From cf917864831ef0d8f73b9aeafe5201b0be3a106a Mon Sep 17 00:00:00 2001
From: number_cruncher <lennart.oestreich@stud.tu-darmstadt.de>
Date: Tue, 8 Apr 2025 18:38:31 +0200
Subject: [PATCH] after str

---
 BE2_GAN_and_Diffusion_colab_3.ipynb | 11 +++--------
 1 file changed, 3 insertions(+), 8 deletions(-)

diff --git a/BE2_GAN_and_Diffusion_colab_3.ipynb b/BE2_GAN_and_Diffusion_colab_3.ipynb
index f4a2eee..6d75e77 100644
--- a/BE2_GAN_and_Diffusion_colab_3.ipynb
+++ b/BE2_GAN_and_Diffusion_colab_3.ipynb
@@ -44738,16 +44738,11 @@
       "source": [
         "<font color='red'>Question</font>  \n",
         "What are the differences between the UNet used for the cGAN generator and the one defined above ?  \n",
-        "Indicate the differences in the architecture by analyzing both models \\_\\_str\\_\\_."
+        "Indicate the differences in the architecture by analyzing both models \\_\\_str\\_\\_.\n",
+        "\n",
+        "The UNet2DModel uses a 1 channel input and the UNet from before a 3 channels input. Furthermore UNet2dModel uses a conditioning on time steps as it is necessary for diffusion. Also it uses SiLu activations instead of LeakyRelu/Relu/tanh. On top of that UNet2dModel uses GroupNorm and the other model uses BatchNorm2d "
       ]
     },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {},
-      "outputs": [],
-      "source": []
-    },
     {
       "cell_type": "markdown",
       "metadata": {
-- 
GitLab