From af5f1bd37a6847ea65db0f6283b89984ad950b47 Mon Sep 17 00:00:00 2001
From: Majdi Karim <karim.majdi@etu.ec-lyon.fr>
Date: Tue, 19 Mar 2024 23:43:51 +0000
Subject: [PATCH] Upload New File

---
 RL_cartepole__3_.ipynb | 12825 +++++++++++++++++++++++++++++++++++++++
 1 file changed, 12825 insertions(+)
 create mode 100644 RL_cartepole__3_.ipynb

diff --git a/RL_cartepole__3_.ipynb b/RL_cartepole__3_.ipynb
new file mode 100644
index 0000000..53618f6
--- /dev/null
+++ b/RL_cartepole__3_.ipynb
@@ -0,0 +1,12825 @@
+{
+  "nbformat": 4,
+  "nbformat_minor": 0,
+  "metadata": {
+    "colab": {
+      "provenance": [],
+      "gpuType": "T4"
+    },
+    "kernelspec": {
+      "name": "python3",
+      "display_name": "Python 3"
+    },
+    "language_info": {
+      "name": "python"
+    },
+    "accelerator": "GPU",
+    "widgets": {
+      "application/vnd.jupyter.widget-state+json": {
+        "3bf20325eeb94361964c8a1620c38727": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_0fdb788454a34aa9bc545568ed8afad7",
+              "IPY_MODEL_c61ff44a39204ce88d3a43c02388b6e6",
+              "IPY_MODEL_e650459cdbdc425ca554d4f66c3d6d40"
+            ],
+            "layout": "IPY_MODEL_9ff1bdcd30904e669984f48e4a93ae0c"
+          }
+        },
+        "0fdb788454a34aa9bc545568ed8afad7": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_69ece13913d844ca8e7209cc125e2d7b",
+            "placeholder": "​",
+            "style": "IPY_MODEL_3525ebe3a5944b278adff0cd7c59a5d7",
+            "value": "ECL-TD-RL1-a2c_cartpole.zip: 100%"
+          }
+        },
+        "c61ff44a39204ce88d3a43c02388b6e6": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_656ba980bd9247f0b9f9c4ecf8b1e4a7",
+            "max": 98147,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_572fe508383646baaf82b2349366c671",
+            "value": 98147
+          }
+        },
+        "e650459cdbdc425ca554d4f66c3d6d40": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_c9f0b1c6f1a74c238ccb347bee20b397",
+            "placeholder": "​",
+            "style": "IPY_MODEL_9d8e4e68afed4d90a59c4293cd4a6b9d",
+            "value": " 98.1k/98.1k [00:00&lt;00:00, 155kB/s]"
+          }
+        },
+        "9ff1bdcd30904e669984f48e4a93ae0c": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "69ece13913d844ca8e7209cc125e2d7b": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "3525ebe3a5944b278adff0cd7c59a5d7": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "656ba980bd9247f0b9f9c4ecf8b1e4a7": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "572fe508383646baaf82b2349366c671": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "c9f0b1c6f1a74c238ccb347bee20b397": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "9d8e4e68afed4d90a59c4293cd4a6b9d": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "c14a53fd35174f3ba632a22e3c9dda47": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "VBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "VBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "VBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_02913ffc7b024793ab252e74c0427aa9",
+              "IPY_MODEL_53f02b9c14564874baecde3983423440"
+            ],
+            "layout": "IPY_MODEL_83c1d52aef7d421db0657103710bcd06"
+          }
+        },
+        "02913ffc7b024793ab252e74c0427aa9": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "LabelModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "LabelModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "LabelView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_9346924fc0d14e10924684c0ab74891c",
+            "placeholder": "​",
+            "style": "IPY_MODEL_4cf73107b2a74863a612244964f0fc04",
+            "value": "1.097 MB of 1.097 MB uploaded (0.008 MB deduped)\r"
+          }
+        },
+        "53f02b9c14564874baecde3983423440": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_c056c0b446134ae69bdc93bd93f3af13",
+            "max": 1,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_3d54d2c162b34319bfd1428fb18fd181",
+            "value": 1
+          }
+        },
+        "83c1d52aef7d421db0657103710bcd06": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "9346924fc0d14e10924684c0ab74891c": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "4cf73107b2a74863a612244964f0fc04": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "c056c0b446134ae69bdc93bd93f3af13": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "3d54d2c162b34319bfd1428fb18fd181": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "a47211d565fb45fe95b30b99885c4dbd": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_df1580d505af40828061a4c042546f76",
+              "IPY_MODEL_4627448bbe6d40178e356623c281803f",
+              "IPY_MODEL_92339b2faa4b47c69b5457aa9631edf7"
+            ],
+            "layout": "IPY_MODEL_a337aa65ec8b498f87cb74caa342a6a3"
+          }
+        },
+        "df1580d505af40828061a4c042546f76": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_c1fbb5d26065440aa5eeee238d0d1d38",
+            "placeholder": "​",
+            "style": "IPY_MODEL_0447228f33a344cd91a2e18cc73cd63e",
+            "value": "ECL-TD-RL1-a2c_panda_reach.zip: 100%"
+          }
+        },
+        "4627448bbe6d40178e356623c281803f": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_4657c6ea689f494a9254c69d2a08dd4e",
+            "max": 110009,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_ef2b6851a3784430949ecf77410e3386",
+            "value": 110009
+          }
+        },
+        "92339b2faa4b47c69b5457aa9631edf7": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_178580de1f0b4840825b70ffebaf00c2",
+            "placeholder": "​",
+            "style": "IPY_MODEL_6aeac63ed6e840c59814923109a66f58",
+            "value": " 110k/110k [00:00&lt;00:00, 103kB/s]"
+          }
+        },
+        "a337aa65ec8b498f87cb74caa342a6a3": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "c1fbb5d26065440aa5eeee238d0d1d38": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "0447228f33a344cd91a2e18cc73cd63e": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "4657c6ea689f494a9254c69d2a08dd4e": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "ef2b6851a3784430949ecf77410e3386": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "178580de1f0b4840825b70ffebaf00c2": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "6aeac63ed6e840c59814923109a66f58": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        }
+      }
+    }
+  },
+  "cells": [
+    {
+      "cell_type": "code",
+      "source": [
+        "!pip install gymnasium\n",
+        "!pip install pyglet==2.0.10\n",
+        "!pip install pygame==2.5.2\n",
+        "!pip install PyQt5\n",
+        "!pip install huggingface-sb3==2.3.1\n",
+        "!pip install wandb tensorboard\n",
+        "!apt-get update && apt-get install ffmpeg freeglut3-dev xvfb  # For visualization\n",
+        "!pip install \"stable-baselines3[extra]>=2.0.0a4\"\n",
+        "!pip install panda-gym\n",
+        "\n"
+      ],
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "vg3Sp873bVEU",
+        "outputId": "ee2c5cc7-8596-4492-d8b6-8bd3bff265b3"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Collecting gymnasium\n",
+            "  Downloading gymnasium-0.29.1-py3-none-any.whl (953 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m953.9/953.9 kB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-packages (from gymnasium) (1.25.2)\n",
+            "Requirement already satisfied: cloudpickle>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from gymnasium) (2.2.1)\n",
+            "Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/python3.10/dist-packages (from gymnasium) (4.10.0)\n",
+            "Collecting farama-notifications>=0.0.1 (from gymnasium)\n",
+            "  Downloading Farama_Notifications-0.0.4-py3-none-any.whl (2.5 kB)\n",
+            "Installing collected packages: farama-notifications, gymnasium\n",
+            "Successfully installed farama-notifications-0.0.4 gymnasium-0.29.1\n",
+            "Collecting pyglet==2.0.10\n",
+            "  Downloading pyglet-2.0.10-py3-none-any.whl (858 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m858.3/858.3 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hInstalling collected packages: pyglet\n",
+            "Successfully installed pyglet-2.0.10\n",
+            "Requirement already satisfied: pygame==2.5.2 in /usr/local/lib/python3.10/dist-packages (2.5.2)\n",
+            "Collecting PyQt5\n",
+            "  Downloading PyQt5-5.15.10-cp37-abi3-manylinux_2_17_x86_64.whl (8.2 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.2/8.2 MB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting PyQt5-sip<13,>=12.13 (from PyQt5)\n",
+            "  Downloading PyQt5_sip-12.13.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.whl (338 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m338.1/338.1 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting PyQt5-Qt5>=5.15.2 (from PyQt5)\n",
+            "  Downloading PyQt5_Qt5-5.15.2-py3-none-manylinux2014_x86_64.whl (59.9 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.9/59.9 MB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hInstalling collected packages: PyQt5-Qt5, PyQt5-sip, PyQt5\n",
+            "Successfully installed PyQt5-5.15.10 PyQt5-Qt5-5.15.2 PyQt5-sip-12.13.0\n",
+            "Collecting huggingface-sb3==2.3.1\n",
+            "  Downloading huggingface_sb3-2.3.1-py3-none-any.whl (9.5 kB)\n",
+            "Requirement already satisfied: huggingface-hub~=0.8 in /usr/local/lib/python3.10/dist-packages (from huggingface-sb3==2.3.1) (0.20.3)\n",
+            "Requirement already satisfied: pyyaml~=6.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-sb3==2.3.1) (6.0.1)\n",
+            "Requirement already satisfied: wasabi in /usr/local/lib/python3.10/dist-packages (from huggingface-sb3==2.3.1) (1.1.2)\n",
+            "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from huggingface-sb3==2.3.1) (1.25.2)\n",
+            "Requirement already satisfied: cloudpickle>=1.6 in /usr/local/lib/python3.10/dist-packages (from huggingface-sb3==2.3.1) (2.2.1)\n",
+            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub~=0.8->huggingface-sb3==2.3.1) (3.13.1)\n",
+            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub~=0.8->huggingface-sb3==2.3.1) (2023.6.0)\n",
+            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub~=0.8->huggingface-sb3==2.3.1) (2.31.0)\n",
+            "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub~=0.8->huggingface-sb3==2.3.1) (4.66.2)\n",
+            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub~=0.8->huggingface-sb3==2.3.1) (4.10.0)\n",
+            "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub~=0.8->huggingface-sb3==2.3.1) (24.0)\n",
+            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub~=0.8->huggingface-sb3==2.3.1) (3.3.2)\n",
+            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub~=0.8->huggingface-sb3==2.3.1) (3.6)\n",
+            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub~=0.8->huggingface-sb3==2.3.1) (2.0.7)\n",
+            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub~=0.8->huggingface-sb3==2.3.1) (2024.2.2)\n",
+            "Installing collected packages: huggingface-sb3\n",
+            "Successfully installed huggingface-sb3-2.3.1\n",
+            "Collecting wandb\n",
+            "  Downloading wandb-0.16.4-py3-none-any.whl (2.2 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: tensorboard in /usr/local/lib/python3.10/dist-packages (2.15.2)\n",
+            "Requirement already satisfied: Click!=8.0.0,>=7.1 in /usr/local/lib/python3.10/dist-packages (from wandb) (8.1.7)\n",
+            "Collecting GitPython!=3.1.29,>=1.0.0 (from wandb)\n",
+            "  Downloading GitPython-3.1.42-py3-none-any.whl (195 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m195.4/195.4 kB\u001b[0m \u001b[31m26.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: requests<3,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb) (2.31.0)\n",
+            "Requirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb) (5.9.5)\n",
+            "Collecting sentry-sdk>=1.0.0 (from wandb)\n",
+            "  Downloading sentry_sdk-1.42.0-py2.py3-none-any.whl (263 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m263.5/263.5 kB\u001b[0m \u001b[31m32.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting docker-pycreds>=0.4.0 (from wandb)\n",
+            "  Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)\n",
+            "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from wandb) (6.0.1)\n",
+            "Collecting setproctitle (from wandb)\n",
+            "  Downloading setproctitle-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30 kB)\n",
+            "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from wandb) (67.7.2)\n",
+            "Requirement already satisfied: appdirs>=1.4.3 in /usr/local/lib/python3.10/dist-packages (from wandb) (1.4.4)\n",
+            "Requirement already satisfied: protobuf!=4.21.0,<5,>=3.19.0 in /usr/local/lib/python3.10/dist-packages (from wandb) (3.20.3)\n",
+            "Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.10/dist-packages (from tensorboard) (1.4.0)\n",
+            "Requirement already satisfied: grpcio>=1.48.2 in /usr/local/lib/python3.10/dist-packages (from tensorboard) (1.62.1)\n",
+            "Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.10/dist-packages (from tensorboard) (2.27.0)\n",
+            "Requirement already satisfied: google-auth-oauthlib<2,>=0.5 in /usr/local/lib/python3.10/dist-packages (from tensorboard) (1.2.0)\n",
+            "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard) (3.5.2)\n",
+            "Requirement already satisfied: numpy>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard) (1.25.2)\n",
+            "Requirement already satisfied: six>1.9 in /usr/local/lib/python3.10/dist-packages (from tensorboard) (1.16.0)\n",
+            "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard) (0.7.2)\n",
+            "Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard) (3.0.1)\n",
+            "Collecting gitdb<5,>=4.0.1 (from GitPython!=3.1.29,>=1.0.0->wandb)\n",
+            "  Downloading gitdb-4.0.11-py3-none-any.whl (62 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.7/62.7 kB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard) (5.3.3)\n",
+            "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard) (0.3.0)\n",
+            "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard) (4.9)\n",
+            "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from google-auth-oauthlib<2,>=0.5->tensorboard) (1.4.0)\n",
+            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb) (3.3.2)\n",
+            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb) (3.6)\n",
+            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb) (2.0.7)\n",
+            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb) (2024.2.2)\n",
+            "Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard) (2.1.5)\n",
+            "Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->GitPython!=3.1.29,>=1.0.0->wandb)\n",
+            "  Downloading smmap-5.0.1-py3-none-any.whl (24 kB)\n",
+            "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard) (0.5.1)\n",
+            "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard) (3.2.2)\n",
+            "Installing collected packages: smmap, setproctitle, sentry-sdk, docker-pycreds, gitdb, GitPython, wandb\n",
+            "Successfully installed GitPython-3.1.42 docker-pycreds-0.4.0 gitdb-4.0.11 sentry-sdk-1.42.0 setproctitle-1.3.3 smmap-5.0.1 wandb-0.16.4\n",
+            "Get:1 https://cloud.r-project.org/bin/linux/ubuntu jammy-cran40/ InRelease [3,626 B]\n",
+            "Hit:2 http://archive.ubuntu.com/ubuntu jammy InRelease\n",
+            "Get:3 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64  InRelease [1,581 B]\n",
+            "Get:4 http://archive.ubuntu.com/ubuntu jammy-updates InRelease [119 kB]\n",
+            "Get:5 http://security.ubuntu.com/ubuntu jammy-security InRelease [110 kB]\n",
+            "Get:6 http://archive.ubuntu.com/ubuntu jammy-backports InRelease [109 kB]\n",
+            "Hit:7 https://ppa.launchpadcontent.net/c2d4u.team/c2d4u4.0+/ubuntu jammy InRelease\n",
+            "Hit:8 https://ppa.launchpadcontent.net/deadsnakes/ppa/ubuntu jammy InRelease\n",
+            "Get:9 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64  Packages [737 kB]\n",
+            "Hit:10 https://ppa.launchpadcontent.net/graphics-drivers/ppa/ubuntu jammy InRelease\n",
+            "Get:11 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 Packages [1,881 kB]\n",
+            "Hit:12 https://ppa.launchpadcontent.net/ubuntugis/ppa/ubuntu jammy InRelease\n",
+            "Get:13 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 Packages [1,353 kB]\n",
+            "Get:14 http://archive.ubuntu.com/ubuntu jammy-updates/restricted amd64 Packages [2,050 kB]\n",
+            "Get:15 http://archive.ubuntu.com/ubuntu jammy-backports/universe amd64 Packages [33.3 kB]\n",
+            "Get:16 http://security.ubuntu.com/ubuntu jammy-security/main amd64 Packages [1,569 kB]\n",
+            "Get:17 http://security.ubuntu.com/ubuntu jammy-security/universe amd64 Packages [1,079 kB]\n",
+            "Get:18 http://security.ubuntu.com/ubuntu jammy-security/restricted amd64 Packages [1,961 kB]\n",
+            "Fetched 11.0 MB in 2s (4,901 kB/s)\n",
+            "Reading package lists... Done\n",
+            "Reading package lists... Done\n",
+            "Building dependency tree... Done\n",
+            "Reading state information... Done\n",
+            "ffmpeg is already the newest version (7:4.4.2-0ubuntu0.22.04.1).\n",
+            "The following additional packages will be installed:\n",
+            "  freeglut3 libegl-dev libfontenc1 libgl-dev libgl1-mesa-dev libgles-dev libgles1 libglu1-mesa\n",
+            "  libglu1-mesa-dev libglvnd-core-dev libglvnd-dev libglx-dev libice-dev libopengl-dev libsm-dev\n",
+            "  libxfont2 libxkbfile1 libxt-dev x11-xkb-utils xfonts-base xfonts-encodings xfonts-utils\n",
+            "  xserver-common\n",
+            "Suggested packages:\n",
+            "  libice-doc libsm-doc libxt-doc\n",
+            "The following NEW packages will be installed:\n",
+            "  freeglut3 freeglut3-dev libegl-dev libfontenc1 libgl-dev libgl1-mesa-dev libgles-dev libgles1\n",
+            "  libglu1-mesa libglu1-mesa-dev libglvnd-core-dev libglvnd-dev libglx-dev libice-dev libopengl-dev\n",
+            "  libsm-dev libxfont2 libxkbfile1 libxt-dev x11-xkb-utils xfonts-base xfonts-encodings xfonts-utils\n",
+            "  xserver-common xvfb\n",
+            "0 upgraded, 25 newly installed, 0 to remove and 39 not upgraded.\n",
+            "Need to get 9,075 kB of archives.\n",
+            "After this operation, 18.7 MB of additional disk space will be used.\n",
+            "Get:1 http://archive.ubuntu.com/ubuntu jammy/universe amd64 freeglut3 amd64 2.8.1-6 [74.0 kB]\n",
+            "Get:2 http://archive.ubuntu.com/ubuntu jammy/main amd64 libglx-dev amd64 1.4.0-1 [14.1 kB]\n",
+            "Get:3 http://archive.ubuntu.com/ubuntu jammy/main amd64 libgl-dev amd64 1.4.0-1 [101 kB]\n",
+            "Get:4 http://archive.ubuntu.com/ubuntu jammy/main amd64 libglvnd-core-dev amd64 1.4.0-1 [12.7 kB]\n",
+            "Get:5 http://archive.ubuntu.com/ubuntu jammy/main amd64 libegl-dev amd64 1.4.0-1 [18.0 kB]\n",
+            "Get:6 http://archive.ubuntu.com/ubuntu jammy/main amd64 libgles1 amd64 1.4.0-1 [11.5 kB]\n",
+            "Get:7 http://archive.ubuntu.com/ubuntu jammy/main amd64 libgles-dev amd64 1.4.0-1 [49.4 kB]\n",
+            "Get:8 http://archive.ubuntu.com/ubuntu jammy/main amd64 libopengl-dev amd64 1.4.0-1 [3,400 B]\n",
+            "Get:9 http://archive.ubuntu.com/ubuntu jammy/main amd64 libglvnd-dev amd64 1.4.0-1 [3,162 B]\n",
+            "Get:10 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libgl1-mesa-dev amd64 23.2.1-1ubuntu3.1~22.04.2 [6,842 B]\n",
+            "Get:11 http://archive.ubuntu.com/ubuntu jammy/main amd64 libglu1-mesa amd64 9.0.2-1 [145 kB]\n",
+            "Get:12 http://archive.ubuntu.com/ubuntu jammy/main amd64 libglu1-mesa-dev amd64 9.0.2-1 [231 kB]\n",
+            "Get:13 http://archive.ubuntu.com/ubuntu jammy/main amd64 libice-dev amd64 2:1.0.10-1build2 [51.4 kB]\n",
+            "Get:14 http://archive.ubuntu.com/ubuntu jammy/main amd64 libsm-dev amd64 2:1.2.3-1build2 [18.1 kB]\n",
+            "Get:15 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxt-dev amd64 1:1.2.1-1 [396 kB]\n",
+            "Get:16 http://archive.ubuntu.com/ubuntu jammy/universe amd64 freeglut3-dev amd64 2.8.1-6 [126 kB]\n",
+            "Get:17 http://archive.ubuntu.com/ubuntu jammy/main amd64 libfontenc1 amd64 1:1.1.4-1build3 [14.7 kB]\n",
+            "Get:18 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxfont2 amd64 1:2.0.5-1build1 [94.5 kB]\n",
+            "Get:19 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxkbfile1 amd64 1:1.1.0-1build3 [71.8 kB]\n",
+            "Get:20 http://archive.ubuntu.com/ubuntu jammy/main amd64 x11-xkb-utils amd64 7.7+5build4 [172 kB]\n",
+            "Get:21 http://archive.ubuntu.com/ubuntu jammy/main amd64 xfonts-encodings all 1:1.0.5-0ubuntu2 [578 kB]\n",
+            "Get:22 http://archive.ubuntu.com/ubuntu jammy/main amd64 xfonts-utils amd64 1:7.7+6build2 [94.6 kB]\n",
+            "Get:23 http://archive.ubuntu.com/ubuntu jammy/main amd64 xfonts-base all 1:1.0.5 [5,896 kB]\n",
+            "Get:24 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 xserver-common all 2:21.1.4-2ubuntu1.7~22.04.8 [28.6 kB]\n",
+            "Get:25 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 xvfb amd64 2:21.1.4-2ubuntu1.7~22.04.8 [863 kB]\n",
+            "Fetched 9,075 kB in 0s (21.4 MB/s)\n",
+            "Selecting previously unselected package freeglut3:amd64.\n",
+            "(Reading database ... 121752 files and directories currently installed.)\n",
+            "Preparing to unpack .../00-freeglut3_2.8.1-6_amd64.deb ...\n",
+            "Unpacking freeglut3:amd64 (2.8.1-6) ...\n",
+            "Selecting previously unselected package libglx-dev:amd64.\n",
+            "Preparing to unpack .../01-libglx-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libglx-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libgl-dev:amd64.\n",
+            "Preparing to unpack .../02-libgl-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libgl-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libglvnd-core-dev:amd64.\n",
+            "Preparing to unpack .../03-libglvnd-core-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libglvnd-core-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libegl-dev:amd64.\n",
+            "Preparing to unpack .../04-libegl-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libegl-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libgles1:amd64.\n",
+            "Preparing to unpack .../05-libgles1_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libgles1:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libgles-dev:amd64.\n",
+            "Preparing to unpack .../06-libgles-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libgles-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libopengl-dev:amd64.\n",
+            "Preparing to unpack .../07-libopengl-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libopengl-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libglvnd-dev:amd64.\n",
+            "Preparing to unpack .../08-libglvnd-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libglvnd-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libgl1-mesa-dev:amd64.\n",
+            "Preparing to unpack .../09-libgl1-mesa-dev_23.2.1-1ubuntu3.1~22.04.2_amd64.deb ...\n",
+            "Unpacking libgl1-mesa-dev:amd64 (23.2.1-1ubuntu3.1~22.04.2) ...\n",
+            "Selecting previously unselected package libglu1-mesa:amd64.\n",
+            "Preparing to unpack .../10-libglu1-mesa_9.0.2-1_amd64.deb ...\n",
+            "Unpacking libglu1-mesa:amd64 (9.0.2-1) ...\n",
+            "Selecting previously unselected package libglu1-mesa-dev:amd64.\n",
+            "Preparing to unpack .../11-libglu1-mesa-dev_9.0.2-1_amd64.deb ...\n",
+            "Unpacking libglu1-mesa-dev:amd64 (9.0.2-1) ...\n",
+            "Selecting previously unselected package libice-dev:amd64.\n",
+            "Preparing to unpack .../12-libice-dev_2%3a1.0.10-1build2_amd64.deb ...\n",
+            "Unpacking libice-dev:amd64 (2:1.0.10-1build2) ...\n",
+            "Selecting previously unselected package libsm-dev:amd64.\n",
+            "Preparing to unpack .../13-libsm-dev_2%3a1.2.3-1build2_amd64.deb ...\n",
+            "Unpacking libsm-dev:amd64 (2:1.2.3-1build2) ...\n",
+            "Selecting previously unselected package libxt-dev:amd64.\n",
+            "Preparing to unpack .../14-libxt-dev_1%3a1.2.1-1_amd64.deb ...\n",
+            "Unpacking libxt-dev:amd64 (1:1.2.1-1) ...\n",
+            "Selecting previously unselected package freeglut3-dev:amd64.\n",
+            "Preparing to unpack .../15-freeglut3-dev_2.8.1-6_amd64.deb ...\n",
+            "Unpacking freeglut3-dev:amd64 (2.8.1-6) ...\n",
+            "Selecting previously unselected package libfontenc1:amd64.\n",
+            "Preparing to unpack .../16-libfontenc1_1%3a1.1.4-1build3_amd64.deb ...\n",
+            "Unpacking libfontenc1:amd64 (1:1.1.4-1build3) ...\n",
+            "Selecting previously unselected package libxfont2:amd64.\n",
+            "Preparing to unpack .../17-libxfont2_1%3a2.0.5-1build1_amd64.deb ...\n",
+            "Unpacking libxfont2:amd64 (1:2.0.5-1build1) ...\n",
+            "Selecting previously unselected package libxkbfile1:amd64.\n",
+            "Preparing to unpack .../18-libxkbfile1_1%3a1.1.0-1build3_amd64.deb ...\n",
+            "Unpacking libxkbfile1:amd64 (1:1.1.0-1build3) ...\n",
+            "Selecting previously unselected package x11-xkb-utils.\n",
+            "Preparing to unpack .../19-x11-xkb-utils_7.7+5build4_amd64.deb ...\n",
+            "Unpacking x11-xkb-utils (7.7+5build4) ...\n",
+            "Selecting previously unselected package xfonts-encodings.\n",
+            "Preparing to unpack .../20-xfonts-encodings_1%3a1.0.5-0ubuntu2_all.deb ...\n",
+            "Unpacking xfonts-encodings (1:1.0.5-0ubuntu2) ...\n",
+            "Selecting previously unselected package xfonts-utils.\n",
+            "Preparing to unpack .../21-xfonts-utils_1%3a7.7+6build2_amd64.deb ...\n",
+            "Unpacking xfonts-utils (1:7.7+6build2) ...\n",
+            "Selecting previously unselected package xfonts-base.\n",
+            "Preparing to unpack .../22-xfonts-base_1%3a1.0.5_all.deb ...\n",
+            "Unpacking xfonts-base (1:1.0.5) ...\n",
+            "Selecting previously unselected package xserver-common.\n",
+            "Preparing to unpack .../23-xserver-common_2%3a21.1.4-2ubuntu1.7~22.04.8_all.deb ...\n",
+            "Unpacking xserver-common (2:21.1.4-2ubuntu1.7~22.04.8) ...\n",
+            "Selecting previously unselected package xvfb.\n",
+            "Preparing to unpack .../24-xvfb_2%3a21.1.4-2ubuntu1.7~22.04.8_amd64.deb ...\n",
+            "Unpacking xvfb (2:21.1.4-2ubuntu1.7~22.04.8) ...\n",
+            "Setting up freeglut3:amd64 (2.8.1-6) ...\n",
+            "Setting up libglvnd-core-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up libice-dev:amd64 (2:1.0.10-1build2) ...\n",
+            "Setting up libsm-dev:amd64 (2:1.2.3-1build2) ...\n",
+            "Setting up libfontenc1:amd64 (1:1.1.4-1build3) ...\n",
+            "Setting up libxt-dev:amd64 (1:1.2.1-1) ...\n",
+            "Setting up libgles1:amd64 (1.4.0-1) ...\n",
+            "Setting up xfonts-encodings (1:1.0.5-0ubuntu2) ...\n",
+            "Setting up libglx-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up libglu1-mesa:amd64 (9.0.2-1) ...\n",
+            "Setting up libxkbfile1:amd64 (1:1.1.0-1build3) ...\n",
+            "Setting up libopengl-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up libxfont2:amd64 (1:2.0.5-1build1) ...\n",
+            "Setting up libgl-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up libegl-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up x11-xkb-utils (7.7+5build4) ...\n",
+            "Setting up xfonts-utils (1:7.7+6build2) ...\n",
+            "Setting up xfonts-base (1:1.0.5) ...\n",
+            "Setting up libglu1-mesa-dev:amd64 (9.0.2-1) ...\n",
+            "Setting up xserver-common (2:21.1.4-2ubuntu1.7~22.04.8) ...\n",
+            "Setting up libgles-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up xvfb (2:21.1.4-2ubuntu1.7~22.04.8) ...\n",
+            "Setting up libglvnd-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up libgl1-mesa-dev:amd64 (23.2.1-1ubuntu3.1~22.04.2) ...\n",
+            "Setting up freeglut3-dev:amd64 (2.8.1-6) ...\n",
+            "Processing triggers for libc-bin (2.35-0ubuntu3.4) ...\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_0.so.3 is not a symbolic link\n",
+            "\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbbbind.so.3 is not a symbolic link\n",
+            "\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_5.so.3 is not a symbolic link\n",
+            "\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc.so.2 is not a symbolic link\n",
+            "\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc_proxy.so.2 is not a symbolic link\n",
+            "\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbb.so.12 is not a symbolic link\n",
+            "\n",
+            "Processing triggers for man-db (2.10.2-1) ...\n",
+            "Processing triggers for fontconfig (2.13.1-4.2ubuntu5) ...\n",
+            "Collecting stable-baselines3[extra]>=2.0.0a4\n",
+            "  Downloading stable_baselines3-2.3.0a4-py3-none-any.whl (182 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m182.1/182.1 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: gymnasium<0.30,>=0.28.1 in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (0.29.1)\n",
+            "Requirement already satisfied: numpy>=1.20 in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (1.25.2)\n",
+            "Requirement already satisfied: torch>=1.13 in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (2.2.1+cu121)\n",
+            "Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (2.2.1)\n",
+            "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (1.5.3)\n",
+            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (3.7.1)\n",
+            "Requirement already satisfied: opencv-python in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (4.8.0.76)\n",
+            "Requirement already satisfied: pygame in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (2.5.2)\n",
+            "Requirement already satisfied: tensorboard>=2.9.1 in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (2.15.2)\n",
+            "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (5.9.5)\n",
+            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (4.66.2)\n",
+            "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (13.7.1)\n",
+            "Collecting shimmy[atari]~=1.3.0 (from stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading Shimmy-1.3.0-py3-none-any.whl (37 kB)\n",
+            "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (9.4.0)\n",
+            "Collecting autorom[accept-rom-license]~=0.6.1 (from stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading AutoROM-0.6.1-py3-none-any.whl (9.4 kB)\n",
+            "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (8.1.7)\n",
+            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (2.31.0)\n",
+            "Collecting AutoROM.accept-rom-license (from autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading AutoROM.accept-rom-license-0.6.1.tar.gz (434 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m434.7/434.7 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25h  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
+            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
+            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
+            "Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/python3.10/dist-packages (from gymnasium<0.30,>=0.28.1->stable-baselines3[extra]>=2.0.0a4) (4.10.0)\n",
+            "Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/lib/python3.10/dist-packages (from gymnasium<0.30,>=0.28.1->stable-baselines3[extra]>=2.0.0a4) (0.0.4)\n",
+            "Collecting ale-py~=0.8.1 (from shimmy[atari]~=1.3.0->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading ale_py-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m15.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (1.4.0)\n",
+            "Requirement already satisfied: grpcio>=1.48.2 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (1.62.1)\n",
+            "Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (2.27.0)\n",
+            "Requirement already satisfied: google-auth-oauthlib<2,>=0.5 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (1.2.0)\n",
+            "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (3.5.2)\n",
+            "Requirement already satisfied: protobuf!=4.24.0,>=3.19.6 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (3.20.3)\n",
+            "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (67.7.2)\n",
+            "Requirement already satisfied: six>1.9 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (1.16.0)\n",
+            "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (0.7.2)\n",
+            "Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (3.0.1)\n",
+            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (3.13.1)\n",
+            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (1.12)\n",
+            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (3.2.1)\n",
+            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (3.1.3)\n",
+            "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (2023.6.0)\n",
+            "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.7/23.7 MB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105 (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m823.6/823.6 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105 (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.1/14.1 MB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting nvidia-cudnn-cu12==8.9.2.26 (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m731.7/731.7 MB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting nvidia-cublas-cu12==12.1.3.1 (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m410.6/410.6 MB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting nvidia-cufft-cu12==11.0.2.54 (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.6/121.6 MB\u001b[0m \u001b[31m924.2 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106 (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 MB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting nvidia-cusolver-cu12==11.4.5.107 (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.2/124.2 MB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting nvidia-cusparse-cu12==12.1.0.106 (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m196.0/196.0 MB\u001b[0m \u001b[31m1.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting nvidia-nccl-cu12==2.19.3 (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl (166.0 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.0/166.0 MB\u001b[0m \u001b[31m927.1 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting nvidia-nvtx-cu12==12.1.105 (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m99.1/99.1 kB\u001b[0m \u001b[31m1.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: triton==2.2.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (2.2.0)\n",
+            "Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.13->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m1.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (1.2.0)\n",
+            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (0.12.1)\n",
+            "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (4.49.0)\n",
+            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (1.4.5)\n",
+            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (24.0)\n",
+            "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (3.1.2)\n",
+            "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (2.8.2)\n",
+            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->stable-baselines3[extra]>=2.0.0a4) (2023.4)\n",
+            "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->stable-baselines3[extra]>=2.0.0a4) (3.0.0)\n",
+            "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->stable-baselines3[extra]>=2.0.0a4) (2.16.1)\n",
+            "Requirement already satisfied: importlib-resources in /usr/local/lib/python3.10/dist-packages (from ale-py~=0.8.1->shimmy[atari]~=1.3.0->stable-baselines3[extra]>=2.0.0a4) (6.3.0)\n",
+            "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (5.3.3)\n",
+            "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (0.3.0)\n",
+            "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (4.9)\n",
+            "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from google-auth-oauthlib<2,>=0.5->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (1.4.0)\n",
+            "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->stable-baselines3[extra]>=2.0.0a4) (0.1.2)\n",
+            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (3.3.2)\n",
+            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (3.6)\n",
+            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (2.0.7)\n",
+            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (2024.2.2)\n",
+            "Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (2.1.5)\n",
+            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (1.3.0)\n",
+            "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (0.5.1)\n",
+            "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (3.2.2)\n",
+            "Building wheels for collected packages: AutoROM.accept-rom-license\n",
+            "  Building wheel for AutoROM.accept-rom-license (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
+            "  Created wheel for AutoROM.accept-rom-license: filename=AutoROM.accept_rom_license-0.6.1-py3-none-any.whl size=446659 sha256=52a129f60cb655d6a7a5e2fb0906c018f4b7dd79dc30f3c7f7b6249a4f8021a8\n",
+            "  Stored in directory: /root/.cache/pip/wheels/6b/1b/ef/a43ff1a2f1736d5711faa1ba4c1f61be1131b8899e6a057811\n",
+            "Successfully built AutoROM.accept-rom-license\n",
+            "Installing collected packages: nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, ale-py, shimmy, nvidia-cusparse-cu12, nvidia-cudnn-cu12, AutoROM.accept-rom-license, autorom, nvidia-cusolver-cu12, stable-baselines3\n",
+            "Successfully installed AutoROM.accept-rom-license-0.6.1 ale-py-0.8.1 autorom-0.6.1 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.19.3 nvidia-nvjitlink-cu12-12.4.99 nvidia-nvtx-cu12-12.1.105 shimmy-1.3.0 stable-baselines3-2.3.0a4\n",
+            "Collecting panda-gym\n",
+            "  Downloading panda_gym-3.0.7-py3-none-any.whl (23 kB)\n",
+            "Requirement already satisfied: gymnasium>=0.26 in /usr/local/lib/python3.10/dist-packages (from panda-gym) (0.29.1)\n",
+            "Collecting pybullet (from panda-gym)\n",
+            "  Downloading pybullet-3.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (103.2 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m103.2/103.2 MB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from panda-gym) (1.25.2)\n",
+            "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from panda-gym) (1.11.4)\n",
+            "Requirement already satisfied: cloudpickle>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from gymnasium>=0.26->panda-gym) (2.2.1)\n",
+            "Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/python3.10/dist-packages (from gymnasium>=0.26->panda-gym) (4.10.0)\n",
+            "Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/lib/python3.10/dist-packages (from gymnasium>=0.26->panda-gym) (0.0.4)\n",
+            "Installing collected packages: pybullet, panda-gym\n",
+            "Successfully installed panda-gym-3.0.7 pybullet-3.2.6\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "ebzIUtg8Ysbf"
+      },
+      "outputs": [],
+      "source": [
+        "import gymnasium as gym\n",
+        "import torch\n",
+        "import torch.nn as nn\n",
+        "import torch.optim as optim\n",
+        "import torch.nn.functional as F\n",
+        "from torch.distributions import Categorical\n",
+        "import matplotlib.pyplot as plt\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# 1.0  Cartepole using OpenAI Gym Environement with A custom policy model"
+      ],
+      "metadata": {
+        "id": "QIxa36SjeEfG"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Create the environment\n",
+        "env = gym.make(\"CartPole-v1\", render_mode=\"human\")\n",
+        "\n",
+        "# Reset the environment and get the initial observation\n",
+        "observation = env.reset()\n",
+        "\n",
+        "state_size = env.observation_space.shape[0]\n",
+        "action_size = env.action_space.n\n",
+        "# Define the agent neural network model\n",
+        "class Policy(nn.Module):\n",
+        "    def __init__(self, state_size, action_size, hidden_size=128):\n",
+        "        super(Policy, self).__init__()\n",
+        "        self.fc1 = nn.Linear(state_size, hidden_size)\n",
+        "        self.relu = nn.ReLU()\n",
+        "        self.dropout = nn.Dropout(p=0.6)  # Adjust dropout probability as needed\n",
+        "        self.fc2 = nn.Linear(hidden_size, action_size)\n",
+        "\n",
+        "    def forward(self, x):\n",
+        "        x = self.fc1(x)\n",
+        "        x = self.relu(x)\n",
+        "        x = self.dropout(x)\n",
+        "        x = self.fc2(x)\n",
+        "        return F.softmax(x)\n",
+        "\n",
+        "policy_model = Policy(state_size, action_size)\n",
+        "optimizer = optim.Adam(policy_model.parameters(), lr=5e-3)\n",
+        "\n",
+        "gamma = 0.99\n",
+        "episodes_rewards = []\n",
+        "\n",
