From a12812a436777b24f648ef9b84b11e463e385282 Mon Sep 17 00:00:00 2001 From: number_cruncher <lennart.oestreich@stud.tu-darmstadt.de> Date: Sun, 16 Mar 2025 19:09:27 +0100 Subject: [PATCH] graphic --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 92e7ade..bedab60 100644 --- a/README.md +++ b/README.md @@ -12,7 +12,7 @@ The REINFORCE algorithm (also known as Vanilla Policy Gradient) is a policy grad > 🛠**To be handed in** > Use PyTorch to implement REINFORCE and solve the CartPole environement. Share the code in `reinforce_cartpole.py`, and share a plot showing the total reward accross episodes in the `README.md`. Also, share a file `reinforce_cartpole.pth` containing the learned weights. For saving and loading PyTorch models, check [this tutorial](https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-model-for-inference) - + ## Model Evaluation -- GitLab