is22VWHfwZFLXYpL7aIZBi0tO6wYAWLr9BO1dx0hubA5/RYzUiNldPFXMGLGF2denOfmZbgv7Tloj1i5JM8o0auOSmigIAp3kAYlXxEhqYo4iRUy8XhwuAVYHT88Xo/NAXNFufWeL33OJcv6MBQfdqnWfYjEQi1facrxRYl8PSFIT7WwSnSi8W0aIJHPLCPJbyTBocUbfQhRnG1HXasPqvbU4l9WKJT1yjqqZBs88oc3qhDGLzQFiDVPE0hyiiDV2UkWMpCUatBoYdVqPIhbDyVZ1i9VrMpdoRayVpmbqQ26badCCzK+ZhX3nhbii5Wd4XzOJcv6MBYfrRdW6jzs1MR5jQyIg6oRJryw1kSliiSEVW0Z4AjEddFoNLhrZBQBLT0wV5Mw6NBoOme6xIJJeYqmk7CYapoilOTQQ66Q1Yu3EqMMoDizxSD86WCuutOs0HJy8kDSKWJYCRYzjOOSY9WiyONDS4UBpTmrXATHCp2JoOapbrHjk810AgCyjFmsfPDvllTAAcLp4/NpgAeBRxDL08akfjTdk1dugDZWaKAZqrEYs/oRqGcFBbBkxbUhZUv3+OiSKGABcfGo3/OuHw/h2dy2aLQ7kZoRe/GMkjkBqeZZJh3a7iy7iqiXVlN1EwxSxNMeTmtg5A7FWiXU9AJjjMNk65F5p71cirrQniyKmJDVR3M5TJ8ZILuK9yni8oYP+v8XuClg3lmoca+yAwyXApNegzL3Y4ElNTC+3MJp+FEoRY/b1CSNVW0aQ1H/y2xnSJQeDyrJhd/H4YseJRO4aQwE2qpZ7L9KQOrFwFLFUVHYTDQvE0hxPamLnnFS3S6zrAWn6UewmWwdrxUBsSHkOAHHVKZHGF8QBMduoLBDLpU2d02tCmuqs2FmFiQtX4ap/rcddi7fhqn+tx8SFq2J6YyOqEQDwAsJeIU02SFpi76IsaNwKQ0YapuY5XTwN1kPWiKXh8acKqdoywlcRA4BLTusKAPh4C0tPTHYCK2LiHECthX0oZRcQlV2WpugNC8TSHJaa6FbEjN6BmMURu+DokNuoY0gXMRDjBdH8IlFQRcysLE2EWtiHUMRYDnj8SNQqozQQA9JnHCHtJYhjIuBRhNIpNdEmca9T6prIUhPjT6q2jLDIBGK/GdkVGg74+Wgjjp5sD/RSRhJAW1v4qOXZYSpiqarsJhpWI5bmkD5i6TKBUgsJQmhqovuGIQjiJMVXko8GvooYIK48hWqoGitojZhCRYymJgbpJcZywONHoupHBEHAMXcgxkGAAA6NFjt6ITPEK5MfslhC6sMAiVlFmgZiocYfZl+fOEjLiOpmq+zvnINolJNsLSPIb8UscdorzTHhjH5F+GF/PZ7/dj8mDShGSba478lU35ZuuHgBGw83oLbVqvh8WwO0tiBzhVaVgViqKruJhgViaU6eu1jW6uDRYXd1Ojtyj1kHUcQ8l7zF7op6IGaxO3HCHZwMkgRiVgePRC1mSmvElEyxSCDWHCAQI+qM74SBqDPp4qqXLKhZZRzftzBqn9vQbke7e6JVYgZqOoCmNGmDQZo5SwOxdExNJI6JOg0XclLGGjonjlRsGeF08bC7xOsrw+c+2q8kCz/sr8eSLZVY4k5RZAt1sSPchVHaR0zGrANQn5qYqspuomGpiWlOllEHvVYcvDujKkakdSK1azUcXRmORVE+6R9WkGlAQaaBDnCJbIxIa8SUmnXQ1ET/88NywONPolYZSVpiaY4RuQbx+0yXMYSkJvZ2W9cDnlX9dDLrUNpDDJD2EWOBWCIgLSMK3VkshGRtGWGRBOzSBd4VO6vw5o9H/LZnZg2xIZK09dBmHeoW3oiyG2i5gIMYICabsptoWCCW5nAcR+vEGjphL7E2m3izyJSk5cWyX9BBn9oTMgGyJtA50aOIKawRC5KayHLA40+iVhmPNYqOid3zzch0/3zSoTF8m82J2lYbAKB3kb8ilo41YkYFyj9LTUw8FUPL8dTlI+jf143vibUPnp10QRjguX9qOM99ji3UxZdIz3eghZrsMBUxouzKkazKbjLAArFOQGc27PBNTQQ8aRSxmHCRlKe+xeJKO1lpSqQi1mpVq4gFtq9nOeDRQY3RSaJWGUl9WPeCDBqINaXBGHLYvVhSlGWgDqFAejZ0psX4ChQxTyCW2HYbnR1pIFyYZUzaSau0mTPHifvIFuriS6Tnmy7U+KYmhlkjBniU3YIUUXaTAVYj1gnw9BJL/dVstfimJgLSfkExVMTctSdGfWIVMaeLp3U+qlMTZezrWQ545KjN509U/civJ92BWL4ZllrxsXRYzCF9/vpI0hKBdHVNVJ6aSGvE0uj4U5F2yflvTeJejhafHmIAW6iLN5Geb6tDXjEnNWLtYQRigBiMQQBueVe8Z82dOQTXju+VtIsKiYYpYp0ATy+x1J9EqaVNThFz14J0OKJfC+IxAXArYrrEKmJS+1nFgViQhs4sBzwyws3nJ6uMuT4tCGK5ykhqxHrkm5GhJzViyTsxVMqhOn/HRCA9XROJWYcSx1ZTGKmJrIVF9JHWKCZz3z65HmJsoS6+RHq+A/YRi6ChM8EuGQt6F2WyICwITBHrBOR3Ygv7Nh/7eiB2ihjPC3SS19dHEbMlSBEjqpZJr4Feq2zdhaYmytSISdUZDvDKTWc54MGJ1Ia+Ymg5TjR14NEvdtPH3p49Fv1Ksvy2jQYkEOsmqRFLh9REYl0vrQ8D0tM10RbAnloOtTVirIVFbGi3SRWx5A3EpKmJhFS14U9VIj3fZF7ia9YRbo2YFKmyzpxYg8MUsU5AvtvCvjMqYu120tDZM9DEqii/usWKDocLOg2H7gUZABKviBFVS6lRh3RbOddEQOLuleWdA17KcsCDEo36CekkDQB2V7VEa/e8sDt5VDW7zTokNWKN7amviB2u91atCWZ953ZNVJOamKgG450B6fUnl5WQLMg1c5aaNfguJbGFuugTqTlGoBqxTEP4NWIEq2TOk06LW7GABWKdAI9ZR/IO6rGCpiYaYu+aSNSwnoUZVH1KdI1Yi0qjDgA0/a2lwwFBkE81qhhajoWXDPd6bPHN41gQFoRo1E/4por8ciI2gdiJpg7wgniDLs4yIFMnXgeprogJgkDNOgIqYmmUmuhxTVRj1hH8+JkzXmxJFUWMpPZn+PQmJQt1Zbne6XDMrCE2BFoYVXK+A6YmRkERk46j6VR3GwtYamInIJRrYjgd2VMF2dREuvId3cHhYJ3/SnuiFTFqXW9WoYi5zTqcvIAOh8sr9UTKiRbvgKGmxYpePpNbhodo1E8QlbI814SqZit+OdEclX3zhdaHFWSA4zi4/X5SfjGnttWGdrsLWg2HHm7VmkCV8jRavfW4JipPTXTyAhwuPmAqsxpld3SPnIDbMeTxrhFL3t8bCRjNMq0RKoaWY9qQMkx7+nscqm/HA9MH4JbJ/dJmXpFsVAwthyAAt7rNMU7rkYcPb5kQ8nzbAph1ZBvFAT+SGjHp4nM6LW7FAhaIdQIKgtSIpXueP3H9yZLtIxbd1UZf63pAUiPmTFSNGFHElAdiZr0WOg0HJy+gpcMZOBBr6vD6u7qFOWEFIxr1E2RiNr5PIT7eWomdlc0QBIHaR0cLaSAGABnuS6DD4YLV4fKrKUgVyGJJj4IMPwOLWLqpJgqby23WoaA+1GTwbNPhcAUMxNQpuywQU4u3a2ISK2IyqYlStBoOXfPNOFTfjvJcMwvCYgzpjQiICy+hzjfPC7C7AtjXmzyL1S5eCOu7kyrrrEYsOCw1sROQR2vEvFfX0j3Pn+cFelOTC8Sir4j5u7GRlehEDUSeZs7K11w4jqMKWrOMYQehstE7EDvRxAKxYESj2SX5Pkf1yodOw6HR4giqToTLsUZPDzEAMGtB96sphVWxQwHSEgGP6YDdyadNWp3NPe4oSU00aDUgl16wOjHmjBdbLLbUcE0k909zgIU6ILjxEyO6nGj23I/bFSwykyAM8DfryJTU1IeriknnPOm0uBULWCDWCZBTxDpDnr90MMqU6yMW5eDIo4h5JnmmRLsmWtUrYoAncAtWLE4UsV6F4mS9urkj4LYMEZLP77sCqbR+gihihZlG9C/NBgDsrIx+euIxH0WM44Bcd8pqKruvHnY7JvaRCcSkKVbpYtgRqBhfDo7jFNWJsRYWsUV63+pwuOBwJWeDbUuAGjEpuXRBLz1+T2qId2uHasmCnJL+X9I5ie/4YNRpacZANAIxZtYRnJQJxBoaGjBr1izk5OQgLy8Ps2fPRltbW9DXvPbaa5gyZQpycnLAcRyampqi8r6pRp67Rsxid9EfRzQc3JIdMoDoNJzXQBOLonyL3YkT7vMpbRRLFbGE14ipy0JWspJZ6Q7ERvUUJ1wnYqDMpCMVQ8sxvGsu/fvZ347A2gfPVpQKLFU4T+kipn3FwrDDNzURAPLMqd8GgyyW9C72D8RMeg1Ihme6TBzU2NcDkl5qQY4/GsouIzC+6kEkhgmxJFRqIuBx4A2WWZGOrNhZhYkLV+Gqf63HXYu34ap/rcfEhatimmUknc8pUaBI3bqGE+dIvmQbIzPssLLURMWkTCA2a9Ys/PLLL1i5ciW++OILrFmzBr///e+DvsZisaCiogJ//vOfo/q+qUaOSeeXVhQNB7dkh9aHmXReNTQklSKaq94k5akg00D7tgGJ7yPWGoZ9vXT7QIqYw8Wjxl0TNrpXPgDvFTlGcJokE5O+xdmKJ60kEMs26TGUBmLRV8R+PekOxAo9gRhpg5HKqYkeRcy/95qXIpQmqTRq7OsBSVPnEMdPlF2TPjxllxEYXzUjWdMTPamJShSx1B0z1JKokg+1iphVYuQjV2NMnRNt4X130sWcdBlPY0VKmHXs3r0bK1aswKZNmzB69GgAwAsvvIAZM2bgySefRJcuXWRfd/fddwMAVq9eHdX3TTU4jkN+hh71bXY0tNtRlmvqFHn+bW5Xp0yfHPYMffRrxEiT2L4+K+2JVsRIQ2c1NWKAR0FrCZBSUt1sBS+IdSXD3OpOFUtNVIzUfVBNr6BWSTuCU9znfWdldBWxZouDujN2yzeDJCvTWtMUVcTsTh7H3HWNvr9TQoZBC4vdlTY1DXYV9vWAuqbOFUPLMfHn4/hmdy2yTTq89rvRaeW4myh8r71k7SVGFbEgxj2dLRALVfLBQSz5mDakLKq/E0EQvAIxi90V0sSJLtIEGBtIXX24CwFS18R0GU9jRUoEYuvWrUNeXh4NlgBg6tSp0Gg02LBhAy6++OK4vq/NZoPN5nGoaWkRJ0IOhwMOR+wHHPIZaj4rzywGYvWtFjgcZpzaLRtlOUZUt9hktxcd3Iw4tVt2XI4pFjS1iwNTllHrdQxkAc9ic0bt2PZXi6pEr8IM789yj3Ed9uh9lhpaOsRJs1mvUXXdZLlPUmO7TXb7X0+2AhBrQYrd3X7r2+xo67ApXn3vrAiC4NWPq6HNqug7cUnMZ0xaAf2KzOA40a2yurENhVnGqOzfoVpxPCvKMkDPCXTfckziNdHQqmx/kwkXL+CzbSfg4gWYdBpkGzjZYyCKUKtF/rpPNYgzrJZT9rsnCldbh13R9mTlXRCA0T1ywLuc4CVzrnDuVZ2ddklKvZMX0NRuhcOREeJV8YcoJQat/G8JALIMJBNH3e8pVa+bDQpLPtYdqMXYKNZQnmyzeZlvOHkB7R02P1t6Ke1W8R5k1Glkz3Omew7QEuZYKM04ssRp/pNs143S/UiJQKy6uholJSVej+l0OhQUFKC6ujru77tgwQLMmzfP7/Gvv/4aGRnxGzBXrlypeFvBqgXAYdXajWjcI67XnF3M4b0WDeBXdi1AAHBeqQVfrVgerd2NO9tPcgC0sFtasWzZMvr47kbx8er6Rq/HI+HHfRoAGtjrf8WyZUfp4werxM86fPQ4li37NSqfpYZjNeL3vm/nNugrxe9dyXVTf0I8nu279mGZZY/f85vqxOMyONuwbvU30HNaOAQO73++AkWpK6LGBasTcPKeoffHjVvAHw1dyG1xAmTI/nH1t9BpgGKjFrVWDm9+vgqD86JTDL7V/bvJgs3r99FccwKABlt+2Ydl7f7XRLKy/SSHj49o0GQXxzmrk8f4+StxSS8eIwq9z5nLPU6uXrsOVVE6n4nk0BHxd3zkwD4s69gbcntLi3j8P23cjI6DoY+/0j2+dNgdQcdSNfeqzowgAG028Zxm6Xg02Tms/nEDTu5Ovmuxslrcz72//A/LarbLbrO3SRxLKuvCu9em2nXzc714vKH4+ofofqfH2gBAh0ydgHanOM59tuwrZAWpSDjcKr7GZbPKfjeWZnHs+GnTVgi/qt/Xmjrx+gCAEzX1UZtrKSFZrhuLxaJou4QGYg899BAWLlwYdJvdu3fHaW+UM2fOHNx7773075aWFnTv3h3nnnsucnJi3zfF4XBg5cqVmDZtGvR6ZbU/XzRtw8Hdteg1aChmjOkOANiybA9w8Fe68kYozzXhL+cNwvRTSmOy//HCurUS2PcLupUWYcaMUfTx4iONeGXPJujNmZgxY2JUPuuVw+sAtOK8iaNwziBPcN+86Rg+ObIbhSVlmDFjZFQ+Sw1P710LtFtw1sRxGNElS/F1c2T1IayqOoCiLt0xY8Ypss/jwAEM79cN558/FM/sW4ujDRYMOm0cxvRibmnBONZoATatpX/3GjAYM87oFfJ1xxs7gE0/wKDT4MILZgAAvm77H77cUY3MrgMxY3Kf6OzfmsPAvv0Y3qcLZswYRsebEYP7YVXVIeSXdcOMGUOj8lmx5qtfarBo3Xa/VKFmO4dF+7R44coRXuPcG8c2oOp4M4adOgpTB5cg1fn6/f8BddUYPnQIZozvGXL7JfU/42DrSQweOhwzTu0acvvn9v8ItLfDJXCYNr3Cr/dYOPeqzozNyYNf/w0AoFdpHrYda8aAU0ZgxqnJVybx71/XAy0tmDB2NM4eWCy7TY/KFry0ez0EnQkzZkxW/N6pet0UHm7AW/s3h9zu3DPHRlUR+3Z3LbBjG/qU5mJfTRtsTh4TJp3lTi2XZ92hk8DOn5Gfm4UZM87wf8/2HdjZWIU+A4dgxoTQY4cv/zwojg0AYMrKwYwZ41W/h1qS7boh2XKhSGggdt999+H6668Puk2fPn1QVlaG2tpar8edTicaGhpQVlYW9ueH+75GoxFGo38akF6vj+uXr+bzSNpSi9UFvV6PQ3VteHfDMQDA69eNxhPLdmNfTRvumdofd5zdPy3y/Elqc47Z4HWecjLEc9HhcEXl++J5AUfc5gYDynK93jPDKBp32FxCQgaGVneaS36WiX6+kuumwH29tNnkz1G1u3lkt/xM6PV6dMkz42iDBXVtzqQYAJOZNrt3WNBu5xWdsw6nWN+UY9LR7Yd3y8OXO6qxp6Y9aue9sln8bnsVZXq9Z6G7XrTFmhrfsYsX8MTyvUHrNZ5YvhfnDe9KxzvS5sLOIyWOMRR29wJbhtGg6HgyDHr36zhF20trP1zQICPAa+J9b0xV2uyelOXyXDO2HWuGxaFsfIg3He4aoByzMeD+FUQ4ZqTadTO+XwnKc02obrbKjjtiyYcJ4/uVRHWOVefuEdslz4wTTVbYnPaQv2GnIH6+Sa+T3S7HXRMc7vVnc3rOgNUZ32s4Wa4bpfuQ0GKO4uJiDBo0KOg/g8GA8ePHo6mpCT///DN97apVq8DzPMaOHRv258fqfZORfJ9eYguW74GTF3DWwGJMHliC4mxx4t2rKDMtgjDAY18vbU4ISPqIRamAtKrFKgZ1Wo42wCV4+ojFv1hVEITwXROJfX2AQvFKd/Pmru4Vt/Jc8YYbi+bC6Uajj+ug0mLoVpmecKd0cRt2RNE58bhPM2dCnpmYdSRH/n0owmnRYY6BkU8iUdNHDPCMjcEaOkuRurOli+V/IiE9xIw6DTXHaUlS10Ql9vXErMNiT95+aNEkUa0dSOuY8lwzMtzznVD9v2yO4GNDZjTt69NkPI0VKVFVP3jwYFRUVODmm2/Gxo0b8eOPP+KOO+7AlVdeSZ0NKysrMWjQIGzcuJG+rrq6Gtu2bcOBAwcAADt27MC2bdvQ0NCg+H3TBWI93dhux08H67FyVw20Gg5/njEYgMfdj9y40wEyEGUZvYOQaPcRI72JehRk+KXmeFwT439erQ4eDpe4KpWt1jUxRP+XSvdkvWueOxDLI4EYc04MRZOP62CwXm1SPNb1nu+S9BI7etISNXc1uR5iQOq5JobTosMcgx6DicTudkYzqLWvVxBUCYLg1Xw4US060gmyAJBp1NEFl9YkdU0kZgzBAjHpolFncU4krR3IeEmIZWsH4phYlmuiLtGh2vOQuZ4pgKEH7SMWZkPnDtbQWTEpEYgBwLvvvotBgwbhnHPOwYwZMzBx4kS89tpr9HmHw4G9e/d6Fce98sorOPXUU3HzzTcDACZNmoRTTz0Vn3/+ueL3TRfIytTu6lbMWbIDAHD1mB7oX5oNQLQhB9QFYvHuHK8W2kfMRxHL0IsDjJMXqL1zJBysFQOxvsX+vYkSqYiRG7iG87fwD0Uw+3pBEHCCKGLuQKwsV/wvU8RC09juE4gpnGi12jzW9YT8TAP9DnZFobGz08Wj0m3xLu0hBqReH7FwWnRkKGhonEqoVsRUBGJWBw/pkJ8u5yyRkHtWhkFLJ8LJ2kesXUEfMa2Go+NVZwnEADEYe/h8jzL2t0uGYe2DZ8esvx5ZAC3PNdExrN0W/PcYqscgta8PMxCzMft6xaSEayIAFBQU4L333gv4fK9evSAI3oHAI488gkceeSSi900HVuyswt+Wiy5ne6tF23EOwPBuuXQbo8qAYcXOKsxbustr4l2ea8LcmUOSppknkdSJxE6Q3jg67C7Fq8WBID3E+sgEYkQRi0bApxaS0pJl1EGj4eBSMRYGa+jcaHHQSVeZOyWxSy5TxJRCUvvyM/RotDgC9mrzhSpiPgrvKV1yUNnUgZ2VzRjXpzCifatqtsLJCzBoNSj1CWTyMsT05iaLHTwvQJPkKcxjehcoqtcYIymaz4hBs/dEQtOPgthYSzG7+20oUQR9V8rTRUVMJFQRM+hoAJOMgZhLsoiZEWKRL9esR6vV2akCMQBedvL9S7NiWvJBFbEcE53vKFXEAvYRc88BwklNdPGC1/HbnHxK3DMSRcooYozwIF3efes6BAB/+uh/tMs7WRVRooglqnO8Wmhqok9ankGngc49IFgckd/kDtWRQMy/SSxRxKwJWC0mQRSp91IDrRHrcPgtcJxoEoOt4mwjTWsodyti1UwRCwlJTexRKF4vihUxmdREABjqbuwcDUXsmDstsVu+2e+mSWrEeCE5J4e+hFOvEe360UQTatXbF6KIKRmv2n0DMaaIRQy5Z2UYtTStLxkbOksn+cFSEwFPNo7SFOx0wSs1zx67hVhBEOhcrEuemWa/tIcYw8hvnCwW+5IVQWqi3PhhdbLxIRAsEEtjgnV5J8xbugsuXlBcIxaqc7z0PRMNqV/IMvqv2EVzwnWwLnBqYiJr7zwT9zACMZNn0u07oB93p651yfNY4xKzjvo2O538MeQhiyKkBkvpBKVFxqwD8NSJRcOwg9SH+Rp1AOICBmnymSp1YqReo8BtVkQIVK+RoU+vGjG1qYlqasR8J2iJWGxKN0iAk+yKGPl9cFzoaytUvXG6YvVKzYvdd9hocdDfeUmOkZp1+C6U+BLKrINcf+EoYnLjR7osbsUCFoilMWpcw8iPMVQKXThOZImizRo4EIuGYYeLF/Ddnlp6PnoV+k9eyXlNiCLWQRwT1Wcgm/Qa6LWc1/sQiCLWTRKI5WXoqfrHVLHgkCCmJwnEFLsmBlfEDtS2RRxABDLqIJD0xFQJxAAxGHvErYz1Lc7Ef28eF7BeI90UMTKeK02/VmNW4nuOWCAWOaSuJ8OgTWqzDvLdZ+i14Ljg6WZMEYutWkzKAYqyDDDqtB6zjlCBWIhFmmgoYia9hr5/uixuxQIWiKUxalzDDDQ1MfiPJRwnskThsa+XC8RIHnV4g8OKnVWYuHAVbnhzE33sghfW+qVlkhXmVFPEOI4LWCdW2UQUMZPX9uXMsEMRxOyCmGG02ZyKFORAgVhJthFFWQbwArCnOrL0xFCBWH5mahl2EE66DVIGledgfN/CgPUa6RaIeSZbCmvEVChiLDUx+lBFzJjcipiFGnWEXuQjgVjnU8Rcsv8fbaSOiYBnvhMqNZHM9QK5JmbR60/99+YJxLR00Zst1ASGBWJpjBrXMKUpdOE4kSUKj329TGoi7Rek/ianpkaOrAY5eQHOOPdR8dSIhefJ46kT8z5HRBHrKlHEAGkvMWbYEQxfRQxQlv7RFqAnHMdxkn5ikQVix4KkJgJAfgoqYgBQ625AXuxuVB6IdJs0xLJGzD81kdnXR4pUEcuhiljyBWIdjtDW9YTcDBaIxXJhp0rSQwwATR9XbNYRKDVRooj51omHgowFZr027XozxgIWiKUxxDUsUOIAB3HyPKZ3gcQ1MfjNVM17JhpyU4tmaqLaGjnpalO8VbFwmzkTSEqjb0oJUcS65ntP1stYU2dFEDWpONtIb1JKCvIDKWIAMLSrWCe2K8I6sWPEuj5kamJqTarqSCCWHTwQM+vTxzVREISQzmi+mFTY9/spYmyiFTEWSV0z+Z13OJKvGTJNTVQSiHVSRUz6e4ilWlxNAzHx/ptBAyiFZh0hFDFeUL/I0iFRxNSMKZ0VFoilMVLXMN/Aydc1jNaIhRjw1bxnIuF5IWhqYrgpSGpr5KSrTfFeZSdKltpmzgSqiPmmJjb6pyYCQBeSmtjEArFA2J08vS7zMwyqeuwESzWlilhl+IpYq9WBBncKX/cCs+w2xDnRtyl1sqM0EMtIo9REh0sAWchWnZoYjn09m2hFTDsNcHRebr/hGCbEEk9qYujrKqeTBmJWycKrNYbjyQl3BgpNTSRjWIQ1Yma9FmQaR3pYKkUuNZGND4FhgViaQ1zDyI+U4OsaRmvEFPxYlL5nIrFIjkMuEKETLpWDg9oaOY2GC6tZdjSIWBGTKbK2Oly03qZbHlPE1NLUIZ47jhPPb6BgV45W6pooo4i5A7G91a1hr54faxBv6AWZhoB1haSpc6qlJpJArERhIJYOkwbpopr61MTQ15Bvw9h0SedMJBa6eKiFXquh30eypSd2hKGIKe2XmC5IFzNiubDjq4h5asQic03kOM5j2KHy+iPHbtJ7ruFYBqOpTso0dGaET8XQckwbUoaNhxtQ22pFSbaYOihVrdTarJP3HP34SjRaHDitRz4+vGV8wpUwAkmbkap9Ujwrv+oGmHBq5Iw6DewuPv6KWJBUNiV4bIc954ikJWYatH61Z0QhYzVigSFpiblmPbQaTpL+Gfo6DJaa2L3AjCyjFm02F/615hBO7ZHv9xsPBbWuz5dXw4AUTk1sU5iamEaKmHRRjSwGhcKsokbON32TBWKRI1XEAPG33uFwJV0vMYvPfgYjR4Xqn05Ijc/ikZpYluOuETMqG8No/WiQZu9ZRh1arE7VzolEDTTptNC53ZfTYUyNFSwQ6yRoNRzG9y0M+LxRoWui73tKX58sQRjgmbRmGuTtdc1huiaSGrnqZqtsnRgHURmS1sgZ9Vq02pyJU8TCaOgsvs4dJEgmAdSoI9/sd17JjYDZ1wem0a0mEtML8t2EcqbieQFt9sCpiV/9Uk2tyv/+1V4A4grp3JlDFCvUoYw6AKlrYuooYi5ewEmFgRiZWKZDvRMZbwxajV9z7kCocU0kkzMNJ9aRqJlsungh6MJgZ8Xjmih+D9kmHWpbbUmniJH9ZDVigYlHjZh3M2d3jRhp6BxhaiLgrhNrVq+IWSWpq6QNTjpkGcQKFogxAEgDMXXBAtk+lAweb8ggFCjFKlyzDlIjd+s7W8ABXsFYoBq5cM9tpARTUJRA7eslN9BKmWbOBHIjONluh9XhCmiL25khSlKeO8XP0yIg+O+nze6k9T6+3ydx8fRdGCAunkrThUNZ14v77VbE2lNnUtXQbgcviAFDYWYosw6P45ggCCF7JCUzaps5A94NnUMdPxljCzKNqG+zocOubHxbsbMK85bu8kphVrtokK54XBOJIpacvcTCS01MrmOINVapIhajhZ2WDicNcEpzSI0YCcRCKWKhW1uQ1MRW1YqYJzWRqPFMMQ8MqxFjAPDI06EaOvtCfszhNP2LJW0275VFXyIpyic1ciU53pO6QDVypNFx/M06olQjJqeIyQRiuWZPU+eaFqaKyUGUJI8iJu9M6QsJqg1ajVeAq9bFMxhKAjGy36mkiJH6sIJMY0jVhaTm8UJo46Jkx5N6pCYQE7cVhNALR8SVrShLvCasCrIp1LT+6IxQRczgUcSA5KsRIymUxGU0GCQQa1XYLzFdiIciRow6CjIN9L6Q4Z7zhFoc97gmBlPExO8u/BoxbVqle8cKFogxACAsQwmHi6cDaygZPN4E6yEGRF4LUjG0HB/8YTwAUSX7781jsfbBs2VXdNXW30WLyBUx//ql402BFTGO46hz4okInBNdvIB1B0/is22VWHfwZFrdvH0VsewATbN9CWTUodbFMxjHFAVixKwjdVa3ldaHAd4r/KmenmhX2cwZ8G63EWrhiIz5Re7ebKGK8aO5aKCWVBlTqCLmvm8pTV2ONx0qUhOlqfGdSRWTGt7EKgjx1Id5atLJnMdidwXt/6VEMZf2ElMDOXaTXuulsjPkYamJDACeVRE1NWLSwCKUDB5v2oNY1wNABh0cwg8gSYBSnGXE+L5FAbdLhCLm4gWaThB+jVhgRaxbAEOHslwTDtW3o7olPMOOdE9b8lPETMocxQIF1WpdPAPB8wKOu9NOg9WIkdTEDocrZdJPlVrXA4Beq4Fey8HhEmCxu5AX+FQkPbRGTEVqovT4Oxwu5AXZlqg3hVmeayIYahYNgtUzqyWVxhRfRSwnSRUxNfb1eq0GmQYt2u2i6Uh+piHWu5cUSO/3au79auonfevDAE9w7OLFPoKBxmib06NaBSIrzECMjAVmvZbOf1J9YSuWsECMAUBSx6SicZ/Ulavd7gTPC4qLwmNNmy24GpQRplmHlAYyqQ5xY0mEIiYdOCOuEZMEYpVBFDEAKI9AEYtWrZMcyWIO0EgDMXeNmIwhihxkRTzL57sMx8XTFxcvYMXOKthdPDRccIv3HJMOWg0HFy+gyeJAWW7yB2IkCC3OCh2IAeLkweFypnwqTSh76kCY3McfauLU5qOIhQrEorVooIZYjimxgLomGn1qxJIs44S0fVGiiAHiol673dWpDDukvwelQYjaRYNqnx5igLeTZbvNGTgQUzA+ZIW5EODpIyaxr2eKWEBYaiIDgCdYUFMXIQ0sBEF9T65YQmvEAtjrRiNvmTjgFYYKxBKgiJEUEKNOoyo1SUqu2Ts10cULNBVCrkYM8PQyUeucGMu0pRU7qzBx4Spc9a/1uGvxNlz1r/WYuHBVQupRPKmJvoqYshqxbKO3uklcPAOFlBzE70Tq4imFnJvb39sKQKyNmvLk6oDnhuM42tQ5VXqJqVHEgPRxTqQ1YioDMaXOie20RsydmhhiES8aiwZqSGQqZDg4XDxNJ6U1YsQsIelSE9UFYqnsnBhOWqsgCF73eyXzjHDqJ0/QHmKe+7FWw1EVKtjnqjHraAuzobNZkpqY6gtbsYQFYgwAYSpiPgpPMtWJkeLSgKmJYbomSiGNjUMpYqYEKGKeVLbw0hIBT5DQanWA5wXUtdrgcAnQariAqkl5mL3EolnrJCVSc4Bo15b4m3WQcxz8txOoJxxx8QTgF4wFcvEkhHtu8lKsqbPSZs4Ej5FP8oxn4aBkoiWH0l5iZLwnqYmhto900UAtsRpTYoV0oirtIwaEdlWNN+S3YVbQRwzwjHOpFoiFu4hnd/GQ3ipC/TbCXTSQqxEDPAFUMMMOatYRrEbMFF5DZ48ipvUsbCXRQn2ywQIxBgDvPmLBCjyl+A4uyeSc2B4iNdEchckWUcQKMoIHO7T+Lp6KGO0hFn72Mbl58oI4oJO0xLIcE3QBGsQSRSzYBEiOWKQtRboiHgsljTR0pqmJJnWpiXKBNXHxlKanAIFdPIHIzo3HOTE1JlVqFTE6NqT4xCEc10RA2uw+8MKRIAh0kkdSPkMtakkXDXwJtWgQDolIhYwEci/Sazla1+exr0+eeysgUcQU1oimoiIWySKerzoczfpJKWTBs9xn7M8IYWEvCIJnoSaYayJVxNSNhR2SQMxsYPb1oWCBGAOAZ9WUFwCnwlX/RChiShUKMnAEVsQiTz9SWiOWqoqYSa+lE4LmDgcNxAKlJQKeFAm1gVgs0pYiWRGPlc22X2qiwh47oRwwK4aWY+2DZ1PHwznnDQro4glEdm5oL7FUUcRUuCYCnkAklAtgsmOXNHRWgxKXsw6Hi674F6qwryeLBrk+BkLBFg3CJd6pkJHi20MMkNrXJ1cAY0mz1ETfeYXdyUe0iOcbdJC+fIEIZ9FA2sy53OeeTL6XQHMyaQlKULMOU7ipiR7XRDNLTQwJM+tgAPBeFbE5eegV3Lx9FZ5YK2JqClnJwBHIvj4jCqveVBFLwhoxcuPOCdOog5Bj0qO+zYaWDqenh1gAx0QA1L6+QWVTZ5K2FCg44CBO1tSkLYW7Ih5KLeIg3oSnDSlTtXovCIInNTGT2Nd7GmYGM7tR8n1qNRzyMw34tcGCPsVZQfdN3bnJ8XqMqHlpr4il+MRByYq3HEpqxEjQwHEehVTpolbF0HJUt1jxyOe7AACXntYVf79sRNTNc8iYUt1slf0thzOmxBJfx0QgeRUxNa6JQHIHYnLzioJMPRqCNK0P5fBJ7vUcJ9bPk758ge6H4SwatNo8hkK+qYmZ1MJe/rqRLgoHNeuIgmuiOU1qbmMJU8QYALxXTZU2dfZXxGL3Q1OrUJB9CdhHLAqrNA3t3vU+gSCDbzwVsUibOROkrn6VjaEVsRyzjp5bNYYdWg2Hhy+IbtpSuCvisaotabM5qdrsa18vCEBbkDRZpQqnNMU4GJGoBUQBJgsRyYzV4aLnTrlZR5qkJjoirBELMja2S8yQyPmyOXnwCrMppKlbBp02Jg6mkdRPRgO19aW+PcQASY1YkgUwZKKdobBGLNesrE1HvAk0rwgWhEkJtKBFzo9U+Q0WiIRTP1nldibOy9D7BcQkEAs0J5N6AQRTzMOtEbPR1ETmmqgEFogxAAAaDQe9VhwGlPYS8/1hxSo1MZx6ltZQfcTcA5fdyYdtwEBSs0IqYrpEKGKRNXMmSF39ToSwrgdEVz2PYYe69MTSXPngINy0pXDNAWJVW0IUJKNOQ4NzafpnsMmW0u+TXGuhFlMiMU7IS6GmzkQNM+o01IEuFJ605eSaNKollq6J1JXWqPWaBCpJTwQAi+ReUdMSuxqtcOono0E49aWe4NZzPnOSVhFT3tAZkNTCJlFAGWxeoZRAC1ok6Mo06Oj4HmxhJ9iiAcF30YDUh/mqYeLnBq+Blxp1cFzghYjMaChiLDUxJCwQY1BovyuFzom+Ck+sUhPDUSjITS1waqLn8XANO8iqWahAjCpiKhwpI8Vj1hGpIkZ6iXnMOoKlJgJSww51zokfbj4GALj41C7UfveZK0YErXUKRjBzAILcinisaksaLfIKqpLJVjCzDilKe9ZFohZ4zDqSXxGT1ocFm3BISbvUxDD6iAGhUhM9C10mieIWysKeID23sQzEADEY+/a+yfTvXLM+7DFFCeHWl7bT4MZfEetwuOBQ0VomlvC8QL9nxTViGcmXmhhqXhGMUA6fnhopjWKHZrJo4Kvc55r1sosGJONEbmGUmnUE+EylY0MWbZ+g1jWRpEV7zDqYa2JgWCDGoHjSmsJNTYxNIBaOQhEqEDPpNSDzsnByl3leUK2IKVUao4Gn71SkiphnJdNj1hE8AAnHsMNid2LpdnGC8tvTe9CUjv6l2RGlDpGbW1GW93eUZdQGXBGPlc22x6jDO5ii6Z9RVMSUOHSGqxbkp5B9fW2LuvowwOMEl+o1DdSsQ60iRiZOwVIT7Z7URI3G4/KndLIlVQdq3N9RLJEGiG02Z8DfdqRE4kZKgtNMoye4kTZwV5seFiuk37Ha1MRkCsTCdctUktZK+2gZtBIXUmVj8js3jfV6bELfAtmxmNxffcdvwHMNBZqTkblIqBpu0rfS5uQVl6wAAWrEWCAWEBaIMShK05oIvoFFrAKxcBQKctPKCjBx5TguIsm81eqkN1PfibUvRpojnbqKWGVTBw0GgqUmAuEpYit2VqPN5kTPwgyM7V1AUyKikZJTMbQcT18+0uux0hxTwEAjVjbbvj3ECDT9M6gipjI1UeHqOXFbJMHV/IuHhlQLiGtiUxJNqgJBFbEsFYFY2iliKmvEFNR0eFxptV6vURq8SlMTT7bbYq72SIMYFy/ELCCIpL6U3D+lwY1e66mxSZb0RBKEcxxo5kIokjEQUzqvCMfhk/bR0mkVN0gn+GbO/HhAvr6QKGLlcqmJoWrEFBr5SBcF1MzvrDI1YpGUgaQ7LBBjUAwqlRvfAUNtrwmlqFUoBEGgxgfSgcSXSCZcxLo+y6gLOdFJqCIWpRqxPdUtAEQ1JNQqKFHE1Jh1fOBOS7x8VDdwHEeVvGgF9y1uF81BZdnQaTgcrGvH4fr2gNtXDC3HbWf19Xu8MMsQdm1JY7u3YyJBSUG+4tRE2rNO+cRWq+Hoav2Y3gUhA8xU6iOm1jERAExpE4jFrkbM4pNxoLYgX3puBcHzPcWKVh/77ZPtsfm8SOpL5RQxQNrUOTl+byTYNuu1itN9kzEQUzqvWHLLBABif7f/3jxOUVprh1QRM6gLxEiJR++iTGSbdGixOvG/401+250gNWJyiliIGjGlRj46yUKAmtITOUUQYKpYIFggxqAorS8h+BZmx0oRU6tQWOwukJYdgVITAUgGSPX73RBgUi2HKRGKWJRdE3dXtQIIXR8GeBSxE03KJiVHT7Zj/aEGcBxw6ahuACQrelEyTCATgO4FGRjXR7Qb/mZXTdDXkJSp6aeUon9JFgDgTxWDwq4t8e0hRvDU4clPUgRBoDfBUO0IiAOWWodONQ57Hvt6u2KXvERBJvhq6vky0sTli36nKu3rTQpqWtp8zJBMKlt0+Aa51TGuE/NN66tvi01abST1pXI1YoC0l1hyKGJqe4gBnjGu1epImjFD6byC1Lc5XALGKlioAiQ1UlJFTOG9jARPOSYdzuhbBAD4YX+933ZUEctVXyNmVbFIk6Xy+nO6eDhc4nds0mm9VNNUT/eOFSwQY1Doanq4ilgMXcZIPYvvwCGXJkACQg0Hr9UYXzL0pNeG+sGB9hALYV0PpIciRgLPLjKDvi/ENVHp5Oqjn48DAM7sX0xvKuG6NQWCqDd5Zj2mDSkFAKwMEog5XDx9/oYzetNeMQfr2iLYB5Ka6FMjRp0p5Y+13e5pnhtaESOLKcqvNUEQVKknJJDkheSZHAYiHEWMTGLCNfFJFiJNTVTSR8wTiKlb9fc9t7WxDsR8xpGTMQrEIqkvtZBzavBVxDxBTDKgtocY4Bnj+BBtOuINmVfofIIr6bxCGnAqvb4jUcTaaaCrw5kDxEBsbbBATKZmO2SNmEO5kU+2ynuxVbIIaDZovcpAUn1xK1awQIxB8RT6qzPrIGkHsVLECBVDyzGwLJv+PaJbrmyagNS6PljqRCTuaA20MW/oQCwhiph7ghytGjGCIkUsx7upczBcvEADsStGd6OPZ0U5NZEoYnkZepwzuAQAsPloAw0wfVl38CSaOxwoyjLg9F4FVBE7WBt+IEYUMb8aMXPw1CMyAdNpuJA1GWrrPAHAyQs00FMyaTfoNHSymOyGHVLXRKWkm2uiarMOBZMmot7Q1ESFznAEcm7JJE9NGnM4+E4iG2KUmhhJfSk1QDEmtyJGvmOykKkEk15Lx6bmJEtprhhajhL3+HDvtP5+6YfSxVylYwJNzZPUSHXYFTqKSlpDTOpfDADY8mujVyDeanXQeY6cfT1VxCI06wA8ilibTdn3Jh03yHeeLmNqrGCBGINCJmFKC/3Jj7nQHYzEOhADvK2O69vs8jc0mzLHQKW2snJQRUxBIJYIRayF1hRFxzWREKyZM32N2dPkNZRz4toD9ahqtiIvw6NUAZ4VvWg5hRE1Ki/DgG75GRhSngNeAL7dLa+KLXdbTE8/pQxaDYe+7kBsf0SBmGcfpOSEWPGWqpuhajLUOp/6bqs0jY0cQ7IHYvVhKWLqVrCTlbBrxBQcfxs1lvA267AqvO7IhKx3cSYAoCbWNWJxSk0E1GVvSLHINHQGQo8P8YaomWoUMSA568QIxHjoNyO7YnzfQq95hUbDqTaj8ZhVaCVBiLJ7mVQR616QgV6FGXDyAtYf8hi8kHlQjkkn2yuVLJAECnzUtLZQa2FPzpHoTC2eR7WGJZ0NFogxKAaVihhReEgwEiuzDoLDxaNWcsOubOqQlct96xcCEZFZRxipifFSxKwOF1VEQqWyhcLXMUpJIMZxHC0gDuSc6OIFrDt4Es+s3AcAuHBEFy81Jsttmxuta4qkJhKFjwR938gEYk4Xj69+ER+fMUycNPUvEZXYYw2WsNMrmqgi5mtfHzw1UalRByA13FERiEmOh9SYhYLURiazYYcgCGGlJqbL6m24qYkmBZNOX7MOqvorVsQ8hgRA7HuJ+aUmxkgRI1QMLUe/kkz69yMzh4Q0efC0BJA360gaRcyhvkYM8NxLkqmpMyDeL8lvPVCGC50rKKwnlxqaqDaykShigJiyDwA/7K+j25D6a7n6MOn+BqqxVjM2ZIVwYPR/b3+1Ta1i3tlggRiDola5IdsVxEkRq2u1QRDEFK0itx31/ppWv+2IihIqEDNHUAviMetQnpqo1kAhXMgNm+Oi0EfMJxALZV1PtyO9xGQMO1bsrMLEhatw1b/WY9uxJgDAsh1VXo1Os0LkuKuFrHjm+QRia/bV+90gNx4WUxbzM/QY667lKMoyINesBy8Ah+oCuy0GI7AiFjw1sUVFvR9VtcNQxAxaDTQKLfnzU0ARa+lwUnXft49cMEhaT6pPGsJt6OxZvQ58DbX51IipXfGmilicAjEyjpBaoFjViEmR9kfrmp8R0uTBIlFCpNBALA4ZJ0oIx6wDSF5FjCwm6TRcwPul2sUZaoahj6xGDADO7O9v2BGsPgzw/C4tgezrHWT/lJt1KE9NFMcNaUonqxELjqJZ2r333qv4DZ9++umwd4aRWMJt6FyYFZ9AjJg/lOaY0KsoA/UHbNhf04ZTe+R7bUdWgUJNXCNxR1PazBlQ12Q3GhAFJcvdbDUSfF0XldSIAR5LXV/DjhU7q3DrO1v8Gp6ebLPj1ne20NQdatYRpcLuFkmNGACc0iUHXXJNONFsxY8H6nHOYE9a5DJ3QHjukDLo3AoRx3HoX5KFzUcbcaCuDUO65Kjeh4CKGO0jFjo1MRThpMGGM2H3pCYm16RKSl2beO3lmvWqVCFPf8HkmPiGi5rJlhQycQxaI+bnmqh8ssnzAt3OE4jFJzWxe0EGDte3xzwQszt5r/THJgULFu0+Sgghec061C3yJWsgRhZV8zIMAVO/1ZYxkHows14Lp3sxSGkQZ/FRRse5UyUP17fjWIMF3QsyaMp/uYx1vXR/A9eIKR/zyX78fKQR67qeDNnipMMho4hF0LO1M6Dol7R161avv7ds2QKn04mBAwcCAPbt2wetVotRo0ZFfw8ZcUOtfT1JYSzMFNWpaDncBaJaMvj0L8nGjwdOYn9tEEUsxI0iIrOOdvnmvHLEWxGLllEH4L3qqddwVFEKRRdqYe9JTXTxAuYt3eUXhAFio1MOwLyluzBtSJmkIWW0XRPF74vjOEwdUoq31h3Fyl01NBBz8QJW7BTTEs8bVub1Hv1IICajwobC7uTp7yOgWUcUUhM9zqdqFDH1E3aphX2yUtuiPi0RSJ8aMaIGKk03JSiph/GYdYjbqrGvtzo97UX6FIm1lzVxMuvoWSgGYvUxTk307ROmJIU3lCIWrOF7PCE27BkKjB6khGrTkSgaA7jZSvFkz6hTxEx6DZwudQu+7T61gjkmPU7tnofNRxvxw/56XD22B6pb3D3EcuQXRrMk7V8EQfALMG0ywZIcK3ZW4eOtlQCAr3bV4KtdNSjPNWHuzCEB02ytcoFYmoypsULRCP3dd9/RfzNnzsTkyZNx/PhxbNmyBVu2bMGxY8dw1lln4fzzz4/1/jJiiNr6Et/URJuTp6s/sYCsApXmmjCgVKzZ2Vfjb55A0mayQiliEQRiRAlQo4jZXXxceqi0RsmoY8XOKkx9+nv6t4MXcObfv/NKIQxEmUxT542HG4KadwgQv+ONhxvojSRqZh0dZNXTc7P11InV0u/l56ONqG+zIcekwwR3DxdCP7dhx4EwLOzJ53Ocf4AcTUXMoHUH/SrqEe1O9RP2VDDroI6JWeoCMY8iFJ/fa6zw9BELs0ZMkVmH+tRE6XjbsygDgJh2F8uMCjKO9CoUFbhYK2K+LpDk9x8MqoQEVMSSIxCjAaNR3XWVrIpYowIH5AyVKrlVWiOmUk3zVZsB/zqxkIqY+7W8ID+fU6KIkewV39qw6mYrbn1nS8B5gNSsg8DMOoKjukbsqaeewoIFC5Cf70kHy8/Px+OPP46nnnoqqjvHiC+qa8Qc3qmJgPKCznCodhs/lOeY0L/U7WIno060+xSSByIS10Rq1qGioTMQH1WMKCuRNHMmg7Bv4BRqECaQ3PUTktf7rhIHorbV6gnEojA5szpcNG89VxKIje1diGyjDvVtNmw73gRArFUDgGlDyvxsv0kgtl8m+A8FWRHPNev90jo8zU7F1UtfSGCt5Pukv2EVCyL0pqxiwk5Wj5M6NZE0c84JTxEDUnviEHaNmILVa98xlgavCsZSUrdi1muRY9LT1KdY1olJFTFADAbU1FGqxTclW4kiRnuzBWzonBy/tXBrxHKSNRBTYLxFgmP1iphWdeaNnGkL6Sf244F6uHiB1l6XBQjEpPVZcgscocw6QmWvAGL2iktmoYo4p5plzTqSYzEh2VAdiLW0tKCurs7v8bq6OrS2qk/ZYSQPNK1JcR8xt/Jk1NHV9FaFBZ3hUO1ONSrLNWGA28XuRLPV7wbVFiDX3heabqBysuV08fRmUpAZepInnQjFw8I+UkUskkGYQFbqqiWuiSXZ8jcNX0qyTZ7UxCgM3OS70voUYxt0GkweKK40rtxVA54XsGJnNQBghk9aIgD0d6uwR062w6FS+W0MkspKAiwXL8jerMlKeKiFBUD6G1ZRI6aiuSeBHEcypyZSx0SViphJMjlJ5ZqGsO3r9R7Dl0C/cUuAhs5KnGGJ8xyZyJe6+yDFsk6MGF10zTPThZBYqrl+iliIQMwlqZvzDXCSzjUxQAplKDyKWHIcB4H2dwyyqKo2NdGjCmlVpzrLpagO75qLHJMOLVYn/ne8iboRdwlg1qGVWO7LLY6T9MFAY4Oa7BW/95YcO8ETiMWvl2oqoToQu/jii3HDDTfg448/xvHjx3H8+HEsWbIEs2fPxiWXXBKLfWTECdU1YpJVFU8n9zgoYrlm5GboaRPGAz69ndroam1wBSEjzFUaMnBznL+9uxw6rYa6dcXDwp6kuIVbIxbJIEwgtrqNFge9KXXLNyOYdwgHMYAb07tAtWVuMKh1vUwfLpKe+Nm2Sjy/aj+qW6zINGgxsX+R3/t0yTUhw6CFwyXg6EmLqn0g10yeTB2CSa+BXivul1x6orrURPUNncOZsJPjaGxPrtVtKeFY1wPh9Q1KRsJROgHvlWy5uhZBECTNh0mNmPLJpqcGxjsQU6qYh0ObZEwk6eT1bbEL/EggRq69UKmJ0vPm6/Ybjz5ipJ3IZ9sqse7gyaCLbOS7N6u8rpI1NVFJvXeGXt1cgToHGrSqxxI50xadVoMz+on3pBW/VNN6wbIA9vXi6wMvZnrGBvkxX032ii9EDZRzTYw0w0DNdZpKqF4yf+WVV3D//ffj6quvhsPhtv3U6TB79mz84x//iPoOMuIHrWVSGYiZ9BpkGnVotDhiathBggMixw8ozUZtq79zYhtVEILfKMKtEaM25DJpZoEw6jRw2l1xUsSUT9zliGQQJuSYdMjQa2Bx8Hh3w1F0yzdj4fI9CDRukrM4d+YQaDWcp6FzFK6nZuqY6H+jdbp36ESTFc9+sx8A4BIEfLen1q8YmeM49C3Owo7KZhyobaOpikposgS+2XMch2yTHg3tdrR0OFGe6/28OrMO9cYw4fSbSglFrC28QAwQx4YOh0tx36BkQxAEOo6rVcSk23c4XH6BQYfDRX/HWWHY11NFRS++ttSdOuqrIkWTNkkqZWGmAXWttpjWiZHUxEFl2ahrtYVcsCC9ozSc//cVa0Vsxc4qzFu6y2vxLZghQ0eYqYnJGog1BhmbCart64lhhU4DQYhcEQPEOrHlO6vx8RbRPCPbqAuaJZFp1KK+Tb6uzbP4Jv8dqsle8YVcH0a5GrEIMlzUXqephKoR2uVyYfPmzXjiiSdw8uRJbN26FVu3bkVDQwNeeuklZGZmhn4TRtJiUFkj5pG3tRIFIzY3C54XaA0BCcTIRHifT50YdfQKEYiEa6mqpocYQU3qTjCUrAiRG3a4NWKRDMKEr36phs0l7tvjX+7GLe9sweGTFhRkGDD/4qF+RcZluSZqXQ94Jnh2Jx9xLQcJFnzVyxU7q3D/B9v9trc6+IB1cP3d19xBlYYdwRQxIHgvMXV9xOLlmpgC9vVhKmJA6jd1tktSZ31rHUOh0XC00F5uFZ8ENRznGUPNBuWuiWR8popYbuxTE9skvyHSgzKWTZ3JvWpwudjmIlTwQXpHZRr8VXuyAGOxu6JuhhVOLbDHvj49Gjp7UhODKGJhBmJmg9bTl1BxICZfWkH6iZFxLcesC6oIkc+Vyyoh6eimAGP+mN4FKM81IdAyszR7xRfZPmIRuiZGWrOe7KhaMtdqtTj33HOxe/du9O7dG8OHD4/VfjESQNipiXpNzAOxBosdDpcAjgNNSaTOiQFSE0PZ14fbuFVJca8v4fR38kXpihC50YWriJFBuLrZKlsnxkEMnOQGYbKfcr3CAPF7LMg0YO2DZ2Pj4QbUtlpRkm3y600iXYVvtzlh0Ck/1740dfgHQcHq4AjESl+6X32pYYe6ethgihggsXaWmaTEvI9YGDViee56ig6HC1aHK6QNciKIKBAjCycpGohJx3C1ihggHr/VwcsGVlJTCRI0kLo6JYGYr6JSmk0CsdgoYjwveAIdo46aS8VDERvovkeFqkcj9005J0Lp777N5pRV9sNBTTsR6RhoccgrNqHwtOlIskBMgfGWJxBTNr+R9tLi3OGM8tREedOWX040Q6vhaPBV2WTFxIWrAipCmUH2OVQWhFbDYe7MIbj1nS1+z/lmr/gSrI9YsCbxgVBznaYqqkfooUOH4tChQ7HYF0aCUd3QWVLwmRlFlzs5aM59lhF6dx3MALdzom9fpzaF5gZ01Vtl+lGDArtbXyJVxNSsCHkUlPAUMTIIA/BbEQs1CIcKcMigCQDj+xbiNyO7Yry7YaUUvVZDr8dIr6lm2kPMcz7CrYPrH6aFfaheNcEs7NWkJqptQSHdVk1qYrZRR+selTjCxRuHi6e/U7VmHUBkrS2SAanhkto+YkDwVEO5GhaTihVv39Qrj1lHbAIxaY2MmJooXg/1MQrEBEFATbO4CDCoXAzELCHS0tuDLB7qtRqqXEQzPTHcMZD2EYsgNVHOHTZR0FKDYDVias06iCKm11K1WMlvI5BpC7n/+ypgwRQhz5xMvVkHAFQMLcfL15xGF74Jvtkrgd5b3jVR/XgajZr1ZEf1CP3444/j/vvvxxdffIGqqiq0tLR4/WOkLmod16QTuFgrYnJ9M/oHcE6k1soK+4jFQxFTm/YpRa2LocesI/w+YmQQ9rXHDTUIR3PQzIqSc6Knh5jn+wq3Do72EqttU9VjypOaGEgRC1wH4kk1VaKIeRzvlE52wjHr4DjOY9iRhHViJ9vsEARxUUFJ03VfPIs0KRqISb5T31Q3JZiCjI1yfY7UGBJYfCbyZbnuGrEYBWJkIUev5WDUaSSKWGxSExva7TQ1tF9JFjUoag6yYBGqN1