+        "for i in range(500):\n",
+        "    # Reset the environment\n",
+        "    # init buffers\n",
+        "    observation, info = env.reset(seed=42)\n",
+        "    episode_rewards = []\n",
+        "    logarithmich_probabilities = []\n",
+        "    done = False\n",
+        "    # Render the environment to visualize the agent's behavior\n",
+        "    env.render()\n",
+        "\n",
+        "    while done == False:\n",
+        "        # Get action probabilities from the policy model\n",
+        "        action_probabilities = policy_model(torch.tensor(observation, dtype=torch.float32))\n",
+        "        action_distribution = Categorical(action_probabilities)\n",
+        "\n",
+        "        # Sample an action from the action distribution\n",
+        "        action = action_distribution.sample()\n",
+        "        logarithmich_probability = action_distribution.log_prob(action)\n",
+        "        logarithmich_probabilities.append(logarithmich_probability)\n",
+        "        print(int(action.item()))\n",
+        "        # Take a step in the environment\n",
+        "        #print(env.step(action.item()))\n",
+        "        next_observation, reward, done, a, b = env.step(action.item())\n",
+        "        episode_rewards.append(reward)\n",
+        "\n",
+        "        # Update observation\n",
+        "        observation = next_observation\n",
+        "\n",
+        "\n",
+        "    # Compute the return for the episode\n",
+        "    returns = []\n",
+        "    R = 0\n",
+        "    for r in reversed(episode_rewards):\n",
+        "       R = r + gamma * R\n",
+        "       returns.insert(0, R)\n",
+        "\n",
+        "    policy_loss = []\n",
+        "    #print(len(logarithmich_probabilities))\n",
+        "    #print(len(returns))\n",
+        "\n",
+        "    for log_prob, R in zip(logarithmich_probabilities, returns):\n",
+        "        policy_loss += [torch.tensor([-log_prob * R])]\n",
+        "\n",
+        "    policy_loss = torch.cat(policy_loss).sum()\n",
+        "\n",
+        "    print(policy_loss)\n",
+        "    # Compute the policy loss\n",
+        "    #policy_loss = torch.cat(policy_loss).sum()\n",
+        "    episodes_rewards += [-policy_loss]\n",
+        "    # Update the policy model\n",
+        "    optimizer.zero_grad()\n",
+        "    #rint(policy_loss)\n",
+        "    policy_loss.requires_grad = True\n",
+        "\n",
+        "    policy_loss.backward()\n",
+        "    optimizer.step()\n",
+        "\n",
+        "\n",
+        "env.close()\n"
+      ],
+      "metadata": {
+        "id": "2CPcLVf-YzDK",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "8bce9f49-103e-48e9-90f3-7fe0230fba19"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "<ipython-input-20-785bba2d7191>:23: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n",
+            "  return F.softmax(x)\n"
+          ]
+        },
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[1;30;43mLe flux de sortie a été tronqué et ne contient que les 5000 dernières lignes.\u001b[0m\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(281.1866)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(66.8997)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(192.3019)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(473.6223)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(35.1173)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(272.1891)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(46.9791)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(89.0523)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(163.3571)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(78.5064)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(362.4714)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(99.5161)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(43.0365)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(53.0917)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(397.6288)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(504.5169)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(285.3660)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(82.9031)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(988.1862)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(90.2792)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(437.4989)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(94.8671)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(178.7207)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(85.1091)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(132.8680)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(394.2970)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(296.1435)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(327.5003)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(100.6351)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(39.5115)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(188.3125)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(237.9766)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(43.4110)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(132.1401)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(64.2784)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(334.9811)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(312.3682)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(1068.4763)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(129.1012)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(86.8250)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(164.3700)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(75.5197)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(139.0883)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(622.2977)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(114.5008)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(91.9933)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(87.6688)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(102.7979)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(305.3475)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(166.9232)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(85.3484)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(42.2080)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(75.2687)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(98.8197)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(118.6865)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(116.5293)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(350.9216)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(60.8569)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(145.3862)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(438.1519)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(150.0603)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(122.9983)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(147.0745)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(584.7866)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(57.4350)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(1032.2198)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(99.2761)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(161.9452)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(247.3668)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(91.3989)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(77.5823)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(107.6846)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(120.7165)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(134.3214)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(130.9657)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(68.6678)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(61.4109)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(113.0690)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(279.9240)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(184.0359)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(206.0251)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(88.3633)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(69.8414)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(204.3817)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(317.4161)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(75.7452)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(236.6953)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(31.5111)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(194.9507)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(51.9956)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(209.9362)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(216.3539)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(169.1381)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(88.9205)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(1008.6304)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(97.2479)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(667.2008)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(118.6365)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(104.8990)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(590.9324)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(60.4093)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(209.5694)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(262.6053)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(77.7892)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(518.3197)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(305.5648)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(194.1678)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(145.2897)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(332.0179)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(89.0243)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(94.1657)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(383.3624)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(159.0714)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(65.1660)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(362.7635)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(75.7020)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(900.5473)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(62.4579)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(102.4067)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(72.6626)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(292.0283)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(420.3688)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(179.0387)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(87.3374)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(123.3461)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(367.7281)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(370.6120)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(552.5471)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(291.2884)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(519.3929)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(137.5317)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(53.5442)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(42.4037)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(326.9722)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(51.7668)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(298.2319)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(73.7381)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(768.4832)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(512.3410)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(2693.8684)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(201.5869)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(236.1833)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(156.6029)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(69.2959)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(265.7164)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(268.7903)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(161.0198)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(400.7507)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(80.9449)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(86.0288)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(1264.9713)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(193.9016)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(224.1788)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(92.2202)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(612.3029)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(135.0098)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(61.0492)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(163.9083)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(285.0295)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(42.4918)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(323.2288)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(36.3615)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(34.4895)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(219.5501)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(105.9474)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(113.7271)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(52.4535)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(151.3371)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(219.3214)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(107.8549)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(38.1198)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(45.0982)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(75.7481)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(73.6828)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(74.3550)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "tensor(132.4645)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(122.3796)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(532.7804)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(49.1075)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(441.2430)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(208.0865)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(101.9978)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(133.2598)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(52.7308)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(58.0658)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(296.8371)\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(723.8270)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "tensor(295.1211)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "tensor(124.9661)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(305.4743)\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(36.1270)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "tensor(166.0745)\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(503.9010)\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "tensor(186.9502)\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(192.4542)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "tensor(130.1587)\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(63.7657)\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "tensor(89.9288)\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "0\n",
+            "0\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "0\n",
+            "1\n",
+            "1\n",
+            "1\n",
+            "tensor(209.3602)\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "episodes_rewards = [-episodes_rewards[i] for i in range(0,len(episodes_rewards))]\n",
+        "# Plot the policy loss against iterations\n",
+        "plt.plot([i for i in range(0,500)],episodes_rewards)\n",
+        "plt.xlabel('Iterations')\n",
+        "plt.ylabel('Policy Loss')\n",
+        "plt.title('Policy Loss vs. Iterations')\n",
+        "plt.show()"
+      ],
+      "metadata": {
+        "id": "hY52xEWUSlUV",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 472
+        },
+        "outputId": "84ec7e07-4261-40ec-cf9e-28c516eae4af"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 640x480 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcC0lEQVR4nO2dd3gU1frHv7tJNpUkBEhCIBQB6aCiQKSIGkHErlfBAlZ+KujlYuVeRWwXy7XX6/UqeEXFCgoKhC4dgdA7oZNQU0ndPb8/NjOZmZ3ZnU12sxv2+3mePElmz86caed8z/u+5z0WIYQAIYQQQkgIYw10BQghhBBCAg0FESGEEEJCHgoiQgghhIQ8FESEEEIICXkoiAghhBAS8lAQEUIIISTkoSAihBBCSMhDQUQIIYSQkIeCiBBCCCEhDwURIecAgwYNwqBBg+T/9+/fD4vFgilTpgSsTqRhw2eIhBoURIQEgClTpsBiscg/UVFROP/88zF27Fjk5eUFunq1YvHixbBYLPjhhx8CXZWgQ+/arFixApMmTUJ+fn7gKgbg66+/xjvvvBPQOhASDIQHugKEhDIvvvgi2rZti7KyMixbtgwff/wxfvvtN2zZsgUxMTG13m/r1q1RWlqKiIgIH9aW+JIVK1bghRdewD333IPExMSA1ePrr7/Gli1bMG7cONV2PkMk1KAgIiSADB06FBdffDEA4IEHHkCTJk3w1ltvYebMmRgxYkSt9ytZnUjocfbs2TqJaQk+QyTUoMuMkCDiiiuuAADk5OQAAKqqqvDSSy+hXbt2iIyMRJs2bfD3v/8d5eXlbvdjFP+xY8cO3HbbbWjWrBmio6PRsWNH/OMf/wAALFq0CBaLBT///LPL/r7++mtYLBasXLmyzue4b98+/OUvf0FSUhJiYmLQt29fzJ4926Xc+++/j65duyImJgaNGzfGxRdfjK+//lr+vKioCOPGjUObNm0QGRmJ5ORkXHXVVVi/fr3hsX/44QdYLBYsWbLE5bN///vfsFgs2LJlCwAgNzcX9957L1q2bInIyEg0b94cN9xwA/bv31/nazBp0iQ8+eSTAIC2bdvKrlPlvr/66iv06tUL0dHRSEpKwvDhw3Ho0CHVfgYNGoRu3bph3bp1GDhwIGJiYvD3v/8dADBz5kwMGzYMaWlpiIyMRLt27fDSSy/Bbrervj979mwcOHBArkObNm0AGD9DCxcuxIABAxAbG4vExETccMMN2L59u8v5WSwW7NmzR7aAJSQk4N5778XZs2dVZbOystC/f38kJiYiLi4OHTt2lM+BkPqEFiJCgoi9e/cCAJo0aQLAaTWaOnUqbr31Vjz++ONYvXo1Jk+ejO3bt+sKF3ds2rQJAwYMQEREBEaPHo02bdpg7969+PXXX/HKK69g0KBBSE9Px7Rp03DTTTepvjtt2jS0a9cOGRkZdTq/vLw8XHrppTh79iwee+wxNGnSBFOnTsX111+PH374QT7uf/7zHzz22GO49dZb8de//hVlZWXYtGkTVq9ejTvuuAMA8NBDD+GHH37A2LFj0aVLF5w6dQrLli3D9u3bcdFFF+kef9iwYYiLi8N3332Hyy67TPXZ9OnT0bVrV3Tr1g0AcMstt2Dr1q149NFH0aZNGxw/fhxZWVk4ePCgLBpqy80334xdu3bhm2++wdtvv42mTZsCAJo1awYAeOWVV/Dcc8/htttuwwMPPIATJ07g/fffx8CBA7FhwwaVi+3UqVMYOnQohg8fjrvuugspKSkAnHFqcXFxGD9+POLi4rBw4UJMnDgRhYWFeOONNwAA//jHP1BQUIDDhw/j7bffBgDExcUZ1nv+/PkYOnQozjvvPEyaNAmlpaV4//330a9fP6xfv97lutx2221o27YtJk+ejPXr1+Ozzz5DcnIyXnvtNQDA1q1bce2116JHjx548cUXERkZiT179mD58uV1ur6E1ApBCKl3vvjiCwFAzJ8/X5w4cUIcOnRIfPvtt6JJkyYiOjpaHD58WGRnZwsA4oEHHlB994knnhAAxMKFC+Vtl112mbjsssvk/3NycgQA8cUXX8jbBg4cKBo1aiQOHDig2p/D4ZD/njBhgoiMjBT5+fnytuPHj4vw8HDx/PPPuz2nRYsWCQDi+++/Nywzbtw4AUD88ccf8raioiLRtm1b0aZNG2G324UQQtxwww2ia9eubo+XkJAgxowZ47aMHiNGjBDJycmiqqpK3nbs2DFhtVrFiy++KIQQ4syZMwKAeOONN7zevx561+aNN94QAEROTo6q7P79+0VYWJh45ZVXVNs3b94swsPDVdsvu+wyAUB88sknLsc8e/asy7b/+7//EzExMaKsrEzeNmzYMNG6dWuXsnrP0AUXXCCSk5PFqVOn5G0bN24UVqtVjBw5Ut72/PPPCwDivvvuU+3zpptuEk2aNJH/f/vttwUAceLECZfjE1Lf0GVGSADJzMxEs2bNkJ6ejuHDhyMuLg4///wzWrRogd9++w0AMH78eNV3Hn/8cQDQdTMZceLECSxduhT33XcfWrVqpfrMYrHIf48cORLl5eWq2VDTp09HVVUV7rrrLq/PT8tvv/2G3r17o3///vK2uLg4jB49Gvv378e2bdsAAImJiTh8+DDWrl1ruK/ExESsXr0aR48e9aoOt99+O44fP47FixfL23744Qc4HA7cfvvtAIDo6GjYbDYsXrwYZ86c8Wr/deWnn36Cw+HAbbfdhpMnT8o/qamp6NChAxYtWqQqHxkZiXvvvddlP9HR0fLfRUVFOHnyJAYMGICzZ89ix44dXtfr2LFjyM7Oxj333IOkpCR5e48ePXDVVVfJz6uShx56SPX/gAEDcOrUKRQWFgKAbOmaOXMmHA6H13UixJdQEBESQD788ENkZWVh0aJF2LZtG/bt24chQ4YAAA4cOACr1Yr27durvpOamorExEQcOHDA9HH27dsHALI7yIhOnTrhkksuwbRp0+Rt06ZNQ9++fV3qURsOHDiAjh07umzv3Lmz/DkAPP3004iLi0Pv3r3RoUMHjBkzxsWN8vrrr2PLli1IT09H7969MWnSJPk83XH11VcjISEB06dPl7dNnz4dF1xwAc4//3wATpHx2muv4ffff0dKSgoGDhyI119/Hbm5ubU+d7Ps3r0bQgh06NABzZo1U/1s374dx48fV5Vv0aIFbDaby362bt2Km266CQkJCYiPj0ezZs1kUVtQUOB1vaR7Y3T/Tp48iZKSEtV2rfhu3LgxAMgi8/bbb0e/fv3wwAMPICUlBcOHD8d3331HcUQCAgURIQGkd+/eyMzMxKBBg9C5c2dYra6vpNKCUx+MHDkSS5YsweHDh7F3716sWrXKJ9Yhb+jcuTN27tyJb7/9Fv3798ePP/6I/v374/nnn5fL3Hbbbdi3bx/ef/99pKWl4Y033kDXrl3x+++/u913ZGQkbrzxRvz888+oqqrCkSNHsHz5ctk6JDFu3Djs2rULkydPRlRUFJ577jl07twZGzZs8Ms5SzgcDlgsFsyZMwdZWVkuP//+979V5ZWWIIn8/Hxcdtll2LhxI1588UX8+uuvyMrKkmN36ktwhIWF6W4XQgBw1n3p0qWYP38+7r77bmzatAm33347rrrqKlXwNyH1AQURIUFK69at4XA4sHv3btX2vLw85Ofno3Xr1qb3dd555wGAPIPKHcOHD0dYWBi++eYbTJs2DRERES5ioba0bt0aO3fudNkuuXCU5xQbG4vbb78dX3zxBQ4ePIhhw4bhlVdeQVlZmVymefPmeOSRRzBjxgzk5OSgSZMmeOWVVzzW4/bbb8fJkyexYMECfP/99xBC6J5ju3bt8Pjjj2PevHnYsmULKioq8Oabb9bm1F0wErrt2rWDEAJt27ZFZmamy0/fvn097nvx4sU4deoUpkyZgr/+9a+49tprkZmZKVtozNRDi3RvjO5f06ZNERsba2pfSqxWK6688kq89dZb2LZtG1555RUsXLjQxTVIiL+hICIkSLnmmmsAwCWL8FtvvQXAOWPKLM2aNcPAgQPx+eef4+DBg6rPpNG6RNOmTTF06FB89dVXmDZtGq6++mp5FlRdueaaa7BmzRrV9P2SkhJ8+umnaNOmDbp06QLAOXNKic1mQ5cuXSCEQGVlJex2u4vbJzk5GWlpaR5TEgDO2K2kpCRMnz4d06dPR+/evdG2bVv587Nnz6qEF+AUKo0aNVLt/9ixY9ixYwcqKyvNX4RqJPGgzVR98803IywsDC+88ILLvRFCuFwbPSTLjPL7FRUV+Oijj3TrYcaF1rx5c1xwwQWYOnWqqs5btmzBvHnz5OfVG06fPu2y7YILLgAAU/eREF/CafeEBCk9e/bEqFGj8Omnn8oukDVr1mDq1Km48cYbcfnll3u1v/feew/9+/fHRRddhNGjR6Nt27bYv38/Zs+ejezsbFXZkSNH4tZbbwUAvPTSS14d58cff9QN2h01ahSeeeYZfPPNNxg6dCgee+wxJCUlYerUqcjJycGPP/4ouwwHDx6M1NRU9OvXDykpKdi+fTs++OADDBs2DI0aNUJ+fj5atmyJW2+9FT179kRcXBzmz5+PtWvXmrLgRERE4Oabb8a3336LkpIS/Otf/1J9vmvXLlx55ZW47bbb0KVLF4SHh+Pnn39GXl4ehg8fLpebMGGCXH9vp+L36tULgHPq+/DhwxEREYHrrrsO7dq1w8svv4wJEyZg//79uPHGG9GoUSPk5OTg559/xujRo/HEE0+43fell16Kxo0bY9SoUXjsscdgsVjwv//9z0VgSfWYPn06xo8fj0suuQRxcXG47rrrdPf7xhtvYOjQocjIyMD9998vT7tPSEjApEmTvDp/wJmpfenSpRg2bBhat26N48eP46OPPkLLli1VgfeE1AuBmt5GSCgjTbtfu3at23KVlZXihRdeEG3bthUREREiPT1dTJgwQTVtWghz0+6FEGLLli3ipptuEomJiSIqKkp07NhRPPfccy7HLS8vF40bNxYJCQmitLTU1DlJU8uNfqSp9nv37hW33nqrXIfevXuLWbNmqfb173//WwwcOFA0adJEREZGinbt2oknn3xSFBQUyPV78sknRc+ePUWjRo1EbGys6Nmzp/joo49M1VUIIbKysgQAYbFYxKFDh1SfnTx5UowZM0Z06tRJxMbGioSEBNGnTx/x3XffqcqNGjVKd+q80bXRpiR46aWXRIsWLYTVanXZz48//ij69+8vYmNjRWxsrOjUqZMYM2aM2Llzp1zmsssuM0xPsHz5ctG3b18RHR0t0tLSxFNPPSXmzp0rAIhFixbJ5YqLi8Udd9whEhMTBQB5Cr7RMzR//nzRr18/ER0dLeLj48V1110ntm3bpiojTbvXTqeXnnvpPBcsWCBuuOEGkZaWJmw2m0hLSxMjRowQu3btcns9CfEHFiF0hgyEkJCmqqoKaWlpuO666/Df//430NUhhBC/wxgiQogLM2bMwIkTJzBy5MhAV4UQQuoFWogIITKrV6/Gpk2b8NJLL6Fp06Zu1wUjhJBzCVqICCEyH3/8MR5++GEkJyfjyy+/DHR1CCGk3qCFiBBCCCEhDy1EhBBCCAl5KIgIIYQQEvIwMaMJHA4Hjh49ikaNGtX7ulKEEEIIqR1CCBQVFSEtLU13rUglFEQmOHr0KNLT0wNdDUIIIYTUgkOHDqFly5Zuy1AQmaBRo0YAnBc0Pj4+wLUhhBBCiBkKCwuRnp4u9+PuoCAygeQmi4+PpyAihBBCGhhmwl0YVE0IIYSQkIeCiBBCCCEhDwURIYQQQkIeCiJCCCGEhDwURIQQQggJeSiICCGEEBLyUBARQgghJOShICKEEEJIyENBRAghhJCQh4KIEEIIISEPBREhhBBCQh4KIkIIIYSEPBREhBBCSAOitMIe6Cqck1AQEUIIIQ2EXzYeReeJczBleU6gq3LOQUFECCGENBAe+2YDAGDSr9sCXJNzDwoiQgghhIQ8FESEEEIICXkoiAghhBAS8lAQEUIIISTkoSAihBBCSMhDQUQIIYSQkIeCiBBCCCEhDwURIYQQQkIeCiJCCCGEhDwURIQQQggJeSiICCGEEBLyUBARQgghJOShICKEEEJIyENBRAghhJCQh4KIEEIIISEPBREhhBBCQh4KIkIIIYSEPBREhBBCCAl5KIgIIYQQEvIEVBBNnjwZl1xyCRo1aoTk5GTceOON2Llzp6rMoEGDYLFYVD8PPfSQqszBgwcxbNgwxMTEIDk5GU8++SSqqqpUZRYvXoyLLroIkZGRaN++PaZMmeLv0yOEEEJIAyGggmjJkiUYM2YMVq1ahaysLFRWVmLw4MEoKSlRlXvwwQdx7Ngx+ef111+XP7Pb7Rg2bBgqKiqwYsUKTJ06FVOmTMHEiRPlMjk5ORg2bBguv/xyZGdnY9y4cXjggQcwd+7cejtXQgghhAQv4YE8+Jw5c1T/T5kyBcnJyVi3bh0GDhwob4+JiUFqaqruPubNm4dt27Zh/vz5SElJwQUXXICXXnoJTz/9NCZNmgSbzYZPPvkEbdu2xZtvvgkA6Ny5M5YtW4a3334bQ4YM8d8JEkIIIaRBEFQxRAUFBQCApKQk1fZp06ahadOm6NatGyZMmICzZ8/Kn61cuRLdu3dHSkqKvG3IkCEoLCzE1q1b5TKZmZmqfQ4ZMgQrV67UrUd5eTkKCwtVP4QQQgg5dwmohUiJw+HAuHHj0K9fP3Tr1k3efscdd6B169ZIS0vDpk2b8PTTT2Pnzp346aefAAC5ubkqMQRA/j83N9dtmcLCQpSWliI6Olr12eTJk/HCCy/4/BwJIYQQEpwEjSAaM2YMtmzZgmXLlqm2jx49Wv67e/fuaN68Oa688krs3bsX7dq180tdJkyYgPHjx8v/FxYWIj093S/HIoQQQkjgCQqX2dixYzFr1iwsWrQILVu2dFu2T58+AIA9e/YAAFJTU5GXl6cqI/0vxR0ZlYmPj3exDgFAZGQk4uPjVT+EEEIIOXcJqCASQmDs2LH4+eefsXDhQrRt29bjd7KzswEAzZs3BwBkZGRg8+bNOH78uFwmKysL8fHx6NKli1xmwYIFqv1kZWUhIyPDR2dCCCGEkIZMQAXRmDFj8NVXX+Hrr79Go0aNkJubi9zcXJSWlgIA9u7di5deegnr1q3D/v378csvv2DkyJEYOHAgevToAQAYPHgwunTpgrvvvhsbN27E3Llz8eyzz2LMmDGIjIwEADz00EPYt28fnnrqKezYsQMfffQRvvvuO/ztb38L2LkTQgghJHgIqCD6+OOPUVBQgEGDBqF58+byz/Tp0wEANpsN8+fPx+DBg9GpUyc8/vjjuOWWW/Drr7/K+wgLC8OsWbMQFhaGjIwM3HXXXRg5ciRefPFFuUzbtm0xe/ZsZGVloWfPnnjzzTfx2Wefcco9IYQQQgAAFiGECHQlgp3CwkIkJCSgoKCA8USEEEICRptnZst/7391WABr0jDwpv8OiqBqQgghhJBAQkFECCGEkJCHgogQQgghIQ8FESGEEEJCHgoiQgghhIQ8FESEEEIICXkoiAghhBAS8lAQEUIIISTkoSAihBBCSMhDQUQIIYSQkIeCiBBCCCEhDwURIYQQQkIeCiJCCCGEhDwURIQQQggJeSiICCGEEBLyUBARQgghJOShICKEEEJIyENBRAghhJCQh4KIEEIIISEPBREhhBBCQh4KIkIIIYSEPBREhBBCCAl5KIgIIYQQEvJQEBFCCCEk5KEgIoQQQkjIQ0FECCGEkJCHgogQQgghIQ8FESGEEEJCHgoiQgghhIQ8FESEEEIICXkoiAghhBAS8lAQEUIIISTkoSAihBBCSMhDQUQIIYSQkIeCiBBCCCEhDwURIYQQQkIeCiJCCCGEhDwURIQQQggJeSiICCGEEBLyUBARQgghJOShICKEEEJIyENBRAghhJCQh4KIEEIIISEPBREhhBBCQh4KIkIIIYSEPBREhBBCCAl5KIgIIYQQEvJQEBFCCCEk5KEgIoQQQkjIQ0FECCGEkJCHgogQQgghIQ8FESGEEEJCnoAKosmTJ+OSSy5Bo0aNkJycjBtvvBE7d+5UlSkrK8OYMWPQpEkTxMXF4ZZbbkFeXp6qzMGDBzFs2DDExMQgOTkZTz75JKqqqlRlFi9ejIsuugiRkZFo3749pkyZ4u/TI4QQQkgDIaCCaMmSJRgzZgxWrVqFrKwsVFZWYvDgwSgpKZHL/O1vf8Ovv/6K77//HkuWLMHRo0dx8803y5/b7XYMGzYMFRUVWLFiBaZOnYopU6Zg4sSJcpmcnBwMGzYMl19+ObKzszFu3Dg88MADmDt3br2eLyGEEEKCE4sQQgS6EhInTpxAcnIylixZgoEDB6KgoADNmjXD119/jVtvvRUAsGPHDnTu3BkrV65E37598fvvv+Paa6/F0aNHkZKSAgD45JNP8PTTT+PEiROw2Wx4+umnMXv2bGzZskU+1vDhw5Gfn485c+Z4rFdhYSESEhJQUFCA+Ph4/5w8IYQQ4oE2z8yW/97/6rAA1qRh4E3/HVQxRAUFBQCApKQkAMC6detQWVmJzMxMuUynTp3QqlUrrFy5EgCwcuVKdO/eXRZDADBkyBAUFhZi69atchnlPqQy0j60lJeXo7CwUPVDCCGEkHOXoBFEDocD48aNQ79+/dCtWzcAQG5uLmw2GxITE1VlU1JSkJubK5dRiiHpc+kzd2UKCwtRWlrqUpfJkycjISFB/klPT/fJORJCCCEkOAkaQTRmzBhs2bIF3377baCrggkTJqCgoED+OXToUKCrRAghhBA/Eh7oCgDA2LFjMWvWLCxduhQtW7aUt6empqKiogL5+fkqK1FeXh5SU1PlMmvWrFHtT5qFpiyjnZmWl5eH+Ph4REdHu9QnMjISkZGRPjk3QgghhAQ/AbUQCSEwduxY/Pzzz1i4cCHatm2r+rxXr16IiIjAggUL5G07d+7EwYMHkZGRAQDIyMjA5s2bcfz4cblMVlYW4uPj0aVLF7mMch9SGWkfhBBCCAltAmohGjNmDL7++mvMnDkTjRo1kmN+EhISEB0djYSEBNx///0YP348kpKSEB8fj0cffRQZGRno27cvAGDw4MHo0qUL7r77brz++uvIzc3Fs88+izFjxshWnoceeggffPABnnrqKdx3331YuHAhvvvuO8yePduwboQQQggJHQJqIfr4449RUFCAQYMGoXnz5vLP9OnT5TJvv/02rr32Wtxyyy0YOHAgUlNT8dNPP8mfh4WFYdasWQgLC0NGRgbuuusujBw5Ei+++KJcpm3btpg9ezaysrLQs2dPvPnmm/jss88wZMiQej1fQgghhAQnQZWHKFhhHiJCCCHBAPMQeUeDzUNECCGEEBIIKIgIIYQQEvJQEBFCCCEk5KEgIoQQQkjIQ0FECCGEkJCHgogQQgghIQ8FESGEEEJCHgoiQgghhIQ8FESEEEIICXkoiAghhBAS8lAQEUIIISTkoSAihBBCSMhDQUQIIYSQkIeCiBBCCCEhDwURIYQQQkIeCiJCCCGEhDwURIQQQggJeSiICCGEEBLyUBARQgghJOShICKEEEJIyENBRAghhJCQh4KIEEIIISEPBREhhBBCQh4KIkIIIYSEPBREhBBCCAl5KIgIIYQQEvJQEBFCCCEk5KEgIoQQQkjIQ0FECCGEkJCHgogQQgghIQ8FESGEEEJCHgoiQgghhIQ8FESEEEIICXkoiAghhBAS8lAQEUIIISTkoSAihBBCSMhDQUQIIYSQkIeCiBBCCCEhj9eCaOrUqZg9e7b8/1NPPYXExERceumlOHDggE8rRwghhBBSH3gtiP75z38iOjoaALBy5Up8+OGHeP3119G0aVP87W9/83kFCSGEEEL8Tbi3Xzh06BDat28PAJgxYwZuueUWjB49Gv369cOgQYN8XT9CCCGEEL/jtYUoLi4Op06dAgDMmzcPV111FQAgKioKpaWlvq0dIYQQQkg94LWF6KqrrsIDDzyACy+8ELt27cI111wDANi6dSvatGnj6/oRQgghhPgdry1EH374ITIyMnDixAn8+OOPaNKkCQBg3bp1GDFihM8rSAghhBDib7y2ECUmJuKDDz5w2f7CCy/4pEKEEEIIIfWN1xaiOXPmYNmyZfL/H374IS644ALccccdOHPmjE8rRwghhBBSH3gtiJ588kkUFhYCADZv3ozHH38c11xzDXJycjB+/HifV5AQQgghxN947TLLyclBly5dAAA//vgjrr32Wvzzn//E+vXr5QBrQgghhJCGhNcWIpvNhrNnzwIA5s+fj8GDBwMAkpKSZMsRIYQQQkhDwmsLUf/+/TF+/Hj069cPa9aswfTp0wEAu3btQsuWLX1eQUIIIYQQf+O1heiDDz5AeHg4fvjhB3z88cdo0aIFAOD333/H1Vdf7fMKEkIIIYT4G68tRK1atcKsWbNctr/99ts+qRAhhBBCPCOEgMViCXQ1zhm8thABgN1ux48//oiXX34ZL7/8Mn7++WfY7Xav97N06VJcd911SEtLg8ViwYwZM1Sf33PPPbBYLKofrRXq9OnTuPPOOxEfH4/ExETcf//9KC4uVpXZtGkTBgwYgKioKKSnp+P111/3uq6EEEJIMCFEoGtwbuG1hWjPnj245pprcOTIEXTs2BEAMHnyZKSnp2P27Nlo166d6X2VlJSgZ8+euO+++3DzzTfrlrn66qvxxRdfyP9HRkaqPr/zzjtx7NgxZGVlobKyEvfeey9Gjx6Nr7/+GgBQWFiIwYMHIzMzE5988gk2b96M++67D4mJiRg9erS3p08IIYSQcxCvBdFjjz2Gdu3aYdWqVUhKSgIAnDp1CnfddRcee+wxzJ492/S+hg4diqFDh7otExkZidTUVN3Ptm/fjjlz5mDt2rW4+OKLAQDvv/8+rrnmGvzrX/9CWloapk2bhoqKCnz++eew2Wzo2rUrsrOz8dZbb1EQEUIIabDQQORbvHaZLVmyBK+//roshgCgSZMmePXVV7FkyRKfVg4AFi9ejOTkZHTs2BEPP/wwTp06JX+2cuVKJCYmymIIADIzM2G1WrF69Wq5zMCBA2Gz2eQyQ4YMwc6dOw0za5eXl6OwsFD1QwghhAQTgj4zn+K1IIqMjERRUZHL9uLiYpXo8AVXX301vvzySyxYsACvvfYalixZgqFDh8rxSrm5uUhOTlZ9Jzw8HElJScjNzZXLpKSkqMpI/0tltEyePBkJCQnyT3p6uk/PixBCCKkrlEO+xWtBdO2112L06NFYvXo1hBAQQmDVqlV46KGHcP311/u0csOHD8f111+P7t2748Ybb8SsWbOwdu1aLF682KfH0TJhwgQUFBTIP4cOHfLr8QghhBASWLwWRO+99x7atWuHjIwMREVFISoqCv369UP79u3xzjvv+KGKNZx33nlo2rQp9uzZAwBITU3F8ePHVWWqqqpw+vRpOe4oNTUVeXl5qjLS/0axSZGRkYiPj1f9EEIIIYFE6yKjx8y3eB1UnZiYiJkzZ2LPnj3Yvn07AKBz585o3769zyun5fDhwzh16hSaN28OAMjIyEB+fj7WrVuHXr16AQAWLlwIh8OBPn36yGX+8Y9/oLKyEhEREQCArKwsdOzYEY0bN/Z7nQkhhBBfoBVAgk4zn1KrPEQA0L59e1x33XW47rrr0L59e2zatMnrGKLi4mJkZ2cjOzsbgHPh2OzsbBw8eBDFxcV48sknsWrVKuzfvx8LFizADTfcgPbt22PIkCEAnELs6quvxoMPPog1a9Zg+fLlGDt2LIYPH460tDQAwB133AGbzYb7778fW7duxfTp0/Huu+9i/PjxtT11QgghpN7Ryh9aiHxLrQWRFiGE18kZ//zzT1x44YW48MILAQDjx4/HhRdeiIkTJyIsLAybNm3C9ddfj/PPPx/3338/evXqhT/++EOVi2jatGno1KkTrrzySlxzzTXo378/Pv30U/nzhIQEzJs3Dzk5OejVqxcef/xxTJw4kVPuCSGENCg4q8y/eO0y8yWDBg1ye4Pnzp3rcR9JSUlyEkYjevTogT/++MPr+hFCCCEkNPCZhYgQQggh/oMuM/9i2kLkKTmhXm4iQgghhPgGCiD/YloQJSYmul1Vl6vuEkIIIf5DO6uMs8x8i2lBtGjRIn/WgxBCCCFucJl2Tz3kU0wLossuu8yf9SCEEEKIF1AP+RYGVRNCCCEk5KEgIoQQQhoAri4z2oh8CQURIYQQ0gBwDaomvoSCiBBCCGkAMKjav3gtiL744gucPXvWH3UhhBBCiAHUP/7Fa0H0zDPPIDU1Fffffz9WrFjhjzoRQgghRINLzBAVkk/xWhAdOXIEU6dOxcmTJzFo0CB06tQJr732GnJzc/1RP0IIIYRAZ+kOKiKf4rUgCg8Px0033YSZM2fi0KFDePDBBzFt2jS0atUK119/PWbOnAmHw+GPuhJCCCGkGsYQ+ZY6BVWnpKSgf//+yMjIgNVqxebNmzFq1Ci0a9cOixcv9lEVCSGEEEIB5F9qJYjy8vLwr3/9C127dsWgQYNQWFiIWbNmIScnB0eOHMFtt92GUaNG+bquhBBCSOjCECK/4rUguu6665Ceno4pU6bgwQcfxJEjR/DNN98gMzMTABAbG4vHH38chw4d8nllCSGEkFDFJQ8RTUY+xfRaZhLJyclYsmQJMjIyDMs0a9YMOTk5daoYIYQQQmqg/vEvXgui//73vx7LWCwWtG7dulYVIoQQQogrrrPMiC/x2mX22GOP4b333nPZ/sEHH2DcuHG+qBMhhBBCPECLkW/xWhD9+OOP6Nevn8v2Sy+9FD/88INPKkUIIYQQNdqYIeYh8i1eC6JTp04hISHBZXt8fDxOnjzpk0oREkgq7cyjRQgJPih//IvXgqh9+/aYM2eOy/bff/8d5513nk8qRUigeHbGZnR+bg4OneZ6fYSQ4MLFRUaF5FO8DqoeP348xo4dixMnTuCKK64AACxYsABvvvkm3nnnHV/Xj5B65atVBwEAny7dh5du7Bbg2hBCSA0u0+7dlF208zj+/tNmvPmXnri0fVP/VuwcwWtBdN9996G8vByvvPIKXnrpJQBAmzZt8PHHH2PkyJE+ryAhhBBC4JqY0Y0iuveLtQCAOz5bjf2vDvNjpc4dvBZEAPDwww/j4YcfxokTJxAdHY24uDhf14sQQgghpN6olSCSaNasma/qQUhQYbEEugaEEKKGq937F1OC6KKLLsKCBQvQuHFjXHjhhbC46S3Wr1/vs8oRQgghxInWRcY8RL7FlCC64YYbEBkZCQC48cYb/VkfQgghhOjgTVA18R5Tguj555/X/ZsQQggh9QMtQv7F6zxEhIQCDCEihAQbLjFEVEg+xZSFqHHjxm7jhpScPn26ThUihBBCiGeoh3yLKUHEhIsk1DA7ACCEkPqCFiH/YkoQjRo1yt/1IIQQQogbqIf8S63yENntdsyYMQPbt28HAHTt2hXXX389wsLCfFo5QgghhOhDgeRbvBZEe/bswTXXXIMjR46gY8eOAIDJkycjPT0ds2fPRrt27XxeSUIIISTUcclDxIn3PsXrWWaPPfYY2rVrh0OHDmH9+vVYv349Dh48iLZt2+Kxxx7zRx0JIYSQkIcCyL94bSFasmQJVq1ahaSkJHlbkyZN8Oqrr6Jfv34+rRwhhBBCnDBTtX/x2kIUGRmJoqIil+3FxcWw2Ww+qRQhhBBC3EM95Fu8FkTXXnstRo8ejdWrV0MIASEEVq1ahYceegjXX3+9P+pICCGEhDxMzOhfvBZE7733Htq1a4eMjAxERUUhKioK/fr1Q/v27fHuu+/6o46E1DtMQ0QICTYogPyL1zFEiYmJmDlzJvbs2SNPu+/cuTPat2/v88oRQgghxImLhSggtTh3MS2IHA4H3njjDfzyyy+oqKjAlVdeieeffx7R0dH+rB8hAcHC1cwIIUEGg6r9i2mX2SuvvIK///3viIuLQ4sWLfDuu+9izJgx/qwbIYQQQmRoI/InpgXRl19+iY8++ghz587FjBkz8Ouvv2LatGlwOBz+rB8hhBBCiN8xLYgOHjyIa665Rv4/MzMTFosFR48e9UvFCCGEEFIDXWb+xbQgqqqqQlRUlGpbREQEKisrfV4pQgINZ5kRQoINOsz8i+mgaiEE7rnnHkRGRsrbysrK8NBDDyE2Nlbe9tNPP/m2hoQQQoIWh0Mgr6gMzRM4wcbf0ELkX0wLolGjRrlsu+uuu3xaGUKCBRqICDHHE99vxE8bjuD9ERfiup5pga7OOQ3XMvMvpgXRF1984c96EEIIaYD8tOEIAOCDhXsoiPwMV7v3L15nqiaEEEJI4KHLzLdQEBFCCKkznIjgfyiA/AsFESHVKNcJYuNOSPBQUl6FV3/fgU2H8wNdlYCidZFRIPmWgAqipUuX4rrrrkNaWhosFgtmzJih+lwIgYkTJ6J58+aIjo5GZmYmdu/erSpz+vRp3HnnnYiPj0diYiLuv/9+FBcXq8ps2rQJAwYMQFRUFNLT0/H666/7+9RIA4SNCyHByZvzduGTJXtx/QfLA12VgMIYIv8SUEFUUlKCnj174sMPP9T9/PXXX8d7772HTz75BKtXr0ZsbCyGDBmCsrIyucydd96JrVu3IisrC7NmzcLSpUsxevRo+fPCwkIMHjwYrVu3xrp16/DGG29g0qRJ+PTTT/1+fqRh4aAiIiQo2ZFbGOgqBCVssnyL16vd+5KhQ4di6NChup8JIfDOO+/g2WefxQ033ADAuXxISkoKZsyYgeHDh2P79u2YM2cO1q5di4svvhgA8P777+Oaa67Bv/71L6SlpWHatGmoqKjA559/DpvNhq5duyI7OxtvvfWWSjgRwraFkNBGCIH3FuxBu+RYXNsj+GbMUQD5l6CNIcrJyUFubi4yMzPlbQkJCejTpw9WrlwJAFi5ciUSExNlMQQ4lxSxWq1YvXq1XGbgwIGw2WxymSFDhmDnzp04c+aM7rHLy8tRWFio+iHnPg5VDBGDiAjxBn++M/X1Ov554Azenr8LY7/eUD8HJEFF0Aqi3NxcAEBKSopqe0pKivxZbm4ukpOTVZ+Hh4cjKSlJVUZvH8pjaJk8eTISEhLkn/T09LqfEAl6OPoioYYQAhVVvlmg+1wYQpwsKg90FdzCoGr/ErSCKJBMmDABBQUF8s+hQ4cCXSVSD6gsRAGsByH1xbjp2ej6/BzkFZZ5LuwBGlX9D4Oq/UvQCqLU1FQAQF5enmp7Xl6e/FlqaiqOHz+u+ryqqgqnT59WldHbh/IYWiIjIxEfH6/6Iec+Dh+3LesOnMEnS/bC7usdE59TaXfgnfm7sHb/6UBXpV6ZmX0UlXaB6Ws56GsIsCXxL0EriNq2bYvU1FQsWLBA3lZYWIjVq1cjIyMDAJCRkYH8/HysW7dOLrNw4UI4HA706dNHLrN06VJUVlbKZbKystCxY0c0bty4ns6GNASEj+3Pt3y8Aq/+vgM/rT/s0/0S3/PNmoN4Z/5u/OWTlYGuSoPFnxYiuoacaNsoXhffElBBVFxcjOzsbGRnZwNwBlJnZ2fj4MGDsFgsGDduHF5++WX88ssv2Lx5M0aOHIm0tDTceOONAIDOnTvj6quvxoMPPog1a9Zg+fLlGDt2LIYPH460NOcMgTvuuAM2mw33338/tm7diunTp+Pdd9/F+PHjA3TWJFjxlyFnz/Fiz4VIQNnLe0QaANominrItwR02v2ff/6Jyy+/XP5fEimjRo3ClClT8NRTT6GkpASjR49Gfn4++vfvjzlz5iAqKkr+zrRp0zB27FhceeWVsFqtuOWWW/Dee+/JnyckJGDevHkYM2YMevXqhaZNm2LixImcck9cUI2+fDjaZX4jQogvcIkhYtviUwIqiAYNGuT2hlosFrz44ot48cUXDcskJSXh66+/dnucHj164I8//qh1PUlo4C8Lkaf9/rrxKDYczMezwzrDamVkKmmYWDgVgTRwAiqICAkm/GXJ8bTbR79x5jy5pE1jDO3e3C91IKQhwxlsEsLNf6SuBG1QNSH1jVIQ+VIbmRVaJ4uDOwcKIe6gaPE/ri6zwNTjXIWCiBAJReNC3zwhoU0wtgGuNQq+OjZkKIgIqUYZ6+PLeCIGVZNQ4FwzEAXjaxuMdTqXoCAipBp/uczYiBHS8PDVQMbhw9EV8xD5FwoiQqpRNoC+tOqY3RfbNkKCB1/omLzCMlzyynxM/n173XemA9sM30JBREg1/hptsdEiIcE5FlXti0HRx4v34lRJBf69ZJ8PasS2xN9QEBFSjVDFEPnPzE0ICX6C8bXlLDP/QkFESDWMISKB4nRJRaCrUGf8aR8KRNLHYJwMoV3dnoMt30JBREg1gY4hIqHJJ0v24qKXsvDVqgOBrgpREJTvrdZCFJhanLNQEBFSjTKI0pcNjdl2NRjbX+J/Xv19BwDg2RlbAlwTosRfS/nUhSCs0jkFBREh1QiVy8yXFiKf7YqQoOUci6luEO6oBlDFBgUFESHVKNsWn8YQcVxHTGALY3McTATjQMYlqJpti0/hG0hINdoYogk/bcLk3+qeP4SjOGIGW3jDbo7PBQOR8lUNxhgiFwEUfFVs0HC1e0KqcThq/t5/6izW5JwGADx9dSdYrbVv7t2Z3v3lpiMNjwYviM4Bn5m/Jlb4iiCs0jlFw34DCfEhygawvNKuu712+zX+zB6MdnkSEOrbZeZrAd7w5ZBmYkUQvpraKgVhFRs0FESEVKNsAO2Kf+x1bBndfftc1EMbD+VjwOsL8fvmY4GuSoOivi1EIsg7/0Aggt5CxLXM/AkFESHVKP3zSveZ8u/a4K5hDcZGt648Mm09Dp0uxcPT1ge6Kg2K+hZEDenZqy9vnNplVj/HrAsMqvYtFESEVKNsAB0+tBC5a7NUo/S6HSVoqLDXUUGGKJH1Loh8u79zIIRIMxAKvjcy+Gp0bkFBREg1RgGVtRlJmzW911lsBSGcPl47GqKF6FybCOCv5Xt8Btcy8ytsuQipRtm4K4OdazNSNBuf0ZDcFmaJCDsHTAX1hPKZi6j3oGrf7iMQ6435Gn8t8OwrXNYyC1A9zlUoiAipxmiGSW1mgpm1MIlz0LtU3x17Q6bSXvNs1LfLzBfWyXPNwhnM0+6FEFi662Sgq3FOw5aLkGqU7V+V0kJUi3bR7Lpo51qHAjT8fDr16QYqVaR3qG9Xoy86fIfaRNTgUccRBq4eeszZkospK/artp1rLstA07BbLkJ8iLJxr1QEBtem41DHIpibZXautG0N3UJUnx1haUWNIKpL8s/a4Avr5LnyzEqYfW8DwdLdrtah4Kphw6dht1yE+BC1INKPJzJLbWKIgs1EX1saelB1fd4HpYWovmc1+eI8z7XEourJEAGsiA7heoI5yOrY0GnYLVeIM39bHv7vf3/iTElFoKtyTqB2mdUMn+saQ+Tu28EexFkbIsIbnu8kUGtYKS1E9e0+9bXLrOHddVeMUm8EA2H1bEEMRSiIGjBTV+7H3K15WLr7RKCrck6gbACr7ErTed325c70rhRb50r6nobuMqvPflBpIapva4s6zq12x65r0tLa4E9XVjBbbPVmbzIxo29p2C1XiFNR5WyNyivVrdKp4nI88+MmrD94JhDVarAoOwhlcsHajNzNBmcGcwNcWxq6IPL3fXg7axc++2MfAKDMh2vmeYsv3EMqC1E9GTD8eZmCeS2zMKvrexVsddTy7vzdeHPezkBXwzQNu+UKcaTGSJsZeNKv2/Dt2kO4+aMVgahWg0WoLER1c5mJ2rjMgi1ooZYoY4ga4jn5s8qHz5zFuwt24+XZ2+FwCLXLLJAWolr2rHaVJbSuNTKHP4VjMK9lpmshCq4qqjhbUYW35+/C+wv34FRxeaCrYwoKogaMNDW8UiOI9p0oDkR1GjzCwKpTm87C7PdVLrNgbt28QNlwl1c1PD+gPztCpUXILoQmqNpvh9XFF9ZJs7FyvsSfutGfa5nV1dUXrmMhCmaUqUuUk1SCmYZ1hYkKh4Egsp4LiwoFAKNOoXYuM3OdTUNbTNIMSpeZUgA0FOorWaZdayEKYFB1bZ89UceBQ23wp2D1Z1B1XXcXrhtDFLw0xKSzFEQNGKkBrajSCqJA1KbhY9Qp1HWWWZWb0ZGqAT5HFJFSj5dVNTxBVF+uErtDBDSo2hczHFVL3NRT9f0bQ+S/PER1Fbx6s8zM1jEQOZUqFSbPhhL8TUHUgJEMQxWaDtdCC1GtMOoUauPKMNvZnItB1UqDpTbgvyFQb4JI6zILoIWotocOxPPr3xgi5XF8u++61lsvD5HRHrUCKBBNi1IsuxsUBhMURA0Ye3VPrXWZMV9F7TBqNGrTkKkaAzctq3Lf50oMkbIxbigWIn92hEbY7aLOwft1wRfWSeVgob6q71eXWR0XdXZHXavtTbuuPVYgBlvKdq+hJPCkIGrASA9ZJV1mPsHIrFznGCJ3gkhx684RPaS6XmUNxEJUX0s2KHd975S1+GbNIfn/+hdEdXd3BWKpC/8GVdf8/cbcndh8uMCH+/Z9xY12qd0cCD1iV1iF3A0KgwkKogaM9Ixpp93TZVY7jN7Z2owU1VmvTVqIGkij4QnlaZQ3kKDq+lrUUykWsw/l40h+qeK49R1DVHd3VyCm3fszHEV5Hf48cAbXfbDMh/uu2/f12wcDN7/WZRaAGB5lDFFVIDJ41gIKogaMbCFymWUWiNo0fAxjiGrRlpgVOudiDJFSQJY1kGn39ZV/xt2z0BDzEAUib0995SHyNXW9v3rnbdbNzxgic1AQNWCkB66iSv2wcdp97TCcdl+rWWbmvn8uzjJTXseGMu2+voSpu4Fyfd9+37jM9P/2J/U17d4XqBK01rHe3tQtKGKI6rhAdiCgIGrAGFmIGFTtW2rTmNTOQuT1YYIS5fk2lMSM9bVkgzvXQX27FdQB0bV0mTl81+G7o76C3oNZbOm1I0a71J5GICxEVSqXWcNo3CiIGjBGeYgYQ1Q7fGkhUnYO7oKylVahc2WWGS1E5o7j8llAM1X7Yh/1c938u7ir33Zd5+ujZ0E2DqpWfxDoWWZVDWTlagqiBoxxpupA1KZh4HAIw07aqEOqnYWo5m+ziRkDkTzNHzTEoOr6skC46xcCmpjRx9PuC8sqMfjtJXgra1cta6c5Tj1ZUn39Dvoy87U3560tG5BZZpx2T+oTSYFrZ5kxhsiYWz9ZgR4vzENRWaXLZ8ZB1XVzmZlNzNhQGg1PNEyXWRAEVQcwMaMv1jJT/v2/lQewK68Y7y3YXfsKqo6jf0xf4+t9K+9pXS2Aes+H0ewx18SMAt/9eQhvzttZbwOvqgY47T480BUgtYdrmXnP+oP5AIDle07h6m6pqs+M2onaWHuVjZ/bafcBWPrA3zQkl9nHi/eioLSy3ix1buPJGmAeIqNp91o3fp2pN0Hk2/35chae3nNpPMvMtdxTP2wCAFzZOQUXpCfWqS5mqGqA0+4piBowXMvMtxiNtuq6lpnbxIw+cFsEG2pBFLwNoRACr83ZAQDomhYvb6+vPETefOYPGtK0e18sM+LtcZQIIWoVm+mLwHUJb4KqtR8oj51/tqJO9TCLOoaoYbRtdJk1YGpmmakfNqWF6FyJS6kPjDrC2lzDWiVmPEfulVnrWKBRdjAl5VXy3/W1NIS7+tQHvhAz9eHKyissQ3E93R+9Xf+w7jAueWU+Nh7K93p/vhRy3rQP2msU6EzVDSUcgIKoAWOYmNHqWoZ4xnCWWV1jiEJt2r0qLip4LURKsaYcVPizymbdp/WBL3IIqVa798N1yy0oQ59/LsCO3KKa49SzheiJ7zfiZHEFHv1mQy32537f3qD3daPBmrtM1fX1lHHaPalXZJeZmxiihvIgBgNGl6quLjOzFqJzxmWmml0SwIp4wCignUHVtduHP6zRq3NOuT2mr3G377q2A3UdnHrzfW3JQAyMVS6zIB4YKaEgaqAIIeQRg2sMUY0g0lqPQhl1g60XoGgUP+D9sVSZqk3mnmnoS3fYHQIfLd6DPw+ckbcF8zkZNdiBiFEBApuHqLbnbDTt3leX0BuriC/wtW7wpQVYN4bIYJ/a50wZw1NfIaZcuoPUG3aVud84qLqhPIjeUl5lx/xtearYAk94apCMLDR1TsxoNobIoNz8bXl4+Kt1KDjrmiogmPh27UG8Pmenalswu2wdKkGkdCn4r87urIX1bSFS516qu4Wo/tYy89++/ZmHyNO+z5RUuC3jVd00RZV9RH09ZZWMISL1hVH8g5bKBmKq9JZXf9+BB778Ew/9b53p76hfStdxktFVrF0Mkfq4Znz9Rm3GA1/+id+35OLNrJ36BYKE9QfyXbYFs8vWaBaMX2NUgiio2vd5iOpcJRf0xGmg1pqr1f5MXp91B07jwpey8Ndvsw3LeJOHSHusQLyHdsYQkfpC+aJValxmZrMkBwsOh8DDX62Tp0Cb4ds1hwAAy/acNH8cDw2p0Ttbm9ges7M8vAm6zC0o87oe9UmhXrLLIG4IlXVTup0DFUOkrZO/UcdN1W4f9bWkhuqYfhzj+frem53J9/HivQCAXzYeNSyjF/1gtEutUFKFVdTTI8alO0i9ocoGrHnYlCOJhiCI1h08g9+35MqNghlq49bwNEoxtuJ4fSiXxs+oI9SO0ssq7fjrtxswM/uIa/0Uf1dUOfDhoj3YcqTA+8r5iYJSV0EUzKkElM+DcmJCoBIzAvV7vZSHqu05+zsGTm+XgUrMWJt8t2aXrzBjHaxLYkZ/WGiEEHgra5ehiFPFEAXxwEhJUAuiSZMmwWKxqH46deokf15WVoYxY8agSZMmiIuLwy233IK8vDzVPg4ePIhhw4YhJiYGycnJePLJJ1FVZT7uJFhRNkSVdod6JKJ0pzUAl5m7rLbfrDmIu/+72iVWqDZtosfRuQ+n3Wu/YiyI1GWmrT6ImdlHdU3nynv8xfIcvDF3J659f5nXdfMlW44UyA1ioZ4gCuKG0Mw98fkxPTxL9Xm9fJ2pWrUPH1mO9OrlT83o3xgi43JmBINXs8xcgqp9bwFdu/8M3luwG48ZpCNgDJEf6Nq1K44dOyb/LFtW0wH87W9/w6+//orvv/8eS5YswdGjR3HzzTfLn9vtdgwbNgwVFRVYsWIFpk6diilTpmDixImBOBWfop0VYzQSaQgWIndM+Gkz/th9Ep/9sa/O+/LkjvCny8yoI1TuWwjgdEm54T6Vu9h2rNDrOvmDa99fhse+2YB1B07rW4iCuCE0FER+qHN5lR2Hz5yttSj3B77IkWPGJeTPmVu+xsy+HQ6BsV+vxxtzPbv4zbrMlJ/1fmU+Fu887lJGP4bI6Ljq//0hTk4WG7dVzuMwhsjnhIeHIzU1Vf5p2rQpAKCgoAD//e9/8dZbb+GKK65Ar1698MUXX2DFihVYtWoVAGDevHnYtm0bvvrqK1xwwQUYOnQoXnrpJXz44YeoqKif9OW1wUyDrH05Kg2CQhvCtHulJdro3Eu8mE1mhGomkVfm59oIIvX/dgNhqp1l5m4dOmXZYFuvbs/x4gbnMjMUqX6o8q0fr0T/1xZhnSIlgW6d6qnjKK2w+8ZCpAxNMdhHXc5J7z0N9Fpm2YfzMWvTMXy4yLOL36zoVF6j40XluOeLtS5l6pKYsdIPFiJPu3G3dEewxhYGvSDavXs30tLScN555+HOO+/EwYMHAQDr1q1DZWUlMjMz5bKdOnVCq1atsHLlSgDAypUr0b17d6SkpMhlhgwZgsLCQmzdutXwmOXl5SgsLFT91BezNh1FjxfmYcmuE27LaT1hFQYPfENR5hJG9dUKgNqcladlMgxdZv60EGkaTHfrJSn3EGR6CBZYcLbCdSHXYG34AOP76o8Yos3VsV4/b3CNDVNSHx7u7/48hM4T56ji1GodQ2TCNeZrkefXWYBuroP0ztk9DKyUmA1cN3PfvXOZqf/3R9ZoT3GcVSqrVM3xf95wGD1fnIeVe12TbgaaoBZEffr0wZQpUzBnzhx8/PHHyMnJwYABA1BUVITc3FzYbDYkJiaqvpOSkoLc3FwAQG5urkoMSZ9LnxkxefJkJCQkyD/p6em+PTE3jP16A4rLqzDq8zVuy2k7WGUcjtplFvwWIiVGGU1rs7CiFk8BjmZHW544XVKBn9arOz6j81Kvdi8Q5tZCVPO3pd7Sq5nEoDrBLMgDEUPkifrI6Cutev7b5po20J/T7utyTnq79GfQu7tdS+9cuCLRW7mb+EfAfGoDM5ZUqczz13XB5R2bOetr4rhAYOJ51IlPa/7+2/SNKCqrwoNf/lkv9fCGoF7tfujQofLfPXr0QJ8+fdC6dWt89913iI6O9ttxJ0yYgPHjx8v/FxYW1qsoMoPWBWNkEnWXoygYMbYQ1X3fnpZnMGonvNWUd3222iXGx6hP0HYo7s5T2REEm4XIKFatIVqIApldO1AuxtpqFjMdfp00ns4uA2UhkogIq7EjlFXaERURZlhWubu65qCS3v8wq6VmgGjwNe1m5fvpq7hS7SxF7aDVUwxRMGaxD2oLkZbExEScf/752LNnD1JTU1FRUYH8/HxVmby8PKSmpgIAUlNTXWadSf9LZfSIjIxEfHy86ifYcI0hMhJEDctCZBRr44uYGbWFyPVz46BQ715cvYBnQwuRYtd2h4DVpPILMj2EM2f1Y/KCOoYoCAVRXcSDmaBtw+P6YNq9qoNUlKmbhai+Y4jMCJOav72zENXtuNK9tVpq7MNGbiutFU3ZD/jDQqS3S3cxRMFKgxJExcXF2Lt3L5o3b45evXohIiICCxYskD/fuXMnDh48iIyMDABARkYGNm/ejOPHayL2s7KyEB8fjy5dutR7/X2J9qE2euBr0xjtzC3CrrwizwV9hCoI3KC+ZoWCOzytwm4YVO2DBsToNijr5BxlQfW/ah9BZiFS1i/fSBAFsYXIyBoZSA2nFZBCCGw/VoizFe4nFczZcgz9X1uEx77dUKvj1vac1dPu9d0ydRHF3gxcfIGZx1XZppZVusbNqfdnLt7IzHsiFbFaLB7ff9dZZv6IIapBr58xiiGSvx+ETUNQC6InnngCS5Yswf79+7FixQrcdNNNCAsLw4gRI5CQkID7778f48ePx6JFi7Bu3Trce++9yMjIQN++fQEAgwcPRpcuXXD33Xdj48aNmDt3Lp599lmMGTMGkZGRAT67uqFtFJQjFXWOIu+eurJKO4a8sxSD317q8WX3FcqXyShg0UUPmTyt40Vl8n48rcJuGBTqgzfXSJiq1jwTQrMwr7ZzrPk7GGKIlO1qcbn+sxLMgshXFkFfohXfC7Yfx9B3/8DNH61w+72PqpOazt50rHbH9fG0e7uBOPKW+u5I3YkWvaDqskoPFiKDxW+1mBJEDsllVrPNeGas+v8qHwlUJZ7Wa2yIiRmDOobo8OHDGDFiBE6dOoVmzZqhf//+WLVqFZo1cwaUvf3227BarbjllltQXl6OIUOG4KOPPpK/HxYWhlmzZuHhhx9GRkYGYmNjMWrUKLz44ouBOiWfoTVBllU6MOLTVWiVFFOnTNXK5RdKK9z7x32FUd4kpSBwnWXm+bxmZh/BX7/NxqiM1njhhm4eGwXDPEQ+eJeN4yvUIi1MJYgcsIXXtH6qafdBMJRRjjqN0iIEsyAyjHsKpIVIc/CfNhwGAOzIdW+xrauIq+337QYdvt1HMSt6A7rAW4hqCpVXmbcQmZ12b1hG1LjMJKe50be07aNyco3dD2EUevVXzWxrIC6zoBZE3377rdvPo6Ki8OGHH+LDDz80LNO6dWv89ttvvq5awNG+XGv3n8bKfaewct8pXJCeKG+vj1krdcVoNoIylUBYLVxmr/7uTJw2deUBvHBDN7UZX6dRMCNaaouRpU6dyVbtMtPGf6ksRLX0mWUfyseiHccx5vL2KrFVG5TX00gQBWPgpEQwWohqO3o3+5obPcu1fcS110oKrlW+x3W5nnodbaCDqr2yEHlI9aG3T0B/coWey8zYza/+X9n++MNak3+2EnGR4ap2qcrDMWuz/JK/CYJxJqkN2hdI6d5SmjK9dZkpX7D6MnOqg51r3mTlorW16f+1jYW6cXItbzjLzAcdpFFwu1HcBaAWhIAmD1Et63Hjh8vx7oLd+GJ5Ti33UIOywSsxiHEJpKn8h3WH8d2fhww/r888RGbRChazrlGzoqPIQLhmH8rH1BX7Te1DiWucm/N3Xdwl87bmYvx32SitsNf77CTfW4hq/nb3XGnDE/QGgDUuM89PhfYaGYUl1AXlMQa8vgh//3mz5pj67XowQ0HUQNE2FMo8RKrRgJfmUX/PRtDDjIVI25bUpk1UjVq9GLGs3HsKx4vqttK80XptWpO68pq7iFmVhUixuRYXwxdLfygb2RKDGKL6nna/8VA+/jV3JwrOVuKJ7zfiqR824XSJdwHfAXWZae+lSeVrViTorTcn8fwvW3HG4FoZob2GUj08vWvuGP2/dfhp/RH8d9k+gxgi/90gtzFE1b+Vbao3FiJ3mqDUhCCSZ5kpPjNrZfGHhUjrBvtmjXrwoWrLdPO++aQaPoWCqIHiLjW7UkjoPYjuUMfw1I+qtxv4mo2STdYWVbyOztto9IJmH8pH/1cX1enYxoJI/bdKEGq+o5plBuPgazP44noq66q3bAdQ/9Pub/hwOT5YtAfvLtgtb/NeEAWupf73kn244z+rUKqT9dsdZu+n0X2S8DSNXIv2sNK1cxgMcrwht7BM30Lkx2bJzL1X1smbWWbS33tPFOObNQdVwspFEOmYxKXvWy3w7DKrh2n3nvajshAxhoj4E9dp9/pmXG8tRP4wrXo8psHoRSnsapNxWzt68pSp2t1IVuu+8haj72uTRaotRG5cZor2ssrhgM3LsY0vOn1TgihAlvIt1UtlAECxgZvIqKPW2zxx5haEW62YeJ1/0nVYLc7jSkt7TF97EPf0a2vaNWr2dnoSRN7GdbjGEDl/V3l418yiF4zrV5eZm+dVio9Rno/HPEQ6QedXvrkEgPNa3dGnFRwO4WJp0kszIp13mMUiD4iMroT2EqmnwPvm+nkabFf5Yaq/v6GFqIGi7byVHa7SsuBtdL/atFo/vZmRr1l1Hj54oTwKIj++s0YWIu3UVa2FSPm5KlO1Yh+VVQGyECmeOWNBFBhFpMxnZVQ3o45V6zY5UVSOL1cewOfLc3yyyLAe2gD3Ei8tRGZFgidB5O1zoT2u9L/dRwMr/RiiWu/OI/VhIZLIPnQGgL6ocucy8zShQgjhaiHyw0DX02w1TzFEwSiRaCFqoLiLIVLFE3nZIXmaGeAPqlRWEXMuMzM107ZtnnKj+HPkaW6WmSao3O5wcalJKBtFb+8x4BvLjZnnI1DT7pXPsVHSSGMLkbFlsTZuZDMxL7Ywq8pK4DDZ+UmYdU16EkTSdRNC4PCZUrRsHO22DtrLIV0qo7hAb6n/GCLPZZR18iSIhOr9Ve9cEsFadxlg5DKr/syqSMyo2efxojIMe28ZWifFqLYrB00+iyHysJ+GmIeIFqIGirYBVL6Y5XWxEAUgd4TdwL+t7HxckxTWzSpS3x11hb3m/pRW2PHLxqMoOFvpUietOFRa6ZQ1VjautblPPnGZmThuoNpB5bOTf9bAQmQkiFw6eX2RbhYz18AWrs735e11M6uJi8o8CKLqHX2xfD8GvL4Ib8zd6f64hhYiH7nMgshCVBNUbd5lps7krf5MWhNNLwu5W5eZVRFDpCnz2R85OFFUjj8PnFFtV4dC+MZq60nkqLJj67UVQaiRKIgaKNrGXBmEqXaZ1d5CVNug6h/XHcbd/13tcTQqH9NollmVb19iT8sJ+NVCpBihTfplKx77ZgMe+mqdS6Zfu8ZCpl4rSv861eY++Sao2vNxA2UhMiOIzFqIvOkA9Y/j+TuRGpeZt8+i2fKeAvArqp/TF2dtA1CTAdsI7cBEVJ+qLwSR02Jav++pty6zco11Z/ragxj5+Ro5bk27dIfyekkWIj0rU7gHl5kcQ6S1ghtca//MMvMgBgM4AK0tFEQNFO0DpjS7qjpLr2eZ1d3X/Pj3G/HH7pN4XzHTR6K8yo4Ve08ausOqDGbL1eYl1n5DFcBczw1tueJcplfnxlm575TGJaa1EDnUFiJFWXstGjjlOdeXhShgLjPFcY0WnjWyEGkvjdJq6invjB5mrkFEmCYTe3UlzAZVmxdEnuI+nJ/H2MxlqHd1mfnWQqQn4Pz5RLmtavXNUOchUl+Ap3/cjKW7TuDTpfsAuLrMzioGrpGyhcj1mdJbzFp2mblxYRo9B/6YZeap3VH3Q8xDRPyI9qHWe6mAWuQhMojnqQ1H8ktdtj03Ywvu+M9qvDhrq7zNjIXIF+47d0kQnZ/X+RCGVJrKQ6SuV4XdoZmlon+dzN5jpcD09SwzI4IhhsjIUmnWQqTsTB78ch2+d5Ps0ZvjKNEGVUtfMZtvyt0hCkorZVeZJ0EkvfMxNnPhpUYus9qunaWaOGAJRAyRiWdalYdIv90tOFuBE0XlKjFud6hnPFosFlTaHXjof+tcvq9nVVQmZoQ87V5joTOovj9mfOm1ySordgBy2tUVCqIGiraRMcpb4q2o8eVDrDfd+bs/nWszfbXqoO5xtIJArpcvgqoVbYxuKnk/NrSG0+7dzDLTWoiUVVbNxjMpiMorfdtAmRFivs5DZHcI1Xp7RiiviZGFyKhu2kujdHfmnCzBkz9sMlFTxf5MWYg8u8zcdWRGz25ZpR09X5iH7pPmweEQHgcWkmAyayFyFUTO30bZ5z2hPEchjGKI/Oky81xGPctM/9yKyqpwySvzVe5ahxAoKqtpEyvsDhw4VYKjBa5JX/Xuk/S8Wmr0kEs7aGgh8mAdrw1696bSYHq/rngKwiAiCqIGQJXdgXu+WCOvzQXoWIgq9acDe5s/x5dmTiOrldtjqgKp6xpDpL5GanGh09D60aprZCHSmtS1s8yMOpYqD42NHkp3T22Cg7UEwkJ088cr0GPSPOQVus8crhRrRjFERtOGpWcjr7AMC7bn1TkHlZnrpJ1mLVuIlPtxc5+NrrPyOpVXOTwOkKpkC1HtBJGQLUTeWXf3nyzBmK/XY+OhfNV2/XxhpqpWK7xdy8zIhbr/VInLNiGEKqi9vNIhC6qmcTac1zRW/kzPkqfKQ2TgNjOqv38sRK51VOXA0xnoBnJZHDNQEDUA/th9Eot3nsAnS2oCHLUPfmmFfitR5mU+E1UCrzq6qczmbDHKWaJOH+D96FiL8prtP3UWJ4rK1fvxMGKpy8ts1Kk6NCM3lTisEiorhlFyNbP5opTxDqUelhwwQyAEkdRhztuW57acmWn3Ro+3dJ8ve2MR7p/6J35af9j7iiqPUytB5Podd8LM6BDKjOYVdodnl1n1sxQbWeMyc2dR0H4k/W/k6jXigS//xOxNx3DrJytV24PJQqSXdNLIQqS3G4dQW80r7Hb5nYyxhau+4y5xrPJZ0V4Ko/obWW7qgt69KTeIDZWeq7qGYfgbCqIGgHLhTKlB0466Sg0W1zRrpZFQjewCYCEynGXmMu2+5m+j99udy2zprhO45JX5AIDjhWV49fcdOHDqrNt6mnmZjRobMy4zbQxRud2hnvVnIBzNNjLKxspT/hQz6I0QG0WqY0/8tZaZ3mrgeg0wAJwxshAZPN/SbqTObsH247WspRNTFiLNiF/vurlzURqvYq9+nzy905VyB11jITJaEPbQ6bP4WDMLTRpUVBlYM43Yc7zYZZtD6J+zP40M7gY90jlpLUTlVXYs2XVCFbagd8oOIVCscJmVVzrkNs4WblUvyq2zgxqXmcXQZWZU/0p/WIh0niVlG6MXyG00SSRYoCBqAChfQOmF0o6Szhp0cEbbjfB2emb+2Qrc/NFy/G/VAZe66uXX0EOVDFI57dxkXcwKN6MOcOw3G/DJkr1YnXPafT1NHMdoBG6cqVpRP+0ssyqHYb4hT/55T3Uwe2/coXdPojSuFn+tZaa33rdR3pOiskrdjsJIX7iuFF77c5i16Sj6vbrQYzlt3hnpiGYTHJqZXeS0EHlwmekc45aPV+C4jovy7fm7dOrh/O2LWWZal3HNMfxpIXJzjasvpXZx15dnbceoz9fgqR83KcrqW3i0MUSSiyky3KoSN9Ixpq89iBd/3ebMPl19WGViRu1zbdREqdsOReiAQ2BXXlGtBi5690aZhkCvjapNVv36hIKoAVCoeImkgFJtY270HnvvMnPv+9e+BO8v3IP1B/Px3IwtzuMpXgijNaTc7dN46Q5jMWK2wdXrAO0OgTUehJCEGUuMUadlarV7hzoPkTOoWt8SVJtYL6V/39vFQ/XQPh+2cKuL5caXGWq1M5C0GAXhO4T+UhieLEQ1+6q9pXTs1xtMldNaiOQRtUHmdi3KOiuvk3ZJH8+zzJyfK0f6e44X47NlOS5l9eojday+WMvMadHSE0S12h0A4Ps/D2H9wTOGn7vbt13n3Mqq7PJg8NeNR+XtutdGqK1trhYidVmHQ+DpHzfj8+U5WLn3lHpxV8P665+AUUzXO/N3YfDbS/HP37Yb7NEYvfZQlRRY5xlQtlWBXETZCAqiIMLI3JmvWK1bGmGYHXnrBVuXlFcZJ/ByMyL9cNEeXPDiPOzKK5K3aWfwKPMhlVU6TM1EMjKvm82dYdTparfqXTNvkhqaORej4Gmj42jXOtKev3rVcP3rUWUX+G7tIVz11hIcdOP2q1DFEPlAEGmEQmSY1cVy40uXmbJz1+sQ3AmGQp2p90a3U/se1jaWzpt1z7QxRFNW7MeYr9ebdj1p0zdIaJf08TzLTLh8D9DPi9MiMdplm1QNo2UbvInD87WFaOXeU3jyh024+aMVhmXc7Vs6D5XLzCCGSC/Y2sVlVlUTQ+S0EKmPrRQP+aWVCkHkLg+R/naltV15ju8t3AMAuoLXE7oWIoNUKVUO57qMVXb1c+ovl3ptoSAKIrQPWEWVA6dLKnBaITpkC5HJjlwbx3O6pAJdn5+Lmz5arltebSFSH+ONuTtRVFaFN+fVpPPXjhK0sSlG8RtKjNw/ZvMQmX2p9K6ZNzOIzFg7jKw1Rp218vAOoRYZFXa1QLJrGhj5mHYHnvpxE3YfL1bld9Ki9u+LWmcil+uguScROhYiX7rMlPXX6xPcnY/SVSFhbCEy7pgkzHTsZi2PgP5SDbM3HcOJ4pp3320MkTB6NtTvk8fEjNWfa5/XJrE2l7J6Wbv1EjNK7+d/lu5D738uQM5J1xlYelTa9QVcbSc3bD9W6LGMu13r5VgqM5hlpn9t1EunVNiVFqIwtyvUK8Ws02Wmn6na6Nr4ZZaZzn6MFuQ+WVyBS15ZoOo7gOBL2EhBFERoH7CbPlqOi17KwpYjBfK2wlLJQmRun1qX2eKdzgDRTYcL9IqbWtw1KqImTkTbqWgF0akS9Uwub46pdoGo/d6q7xtZiBSNw7ytuZj06zaXMkYWHT3MCAgj4WbkbtM2YNpG0ChQ2GjNN3eWH20nV1crkVbA28KsLtOBhQ9HgUajcQl38Ql6uYvM5iHSGwkXllZhzpZjbq1AGzRTyN0RZjDoP1uujjkxQllFo2ejwm437TLTHkvP4iGVuaNPK8RHhVfXw1UQSe/nK79tx4micrw8y/U91KPcIAi8to+TkXhR79uNhcjuGlRtdP/1BJEQQhVGUF7pUFuINIdW3qtx07NxqtpTYFUFVZtrC43iD+uCp2n32r7hZHE5vl+nnrEZbLPOuNp9EKFtrLYedY5o1u6v8XlLI4ya1bDdj2q0QdWeBlfqxV31G884xUwiVwuR+juSgHOHuRgiY6Fm5gUfrZMNFvDSQuTm5S2vsuOTxfvQISVOtT3cakGVQxiugaVtgFWpBjQuAyPhqNxutViw/VghyirtuLBVY00dNeK1wo74qAjDc/KEdnQXEW7Rfb7sQsBqchEKIQRe+HUbmjWKxJjL26s+U+VR0rkX7u6lnsvM9FpmOuWe+GEjsrbloVNqI9xyUUuMvLQ1IjULtGrTOrhD6zKTUAo5s3mIjGZqlhvE5CgxcpnpPb/SYKJFYrRs4ZJ27y6GyIwwcdbFKIaodp2oJ0Htad8151azH6P2TW8Wp90hVDFETguRs5wt3IrUhChVdn+jAUuYFYZBREaWaO2i3Q6HwG9bjunvxCS60+4rle2XCYt6lQOIrFM1fAotREGEmY69UBNDFBXuPoGa1mXm6QhGna6ybmpB5N5CVGJiNpNR4LDKQuRmhFMXE7A3sx7cBdd+umQf3p6/C49MW6/aLi3aaTQy125WnrO2Q6hy1CwOaZSHyGqxYOi7f+Cmj1bgdIk6vks7yvc2JYNr3fUsRJ7LuWP38WJMWbEfb8zd6WI9U3bKeg2/ty4zd2uZKY+t10dmVedB2pFbhFd+245Pl+xzKXOq2LwgMooLUS47oj0/u0Ng+Kcr8ddvN6i2Vxm8Q0qXWaxB4kXpWZKub8vGzjghPUEk7Tsy3CrXX+/51N5/s1aBSruo9RI7a3JO454v1mC/wj2nFGKGaQrcaCbp2iivr5Fo0Xu3HEJtsddaiN66rScubdfE7T4A9bOifTaNEkVq28/pfx4yHfBvhL6FSCnAPbcvdXXb+xoKoiDCTENRJM8yqxZEEe5vodbtYrTWjN42ZWesTG6nXOfI3SKzAHC23PNLYbh0h6GFSNMxGLmjPB7ZOwuRu/tjNHNFci8aT7t3byEyslYY5SFSlj+qWUuuri6z3IIyuQHbmVuEN+aq4wFs4WG60+G9GdErOwGt0FWKbW8FkZ7LzNBC5BBem/JX5Zxy2XaqRD8hpB5GFqIyNyPujYfzsWrfaczMPqraPvzTldiZ65z4oA2qlvYRF6XvHJAtRNXXsltaAgDXVd2V+1bOLpQuqTtBZFYgGwWBm4khuu3fK7F45wmM+bpmgKK0Xhi9927Xi6v+Sm0HYA4hXARDhUIQtW4Si68f7CsPoozaTqtytfvqbXaHwLLdJw3dtOp23YEF290nNjWDfmJGZ53NvkN1zQLvayiIgghTFiIphqi6bHSE5xT7yo5PeQS9h1E1y8xgPShl7IWyE3I4hIvLzJ2F6Ls/D1Wv36UvfIyW7tA2knWZFu3NEhbuXWb6+5EEkXQuygbXanG/kGhFlevaU9L/doP7pEpmqXmetHX0xkK07sAZ9J28AKM+XwMAGPLOUheriy3Mopsw0ZsORPl1bX09WYjc3UtvLEQO4X1DrWdpPOmFhchIECnRPudG8Su78opx35S1znpp8hBJz0pcpJEgUluIGlULJ72MzLIgUsSOmVnc1ezz4ItZZrvzahI+KgW1sQvbeF9VDgfmbc3FD+tql7lcCOGyfE6NhaimHQ+vfhaMcoWp8xA5f9/xn1W467+rDZepUbqY7cL4/L1Brz2U9mv2/fHFot2+hDFEQYQZ86GLhcjEmkNnK6rkBlDZIZdXOhCjmTxiZCE6pZjtorZiqM3zWpfZWTdBp0/9sAlnNSkAjDp3d8HeRkLSTLvpjcnW3YwIowYmstqCJzUQyoYi3Gp1CY7Xusz0ZjxFI8xUfiJpXzknS/DyrG0uK6rrjfqNmFada2XFXldLiIQt3DWoGvAuqFpZsqzSruq41SN84yBfPbyNIfJ2rTe9YyvfGU9o44/00D6r7gStFItibCHSjx2T3rMaQeQs5y6oWm0hkgS7sTA3uy5hRZVD1wXrjYFGeV+U18t5Pq7XwFMMkVEsohkcQi0sy6scqmsoER5mBWA3TKprtartsA6H8CqprN3h8IkgcpeYUfmu2sKshu8mXWZEl8KySlMPh2T6d5iIIZIaqbIKYwGjRdW5Kv5WWojUGYHVL7jWDaOXEE/Jgh3HjTt0D0m+9D6Tvvfk9xtV8RdG+Cqo2qgDlTo66XNlg2i16liItHljtOeqYyFSXnPlvZFmtPxtejYW7DiO37fkqvZlNrgVMDcqdwoi1+3exBBpg4CVeFqcVs9EL9VHz2VmdE7akbwZtPUpq7SbTkwK1Ahnd2jPr1jH6uX6Hf0YIu0SK8ryQgj5vZAsRLoxRNXbIsKUMUTOz9wtPmw6s7pBUPXGQ/mY8NMmr4LWAbgsrKqHjyZg6WJ36FiIKmsyVUtEVE85NEqeqjQmChhP2FCiXQ3AF4s76w0QpeemvHrAYrUA8dHGdpdgc5nRQhQE7D1RjCvfXIKOKY08lpVM/1JD4S6GKDYyHEVlVarkjCqzsU6jYOS+Ol2iyJ9h0GmVV9ldrA6ektOVlFcZxiQpXxZ3i5lqO9zv/jzkMr3TCG+m3bvLA2PUgUZpLETaci4xRFoLkYsgqg7sVFwDVW4TxflI1/7wGf1kjUYLU+phpqOICFPPJZNmQHqTi0h5fbTPksegap1tTWJtOFlcocr2LmHUMTuEd65UwLVh9yZ+CFB3iEZoB0zapKh6qK6ZQmAYu8yE6ly0gmje1lzE2MLRv0NTjYVI7TJTxRAJoY5d9MJlJoTrdZGEfXG5He+PuNDUvgB1xv+lu0/g+p5psgVMwp+rsQuXGCKFhShMYSGyVscQGQgi52r3zr+3Hik0FQuoTXLrC0GkbyFyqH7bwq2IduPFCLZp97QQBQFfrtgPANipyABtRKFm2r27h01q9NSmYrWA0aIeSejHEClfLmWM0MmiCpdOVhUkqyMozlbYDReULTOwfHgK0vRm5OhVULVBQ362ogolBgGQUkMnL4mguD7O6a+a+hh0YNo6KAPJlVN/lfd37Ncb8K+5Ow2fEW+W7zBlIVJYCoCa5Si8sRCVa1wKqs8010aLnoW1SaxzTq9upmrDPETedxjaY3szwwyAiztTD62AM4oXUddLbXGV6mkUVF3lcKjOPT66xmV2+MxZjP7fOtz139VOK5IiqNriNqha7aIx60LVTgjRsttEe6lEaTH+x89bcNdnq13K+HedNM3EALtDbi/VLjP3MUQWRVD17M3HVEuGGKFtP721gOrv0ziGSBkb5S7O1Uz2//qEgigICA8zfxskM7kcQ+TGZRZbLYjKKuzYeCgfM7OPqEbdurlFDNxXRjFESiFwzXt/4L0Fu1X7K/GQWO5shd0w145SXLlb3V0rGtxktnfBu6Bq17Il5VUY8NoiVf4QJRHV97bGZaaeRaXtlJXXqLzStUNYuuuE/F0JpTuoSOMa+mDRHsRE6Hd+3rjMzPQTERqXmRQo7JUgcuMyU88yc92n3vOVVJ1hWT9TtbGFyNsYC611ypv4IaB2MUSnTViIlN8pVwoiNy4z5TshudbKKx3YcaxGgDgXiq3u9MLcW4iqHEI9EDBtIRJuy7obDOqhFcUbdZLTeuMyCzcRCK/et6t7S3ou1S4zDxYizXE/X55j4tg1fxvlRauyO1wmAhScrTQUsHqxYJLQUi5aG21rOC4zCqIgINwoTa2CpnHOka70ksh5iAwaBYulJtfI2Qo7bvhwOf76bTb+PHBGLqP7UhhYa5TT7pUPsTZOQko8FibPlFBYeXQ6sbMVVYbxQVrxoFdG73+9qd9GeGOy1Su7I7fQrXtEug4VmpGThFaQKY9RWml3ObcJP23GkfxS1UhW2dnrJYoz6ji8c5l5vk7atcykczeKodVLXqccuWo/17MQnSgqx93/XY3fNh/TvT9N4pyCSBtDtOHgGZfp6hJa14YZtA37ieqOxWyfac5lprUQeRZERmuZNXIz7V46l4gwi9y+lFc5cEyx4n1ZhXphUuk8RbV7TLW4rkOoxLf2vhq5qZwWIuP7YGaGLVAzkNGLI5Pq9/6C3fjrtxu8spwk6Sxn4g6HcA1TkAYwNoUglttOg3CDMItFZbFvrJ0Z4wG7gSAa9cUaXPzyfHmtyp25Rej54jz87bts3f24nWUmWYgirIhxc5/oMiMuRFg934YW1QnSJDeHp2n3YRaL3BHmKhqyg6dr4kk8ucyUnbEqw2r1w64dTSqR1j5SparXmRl05myletaaUhBV6bvbtDFE2v+9shDp1MkIven9nl5oaRQplXPt5NX/a4Ol9Y55vLBM1eEoXQF6I64IA8GtJ0iMUAoiow5MG1Qtu8x0yq/edwrdnp+LsV+vN5wO7eIyU1mInH+/PmcH/th9Eo9MW6/7LEqdhTYA+SYPC3x66zLTWqAksZISH+X2e+c1i8Xkm7ubEkTaZ0GbeFMPpYWo0u7ZQlRld9TEf4RZ5XpJLjOJMkUOnQjVtHtXK0uVQ6jusXYQZWQlcKYJcGMhctPRKoXoN2sPobzKbjgAeHv+LryZtQszs496NUjwXhAJF6usnoUoXGcwqcRiBTarlnPy7DpVYhRDtHyPcwbp9LWHAACfLt0HAIYDB3eZqqV31xZmRYy7GKLqcvtOFKP7pLm4+p2lZk/DL1AQBQFmZpe1rF5ZuqSiCkLUZHA1Cqq2Wixyg6FcC81o8VT5c4OFIZUdilRfd0kXm8gWLVchpcTuEMhTCDbliNDIzO7ZQmQerzJV6zTOnmayeWshUlJaYde1zJRXOdQxRAYjXwmjBXa9EUTKR9TIehKhWcssLExymbmW33AoH1UOgVmbjuGr6in9gFr0mAmqVop9vfeocYwzBsabledrk4eovEqdckJ6Lpo1cr8uwcLHB2FE71aINGHt0D4rZmKItNfMTGJGZbC05Morr3Kosj6XVthV5eQYIk1eMWmbMvD3bIVd5YZxZ41z59aNMAg1cKarqPn/uRlbsHD7cd2yFVUOLN55wvAY7vBWEJVX2l1cz4WyhUjHZWa0dIfFgmMFNc/9YQN3vRFVHmKIpOestNL9O6MbEypNu1fGELkNqpasd1Uoqv4JJBREQYCZ6blpic6RphTf4GnavdVak1FauZCr0tSq70fWFx7K4GmpISx2k3RRshApY4yMOv+TqhW99V1m3sQQeePu8C5TtWtZT4JIcodWVE9n/rZ69CXhrq7lVXZdEVZSrnYzempEtEHmbZvGAvBOECmtQkbfU7pOAGVQtWtZZUD3PkVH69ZCpOMyUwpGvfuTWG0hKlF0wp7umUMIr3I0SShdp7IgijO3UJM5C5H6WTAzy8wlMWO1WNHOrlKWV7rCZAtRpQP7T6otROWKclalhUhzG6o8JGx1t8aYOwuskVjSs6xsOaq/mHWXiXNU1hZv8FYQKeslXVddC5GHafdhVgteuqGr/L+31kxt4LwW6ZnxNOlCz0IkPfdKl5k7S97D09bjbEWVbOUycuXWFxREQYAZQdSi2kIEVM/MsrufZaZ0mW07Vihv9zh12SBTtMpCVG1VcTfqlhqLszpCyh1VKpeZ2kKkt04S4Lp0hzcZmL0RBXoNgCdzdZjCHfrH7pMuM0JqYyEq1iSz9FQHrQC47PxmALyLIVLeOyMBFqFZy8zqJqhaZTFQulXrkIfIXVA1UDN6NUpDICFqYSECgH6vLpTf5YLqWK6mvhREijoJIXCmxLOFyDAxY6R+u1Fhd6iEjmSBLquy48BpxbpglTXuN+fswpp66aXFcFnjUDFQqu2MJyMLtd7sLCMRXJd1EFM9uEO1KJ95qeMv0rMQVbcZRu2rxQLcndEGX93fx6vjS5SUV7kNHq+xELm/R3rvtXSdpfKeXGaAs12U2pS6LDbtCyiIggAzCdaaxEXKjeap4vKaoGoD9W21WjyqbaOZBjV/68cQlUsWIjeCqHm1RavYhIVIdfzql8yh4+eWXkDXGCL1i+nNGl3eJM/TMxF7EiMRCpOJUphKuLMQOWOI9CxE2lQF3jXqyfGR8v7NohwtGnUuSksB4H7avXJ/JS4ZhJ1InejxojL8d1kOThTWWLqkZ0OpF8t0hHB8dLjcWUsdzJEz7l0MtYkhkpDcSlIMkdJl5i5nmJlZZj+sOyy7WJQ5bNyhHNQoBwpxkfodz+KdJ/B4dRCtM4bIWa/C0kqVgC6tsKssSUoLkZ5LWyuIissVSRJrea3PGrh09AZER/PLdErWjQ4pcV6Vl65BpMIVKV2qSJ2gasPV7quvddtmsR6Pmdk5GY9e0V61zVPco/RcKUWr3mQNPYus1B5KVr/IiDC3s8wA4Fh+qSwMaSEipjrlxjE2WWlf9fZS/LT+CABncKReEHGY1YIkD7MPPOYhUjRsagtRtd/XjRhIbxwDwHMMkRYp3kSvkZRca9oGV2tFKXXjytPiTWyJsiERwtnIS8nexlzeTrVStYRyiqxezIe70bFD1AiHKzol4+LWjQE4O5PaDmyv7poqm7C9sY4pOxmj+x4Zrk7MKE+717FyKfd31sB9Ij0Dj32zAS/N2oafNhxx+Ux57/Vm+9nCwhBb3SAXy4kqayeIerdNMgxQl5CuTaFODFHn5vHy36/f0gMLHr9M/t9Mpur9p85i4owtAMxZQYUQKmue8jq763j2n3Ja0GzhYfIgTPu8Ka0MyrXMCssqVfEtgCSI1NdTOVBy5zJzh5GFSHpnoiPC0L1FAgDXhY59gdTGmUW6Z1ERYS5B7Xp5iIzaJum9amLCZWexWDzGsWmRhM7xopr7qBenqDfQkQYCNTFE+haiEb1b4b5+bQEAxwrK5P1Lea8CBQVREGBGECXGRKgyOkukJkTpBhdaLRY09vDC6LvMXGdzVdnVS3JUKALhjEhPkgRRTeyGGUEkiQ49odB38gKUVrjG1WgtJN64zLyxEB3NL5Xddo9+swEXvZSFPcedi0cmREfovvgWCxBf3fnsPeEsq3R/Stck3qCDkkZpMbYwnJ/qzGSuN1ozw5NDOuKd4RfIVkVvXGalOgHDWiLCLKopfu7yECkDNtXuE6Ugcm5fte+0y/crdUax01Yf1K2TlI9r/8kS/PO37VitWZleO6AwykM0KqMNruyU4rK9aZxNFqtSwy5dI6XLrFVSTQd6bc/maNesxsJgxmUGADOqZ/wYJe1T8si09ViwoyaYWPmsG80yU6IMqtai7CCVsWOPTFuPoe/+oSpr11kKRZVdvZa5aIwWjpbe/9SEKNk9rBVpviDC5D3T1isy3IrGseqO35s8RJL41BNWLmVh7l4rcaZncKhiD/Xeeb1EtYVlVdVJO2vOVS/pqC3MguYJTi/C0YIyWbjTQkQ8dsrhVgvSEqMRq+P3b54QpUr7LmG1WDwG/ZkNqtZmYZZnBrixECkbf6kzLTfR8EnHNOqs954o1lncVV3WG1eQu4BkrcXns2U5eHPeLgDArE3HcLbCjmV7TgJwCiI996VD1HSKe6vF020Xp8ujNlkQGYyMpEY/3GqRGzYza7TpMerSNoiKCKuJC/HKQlRznQxdZmGaoGopD5E3FqIqc5YDqRPNL3UfWBwRbpXfm1d/34FPl+7D3K15qjLaoE9hYCGKCLMY5AyrcU9LYlVvllmYxYJ1z2ZixTNXuAxuzLjMgJrp5GZEv3btOrXLzHPHExlmNbRcKd99ratUi3baPaBOGVCbAHbAcwxRdESYvI6WmXdGOVAxgzZBoidkl1mE1aVt1pt2b6Ydk/JsAcCADk1dPrdaLF4LopIKO04WV6isgrqZ3nUEkd0hUFxepYpD0yM2MlwOq8gtKKUgIjW4iyHq374pvn6wL5Jibbq+2NSEKN3YhDCr54Rdeh2O0i+870QJzlZUoahc/TJInYW76d5piVEusRvexBBJjUesxupyoqjcRQBJIm7M1+tx/QfLvMrL4c5llpYYjbX/yMTNF7WQt32waI9u2fgofQuRwyFkQSTNpkqKjZBFrNRwJBgIIqmhsFotsuvH0zR7I6SOX+syKyitxGPfbMCinU5rgl5swFlTMURhui4zvZlyyv0ZW4icf2ufAaDmWfI09dwWZpU7hN3VglSLVsg6HEb5nKy6gw+gRtAWljkz++oJIocQaBIXiTSdjteshUh6p72xgkqUKJKmmsnyrJxlpkWyDlsszg7cnTaw211dZkrrQ+1jiOy6ObEkl1mMLcx0kK4t3CrH1pkl3GqR0zqYQXaZhYe5tM1KQezJQqRE6TY7r2kslj19OW65qKW8zWo1TrFgRGFppcpdBri+88rUL1oKSitV0+71Ho24qPAaC1F+mdxmM6iauLUQ9WiZgN5tkwDodwxNYyN1rQthJixEekkJldaXI/mluOGD5S4WIlkQuXHdRIaHyVOepSUGKhSd/6iM1ri7b2vX41d3RNKUWm1ndTi/VMdCJFBwthKzNx3DpsMFuin5jXB37SPCnP537crgesLO6TJzbXicnaD6PiTG2GRLg3Qu2k5SEi1SJxZutciWjtpYiKIjwmSBIuW8ka7xq79vxy8bj+LeL9biy5X70e35uVi5V+1WMhNUHRFm0Q2qLi6vwnMztmDEp6t0p/SqZrMoOk5JsOm5fqV1rjylHIgIs8ouMyUXtUqU/9ZaiPSWWJD2ZZT7RmrIC8uqUFxRE1/TVHHv3cWyKgc1I3q3wvrnrtItJ52LURZjd0jvcUSYxZQAc+YXsuiO8g9UxxlJuacsbixEduFqIVLGe9VWECkzLi/fcxLL95yEEEIWEtG2MMP0AlpibWGmYnKUhFkteO7aLqbLl7qxEOnFEJlZa7BJnDJoPwwtG8cgSeGOs8CCRgYB9EYUlVW55C7Thkfotf3SwGPRjuOqAHK9R6NRZDiaJzjbvLzCMrlNMXu//AUFUYCpqHK4bRCUgkDPAmG1WpCoI4gsFouLn1qL7mr3mpHx7uPFqhkhgDKGyH3HLDUwJ4vUgqhneiJeuKGbyq0moXWZaQXR0fxS3Rii7bmuM7jMsHb/GcPPpFWntWvN6QmC+OgI3VG3XcBFEDWOsbmsg9Q1LV71vzSqqxnV11g6NpsQfJ1SG6GdYhaK8tmRcldJDa7yGkycuRXlVQ784+fN8raKKvUis+5mmelNu3/wyz/xv1UHsHLfKazNccYDKd1k0jkeLypT5YSR3gs9d0xFlcOUJdAW7iqI3rn9AvztqvPl/7VuIWcMkWtnFBFmQUS4a10sFihcZpUoqO5MIsOtKneFu+VPlBaCGFuY4WBGir0pqY2FqPqaR1idIsaTKJKsYXrlflx/2PlZdRm3FiKdoOqTKguR67lc3rGZ27pJnK2wY+3+07jzs9W487PVePKHTXJ6hRhbjcvMEzG2cK+XwAi3WnHThS2w8PHL0KNlgsfypXIMkZ6FqOYaS++nmfhGpeCW2kqlaLdYamch0i4Lo33Xrv1AHScG1LRzz83cim/WOOP5nBMtXB+OuKhwJDeKhNXibL9zqq3nZu+Xv6AgCjCeZjlFqwSR/sOi524Js1o8u8w8LO4qIY0OEqvNwzUWIvcdkuQqkhYMlDPbVo+A9F5UqeMtV4ymlBw5o28h2qEzpb2uSCM1bdyI3pIJCdERukLBIYS84rpE49gIVaNlC7OifbJ6Cq/UkdasDVdjHXC3dprELRe1xDXdm8v/xyjizyThJnVSykzhElZFD6eNZXAXQ6Rs/PQWvzxSPcVWOfotrw7i1C6SK3WUeh1Dhd2BfJ16tGmiFtmp8VEuMRT92jdVbTMbQxTuzkKkcJlJ1ycxJkJlOXG3yrteDInee11QWom3snbhwS//NNyXEZLlRHqePQmi1GqXhrv4JsmyYdQ2AdUxRNX3Mk7zDAsh5KUilNxwQY2bWi+Xk3RZS8qr8OrvO+Tti3Ycl2eZxtjCXSwORuccYwtDUpz3FiKLxYLzmsWZWldNGgREebAQaQdQ7lC2LfqCyPsYoqLyKpfFiZVtfUFpJQ6ddp21p7SwnVEMChJ13IpxkREID7MiuZHzGZPCCWghCnGkxt4oR4lyu15QNVCTjVdJmNVi2HhLSI3+qeJyubHWWzvrWHUOD2kav+T28OS6adpII4g0gXZ6royS8irszC2S963NxH00v9RlCm2l3YGlu0+6rUttkK6fdq05abaYkvioCF3/txBCvg4SjWNsqnvTsnG0S+cn3esal5nVq4YtMkJtGYlVdFjSM1VeZXeZmi2hbOC1pntvLURKnvxhE6557w9VdnLA6VbVCvSf1h/Bh4v2qGLsRvRuBcAp3PWE6eInL1efhy1M9d7Ywq1oEmtTBW/qucz0BJHNQBBFhlvle19UViVfH+09NWshkkhWPDfSbCmHAN5bsNtwP+6QrK/SORjlMJM4r9rC6E44SfvSCnr1cWuWNZECl6U24ddNx/CHzrt7Sdsk9G/fFJ1SG2Hg+a7BwlJbNDP7CNYpFqw+VVIhd8bRtjCX2ZtGSQJjauEyU6ZgUAoaozgzZc4hpSBqFBmuegabmEzm6SyrtBBZXepitXg/ywwAXpy1TfW/8p03Smyqp/cjI8JwwwUtMKxHc9V26f2TAqu12wMFBVGAOVT9cBklSlM2lNoX7YpOyQD0R5JmJkCUV9nxn6X70Ovl+bj4lfnYcqRANwBWylArxXI4hNO15m7aPVBjzpU6P2X2UkA/W+6xgjIMeWcp/vnbdgA6FqL8Uszfrp4l9PLs7ViomF7sK6SRutZCtDO3SPW/NJvl4UHtMDKjNeaOGyh/ZncINI3VcZkp9tkyKUY1MrJaakbckiCyWiy6AtJQSIeHqcpH67jMyiod8qrsevstKXdOof1ieY7qM+Vo8aouNdPQtZmqjVL2HDpd6hK0vONYkW7ZN+bulMt+O7ovJlzTSf7sp2q3jRHSyFR5HdISomC1WlTvm0tQtcG0+4hwi0seoiaxNrw34kKVy0zq7LUWWneTLJXPuSSclEG+U+/rrRtDWBvMCiJpiRd3OZKkAZ1ekkLJjbTjWJH8HLesXqRaskD8uE7/HjaJteGrB/pgzriBuiJGep7/VT3rc8zl7WRRsb3aWhwfFeFicTBcDNtqQVKsd0HVyllmynbaU3B2ZLjaQtS1Rbxq8NDUGwtRnKuFSGmZtcB9QlBP6M1slRKbdkxphMeu7CBv1xso2sKc0+4/vOMiDO2W6rJfKbBagkHVIYwQAm9Vv9CDOjZDv/bOad6dqvPNAFC5ECoUYuXZYZ3xr7/0BGAkiDwrorX7z+DNrJ0AnG6gWZuO6c4wOnTaKdqUDXylXaCo+iXRHkoaaSldZkt2nZBjVZKrU97HaszsylGmlBxOayE6VlCGTYcLYLGYjzOoLVLskNYqsPu4uvNu0zQWFosFCdERePGGbuiouH8OoW20rIi2hamsTq2SolWjuHCrVW7cpAR24WEWXQuh0egvMsKqEpzKay11JqWVdsxQJDtUsnb/GfR6OQuPfrMB/65e9VpCahyv6JSM12/pIW8Ps1rQUpGszptgWb0s3louaZOkGhRIeYfGXN4OURFWvHRjN1V5KWgzTnHuUvC68lq65iEycJlZ1RaiHi0T8OezmbioVWOFy6wKB6ufXW2MnN6MKAnleUmvoOROkNCzBJtx1Wgx6zKTBZEbl5kkiDqmNHL57PqeaUiIjsCpkgo5kWyrapfmieJynCgqxx+7nQurLnpikGrau1Ks6cWgKJ9nqwUYPaCdbG2QJgS0SopxsTgYiUAB/USHV3dNdS1cTbjiHVZeyxQPS3pERYSpJgpIySMltC52dygHW9E6LjOrh4B3T0hxiEoXmpTYtF1yrGrgrey3JJRiWmm5ki1ECerJJEb52OoLCqIAsmLvKfx54AyiI8Lw+ODz8eEdF2FcZgf8Z+TFsjhQmouVjfQDA86TRxlGMURKLkhPdClzJL9UFez4xfIc1RIdEgerBZGywaiocshB1cpGuVNqI3x+zyUAakY6v2QfxajP1yBrm9Oy07q6UdTGEF2oU8eoCCuWP3MFfnrkUjw5pKO8/dJ2TeQYB4n/G3iey/frgrTshrZj/22zOr/LeU2NU+gLzSwzaRq20kLUKilG1RA4hEB0dUMiBbQb5RNR9rEpipFpZLhV1Wl0VwR9SiLT7hB4Y+5Ow7qXVTowa9Mxl+2SIIoMt8or2kt1/Mc1nXFdzzT87/7eptIDSFacbUfdC6JYm3OWnNZK2rNlAp4c0glbJg1xmbWYVv18KC1EklhVXhvt9OGySofKDSMREaZ2Q0eG12RojlesTSW9L1pB5M5lprQQSOW0GYb1Jkkop32bnbpv1kKUVt1ZKd97I5dTBx1B1LJxDK7s7LRiVzkErBbg9kvSATjbj5nZR+AQTmHZtmms4fOibMoaRYbj9Vt6qGLiuqYlICEmQhZU0vvaukkMoiLC1AHLRoJIuM5mbBwTgY/uvAg/Ppwhb1O2dco2Vnn/JCuYEZHhVtUqAm2bqq1r3iwaqx1sAZqEkRotpBfXpySzc7JK2EjvS55iGr40SG+RGK1yk712Sw/VRA5AGxtX87ehhYiZqkOXS9s1wWcjL8az13ZG84RoJMbYMC7zfKQnxeCnRy7F7Mf6o1frJLm80TIPekFrkoVozrgBeOyK9nh2WGfd77ZsHI3PRl5cvX8HhKiJHZDYnec0hSob6HK7XZ56eV2PNADOBmTOuIHoWS1sJAuR1j3Spolz/8oOPrlRJMZq1twBnA1Yi8RoXNSqMcZc3h4/PXIpPrrzInx0Ry+VFSwqwooumpla3iZa0yJZiIo8dOxtmhqn8Lc7BFolxaBbi3h0Sm2El25wWjGUHWurpBhVw1blEIpcQc5rF2616AauKi16SvdAZHgYLm6ThI4pjXBnn1b4W6b+rKpKu0DbprEu91xJs0aR2P7i1bi/vzPVvhzfFRGmamDDrM7s6O+PuBADOjSTZ1u5Q+oYtnuwEEni2WpVz44aXD2C184EBGqsQco+4PqeafJ+JLRB+vO35+FIfqkqhgdwdj42lSCq6RxlC1FpJQ5IgqiJVhC5O8MaJIF2Zx9nvJRkCU2Mdu0oI1WTLsxZi6R7pnWlPDmko6ozlK5RmiLOw6iz1huUNU+Iwj2XtpGPc13PNHRKjZfr+XW1hW9wtdvVKIWC0sKx8fnBuO2SdHRKrXnXL2mTJB9PiTTwUgZlG+VfElC3e7//dQCWPHU5rFaLqg1WzoJSGl5aJUVX/46RRZ8RhWWVqnpoB6veucxqykrPgk0xSJHu9bjMDujRMgEPXdbO7f4Som3omlYzeOpYfZ1zC8oghIDDIeQYopaapUvOaxYnD4blOineEWVbFadjIYqPCjct6v1FYO1TIY7FYkGmIgZDSXxUhOrBBIwTG7qzEHVKjUen1Hh5WqOWidd2wWUa19Prt/TArZ+slP+XRlzpSdGwhVtRUeXAG3NqYjueHtoJvVo3Rn9NplSjlb7bVFtUlCP3zs3j0bpJLHa8dDU6PTdH3q4d0V3UqrHuebdOilWZmuMiw7H8mSvw7IzN+GqV65IORoRZLYrg0+o8OoqGun1ynLxch0SLRGNB5BBO8TPr0QGq7cpYlJaNYxBmteDWXi3xQ3VMhbbhNlqsVzkrUNkhSnEKc/820OU7Um4QyWDRs2UCDp8pxT7oPyPnNY1FtC1M3n9NcKhVNUrWahJPMWZAzTNglDRRQimeb76oBb5Z45yZJMXRKTk/JQ678opx28XOjkk58tezlHZNi8eaHNflQe7v3xaTFTOY4iLDVZY9paCQVy8vr8KBU87r6I2FSIkk0Fo3icXGiYNl957ewEf5HIVZjTsT5f2WxHiv1knYdLgAPz58KVo1iUF8VATu7NMKj32bjZsvrJnlpcyR1SQu0nAtuK/u74M5W4/J71vzhCgkx0dh/vjLsGjHcdxYvc9WSTHYkVskzyy6srN+GyihHPhIIu3hy9rJU7svap3oUs+IMIvc2V7dLRX/XeaMgzMM2hUC8VERmD9+IMKsVtldqKVxjA151YsMK+v16BUd0L99M/Rq3RjHCtyvm7apOm3Gl/f1xqmScpeBnKcll7T1ke6tNIhSuuxuv8Qpqsdlno9xmefL7Qugbuskom1q65XkCi2vcuBf83bi30v2yc9ny8bROKWJQdS2+Uo3mbL/koSS0srfr33TOrn3fAEFUQPikcvbY962PFUmUsAghkhjGlWaeuOjwuXO6tL2TRERZkXvNklYs/80xmV2MExJ37JxDCLDnILo++oXKyLMma31Np1RkXZ2lUTz6hdW2clJDVBURBgax0Sopm0acWm7pvho8V4AzrXTlKPXnulOMRnuppOQ6N4iQc5/Ex8VLh9bGl0pR66Tb+6OvyjEIgBVIjQtnZq7uhK09ZIsCc8N64LtxwrRMz3RxTUUbrUgKiIMn428GE/8sFHO0KycFTiwQzO5sY104w6R4p2kfXRrkeA258l51WtuacVpZLhVdR5m4ta0mLVqxCmsX89d2wWHz5SiUVS4btzCT4/0Q25Bmex2vrZHGg6fKcWgjs1UDe6SJwcht6AMTeJs+GL5fpf9XNaxmSyIJPdbhJGFqLp+QkDuMLWCyCizrxbl9PwEhQiSLKtKlNdfT3C9+ZeeOFlcjmV7TsqzuSQR9czQThiX2UF1XxNjbPjyvt6qfSiFhnaCgJL+HZri0nZNsPlIIcKtFrlzbNk4BndntJHLnZ/SCDuqJyYkN4rUvYdK9B6rVk1i8OrN3fHngTNyYH+awtqQFGuT27HbL0mXBdFTQzphx7Ei5GpSTUhXrn2y+7o0ibPhicHno9IuVO1NVEQYMqqX+lEKGqvF1TIoic2B5+vHQEaEOaeq62Vh14riMKsFTWJtOFlcIbfxAzs0wzcP9kXH1EYuFj1lXGHjmAiX2Z7REWGq+52aECmnFPlw0V55uy3ciq5pCcg+lK/6fmz1jLlSRWJGCb3s70rr46XtXWcT1jcURA2IC9ITkT3xKhcBpDdy1PqKlRaH2y9JxxfL9yOjXRNZlLzxlx5Yf/AMbujZQne2AOAcEUSEWwHFoODZYV0MVX1qfBSaNYpUpekHasSa8mVRjshSE6JlUeIuzuGStjXWorMVVSrz8d192wDw7DMHgB8ezsDSXSfx0qxteGf4Bbj5oxXO71Z3fkozeZfm6tFc84Qo3YZt1qP9MXdrLh4epG+iliwNiTE10/UTYiIw+zGnJWnCT5tU5aXTyOySghG9W+HjaiGotBCN6NNKXlrEaOqvxLU9mssj+a5pCW6DmqW4AO10eykupKaO3gsivZlzeiizhcfYwvG/+/sYlo2LDFcF6IdZLRhzuas7tnWTWLSuFhmzHu2PRTuO480s5ySHpFgbzld0jpJ7QHldlaPbqIgwXHZ+MyzZ5QwSjtVJrmjWQmQ3KHehIru2xE0XtsCeE8W4pE1j3YSdt/RyDp6kSQqA2r3oKY4IULueteekFX1WqwUzHrkUAAzbhQ6Ke3NRq8Yu5bQuI6OnanjvVhhenYYBAAYo4i3PU8TlnJ/SCBOGdkJFlQNd0uKxcsIV6DFpnipe0uy9SYy2YewVHdyWUT6rGyYOxn+W7pPfy3/f3UtOoeCOJrE2F0H01f19cIHOM/DIoPZYu/+0bGmyWi2yONOijNHRu/fREWFIUTzXiTE2pMZHqd79j++8CL3aNEZyoyjoXbZGUeEKQVRzDL2Qj2YKi1I/gzrXJxREDQy9mSZ6yay0fmylhSijXRM8PKi9ynys7Bw6pDTCyzd2w9JdJzCvOhDaYnH6e5Udwmu3dJdNsnqEWS34S6+WshUHgMoUb7E4pzFX2gUGKdx2qfGR2F4dy+tuym9keBg6JMdh9/FiDO2WimZxkRjQoSmEcAYHAk4z7GfLaqaNp8RHyiN45X6u6pKimkIOABe3cQquJ4Z0RF5hOe7s00rVgT96RXs8dmUH3dw03VokoJtm9ogS6Tt62boBYLtmGvpRxWrd13Rrjo8X71VZ0gBnxzXx2i7YmVvkkvlay91928iCqEtaPAqXGVuIpNixNE2MxoaD+bBYLOjeIgF5hWWG1jAlSbE2pMRHyTFDSgtRy8bRsjvmozsvwltZu2T3ZG1yqXhDtxYJqrWjMs5rohsoq7Sk3aUJ4n5icEcs3X0CQgCDOia7dPRmY4iMEjjquftaNI7GxomDERluRY8X5qk+U7orlIG+nsSyFpUrSrHP12/p4eJuB4yFkIQyAFsp8r66vw9en7sD/7ypu6r8VV1S8NmyHN2Bn5LmCdH4dWx/vDFvJx4c0Fb12f8pYmcsFouLAPJ0TV66sRumrtiPfxjEYiqxWCxY+uTlKKuyIyE6Ag8OOA8FpZW48cIW6NW6scfvA07X5N4Tahd2q6QY3ffgvv5tcV//ti7b9ejTtgmu7pqKdsmx+GXjUZfPo2xhqpUPEqIjkBwfiZ15zvaoXbNYDFUkfBVwfVabxEXiePUguK0iLsso2en00X1RWmmXLdGBhILoHEBpMZr9WH80T4h2mwm1Z8tEjzMZ7urbGm2bxsqCKCE6ArZwq8rUPLiL8ZRUiYcHtcOGg/nokhaPEb1bIT1JHei8+MnLkX+2QhZjgGbk7WEV8On/l4Fle05iWPfmsFotLpaDyzsl46Ubu2HaqgN4Z/gF6JjSCKdLKpBfWokRn67CgA6uDfrKCVfgWEGZHLiZ3CgKUxVuhH/9pSd+XHcYoy5t4zH5pRGS2yK9sb4guunCFipz9C5F7qPuLRPk+/zvJXvx76X78JdqS4DZhrFjaiO8P+JCRIRZqk3ixtmvL64OWh3euxVKKx1Ysdfpfrm3XxsAwMwx/WAXwuO1eHZYZ4zo3QoPfbVO3tZC0VF3TYvHb38dALtdoHGsDSv2nqwRRPUwHbd32yT8+PClmLs112XGmhRwO6BDU1noa+NMurdMwLcP9kWVQyDjPNfRrrtM1UqMLER6CfuiI8Jk66/WJXeNIu+LUhDpJTp0hzJYWek+1nOTm0GZs6inQuT179AU/Tv0dynf57wmmPVof8N3RUn3lgkuLj89lNe4WaNIvKIRYVru7qu/9qIRyoD6hJgIl5QQnhjcJUUV19YzPdHj7DUzhFkt+OTuXgCAXze6ziCNCg9Dj5aJ6Ne+CVIaRSEizKqaZSgFsEv0b99M5UoDnNfqy5X78fTVnVTWRaM0HH103pVAQUF0DhAVEYavH+yDSrtwCcRWsuzpy1Fe5TCdCbWv4kHVmm+bxkWaCv5rFBWBb0b3Nfy8RWK0y2ywLmkJAJxBs0YWFImkWJs8c8gIbWPWJC4STeIisXLClbrxUs0Tol3yYyi5tVdL3NqrpeHnZpDM1dqZSBJ39mmF85rF4tOl+/DH7pO4O0PdGEv3+YkhHTGoY7KuO8UT1ymu2+ODO2LU52vw1NWd8MbcHSirdOCeS9vgjj6t5PsTFRGGhwe1wwMD2mLviWI54NJqtcCq49jo374plu05ieYJUeiaFo+7+raW9/HH7pMY3CUFd/ZujX8vceY5So2PUiVmU1o+tbla/EWv1o1Vo/ixl7fH4l3HMerSNgCc1o3NkwYb5v9x17gbxea57KOt8T7GZXbAR4v2yvEYyhlySkE0euB5eFQxa/PiNkmIirDikjZJuL+/d+kplK6VW3u1xMq9p9CrOpC5NrROikGrpBicrbCbWgMMgFtra21Qasc1f78y4MG8Wu65tA1+XH8Eu/KKsPiJQWjZONrndXxySEc8+s0G1bbo6vQW0x6oabPTFW3wXy5Wi+CMdk3w3f9lqJbMuaNPK9zRx9VzUBuXer0jQogPPvhAtG7dWkRGRorevXuL1atXm/peQUGBACAKCgr8XMPg4735u0Trp2eJSb9sEUIIced/VonWT88Sszcd9dsx7XaHWJNzSizfc0JU2R1+O04g2XqkQDz2zXpx4GSJ23JllVVi+7EC4XD4/zpUVNmFEELsOV4kPl+2T5RX2uu0v6KySvHHLv17eOh0iXy8Z3/eLNo+M0tsPHRGVeajRXtE66dnidZPzxKlFVV1qksg+WrVftH3n/PFrtxCt+UOnioRP60/5PGZr6yyy9dlzpZj8vZfNx4RrZ+eJT5dslf3e2fLq4S9lu/T8t0nxNQVOUII53NS1+cxv6RCnC4ur9M+6sL9U9aI1k/PEgNeWxiwOniivNIujheW+fUYx/JLxYwNh0WbZ5zP04aDZ1zK7D9ZLB6Ztk4s232iTsfaciRfXPxylvh69YE67cdbvOm/LUKYjCZr4EyfPh0jR47EJ598gj59+uCdd97B999/j507dyI52XXqrpLCwkIkJCSgoKAA8fHuYzPONYQQWJNzGl1bJCAuMhwni8txNL8UPVomBrpq5BzB4RA4W2l3iY/IP1uB53/ZiuGXtDIMEg1Vnp+5BRsO5eO7/8tQWXBKyqtMB6qHMqdLKvDVqgO4+aIWLvl0QhFpweVkD1m264oQot6tcd703yEjiPr06YNLLrkEH3zwAQDA4XAgPT0djz76KJ555hm33w1lQUQIIYQ0VLzpv0MiU3VFRQXWrVuHzMxMeZvVakVmZiZWrlzp5puEEEIICQVCwrZ68uRJ2O12pKSop1WnpKRgx44dLuXLy8tRXl4zNbuw0PPCk4QQQghpuISEhchbJk+ejISEBPknPb1200sJIYQQ0jAICUHUtGlThIWFIS8vT7U9Ly8PqamuuXQmTJiAgoIC+efQoUP1VVVCCCGEBICQEEQ2mw29evXCggUL5G0OhwMLFixARkaGS/nIyEjEx8erfgghhBBy7hISMUQAMH78eIwaNQoXX3wxevfujXfeeQclJSW49957A101QgghhASYkBFEt99+O06cOIGJEyciNzcXF1xwAebMmeMSaE0IIYSQ0CNk8hDVBeYhIoQQQhoezENECCGEEOIFFESEEEIICXkoiAghhBAS8lAQEUIIISTkoSAihBBCSMhDQUQIIYSQkCdk8hDVBSkzARd5JYQQQhoOUr9tJsMQBZEJioqKAICLvBJCCCENkKKiIiQkJLgtw8SMJnA4HDh69CgaNWoEi8Xi030XFhYiPT0dhw4dYtJHP8LrXH/wWtcPvM71A69z/eGPay2EQFFREdLS0mC1uo8SooXIBFarFS1btvTrMbiIbP3A61x/8FrXD7zO9QOvc/3h62vtyTIkwaBqQgghhIQ8FESEEEIICXkoiAJMZGQknn/+eURGRga6Kuc0vM71B691/cDrXD/wOtcfgb7WDKomhBBCSMhDCxEhhBBCQh4KIkIIIYSEPBREhBBCCAl5KIgIIYQQEvJQEAWQDz/8EG3atEFUVBT69OmDNWvWBLpKDY6lS5fiuuuuQ1paGiwWC2bMmKH6XAiBiRMnonnz5oiOjkZmZiZ2796tKnP69GnceeediI+PR2JiIu6//34UFxfX41kEP5MnT8Yll1yCRo0aITk5GTfeeCN27typKlNWVoYxY8agSZMmiIuLwy233IK8vDxVmYMHD2LYsGGIiYlBcnIynnzySVRVVdXnqQQ1H3/8MXr06CEnpsvIyMDvv/8uf85r7B9effVVWCwWjBs3Tt7Ga+0bJk2aBIvFovrp1KmT/HlQXWdBAsK3334rbDab+Pzzz8XWrVvFgw8+KBITE0VeXl6gq9ag+O2338Q//vEP8dNPPwkA4ueff1Z9/uqrr4qEhAQxY8YMsXHjRnH99deLtm3bitLSUrnM1VdfLXr27ClWrVol/vjjD9G+fXsxYsSIej6T4GbIkCHiiy++EFu2bBHZ2dnimmuuEa1atRLFxcVymYceekikp6eLBQsWiD///FP07dtXXHrppfLnVVVVolu3biIzM1Ns2LBB/Pbbb6Jp06ZiwoQJgTiloOSXX34Rs2fPFrt27RI7d+4Uf//730VERITYsmWLEILX2B+sWbNGtGnTRvTo0UP89a9/lbfzWvuG559/XnTt2lUcO3ZM/jlx4oT8eTBdZwqiANG7d28xZswY+X+73S7S0tLE5MmTA1irho1WEDkcDpGamireeOMNeVt+fr6IjIwU33zzjRBCiG3btgkAYu3atXKZ33//XVgsFnHkyJF6q3tD4/jx4wKAWLJkiRDCeV0jIiLE999/L5fZvn27ACBWrlwphHCKV6vVKnJzc+UyH3/8sYiPjxfl5eX1ewINiMaNG4vPPvuM19gPFBUViQ4dOoisrCxx2WWXyYKI19p3PP/886Jnz566nwXbdabLLABUVFRg3bp1yMzMlLdZrVZkZmZi5cqVAazZuUVOTg5yc3NV1zkhIQF9+vSRr/PKlSuRmJiIiy++WC6TmZkJq9WK1atX13udGwoFBQUAgKSkJADAunXrUFlZqbrWnTp1QqtWrVTXunv37khJSZHLDBkyBIWFhdi6dWs91r5hYLfb8e2336KkpAQZGRm8xn5gzJgxGDZsmOqaAnyefc3u3buRlpaG8847D3feeScOHjwIIPiuMxd3DQAnT56E3W5X3WAASElJwY4dOwJUq3OP3NxcANC9ztJnubm5SE5OVn0eHh6OpKQkuQxR43A4MG7cOPTr1w/dunUD4LyONpsNiYmJqrLaa613L6TPiJPNmzcjIyMDZWVliIuLw88//4wuXbogOzub19iHfPvtt1i/fj3Wrl3r8hmfZ9/Rp08fTJkyBR07dsSxY8fwwgsvYMCAAdiyZUvQXWcKIkKIV4wZMwZbtmzBsmXLAl2Vc5KOHTsiOzsbBQUF+OGHHzBq1CgsWbIk0NU6pzh06BD++te/IisrC1FRUYGuzjnN0KFD5b979OiBPn36oHXr1vjuu+8QHR0dwJq5QpdZAGjatCnCwsJcIunz8vKQmpoaoFqde0jX0t11Tk1NxfHjx1WfV1VV4fTp07wXOowdOxazZs3CokWL0LJlS3l7amoqKioqkJ+fryqvvdZ690L6jDix2Wxo3749evXqhcmTJ6Nnz5549913eY19yLp163D8+HFcdNFFCA8PR3h4OJYsWYL33nsP4eHhSElJ4bX2E4mJiTj//POxZ8+eoHumKYgCgM1mQ69evbBgwQJ5m8PhwIIFC5CRkRHAmp1btG3bFqmpqarrXFhYiNWrV8vXOSMjA/n5+Vi3bp1cZuHChXA4HOjTp0+91zlYEUJg7Nix+Pnnn7Fw4UK0bdtW9XmvXr0QERGhutY7d+7EwYMHVdd68+bNKgGalZWF+Ph4dOnSpX5OpAHicDhQXl7Oa+xDrrzySmzevBnZ2dnyz8UXX4w777xT/pvX2j8UFxdj7969aN68efA90z4N0Sam+fbbb0VkZKSYMmWK2LZtmxg9erRITExURdITzxQVFYkNGzaIDRs2CADirbfeEhs2bBAHDhwQQjin3ScmJoqZM2eKTZs2iRtuuEF32v2FF14oVq9eLZYtWyY6dOjAafcaHn74YZGQkCAWL16smj579uxZucxDDz0kWrVqJRYuXCj+/PNPkZGRITIyMuTPpemzgwcPFtnZ2WLOnDmiWbNmnKas4JlnnhFLliwROTk5YtOmTeKZZ54RFotFzJs3TwjBa+xPlLPMhOC19hWPP/64WLx4scjJyRHLly8XmZmZomnTpuL48eNCiOC6zhREAeT9998XrVq1EjabTfTu3VusWrUq0FVqcCxatEgAcPkZNWqUEMI59f65554TKSkpIjIyUlx55ZVi586dqn2cOnVKjBgxQsTFxYn4+Hhx7733iqKiogCcTfCid40BiC+++EIuU1paKh555BHRuHFjERMTI2666SZx7Ngx1X72798vhg4dKqKjo0XTpk3F448/LiorK+v5bIKX++67T7Ru3VrYbDbRrFkzceWVV8piSAheY3+iFUS81r7h9ttvF82bNxc2m020aNFC3H777WLPnj3y58F0nS1CCOFbmxMhhBBCSMOCMUSEEEIICXkoiAghhBAS8lAQEUIIISTkoSAihBBCSMhDQUQIIYSQkIeCiBBCCCEhDwURIYQQQkIeCiJCCDGgTZs2eOeddwJdDUJIPUBBRAgJCu655x7ceOONAIBBgwZh3Lhx9XbsKVOmIDEx0WX72rVrMXr06HqrByEkcIQHugKEEOIvKioqYLPZav39Zs2a+bA2hJBghhYiQkhQcc8992DJkiV49913YbFYYLFYsH//fgDAli1bMHToUMTFxSElJQV33303Tp48KX930KBBGDt2LMaNG4emTZtiyJAhAIC33noL3bt3R2xsLNLT0/HII4+guLgYALB48WLce++9KCgokI83adIkAK4us4MHD+KGG25AXFwc4uPjcdtttyEvL0/+fNKkSbjgggvwv//9D23atEFCQgKGDx+OoqIiucwPP/yA7t27Izo6Gk2aNEFmZiZKSkr8dDUJIWahICKEBBXvvvsuMjIy8OCDD+LYsWM4duwY0tPTkZ+fjyuuuAIXXngh/vzzT8yZMwd5eXm47bbbVN+fOnUqbDYbli9fjk8++QQAYLVa8d5772Hr1q2YOnUqFi5ciKeeegoAcOmll+Kdd95BfHy8fLwnnnjCpV4OhwM33HADTp8+jSVLliArKwv79u3D7bffriq3d+9ezJgxA7NmzcKsWbOwZMkSvPrqqwCAY8eOYcSIEbjvvvuwfft2LF68GDfffDO4pCQhgYcuM0JIUJGQkACbzYaYmBikpqbK2z/44ANceOGF+Oc//ylv+/zzz5Geno5du3bh/PPPBwB06NABr7/+umqfynikNm3a4OWXX8ZDDz2Ejz76CDabDQkJCbBYLKrjaVmwYAE2b96MnJwcpKenAwC+/PJLdO3aFWvXrsUll1wCwCmcpkyZgkaNGgEA7r77bixYsACvvPIKjh07hqqqKtx8881o3bo1AKB79+51uFqEEF9BCxEhpEGwceNGLFq0CHFxcfJPp06dADitMhK9evVy+e78+fNx5ZVXokWLFmjUqBHuvvtunDp1CmfPnjV9/O3btyM9PV0WQwDQpUsXJCYmYvv27fK2Nm3ayGIIAJo3b47jx48DAHr27Ikrr7wS3bt3x1/+8hf85z//wZkzZ8xfBEKI36AgIoQ0CIqLi3HdddchOztb9bN7924MHDhQLhcbG6v63v79+3HttdeiR48e+PHHH7Fu3Tp8+OGHAJxB174mIiJC9b/FYoHD4QAAhIWFISsrC7///ju6dOmC999/Hx07dkROTo7P60EI8Q4KIkJI0GGz2WC321XbLrroImzduhVt2rRB+/btVT9aEaRk3bp1cDgcePPNN9G3b1+cf/75OHr0qMfjaencuTMOHTqEQ4cOydu2bduG/Px8dOnSxfS5WSwW9OvXDy+88AI2bNgAm82Gn3/+2fT3CSH+gYKIEBJ0tGnTBqtXr8b+/ftx8uRJOBwOjBkzBqdPn8aIESOwdu1a7N27F3PnzsW9997rVsy0b98elZWVeP/997Fv3z7873//k4OtlccrLi7GggULcPLkSV1XWmZmJrp3744777wT69evx5o1azBy5EhcdtlluPjii02d1+rVq/HPf/4Tf/75Jw4ePIiffvoJJ06cQOfOnb27QIQQn0NBRAgJOp544gmEhYWhS5cuaNasGQ4ePIi0tDQsX74cdrsdgwcPRvfu3TFu3DgkJibCajVuynr27Im33noLr732Grp164Zp06Zh8uTJqjKXXnopHnroIdx+++1o1qyZS1A24LTszJw5E40bN8bAgQORmZmJ8847D9OnTzd9XvHx8Vi6dCmuueYanH/++Xj22Wfx5ptvYujQoeYvDiHEL1gE53sSQgghJMShhYgQQgghIQ8FESGEEEJCHgoiQgghhIQ8FESEEEIICXkoiAghhBAS8lAQEUIIISTkoSAihBBCSMhDQUQIIYSQkIeCiBBCCCEhDwURIYQQQkIeCiJCCCGEhDwURIQQQggJef4fdoL2rKUa6WIAAAAASUVORK5CYII=\n"
+          },
+          "metadata": {}
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# 2.0 cartpole with stable-baselines3\n",
+        "\n",
+        "\n"
+      ],
+      "metadata": {
+        "id": "StaIGs4U6ez6"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "!apt-get update && apt-get install ffmpeg freeglut3-dev xvfb  # For visualization\n",
+        "!pip install \"stable-baselines3[extra]>=2.0.0a4\""
+      ],
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "byLoAEfZp-33",
+        "outputId": "053b32f9-42c2-44e7-e6ef-5a916059b471"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\r0% [Working]\r            \rGet:1 https://cloud.r-project.org/bin/linux/ubuntu jammy-cran40/ InRelease [3,626 B]\n",
+            "Hit:2 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64  InRelease\n",
+            "Get:3 http://security.ubuntu.com/ubuntu jammy-security InRelease [110 kB]\n",
+            "Get:4 https://cloud.r-project.org/bin/linux/ubuntu jammy-cran40/ Packages [50.4 kB]\n",
+            "Hit:5 http://archive.ubuntu.com/ubuntu jammy InRelease\n",
+            "Get:6 http://archive.ubuntu.com/ubuntu jammy-updates InRelease [119 kB]\n",
+            "Hit:7 https://ppa.launchpadcontent.net/c2d4u.team/c2d4u4.0+/ubuntu jammy InRelease\n",
+            "Hit:8 https://ppa.launchpadcontent.net/deadsnakes/ppa/ubuntu jammy InRelease\n",
+            "Get:9 http://security.ubuntu.com/ubuntu jammy-security/restricted amd64 Packages [1,894 kB]\n",
+            "Hit:10 https://ppa.launchpadcontent.net/graphics-drivers/ppa/ubuntu jammy InRelease\n",
+            "Hit:11 https://ppa.launchpadcontent.net/ubuntugis/ppa/ubuntu jammy InRelease\n",
+            "Hit:12 http://archive.ubuntu.com/ubuntu jammy-backports InRelease\n",
+            "Get:13 http://security.ubuntu.com/ubuntu jammy-security/universe amd64 Packages [1,074 kB]\n",
+            "Get:14 http://security.ubuntu.com/ubuntu jammy-security/main amd64 Packages [1,522 kB]\n",
+            "Get:15 http://archive.ubuntu.com/ubuntu jammy-updates/restricted amd64 Packages [1,932 kB]\n",
+            "Get:16 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 Packages [1,801 kB]\n",
+            "Get:17 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 Packages [1,346 kB]\n",
+            "Fetched 9,854 kB in 3s (3,522 kB/s)\n",
+            "Reading package lists... Done\n",
+            "Reading package lists... Done\n",
+            "Building dependency tree... Done\n",
+            "Reading state information... Done\n",
+            "ffmpeg is already the newest version (7:4.4.2-0ubuntu0.22.04.1).\n",
+            "The following additional packages will be installed:\n",
+            "  freeglut3 libegl-dev libfontenc1 libgl-dev libgl1-mesa-dev libgles-dev libgles1 libglu1-mesa\n",
+            "  libglu1-mesa-dev libglvnd-core-dev libglvnd-dev libglx-dev libice-dev libopengl-dev libsm-dev\n",
+            "  libxfont2 libxkbfile1 libxt-dev x11-xkb-utils xfonts-base xfonts-encodings xfonts-utils\n",
+            "  xserver-common\n",
+            "Suggested packages:\n",
+            "  libice-doc libsm-doc libxt-doc\n",
+            "The following NEW packages will be installed:\n",
+            "  freeglut3 freeglut3-dev libegl-dev libfontenc1 libgl-dev libgl1-mesa-dev libgles-dev libgles1\n",
+            "  libglu1-mesa libglu1-mesa-dev libglvnd-core-dev libglvnd-dev libglx-dev libice-dev libopengl-dev\n",
+            "  libsm-dev libxfont2 libxkbfile1 libxt-dev x11-xkb-utils xfonts-base xfonts-encodings xfonts-utils\n",
+            "  xserver-common xvfb\n",
+            "0 upgraded, 25 newly installed, 0 to remove and 41 not upgraded.\n",
+            "Need to get 9,075 kB of archives.\n",
+            "After this operation, 18.7 MB of additional disk space will be used.\n",
+            "Get:1 http://archive.ubuntu.com/ubuntu jammy/universe amd64 freeglut3 amd64 2.8.1-6 [74.0 kB]\n",
+            "Get:2 http://archive.ubuntu.com/ubuntu jammy/main amd64 libglx-dev amd64 1.4.0-1 [14.1 kB]\n",
+            "Get:3 http://archive.ubuntu.com/ubuntu jammy/main amd64 libgl-dev amd64 1.4.0-1 [101 kB]\n",
+            "Get:4 http://archive.ubuntu.com/ubuntu jammy/main amd64 libglvnd-core-dev amd64 1.4.0-1 [12.7 kB]\n",
+            "Get:5 http://archive.ubuntu.com/ubuntu jammy/main amd64 libegl-dev amd64 1.4.0-1 [18.0 kB]\n",
+            "Get:6 http://archive.ubuntu.com/ubuntu jammy/main amd64 libgles1 amd64 1.4.0-1 [11.5 kB]\n",
+            "Get:7 http://archive.ubuntu.com/ubuntu jammy/main amd64 libgles-dev amd64 1.4.0-1 [49.4 kB]\n",
+            "Get:8 http://archive.ubuntu.com/ubuntu jammy/main amd64 libopengl-dev amd64 1.4.0-1 [3,400 B]\n",
+            "Get:9 http://archive.ubuntu.com/ubuntu jammy/main amd64 libglvnd-dev amd64 1.4.0-1 [3,162 B]\n",
+            "Get:10 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libgl1-mesa-dev amd64 23.2.1-1ubuntu3.1~22.04.2 [6,842 B]\n",
+            "Get:11 http://archive.ubuntu.com/ubuntu jammy/main amd64 libglu1-mesa amd64 9.0.2-1 [145 kB]\n",
+            "Get:12 http://archive.ubuntu.com/ubuntu jammy/main amd64 libglu1-mesa-dev amd64 9.0.2-1 [231 kB]\n",
+            "Get:13 http://archive.ubuntu.com/ubuntu jammy/main amd64 libice-dev amd64 2:1.0.10-1build2 [51.4 kB]\n",
+            "Get:14 http://archive.ubuntu.com/ubuntu jammy/main amd64 libsm-dev amd64 2:1.2.3-1build2 [18.1 kB]\n",
+            "Get:15 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxt-dev amd64 1:1.2.1-1 [396 kB]\n",
+            "Get:16 http://archive.ubuntu.com/ubuntu jammy/universe amd64 freeglut3-dev amd64 2.8.1-6 [126 kB]\n",
+            "Get:17 http://archive.ubuntu.com/ubuntu jammy/main amd64 libfontenc1 amd64 1:1.1.4-1build3 [14.7 kB]\n",
+            "Get:18 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxfont2 amd64 1:2.0.5-1build1 [94.5 kB]\n",
+            "Get:19 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxkbfile1 amd64 1:1.1.0-1build3 [71.8 kB]\n",
+            "Get:20 http://archive.ubuntu.com/ubuntu jammy/main amd64 x11-xkb-utils amd64 7.7+5build4 [172 kB]\n",
+            "Get:21 http://archive.ubuntu.com/ubuntu jammy/main amd64 xfonts-encodings all 1:1.0.5-0ubuntu2 [578 kB]\n",
+            "Get:22 http://archive.ubuntu.com/ubuntu jammy/main amd64 xfonts-utils amd64 1:7.7+6build2 [94.6 kB]\n",
+            "Get:23 http://archive.ubuntu.com/ubuntu jammy/main amd64 xfonts-base all 1:1.0.5 [5,896 kB]\n",
+            "Get:24 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 xserver-common all 2:21.1.4-2ubuntu1.7~22.04.8 [28.6 kB]\n",
+            "Get:25 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 xvfb amd64 2:21.1.4-2ubuntu1.7~22.04.8 [863 kB]\n",
+            "Fetched 9,075 kB in 4s (2,098 kB/s)\n",
+            "Selecting previously unselected package freeglut3:amd64.\n",
+            "(Reading database ... 121749 files and directories currently installed.)\n",
+            "Preparing to unpack .../00-freeglut3_2.8.1-6_amd64.deb ...\n",
+            "Unpacking freeglut3:amd64 (2.8.1-6) ...\n",
+            "Selecting previously unselected package libglx-dev:amd64.\n",
+            "Preparing to unpack .../01-libglx-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libglx-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libgl-dev:amd64.\n",
+            "Preparing to unpack .../02-libgl-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libgl-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libglvnd-core-dev:amd64.\n",
+            "Preparing to unpack .../03-libglvnd-core-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libglvnd-core-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libegl-dev:amd64.\n",
+            "Preparing to unpack .../04-libegl-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libegl-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libgles1:amd64.\n",
+            "Preparing to unpack .../05-libgles1_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libgles1:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libgles-dev:amd64.\n",
+            "Preparing to unpack .../06-libgles-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libgles-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libopengl-dev:amd64.\n",
+            "Preparing to unpack .../07-libopengl-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libopengl-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libglvnd-dev:amd64.\n",
+            "Preparing to unpack .../08-libglvnd-dev_1.4.0-1_amd64.deb ...\n",
+            "Unpacking libglvnd-dev:amd64 (1.4.0-1) ...\n",
+            "Selecting previously unselected package libgl1-mesa-dev:amd64.\n",
+            "Preparing to unpack .../09-libgl1-mesa-dev_23.2.1-1ubuntu3.1~22.04.2_amd64.deb ...\n",
+            "Unpacking libgl1-mesa-dev:amd64 (23.2.1-1ubuntu3.1~22.04.2) ...\n",
+            "Selecting previously unselected package libglu1-mesa:amd64.\n",
+            "Preparing to unpack .../10-libglu1-mesa_9.0.2-1_amd64.deb ...\n",
+            "Unpacking libglu1-mesa:amd64 (9.0.2-1) ...\n",
+            "Selecting previously unselected package libglu1-mesa-dev:amd64.\n",
+            "Preparing to unpack .../11-libglu1-mesa-dev_9.0.2-1_amd64.deb ...\n",
+            "Unpacking libglu1-mesa-dev:amd64 (9.0.2-1) ...\n",
+            "Selecting previously unselected package libice-dev:amd64.\n",
+            "Preparing to unpack .../12-libice-dev_2%3a1.0.10-1build2_amd64.deb ...\n",
+            "Unpacking libice-dev:amd64 (2:1.0.10-1build2) ...\n",
+            "Selecting previously unselected package libsm-dev:amd64.\n",
+            "Preparing to unpack .../13-libsm-dev_2%3a1.2.3-1build2_amd64.deb ...\n",
+            "Unpacking libsm-dev:amd64 (2:1.2.3-1build2) ...\n",
+            "Selecting previously unselected package libxt-dev:amd64.\n",
+            "Preparing to unpack .../14-libxt-dev_1%3a1.2.1-1_amd64.deb ...\n",
+            "Unpacking libxt-dev:amd64 (1:1.2.1-1) ...\n",
+            "Selecting previously unselected package freeglut3-dev:amd64.\n",
+            "Preparing to unpack .../15-freeglut3-dev_2.8.1-6_amd64.deb ...\n",
+            "Unpacking freeglut3-dev:amd64 (2.8.1-6) ...\n",
+            "Selecting previously unselected package libfontenc1:amd64.\n",
+            "Preparing to unpack .../16-libfontenc1_1%3a1.1.4-1build3_amd64.deb ...\n",
+            "Unpacking libfontenc1:amd64 (1:1.1.4-1build3) ...\n",
+            "Selecting previously unselected package libxfont2:amd64.\n",
+            "Preparing to unpack .../17-libxfont2_1%3a2.0.5-1build1_amd64.deb ...\n",
+            "Unpacking libxfont2:amd64 (1:2.0.5-1build1) ...\n",
+            "Selecting previously unselected package libxkbfile1:amd64.\n",
+            "Preparing to unpack .../18-libxkbfile1_1%3a1.1.0-1build3_amd64.deb ...\n",
+            "Unpacking libxkbfile1:amd64 (1:1.1.0-1build3) ...\n",
+            "Selecting previously unselected package x11-xkb-utils.\n",
+            "Preparing to unpack .../19-x11-xkb-utils_7.7+5build4_amd64.deb ...\n",
+            "Unpacking x11-xkb-utils (7.7+5build4) ...\n",
+            "Selecting previously unselected package xfonts-encodings.\n",
+            "Preparing to unpack .../20-xfonts-encodings_1%3a1.0.5-0ubuntu2_all.deb ...\n",
+            "Unpacking xfonts-encodings (1:1.0.5-0ubuntu2) ...\n",
+            "Selecting previously unselected package xfonts-utils.\n",
+            "Preparing to unpack .../21-xfonts-utils_1%3a7.7+6build2_amd64.deb ...\n",
+            "Unpacking xfonts-utils (1:7.7+6build2) ...\n",
+            "Selecting previously unselected package xfonts-base.\n",
+            "Preparing to unpack .../22-xfonts-base_1%3a1.0.5_all.deb ...\n",
+            "Unpacking xfonts-base (1:1.0.5) ...\n",
+            "Selecting previously unselected package xserver-common.\n",
+            "Preparing to unpack .../23-xserver-common_2%3a21.1.4-2ubuntu1.7~22.04.8_all.deb ...\n",
+            "Unpacking xserver-common (2:21.1.4-2ubuntu1.7~22.04.8) ...\n",
+            "Selecting previously unselected package xvfb.\n",
+            "Preparing to unpack .../24-xvfb_2%3a21.1.4-2ubuntu1.7~22.04.8_amd64.deb ...\n",
+            "Unpacking xvfb (2:21.1.4-2ubuntu1.7~22.04.8) ...\n",
+            "Setting up freeglut3:amd64 (2.8.1-6) ...\n",
+            "Setting up libglvnd-core-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up libice-dev:amd64 (2:1.0.10-1build2) ...\n",
+            "Setting up libsm-dev:amd64 (2:1.2.3-1build2) ...\n",
+            "Setting up libfontenc1:amd64 (1:1.1.4-1build3) ...\n",
+            "Setting up libxt-dev:amd64 (1:1.2.1-1) ...\n",
+            "Setting up libgles1:amd64 (1.4.0-1) ...\n",
+            "Setting up xfonts-encodings (1:1.0.5-0ubuntu2) ...\n",
+            "Setting up libglx-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up libglu1-mesa:amd64 (9.0.2-1) ...\n",
+            "Setting up libxkbfile1:amd64 (1:1.1.0-1build3) ...\n",
+            "Setting up libopengl-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up libxfont2:amd64 (1:2.0.5-1build1) ...\n",
+            "Setting up libgl-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up libegl-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up x11-xkb-utils (7.7+5build4) ...\n",
+            "Setting up xfonts-utils (1:7.7+6build2) ...\n",
+            "Setting up xfonts-base (1:1.0.5) ...\n",
+            "Setting up libglu1-mesa-dev:amd64 (9.0.2-1) ...\n",
+            "Setting up xserver-common (2:21.1.4-2ubuntu1.7~22.04.8) ...\n",
+            "Setting up libgles-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up xvfb (2:21.1.4-2ubuntu1.7~22.04.8) ...\n",
+            "Setting up libglvnd-dev:amd64 (1.4.0-1) ...\n",
+            "Setting up libgl1-mesa-dev:amd64 (23.2.1-1ubuntu3.1~22.04.2) ...\n",
+            "Setting up freeglut3-dev:amd64 (2.8.1-6) ...\n",
+            "Processing triggers for libc-bin (2.35-0ubuntu3.4) ...\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc_proxy.so.2 is not a symbolic link\n",
+            "\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbbbind.so.3 is not a symbolic link\n",
+            "\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_5.so.3 is not a symbolic link\n",
+            "\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_0.so.3 is not a symbolic link\n",
+            "\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc.so.2 is not a symbolic link\n",
+            "\n",
+            "/sbin/ldconfig.real: /usr/local/lib/libtbb.so.12 is not a symbolic link\n",
+            "\n",
+            "Processing triggers for man-db (2.10.2-1) ...\n",
+            "Processing triggers for fontconfig (2.13.1-4.2ubuntu5) ...\n",
+            "Collecting stable-baselines3[extra]>=2.0.0a4\n",
+            "  Downloading stable_baselines3-2.3.0a2-py3-none-any.whl (181 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m181.8/181.8 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: gymnasium<0.30,>=0.28.1 in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (0.29.1)\n",
+            "Requirement already satisfied: numpy>=1.20 in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (1.25.2)\n",
+            "Requirement already satisfied: torch>=1.13 in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (2.1.0+cu121)\n",
+            "Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (2.2.1)\n",
+            "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (1.5.3)\n",
+            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (3.7.1)\n",
+            "Requirement already satisfied: opencv-python in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (4.8.0.76)\n",
+            "Requirement already satisfied: pygame in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (2.5.2)\n",
+            "Requirement already satisfied: tensorboard>=2.9.1 in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (2.15.2)\n",
+            "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (5.9.5)\n",
+            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (4.66.2)\n",
