From b43f84d739cbf99e5f9a5f4655cba8192ceecad2 Mon Sep 17 00:00:00 2001 From: Jeanne Caty <jeanne.caty@ecl22.ec-lyon.fr> Date: Thu, 5 Dec 2024 18:08:54 +0100 Subject: [PATCH] Update TD2 Deep Learning.ipynb --- TD2 Deep Learning.ipynb | 132 ++++++++++++++++++++++++++++++++++++---- 1 file changed, 120 insertions(+), 12 deletions(-) diff --git a/TD2 Deep Learning.ipynb b/TD2 Deep Learning.ipynb index 00e4fdc..65bffee 100644 --- a/TD2 Deep Learning.ipynb +++ b/TD2 Deep Learning.ipynb @@ -38,7 +38,7 @@ "metadata": {}, "outputs": [], "source": [ - "%pip install torch torchvision" + "%pip install torch torchvision\n" ] }, { @@ -52,10 +52,72 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "b1950f0a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[ 0.6418, -0.1700, 0.6304, 0.3113, 0.1379, 1.0753, -0.3344, 1.4741,\n", + " -0.8532, 0.3268],\n", + " [ 0.0866, 2.1869, -1.1434, 0.6156, -0.4647, -0.5759, -0.6658, 0.3761,\n", + " -1.1228, 0.1785],\n", + " [-0.4243, -1.0760, 0.3367, 1.0454, 0.4841, 0.8989, 0.4678, -0.1791,\n", + " 2.0395, -0.9181],\n", + " [-0.8864, 0.1093, -0.5295, 0.4361, 0.7182, 0.2051, 0.0169, -0.8813,\n", + " 0.3688, 1.3760],\n", + " [-0.5702, -0.1380, 1.2921, 1.0146, 0.1518, 1.2922, 0.6758, -0.1043,\n", + " 1.1502, 0.4387],\n", + " [ 0.5554, 0.5230, 0.8402, -1.3635, -0.3173, 0.3087, 0.7613, -2.0258,\n", + " 0.1627, 0.9464],\n", + " [ 0.7489, -0.2015, 0.8231, 1.2146, 0.9384, 0.6064, 0.6412, 0.0341,\n", + " 1.0204, -0.0650],\n", + " [ 0.2682, 1.0076, -1.5576, -0.3533, -0.1235, 2.4824, 1.1433, 0.5006,\n", + " 0.0619, 0.2076],\n", + " [ 1.1212, 1.7072, -0.4859, 0.3846, -0.6056, 1.4281, 0.5899, 0.1623,\n", + " 1.9957, 0.3370],\n", + " [ 0.9890, -1.0958, -0.5957, -0.4671, -0.2902, -0.0344, -0.8092, -0.5606,\n", + " -0.5501, -1.3897],\n", + " [ 0.8188, -0.6413, 0.2777, 0.7005, -0.2147, -0.0083, 0.6479, -1.1746,\n", + " -1.2938, 2.7529],\n", + " [-0.2992, 1.4363, 0.4173, 2.1196, 0.1661, -0.6726, 1.1396, -0.0788,\n", + " -0.9447, 0.5560],\n", + " [ 1.8925, -1.7427, -1.7261, -0.3420, 1.3588, -0.4280, -0.2186, -0.1555,\n", + " -0.4196, -0.6740],\n", + " [-0.9354, -0.1141, 0.3492, 0.5924, -1.0574, -1.2510, 0.9382, 0.2804,\n", + " -1.0396, -1.6244]])\n", + "AlexNet(\n", + " (features): Sequential(\n", + " (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))\n", + " (1): ReLU(inplace=True)\n", + " (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))\n", + " (4): ReLU(inplace=True)\n", + " (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (7): ReLU(inplace=True)\n", + " (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (9): ReLU(inplace=True)\n", + " (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (11): ReLU(inplace=True)\n", + " (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " )\n", + " (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))\n", + " (classifier): Sequential(\n", + " (0): Dropout(p=0.5, inplace=False)\n", + " (1): Linear(in_features=9216, out_features=4096, bias=True)\n", + " (2): ReLU(inplace=True)\n", + " (3): Dropout(p=0.5, inplace=False)\n", + " (4): Linear(in_features=4096, out_features=4096, bias=True)\n", + " (5): ReLU(inplace=True)\n", + " (6): Linear(in_features=4096, out_features=1000, bias=True)\n", + " )\n", + ")\n" + ] + } + ], "source": [ "import torch\n", "\n", @@ -95,10 +157,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "6e18f2fd", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CUDA is not available. Training on CPU ...\n" + ] + } + ], "source": [ "import torch\n", "\n", @@ -121,10 +191,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "462666a2", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to data\\cifar-10-python.tar.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 170M/170M [00:48<00:00, 3.52MB/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting data\\cifar-10-python.tar.gz to data\n", + "Files already downloaded and verified\n" + ] + } + ], "source": [ "import numpy as np\n", "from torchvision import datasets, transforms\n", @@ -193,10 +286,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "id": "317bf070", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Net(\n", + " (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))\n", + " (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))\n", + " (fc1): Linear(in_features=400, out_features=120, bias=True)\n", + " (fc2): Linear(in_features=120, out_features=84, bias=True)\n", + " (fc3): Linear(in_features=84, out_features=10, bias=True)\n", + ")\n" + ] + } + ], "source": [ "import torch.nn as nn\n", "import torch.nn.functional as F\n", @@ -883,7 +991,7 @@ }, { "cell_type": "markdown", - "id": "bbd48800", + "id": "ca7cda74", "metadata": {}, "source": [ "Experiments:\n", @@ -926,7 +1034,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.5 ('base')", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -940,7 +1048,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.5" + "version": "3.9.13" }, "vscode": { "interpreter": { -- GitLab