eoXoPhEO4YGGlqojOAO2yiUHI/VzNXEASBLrga9RrquKjktXKmLeG6GHss99WbdRAqhpZj9QNT6N9vXDcaax88O2hNlqehs1wfMfX38mjUrCc7qmdqM2bMAABceOGFXgM86d7tciXPD4yhDuq4piAP3eniqdGBaNbhdk2M0QBLHBPJ6ikA6pxY22rD/to2nOY27GiVmSjIEe6qd0N76JxyX4wRKGJqgpvxfQslqWzh9xEDxEF42pCyoCmEvkRz0Mw06nCy3R5xcC/t4UUItw6uR0EGDFoNrA4elU0d6F6QoXAfQqQmmuRTEwVBoBNJZWYdnpuf3cUrUrlsDmU3ZV/yMgyob7MnZSBG0hKLsgzQKDTUkeJJW05Ns45we4gRaGqmjLJKa3BlAjFF9vU+ihj5jdW22Og8IppIMyQ4jkOhe9w+2R6b65YElEVZBhh1WuSa9Wi0ONDU4UBJjvy4Q+vmAqT7ZZt0qG21RVURC3cMDNesw6zXQq/l4HAJaO5whLw/xwOb00XnLNEy65BmI5j1Wug0An3cxQtB75/kXqfVcPS3q/b+TwhaIxbCrENKhkFsT2R38RhUnhPSoMwql5oYgSIWjZr1ZEf1L+G7776LxX4wkgDquKbgZupdg6CNfWpii3wneY9zYitO65EvWiuTiavC1MQOh0vVBKDBXeRdqCY1MQJFTG1wQybzShSUUGg1nNfgHopoDprBUivUQGrEpIFYuHVwOq0GvYsysbemFQdq2xQHYrQgPEBqYjY16/D+/XQ4XHSlU02NGCD+RhUFYmGkJgKeY0nG1MS6Nm/7cLWkvFmH+zs1qPxOCcEUrjaZGhZP6rUKsw73OSYNt+0uHk0Wh6oFLiW0+mRIFBKzjhgpYiSNniwa5mcY0GhxUOVFDtqXLUBwkx1goSYSxvQuQGmOMaBJSqAxkAbSenX3F47jkGvWo77NjuYOB7rkBbZejxdk7NJquKDja4aKnqPS34BJEoiR54IFoLRW0KCl85FwFzeV1IgFMuvwJcukQ0O7XdH8Lto1Ymru1bwrNRfOVM/UJk+eHIv9YCQBagr9pYGYQRd7sw6Pdb334N2/NAtrD9Rjf41Ys2N18NRaObQiJj4vCOLrlKZaNChwWfIlEkVMbXCjpqYo2kRq9CGFtB9oi3AVuEXGrENajMwBXvsaqg6uX2kWDcTOGlSiaB+aQtQhBFLEyAq4VsMpWoGW1gPZHDyg4NIJt/FvHnVOTF5FLNxV0owwHVWThYgVMUPgwEquRiws+3r3Zxh1WhRkGtDQbkd1izXqgZhHERN/YyQ1MVY1Yr6LhrlkwSJIEOVxkgysiAHRrRHTajgM7ZKLmpZav+cCjYG8pIZJbWoiIJoSkUAsGfD0ENMHVc7V9Bwl50en4aDXarwCMbl2EFLIeCNd5Ah3cTPY4rjHoEnZd5hlFAMxJdeflToyyili6q9fNfdqPjWHa/U1YgSLxYI9e/bgf//7n9c/RuqixqyDTN70Ws7d9yk+Zh1yihjgcU5stXmaLYeauEqLSZW6IQHKXJZ8iUQRU2Mly/MCXQGOpEYsXCIx+vAlWsF9UwDr+HDr4PoVu50Ta5U5JwqCQPchP8A1Q10Trb6BmPg3SasKBcdxtB5RSYoxEP6kPakVMeKYGIZRBxB+/aiURDYfpUZKKtNNCcEaNMvViJkkhgShahNpQ2fJZDOWhh1tPhkSRZke+/pYmEbUyChiQPCee54JePAasWg2dT5U14bv99UB8FfbA42BVsn9S21qIhB4wSlRKDHqANQp5L727RynvEG8nHtmuFby5PdpkTPrULn4lqViftchZ9YRYUPncO/VqYLqmVpdXR1uuOEGLF++XPZ5ViOWukgL/UNB+1C4X5MZY0XMN92DQJwTiZ04uclnyfRj8YXkYducPCx2F5Qm4HlW0dQrYkrSPn0JZiVLIMFNq9UBMrcIt49YpJBB09dqv0xl88VoBffErCPX7P99hVMH15+4dfq0TQhEq81J6ykD29cTa2fvY1XTQ4xg1Glgd/KKTXc8aWxqAzG3IhajWptIiMS6HvCYVYSriCW6+Wi46aaEYBNHaq9t9E9NFITQtYmkYF86kS/NMWJ3VYwCMatvaqJ43Vod4rgf7Volmr3hvlcRt9ZgCxaelLT4KWLzl+2BkxcwZWAx/n7pcIyZ/y0A4J3ZYzC+b5HsGCj9PUgn2kpJtqbOpNF2KOMtNfXknobG3opQh8MVMhCRU8TCzd4g+yxndqVaEXNff0qyU2xyZh1RWNiqGFqOcwaVov//ibHHGX0L8dbssYoWdZMd1SPQ3XffjaamJmzYsAFTpkzBJ598gpqaGjz++ON46qmnYrGPjDihxvra6tMElqSRyRWGRoogCAFrxPq5nROrmq1osTroQKH05pph0MLm5FWt1JBVtIIwasSsYfYRqxhajhevPg23vecdjJl0Gjx75Ug6uSM3aoPE/j0RhBPg+BJrRYygtg6OOCfur21TVFvY5L7Zm/SagP22ArmihWO8YtRp0Iow+gGqnLTnJXFT57q2yAIxUv8SzgpuoD56xGo6Hiu40TLrkFXEgph1AIDVHjwQ8yhikkCM9hKLft0WrRFz72+GQQuTXjTcOdlmj3ogRu5VZPWe/E6CpSbSCXgA10QaiEVpoXPt/np8s7sGWg2H/zt/MAqzjNBwAC8AA8qyA47TZCJt1mvDMsFJtkCsgSpiwcfXTGpfryA1z0lSN/1dA0MFcr71k4RwFjczA1juC4LgSUdXqJhn00XR0N9bMEUs3PY9BAcvMUIxaNMiCAPCCMRWrVqFzz77DKNHj4ZGo0HPnj0xbdo05OTkYMGCBTj//PNjsZ+MOKCqRsxnRYX86GORmthiddLBxFeazjXracHxgdo2ul+hrOsJGQYdGi0OxSvfVoeLbquuRoy0Bgh/IBrSJQcAoNdwuGvqADz59V7wgoAz+hXRbVpofZiyVLZYojbA8YUqYhE41zldPA1mpH3EIqF3USY0nBgk1bXaAjqhERpDOCYCntRE3xXvVsn3qRT1jdnDS2PzpCamnyKmpiZESrhNcqNNuConIViNWJtMzyuxFoaD011DlIvAv7UOH9dEACh1j+uxsLD3VcRE50QjKps6UN9uQ49CZYY7SqnxC8RC/05CK2LRS010ung89oXYy/F343rSxcyCTNEF9WSbPWBdkiVMx0RCbpDG9YmgqV3Zoqrn98CD54WgQShpAm/SeStiQGhFyCKjNhPULm6S9EbfOZmTF2gdvUmlIqamRswoE4jZXTycLh66MHobAt4L/dFUhxON6rPR3t6OkhKxQD0/Px91dWKO8bBhw7BlS+DUKUbyQ4MFBT2IfFdcY2nWQdIS8zP0sooCqRPbX9PqmSQoXOU0B3EWkoNMqvVaLqQroxQy4IWriAHAQXcT4X6l2bj9rL7oU5wJu0vAN7tr6Da051SUgo5EQgOxCAZcqQthbpTOiVGnRc/CTACiKhYKJXUI1DUxgFmHGgdM8ptUkmIMSBdV0s+sI96uicnSfDRcAxaCKWhqor9ZB6C8DsRjTOGdmggAtTGpEfPUWRKKaC+x6F+7fqmJCmopyXWWFcKsw9dVVSnSesUFy3djb00rcs163D21P92miLpJBgkY3d9dOEYdQPIqYqEWVaWBZ6jrW87MxKzQVTSQIkYgi5u/GdkV4/sWBl3MoTViPnMbL8drpa6JkdaIqTh/wZAeS6T9RZMJ1aP0wIEDsXfvXgDAiBEj8Oqrr6KyshKvvPIKystTu2Cus0NW0gUBcLhCBWLij4msuMayRqxKpoeYFNLYeV9Nm6eZc4AUD1/UFuVL68PUKE7RUMRITVLf4kxwHIeZw7sAAJZur6LbkIm8GgUlWfGku4Z/TZEbfpZRF/YqnBzSxs6haAphXQ94pyZKF0HCccBU2zw8He3ra6Nl1qFy0pAszUejViOm0KwDkDrDhpioUvtzz76V5cQuNZHY7UuDHGJhT1qRRAuL3UkXT3xTE4MtWISagHsUMfVj4YqdVZi4cBWu+td63LV4G15fewQAMP2UUq/FIY+bZOBzEm4PMUKyBWJKxmbAWzkKtThj9amfB5Qv7IQKyNVAUxN9ykWkv0+DwnuimhoxuYbOYmN58f8jCcSkilgsymASheqZyV133YWqKnHiN3fuXCxfvhw9evTA888/j/nz50d9BxnxQ7p6GspxzeZjURpL18SaAPVhBGKesE+iiCkdyJTmbhMaFKYy+GKi6WKRK2J93a59M0eICx9r9tXRtBePgpL6ihixm46kjxg5L9FSwwieOrHQzolqUhMdLsErj741TLMOQHnQH656QlaRk00Ra7d5UpkjTU1Uq4glS/PRSF0TzRIXRF/kzDpCvUaKpx7K3zUxJqmJMvcE0gMy2hb2JHsj06ClwZMSs45gKWmA1KxDXQBD6hXlVNoPNx/Hip2eRbxCt5tksECMfHfmACmUoUi2QEyp8ZZGo9z5kPbRklHEQqrFIVJU1RDIrIMs0hi0GsV1ftkq5ndWGUVQjXNkMKSKWKdOTbzmmmtw/fXXAwBGjRqFo0ePYtOmTTh27Bh++9vfRnv/GHHEuwdRiFUfn8kbTU20h7YvVkugHmKEARIXO7WpiZEoYmqIhiJ2sK4dgCcI6FeSjUFl2XDyAlbsrAbgXSOW6mRGQRFrkukhFg36q1DEGkOYhQDixI3cE6WGHeEFYp58fCVQ9UTlpJ0cT3OHA3wcrdlDQdISMwzasI0YzAEK3UNBrKYDEchqOtpEy6xDto+YXT7rgL5GoSGBdKJGArH6NhucCq9bpbSRFhAmf0Us2qmJ1N1Xcg147OsV9BELqIipd00MVq9ImLd0F22rQBSxk8EaT5P9DMMxEZC4wybJJLpJwSIZgS7OOILvOw1EJOOpUoU9UNpvOASyr6eLNCrGBqrIhrgXO108zabyrT8LN8tASrtdqoglxzUUDVSP0ocOHfL6OyMjA6eddhqKiooCvIKRKmg0HA3GQhX623wKMsnA4eIFxSYBSgnUQ4wgdU4k2yqt38pQ4YYESHuIqVTEyCQlTEVMEARJamIWfXzmCHd64v9OAAhv4p6seIL7CFITFQRB4aAuNTH0zZ7jOE8vMclqcUsYqYmeWk+FqYkqrYwJee52ALzg7/aYSIhjYkmYahggtW9Xd+1pNRzmnDdI9jm1ffQiwR5hIBasRkzOrAOQBGJBrjtBEGTT2wozDdBqOAiC5/uLFr59xABJjViUUxOpY6IkjZ7WiHUo6CMW4L4VTh8xtfWKnhqx2KUm5iSbIqawRgzw1DSGSonzpObJKGIhxpN2GSObcKELmXan1+K4Z+FN+XdI7sWhFgKskrmfbx1hsDFFKRZJ8NXhcEV90SZRqB6l+/Xrhx49euB3v/sdXn/9dRw4cCAW+8VIEEqbOvuuuEpvytFOT/QtfvYl16ynz2091iTuj1qzDoWrNA0hGvMGQm26mC8n2+1o7nCA44A+xZn0cVIntu7gSdS12ugkPh1SE6OR7kqCoDyZHmKRQILh+jZ7yD5aShQxQFon5p9+kYypiQadht6gk8nCPlKjDiCy1VsyyfSNteLZfDTiGrEgxx+qRqzDHvi6s7t42lNPOtnUaDgaOEe7TqzVxzURkKg/0VbEfBwTAc/v3urgA9bPeVLSoqeIqa1XJOmawc6JJzUxPWrEaB8xJYEYaWkRskbM36zCZAj92wA8C8JRUcTcvy9e8LaND0ct99SIBf/epNe37/tHIzWx3ee1vn+nKqoDsWPHjmHBggUwm834+9//jgEDBqBbt26YNWsW/v3vf8diHxlxhKymh3JcI5M3ssqh0XCenOQoB2K+dsBykDqxXSeaAcQuNZEqYipTEyNVxA66lZdu+WavlbYehRkY0T0PvAAs31klaQCc+oFYVhRcE0lqYm6UFbFMow5d88RU2QN1wVUxpekvnrQdaWpiJGYdse0jBngmVslkYR+NQCxc10S7k8fLqw8CAB6eOQR6dzT2/JUjsfbBs+MShAGRuyZ6alr8r6GANWIK6mCk46xv0EHrxIKoOOEgXyMWuh4qHKplFg2zjDro3NdBoPREuUa+Usjv32JXrgKorVck6Zr1QRaWyHebDmYddidPr41QZh2AcoflDhlFLENxjVj0FDFpICjNKrGGUT+qtEaM/L5Neo2fmVk0UhN9z30sPAkSgepRumvXrpg1axZee+017N27F3v37sXUqVPxwQcf4A9/+EMs9pERRzypicqcgaQ3+kyF8rVaqkKkJgIe50SSn6xUQVA74VKTyiAlUkXsgI9Rh5SZw8XJ3dLtJ+gknkzqU5lotEQgN/xo9RCTojQ9kZp1hFBRs43+qYlUEVNR60RrxNQGYmEYO+RliPu1Ymc11h08SetNEkldhI6JgPoFGsLHW47jRLMVJdlGXHl6Dzq57VWUGdfmo1GrEZNpBtseYNVeSSBGVrANWg30Po5t1MI+yo6SNDVRThELoWarhQZiknsVx3FUFZMztpGe04wQDZ0B5ZNPUq8Y6KrzrVf0WPoHM+uIzEyCBGJ2Z2B10MUL2HC4AT/Xc9hwuCFmYwpZPNJwyjJIlAYSVh8jM0DaRyz4d0cVsTADXSnSxXFpnVg4C29KXRN9F+ilmBQGo8HwTQtNlzox1aO0xWLB119/jT//+c+YMGEChg8fju3bt+OOO+7Axx9/HIt9ZMQRkl4SOjXRf8U1Fr3ELHYnnUwHU8SIYQch0MqiLyTdQGkgFm6NmDHCPmIHa0WjDrlA7Hx3ILbpSCP2VYsufumgiGVKDGDCNYMgNWLRdk0EJM6JNSECsXaSmqhUEYtSaqLiGrHw1JMVO6uw331dvrrmEK7613pMXLjKy4ktEUQlNdE9Ljh5QXFA63DxeHG1mKr/h8l9YdJr6QS8IcoT/lD41vCqxRRg0tnhcIGUm/g605qoIVEwRSxwHyqPhX30AjFBEDwNnY2eMaCI2tfbo2o0UyNTIwZIlWN/Jcjq4Ok5DXTf0ms19PwqXejUajjMnTlE9jm5ekVyTurbbAENtyJNTcwy6mjKrpwqRqz2r3ljM97ar8U1b2yO2ZjiSRk3KHIPVOqk6lHEPOOp0iCEKmJRsK8H5NP7wxnvaY1YSEVMHHfMMuOO0qbWwfBVxNLFOVF1IJaXl4ff/e53sFqteOihh3DixAls3boVzzzzDH7zm9/EYh8ZcUSpciO3qiItDo0WcnbAcvR3N3UmZCmcuGYoXKkihGtfH6lrIm3mXOIfiJXnmjGml7iqSRoMVzV1JIU6EQnSiZ7SGj5fYuWaCEicE6OVmmiSU8SSMzWR2GL7BinVzVbc+s6WhAZjxOwhGqmJgPKJw2fbTuBYQweKsgy4ekwPAJ5xIt691iJu6KyTnziSCZ2G859sKZlo0bRGmYl8CU1NjF66oM3pqUmT3hPIb9HFC1FNk5OrEZN+nlwKr/R+KTeBJWRLeg0qpWJoOW47q6/f43L1ikQltDr4gMGGXA84NUhNiXzPeyCr/ViNKR4HZGVjq1InVaIiS79LpUFcNBUx6ftIAxgy3ptUZEBQRczmDOqKbQ2iiCm18A8GU8TczJgxAy6XC4sXL8bixYvx4YcfYt++fbHYN0YCULqa7llx9VfEIun75EugG5svvgGK4j5ialMTw7Wv1ylTGgMh55goRWrgAQBPrdyXFOpEJJj0Grp6Gu6A6+kjFl2zDgDoXSSe8x3HmwKm5dmdPE3HCnXDp66J7omWIAgRKWJKlBwXL9CJqtJJezBbbPKY1BY73kRDETPoNLSuJ5RdNSCekxe/E9Wwm87sQ8eVfAXNfGMBaV1gCDc10SCfmugJpHR+NSBKVv2DKSqkRiyaqYnSFXNp8GDQaahKFS3nRKeLp9eeryLmcU70D6IstC5IG1SZCcewA/AEttNPKcVzV47Ef28eJ1uvmGHQ0clyIMMO8v1FotjkyrjDJmJMIb9JpYuqNKgJcS+SC0aCtYOQQu4V4bbd8IWkkEpNLcJZeCNp84IQfK7kqRGLjyLWaWvEPv30U9TX12PFihUYP348vv76a5x55pm0doyR2iitL6G5wJIfcyxSEz3W9fI9xAi5Zj1KJROvQ/XtigZtNQWkgiCoHrwJZPUp1EAsR4fdhcqmDgBAX5+ACxBXEhdvOub3eDKoE5HAcVzEdYexUsRW7KzCnYu3AhBTXAKl5ampQ/AoYuKxWh2e1fxw+ogpCfqlv3Olk3a1ttjxhkzki7Mia5qsZJHGxQtYd/Ak5i39BYfr25Fn1uF343rS5z21QXFWxGRqeNUQaPWauvvJ1DJ5JpuBr7sOR+A+j2UxMOtolxh1+AY5RAGKVlPnujYbeAHQaThaG0jICxKQtyusu6K9nFSMhXYnj5W7xB6Tsyf2wW9GdsX4voUB6xXpOQkQnNJALALFRs6wIxFjCvkuQqWME5Q6LHfIKGLBXEilWAK0hggXkqUkDR7DUctNeg29ZoIFP1aZtExCVBQxn7G40wZihGHDhuGMM87A+PHjcfrpp6O2thbvv/9+NPeNkQCUpjVZZRSxzBgEYlUyxc9yrNhZhUbJwP7XT3cqUoSUpgwA4o+emIHEUxE7VN/m/ky93w2erCTKkQzqRKRkR3hNxaKPGEmh8bXZlgt8GyU1aqHqEEiNGElHJP/lOHU3ZjU1YtJtlN6Y1dpixxOeF+jEOhJFDAhtt0zqWa7613q8te4oAMDJAz/sr6PbBEtJiyUR29e7j93JC3BIXPraAljXA8oUMaKoyaXgEbOOaNaIyTkmEooyo9vUmQSQJdlGv0CHmAU1ywTkSpv45pi8xwcl/HiwHi1WJ4qzjRjVMz/k9qEaXZNAOtqBWCLGFLUOyEoNfKhZh8FfEQs2z+B5wdNHLAr29YB3nbXv/qmpH+U4TlEvsQ4Z635CNOzrfdXISByVkwnVgdjTTz+NCy+8EIWFhRg7diz++9//YsCAAViyZAnq6upCvwEjqVGcmiizqhKNvk++hGrmDERWr6I07xvwmC6Y9VrVxcqRKGLB0hKTXZ2IlEiCe0EQPIpYlFIT1abQNCqsDwOkNSBOr//KreYHw6DCoZNM2LUaDjqtstuBWlvseNJoscPFC+A4z+p+uARTywPVs7TbnF5jTsIUsUhrxAye10mPvz1IYKMk/aojSOpVqXuMb7E6I5qsSZHrIUYojHJTZ3KvKpW5V9HURLlATGET33BSE5f9T7wOzxtapsi1sygzuHNisEBaKXI1YokYU6hZh8KeoBl0rqDQvl7y21OSlif9nUVNETP43z/DHRuyFMzvbDKOkYRo2NcT9TjSBdpkQ/UoTQKvt956C/X19di8eTMNzvLzQ6+4hEtDQwNmzZqFnJwc5OXlYfbs2WhrC14k/9prr2HKlCnIyckBx3Foamry26ZXr17gOM7r39/+9rcYHUXyQ00lFDd0jnFqont1tDRAM+dIc8vVmHU0hJmWCHgrYsGKXeU4WBfYMTGZ1YloEElw32530e89WoqY2sCXNpRW8PlkxZvUTpBjVtucmy6mKOg3FE4Km1pb7HhCjDoKMgx+9uhqCbRIo2bMSbgiFkZLAkC0lyfzdmmdGK1hkZkompSYdQRxTcw2emqUoqWKBVPEop2aSO5VcouGwVITPelowYMbUqejVBFzuHh8vasGADBjmLL+dVLnRDk6FAaNwZBTxBIxpqhVxJSoWoCkobOMIhZskYL8NjhOnZFGMGhvV6lZh0O9WQfgWQgIpkIFU8SUjA+hIOe+xK2ed9rUxE2bNuHJJ5/EBRdcgNzc3FjskyyzZs3CL7/8gpUrV+KLL77AmjVr8Pvf/z7oaywWCyoqKvDnP/856HaPPvooqqqq6L8//vGP0dz1lEJ5jZj/j5ncnKNq1hFCEYtUEVI6uALhW9cD3udJbXpiMMfEZFYnogEN7sNw4iSTX4NOI7tCFw5qA1+y6qpEEfM16/A4Jqqb9NAWFIoUMfWro2ptseNJNIw6CIEWadSMOaR3XLzt68n4bdCG724nV9PRHiw10X0NBWvRQWuMZH6PHMfRFPToBWKBf0OFNDUxSopYkEXDYGYdnnS06CpiPx6oR3OHA0VZRpzeS1kAEyo4JcY14drXA/KBWCLGFLU9QZWnJsqYdSgogbAEMcIJF/I7jbSPGCC9/gIvBARrFh0d10Tx+iPzmU4biAHADz/8gGuuuQbjx49HZWUlAODtt9/G2rVro7pzhN27d2PFihX497//jbFjx2LixIl44YUXsHjxYpw4cSLg6+6++2489NBDGDduXND3z87ORllZGf2XmelviNBZ8DR0DhGI0V4UMvb1Cn4cpMj9s22VQRvBhqoRi1QRUtO4lTT/VNvMGfA+T6oDMZKaWOJ/XSazOhENyDUVTi44SQOKZjNntYGvmoJwX7OOcBwTAbU1YuHdlCuGluPla07zC3jkbLHjSSwCMd/Jk5oxx6OIxTs1MTJFDJA3GPCkJobnikbtuQMEHSXu7606WoGYNbQiFu0aMV/HRCB4raBSy3Lf1OVQLNshpiVWDC1VHMDQGrEACwcdUTDr8B3nCBVDy3H/9AF+28dqTFGzSAZ4AuXQiph/Ly1lzc4jr7/zRVYRizA1MVgvMblj992XaChipJ40XVITVevLS5Yswe9+9zvMmjULW7duhc0m3viam5sxf/58LFu2LOo7uW7dOuTl5WH06NH0salTp0Kj0WDDhg24+OKLI3r/v/3tb3jsscfQo0cPXH311bjnnnug0wU+NTabjR43ALS0tAAAHA4HHI7Y33DJZ8Tis8jvx2ILfiykaFfL8XQ7s04c7Fut9qCv/eqXGjy+bA+qJWYHZTlG/N+MQZh+Sil9zO7kaYpEUYZO9j0LM5RdwoUBXq/XiAGgxeGC3W4PuhJV3yo6F+aZ5N8rKIIADQfwAtDWYYPC3YaLF3CoXkxN7JFvkv3cv5w3EH9cvB0c4JUuxUme513OmF43sSLDPZFstgS/puQ46f6+cs1hfF8BOLVbNspyjKhpscmmpgFAea4Rp3bLhsPhwEn3pD3XpA25DyR7scUq/vaa2j099NTsv9a9Z1aHK+Tr2q1ENeQCbhvoujlnYBFG/3ECRs//DgDw+u9Owxn9REe2RFxjLl7AxsP1AACe52G12SNaQScKT2uH97WnZszJdtdaNYZx/UYCWZnWgg/7c+nxW2z0PVrcgYRJr/F7XxLzddj9xxry3zb3arpRK3+NFLuDo6omS1TOV7N7fzMM/vubZxJvdvVt1qh8VpXb2bYoU+/3fpl68TpssvjfV4OdUykZBo5uH2p/HS4eX/8ipiVOH1yi+PjoOWmVPydkIqzXCGGfsyz3b6JJcl0ROnwm1jeO744/VQyKyZjS4J5b5BiDn3eCwT1XaFc6N5L89nRc6DG5xSLuT4bK8T4YdE7W4dlnkgqr06ibC5BAqlnmeyO029z3E5nfNxkfLJLxQS0k8CrM9LRAkL5Xss1xlO6H6kDs8ccfxyuvvIJrr70Wixcvpo+fccYZePzxx9W+nSKqq6tRUlLi9ZhOp0NBQQGqq6sjeu8777wTp512GgoKCvDTTz9hzpw5qKqqwtNPPx3wNQsWLMC8efP8Hv/666+RkZER0f6oYeXKlVF/z8pfNQA02L3vAJbZAveHq2/QAuCwfcvPsB0SB5l99RwALY5V1QUMyLef5PDGPrIS45kkVbdYccfibbhxAI8RheL7NdgAQAcdJ2Dd6m8gFyPxApBn0KLJ7v1+HgTkGYC6XeuxbLf/sxan+BkuXsDSL5cj2CLR5qPiuWmurcSyZf528aHQcVrYBQ5frfwWhQozBeutgN0pnoMd61bjlwDzyhsGcPj4iAZNds8GuQYBl/Ti4Tr6M5Yd9Wwbi+smVtRXi+f8f7v2YlmbzBcYhK0nxeuR72iL6gLRjDIOb7T4X8MiAs4rteCrFcsBADsPiPtfc+wQli07GPR9O9zXot3J47MvlmFjtbj/rQ21qvZ/R4P4utr6hpCv29csbmvvsITcVu66EQRAy2nhEjgc+2UjvjqgeDejyvaT3tf/jwcbMO6Jr3FJL894opaGOvG72/K/ncir30EfVzPmHHMBgA4Wuwuff7Es6PgSTVrbxfF5w7ofcSzMW5LTJr7H92vX4USueA53HBHPSe3xX7Fs2RGv7cm1VNvQ7HctkWtn70Hx9cePHMCyZfv9PtNSLz6/fvselDfLu8GqYZv7flZ/4jiWLfvV67kDzQCgw681jVEZHw5Vi+fryO6tWFa51es5ci872WbFl18u87qX/S/IPko5XCue34PHTmDZsuNB92VPE4emDi2y9ALqd6/Hsj3KjuFgk/gZR6pO+p0TQQA67OIxrluzGr+E6YVz0D0uH6n0H9eW7hDfX8sJcAkcGquO4KsVh8P7oBDUt7jnMJt+QvXO0NsHu76ltFvF913/4xrscwvzZJ7hcAlY+sUyyJWv7m4U399pbY/a/epIlfuaOXoMy9yTgEPuecyRA/uwrGOv4vdqrBFft3XHLpQ0/iK7zZ7D4jaVRw/73e92ue9LVbX+15YSBAFoc49JJ48fAqDFr1U1su+VLHMci8WiaDvVgdjevXsxadIkv8dzc3NlzTCC8dBDD2HhwoVBt9m9W93kSy333nsv/f/hw4fDYDDgD3/4AxYsWACjUT69Zc6cOV6va2lpQffu3XHuueciJycnpvsLiFH2ypUrMW3aNOj10e2PtOeb/fiu6jC69uiFGTMGBdzu2X1rAYsFZ04Yh9N7iSYtGfvq8J/9W2HMysGMGeP9XuPiBSx4ag0AuZx8DhyA5TUZ+NOsSdBqOPx8tBHYsgnleRk4//wzA+6LvlcN/rh4OwA5RYjD45eM8FLapDhcPOZs+gYAMOnsaUFNFX789BfgRCVOPWUAZkzpE3C7QDyy/TvYLQ6MmzgJ/WXqveT4bm8dsHUr+pZk44LzJwTcbgaAP/ECNh9tRG2rDSXZRozume+lCMTyuokVu1fuxw/Vh1HWPfj1KEfzpmPAvt3o3bUEM2acGrV9mgHgNBlVFxCL2O+8YjJNvfr83a1AXR3GnjoUM07vHvR9eV7AnM0rIQjAGVPOwZENx4CjhzCwTw/MmCFfPyFH9oF6/HvvFpgD/A699ndfHf6/vTePc6O60v6f0i716m673W1jY2Oz2DisBmMgJOzGDNl4533JazMmycAPhy0mC2RhcXgJIZOQmTAZmCSETAYIM1kgwBAnBicQiDe8QdvGgHfsbrftdm9Sa636/VG6t0qlqlJJqpJU6vP9fEjc3dXqUunWrXvuc85zsG0Txo9rwcKF+inchcbNg91/weGRJM4870LM7nJ+/tPyx62H8OTqLXkK5WBSwJPvefHodcb3vxl/+/1WbDhyANNmnISFF8/I+Rmbc7R/UzvniKKEb761EqIEzLvoEkPTIbv5xsZXgXQGl1/8cRzfXlok9rN9a9B7YAinnTUXF588AQCw+oVtQM+HmDPrxLxr0rVvAD/etg7+UAQLF8rztXbs/Om/3wb6enH6nNlYeP7xeX/z0N/2YlXPDjS0T8LChafl/TxTYI7Tsv6l7cCB/ZhzykwsvHRmzs8+6BvBo9v+hjj8WLjwyqKvjxpJkvC19a8CEPHJKz6O49tyr3k0kcbyjauQkQRcfPkVOWYXm15+FziwD7NOOgELr8hPzWP4th3CMzu3INQ8DgsXzjM9nzef3wrgAK45Ywr+7mrrc8cJvcP4t+2rkfQEsXDhx3N+NprMQFrzKgDg7666Qjfd0wotO4/iF+9tgDfchIULlWfasVgS+9b8BQAw/4R2vLGzH1Omz8TCS04s6e+YkcqIuGO1/Nz/1FWXWUpPnLRfHt/eYBgLF+avgQF5Dr9jtRwEXHX5pTzVM5FW1hkfv+xynmaqRujuBd59G10T2rBw4TklvS8tsY0H8Ns9W9Hc3oGFC88CAPzxv7YAhw/h9I+cioXnTbX8Wm+v2IG/9e1F19QTsHDBybrHvPn8VqD3AE49JX+N1PzBUfxsxwYEG3I/d6sk0iLENfI1/Ni5Z+D5ve8g2NiS84yrtTUOy5YrRNF3UmdnJz744ANMmzYt5/tvvPEGTjihuMXpl7/8Zdxwww2mx5xwwgno7OxEX19fzvfT6TT6+/vR2dlZ1N8sxLx585BOp7Fnzx6cfLL+YAsGg7pBmt/vr+iH78TfiwTk10uLMH3tZLafVmM4wI9riciLjFhS1P3dt3YezVu4qpGL3BPY9OEw5s9ox+GoLEN3tYZNz+XvzjgOPp8Xy1/cllNE39kSwn3XzDbNLff7Ab9XQCojISUJpn9nIJvTPr4pVNJ1l+twUhDhsfz7e/vl9zOzo6ng7/gBXHhS4QVnpcdpOTRlbedHU/pjyoyRpJyvPq4haPv7/bszjsNVp03Gut396BuOY3xjEN/43dvY2z+K32zqwT9+VJ4LB/mYMR/DjMagD8PxNGJpIJrNt2+JFHf+kaB8zZKZwtcsI8mL2JDfW3h8GYybcQ0BHB5JYiQpVXxcZUQJD/5hh6GDoQDgwT/swFWnTS46TbEhex0Tmfy58O/OOA6jaQlf/c3bOd/Xm3NaIwH0R5MYSUk4rkLXJ5WWr0gkFCj5M2GukSlRmRdHs2OyOZz/uo1h+ZkYT+ePOzZ2WO2a3u8DwKRxcgDTN5LI+/mK7p68Ob6rwBwfMznfzla55nYonoYkeC03NNdjIJbk7+24tkb4NTUyLT4fAl4PkhkRIymgRWWZHk+zpu3mn9W4BmZQkDE9LpURsXK7vF665vTJRX3+E1vl638sloTH68u5Z4YSSm1zcyRUctpve2NYfr14Oufc1u45DEkCTprYiJkdjXhjZz8SafN1SKkci8tjyCMA7U0RS++lObu+MXsWqa3tmyIh+P3yPeTzKaUJKUn/+c/8NBqDPtvec3P2nlSfMyvRigSLWwe0ROTXiqWM53m2LmwI5b92czbY1ZsfrDCSVOoWu8bJ967RWrNW1jhWz6HoQOzGG2/EHXfcgZ///OcQBAEHDx7E6tWr8ZWvfAX33HNPUa81YcIETJgwoeBx8+fPx8DAADZs2ICzzz4bALBq1SqIooh588x3hopl8+bN8Hg8eamQY4WAxUL/uIlZh5GTTbHGGlZ6iDEWzOnC5bM7+cK4o0k2qLAywYb9XqQy6YJFuMfKsK8H1K0BrBerMsfEGRYVtHqjHNdEJ5o5q/F6BMyf0c6//uLFM3HXb9/BT17fhevnH4+gz6sy67B2Ds0hP4bjaQyNpso26yjkfArYY+pgZs3tNMU4GKo/KysUam3B7sm2Bj/uu+ZUwzmnNeJHfzTJ+xA6jShKSGaKb0ugxcw1UbePWPZ6xc3s61kfKgNDAqYYapuls75t2oCb9Yo0MnMYMekj1hL2w+sRkBEl9EeThoZQVmDmIuMifl2HVkEQ0BLx4/BwAgOxJCa3hvnPrLsmmtvXyzWS/fjr+4dxLJbCuIi/aJOmtkgAQjZgOBZLcjt7QKkPC/o8ZdVe6rkmAsDr78l9aC86cQICXiH7N50xY2DmOWwMWEEx7ylsVgHkuiYKgoBIwIeRhHGPPHZvFRoHxaBnoOZkH7FRHcdIRqjMhs5sDRD0efgYKqanXi1T9Cd+9913QxRFXHrppYjFYrjooosQDAbxla98xTHb91mzZmHBggW48cYb8fjjjyOVSuHWW2/Fddddh0mTJgEADhw4gEsvvRS//OUvce655wKQa8t6e3vxwQdy4cI777yDpqYmTJ06FW1tbVi9ejXWrl2Liy++GE1NTVi9ejWWLVuGxYsXO9oTrZZRHNes9hFTbuZCfcSKdZxjDzc9Fyo9tAtjq0QCPktNRPvLsK8HgJCP9RKx7pqoNHMem06eLMWvlAlX/bCtBJ8+8zj88yvvo2cwjt9uOID/O28qPwerzlzNYT8ODIxiKJ5W2dcX20dM6VlXCKWPWOlOXW08EKt8gbSTffQKWU7vOyrn/580sQmfPGOy4eu0RQLYhWjFAtWkqn9csIy2DXqB2IjJYpH3SjKzr08Z9yEDgIlNin29JEkQBKFg3zYBct+2y2fnNy026yPm8Qhoawjg8HACR0YSZQVibDPALPV0HA/Ecu+TmIkTpZrmsPFcqKcWxtMiXtl+qCi3QZ/Xg3FZBffoSG4gxsZBua5+7H2MpjJIpkUEfB5IkoTX35cDsY+dPAFb9h0DoASpdtNfggMy32hIiRBFCR6dAI5do4A3P1gN+b1yIGbgnKj06LPPNbFBx+mx1Dm/kfcRM7OvN3ZNDJcZiLH30BD0OdKztpoUvV0mCAK++c1vor+/H93d3VizZg0OHz6MBx54AKOjo06cIwDg6aefximnnIJLL70UCxcuxIUXXoif/OQn/OepVAo7duzIKY57/PHHceaZZ+LGG28EAFx00UU488wz8cILLwCQUwyfffZZfOxjH8Opp56KBx98EMuWLct53bGG1R5EfFdF3UdMddOLOnb0xVqt9xawrrcLKztdQPmBWDmKmF4PsbFAORPuwKj8ebVYDILKJeDz4MZsSuLjr+1EKiPyvkGWAzFVU2e24Gouuo9YdpxZ6NeSsEE5Yb2yjlW4VxbgbB89Pi8YXMc9R2U30+PbzDdJKq0YqufushQxHYWLKVp6QQPrlZjKSEgZNBNnQYfRYp41ak2kRa6YlNMrkgViRqpye3YuN7Jrt8ohC8+q1rB+KwPFttyaIhZLZpBWXV+mFmqv0Wgyg6VPbcSK7h6L70KGXxNNfzXeA66MZs5A7sYS65n43qERHBpKIOT34JxpbVzJKcfq3AzWRsDqvAzkbh4YBVNKD7H8+86oHQYjZnEcFAO3r7dBEWsqUxFj76vUPmJR1dzB1gWjqdx7wa2U/IkHAgHMni0XgSYSCTzyyCP43ve+V7aLoRFtbW145plnDH8+bdo0SFLu4v/+++/H/fffb/g7Z511FtasWWPXKdYFPK3JZHBnRAmpbC6weldFvesYTabzdvJZ08alT200fG1108aeQTmwt5KaWA7hAgsuQH7PxS6qtRSriPVHk1xlOGH8WA/Eip+8negjVojrzp2Cf/3zB9jXH8Oz6/bx/niWUxNVTZ1LTU202gsQUIK1cupjqpmayDZ3egfjuoqJAHlxXEofvUJ9b5gidvx4czOMcayZb4UUQ7bQ8giArxz7frOGzjqLRfXiK57KwK9jDccWoUapiSG/F60RPwZiKRwaSqA1EihL9VT6iOnff7LiM1x2U2eWvWH2rGJzgPY+UXb6C/URU675SCKN1kjAVC1kGKmFRrQ3BvB+H3Akqj1Pe/pceT0CmkJyLSxrOM3SEudNb0fI7y0YtJRLf7T4Z3nI74EgyO590WRatxcemyv0AhGuGBspYglr46AY2H2ao4hlnwt652hGo4WG4ux5Eg4YN3ROi/JGjd78YAa/TwK+nGsfTWbQEq6QHa1DWD77RCKBr3/965g7dy7OP/98PP/88wCAJ598EtOnT8cPf/hDLFu2zKnzJCoErxEzCUrUtSfqnR917rjRwpk1gtU+E5pCvrw8f0URC8NJrDQaHBxNgcX5pdYcFauIsbTEya1hw4VLvVOo7tAMtqPuVI2YHpGAD5+/YBoA4Icr5fYPfq+ATfsGDJuWq2kOKbnvJacm+pXNFO3mlBa9FONiqXSgoYZt7ujBphj15k4xhPkiRn/sWVXEWPpTpRRD9pkGfB7TvoiF0K0RM2nIHPR5uC270a53oYbOgJKKzoKbclTPYZPUREBp6txfriI2VDg1kc1D2tooZafffMPF7/Xw5y1bDJejFhrBmzprglM7mjkztHViLC3xopMmZP9G6bXBVlDqva3PrYIgFEyvY892ved1qMA6wwlFrEFVY82eBaXWBRdVI6aT9hhSBWelqGJKDZ1srMPWqqWsDWoNy5/Evffei8ceewzTpk3Dnj178Pd///e46aab8MMf/hCPPPII9uzZg7vuusvJcyUqgJX6EvWOTkC1qyEIAs9vNrs5LjllItia9O9OkwOv8Q0BXHmq4oCZESX0DcsPAqs1YqUS1tk10sIe1M0hX9E7OYxgkYrYWE9LBMoz61AUscqkJjKunz8NIZ8H/dm/n8pI+OxP1+DCh1cVTBNq0klNLN6sQx5nkgSuXBuhBGKlL66qqYgByuaOthawsyVkaOJghUKLrn39WUWsgD28ooRUShEr/zMFlF3tUd3UxPwxKQgCX4AZpbZzRcxkN76jWakTA2TVc3yj8T2sTWlXM1LgHmpvkIOOIyPljV0WDJk9q9h9MmCkiFlYgLNNGZbS50SN5Hiemph7ntECamYxqAOx0WQGa7OB4sdOGg+gcBpfubBNkWKzWwqd12jWqVcvEIn4zTNvnKkRU54FLPhJcKO1IlMTLShibG0T0nkP6rq5UlJOtfdJPdWJWf4kfv3rX+OXv/wlfvOb3+BPf/oTMpkM0uk0tmzZguuuuw5e79jcsa83rJh1sJ/5PAJ8mqDEys1xOLvT5vcK+O61p6Eh4MXuozE+GQPyblxalOD1CJjQpN/PzS4ifMFlfM7lOiYCxdXuAMBObtQxdgMxtqM3Ek8XVHe0VEMRA4DVO48grnP/MIc3s2BMPzWxWLMO5Z4spL6WWi+gpppmHYwFc7pw/Xy5L9X5M9rxqxvPwxt3XVJyEAaolHKd+3UkkeaL90KB2DiDBbhT2PGZAkqwxF5PkiSlnskgfSpscs0yosSfHeaKmDzfs7ordTaCFjPVM50R+XkUUsTKTk20UiNmEJCrd/oLoV0MO1EjyQw6juQpYvYpNiwQGxpNYc3uo0imRUxqCfFnneOpibHizTqAwgY+XBHSCUQKuYrGHHBNDPm8XKVmmyjxEjdq2HNoJGH8LDZTxKwoimZENamxjWUYedUalmfqDz/8kFvHz5kzB8FgEMuWLSsr9YGoPYIW7OvNHvQNFuTrPlXKSWPQh0+cITtfPrtuHz+G7TB2NAXLssq1gpVJvxSXJS28RsxC7Q4AfMCt68emYyKgjKe0ahFnhXgqwx8KLRUMxFjNhh7s0bX8xW2GaYrMmOPwcILXaZZaIwYUtrDnDlpl2NdX06xDDVsMnz+jHfNntJc9b5gtuvZm0xLbGwIFA+VxBrVBTmFHSwIg3246lszwgMgosDFbaKlTPM3S29jG25rdR/HG+4fxxac24Gg0iQmNAUxszt2UM1M91enxRoEfU9rKNusYshCI6Zh1SJJUkiLGFp/FGmBZob1RXyUsVN9XDCwFe3A0pdjWnzSBryedDsQUN9ving2RbF8wo0CCZQuFde49vVRfNUwRK7VRth4ej6Aocdn7r1RFjJ1XRpQMs3r4+zepAQVKS02M8Ro6X87/jylFLJPJIBBQFqE+nw+NjWN3p75eYa6JZgs4s2JPK4EY6xHDHLKuO0fu7v5ydy/fNe6pkGMiUHiXC1AWme22KGJFpiaOYUUsxwCmiAl3KKuGeQSg0cac+0KUW7PBFLEDA4oDrZUFmhqPR7Bs2FEPqYkMZu4zqdWemlKz2tG9WaOOqQXUMEBRxCqWmmhDSwIgX91i959HME4tZDVMeoYE7Dp6BONF4IruHvzn6r0AgDc/OIrFT6zDmt39CPo8ePrG8/C3uy/Fkqzyee60caaq53BCvt5BVT2JFpaaWI4iFk9l+Gdrlpqo1FIq90kyIyKd3ZSxoog1c0VM/nusRtLIqAYovkaSq4RRA9fEMloiMNSKmDoQYzQ4XCPWX2pqYtDcYdnMNbDQOsMuMxQtDRrDq1I3aiIBRV1j95YWM9dIQEl3LiXA1ipiVlwc3YLlJ7wkSbjhhhsQDMoTVzwex80334yGhtzd+t/97nf2niFRUaws4OImOyqWUhOHFbULAE47rgWzupqxvWcIv9t4AJ+/cLqyw+hwfRhgnoLEOFrixK1GUcQKT0LxVAYfHpMXlmO1mTMgLzTCfi9GUxlEExm0W7wUzOGyJezX7ffiFOXWbLCd4gPZz74x6CtJ2Qn6PEhmRAuBWPlpbOyeGI6nkc6IeenKlaJngDnX2RSI+Y1rR1kgNq29sFrNzToqnJoYKPNzUHbw5TEUVSk3RpkwZjvevHGxwe8bNW0G5OfRrsMjOGliE+ad0I7/WL0XGQmm94ZZPRuDBR3l1IixZ5W60aweTJkfUJl1xFSqnZUAR69OZ8GcLlx00ni8/t6RnGM7W0K475rZRafncpVQc01sNevIXovtPcPYeTgKjwBcMGM8/7laEWP95Oyk1FKDQkoddw0066NV0DXR3o3DhqAPGE4gmpTnZxb466UPmiEIAhqDstvlSDyNjqbcn6czIq9JNtqoYXOqkXOkGeo+YvL/l27kVWtY/sSXLFmS8/XixYttPxmi+lipY1J2VPQUsfy+FVqYIsYcpgRBwGfPnYJ7f78Vz67fh89dMK3Cipi5OxqgKGL21IgVVsR2HY5CkuRAohwVrh5oCPowmsoUNeFyo44K9RBjlFuzwZqdsh32YtMSGQGfB0hYqREr3zWxJeznts4DWTvqSiNJEg5yRcyeOUOtCGkbuLLUxKlthRUxtVteJlv36iRJm1ITud12MlcRM1somll0m+34F7JhVzdtZht4hTY9RrK79o0m9xAbq0ejiZIX/CwltqslZPr7erWCbJc/6PNY2sBoCrLURCWYiybS2Lh3AADwrYWzMKE5iI4mOR2xlLFmpBIqqYn21Yi9+u4hAMAZU1pzUsjZGJEk2QDCbtdg9jwv9vkQNtmcAawpYsb29c4oYupeYrnN3oufH5pYIKbzLI7nuGkbKOYWHKqN0F6fxuymZT2kJlq+o5588kknz4OoESyZdaSMF2+sX8uISd+nQ0O5ihgAfPKMyfjOy9vx3qERbNw3gN4K9RADLNaIlVjcq6YYRUztmDjW6zAbg14cGSlu54stdsx2qJ2g3L5WzZp6o1IDMd4P0HKNWOkPf69HQHPIj8HRFAZiyaoEYgOxFK9bsGvzRr0giqczOSYFXBEr0EMMUGqDJElOxSpnDrGCHcE1oFo0ZReOIzwQMx4rZmYdMRNFpZiU3snZ1NO+IfPgaZj3ECusiMVTImLJTElqRK8F63pACcgHYil+3tpd/kLoKWIvbDmIkUQa08c34AsfnV7284Jdk2gyg9FkRvWZ2hcosBRsds9+7KSOnJ+rFZVoMm1rIJbOiBjKXr/SFTH9ZxF3DTRRxIx+t5hawWJQ9xJT13aVopg3hnzAoOJGqkYdYBrNPax2rqQasTzXxKwiNpbMOoixgdq+3sgZxyydqdGCIsZs6TtUD66WsB8LPyKnUDy7bp9KEXO2hxhgrY8YV8TKUFiKUcRYIDZjwtg16mCUUpRbLcdEdV8r7XLISs1GfiBWas+6wm0o5J/b47DHFjSsUWqlYTV14xuDZddGMdSLQe0mDbOun1qghxggq5MsGKhEeqJt9vWaVCoriphZiw4zRaWYlF5m5pFIKwtqPVjgaBaIRQI+/j61qXhWseKYCCiKWFqU+LmNFKmCKPb1yvt+Zq1scvXZc6fYsmnXGPTxmjq1c6JZIF0sTZrP5IKZ7TlfezwCAh55/VGKemIGSw0VhOI36gqtFUZNaqR4QJvMvzesOJKWSkS1JmPzvZ7jtRW4U6HOs1hpZm3cv5BtZpWjiLHryPuaOVRHWEkoECNyUBc1G/UgMk9NtGLWob+D+H/PlU07XtxyEDt6hwHI6RFWGuGWg7JTZaaIZV2WylLErDV0zogS1uw6CkCeMJ1+/7WOlUaSWnggVmFFDFD6WmkXZlb6WrHUREa5ilihoN+uRXtrhZ0BtbCNG7vSEgF5Mciuo3rhkEhneBrkNAtmHUBle4nZbV/P3jtXxEx27MMmC9UY//38sVZMSm844OUL+cPDxiYbhXqIMXidWLQ0w45eC46JgKySsM+EpU5zJziLKkiTxqzj7Q8H8M6BQQS8Hvyvs6cUf/I6CIKACTxlU7mf7XJNXNHdk+cse+szm/LaerB4xG7DDrap2hL2F526yQ03DBSduKUaMT01SeSOpLYrYkFFETPLZrICSwfUU6HYvGOUlggUrpMzQ1GPvdn/V1rbuB0KxIgcrPQgMjPrsKJesIdnh6Y/2NnHj0NncwjxtMh3rZa/uM1SI9xysLJLo9SIlb6wD/qNd4sZK7p7cOHDq7Bml+yq98y6/Y6//1qnlMaN1aoRYyyY04U37roEv7rxPPzLdWdY7mul3b0vVRELWAz67Upjq3SvLC09DqUy6xn57O8fhSTJn5XV1KZKXh870k2B/JoWK2YCZqlHZgv5Ym3YJzQXrhOzoogBil172YqYBWMpZRzI81OxKog2NZGpYVd9pLOs+mUtev3V7DDrYIYs2g2bQ0P5PRaD2SkpalLmUAr9ZWS3NBRYK8Qt1Ijp/a462DRrdl4KbONjJJE2dby2gplTIVP6zM6/HPv6qKaP3Zhs6EyMDXIDMf2AwWwXnd8cBrtYybTId9m0itgft/by3UU1VhrhlgPP+9bZqWIogVjp9S+FerSxh5S2VsLp91/rWFFZtQyMyp9XcxUUMYbXI2D+jHZ88ozJlvta+byenIWj0zVidhk7VFLx0eOgzY6JjIiqvoKhNuqwmgqmOCc6f31YQb59romsjxgLbArveOuZPbHf19vxLzall23imSlivEaswD00vqG8ps69RTj88jqx7Pxkdk30UPqIpTAcT+GFLQcBAIvmHV/cSRegnV8TtSJWXkNnM0MWvR6LLN4zM9EqhWOx0tPWwwVqxFiQVaxroqKMem13+Y2ozMjKVcvNslPiFhSxcvrDadXjUjJlahUKxIgcBEFQ7aYbBGJMEdNZvCmLZv0b7XD2Yef3CjnNFMtthFsOhfp7JNMiz4kup0YsxBcp+de12IfUWELbB8UKXBGrYiBWKs0hOwKxYmvEytuFHVflXmIHB+x1TGToLbyKMepg8KbOFWh6bUeTbiB391qSJJVZh/GYNNvxLlRjVExKL0tl7BsySU3kipj5HNBeRlPnjChhXzYwP2IhjZ7VJLFggM1pVlWmZpUi9vzmg4glM5jZ0Yhzpo0r+tzN4E2do/bViBXbY5GnJtqsiJVqXQ+oHAgNFbGs4qRzjcyanSvKqP09LxUna8Wso1S1nG1qDMXzN5SUGrHCZj6l2Ndr1eNSNmhrFUuf+gsvvGD5BT/xiU+UfDJEbRD0eZBMi4a76Vze1lXEzM06+rhjYq7VbzGT9PwZ7YbHlUKhAlw2cXs9QskLY8BcEavm+691uDuSQRNJPapl1mEHTSE/kB0LWvMOq1hOTcw+mI0a3lqFLWoqEWjoYXczZ4be3KAoYtaNdCoZqNpWI6ayEE+kRUtmHZYCMRNFbcGcLlw+uxPrdvejbzhuaMPODDsOm6hY1mvEskFHkYrYiu4e3P/CNhzNGtTc8/ut+Le/7DTt3cXGwWBMo4hZdk1kilgaT6+RG1//33On2u6s267TS4x9pqUGYsX1WGxG0CMBEBxQxErvCWrZrEPn3jPrV6ooo/amJQLqGjEbFTET10SjZs7yz0q3r89zTQyNsUDsU5/6lKUXEwQBmYy9uxdE5Qn6PBiGWY2Y8Y5roRox1kOsozk3xa/cRrjlUEgu7+fNnMtrDhwyqRGr5vuvday0RNDi5kBMbdjhuH29TTVi9ZqaqGfks7efNXO2rohV1qzDHgMW9WIynsrw+8+aWYeea6K11DaW0msG7yWmk8rOGDExB1Gjl4ZXCKPm0yyN3MiUR21hDxSviLHjeofi6B2KI+AVcO1Zx1k+b6uMb8gPTtm5sl5axVJsj0V2SYzUp1Jhm0WlGG8V6jnKzTp0Pk9tOwg1I3wcOKCIBZSMknLNOppMgp9RE6MShhVjNCPy+oiVkClTq1j6NERRtPQfBWH1AU9rMjCVMNtVKSQXHx7O7yEmf11eI9xyCBcowOUTd5nGD2aKWDXff61jpUm4FrbQaQm7rxm2WgUr2zWxQvb11TTryIgSd2K1OzVRXxHLWtcXEYhV1KzDps/U5/XwOrPRVEaliJkU42f/pl6vRDvtzzu4WYeF1MQCqrKSmmhNESsnjbw1klsrWIwitqK7B5/96Zqc73k9HqzedcTSeReDriJm0pDbCsUasrBhFrNZ8WAtNkpSxAooOlwV0tkEMVPTYhburVJR0inTpo7XVuCBmJ5rokkPNe25FJuamM6I/NzZvcKt9Mk1kahHCi3iLJl1FFDEtEYdxU7SdhLMLjaSGRFvvH847wFqRzNnwFwRq+b7r3VKc02UPzN3KmKqQKxAfYsR1mvE7HHYq6Yidng4gbQowesRbN+o0DYoTmdEfHiMKWLWUxMrae/PVNBy000BJc1oNJlRmXUUVsTieotNOwMxViNmJRAr5JrYUJxrYrG1Tmq0Zh1Ri9eEKXDa9zuayjhi5DRek64pSRK3bC/18yvWkIW7JtrdRyymZLgUC0urNVJ02LNdTxEzrxFzUBFjqYmJjA2pidnU2DIVsWJdE9XtAvIVMfcHYiV96tFoFK+99hr27duHZDJ38rr99tttOTGiehSqL7GiiBnJxYeG9BUxNkkvfWojBCBnt9FKI9xSkfP8t/KvFz+xDl0tIZ7nnxElbNx7DID8MMpkF3ylYKaIqd+/Fiffvxsotig3I0q84elYNevg97DJA0+SJMU10cWKGOvp1dkcsv3+YGlYbOHVMxhHKiMh4PNYcsljaG3LncSudFNAXlAOxdMYTWVsMOtgDVnLX2xaSk0sto+YxUCsnDTycZrURKW3mvE5milwjOUvbsPlszttG/9aA5NEWulzVU4fMWbIsvzFbTnBbKfqmctwTBErY2NVz0VVjWlDZ435jbquT1FGnasRiybTSllJiWnLjSaKWNzExI0RKlBjZwRzTPSqejuyQGw0lUE6I5bUoLpWKHpG3LRpExYuXIhYLIZoNIq2tjYcOXIEkUgEHR0dFIjVAYXqS8wk6MbsRJXMyGYf2l1ZtqPXobOIKWaStoNCef43XTQdL2zp4eeyfs8xXPjwqpLPxUwRA5T3f8ezm3OUDKfev1so1qZ2aFRZ7FbTvr5UchSxEs06eNCfMVbE1GOs3EV7m8qeXbvIcJoeXh9mf9qukk4kjz2eltgWKapeVLk+7ukjBiiLx3gqwzfXTBUxC2YddhgSMLOOoXga8VRG91lkVRFj6k9/NAFRlAp+ruWkkbNUabZhEbVgYFINIyflmiQhilJO4FGuamPVkCXolZ/M9iti8vOhHNdEI0XHSh8xMWt+oz4m6miNmKLi8U30Eh1VzZ7FVhQxltpp1BDbiKgqLZY9W9QbQtFkBi3hMRSILVu2DNdccw0ef/xxtLS0YM2aNfD7/Vi8eDHuuOMOJ86RqDCF0priJjuu6h2daCKNgC93smOKmDY1kWF1ki4XK3n+//767ryfFSrGNkOtiBktVhfM6cIpnTux5cNBfOHC6bhs1kRH3r+bsNIkXA1rBt4Y9MHvwl0y9cLxg75hnNzZVPTnzx60RnWegDYQsyc1kamRLRUMgHkzZ5sdE4F8I589WcfE49us14cBqtTEqPOBql01YoDa5UzMK5Y3O15vs8nO1MSWsB+BrLvv4eEEpuh8HsNZi+1CfcRYTaYoAa9sP4RLZ000vd9YGrlRcCRA3jzTSyPPU8Qs9BGrhpETU3AzooTB0RQ/z4DPY8uzyIohSyA7fEdtdk1Um28VCwsyjJ5FoyaBmPp72s0DJ10TWXCnbujshFlH3EKNmFnqshnaHmKAPBbZHDCSqOwzx26K/jQ2b96ML3/5y/B4PPB6vUgkEpgyZQq+973v4Rvf+IYT50hUGL6IM0pNNJGgfV4Pv8n1blbWgFObmqimlEa4xVJol9GIcnp6sR1qUQLSJr/L6myumtPp2Pt3E8ounLXJm+02u3FiXtHdg3/7y07+9e3PbsaFD68qugbESo0Yu78FQe7rVw5Bn5cvsCudnsgcEyc5oIjxPmLZOW9f1jHx+CLqwwBlYZvMiCU5hhWD3amJACynJpr1CVICufJ3/QVBwIRGY8MOdd+zJpPzXdHdg0t+8Bf+9U3/uaHg/eb1CPjW1bP0zyv7/0Zp5Mysg20WMSXE7JpWw8gp4PPw+fPISIKnktkRRFuF9xGz8X5JZ0TuqFuOfX0iLeo+/+MmqpDf6+HzrHYOsDIOSoVtjscSaUuGGmZYsa83U8TMUpfN0PYQ056P2+vEip6p/X4/PB751zo6OrBv3z4AQEtLC/bv32/v2RFVgSs3hq6J5nnGjaqcZDXJtMhzzo0UsUpRzu6hWTG2GeqFkZlrENuxKyV1oh4pdrJ1q3U9S5UdHM2tI2IqbDHBWKBAejGAHCtjOxSacRpHuErBmjk7m5oo36+sh9jxRTgmstdhDoROpyfaVfcH5KYaRi2k+pkZEpTbh0oLc048rDOXj6YyYOtkI0WM3W/aDTkr95s3uwbS3jZ6zafVKIoYS/krrIRUy8hJXTvH1Uwb0l2twhQxO/uIqefWUjbq1JsI2mAinRGRysiDzigYMUrdLbafXDFws45Uhv/dks06QkrpiXaj3kofsUKtgowwUo6LLVuoVYr+1M8880ysX78eJ554Ij72sY/h3nvvxZEjR/Cf//mfmDNnjhPnSFQYFmAlDepL2A1odMM1BH04Gk3mLZxZ802/VygpLcBO7Ng9LDaYU09+ibSIJp1jEmll55kCMRm2ozeaylgyS3FjIFYoVVZAcQX5ZsYwDLv6TTFaI34cGBi1FGhkRMm29GOnmjkD+X2DWI1YsYGYIAhojfjRN5zAQCyF48bZe55q7Pxced+fRJqrglbMOszt6+1ZbHLDDh1FjO3YewT9RXG599vTa+VmyjdddAI+flKH5XHcElHSIIcTaaU2yOSaVsvIanxDELsOR7O2/vK1Lseoo1i4ImZjn6hjqmyJUswdQn4PBEFuch5LpnM2JeKqTS8jxYmb32gVMQcVRxa8SBIwmHXrLHVuUAdCw/E0go3K65ilZTLUNafFYNRvr8FEoXMTRc+I3/nOdzA8PAwAePDBB/EP//APWLp0KU488UQ88cQTtp8gUXkCBRSxQs47DQapZH3cMTFU0WJ+PdguY+9g3NSNyoxigzlBkB1/EmnRcCJiapjXI+T0kxrLqBd+VnLBWf1Fq4t6iNldkF9MaqIdygmgMqSImgdiK7p78gx5usowpDk4yHqIORCI8R1sEZIkqQKx4lITAVkx7BtOOK6I2Vojll349MeS3DXPTBFT291riVmoMSsGZthxWCcQG1apd3rPmnLut12HR/DX949AEIDF847XrU8zgqXwxpIZDMSSlmuDKm1kBQDjm5ReYuwzc0KxMYK7JtqoiB0rw6gDkJ/hEb8X0WQmb4yrn+lG956RIha14J5ZKurgkbVoKHVu8HoENATk9z8ST3NTF8DcqIShTnUuplbWSDFsqpPUxKI/9blz5/J/d3R0YMWKFbaeEFF9Cu2mF6pBaDRowMt6iLGUkmpitstYCLNi7EKwQMxogcwmynGRQFGubPVM0OeBzyMgLUqIFhGItbhIEbO7IF9pQWEciPEUthIdtLRom9XqUciptFgTnEQ6wxfiTrsmHh5OYDSVgdcjYHIJQV+leq0lbPxc2cLxyLA8L3kE89QjdnwiLUJU1dDk9KGyyaKb9xIbMlbEjILGcu63p9fK5RgXn9xRVBDGaA37s4FYSuWaWHgpVikjK4bSXy3B0xTN6n/sJujJuibaqIixjc5ysiXCAR+iyUxeeh0LzII+j+GzmynseYpYQr8Gyg4EQUBDwIeRRJpvApUzNzSG5PevTQfkPdQs1IhlRCnbBsTa2DVWxOSv9fqauYmiP41LLrkEAwMDed8fGhrCJZdcYsc5EVWmcENn8x1XI7mY5fKbGXVUErbL2KlZwHW1hPD/XTQdAqw1niyGUAFpnk2U7ZSWyBEEgeemW9n5Ys1S3WTWYXdBvtKConKpier6Fz2sOJUWa4JzaFBehAd9HkdSecOqmoa9WaOOSa2hkpols/Nz2swkUWavIDU8EMumlTcE9BUmfrxqoaROT4ynlD5U9qcm5gdLvJ7NoD6s1PttNJnBr9+Sa+GvP+94y+eqpiXCaq8SfDPEqlteJYysGLxGLJq01fHSKo4oYqz+ugSjDoZS55R7XmxdZJa+GWaKcV6NWL4roJ2wgIUFoqEy5ga2uTGsWd9ZSU1Uj59ieokZ1YgV66hcqxT9qf/lL3/Ja+IMAPF4HH/9619tOSmiugRVu5p6FOpTY9SAlyli1TbqUGO2y3jm1HG2p4IojpT615aMOvRpCPgwEEtZKsod5KmJ7gnECqXKFqvCFtpMUf8sYJPFv6KI6QcaTvRDOqiqD3Mi3TmiMp/Yc0Q26phWQloioFyf/gKpm+XCFoSlBIta2KKSB2IFlBv1Ai+eEuEPZF3iVAtPu1QVllmhVyM2XMBYxEpqup4BxotvH8RQPI0pbWFcdNKEks6bbVgwkxnAmf5R5dLeqChiozbX91mBrdntdE1kanSrLYGYVhHLOhKaBDlhjfkPQ90nywnkACbB3385ihjrbal9FjM37XDA+LX9XiW7ZTSVQQusPaON+u01mTSYdhOW76q3336b/3vbtm3o7e3lX2cyGaxYsQKTJ0+29+yIqsAWZoYNndPMAtUgNTGgv0txaKi2FDGGUU8TJ1JB2CRtpIix1MS2RgrE1CjOiYUfym4067C7IJ9vppj1ETNpQ1EK4wqk3jnRD4n3EHMgLRFQFp6xZIZb108tIR0NyO8h5RR2uiaGtIpYgdQpj0fgvX1GUxk0acxOQn57+lABqtREE7OORoM6Wyup6XdeflLeuT61Rjbp+L/nHl/y+2Dz0ofZQMzvFWwJmu1mfEO+a2JFzTqylySZFpHKiLb0hGSbRG0N5aQm6gdicUuKWDY1UauIOWhfDygBDE9NLEMRU3qJ5c5jXBEr8NphvxfDiXRRFvYxgxo69vWIzb3mKo3lT/2MM86AIAgQBEE3BTEcDuPRRx+19eSI6lCwRoxboBZQxDQ3B3tgdtSQIlYIK40ni8GqIkapibmwBaAVRYz16GlxkVkHYG9BPttMseaaaFcgZm7W4UQ/JNZDrKvFfqMOQL3oSmNP1qijVEVsXAHF0C6ccE1kG0RmRh3q30mmRXnXvyG3JsZORYVt6B0dSeS5qVrpIWZ0v3k9AjKihBXdvfhfZx/HldYt+wfw9oeDCHg9+N9zjyv5vJkaw8ZuLaphQK4iFnNYsdFDHfPHkhm0hG0IxFgz5zKer9qWFgz2tSWzigorYhGVcyJQ3pxv1EuMN3Qu8B7CATkQKybl1EgRaxxritju3bshSRJOOOEErFu3DhMmKLJ8IBBAR0cHvN7K3aSEc/BgoWAfMQNFzKCehylitZSaWGnYblHCSBGj1ERdjNJd9WA1OG5SxBh2qbDsHjZqQQE4UCPWYG7WYXf6JaCkd01qdUoRU1y+9mV7iE0t0rqeUQmzjnRG5M3i7ekjJr9Gf/aeshI0hP1eDI6mclR/J+y52xoCEATZCv5oNJETwI9Y6HkG6N9vjUEfrn38b3j13T48+eYeLDl/Gtbt7sc/v/IeAGDhRzp5kFIKLGX6wDE5sLdaH1ZpWI3Y0SopYj6PrBamMhJGkxlban7ZJkgpzZwZapVczaiFPlp6NWKSJPHXsrLRUQraMWZHIKY1yLCsiJk0fTeiUB+xMVMjdvzxcmGqKBo/2In6wMz6WhQlvrgr7JqYe6Mxd7NaS02sJIUVMfkakSKWSzETrhtTE9XYocIWasoO2G9fX8isQ50OpqVUExymZDiliLHAIZWRsPNweTVibPHnpFmHOvC2xTUx+/7ZTrqV1Cm2EFUvtEYdCMR8Xg/aG4I4MpJA31BuIDbMUxMLn6/e/fatq2fh3t9vxXde3o5/+8sHODKifGZ/ff8IVnT3lFwnzMbBgewmghXHxGrArMmHE2meThvxV/ZcIwEvBkfTXDEqF7YJUl4gpm/Wwca7WQ1kRMc1MZEWuUGRU2NBe9+aqXaFMFKh+PsvpIjxulvrsYSRa2K9NHQuaabeuXMnbrvtNlx22WW47LLLcPvtt2Pnzp12nxtRJcwK/dUPeqObWU+9SKZFrvaQIma8G6SYdYzdYFUPqxOuJEmu7CNmN5b6iBUw3SkWK6l3LB1MG2x1toSKtq4HnFfE1HMcG3sl14g1MEXMuUBMHXjbYcKineMbLdhrh3R6JdndzJnRYdBLjNWvlKowXH/e8Tj9uBakRSknCAPkOXrpUxuxorunpNdmbTVYqn6tKmLNIR/8Xvk+3Z9V7yqZmgioG4rbY9jBUxPL2KQzSk200keL/Uytpqn/7VR7AK2SVM7mW5PBszhuQRGUf64fyJph1EesmEyZWqboT+OPf/wjZs+ejXXr1uG0007DaaedhrVr1+LUU0/FypUrnThHosIETGrErDQt1FMvDmeLvf1eoaxJ0O0UUsQoNVEfqza10WSGp2a5yb7ebhT7eiupiXa5JsrXO54STa2JL5/dqUgsACa1hPDGXZeUpDD0ONjMGcj2BFLFjB1NwZLTs7giFnUuNZFtlHk9AnwOBGJWFDG9Ohin7M+Zc2JeIJbdrW+yoIjpIUpA75C+aUyprRYYbBzYbedvN4Ig8F5iH2aNaiqZmggo18YuRaw/Vv7zlRluaN0crfTRUqc6M9gzLez3OtaOQFtbVc7mm54ils6ISGXkAV0omNS7BoUwVMRC9RGIFT0D3H333Vi2bBm++93v5n3/rrvuwuWXX27byRHVwWw3nX3P7EHfoOOa2McdE0OO2Ey7BaVGrIBZB7km5mA1NZGlJQZ8noI7c/WM2nBHkiTde87u1MTGoI9bEx+LJREO6AdHPYOjyEiAIMiL0d6hOFIZEV5PcYuDaCLNP2+nXBMFQUAk2wwVKD0tEVAW4MOJNJJp0RGnPKWHmD2vrV1UWVGYuOqven6wRZdTipjWadNqjZgR63b383YrepTSaoGhTZku5ERZTdobA+gdiqNniBmLVPZc2bWxo5dYRpT4fGGPWYd+jZRZSjC7n3LrJ5na49y1tVMRawzK43dIFYip7/VCaY9616AQRopYMW7KtUzRn8b27dvxhS98Ie/7n//857Ft2zZbToqoLmapiVYe9HpyMXuosR3MsUpQp36Ckc6IPK2OFLFcGgwKhLVwo46wf0wH/GwzRZTAFUItdpt1CIKgMuwwTr/b3y+nE05rb0BbQwCiBLx3aLjov8es65uCPt7bxgnUKkCpRh0A0Bz2gw1J1nTcbuwOrrUKSDGKWLwCitiEJv1eYqxGrFQ7cCdaLTC0GSG1qogBinOiot5VWhHTrzcvhcHRFH8f5fSYNLSvt1AjFtKpL1PUHufGgfY+KCsQ07Gvt5IpxQgZpHaaYWT2Y9Rc2m0U/WlMmDABmzdvzvv+5s2b0dHRYcc5EVVGcU3Mv1GsPOj1dinYA2ssG3UA5mojKyQWhPKKiesRxQCmgCIWc7dRh12o1ZbCjdntU2as9Mran01zmtIWwayuJgDA9p6hov8Ws/92Ki2RoX74TysjEPN6BJ4u61QvMbuDa+2i0spCPGxaI2ZzaiLrJaZRr5jKYMWsw+x17TpOjbatRi0rYuM1G4LhCgeNRsYYpcA2h5pDvrLSdllNX0yzPhq1UCPGG8SrMmIq0RpAO8bKMevQqxFTrPs9BTdA2TXQXj8zjPqIjTnXxG9/+9v4yle+ghtvvBE33XQTdu3ahfPPPx8A8Oabb+Lhhx/GnXfe6diJEpWDN3TWsb5Wmjkb38gNOotm9qAcy0YdgLkixtISW8N+x3LF3YrSEsF88mY9xMayUQeQG4gl0yKgs/9ht3oCKD2STBWxbOH/lHFhhP1evPnBUWzvKV0R63LIqIOhDkamlpGaCMgbLAOxlGGvtXLhn6lNwXW+WYcV18T81CNlsVmh1ERWI1aiIuZEqwWGdpOolhWx8ZqN00obi/AasTIVsYwo4a/vHQYgK1ravnOlnJNW0UlYqBHTU4ujDjdzBvLHmC2KmEqFYvOOFbMRvWtghihKPGjL6yMWVBpkl1KvWStY/uSXL1+Om2++Gffccw+amprwgx/8AF//+tcBAJMmTcL999+P22+/3bETJSoHK+TUq2NiD1dLilgyzetTDg2RIgaoasR0VIqjWet6SkvMh+2EFSrKZUpDyxhXxLwegffgMWrqnLRZPQEURcysV9a+rCI2tS3CLbK3laGIOWVdD8gLuIyqZcuUceX9LSu9xDKiVHIfOTav2OGYCJSWmhjS6ZXkhH09oDLrGNG6JpaniKlbLQhATjBWaqsFht/rQWNQqTusVddEIL+NSqXNOhpsUMRWdPfkNO0+NJTAhQ+vwn3XzC7JIChscE6jFnqtcRfIlPK7FVHEtH3EyjHr0FXECm/QM/QUczPi6YzSPkMTUKrno5FEGpHa3dMwxfJpS9krIQgCli1bhmXLlmF4WN7FbGpqcubsiKpgWiNmYfHGbg5Rkm+2SMDHc/g7SBEDYK6ItZN1fR5WUxBY7U05NQD1QtDnRSqTLrkxeylwC3sTxUedmsjML7b3DBmaihjBresdMurQLuAA4OanNmD5J04tuYdUW4FeYnp/s6slZHnRyD9TmxSxUsw69BZavMbD5jQ8dWqievzwPmJlqAys1YL28+gs4vMwoiXs5wvZWu0jBiCvcXWl1TteI1ZEPZGaFd09WPrUxjxVs3cwjqVPbSypZYaRff2ohU1qPUfRqMPNnAF7a8SYE+lwjllH8YqYtsbOCLUaqn39gM+DgM+DZFpENJFGxFe795IZRZ219iFJAVh9EjSxr7eS+hIJeLkj2kgijUjAxxWxMZ+aaKKI9ZN1vSFW+4WwGrGxbF3PCPg8QMKkRix7L9vp3mfFrGNf1qxjalsEMzoa4PMIGI6ncWBgFMeNs16DxZs5O1AjZrSA6xtKlLyAA9Spm/mKmB2LRsVMyZkasVLNOrgiZnOfJGbWkUiLGIqn0RL2I5kW+ZhvCpY3DyyY04XLZ3eWrFAaMa7Bzxs617QipnHvrbxZhzzeYiXUAGVECctf3KabWipBVjaXv7gNl8/uLOrzDBsEh1YaGiuOgaoasYQzabtq1DViHgHwlTF+2T2VSIvc/ZXd31aUtmIVMbVi6NE578agD/3pJEYSaUxocGcgVtQT+KSTTkJbW5vpf4T7YTeTXg8i9qAPmTzoBUFQWdjLNxtXxMZ6aqKJInY02zi0jazr87AciI2SWQejUC8xZxQxczOKWDKNI9k0sinjIgj6vJjZ0QgARdeJHRx0pplzoQUcUE4PKf2mznb9Tbvr/rSvY2UhHtJbbHJFzN6FUsjv5Tv0h7N1YmrV3A4jDK9HwPwZ7fjkGZMxf0a7LfW76hrWmq4R02RnVL6PWHHqiZp1u/tzlEwt6hYExZ2Tfo0YN+swWRvppTWygM5J0xb1GAv6vGU5CqvPk91rimNk4XmHb9RYDMQKuUqy83FzL7GiZoDly5ejpaXFqXMhagRWX5BIi3npQnGLxeANQS9GEmlEsz1zmNpDipgFRYwcE/NoCimpiUYpbBlRws7DIwDka1lOQXY9YKZsA2rXRPsWAIXMOj48JgdPzSEfr+Ob1dWMd3uHsb1nCJfPnmjp70iShB7mmmhzjVgxC7hie0hxxVCTumnX37Q7uPZ4BIT8Hh5UFWPWkeOayPuI2b/Y7GgKYjieRt9QAjM7mviCLOz32tLU2gnUG0W17JqYp4jZrGgWopxAzKkWBEZ1a9ysw4IiptfQ2VFFTPXa5fbX9Hk9CPu9GE1lMJJIY1xDwJJjpPL3i7OvjxXosyb3NRvNMQ9xG0V98tdddx1Z1I8B1EFWMiPmpLlYbRgqKxgJjCTSvJDa7xXyeqiMNcwUMUpNNEZddxhPiXkPO21tzc/f3IM/dPeWXcvhZsyCfvn79rsmjjNJvQOAfUeV+jDGrK4mPLcJeLfXumHHQCzFH/6dNteIOdlDysisw66/ydRPO9NNw34vD8QspSbqLDbZoktbbG8HHU0h7Dwc5c8ZXh9WolFHJcgNxGr3PNXPooDXU/HAVqkRK36R7VQLAqMaJyUYKVwjFk+JEEUJHo+gBBoVsq+3I225MeTDaCrD7zUrjpGMYoNrpYeY/n1itbVNLWP5rhrLzVHHGkGTHkRW+9SozRX6uGNiaMyPI7PFMXNN1O5CErk7sdoUBFZbo1UUWG3Niu6eipxjrRGoYmqikVkHs66fmhOINQMoLjWRpSW2NwTK6omjh5M9pMYZmHXY9Tft7iMG5C6uLJl1BPI3m9hi04nUNuacyFqksPmhVOv6SqDuE1nLqYnq1M9KpyUCqkV7Cfb1rAWB0YpDgGyEU2wLAvZ5JdJiTqpw3IIqpL6XWHYRT72rkFmHHUY+2l5ixShiSp2cRUWsgLsob+o8FgIx5ppI1D9q62Ot45rVXXS13fihIeaYOLbrwwBzRexYVN4lJ0UsH49H4BOxeufLyXoet1MwNdEJ+/oCZh37+vUUMTkQ23M0atmmusfBZs5OLeAAtSKWe33s+ptOqJyh7H3nEaylNbEamdxAzDlFbEJjbi+xkYQ8j9ay0tSkUus+6Buu6fmJtZiotFEHoHyGpShirAWBUR84oLQWBOrrkKP6FhmIMZW4EopY0OcBe5t2zA2N3DlRvtd4WyMrNWJFmnVEC9SXNlh0VK5lLH8ioihSWuIYQRAEpdBf09TZal2JcnNk+ANyrBt1AMqiV0+lOEqpiaboGXY4VZBdD7CHYsHURJuszgFlp384nkZapyH8/qxjojoQG98YxISmICQJeLfXmirGmzk7YF3PFnAA8gKjcntIsXtba2ai/ptaivmbyvxsb2oiIN9/VjIaWOA2qhOIOaqIDTNFzHk78HJY0d2DH/95J//6rt++gwsfXlWzyn1bdvMgI0pYvfNoRYPGcmrEAODSWRMxQSfDpLMlVLLzadDnAbsN1G6OcQvpeR6PsrZi76kSipjaQM2W1EQDRcwJ+/pCgWqTToNpt1GblaxE1WFpTQnNrkXc4o5rI3eySfGUkbFu1AEoO8raxbEoSnyXnPqI6aPXSNLJeh63w013jPqIWaz3LIaWsJ8vUgZG8+vEeA8xTWNkJT3RWp3YwUHnFDFA6SGlrT8rZwEHqFITR1MQNQvaBXO68P8+PSfvd4r5m06mJlpVs8I6xfijjpp1yJ/RYRaI1XCNGEujHtTcG7WaRr2iuwfdB+V7sm84gc/+dE1Fg8aIThZEMfx2w4c4PJJEW8SPJ284B/9y3Rn41Y3n4Y27Lin5HhYEgafKq4OJuMVgROsaWAlFDFB6+JVr1gGo0gHjzDWxiIbOdrsmsuyrMpp+V5vam6mImiDo82IY6fwaMYs7rop6keE9xEgRUxZI2kloKJ7iO43jGsa2oYkRjaH8FAQn63ncDq9H1FGmAGcW7V6PgOaQH4OjKQzEkjytCZDT2/VqxADZsOP19w5bD8QGnFPEGE70kGpVqQvD8TR3jmRog53bL5mJOy47yfLfdKI3HFs4WXX30/ZKSotAKiPPbc6YdWgVMTnIqbUaMaf6WjmFE82Qi4WNl1IUsUQ6gx+9+j4A4IsXz8TFp9iX0RUO+BBNZnLOy2qdVMTvxQAUsyHFvt7Z8coM1Owy6wCUTVGrQaj6GNtcE0kRI+oVpb7EBrMO1kOMFDFDRYylJTYFfbYujOsJdd0hw8l6HrfDUxMNdh6dqCcCFMOO/mjurv/RaBKxZAaCAEzWKGKzizTsYDViTjRzVmN3D6mgz8t3+fXq6NbuPprz9YTmUFF/M+mAAQt7rVRGtJSaFtIU4ydVU52zZh3ZGrEaVcTclEZdK7W3atfEYn0KfrV2Hw4OxtHZHMLi84639bxYUDCaksdaKqMYdxQKRkKa1DzFjMLhQIynJtpo1hHPDcSsqG08NTGVsfSZFlLEGsdSjRgxtmCLOG0tE1u8Fbrh1AWUTBGj1ERjRYxb15NjoiHqukOGXbU19YjRZgogq1N8U8XGeiLAuJcYS0vsbA7lbTaw1MR3e4byUvb0YK6Jk21u5lwJxpn0WlubXYRPyKo8gwamJ0bYrXKu6O7BGx8cAQDs6x+1lJqmLcZnt6vfK9iq1DEmNMpjYCieRjyV4e5ptVYj5qY06loJGlkgJkm5DcILMZrM4F+zdXi3XjLTdmfVsCY1UV0PWWg+jWhqKBUzCuc2YDOixGt2RxKpsgNorSJWimuiJBnXL6splLqpV7LgNigQI3RRmjrnBgzFKmIjakWMUhN5AJtWTYwAcHSEjDoKoa47VLNgThf+bdFZ0PoIlFvP43bM7OvTogS2GWm3AqsYUuQGEdwxcVwk73emj29AwOtBNJnhTZ+NyIgS39zpsrmZcyVg6Ylaw46+4Th2HY5CEIDLZnXoHlMIO1sSsNQ07QK4UD1TKGtfP5rd8WaKmJW0pVJoDvv4WD88nKhZRcxNadS1EjSqx0whR1VmJvL7zQfw7Ze24shIAlPawvjfc6fYfl5aExG2sSoIhe89nrqb55rozHhd0d2DCx9ehe1ZI6S1u4+VXecnN1FW14gV39BZ/XtmWHVNdHMgVlszFVEzMFdEbaE/tyktaNYhD62BWIqrPaSI5S56E2mRN8hk16idAjFD1HWHWk6d1AJJAnweAQ9f+xFMao2UXc/jdsx61qm/Z3dqolHTYhZgTWnLD8T8Xg9OnNiIrQeHsK1nCFPb849hHBlJIJWR4BHcubljpIit330MAHDyxCZMbWsAoG94YkaiCBtpM8qpZwqpdryTGQmsFMSpGhhBENDRFMSHx0bRN5yo2T5iLI26dzBuaKneWSNp1LUSNHo8AsJ+L0ZTcj1Wu8FxK7p7sPzFbXkq3iUndziiwrI0OVbnFM/uNoR83oLOoiGVmpZIZ3j9pBOKmFN1ftypMLspOlpEQ2e/1wO/V0AqI2E0lUFrgeML9hEL5WfKuA1SxAhdCteIWUtN3HM0CkBOSxkXIRMKo2bZ/dlmzqSIGaNn1sHYtF9exJ46uQXXnj3Flnoet2PWR0xdN2Z/jZh+oLHvKOshpq9iWXVOZEYdE5tDfCPDTSi91nKDrHXZ+rDzTmg3VM0KweaUQJnXpZzUtLBmx5utj5xsCMwC8sPDcR6I1Zoi5mRbBLuppdpbVo9l1EuMBRt64/WXq/c64vAYDuSeE3OTtjLG1amJ6kbVEZsVYyfr/JoMzDqspoBqUzvNYNfYSBGj1ESibjFaxFnvIyb//EB20dTRFLLUg6be8XgEvkhSy/JKDzH37fBXisaAcSC2Zf8gAODMKa2VPKWaJmBSI6ZesNt9X7INl2NRTY2YgWMiw2og1uOwdb3TjONBVu71YfVh505vQ2tYPmZw1HqNWEaUuIX7vv5YWXUg5aSm+b0e+LLBxGgqg4Qo/9tJMwKmzPQNJ3i6FEufqiWcaotgN7UUNEYCxoqHWbDBcMJUhAdTrEaM9ckrokYqnsrwICPo89i+qeRknV+jgVlHOGDtPYQ1188MpRm8/rXVM/FyG7W1ZUTUDEaNh7lZh8XURFaHwpytCHnSTWZEjSJGqYmFMMsF35xVxM6gQIxj1jzczloiLYpZR66aw2vEDAOxJgDA9l5ripiT1vVOwq5PvypQHYgleTPrc6e34b3sv60qYtrUrEdXfYDfbPgQ910zu6TFfbmpaWG/F8OJNBIpkacmOqmIMXOTviElNdGq3X6lcaItghOwoFGb8tfZEip5XJWCUo+VP+8XE2zMn2GU2FjKOeXa6seLSAlWNzSOOWhd72SdH+8jplXELNYbhzXOqmawjVcj18R6aOhMgRihi1FqYtyyIpY7tNxYy+EUwewiRT0JcddECsQMMUpBSKZF3nT0dArEOGauidy63mbHREDfrCOVEXkAZaSIMQv7/f2jGI6n0BTKVzQyooQNe4/lfF1rC9hCjNNJO2S70jMmNGB8YxCHIvLiyEqNmBN1IOXWM7E5TlbE5O850cyZofQSi/OFW1MNKmIM1hah1qmFoFHPLZdRLVMRrVnHaFF9tHz8d6IObho4WefH0n6Z+sxdEy3e4+Ei+sMpwaqBIhZUrqfT7RScglITCV0MUxMt9h7SWgeTUYeC3gKZuyaSfb0hDQb9Qnb0DiOZFtEa8WOaicnDWMOsjxhPMXagZ52eWUfPQByiJKdLTmjU35RpjQS4ysXUITXM/esP3b0AgJfe7inb/asa6NXQreNpifLinKlmg7GUaa8dp+pAyk1NC6ucE7lZh5Opic2sRqx2XRPdit299IrFTBGrlqmIkppYfI0UvzfUipgD94aTdX5sk0NJTVTMSqwQ9ivzQyEKKWLqAM2tvcQoECN0URZx5Zl1MEgRUwjpLJApNbEwDdy+PnfyZmmJpx/XSnWIKpQWFJVNTWSBhloRU6zrw/CYLOSM6sSMCvILWanXInqB6ro9ciB23gnyoojViCUzoulixck6kHLqmdSpR0wRc9asQz7HQ0MJjCRrs48YURosSInqqCfVMhUJ59nXW3cN5H32khlVkGH/veFknR/b5BhNZZDOiNyK3+o9zo4rlJooSVJBRSzo8/Jnnd4YcQM0UxG68PqSjH4gVmjnR3vTdJAixuFNnbPXUpIkSk20QJOBa+LmrFEHpSXmwtKH9WvE5AeWE9bO41Q1YpIkQRAEbtRhVB/GmNXVhFXv9uUEYuVYqdci2kB1OJ5C9wF5DLMFYyTg5RbPA7GU4W6w06lZpaamhXggJiKZYWYdzteI7T0a5XXJTaSI1QXM1j2mo3awYGPpUxshADlzhJOmIszhMJbKTU0MWaoRU4IYJ2vEAOfq/HJVqAx3jbTy/gFVemaBwCmZEZHOqvlGcyAgB4b90aRr68RopiJ0MXJc431qCizggj5lIQFQaqIarSI2kkjzgJcCMWOMUhOZIkaOibmY29dbq/UsBab4ZEQJQ/E0WsJ+rogZ1YcxFEVMSU2sVkG+U7Q15KYmbth7DKIkXxvWoFoQBLSEAzgyksBALGXoEFmJ1KxS6plCuoqY86mJbEfc5xEcUXuJymOmiAFKsHHv77eiL+saCjhrKsLNOkqwb1dbt3Nrdgc3KZyo8wv6vAj4PEimRQyMJvk6z2rTdq2iaESOvb/JNWoIetEfBVfD3QYFYoQufBGnkY6ZimNlAdcQ9PGCdEpNVNAqYkwNC/k9prs+Yx09m9rB0RR2HpZ71Z12XEtVzqtWMTfrcC41MeT3IhLwIpbMYCCWREvYj/08NdFaILajd5gbcVSrIN8pWKAaT4mIpzKq+rC2vOOOjCQwYGJhX6tNgnn6VU6NmHOLzfaGIDwCwErhGkM+SlOuE3iNmEn9z4I5XZja1oCFP/orGgJe/GzJOY6ainCVLqlVxKzXiMXVZh0OP/edMIdpCvpwNJ3EkREl+LXeR8xajRgLVAM+D/wm9v5yq4pR11rY05YRoYveIk6SJJ7mZGUBp55cSBFT0CpiR3l9GAWrZrCaj0RaRCqrIL7zoZzSNbUtgnYDE4ixClO1zVITnVINxmks7PcXsK5nTGtvQNAnYDSVwc/f2I3VO4/ywKUQdhfkO0Vj0Mf7bB2LJXP6h6nhvcRMLOzVdSBaqtkkOKxKTaxEQ2evR8i5/6k+rH7g6lOBRTvbsOhqDTtuKqJuygwUWyOmdk2Ufz9So60WzGB1YoeHlY0iq88Tq/b1hXqI8XNhTb91nDXdAM1WhC5MtVEHYup/F7rhMqIENg96PUAz5etz8hSxEaoPs4I6jz6aSKM1EqD+YSbo3cMMRRFzZgHQGvHjwMAoT7/bf0y2rp/SZt6EeeW2Xq5qPPjydgCAv8CCqlqqT6kIgoDWiJx2eHAgjrc/HAAAnDc9d8eaBaCFLOxZatbXf9ed48RY6X5PathmUzyVQTI7/Jyqg2F0NAV5Q2sKxOqHBpMaMTVHK/gcZcGUto+Ylc2G3D5ilVHEnIDdY4ezis2r0H0AAEIoSURBVFjI77GsQlu1ry/kmKg9l5FEGm70TSZFjNCFuSYmDQIxMwma2UyzxVdGBD76vT+7ytnMSbSKGBl1WCPg83CVh6UgbN4/AICMOvQwqxHjyrYDfcQAlSIWTWIkkeZj3EwRY86IrN6AkVJZr9vt/lUtWC+xP7/bh1RGQmdzKC9IbQlnLewt9BJbMKcL31x4CgDgpImN+NWN5+GNuy6pShAGKIvNUZUi5mQdDJCb/k5GHfVDpECNGIPNMeMr0AJGsa/PDcRCFhQhtRrE3pMbSxLYPXYku/lhtT5MfWyh1MRCjokMo/pxt+CaQKy/vx+LFi1Cc3MzWltb8YUvfAEjIyOmx9922204+eSTEQ6HMXXqVNx+++0YHBzMOW7fvn24+uqrEYlE0NHRga9+9atIp935YdqJYn2t3CgscPAI4Kk1WurJZtoptEpFf4ys663SqGruKUkSd0wkRSwfSw2dHUpNVFu0s7TE1ogfzTpNmgFzZ0T1a2pTnK1YqdciLFBdsVXuiTbvhLa83eRWncbPZjDl7OTO5qr0e1KjNutIivJ5FLNQKwV1aqrT6htRObgiVsCI4WhWmanEhqa2txkLyKw0NFYHcTEHGzo7TWO2l5iiiBURiLE6OZsUMRYUalvbuAXXzFaLFi1CT08PVq5ciVQqhc997nO46aab8Mwzz+gef/DgQRw8eBDf//73MXv2bOzduxc333wzDh48iN/85jcAgEwmg6uvvhqdnZ3429/+hp6eHvzDP/wD/H4/vvOd71Ty7dUcvI+YjiIW9Hl1Jeh6s5l2ClLESoe7IyXSODAwiiMjCfg8Ak6d1FztU6s5eAsKvUDMwYbOgDKWB2JJS46JhZwR5ddK4ekvnAVP1sDDDvevasGCrA/65M1EvbRKXiNmYtah5mgN9SLM6SPGzDocDo4mNFGNWD3CFbECi+xK1lozxTeqNeuwMJ+G/EoQF3XYvt5JylLELKYmWlbEAu5WxFzx6W/fvh0rVqzA+vXrMXfuXADAo48+ioULF+L73/8+Jk2alPc7c+bMwW9/+1v+9YwZM/Dggw9i8eLFSKfT8Pl8+NOf/oRt27bhlVdewcSJE3HGGWfggQcewF133YX7778fgUD1H2jVgqs2KXUglt1FN0hnqjebaadgjpOsRozntlcgpcLtqJ0Te/bLqa+zupqL2o0bK+htpjCcdE0EgNaIYtFuxajDquPhkWgCnzxjcvknWGW0my7z9AKxIhUxVmtaC4FYyK+kJrIaMSfNOgDFwh6g1MR6oiFgVRHLjv8KPEfZcyiZFpERJcWsowhFLJ4S+XtyOm3XCbQ1YsW0QrGamqjY+xeoEWM9RpNpwH2X0h2B2OrVq9Ha2sqDMAC47LLL4PF4sHbtWnz605+29DqDg4Nobm6Gz+fjr/uRj3wEEydO5MdceeWVWLp0KbZu3YozzzxT93USiQQSCcWyc2hIbj6aSqWQSll7aJYD+xtO/i2vIOta8VSa/52R7M5s0OfR/ds9A1FLr90zEEUqNXYVDF92A380IY+XIyPyIrQ15HX0M63EuHEa9lAejMaxJeuYeNrkZle/J6fwSPLiICNKGI0n4FPZ/44m5evl8xQeD6WMm+ag/Lf6RxIQsh12J7cEDV+jPWLtUdQe8dXFZ90YVD6LppAXk5sDee+rMZu+cyyasPSe2TzSEnZ2HrECW1fGEimuiAU9kqPn1RZWxlDEr/+MItyBes5hYymaSJt+pnz8B50f/35B2dwajMYRy86nfqHwGPdlfzeZEbkjatDrvudyJLvRd3hIvu4hn2D5PQQ88jMhljT/TIeza86wwZqTEc4uqoZGU0Bj7VxLq+fhikCst7cXHR0dOd/z+Xxoa2tDb2+vpdc4cuQIHnjgAdx00005r6sOwgDwr81e96GHHsLy5cvzvv+nP/0JkUjlPFtWrlzp2Gu/OyAA8OLIsUG8/PLLAIDdwwDgQyYR599Ts2tQ/p1C7Nq6GS9/uMnW83UTez+Ur9P7u/fi5Zd3Y/cBLwABu7a/g5cPve3433dy3DhNbMgDwIPVb23C2j4PAAHo34OXX95d7VOrOeQFsDzFv/jyCqizO97bJV/H/bt34eWXP7D0esWMm72Hs2N8Xw/2eADAg8EDOw3/ligBrQEvBpJAviUHAEhoDQCHt61B1kzRtWw5KuCZndmxC2A4nsH876zEZ6aJOL1dSex+LzsH7z/Urzvfatn5oTyP7Hm3Gy8ffseZk7fIzl753Pce6OE1Ymvf/Cs+cLDDwM4hgI33d3bswkuZnXBh1iqhYuXKleiNAYAPAyOjpvfB/j55/L/fvQkv7zerNi0fSQIEeCFBwEsr/oSe7N/e9s4W+A9uNv3dpGpe/vDIIAAB3Zs2ILHL2XO2mwMH5Hv80OAoAAEjg8cszVMAsPWY/Lu9h83nts37s+vQQwfw8sv7DY/bdUg+bs+HPcAptbPGicVilo6raiB299134+GHHzY9Zvv28p+6Q0NDuPrqqzF79mzcf//9Zb/e17/+ddx55505rz9lyhRcccUVaG52XulJpVJYuXIlLr/8cvj91nrsFMuEPcfw2Pb1CIYbsHDhhQCA1buOAt0bMK6lEQsXXpD3OxlRwm9+8DoODSVMmosGcev/uciVdR120fvmHvzP/vfQ0TkZCxd+BP+0/XUAcVxx0XycObXVsb9biXHjNH8c3oLtA4cw7cRZeG7fBwBEXL/wIsyY0FDtU6s50hkRX1v3CgDg45dexg0iAOCN57cChw7g1FknYeHHTjB9nVLGTeP7R/CfH2yEN9KCREYEEMWCj56LC2capyT7px3Cbc9uAYCc+UPI/u//+8zpuPLUiTq/6R7+uPUQnly9JW9+HEwKePI9Lx69TnmPUw4M4rHtayH6w1i48KKCr/3IjjcAxHDZR8/DOdPG2X/yRTC68QB+vXsrmlrbkeqXW0wsvPIyx9Im/7j1EH710nYA8g76uiNe7EsG8a2Fp7h+zIxF1HPO4WgaD235K1LwYuHCKw1/577NfwaQwsJLPooTJzY6fo7f3PQqookMzv/ox/HswS3A8DDOnzcXHztpgunvSZKEr61fCUkCohkPAAkXf/R8nHZci+PnbCf9a/fhpX3vIiXJM/RxXR1YuPAsS7/bvrsfP3n3LQQi+mtJxtsrdgAf7sWsmdOxcMHJhsdJ7/Tiv3a9jUhzG4AjNbPGYdlyhahqIPblL38ZN9xwg+kxJ5xwAjo7O9HX15fz/XQ6jf7+fnR2dpr+/vDwMBYsWICmpiY899xzOR9OZ2cn1q1bl3P8oUOH+M+MCAaDCAbzC0L9fn9FP3wn/15DSH5gJjMS/xsZSZaiQ36f7t/1A7j/E6di6VMbIUBvMQXcd82pCAWrX8NQTSLZa5sS5Wvbn01P6GiJVGT8VHqc2klT9tptOTCEeEpEU8iHkzpb4BnDgb0Rfr/sbpoWJYjw5nzmzCI+ErQ+FooZNxOaZSv2gViK97Y6oaPJ9Pf/7ozj4PN5sfzFbTm1ptXsh2UnGVHCg3/YYWpm9OAfduCq0ybD6xEwvknOrhgcTVm67sx9tVLziBmNWev9gbhS19MSCcHvQC3niu4e3PZsfnB7aCiB257d4kpXTULG7/ejOaLUYwkeb06KNSOdEblr6MTWyoz/SMCHaEJ2BWU1t43hoKW/HfZ7EUtm+Dzc0mDt92qJlkjuGjgSsP58aAzLvxtPiaa/E0/L16cxFDA9jp1LLFurVytrHKvnUNVAbMKECZgwwXz3AADmz5+PgYEBbNiwAWeffTYAYNWqVRBFEfPmzTP8vaGhIVx55ZUIBoN44YUXEArl5kXMnz8fDz74IPr6+njq48qVK9Hc3IzZs2eX8c7cj1Lor7Kvt2B5zZqL1utiyg7Y9YunMoinMtwZiMw6CsPcpf628ygA2baegjBjgj4P0slMXi8xp806mPrWm60f8AjApFbzZs6APH9cPrsT63b3u94ZUUuxZkYtWbOOWPbzM3O4TKZFDGeDnlow62DF+P1ReXEsCIpbrJ2QU2/9E1HlVMdSGTTrBGJsE0IQFKMgx8+L98pLK2YdFjcaWCCmvJYrqoRy0DqTFmOYxdojDY4msXrnUcM53qprYmNIMfFyI6749GfNmoUFCxbgxhtvxOOPP45UKoVbb70V1113HXdMPHDgAC699FL88pe/xLnnnouhoSFcccUViMVieOqppzA0NMRlwgkTJsDr9eKKK67A7Nmzcf311+N73/seent78a1vfQu33HKLruI1ltD2ulL/u9ANV8+LKTtg1y+RFrnlrt8roMmFFraVpjE7ITMnudOPa63i2dQ+AZ8H0WQmz8Je3YrCCZjjH6OrJQy/zgJKD69HqEtXVavOkOy4pqAPHkGunxscTaGjyfizYqqj1yOgJVz9nWAlEJPPK+LXb3lSLuTUW/8EvB6u7McSGd1ehLwFTCRQsXUGG+PRREZp6Gw1EAt4AZW3WYMbA7GQNhCzNr+v6O7BPb/fCkDu+/XZn65Bl8FGvdU+YmRfXyGefvpp3Hrrrbj00kvh8Xhw7bXX4kc/+hH/eSqVwo4dO3hx3MaNG7F27VoAwMyZM3Nea/fu3Zg2bRq8Xi9eeuklLF26FPPnz0dDQwOWLFmCb3/725V7YzVKQKcZLJtsrOyi1+tiyg7UihiznG5rCDiyUKk3tP1WqJGzOXKglcqzsC/UiqJcGoM+vngCgClthdWwekfdcNjKcZ5sUHUslsJgLGX6+8y6e1zEXxMKcdCfu5HnlHV9scEt4T4EQUAk4MVQPM3tzLUcHal8L072LIolM9yGvRhFTE3EhQ2dm4K5AbGV976iuwdLn9qYp2D3Dsax9KmNeWnEVhWxJlLEKkNbW5th82YAmDZtGiRJ+Xg//vGP53xtxPHHH2/Z6WUswYKFZFqEJEkQBCUP2qnF21ghVxGT2yC0VaAJZT2g3YU7nQIxU/RSjAF1Q2dn7mVBENAaCeBItseMWTPnscK509vQ1RJC72DcxMwolNPcuTUSwLFYite/GKHMI9VPSwR0FpoOBWLFBreEO2kI+jAUTyNm0NSZZZZUcvyrUxN5Q2eLayP1xkTA57GcLVBL5Cti5vd4KWnEVvuIsaB4NCVCdJf5JADAfZ8+URHUCzQWgCmLN/ft3tQSOYpYtHaasLqBiGqyH98QqJmFZ63CcvHVjdkB51MTAVmdYUwZR4GY1yPgvmvk2mOtZqWYGc3OSa1iaYaFmjr3V2EhaoZWAYs41HCdBbdGGqAAoEsT3BLugwU9RopYf3bDZ3xj5TY02WbDQCwFtucfsrjhoN6oaHBhM2cgv2l6IdW7mDRiBgu8C6VuqhWzuHmP6JqEAjFCF/UCjQdi6eJ2fQh91IpYrS2gapkV3T349kvb+NdHoklc+PAqrOjuqeJZ1TZcEcvkBmJJh806gNw6sUQ6g4wbtypthpkZdbbkKjSdLSFddz8lEEuavi5LzWqv4ELUDO0zIuJQ/WspwS3hPpQ0QIPUxCoqYseiyr0ZsrixpQ5a3GjUAeSbdRR6lpSSRswVsQKpiUGfV9l0dGEg5s4RQDiO36s8uJI8ECNFzA4URUysygPEjRSbW07IcNOdPEXM2RqxFd09ePvDQf71v/55J3678QA5p6I4MyMWzA4WSE2sNWVdm5potXamFMipt/7hiliB1MT2CjoPh7MBFPvbXo+Qs24y/V21IubC+jBAXsf4vQK34C+kiJWSRsxrxCwEq40hH/qjSVcqYhSIEboIgoCgz4NEWuSLtmLMOghjFEUs16yD0Icsqksn6DOoEXNwU4WC5sJYNTNqtZiaWGsbOtp6EadqxBjk1FvfsIW4oSKWTU2s5EYEG9NsEyRchDNoPShigiCgMejDsezcVEgNLKVGVnFNLDx/NAS96I+6UxGjFTVhSFDjnOh076GxAr+upIhZopTcckImoDLdUePUvVwoaAbkoJnSFK3Rku2JNDBqnprYH638QtSMoM8D9ZrU6UAMUILbT54xGfNntFMQVkeECyhiXBGuYGouq+1iz/BiSjbqQREDcg07CilixaYRpzMif05p3ZJ1zyXr4hjPuO++pxU1YQi3IE5pzDocTDMZC3BHyozIXeVqZQFVi5BFdeloN1MYiay6HbA5EKOg2V6sKmJKrWlt1IgJgpCzQ16JQIyoXworYpXf0GSpicd4IGZ9jKsDMbcqYoAS/ADWAtFiamRjKXXD68LXlvUYpdREoq5QBwyAqq6EFLGyUE/YvdlFKylixpBFdenoNWZXf213aiIFzfZitUasFpX1cMDLbb0pECPKgZk1RJMFasSqmJpYTCCmvh/c6poIyE3nGVaNSlga8QubD2DZf2+B3yPgta9enLcpyBwTvR7B0pqTqWaUmkjUFbypc4rViJEiZgfqSYUtSCtZZOw2yKK6dPRqxNIZkTdatntThYJme2GBmFVFrJbmEfWuv5NmHUT9wxSxUZ1ALJUR+UZFJVMTWSresZhSI2YVtc29lbS7WkWdmmjVuh+Qg6tPnDEZQZ8HKVHCwYHRvGOUHmLWau+Yi6MbFTEKxAhDtLvppIjZg8/rgS+bB81KZWolpagWIYvq0tGrEUuqrOztdk2koNleWsKFa8TSGZEHarWkiKlTlQrZTxOEGVwRS+SnJrLUQI+gpPJW5JyygQd7hhdTIxbx10kgVoIixvB6BMyY0AgAeO/QcN7PrfYQ054LKWJEXUFmHc6hvoaVfoC4kWL7LxEyeqmJait71nvFLihotheemmiiiDHXMkEAxkVqKRBT1cGQIkaUgVIjlr/KVqfleio4r2jTbYuqEctxTXTvvVGMWYceJ02UA7H3+0byfma1hxg/F66Iue/Z4t5QnHAcbVoTW8wVM+EQ+oT8Xp7vPi5S2QeIWyGL6uLhDZ1VwRe7j30eAT6bAzGA+jrZCdugGYqnkREl3bF+NOuY2Br219S9UC+GBET14X3EdMw6qmHUIZ9T7pguZl2kPtaq4lOL5NSIlZBdceLEJgAGilj2s7Z6fRpcnJro3hFAOI42rYlSE+1DfQ1rKZ2o1rHaf4mQYYpXMqM8nSpxH1PQbA8tKqV8aDSFcTpzRa32IlTvkJeyW04QDLbIjunknR3lrRsqm96vVbKKqRFTB3FuTttVpyaWUgd6Eg/EdBSxRHFGP00hCsSIOkSb1sTNOhxoAjvWUO+I1doCiqgfzBQxp013KGguH5/Xg6agD8OJNAYMArGjVeihZAX1c8LNznBE9bGkiFXYqKacQCxcJ4qYugfalg8HcOHMCUVttrHUxJ2HR/IUf66IWayhI9dEoi5RFnEsNTGT832idNRWrbXkdEbUF2Y1YqRsu4MW7pyob9jRXwXrbiuQIkbYBVfEdGrE2PgfX+HxH85LTSyioXNAZWTj0ntjRXcP/uXVD/jXS36+Hhc+vAorunssv8aUcRGE/B4k0yL2Ho3m/KxYRYxcE4m6JM+sgxZwtkGKGFEJ9OzrWZoi3cfugFvYG/QSq8UeYgAQ9rt/sUnUBkxB0nNNPFqlZuZaA5pi7NsDXuXYvUdjyDDrRZeworsHS5/amNffsHcwjqVPbbQcjHk8AmZ2MOfE3PTEYmvEFNdE96W/05OYMITtpic1rolk1lE+uTVitZVSRNQPevb1CUoxdhWtWQt7I+fEfl4jU2uBWH04wxHVx0wROzoij/9KpyZqVV6r9u0runvw+V+s518/+PL2opWkapIRJSx/cRv0Qkf2veUvbrMcXJ7UIdeJva8x7GCftWXXRBfXiFEgRhiiVcTiKdpJtwt1MFtrCyiiftDew+p/U4qxO7CamlhriliIGjoTNtGgqhGTpNwFfrVSE4M+T05Nk5X0W6YkHc4Gj4xilaRqsm53f44brhYJQM9gHOt291t6Pe6c2KdVxIrrI8aOoxoxoq5QpzVJkqTqI0YP1XIh10SiEujWiJH7qatgFvaGqYncrKC2lPUQ2dcTNhHJKmKSlDuXAdVLzRUEISc9MVRgPrVbSaoWfcPGQVgpx/FeYhpFjKWhWlXE3OyaSE9iwhD1bnoyo0x+tJNePqSIEZWAG+6k1fb18r0coEDMFfAaMcPUxNo061A/J945MFjzC0yidlErqto6MZaaWA3X0GIMaexWkqpFR1PI1uOYhf2uw1GkVevMohWxbLCeFAXXzTX0JCYMYfbWiZSYswtlNReaMCZHESPXRMIhgl6qEXM7vEbMQBGrxdTEFd09ePwvO/nXS36xwVV1MERt4fUIPBhT14kl0yKG4nJgVo2NCHXtY6HaebuVpGpx7vQ2dLWEYGSJIQDoapH7RlphcmsYYb8XyYyIPUdj/PusVYHV+lK1lb6eqUstQ4EYYYjSDFbkizdBAPxe97nS1Brq3eJaWkAR9YWiiFFqolsxqxETRQnHYrWliLE6GLZAZripDoaoPdhCW91LjI19r0fIaX5eKdQW9oUCMbuVpGrh9Qi475rZAJAXjLGv77tmtuV+Yh6PgBN10hNZ826rfcSCPi9fm0Z1TF1qGXoSE4ao05rURh2CQIFYubAgFwDe6x12nZROuANeI6bX0JkCMVdgViM2MJoCmzr0mj1XmnqpgyFqD1ZnGFW5MbD6yHGRADxFNBK275ysG9LYrSRVkwVzuvDY4rPQ2ZIbNHa2hPDY4rOwYE5XUa93YtY5UW1hX6wiBigW9iMuU8SogpYwhNeIqVITKZ2pfFZ09+C/3trPv178xDp0tYRw3zWzi57ACMIMbl+f0QvE6F52A2ynX8++ntXHtIT98HurH1gXUwczf0Z75U6McD1sQR5TKWJHq9y6oZjURKYkLX1qIwQgZ7OiFCWp2iyY04XLZ3di3e5+9A3H0dEkB5GlnD8z7HivT6WIJYtTxDKixP/22t39OLmr1TXXsvozN1GzqB3XKJ3JHljaTlTjsUppO4QTKJspKrMOpm6T6Y4raI3Ii0w9RexojRl11EsdDFF7sAW5+tnJjWqqVGddjCIG2K8kVRuvR8D8Ge345BmTMX9Ge8mBDzPsUKcmctdEi20BLnx4FY5kFdLlL73rqppUUsQIQ4KqZrDUzLl8CqXtCJDTdi6f3emanRyittG3r6fURDfRqqoRE0UpJwWr1ow66qUOhqg99BQxtvCu1viP5NSIWZtP7VSS6gVWI7b7SBSpjAi/12PZNZFtbmvXVWxz2w0BLj2JCUMCqj5iitMaDZlSqRf7WsI9sPs1LUq8LodSE90FS00UJWAkqbHurrFArJ7qYIjaIsKbOqsVMTk1cXyVeuiFi0hNVGOXklQvTG4NoyHgRSojYc+RKCRJUmrETPqI1UtNKq2qCUPUu+nxNKUzlQul7RCVRt0rjFnYU5qxuwj5vXy3XVsn1j9S3dQsLXY7qhEEgykjMZURw9FqK2L+0gIxIhdBEDBzomLYEU+JkLKxk5kiVi+b2/QkJgxRW19T76HyobQdotKogy0WgHFFjDZVXAPrJaZt6swUgVpRxID6q4MhagOmjKj7iB2tpRqxItz9iHxO6sgadhwazmlRYFZ7Vy+b21QjRhiiLvSnXfTyYWk7vYNxXSldgLxYobQdwi58Xg+8HgEZUeIBGKUmuo/WiB+9Q3EMjOb2ElNSE6uTmmUEq4NZ/UEf/vTXtbjio/Mwf2YHKWFEyXBFTLVI76+yWU1QFSRs3ncM82eMpzFeItywo2+Y9xCLBLymbQnqZXObVtWEIWrrazLrKB9K2yGqAetZx1Rtqvd0H9zCflSriNWWa6Iar0fAvOltOHu8hHlj3IyAKB/eR0ytiGXbN7RXoUZsRXcP/v21nfzrxU+sc5VTX63BDDveOzSi6iFmrhXVS00qPYkJQ9TNYBMpUsTsgNJ2iErDUhCTGZaaSPWebkNxTtQPxGopNZEgnKCBpSaqa8SqNP6ZU99QPNc8h9rQlA5TxPYcifJ5rsHEqAOon81tSk0kDOGpiWmRLK9thOxriUrC7tl4Kjc1MeAlddstsBoxrSJWa66JBOEUWkUskc5gOBsIVVIRpjY0ztDVEkJT0IfhRBpbDw4CKKyIAcrm9vIXt+UYd3S2hHDfNbNdsblNgRhhSFCVmjiaZIoYLd7sgNnXEoTTaHuJ0aaK+1D3EmOIooRj2UCsWvbdBFEpuCKWTVs7FpU3JXweAc0hf8XOoxinPnrGW0d2TmzEpn0D2LR/AADQYNEAxe01qfQkJgxRF6KOZNMBrDYtJAiiNgioGrMDUNKM6V52DS06qYlD8RTS2f444xoqtxAliGrAFbGskcORbH3YuIaAqaGD3dSLU18tclKHnJ64ed8AACAStK4VubkmlZ7EhCGsyB+QH/pAbnBGEETtE1Q1ZgeUgIzUbffA7etVqYksLbEp6KPPkqh7mFU8U8SqZVRTL059tQgz7DgwMArAuiLmdigQIwzxewUI2U0FVptA6UwE4S7UtZ7q/6d72T2w1ER1Q2du1FEjzZwJwklYIMYUsf4q9RCrF6e+WoQZdjCs1IjVA/QkJgwRBIEv1oZG5V0oWrwRhLvIrxGj1ES30Zq1r1f3ETs6QkYdxNihIZjbR4ylJrZXuIdevTj11SLaQKyQa2K9QE9iwhS2iOOpiZQCQxCuIr9GjFIT3YZejVgt9xAjCLvhilgyVxGrxkYEtaFxhonNQTSFFBVsrChiY+NdEiXDFDBmE0tmHQThLrQ1YpSa6D5aI0qNmCRJEAQB/VFZESBFjBgLNGQX5cm0iHRG5IpwtTYiqA2N/QiCgJMmNmHD3mMAxk6NGAVihClsN12pERsbNwZB1AvMYCeREiGKEpIZCsTcBktNTKZFxFMiwgGvqocYWdcT9U9ElaYWS2X4+G+vYusGakNjPzM7Gngg1jecQEaU6j64pScxYYpSI8ZcE2nIEISbYO6nyYzIgzCAHFDdRCTghd8rL0ZYnRilJhJjiYDXA192QR5LZHCUFOG6Y0V3D/7wTi//+j/X7MWFD6/Ciu6eKp6V89CqmjCFKWCsXw3tohOEu2CbJ4mUyNMSAbqX3YQgCGhhFvbZOrFq1sgQRKURBEFVJ5bm4388uYbWBSu6e7D0qY0YypbBMHoH41j61Ma6DsboSUyYolXAaBedINyFukaM1Yl5BPDdZcIdtGoMO7hrIi1EiTECd05MZNBPrqF1Q0aUsPzFbZB0fsa+t/zFbciIeke4HwrECFPUTZ0B2kUnCLehtq9XOyYKAgVibqIlWyc2qElNHE81YsQYgSlix2JJDCdk5aSaNWKEPazb3Y+ewbjhzyUAPYNxrNvdX7mTqiC0qiZM0SpgZNZBEO5CbV/PHROp1tN18F5iMdk5kdfIkCJGjBGYnfn+YzEAgN8roDlEnnNup2/YOAgr5Ti3QU9jwhStAkaKGEG4C73URK3STdQ+vJfYaArDiTRSGTlNh8w6iLECU8T29cuBWFtDgJT9OqCjKVT4oCKOcxv0NCZM0QZe1EeMINyFEoiRIuZmWlVmHaw+JhLwIkR1u8QYgdWIfdg/CoBaN9QL505vQ1dLCEYhtQCgq0Xu01aP0NOYMEWbikipiQThLtR9xNQ1YoS7YGYdg6NJVQ8xUsOIsQNTxFhqIqnB9YHXI+C+a2YDQF4wxr6+75rZddtPjAIxwpSANjWRdtIJwlUEVX3EWGoipRi7D7VrIvUQI8YiDaxGLJua2E71kXXDgjldeGzxWehsyU0/7GwJ4bHFZ2HBnK4qnZnzUJUjYUp+jRjtpBOEm+B9xNIZJTWRAjHX0RJWB2LUzJYYe0SCzDVRbuFA47++WDCnC5fP7sS63f3oG46jo0lOR6xXJYxBgRhhSl4fMVrAEYSr4DViqobOtKHiPloj8qJzcDSlSk2kGhli7MAUMcZ4sq6vO7weAfNntFf7NCoKraoJU/JrxGjIEISb4Pb1GRGJVDY1kVKMXUcr7yOmmHVQahYxlmCKGIMUMaIeoKcxYYo68Ar6PGQVSxAugzd0zlHEaOp3G0qNWJLXiNFClBhLaBUxqpEk6gF6GhOmaAMxgiDchbqPWJJSE10Ls6+PJjM4lG1sSgtRYiwRDuTOW6QIE/UArawJU3ICMepXQxCugytiaVLE3ExTyAeWkLDrcBQALUSJsYVWEaMaSaIeoKcxYYp655wWbwThPniNWFplX081Yq7D4xG4c2LPoKyI0UKUGEtoa8RoI4KoB+hpTJiiXrCFSBEjCNehpCaSa6LbYYYdDEpNJMYSakXM7xXQFCTjb8L9UCBGmBLwUo0YQbiZnD5iKUpNdDMtkdzAi8w6iLFERFUj1t4QJPMwoi6gpzFhiloRo8UbQbgPpn6lMhJGs/b1AbqXXYlaEQv6PDkLU4KodxpUChhtQhD1Aj2NCVNya8TooU8QbkMddA3HUwDoXnYrzMIekNMSSREgxhINakWM6sOIOoECMcIUtQoWogJ/gnAd6nt4KJ7O+x7hHtSKWBstRIkxhtq5WRQlZESpimdDEPZAT2PClEBOHzHaRScIt+HzCPBkhZOh0awiRpsqrkRdI0aOicRYYkV3D6784ev86zd3HsWFD6/Ciu6eKp4VQZQPPY0JU3JSE2nxRhCuQxAEvqFCqYnuRq2IkWMiMVZY0d2DpU9tRO9QPOf7vYNxLH1qIwVjhKuhlTVhSk5DZ0pnIghXwgIvSk10N9oaMYKodzKihOUvboNeEiL73vIXt1GaIuFaXPM07u/vx6JFi9Dc3IzW1lZ84QtfwMjIiOnxt912G04++WSEw2FMnToVt99+OwYHB3OOEwQh779nn33W6bfjGnJdE2kXnSDcCAu8eGoiBWKuRN03aSSRpsUnUfes293PG5jrIUFucL5ud3/lToogbMQ13fAWLVqEnp4erFy5EqlUCp/73Odw00034ZlnntE9/uDBgzh48CC+//3vY/bs2di7dy9uvvlmHDx4EL/5zW9yjn3yySexYMEC/nVra6uTb8VVqIMvMusgCHei9BLL9hGj5uyuY0V3D775XDf/+tn1+/Hae4dx3zWzsWBOVxXPjCCco2/YOAgr5TiCqDVcEYht374dK1aswPr16zF37lwAwKOPPoqFCxfi+9//PiZNmpT3O3PmzMFvf/tb/vWMGTPw4IMPYvHixUin0/D5lLfe2tqKzs7O8k80GgW8OgscrxcIhXKPM8LjAcJh82NTKXjjcWB0FPArqSqIxQDJYIdUEIBIpOhjAz4PgqkEPJKExnRC/3waGpR/j44Comjw5jTHxuNAJmPPsZGIfN4AkEgA6bQ9x4bD8mcCAMkkkErZc2wopIyVYo5NpeTjjQgGATa2tceycRONyuNGfWw6LV8LIwIBZawVc2wmI392Rvj98vHFHiuK8liz41ifT74WgHxPxGL2HFvMfW/3HKE5ljVmD6XiECQgnBzN/z2jOUI7bvSOLea+pznC2rGq+/6Pm/bizv98CxIA1SePwcNx3PnzvwFL5mHB6cfJ3yxnjjA7tpQ5Qm/saI+lOUL5uopzBMeBdQSAoucINm46vRmEk7mf+WhAuQ7BdBIeUUSnN1N4fVLHc0TF1hFmx9bKOkI73xgd6/QcYXbfqZFcwBNPPCG1trbmfC+VSkler1f63e9+Z/l1fvrTn0rjx4/P+R4AadKkSVJ7e7t0zjnnSE888YQkiqLp68TjcWlwcJD/t3//fgmANChf/rz/MlddJSWTSf6fGInoHicBUuaii3KPHT/e8Nj0WWflHnv88YbHirNm5R47a5bxsccfz4+LjsalzZ0nGh87fnzO62Yuusj42Egk99irrjI8VgJyj/3MZ8yPPXZMOfb6682PPXCAH5u++WbzY997Tzn2zjvNj920STn2W98yPTb1t78pxz70kPmxK1cqx/7Lv5gf+/zz/NjUz35mfuwzzyjHPvOM+bE/+5ly7PPPmx6b/pd/UY5dudL82IceUo7929/Mj/3Wt5QxsWmT+bF33qkc+9575sfefLNy7IEDpsdmrr9eOfbYMfNjP/OZnDFseqxDc0Tm7LOlZDIpLfjha9Lxd70k7W/uMDy21DkimUxKmbPPNj6W5gjl2BLmiNF4QvrRghtNj136j9+XRuMJmiNojpCPLWGOcHIdUewckf7oRw2PjfqD0vF3vcT/e/WEuabXbSzMEbSOkOeIaDQq/eWf/sn82ArOEYOABEAaHBw0jSlcoYj19vaio6Mj53s+nw9tbW3o7e219BpHjhzBAw88gJtuuinn+9/+9rdxySWXIBKJ4E9/+hO++MUvYmRkBLfffrvhaz300ENYvny55fPv6+vD2pdf5l9fnckYSpH9R4/iTdWxC5JJGJkUDw0N4XXVsZfHYogYHDs8MoI/q469eGQEzQbHjsZiWJk9VpKA6bplsjLJZBIrVK97wdGjGG9wbCaTwcuqY+f19cFMh1QfO7e3F5NNjv3jH/+ITHa38MwPP8RUk2NfeeUVJFtaAACn7d2L6SbH/vnPf8boxIkAgNm7duFEk2P/+te/YnjvXgDAye+/j1NMjn3zzTcx0NcHAJj57rs41eTYNWvW4Gh2Z2X61q04zeTYt956C4ey/56yZQvOMjl206ZNOJjdsZy0aRPOMTn27S1bsD/7eUx86y2cZ3Ls1q1bsTt7bPs77+BCk2PfffddfJA9tvX99/Exk2Pff/997Mge27RvHy4xOXbXrl3Ylj02fOgQrjA5dt/evXg7e2xgcBBXmRz74YcfYlP2WG88jr8zObantxdvqcbwJ02OdWqOGBwcxOsvv4zRES8A8+a/pc4RAHDR4CDGGRxLc4RCKXPE+4MCknGT3XYA/dEk/vW/VuDEFonmCJojSpojGE6sI4Ai54j+fsM5IhfjtQljLMwRAK0j+BxhchxQG3OEFiGrClWFu+++Gw8//LDpMdu3b8fvfvc7/Md//Ad27NiR87OOjg4sX74cS5cuNX2NoaEhXH755Whra8MLL7wAv5FkCeDee+/Fk08+if379xsek0gkkFBJqkNDQ5gyZQqO7N2L5madacnmlIJUKoVVq1bhkssug1/99xxIKciIEs6553+QTotYdO5kfOWKk+H1aBZ0lHZU/LFVSCng4+aSS+R7oBZTCijtqPCxJaQdLf75eqzdfYynJv7+i+dh+viG3GMN5oi8caN3LKUmyv92YI548e0e3PXsRvhM3lvC58f3/88ZuOa0rppKO9IdO9pjaY5QvqbURABAamgIq155JWfcvLK9Dw//cQcODSV5amJXSxD3XDINl59sEraNgTmi6GNraI6wdKzF+z6VSmHlihW4/KMfNV7nV3COGBoawvjjj8fg4KB+bMB+1fhVnefLX/4ybrjhBtNjTjjhBHR2dqIvG/Uz0uk0+vv7C9Z2DQ8PY8GCBWhqasJzzz1nGoQBwLx58/DAAw8gkUggGNTfQwoGg7o/87e25gZGRhRjBqJ3bCqFTCgEf3Nz7vvJ7s5YwsKxK7p7sPzFbRj2BIAA8LPNR/E/uzeaF4cXuL50rA3HRoz2Kwscy8ZNa2v+feD35z6MC71uMceqFw92HQsok57dx7KJ1+5jy73vyzg26Jen+rhfvr6R9nHwtxYYR2yOMBs3jFq5N+rw2K7WBqS8fqS85sd3tTbIn085c0ShY4udI6yOHZojZKo4R3BsXkdwirk3mpvzxs1V81txxbwTsW53P/qG4+hoCuHc6W35G8N2nUO9H1src4TVY63e916v+XyjxcE5wu+xZnBX1UBswoQJmDBhQsHj5s+fj4GBAWzYsAFnn302AGDVqlUQRRHz5s0z/L2hoSFceeWVCAaDeOGFFxCy8EFu3rwZ48aNMwzCxgqsgaJ2r4s1UHxs8Vnk1EUQLkFrV0+tKNzDudPb0NUSQu9gXDcRSwDQ2SIvSgminvF6BMyf0V7t0yAIW3GFH/msWbOwYMEC3HjjjVi3bh3efPNN3Hrrrbjuuuu4Y+KBAwdwyimnYN26dQDkIOyKK65ANBrFE088gaGhIfT29qK3txeZrDT94osv4mc/+xm6u7vxwQcf4LHHHsN3vvMd3HbbbVV7r7UANVAkiPpCG4gFqI+Ya/B6BNx3zWwA+VV+7Ov7rpldnDJAEARB1ASuMOsAgKeffhq33norLr30Ung8Hlx77bX40Y9+xH+eSqWwY8cOxLL52Bs3bsTatWsBADNnzsx5rd27d2PatGnw+/348Y9/jGXLlkGSJMycOROPPPIIbrzxxsq9sRqkmAaKtDtFELWPNvCihs7uYsGcLjy2+Cwsf3Fbztzc2RKiPmIEQRAuxjWBWFtbm2HzZgCYNm0a1L4jH//4x1HIh2TBggU5jZwJGWqgSBD1hTYVkQIx97FgThcun91ZXo0MQRAEUVO4JhAjKkdHk7WiSKvHEQRRXdSBV8DngSDQ4t2NUI0MQRBEfUHbokQerDjcaKkmAOii4nCCcA1BvzLVkxpGEARBELUBPZGJPKg4nCDqi6BXHYiRYyJBEARB1AIUiBG6sOLwzpbc9MPOlhBZ1xOEywj6leCLFDGCIAiCqA2oRowwhIrDCaI+UAdf6jRFgiAIgiCqBwVihClUHE4Q7kdtX0+piQRBEARRG9DWKEEQRJ2To4hRaiJBEARB1AT0RCYIgqhz1CoYBWIEQRAEURvQE5kgCKLOya0Ro9REgiAIgqgFKBAjCIKocwKUmkgQBEEQNQc9kQmCIOocdWpigAIxgiAIgqgJ6IlMEARR56gt60kRIwiCIIjagJ7IBEEQdU6Q7OsJgiAIouagQIwgCKLOoRoxgiAIgqg96IlMEARR5+TY1/tp2icIgiCIWoCeyARBEHUOpSYSBEEQRO1BgRhBEESdQ6mJBEEQBFF70BOZIAiizglSIEYQBEEQNQc9kQmCIOqc3BoxSk0kCIIgiFqAAjGCIIg6xyMo//6wP4aMKFXvZAiCIAiCAECBGEEQRF2zorsHH/3en/nX//76Llz48Cqs6O6p4lkRBEEQBEGBGEEQRJ2yorsHS5/aiJ7BeM73ewfjWPrURgrGCIIgCKKKUCBGEARRh2RECctf3Aa9JET2veUvbqM0RYIgCIKoEhSIEQRB1CHrdvfnKWFqJAA9g3Gs291fuZMiCIIgCIJDgRhBEEQd0jdsHISVchxBEARBEPZCgRhBEEQd0tEUsvU4giAIgiDshQIxgiCIOuTc6W3oaglBMPi5AKCrJYRzp7dV8rQIgiAIgshCgRhBEEQd4vUIuO+a2QCQF4yxr++7Zja8HqNQjSAIgiAIJ6FAjCAIok5ZMKcLjy0+C50tuemHnS0hPLb4LCyY01WlMyMIgiAIwlftEyAIgiCcY8GcLlw+uxPrdvejbziOjiY5HZGUMIIgCIKoLhSIEQRB1Dlej4D5M9qrfRoEQRAEQaig1ESCIAiCIAiCIIgKQ4EYQRAEQRAEQRBEhaFAjCAIgiAIgiAIosJQIEYQBEEQBEEQBFFhKBAjCIIgCIIgCIKoMBSIEQRBEARBEARBVBgKxAiCIAiCIAiCICoMBWIEQRAEQRAEQRAVhgIxgiAIgiAIgiCICkOBGEEQBEEQBEEQRIXxVfsE6gFJkgAAQ0NDFfl7qVQKsVgMQ0ND8Pv9FfmbhPuhcUOUAo0bolRo7BClQOOGKIVaGzcsJmAxghEUiNnA8PAwAGDKlClVPhOCIAiCIAiCIGqB4eFhtLS0GP5ckAqFakRBRFHEwYMH0dTUBEEQHP97Q0NDmDJlCvbv34/m5mbH/x5RH9C4IUqBxg1RKjR2iFKgcUOUQq2NG0mSMDw8jEmTJsHjMa4EI0XMBjweD4477riK/93m5uaaGGyEu6BxQ5QCjRuiVGjsEKVA44YohVoaN2ZKGIPMOgiCIAiCIAiCICoMBWIEQRAEQRAEQRAVhgIxFxIMBnHfffchGAxW+1QIF0HjhigFGjdEqdDYIUqBxg1RCm4dN2TWQRAEQRAEQRAEUWFIESMIgiAIgiAIgqgwFIgRBEEQBEEQBEFUGArECIIgCIIgCIIgKgwFYgRBEARBEARBEBWGAjGX8eMf/xjTpk1DKBTCvHnzsG7dumqfElFDPPTQQzjnnHPQ1NSEjo4OfOpTn8KOHTtyjonH47jlllvQ3t6OxsZGXHvttTh06FCVzpioRb773e9CEAR86Utf4t+jcUMYceDAASxevBjt7e0Ih8P4yEc+grfeeov/XJIk3Hvvvejq6kI4HMZll12G999/v4pnTFSbTCaDe+65B9OnT0c4HMaMGTPwwAMPQO0fR+OGAIDXX38d11xzDSZNmgRBEPD888/n/NzKOOnv78eiRYvQ3NyM1tZWfOELX8DIyEgF34UxFIi5iP/6r//CnXfeifvuuw8bN27E6aefjiuvvBJ9fX3VPjWiRnjttddwyy23YM2aNVi5ciVSqRSuuOIKRKNRfsyyZcvw4osv4te//jVee+01HDx4EJ/5zGeqeNZELbF+/Xr8+7//O0477bSc79O4IfQ4duwYLrjgAvj9fvzhD3/Atm3b8IMf/ADjxo3jx3zve9/Dj370Izz++ONYu3YtGhoacOWVVyIej1fxzIlq8vDDD+Oxxx7Dv/7rv2L79u14+OGH8b3vfQ+PPvooP4bGDQEA0WgUp59+On784x/r/tzKOFm0aBG2bt2KlStX4qWXXsLrr7+Om266qVJvwRyJcA3nnnuudMstt/CvM5mMNGnSJOmhhx6q4lkRtUxfX58EQHrttdckSZKkgYEBye/3S7/+9a/5Mdu3b5cASKtXr67WaRI1wvDwsHTiiSdKK1eulD72sY9Jd9xxhyRJNG4IY+666y7pwgsvNPy5KIpSZ2en9E//9E/8ewMDA1IwGJR+9atfVeIUiRrk6quvlj7/+c/nfO8zn/mMtGjRIkmSaNwQ+gCQnnvuOf61lXGybds2CYC0fv16fswf/vAHSRAE6cCBAxU7dyNIEXMJyWQSGzZswGWXXca/5/F4cNlll2H16tVVPDOilhkcHAQAtLW1AQA2bNiAVCqVM45OOeUUTJ06lcYRgVtuuQVXX311zvgAaNwQxrzwwguYO3cu/v7v/x4dHR0488wz8dOf/pT/fPfu3ejt7c0ZOy0tLZg3bx6NnTHM+eefj1dffRXvvfceAGDLli144403cNVVVwGgcUNYw8o4Wb16NVpbWzF37lx+zGWXXQaPx4O1a9dW/Jy1+Kp9AoQ1jhw5gkwmg4kTJ+Z8f+LEiXj33XerdFZELSOKIr70pS/hggsuwJw5cwAAvb29CAQCaG1tzTl24sSJ6O3trcJZErXCs88+i40bN2L9+vV5P6NxQxixa9cuPPbYY7jzzjvxjW98A+vXr8ftt9+OQCCAJUuW8PGh9+yisTN2ufvuuzE0NIRTTjkFXq8XmUwGDz74IBYtWgQANG4IS1gZJ729vejo6Mj5uc/nQ1tbW02MJQrECKJOueWWW9Dd3Y033nij2qdC1Dj79+/HHXfcgZUrVyIUClX7dAgXIYoi5s6di+985zsAgDPPPBPd3d14/PHHsWTJkiqfHVGr/Pd//zeefvppPPPMMzj11FOxefNmfOlLX8KkSZNo3BBjCkpNdAnjx4+H1+vNcyk7dOgQOjs7q3RWRK1y66234qWXXsKf//xnHHfccfz7nZ2dSCaTGBgYyDmextHYZsOGDejr68NZZ50Fn88Hn8+H1157DT/60Y/g8/kwceJEGjeELl1dXZg9e3bO92bNmoV9+/YBAB8f9Owi1Hz1q1/F3Xffjeuuuw4f+chHcP3112PZsmV46KGHANC4IaxhZZx0dnbmmdql02n09/fXxFiiQMwlBAIBnH322Xj11Vf590RRxKuvvor58+dX8cyIWkKSJNx666147rnnsGrVKkyfPj3n52effTb8fn/OONqxYwf27dtH42gMc+mll+Kdd97B5s2b+X9z587FokWL+L9p3BB6XHDBBXktMt577z0cf/zxAIDp06ejs7MzZ+wMDQ1h7dq1NHbGMLFYDB5P7hLU6/VCFEUANG4Ia1gZJ/Pnz8fAwAA2bNjAj1m1ahVEUcS8efMqfs55VNsthLDOs88+KwWDQekXv/iFtG3bNummm26SWltbpd7e3mqfGlEjLF26VGppaZH+8pe/SD09Pfy/WCzGj7n55pulqVOnSqtWrZLeeustaf78+dL8+fOreNZELaJ2TZQkGjeEPuvWrZN8Pp/04IMPSu+//7709NNPS5FIRHrqqaf4Md/97nel1tZW6fe//7309ttvS5/85Cel6dOnS6Ojo1U8c6KaLFmyRJo8ebL00ksvSbt375Z+97vfSePHj5e+9rWv8WNo3BCSJLv5btq0Sdq0aZMEQHrkkUekTZs2SXv37pUkydo4WbBggXTmmWdKa9euld544w3pxBNPlD772c9W6y3lQIGYy3j00UelqVOnSoFAQDr33HOlNWvWVPuUiBoCgO5/Tz75JD9mdHRU+uIXvyiNGzdOikQi0qc//Wmpp6eneidN1CTaQIzGDWHEiy++KM2ZM0cKBoPSKaecIv3kJz/J+bkoitI999wjTZw4UQoGg9Kll14q7dixo0pnS9QCQ0ND0h133CFNnTpVCoVC0gknnCB985vflBKJBD+Gxg0hSZL05z//WXdds2TJEkmSrI2To0ePSp/97GelxsZGqbm5Wfrc5z4nDQ8PV+Hd5CNIkqqNOUEQBEEQBEEQBOE4VCNGEARBEARBEARRYSgQIwiCIAiCIAiCqDAUiBEEQRAEQRAEQVQYCsQIgiAIgiAIgiAqDAViBEEQBEEQBEEQFYYCMYIgCIIgCIIgiApDgRhBEARBEARBEESFoUCMIAiCIAiCIAiiwlAgRhAEQRAF2LNnDwRBwObNmx37GzfccAM+9alPOfb6BEEQRG1BgRhBEARR99xwww0QBCHvvwULFlj6/SlTpqCnpwdz5sxx+EwJgiCIsYKv2idAEARBEJVgwYIFePLJJ3O+FwwGLf2u1+tFZ2enE6dFEARBjFFIESMIgiDGBMFgEJ2dnTn/jRs3DgAgCAIee+wxXHXVVQiHwzjhhBPwm9/8hv+uNjXx2LFjWLRoESZMmIBwOIwTTzwxJ8h75513cMkllyAcDqO9vR033XQTRkZG+M8zmQzuvPNOtLa2or29HV/72tcgSVLO+YqiiIceegjTp09HOBzG6aefnnNOBEEQhLuhQIwgCIIgANxzzz249tprsWXLFixatAjXXXcdtm/fbnjstm3b8Ic//AHbt2/HY489hvHjxwMAotEorrzySowbNw7r16/Hr3/9a7zyyiu49dZb+e//4Ac/wC9+8Qv8/Oc/xxtvvIH+/n4899xzOX/joYcewi9/+Us8/vjj2Lp1K5YtW4bFixfjtddec+4iEARBEBVDkLRbcARBEARRZ9xwww146qmnEAqFcr7/jW98A9/4xjcgCAJuvvlmPPbYY/xn5513Hs466yz827/9G/bs2YPp06dj06ZNOOOMM/CJT3wC48ePx89//vO8v/XTn/4Ud911F/bv34+GhgYAwMsvv4xrrrkGBw8exMSJEzFp0iQsW7YMX/3qVwEA6XQa06dPx9lnn43nn38eiUQCbW1teOWVVzB//nz+2v/4j/+IWCyGZ555xonLRBAEQVQQqhEjCIIgxgQXX3xxTqAFAG1tbfzf6oCHfW3kkrh06VJce+212LhxI6644gp86lOfwvnnnw8A2L59O04//XQehAHABRdcAFEUsWPHDoRCIfT09GDevHn85z6fD3PnzuXpiR988AFisRguv/zynL+bTCZx5plnFv/mCYIgiJqDAjGCIAhiTNDQ0ICZM2fa8lpXXXUV9u7di5dffhkrV67EpZdeiltuuQXf//73bXl9Vk/2P//zP5g8eXLOz6wajBAEQRC1DdWIEQRBEASANWvW5H09a9Ysw+MnTJiAJUuW4KmnnsI///M/4yc/+QkAYNasWdiyZQui0Sg/9s0334TH48HJJ5+MlpYWdHV1Ye3atfzn6XQaGzZs4F/Pnj0bwWAQ+/btw8yZM3P+mzJlil1vmSAIgqgipIgRBEEQY4JEIoHe3t6c7/l8Pm6y8etf/xpz587FhRdeiKeffhrr1q3DE088ofta9957L84++2yceuqpSCQSeOmll3jQtmjRItx3331YsmQJ7r//fhw+fBi33XYbrr/+ekycOBEAcMcdd+C73/0uTjzxRJxyyil45JFHMDAwwF+/qakJX/nKV7Bs2TKIoogLL7wQg4ODePPNN9Hc3IwlS5Y4cIUIgiCISkKBGEEQBDEmWLFiBbq6unK+d/LJJ+Pdd98FACxfvhzPPvssvvjFL6Krqwu/+tWvMHv2bN3XCgQC+PrXv449e/YgHA7jox/9KJ599lkAQCQSwR//+EfccccdOOeccxCJRHDttdfikUce4b//5S9/GT09PViyZAk8Hg8+//nP49Of/jQGBwf5MQ888AAmTJiAhx56CLt27UJrayvOOussfOMb37D70hAEQRBVgFwTCYIgiDGPIAh47rnn8KlPfarap0IQBEGMEahGjCAIgiAIgiAIosJQIEYQBEEQBEEQBFFhqEaMIAiCGPNQlj5BEARRaUgRIwiCIAiCIAiCqDAUiBEEQRAEQRAEQVQYCsQIgiAIgiAIgiAqDAViBEEQBEEQBEEQFYYCMYIgCIIgCIIgiApDgRhBEARBEARBEESFoUCMIAiCIAiCIAiiwlAgRhAEQRAEQRAEUWH+f1+aeFIPPWE5AAAAAElFTkSuQmCC\n"
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAHWCAYAAACfRKOZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd8FHX6xz/bS3pCQkLvNQhIE5SmIIjlbJwFFRT15PRELKecP0VOlFMR9ewVCyq2ExuiqFSlKUUg1BBaCEkgvWyf3x+739nZPjNbMkme9+vFnZmdnf3u7Ozs9/l+nufzqDiO40AQBEEQBEEQBEHIQt3UAyAIgiAIgiAIgmjOUFBFEARBEARBEAQRBRRUEQRBEARBEARBRAEFVQRBEARBEARBEFFAQRVBEARBEARBEEQUUFBFEARBEARBEAQRBRRUEQRBEARBEARBRAEFVQRBEARBEARBEFFAQRVBEARBEARBEEQUUFBFEAQhkTVr1kClUmHNmjVNPRRFoFKp8NhjjzX1MJqEd999FyqVCkeOHEno68bjnNfV1SEnJwcffvhhTI8rhyNHjkClUuHdd99tktdPxOdaUFAArVaL3bt3x+01CIJIHBRUEQTRLFCpVKL+iQl0nnzySSxfvjzuY2YTM/ZPq9Wiffv2mDFjBoqLi+P++oQvLBgO9W/ZsmVNPcQm5YUXXkBKSgquvfZafttjjz0W9pydOnWqCUccPYm6FwSjX79+uPjii/Hoo482yesTBBFbtE09AIIgCDF88MEHPn+///77WLVqVcD2vn37RjzWk08+iauvvhqXX355LIcYkn//+9/o2rUrLBYLNm3ahHfffRcbNmzA7t27YTQaEzIGwsvdd9+NYcOGBWwfOXKk5GPdeOONuPbaa2EwGGIxtCbDbrfjhRdewJw5c6DRaAIef/XVV5GcnBywPT09PQGjix+h7gWJ+lzvuOMOTJkyBYWFhejevXtcX4sgiPhCQRVBEM2CG264wefvTZs2YdWqVQHblchFF12EoUOHAgBuvfVWtGnTBk899RS+/vpr/PWvf23i0UWmvr4eSUlJTT0MUYgZ6+jRo3H11VfH5PU0Gk3QIKS58e2336K8vDzk9Xj11VejTZs2CR5V05Goz3XChAnIyMjAe++9h3//+99xfz2CIOIHpf8RBNFiqK+vx3333YeOHTvCYDCgd+/eWLRoETiO4/dRqVSor6/He++9x6cwzZgxAwBw9OhR/P3vf0fv3r1hMpmQlZWFqVOnxryuYvTo0QCAwsJCn+379u3D1VdfjczMTBiNRgwdOhRff/01/3hVVRU0Gg3++9//8ttOnz4NtVqNrKwsn/c5a9Ys5Obm8n+vX78eU6dORadOnWAwGNCxY0fMmTMHjY2NPmOYMWMGkpOTUVhYiClTpiAlJQXTpk0DAFitVsyZMwfZ2dlISUnBZZddhhMnToh6zyz17pNPPsG//vUv5ObmIikpCZdddhmOHz8esP/mzZsxefJkpKWlwWw2Y+zYsfj111999mGpaQUFBbj++uuRkZGB8847T9R4IqFSqXDXXXfhww8/RO/evWE0GjFkyBCsW7fOZ79gtTe///47Jk2ahDZt2sBkMqFr16645ZZbfJ4n5loFpJ3z4uJi3HLLLWjbti0MBgP69++Pd955R9T7Xb58Obp06SJLLSktLYVWq8X8+fMDHtu/fz9UKhVeeuklAEBFRQXuv/9+DBgwAMnJyUhNTcVFF12EnTt3RnydcePGYdy4cQHbZ8yYgS5duvhsW7RoEUaNGoWsrCyYTCYMGTIEn3/+uc8+4e4FoWqqXnnlFfTv3x8GgwHt2rXDnXfeiaqqqoBx5ufno6CgAOPHj4fZbEb79u3x9NNPB4xdp9Nh3Lhx+OqrryK+f4IglA0pVQRBtAg4jsNll12G1atXY+bMmRg0aBB++OEHPPDAAyguLsZzzz0HwJ1GeOutt2L48OG4/fbbAYCfSG7duhW//fYbrr32WnTo0AFHjhzBq6++inHjxqGgoABmszkmY2UTtYyMDH7bnj17cO6556J9+/Z46KGHkJSUhE8//RSXX345vvjiC1xxxRVIT09Hfn4+1q1bh7vvvhsAsGHDBqhUKlRUVKCgoAD9+/cH4A6iWPAGAJ999hkaGhowa9YsZGVlYcuWLXjxxRdx4sQJfPbZZz7jczgcmDRpEs477zwsWrSIf9+33norli5diuuvvx6jRo3CL7/8gosvvljSe3/iiSegUqnw4IMPoqysDM8//zwmTJiAHTt2wGQyAQB++eUXXHTRRRgyZAjmzZsHtVqNJUuW4Pzzz8f69esxfPhwn2NOnToVPXv2xJNPPhkQlASjtrYWp0+fDtielZUFlUrF/7127Vp88sknuPvuu2EwGPDKK69g8uTJ2LJlC/Lz84Meu6ysDBdeeCGys7Px0EMPIT09HUeOHMH//vc/fh+x1yog/pyXlpbinHPO4YPB7OxsfP/995g5cyZqampwzz33hD0nv/32G84+++yQj1dUVARs02q1SE9PR9u2bTF27Fh8+umnmDdvns8+n3zyCTQaDaZOnQoAOHz4MJYvX46pU6eia9euKC0txeuvv46xY8eioKAA7dq1CztOsbzwwgu47LLLMG3aNNhsNixbtgxTp07Ft99+y5+/cPeCYDz22GOYP38+JkyYgFmzZmH//v149dVXsXXrVvz666/Q6XT8vpWVlZg8eTKuvPJK/PWvf8Xnn3+OBx98EAMGDMBFF13kc9whQ4bgq6++Qk1NDVJTU2Py/gmCaAI4giCIZsidd97JCW9hy5cv5wBwCxYs8Nnv6quv5lQqFXfo0CF+W1JSEjd9+vSAYzY0NARs27hxIweAe//99/ltq1ev5gBwq1evDjvGJUuWcAC4n376iSsvL+eOHz/Off7551x2djZnMBi448eP8/tecMEF3IABAziLxcJvc7lc3KhRo7iePXv6vO+2bdvyf997773cmDFjuJycHO7VV1/lOI7jzpw5w6lUKu6FF14I+94WLlzIqVQq7ujRo/y26dOncwC4hx56yGffHTt2cAC4v//97z7br7/+eg4AN2/evLDngp2z9u3bczU1Nfz2Tz/9lAPAj9XlcnE9e/bkJk2axLlcLp/xd+3alZs4cSK/bd68eRwA7rrrrgv72v5jCPWvpKSE35dt+/333/ltR48e5YxGI3fFFVfw29hnXFRUxHEcx3355ZccAG7r1q0hxyH2WpVyzmfOnMnl5eVxp0+f9tn32muv5dLS0oJ+/gy73c6pVCruvvvuC3iMneNg/3r37s3v9/rrr3MAuF27dvk8v1+/ftz555/P/22xWDin0+mzT1FREWcwGLh///vfPtsAcEuWLOG3jR07lhs7dmzAGKdPn8517tzZZ5v/+7XZbFx+fr7PWDgu9L3A/3MtKyvj9Ho9d+GFF/qM/6WXXuIAcO+8847POP3vGVarlcvNzeWuuuqqgNf66KOPOADc5s2bAx4jCKL5QOl/BEG0CFasWAGNRsMrOIz77rsPHMfh+++/j3gMppQA7sL9M2fOoEePHkhPT8e2bdtkj23ChAnIzs5Gx44dcfXVVyMpKQlff/01OnToAMCtAvzyyy/461//yqsop0+fxpkzZzBp0iQcPHiQdwscPXo0SktLsX//fgBuRWrMmDEYPXo01q9fD8CtXnEc56NUCd9bfX09Tp8+jVGjRoHjOGzfvj1gzLNmzfL5e8WKFQAQcH4jKSD+3HTTTUhJSeH/vvrqq5GXl8cff8eOHTh48CCuv/56nDlzhj8X9fX1uOCCC7Bu3Tq4XC6fY95xxx2SxvDoo49i1apVAf8yMzN99hs5ciSGDBnC/92pUyf85S9/wQ8//ACn0xn02My44dtvv4Xdbg+6j9hrVew55zgOX3zxBS699FJwHMefs9OnT2PSpEmorq4Oe/1WVFSA4zgf5dSfL774IuB8LVmyhH/8yiuvhFarxSeffMJv2717NwoKCnDNNdfw2wwGA9Rq99TD6XTizJkzSE5ORu/evaP6jvkjvN4rKytRXV2N0aNHy36Nn376CTabDffccw8/fgC47bbbkJqaiu+++85n/+TkZJ96T71ej+HDh+Pw4cMBx2bnPZh6ShBE84HS/wiCaBEcPXoU7dq185mwA143wKNHj0Y8RmNjIxYuXIglS5aguLjYJ5Wsurpa9thefvll9OrVC9XV1XjnnXewbt06H1exQ4cOgeM4PPLII3jkkUeCHqOsrAzt27fnA6X169ejQ4cO2L59OxYsWIDs7GwsWrSIfyw1NRUDBw7kn3/s2DE8+uij+Prrr1FZWelzbP/3ptVq+YCPcfToUajV6oD0qN69e0s6Fz179vT5W6VSoUePHnxK5MGDBwEA06dPD3mM6upqnwCga9euksYwYMAATJgwQfJYAaBXr15oaGhAeXm5T80aY+zYsbjqqqswf/58PPfccxg3bhwuv/xyXH/99fxnLvZaFXvOy8vLUVVVhTfeeANvvPFG0PdSVlYW8f1yYVInx4wZE9aook2bNrjgggvw6aef4vHHHwfgTv3TarW48sor+f1cLhdeeOEFvPLKKygqKvIJTrOysiKOUSzffvstFixYgB07dsBqtfLbhemdUmCfif+51+v16NatW8D9pUOHDgGvlZGRgT///DPg2Oy8yx0bQRDKgIIqgiAID//4xz+wZMkS3HPPPRg5ciTS0tKgUqlw7bXXBqgjUhg+fDjv/nf55ZfjvPPOw/XXX4/9+/cjOTmZP/b999+PSZMmBT1Gjx49AADt2rVD165dsW7dOnTp0gUcx2HkyJHIzs7G7NmzcfToUaxfvx6jRo3yUQQmTpyIiooKPPjgg+jTpw+SkpJQXFyMGTNmBLw3oZqQaNhYnnnmGQwaNCjoPv7W3kJVoqlRqVT4/PPPsWnTJnzzzTf44YcfcMstt+DZZ5/Fpk2bgtqSRws7ZzfccEPIYPSss84K+fzMzEyoVKqAYFsq1157LW6++Wbs2LEDgwYNwqeffooLLrjAJxh78skn8cgjj+CWW27B448/jszMTKjVatxzzz0Rv2MqlSpo4OevGq5fvx6XXXYZxowZg1deeQV5eXnQ6XRYsmQJPvroo6jeo1hCOQcGGz87763JXZEgWiIUVBEE0SLo3LkzfvrpJ9TW1vooAPv27eMfZ4RaEf78888xffp0PPvss/w2i8US4O4VDRqNBgsXLsT48ePx0ksv4aGHHkK3bt0AuJ3AxCgoo0ePxrp169C1a1cMGjQIKSkpGDhwINLS0rBy5Ups27bNx4lt165dOHDgAN577z3cdNNN/PZVq1aJHnfnzp3hcrlQWFjos1rP0hDFwpQoBsdxOHToED/pZ6pMamqqqHMRT/zHCgAHDhyA2WxGdnZ22Oeec845OOecc/DEE0/go48+wrRp07Bs2TLceuutoq9VseecOQM6nU5Z50yr1aJ79+4oKiqS/Fwhl19+Of72t7/xKYAHDhzA3Llzffb5/PPPMX78eLz99ts+26uqqiIGFRkZGUHT5/xVoi+++AJGoxE//PCDjyIsTFdkiFWH2Geyf/9+/vsKADabDUVFRVFdq0VFRVCr1ejVq5fsYxAE0fRQTRVBEC2CKVOmwOl08tbNjOeeew4qlcrHcSspKSlooKTRaAJWkl988cWQ9TNyGTduHIYPH47nn38eFosFOTk5GDduHF5//XWUlJQE7F9eXu7z9+jRo3HkyBF88sknfDqgWq3GqFGjsHjxYtjtdp96KrZqLnxvHMfhhRdeED1mdv6Edu4A8Pzzz4s+BuBu2lxbW8v//fnnn6OkpIQ//pAhQ9C9e3csWrQIdXV1Ac/3PxfxZOPGjT41OMePH8dXX32FCy+8MKQSUVlZGXANMcWNpaGJvVbFnnONRoOrrroKX3zxBXbv3h0wJjHnbOTIkfj9998j7heO9PR0TJo0CZ9++imWLVsGvV4f0FQ32Hfss88+42sGw9G9e3fs27fP5/3s3LkzwGpfo9FApVL5fG+PHDmC5cuXBxwz1L3AnwkTJkCv1+O///2vz/jffvttVFdXS3bBFPLHH3+gf//+SEtLk30MgiCaHlKqCIJoEVx66aUYP348Hn74YRw5cgQDBw7Ejz/+iK+++gr33HOPT13KkCFD8NNPP2Hx4sV8Ot2IESNwySWX4IMPPkBaWhr69euHjRs34qeffopprQfjgQcewNSpU/Huu+/ijjvuwMsvv4zzzjsPAwYMwG233YZu3bqhtLQUGzduxIkTJ3z6+LCAaf/+/XjyySf57WPGjMH3338Pg8GAYcOG8dv79OmD7t274/7770dxcTFSU1PxxRdfSEr3GjRoEK677jq88sorqK6uxqhRo/Dzzz/j0KFDkt53ZmYmzjvvPNx8880oLS3F888/jx49euC2224D4A4O33rrLVx00UXo378/br75ZrRv3x7FxcVYvXo1UlNT8c0330h6TX/Wr18Pi8USsP2ss87ySZPLz8/HpEmTfCzVAQTtx8R477338Morr+CKK65A9+7dUVtbizfffBOpqamYMmUKAPHXqpRz/p///AerV6/GiBEjcNttt6Ffv36oqKjAtm3b8NNPPwW1RBfyl7/8BR988AEOHDgQVDH5/PPPg6YuTpw4EW3btuX/vuaaa3DDDTfglVdewaRJk3jjDsYll1yCf//737j55psxatQo7Nq1Cx9++KGP+hOKW265BYsXL8akSZMwc+ZMlJWV4bXXXkP//v1RU1PD73fxxRdj8eLFmDx5Mq6//nqUlZXh5ZdfRo8ePQJqmkLdC/zJzs7G3LlzMX/+fEyePBmXXXYZ9u/fj1deeQXDhg2T3YTcbrdj7dq1+Pvf/y7r+QRBKIiEeg0SBEHECH9LdY7juNraWm7OnDlcu3btOJ1Ox/Xs2ZN75plnfKy5OY7j9u3bx40ZM4YzmUwcAN5SubKykrv55pu5Nm3acMnJydykSZO4ffv2cZ07d/axXZZqqR7MXtvpdHLdu3fnunfvzjkcDo7jOK6wsJC76aabuNzcXE6n03Ht27fnLrnkEu7zzz8PeH5OTg4HgCstLeW3bdiwgQPAjR49OmD/goICbsKECVxycjLXpk0b7rbbbuN27twZYFs9ffp0LikpKej7aWxs5O6++24uKyuLS0pK4i699FLu+PHjkizVP/74Y27u3LlcTk4OZzKZuIsvvtjH0p2xfft27sorr+SysrI4g8HAde7cmfvrX//K/fzzz/w+zO67vLw87Gv7jyHUP+F7AMDdeeed3NKlS7mePXtyBoOBGzx4cMBn7m+9vW3bNu66667jOnXqxBkMBi4nJ4e75JJLfKzZOU78tSrlnJeWlnJ33nkn17FjR06n03G5ubncBRdcwL3xxhsRz43VauXatGnDPf744z7bw1mqB/sO1NTU8N+rpUuXBryOxWLh7rvvPi4vL48zmUzcueeey23cuDHALj2YpTrHcdzSpUu5bt26cXq9nhs0aBD3ww8/BLVUf/vtt/nPrU+fPtySJUv49yIk1L3A/3NlvPTSS1yfPn04nU7HtW3blps1axZXWVnps8/YsWO5/v37B7z3YOP8/vvvOQDcwYMHA/YnCKJ5oeI4EZ0SCYIgCCIK1qxZg/Hjx+Ozzz7D1Vdf3dTDiYhKpcKdd94ZkKLXknn88cexZMkSHDx4MGR6IxFbLr/8cqhUKnz55ZdNPRSCIKKEaqoIgiAIgsCcOXNQV1eHZcuWNfVQWgV79+7Ft99+y1vQEwTRvKGaKoIgCIIgkJycLKqfFREb+vbtC4fD0dTDIAgiRpBSRRAEQRAEQRAEEQVUU0UQBEEQBEEQBBEFpFQRBEEQBEEQBEFEAQVVBEEQBEEQBEEQUUBGFX64XC6cPHkSKSkpUKlUTT0cgiAIgiAIgiCaCI7jUFtbi3bt2kGtDq1HUVDlx8mTJ9GxY8emHgZBEARBEARBEArh+PHj6NChQ8jHKajyIyUlBYD7xKWmpsb99ex2O3788UdceOGF0Ol0cX89omVA1w0hB7puCLnQtUPIga4bQg5Ku25qamrQsWNHPkYIBQVVfrCUv9TU1IQFVWazGampqYq4cIjmAV03hBzouiHkQtcOIQe6bgg5KPW6iVQWREYVBEEQBEEQBEEQUUBBFUEQBEEQBEEQRBRQUEUQBEEQBEEQBBEFVFNFEARBEESrhOM4OBwOOJ3Oph5Ki8Rut0Or1cJisdA5JkST6OtGo9FAq9VG3UqJgiqCIAiCIFodNpsNJSUlaGhoaOqhtFg4jkNubi6OHz9OvT8J0TTFdWM2m5GXlwe9Xi/7GBRUEQRBEATRqnC5XCgqKoJGo0G7du2g1+tp0h8HXC4X6urqkJycHLZpKkEISeR1w3EcbDYbysvLUVRUhJ49e8p+TQqqCIIgCIJoVdhsNrhcLnTs2BFms7mph9NicblcsNlsMBqNFFQRokn0dWMymaDT6XD06FH+deVAVzhBEARBEK0SmugTBAHE5l5AdxOCIAiCIAiCIIgoaJFB1csvv4wuXbrAaDRixIgR2LJlS1MPiZCI08VhY+EZfLWjGBsLz8Dp4pp6SARBEARBEAQRlBYXVH3yySe49957MW/ePGzbtg0DBw7EpEmTUFZW1tRDI0SycncJznvqF1z35ibMXrYD1725Cec99QtW7i5p6qERBEEQhA/NcRHwyJEjUKlU2LFjR9xeY8aMGbjiiividvzmQJcuXfD888839TCIBNHigqrFixfjtttuw80334x+/frhtddeg9lsxjvvvNPUQyNEsHJ3CWYt3YaSaovP9lPVFsxauo0CK4IgCEIxNMUi4IwZM6BSqQL+TZ48WfQxOnbsiJKSEuTn58dtnLFg3Lhx/PszGo3o1asXFi5cCI5TfuBKtD5alPufzWbDH3/8gblz5/Lb1Go1JkyYgI0bNwZ9jtVqhdVq5f+uqakB4G48Zrfb4ztgz+sI/78143RxeOzrPQh2q+QAqADM/2YPxvXMgkbduq1v6boh5EDXDSGXlnbt2O12cBwHl8sFl8sl6xgrd5/CnR9tD/jNYouAL18/GJPzc6MfrB8cx2HSpEkBi8UGg0H0e1GpVMjJyQEA2e8/EsLAh51rOdx6662YP38+rFYrfvnlF9xxxx1ITU3FrFmzYjXUqHA6nVCpVCGNDqJ5760Vdu0k8ty5XC5wHAe73Q6NRuPzmNj7XosKqk6fPg2n04m2bdv6bG/bti327dsX9DkLFy7E/PnzA7b/+OOPCbVZXbVqVcJeS6kcrFbhVI0m5OMcgJJqK176ZCV6ptEqFUDXDSEPum4IubSUa0er1SI3Nxd1dXWw2WwA3BM4i13cBC7SIiAAPPbNHpyVoxe1CGjUqUX3yWKTvmBzFLYwnJGRgUWLFuH777/Hr7/+irZt22L+/Pn4y1/+AgA4duwYBg4ciHXr1mHAgAGoqqrCAw88gNWrV6O+vh7t2rXDvffei2nTpgEA9uzZg7lz52Lr1q0wmUy47LLLsGDBAiQnJ7vPh9OJRx99FEuXLoVGo8ENN9wAm80Gh8MBAKitrYXL5cLzzz+P9957D2VlZejevTseeOABfkzBcDgc0Gq1MJvNMJvNuOqqq/Diiy9i5cqV/NisVisWLFiAL774AtXV1ejbty8ee+wxnHfeeeA4Dj179sSzzz7Lv87o0aNRXl7Ozws3btyIyy+/HEVFRTCbzXj55Zfx4Ycf4ujRo0hPT8fkyZMxf/58/r1+9NFHmDt3Ll599VX8+9//xqFDh7Bt2zaYTCb84x//wNq1a5GTk4OHH34YLpcLFouF/1wIadTW1ibstWw2GxobG7Fu3Tr+umWIbRDeooIqOcydOxf33nsv/3dNTQ06duyICy+8EKmpqXF/fbvdjlWrVmHixInQ6XRxfz0l882fJUDBroj7des/CFPOykvAiJQLXTeEHOi6IeTS0q4di8WC48ePIzk5me9J02BzYPBTsQsay2ptOO/5zaL23f3YRJj14qZkOp0OWq024hxl4cKFePLJJ/HSSy9h6dKlmDlzJoYOHYq+ffvyAUJSUhJSU1Px8MMP49ChQ1ixYgXatGmDQ4cOobGxEampqaivr8fUqVNxzjnnYPPmzSgrK8Ptt9+Ohx9+GEuWLAEAPPPMM/j444/x9ttvo2/fvli8eDG+++47jB8/HgCQkpKChQsX4rPPPsNrr72Gnj17Yt26dfjb3/6GTp06YezYsUHfg1arhV6vR2pqKjiOw4YNG3Dw4EH07t2bf/+333479u7di48//hjt2rXD8uXLcfXVV2Pnzp3o2bMnxowZgy1btuDGG29EZWUlDhw4AJPJhJMnT6JPnz74448/MGzYMOTmulVFs9mMF198EV27dsXhw4dx11134YknnsDLL78MADAajWhsbMTLL7+Mt956C1lZWejYsSOmTp2KU6dO4eeff4ZOp8M999yD06dPw2g0JmQ+2ZLgOA61tbVISUlJWFNui8UCk8mEMWPGBPSpEhsUt6igqk2bNtBoNCgtLfXZXlpayn9Z/DEYDDAYDAHbdTpdQn84Ev16SiQvPUn0fq39XDHouiHkQNcNIZeWcu0IU7ZY2lZT9qwSjiMSKpUK3333XcBE/V//+hf+9a9/8X9PnToVt99+OwBgwYIF+Omnn/Dyyy/jlVde8XnParUax48fx+DBgzF8+HAAQLdu3fjjLFu2DBaLBR988AGSkty/0y+99BIuvfRSPP3002jbti1eeOEFzJ07F1dffTUA4PXXX8ePP/7IH8Nms2HhwoX46aefMHLkSABAjx498Ntvv+HNN9/kg69gvPrqq3j77bdhs9lgt9thNBoxe/ZsqNVqHDt2DO+++y6OHTuGdu3aAQAeeOAB/PDDD3jvvffw5JNPYvz48Xj99dehVquxYcMGDB48GLm5uVi3bh369euHtWvXYuzYsfw5mTNnDv/a3bp1w4IFC3DHHXfg1Vdf5c+Z3W7HK6+8goEDBwIADhw4gJUrV2LLli0YNmwYAPABZrjUQCI4LOUvkedOrXarxcHucWLveS0qqNLr9RgyZAh+/vlnXH755QDcH8zPP/+Mu+66q2kHR0RkeNdM5KUZcaraEjSlQgUgN82I4V0zEz00giAIooVj0mlQ8O9JovbdUlSBGUu2Rtzv3ZuHifrNMulCp74HY/z48fwkn5GZ6fs6LHgR/h3K7W/WrFm46qqrsG3bNlx44YW4/PLLMWrUKADA3r17MXDgQD6gAoBzzz0XLpcL+/fvh9FoRElJCUaMGME/rtVqMXToUH5yfOjQITQ0NGDixIk+r2uz2TB48OCw73XatGl4+OGHUVlZiXnz5mHUqFH82Hbt2gWn04levXr5PMdqtSIrKwsAMHbsWMyePRvl5eVYu3Ytxo0bh9zcXKxZswYzZ87Eb7/9hn/+85/8c3/66ScsXLgQ+/btQ01NDRwOBywWCxoaGviUS71ej7POOot/zt69e6HVajFkyBB+W58+fZCenh72vREtixYVVAHAvffei+nTp2Po0KEYPnw4nn/+edTX1+Pmm29u6qEREdCoVZh3aT/MWrot4DEm/s67tF+rN6kgCIIgYo9KpRKdgje6Z7aoRcDRPbPj8puVlJSEHj16xOx4F110EY4ePYoVK1Zg1apVuOCCC3DnnXdi0aJFMTl+XV0dAOC7775D+/btfR4Lli0kJC0tjX+vn376KXr06IFzzjkHEyZMQF1dHTQaDf74448AcwGW4jhgwABkZmZi7dq1WLt2LZ544gnk5ubiqaeewtatW2G32/kg7ciRI7jkkkswa9YsPPHEE8jMzMSGDRswc+ZM2Gw2PqgymUwJS0sjmg8tTo+85pprsGjRIjz66KMYNGgQduzYgZUrVwaYVxDKZHJ+Hl694WykmXyl1tw0I1694WxMzm/dtVQEQRBE08MWAQHvoh9DKYuAmzZtCvi7b9++IffPzs7G9OnTsXTpUjz//PN44403AAB9+/bFzp07UV9fz+/766+/Qq1Wo3fv3khLS0NeXh42b/bWjzkcDvzxxx/83/369YPBYMCxY8fQo0cPn38dO3YU/Z6Sk5Mxe/Zs3H///eA4DoMHD4bT6URZWVnAcVnZh0qlwujRo/HVV19hz549OO+883DWWWfBarXi9ddfx9ChQ3kV7o8//oDL5cKzzz6Lc845B7169cLJkycjjqtPnz4B73n//v2oqqoS/d6I5k+LC6oA4K677sLRo0dhtVqxefNmH0maUD6T8/MwZ2JP/u+PbxuBDQ+eTwEVQRAEoRjYImBumm9ReyIWAa1WK06dOuXz7/Tp0z77fPbZZ3jnnXdw4MABzJs3D1u2bAlZCvHoo4/iq6++wqFDh7Bnzx58++23fAA2bdo0GI1GTJ8+Hbt378bq1avxj3/8AzfeeCO/YD179mz85z//wfLly7Fv3z78/e9/9wkoUlJScP/992POnDl47733UFhYiG3btuHFF1/Ee++9J+m9/+1vf8OBAwfwxRdfoFevXpg2bRpuuukm/O9//0NRURG2bNmChQsX4rvvvuOfM27cOHz88ccYNGgQkpOToVarMWbMGHz44Yc+Jhk9evSA3W7Hiy++iMOHD+ODDz7Aa6+9FnFMvXv3xuTJk/G3v/0Nmzdvxh9//IFbb70VJpNJ0nsjmjctLv2PaBnYHd6EiiGdMynljyAIglAck/PzMLFfLrYUVaCs1oKcFHfdb7x/s1auXIm8PN+grXfv3j7tY+bPn49ly5bh73//O/Ly8vDxxx+jX79+QY+n1+sxd+5cHDlyBCaTCaNHj8ayZcsAuN3wfvjhB8yePRvDhg3jrc0XL17MP/++++5DSUkJpk+fDrVajVtuuQVXXHGFT2D1+OOPIzs7GwsXLsThw4eRnp6Os88+28dcQwyZmZm46aab8Nhjj+HKK6/EkiVLsGDBAtx3330oLi5GmzZtcM455+CSSy7hnzN27Fg4nU6MGzeO3zZu3Dh89dVXPtsGDhyIxYsX46mnnsLcuXMxZswYLFy4EDfddFPEcS1ZsgS33norxo4di7Zt22LBggV45JFHJL03onmj4qgttQ81NTVIS0tDdXV1wizVV6xYgSlTprQIR6VY8eLPB/HsqgMAgN3zJyHZQPG/ELpuCDnQdUPIpaVdOxaLBUVFRejatWuAfXJLQKVS4csvv+RNu5oKl8uFmpoapKamkgMeIZqmuG7C3RPExgZ0hROKxOrwNmC0OagTOUEQBEEQBKFcKKgiFInF7uT/m4IqgiAIgiAIQslQThWhSIRKldXhDLMnQRAEQRBCqLKDIBIPKVWEIiGliiAIgiAIgmguUFBFKBJfpYqCKoIgCIIgCEK5UFBFKBIfpcpJQRVBEARBEAShXCioIhQJuf8RBEEQBEEQzQUKqghFIjSnoKCKIAiCIAiCUDIUVBGKxGInpYogCIIgCIJoHlBQRSgSMqogCIIgCCJeqFQqLF++vKmHoWgee+wxDBo0KOJ+jzzyCG6//fb4D0gGNpsNXbp0we+//x7316KgilAkVh+jCupTRRAEQRBCNm7cCI1Gg4svvjjurzVu3DioVKqQ/8aNGxf3McglVGBQUlKCiy66KK6v/e677/LnSK1WIy8vD9dccw2OHTsW19dNJKdOncILL7yAhx9+OOx+oa6dZ555JuzziouLccMNNyArKwsmkwkDBgzwCZDq6upw1113oUOHDjCZTOjXrx9ee+01/nG9Xo/7778fDz74YHRvVAQUVBGKhIwqCIIgCCI0b7/9Nv7xj39g3bp1OHnyZFxf63//+x9KSkpQUlKCLVu2AAB++uknftv//vc/n/3tdntcxxMLcnNzYTAY4v46qampKCkpQXFxMb744gvs378fU6dOjfvrSiGaz+utt97CqFGj0Llz57D7sWuF/XvnnXegUqlw1VVXhXxOZWUlzj33XOh0Onz//fcoKCjAs88+i4yMDH6fe++9FytXrsTSpUuxd+9e3HPPPbjrrrvw9ddf8/tMmzYNGzZswJ49e2S/TzFQUEUoEmr+SxAEQTQJ9fWh/1ks4vdtbBS3rwzq6urwySefYNasWbj44ovx7rvv8o9df/31uOaaa3z2t9vtaNOmDd5//30AQG1tLaZNm4akpCTk5eXhueeew7hx43DPPfcEfb3MzEzk5uYiNzcX2dnZAICsrCx+W1ZWFl599VVcdtllSEpKwhNPPIF3330XmZmZPsdZvnw5VCoV/zdTkT744AN06dIFaWlpuPbaa1FbW8vv43K58PTTT6NHjx4wGAzo1KkTnnjiCf7xBx98EL169YLZbEa3bt3wyCOP8EHCu+++i/nz52Pnzp28MsLOlX/6365du3D++efDZDIhKysLt99+O+rq6vjHZ8yYgcsvvxyLFi1CXl4esrKycOedd0YMSFQqFXJzc5GXl4dRo0Zh5syZ2LJlC2pqavh9vvrqK5x99tkwGo3o1q0b5s+fD4fDAQC4//77cckll/D7Pv/881CpVFi5ciW/rUePHnjrrbcAAFu3bsXEiRPRpk0bpKWlYezYsdi2bVvAmPw/LwD4z3/+g7Zt2yIlJQUzZ86Exf96D8KyZctw6aWXRtyPXSvs31dffYXx48ejW7duIZ/z9NNPo2PHjliyZAmGDx+Orl274sILL0T37t35fX777TdMnz4d48aNQ5cuXXD77bdj4MCBfPAPABkZGTj33HOxbNmyiOOMBgqqCEVCNVUEQRBEk5CcHPqf/6p6Tk7off1Ty7p0Cb6fDD799FP06dMHvXv3xg033IB33nkHHMcBcK/Kf/PNNz4BwQ8//ICGhgZcccUVANyr+7/++iu+/vprrFq1CuvXrw+YeEvlsccewxVXXIFdu3bhlltuEf28wsJCLF++HN9++y2+/fZbrF27Fv/5z3/4x+fOnYv//Oc/eOSRR1BQUICPPvoIbdu25R9PSUnBu+++i4KCArzwwgt488038dxzzwEArrnmGtx3333o378/r5D4B5wAUF9fj0mTJiEjIwNbt27FZ599hp9++gl33XWXz36rV69GYWEhVq9ejffeew/vvvuuT0AbibKyMnz55ZfQaDTQaDQAgPXr1+Omm27C7NmzUVBQgNdffx3vvvsuH+iMHTsWGzZsgNNTCrF27Vq0adMGa9asAeBOjyssLORTMGtrazF9+nRs2LABmzZtQs+ePTFlyhSfQBUI/Lw+/fRTPPbYY3jyySfx+++/Iy8vD6+88krY91NRUYGCggIMHTpU9DkAgNLSUnz33XeYOXNm2P2++eYbDB06FFOnTkVOTg4GDx6MN99802efUaNG4euvv0ZxcTE4jsPq1atx4MABXHjhhT77DR8+HOvXr5c0TslwhA/V1dUcAK66ujohr2ez2bjly5dzNpstIa/XXOg+9zuu84Pfcp0f/JZ7efXBph6O4qDrhpADXTeEXFratdPY2MgVFBRwjY2NgQ8Cof9NmeK7r9kcet+xY333bdMm+H4yGDVqFPf8889zHMdxdruda9OmDbd69Wqfv99//31+/+uuu4675pprOI7juJqaGk6n03GfffYZ/3hVVRVnNpu52bNnR3ztoqIiDgC3fft2fhsA7p577vHZb8mSJVxaWhpXWVnJOZ1OjuM47ssvv+SEU8958+ZxZrOZq6mp4bc98MAD3IgRI/ixGgwG7s033xRxVtw888wz3JAhQ3xeY+DAgQH7AeC+/PJLjuM47o033uAyMjK4uro6/vHvvvuOU6vV3KlTpziO47jp06dznTt35hwOB7/P1KlT+fMajCVLlnAAuKSkJM5sNnMAOADc3Xffze9zwQUXcE8++aTP8z744AMuLy+P4ziOq6ys5NRqNbd161bO5XJxmZmZ3MKFC/lztHTpUq59+/Yhx+B0OrmUlBTum2++8Xnv/p/XyJEjub///e8+20aMGBH03DG2b9/OAeCOHTsWcp9gPPXUU1xGRkbw759nzJWVlZzBYOAMBgM3d+5cbtu2bdzrr7/OGY1G7t133+X3tVgs3E033cQB4LRaLafX67n33nsv4JgvvPAC16VLl5BjCndPEBsbaOMbshGEdBxOFxwujv+b0v8IgiCIhCFQeALwqAs8ZWWh91X7JQMdOSJ7SEL279+PLVu24MsvvwQAaLVaXHPNNXj77bcxbtw4aLVa/PWvf8WHH36IG2+8EfX19fjqq6/41KfDhw/Dbrdj+PDh/DHT0tLQu3fvqMYlVa1gdOnSBSkpKfzfeXl5KPOc171798JqteKCCy4I+fxPPvkE//3vf1FYWIi6ujo4HA6kpqZKGsPevXsxcOBAJCUl8dvOPfdcuFwu7N+/n1fG+vfvzytMbKy7du0Ke+yUlBRs27YNdrsd33//PT788EOf9MWdO3fi119/9dnmdDphsVjQ0NCA9PR0DBw4EGvWrIFer4der8ftt9+OefPmoa6uDmvXrsXYsWP555aWluL//u//sGbNGpSVlcHpdKKhoSHAHMP/89q7dy/uuOMOn20jR47E6tWrQ763Rk+Kq9Fo5Ld9+OGH+Nvf/sb//f3332P06NE+z3vnnXcwbdo0n+cFw+VyYejQoXjyyScBAIMHD8bu3bvx2muvYfr06QCAF198EZs2bcLXX3+Nzp07Y926dbjzzjvRrl07TJgwgT+WyWRCQ0ND2NeLFgqqCMXhn+5H6X8EQRBEwhBMrJts3zC8/fbbcDgcaNeuHb+N4zgYDAa89NJLSEtLw7Rp0zB27FiUlZVh1apVMJlMmDx5ckxePxRJfu9PrVbzKYmMYPVHOp3O52+VSgWXy/27bzKZwr7mxo0bMW3aNMyfPx+TJk1CWloali1bhmeffVbOW4hIuLGGQq1Wo0ePHgCAvn37orCwELNmzcIHH3wAwF0fN3/+fFx55ZUBz2VBx7hx47BmzRoYDAaMHTsWmZmZ6Nu3LzZs2IC1a9fivvvu458zffp0nDlzBi+88AI6d+4Mg8GAkSNHwmaz+Rzb//OSQ5s2bQC4DSVYrd1ll12GESNG8Pu0b9/e5znr16/H/v378cknn0Q8fl5eHvr16+ezrW/fvvjiiy8AuIO6f/3rX/jyyy95F8yzzjoLO3bswKJFi3yCqoqKCn6M8YJqqgjF4R9EkVJFEARBEIDD4cD777+PZ599Fjt27OD/7dy5E+3atcPHH38MwF1n0rFjR3zyySf48MMPMXXqVD4g6NatG3Q6HbZu3coft7q6GgcOHIjpWLOzs1FbW4t6gRnHjh07JB2jZ8+eMJlM+Pnnn4M+/ttvv6Fz5854+OGHMXToUPTs2RNHjx712Uev1/P1SKHo27cvdu7c6TPWX3/9FWq1OmoFz5+HHnoIn3zyCV/DdvbZZ2P//v3o0aNHwD+1R+1kdVU///wzXzs1btw4fPzxxzhw4ICPpf2vv/6Ku+++G1OmTEH//v1hMBhw+vTpiOPq27cvNm/e7LNt06ZNYZ/TvXt3pKamoqCggN+WkpLi8x78A+O3334bQ4YMwcCBAyOOadSoUdi/f7/PtgMHDvBOg3a7HXa7nT9PDI1GExDs7t69G4MHD474mtFAQRWhOITOfwAFVQRBEAQBAN9++y0qKysxc+ZM5Ofn+/y76qqr8Pbbb/P7Xn/99XjttdewatUqTJs2jd+ekpKC6dOn44EHHsDq1auxZ88ezJw5E2q12seZL1pGjBgBs9mMxx9/HIWFhfjoo48kmToAbqXmwQcfxD//+U+8//77KCwsxKZNm/j32bNnTxw7dgzLli1DYWEh/vvf//JpkYwuXbqgqKgIO3bswOnTp2G1WgNeh6WiTZ8+Hbt378bq1avxj3/8AzfeeKOPKUYs6NixI6644go8+uijAIBHH30U77//PubPn489e/Zg7969WLZsGf7v//6Pf86YMWNQW1uLb7/91ieo+vDDD5GXl4devXrx+/bs2RMffPAB9u7di82bN2PatGkRFT8AmD17Nt555x0sWbIEBw4cwLx58yJakKvVakyYMAEbNmwQ9d5ramrw2Wef4dZbbw36+AUXXICXXnqJ//uee+7Bpk2b8OSTT+LQoUP46KOP8MYbb+DOO+8E4LarHzt2LB544AGsWbMGRUVFePfdd/H+++/zpiyM9evXB5hXxBoKqgjFQUoVQRAEQQTy9ttvY8KECUhLSwt47KqrrsLvv/+OP//8E4A7UCgoKED79u1x7rnn+uy7ePFijBw5EpdccgkmTJiAc889F3379o1Y4yKFzMxMvP/++1i1ahUGDhyIjz/+GI899pjk4zzyyCO477778Oijj6Jv37645ppr+Jqryy67DHPmzMFdd92FQYMG4bfffsMjjzzi8/yrrroKkydPxvjx45Gdnc2reULMZjN++OEHVFRUYNiwYbj66qsDJvixZM6cOfjuu++wZcsWTJo0Cd9++y1+/PFHDBs2DOeccw6ee+45n75PGRkZGDBgALKzs9GnTx8A7kDL5XL51FMB7muksrISZ599Nm688UbcfffdyMnJiTima665Bo888gj++c9/YsiQITh69ChmzZoV8Xm33norli1bFjENEnDbr3Mch+uuuy7o44WFhT6q2rBhw/Dll1/i448/Rn5+Ph5//HE8//zzPosEy5Ytw7BhwzBt2jT069cP//nPf/DEE0/41Idt3LgR1dXVuPrqqyOOMRpUnH/CayunpqYGaWlpqK6ullzoKAe73Y4VK1ZgypQpAbm6rZW9JTW46AWv7eUVg9vjuWsGNd2AFAhdN4Qc6Loh5NLSrh2LxYKioiJ07do1poFEc6W+vh7t27fHs88+G9HmWgoulws1NTVITU0NSNEiWgYcx2HEiBGYM2dOyGBJKrG+bq655hoMHDgQ//rXv0LuE+6eIDY2oCucUBykVBEEQRBE/Ni+fTs+/vhjFBYWYtu2bfzK/1/+8pcmHhnR3FCpVHjjjTf4ZsVKw2azYcCAAZgzZ07cX4vc/wjF4V9TRe5/BEEQBBFbFi1ahP3790Ov12PIkCFYv3497+ZGEFIYNGgQBg0a1NTDCIper/epT4snFFQRiiPQUj28aw9BEARBEOIZPHgw/vjjj6YeBkG0KCj9j1Ac5P5HEARBEARBNCcoqCIUR0BNlZOCKoIgCCL2kFcXQRBAbO4FFFQRisPqUarUnnYZpFQRBEEQsYQ5GDY0NDTxSAiCUALsXhCNuynVVBGKw+IJopINWtRYHBRUEQRBEDFFo9EgPT2d73dkNptj2viWcONyuWCz2WCxWMhSnRBNIq8bjuPQ0NCAsrIypKenQ6PRyD4WBVWE4mBKVapJ5w6qKP2PIAiCiDG5ubkAwAdWROzhOA6NjY0wmUwUtBKiaYrrJj09nb8nyIWCKkJxsJqqFKMOQCMpVQRBEETMUalUyMvLQ05ODux2e1MPp0Vit9uxbt06jBkzpkU0jSYSQ6KvG51OF5VCxaCgilAcvFJldF+e1KeKIAiCiBcajSYmEyoiEI1GA4fDAaPRSEEVIZrmet1QgiuhOFhNVarJ/UUipYogCIIgCIJQMhRUEYrDq1RRUEUQBEEQBEEoHwqqCMVhsbOaKnf6n83pol4iBEEQBEEQhGKhoIpQHFaHb00VQA2ACYIgCIIgCOVCQRWhOJhSxWqqAEoBJAiCIAiCIJQLBVWE4mBKVYpQqaKgiiAIgiAIglAoFFQRioMpVUadBlq1u+kb2aoTBEEQBEEQSoWCKkJxMKXKqNPAoHVfoqRUEQRBEARBEEqFgipCcTClyqBVQ8+CKjKqIAiCIAiCIBQKBVWE4hAqVXpSqgiCIAiCIAiFQ0EVoTiCKVVUU0UQBEEQBEEolRYTVB05cgQzZ85E165dYTKZ0L17d8ybNw82m62ph0ZIhAVQRp0Geg0pVQRBEARBEISy0UbepXmwb98+uFwuvP766+jRowd2796N2267DfX19Vi0aFFTD4+QgNXuTv9zK1UaAFRTRRAEQRAEQSiXFhNUTZ48GZMnT+b/7tatG/bv349XX32VgqpmhlCpYu5/LNAiCIIgCIIgCKXRYoKqYFRXVyMzMzPsPlarFVarlf+7pqYGAGC322G32+M6PvY6wv9v7bhcHK9KqeGCTuPuU9VoTczn0Vyg64aQA103hFzo2iHkQNcNIQelXTdix6HiOI6L81iahEOHDmHIkCFYtGgRbrvttpD7PfbYY5g/f37A9o8++ghmszmeQySCYHMCD2xxx/pPD3fg7f1q7K9W44YeTgzLbpGXKkEQBEEQBKFQGhoacP3116O6uhqpqakh91N8UPXQQw/hqaeeCrvP3r170adPH/7v4uJijB07FuPGjcNbb70V9rnBlKqOHTvi9OnTYU9crLDb7Vi1ahUmTpwInU4X99dTOlUNdgxbuBoAsPexCfj7xzuwev9pPPGXfvjr0A5NPDrlQNcNIQe6bgi50LVDyIGuG0IOSrtuampq0KZNm4hBleLT/+677z7MmDEj7D7dunXj//vkyZMYP348Ro0ahTfeeCPi8Q0GAwwGQ8B2nU6X0A8y0a+nVJxw105p1SqYjAYYdVrPdhWdnyDQdUPIga4bQi507RByoOuGkINSrhuxY1B8UJWdnY3s7GxR+xYXF2P8+PEYMmQIlixZArW6xTjGtxpY419mUEHNfwmCIAiCIAilo/igSizFxcUYN24cOnfujEWLFqG8vJx/LDc3twlHRkiBNf416txW6qxPFTX/JQiCIAiCIJRKiwmqVq1ahUOHDuHQoUPo0MG39kbhZWOEAH+lyqCjoIogCIIgCIJQNi0mP27GjBngOC7oP6L5EKhUeZr/UlBFEARBEARBKJQWE1QRLQOmVOmppoogCIIgCIJoJlBQRSgKplQZmFLFgiqns8nGRBAEQRAEQRDhoKCKUBRMqTKymipSqgiCIAiCIAiFQ0EVoSgClCoNBVUEQRAEQRCEsqGgilAU/kqVN/2PgiqCIAiCIAhCmbQYS3WiZeCvVLH0P6udgiqCIAini8OWogqU1VqQk2LE8K6Z0KhVTT0sgiCIVg8FVYSiIKWKIAgiOCt3l2D+NwUoqbbw2/LSjJh3aT9Mzs9rwpERBEEQlP5HKAqvUuUbVFHzX4IgWjMrd5dg1tJtPgEVAJyqtmDW0m1YubukiUZGEARBABRUEQrDq1SRUQVBEATgTvmb/00BgrWyZ9vmf1MAp4ua3RMEQTQVFFQRisIaQqmioIogiNbKlqKKAIVKCAegpNqCLUUViRsUQRAE4QMFVYSiCFCqqKaKIIhWTllt6IBKzn4EQRBE7KGgilAU/koVNf8lCKK1k5NijOl+BEEQROyhoIpQFBamVPGW6u7/ZwoWQRBEa2N410zkpRkRyjhdBbcL4PCumYkcFkEQBCGAgipCUfBKlb+lOilVBEG0UjRqFeZd2i/oYyzQmndpP+pXRRAE0YRQUEUoCn+litz/CIIggMn5eXj+2kEB23PTjHj1hrOpTxVBEEQTQ81/CUURUqkiowqCIFo52ckGn79vObcLHr6YFCqCIAglQEoVoSiYUmXQ+br/2Z0cXNSDhSCIVszWI5U+f7fPMFNARRAEoRAoqCIURSilCiC1iiCI1s3vR919qLSeQMpiJwMfgiAIpUBBFaEoeKVK61tTBVBQRRBE68XhdGHbUbdSdXanDACAlWpNCYIgFAMFVYSiYEqV0a9PlfAxgiCI1sa+U7WotzmRYtQiv30aAMBKShVBEIRioKCKUBQsnYUpVSqVyusASEoVQRCtlK1H3Kl/QztnwKxn/fvonkgQBKEUyP2PUBRsksCUKsBdV2VzushWnSCIVsvvHpOKoV0ywXFu0x6qqSIIglAOpFQRioHjOD6oYkoVQA2ACYJo3XAc56NUsfsjKVUEQRDKgYIqQjEIJwg+ShU1ACYIohVzvKIRZbVW6DQqDOyYzt8fSakiCIJQDhRUEYpBaEQRVKly0gSCIIjWB1OpBrRPg1GnIaWKIAhCgVBNFaEYrB47dbUK0Gm8DS1ZUNUcJxBOF4ctRRUoq7UgJ8WI4V0zqVknQRCSYP2phnXJBAAYSKkiCIJQHBRUEYrBYvfWU6lU3sDD0EyDqpW7SzD/mwKUVFv4bXlpRsy7tB8m5+c14cgIgmhObBWYVAAgpYogCEKBUPofoRiYUiWspwKap1HFyt0lmLV0m09ABQCnqi2YtXQbVu4uaaKREQTRnKiot+FQWR0AYEhnd9NfqqkiCIJQHhRUEYpBqFQJaW5GFU4Xh/nfFIAL8hjbNv+bAjhdwfYgCILw8sdRt0rVIycZmUl6AN57JAVVBEEQyoGCKkIxtBSlaktRRYBCJYQDUFJtwZaiisQNiiCIZsnvR1g9VQa/jd0jKf2PIAhCOVBQRSiGYD2q3H8z97/mMYEoqw0dUMnZjyCI1ou3P1Umv82rVDWPeyJBEERrgIIqQjGwVJbmrlTlpBhjuh9BEK0Ti92JXcXVALzOf4BQqaL0P4IgCKVAQRWhGEIpVaymqrlMIIZ3zUReWuiASQW3C+Dwrpkh9yEIgth5vAp2J4ecFAM6Zpr47Uadx/2PlCqCIAjFQEEVoRiYUmXwU6pYkNVclCqNWoV/TekT9DFmFD/v0n7Ur4ogiLD87jGpGNYlM2ibCZvTBRcZ3hAEQSgCCqoIxRBSqWpm6X8AYHUEn+jkphnx6g1nU58qgiAiwtdTCUwqAK9SBZBZBUEQhFKg5r+EYgilVLGgytpMjCo4jsPbG4oAALeO7oq31rv/e+nM4RjZvQ0pVARBhMXp4rDp8BlsOnwGAHB2J9+giilVgDst2qT3XYgiCIIgEg8pVYRiYCuuxmauVG08fAZ7S2pg0mkwa2x3fnvfvNSYBFROF4fNRRX447QKm4sqqN8VQbQgVu4uwXlP/YJpb23m3f3+9sEfPg3DtRo1tJ57CTkAEgRBKANSqgjFEFKpambNf9/2KFNXDWmPrGQDUgxa1FodqG60IyvZENWxV+4uwfxvCjx9sDR4/+DvyEszYt6l/SilkCCaOSt3l2DW0m0BjcNLayyYtXSbT+qwQauGw+ZsNgY+BEEQLR1SqgjF0BKUqsPldfh5XxkA4JZzuwIA0sw6AEBVoz2qY7MJl39j4VPV7gmXcCWbIIjmhdPFYf43BQEBFQB+2/xvCnhlmtVViVWqnC4OGwvP4KsdxdhYeIYUboIgiBhDShWhGEK7/zFLdeUHVUt+PQIAuKBPDrplJwMA0kw6nKhsRHUUQVWkCZcK7gnXxH65VLNFEM2QLUUVAQsmQjgAJdUWbCmqwMjuWYL7YmSlylfhdkMKN0EQRGwhpYpQDKGUKkMzUaqqGmz4/I8TAICZo7vy29NMbqWqJoqgSsqEiyCI5kdZbejvd7D9xCpVpHATBEEkBgqqCMUQyf3PplD3P5ZW83/Ld6PR7kSf3BSM7JbFP57O0v8a5AdVUidcBEE0L3JSQjcMD7Yfuy+y+2YwpKYUEgRBEPKh9D9CMXiVqhBBVRMpVU4Xhy1FFSirtSAnxYjhXTP5FLtgaTUl1Rb8sOcUn1bDlKpo0v+kTrgIgmheDO+aibw0I05VW4IGQSq4+9wN75oJwKtUhUuLlppSSBAEQciHgipCMVh5pcrPqELj/rspgqpwtQgAgjp11TTafZy6UmMQVEmdcBEE0bzQqFWYd2k/zFq6LeAxViU579J+/IKOQYRSRQo3QRBE4qD0P0Ix8EqVQpr/hqtFuGPpNjz0v12i0mpioVSxCVcwgk24CIJofkzOz8OrN5yNNsl6n+25aUYfO3VAnFJFCjdBEETiaJFBldVqxaBBg6BSqbBjx46mHg4hEr6mSgGW6mJqEcLVSAnTatJN+oj7i4FNuDKTIk+4CGmQ3TShFCbn5+Gl684GAGSnGPDxbedgw4PnB3y/2eJTOKWKKdyhllpUcCvvpHATBEFET4tM//vnP/+Jdu3aYefOnU09FEICIZUqjXjr4FgRqRZBLGW1lpi4/zEm5+dBr1Hjlvd+BwDMu7gPbjq3GylUUUB204TSsHjudTkphpC1TmzxKZxSJUwpVAE+i0SkcBMEQcSWFqdUff/99/jxxx+xaNGiph4KIZFQShVzA0ykUhWrGoOcFGNM0v+E2JzeqVG37CSaEEUB2U0TSqTB5r4XmvWakPuIUaoAr8Kdm+ab4kcKN0EQRGxpUUpVaWkpbrvtNixfvhxms1nUc6xWK6xWK/93TU0NAMBut8Nuj80kOBzsNRLxWkqHTQ60Ks7nfKg5dzBlc7gSdp6yzNF9NdzGEQYM7pCCfadqAbj7WMVi/HUWm/e/G2NzzNaI08Xhsa/3RGiovAfjema1mMCV7jfNg9pG92+SSacO+VnpPNdkozXyb9UFvdtgXM/RGP/sepTUWGDUqbH63tHQqFWirwW6dgg50HVDyEFp143YcbSYoIrjOMyYMQN33HEHhg4diiNHjoh63sKFCzF//vyA7T/++KPowCwWrFq1KmGvpVSq6zQAVNi66Tec2u3dfqoBALSoa7RgxYoVCRmLiwPS9RpU2QAErUjgYNYCDQ72t8rnMQ7ARW0b8MPK73HGAgBaVNTHZvxbS1UA3CvYW7btgOPY9qiP2Ro5WK3CqZrQSoC7Ls6Klz5ZiZ5pLavGiu43ymbrKfd3vPpMech7xsnjagBqFBw4hBXWA6KOa7G477EWuwtff/c9DKEv/5DQtUPIga4bQg5KuW4aGhpE7af4oOqhhx7CU089FXafvXv34scff0RtbS3mzp0r6fhz587Fvffey/9dU1ODjh074sILL0RqaqqsMUvBbrdj1apVmDhxInQ6XdxfT8nM27EagB0XjBuDHjnJ/PajFQ1YuHMDoNZiypRJCRuPrksp/rFsZ4CSofL879NXDwQALFixD6dqvGpnXpoRD1/UB5P6twXgrqX69/bVsLtUuGDipADLeKmUbTwKHN4PAOjZtz+mDOsU1fFaK9/8WQIU7Iq4X7f+gzDlrJaRIkX3m+bBifVFQNFBdOvcAVOm5AfdZ99PB7G6pAjtO3XBlCl9RB33sZ2rAZt7xfXsUePQOUv8wiFdO4Qc6Loh5KC064ZlsUVC8UHVfffdhxkzZoTdp1u3bvjll1+wceNGGAwGn8eGDh2KadOm4b333gv6XIPBEPAcANDpdAn9IBP9ekqEFVwnmww+5yLJ6Ha7szlcCT1HlwzqAK1Wg7s/3u5Tx5TrZ2Jw0VntQzYHBoAMjRZqlVv9anAAyebo3oPd5fvfrf26kUteepLo/VraOab7jbKxOtz3m2RD6M8pyeDebndyoj9Li+DmUdHoRA8Z1wBdO4Qc6Loh5KCU60bsGBQfVGVnZyM7Ozvifv/973+xYMEC/u+TJ09i0qRJ+OSTTzBixIh4DpGIARzH8Y5XrKklg7n/OVwcnC4uofUtE/q2db+ek8Pci/rgrA7pAUGTRq0K6dAFAGq1CqkmHaoa7KhutCMnNbqeMBabtzC9MUKROhGa4V0zkWLUotbiCPo4NVQmmop6ZlQRJj9PjPufEJeL87lfUMNfgiCI2KL4oEosnTr5pkAlJ7vTx7p3744OHTo0xZAICdidHDiPGOSfHqcXBFk2hwumMI5YseZAaR0a7S6kGLS4bXQ3qGUGdGmCoCpahBMjiy2xDZGbM04X56MoltZYwgZUANlNR4v/OfdfkCCCw7v/6UL/RIt1/2P4B19lgpRlgiAIInpaTFBFNG8sgh5U/kqV0GI90UHVtmOVAIBBndJlB1QAkG7S4SiibwAM+KbwkFIljmC9qBjje2dj76lanBI85p/iSUiH+n/Jp8HmDvaTRChVYoMq/3tFKSlVBEEQMaXFBlVdunQBx7Usx66WjFUQKPgHVTqNN5ixOp0AEpdfu/1YFQBgcMf0qI6TGsNeVT5KFQVVEWG9qELdDaYO6YhJ+bn4cc8pzPrQ3SR17QPjfRRSQhqhzjnr/0X9kcLDlKpwC0isf5/Y9D//oKqclCqCIIiYQrMGQhF4G/+qoVL5KkIqlYqf4CayATAAbD/uVqoGd8qI6jixbAAsnBw12in9LxxOF4f53xSEDKhUAB7/rgAAcGH/XKhVbiv1qgZbiGcQkQh3ztm2+d8UwOmiRa9Q8EqVPlz6n0Slyua7X1ktBVUEQRCxhIIqQhGw1VZjCLtxgybxQVVVgw2Hy+sBAIOiVKrSPY5/VTEIqlq7UYXTxWFj4Rl8taMYGwvPhJ2cbymqCJryx3D3orJgS1EFNGoVslPcTqCltIovGynnnAgOX1MVTqnSSlOq/IMvMqogCIKILS02/Y9oXgiVqmDotWrACticiQuqth+vAgB0a5OEjCR9VMdiSlVNLIIqR+tN/5NapyN24sj2a5tqRGmNFaU1FgxAWmwG3cqQes6JQBqsLKiKnVLFAjXW3oEWDgiCIGILKVWEIoikVDVF+h+rpxrUKT3qY8U0/a+VKlWsTsdfBWF1Oit3lwQ8JydFnH0924/9PxXxy0fqOScCabC70//CW6rLq6nKSzMBcN+LWtuiDEEQRDyhoIpQBFYxShXETyBiwfZjsamnArxBVSxqdYR1VJZWUlMlt05neNdM5KUZEcq3UQW30sV6UbVNpfS/aJF6zolAvEpV6KDKq1SJDKo8izG5aUb+flpOdVUEQRAxg4IqQhFErKlKsFLlcnHY4Un/i9b5DwDSTO70wVgoVcLVZf/i85aK3DodjVqFeZf2A4CASX6wXlRtPY2Zy2pIqZKL8Jz7Q/2/xMFS9cIZVXiVKnH3AHbfMOs1yE52Lx6QWQVBEETsoKCKUASiaqqQuKCqsLwOtRYHTDoN+uSmRH28WKb/WVqhpXo0dTqT8/Pw6g1nIzfNN90sN80YYO3tVaooqIoGds5Zg1pGsHMuFSlGJc0Rl4vjU/XCWaqzBSirWKXKc0yjTsNf57R4QBAEETvIqIJQBBFrqjSJTf9j9VRndUiDVhP92kP8LNVbR1AVbZ3O5Pw8nN+nLXr93/cAgNdvOBsT+uUGqCU5HqWK0v+iZ3J+Hgb+WoTNRe402v9eNwgXD2gXlULVGhoKC7/TYpQqm9MFl4uL2JycqdomnYb/npBSRRDNC6eLw5aiCpTVWpCT4k6jJtVfOVBQRSgC0UpVgtz/YtWfisEs1asb7eA4LqAXlxSEKX9KqKlKxE2e1emcqrYEratSwa2ChKvTcbi852p0r+ygY2zLTzZpBT8WVNR7FxF65qREHVC1hobC9Z4eVSoVApQ+IcIFKKvDFVbVArzBmkmn4e9HdJ0TRPOhNSwqNXcoqCIUQWT3P/f2RKX/bTtaBQAYHAPnP8CrVNmd7tSecFbJ4XC5OB+1rqmVqkTd5Fmdzqyl2wIeE1unIwxGjdrg1xlLizpdZ4Pd6YIuBipla6ai3mvMUmd1yD5OJKMSFdxGJRODqI/NDXadmnWasIsvwgUoi90ZOaiyeVMK2yS7azzLSJEliGZBa1lUau7QjIFQBKzYOqRSlcDmv7UWOw6U1QKIXVBl1mug9Uz2okkB9E9/tDrcqT9NgRyL82hgdTpslZ0htk6HBaB6rTpkqlSGWQ+dxv0YOaNFh9PFoVLgdllnkR9UtaaGwvVWFvyEX3jRatT8PUVMWrSwTouluVL6H0EoH7nut0TioaCKUAQsjc0Qwf1PrNNVNPx5ohocB3TIMMWsl45KpeKDgaoG+UFVMGXKkoBz4k9T3eQn5+fh/gt7838/OLk3Njx4vqgVOnaNGUME7gCgVqu8vaqoiD8qqhpsEH78tVEoVa2poXCDJ/0vKUyPKga7L4oxrBGm/+WkkCELQTQXWtOiUnOHgipCEURSqhJpqb7taGzrqRipMTCrYBMjpqYATWOr3pQ3+VqB4tElK0l0updFhKMaAORQr6qYIEz9A6JTqlpTQ+EGgaFEJHgHQBH3RUsQowpSYwlC+bSmRaXmDgVVhCLwKlVNb6m+3dOf6uwYpf4xYuEAyNdb6DXQqdwyQFPUVTXlTb7G4j1/Ut67xS5uskpmFbHhjF9QVWuRf923pobCXqUqct2ltwGweKXKqNfwCwdn6t21gwRBKJfWtKjU3KGgilAETKkKZSCQKPc/juOw/Vh8lKp0FlRFkf7HJk9GrQYsNohFryqpvX+a8iZf0ygvqBL26QkH9aqKDQFKVRTpf+EaCjNaSkPhBsHCSSS8adESaqp0GmSa9Xw91uk6UqsIQsm0pkWl5g4FVYQiiKhUJcio4uiZBlQ22KHXqtEvLzWmx46FUmURBAZ6z6lqtEV3TlbuLsF5T/2C697chNnLduC6NzfhvKd+CWs00ZQ3eeH5k2Ipz9dURQiqqFdVbDjjN1mvjSL9DxAYlZh8jUpUAF64dlCLcb6qlxJUSVGqBOl/arUK2SmU5koQzQHhopL/b65Y91siMYjydb733ntFH3Dx4sWyB0O0XnhL9QhKVbyb/27zqFT57VL514wVMUn/41eb1WhU+26Tg1yb1lhYnMulRjA5l6LSeZWq8J9r21QyqogF/ul/0ShVjMn5eThZ1Yh/f7sXZ3VIw/EK7yJIS6GRpf+JaLsgS6nyrMbkpBhQUm1BGV3nBKF42KLS/y3fjdN13ntrLvWpUhSigqrt27f7/L1t2zY4HA707u124Tpw4AA0Gg2GDBkS+xESrQK++W+kmqo4p/9tP1YFADg7xql/AJBmdveGqWq0RdgzNGy12ajXQBdlUBVt7x92k7/nkx0+ilG8b/I+6X8STDosIg0AWPof9fCJDpb+l2HWobLBHlVNlZBKT/rsoI7pGNk9C6+vPYz/bStuMZMKr6W6GKMKCe5//PXv/tnPTjECqCZbdYJoJkzOz4MaKty+9A8AQK+2yfh+9pi4K1ROF4ctRRUoq7UgJ8WdgUKqWHBEBVWrV6/m/3vx4sVISUnBe++9h4wM98SzsrISN998M0aPHh2fURItnkhKlcGz3Soh3UsK7Kaxen8ZAGBgh/SYv4ZXqZK/Ym9xeG3B2ZxLrvufFAe/kd2zgu4zOT8P5/5+HD/vK0deqhGLrxkU9xuu3JoqZj0fuabKo1SRUUVUMKWqU1YSKhuqYqJUAeBXabOSDJicn4vX1x7G6v1lqKy3ISNJH5PXaErYNS3GqIK/L0rsUwV4XS4pqCKI5kOJQFl2uri4Bzcrd5dg/jcFPnOFPFLHQiI5Z+LZZ5/FwoUL+YAKADIyMrBgwQI8++yzMR0c0XpoSqVKWFN0orIRAPD4dwUxb14bk5oqmzcw0KndGpNco4pYOfixQE+rVWFk96y43+SF7n+S0v/EKlUec42qBntMTEBaK6ymqkuWGUB0lurBjpuVrEfv3BT0zUuF3cnhu12x/b42FfWe4FOcpbp4pcrf/ZJ3uaT0P4JoNhRXNfL/HU3PSzGw8gD/xVdWHhDrOVJLQHJQVVNTg/Ly8oDt5eXlqK2tjcmgiNaH2JoqW4wb3Ya6aZTXWmN+0/C6/0WR/ieYGDGjCrkT/1g5+LFgJRH9sjiOQ41A6ZNmqe65xiKkVaWatHytCvXxkQ9L/+uc6Q6qomn+K4QpYG2S3arUlYPbAwC+3F4ck+M3Nex7JK75rwSlym9RgZQqgmh+nKhs4P+7qtEOjgvv1CuXSOUBgLs8IJJTcGtDclB1xRVX4Oabb8b//vc/nDhxAidOnMAXX3yBmTNn4sorr4zHGIlWgDWCUmWIg/tfom8aaebYGVUY9QL3P5lBVawc/Bo9wUpDAoIqi93lo1bKMqoIEbgzVCoVmVXEgApB+h8QD6XKHRRcNqgd1Crgj6OVOHqmPiav0ZTUe4wqTCKMKsQqVRzHCe4dXqMKgPqxEURzorjSq1Q5XVzM0qr9kVIeQHiRHFS99tpruOiii3D99dejc+fO6Ny5M66//npMnjwZr7zySjzGSLQCeKUqRMpLPNL/En3TiKmlulYdtVFFrGxa2Zga7c64rZoxavzMDiQZVfi5n4XD26uKVvHl4HJxfFDF0v+itVRnnOFrqtxKVdtUI87t0QYAsHz7yZi8RlPCFieSRPWpYrWm4b8HVocLbG2IV6r49L/WcY1L7cVHEEpEmP4HxC8FMFblAa0NUUYVDKfTid9//x1PPPEEnnnmGRQWFgIAunfvjqSkpLgMkGgd8DVVIayRvel/sQuqEn3TEAZVLhcHtYzaI5/0P9b8NwqFiDn4PfrVHp80ICkOfiyw4Ti3kiTGtUwu/gGptD5V4pQqQNirin4w5FDVaOcn8Z086X+NdiccThe0Gvn25xa7k08jZEoVAFwxuD3WHzyNL7efwN0X9IBKFfjdai4OVlKa/zKlKlL6n1DJ8k//O11nTUjBe1NCxfZES8Bid/JGPWa9Bg02J6oa7OgYh56/sSoPaG1ICqo0Gg0uvPBC7N27F127dsVZZ50Vr3ERrYyISlUc0v8SfdNgQZWLA+psDqQadRGeEYjQqCLa9D/G5Pw85KWZ8JeXfwUAjO+djbemDxM9yRK+foPNEdegqsYvqJLy3v3dz8LBivjJAVAeFfXuAD3VqEW62evIV291Is0sP6hi6pdOo0Kq0fvzNal/Lky63ThypgHbj1cFtERoTpNqb1AlJv1PXPNfdu3rNWo+qM1K0kOtct+PztRZ+YWElobcXnwEoTSYSpWk16Bjphn7TtVG1aIlHMO7ZiI3zYhTIbJ5VHAvvkYqD2htSP51y8/Px+HDh+MxFqIVE0mpMohckZVCrGqKxGLUafj3Vy1Tshc2/2Xuf9EGVYBvWl2qSSdp1do3qIpvXZV/+p+Umiqvw6SIoIp6VUUFn6KXbIBeq+av+1prdKkqZwR26kI1KsmgxaT+bQEAr60p9Enxam4OVg2emioxSpXY5r98fztBzapWo+bVvpZqVkHF9kRLgrkTt88wId1To10Zp/Q/jVqFvwxqF/QxKeUBrQ3JQdWCBQtw//3349tvv0VJSQlqamp8/hGEHJpCqYpVTZEUoq2rYuluBqFSZYv+nDAFwH088YGK08X5fCaxCPDCwc4bmxxKU6rc4xRjVU1GFdHBHPpY3VOKR1WKtq7qdL3XTt2fjp40wx8LSjF72Q5c9+YmnPufn/HQ/3Y1q0k1a/4bD6XKX6Vt6WYVVGxPtCSYSUX7dBPSTe57YDRuwuFosDnwzQ53jaq/E2lumpEU3hBIDqqmTJmCnTt34rLLLkOHDh2QkZGBjIwMpKen+/SuIgix2J0uflITqaYqlkoV4K0pyk3zTX2J100jPUoHwKA1VTEIZCqFQZUM9YcRd6XKY6fOgh5ZRhUigqoc3qiiZU424w0LqjL5oMp93UfrVCVUwISs3F2Cl345FLD/qRpr2EJuJU6qG+OgVIW69vmgqoUqslRsT7QkiqvcduodMsz8XCJeRhUv/HwQJ6st6JBhwua5E/iFsaeuGoAND55PAVUIJNVUAcDq1avjMQ6iFSOcEETr/ienGH1yfh7G9c5Bn0dWAgDevGkIzu/TNi6ydvRKlTD9z70tFupQheDGLCVQ8X/thjjZuzJYTVXbVCOOnmmQlf5nDGHbL4QFbWImm83FACGRVPDBjzuoSja4f2qitVU/7bFTbyNQqsKleIlFKZNqjuPQ4LlOzWL6VIlVqmzBMwG8imzLDKqo2J5oSRQL0v9YMBWP9L8DpbV4e30RAGD+Zf2RbNQiM0mPWosD3bOTW/3vWzgkB1Vjx46NxziIVozQDlgfwhnMIML9L5pidGFgN6ZXdtxuGiyokru61BjMqCIG6pBcpcr/teOtVFULgipAmvuff/PTcLDj11odqLc6kGQIfqtsTgYIieSMJ02PKVUsqIq2AfAZPqjyKlWRUrzEoJRJtcXuAutKICb9T6xS1cD3vmpd6X+sbvZUtSVo0E3F9kRz4oQg/Y8RK6MKfnGwxoJX1xbC4eJwYb+2uKCvu1Y1VincLR3JQRWjoaEBx44dg83m+4GSIyAhFYtnQqDXqEPajOs17slAqKAqWocnNuHWqlUhA7tYkMbyoOUqVQ6v2hIr9z8AqGiIUfpfnGuqmFFFW89k0OZ0ibbpZudOjFFFskGLJL0G9TYnymqt6BokqCJXsdB4a6rcn1OyMTZKlX+PKiC6gEBpk2rW+BcQF/xLrqnyO2Y2U2RbqFEFq5udtXRbyH2o2J5oLjD3v/YZJtR7Fqjkml4JCbY4CABje2fz/80WxvzNoghfJM8ey8vLcckllyAlJQX9+/fH4MGDff4RhFSsvCtb6MsxXPpfLBye6gUrucF63MSKaNP/hEqVLoY1VVWCoEpK3yv/AKzRFu/0P9+aKsAblEeCpUCJmawKXyNYXRW5ioXHP/0vhSlVUf4gn64PrKmSqzIp0cFKqKaKGZPUmir/Oi2vUtUygyrAWzfL7r2MDLOuVS98EM0Lu9PF/xZ1yDDxrSqqZM4lGKHcUQHg/77czbujsrpYUqrCIzmouueee1BVVYXNmzfDZDJh5cqVeO+999CzZ098/fXX8Rgj0cLhHe3CNGVlkweni4PDL7CKhcMTm8wkiUi5iYZYuf+ZdBroY2ipXlHvHY8Utamp0v+yU7yTarFBpTWEA1oowplVxOKac7o4bCw842P/3VKoCDCq8ChVMUr/E7r/iWmNkG7WITc1MWY00VAvwaQCkKBUCRZjhHiNKlpm+h9jcn4erjq7vc+2q4d2UNRnL6Ql3xsIeZyqtsDFuReY2yQZBJbq8tP/xNSjssXBWN3DWzqSZ5C//PILvvrqKwwdOhRqtRqdO3fGxIkTkZqaioULF+Liiy+OxziJFoxVkNIWCr3AFdDml+4VC4cnJqWLnczIxev+J+9G6OP+F6+aqmiMKhLUpyrNrINRp4bF7hI93kYJRhVAeLOKaK+5ll6LFVBTFaN8fJb+1ybJG1QLU7xUgM8EgQVa/7lyACb2y8VTK/fijXVFGNwxHZ/PGqUYhYrBN/4VYVIBSOhTFaKdALvGy2utcLm4kOnXLYH9pbUAgMGd0rH9WBUKTsa/BYwcE5uWfm8g5HG80u381z7dBLVa5Z1LRJH+J2VxMJVXqij9LxySlar6+nrk5OQAADIyMlBeXg4AGDBgALZtC523TBCh8CpVIoMqvwlELByeGiSqGHKJlfufIYbufxzH+dRUWR0uuESujPqvkMciwAsHH1SZdPwEUYxSZXe64PC8p1ik/0VzzTW3ZrRScbk43pGKGUokG6K3VOc4jg/W/PtUiWmNoFGrcFaHdACATqtWXEAFAA2sR5VO3HqnV6mKFFQFv7+xz8fh4qJa8VY6HMfxQdQ1QzsCAHadqAbHxU8BWrm7BOc99Quue3MT3zftvKd+Cfv9bun3BsKLVDWy2M+kIkOQ/if3OpayOMibDVH6X1gkK1W9e/fG/v370aVLFwwcOBCvv/46unTpgtdeew15ebSKQkjHq1SFnuxq1SqoVADHBQZVsXB4ag7pfxzHBVWqoq2parA5A86pxeEU5T6WaKWKrcqlGnWe68UuKqgUnqNw15kQlhpVGqTehF1zoVb5Ql1zkWqxVHCnW0zsl6vISb8Yqhvt/ASB/fDHwqiixuKA3ek+bmZSYPPfyfl5mNgvN6wywFwc6xWawsJc+sQqVexatkb4DoTqU6XXqpGZpEdFvQ1ltdaA/l8thdIaKyob7NCoVbhkYDs8+tUe1FgcOFbRgM5ZSTF/PTkmNq3h3kC4kaNGMpOKDhnuoIrNJZwuDrVWB68kSUHK4uApz1gpqAqPZKVq9uzZKClxr5bMmzcP33//PTp16oT//ve/ePLJJ2M+QKLlI0apUqm8rnz+qS4s/Sfo8zz/H6kYnU2y4q5URdGwz+rw2i0bBc1/7U4O9gj9u8LB6l+ErodigyNm/sD/bY/fDdfl+fEAgFSTlp8gilHHhIFXuOtMSDilSu41F4taLKXDnP9SjFpeYU5l6X9W+akjrJ4qxaANGRhr1CqM7J6Fvwxqj5HdswLOf7Lig6rghhKhkGqpHuy8NTezCjn1RgUl1QCA7tlJSDZo0TcvBQDw54nquIxPjolNa7g3EPLVSH+lyqjT8KnsclMAxdSj5nkWB8moQhySg6obbrgBM2bMAAAMGTIER48exdatW3H8+HFcc801sR4f0QoQo1QB4R0AWfpPhtl3tUZsMTqbdCeJXCGWSzRKla/a4rVU939MKiztJytZz0/SpNYpMeKpVNXZHHxQ6VWqxLn/We2s+alatLujt6Yq+ERncn4eRvdsE7A93DUXi/o/pROsl1Qsmv/yNu3JgSqVWJgSrdRia29QJS39z+Z0hQ0ueOfLIMFaTpjFA6UhJ6UOAPaWuOup+uWlAgAGdEgDAOwqjn1QJTc4ag33htZONK6xJwSNfxl8CqDMoErK4qC3TxXVVIVDclB1+PBhn7/NZjPOPvtstGkTOLkgCDFYRShVwsdD9aqanJ+Hhy7qw/999wU9sOHB80UV99ZbWXpMYtL/ai0OyY5OTNHTqlXQadTQqAC2EB9NXRVTqjLMen6FXGyQ5r8fO4/xgK3GGbRqGHUafoIoRakSW08FAG159z9ryJz1cr/V/Y9uHRH2motF/Z/S8Xf+A2LT/Nfr/Cc/RY0P7hQbVEkzzDGEqTUVEspSHfAqVf7XstKIpt6I1VP1ZUFVe09QFQelSm5w1BruDa2daNRIvkeVoPEvm09EUw/JFqRNfgZO/ouDsTIbaulIDqp69OiBTp064cYbb8Tbb7+NQ4cOxWNcRCtCrFLFLNfDpboIv/Ad0s2ic88bJU5m5CLslVIjUa3yDwxUKu9/W2zy0//YKldGktf8QazixCZr7H3FM/2PmVSkel6LpT6ICQBD1ZSEg01eGu3OoMFArcXOO4ox+rdPC3vNSUm3aK6cCRZUxaCm6nSQxr9SYUq0xe4KaM2gBKQqVcKgKtz3wOt8GSb9T8FKVbR94faWuIOqfu1YUJUOANhdXC3alEcscoOj1nBvaO3IDbhdLg4l1Z6aqkwzv505AEbbq2pyfh5GdssCAFw7rCM+vu2cgMXBWKRwtwYkB1XHjx/HwoULYTKZ8PTTT6NXr17o0KEDpk2bhrfeeiseYyRaOGJqqgBB+l+YoEoYqNRLaEQr1cpYLjqNGkmewE1qCiDfa0YQ+LFJUqyUKnZsscdjY2IT3Xim/7HGvyyAM0l476H69ITDpNfwPyTBJpw7jleB44COmSb+2oyUGhGL+j+lcyZI8JNiiD4fnz9uNEqV0Rus1MfZVEUOUvtUaTVqaD3XSrjFJmFTYX+aQ01VNCv8DTYHis7UA/AqVT3bJkOvVaPW6sDRioaYjlVucBTu3sBo7veG1o7cgLus1gq7k4NGrUJbQY9Glv5XHQPnzhrPvXlsr+yg9ahUUyUOyUFV+/btMW3aNLzxxhvYv38/9u/fjwkTJuDTTz/F3/72t3iMkYgRSm0oKLqmShM5qBKu2EiZ4LMJllgr42iQW1cVLIWNSfbRBFUsdSAzSS8pUBHux1SJeFqqs/PFAh2xjU8Bb92VlKAKEJpVBE44fz9SCQAY0inDu4on4geHpVuwVDSGEpvRyqEiiO05y8dvtDtlK0TMTr1NFDVVBq0GOo17sqBEswpmqZ4kQTEX8z0Il/7aHGqqoqk32neqFhznDh5ZnZ9Oo+brq/48URWzcQLRLZywe4N/L71kgzYm9walzgFaCyzgDkWogPuEp0dVbqrRp0entwFw9OoR+30VZtMISRFkG8SzFUFzR/IMsqGhARs2bMCaNWuwZs0abN++HX369MFdd92FcePGxWGIRCxQckNByUqVM/TkQRioSKmbYOl/8TaqANzpayerLZIleyufwuM9T0YJDnihCFpTJdGoIjMRSpVf+p88pUraOlLbVCMOltUFnXBuO+YJqjpnYOeJapyus4lexZucn4ffCs/g/Y1HAQDP/nUgLh/UvkWsQnvT/7wrqkmCALLe6kSaWfJ6XlAFTA5JBi2qGuzKDKqYoiShtYNBq0adVaRSFSRYY7WDSlaqoqk38q+nYpzVIQ07jldh14lq/GVQ++gHKYAFR/d9utNHEc0V8Zs7OT8PXX46iH2napHfLhW7T9agX15K1L/TSp4DtBY0ahVuPKcznv5hf8Bj4QJuvp5KYFIBAGmm6IwqhPBBlTl4UMUWAR0uDha7K+5Oyc0Vyb9s6enpuPHGG2GxWPDQQw/h5MmT2L59O5577jn85S9/iccYiShRekNBye5/YSYPwqCqQcKkqT7MpCPW8J3QY6FUSTSWCIZQqTLKrKliqkR80/+8PaoAwXsX8Zp8TZXEzzdHYFYhxOnisP1YFQDg7M5epUpKnZww6O+Vk9IiAirAG6QLgx+9Vs0vmsjNyT8dA6MKQNkOgA0yFnekKFXBa6o8Lpe1oQ1Zmppo6o3866kY+e3j5wAIsL5pbfm/u7dJEmWc5HJxOOJJV7z3wl4AgB3Hq6O6xyt9DtBasDlc+GrHSQAIMIZok2wIqUYy578OfkGVt6Yq+vS/SEpVkl4LZpxLDoChkRxUTZkyBU6nE8uWLcOyZcvw2Wef4cCBA/EYmyy+++47jBgxAiaTCRkZGbj88subekhNSrQFvolAtFIVok+VEOGKjZSaiUaJ/WGiIdr0P+HEKKY1VXLS/2z+6X9xNKrwu+lLee9sQmLUyk3/852MHCitRZ3VgSS9Bn1yU7355hICBlYjBkir/1M63tonX0WJTx+RGczEwlIdULYDoFSjCkBcr6pw6X/ZnhoNm8Plc00qiWjqjQpKQitVALDnZE3MzSoY5XXexZjSWivErJucqrHAYndBq1ZhdM9stE01wOZ0YdvRSlljaA5zgNbC62sLsb+0FplJeqz75/n4+LZz0DMnGQBwz8SekRv/pvsGVRlR9L0UYrE7+ftHqKBKrVbx984aqqsKieSgavny5Th9+jRWrlyJkSNH4scff8To0aP5Wqum5IsvvsCNN96Im2++GTt37sSvv/6K66+/vknH1NQ0h4aCTKkyxECpqvGpqZKiVLEC8QTWVEksLmXBp1Bt4WuqolCIKuvd5yxThqU6m6xleVK9GuzOuK12sxt5qsm/pipyjQ4fkEoMmtvyRfy+36HfPROcwZ0y/Hp4iL/mhKt9Uq5VpRPM/Q+IvtA5WP8rOTAVSJnpf9JdSA0ilCpLmEUjo85ryFKq4B5ILKUu1eh7jzbp1CFX+J0uDvtP+faoYvTIToZRp0ad1WtkEWvKBAp3ndUhKsXycLl7LJ2yzNBp1Lwr28bDZ2SNoTnMAVoqwhq2z/84gf/+fBCAewEgO8WAkd2zcGF/t5rJMh+CURykRxUgTP+LTqliC7waQeAUDJYlosQFKaUgewY5YMAAOBwO2Gw2WCwW/PDDD/jkk0/w4YcfxnJ8onE4HJg9ezaeeeYZzJw5k9/er1/41a2WTnNoKChWqRKzIitUf6T0TEqkUpXOHHvkKlXaGCtVnhtyulknqfeT+3XdnwVTDzjO/flINYQQQ0D6nySlyuXzHLGEMqpgq8Znd84AAFlBlXC1L579vRKJy8V5m0kn+QY/0TQAdjhdfDF2tDVVyfzEQHnnvEHGfUiSUhXiuG1Tjaix1KGsxopebVNEv3aimZyfh02HK/Dub0fQKdOMYxUNMOo0uLBfbtD9j56pR4PNCaNOja5tknwe03rMKrYdc9dVdc9Ojvl4WRCl06hgd3I4VFbH31NCcfh0HQCgWxv3eEZ2z8LyHSexsVBeUNUc5gBKx+nisKWoAmW1FuSkuNNMI6VrB6thA4D+7VJx2cB2/N9DPL8hrEY3GMyoon262Wd7rCzVhSZQKlXo90UNgCMjOahavHgx1qxZgw0bNqC2thYDBw7EmDFjcPvtt2P06NHxGKMotm3bhuLiYqjVagwePBinTp3CoEGD8MwzzyA/Pz/k86xWK6xW74SppsadKmC322G3x//CYa8Rr9fKMov7iLPM2oS832CwlDGtOvx50HluYo224J8Nx3E+N5d6q/jPkK1aGyKMIRYk692ToMp6m6TXqre4J6sGrYp/noE5mVmkHYvBcRy/ypVqUEPvOV6dRdy5a/SctxSDNyCurrdAE+XENxiVDe7vabJeDbvdDjY/bBDxObNzp9dI+3zZ96e0utHneb8fca/qDmqfArvdjmTPYCrrraKPXyPIg69tFP+8aIj3/aaywcanESXrVT6vk+S57qvqLZJfnzWmVauAJJ0qqvGbPepuTUNizrkU2H1IL+E+ZNCGvwfYnS44PJ+JFq6g+2Qn63GwDCipqofdnhb0deJ97Yil2DPBvGFER/z3l0JUNtix7egZDOwQOO7dJ9wT1V5tk+FyOuDyi6P756Vg27Eq7DxeiYvzc2I6TqvdyU9Wz2qfhj+OVeHAqWoM7xz8/DIOeXrfdckywW63Y2gn9/47T1Shur5RcjZFU88BlHLdyOWHPaVYsGIfTgkW1nJTDfi/KX0wqX/bkM/5x7KdQVMu95yswXc7i/nn5ue5g+fD5fUoraoPUPg5juPT/3JTdD7nMUXv/u5XNcj7/WecqXUfP9WoC3sc5kpaWSf9Hi4VpV03YschOaj6+OOPMXbsWD6ISksLf4NIFIcPHwYAPPbYY1i8eDG6dOmCZ599FuPGjcOBAweQmRm8Yd7ChQsxf/78gO0//vgjzGZzkGfEh1WrVsXluC4OSNdrUGUDELTMl0O6Higv2IQVe+MyhIicKFEDUONAwW6sOL0r5H5lpe79du0uwIrKPQGPW5yA0+W9pEvKK7FixQpRY6is0wBQ4ffNv6Fkt8Q3IJHjp1QANNhfdBwrVhwV/bw/T7ifV15SjFWrjgMAzpSWAFBj5569WFFdIHksFgdgd7rP2eZ1v6C42H2O9x4sxArHwYjPP1PtPm9//rEFOpUGdk6FFT/+hMzoMrSCcvSk+7UO7d2FFWV/4mCp+3wcLS7BihXFYZ9bcMT9vkqOH8OKFUdEv2aFFQC0KKluxHffrYBKBdTYgOOVWqjAoWzvFqw4CJQcd4+l4MBhrHCKa4heUet+PwCwdccuJJX+KXpc0RKv+01pIwBoYdJw+PnHlT6P1Ve5P4NNf+yA+sR2Scctrncf16zl8MPK76MaY2WZexzbdu1BVkWcv+wSqaxxXxPbt25Eucivc02l+/1s+WM7VMcDp3HuMin3d3zNz6sQLCHAVuM+xvqtO6E/uSPs68Xr2hFLwVH3OTpdVIDuSSrstKrx1ne/4aKOge/922Pu95Vkqwr6W+A67f7ertt1BIO4wpiO84wFALTQqjikOSoAqPHL7wXIPBP+mtuy1z3mupOFWLHiEDgOyNBrUGkDXvt8FfqkS0uvVsocoKmvGznsPKPCOwfYF8Z77k7VWHDXsh24pZcLA7N8Pw8XB8zfpvEEVMHP9//9bwfsR5x8jV2OUYMyiwpvLf8Z+Rm+x6uzAxa7+/u7c+Ma7BF8f6ttAKBFVb2N/32Sw+4K9/cAtvqwc6ZGz33it63bwR1LTA2eUq6bhgZx/ewkB1Vbt26VPJhoeOihh/DUU0+F3Wfv3r1wudypDw8//DCuuuoqAMCSJUvQoUMHfPbZZyF7aM2dOxf33nsv/3dNTQ06duyICy+8EKmpqUGfE0vsdjtWrVqFiRMnQqcLXiAYLbouwVdNVJ7/XXDlwJArLongo1NbgapKDDt7EKacFdoZ6bev9mBreTG69uiFKeO7Bzx+sqoR2LKe/1tjNGPKFHHq6dw/fgbgxKQLxqFTZnyDaW7XKXxW9CdMaVmYMmWY6OftXXUQOF6EXt27YOLE7li1ahV6dO2E38pOoFPXHpgysafksRyraAC2boBJp8bll07ByTWH8VPxIeS274gpU/pHfP6CXWsAqw3njxmN9w7/jsoGO0aMGoOebWOfSvNy4W9AbR3GjhqOc7tnwbGzBMsO70JqRhtMmTI07HO3frsXKDmOvr16YMqEHqJf0+pwYf62n+DkVBg1fgIyzHr8WFAK/LETvdqm4KrLRgEAyjYexfcn9iMjpx2mTDkr4nFdLg73bPL+WHTu3htTxnUTPS65xPt+s/VIJbBjK3LSkjBlynk+j61u2IVdlSXo3LMPppzXVdJxfy08A/z5B9plpGDKlFFRjfGP7/Zhc/kxdOgi7zsTTx7e9gsAByaOHxuQrhaKb6t2YG9VGXr3y8eU4R0DHi+tsQBb10GjVuHSiy8Kmt6z64cD+H3DEWS074opU/oEfZ1E/FaJ4f+2u8/R5RNGo8uJKuxcXoASZGLKlBEB+375wTYApzFpeD9MGdEp4PGepXX48KXfUGLVYtLkC2PqwLn9WBWwfQvappkwcUR3/PLlHjiTIt+rntm7DoAFl40/B8O6uFPD1lp348vtJ+Fq0wNTLpR+zTblHEAp141UnC4OC59dByBYHZwKKgDfl5rxz2ljfK6bzUUVqNr0e5gjq1BlA7L7nYMRHrfKddbd+GLbSWhzAu9Ju4qrgd83IyfFgMsuudDnMavdiUf/+BkuqDDmgol83apULNuLgf170Cm3DaZMGRJyv1V1f6Kg6hS69e6HKaM6y3otsSjtumFZbJGQVVO1fv16vP766ygsLMTnn3+O9u3b44MPPkDXrl1x3nnnRT6ABO677z7MmDEj7D7dunVDSYnbElRYQ2UwGNCtWzccO3Ys5HMNBgMMhsBldZ1Ol9APMp6vd8mgDtBqNXjg8z99aj7E9MxIBDan+1afZNSHPQdGT2NeJ6cKul+d3XclocHmEnVOXS6Or2VINRvj/rlnJrtz6mssDkmvZfWcJ7PBe60kGXT8Y3LGXWtzHzMzyQCdTocko7TjsVqlFLMBZr0WlQ122EJ8PtHCapCykk3Q6XRI9hTpWh2RP2erg11j0r5nOp3bcKGi3oaKRidy0nTYccJ9cx3SJZM/VrrZfQ+pszlFHb+60Q6hn4fFIe/zk0u87jc1Vq/Fvv/x0zy1hI126e+12uI+bpsUQ9TjTjWxcYi7PyQKjuP42qe0JPH3IbOnVs3uQtDnODh3mqlJp4FeHzwtN89Tq3G63h7xdWN17cipU6lutPO/YV1yUpCZYgKWF+DP4mrU2riA1Kl9p9z1SfkdMoKOuXe7dJh0GjTYnDhRbUWPnNjVk1V4nBRzUo3olevO6Dlc3hD23FnsThR7anB65aXx+57bIxtfbj+JzUcqZZ17NgeYtXSbT2CVyDlAoudU0fJ74RmflD9/3AYfVmw/UYuR3bP47WcaxNWMnmnw/v4P65KFL7adxPYT1QHn6FStO+2sfYYp4DGdTgeTToNGuxP1diAzRd75rfPMA9KTwt9f2T28XuTcKhYo5boROwbJQRVz2Js2bRq2b9/O1yNVV1fjySefFJ1uJZbs7GxkZ2dH3G/IkCEwGAzYv38/H9jZ7XYcOXIEnTvHN6JuDkzOz8O6g+X4aLM7bezSge3w/DWDFNEbhzeqEOv+5wxekM3y1w1aNawOl2hHNYvDm2ifSEt1KT2NAEGvpSCW6nJ7mFTyduq+vZ/E9psSWjV7nxsfZyBv818t/5ruMUR2/7N4ivjlGGjkpBhQUW9DaY0VfXKBPzwmFUM6ZfD7sIbENSILeP0LfVuK+9/pusDGv4xkGWYe/seNtkcV4G1EXKswByurw8XXo0nppxbJqCJcjypGjsflsjzMJDKWyG1Ee7zCvXCWlaSHWa+FWa9Fn9wU7DtVi/UHy32a+FbU23DK0wqhT17wrBONWoX+7VLx+9FK/HmiOqZBFTOpyEkxoIfHBONUjQV1VkdIh7WjZxrAcW5DAKEhC5u07yquRq3FLkuRGN0zmw+odBoV3r9lhKhAtrUi1+BDTqNqZni083g1HE4XtBpvjl8x36MqeAZNulmHxmonKhts6Cgzy8bboyp8SBDNPby1INlSfcGCBXjttdfw5ptv+kRu5557LrZt2xbTwUkhNTUVd9xxB+bNm4cff/wR+/fvx6xZswAAU6dObbJxKYmTVd4vf5Jeo5ibKd/8N1KfqgiW6ixIaefp5dBgc4rqPyIMIKS6w8lBrmNPY5AGxVLd+vzhe1R5VqBMEoI0YQG8SafhA9Jo7N3DvRavJvo3/xUxVv7cyfh8hb2qLHYndhe7laqhXbxBlVT3P/9+QC3F/Y9dT22C9JJKNsi342V26tE6/7nHoUxLdeH3xizhOmXBkjXE94AFVeEWjHJCtA6IB9E0og3WBHVcb7fBxJr95T77sqa/nbPMYW2i49UEmNmp56QYkWbW8a0ADpfXhXwOe6xbdrJPmmb7dBM6ZZrhdHHYekSe9bnQzt3u5DCoY7pi5gBKRE5wBMhrVN0jOxkpRi0a7U7s87QAYDCTivZ+PaoYbJE2ml5V/j0gQ5HKt8VQhnmEEpEcVO3fvx9jxowJ2J6WloaqqqpYjEk2zzzzDK699lrceOONGDZsGI4ePYpffvkFGRkZkZ/cCmA/SIB38qMErCKVKoPHStzqCD55YDeVvDTvTU6M3XaD1TvhVifgR4bduBpsTthDqG7BYIqeb/NfT58quUpVg29PISmBkfA1jXo1H7CIVbmkIFT1WADDrOXFjJVdMya95Fse2qZ6Jpw1Fuw5WQ2b04U2yXqf2jupPzb+ilZLUaoqQvSoAryrnHIs1VlD4WDBmlTYOJQWyLJeeXqt2melOhKRlCqLiAWFHM/CQVmtNW595oDoG9Eya+kOgu/e2F7uTJZ1B8p9FtEKTrqDKv/+VP6wJsC7TsQ4qPIEqCxg7Z7trpErDBdUnXb3qOoepJ6O71cl11rdr4H5mfrEqJLNFTnBERC+UTU7ln+jarVahbM9mQ9/+DV5PhGiRxWDLYhGY6teLTKoiraBe2tA8gwjNzcXhw4Fultt2LAB3brFv9A6HDqdDosWLUJpaSlqamqwatUq9O8fudi+NcBxHP+DBETfgTuW8EqVTpxSFWrywG4MbVONvKuOmNXoBrt7H9YUNN4IUzek9KoKlsYjJQUuGP5KlZS+V2yyplYBeo06rkoVq6dKNmj5CScLkCwhgmwhbEzCHl9iYUrVqRoLfj/i6U/VKcNnJZkFVf4KVCj8Uz/r43DOmoJQjX8B8E1ba63S7z1sAhiT9D+9MicG7BpNkpiCHCkFWEzjazbxb7A543peom1EG0ypGtolA8kGLc7U23zUJqZU9Y0QVA3wKFV7TtaEDObkwKf/eRZluue4UwAPlYVTqtxBVbfswKBqVI/omgCX1/kGUazpOxEcOcERgzWq9n8oN80YslE161cVGFR5FhJCKFV85ksUDYDZPCTdFH7RSk4/xtaG5KDqtttuw+zZs7F582aoVCqcPHkSH374Ie6//34+3Y5QHmfqbbzSAXgVCiXgbf4boaZKEz79T7jawiZOYiarbMVaSh1DNGjUKn6CKSW4bQxXUyVzUs4aqvqn/0lRqkw6DVQqFd8/JR6qS42gOSHDKGOs4SaWocgRNADm66k6+6rf7Mem0S5Ofazx+1FqUNgEXy4sTa9NkOAnmua/fE1VTNL/mFKlrHNezzf+lVbqLLamyhRm0SrJoOWDuWVbjmNj4ZmYBhiMaBvR8hNMQX2JTqPGuZ6AY+0BbwpgQYk4papbdjLMenexfzgVSSrC9D8AfHPhwrL6kM9hjX+7tgl0T2VK1Z6TNaiWsSha5lcvR0pVZFhwZPArTQgXHDEGd8qAi3MHYM9cfRY+vu0cbHjw/JDPCaVUsfS/DiGUKm9QJT9I5ntVRlCqWAo3pf+FRnJQ9dBDD+H666/HBRdcgLq6OowZMwa33nor/va3v+Ef//hHPMZIxABh6h/gnUwrAalKVaigisnf6WYdzBLqJtik3KyTZYYpizTPjVCKUsUbVQhS2EzRpv/xyoJ7PGxCJ+Z4/GTNMxljSlWDzLGEg+/4LrjpswDQ6nBFrJ1j506WUuVZxS+tsfBd74X1VIA3pQwQFzSwHyUWJLYUpSps+l8UBhExVaoUGlSxwFqqWU4kpapBRPrfyt0lvJnLEyv24ro3N+G8p34JW98kB7l1Kgz2O9bRb4LprasqA+D+TWGKUN924YMqjVqF/HZuterPGKYAMqUq23P/6OFRqkIFbhzHhVWqclKN6JadBI4DNhdJV6uENVWAshZWlczk/Dz0zvUamJh0aqx7YHxEx0R2LfVqm4KpQztiZPessDVsAzumQa1yB1GlnlTNGovX7TJU+l86S/+LYk4nNf2PlKrQSA6qVCoVHn74YVRUVGD37t3YtGkTysvL8fjjj6OxsTHyAYgmga3wsWLHqgZbXHPnxeJ0cbB7rMIjKlUi3f+ESpWY+h6mrJgTlP4HyHMADBYYSEnXC0ZFA3P/8yhVevFBGp9Sp/MNquKT/hckqBJMPiOlADI1VI4aydL/9pXU4nSdDXqNGv3b+TY912m8NWVifnBYmmBeGjNVaRk/UuHS/5RSU8WCKqWl/zXwSpW0azRiTZU9vBLPjCP8lSkxxhFSkVunAriDDub+5++ENq63u65qx/EqVDXYcLC0Dg4XhzSTDu3SIgdyzKxid4zMKhxOF78QwKf/eQKlI2fq4QjyG1ZRb+N/w0L1KOPrqmSkAJb7BVXsO0VE5rTg3DXaXThaEbkR7K4TVQCAAR3Swu/oIcWoQ+9c9wLANo9axZz/Msy6kAp2uikW6X/ue6HooEph904lIb1q24Ner0e/fv0wfPhw6HQ6LF68GF27SmvoSCQOtsKX3979pXW4OEVMKoSmE5GUKoNI9780k0CpEjFZlTuZiQbesadR/I0wWAqblHS9YPBKlX9NlcT0PwAwSQhkpcKCkFRBPZowuLREqCnjA9II11gwWFDFgvn89qlB7amZ1bsYW3W2T65nwqc00wQ5uFwcr1RlBQl+UmS6/zXYHPw1FQulKlkQVClhYYnB7lWS0/8i1VT5LX4IidY4QirR1KlUNdh5Rdc/FSovzYTebVPg4oB1B08L6qlSgjY79oeZVfx6qBxf7SiOOv3xTL0NHOeuN83ytBdol2aCSaeB3cm5m677UeQxqWifbgppf8+s1eWYVbCUyhTP9U9KlTg4juPr0dii9M7jVRGf96cnQB8oMqgCgLM7pQPwpgBGMqkA5LsJMziO886dzOT+Fy2iZxhWqxVz587F0KFDMWrUKCxfvhwAsGTJEnTt2hXPPfcc5syZE69xElHCVjx65qTwwYkSClWFk+Foa6qY/J0uWNVpEDFZbZBZyxANrCBUSm58o82jtgQxqpDdp8pfqRKk1EWaVPivgJvj2KcqWHqCWq3i1ctIylqwejSxZPj90Az2/PD5wwxIRAVVjb5OlS1Bqaqx2PlrJphSxVY5G2zOoCv1oWAr6gatWrKJQzCYIY2LixyMJxLeqEKiYm4UfGeDHjeMpXq0xhFyYHUqbCGHEalOhU0ws1MMQYOOsR61as3+MkE9lbgJLbsPHiyrx+xlO6JOf2T1S22SDXyAqFar+LS+wvLAuqpwqX+MczxK1b5TtZIdfJlS1cuTylahgN//5kBlg53PprmgrzvN9E+PChUKjuP49L8BHdJFvxar1WVp5sW8SUXo/lNpJpb+Jy9Itthd/IJhesSaKi3/HCnOxa0J0UHVo48+ildffRVdunTBkSNHMHXqVNx+++147rnnsHjxYhw5cgQPPvhgPMdKRIG3wNfEmxIoYaWKKVU6jSpizwyDTpz7nzv9T3xNFZ/+l0CliqWxVYt0iwNCNP+VkK7nj8vF8bV1Xkt1b2AZKVBjQZ5/+l9clCq/xr8MMUodx3FBz50YVu4uwbhFa3y2fbGtOOhkS0q+ub9SJbanmpJhqX8pBm3QBZIkQa8gKcrcaYH5hRjVIRJJgmtcCWo9g6kwJplGFZHc/4Jd+9EaR8hlcn4eFlye77Pth3vGhG/8K/gNC8Y4gbX6npNepSoSK3eX4N/fFARsjyb9kbdTT/VVVnmziiB1VYUek4puIVL/APd3oGeO+/GXfjkoSVFjQVVvPqgiowoxsPqmDLMOQ7u401J3RKi9K65qREW9DVq1Cn1yI1+DDBZU7S6ugcXu9PaoCqNUZURpVMGyZbRqVcQ5kLB2mOqqgiM6qPrss8/w/vvv4/PPP8ePP/4Ip9MJh8OBnTt34tprr4VGk7gJKSGdE4Ku3EyVUEJQJdb5DwD0nmtMlPsfK0ZvQel/3hS2YJbqTsmpTLUWB/+DzFIIhC5HUtUfUzyDKt79z3clTYxSZ3O6wOYdkXqhCQnVpLSqwR50spXCp0aIr6lql+b9sYyHwUci4U0qQtQ96bVq/vqSYqvOlKpgKYVyUKtVkhZdEkWj514l31Jdep+qaI0josHq9L3ej5wJ7YoHeBcGO2YEX7Uf2iUTZp0ap+ts2OpR1npHmNDGK/2Rt1P3O28sqApmq+5VqgKd/xgrd5eguMp9P3rn1yOiFTW708UvevT1nBMlZKo0B9hn2TbVyKfy7T1ZE3IeAnh7nvXOTQmZyhmMTplmtEnWw+Z0Yc/J6oiNfwGBUYXM9D/hvCnSopWwdlhObWxrQHRQdeLECQwZMgQAkJ+fD4PBgDlz5sRk5ZCIL+4eVV5bzmhXNmKJWOc/ILxRhcvF8av/aSa9RKOKJkj/k+j+Z3e64PD8sAezVOe40ApeKJhJRZJewwe1arXK21A4wrnzD6riaVQRyp1ITPNji817XsQqVeEmWwz/yRZz8hNjPsKCiuwUA9/LpLnbqjM79WCpfww5zSNZwX8wm3a5KNGswqtUyTWqCO/+F6ydQDTGEdHif28+UBrezjxYjyohv+wrhSdLi//e3v7+72EDjnilP3rt1H2v2XAOgKymKpRJBVvk8T9vYhQ1tjChUav4wI4s1cXBmiZnpxjQKdOMdLMONqcL+07VhHwOq6c6S0LqH+A2ghvssVbfdrRKWk1Vg01WtgMrQYhkUsFg93Axae6tEdFBldPphF7v/bHUarVITg69okIoh4p6GxrtTqhUQF66UVHpf5KUqjBGFbUWB5hQ42NUodD0P6nuf8KgwSiwVDcKlCWpdVX+9VQMofoVDovfJNCki2OfKs+qmH8fjUh20oDXGVCtcqeZikHOZEuOUpVq0krqqaZk2Eo4K8wPhpRzxIhljyqGEntVeZv/SlvciaRUhUv/i8Y4Ilr8F18OltaG3T+U8x/gDTj8F5ZKa6xhA454pT/y6X9+QVV3T+peYVmdT2aBw+nC0TOha6qiVdTYeNok63mzFyW1VVEyQtVRpVLxgVI4swpWc3WWBJMKhrAJcHGEhQTAO5dwcUCdjN/eYO1KwpFMtuphEX335jgOM2bMgMHg/kJaLBbccccdSEryvQH873//i+0Iiahhqx1tU4wwaDX8yoYSbqpWzw++f3O9YDCjimCKDLsxmHQa6LVqxStVfPqfyM+ABTBqlfs8ODznQKtRQ69Rw+Z0odHuRLqEMVSGsL8267WobLCLVqoSUlMVpPkv4A3owo21UZD+JFZZlzPZSuV/bMS7/6Ua3QsAtVaHoib4cqgQEfzIaQDsTf+LvVIlJj04UbDPX75SFcFSPYRKy4wj/m/5bj6ABdz1fvMu7RexH49c2H1Cp1HB7uRwIEJQxfeoyvSdYEYKOFRwBxwT++UGBIfxSn/ke1Sl+j6vS1YSVCr3ItHpOhvfw+pEZSPsTg4GrdonJZghZZGHOQT6jEfQiDgjif3+2+B0cXEJmFsSTKli9XGDOqRh3YFy7DxRjRuD7O9jUtFeflC1uegMP0cLZ1Rh1Glg0rmbV1fV2wNS5CMhtkcVI4UcAMMiehY5ffp0n79vuOGGmA+GiA/+aRMZ5ujcYmIJazgpptbFq1QFTqBZbRILGJlSJSa9pymUqnSTtPQ/tgptDBIYGHWeoEpiMMNqYDL8XLjEpNQJHw9I/4tDbVBNiBu/GFXN4vAN/sQgZ7Il1qhCaGGbyvdUs8YlGE0kZyLUVAHyGgB70/9ip1Qxhz0lrbaymjq5NVXWSEYVYY47OT8PZ3VIx6j//AIVgA9vHYER3cI3K40Wdr33yU3FruLqsOl/vinsvhPMaAIOlv54qtoSNChTwR1cSk1/9KobvgsBRp0GHTPMOFbRgENldXxQJUz9Uwc559EqaswSPDvFwN/vOc79+xMuXZcQ1FR5PquBHdMBhFaqjp5pQK3FAb1WjV5txZtUMAa0T4NWreIDqmSDNsCgyZ90sw6N1U5UNdrQCaEDsGCwOUh6BDt1RiopVWERHVQtWbIknuMg4sgJP9ck9uWRaskaD6QoVYYwNVX+qy1epUq8UYWcxrBySZUYVIVL4THpNaixOCQHMyz9z/9HVYz6I3ycNQw2x7NPVZDmv4A4o4pwfXpCIWeyxcYWKde83ubkjTOYUuXe3rx/pLzpf2GCKhkNgGNtVAEI0/+UE8iymjrJfaoiKFWNYYwqhLD7AAegf7u0uCsYzJjjrA5p2FXsLsqvtzp8XCIZZwQp7O3SfRc8ogk4WPrjrKXbAh6LJv2xvCZ4+h/grqs6VtGAwvI6PshjNVah7NSjVdSENV46jRqpRi1qLA5U1FspqIoAHyB7VEeW/neovA51Vgd/L2Gweqq+ean8QrAUjDoN+rVL5dWuDLMOLg4Il7mebtajpNoiq05eulKlvHpUJSG7+S/RfPBf4WM3UWUYVTAFRnxQZXW4Apzu/POCkyRMmhpk1jJEg9f9T1pQFSwwkNurivUp8VeqRNdUJciowq3sRKqpCm3SwR6TEjQLa038f8tCTbbEKlUsbULrMQWR0lNNyTCL5nDBTwpvECH+3sMs1cPVaklFiTVVfBqyzD5VNmfw3nKNIq9/lkYEJKbelr3fdukm3oQkmCseEJjCLiTagIOlP+b62Z9H6psVCmGz2JzUwNfszveq8r7Xwx6lqlub4HXq0RqKlNf5BnkslZZ6VUXGvz4uO8WA9ukmcJzX5U/ILk89lZSmv0JW7i7x+R4cr2yM6PDIMl/kfG+lBlV8tgGl/wWFgqpWgL9SpSyjCqZUiU//4zjwTngMvvEvr1SJb0TbJOl/HrXQ5nCJCoYaw6hpbFLVaJPm/uetqfJTfzyTfPk1VQ7J9u7hEDYnDHT/E5H+x49T2u2On2yl+U6MQk22Ugzics2FAaJKJbD3bu5KVR27nsIZVUhPHeEVsJim/ylvtVVuawehyh/MxEdKjzbeGVamPbMUWLqjWa9Br7buYCJUXZX/b5iQWDgYTs7Pw68PXcB/F5+5+ixsePB8WfVkwmax2UHqAL29qrwW8oc9AVYo5z85izxCmFLF0g0z+GwVcgAMB8dxPvVojIEd3QHTziBNgHdGUU8l1+FRqpuwEPk1Vcq5dyoJCqpaAf5KVbqiLNXFK1X6MJMH/xuDWYZSlcigKtmg5X8AxdwILWGs500ya5mYpXp6gFIlsqbK3/3P8/8uGfbu4WDpdGpVYL0JSz0Ma1Qhs/Ev4J5sbXjwfHx82zl44dpB+Pi2c0JOtsQGDF6TCvf+7Fpt9pbqEtL/xP4gu1wcn6YcS0t1ZSpV0aX/AcHVanZcMemv6QlccLPYhEGVu/bkYAil6nhFaBe0aAMO4XHaefoB5aWZZKc/MmUjw6wLmv7F26oL3iurqQqV/gdIX+TxHRMLqtzPZQsfpFSFp6bRwf+WCRs5sxTAP/2CKqeLwx6ZdurRODzyvaqiSP8T6/7ntVRXzr1TSVBQ1cLx71EFNGOlShM6qPI3MpCkVFkT7/6nUqn4SbWYG2G4Bp5i0/X8CeX+xx8vglLFTEa86X/e8xfLuirhTd/fpENM6mOwpslS0KhVGNk9C38Z1B4ju4cu3hdbU1Xjn6rKK1XNN/2P4zj+egqnKCV71DyxClF1o52fRPinqUaDEt3/5C7uaDVqaD3XZLDFjHAqtz/MGS4RJkYNglrHnh6lKpStOt/4NzN4EX40AYcQNnGWaqEuJJiyIYQpVcVVjWiwOVBndaDU85xwjX8B7yLP+7cM47d9dee5Ed9fOV8X5H5/mUny08VaE+w6SDVqfX4/BvK26r7pf0Wn61Bvc8Kk0/BpnmKJpmea19E5/ul/TKlSksqvJBI3iySaBP8eVYB3ctJgc8Jid8qebMYCKUqVVqOGWuVWQvzNKvj0P+b+p2fpPWKUKnlWxtGSbtajssEuSqkSVVMlcVLO96nyV6pY+p/YPlWe19eoVdBr1bA5XGiwOWJWAB3K+Q8Ql/4X7tzFErEreEI7dUBo8NF8f6RqGh18Sm64z12qUQVz/kszBV/1l0uSQXoaYrypl2lUAbiv7TqrI+jiAl9TKEWpSoCC4U3/0yLPYyMeygEwUuNfwB1wTOyXiy1FFSirtSAnxZ3yJ0VxYoEQU3bkUOYXwPiTkaRHZpIeFfU2HC6v5/srtknWi5rYatQqjOmVg7apBpTWWHGy2hK0dovBcRwfVLF0RKZUnamjoCoc/iYVjAEd0qBSuQPj8lorn1bJzCXy26dCq5F2v4rGcIV3E5ajVPmVTkQiRULrkNaIqLv3119/LfqAl112mezBELGH/RjlpBh4NSjFqOWDk6oGO3LTmjCokqBUAe4UQIvdFTH9j6X3iJmoskl3ksQC8WiR4gAYLoXNKDP9j1m2hlSqRFqqGwXBqFmvgc0h3d49HP5BiBBRzX8lTCqjga3gsTq5UEGcsPEvoEwnOqmw4CfZoA37XebteEUaVZyOg/MfACRLaA6eKBrt8pQqwL0oVWcNVKocTm89oqSaqgQoGI2CWlZWUxXKAfA4X1MV3i6aqcpyYZPj8qiCKovPsYLRPTsJFfU2H7OKUPVUoeiYYUZpjRUnKhswyGPzHYzqRjt/DbAxkVIljlBNnJMNWvTITsbBsjr8eaIKF/RtCwCC/lTpkl8rGsMVvk1ONDVVIi3VUxS4IKUkRAVVl19+uaiDqVQqOJ3Nd2LQEgnW20OtViHDrMeZehsqG2wBKROJRIpSBbhTAC12V8DkwT8vmDloNdiccLm4oL0/APcEmBUVm3WJFW7TJARVwj5V/shJ/3O6OH7ilBFgVBG5Tkn4esLJmlmnQRXscUr/C/x8vO89nPufPKMKqaQYtFCp3EYqtRZHyKCKrfAxYwuzAif4UjkTIpXUH6nNf9lKepsYOv+5x+E+90oJZIX3ITkupCyQ9V9csAjuk6LS//jU8AQoVYK0xHSzHtkpBpTXWnGwrM4nSOA4DsWs8W+EoCpa2OQ5KqUqQvof4K6r2nqkEoVldXxKcyjnv1B0zDTj96OVfL1ZKFiAKExhY5/zGQW0VVEyLC2zbRAlcGDHdBwsq8PO48KgqgqAu02AVKLpmZYmM/2P4zhq/htjRM0yXC6XqH8UUCmPUK5J0eTgxhIpNVWAt0mw1a8BcBXfwM79YyGcmIRNDRNM/hOd/sfbqov4DMI5eImtgRJS02jneyWFtFQX2adKGDyY9N5gNlYwZSfYTV9MTy0p7mfRoFarkKyPnBrB0gNZkJgUx/5eiUJsLympzX/PiLBpl0OShObgiSDa+5DBs2DgH1Sx46pU4noBJtKootGvhiyUA2B5nRVWhwtqFeK+AMiUnLIa+TVV5SEa/woROgAeFmFSEQz2m85UvFAES2Fj36dKCqrCIuzv5Q/fBNijTjmcLuw5WQPAnR4olWgMV+Sm/zXYnHzatuQ+VaRUBYWMKlo4oXLRM6Jwi4klcpQqILJRhVGnBvM0CFeMzh7TaVQxrdkQA0uF2lpUgY2FZ4K6+jDCFZuzbVL6VDHnvxSjFjq/3G/RNVXBlCr+ubG74fLGDkHS/+LV/FcuYhwA/d+PuQVYqleIcP4DpNdUxS/9T1lGFdHeh9iilL+CL/yO+pu8BCNdgnoeLbwxhydDoGeO2wHQv1cVU2JyU41xv0czdSkW6X+haqoAYVBVF9FOPRRMtWO/8aEIFuSx3/8KCqrCEi6Vk/Wh2nmiChzH4WBZHawOF1IMWnTNkvZZMuQarqTLTP9j33OdRiV60VFOW4zWhKx8p/r6eqxduxbHjh2Dzeb7pbz77rtjMjAiNpwIkYueyBXJcEhWqrTBgyp/Cdvd/0eLOqvD7e6XEvx4DWFc9eLJyt0l+GpHMQDgh4JS/FBQirw0I+Zd2i/ojTOc2YIYswZ/Qjn/AdJrqkxxVqrCWb4aQ6zQBxtnYoIqHVBtCR9UWXzfTxJvqd6clSr3xC1S+l+KRPe/M3Fo/AsIm4MrY2Lgdf6Tl4Ic6nsg9f6WkaBaG5eL894/PPeMniGUKv43LITzXyyJTU2VuPQ/wN30lzk3RnL+86dDpnuh9ERFJKUqMDDI4i3VKagKRyijCgDok5sKvUaNqgY7jlU08Kl/+e3TQpYbiEGO4YqwFjJcuYM/bFE9LYizbij4hTGbQ9JrtRYk38G3b9+OKVOmoKGhAfX19cjMzMTp06dhNpuRk5NDQZXCCK1UKaNXlWSligVVAvc/u9PFT9KEDjZmvdsRK9wEjqkY/oXR8YQ1+PPXpViDv2ArUuHqguSk/7EfU/8eVYC3pipcoMJxnMCowjumpHik/1mic/8LV48Wa1hKXzhbdX+jipagVHkb9IYPftgqZ4PNCYfTFdEhi6+pipNSpZT0v2gbkLPFJn+lSuqCQqLc/yyC9G1v+p+nV5WfA6AY579YwdSlWqsDjTan5FRM32axob8L7dJNMGjVsDpcsMGd+tVJYtAoVKrCTW6DjYcFz412p6z32VoIl8qp16rRr10qdhyvws4T1bxJhZx6Kn+kGq6wBToX5752xabySa2nArwZFhznDqyCZZC0ZiRr6XPmzMGll16KyspKmEwmbNq0CUePHsWQIUOwaNGieIyRkIlvjyrfG3ZGkjLkf6lKlT6IUlUjkLyFaobXATD0hLs+wXbqchv8hXX/E9msVwgLpjODOP6w1wh33qwOF28FHDT9Lw41VSxdUogYVc2bAhX/9E4xRbz+RhVJIq5TpSM2/U+4eCHGJMJbUxUfpcpid8HhjF2jarlE24A8lAumlB5VgDAtPL6/C8JrnX2He3nS/4qrGn2C3VDZFvEgxaDl76dyelXVWR38vShc+p9GrfJJ9+uUaZac2piXZoRGrYLN6UJ5XWhljT0mVM6SDVo+lb6CHABDUuqprQtmVAEIUgCPV2GXp+mvnHqqaDHqNPz3SEpdlZygyqBVQ6dxB/BUVxWI5FnGjh07cN9990GtVkOj0cBqtaJjx454+umn8a9//SseYyRkwnpUAUC7dN+bglIaALOVVUMUNVXsxpBi0PpI5LyrWhgFgFeqEtT4V26DP4s99ORITF2RPxW8818wpSpyYCR8rXgbVYRL/+PrycQYVSQgcBZVU8UbVfjVVClENZFDhUj3P71WzasqYmzVeQOMGPU8YwjbJyjBAdCrVMm7D4VSqqSatLAMhnqbMyDFOpZ46xzVvMKSZtbxioCwCfAJ3vkv/kqVSqWKqq6KpYslG7QRP0thc9h0ky5sTW0wtBo18jy1N8fDpAAypUqY/qdSqXi1qoJ6VQWlzurgf8dCqY7MrOL3IxXYW+I2qThLhp16LOCzjxrFf57hekCGQqVSCRYPm+9vVryQHFTpdDqo1e6n5eTk4NixYwCAtLQ0HD9+PLajI6KC/Ri1TTUEKEFKSf+TrVQJVperQvRZ4Juqhpk0JVqpktvgL5zZAu+AJ6emKlj6nxjzB89jOo3Kx+jCzAdVMTSqsISrqfKMNcwEMLE1VZEbANf4WcS3BPe/0yJrqgCBe5SIIJIdN9ZKlUGr4Rdo6hSQdhk3pUrigkKqUQe2LhVPtSpUDRmrqzooMKtgAUMilCpA4AAoJ6gSkfoHuFPA1x44zf+9/XgVznvqF6zcXSLp9cQ4AIbqtcQaAJNSFRzmAJmk14QsDzirQzoAtwOg3ckhyaAJWMBOFGky2iHIUaoAgYsr2aoHIDmoGjx4MLZu3QoAGDt2LB599FF8+OGHuOeee5Cfnx/zARLyCZX6ByjHqEJqTRW/ImsPVKr8bwxJImpVop3MSEVug79wdUHGKGqqgipVIlLqQgV5cbFUD9P8V0w9WSKDKjbGmhAuTBzHBbwfoaLKcdJWq5UCu57aiAh+2CpnpNQRm8PFB6exrqkCvGqVEhRCtvAT85oqiUYVarWKv4/Gs1cVW3TxHxdzAGRKlcvFobgqcTVVgKBXlQxbdTGNf1lNrf+iAquplRJY8XVVYXpVMcXNf0x8A2AyqwhKOJMKxoFTtT725/VWJ0Y/vVpycBwL0iW0aGHIDarIATA0koOqJ598Enl57iL6J554AhkZGZg1axbKy8vx+uuvx3yAhHxC9agCmr9SZXUG1lT53xjMvKuactL/WIO/UH45Krhz5f0b/IWrqRLTANcfFkwHdf/zGE+EC4xCjYfZI8c0/Y93KAr8jIRGFaECkkQaVURKi7DYvU1eefc/z7XHcd6xNic4jgt7PfnjXeUM/4PMAjWtWhWXYugkBZlV8Ol/Mg1z2LVt9Xf/k9GjLRGp4f49qhjMrOKAx6yirNYKu5ODRq3iU93iTTQNgMsjTMTl1tSGoqPH3CKUUmWxO/mFCf+FOmoAHB5WTxVKdVy5uwR3fhTacCrRgRVL55TSDoGlCqYFyVgJBx9UKeDeqTQk38GHDh3K/3dOTg5WrlwZ0wERkXG6OFF2m+Fck5hCoRSlSnRNlSf4Eub7s8Aw3RxKqVJO+h9r8Ddr6TaoAJ8bcrgGf2Gb/8rpU8WUqqDuf5H7VIWqU2KTpMYYpVS5XBx/4w5XUwW4r6VggVOimv8CwhW84D9sTKVSq7zXp3Bc9TZHs3Piqmyw84HiwbJatE01hrX/FdsAWJhSGA/b3mQF2aqze5RZ5jXKB1X+NVUSjSoAbxp1PBfcQmUIsAbATKliwUJemjGiU2SsYAFRNDVVoSbiUmpqxbi/8el/IZQq9h70WjWfbsxgdYqkVAUnXIAcKThWwR0cT+yXG/ZeGEvSTNKdO6s9JlDSlarIhkytFcl3qfPPPx9VVVUB22tqanD++efHYkxEGFbuLsF5T/2C697chNnLduC6NzeFzMX2pk0ES//zrmpILZCNJbyKIFapCmNUEZD+J2LS5FWqEjeRldPgz1sbERtLdZbakxHG/c/mcIW8NhptLp99+efGOP2vzubgXQaDqRVGgWNWqPcfzo4+1kRKi+Cd/4zeviBqtcprRa8A0wQprNxdgknPreX/nv7O1oi1IWIbAIu1aZeLknpVMaVKbmsHlv4XqqZKikqbCAfAhhCLMiz972S1BbUWe9hsi3iRnRxNTVV4dUNuTW0omFJ1oiq4UsXeQ3ayIaAPEVtYJaUqOOECZLmGU/EkXYZRhez0P5HZBq0RybOMNWvWBDT8BQCLxYL169fHZFBEcFgutv+XOZTcHD79z31D5ThpcnGssXr6lYhXqkIHVf5KhhgDAOb8ZUpQ+h9jcn4eNjx4PnI9q2DzLu2HDQ+eH7Jjerg0STnNf8O5tQkDpVDqV6jJmlmGaUY4WOqfXqsOOjHUarz2rsLeN8HGmgilil2DofpUVfv1qGKYFZSKJhZ2Pyr3cw+LlP6Swr/X8Pcd1vg3HvVUgDeAUcLEoEGGoiTEa1QRvE+VlGufTc7iWVPVGMLtUOgAeKisjq8V6pggkwoAyE6NIqji1Y3gQZXcmtpQsPNyssoStDVAOTOpCDIeUqrCEy5AjnVwHAvYAmm8LdWByBkZrRnRM8k///yT/++CggKcOnWK/9vpdGLlypVo3759bEdH8EiVm8P1qAIAnUaNFIMWtVYHKhtsomoh4oHXqELcj76Bd//zTqD59D+T73swiyhEb7RH13QzGjRqFdqlG3GqxoK8NFPYNIFw/Wakuv85nC5+0h/MqEKo6DTYnEFXz0PWVMVYqQrX+Jdh1GlgdzpEKFWJMKoIP1EPZbqRpNegHLF1TYwl/inHQzpnyE5/EVvkHC87dUayAo0q5CrmXqOKUH2qxK+fJkSpCnM/69U2BWW1VhwsrePT/xLl/Ad4J9HlMibEXnUjeFDEampPVVuCfndUcGcs+NfUhhurXqOGzenCqRpLwHkK17xWKb0qlQr7LIP1qIp1cBwL2PxHSkmHHEt1IHLtcGtGdFA1aNAgqFQqqFSqoGl+JpMJL774YkwHR3iRmotd2WDnf7hCWXymJ+lQa3XEvdFjKFwujlecDCIbH4ZTqgLd/yIrVYl2//MnU2RtG1uBDmdUwdL1IuVwVzfa+ZS69CA3U5VKBZNOg0a7M6RSFapWwxRje/BwjX/519RpUGtxBA0qXS6uiYwqQtRUNQYPqtiKfbj6v6Zi5e4SzP+mwOf+k5mkQ0WY3P1wtSHJIoOq03Fq/MuPw6Ccc+5Nh5OZ/hdCqWLfXyn9rzJ4pSoBlupBvpM92yZjw6HTOFBaG7YuOF6wifCZehscTpekWq5I6X9ya2pDoVar0D7DhKLT9The0RgQVJWFcP4DvL89ZKkenHBGFbEOjmMBXwspxajC89nLVaqo+W8gou8WRUVFKCwsBMdx2LJlC4qKivh/xcXFqKmpwS233BLPsbZqpMrNLPUvWI8qBu/yJKGwMZYIe01JVaqEBdkh3f9EWKrXW6VPOmIJs7YPt1rodHH8uQoXVAHizCoqBTfSUBOGSOpXKKUqKcZGFeEa/zLCGXUIr5NEN/8N5kbobfzre70xe+9wTpVNQaiU43ABlZBg961kg8dSPcx7dbo4vplmvdURl7pPRbn/ecYQc6VKhkqbLqPfjVRCuf8BAgfAsjpv49/MxClVmUl6qFXu1Hgp9UbhnPaEyKmpDUe4XlXevlmB48kkpSos4VI5WXAMIMDJV05wHAvYfE5s+p+7vYf7evU3+YpEsoh+jK0V0TPJzp07AwBcruZn+dsSkCo3h0v9YzR1ryrhJFi0UhXEqIIVZga4/4kxqrCzAvGmVarCqYXC8xRsciQ8d4324Ol6QtiEOFzKJwuWQilOoSZrsTaqEJX+pw2+Su/eJjh3Iq+xaGAKlMPFodHuDAjWhUYVQpSoVIVLORZLsPtWJKMKf2Vs2dbjWHugHPMu7Sd5whkOJbn/8cpNlJbq/t8BPs1OaUYVttDKXM8ctwPg/lM1fApoIpUqjVqFNskGlNVaUVZjDZr+FYxwTnv+TM7Pw8R+uaJcfCPBfuPZb77PmOrCKFWCz1lMhkNrwmJ38kp6doi5FwuO/VX83DRjzO9VYkiXqDDXCRaryP0vdsi6gxcWFuL555/H3r17AQD9+vXD7Nmz0b1795gOjvAiVW4W45rU1L2qmIqgUaugE5liISn9j580iTCqSEBqWDAyeKUq9GfQGCH4VKtVMOrUsNhdohwAvXbqkdWfUMcLVathjnn6X+jGvwxjmLGyc6fTqBJiyWzWa6BRq+B0cai1OAKCKm86o/+1yoLRpp/gMyKlHIcjXPoLS+UMphAxZSxU7xc5K/mhUJRSxYwbZN6HQilV3tYHUmqq4v+7EK6WtadHqSr1qCw6jUp0YBMrclI9QVWtBUCaqOcwVTYnJdBpLxgatUqUbXokOma6f+NPVARRqmpDp7CxmioX577PBquvba0whc+oU4dNPY9lcBwtLJW/utEOl4uL2IaCzZtCmUCFg5r/hkbyLOOHH35Av379sGXLFpx11lk466yzsHnzZvTv3x+rVq2KxxgJ+MrNoRDKzWJy0fkJfRMrVWJVKiB489/QNVWRJ6q8pbrMFeJoEVO/wMZo1KlD3ihNutApcP6IadQa6Xihej+ZBec8VDNeKfBBVZiVX5PHWCNYqiJvUiHSsj9aVCqVoLlt4KSUN6rwd//TR14ASDRynasipb+EOj+xbowaCWVZqjOlKsbufzKUqrSEuP+FTv9LM+nQVpBy1S49vIlPPGAKq5ReVd5Uu/jUAIaCOQAGS/8rD2OcodOo+ckx2ar7UsoHo8aIATILjv8yqD1Gds9qMsWPfW9dnLimvHKd/4DwC2OtHclB1UMPPYQ5c+Zg8+bNWLx4MRYvXozNmzfjnnvuwYMPPhiPMRIemNwcbOVkweX5Piu4YtL/EpHmEQ6pzn9AoFJlsTv5iUSaWXpKVYM9sc1//RHThJmtPoebGPG9qkQEVUypSg/TRT3S8ULVVLHz6OICG5HKgeVsh7vxhxsrn6aYwM+XBUzMPl1IKOVNzAJAohGbcuwfnEeqDQnV/DfRvV+Y+58SJgZew5zo+lTFoqZK+LsQi4WRYESykGcpgIDbgj/RvRTl9KqK5PwXL9jCqX/6n9PF4bQnfTJY+h8gsFUnswofmipAjgaDVsMvUoiZ00UTVFH6X2gk38H37t2LTz/9NGD7Lbfcgueffz4WY1IG9fWAJsgNX6MBjEbf/UKhVgMmU/h97XZoLBagsRHQCS7uhgYgyA/a5K6pODqiHRauPYbhXTLRYHPg0NEyHDlWBgxow+93+tQZmGwWdDT4HaOxEfDUxWWr7TDZLKivqPGOLSkp6L5BEe5rsQDOMBP6IPs2VlbDZLNAr3Fi865jGNrFI5ubzQBbHbJaAYd30mOyWWCyWdzjra9HjcM9mVCrgGTOCQhW3JId7n25Wrt7f5PJ/Zng/9s78zA3qivtv6Vd3a3eV+82GBvbGAxmMZiwG9NAQsgy8EFissCEkBkCJDFZHU+GGJJJvsxkIcskIflIIGQlOMbGYGIwGK/Y0N6x21u7903drV1V3x+lWypJVVJJVZJK3ef3PH6gpavSVdWtW/fcc857AIRCQDgMfmQU7lAY5ZFA4vVRaKuKyxUfK9m0DYdRz4nXwD84nDo+nE7AZoM/xMMWjaBaEOJt2LgZGwPsdpTFDukPRcXzFVRfDAwPi8eoLXeotq0UQmK/fLJFbjQqXjsAEe8o3KEAKqLBeJ/sdpTZxSnFwkfhH/TCpeYNs9sBR+w9nhfHmgKBQS/s0XDcCFFoW8WLfY16R8Tf4ow9CAUBoeERuEMB1Ahc6vm12RLawqdcQBNAVvd9rYXHKcgeOLK2AdYfxMZkbI5guTSh4RH1YyfPJypzBADx/ikrS22bNG4U28bu+0sanZjpFtA9HEzwHvkd4nngAEwv4/DSv1+Gt08Oonc0iIYKZ/w+HhtTvO89fBDuUAARL5/wW+WeMWckBIvK3NPfMwDMqlWdI1JQmU8qI+K4CXtH4/3I5r43cI7gR8V5qCIcm0dlcwQU6kJKxOYIl90KWzQizYsMYVS8T8vDAfF322KP/DRzRI0QhS0aQQQ2jAYj8Ng4sa3S2AHE+5j9LZsjFInd9/5wFBY+iopIMGW8b9zXhQPvdcEeBcJWO9rOeHHlmpex+oZZuGF+c9rjAkg7nwDQdN9PckThDgXQP+CNv5hhjujvHwYgEzZItzYwcB0x1SnAHQpguC+A4MgonB7RIB0YC8Ee9MMJoJ4LA2NJz2eOQ025A8f7fWLuWjbzSTZrA79fedwotc1hHaFKmnVEprYDPQNwhwKY4uBTr02R5gjVtrI5otkaQWcoCG/fEMCGV2yOSG472ieuvxotrvhvlLdNM0d4IkHYohGMBMTyPVw0mnbNkcscIbVVGzfJbTPd93rniHT3qBwhS6ZMmSI899xzKa//4Q9/EKZOnZrt4UzH8PCwAEAYFk9l6r/W1sQPlJUptwME4aqrEtvW16u2jV50UWLb6dNV2/ZOO1uYvnKtsOr5NuG1wz3Cobppqm1DU6clHnfxYvX+1tcntr3qKvW2ZWWJbVtb1dsmD7MPfzh929HReNsVK9K2Pdp2TJi+cq1w/uoNgvDZz6Y/bnt7/Lhf+EL6tm1t8barVqVvu317vO13vpO+7auvxtv+6Efp265dKwiCIGw71i880vr5tG2/fc9qYfrKtcKrB7sF4bnn0rZ95n6x7U9efU/8jjRt33rkP+L9ffXV9P39zncEQRCE2V9ZJ9z68e+nb7tqVfy4bW1p2/70ktuF3287IbZtb09/3M9+Nn7cnp70bVesiLcdHU3f9sMfThzDadruWrBEmL5yrfD3PR1iWw1zxA9fOSxMX7lWGKmsUW+7eHFiH9LMEcK8eYlt581Tbzt9emLbNHNEn7tSmL5yrTAj9q9/8RL142Y5R7z5Xp8wfeVaYfrKtcLaOVekvx5ZzBFCT0+87TidI/afGc44Rwjy53aGOWLlLQ8J01euFU72j2WcI4Qf/Sh+XI1zxO0/eSPjHPF/r7hTGg83fPLH6Y/7hS/E+2DgHPHG0pvjbTPMEXsuu16YvnKt8MNXDovt0/UhT+uIwAUXSs32dQwLpyob1Y87b57wqae2C9NXrhXnV4PmiOR1RPR971Nva5J1xESYIwRBEIRf/zp92yzmiEdaPy9MX7lW8AUjeZkjQqGQ8M/vfjd92yzWEXrniGFAACAMDw8L6dAc/vcf//Ef8Pl8uPfee3HffffhiSeewOuvv47XX38djz/+OP71X/8V9957r9bDETrgBQGAmNy+9Ox6OO3ql9FmQkWfrgzJ7xv3daV9X85wgBX+zd6FXSpoCeljYZFacqpYOGRteeZzFolmH8KXj1DKXEIUioUttjOZTRIvy+8RYve22WEhfkYWDWdiPOabscyP0TXY2HjMV1hYtkI2xborlBRF1QjG2hY6/E+OXMBJS05kjYaSHoB4/rce7cfzezqw9Wh/0a4HYT5GghQCKIcTND7FrVYrOjs70dDQgB/84Af43ve+hzNnzgAAJk2ahC9+8Yv493//d02qN2bG6/WiqqoKw2fOoLKyMrWBweF/4XAYGzZswI033QS7/PvSuOK//Nd38UxbP760fA4+e/XZ+MdbR/GF5/agptyOVx6+Gu/1juCjP30LDR4HXlt5narbft+ZYXz4ya1iuy/FCjorhP9FeQE7jw+khvfk4LaP8gKu/c/16BlSDqPgAFTVV2HLo9eJ35Hktt98qAefeXo35k3y4M/3X4GXj4/g0/9vF86fUoXn7704oa0gCJi/agMEAdj8pavR2FiT4IofG/Vj8X++DADY/fUbEo2BArntI/4AFq5+CYIAvL7yGtTLC53GXPEb9nXhgae24ZLJFfj9vZfFPhobNzfeCLvdjhW/24PNx4bwf//lfHzwvOa0rvgP/XIndp0Zxc8/dhGWzalXbPuN59vwx52n8cCN5+JzN8YEUmRu+08+tR1bjw7gux9ZiFsWThLfj7nXl6x5Bd2DY3j+0xfhvMnVyp3Q6Ip//w+34EC/H7++bymWzq5XbPv4iwfwmzdP4NNXzsQjrfMT3PYvbjuKh5/bi8UzavD/PnVp4sHzFP73pb+24bm2Pjx601x85qqzEtpe+Z1N6BsJ4c+fXYJ5LVXSHPHcjlP40p/fwU0zPXjy7ouUD2xA+F/yuFFsmxTa0znkx7Xf2wyrBVhz+0LUN9XGFa5yCBEORXicv/olAMBbX74ungtZXi6p/zmSwv/YU+W/77hADAHTEdrD2h7rHcXN/7MFHpcN2796vfh+EUJ7vIEwLn3sFQDA29+4AS5Pedbhf53Dflz5ny+hHDz2fnOZ9PYFq19CMMLj5Yffh8nNNZpCewDg5p9uw75eP37zyUtw1awaIBhUHjtATqE9V3/3VZzsHcEf71mEi6aLCpHbjvXjnl/vkJpGrFaEreJxOYGHKyyeh6c+cTEunVWneFwAhoT/vX1yEP/nF9vQVFuOf35tedq2jPc/uRXv9AXx609cjGvmNBYs/A8APvP0Lmw+1ItvfuA8/MtV5wAAntt5Ct94ZjuWnl2P//344tTjchzWbD6Bn20+hk8tnYmvXztDcT7ZuK8Lj714EMdlp3RGGYevLp+jHo4pu+/DXi82vPhi6rhRaGuW8L9P/3Ir3nivH9++/Tx8cNHkxLYmDv/7/LNvY8O+bnzt5nNx12XTxfdVwv/+78ZD+Plr7bj7smn46s3zUttmmCMWPf5PDIaBVx65CmfVuAwP/wuHw1j3wgtovfZa5XEjawsg7+F/Xq8XVZMmYXh4WNk2YB9VP2oizPbiOA4PPfQQHnroIYyMjAAAPB6P1sOUDuXliTdwunbZHDOZcBhRlytx0gQSFzlJDEEcYJ7YbuKNF8/E46+dwKkBP/50cAB1FU74HS7UN1WnHkf2PdUNFvgdLnRGOAhlZakGsdudUjMGAFqkOgyy3+PStju3vX0AJ3w84FBv7/MGsb19QJSbdTrjgxuArdIDv8OFEasTKC/HcGAQQKw4bFJbDoClogKjwQh8Nld8cgMAhwM+uwC/wwWOA1zVnvikmozDEb8ZM5FNW7sdNrsdjioPhnxhDMKOeoUxEghHEbHawFXIxiQbN+XlgN0Oh0v83f4QL04INvVbuy8oLlZryx2qbe2x8zzKy86Z1Sp9/xDngN/hgr3SkzKu3Q4reIsVYzaXtvvDYlFt18PbELba42p5Cm1tHtmYkF1/cBxGbeK9YKmoSN8XjtN/L8coq6wA0BfPqZK17YnaEHRY4KmtBsrj9yZTfRuAXXs/0swRqm2Txo0iSXNRR28QfocLU2vduPXy2WnbpiU2RzgA8GVlCEZ4jNgcqJKdBybG88Dv304QJ2Bzzg1K4hdJ931aZG3Lo1b4HS4EBSjPf/m675Pa+qMB+B0uWC0cnFVJ85Ddrn6dZDhtVkSsNgwDiLrLYLVw4HkBQxYH4ABc1ZWJ93mGOaLSUwb0+sWEd9ZWy9iRzRHp8IWi4C1WOKsqpfZd0SEpXy8ZgbNI73VFM3xHmvkkBZX7vr6Jg9/hwhm/AEEQxLGRYY44ExDHqyRuYNB8oqVtY3Mt/O0jOO6Pb0T0jgQRsLtQVVetevxauadKYT5Z39aJ+/9yMMUzdcIn4L6/HMSTZWWZSxy43ZnHDUPjOiLrtrH7PsoLmeXPnU6cCorjra6xJv21KdAckRbZHOGuqYLfMYw+QeU5ImvbJ9jhd7hQVlOl3DbDHOEuc2FwOCBGZGRom4DGOSKhrYY5MKv7Ppc5Ip0BLyMroYrkh864NKZKAKZWxUI0bFYL7r1yFr7x/D78/LVjuOJsUbDCZbemLerH5LzDUQFjoaikysXIR80YrTLNau2S1f+GYgo2akp2ZQ4rRoMRjCmoqjGlNbfdWlQPa02ZA0O+sGoIhhZZ5FzU/9LVJckkqe6Phboo9aksQ42rbNBU/NeuHvoYkBQm81+jiqFWwyMQjkqKiJUp8v/G1vcyko4hcUdvUpVxBVg9LhuCoyFF5b3Lz66XDKpvf3ABZtZX5KX2C5s/eQGKhZoLBZN0L9MxD8nHdzAi/paATAkw25DcmvL81qpSklTPtsB9PmFqeaEoD68/kqIsm0w4ykuy5MUI/5uqUABYklOvVN9wYM8ApWdPphIHHMQSBzfMay6JwsHpN4gT1zFSfa80586MSDXm/JnDdod0qP8BMQXA4QApACaR1UrjnHPOQW1tbdp/RP5hCxG5EfSRi6ai3GHFqUE/nt1xCgDw5tF+LH1iE9a3dSoex223SkbKYNKkmq+aMXofnA5rolEVlwVVXhCxhZPSYlWvjLFR1GSoC6NFFllrnapwlJcW+7XpJNUzGEbxoqJKRpUxBkI4ykvHSFv8N41BGcihTo9e1Iwq9jfHxb3MDLa4VDL+i82ZIXGBMbnaOKOKzV2jCnln+8+IimuTqlz4P5dOz1vtF3mh3WLKquutUQWInioGy+2R37vZ1mmrcudPalsQBPjCqXNvppw6DuIiWKmgtNG47FZpsallI7BvNAhBEGsW1RWhiC4rAHxKVgA4XeFfRl0ao8qIEgdRXsC29gHs6uOwrX2g4NL4DLZBnPx72AaxfI0UjESlZ3FTEfPjcqE6i8LdXmlDOlejSn0On8hktZpcvXo1qqqq8tUX3Rw+fBhf/OIX8cYbbyAUCmHhwoX41re+hWuuuabYXTMUNojlRtXmwz2K9ZjSeZU4jkNNmR3d3iCGfGFMlT2rsplQs6kKzx6cXcMBRYONg5gEr/bglDxVMQEFb4bdFrZYVVo0MU+VUgHKQlKboVZIII1XiJHJCGKw7+C4VG+JnHSGivx70nmq9NZcYtcWiE/gSqT77emMv3zBDEB5/4G4xHqFw5ZSxFky/k1U/JdxhnmqDDSq4nVOUsfIvphRNX9yfp81FotYqHk0GBGLLhcp8MKIzR2rhYPdyiEcFSQPlV9WXF2taLgaNVkszrIlFOWlxbX8vmQF7u9/ejc4JIpTZCoonQ8aPE4M+8PoGQlidlP6wcHqGtVXOLI+10YwRfJUxY0q5qlSq1EFpPdU6Y0qSfQMWfHbIztVPUP5JFuPGztvDqslZ4OjWFS7tdce1VOnClDfPJzoZDWL33HHHWhsbMxXX3Rzyy23YPbs2di0aRPcbjd+8IMf4JZbbsHRo0fR3KySUFmCsHCRitigZpOGEpnc9DVlDnR7gykLer0TqhryB2cyWh6c8SKXsfC/WL/ZZJKMFFalsFj1KYSgFIPqDApMWjxVmYwgxuBYXC0x3eIkbhipeKoi6n3K9FmteGWbBzarulNdS/FfZ5Y79XpQMxjY71EyZs3tqRKNqpZq43Zt1QoAA8C+DrHez4JJ+d/AK3fGwoOL6KkaM2hzx2mzIhyNSJ6qQDj3+Y2pwuXDUyXf/EjuG8upSw7Tai7CYrzR48R7PaOannHFKvzLYOF/faMh+ENRuB1WTX1KV/xXT1RJPlIHciXbDeIemTFaasJrkqfKn3kzRK9RVcE2Dyn8LwHNRpXZB1dfXx+OHDmCX/7yl1i4cCEA4PHHH8dPfvITtLW1jSujaiQpp0qPV6laCj1LnFTzGd++fEELHr/9PKz8y7sJr2t5cDqSjKpME0O5U32xahajinmq1HaXtHhbtOZUseucLp9KfjzVnKqQep/cdmPC/5inpzKNl0r8PrEPQQX5Y38RPFVsBy/5YcN+j5LXTR6mKiXGm4QzsbnFSE9VRZrQkbYzMaNqsrrCklGI5z1Y1PA/di+V6wxDdtktGA3GNzx8OkJfqzOEJOuB9ctu5WBX2CxZvqAFN8xrziwokGdY2BzzXKRDS6hdPqkqs8PjsmEkEMHpQR9mN3niOVUaPFW+UBSBcDRhkyzXqBKz5WJlu0HMvI7pPHxmhW3QavEwk6cqP2St/mdW6urqMGfOHPz2t7/FhRdeCKfTiZ/97GdobGzERRepSBQDCAaDCMqkIL1eMfQkHA4jnE7S0iDYd2j9LkEQpF1Vl1X8XOeQtkrPnUNjCIcTFyqsvlPfSCChD4umeNBc6US3N5hmQnVi0RRPTuepqdIR+68TK288B40eJxZPr4HVwqU9nkUQF86hCI9QKCQZIuUO5c+5YwncI/5QyvsjPvG6u+yWglxrNSpjhl/faFCxH2OxxbnDkjpe2H+ZzeALpB+3vV7R61DjtqdtZ7eIV90XiqS043lBMmpt4FPed9nEB+VoIPWcZ0P/qNhXj8uW9ji2NH31xe4Vu0X7PaYXlt43knQtBkfFh7bS77Fz4m+I8gLG/EE485QDlu18AwBnYuUPmsrTj5lsKI/dl8O+xDHvD0XxXs8oAOCcxrK8X7Py2I2T3I9C4pXmofRzXyZYvulYbK4b8ec+v3mcLNc2qDrn5Ar7vW67Ne2xFk+rBCA+r/hoBHyBI2PrYmIdXUP+jL+5K3aP1FcYd49ky+RqNw52jaC9dwT15TbJeK12qV9/l0WQwkZ7hn1oqUrcJP3qTXPwb8/uTfkcJ3s/+dps07jJu/W9HlxagPy4ujJty9y6MnFe7oqtpxoqHEVdF+RChV28MkO+9M9enhcko6osx3mHzeFehbWVERg13xiF1n5oNqr4dLVITADHcXj55Zdx2223wePxwGKxoLGxEevXr0dNTY3q59asWYPVq1envP7SSy+hLBvJYp1s3LhRU7tgFOAF8bK98c9X4LQCx4Y5AJkXYcf27cG6028nvObtswCwYMfe/agfaEt4r7WZw6+8bCdRvqMkQABwU5MPG9a/qKnfyfyzU+xzo9UP6+m30Q9gw4HMn/NFADZsX/jHi+jotQLgcHDvLkSOp7bv7xZ/39vv7kv5fdu7xT6MDPRh3bp1Of0OIzgd68eh9tNYt+5kyvvvtYu/4cSxI1gXPJzwHhs3R7vEY7Sf6sC6dadUv+uN2HeFRgbS/uYDQ2K77r7BlHZiJKV4DV7b9DKSnUCdp8X+7jv0Xkp/s+HtPrEPEd9I2r4eiY3/3sHhlHZHj8fO3dHDWOc/lHNfsqHbDwA2DIz4E/rzZuzc+4f7U/opppiI5/T5dRtQkedQfq3zTSAKDPvFfr277TUcMUjThd2Xe9oOYp03Hrp8fESc3yrsAna9vkm1yoFRBEbEfryxbScCR4uzcbgzdu96+3t1zUORoDgX/nPLGzhdCRwYjN3r/rGsj9s+AgA2nOlLvae0jh01To2Kx+b4cFHn3Uz0nRHP355D7VgnHE3bdtdRcRwNdZ3CunUnCtK/ZOxBsQ8vvbETJ9oEADY4LQI2v/JS2s+5LVaEoxz+vmETplakvn/LNA4vnEyc5KscAm6fwSN6YheSf+6uPm3rkZde34b+A/m/53gBqHZYMRQCoCiDIqDaAfTufwvrDgBvnhTPo3+gy9TjUwlvCABsGPKFsPYf66DmCPRFACG2jty6+RXkIo575rR4nfcfyXx/6EHvfGMUvnR1LGUUV/ZMA48++iieeOKJtG0OHDiAOXPm4IEHHkBjYyNef/11uN1u/O///i9uvfVW7NixAy0tyiFlX/7yl/Hwww9Lf3u9XkydOhXLli1LW+DLKMLhMDZu3IgbbrhBvcCZjN6RILB9MzgOuO2Wm8BxHKK8gD9977WMXqXP/cv7UtztBzcewZvd7WiYPB2trecmvNcK4MJ93fjSX9oSQrlaqlz46k1zceP8phx+scibz+8Djndg6cKz0Hr97MwfiOEPRfHlHWKhzGtvWIZvt20BEMKya67E3ObUZOJd/ziIbb0nMXXG2Wi9IfF7Ot84Dhw7jJlTJ6O19bycf4te7Pt78OyxPXB4atDaemnK+y/94R2gtwvnL5iH1iViQb/kcePf3YE/te9DdV0jWlsvVPyeKC/g9ef3ATiD2oZG3Lh8kWr4ReOJQfz0wA7Y3eVobV2a8F7/WAjY/k8AwPtvviklMfvopqPYdOYomqdMQ2vrvCzPRhzvjtPAkf2YMbkRra2LVNvtPT2MH+3fBpvTjdbW9yW8t+6ZPUBfDxadNx+tl07LuS/Z0DsSxLf3bEaA57B8efz8nH69HTh2BGdPUx5vX971MgJhHpe/7xpMqTEu1E5OtvPNkZ5RYPubqHTZcPv7l2Vsr5WDG4/g9a52NE2dgdbWudLrv9t+Cmg7gAtn1OPmm9UjDIzi74Nv44i3F2efuwCtF0/N+/cpceq1dqD9CGZOn4LW1gU5H+fJ9q3o6RrBosWX4Mqz62Hd1w0c3Iumuhq0tl6S1bGO9Y7hB21vIMTZ0dp6I4Dsx44a248PAO/uRK0ndW4xE5G9nXj+xLuwV9ahtfXitG2ff/ptoKcXly+aj9ZLijOO9nCH8O6bJ1A1aRbmzW0A9uxEc3Xmc/zksTfh7R7FvAvFcZPM4PZTeOFkfMdzXosHf/nMZarPjrr2Afz2yM6M/V125aUF8VQBgH1GNz6n6nHj8J+3ny+tZ17/6z6gowOLF5yD1qtnFaR/RhGM8Pj6rpchgMOV196gGtp3atAH7NgCl92CD9zSmtN39b91Ev84dRDVDc1obb1AR6+VMWq+MQoWxZYJ0xtVjzzyCO655560bWbNmoVNmzZh7dq1GBwclIyhn/zkJ9i4cSN+85vf4NFHH1X8rNPphFOhcKTdbi/ohdT6fUFeDHercNjgiBWHswP45vvnZ1BNmg+XMzWPpi6WEzUciCp+/y0XTMEzO07jjaP9AIDptWXY9IWrdcdCv9crWv1zW6qyOs8Wa3zICpxVylup87gVj+OJTSr+iJDyPkujqHAX9lon0xCr/zPkCyv2IxhTOqxwOVLeZ+OmIibUEYjwisdIrtGx+XAfrvn+66o5bB63eE8EwqnHiwjiOXfZLXAqjKmK2DkPKpzzbBgNib+7qiz1d2vtazAq3g1lCucuX9R6xG0/QQBCAgdP7Ht9sZyv6nKnYl8qnDYEwiGEeC7vfdU63/SMitd6UrXy/ZUrlWXiNfMlXbODXWLo33lTqgtyvZioSEDnWNVDKDZGPS598xDLG4zExk849iAoc9qyPm5DlRilMRKIgLNYE4Ri9D4bQzyXc78KSYtM/CFdP6O8gOP94vPMG4jCYrUVpW7TtDqxmOmZ4SAGfOImaFOlK+M5rq1wAt2j8AaUnx37O0cAAO87pwGvHe5FtzeouJZgLDm7UVMu1pKzGwt2nuZNrlZ8vanSiW++f37CM7AvJhjVYvCcVwjsdjFH3BeKYiwsoL5Suf8s5apKx9qnulycw8dCyuPGKAq9Fk/XDy0UriJmjjQ0NGDu3Llp/zkcDsk1Z7Ek/iSLxWL60MVsYInd5Ul1bphqUnNSTHRzlSut0k61BpWnQ92j0v+Ho7zuiVAQBBzuFifqczJI1SZjtXDS9w/5QgjHFiRq0qdMplhJ3csXjhfdLCY1GtX/tAhVKAlLZFOjg5G29lM4fQK8W6pTpVNSXUPhXyB98V8thZONxmmzwG4Vx6hXlsTr9cfU/1SEN6SxaiIFwHzUqALUhSokkYoCKP8l9KOIUvZjaURfsoHVomL5jv4QK3yd/XHlY1SLklg2KBX+NSNMhKknjVDF+rZOLH1iE471iXk439t4OG1tyHzCFABPDfriCnYaitemk1UHgHdOi/fkhy6cDI4TIxXSiXcwhV8liiGNDwDP7TwNALj6nHo8c++lknjHI8vmpBb+9bKiyaVVowoQDXy2nnn9SJ9qXTC9IhWATOW2iCI/ZsT0RpVWlixZgpqaGqxYsQJ79+6Vala1t7fj5ptvLnb3DGM0SU5dzvIFLdiy8lo8c+9l+O87LsAz916GLSuvTauml6keSf9oEH2j8QnUCDWobm8QI4EIrBYOsxrKs/48k1VnDw67lVNdNFekK/4bNMfDnV0DbyCCSDR1A4DVqdJS/DfZCMq1iLNU+0nRUElfN4tN6sap/6Wf+OW/PVlQJxDJfWGZKxzHSX2WV5tnRqJafTBJit5EtaryUaMKiBc/lqvuhSI8DnWJmy3zC2RUsc2pYkqq+wxS/3MmbS74dUiq26wWybDSUvMmGyRVwiIXXc8EU38bCUQM26zKJ1NrY0bVgD9eo6ois1GVrgBwIBwVQ4AhqgFOj30Hu0/VWL6gBT+568KUDKZMm7z5IBzl8efdolF1xyXTseSsetx5iRgK/mJbV0r7Hg2qiWaEGfjM0/a1v7WpGvjGGFVM/U99TRjlBWw92o/n93Rg69H+ohV/LiTjxqiqr6/H+vXrMTo6imuvvRaLFy/Gli1b8Pzzz+P8888vdvcMYzSo7KliWC0clpxVhw9cMBlLzqrLuBuUaZfqUMyjxGS//eGoqsy2VpiXanpdWU71gxxJRlWV264qQZ2u/o8kqa5yLguF2H/x/5V2hdnObto6VSpGUDZy+3KYYRSK8CkToVQ3S2WxVpamGG82sIk/XZFieT94IV4UmhEogqcKUJabzWQklisYGsUmHzWqAOUH8pGeEYSjAjwuG6bW5ienLJmKNJ7sQmFUEfJUT5V43FzHfo1Uw8hoT5U5IgQyUemySRt4yZ6ZXDer8gnLwxz2h3GsVzSEGrV4qlikhILxvL/TiygvoL7CieZKF+bE8pYPdmXOL1kwuSrh/JzTWJ5xkzcfvHqwB70jQdRXOHDduWKd1VsWin14/UgvhmXjOxLl0T9W3JpjuZCtgc820fUYVVKtQRVJdWbk3fmLt/Dgs3tw5y/eKpoXt5CMG6MKABYvXowNGzagv78fXq8XW7duxU033VTsbhkKe/h7DDIEaqS6BipGVWxH6sJpNZKBNqwzHEQK/WvMLvSPwaSDe2VGlRpS/R/F4r/GLGb0YrNapN8wqLJbCKRfHEnemlCiUZFrEWd5KFKyoSYZVSoGcVka72A2sNC5TBO//LwEkn5/vEhxYac6j6KnihX/VQv/Yx4+ExlVw6JRZXj4n0Lx330d4kJtwaSqgtXpMoMhG6+Xlx9PVa5eWik0XGXDLVfMUh8wExzHSUZJ8vyY62ZVPil32qTNz90nhwBoMwzqKmJG1WjqdX43Fvq3cIp4T85pFvPVM3mqAKAtVsSblTXpHwsXJdfsuZ2iGu7tF06R6qLNbvJgTpMH4aiADfvi3qq+0RAEQdycrstQy9Es5GLga92wTIdSNAbDbF7cQjKujKqJQLzwrzEPJBZ6NhaKIhRJDT1jBtDcZo9U0ypd/pUWjsRytM5pUtBv1YDDpt2o0uSpMkEYSrq8Kn8WRlWyFzHXIs5Om0XyniV7nNIV/gWMMw60Fv+1Wy2wxR7WzIhK7mshw/+AuOHE8qiA+MPHo+apknKqzBT+Z3zhX0A5p6qQRX+lfmgM/8tnGEv+PFWxMN0cj5spNDxXfAblkBUCFj7H8mwYuW5W5ZupMW8VC9nXUsA2nafq3Q52T4rhuExhl0WwpIPdz1ef0wBAzMVKFyqWD3q8Abx6qBcA8NHFiaqMzFu19t34Ap9dr4YKZ4qqrVnJxcBnRlW1O3fDkUUbBMI8wrIIETN6cQsJGVUlBnv4VziNUUOpdNmlWgZK3qqDsR2pOc0eVJUxb4pOT1WPeMzZWYpUMOLhf+JEosVTpShUYRJPFRBfwCiF2kieKof67SrPgZLnFV0ysxYtVS7F6hyAmDjcUuXCJUnSthzHybxfiYv8jEIVBuRURXkB3bEHxalBX8YJ2JWprwW+xh6ngqdKEqpQyalyspwqc3iqeF5A53C+cqrEcyD3ELGd7ULlUwHaPFX5DmMxynPDPFXBJE9VzuF/LIrBb6ynSk+uV6FRE6vIdbMq30ypSaytqSUviHlklDySkqcqZlSx8L/D3SMZ5+S2mOf50lm1qLCJbU/0a6v1YxR/2n0aUV7ARdNrcHZj4ibuzTGj6o33+qTNzLhIRenkU+Vi4BuRUyXP65dvjpnRi1tIyKgqMdjgrTDIU2WxcPHQs6QFPc8LONwV91RlChXUgiAIeC/mqZqjUFdKC8nhfyxMRYl0u/9m2jGtLVdXYWSLkHT5Z8yoiPKCpIgI6FNiUhO/yBRWpDenii1iO73ixPyttQcyLmLV1Aq1iHzkA7aLl6D+JwlVKHvezOap6hsNIhwVYOGAJoOTttn58YWiiPICoryAAzHp5kJ6qpjHX039rxBhLHHBHH0eczbGmTiLlrDhdFSn2ejRg79EhCqA+OI6Oacq182qfDMlKRdRk6dKJa/aF4rgSGwD9LwpolE1o64cTpsFgTCPkwPqBpIgCPFNkhYPGmLdKqRRJQgC/hhT/fuXJC8VAMxqqMC8lkpE+XgIYCmKVORi4Hsloyr3e9ButUhh9fK8KrN6cQsFGVUlRiahilyoUZFV7xjyYywUhcNqwYz68rTeFK10DgcwEozAZuEwoy575T8AKcnD6T1V6rv/foNUt4ygWiX8j+cFyTDQIqkOpBoWTG4/+TxlUmJSM1Qyh//FFswKanyZyHURy7x48r5GeUESrii8UAXzVInjLhzlJSO+VDxVHTGRiuZKV0KdIiOQz1+jgQja+0bhD0fhtlsxsz63sOBcYMadkie7UGEsLDS5TOdGGZsXJU8VC33NOfxP/yaaEqWSUwXEF9fJC0C2WaVWhwkovGw4EJdVBwCbhUNtmg1HRp1sQ4+XjeUDnV7wgngOmmLy4lYLh9mxsP1DacQqurwB9I+FYLVwmNvsQb1LPO7x/rHsf1SObG8fQHvfGModVskrlcwt58dCAN85AwDojm3kNZSQSEUuBj7zPleplKLRCnvOeWURGWb14hYKMqpKjLE0kuq5wnaqkh+eLBl1VkM57FaLpppWmWCx2DPry6UwvmxhHhtmVKVLtpQv8Pmkxc+YicL/alWuQVCW55bOMLBb4/W7lNQZly9owd2XiTKyV5xVp0lu363icYqHFSlfP/Y5uVGjBT2LWKWcMvn/F1qoQsqpij1s5Dt5HpV712yeqnzlUwFiCC8zAkaCYSlUaN6kyoIuRNOFBxcqjMWouk2Spyq2CeNjYXZ6PVU6w72T8YfNM+9mokEyqlLrMi1f0IKbz0udP4shG86YJKtT6XHZFOfSZNhznRcSRajekYlUyJnTJHqSD6YRq2D38+zGCrjsVjQwo6qvcEbVH2ICFbcsnKS6CX3LeZMAAFuP9qN3JChd56YSCv+TR6OozZzJBr4R4X+AssqtWb24hYKMqhJDqlNlqKdKvLEGkh6eh2QiFfJ2etT/juRY9FcOM8b6Y16dag2eKkFIFTEw045pXKgi8dwmGgbq/UyXA8Vgi+Slsxs0ye1LYXzhxAVnprAi+fnMJgRQzyJWyaiSe63UlArzRbKnioVblDmsql4fs6n/5atGFcPjiuczxfOpChf6B8QNWaWcqkKFsbDNHd11qpinKjbPBXSGNxuxiaaEFHZtckl1QJZT5U01qoC4N/df3zdLc23IfLG+rRMr//yO9PegL6wp989hs0hqwnKxCpZPxUQqGJJYRVqjKjE/sj5m6+U7/I8Jyjy74yRe2Ct6n/7lktTQP8a0ujIsnFIFXgDW7+tCb+xeLjUvCotGaa5K7LfTZlE08I0zqlJzY81Y/LmQFD/uiciKfBhVag/PuEhFZWI7HRK7h2P5VLNzVP4DkOLhSjcxuGxWcJxoVI0Fo5LnShAEU6n/1ZYrKysyw8BhtWSchFx2K0aDEcWCvQBwelB8oLF6JpmIiz8kepsyhRXZrRbYrRzCUfEcV5cpNktBzyLWqdBXZmA5bJaCKzkl12FixlW6QsZxr4lJPFV5EqlgVDht6BsNYTQQwb4zcTn1QsLm0WCERyTKJxi8hQhjicrCe/ULVSR6qvQLVZD6H/NU9Y6mGlUDYyHsPT0EAPjEFTNTFrSFhIVNJ3umWNh0Js9ZbYUDI8EIBsZCOEsU65OU/1I8VRqMqn1JSp4NBQj/W9/WidUv7E/YmLNZOEnwSI1bFrbgndPDWLv3jHTPlFJOFWP5ghbcMK8Z29sHsPvkIL674RCsHHDduU0pbYelOlX6ZOMrVQoAL1/Qgh//nwvxwO8Tx2RzlQurbp1XlE2HQkGeqhIjPzlV7OGZuKA/LBlVogFkROKyIZ4qq3ajymLhpPAXeYhPKBovamuGh7taTlVcFCLzraqUVySnYzBWc0ijUZVJqEKLxHs2CoB6FrFKfdWbqK+HyqSwiEwiFYCspprpPFX5WSzK4/GZ/PL8AopUAInzaLIxW4gwFvl41S1UkeSp0lunSi3XVi9GhTsWAiZU0T8aTAk7fv1ILwRB9NwU06AyIvcvuaTHWDCC92IFhNU8Vcf7xxRDzYF4+B/7LPNU9YwE81JoWy0XN8IL+Ozv0gvKtMZCOLe1D0glZLq9gZKU/LZaOCw5qw73X3UWqtx2+MK85DVk8LwglebR66lKVwB4dlNFwpic01RRNC9uISGjqsQwuvgvIPdUxY2lUITH0V6m0icudPQmLvO8gCM9+mpUAamequoMyZaSB0C2WJWHpZnh4a6WU5VJFEKOFAKnYMiEIjy6Ykm4Wj1VeowqtkDMJvxPzyJW2agqjkgFEPdIsbC/eM2tNJ4qqaaaSTxVLKeqKn+eKgA40DmCkUAEDqsFs3MsCJ4rDptF2qQZCSZuFhUijIUZ0BynP+8vxVOlO/wv7qnKVnAmHew3u+3FjxDIRF25ExZOzDfqT/JWbT4s1j+6ak5DMbomYUTuX12SAuC+M14IgihSk7yJ1eBxoqbMDl6I15yU0zsSRJc3AI4Dzm0R1w5ltvjmrdEhgOmMSkY6o3JKTRlm1ovhFOze+erf2gwtm1BoLBYOl8aek1uP9Se8NxKIgN3OxuVUpW60vx0rQO2RGV7jNeRPDhlVJQaTVM+H+p98QX+sbxQRXoDHZZOSX+OeqtyMqo4hP3yhKOxWDtNzVP4Dsgv/A+QegPhilS1cHVaLVGW9mKgV/2W7zloMAzUjCBDDQHhBjLFmBS0zEZdGV8mpSrNYk5TssvC66JJ/j/UlqJBTVWiRCkAhp0ryVGkQVTGJ+l++c6qY2M5bsYf+nGZPzuI1RvRDKexy+YIWfO+j56e8bpQYgSSnbreC4/QtOJI9VXo9tWxOCkV5Ve93LpSSp8pq4VBXkSpWwfMCXmNG1TnFNaqMyP1LllVnoX/nTUkNx+U4TgoBPKigAMhC/2bWlyekKUyrFQ2XEwaHAOo1Kte3daK9L9XQM7JsQjFYclYdAFGEQw5T/nPbrbrnW+k5p/DMevvUIADghvli+GGXN5BQJHi8UvzVJJEVo3lQ/4vn88R3G1i89Jwmj/SwjxtfuYX/sZoXs+ordBky2RpV7OEtDzvwGyRjbBRsF88biCAim3hYjpCWEB41CXQgnk81ucatefHmkowqlZyqtJ6q3AoAL1/Qgu9+eGHK65nl3y0JfdPaz3yRvIMXL/ybLvwvdZwWi0A4KgnBTM6XUEVswbXzuPjwLbRIBSNeq0r5vMu9Zy67xVAxAimv04BNMqNzqsocVsmLZ2StKkmVsASMKiCeXyOvVbW/04u+0RDKHFYsnl5cFTMjcv+SPVXvxnLFFk5WznGcG4teUcqrUsuPnFEnGlXtBhtVeoxK5uVSwsiyCcWAGVU7jw8iJFMRNkqkAlBW/2MwT9WyeU1wWC3gBdFQHe+QUVVCCIKQX6EKmZeETZbnyAr0SkaVP7dwECNEKoC4yhUj3e4/EFfVSvBUyXaIzUCV2w5m6wzJ1BWzyYtQk0AHgNOxfKopNRpVI6Az/M+ees610hCridJc6dKsqKVkUAZ05pToQap/FIoiEuUl48qTJvyvzESS6sxLVe6wps0D0wM7R+yazVdZwOUbScpexaiSLwKDER6Xzqw1LIzFZ2BZB7mnShCE+H2a47E5jpPJqhuXV1VKQhWAcq0qFvp3+Vn1RfGuyjEi9495qth1fifmqVqg4KkCZAqA3alGFcvhOS/pfp7OPFUKXiE96DEqC1U2oRic0+hBbbkD/nAU78SMZCBuVGVKm9CCWk7VaDAi5addOK1GystlapnjGTKqSohAmAfbMMl38V9mVM2VGVXsJozKEh2z4bABIhVAoqfKZbdkXDSXKexEm+3BbrNapJ0j+QImm91mJVlxxukhZlRp9zqoHc+vIVfJrUMefO+pIQDApbNq8YELJmuSf1cyAPXu1OtBbjyNBiPwMvW/tEIV5pFUl9eo0huWpkayt31BkTxVFWlqVQHACVltHUFQDnXJFSMVSOWeqmCEl/Im9Mxx1QYrAEZ5Qdo1N4PqqhakWlUyWfXNh0Sj6uoi51MB6esUac39Y0WCB3whjATCONYrjvlkw4gRD/9LNapY6GCy6My0mKfKaAVAPUZlocomFIOEvCpZCCAzqjJtRmuhUgpzT5wf3jk9BF4QoxwaK12SONYZMqoIM8ESqTnOWA+LvP4UK5DLdqDmNMlDX6xSmNVQDgUhWVKrHpEKAHDKQge1uLDLFXJVWO0lI41TvSjlVWnJX2Kky6mSwv+yCOVSM4y01L+J17jK3uvCdtUWTqnW/Bl3UugTAATDLHSy8NOcw2aRvnckENEkVMEWmeGokBCuUQzyLacOABXO+LmwWjgpqb3QsDlALfwvOVxJKSk7Vwz1VNnjniq5t9qlw5NidK0q+VxSOuF/sVpVsfC/YX8Yu06KIavFzqdiqNUp0pr7VysL/2Phe5Or3ahXyb9lG6O9I8EEAY8hX0iKipivEv5ntFCFnlzcQpRNKCZSXtWxVKPKyPC/0SRPFQv9u2BaNYD4uoMpEI9nzLOiJDLCQtbKHTZD6+7IK6p7A2HYrBZpYpzTnOhVqilzoHM4gEFfSNp50gLPC3ivh4X/Geep0mRUsVwVhfA/MxWgrCmzox2J+QuBLMQW1HKgAHn4X/aeKn84KadKQ1idO8ecKkEQsOeUuNN5wVTt4WDs+5SK/xbLG+lx2REIB+ENhDUKVcT76QtF4LDpqyGih3yLVACJ+YwtVc6iCcZk8lQd70s0qrz+CFBjzHcbWYDcaWNiLXFhCYfVolpsWgtq5TZyhRl7HJcaxm1WmKw6y6l6870+RHkBsxrKMbVW+zMw38jrFPWMBNDoEb0zWkJV5UIV8aK/6psc5U4bptWW4eSAD4e6RnD52eI5YgbZtNqylGczC//r8gbgD0UNnZeZUfnQc3sTNhQy1UViXq6u4YCieiAXO4aesgnFZMks0ajadWIQwUgUTptV8jobY1QlCjIxmFG1aGo1AGByrFglhf8RpmIsD/lUgGikMDnnQV9YCv1rqnRKBhcj153L04N++MNROKwWaXLV01+pPxqK10mqagqS6mbyVLHdQvm5zUZsIZ2nqiOXnCqVHC1tkuq5GVWdwwH0jQZhtXCY16LdqIoX/zVHThUQF6Xw+iMyoQr1B5ndapHGdrHzqiSjKk/1d9a3deL/vnRY+vv0YKBoEsaZhCrYzjqLgjTSUzVmoFHFNl4Ckahhypc1CuU29CAZkQaoHRaK5JyqzSZR/VOC1SnSGjbNkAtVvCMV/a1O+xmlEECWT6VkkFWX2aWF/IkB44sAL1/Qgpmxjd5PXjFDUy6uEaGTZubsxgrUVzgRjPDYEzN0vAZ6qioUJNXFjVHRk7tomrj7RDlVhCkZkeTUjV8k1sgW9Cz3idWnSmgnCxXMBnbMsxordO2cAonFf7XEBcdV1eSS6rFaKSYKQVEK/zMipyoc5dEZC+eamoWnqkzB+wNoDf9jdaqyyz9hoX9zmjxZXZt0OVXFMqo8snhzryRUkd6IZ5sbxZZVl+dUGQ0r1DmUNIcUS8KYhSGOKkiqewNhSQXx7IaK2GvGXRt2f5QbkVMV81SFo4K0Aad3fqvWqfiaTDyX1TybWZmQcqpGghAEQTKqrp7TWMxuGQp7/vtCUew6LooyqOVTMSSxCrlRFfNUJYf+MVgI4HGDxSoA8TnFxLA+deUszUal3tBJM8NxHC6blVivKt/qf6cH/egbDcFu5SRFV5ZTReF/hKmQPFVpdrtzpabMgdODfgyOhRRFKuTtgOzVoA73MJEKfflUAOCwxRcKWiYGJU8Ve7iXm8moKk89t9kUsFXzLLEaVQ6bRTVGXglmjCTnVGkx9Nz23DxVe2OhJ+dnEfon/z7F8L+iGVXxB86IJFSRSf7fhkFf2DyeKoONqnSFOgWIu8OrX9iPG+Y1F2x3uCKNlD0L/auvcKK5yoUjPaPSTq8RSGHIBnqqgLgRpHfsGx7+FzYuh6xQsHya3pEgDnePonM4AKfNIokAjAcqXTbYLBwivIAzMTW8TEaV5KmSKQDukzxVKkZVfTn2nh7OWKsqygtZhzHu7/Qiwguor3Bk7WHXEzppdpacVYe173Ri69F+fP56Y9X/pJyqUAQ8L8Bi4fB2TGhqXkultIaYIgv/EwShZLzUuUBGVQkRl1M3/oEUL+wblgr6Kan0VcnaZcNhJtGuM58KSIzF1zIxMMNJ7qnyG6i6ZRRKoTbZhLCp1ali+VSTq91Z5eIp5VSFozwiMTETLeF/SvLu6WDKf9mIVACA2xELfZL99mIKVQCJykhxoYr0442F9hbTUyUIghSmYXSNqmwkjFmSdb4pT5NTdTwW+jezvkxV6UoPbMPCiDBkp2yziYUQ6/UIKSnD6sHIHLJCwTxVwQiPF/aeAQBcNquuaB7wfMBxHGrKHVLe2JQat7TJpwbbdD3SPQKeFzAWiuBYbBNCrebc9LpyAOkVANe3dWL1C/sT5omWDLlRAPBO7Nlx3uSqnBbtLHRyvMHyqt4+OYRAOGqop4rNiYIgRv94XHa8fTIx9A8QvX4cJ95DfaMh6Z4aj1D4XwmRjxpVjHhh30yeqtx2LqUaVY1GeKqyE6pghTXHZB4XM4b/xYswp+ZU6VH/Y8p/2YhUyL9TyfsDAC6H+vSRS04VzwtSkvT5WRpVLptC+F+ouJ4qJp8+6AtLMtwZPVUKoiqFZmAshGCEB8cBTVXGPvzMKGGcTv2Peapm1JVL19PI8D+fgWPUauFgt4qLybinSt8jvjrHTTQ1zFbKQgsuu1XaDPnz7tMAzJlPpZda2Qbl5GpXxoK3M+rK4bBZ4AtFcWrQhwOd4rqhpcqlGhGRKfyPhQYnb7xoCQ1+57S2XLCJxsz6cjR6nAhFeew+MWiopLrTZoEttlHLojEkkYqY8h8grtmaPBMjr4qMqhKCPfTzIa7AjKXD3SMY9IVh4cQkx9R22ScuR3kBR3uZnLp+T1W2RlV89z91wW2m8L/qNDlV2or/pnprgNyU/wCZkSYXf4j9v4VLzG1LRgq5zEJSvb1/DCPBCFx2S9ZhopLyobz4b8QcOVUsn018LVNOVWqoaqFhC5qGCmeC98MIzChhXKGw6cJgO+oz6svz5KligjnGnGe2uSAZVYblVBmr/ldKnioAqK8QzwO7N66cXV/M7hjO+rZOtMsMnW3tgxmFY2xWi5RneLBrRCZSoR42yDxVSuF/mUKDATE0WM3YYwIb2YaOj3c4jkuQVjdS/Y/juIQw92Akiv2xvLpFUxMlUidKXhUZVSVEvtT/gPjDc1uscviMunLFxWgu6n8nB3wIRng4bRZDJGgdWYb/sQd4oqfKfAnTTP1PvoAJ5CBUkRxydzoH5T9AuU6VPMcrXYhFWQ6CCyz0b/6kqqzFTOK/PR6qmI1yYj7wxO5TJvrgslsyGinsvKkp0RWCjjzKqesp1JkvJE+VggdK7qnyyNQcjSJep8qYecgZ80xJ4X8G5VQZ7qmym2fezcT6tk6cHkz0nHzsV9uLolSZD5h3KBRNLJ2hxTskF6uQjCoVkQpA9JoAwJnhQMrmXzahwcmMBiPSxi15qlJhIYBvHes3VP0PSBRk2n/Gi1CUR125A1NrE58fUq2qIeNFSswEGVUlBHOv5sOoYgt6Jh+cXJ+KkYv6H1P+O7uxwpDET7tsMX9myJ8xTIEtmuShaHHVLfPsmKZT/9NUp8ro8D+Fgrpaaz/lUqfqnRxD/4B4X4MJnirtIh/5gC3CmZHi0SAwU67gVS00Z/KUTwWYU8I4naQ6y6maUV8mhcuwIuxGYHSOETPa2fysd0OBbaJ5A+GM86wWjCx2XAjUDI7uIilVGo1e79AcuVF1JnN9q5oyuzQvnhxIXFzrCQ1+9/QwBCF9weKJDPNU7Tk1JIWiG2dUxTxVwUhC6F/ypivzVLFNxvEKGVUlxFgew/+SPT5qRlU8xl67p+pIt3EiFevbOvHgH/ZIfz+x/lDGMAXJUyVbNJkxtp8ZrN5ABJHYQzwnT1WSUcUW9bkaVaEoL/VHaziiJKmeRfjfnpinKpfwDbdS+F+RPVVsEc7CHTKJVADKXtVCw4yqljzVqDKbhLEnJqk+lmTIDvvD0gbH9Lx5qowVzDHaU8XmeyFWGF4vpRT+p9fgKAX0eIeA+Dphz6khvNcjeorShf9xHIcZTKwiqai2ntBgVoojk2LhRGVabRkmVbkQjsbHqlFGFdvkHwlEJOW/C2JFf+WwTbrT4zz8r3R88IS00MqUl5ELNUlFfpVEKgBZjP1YNp6qmEiFTjl1tmuY/AhjYQpqCzKWpyI3qsZMqP5X5baD48QFzJA/jPoKp+QlcmkRqnAwb018VzUS5aWHJqtqrhW5wekPR+GxWjSLP5QphA6mIxThsb9TjMXOJXyD5ZJEeAHhKA+71SLzqhVn74h5ptgut7aaaqle1UKTzxpVDDNJGJerSKqzvI8GjxMVTpuUU2WEccFg32mUkcHug0GDcqrsVgs8ThtGghFDalVp9XSbATMqVRqNXuGYubFalmzjrr7CKRVLVmNGfTne7RiWomIYLDS4azigaMhyEDdelEKDJZEKyqdShOM4XHZWHf6yuwMA4LRy2Hl80JA5Vx7+p6T8x4iH/41vo4o8VSWEVPw3D4ZAZVJo0lkNygYQM75GghGEk0IilIjygnSj8byQ866enl1DpqjmC0fBx943Y/ifzWqRdo9Yrapciv/KvTVd3gCivAC7lcv4sEvGabOAefDZMQN5Cv873D2CUIRHpcsmKURlg1yJMLmvLoPFFrSSvPmRfI8poeRVLTT5zKmSwySMP3DBZM2FOvOBXKhCEOLzR7uUTyWORyn8z8jiv2FjhSqYp2pIklTXf9zqcqb4qt+oKiVJdTMqVRqNXuGYpkpnggd+co0LmR7x7H5qTxKrYKHB6T6uFhr8TscQgNxCxycK8rSRYFTAnb94K2OUjxbY9W/vHcPpQT84Dlg4JdW4jQtVUE4VYRLixX+NNarWt3Xi3v+3M+G1j/1SORGXeVOAzA/Z9W2duOLxTTgVc/f+10uHc76J9YQpsMlEEOKKcEYW3TSS2qS8qmzEFlwKQhW51qgCxN0tKa8qlG34X3Z1quKhf6mx2FpwWC1gP48ZU1Jfi3SNU4wqLZ4qhxk8VfnLqTIjzDvIC4kbEmwnnYUrxcP/jPFURXkBgzGP/5HuUUPCyCRP1Zgx4X+ATPHVgN9txvqAaphRqdJo9ArHbNjXlSA4sffUcMZnfDoFwOULWnDHxVNTXndYOdVIlIGxEE4NiHNWutDDicz6tk78duuJlNe1iJFkgs2LW97rAwCc0+hRzB9mzxNvIGKogqrZIKOqhMhHnSoWUseK/jG6vco3m9XCSTvu6WR22XG7vNnXm1BCz66hy2aVDEFmTMV3iM31cE/OWcsqp0qWV8R23HNV/mOUJeUqaQ7/i6l7RXgBoUhmjyaLiVfa4dKCkgEoVyosBsmeKS1hu2UqoWiFIhTh0TsqzgWTqkt3sZgNZY74/CAXq5CU/2KKZXFJ9USPVi6sb+vE0ic2SaGEj/7lXUN2jZmnitXSMmLsZ5JVj/ICth7tx/N7OrD1aH9a49CXxXxWbMyoVGk0eoRj4iIeidc70zM+U60q5iG++9Jp+Ob7xb6FogIumq58ntmzY1Z9uWF5QuMJFuWjhBG5gWyT/2Csvqm8PpWccqdNWt+M5xBAMqpKCGYQGGVU5RpSJxUAVtm5zEeCr55dQ4uFQ5k9MceH/ddsD3emwshyInIRqgDEyuVA7sp/DFfSedMajpiQj6XB66JH+Y+RrH4Y0OhVyxfJRpWW8L9ie6q6vQEIghj6ycbieIfjOOm8y2XVpRpVSZ6qUJSX7q9c0FPgNBPJoa6GhP+51cP/mHF45y/ewoPP7skYUuQvIfU/MypV5oNchGP0PONnSLLqfgQjifNc70gQ24+L0Safufos3HP5TEl84uUD3Yr9Z8+O83LckBvv6BUjyUSyV0pJpIIh5VWNY7EKMqpKCOYyNcq7kuvNVsXCQcaUdy7zcRPr3TUsY3kTwSiivCB5Mcz2cJfLqguCIAth0y6pDsQNmY5BfaFcyXlaWnOqHLJK675weq+LLxSRZPfPTzMhZyLZqMomHy0fJIfpVroz37flaQrRFoIOWehfLmGYpUpcrCK+yJPLqQOiwcvWz7mGAOZbUc6ZVHrBiA0FaRMtyajKxTg0o+pqOsymVJkvli9owZaV1+KZey/Df99xAZ659zJsWXmt6u/T84yvK3egwmmDIACnkmTV1+/rgiAA50+pkqIrli9oBiCGGioRj3KozvArJyb5zg1MjsBQEqlgTASxCnPFPhGqCIIgKdYZ5anK9WZTe8jqPW462K7h/U/vBgckLEq07BqWO6zohbhYledNmC38r6Y8brCGoryU9KtlcWS1cHDYLAhFePjDUdRAFv5Xm6NR5WC1qhLD/7T0x+2wYiQQyeh1aevwghfEpOemytxDztyyPK5wlJcWplpqfOUDq4VDucMq3bfaPFWsaHJxPFVnCiRSYTYqnDZ0IyiF/8nl1JmnymLh4HHZMewPwxuIoFG9HI8q+VaUS/FUGRj+N+gPSyuGTMYhB9E4vGFec8Kc7NMYPmwmzKRUmU+YcIwWsnvGJ94oHMdhel0Z9p3x4nifD2c3xpWGX3xXNMRbz4sbczfOb8J3NxzCm+/1wxsIp8yj8SgH8lQpke/cQLlwmstukQo8KxEXqxi/RhV5qkqEQDi+SDRKqCLXm01KXFaJsc/XTaxn17BMJqvuiy2cOE4MczIT8XMblnKDAO2LkGTP0ukhFv6XW06VdLwkoQot/ZFC2TIYCGynUa9yk5RTFYkmGM7FCv8DEsUptAhVlBXZU5XvGlVmRVIAjM0Ncjl1+caLJFaRY6J1vneNkzcQjBGqiBV8l22i5eqpKCWhCjlmUao0C3qf8VKtKplYRd9oEG8d6weQaFSd3ejBrIZyhKI8Xj3Yk3CcruEAekaCsFo4zJ9ERpUS+cwNXN/WidUv7JP+DoR5XPXdV1XDf6VaVePYU2WuFSWhijyBusygRWKuN1tcTEF5YZHPmzjbMAVGhaz+D9stLXfYTBfiVFseF6pgSoU2Cwe7VdutGjeComKNqljNoVxzqtxJ9aayqf2ktVaVXPlPD3GhiqjkWSu24SwPjdBS/Lc8Syl6o+koQI0qM5IcdsmS5WfWJe66ysUqciHfu8bOpGeDEWF2zHsuz6HN1ThkocClEv5HKKP3Gc9CauVG1Uv7usELYgHfqbWJm4A3zm+W2sjZG9uQm91YQWNKhXzlBrLw3+R1YLrwX7YOOUNGFVFsxmTKf9lKY6uR683GvCnDfmVPlfy4yRiR4JvLrqFcVc3Mcf3ynCqtSnty5OF63SNBRKQaVbkt0iRDJTmnKgs1Ql84k6cqVrhRZ/gGyyfxh6OSl09Ufiye4SxP4lWSmU2GeapGi6T+N9