+            "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (13.7.1)\n",
+            "Collecting shimmy[atari]~=1.3.0 (from stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading Shimmy-1.3.0-py3-none-any.whl (37 kB)\n",
+            "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]>=2.0.0a4) (9.4.0)\n",
+            "Collecting autorom[accept-rom-license]~=0.6.1 (from stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading AutoROM-0.6.1-py3-none-any.whl (9.4 kB)\n",
+            "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (8.1.7)\n",
+            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (2.31.0)\n",
+            "Collecting AutoROM.accept-rom-license (from autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading AutoROM.accept-rom-license-0.6.1.tar.gz (434 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m434.7/434.7 kB\u001b[0m \u001b[31m13.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25h  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
+            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
+            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
+            "Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/python3.10/dist-packages (from gymnasium<0.30,>=0.28.1->stable-baselines3[extra]>=2.0.0a4) (4.10.0)\n",
+            "Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/lib/python3.10/dist-packages (from gymnasium<0.30,>=0.28.1->stable-baselines3[extra]>=2.0.0a4) (0.0.4)\n",
+            "Collecting ale-py~=0.8.1 (from shimmy[atari]~=1.3.0->stable-baselines3[extra]>=2.0.0a4)\n",
+            "  Downloading ale_py-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m18.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (1.4.0)\n",
+            "Requirement already satisfied: grpcio>=1.48.2 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (1.62.0)\n",
+            "Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (2.27.0)\n",
+            "Requirement already satisfied: google-auth-oauthlib<2,>=0.5 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (1.2.0)\n",
+            "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (3.5.2)\n",
+            "Requirement already satisfied: protobuf!=4.24.0,>=3.19.6 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (3.20.3)\n",
+            "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (67.7.2)\n",
+            "Requirement already satisfied: six>1.9 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (1.16.0)\n",
+            "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (0.7.2)\n",
+            "Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (3.0.1)\n",
+            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (3.13.1)\n",
+            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (1.12)\n",
+            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (3.2.1)\n",
+            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (3.1.3)\n",
+            "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (2023.6.0)\n",
+            "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (2.1.0)\n",
+            "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (1.2.0)\n",
+            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (0.12.1)\n",
+            "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (4.49.0)\n",
+            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (1.4.5)\n",
+            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (23.2)\n",
+            "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (3.1.1)\n",
+            "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]>=2.0.0a4) (2.8.2)\n",
+            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->stable-baselines3[extra]>=2.0.0a4) (2023.4)\n",
+            "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->stable-baselines3[extra]>=2.0.0a4) (3.0.0)\n",
+            "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->stable-baselines3[extra]>=2.0.0a4) (2.16.1)\n",
+            "Requirement already satisfied: importlib-resources in /usr/local/lib/python3.10/dist-packages (from ale-py~=0.8.1->shimmy[atari]~=1.3.0->stable-baselines3[extra]>=2.0.0a4) (6.1.2)\n",
+            "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (5.3.3)\n",
+            "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (0.3.0)\n",
+            "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (4.9)\n",
+            "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from google-auth-oauthlib<2,>=0.5->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (1.3.1)\n",
+            "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->stable-baselines3[extra]>=2.0.0a4) (0.1.2)\n",
+            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (3.3.2)\n",
+            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (3.6)\n",
+            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (2.0.7)\n",
+            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->autorom[accept-rom-license]~=0.6.1->stable-baselines3[extra]>=2.0.0a4) (2024.2.2)\n",
+            "Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (2.1.5)\n",
+            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.13->stable-baselines3[extra]>=2.0.0a4) (1.3.0)\n",
+            "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (0.5.1)\n",
+            "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard>=2.9.1->stable-baselines3[extra]>=2.0.0a4) (3.2.2)\n",
+            "Building wheels for collected packages: AutoROM.accept-rom-license\n",
+            "  Building wheel for AutoROM.accept-rom-license (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
+            "  Created wheel for AutoROM.accept-rom-license: filename=AutoROM.accept_rom_license-0.6.1-py3-none-any.whl size=446660 sha256=525219ed92b07d52de7e8c459a922d2e6af7c544a54b55368db234aa0242a7da\n",
+            "  Stored in directory: /root/.cache/pip/wheels/6b/1b/ef/a43ff1a2f1736d5711faa1ba4c1f61be1131b8899e6a057811\n",
+            "Successfully built AutoROM.accept-rom-license\n",
+            "Installing collected packages: ale-py, shimmy, AutoROM.accept-rom-license, autorom, stable-baselines3\n",
+            "Successfully installed AutoROM.accept-rom-license-0.6.1 ale-py-0.8.1 autorom-0.6.1 shimmy-1.3.0 stable-baselines3-2.3.0a2\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "import gymnasium as gym\n",
+        "import numpy as np\n",
+        "from stable_baselines3.common.evaluation import evaluate_policy\n",
+        "from stable_baselines3 import A2C\n",
+        "from huggingface_sb3 import push_to_hub\n",
+        "from huggingface_hub import login\n",
+        "\n",
+        "\n",
+        "\n",
+        "print(f\"{gym.__version__=}\")"
+      ],
+      "metadata": {
+        "id": "kTzxDZ4M1X7m",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "9f1cf826-ea0a-4f91-c615-876fcd7818fc"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "gym.__version__='0.29.1'\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "env = gym.make(\"CartPole-v1\", render_mode=\"rgb_array\")\n",
+        "model = A2C(\"MlpPolicy\", env, verbose=1)"
+      ],
+      "metadata": {
+        "id": "1jpK_90YZhwm",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "88980150-d623-495b-ce18-c0368ad389de"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Using cuda device\n",
+            "Wrapping the env with a `Monitor` wrapper\n",
+            "Wrapping the env in a DummyVecEnv.\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "def evaluate(model, num_episodes=100, deterministic=True):\n",
+        "\n",
+        "    vec_env = model.get_env()\n",
+        "    all_episode_rewards = []\n",
+        "    for i in range(num_episodes):\n",
+        "        episode_rewards = []\n",
+        "        done = False\n",
+        "        obs = vec_env.reset()\n",
+        "        while not done:\n",
+        "            # _states are only useful when using LSTM policies\n",
+        "            action, _states = model.predict(obs, deterministic=deterministic)\n",
+        "            # here, action, rewards and dones are arrays\n",
+        "            # also note that the step only returns a 4-tuple, as the env that is returned\n",
+        "            obs, reward, done, info = vec_env.step(action)\n",
+        "            episode_rewards.append(reward)\n",
+        "\n",
+        "        all_episode_rewards.append(sum(episode_rewards))\n",
+        "\n",
+        "    mean_episode_reward = np.mean(all_episode_rewards)\n",
+        "    print(\"Mean reward:\", mean_episode_reward, \"Num episodes:\", num_episodes)\n",
+        "\n",
+        "    return mean_episode_reward"
+      ],
+      "metadata": {
+        "id": "Mih1B33mZSV0"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Use a separate environement for evaluation\n",
+        "eval_env = gym.make(\"CartPole-v1\", render_mode=\"rgb_array\")"
+      ],
+      "metadata": {
+        "id": "NHNZ0-eFZtUq"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Train the agent for 10000 steps\n",
+        "model.learn(total_timesteps=10_000)"
+      ],
+      "metadata": {
+        "id": "a4b9VAvuZvUJ",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "4a90467d-5d73-4eed-885a-6c0858eeb9fb"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20       |\n",
+            "|    ep_rew_mean        | 20       |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 186      |\n",
+            "|    iterations         | 100      |\n",
+            "|    time_elapsed       | 2        |\n",
+            "|    total_timesteps    | 500      |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.692   |\n",
+            "|    explained_variance | 0.0184   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 99       |\n",
+            "|    policy_loss        | 1.85     |\n",
+            "|    value_loss         | 9        |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 23.1     |\n",
+            "|    ep_rew_mean        | 23.1     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 258      |\n",
+            "|    iterations         | 200      |\n",
+            "|    time_elapsed       | 3        |\n",
+            "|    total_timesteps    | 1000     |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.692   |\n",
+            "|    explained_variance | 0.0291   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 199      |\n",
+            "|    policy_loss        | -6.12    |\n",
+            "|    value_loss         | 107      |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 25.5     |\n",
+            "|    ep_rew_mean        | 25.5     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 299      |\n",
+            "|    iterations         | 300      |\n",
+            "|    time_elapsed       | 5        |\n",
+            "|    total_timesteps    | 1500     |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.684   |\n",
+            "|    explained_variance | -0.00656 |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 299      |\n",
+            "|    policy_loss        | 1.56     |\n",
+            "|    value_loss         | 6.39     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 27.8     |\n",
+            "|    ep_rew_mean        | 27.8     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 326      |\n",
+            "|    iterations         | 400      |\n",
+            "|    time_elapsed       | 6        |\n",
+            "|    total_timesteps    | 2000     |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.675   |\n",
+            "|    explained_variance | 0.0542   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 399      |\n",
+            "|    policy_loss        | 1.29     |\n",
+            "|    value_loss         | 5.63     |\n",
+            "------------------------------------\n",
+            "-------------------------------------\n",
+            "| rollout/              |           |\n",
+            "|    ep_len_mean        | 30.7      |\n",
+            "|    ep_rew_mean        | 30.7      |\n",
+            "| time/                 |           |\n",
+            "|    fps                | 343       |\n",
+            "|    iterations         | 500       |\n",
+            "|    time_elapsed       | 7         |\n",
+            "|    total_timesteps    | 2500      |\n",
+            "| train/                |           |\n",
+            "|    entropy_loss       | -0.68     |\n",
+            "|    explained_variance | -0.000433 |\n",
+            "|    learning_rate      | 0.0007    |\n",
+            "|    n_updates          | 499       |\n",
+            "|    policy_loss        | 1.21      |\n",
+            "|    value_loss         | 5.6       |\n",
+            "-------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.4     |\n",
+            "|    ep_rew_mean        | 32.4     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 339      |\n",
+            "|    iterations         | 600      |\n",
+            "|    time_elapsed       | 8        |\n",
+            "|    total_timesteps    | 3000     |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.603   |\n",
+            "|    explained_variance | -0.0121  |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 599      |\n",
+            "|    policy_loss        | 1.24     |\n",
+            "|    value_loss         | 5.01     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 34.4     |\n",
+            "|    ep_rew_mean        | 34.4     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 342      |\n",
+            "|    iterations         | 700      |\n",
+            "|    time_elapsed       | 10       |\n",
+            "|    total_timesteps    | 3500     |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.644   |\n",
+            "|    explained_variance | 0.00312  |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 699      |\n",
+            "|    policy_loss        | 1.04     |\n",
+            "|    value_loss         | 4.48     |\n",
+            "------------------------------------\n",
+            "-------------------------------------\n",
+            "| rollout/              |           |\n",
+            "|    ep_len_mean        | 37        |\n",
+            "|    ep_rew_mean        | 37        |\n",
+            "| time/                 |           |\n",
+            "|    fps                | 345       |\n",
+            "|    iterations         | 800       |\n",
+            "|    time_elapsed       | 11        |\n",
+            "|    total_timesteps    | 4000      |\n",
+            "| train/                |           |\n",
+            "|    entropy_loss       | -0.644    |\n",
+            "|    explained_variance | -0.000278 |\n",
+            "|    learning_rate      | 0.0007    |\n",
+            "|    n_updates          | 799       |\n",
+            "|    policy_loss        | 0.917     |\n",
+            "|    value_loss         | 3.97      |\n",
+            "-------------------------------------\n",
+            "-------------------------------------\n",
+            "| rollout/              |           |\n",
+            "|    ep_len_mean        | 40.9      |\n",
+            "|    ep_rew_mean        | 40.9      |\n",
+            "| time/                 |           |\n",
+            "|    fps                | 354       |\n",
+            "|    iterations         | 900       |\n",
+            "|    time_elapsed       | 12        |\n",
+            "|    total_timesteps    | 4500      |\n",
+            "| train/                |           |\n",
+            "|    entropy_loss       | -0.625    |\n",
+            "|    explained_variance | -0.000446 |\n",
+            "|    learning_rate      | 0.0007    |\n",
+            "|    n_updates          | 899       |\n",
+            "|    policy_loss        | -17.7     |\n",
+            "|    value_loss         | 1.61e+03  |\n",
+            "-------------------------------------\n",
+            "-------------------------------------\n",
+            "| rollout/              |           |\n",
+            "|    ep_len_mean        | 44.7      |\n",
+            "|    ep_rew_mean        | 44.7      |\n",
+            "| time/                 |           |\n",
+            "|    fps                | 362       |\n",
+            "|    iterations         | 1000      |\n",
+            "|    time_elapsed       | 13        |\n",
+            "|    total_timesteps    | 5000      |\n",
+            "| train/                |           |\n",
+            "|    entropy_loss       | -0.487    |\n",
+            "|    explained_variance | -7.62e-05 |\n",
+            "|    learning_rate      | 0.0007    |\n",
+            "|    n_updates          | 999       |\n",
+            "|    policy_loss        | 0.681     |\n",
+            "|    value_loss         | 3         |\n",
+            "-------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 48.1     |\n",
+            "|    ep_rew_mean        | 48.1     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 367      |\n",
+            "|    iterations         | 1100     |\n",
+            "|    time_elapsed       | 14       |\n",
+            "|    total_timesteps    | 5500     |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.616   |\n",
+            "|    explained_variance | 0.00327  |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 1099     |\n",
+            "|    policy_loss        | 0.828    |\n",
+            "|    value_loss         | 2.53     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 52.8     |\n",
+            "|    ep_rew_mean        | 52.8     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 373      |\n",
+            "|    iterations         | 1200     |\n",
+            "|    time_elapsed       | 16       |\n",
+            "|    total_timesteps    | 6000     |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.52    |\n",
+            "|    explained_variance | -6.9e-05 |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 1199     |\n",
+            "|    policy_loss        | 0.904    |\n",
+            "|    value_loss         | 2.11     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 56.5     |\n",
+            "|    ep_rew_mean        | 56.5     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 377      |\n",
+            "|    iterations         | 1300     |\n",
+            "|    time_elapsed       | 17       |\n",
+            "|    total_timesteps    | 6500     |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.566   |\n",
+            "|    explained_variance | 1.93e-05 |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 1299     |\n",
+            "|    policy_loss        | 0.926    |\n",
+            "|    value_loss         | 1.71     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 59.8     |\n",
+            "|    ep_rew_mean        | 59.8     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 381      |\n",
+            "|    iterations         | 1400     |\n",
+            "|    time_elapsed       | 18       |\n",
+            "|    total_timesteps    | 7000     |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.655   |\n",
+            "|    explained_variance | 8.76e-06 |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 1399     |\n",
+            "|    policy_loss        | 0.654    |\n",
+            "|    value_loss         | 1.37     |\n",
+            "------------------------------------\n",
+            "-------------------------------------\n",
+            "| rollout/              |           |\n",
+            "|    ep_len_mean        | 65        |\n",
+            "|    ep_rew_mean        | 65        |\n",
+            "| time/                 |           |\n",
+            "|    fps                | 384       |\n",
+            "|    iterations         | 1500      |\n",
+            "|    time_elapsed       | 19        |\n",
+            "|    total_timesteps    | 7500      |\n",
+            "| train/                |           |\n",
+            "|    entropy_loss       | -0.343    |\n",
+            "|    explained_variance | -2.01e-05 |\n",
+            "|    learning_rate      | 0.0007    |\n",
+            "|    n_updates          | 1499      |\n",
+            "|    policy_loss        | 0.927     |\n",
+            "|    value_loss         | 1.08      |\n",
+            "-------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 69.3     |\n",
+            "|    ep_rew_mean        | 69.3     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 386      |\n",
+            "|    iterations         | 1600     |\n",
+            "|    time_elapsed       | 20       |\n",
+            "|    total_timesteps    | 8000     |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.579   |\n",
+            "|    explained_variance | 6.14e-06 |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 1599     |\n",
+            "|    policy_loss        | -36.9    |\n",
+            "|    value_loss         | 1.02e+03 |\n",
+            "------------------------------------\n",
+            "-------------------------------------\n",
+            "| rollout/              |           |\n",
+            "|    ep_len_mean        | 71.8      |\n",
+            "|    ep_rew_mean        | 71.8      |\n",
+            "| time/                 |           |\n",
+            "|    fps                | 386       |\n",
+            "|    iterations         | 1700      |\n",
+            "|    time_elapsed       | 21        |\n",
+            "|    total_timesteps    | 8500      |\n",
+            "| train/                |           |\n",
+            "|    entropy_loss       | -0.566    |\n",
+            "|    explained_variance | -4.07e-05 |\n",
+            "|    learning_rate      | 0.0007    |\n",
+            "|    n_updates          | 1699      |\n",
+            "|    policy_loss        | 0.465     |\n",
+            "|    value_loss         | 0.579     |\n",
+            "-------------------------------------\n",
+            "-------------------------------------\n",
+            "| rollout/              |           |\n",
+            "|    ep_len_mean        | 77        |\n",
+            "|    ep_rew_mean        | 77        |\n",
+            "| time/                 |           |\n",
+            "|    fps                | 383       |\n",
+            "|    iterations         | 1800      |\n",
+            "|    time_elapsed       | 23        |\n",
+            "|    total_timesteps    | 9000      |\n",
+            "| train/                |           |\n",
+            "|    entropy_loss       | -0.583    |\n",
+            "|    explained_variance | -1.61e-05 |\n",
+            "|    learning_rate      | 0.0007    |\n",
+            "|    n_updates          | 1799      |\n",
+            "|    policy_loss        | 0.334     |\n",
+            "|    value_loss         | 0.382     |\n",
+            "-------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 80.8     |\n",
+            "|    ep_rew_mean        | 80.8     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 386      |\n",
+            "|    iterations         | 1900     |\n",
+            "|    time_elapsed       | 24       |\n",
+            "|    total_timesteps    | 9500     |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -0.573   |\n",
+            "|    explained_variance | 3.22e-05 |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 1899     |\n",
+            "|    policy_loss        | 0.237    |\n",
+            "|    value_loss         | 0.229    |\n",
+            "------------------------------------\n",
+            "-------------------------------------\n",
+            "| rollout/              |           |\n",
+            "|    ep_len_mean        | 84.5      |\n",
+            "|    ep_rew_mean        | 84.5      |\n",
+            "| time/                 |           |\n",
+            "|    fps                | 388       |\n",
+            "|    iterations         | 2000      |\n",
+            "|    time_elapsed       | 25        |\n",
+            "|    total_timesteps    | 10000     |\n",
+            "| train/                |           |\n",
+            "|    entropy_loss       | -0.46     |\n",
+            "|    explained_variance | -5.95e-05 |\n",
+            "|    learning_rate      | 0.0007    |\n",
+            "|    n_updates          | 1999      |\n",
+            "|    policy_loss        | 0.213     |\n",
+            "|    value_loss         | 0.119     |\n",
+            "-------------------------------------\n"
+          ]
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "<stable_baselines3.a2c.a2c.A2C at 0x7e7efb9c3f40>"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 9
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Evaluate the trained agent\n",
+        "mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=100)\n",
+        "\n",
+        "print(f\"mean_reward:{mean_reward:.2f} +/- {std_reward:.2f}\")"
+      ],
+      "metadata": {
+        "id": "A1b3dko0Zxix",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "090ab383-3321-4b5c-ef0b-d4fb9fea8351"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "/usr/local/lib/python3.10/dist-packages/stable_baselines3/common/evaluation.py:67: UserWarning: Evaluation environment is not wrapped with a ``Monitor`` wrapper. This may result in reporting modified episode lengths and rewards, if other wrappers happen to modify these. Consider wrapping environment first with ``Monitor`` wrapper.\n",
+            "  warnings.warn(\n"
+          ]
+        },
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "mean_reward:152.85 +/- 17.30\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### saving the learned model in hub"
+      ],
+      "metadata": {
+        "id": "x6FPQxixCU6A"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "login(token=\"****************\")"
+      ],
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "H0pKB3u7RNln",
+        "outputId": "03ccf8e1-baf5-4cdb-d915-49d8d881f2fd"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Token will not been saved to git credential helper. Pass `add_to_git_credential=True` if you want to set the git credential as well.\n",
+            "Token is valid (permission: write).\n",
+            "Your token has been saved to /root/.cache/huggingface/token\n",
+            "Login successful\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Save the trained model\n",
+        "model.save(\"ECL-TD-RL1-a2c_cartpole.zip\")\n",
+        "\n",
+        "# Load the trained model\n",
+        "model = A2C.load(\"ECL-TD-RL1-a2c_cartpole.zip\")\n",
+        "\n",
+        "push_to_hub(\n",
+        "    repo_id=\"Karim-20/a2c_cartpole\",\n",
+        "    filename=\"ECL-TD-RL1-a2c_cartpole.zip\",\n",
+        "    commit_message=\"Add cartepole-v1 environement, agent used to train is A2C\"\n",
+        ")\n"
+      ],
+      "metadata": {
+        "id": "9lgpQBFeDIVx",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 136,
+          "referenced_widgets": [
+            "3bf20325eeb94361964c8a1620c38727",
+            "0fdb788454a34aa9bc545568ed8afad7",
+            "c61ff44a39204ce88d3a43c02388b6e6",
+            "e650459cdbdc425ca554d4f66c3d6d40",
+            "9ff1bdcd30904e669984f48e4a93ae0c",
+            "69ece13913d844ca8e7209cc125e2d7b",
+            "3525ebe3a5944b278adff0cd7c59a5d7",
+            "656ba980bd9247f0b9f9c4ecf8b1e4a7",
+            "572fe508383646baaf82b2349366c671",
+            "c9f0b1c6f1a74c238ccb347bee20b397",
+            "9d8e4e68afed4d90a59c4293cd4a6b9d"
+          ]
+        },
+        "outputId": "cea78c0f-ffdf-4318-def2-c8c3e19c0c35"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[38;5;4mℹ Pushing repo Karim-20/a2c_cartpole to the Hugging Face Hub\u001b[0m\n"
+          ]
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "ECL-TD-RL1-a2c_cartpole.zip:   0%|          | 0.00/98.1k [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "3bf20325eeb94361964c8a1620c38727"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[38;5;2m✔ Your model has been uploaded to the Hub, you can find it here:\n",
+            "https://huggingface.co/Karim-20/a2c_cartpole/tree/main/\u001b[0m\n"
+          ]
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "CommitInfo(commit_url='https://huggingface.co/Karim-20/a2c_cartpole/commit/11ea47a77ed2f507464852dda3f3888abd0e692c', commit_message='Add cartepole-v1 environement, agent used to train is A2C', commit_description='', oid='11ea47a77ed2f507464852dda3f3888abd0e692c', pr_url=None, pr_revision=None, pr_num=None)"
+            ],
+            "application/vnd.google.colaboratory.intrinsic+json": {
+              "type": "string"
+            }
+          },
+          "metadata": {},
+          "execution_count": 20
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# 3.0 PandaReachJointsDense-v2"
+      ],
+      "metadata": {
+        "id": "nXlE_QHYd70G"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "### LIBRARIES\n",
+        "\n",
+        "import gymnasium as gym\n",
+        "from stable_baselines3 import A2C\n",
+        "from stable_baselines3.common.monitor import Monitor\n",
+        "from stable_baselines3.common.vec_env import DummyVecEnv, VecVideoRecorder\n",
+        "import wandb\n",
+        "from wandb.integration.sb3 import WandbCallback\n",
+        "from huggingface_sb3 import push_to_hub\n",
+        "import panda_gym\n",
+        "import os\n",
+        "from huggingface_hub import login\n"
+      ],
+      "metadata": {
+        "id": "0YBce66VQoaL"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "\n",
+        "#dir_path = os.path.dirname(os.path.realpath(__file__))\n",
+        "#os.chdir(dir_path)\n",
+        "\n",
+        "config = {\n",
+        "    \"policy_type\": \"MultiInputPolicy\",\n",
+        "    \"total_timesteps\": 250000,\n",
+        "    \"env_name\": \"PandaReachJointsDense-v3\",\n",
+        "}\n",
+        "\n",
+        "run = wandb.init(\n",
+        "    project=\"sb3-panda-reach\",\n",
+        "    config=config,\n",
+        "    sync_tensorboard=True,  # auto-upload sb3's tensorboard metrics\n",
+        "    monitor_gym=True,  # auto-upload the videos of agents playing the game\n",
+        "    save_code=True,  # optional\n",
+        ")\n",
+        "\n",
+        "def make_env():\n",
+        "    env = gym.make(config[\"env_name\"])\n",
+        "    env = Monitor(env)  # record stats such as returns\n",
+        "    return env\n",
+        "\n",
+        "env = DummyVecEnv([make_env])\n",
+        "# env = VecVideoRecorder(env, f\"videos/{run.id}\", record_video_trigger=lambda x: x % 2000 == 0, video_length=200)\n",
+        "model = A2C(config[\"policy_type\"], env, verbose=1, tensorboard_log=f\"runs/{run.id}\")\n",
+        "model.learn(\n",
+        "    total_timesteps=config[\"total_timesteps\"],\n",
+        "    callback=WandbCallback(\n",
+        "        gradient_save_freq=100,\n",
+        "        model_save_path=f\"models/{run.id}\",\n",
+        "        verbose=2,\n",
+        "    ),\n",
+        ")\n",
+        "\n",
+        "run.finish()\n",
+        "\n"
+      ],
+      "metadata": {
+        "id": "-iPcpsSpAWh0",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 1000,
+          "referenced_widgets": [
+            "c14a53fd35174f3ba632a22e3c9dda47",
+            "02913ffc7b024793ab252e74c0427aa9",
+            "53f02b9c14564874baecde3983423440",
+            "83c1d52aef7d421db0657103710bcd06",
+            "9346924fc0d14e10924684c0ab74891c",
+            "4cf73107b2a74863a612244964f0fc04",
+            "c056c0b446134ae69bdc93bd93f3af13",
+            "3d54d2c162b34319bfd1428fb18fd181"
+          ]
+        },
+        "outputId": "41cb3d73-4ca4-49f7-f258-f4062ca0cad8"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "Tracking run with wandb version 0.16.3"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "Run data is saved locally in <code>/content/wandb/run-20240305_210146-ihcoeovn</code>"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "Syncing run <strong><a href='https://wandb.ai/aiblackbelt/sb3-panda-reach/runs/ihcoeovn' target=\"_blank\">dashing-glitter-6</a></strong> to <a href='https://wandb.ai/aiblackbelt/sb3-panda-reach' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              " View project at <a href='https://wandb.ai/aiblackbelt/sb3-panda-reach' target=\"_blank\">https://wandb.ai/aiblackbelt/sb3-panda-reach</a>"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              " View run at <a href='https://wandb.ai/aiblackbelt/sb3-panda-reach/runs/ihcoeovn' target=\"_blank\">https://wandb.ai/aiblackbelt/sb3-panda-reach/runs/ihcoeovn</a>"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m When using several event log directories, please call `wandb.tensorboard.patch(root_logdir=\"...\")` before `wandb.init`\n"
+          ]
+        },
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[1;30;43mLe flux de sortie a été tronqué et ne contient que les 5000 dernières lignes.\u001b[0m\n",
+            "| time/                 |          |\n",
+            "|    fps                | 216      |\n",
+            "|    iterations         | 22300    |\n",
+            "|    time_elapsed       | 515      |\n",
+            "|    total_timesteps    | 111500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.45    |\n",
+            "|    explained_variance | 0.00867  |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 22299    |\n",
+            "|    policy_loss        | -2.16    |\n",
+            "|    std                | 0.939    |\n",
+            "|    value_loss         | 0.0636   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 44.9     |\n",
+            "|    ep_rew_mean        | -7.03    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 216      |\n",
+            "|    iterations         | 22400    |\n",
+            "|    time_elapsed       | 518      |\n",
+            "|    total_timesteps    | 112000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.48    |\n",
+            "|    explained_variance | -0.683   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 22399    |\n",
+            "|    policy_loss        | 1.14     |\n",
+            "|    std                | 0.943    |\n",
+            "|    value_loss         | 0.0359   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 43.9     |\n",
+            "|    ep_rew_mean        | -6.64    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 216      |\n",
+            "|    iterations         | 22500    |\n",
+            "|    time_elapsed       | 520      |\n",
+            "|    total_timesteps    | 112500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.5     |\n",
+            "|    explained_variance | -0.145   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 22499    |\n",
+            "|    policy_loss        | -2.57    |\n",
+            "|    std                | 0.945    |\n",
+            "|    value_loss         | 0.0833   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 42.8     |\n",
+            "|    ep_rew_mean        | -6.33    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 216      |\n",
+            "|    iterations         | 22600    |\n",
+            "|    time_elapsed       | 522      |\n",
+            "|    total_timesteps    | 113000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.49    |\n",
+            "|    explained_variance | -8.08    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 22599    |\n",
+            "|    policy_loss        | -1.29    |\n",
+            "|    std                | 0.945    |\n",
+            "|    value_loss         | 0.0271   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 36.1     |\n",
+            "|    ep_rew_mean        | -4.9     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 216      |\n",
+            "|    iterations         | 22700    |\n",
+            "|    time_elapsed       | 525      |\n",
+            "|    total_timesteps    | 113500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.46    |\n",
+            "|    explained_variance | -0.776   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 22699    |\n",
+            "|    policy_loss        | 52.8     |\n",
+            "|    std                | 0.941    |\n",
+            "|    value_loss         | 42.4     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.1     |\n",
+            "|    ep_rew_mean        | -4.16    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 216      |\n",
+            "|    iterations         | 22800    |\n",
+            "|    time_elapsed       | 527      |\n",
+            "|    total_timesteps    | 114000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.47    |\n",
+            "|    explained_variance | 0.752    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 22799    |\n",
+            "|    policy_loss        | -0.807   |\n",
+            "|    std                | 0.942    |\n",
+            "|    value_loss         | 0.00859  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.8     |\n",
+            "|    ep_rew_mean        | -2.49    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 22900    |\n",
+            "|    time_elapsed       | 530      |\n",
+            "|    total_timesteps    | 114500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.45    |\n",
+            "|    explained_variance | -0.247   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 22899    |\n",
+            "|    policy_loss        | 62.9     |\n",
+            "|    std                | 0.939    |\n",
+            "|    value_loss         | 72.4     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 19.7     |\n",
+            "|    ep_rew_mean        | -2.21    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 23000    |\n",
+            "|    time_elapsed       | 532      |\n",
+            "|    total_timesteps    | 115000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.44    |\n",
+            "|    explained_variance | 0.965    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 22999    |\n",
+            "|    policy_loss        | -4.07    |\n",
+            "|    std                | 0.938    |\n",
+            "|    value_loss         | 0.216    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.5     |\n",
+            "|    ep_rew_mean        | -2.51    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 23100    |\n",
+            "|    time_elapsed       | 534      |\n",
+            "|    total_timesteps    | 115500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.45    |\n",
+            "|    explained_variance | -2.05    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 23099    |\n",
+            "|    policy_loss        | 2.27     |\n",
+            "|    std                | 0.939    |\n",
+            "|    value_loss         | 0.0759   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 23       |\n",
+            "|    ep_rew_mean        | -2.74    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 23200    |\n",
+            "|    time_elapsed       | 537      |\n",
+            "|    total_timesteps    | 116000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.45    |\n",
+            "|    explained_variance | -6.83    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 23199    |\n",
+            "|    policy_loss        | 0.588    |\n",
+            "|    std                | 0.939    |\n",
+            "|    value_loss         | 0.0248   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 25.4     |\n",
+            "|    ep_rew_mean        | -3.11    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 216      |\n",
+            "|    iterations         | 23300    |\n",
+            "|    time_elapsed       | 539      |\n",
+            "|    total_timesteps    | 116500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.44    |\n",
+            "|    explained_variance | -22      |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 23299    |\n",
+            "|    policy_loss        | -0.0544  |\n",
+            "|    std                | 0.938    |\n",
+            "|    value_loss         | 0.0256   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 28       |\n",
+            "|    ep_rew_mean        | -3.46    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 216      |\n",
+            "|    iterations         | 23400    |\n",
+            "|    time_elapsed       | 541      |\n",
+            "|    total_timesteps    | 117000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.41    |\n",
+            "|    explained_variance | -3       |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 23399    |\n",
+            "|    policy_loss        | -0.346   |\n",
+            "|    std                | 0.933    |\n",
+            "|    value_loss         | 0.0151   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 31.2     |\n",
+            "|    ep_rew_mean        | -3.96    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 23500    |\n",
+            "|    time_elapsed       | 544      |\n",
+            "|    total_timesteps    | 117500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.4     |\n",
+            "|    explained_variance | -43.3    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 23499    |\n",
+            "|    policy_loss        | 2.42     |\n",
+            "|    std                | 0.932    |\n",
+            "|    value_loss         | 0.07     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30.6     |\n",
+            "|    ep_rew_mean        | -3.97    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 23600    |\n",
+            "|    time_elapsed       | 546      |\n",
+            "|    total_timesteps    | 118000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.41    |\n",
+            "|    explained_variance | -53.5    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 23599    |\n",
+            "|    policy_loss        | -2.25    |\n",
+            "|    std                | 0.933    |\n",
+            "|    value_loss         | 0.0758   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32       |\n",
+            "|    ep_rew_mean        | -4.39    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 23700    |\n",
+            "|    time_elapsed       | 548      |\n",
+            "|    total_timesteps    | 118500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.43    |\n",
