From cf917864831ef0d8f73b9aeafe5201b0be3a106a Mon Sep 17 00:00:00 2001 From: number_cruncher <lennart.oestreich@stud.tu-darmstadt.de> Date: Tue, 8 Apr 2025 18:38:31 +0200 Subject: [PATCH] after str --- BE2_GAN_and_Diffusion_colab_3.ipynb | 11 +++-------- 1 file changed, 3 insertions(+), 8 deletions(-) diff --git a/BE2_GAN_and_Diffusion_colab_3.ipynb b/BE2_GAN_and_Diffusion_colab_3.ipynb index f4a2eee..6d75e77 100644 --- a/BE2_GAN_and_Diffusion_colab_3.ipynb +++ b/BE2_GAN_and_Diffusion_colab_3.ipynb @@ -44738,16 +44738,11 @@ "source": [ "<font color='red'>Question</font> \n", "What are the differences between the UNet used for the cGAN generator and the one defined above ? \n", - "Indicate the differences in the architecture by analyzing both models \\_\\_str\\_\\_." + "Indicate the differences in the architecture by analyzing both models \\_\\_str\\_\\_.\n", + "\n", + "The UNet2DModel uses a 1 channel input and the UNet from before a 3 channels input. Furthermore UNet2dModel uses a conditioning on time steps as it is necessary for diffusion. Also it uses SiLu activations instead of LeakyRelu/Relu/tanh. On top of that UNet2dModel uses GroupNorm and the other model uses BatchNorm2d " ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": { -- GitLab