Hk1BnlSeedKZOxxR9Dr6w6W4yqoVdRzpW0gWCIUEVZongOkLtx6C+hOlWEOnoX6nFZ9XhO1bpY6N9N5zWntF8eM6pePdSTIOGuVzV2omB0bmCuuaGTSKiCMAvsYW9UkUhGLjcbCwdhNVbUjvvt289Leb1YCb5yVTWfiRWopJwqX0jyCiXvPqdDLtbAJq5J1e6cDdjkcMJscqq01KoaHAvhZCxZeeHk6pz6yJD3lXn5im04y71TVVqEKmL9DUV4TcW1jaZzeOLmVAGp4X/Tkz1VsRDOXMP/8r3hlOKpMlSoIr6JlqtxWErFf4n06FmoJ4f/DYyFsJWF/il8buGUKrRUueALRbHlSJ/0enxDrlrXb5kI5Brlo0Su4b9ss65nJJii/CgnygvY1j6AXX0ctrUPGFLDr1CUVmDzBCYfNaoY2SbiVmXIqWLMbqwAANRXOPD1W+YVNcGXPcTHQhHZg918w79GpqyYTagdw828NaGoVHtMj9chLv6QXfFf8bPp5cGjvIBnd5wEADRXunTnCsa9dHzc+CtyzpzcO6VFqEI+Jn2hKKrcheu/IAgyQ3xi5VSxzSomqd4eW+wlJ13rDf8DgKvnNKLMYU25L5qrXFh16zxdG07Joa5GFv+Vh/9ZLRzuvmwavrvhcEp7NeNQrmZa7M0OwhhyFfFgHuCOQT9CER4v7etClBcwr6VSklyXw3Ecls1rwm+2nsCGfV24fl4TBEEwpBTHRCIbMZJ05Br+W1vugMtuQSAspiYoXWsxT2t/zGiz4rdHdqLFgLmxUJhvVUkowh72+TCqgOxutkzqfwymPHd2YwU+cMFkfR3USblsJ9rMnipWG8gbiEjXPJfwP384Kiv8q8OoYnWqwiynSntB3TIpvyt1AZo4cQJd3gCWPrFJ18QpD1WMS9EX9xrLPcsHuryoq3CmXXA4bBbYrRzCUQG+UKRgxSyjvIBXD/VISoV6VBhLkQqneJ5HY6IqLCxpep2x4X8AsL6tC75QFC2VTvzXRy9A32jQsA2nfORUVcXm+0CYB7MDBUHApoO94nfYrQnCMGrGYSDMg9VMNuOGFpEbuSzUGyqc0sbCqUEf1rWJcuk3L1Sf+2+c34zfbD2Blw90IxLl0THkx7A/DIfVgjnNHtXPEcaTa/gvx3GYXO3G0d4xdAz5U4wqlqeV7JdieVqlUMaAwv9KBJZAbZTynx4yqf8x4oVnc1OeMxLJUxWMmjoEpcptB0sB6ooZHFkZVTLDwojzL3l/YucskEU+WpmK6EK+ip+6ZCIdUuFfW/Gu8fq2Tvx9zxnp7xW/2pG2MCojrlSp7uHberQfz+/pwNaj/bpDI1gB10//Zqf02vXf36yrCG2pUSHLuVSSU2ew8D89nqpntove2TsumY4rzq43VFEu2TNrhPKlx2mL15yL/ewN+7qx68QgXHYLXnnkKkyLCQusXD5HNaRILlhTSpLqhPGIsurivbX31BDefE8M6btpQWo+FeOSmbWoLrNj0BfGjuOD2BvzUp07qRIOk6n4jnf0CJVMrol7KeXku4ZfoaCRWCKwh3i5CXb4qmWeKkFQH+BGeEqMolxS/4uY2qiyWjjJO3Emlt+SU05VyBhPlZ6Cum4FoyqfE6e8r1qLFOcLZjiOJRmUWgzHuAKgsodv6RObcOcv3sKDz+7Bnb94S5OhlqmfRhu4pYYkVBGK4HhM+a8xSU4diOfI5ZpTdbR3FNvaB2DhgI9ePEVHj5XJR04Vx3HSnD8WAcJRHt9ZfxAAcO+VszCp2i159Bo8LlXjkM0DTptlwkuSE8D0WO3E/3rpMCK8gDlNFZjVUKHa3ma14PpzmwCIhYDfianGLpxMIhWFRo9QiZqsup6C0maCjKoSYSyPOVXZwjxVoSifEPaRTHxRX3xPVbmUUyUXqij+uVSiNnZ+mRJbLp4qf5g35PxLYhPh7HOqyhyJBhmQ34lT7qULxPpbjMK/eg1HqVZVML8evvGyM2gE8vBgljyf7KUC4jlVuYb/PRvzUl0zpxEtVcZvNsk9VVYLB7vVGOOFKQD6Ihye29WBY31jqCt34L73zQIg1vMCIOVxKsHmATNuZhGFZX1bJ16PeafYc65jKJBxDmPS6i/s7cCmWM2qBZNzqMJN6CZXoZIpKgWA813Dr1CYc1VJpCAJVZgg/K/MYZXyPgZ9YVXjJB5+VnxPFVuo+oLm9lQBcU9gZy7hf454GBNTcptsQE4Vy4vyZxH+FxeqiHtc8jlxMkEPvyynqhhhRtkYjkq5CEqeqkwGEAfRALphXrNmL4Defo4n5Op/anLqAFAZU3DMJfwvGIniz7s7AAB3XjIt166mRe6pKrMbV06gOva7d/dxaDt2BADw4PWzJSGWhgrRqOobVTeqzCwQRBQOtbyZ0WAkY96MPxQBB6B/LIz+mPrwdzccQpXbbvpcm/FILkIlzFPVMeRLeD3fNfwKBXmqSoS4pHrxH0hiOEhcpU4JnhfQMWSi8D9ZnorZjSomViF5qrLoJzMiTgz4EI4KsFk4NMV2kXPBneRtyqZOlVJOVT4nzkRPlXaPmtHoNRzjhWjz6+EbLzuDRhCvUxWNe6oUlKmYEZFL+N9L+7oxMBZCc6ULV89p0NFbdeSeKqNEWta3deLdDi8A4M0eC7yBCKwWTpqnAG2eKrZJQMp/E5d0m0MMNe/4+rZOPPjsnpTP9o+GJlSostnItm7oZKkAcOJzRW9BabNARlWJkG/1v2zJpADYMxJEOCrAauHQbAIlMan4byhi+vC/Gin8T5x0sglhY0bEke4RAEBLtQs2a+63uVuWowVkl1MleVxkYWz5nDidsr5mE6ZoNHoNRzYufcH8evjGy86gETChitFgWFP4Xy6eKiZQ8dHFU3Tdk+mQe6qM8NIyr0IwklgzLcoL+Lffvy0tZOs1eKqo8C+R6+YQhSqPH1gNxM5hP3jZ9cp3Db9CQUZViSCp/5nEqKrOoADIQv9aqvQt6o2iQhKqKB1PVS6GAdsFPhZLtp9SrS+fzS3LqZLXmXFpqJ0lhf/JcqrYxKn06NM7cSYU/w0VL/xPr+FYLm0A5NfDl2sB1/EIk1QfC0YloQoloypXSfXjfWN482g/OA746MVTdfZWHfkGjN6xn41XQZunqnj3JGEOct0cGi8iBgTQ5BHLioSjAnqS5ovlC1rw1ZvPTfmMloLSZqH4q12NPPbYY7j88stRVlaG6upqxTYnT57EzTffjLKyMjQ2NuKLX/wiIpHcpW/NBKufYhajKu6pUjOqzBP6B8gl1SOS58SsRhUzWBm5CFWEYjvLes+/PKcqGInXmckm/C+5TtXyBS348EWpymd6J854+B+PQKR4QhV6lJEAZU9VPjx8VguHr99c+juDRsAM2UFfCIMx77tyTlXM+ApFEYnyKe8nw+Tvv/WP/QCA982uz6twj7yEgN7wv2wWsuSpIrSQ6+YQhSqPH2xWixS9lJxXBYg1OgHgwqlV+PjsKJ7+5GLVMg1mxBwrdA2EQiF85CMfwZIlS/DLX/4y5f1oNIqbb74Zzc3NePPNN9HZ2YmPf/zjsNvt+Pa3v12EHhvLaCyG3ww5VUA8RE0t/M9MNaqAeE6VLxSVPCdmDf+rLU8s+JqLUcXQe/6VZMrlr6fti0qdKiC++Lrr0qm4ZGadIcVPpZpa4WhcUKNIu+JMGUle4BhQL4wqh4VNjsqMUWao3f/0bsXPCMjNABqOzSsckOCR0NLP8QTbrGKbBo0ep+L84JEJBY0GIykbIHKSC1wDwN7Tw1jf1pm38+pM8FTp21DIZiHLiq8O+sIIR3nYFaITzB52TeQftjnUNRxQjVZoVtgcolDl8cXkGjc6hvw4PejHRdMT33vxXTGk+M5LpsJxph+XGlAUvZCUzOy2evVqAMBTTz2l+P5LL72E/fv34+WXX0ZTUxMuuOACfOtb38LKlSvxzW9+Ew6H+sOvFGDyyh4TqP8BQFXMUzWoalSZzFMly6li8vRm3TGtSVqoZRP+l7w7rUf5D5B7m+J5SnYrp7hoSvlsUj4WIxiJYtsxMUzj7stm4NwWYyRxmVdKbgBmU+PLaHJRRgLkSpWJ540Zap/93W4kpw4snl6T9UK9dySINesOAAC+cvO5WDCpKqt+jieSN6uURCoAwG61wG23wh+OwutXN6rUFM6GfeGMCmd6kHuq9G4oZLOQrXbbYbVwiPIC+kdDKTLLQLwsAwlVTFzkm0PJGznpvOO5GmOEOZlS7cZ2QBIzY7zXM4ojPaOwWzlcO6cBW84Up396MMcK3QC2bt2K8847D01NTdJrN954I+6//37s27cPixYtUvxcMBhEMBgPWfB6RZWjcDiMcDi3WiTZwL4j03eNxHaUndbMbQtBZcxIGRgNKPbn5ICYl9BS6TBFfx2cOBULAjAQ85KY5Vwm43EmGix2hX6qjRv2OxnNHruu32iLHc8fjmLEJ543l92q6Zgs7WosFElov/3YAPzhKOorHDirzmXYNZD6GopKoXMOE1zjxdMqAYiGIx+NgFcv7QYAYPsmo4FQSt/Pm+QBL4iLiDUfnIcIL+Brzx/AzhOD2HGsFxdMrU57bPm4+dYLB+ENRDB/kgd3Xzw5lvuovZ/jDYfNIoXNTq91q46bSpcN/nAUA6N+tFTaU96P8gK++fd9GeTv9+Hq2ZmVsrLFApk32WbRNfYXTfGgudKJbm8wzULWiUVTPIhGI6gvd6B7JIjOwTHUlaUaTqOBUKxfXNHvSaJwJD+rrptTjx/ecT7+c91BdHnja6/mKie+etNcXDenXnF8fPWmOfi3Z/eqGmNfvWnOhJy3SpHmSjFc+FT/WMK1/sdeseTE5bPqEKviYJq5Qms/xo1R1dXVlWBQAZD+7urqUv3cmjVrJC+YnJdeegllZYULXdu4cWPa94dGrQA47HrrDXSYIKLuVDcHwIrDJzqwbt2plPcPd4j9PX1wL9Z17i14/5IRd/bF4d45NAaAw55d2zFypJi9UqbbD8hvzSP727Cu713Ftsnj5tCQeF2kz+55C/0Hcu+LWArEhnBUwPpNmwHYwEXDWLduXcbPst/hHQsktH/hpAWABTNcAbz44ou5dy6Jntj3jfgCONFxBoAF7x3cj3WD+wz7jkLQ3iVew6MnU++tdwfE95rdAtxd7wAALmmwYHuvBSuf2YZ/nx+FWmkiXgCOejl4wxxeeepl/P2kFRwELK8bxEsb1uf3R5UAdlgRii3R/L0nsW7dCeWGEXFue3nzGzhRlWpuHBnm0OVV93C2iVkAACz/SURBVMaIuUhB/OgP6zFb4fN6kM9z/T2dWLeuQ9fxWps5/MrLNnnkA0uAAOCmJh82rBfvYTsvnpcX//kGTtak/q59x8X7vvPUCaxb166rX0TpkfysWjmPzUdApR04q3IM0RO7oHbbAcAnzuHwl+MWDIXiY7HKIeD2GXzGzxLmYSC2ftxz5CTWrTsuvf7cXnEOaYl2Y+NGcd2eaW1cKHy+1PwvJYpqVD366KN44okn0rY5cOAA5s6dm7c+fPnLX8bDDz8s/e31ejF16lQsW7YMlZX5r9QdDoexceNG3HDDDbDbU3c9AUAQBDy87WUAAlqXXWsKiXL7/h48e2wP7BU1aG29NOE9nhfwhe1ifz900zVSsbdi87Xdr2AsFEUgKk7I175vKeZPMl819oGxEL6955/S35cuXoSbFjQntFEbN80nh/CTA9sBiKEWd7x/uS71xWA4iq/sfAUAMH/RJcC7u1HtKUNr65UZP9s5HMC397yGCCxobb1Rev0XT74FwIt/uWohWi+YlHPflL7vsdj3VdbWAIMDuHjR+YZ+RyEI7TmDP7a3obK2Aa2tFyW8d/DlI8Chdlx+7mS0ti4AACwaDmDZf2/BsREethkX4cb5TSnH3LCvG2uSdoYB4H3nNOAzH70wfz+mhPjuwdcxFgtbvvHyC7Fc4TwCwFOnt6H71DDOPf9CLJuX2uaFdzqB/cqbIHJmzb8ArQuNDwH80o6NCEcFnD1zGlpblYVItNIK4MJ93SlehZYqF75609yEsfaXvt04faQPM+YuROtFk1OOtfXv+4HO05g/dzZarzlLV7+I0kHLGkcrrQC+xAvYeWIQPSNBNHqcWDy9ZkKFKo8HKt/rx7PHdiFs96C19QoAYm3Njq1bYLVweOij18Hj4AwbN0bAotgyUVSj6pFHHsE999yTts2sWbM0Hau5uRnbt29PeK27u1t6Tw2n0wmnM7U4qt1uL+iFTPd9gXBUqr9QXe4yxQCrrxQNJW8gktKfruGAVKNqSm2FKSTVATFXRS5TXWWSc5lMfaUNHBdPmi93OVT7mTxuKtzxHI+WKhfcrtwL/wKAzWaDhRN3wL3BuMCHlvNWWSb+gHBUACxW2K0WDIyFsK9TnJyumtNk6PmXf58vJIZxVbjVz51Z8bjFa+YP8yl9bzsj1h9bNK1Wem9avR33XjkLP9z0Hr770mFUlTkx4AtJuVEb93fh357dqxjC9drhPrxyqG/CCFKoEeUFWGQuvhn1HtVxUxXLo/KFBcU2LdXK+VhK7fIxNl02K8LRCMqdxjzDbrlgCm5aOBlb3+vBS69vw7IrL8WSsxtTFrINsc2+QX/qMwEAghFxBHrSzGfE+MWoNZUdwNJzlDc8iNJgen0FAODMcAA2mw0cx+Hlg30AgMtm1aKpulwKtyv0WlwNrX0oqlHV0NCAhgZjKssvWbIEjz32GHp6etDY2AhAdBtWVlZi3jx9u3XFRl5ostwkyknVklBFqqS62WpUMcodVvTK/jarUIXVwqHKbZeUFbNJOHfIzrfHaUOUF3Tt4nEcB7fdirFQFP2jsZwIjf2RJ6T7QlFUuS14470+CAIwt9mDRoM9rvJ+Man/YgpV5IpUpyqYKEUvCALe7RgGAJw/pTrhvX+96iw89eZxnBjw42O/im8uNVc6EYjwGWsN3TCvecLu9iqp9H36tzuw+v3zFY1NT6wAsFelAHAxk+qjvCCFf/aPBnXf/wyrhcOlM2vRf0BQVePKVKuKqf+RUAVBTGxYAWBfKIphfxjVZQ682CaG+5X6Bp95VrwZOHnyJPbs2YOTJ08iGo1iz5492LNnD0ZHRwEAy5Ytw7x58/Cxj30Me/fuxYYNG/C1r30NDzzwgKInqpRgi6tyhxUWkyx8mFE17A+nVDE3m/IfI1nK16xGFQDUylTFtNabWd/Wibv+d5v094GuESx9YhPWt3Xq6gtbBDEDWquR57BapMUXW1C9fkQ0a5eeXa+rT0o4bfHpbDAHg9QslMsKVcs5OeDDkC8Mh9UiSVgzthzpTdh8YXR5g6plDwAqmslU+pLrMfV4g7j/6d2K905lTEmEiQclI69Tlkw+63+tb+vE0ic2ScbeX94+Y8j9r5VMtarMXnSdIIjC4LJbUV8hrnFOD/rRMeTH3lND4Dgohq+XEiVjVH3jG9/AokWLsGrVKoyOjmLRokVYtGgRdu7cCQCwWq1Yu3YtrFYrlixZgrvvvhsf//jH8R//8R9F7rl+RmNGVYVJ5NQBoDoWZiYIgNefuLgwW40qBvMAMMxcL6WmPG5UaTEM2OIwuUJ513BAdXGolbhRFU74OxMcx0kLKF8oCkEQsOWI6OK/8hxjPNTJ38fO1XBsTGYjR28W4jXVEo2kPaeGAADnTqqEQ2ZARnkBq1/Yr+s7J2LRTHbe1FT6ANGLl7xpJHmq/OqF5Zn8vcuW+IjVW+BaDTXj0Ij7XyuZPFXFrh1HEIR5YLn2HUN+rI95qS6eXlvytcbMu6pM4qmnnlKtUcWYPn26JlWyUoMZVWYp/AuI8sMVThtGgxEM+kIJRkApeKocNoupw51qyuLxu5kMg0yLQ1HCOfcQL7YIGhzLzlMFiLvSI4EI/KEojvaO4cxwAA6bBZfMyE89EbfDKtXTAkpzAccM0bGkOlXvnGahf1UJr29vH0hZTGdLqT/IciHTeZN78ZacVSe9XhnT+vWqeKoYyxe0YN6kY9h9cgifuGIGls1rzkv9r3zf/1phO8+ZPFUU/kcQxOQaN/aeHkbHoF/a9Fm+QF3/oFQoGU/VRIaF/3lMZFQB8ryqZE8VM6rM5amqkJ2/cpM/2OUFgDMZBtksDnOBfX//WHY5VUDckPWFotgSC/27eEZN3hZWyeeqFI0qtnnilwnUAMA7p4cApOZT6fEycRBzHydi0Uyt5y25XWXMU6UW/ienN2Zg3HxeC5acZXxdKiD/979WGjN5qsJxoRuCICY2zFP19qkh7DwxCICMKqJAmNFTBcQX/sP+RLGKePif2TxVVtn/m+tcJlMt81S1dQynhCDJyXVxqBVXsqfKoX3aYEaNLxTB6yz0b7bxoX8Mpz2xby576U1x8nHKFqKRKI+2DlE18fypiZ6qXL1M+czvKQW0nrfkdp5YGHa68D9AFBbpicmQs9C4fJDv+18rLKfKG4ggGEmtwMrCWSmniiCIlipxXv3HO2cgCGIExiSTlN/RQ+mtOCYgZjWqJE/VWHzHlucFdAyZM/xPfv7M/GBf39aJZ7fHi75++rc70yac57o41EpZjkIV8s96AxG8dawfQH5EKhjJfdMq8mEmnLLQVOalPtIzCn84igqnDbNicrQMpjanZhZxEO/V5Pp2+crvKRW0nDclL16lO+apCqb3VInGhSjtn8/wynzf/1qpcttht4pns280VRWWwv8IggDENc4PN70HgBUsB471jRVMVCefkFFVAowGzBr+J3qq5LLqPSNBqUaVGYoUy0n0VJnzwc4SzkeS5LTTJZznujjUSopQRRZGFfvsG0f6MBaKoq7cgXkt+Su4nGJU2cx5ndMhF/hgRhUL/VswuTJFAVSuNpc8Btjfj99+Ht549Fo8/cnF+PjsKJ7+5GJsWXnthDWoAG3nTcmLV6nRU9Ub8wx5nLa8GhL5vv+1wnFcXAFQIQTQT+p/BDHhYWuc5LSRkUCkYKI6+YSMqhJgzKSeKiamIJdsNmuNKiDZU2WucwnkrkaW6+JQKyz8j31vNt4ftoB6+YBYiHvp7Pq8lgWQL16tFk7aOS81yh2Jsup7mUjF1GrF9kxtrrlK3RvFag1dVK9ea2iioeW8JVMp1alK76mSQv8q81vSI9/3fzYwoyo5ryoU4RGJzR9ldvPNvQRB5J90axyG0hqnlKDZrQQYMaGkOqDsqTKr8h9gfk9VNgnni6clenvY4jC5iGlzlQurbp2nyyOhR/yBGa9M5CKfoX8A4JR5ptx2KziuNA2HMqeypypZpELO8gUtuGFeM7a3D6BnJIBGjysvanPjjWzPmxT+F4hAEATVMcZEKhrzmE/FyOf9nw0sdyxZAdAvq7lG4X8EMTHRs8YpFcy1SicUYQurihLyVJlN+Q9I9FSZ8cGeXcJ56oSTr0V1sgGajVGVLBxx+Vn5Nark17UURSoYck9VIBzFwc4RAMDCJDn1ZKwWLkH+m9BGNueNCVVEeQG+UFQ1goB5qgolV28Go5rJqid7qnxh8Rlms3AJNdYIgpg46F3jlALmWqUTirB6NeYzqsQH6JC/NDxV5Q6b4v+bBSMSzvOxqE7xVGk0SNe3deKFPWcSXvvwT9/M6865W2ZIlWLhX4aUUxWKYH+nFxFeQF25Q5KhJYqH226FzcIhwgsYCUTUjarYAqIQnipGsY1qNU8ViVQQBGEWUZ18QltGJcCISXOqqhTU/8xaowqIh1QB5ny4myXhPJnkHCotxgpLRh0LJUorpxPcMAK5AVjKRhW7133BKN45NQRA9FKVajjjeILjuLisepq8qp6Yt6YxzzlVZkLKqVIJ/zNj2DVBEIXBrGscIyGjqgQwb/hfzFOVkFNlzhpVQJKnymm+h7uZEs7lZJtTlavghhHIDcBSLPzLYEbVWCiCdzKIVBCFh+VVef1pjKoCh/+ZAclTNZIoqe4LUeFfgpjomHWNYyRkVJUATFLdfEZVzFMVy6nieQFnhsSQFzMaVaVQ/DcXNbJ8k5JTlWG3OZtkVKORS6iXdk4VK5ocxV4NIhVEYWEKgCMBdVl1Fv6Xz8K/ZkPNU8UK/5byRgdBEPox4xrHSMy5siQSiBf/NdcDian/+cNiMv2wP4xQlDdljSogSajCxA93MyScy0kOo8t07rJLRjWWRKEK817jTDCjv2s4gKO9YwAyi1QQhSOr8L8JZFTFPVUU/kcQhDJmW+MYCRlVJQAzqjwmk1SvdNlgtXCI8gKGfGF0DJm3RhWQ6Lno8voR5QXT3sTFTjiXk1JQN4OxUsxkVHlfzWw4Z4JtoGxr7wcATK52o65i4izOzU68VpWypyoQjkperIkU/sc8VSPBCALhqDRXkFAFQRByzLTGMRLzrXyJBARBMG3xX47jUBXLLRjyh0yt/Le+rRO3/fgN6e+fv9aOpU9sKvnq3YUgOVQy08KomMmo40Wogp3zw92jAIALKJ/KVEieKpWcKiYp7rBZUOk217ydTypdNkkyXS6r7guTp4ogiPEPGVUmJyirRG+2nCoAqJYpAJpV+Y8p0XV7E0NS8q1EN15wOxKniUweoGImo8rrYo0HTxWDQv/MhSRUoRL+J5dTn0iKjRzHoUEhrypAQhUEQUwAyKgyOSz0DzBnbSW5AqAZlf+KqUQ3Xkj2+GgRgChWMmqip6p0p7fkxedCEqkwFZmEKuLKfxMvZLNeIa+Kwv8IgpgImG+VTiTAlP/KHVZYTJj/I1cANKOnKhsluvEY32sEKTlVNm0Lo2IkoyYIVZTwAs5tSzQI500qzery45VM4X9xkYqJk0/FaKgQN9rknipfWHyOlZWw95ggCCITZFSZnFGT5lMxmALgoM+cOVXFVKIbL8i9Jk6bJSvjvtDJqAmeKo3Gn9lY39aJrz2/L+G15T94DatunVfycrPjBRb+p+qpYuF/E6jwL0OpVhWp/xEEMREo3fiYCYJU+Ndkyn8MyVM1FkKHCY2qYirRjRcSFPVMvihylVBflWD5f4O+xOKplP9nLjJJqrPwv4YJqNjIFAD7RpXC/8z5HCMIgjACMqpMDvNUmVGkAoh7qg73jJqyRlUxlejGCy5H6Yg/uEpYUp3y/0oHSVJdTf0vZlBMZE+VXP2PPFUEQUwEyKgyOVL4n0l3+Jj6X1vHMADz1agqphLdeMFhtYCdHrMbKonFf80zDrWQTf4fUVyYTHpmoQrzbDAVCmVPlXieStF7TBAEoZXSWnVMQEZNH/4neqoGxsRwJTOF/jGKpUQ3XuA4TsqrMnvtJ4fMoD814Csprw7l/5UO8eK/6YUqGiag+p/kqVII/yNPFUEQ4xlzrtQJiTHTh//ZE/42k/KfnGIo0Y0nXHYrRoMRU+80r2/rxDf/Hhd4+NGrR/Hn3R0lI/BA+X+lAzOqAmEeoQgvFbwFgEiUR//YxA3/kzxV8vC/WPFfs3u6CYIg9ECeKpPDJNXNalQxTxXDjJ4qBlOi+8AFk7HkrDoyqLKAFQA266KICTx0lXCBZ8r/Kx3kkQMjSd6q/rEQBAGwcEBd+cQzqpinaiwUlcL+qE4VQRATATKqTM5oUHwYmVVSPdWoMqenitAHM6bMGP43XgQeKP+vdLBaOGmjy5uUV8XyqeornBPyWpU7rFI+I5NVjwtVmPM5RhAEYQRkVJmc0aC4C+oxaU5VavifeT1VRG5EeUEySMZCEdMZJ+NJ4IHy/0qHShcTq0j0VE3kGlWAmIMZz6sSzwXzWFFOFUEQ4xlzrtQJiTHmqTLpw8hutcBu5RCOigvtlirK9xhPrG/rxOoX9ktGy9aj/Vj6xCZT5SmNN4EHyv8rDTwuOzAcgNef6KliUuITsUYVo77CiVMDfvTGPFVS+J8JPd0EQRBGQZ4qkxNX/7NnaFl41rd1YukTmySDCgD+5WdvlUT+CpEZlqeU7AUyW57SeBR4oPw/8xOXVU/2VE1cOXUGMyh7R4OI8gKCER4AeaoIghjfkFFlcuLFf831MFJbcHd7zbXgJnKjlPKUSOCBKAYeFVn1iR7+BwD1nrgCIFP+AyiniiCI8Q0ZVSaHSaqbSaiilBbcRG6UUp4SCTwQxYDlVCWH/8UL/05co0ruqWL5VBxXegW5CYIgsoFmOJMzYkJJ9VJacBO5UWp5SiTwQBSaSrfoqVIL/2uYwOF/CZ4qWT4Vx9HGBkEQ4xfzrNQJRcZC5jOqSm3BTWRPKeYpkcADUUiYImuypDoTqpjI4X+Jniomp26uEHaCIAijMc9KnUhBEIR48V8TSaqX4oKbyA6Wp9Q1HFAM8+QgeoHMlqfEBB4IIt9UKuRUCYIQN6omcvifR6xf2CczqqjwL0EQ4x0K/zMxwQiPSCwvyUw5VSQMMP6hPCWCSI8kVCHLqRr2hxGKikp3DRPZqKoQN9R6ZeF/ZXbzPMMIgiDyARlVJoYp/wFAuYlUk2jBPTGgPCWCUIdJqss9VSyfqspth9M2cT0z9TFPVSDMSwWAyVNFEMR4xzwrdSIFpvxX5rCazkBhC255YVhAXHCbqTAsoQ/KUyIIZVj434gsp4qU/0TKHDaUOazwhaI42e+PvUZGFUEQ4xsyqkxMvEaVOS8TLbgnBpSnRBCpSEIVfrmnimpUMRo8Tpzo9+HkgA8AGVUEQYx/zLlaJwAgLlJhUqMKoAU3QRATEyVJ9R5JpIJEeuorRKPqVMyocpsohJ0gCCIfUE6ViWFy6mYSqSAIgiDinqqRYAR8TFCIwv/iMFn1EwNjAIAyO3mqCIIY35BRZWLMWPiXIAiCiOdUCQIwGtsAY+F/E1n5j8HEKrpjhiYJVRAEMd4ho8rEjAVFKVryVBEEQZgLl90Kh018hLINsHjhXwr/Y7LqDMqpIghivENGlYkZDYqx+h4TFf4lCIIgRCqTxCqo8G8c5qlikFFFEMR4h4wqEzMqearoYUQQBGE2kmXVmVAFhf/Fc6oYJFRBEMR4h4wqExNX/7MXuScEQRBEMnJZdV8oIpXBIE8VUJ90DshTRRDEeKdkjKrHHnsMl19+OcrKylBdXZ3y/t69e3HnnXdi6tSpcLvdOPfcc/Hf//3fhe+ogYxJdaroYUQQBGE2mKy6NxCWlP/cdiuJCyHVU0VGFUEQ452SmflDoRA+8pGPYMmSJfjlL3+Z8v6uXbvQ2NiIp59+GlOnTsWbb76J++67D1arFZ/73OeK0GP9mL34L0EQxERGklUPROI1qiqd4DgqgJ4cAukmSXWCIMY5JbNaX716NQDgqaeeUnz/k5/8ZMLfs2bNwtatW/GXv/yl5I0qUv8jCIIwHyynyusPS3LqFPon4rJb4XHaMBJ7jpGkOkEQ451xvVofHh5GbW1t2jbBYBDBYFD62+v1AgDC4TDC4XBe+8e+R/5fOaMB8TWXjStIX4jSId24IQg1aNwYS7lDjKAf8gXRNSR6p+rLHePy/OYyduoqHJJR5bDQuJuI0JxD5ILZxo3Wfoxbo+rNN9/EH/7wB/zjH/9I227NmjWSF0zOSy+9hLKysnx1L4WNGzemvHamzwqAw/69u8GfEArWF6J0UBo3BJEJGjfG0HmaA2DF/iPtOGEDAAvG+juxbl1HkXuWP7IZO9aQ+AwDgF3b3kRXW546RZgemnOIXDDLuPH5fJraFdWoevTRR/HEE0+kbXPgwAHMnTs3q+O2tbXhAx/4AFatWoVly5albfvlL38ZDz/8sPS31+vF1KlTsWzZMlRWVmb1vbkQDoexceNG3HDDDbDbE1X+vnvgNcAXwDVXLsGiqdV57wtROqQbNwShBo0bY+l/6yTWnTqIqoYWMbztzBlcct4ctL5vZrG7Zji5jJ0XvXtxdF83AGDZtVdjel3hNioJc0BzDpELZhs3LIotE0U1qh555BHcc889advMmjUrq2Pu378f1113He677z587Wtfy9je6XTC6UyNgbfb7QW9kErfNxoS61TVlLtMMagI81HocUqMD2jcGEN1ufjsGAtFMRabr5ury8b1uc1m7MjFKo70+jCzsRJWC4l4TERoziFywSzjRmsfimpUNTQ0oKGhwbDj7du3D9deey1WrFiBxx57zLDjFgNBECRJdRKqIAiCMB9yoYpghAdAhX8Z69s68de3z0h/3/+73WipcmHVrfOwfEFLEXtGEASRH0qmTtXJkyexZ88enDx5EtFoFHv27MGePXswOjoKQAz5u+aaa7Bs2TI8/PDD6OrqQldXF3p7e4vc89zwhaIIR8U8qgOdXkR5yqkiCIIwE6xOVYKkOhlVWN/Wifuf3i0p2DK6hgO4/+ndWN/WWaSeEQRB5I+SMaq+8Y1vYNGiRVi1ahVGR0exaNEiLFq0CDt37gQA/OlPf0Jvby+efvpptLS0SP8uvvjiIvc8e9a3deKa//qn9PenfrMTS5/YRA8igiAIE8HqVPWPhTAwFgJARlWUF7D6hf1Q2gZkr61+YT9tFBIEMe4oGaPqqaeegiAIKf+uvvpqAMA3v/lNxfePHz9e1H5nC9vhY7ueDNrhIwiCMBfMUzXsF+V2bRYONWWOYnap6GxvH0DncED1fQFA53AA29sHCtcpgiCIAlAyRtVEgHb4CIIgSgfmqWI0eJywTHAhBlYE2ah2BEEQpQIZVSaCdvgIgiBKhwqHDZzMhprooX8A0OhxGdqOIAiiVCCjykTQDh9BEETpYLFw8MjUWRvIUMAlM2vRUuWCmr+OA9BS5cIlM2sL2S2CIIi8Q0aViaAdPoIgiNLC44rXL2msJE+V1cJh1a3zACDFsGJ/r7p1HtWrIghi3EFGlYmgHT6CIIjSgolVAEBDBRlVALB8QQuevPtCNFclbgA2V7nw5N0XUp0qgiDGJVRV1kSwHb77n94NDkgQrKAdPoIgCPMhF6sgT1Wc5QtacMO8ZmxvH0DPSACNHnFDkJ5fBEGMV8ioMhlsh2/1C/sTRCuaqRI9QRCE6aiUh/9RaHYCVguHJWfVFbsbBEEQBYGMKhNCO3wEQRClgcdllf6/2xtAlBdoriYIgpiAkFFlUmiHjyAIwtysb+vEhn3d0t9f+1sbfvzqexRVQBAEMQEhoQqCIAiCyJL1bZ24/+nd8IWiCa93DQdw/9O7sb6ts0g9IwiCIIoBGVUEQRAEkQVRXsDqF/YniAkx2GurX9iPKK/UgiAIghiPkFFFEARBEFmwvX0gQUgoGQFA53AA29sHCtcpgiAIoqiQUUUQBEEQWdAzom5Q5dKOIAiCKH3IqCIIgiCILNAqnU4S6wRBEBMHMqoIgiAIIgsumVmLlioX1ITTOQAtVWIpDIIgCGJiQEYVQRAEQWSB1cJh1a3zACDFsGJ/r7p1HtWrIgiCmECQUUUQBEEQWbJ8QQuevPtCNFclhvg1V7nw5N0XUp0qgiCICQYV/yUIgiCIHFi+oAU3zGvG9vYB9IwE0OgRQ/7IQ0UQBDHxIKOKIAiCIHLEauGw5Ky6YneDIAiCKDIU/kcQBEEQBEEQBKEDMqoIgiAIgiAIgiB0QEYVQRAEQRAEQRCEDsioIgiCIAiCIAiC0AEZVQRBEARBEARBEDogo4ogCIIgCIIgCEIHZFQRBEEQBEEQBEHogIwqgiAIgiAIgiAIHZBRRRAEQRAEQRAEoQMyqgiCIAiCIAiCIHRgK3YHzIYgCAAAr9dbkO8Lh8Pw+Xzwer2w2+0F+U6i9KFxQ+QCjRsiV2jsELlA44bIBbONG2YTMBtBDTKqkhgZGQEATJ06tcg9IQiCIAiCIAjCDIyMjKCqqkr1fU7IZHZNMHiex5kzZ+DxeMBxXN6/z+v1YurUqTh16hQqKyvz/n3E+IDGDZELNG6IXKGxQ+QCjRsiF8w2bgRBwMjICCZNmgSLRT1zijxVSVgsFkyZMqXg31tZWWmKgUOUFjRuiFygcUPkCo0dIhdo3BC5YKZxk85DxSChCoIgCIIgCIIgCB2QUUUQBEEQBEEQBKEDMqqKjNPpxKpVq+B0OovdFaKEoHFD5AKNGyJXaOwQuUDjhsiFUh03JFRBEARBEARBEAShA/JUEQRBEARBEARB6ICMKoIgCIIgCIIgCB2QUUUQBEEQBEEQBKEDMqoIgiAIgiAIgiB0QEZVEfnxj3+MGTNmwOVy4dJLL8X27duL3SXCRKxZswYXX3wxPB4PGhsbcdttt+HQoUMJbQKBAB544AHU1dWhoqICH/rQh9Dd3V2kHhNm5PHHHwfHcfj85z8vvUbjhlCjo6MDd999N+rq6uB2u3Heeedh586d0vuCIOAb3/gGWlpa4Ha7cf311+PIkSNF7DFRbKLRKL7+9a9j5syZcLvdOOuss/Ctb30Lch00GjcEALz22mu49dZbMWnSJHAch7/97W8J72sZJwMDA7jrrrtQWVmJ6upqfOpTn8Lo6GgBf4U6ZFQViT/84Q94+OGHsWrVKuzevRvnn38+brzxRvT09BS7a4RJ2Lx5Mx544AG89dZb2LhxI8LhMJYtW4axsTGpzUMPPYQXXngBf/zjH7F582acOXMGt99+exF7TZiJHTt24Gc/+xkWLlyY8DqNG0KJwcFBXHHFFbDb7XjxxRexf/9+fO9730NNTY3U5jvf+Q7+53/+Bz/96U+xbds2lJeX48Ybb0QgEChiz4li8sQTT+DJJ5/Ej370Ixw4cABPPPEEvvOd7+CHP/yh1IbGDQEAY2NjOP/88/HjH/9Y8X0t4+Suu+7Cvn37sHHjRqxduxavvfYa7rvvvkL9hPQIRFG45JJLhAceeED6OxqNCpMmTRLWrFlTxF4RZqanp0cAIGzevFkQBEEYGhoS7Ha78Mc//lFqc+DAAQGAsHXr1mJ1kzAJIyMjwuzZs4WNGzcKV111lfDggw8KgkDjhlBn5cqVwtKlS1Xf53leaG5uFr773e9Krw0NDQlOp1N45plnCtFFwoTcfPPNwic/+cmE126//XbhrrvuEgSBxg2hDADhr3/9q/S3lnGyf/9+AYCwY8cOqc2LL74ocBwndHR0FKzvapCnqgiEQiHs2rUL119/vfSaxWLB9ddfj61btxaxZ4SZGR4eBgDU1tYCAHbt2oVwOJwwjubOnYtp06bROCLwwAMP4Oabb04YHwCNG0Kdv//971i8eDE+8pGPoLGxEYsWLcIvfvEL6f329nZ0dXUljJ2qqipceumlNHYmMJdffjleeeUVHD58GACwd+9ebNmyBTfddBMAGjeENrSMk61bt6K6uhqLFy+W2lx//fWwWCzYtm1bwfucjK3YHZiI9PX1IRqNoqmpKeH1pqYmHDx4sEi9IswMz/P4/Oc/jyuuuAILFiwAAHR1dcHhcKC6ujqhbVNTE7q6uorQS8IsPPvss9i9ezd27NiR8h6NG0KNY8eO4cknn8TDDz+Mr3zlK9ixYwf+/d//HQ6HAytWrJDGh9Kzi8bOxOXRRx+F1+vF3LlzYbVaEY1G8dhjj+Guu+4CABo3hCa0jJOuri40NjYmvG+z2VBbW2uKsURGFUGUAA888ADa2tqwZcuWYneFMDmnTp3Cgw8+iI0bN8LlchW7O0QJwfM8Fi9ejG9/+9sAgEWLFqGtrQ0//elPsWLFiiL3jjArzz33HH73u9/h97//PebPn489e/bg85//PCZNmkTjhphQUPhfEaivr4fVak1R2+ru7kZzc3ORekWYlc997nNYu3YtXn31VUyZMkV6vbm5GaFQCENDQwntaRxNbHbt2oWenh5ceOGFsNlssNls2Lx5M/7nf/4HNpsNTU1NNG4IRVpaWjBv3ryE184991ycPHkSAKTxQc8uQs4Xv/hFPProo7jjjjtw3nnn4WMf+xgeeughrFmzBgCNG0IbWsZJc3NziqBbJBLBwMCAKcYSGVVFwOFw4KKLLsIrr7wivcbzPF555RUsWbKkiD0jzIQgCPjc5z6Hv/71r9i0aRNmzpyZ8P5FF10Eu92eMI4OHTqEkydP0jiawFx33XV49913sWfPHunf4sWLcdddd0n/T+OGUOKKK65IKdtw+PBhTJ8+HQAwc+ZMNDc3J4wdr9eLbdu20diZwPh8PlgsictJq9UKnucB0LghtKFlnCxZsgRDQ0PYtWuX1GbTpk3geR6XXnppwfucQrGVMiYqzz77rOB0OoWnnnpK2L9/v3DfffcJ1dXVQldXV7G7RpiE+++/X6iqqhL++c9/Cp2dndI/n88ntfnMZz4jTJs2Tdi0aZOwc+dOYcmSJcKSJUuK2GvCjMjV/wSBxg2hzPbt2wWbzSY89thjwpEjR4Tf/e53QllZmfD0009LbR5//HGhurpaeP7554V33nlH+MAHPiDMnDlT8Pv9Rew5UUxWrFghTJ48WVi7dq3Q3t4u/OUvfxHq6+uFL33pS1IbGjeEIIiqtG+//bbw9ttvCwCE73//+8Lbb78tnDhxQhAEbeNk+fLlwqJFi4Rt27YJW7ZsEWbPni3ceeedxfpJCZBRVUR++MMfCtOmTRMcDodwySWXCG+99Vaxu0SYCACK/379619Lbfx+v/DZz35WqKmpEcrKyoQPfvCDQmdnZ/E6TZiSZKOKxg2hxgsvvCAsWLBAcDqdwty5c4Wf//znCe/zPC98/etfF5qamgSn0ylcd911wqFDh4rUW8IMeL1e4cEHHxSmTZsmuFwuYdasWcJXv/pVIRgMSm1o3BCCIAivvvqq4rpmxYoVgiBoGyf9/f3CnXfeKVRUVAiVlZXCJz7xCWFkZKQIvyYVThBkJa8JgiAIgiAIgiCIrKCcKoIgCIIgCIIgCB2QUUUQBEEQBEEQBKEDMqoIgiAIgiAIgiB0QEYVQRAEQRAEQRCEDsioIgiCIAiCIAiC0AEZVQRBEARBEARBEDogo4ogCIIgCIIgCEIHZFQRBEEQBEEQBEHogIwqgiAIYkJx/PhxcByHPXv25O077rnnHtx22215Oz5BEARhLsioIgiCIEqKe+65BxzHpfxbvny5ps9PnToVnZ2dWLBgQZ57ShAEQUwUbMXuAEEQBEFky/Lly/HrX/864TWn06nps1arFc3NzfnoFkEQBDFBIU8VQRAEUXI4nU40Nzcn/KupqQEAcByHJ598EjfddBPcbjdmzZqFP/3pT9Jnk8P/BgcHcdddd6GhoQFutxuzZ89OMNjeffddXHvttXC73airq8N9992H0dFR6f1oNIqHH34Y1dXVqKurw5e+9CUIgpDQX57nsWbNGsycORNutxvnn39+Qp8IgiCI0oaMKoIgCGLc8fWvfx0f+tCHsHfvXtx111244447cODAAdW2+/fvx4svvogDBw7gySefRH19PQBgbGwMN954I2pqarBjxw788Y9/xMsvv4zPfe5z0ue/973v4amnnsKvfvUrbNmyBQMDA/jrX/+a8B1r1qzBb3/7W/z0pz/Fvn378NBDD+Huu+/G5s2b83cSCIIgiILBCcnbaQRBEARhYu655x48/fTTcLlcCa9/5StfwVe+8hVwHIfPfOYzePLJJ6X3LrvsMlx44YX4yU9+guPHj2PmzJl4++23ccEFF+D9738/6uvr8atf/Srlu37xi19g5cqVOHXqFMrLywEA69atw6233oozZ86gqakJkyZNwkMPPYQvfvGLAIBIJIKZM2fioosuwt/+9jcEg0HU1tbi5ZdfxpIlS6Rjf/rTn4bP58Pvf//7fJwmgiAIooBQThVBEARRclxzzTUJRhMA1NbWSv8vN17Y32pqf/fffz8+9KEPYffu3Vi2bBluu+02XH755QCAAwcO4Pzzz5cMKgC44oorwPM8Dh06BJfLhc7OTlx66aXS+zabDYsXL5ZCAN977z34fD7ccMMNCd8bCoWwaNGi7H88QRAEYTrIqCIIgiBKjvLycpx99tmGHOumm27CiRMnsG7dOmzcuBHXXXcdHnjgAfzXf/2XIcdn+Vf/+Mc/MHny5IT3tIprEARBEOaGcqoIgiCIccdbb72V8ve5556r2r6hoQErVqzA008/jR/84Af4+c9/DgA499xzsXfvXoyNjUlt33jjDVgsFsyZMwdVVVVoaWnBtm3bpPcjkQh27dol/T1v3jw4nU6cPHkSZ599dsK/qVOnGvWTCYIgiCJCniqCIAii5AgGg+jq6kp4zWazSQITf/zjH7F48WIsXboUv/vd77B9+3b88pe/VDzWN77xDVx00UWYP38+gsEg1q5dKxlgd911F1atWoUVK1bgm9/8Jnp7e/Fv//Zv+NjHPoampiYAwIMPPojHH38cs2fPxty5c/H9738fQ0ND0vE9Hg++8IUv4KGHHgLP81i6dCmGh4fxxhtvoLKyEitWrMjDGSIIgiAKCRlVBEEQRMmxfv16tLS0JLw2Z84cHDx4EACwevVqPPvss/jsZz+LlpYWPPPMM5g3b57isRwOB7785S/j+PHjcLvduPLKK/Hss88CAMrKyrBhwwY8+OCDuPjii1FWVoYPfehD+P73vy99/pFHHkFnZydWrFgBi8WCT37yk/jgBz+I4eFhqc23vvUtNDQ0YM2aNTh27Biqq6tx4YUX4itf+YrRp4YgCIIoAqT+RxAEQYwrOI7DX//6V9x2223F7gpBEAQxQaCcKoIgCIIgCIIgCB2QUUUQBEEQBEEQBKEDyqkiCIIgxhUU1U4QBEEUGvJUEQRBEARBEARB6ICMKoIgCIIgCIIgCB2QUUUQBEEQBEEQBKEDMqoIgiAIgiAIgiB0QEYVQRAEQRAEQRCEDsioIgiCIAiCIAiC0AEZVQRBEARBEARBEDogo4ogCIIgCIIgCEIH/x8ihMGLbmxFkQAAAABJRU5ErkJggg==\n"
           },
           "metadata": {}
         },
@@ -3554,7 +3217,7 @@
               "<IPython.core.display.HTML object>"
             ],
             "text/html": [
-              "<br>    <style><br>        .wandb-row {<br>            display: flex;<br>            flex-direction: row;<br>            flex-wrap: wrap;<br>            justify-content: flex-start;<br>            width: 100%;<br>        }<br>        .wandb-col {<br>            display: flex;<br>            flex-direction: column;<br>            flex-basis: 100%;<br>            flex: 1;<br>            padding: 10px;<br>        }<br>    </style><br><div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>Episode Reward</td><td>█▆▂▄▆▆▃▄▅▅█▅▅▃▅▄▇▁▇▅▄▃▅▇▄▄▇▃▆▄▄▄▇▇▂▆▆▂▃▂</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>Episode Reward</td><td>-0.22274</td></tr></table><br/></div></div>"
+              "<br>    <style><br>        .wandb-row {<br>            display: flex;<br>            flex-direction: row;<br>            flex-wrap: wrap;<br>            justify-content: flex-start;<br>            width: 100%;<br>        }<br>        .wandb-col {<br>            display: flex;<br>            flex-direction: column;<br>            flex-basis: 100%;<br>            flex: 1;<br>            padding: 10px;<br>        }<br>    </style><br><div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>Episode Reward</td><td>▃▂▃█▅▆▁▃▂▃▅▄▅▄▁▁▃▃▅▃▅▁▂▆▁▄▄▄▂▃▄▄▂▃▂▃▄▅▂▂</td></tr><tr><td>Truncation Reward</td><td>▄▃▄▄▆▆▇▇▇▅▆▆▂▄▇▆▃▃▂▂▇▄▇▇█▁▆▅▆▅▄▅▆▅▃▄▃▄▅▃</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>Episode Reward</td><td>-9.68712</td></tr><tr><td>Truncation Reward</td><td>-9.68712</td></tr></table><br/></div></div>"
             ]
           },
           "metadata": {}
@@ -3566,7 +3229,7 @@
               "<IPython.core.display.HTML object>"
             ],
             "text/html": [
-              " View run <strong style=\"color:#cdcd00\">evaluation</strong> at: <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/t9lvsavx' target=\"_blank\">https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/t9lvsavx</a><br> View project at: <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym' target=\"_blank\">https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym</a><br>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
+              " View run <strong style=\"color:#cdcd00\">evaluation</strong> at: <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/s26hyj9k' target=\"_blank\">https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym/runs/s26hyj9k</a><br> View project at: <a href='https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym' target=\"_blank\">https://wandb.ai/benyahiamohammedoussama-ecole-central-lyon/panda-gym</a><br>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
             ]
           },
           "metadata": {}
@@ -3578,12 +3241,21 @@
               "<IPython.core.display.HTML object>"
             ],
             "text/html": [
-              "Find logs at: <code>./wandb/run-20250212_164242-t9lvsavx/logs</code>"
+              "Find logs at: <code>./wandb/run-20250222_123531-s26hyj9k/logs</code>"
             ]
           },
           "metadata": {}
         }
       ]
+    },
+    {
+      "cell_type": "code",
+      "source": [],
+      "metadata": {
+        "id": "JDD8rSI4pGvD"
+      },
+      "execution_count": null,
+      "outputs": []
     }
   ]
 }
\ No newline at end of file
-- 
GitLab