+            "|    explained_variance | -1.86    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 23699    |\n",
+            "|    policy_loss        | -1.53    |\n",
+            "|    std                | 0.937    |\n",
+            "|    value_loss         | 0.0645   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.3     |\n",
+            "|    ep_rew_mean        | -4.6     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 23800    |\n",
+            "|    time_elapsed       | 550      |\n",
+            "|    total_timesteps    | 119000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.41    |\n",
+            "|    explained_variance | -2.95    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 23799    |\n",
+            "|    policy_loss        | 3.8      |\n",
+            "|    std                | 0.933    |\n",
+            "|    value_loss         | 0.316    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.8     |\n",
+            "|    ep_rew_mean        | -4.61    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 216      |\n",
+            "|    iterations         | 23900    |\n",
+            "|    time_elapsed       | 553      |\n",
+            "|    total_timesteps    | 119500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.4     |\n",
+            "|    explained_variance | 0.991    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 23899    |\n",
+            "|    policy_loss        | -1.39    |\n",
+            "|    std                | 0.933    |\n",
+            "|    value_loss         | 0.0448   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.2     |\n",
+            "|    ep_rew_mean        | -4.6     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 24000    |\n",
+            "|    time_elapsed       | 556      |\n",
+            "|    total_timesteps    | 120000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.42    |\n",
+            "|    explained_variance | -4.95    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 23999    |\n",
+            "|    policy_loss        | 2.49     |\n",
+            "|    std                | 0.935    |\n",
+            "|    value_loss         | 0.0738   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30.8     |\n",
+            "|    ep_rew_mean        | -4.37    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 24100    |\n",
+            "|    time_elapsed       | 558      |\n",
+            "|    total_timesteps    | 120500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.42    |\n",
+            "|    explained_variance | -6.33    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 24099    |\n",
+            "|    policy_loss        | -0.807   |\n",
+            "|    std                | 0.935    |\n",
+            "|    value_loss         | 0.0239   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 31       |\n",
+            "|    ep_rew_mean        | -4.31    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 24200    |\n",
+            "|    time_elapsed       | 560      |\n",
+            "|    total_timesteps    | 121000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.39    |\n",
+            "|    explained_variance | -2.43    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 24199    |\n",
+            "|    policy_loss        | -9.51    |\n",
+            "|    std                | 0.931    |\n",
+            "|    value_loss         | 1.49     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 29.7     |\n",
+            "|    ep_rew_mean        | -3.95    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 24300    |\n",
+            "|    time_elapsed       | 562      |\n",
+            "|    total_timesteps    | 121500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.38    |\n",
+            "|    explained_variance | -1.98    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 24299    |\n",
+            "|    policy_loss        | -0.455   |\n",
+            "|    std                | 0.93     |\n",
+            "|    value_loss         | 0.0111   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 28.1     |\n",
+            "|    ep_rew_mean        | -3.58    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 24400    |\n",
+            "|    time_elapsed       | 565      |\n",
+            "|    total_timesteps    | 122000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.35    |\n",
+            "|    explained_variance | -1.73    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 24399    |\n",
+            "|    policy_loss        | -0.0601  |\n",
+            "|    std                | 0.926    |\n",
+            "|    value_loss         | 0.0105   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 27.9     |\n",
+            "|    ep_rew_mean        | -3.59    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 24500    |\n",
+            "|    time_elapsed       | 567      |\n",
+            "|    total_timesteps    | 122500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.37    |\n",
+            "|    explained_variance | 0.991    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 24499    |\n",
+            "|    policy_loss        | -0.474   |\n",
+            "|    std                | 0.929    |\n",
+            "|    value_loss         | 0.00794  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 29.4     |\n",
+            "|    ep_rew_mean        | -4.04    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 24600    |\n",
+            "|    time_elapsed       | 570      |\n",
+            "|    total_timesteps    | 123000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.39    |\n",
+            "|    explained_variance | -0.122   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 24599    |\n",
+            "|    policy_loss        | -1.6     |\n",
+            "|    std                | 0.931    |\n",
+            "|    value_loss         | 0.0356   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30.6     |\n",
+            "|    ep_rew_mean        | -4.51    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 24700    |\n",
+            "|    time_elapsed       | 572      |\n",
+            "|    total_timesteps    | 123500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.38    |\n",
+            "|    explained_variance | -21.6    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 24699    |\n",
+            "|    policy_loss        | -3.84    |\n",
+            "|    std                | 0.93     |\n",
+            "|    value_loss         | 0.176    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.9     |\n",
+            "|    ep_rew_mean        | -5.19    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 24800    |\n",
+            "|    time_elapsed       | 574      |\n",
+            "|    total_timesteps    | 124000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.4     |\n",
+            "|    explained_variance | -11.2    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 24799    |\n",
+            "|    policy_loss        | 187      |\n",
+            "|    std                | 0.931    |\n",
+            "|    value_loss         | 547      |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.5     |\n",
+            "|    ep_rew_mean        | -5.08    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 24900    |\n",
+            "|    time_elapsed       | 577      |\n",
+            "|    total_timesteps    | 124500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.39    |\n",
+            "|    explained_variance | -2.02    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 24899    |\n",
+            "|    policy_loss        | -4.38    |\n",
+            "|    std                | 0.931    |\n",
+            "|    value_loss         | 0.253    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 33.5     |\n",
+            "|    ep_rew_mean        | -5.31    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 25000    |\n",
+            "|    time_elapsed       | 579      |\n",
+            "|    total_timesteps    | 125000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.39    |\n",
+            "|    explained_variance | -0.537   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 24999    |\n",
+            "|    policy_loss        | -0.974   |\n",
+            "|    std                | 0.93     |\n",
+            "|    value_loss         | 0.0223   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 34.6     |\n",
+            "|    ep_rew_mean        | -5.53    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 25100    |\n",
+            "|    time_elapsed       | 582      |\n",
+            "|    total_timesteps    | 125500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.38    |\n",
+            "|    explained_variance | -54.8    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 25099    |\n",
+            "|    policy_loss        | -2.16    |\n",
+            "|    std                | 0.929    |\n",
+            "|    value_loss         | 0.0498   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 36.2     |\n",
+            "|    ep_rew_mean        | -5.88    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 25200    |\n",
+            "|    time_elapsed       | 584      |\n",
+            "|    total_timesteps    | 126000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.38    |\n",
+            "|    explained_variance | -27.1    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 25199    |\n",
+            "|    policy_loss        | 1.16     |\n",
+            "|    std                | 0.929    |\n",
+            "|    value_loss         | 0.0288   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 37.1     |\n",
+            "|    ep_rew_mean        | -5.92    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 25300    |\n",
+            "|    time_elapsed       | 587      |\n",
+            "|    total_timesteps    | 126500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.37    |\n",
+            "|    explained_variance | -15.3    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 25299    |\n",
+            "|    policy_loss        | -1.05    |\n",
+            "|    std                | 0.927    |\n",
+            "|    value_loss         | 0.0258   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 35       |\n",
+            "|    ep_rew_mean        | -5.25    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 25400    |\n",
+            "|    time_elapsed       | 589      |\n",
+            "|    total_timesteps    | 127000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.38    |\n",
+            "|    explained_variance | -15.2    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 25399    |\n",
+            "|    policy_loss        | 3.79     |\n",
+            "|    std                | 0.929    |\n",
+            "|    value_loss         | 0.251    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 36       |\n",
+            "|    ep_rew_mean        | -5.17    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 25500    |\n",
+            "|    time_elapsed       | 591      |\n",
+            "|    total_timesteps    | 127500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.39    |\n",
+            "|    explained_variance | 0.514    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 25499    |\n",
+            "|    policy_loss        | 1.61     |\n",
+            "|    std                | 0.93     |\n",
+            "|    value_loss         | 0.0388   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 37.3     |\n",
+            "|    ep_rew_mean        | -5.45    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 25600    |\n",
+            "|    time_elapsed       | 593      |\n",
+            "|    total_timesteps    | 128000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.39    |\n",
+            "|    explained_variance | -0.424   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 25599    |\n",
+            "|    policy_loss        | 1.74     |\n",
+            "|    std                | 0.931    |\n",
+            "|    value_loss         | 0.0342   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 37.3     |\n",
+            "|    ep_rew_mean        | -5.49    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 25700    |\n",
+            "|    time_elapsed       | 596      |\n",
+            "|    total_timesteps    | 128500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.38    |\n",
+            "|    explained_variance | -2.54    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 25699    |\n",
+            "|    policy_loss        | -1.86    |\n",
+            "|    std                | 0.929    |\n",
+            "|    value_loss         | 0.053    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 37.7     |\n",
+            "|    ep_rew_mean        | -5.64    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 25800    |\n",
+            "|    time_elapsed       | 598      |\n",
+            "|    total_timesteps    | 129000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.37    |\n",
+            "|    explained_variance | -23.4    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 25799    |\n",
+            "|    policy_loss        | -0.621   |\n",
+            "|    std                | 0.928    |\n",
+            "|    value_loss         | 0.0133   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 37.3     |\n",
+            "|    ep_rew_mean        | -5.42    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 25900    |\n",
+            "|    time_elapsed       | 601      |\n",
+            "|    total_timesteps    | 129500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.38    |\n",
+            "|    explained_variance | -76.5    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 25899    |\n",
+            "|    policy_loss        | 0.284    |\n",
+            "|    std                | 0.929    |\n",
+            "|    value_loss         | 0.0124   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 36.8     |\n",
+            "|    ep_rew_mean        | -5.41    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 26000    |\n",
+            "|    time_elapsed       | 603      |\n",
+            "|    total_timesteps    | 130000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.35    |\n",
+            "|    explained_variance | -0.16    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 25999    |\n",
+            "|    policy_loss        | 2.86     |\n",
+            "|    std                | 0.925    |\n",
+            "|    value_loss         | 0.106    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 37.7     |\n",
+            "|    ep_rew_mean        | -5.52    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 26100    |\n",
+            "|    time_elapsed       | 605      |\n",
+            "|    total_timesteps    | 130500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.35    |\n",
+            "|    explained_variance | 0.164    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 26099    |\n",
+            "|    policy_loss        | 0.113    |\n",
+            "|    std                | 0.926    |\n",
+            "|    value_loss         | 0.000767 |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 37.7     |\n",
+            "|    ep_rew_mean        | -5.61    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 26200    |\n",
+            "|    time_elapsed       | 608      |\n",
+            "|    total_timesteps    | 131000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.32    |\n",
+            "|    explained_variance | 0.343    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 26199    |\n",
+            "|    policy_loss        | -0.0984  |\n",
+            "|    std                | 0.922    |\n",
+            "|    value_loss         | 0.00199  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 37.3     |\n",
+            "|    ep_rew_mean        | -5.59    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 26300    |\n",
+            "|    time_elapsed       | 610      |\n",
+            "|    total_timesteps    | 131500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.29    |\n",
+            "|    explained_variance | -223     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 26299    |\n",
+            "|    policy_loss        | 1.5      |\n",
+            "|    std                | 0.918    |\n",
+            "|    value_loss         | 0.0374   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 38       |\n",
+            "|    ep_rew_mean        | -5.76    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 26400    |\n",
+            "|    time_elapsed       | 612      |\n",
+            "|    total_timesteps    | 132000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.3     |\n",
+            "|    explained_variance | -3.7     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 26399    |\n",
+            "|    policy_loss        | 3.28     |\n",
+            "|    std                | 0.919    |\n",
+            "|    value_loss         | 0.12     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 38.2     |\n",
+            "|    ep_rew_mean        | -5.88    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 26500    |\n",
+            "|    time_elapsed       | 614      |\n",
+            "|    total_timesteps    | 132500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.3     |\n",
+            "|    explained_variance | -1.6     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 26499    |\n",
+            "|    policy_loss        | -2.88    |\n",
+            "|    std                | 0.92     |\n",
+            "|    value_loss         | 0.159    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 38.4     |\n",
+            "|    ep_rew_mean        | -5.92    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 26600    |\n",
+            "|    time_elapsed       | 616      |\n",
+            "|    total_timesteps    | 133000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.3     |\n",
+            "|    explained_variance | -0.651   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 26599    |\n",
+            "|    policy_loss        | 0.364    |\n",
+            "|    std                | 0.919    |\n",
+            "|    value_loss         | 0.00463  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 36       |\n",
+            "|    ep_rew_mean        | -5.42    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 26700    |\n",
+            "|    time_elapsed       | 619      |\n",
+            "|    total_timesteps    | 133500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.3     |\n",
+            "|    explained_variance | -1.05    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 26699    |\n",
+            "|    policy_loss        | 1.63     |\n",
+            "|    std                | 0.921    |\n",
+            "|    value_loss         | 0.0252   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 34.8     |\n",
+            "|    ep_rew_mean        | -5.18    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 26800    |\n",
+            "|    time_elapsed       | 622      |\n",
+            "|    total_timesteps    | 134000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.29    |\n",
+            "|    explained_variance | -1.78    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 26799    |\n",
+            "|    policy_loss        | 0.653    |\n",
+            "|    std                | 0.918    |\n",
+            "|    value_loss         | 0.00575  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30.9     |\n",
+            "|    ep_rew_mean        | -4.33    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 26900    |\n",
+            "|    time_elapsed       | 624      |\n",
+            "|    total_timesteps    | 134500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.31    |\n",
+            "|    explained_variance | -42.5    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 26899    |\n",
+            "|    policy_loss        | 0.447    |\n",
+            "|    std                | 0.922    |\n",
+            "|    value_loss         | 0.00399  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 24.8     |\n",
+            "|    ep_rew_mean        | -3.04    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 27000    |\n",
+            "|    time_elapsed       | 626      |\n",
+            "|    total_timesteps    | 135000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.3     |\n",
+            "|    explained_variance | -11.1    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 26999    |\n",
+            "|    policy_loss        | -0.0141  |\n",
+            "|    std                | 0.92     |\n",
+            "|    value_loss         | 0.032    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 25.6     |\n",
+            "|    ep_rew_mean        | -3.05    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 27100    |\n",
+            "|    time_elapsed       | 628      |\n",
+            "|    total_timesteps    | 135500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.27    |\n",
+            "|    explained_variance | -10.8    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 27099    |\n",
+            "|    policy_loss        | 1.04     |\n",
+            "|    std                | 0.917    |\n",
+            "|    value_loss         | 0.0236   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 25.4     |\n",
+            "|    ep_rew_mean        | -3.01    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 27200    |\n",
+            "|    time_elapsed       | 631      |\n",
+            "|    total_timesteps    | 136000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.26    |\n",
+            "|    explained_variance | -8.63    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 27199    |\n",
+            "|    policy_loss        | -1.78    |\n",
+            "|    std                | 0.916    |\n",
+            "|    value_loss         | 0.0857   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 24.7     |\n",
+            "|    ep_rew_mean        | -2.86    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 27300    |\n",
+            "|    time_elapsed       | 634      |\n",
+            "|    total_timesteps    | 136500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.24    |\n",
+            "|    explained_variance | -41.8    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 27299    |\n",
+            "|    policy_loss        | 0.747    |\n",
+            "|    std                | 0.913    |\n",
+            "|    value_loss         | 0.0168   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 26.7     |\n",
+            "|    ep_rew_mean        | -3.07    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 27400    |\n",
+            "|    time_elapsed       | 636      |\n",
+            "|    total_timesteps    | 137000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.24    |\n",
+            "|    explained_variance | -10.4    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 27399    |\n",
+            "|    policy_loss        | 0.642    |\n",
+            "|    std                | 0.913    |\n",
+            "|    value_loss         | 0.0117   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 27       |\n",
+            "|    ep_rew_mean        | -3.17    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 27500    |\n",
+            "|    time_elapsed       | 638      |\n",
+            "|    total_timesteps    | 137500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.25    |\n",
+            "|    explained_variance | -0.721   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 27499    |\n",
+            "|    policy_loss        | 0.0641   |\n",
+            "|    std                | 0.915    |\n",
+            "|    value_loss         | 0.00459  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 27.3     |\n",
+            "|    ep_rew_mean        | -3.14    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 27600    |\n",
+            "|    time_elapsed       | 640      |\n",
+            "|    total_timesteps    | 138000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.24    |\n",
+            "|    explained_variance | -2.1     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 27599    |\n",
+            "|    policy_loss        | -1.93    |\n",
+            "|    std                | 0.914    |\n",
+            "|    value_loss         | 0.0774   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 26.6     |\n",
+            "|    ep_rew_mean        | -2.94    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 27700    |\n",
+            "|    time_elapsed       | 643      |\n",
+            "|    total_timesteps    | 138500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.21    |\n",
+            "|    explained_variance | 0.992    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 27699    |\n",
+            "|    policy_loss        | 0.826    |\n",
+            "|    std                | 0.91     |\n",
+            "|    value_loss         | 0.0189   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 24.7     |\n",
+            "|    ep_rew_mean        | -2.71    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 27800    |\n",
+            "|    time_elapsed       | 646      |\n",
+            "|    total_timesteps    | 139000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.21    |\n",
+            "|    explained_variance | -0.207   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 27799    |\n",
+            "|    policy_loss        | 1.73     |\n",
+            "|    std                | 0.91     |\n",
+            "|    value_loss         | 0.0429   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 24.4     |\n",
+            "|    ep_rew_mean        | -2.82    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 27900    |\n",
+            "|    time_elapsed       | 648      |\n",
+            "|    total_timesteps    | 139500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -59.6    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 27899    |\n",
+            "|    policy_loss        | 1.17     |\n",
+            "|    std                | 0.907    |\n",
+            "|    value_loss         | 0.0255   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 24.4     |\n",
+            "|    ep_rew_mean        | -2.87    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 28000    |\n",
+            "|    time_elapsed       | 650      |\n",
+            "|    total_timesteps    | 140000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.2     |\n",
+            "|    explained_variance | -13.3    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 27999    |\n",
+            "|    policy_loss        | -1.4     |\n",
+            "|    std                | 0.908    |\n",
+            "|    value_loss         | 0.022    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 26.1     |\n",
+            "|    ep_rew_mean        | -3.14    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 28100    |\n",
+            "|    time_elapsed       | 652      |\n",
+            "|    total_timesteps    | 140500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.2     |\n",
+            "|    explained_variance | -34.4    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 28099    |\n",
+            "|    policy_loss        | -3.05    |\n",
+            "|    std                | 0.908    |\n",
+            "|    value_loss         | 0.145    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 26.6     |\n",
+            "|    ep_rew_mean        | -3.21    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 28200    |\n",
+            "|    time_elapsed       | 655      |\n",
+            "|    total_timesteps    | 141000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -4.58    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 28199    |\n",
+            "|    policy_loss        | -1.39    |\n",
+            "|    std                | 0.908    |\n",
+            "|    value_loss         | 0.039    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 28.9     |\n",
+            "|    ep_rew_mean        | -3.74    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 28300    |\n",
+            "|    time_elapsed       | 657      |\n",
+            "|    total_timesteps    | 141500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.18    |\n",
+            "|    explained_variance | -6.05    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 28299    |\n",
+            "|    policy_loss        | -1.4     |\n",
+            "|    std                | 0.905    |\n",
+            "|    value_loss         | 0.0386   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.1     |\n",
+            "|    ep_rew_mean        | -4.39    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 28400    |\n",
+            "|    time_elapsed       | 660      |\n",
+            "|    total_timesteps    | 142000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.18    |\n",
+            "|    explained_variance | -4.65    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 28399    |\n",
+            "|    policy_loss        | -2.57    |\n",
+            "|    std                | 0.907    |\n",
+            "|    value_loss         | 0.117    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 34.4     |\n",
+            "|    ep_rew_mean        | -4.91    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 28500    |\n",
+            "|    time_elapsed       | 662      |\n",
+            "|    total_timesteps    | 142500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.17    |\n",
+            "|    explained_variance | 0.988    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 28499    |\n",
+            "|    policy_loss        | 0.262    |\n",
+            "|    std                | 0.905    |\n",
+            "|    value_loss         | 0.00413  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 34.7     |\n",
+            "|    ep_rew_mean        | -4.88    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 28600    |\n",
+            "|    time_elapsed       | 665      |\n",
+            "|    total_timesteps    | 143000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.16    |\n",
+            "|    explained_variance | 0.992    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 28599    |\n",
+            "|    policy_loss        | 0.674    |\n",
+            "|    std                | 0.904    |\n",
+            "|    value_loss         | 0.0167   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 37.4     |\n",
+            "|    ep_rew_mean        | -5.37    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 215      |\n",
+            "|    iterations         | 28700    |\n",
+            "|    time_elapsed       | 667      |\n",
+            "|    total_timesteps    | 143500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.17    |\n",
+            "|    explained_variance | -5       |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 28699    |\n",
+            "|    policy_loss        | -0.149   |\n",
+            "|    std                | 0.905    |\n",
+            "|    value_loss         | 0.011    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 38.5     |\n",
+            "|    ep_rew_mean        | -5.55    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 28800    |\n",
+            "|    time_elapsed       | 669      |\n",
+            "|    total_timesteps    | 144000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -0.433   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 28799    |\n",
+            "|    policy_loss        | -0.77    |\n",
+            "|    std                | 0.907    |\n",
+            "|    value_loss         | 0.0233   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 37.5     |\n",
+            "|    ep_rew_mean        | -5.47    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 28900    |\n",
+            "|    time_elapsed       | 673      |\n",
+            "|    total_timesteps    | 144500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.2     |\n",
+            "|    explained_variance | 0.646    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 28899    |\n",
+            "|    policy_loss        | -1.16    |\n",
+            "|    std                | 0.911    |\n",
+            "|    value_loss         | 0.0178   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 35       |\n",
+            "|    ep_rew_mean        | -4.91    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 29000    |\n",
+            "|    time_elapsed       | 675      |\n",
+            "|    total_timesteps    | 145000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | 0.712    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 28999    |\n",
+            "|    policy_loss        | 0.899    |\n",
+            "|    std                | 0.909    |\n",
+            "|    value_loss         | 0.0109   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 34       |\n",
+            "|    ep_rew_mean        | -4.6     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 29100    |\n",
+            "|    time_elapsed       | 677      |\n",
+            "|    total_timesteps    | 145500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.18    |\n",
+            "|    explained_variance | 0.942    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 29099    |\n",
+            "|    policy_loss        | 1.19     |\n",
+            "|    std                | 0.907    |\n",
+            "|    value_loss         | 0.0268   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.6     |\n",
+            "|    ep_rew_mean        | -4.24    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 29200    |\n",
+            "|    time_elapsed       | 679      |\n",
+            "|    total_timesteps    | 146000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -11.8    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 29199    |\n",
+            "|    policy_loss        | -0.626   |\n",
+            "|    std                | 0.909    |\n",
+            "|    value_loss         | 0.00733  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 31.1     |\n",
+            "|    ep_rew_mean        | -3.93    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 29300    |\n",
+            "|    time_elapsed       | 682      |\n",
+            "|    total_timesteps    | 146500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.16    |\n",
+            "|    explained_variance | -40.1    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 29299    |\n",
+            "|    policy_loss        | -0.387   |\n",
+            "|    std                | 0.906    |\n",
+            "|    value_loss         | 0.0469   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30.6     |\n",
+            "|    ep_rew_mean        | -3.81    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 29400    |\n",
+            "|    time_elapsed       | 685      |\n",
+            "|    total_timesteps    | 147000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.16    |\n",
+            "|    explained_variance | -14.2    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 29399    |\n",
+            "|    policy_loss        | -0.0407  |\n",
+            "|    std                | 0.904    |\n",
+            "|    value_loss         | 0.00367  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30.1     |\n",
+            "|    ep_rew_mean        | -3.68    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 29500    |\n",
+            "|    time_elapsed       | 687      |\n",
+            "|    total_timesteps    | 147500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.13    |\n",
+            "|    explained_variance | -3.21    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 29499    |\n",
+            "|    policy_loss        | -0.565   |\n",
+            "|    std                | 0.901    |\n",
+            "|    value_loss         | 0.00505  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30.4     |\n",
+            "|    ep_rew_mean        | -3.72    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 29600    |\n",
+            "|    time_elapsed       | 689      |\n",
+            "|    total_timesteps    | 148000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.15    |\n",
+            "|    explained_variance | -364     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 29599    |\n",
+            "|    policy_loss        | -0.779   |\n",
+            "|    std                | 0.904    |\n",
+            "|    value_loss         | 0.0386   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 31.9     |\n",
+            "|    ep_rew_mean        | -3.82    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 29700    |\n",
+            "|    time_elapsed       | 692      |\n",
+            "|    total_timesteps    | 148500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.16    |\n",
+            "|    explained_variance | -1.76    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 29699    |\n",
+            "|    policy_loss        | -1.5     |\n",
+            "|    std                | 0.905    |\n",
+            "|    value_loss         | 0.0229   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 33.1     |\n",
+            "|    ep_rew_mean        | -3.91    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 29800    |\n",
+            "|    time_elapsed       | 694      |\n",
+            "|    total_timesteps    | 149000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.15    |\n",
+            "|    explained_variance | -1.26    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 29799    |\n",
+            "|    policy_loss        | 0.248    |\n",
+            "|    std                | 0.904    |\n",
+            "|    value_loss         | 0.00225  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.5     |\n",
+            "|    ep_rew_mean        | -3.8     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 29900    |\n",
+            "|    time_elapsed       | 697      |\n",
+            "|    total_timesteps    | 149500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.16    |\n",
+            "|    explained_variance | -0.57    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 29899    |\n",
+            "|    policy_loss        | -3.42    |\n",
+            "|    std                | 0.905    |\n",
+            "|    value_loss         | 0.154    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 34.1     |\n",
+            "|    ep_rew_mean        | -3.98    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 30000    |\n",
+            "|    time_elapsed       | 699      |\n",
+            "|    total_timesteps    | 150000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.17    |\n",
+            "|    explained_variance | -16      |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 29999    |\n",
+            "|    policy_loss        | -1.03    |\n",
+            "|    std                | 0.907    |\n",
+            "|    value_loss         | 0.0146   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 34.4     |\n",
+            "|    ep_rew_mean        | -3.92    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 30100    |\n",
+            "|    time_elapsed       | 702      |\n",
+            "|    total_timesteps    | 150500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.16    |\n",
+            "|    explained_variance | -41      |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 30099    |\n",
+            "|    policy_loss        | -1.26    |\n",
+            "|    std                | 0.905    |\n",
+            "|    value_loss         | 0.0226   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 36.5     |\n",
+            "|    ep_rew_mean        | -4.12    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 30200    |\n",
+            "|    time_elapsed       | 704      |\n",
+            "|    total_timesteps    | 151000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.17    |\n",
+            "|    explained_variance | -0.415   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 30199    |\n",
+            "|    policy_loss        | -2.32    |\n",
+            "|    std                | 0.906    |\n",
+            "|    value_loss         | 0.0702   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 34.5     |\n",
+            "|    ep_rew_mean        | -4.03    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 30300    |\n",
+            "|    time_elapsed       | 706      |\n",
+            "|    total_timesteps    | 151500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.16    |\n",
+            "|    explained_variance | -7.4     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 30299    |\n",
+            "|    policy_loss        | 3.43     |\n",
+            "|    std                | 0.906    |\n",
+            "|    value_loss         | 0.095    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.2     |\n",
+            "|    ep_rew_mean        | -3.73    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 30400    |\n",
+            "|    time_elapsed       | 709      |\n",
+            "|    total_timesteps    | 152000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.21    |\n",
+            "|    explained_variance | -46.4    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 30399    |\n",
+            "|    policy_loss        | 1.71     |\n",
+            "|    std                | 0.912    |\n",
+            "|    value_loss         | 0.0525   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 29.9     |\n",
+            "|    ep_rew_mean        | -3.48    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 30500    |\n",
+            "|    time_elapsed       | 712      |\n",
+            "|    total_timesteps    | 152500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.2     |\n",
+            "|    explained_variance | -10.5    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 30499    |\n",
+            "|    policy_loss        | 82.9     |\n",
+            "|    std                | 0.912    |\n",
+            "|    value_loss         | 77.1     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 29.5     |\n",
+            "|    ep_rew_mean        | -3.36    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 30600    |\n",
+            "|    time_elapsed       | 714      |\n",
+            "|    total_timesteps    | 153000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -9.28    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 30599    |\n",
+            "|    policy_loss        | -1.65    |\n",
+            "|    std                | 0.912    |\n",
+            "|    value_loss         | 0.0547   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 24       |\n",
+            "|    ep_rew_mean        | -2.71    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 30700    |\n",
+            "|    time_elapsed       | 716      |\n",
+            "|    total_timesteps    | 153500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | 0.204    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 30699    |\n",
+            "|    policy_loss        | 71.1     |\n",
+            "|    std                | 0.912    |\n",
+            "|    value_loss         | 71.5     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.5     |\n",
+            "|    ep_rew_mean        | -2.2     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 30800    |\n",
+            "|    time_elapsed       | 719      |\n",
+            "|    total_timesteps    | 154000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.18    |\n",
+            "|    explained_variance | -10.6    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 30799    |\n",
+            "|    policy_loss        | -2.74    |\n",
+            "|    std                | 0.909    |\n",
+            "|    value_loss         | 0.103    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.1     |\n",
+            "|    ep_rew_mean        | -2.1     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 30900    |\n",
+            "|    time_elapsed       | 721      |\n",
+            "|    total_timesteps    | 154500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.17    |\n",
+            "|    explained_variance | 0.33     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 30899    |\n",
+            "|    policy_loss        | 10.6     |\n",
+            "|    std                | 0.908    |\n",
+            "|    value_loss         | 12       |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 22.1     |\n",
+            "|    ep_rew_mean        | -2.23    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 31000    |\n",
+            "|    time_elapsed       | 724      |\n",
+            "|    total_timesteps    | 155000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.14    |\n",
+            "|    explained_variance | -6.04    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 30999    |\n",
+            "|    policy_loss        | 0.0295   |\n",
+            "|    std                | 0.904    |\n",
+            "|    value_loss         | 0.00765  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.4     |\n",
+            "|    ep_rew_mean        | -2.13    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 31100    |\n",
+            "|    time_elapsed       | 726      |\n",
+            "|    total_timesteps    | 155500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.13    |\n",
+            "|    explained_variance | -11.4    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 31099    |\n",
+            "|    policy_loss        | 0.0987   |\n",
+            "|    std                | 0.903    |\n",
+            "|    value_loss         | 0.00813  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 22.6     |\n",
+            "|    ep_rew_mean        | -2.32    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 31200    |\n",
+            "|    time_elapsed       | 728      |\n",
+            "|    total_timesteps    | 156000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.12    |\n",
+            "|    explained_variance | -2.67    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 31199    |\n",
+            "|    policy_loss        | -0.126   |\n",
+            "|    std                | 0.902    |\n",
+            "|    value_loss         | 0.0016   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20.8     |\n",
+            "|    ep_rew_mean        | -2.13    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 31300    |\n",
+            "|    time_elapsed       | 731      |\n",
+            "|    total_timesteps    | 156500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.15    |\n",
+            "|    explained_variance | -2.64    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 31299    |\n",
+            "|    policy_loss        | -2.48    |\n",
+            "|    std                | 0.905    |\n",
+            "|    value_loss         | 0.106    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20.4     |\n",
+            "|    ep_rew_mean        | -2.06    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 31400    |\n",
+            "|    time_elapsed       | 733      |\n",
+            "|    total_timesteps    | 157000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.16    |\n",
+            "|    explained_variance | -0.459   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 31399    |\n",
+            "|    policy_loss        | -0.531   |\n",
+            "|    std                | 0.906    |\n",
+            "|    value_loss         | 0.00477  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.8     |\n",
+            "|    ep_rew_mean        | -2.34    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 31500    |\n",
+            "|    time_elapsed       | 736      |\n",
+            "|    total_timesteps    | 157500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -23.7    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 31499    |\n",
+            "|    policy_loss        | -0.867   |\n",
+            "|    std                | 0.909    |\n",
+            "|    value_loss         | 0.022    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 22.4     |\n",
+            "|    ep_rew_mean        | -2.54    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 31600    |\n",
+            "|    time_elapsed       | 738      |\n",
+            "|    total_timesteps    | 158000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.17    |\n",
+            "|    explained_variance | -544     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 31599    |\n",
+            "|    policy_loss        | -2.59    |\n",
+            "|    std                | 0.908    |\n",
+            "|    value_loss         | 0.109    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 24.5     |\n",
+            "|    ep_rew_mean        | -2.79    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 31700    |\n",
+            "|    time_elapsed       | 741      |\n",
+            "|    total_timesteps    | 158500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.18    |\n",
+            "|    explained_variance | -0.925   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 31699    |\n",
+            "|    policy_loss        | 0.322    |\n",
+            "|    std                | 0.909    |\n",
+            "|    value_loss         | 0.00291  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 27.6     |\n",
+            "|    ep_rew_mean        | -3.16    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 31800    |\n",
+            "|    time_elapsed       | 743      |\n",
+            "|    total_timesteps    | 159000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -6.1     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 31799    |\n",
+            "|    policy_loss        | -0.185   |\n",
+            "|    std                | 0.91     |\n",
+            "|    value_loss         | 0.000914 |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30       |\n",
+            "|    ep_rew_mean        | -3.45    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 31900    |\n",
+            "|    time_elapsed       | 745      |\n",
+            "|    total_timesteps    | 159500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.21    |\n",
+            "|    explained_variance | 0.627    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 31899    |\n",
+            "|    policy_loss        | -0.0331  |\n",
+            "|    std                | 0.913    |\n",
+            "|    value_loss         | 0.00058  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 32.4     |\n",
+            "|    ep_rew_mean        | -3.76    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 32000    |\n",
+            "|    time_elapsed       | 748      |\n",
+            "|    total_timesteps    | 160000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.2     |\n",
+            "|    explained_variance | -0.0635  |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 31999    |\n",
+            "|    policy_loss        | 0.838    |\n",
+            "|    std                | 0.912    |\n",
+            "|    value_loss         | 0.0116   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 31.7     |\n",
+            "|    ep_rew_mean        | -3.63    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 32100    |\n",
+            "|    time_elapsed       | 751      |\n",
+            "|    total_timesteps    | 160500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -27.1    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 32099    |\n",
+            "|    policy_loss        | 0.601    |\n",
+            "|    std                | 0.91     |\n",
+            "|    value_loss         | 0.00816  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30.5     |\n",
+            "|    ep_rew_mean        | -3.28    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 32200    |\n",
+            "|    time_elapsed       | 753      |\n",
+            "|    total_timesteps    | 161000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.21    |\n",
+            "|    explained_variance | -1.38    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 32199    |\n",
+            "|    policy_loss        | 0.0595   |\n",
+            "|    std                | 0.914    |\n",
+            "|    value_loss         | 0.00292  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 27.8     |\n",
+            "|    ep_rew_mean        | -2.87    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 32300    |\n",
+            "|    time_elapsed       | 755      |\n",
+            "|    total_timesteps    | 161500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -1.75    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 32299    |\n",
+            "|    policy_loss        | -1.53    |\n",
+            "|    std                | 0.912    |\n",
+            "|    value_loss         | 0.0333   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20.1     |\n",
+            "|    ep_rew_mean        | -1.95    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 32400    |\n",
+            "|    time_elapsed       | 757      |\n",
+            "|    total_timesteps    | 162000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.17    |\n",
+            "|    explained_variance | -5.1     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 32399    |\n",
+            "|    policy_loss        | -1.26    |\n",
+            "|    std                | 0.91     |\n",
+            "|    value_loss         | 0.0261   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 19.5     |\n",
+            "|    ep_rew_mean        | -1.91    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 32500    |\n",
+            "|    time_elapsed       | 760      |\n",
+            "|    total_timesteps    | 162500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.18    |\n",
+            "|    explained_variance | -3.01    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 32499    |\n",
+            "|    policy_loss        | 0.0395   |\n",
+            "|    std                | 0.911    |\n",
+            "|    value_loss         | 0.00248  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20.7     |\n",
+            "|    ep_rew_mean        | -2.18    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 32600    |\n",
+            "|    time_elapsed       | 762      |\n",
+            "|    total_timesteps    | 163000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.18    |\n",
+            "|    explained_variance | -84.7    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 32599    |\n",
+            "|    policy_loss        | -1.51    |\n",
+            "|    std                | 0.911    |\n",
+            "|    value_loss         | 0.0319   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.5     |\n",
+            "|    ep_rew_mean        | -2.35    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 32700    |\n",
+            "|    time_elapsed       | 765      |\n",
+            "|    total_timesteps    | 163500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.14    |\n",
+            "|    explained_variance | -1.32    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 32699    |\n",
+            "|    policy_loss        | -1.37    |\n",
+            "|    std                | 0.907    |\n",
+            "|    value_loss         | 0.0274   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.8     |\n",
+            "|    ep_rew_mean        | -2.44    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 32800    |\n",
+            "|    time_elapsed       | 767      |\n",
+            "|    total_timesteps    | 164000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.15    |\n",
+            "|    explained_variance | -63.2    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 32799    |\n",
+            "|    policy_loss        | 1.64     |\n",
+            "|    std                | 0.907    |\n",
+            "|    value_loss         | 0.0403   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 23.6     |\n",
+            "|    ep_rew_mean        | -2.65    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 32900    |\n",
+            "|    time_elapsed       | 769      |\n",
+            "|    total_timesteps    | 164500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.15    |\n",
+            "|    explained_variance | -0.602   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 32899    |\n",
+            "|    policy_loss        | 65.8     |\n",
+            "|    std                | 0.907    |\n",
+            "|    value_loss         | 56.5     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 24.2     |\n",
+            "|    ep_rew_mean        | -2.65    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 33000    |\n",
+            "|    time_elapsed       | 771      |\n",
+            "|    total_timesteps    | 165000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.15    |\n",
+            "|    explained_variance | 0.499    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 32999    |\n",
+            "|    policy_loss        | 58.8     |\n",
+            "|    std                | 0.907    |\n",
+            "|    value_loss         | 39.9     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.6     |\n",
+            "|    ep_rew_mean        | -2.2     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 33100    |\n",
+            "|    time_elapsed       | 773      |\n",
+            "|    total_timesteps    | 165500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -0.745   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 33099    |\n",
+            "|    policy_loss        | -2.53    |\n",
+            "|    std                | 0.913    |\n",
+            "|    value_loss         | 0.0953   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.6     |\n",
+            "|    ep_rew_mean        | -2.16    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 33200    |\n",
+            "|    time_elapsed       | 776      |\n",
+            "|    total_timesteps    | 166000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -3.39    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 33199    |\n",
+            "|    policy_loss        | 0.465    |\n",
+            "|    std                | 0.914    |\n",
+            "|    value_loss         | 0.00348  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 22.1     |\n",
+            "|    ep_rew_mean        | -2.26    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 33300    |\n",
+            "|    time_elapsed       | 778      |\n",
+            "|    total_timesteps    | 166500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | -4.91    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 33299    |\n",
+            "|    policy_loss        | 0.256    |\n",
+            "|    std                | 0.914    |\n",
+            "|    value_loss         | 0.00234  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.9     |\n",
+            "|    ep_rew_mean        | -2.3     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 33400    |\n",
+            "|    time_elapsed       | 780      |\n",
+            "|    total_timesteps    | 167000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.2     |\n",
+            "|    explained_variance | -56.7    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 33399    |\n",
+            "|    policy_loss        | -0.6     |\n",
+            "|    std                | 0.915    |\n",
+            "|    value_loss         | 0.023    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.4     |\n",
+            "|    ep_rew_mean        | -2.33    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 33500    |\n",
+            "|    time_elapsed       | 782      |\n",
+            "|    total_timesteps    | 167500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.14    |\n",
+            "|    explained_variance | -0.972   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 33499    |\n",
+            "|    policy_loss        | -1.6     |\n",
+            "|    std                | 0.908    |\n",
+            "|    value_loss         | 0.033    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 23.3     |\n",
+            "|    ep_rew_mean        | -2.62    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 33600    |\n",
+            "|    time_elapsed       | 784      |\n",
+            "|    total_timesteps    | 168000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.17    |\n",
+            "|    explained_variance | -0.332   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 33599    |\n",
+            "|    policy_loss        | -3.35    |\n",
+            "|    std                | 0.911    |\n",
+            "|    value_loss         | 0.155    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 22.5     |\n",
+            "|    ep_rew_mean        | -2.61    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 33700    |\n",
+            "|    time_elapsed       | 787      |\n",
+            "|    total_timesteps    | 168500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.2     |\n",
+            "|    explained_variance | 0.0505   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 33699    |\n",
+            "|    policy_loss        | 27.6     |\n",
+            "|    std                | 0.916    |\n",
+            "|    value_loss         | 24.1     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.4     |\n",
+            "|    ep_rew_mean        | -2.46    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 33800    |\n",
+            "|    time_elapsed       | 789      |\n",
+            "|    total_timesteps    | 169000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.18    |\n",
+            "|    explained_variance | 0.133    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 33799    |\n",
+            "|    policy_loss        | -1.41    |\n",
+            "|    std                | 0.912    |\n",
+            "|    value_loss         | 0.0282   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20.7     |\n",
+            "|    ep_rew_mean        | -2.35    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 33900    |\n",
+            "|    time_elapsed       | 792      |\n",
+            "|    total_timesteps    | 169500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.18    |\n",
+            "|    explained_variance | -0.0856  |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 33899    |\n",
+            "|    policy_loss        | -0.339   |\n",
+            "|    std                | 0.913    |\n",
+            "|    value_loss         | 0.00213  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 17.7     |\n",
+            "|    ep_rew_mean        | -1.91    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 34000    |\n",
+            "|    time_elapsed       | 794      |\n",
+            "|    total_timesteps    | 170000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.19    |\n",
+            "|    explained_variance | 0.412    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 33999    |\n",
+            "|    policy_loss        | -2.75    |\n",
+            "|    std                | 0.914    |\n",
+            "|    value_loss         | 0.101    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 16.7     |\n",
+            "|    ep_rew_mean        | -1.71    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 34100    |\n",
+            "|    time_elapsed       | 796      |\n",
+            "|    total_timesteps    | 170500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.16    |\n",
+            "|    explained_variance | -0.268   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 34099    |\n",
+            "|    policy_loss        | 30.5     |\n",
+            "|    std                | 0.91     |\n",
+            "|    value_loss         | 24.9     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 12.1     |\n",
+            "|    ep_rew_mean        | -1.17    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 34200    |\n",
+            "|    time_elapsed       | 798      |\n",
+            "|    total_timesteps    | 171000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.13    |\n",
+            "|    explained_variance | -0.133   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 34199    |\n",
+            "|    policy_loss        | 18.1     |\n",
+            "|    std                | 0.908    |\n",
+            "|    value_loss         | 6.21     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.1     |\n",
+            "|    ep_rew_mean        | -1.04    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 34300    |\n",
+            "|    time_elapsed       | 801      |\n",
+            "|    total_timesteps    | 171500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.11    |\n",
+            "|    explained_variance | 0.0785   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 34299    |\n",
+            "|    policy_loss        | 19.5     |\n",
+            "|    std                | 0.904    |\n",
+            "|    value_loss         | 19.1     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 12.2     |\n",
+            "|    ep_rew_mean        | -1.14    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 34400    |\n",
+            "|    time_elapsed       | 803      |\n",
+            "|    total_timesteps    | 172000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.09    |\n",
+            "|    explained_variance | -0.0422  |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 34399    |\n",
+            "|    policy_loss        | 37.4     |\n",
+            "|    std                | 0.902    |\n",
+            "|    value_loss         | 27.1     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.9     |\n",
+            "|    ep_rew_mean        | -1.1     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 34500    |\n",
+            "|    time_elapsed       | 805      |\n",
+            "|    total_timesteps    | 172500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.07    |\n",
+            "|    explained_variance | -7.39    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 34499    |\n",
+            "|    policy_loss        | -1.71    |\n",
+            "|    std                | 0.898    |\n",
+            "|    value_loss         | 0.0466   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.7     |\n",
+            "|    ep_rew_mean        | -0.966   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 34600    |\n",
+            "|    time_elapsed       | 807      |\n",
+            "|    total_timesteps    | 173000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.06    |\n",
+            "|    explained_variance | 0.215    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 34599    |\n",
+            "|    policy_loss        | 10.6     |\n",
+            "|    std                | 0.897    |\n",
+            "|    value_loss         | 6.51     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 9.18     |\n",
+            "|    ep_rew_mean        | -0.818   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 34700    |\n",
+            "|    time_elapsed       | 810      |\n",
+            "|    total_timesteps    | 173500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.03    |\n",
+            "|    explained_variance | -3.54    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 34699    |\n",
+            "|    policy_loss        | 17.6     |\n",
+            "|    std                | 0.892    |\n",
+            "|    value_loss         | 5.16     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.39     |\n",
+            "|    ep_rew_mean        | -0.726   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 34800    |\n",
+            "|    time_elapsed       | 812      |\n",
+            "|    total_timesteps    | 174000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -9.01    |\n",
+            "|    explained_variance | 0.0827   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 34799    |\n",
+            "|    policy_loss        | 12.8     |\n",
+            "|    std                | 0.891    |\n",
+            "|    value_loss         | 2.64     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.82     |\n",
+            "|    ep_rew_mean        | -0.773   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 34900    |\n",
+            "|    time_elapsed       | 815      |\n",
+            "|    total_timesteps    | 174500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.98    |\n",
+            "|    explained_variance | -0.858   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 34899    |\n",
+            "|    policy_loss        | -3.64    |\n",
+            "|    std                | 0.888    |\n",
+            "|    value_loss         | 0.237    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 9.03     |\n",
+            "|    ep_rew_mean        | -0.823   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 35000    |\n",
+            "|    time_elapsed       | 817      |\n",
+            "|    total_timesteps    | 175000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.94    |\n",
+            "|    explained_variance | -9.09    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 34999    |\n",
+            "|    policy_loss        | -1.61    |\n",
+            "|    std                | 0.883    |\n",
+            "|    value_loss         | 0.0613   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.99     |\n",
+            "|    ep_rew_mean        | -0.794   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 214      |\n",
+            "|    iterations         | 35100    |\n",
+            "|    time_elapsed       | 819      |\n",
+            "|    total_timesteps    | 175500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.93    |\n",
+            "|    explained_variance | 0.0769   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 35099    |\n",
+            "|    policy_loss        | -0.339   |\n",
+            "|    std                | 0.883    |\n",
+            "|    value_loss         | 0.0132   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.18     |\n",
+            "|    ep_rew_mean        | -0.696   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 35200    |\n",
+            "|    time_elapsed       | 822      |\n",
+            "|    total_timesteps    | 176000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.92    |\n",
+            "|    explained_variance | 0.591    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 35199    |\n",
+            "|    policy_loss        | 6.37     |\n",
+            "|    std                | 0.881    |\n",
+            "|    value_loss         | 1.99     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.56     |\n",
+            "|    ep_rew_mean        | -0.749   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 35300    |\n",
+            "|    time_elapsed       | 825      |\n",
+            "|    total_timesteps    | 176500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.9     |\n",
+            "|    explained_variance | 0.67     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 35299    |\n",
+            "|    policy_loss        | 0.123    |\n",
+            "|    std                | 0.879    |\n",
+            "|    value_loss         | 0.000809 |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 9.49     |\n",
+            "|    ep_rew_mean        | -0.878   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 35400    |\n",
+            "|    time_elapsed       | 828      |\n",
+            "|    total_timesteps    | 177000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.9     |\n",
+            "|    explained_variance | -1.04    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 35399    |\n",
+            "|    policy_loss        | 39.2     |\n",
+            "|    std                | 0.878    |\n",
+            "|    value_loss         | 25.5     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 9.72     |\n",
+            "|    ep_rew_mean        | -0.906   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 35500    |\n",
+            "|    time_elapsed       | 830      |\n",
+            "|    total_timesteps    | 177500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.9     |\n",
+            "|    explained_variance | -0.813   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 35499    |\n",
+            "|    policy_loss        | 18.4     |\n",
+            "|    std                | 0.878    |\n",
+            "|    value_loss         | 13.8     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.4     |\n",
+            "|    ep_rew_mean        | -1.05    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 35600    |\n",
+            "|    time_elapsed       | 832      |\n",
+            "|    total_timesteps    | 178000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.87    |\n",
+            "|    explained_variance | -7.13    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 35599    |\n",
+            "|    policy_loss        | -1       |\n",
+            "|    std                | 0.873    |\n",
+            "|    value_loss         | 0.0155   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 14.7     |\n",
+            "|    ep_rew_mean        | -1.42    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 35700    |\n",
+            "|    time_elapsed       | 834      |\n",
+            "|    total_timesteps    | 178500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.88    |\n",
+            "|    explained_variance | -7.62    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 35699    |\n",
+            "|    policy_loss        | -0.701   |\n",
+            "|    std                | 0.876    |\n",
+            "|    value_loss         | 0.00857  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 16.3     |\n",
+            "|    ep_rew_mean        | -1.65    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 35800    |\n",
+            "|    time_elapsed       | 836      |\n",
+            "|    total_timesteps    | 179000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.88    |\n",
+            "|    explained_variance | -12.1    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 35799    |\n",
+            "|    policy_loss        | 2.78     |\n",
+            "|    std                | 0.876    |\n",
+            "|    value_loss         | 0.124    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 16.1     |\n",
+            "|    ep_rew_mean        | -1.65    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 35900    |\n",
+            "|    time_elapsed       | 839      |\n",
+            "|    total_timesteps    | 179500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.87    |\n",
+            "|    explained_variance | 0.203    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 35899    |\n",
+            "|    policy_loss        | -2.93    |\n",
+            "|    std                | 0.875    |\n",
+            "|    value_loss         | 0.133    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 15.9     |\n",
+            "|    ep_rew_mean        | -1.6     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 36000    |\n",
+            "|    time_elapsed       | 841      |\n",
+            "|    total_timesteps    | 180000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.86    |\n",
+            "|    explained_variance | -56.9    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 35999    |\n",
+            "|    policy_loss        | -1.15    |\n",
+            "|    std                | 0.874    |\n",
+            "|    value_loss         | 0.0208   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 18.4     |\n",
+            "|    ep_rew_mean        | -1.85    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 36100    |\n",
+            "|    time_elapsed       | 844      |\n",
+            "|    total_timesteps    | 180500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.85    |\n",
+            "|    explained_variance | -2.69    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 36099    |\n",
+            "|    policy_loss        | 0.122    |\n",
+            "|    std                | 0.872    |\n",
+            "|    value_loss         | 0.00112  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 22.1     |\n",
+            "|    ep_rew_mean        | -2.24    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 36200    |\n",
+            "|    time_elapsed       | 846      |\n",
+            "|    total_timesteps    | 181000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.85    |\n",
+            "|    explained_variance | -0.413   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 36199    |\n",
+            "|    policy_loss        | 0.17     |\n",
+            "|    std                | 0.873    |\n",
+            "|    value_loss         | 0.00142  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.7     |\n",
+            "|    ep_rew_mean        | -2.19    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 36300    |\n",
+            "|    time_elapsed       | 848      |\n",
+            "|    total_timesteps    | 181500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.85    |\n",
+            "|    explained_variance | -0.618   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 36299    |\n",
+            "|    policy_loss        | 34.1     |\n",
+            "|    std                | 0.872    |\n",
+            "|    value_loss         | 20.6     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 17.8     |\n",
+            "|    ep_rew_mean        | -1.82    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 36400    |\n",
+            "|    time_elapsed       | 851      |\n",
+            "|    total_timesteps    | 182000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.86    |\n",
+            "|    explained_variance | -0.0238  |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 36399    |\n",
+            "|    policy_loss        | -2.26    |\n",
+            "|    std                | 0.872    |\n",
+            "|    value_loss         | 0.0614   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.5     |\n",
+            "|    ep_rew_mean        | -1.08    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 36500    |\n",
+            "|    time_elapsed       | 853      |\n",
+            "|    total_timesteps    | 182500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.84    |\n",
+            "|    explained_variance | -9.32    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 36499    |\n",
+            "|    policy_loss        | 33       |\n",
+            "|    std                | 0.871    |\n",
+            "|    value_loss         | 19.1     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.1     |\n",
+            "|    ep_rew_mean        | -0.943   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 36600    |\n",
+            "|    time_elapsed       | 856      |\n",
+            "|    total_timesteps    | 183000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.84    |\n",
+            "|    explained_variance | -2.44    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 36599    |\n",
+            "|    policy_loss        | -1.35    |\n",
+            "|    std                | 0.87     |\n",
+            "|    value_loss         | 0.0543   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.22     |\n",
+            "|    ep_rew_mean        | -0.707   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 36700    |\n",
+            "|    time_elapsed       | 858      |\n",
+            "|    total_timesteps    | 183500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.79    |\n",
+            "|    explained_variance | 0.118    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 36699    |\n",
+            "|    policy_loss        | 7.84     |\n",
+            "|    std                | 0.864    |\n",
+            "|    value_loss         | 1.45     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.5      |\n",
+            "|    ep_rew_mean        | -0.65    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 36800    |\n",
+            "|    time_elapsed       | 860      |\n",
+            "|    total_timesteps    | 184000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.8     |\n",
+            "|    explained_variance | 0.974    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 36799    |\n",
+            "|    policy_loss        | 34.6     |\n",
+            "|    std                | 0.866    |\n",
+            "|    value_loss         | 15.5     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.05     |\n",
+            "|    ep_rew_mean        | -0.718   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 36900    |\n",
+            "|    time_elapsed       | 862      |\n",
+            "|    total_timesteps    | 184500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.77    |\n",
+            "|    explained_variance | -2.59    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 36899    |\n",
+            "|    policy_loss        | -0.682   |\n",
+            "|    std                | 0.862    |\n",
+            "|    value_loss         | 0.0374   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.38     |\n",
+            "|    ep_rew_mean        | -0.632   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 37000    |\n",
+            "|    time_elapsed       | 865      |\n",
+            "|    total_timesteps    | 185000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.76    |\n",
+            "|    explained_variance | -3.99    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 36999    |\n",
+            "|    policy_loss        | 2.48     |\n",
+            "|    std                | 0.861    |\n",
+            "|    value_loss         | 1.02     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.84     |\n",
+            "|    ep_rew_mean        | -0.57    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 37100    |\n",
+            "|    time_elapsed       | 868      |\n",
+            "|    total_timesteps    | 185500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.74    |\n",
+            "|    explained_variance | -0.648   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 37099    |\n",
+            "|    policy_loss        | -0.939   |\n",
+            "|    std                | 0.86     |\n",
+            "|    value_loss         | 0.028    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.16     |\n",
+            "|    ep_rew_mean        | -0.607   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 37200    |\n",
+            "|    time_elapsed       | 871      |\n",
+            "|    total_timesteps    | 186000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.71    |\n",
+            "|    explained_variance | -0.928   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 37199    |\n",
+            "|    policy_loss        | -2.97    |\n",
+            "|    std                | 0.857    |\n",
+            "|    value_loss         | 0.156    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.12     |\n",
+            "|    ep_rew_mean        | -0.537   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 37300    |\n",
+            "|    time_elapsed       | 873      |\n",
+            "|    total_timesteps    | 186500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.73    |\n",
+            "|    explained_variance | -24.5    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 37299    |\n",
+            "|    policy_loss        | 8.62     |\n",
+            "|    std                | 0.859    |\n",
+            "|    value_loss         | 1.4      |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.33     |\n",
+            "|    ep_rew_mean        | -0.552   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 37400    |\n",
+            "|    time_elapsed       | 875      |\n",
+            "|    total_timesteps    | 187000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.71    |\n",
+            "|    explained_variance | -0.0602  |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 37399    |\n",
+            "|    policy_loss        | -0.707   |\n",
+            "|    std                | 0.857    |\n",
+            "|    value_loss         | 0.0155   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.49     |\n",
+            "|    ep_rew_mean        | -0.577   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 37500    |\n",
+            "|    time_elapsed       | 878      |\n",
+            "|    total_timesteps    | 187500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.69    |\n",
+            "|    explained_variance | -0.697   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 37499    |\n",
+            "|    policy_loss        | 5.95     |\n",
+            "|    std                | 0.854    |\n",
+            "|    value_loss         | 0.698    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.37     |\n",
+            "|    ep_rew_mean        | -0.555   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 37600    |\n",
+            "|    time_elapsed       | 880      |\n",
+            "|    total_timesteps    | 188000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.69    |\n",
+            "|    explained_variance | -0.828   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 37599    |\n",
+            "|    policy_loss        | 0.693    |\n",
+            "|    std                | 0.853    |\n",
+            "|    value_loss         | 0.129    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.37     |\n",
+            "|    ep_rew_mean        | -0.542   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 37700    |\n",
+            "|    time_elapsed       | 883      |\n",
+            "|    total_timesteps    | 188500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.68    |\n",
+            "|    explained_variance | -1.14    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 37699    |\n",
+            "|    policy_loss        | -2.09    |\n",
+            "|    std                | 0.853    |\n",
+            "|    value_loss         | 0.0667   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.17     |\n",
+            "|    ep_rew_mean        | -0.611   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 37800    |\n",
+            "|    time_elapsed       | 885      |\n",
+            "|    total_timesteps    | 189000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.65    |\n",
+            "|    explained_variance | -0.175   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 37799    |\n",
+            "|    policy_loss        | -1.87    |\n",
+            "|    std                | 0.849    |\n",
+            "|    value_loss         | 0.0522   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.19     |\n",
+            "|    ep_rew_mean        | -0.625   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 37900    |\n",
+            "|    time_elapsed       | 887      |\n",
+            "|    total_timesteps    | 189500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.63    |\n",
+            "|    explained_variance | 0.604    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 37899    |\n",
+            "|    policy_loss        | 5.17     |\n",
+            "|    std                | 0.848    |\n",
+            "|    value_loss         | 0.386    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.54     |\n",
+            "|    ep_rew_mean        | -0.557   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 38000    |\n",
+            "|    time_elapsed       | 890      |\n",
+            "|    total_timesteps    | 190000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.61    |\n",
+            "|    explained_variance | 0.536    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 37999    |\n",
+            "|    policy_loss        | 1.16     |\n",
+            "|    std                | 0.845    |\n",
+            "|    value_loss         | 0.0336   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.48     |\n",
+            "|    ep_rew_mean        | -0.553   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 38100    |\n",
+            "|    time_elapsed       | 892      |\n",
+            "|    total_timesteps    | 190500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.6     |\n",
+            "|    explained_variance | 0.19     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 38099    |\n",
+            "|    policy_loss        | -1.62    |\n",
+            "|    std                | 0.844    |\n",
+            "|    value_loss         | 0.062    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.13     |\n",
+            "|    ep_rew_mean        | -0.539   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 38200    |\n",
+            "|    time_elapsed       | 894      |\n",
+            "|    total_timesteps    | 191000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.59    |\n",
+            "|    explained_variance | 0.108    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 38199    |\n",
+            "|    policy_loss        | 5.95     |\n",
+            "|    std                | 0.842    |\n",
+            "|    value_loss         | 1.93     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.32     |\n",
+            "|    ep_rew_mean        | -0.713   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 38300    |\n",
+            "|    time_elapsed       | 896      |\n",
+            "|    total_timesteps    | 191500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.58    |\n",
+            "|    explained_variance | -7.62    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 38299    |\n",
+            "|    policy_loss        | -1.45    |\n",
+            "|    std                | 0.842    |\n",
+            "|    value_loss         | 0.0577   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 9.37     |\n",
+            "|    ep_rew_mean        | -0.952   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 38400    |\n",
+            "|    time_elapsed       | 899      |\n",
+            "|    total_timesteps    | 192000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.59    |\n",
+            "|    explained_variance | -6.86    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 38399    |\n",
+            "|    policy_loss        | -4.58    |\n",
+            "|    std                | 0.842    |\n",
+            "|    value_loss         | 0.306    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.36     |\n",
+            "|    ep_rew_mean        | -0.545   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 38500    |\n",
+            "|    time_elapsed       | 901      |\n",
+            "|    total_timesteps    | 192500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.58    |\n",
+            "|    explained_variance | -0.256   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 38499    |\n",
+            "|    policy_loss        | -0.731   |\n",
+            "|    std                | 0.841    |\n",
+            "|    value_loss         | 0.0341   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 5.75     |\n",
+            "|    ep_rew_mean        | -0.496   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 38600    |\n",
+            "|    time_elapsed       | 904      |\n",
+            "|    total_timesteps    | 193000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.59    |\n",
+            "|    explained_variance | -25.8    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 38599    |\n",
+            "|    policy_loss        | 5.09     |\n",
+            "|    std                | 0.84     |\n",
+            "|    value_loss         | 0.549    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 5.99     |\n",
+            "|    ep_rew_mean        | -0.514   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 38700    |\n",
+            "|    time_elapsed       | 906      |\n",
+            "|    total_timesteps    | 193500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.59    |\n",
+            "|    explained_variance | 0.813    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 38699    |\n",
+            "|    policy_loss        | -1.23    |\n",
+            "|    std                | 0.84     |\n",
+            "|    value_loss         | 0.0226   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.44     |\n",
+            "|    ep_rew_mean        | -0.608   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 38800    |\n",
+            "|    time_elapsed       | 908      |\n",
+            "|    total_timesteps    | 194000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.57    |\n",
+            "|    explained_variance | 0.395    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 38799    |\n",
+            "|    policy_loss        | -1.68    |\n",
+            "|    std                | 0.838    |\n",
+            "|    value_loss         | 0.037    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.06     |\n",
+            "|    ep_rew_mean        | -0.626   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 38900    |\n",
+            "|    time_elapsed       | 910      |\n",
+            "|    total_timesteps    | 194500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.55    |\n",
+            "|    explained_variance | -0.051   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 38899    |\n",
+            "|    policy_loss        | -1.68    |\n",
+            "|    std                | 0.837    |\n",
+            "|    value_loss         | 0.0596   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.39     |\n",
+            "|    ep_rew_mean        | -0.694   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 39000    |\n",
+            "|    time_elapsed       | 912      |\n",
+            "|    total_timesteps    | 195000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.54    |\n",
+            "|    explained_variance | 0.107    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 38999    |\n",
+            "|    policy_loss        | 15       |\n",
+            "|    std                | 0.836    |\n",
+            "|    value_loss         | 3.82     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.82     |\n",
+            "|    ep_rew_mean        | -0.791   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 39100    |\n",
+            "|    time_elapsed       | 915      |\n",
+            "|    total_timesteps    | 195500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.55    |\n",
+            "|    explained_variance | -0.37    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 39099    |\n",
+            "|    policy_loss        | -2.78    |\n",
+            "|    std                | 0.837    |\n",
+            "|    value_loss         | 0.112    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.22     |\n",
+            "|    ep_rew_mean        | -0.523   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 39200    |\n",
+            "|    time_elapsed       | 918      |\n",
+            "|    total_timesteps    | 196000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.53    |\n",
+            "|    explained_variance | 0.411    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 39199    |\n",
+            "|    policy_loss        | -0.999   |\n",
+            "|    std                | 0.834    |\n",
+            "|    value_loss         | 0.0289   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.81     |\n",
+            "|    ep_rew_mean        | -0.627   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 39300    |\n",
+            "|    time_elapsed       | 920      |\n",
+            "|    total_timesteps    | 196500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.53    |\n",
+            "|    explained_variance | -0.0552  |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 39299    |\n",
+            "|    policy_loss        | -4.89    |\n",
+            "|    std                | 0.834    |\n",
+            "|    value_loss         | 0.411    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.18     |\n",
+            "|    ep_rew_mean        | -0.826   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 39400    |\n",
+            "|    time_elapsed       | 922      |\n",
+            "|    total_timesteps    | 197000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.54    |\n",
+            "|    explained_variance | 0.568    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 39399    |\n",
+            "|    policy_loss        | 0.375    |\n",
+            "|    std                | 0.834    |\n",
+            "|    value_loss         | 0.0048   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.39     |\n",
+            "|    ep_rew_mean        | -0.778   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 39500    |\n",
+            "|    time_elapsed       | 924      |\n",
+            "|    total_timesteps    | 197500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.53    |\n",
+            "|    explained_variance | -0.0376  |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 39499    |\n",
+            "|    policy_loss        | 4.76     |\n",
+            "|    std                | 0.834    |\n",
+            "|    value_loss         | 0.424    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.32     |\n",
+            "|    ep_rew_mean        | -0.54    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 39600    |\n",
+            "|    time_elapsed       | 926      |\n",
+            "|    total_timesteps    | 198000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.48    |\n",
+            "|    explained_variance | -5.63    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 39599    |\n",
+            "|    policy_loss        | 1.18     |\n",
+            "|    std                | 0.827    |\n",
+            "|    value_loss         | 0.0633   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.89     |\n",
+            "|    ep_rew_mean        | -0.732   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 39700    |\n",
+            "|    time_elapsed       | 929      |\n",
+            "|    total_timesteps    | 198500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.49    |\n",
+            "|    explained_variance | -6.55    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 39699    |\n",
+            "|    policy_loss        | -2.89    |\n",
+            "|    std                | 0.829    |\n",
+            "|    value_loss         | 0.168    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.49     |\n",
+            "|    ep_rew_mean        | -0.869   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 39800    |\n",
+            "|    time_elapsed       | 932      |\n",
+            "|    total_timesteps    | 199000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.51    |\n",
+            "|    explained_variance | 0.678    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 39799    |\n",
+            "|    policy_loss        | 5.14     |\n",
+            "|    std                | 0.832    |\n",
+            "|    value_loss         | 2.83     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.86     |\n",
+            "|    ep_rew_mean        | -0.724   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 39900    |\n",
+            "|    time_elapsed       | 934      |\n",
+            "|    total_timesteps    | 199500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.51    |\n",
+            "|    explained_variance | -3.38    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 39899    |\n",
+            "|    policy_loss        | -3.47    |\n",
+            "|    std                | 0.832    |\n",
+            "|    value_loss         | 0.298    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.14     |\n",
+            "|    ep_rew_mean        | -0.574   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 40000    |\n",
+            "|    time_elapsed       | 936      |\n",
+            "|    total_timesteps    | 200000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.52    |\n",
+            "|    explained_variance | 0.0396   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 39999    |\n",
+            "|    policy_loss        | 14       |\n",
+            "|    std                | 0.832    |\n",
+            "|    value_loss         | 4.51     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.41     |\n",
+            "|    ep_rew_mean        | -0.915   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 40100    |\n",
+            "|    time_elapsed       | 938      |\n",
+            "|    total_timesteps    | 200500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.53    |\n",
+            "|    explained_variance | -28.2    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 40099    |\n",
+            "|    policy_loss        | -3.72    |\n",
+            "|    std                | 0.834    |\n",
+            "|    value_loss         | 0.278    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.4     |\n",
+            "|    ep_rew_mean        | -1.29    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 40200    |\n",
+            "|    time_elapsed       | 941      |\n",
+            "|    total_timesteps    | 201000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.55    |\n",
+            "|    explained_variance | -0.554   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 40199    |\n",
+            "|    policy_loss        | -5.26    |\n",
+            "|    std                | 0.835    |\n",
+            "|    value_loss         | 0.394    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 5.78     |\n",
+            "|    ep_rew_mean        | -0.538   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 40300    |\n",
+            "|    time_elapsed       | 943      |\n",
+            "|    total_timesteps    | 201500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.52    |\n",
+            "|    explained_variance | -0.486   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 40299    |\n",
+            "|    policy_loss        | -1.59    |\n",
+            "|    std                | 0.83     |\n",
+            "|    value_loss         | 0.0358   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.09     |\n",
+            "|    ep_rew_mean        | -0.79    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 40400    |\n",
+            "|    time_elapsed       | 946      |\n",
+            "|    total_timesteps    | 202000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.5     |\n",
+            "|    explained_variance | -136     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 40399    |\n",
+            "|    policy_loss        | 49.3     |\n",
+            "|    std                | 0.828    |\n",
+            "|    value_loss         | 28.1     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 4.38     |\n",
+            "|    ep_rew_mean        | -0.373   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 40500    |\n",
+            "|    time_elapsed       | 948      |\n",
+            "|    total_timesteps    | 202500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.49    |\n",
+            "|    explained_variance | -21.8    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 40499    |\n",
+            "|    policy_loss        | 4.35     |\n",
+            "|    std                | 0.828    |\n",
+            "|    value_loss         | 0.355    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 4.42     |\n",
+            "|    ep_rew_mean        | -0.347   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 40600    |\n",
+            "|    time_elapsed       | 950      |\n",
+            "|    total_timesteps    | 203000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.5     |\n",
+            "|    explained_variance | -32.4    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 40599    |\n",
+            "|    policy_loss        | 11.8     |\n",
+            "|    std                | 0.829    |\n",
+            "|    value_loss         | 1.94     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 5.23     |\n",
+            "|    ep_rew_mean        | -0.454   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 40700    |\n",
+            "|    time_elapsed       | 953      |\n",
+            "|    total_timesteps    | 203500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.49    |\n",
+            "|    explained_variance | -2.9     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 40699    |\n",
+            "|    policy_loss        | 1.51     |\n",
+            "|    std                | 0.828    |\n",
+            "|    value_loss         | 0.17     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 5.48     |\n",
+            "|    ep_rew_mean        | -0.45    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 40800    |\n",
+            "|    time_elapsed       | 956      |\n",
+            "|    total_timesteps    | 204000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.49    |\n",
+            "|    explained_variance | -0.871   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 40799    |\n",
+            "|    policy_loss        | 2.14     |\n",
+            "|    std                | 0.829    |\n",
+            "|    value_loss         | 0.0793   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 4.78     |\n",
+            "|    ep_rew_mean        | -0.403   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 40900    |\n",
+            "|    time_elapsed       | 958      |\n",
+            "|    total_timesteps    | 204500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.5     |\n",
+            "|    explained_variance | -5.88    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 40899    |\n",
+            "|    policy_loss        | 9.99     |\n",
+            "|    std                | 0.83     |\n",
+            "|    value_loss         | 1.3      |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.02     |\n",
+            "|    ep_rew_mean        | -0.747   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 41000    |\n",
+            "|    time_elapsed       | 960      |\n",
+            "|    total_timesteps    | 205000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.52    |\n",
+            "|    explained_variance | -0.795   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 40999    |\n",
+            "|    policy_loss        | 3.54     |\n",
+            "|    std                | 0.832    |\n",
+            "|    value_loss         | 0.124    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.78     |\n",
+            "|    ep_rew_mean        | -0.913   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 41100    |\n",
+            "|    time_elapsed       | 962      |\n",
+            "|    total_timesteps    | 205500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.55    |\n",
+            "|    explained_variance | 0.324    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 41099    |\n",
+            "|    policy_loss        | 4.36     |\n",
+            "|    std                | 0.836    |\n",
+            "|    value_loss         | 0.973    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 5.42     |\n",
+            "|    ep_rew_mean        | -0.468   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 41200    |\n",
+            "|    time_elapsed       | 964      |\n",
+            "|    total_timesteps    | 206000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.56    |\n",
+            "|    explained_variance | 0.645    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 41199    |\n",
+            "|    policy_loss        | -1.56    |\n",
+            "|    std                | 0.838    |\n",
+            "|    value_loss         | 0.0493   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 5.15     |\n",
+            "|    ep_rew_mean        | -0.436   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 41300    |\n",
+            "|    time_elapsed       | 967      |\n",
+            "|    total_timesteps    | 206500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.57    |\n",
+            "|    explained_variance | 0.53     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 41299    |\n",
+            "|    policy_loss        | 1.25     |\n",
+            "|    std                | 0.838    |\n",
+            "|    value_loss         | 0.0425   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.46     |\n",
+            "|    ep_rew_mean        | -0.6     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 41400    |\n",
+            "|    time_elapsed       | 970      |\n",
+            "|    total_timesteps    | 207000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.57    |\n",
+            "|    explained_variance | 1        |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 41399    |\n",
+            "|    policy_loss        | 0.223    |\n",
+            "|    std                | 0.838    |\n",
+            "|    value_loss         | 0.0114   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.51     |\n",
+            "|    ep_rew_mean        | -0.677   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 41500    |\n",
+            "|    time_elapsed       | 972      |\n",
+            "|    total_timesteps    | 207500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.54    |\n",
+            "|    explained_variance | -2.53    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 41499    |\n",
+            "|    policy_loss        | 8.54     |\n",
+            "|    std                | 0.835    |\n",
+            "|    value_loss         | 2.33     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.46     |\n",
+            "|    ep_rew_mean        | -0.563   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 41600    |\n",
+            "|    time_elapsed       | 974      |\n",
+            "|    total_timesteps    | 208000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.53    |\n",
+            "|    explained_variance | -125     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 41599    |\n",
+            "|    policy_loss        | -3.69    |\n",
+            "|    std                | 0.834    |\n",
+            "|    value_loss         | 0.958    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.05     |\n",
+            "|    ep_rew_mean        | -0.648   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 41700    |\n",
+            "|    time_elapsed       | 976      |\n",
+            "|    total_timesteps    | 208500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.55    |\n",
+            "|    explained_variance | -4.36    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 41699    |\n",
+            "|    policy_loss        | 3.82     |\n",
+            "|    std                | 0.836    |\n",
+            "|    value_loss         | 0.415    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 5.47     |\n",
+            "|    ep_rew_mean        | -0.475   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 41800    |\n",
+            "|    time_elapsed       | 979      |\n",
+            "|    total_timesteps    | 209000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.54    |\n",
+            "|    explained_variance | -0.948   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 41799    |\n",
+            "|    policy_loss        | -0.0613  |\n",
+            "|    std                | 0.835    |\n",
+            "|    value_loss         | 0.0169   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 6.86     |\n",
+            "|    ep_rew_mean        | -0.648   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 41900    |\n",
+            "|    time_elapsed       | 981      |\n",
+            "|    total_timesteps    | 209500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.52    |\n",
+            "|    explained_variance | 0.497    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 41899    |\n",
+            "|    policy_loss        | 7.1      |\n",
+            "|    std                | 0.831    |\n",
+            "|    value_loss         | 1.63     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 9.13     |\n",
+            "|    ep_rew_mean        | -0.994   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 42000    |\n",
+            "|    time_elapsed       | 983      |\n",
+            "|    total_timesteps    | 210000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.55    |\n",
+            "|    explained_variance | 0.352    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 41999    |\n",
+            "|    policy_loss        | 12.6     |\n",
+            "|    std                | 0.834    |\n",
+            "|    value_loss         | 9.03     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10       |\n",
+            "|    ep_rew_mean        | -1.08    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 42100    |\n",
+            "|    time_elapsed       | 986      |\n",
+            "|    total_timesteps    | 210500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.55    |\n",
+            "|    explained_variance | 0.733    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 42099    |\n",
+            "|    policy_loss        | -5.63    |\n",
+            "|    std                | 0.834    |\n",
+            "|    value_loss         | 5.27     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 9.87     |\n",
+            "|    ep_rew_mean        | -1.07    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 42200    |\n",
+            "|    time_elapsed       | 988      |\n",
+            "|    total_timesteps    | 211000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.53    |\n",
+            "|    explained_variance | -2.7     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 42199    |\n",
+            "|    policy_loss        | -1.47    |\n",
+            "|    std                | 0.832    |\n",
+            "|    value_loss         | 0.1      |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 13.8     |\n",
+            "|    ep_rew_mean        | -1.54    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 42300    |\n",
+            "|    time_elapsed       | 990      |\n",
+            "|    total_timesteps    | 211500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.55    |\n",
+            "|    explained_variance | -3.37    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 42299    |\n",
+            "|    policy_loss        | 2.2      |\n",
+            "|    std                | 0.834    |\n",
+            "|    value_loss         | 0.156    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 17.5     |\n",
+            "|    ep_rew_mean        | -2.22    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 42400    |\n",
+            "|    time_elapsed       | 993      |\n",
+            "|    total_timesteps    | 212000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.5     |\n",
+            "|    explained_variance | -4.49    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 42399    |\n",
+            "|    policy_loss        | -0.857   |\n",
+            "|    std                | 0.829    |\n",
+            "|    value_loss         | 0.0175   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20.9     |\n",
+            "|    ep_rew_mean        | -2.95    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 42500    |\n",
+            "|    time_elapsed       | 996      |\n",
+            "|    total_timesteps    | 212500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.51    |\n",
+            "|    explained_variance | -40      |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 42499    |\n",
+            "|    policy_loss        | 1.06     |\n",
+            "|    std                | 0.83     |\n",
+            "|    value_loss         | 0.0349   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 24.9     |\n",
+            "|    ep_rew_mean        | -3.75    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 42600    |\n",
+            "|    time_elapsed       | 998      |\n",
+            "|    total_timesteps    | 213000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.51    |\n",
+            "|    explained_variance | -131     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 42599    |\n",
+            "|    policy_loss        | 1.74     |\n",
+            "|    std                | 0.83     |\n",
+            "|    value_loss         | 0.0545   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 28.6     |\n",
+            "|    ep_rew_mean        | -4.32    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 42700    |\n",
+            "|    time_elapsed       | 1000     |\n",
+            "|    total_timesteps    | 213500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.5     |\n",
+            "|    explained_variance | -2.8     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 42699    |\n",
+            "|    policy_loss        | 0.485    |\n",
+            "|    std                | 0.829    |\n",
+            "|    value_loss         | 0.0148   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30.5     |\n",
+            "|    ep_rew_mean        | -4.6     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 42800    |\n",
+            "|    time_elapsed       | 1002     |\n",
+            "|    total_timesteps    | 214000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.51    |\n",
+            "|    explained_variance | -52.7    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 42799    |\n",
+            "|    policy_loss        | -0.654   |\n",
+            "|    std                | 0.83     |\n",
+            "|    value_loss         | 0.0313   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 34.6     |\n",
+            "|    ep_rew_mean        | -5.2     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 42900    |\n",
+            "|    time_elapsed       | 1005     |\n",
+            "|    total_timesteps    | 214500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.52    |\n",
+            "|    explained_variance | -3.73    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 42899    |\n",
+            "|    policy_loss        | -1.45    |\n",
+            "|    std                | 0.832    |\n",
+            "|    value_loss         | 0.0453   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 33.5     |\n",
+            "|    ep_rew_mean        | -5.03    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 43000    |\n",
+            "|    time_elapsed       | 1008     |\n",
+            "|    total_timesteps    | 215000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.51    |\n",
+            "|    explained_variance | -82.8    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 42999    |\n",
+            "|    policy_loss        | -1.39    |\n",
+            "|    std                | 0.83     |\n",
+            "|    value_loss         | 0.0641   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 31.9     |\n",
+            "|    ep_rew_mean        | -4.61    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 43100    |\n",
+            "|    time_elapsed       | 1010     |\n",
+            "|    total_timesteps    | 215500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.49    |\n",
+            "|    explained_variance | -4.37    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 43099    |\n",
+            "|    policy_loss        | 2.73     |\n",
+            "|    std                | 0.828    |\n",
+            "|    value_loss         | 0.115    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 25.4     |\n",
+            "|    ep_rew_mean        | -3.24    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 43200    |\n",
+            "|    time_elapsed       | 1013     |\n",
+            "|    total_timesteps    | 216000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.49    |\n",
+            "|    explained_variance | -53.1    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 43199    |\n",
+            "|    policy_loss        | -2.6     |\n",
+            "|    std                | 0.827    |\n",
+            "|    value_loss         | 0.21     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.4     |\n",
+            "|    ep_rew_mean        | -2.64    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 43300    |\n",
+            "|    time_elapsed       | 1015     |\n",
+            "|    total_timesteps    | 216500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.51    |\n",
+            "|    explained_variance | -15.7    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 43299    |\n",
+            "|    policy_loss        | -3       |\n",
+            "|    std                | 0.83     |\n",
+            "|    value_loss         | 0.127    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20       |\n",
+            "|    ep_rew_mean        | -2.49    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 43400    |\n",
+            "|    time_elapsed       | 1018     |\n",
+            "|    total_timesteps    | 217000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.51    |\n",
+            "|    explained_variance | -13.3    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 43399    |\n",
+            "|    policy_loss        | 3.72     |\n",
+            "|    std                | 0.83     |\n",
+            "|    value_loss         | 0.114    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 17.3     |\n",
+            "|    ep_rew_mean        | -1.95    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 43500    |\n",
+            "|    time_elapsed       | 1020     |\n",
+            "|    total_timesteps    | 217500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.5     |\n",
+            "|    explained_variance | -0.127   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 43499    |\n",
+            "|    policy_loss        | 47.3     |\n",
+            "|    std                | 0.829    |\n",
+            "|    value_loss         | 51.2     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 14.9     |\n",
+            "|    ep_rew_mean        | -1.54    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 43600    |\n",
+            "|    time_elapsed       | 1022     |\n",
+            "|    total_timesteps    | 218000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.51    |\n",
+            "|    explained_variance | -0.629   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 43599    |\n",
+            "|    policy_loss        | -0.329   |\n",
+            "|    std                | 0.829    |\n",
+            "|    value_loss         | 0.00375  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 14.2     |\n",
+            "|    ep_rew_mean        | -1.44    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 43700    |\n",
+            "|    time_elapsed       | 1025     |\n",
+            "|    total_timesteps    | 218500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.52    |\n",
+            "|    explained_variance | -1.74    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 43699    |\n",
+            "|    policy_loss        | -1.8     |\n",
+            "|    std                | 0.831    |\n",
+            "|    value_loss         | 0.066    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 15.2     |\n",
+            "|    ep_rew_mean        | -1.6     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 43800    |\n",
+            "|    time_elapsed       | 1027     |\n",
+            "|    total_timesteps    | 219000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.48    |\n",
+            "|    explained_variance | -0.827   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 43799    |\n",
+            "|    policy_loss        | 0.286    |\n",
+            "|    std                | 0.826    |\n",
+            "|    value_loss         | 0.00513  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 18.1     |\n",
+            "|    ep_rew_mean        | -1.97    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 43900    |\n",
+            "|    time_elapsed       | 1029     |\n",
+            "|    total_timesteps    | 219500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.48    |\n",
+            "|    explained_variance | 0.0961   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 43899    |\n",
+            "|    policy_loss        | -0.834   |\n",
+            "|    std                | 0.826    |\n",
+            "|    value_loss         | 0.0225   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20.3     |\n",
+            "|    ep_rew_mean        | -2.36    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 44000    |\n",
+            "|    time_elapsed       | 1032     |\n",
+            "|    total_timesteps    | 220000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.5     |\n",
+            "|    explained_variance | 0.556    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 43999    |\n",
+            "|    policy_loss        | 0.284    |\n",
+            "|    std                | 0.829    |\n",
+            "|    value_loss         | 0.0177   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21       |\n",
+            "|    ep_rew_mean        | -2.53    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 44100    |\n",
+            "|    time_elapsed       | 1035     |\n",
+            "|    total_timesteps    | 220500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.53    |\n",
+            "|    explained_variance | 0.338    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 44099    |\n",
+            "|    policy_loss        | 66.9     |\n",
+            "|    std                | 0.831    |\n",
+            "|    value_loss         | 85.9     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.3     |\n",
+            "|    ep_rew_mean        | -2.75    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 44200    |\n",
+            "|    time_elapsed       | 1037     |\n",
+            "|    total_timesteps    | 221000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.53    |\n",
+            "|    explained_variance | 0.392    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 44199    |\n",
+            "|    policy_loss        | 0.803    |\n",
+            "|    std                | 0.831    |\n",
+            "|    value_loss         | 0.0111   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 22.1     |\n",
+            "|    ep_rew_mean        | -2.96    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 44300    |\n",
+            "|    time_elapsed       | 1039     |\n",
+            "|    total_timesteps    | 221500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.51    |\n",
+            "|    explained_variance | -4.37    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 44299    |\n",
+            "|    policy_loss        | 0.67     |\n",
+            "|    std                | 0.829    |\n",
+            "|    value_loss         | 0.019    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.2     |\n",
+            "|    ep_rew_mean        | -2.88    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 44400    |\n",
+            "|    time_elapsed       | 1041     |\n",
+            "|    total_timesteps    | 222000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.54    |\n",
+            "|    explained_variance | 0.961    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 44399    |\n",
+            "|    policy_loss        | 0.0447   |\n",
+            "|    std                | 0.832    |\n",
+            "|    value_loss         | 0.0199   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20.6     |\n",
+            "|    ep_rew_mean        | -2.72    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 44500    |\n",
+            "|    time_elapsed       | 1045     |\n",
+            "|    total_timesteps    | 222500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.52    |\n",
+            "|    explained_variance | 0.564    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 44499    |\n",
+            "|    policy_loss        | -1.71    |\n",
+            "|    std                | 0.83     |\n",
+            "|    value_loss         | 0.0518   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20.2     |\n",
+            "|    ep_rew_mean        | -2.64    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 44600    |\n",
+            "|    time_elapsed       | 1047     |\n",
+            "|    total_timesteps    | 223000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.54    |\n",
+            "|    explained_variance | -1.6     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 44599    |\n",
+            "|    policy_loss        | -0.0737  |\n",
+            "|    std                | 0.831    |\n",
+            "|    value_loss         | 0.00317  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.5     |\n",
+            "|    ep_rew_mean        | -2.81    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 44700    |\n",
+            "|    time_elapsed       | 1049     |\n",
+            "|    total_timesteps    | 223500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.52    |\n",
+            "|    explained_variance | -2.55    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 44699    |\n",
+            "|    policy_loss        | -0.534   |\n",
+            "|    std                | 0.83     |\n",
+            "|    value_loss         | 0.00457  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 22.1     |\n",
+            "|    ep_rew_mean        | -2.74    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 44800    |\n",
+            "|    time_elapsed       | 1051     |\n",
+            "|    total_timesteps    | 224000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.5     |\n",
+            "|    explained_variance | -3.5     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 44799    |\n",
+            "|    policy_loss        | -0.523   |\n",
+            "|    std                | 0.828    |\n",
+            "|    value_loss         | 0.0107   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21.2     |\n",
+            "|    ep_rew_mean        | -2.57    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 44900    |\n",
+            "|    time_elapsed       | 1054     |\n",
+            "|    total_timesteps    | 224500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.49    |\n",
+            "|    explained_variance | 0.555    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 44899    |\n",
+            "|    policy_loss        | -0.784   |\n",
+            "|    std                | 0.827    |\n",
+            "|    value_loss         | 0.0117   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 23.6     |\n",
+            "|    ep_rew_mean        | -2.77    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 45000    |\n",
+            "|    time_elapsed       | 1056     |\n",
+            "|    total_timesteps    | 225000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.49    |\n",
+            "|    explained_variance | -19.5    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 44999    |\n",
+            "|    policy_loss        | 0.149    |\n",
+            "|    std                | 0.827    |\n",
+            "|    value_loss         | 0.00261  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 26.5     |\n",
+            "|    ep_rew_mean        | -3.12    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 45100    |\n",
+            "|    time_elapsed       | 1059     |\n",
+            "|    total_timesteps    | 225500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.53    |\n",
+            "|    explained_variance | -5.61    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 45099    |\n",
+            "|    policy_loss        | 0.0418   |\n",
+            "|    std                | 0.832    |\n",
+            "|    value_loss         | 0.00496  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 28.3     |\n",
+            "|    ep_rew_mean        | -3.29    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 45200    |\n",
+            "|    time_elapsed       | 1061     |\n",
+            "|    total_timesteps    | 226000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.54    |\n",
+            "|    explained_variance | -89.5    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 45199    |\n",
+            "|    policy_loss        | 0.533    |\n",
+            "|    std                | 0.833    |\n",
+            "|    value_loss         | 0.0217   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 27.6     |\n",
+            "|    ep_rew_mean        | -3.14    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 45300    |\n",
+            "|    time_elapsed       | 1063     |\n",
+            "|    total_timesteps    | 226500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.51    |\n",
+            "|    explained_variance | -5.7     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 45299    |\n",
+            "|    policy_loss        | 2.17     |\n",
+            "|    std                | 0.83     |\n",
+            "|    value_loss         | 0.0799   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 28.7     |\n",
+            "|    ep_rew_mean        | -3.38    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 45400    |\n",
+            "|    time_elapsed       | 1065     |\n",
+            "|    total_timesteps    | 227000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.49    |\n",
+            "|    explained_variance | 0.352    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 45399    |\n",
+            "|    policy_loss        | 32.3     |\n",
+            "|    std                | 0.828    |\n",
+            "|    value_loss         | 46.9     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30.6     |\n",
+            "|    ep_rew_mean        | -3.68    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 213      |\n",
+            "|    iterations         | 45500    |\n",
+            "|    time_elapsed       | 1067     |\n",
+            "|    total_timesteps    | 227500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.45    |\n",
+            "|    explained_variance | -23.8    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 45499    |\n",
+            "|    policy_loss        | 0.00402  |\n",
+            "|    std                | 0.824    |\n",
+            "|    value_loss         | 0.00125  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 30.3     |\n",
+            "|    ep_rew_mean        | -3.64    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 45600    |\n",
+            "|    time_elapsed       | 1071     |\n",
+            "|    total_timesteps    | 228000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.41    |\n",
+            "|    explained_variance | -0.362   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 45599    |\n",
+            "|    policy_loss        | -0.421   |\n",
+            "|    std                | 0.821    |\n",
+            "|    value_loss         | 0.00643  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 29.5     |\n",
+            "|    ep_rew_mean        | -3.52    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 45700    |\n",
+            "|    time_elapsed       | 1073     |\n",
+            "|    total_timesteps    | 228500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.4     |\n",
+            "|    explained_variance | 0.214    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 45699    |\n",
+            "|    policy_loss        | 26.4     |\n",
+            "|    std                | 0.819    |\n",
+            "|    value_loss         | 28.1     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 29.7     |\n",
+            "|    ep_rew_mean        | -3.56    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 45800    |\n",
+            "|    time_elapsed       | 1075     |\n",
+            "|    total_timesteps    | 229000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.38    |\n",
+            "|    explained_variance | -5.01    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 45799    |\n",
+            "|    policy_loss        | 0.152    |\n",
+            "|    std                | 0.817    |\n",
+            "|    value_loss         | 0.0019   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 25       |\n",
+            "|    ep_rew_mean        | -2.94    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 45900    |\n",
+            "|    time_elapsed       | 1077     |\n",
+            "|    total_timesteps    | 229500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.38    |\n",
+            "|    explained_variance | 0.584    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 45899    |\n",
+            "|    policy_loss        | 12       |\n",
+            "|    std                | 0.817    |\n",
+            "|    value_loss         | 7.89     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 20.9     |\n",
+            "|    ep_rew_mean        | -2.31    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 46000    |\n",
+            "|    time_elapsed       | 1079     |\n",
+            "|    total_timesteps    | 230000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.35    |\n",
+            "|    explained_variance | 0.369    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 45999    |\n",
+            "|    policy_loss        | 9.14     |\n",
+            "|    std                | 0.814    |\n",
+            "|    value_loss         | 13.8     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 19.9     |\n",
+            "|    ep_rew_mean        | -2.18    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 46100    |\n",
+            "|    time_elapsed       | 1082     |\n",
+            "|    total_timesteps    | 230500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.32    |\n",
+            "|    explained_variance | -2.14    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 46099    |\n",
+            "|    policy_loss        | -2.3     |\n",
+            "|    std                | 0.81     |\n",
+            "|    value_loss         | 0.0864   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 16.5     |\n",
+            "|    ep_rew_mean        | -1.79    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 46200    |\n",
+            "|    time_elapsed       | 1085     |\n",
+            "|    total_timesteps    | 231000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.34    |\n",
+            "|    explained_variance | -1.16    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 46199    |\n",
+            "|    policy_loss        | 0.0412   |\n",
+            "|    std                | 0.813    |\n",
+            "|    value_loss         | 0.00237  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 18.5     |\n",
+            "|    ep_rew_mean        | -2.01    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 46300    |\n",
+            "|    time_elapsed       | 1087     |\n",
+            "|    total_timesteps    | 231500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.34    |\n",
+            "|    explained_variance | -4.59    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 46299    |\n",
+            "|    policy_loss        | 0.152    |\n",
+            "|    std                | 0.813    |\n",
+            "|    value_loss         | 0.000828 |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 16.9     |\n",
+            "|    ep_rew_mean        | -1.86    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 46400    |\n",
+            "|    time_elapsed       | 1089     |\n",
+            "|    total_timesteps    | 232000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.33    |\n",
+            "|    explained_variance | -3.32    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 46399    |\n",
+            "|    policy_loss        | 0.712    |\n",
+            "|    std                | 0.811    |\n",
+            "|    value_loss         | 0.0174   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 17.8     |\n",
+            "|    ep_rew_mean        | -2.08    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 46500    |\n",
+            "|    time_elapsed       | 1091     |\n",
+            "|    total_timesteps    | 232500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.33    |\n",
+            "|    explained_variance | 0.971    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 46499    |\n",
+            "|    policy_loss        | -0.512   |\n",
+            "|    std                | 0.811    |\n",
+            "|    value_loss         | 0.00613  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 21       |\n",
+            "|    ep_rew_mean        | -2.6     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 46600    |\n",
+            "|    time_elapsed       | 1093     |\n",
+            "|    total_timesteps    | 233000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.36    |\n",
+            "|    explained_variance | -0.171   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 46599    |\n",
+            "|    policy_loss        | 0.657    |\n",
+            "|    std                | 0.816    |\n",
+            "|    value_loss         | 0.00852  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 18.4     |\n",
+            "|    ep_rew_mean        | -2.22    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 46700    |\n",
+            "|    time_elapsed       | 1097     |\n",
+            "|    total_timesteps    | 233500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.35    |\n",
+            "|    explained_variance | -12.4    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 46699    |\n",
+            "|    policy_loss        | 0.196    |\n",
+            "|    std                | 0.814    |\n",
+            "|    value_loss         | 0.000866 |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 17.6     |\n",
+            "|    ep_rew_mean        | -2       |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 46800    |\n",
+            "|    time_elapsed       | 1099     |\n",
+            "|    total_timesteps    | 234000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.36    |\n",
+            "|    explained_variance | 0.312    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 46799    |\n",
+            "|    policy_loss        | 21.9     |\n",
+            "|    std                | 0.815    |\n",
+            "|    value_loss         | 15.1     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.9     |\n",
+            "|    ep_rew_mean        | -0.988   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 46900    |\n",
+            "|    time_elapsed       | 1101     |\n",
+            "|    total_timesteps    | 234500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.36    |\n",
+            "|    explained_variance | -6.13    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 46899    |\n",
+            "|    policy_loss        | 39.7     |\n",
+            "|    std                | 0.815    |\n",
+            "|    value_loss         | 20.4     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.1     |\n",
+            "|    ep_rew_mean        | -0.929   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 47000    |\n",
+            "|    time_elapsed       | 1103     |\n",
+            "|    total_timesteps    | 235000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.36    |\n",
+            "|    explained_variance | -22      |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 46999    |\n",
+            "|    policy_loss        | 0.883    |\n",
+            "|    std                | 0.814    |\n",
+            "|    value_loss         | 0.0223   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.8     |\n",
+            "|    ep_rew_mean        | -1.01    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 47100    |\n",
+            "|    time_elapsed       | 1105     |\n",
+            "|    total_timesteps    | 235500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.36    |\n",
+            "|    explained_variance | -0.929   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 47099    |\n",
+            "|    policy_loss        | 16.5     |\n",
+            "|    std                | 0.815    |\n",
+            "|    value_loss         | 12.4     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.4     |\n",
+            "|    ep_rew_mean        | -0.942   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 47200    |\n",
+            "|    time_elapsed       | 1108     |\n",
+            "|    total_timesteps    | 236000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.35    |\n",
+            "|    explained_variance | -0.097   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 47199    |\n",
+            "|    policy_loss        | -0.956   |\n",
+            "|    std                | 0.814    |\n",
+            "|    value_loss         | 0.019    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.3     |\n",
+            "|    ep_rew_mean        | -0.944   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 47300    |\n",
+            "|    time_elapsed       | 1111     |\n",
+            "|    total_timesteps    | 236500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.36    |\n",
+            "|    explained_variance | 0.821    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 47299    |\n",
+            "|    policy_loss        | 1.25     |\n",
+            "|    std                | 0.814    |\n",
+            "|    value_loss         | 0.0215   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 12.3     |\n",
+            "|    ep_rew_mean        | -1.16    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 47400    |\n",
+            "|    time_elapsed       | 1113     |\n",
+            "|    total_timesteps    | 237000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.33    |\n",
+            "|    explained_variance | -6.92    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 47399    |\n",
+            "|    policy_loss        | -0.515   |\n",
+            "|    std                | 0.81     |\n",
+            "|    value_loss         | 0.0102   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 14.8     |\n",
+            "|    ep_rew_mean        | -1.43    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 47500    |\n",
+            "|    time_elapsed       | 1115     |\n",
+            "|    total_timesteps    | 237500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.28    |\n",
+            "|    explained_variance | -0.875   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 47499    |\n",
+            "|    policy_loss        | 1.17     |\n",
+            "|    std                | 0.805    |\n",
+            "|    value_loss         | 0.0417   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 17       |\n",
+            "|    ep_rew_mean        | -1.66    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 47600    |\n",
+            "|    time_elapsed       | 1118     |\n",
+            "|    total_timesteps    | 238000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.27    |\n",
+            "|    explained_variance | -0.103   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 47599    |\n",
+            "|    policy_loss        | 29.7     |\n",
+            "|    std                | 0.802    |\n",
+            "|    value_loss         | 19.9     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 17.1     |\n",
+            "|    ep_rew_mean        | -1.69    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 47700    |\n",
+            "|    time_elapsed       | 1120     |\n",
+            "|    total_timesteps    | 238500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.25    |\n",
+            "|    explained_variance | -1.41    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 47699    |\n",
+            "|    policy_loss        | -0.118   |\n",
+            "|    std                | 0.8      |\n",
+            "|    value_loss         | 0.00588  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 15.9     |\n",
+            "|    ep_rew_mean        | -1.58    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 47800    |\n",
+            "|    time_elapsed       | 1123     |\n",
+            "|    total_timesteps    | 239000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.25    |\n",
+            "|    explained_variance | -348     |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 47799    |\n",
+            "|    policy_loss        | 17.4     |\n",
+            "|    std                | 0.8      |\n",
+            "|    value_loss         | 6.03     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.5     |\n",
+            "|    ep_rew_mean        | -1.1     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 47900    |\n",
+            "|    time_elapsed       | 1126     |\n",
+            "|    total_timesteps    | 239500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.22    |\n",
+            "|    explained_variance | 0.191    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 47899    |\n",
+            "|    policy_loss        | -3.29    |\n",
+            "|    std                | 0.796    |\n",
+            "|    value_loss         | 0.327    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.5     |\n",
+            "|    ep_rew_mean        | -0.971   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 48000    |\n",
+            "|    time_elapsed       | 1128     |\n",
+            "|    total_timesteps    | 240000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.21    |\n",
+            "|    explained_variance | -1.57    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 47999    |\n",
+            "|    policy_loss        | -3       |\n",
+            "|    std                | 0.796    |\n",
+            "|    value_loss         | 0.279    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.4     |\n",
+            "|    ep_rew_mean        | -1.07    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 48100    |\n",
+            "|    time_elapsed       | 1130     |\n",
+            "|    total_timesteps    | 240500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.17    |\n",
+            "|    explained_variance | -12.1    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 48099    |\n",
+            "|    policy_loss        | -1.27    |\n",
+            "|    std                | 0.791    |\n",
+            "|    value_loss         | 0.0316   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.5     |\n",
+            "|    ep_rew_mean        | -1.09    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 48200    |\n",
+            "|    time_elapsed       | 1132     |\n",
+            "|    total_timesteps    | 241000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.16    |\n",
+            "|    explained_variance | -3.29    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 48199    |\n",
+            "|    policy_loss        | -2       |\n",
+            "|    std                | 0.79     |\n",
+            "|    value_loss         | 0.109    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.9     |\n",
+            "|    ep_rew_mean        | -1.02    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 48300    |\n",
+            "|    time_elapsed       | 1135     |\n",
+            "|    total_timesteps    | 241500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.17    |\n",
+            "|    explained_variance | 0.482    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 48299    |\n",
+            "|    policy_loss        | 1.44     |\n",
+            "|    std                | 0.791    |\n",
+            "|    value_loss         | 0.0523   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.8     |\n",
+            "|    ep_rew_mean        | -0.988   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 48400    |\n",
+            "|    time_elapsed       | 1138     |\n",
+            "|    total_timesteps    | 242000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.19    |\n",
+            "|    explained_variance | 0.946    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 48399    |\n",
+            "|    policy_loss        | 3.43     |\n",
+            "|    std                | 0.794    |\n",
+            "|    value_loss         | 0.741    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.9     |\n",
+            "|    ep_rew_mean        | -0.984   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 48500    |\n",
+            "|    time_elapsed       | 1140     |\n",
+            "|    total_timesteps    | 242500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.17    |\n",
+            "|    explained_variance | 0.686    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 48499    |\n",
+            "|    policy_loss        | 2.49     |\n",
+            "|    std                | 0.791    |\n",
+            "|    value_loss         | 0.377    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.5     |\n",
+            "|    ep_rew_mean        | -1.03    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 48600    |\n",
+            "|    time_elapsed       | 1142     |\n",
+            "|    total_timesteps    | 243000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.16    |\n",
+            "|    explained_variance | 0.547    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 48599    |\n",
+            "|    policy_loss        | -2.63    |\n",
+            "|    std                | 0.791    |\n",
+            "|    value_loss         | 0.0917   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.8     |\n",
+            "|    ep_rew_mean        | -1       |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 48700    |\n",
+            "|    time_elapsed       | 1144     |\n",
+            "|    total_timesteps    | 243500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.15    |\n",
+            "|    explained_variance | -20.5    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 48699    |\n",
+            "|    policy_loss        | -1.49    |\n",
+            "|    std                | 0.789    |\n",
+            "|    value_loss         | 0.0402   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10.4     |\n",
+            "|    ep_rew_mean        | -0.983   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 48800    |\n",
+            "|    time_elapsed       | 1148     |\n",
+            "|    total_timesteps    | 244000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.12    |\n",
+            "|    explained_variance | 0.921    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 48799    |\n",
+            "|    policy_loss        | 2.53     |\n",
+            "|    std                | 0.786    |\n",
+            "|    value_loss         | 0.29     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.5     |\n",
+            "|    ep_rew_mean        | -1.1     |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 48900    |\n",
+            "|    time_elapsed       | 1150     |\n",
+            "|    total_timesteps    | 244500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.13    |\n",
+            "|    explained_variance | -1.97    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 48899    |\n",
+            "|    policy_loss        | 44.2     |\n",
+            "|    std                | 0.787    |\n",
+            "|    value_loss         | 34.5     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.8     |\n",
+            "|    ep_rew_mean        | -1.08    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 49000    |\n",
+            "|    time_elapsed       | 1152     |\n",
+            "|    total_timesteps    | 245000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.14    |\n",
+            "|    explained_variance | -7.35    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 48999    |\n",
+            "|    policy_loss        | -1.5     |\n",
+            "|    std                | 0.789    |\n",
+            "|    value_loss         | 0.051    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 12.9     |\n",
+            "|    ep_rew_mean        | -1.22    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 49100    |\n",
+            "|    time_elapsed       | 1154     |\n",
+            "|    total_timesteps    | 245500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.15    |\n",
+            "|    explained_variance | 0.725    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 49099    |\n",
+            "|    policy_loss        | -1.03    |\n",
+            "|    std                | 0.791    |\n",
+            "|    value_loss         | 0.0285   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 9.27     |\n",
+            "|    ep_rew_mean        | -0.881   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 49200    |\n",
+            "|    time_elapsed       | 1157     |\n",
+            "|    total_timesteps    | 246000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.14    |\n",
+            "|    explained_variance | -1.75    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 49199    |\n",
+            "|    policy_loss        | -0.458   |\n",
+            "|    std                | 0.788    |\n",
+            "|    value_loss         | 0.0277   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 7.78     |\n",
+            "|    ep_rew_mean        | -0.719   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 49300    |\n",
+            "|    time_elapsed       | 1159     |\n",
+            "|    total_timesteps    | 246500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.16    |\n",
+            "|    explained_variance | -0.945   |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 49299    |\n",
+            "|    policy_loss        | -0.858   |\n",
+            "|    std                | 0.79     |\n",
+            "|    value_loss         | 0.0107   |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.33     |\n",
+            "|    ep_rew_mean        | -0.716   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 49400    |\n",
+            "|    time_elapsed       | 1162     |\n",
+            "|    total_timesteps    | 247000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.14    |\n",
+            "|    explained_variance | -1.31    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 49399    |\n",
+            "|    policy_loss        | 7.37     |\n",
+            "|    std                | 0.788    |\n",
+            "|    value_loss         | 0.954    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 8.69     |\n",
+            "|    ep_rew_mean        | -0.741   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 49500    |\n",
+            "|    time_elapsed       | 1164     |\n",
+            "|    total_timesteps    | 247500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.1     |\n",
+            "|    explained_variance | 0.273    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 49499    |\n",
+            "|    policy_loss        | 11.5     |\n",
+            "|    std                | 0.783    |\n",
+            "|    value_loss         | 4.53     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 9.68     |\n",
+            "|    ep_rew_mean        | -0.882   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 49600    |\n",
+            "|    time_elapsed       | 1167     |\n",
+            "|    total_timesteps    | 248000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.09    |\n",
+            "|    explained_variance | -5.37    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 49599    |\n",
+            "|    policy_loss        | -3.11    |\n",
+            "|    std                | 0.783    |\n",
+            "|    value_loss         | 0.178    |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.3     |\n",
+            "|    ep_rew_mean        | -1.09    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 49700    |\n",
+            "|    time_elapsed       | 1169     |\n",
+            "|    total_timesteps    | 248500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.09    |\n",
+            "|    explained_variance | -10.9    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 49699    |\n",
+            "|    policy_loss        | 1.5      |\n",
+            "|    std                | 0.783    |\n",
+            "|    value_loss         | 0.11     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 10       |\n",
+            "|    ep_rew_mean        | -0.96    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 49800    |\n",
+            "|    time_elapsed       | 1171     |\n",
+            "|    total_timesteps    | 249000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.1     |\n",
+            "|    explained_variance | -83.3    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 49799    |\n",
+            "|    policy_loss        | 5.09     |\n",
+            "|    std                | 0.784    |\n",
+            "|    value_loss         | 1.63     |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 9.64     |\n",
+            "|    ep_rew_mean        | -0.879   |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 49900    |\n",
+            "|    time_elapsed       | 1174     |\n",
+            "|    total_timesteps    | 249500   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.1     |\n",
+            "|    explained_variance | 1        |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 49899    |\n",
+            "|    policy_loss        | 0.433    |\n",
+            "|    std                | 0.784    |\n",
+            "|    value_loss         | 0.00432  |\n",
+            "------------------------------------\n",
+            "------------------------------------\n",
+            "| rollout/              |          |\n",
+            "|    ep_len_mean        | 11.8     |\n",
+            "|    ep_rew_mean        | -1.15    |\n",
+            "| time/                 |          |\n",
+            "|    fps                | 212      |\n",
+            "|    iterations         | 50000    |\n",
+            "|    time_elapsed       | 1176     |\n",
+            "|    total_timesteps    | 250000   |\n",
+            "| train/                |          |\n",
+            "|    entropy_loss       | -8.07    |\n",
+            "|    explained_variance | 0.846    |\n",
+            "|    learning_rate      | 0.0007   |\n",
+            "|    n_updates          | 49999    |\n",
+            "|    policy_loss        | 6.47     |\n",
+            "|    std                | 0.782    |\n",
+            "|    value_loss         | 2.7      |\n",
+            "------------------------------------\n"
+          ]
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "VBox(children=(Label(value='0.655 MB of 0.655 MB uploaded\\r'), FloatProgress(value=1.0, max=1.0)))"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "c14a53fd35174f3ba632a22e3c9dda47"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "<style>\n",
+              "    table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
+              "    .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
+              "    .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
+              "    </style>\n",
+              "<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>global_step</td><td>▁▁▁▂▂▂▂▂▂▃▃▃▃▃▄▄▄▄▄▄▅▅▅▅▅▅▆▆▆▆▆▇▇▇▇▇▇███</td></tr><tr><td>rollout/ep_len_mean</td><td>███▇▇▅▄▃▃▂▅▇▆▄▃▆▅█▄▅▇▆▄▆▄▆▄▂▃▁▂▁▁▂▃▄▄▂▂▂</td></tr><tr><td>rollout/ep_rew_mean</td><td>▁▁▂▃▄▆▇▇▇▇▄▂▅▆▇▄▆▄▆▆▅▅▆▆▇▆▇█▇█████▇▆▇███</td></tr><tr><td>time/fps</td><td>▁▄▅▅▆▇▇▇███████████████▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇</td></tr><tr><td>train/entropy_loss</td><td>▂▁▁▁▁▁▂▂▃▃▃▃▃▃▃▃▃▃▃▄▄▄▄▄▄▄▄▅▅▆▆▇▇▆▇▇▇▇██</td></tr><tr><td>train/explained_variance</td><td>██████████████▇█▇▇█████▁████▇███████████</td></tr><tr><td>train/learning_rate</td><td>▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁</td></tr><tr><td>train/policy_loss</td><td>▂▂▇▂▂▆▂▂▅▂▁▂▂▂▁▂▂▂▂▂▂▂▂▂▁▂▂█▂▁▁▂▂▄▂▂▃▂▂▁</td></tr><tr><td>train/std</td><td>▇████▇▇▇▆▆▅▅▆▅▆▆▆▅▅▅▅▅▅▄▅▅▅▄▄▃▃▂▂▂▂▂▂▂▁▁</td></tr><tr><td>train/value_loss</td><td>▁▁█▁▁▃▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▁▁▁▁▁▂▁▁▂▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>global_step</td><td>250000</td></tr><tr><td>rollout/ep_len_mean</td><td>11.85</td></tr><tr><td>rollout/ep_rew_mean</td><td>-1.14974</td></tr><tr><td>time/fps</td><td>212.0</td></tr><tr><td>train/entropy_loss</td><td>-8.07425</td></tr><tr><td>train/explained_variance</td><td>0.84638</td></tr><tr><td>train/learning_rate</td><td>0.0007</td></tr><tr><td>train/policy_loss</td><td>6.47005</td></tr><tr><td>train/std</td><td>0.78183</td></tr><tr><td>train/value_loss</td><td>2.69757</td></tr></table><br/></div></div>"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              " View run <strong style=\"color:#cdcd00\">dashing-glitter-6</strong> at: <a href='https://wandb.ai/aiblackbelt/sb3-panda-reach/runs/ihcoeovn' target=\"_blank\">https://wandb.ai/aiblackbelt/sb3-panda-reach/runs/ihcoeovn</a><br/> View job at <a href='https://wandb.ai/aiblackbelt/sb3-panda-reach/jobs/QXJ0aWZhY3RDb2xsZWN0aW9uOjE0NTc2ODkxNg==/version_details/v3' target=\"_blank\">https://wandb.ai/aiblackbelt/sb3-panda-reach/jobs/QXJ0aWZhY3RDb2xsZWN0aW9uOjE0NTc2ODkxNg==/version_details/v3</a><br/>Synced 5 W&B file(s), 0 media file(s), 4 artifact file(s) and 3 other file(s)"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "Find logs at: <code>./wandb/run-20240305_210146-ihcoeovn/logs</code>"
+            ]
+          },
+          "metadata": {}
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "login(token=\"*********\")"
+      ],
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "chs528paf6QF",
+        "outputId": "0f7016c0-d3e9-4b4a-f358-b42b408c0448"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Token will not been saved to git credential helper. Pass `add_to_git_credential=True` if you want to set the git credential as well.\n",
+            "Token is valid (permission: write).\n",
+            "Your token has been saved to /root/.cache/huggingface/token\n",
+            "Login successful\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Save the trained model\n",
+        "model.save(\"ECL-TD-RL1-a2c_panda_reach.zip\")\n",
+        "\n",
+        "# Load the trained model\n",
+        "model = A2C.load(\"ECL-TD-RL1-a2c_panda_reach.zip\")\n",
+        "\n",
+        "push_to_hub(\n",
+        "    repo_id=\"Karim-20/a2c_cartpole\",\n",
+        "    filename=\"ECL-TD-RL1-a2c_panda_reach.zip\",\n",
+        "    commit_message=\"Add PandaReachJointsDense-v2 environement, agent used to train is A2C\"\n",
+        ")\n"
+      ],
+      "metadata": {
+        "id": "Z02f1oIdRh28",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 136,
+          "referenced_widgets": [
+            "a47211d565fb45fe95b30b99885c4dbd",
+            "df1580d505af40828061a4c042546f76",
+            "4627448bbe6d40178e356623c281803f",
+            "92339b2faa4b47c69b5457aa9631edf7",
+            "a337aa65ec8b498f87cb74caa342a6a3",
+            "c1fbb5d26065440aa5eeee238d0d1d38",
+            "0447228f33a344cd91a2e18cc73cd63e",
+            "4657c6ea689f494a9254c69d2a08dd4e",
+            "ef2b6851a3784430949ecf77410e3386",
+            "178580de1f0b4840825b70ffebaf00c2",
+            "6aeac63ed6e840c59814923109a66f58"
+          ]
+        },
+        "outputId": "694736b8-769a-42ba-dffe-41411433c2c8"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[38;5;4mℹ Pushing repo Karim-20/a2c_cartpole to the Hugging Face Hub\u001b[0m\n"
+          ]
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "ECL-TD-RL1-a2c_panda_reach.zip:   0%|          | 0.00/110k [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "a47211d565fb45fe95b30b99885c4dbd"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[38;5;2m✔ Your model has been uploaded to the Hub, you can find it here:\n",
+            "https://huggingface.co/Karim-20/a2c_cartpole/tree/main/\u001b[0m\n"
+          ]
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "CommitInfo(commit_url='https://huggingface.co/Karim-20/a2c_cartpole/commit/e5577037d98c688e89cbf3851fb89b09bcf9ca81', commit_message='Add PandaReachJointsDense-v2 environement, agent used to train is A2C', commit_description='', oid='e5577037d98c688e89cbf3851fb89b09bcf9ca81', pr_url=None, pr_revision=None, pr_num=None)"
+            ],
+            "application/vnd.google.colaboratory.intrinsic+json": {
+              "type": "string"
+            }
+          },
+          "metadata": {},
+          "execution_count": 19
+        }
+      ]
+    }
+  ]
+}
\ No newline at end of file
-- 
GitLab