diff --git a/PAR 152/Yolo Tensorflow/README.md b/PAR 152/Yolo Tensorflow/README.md deleted file mode 100644 index 8c8c3cfc9b318b6f9f02df02c39353c882f27334..0000000000000000000000000000000000000000 --- a/PAR 152/Yolo Tensorflow/README.md +++ /dev/null @@ -1,53 +0,0 @@ -# YOLOv3-TensorFlow-2.x -YOLOv3 implementation in TensorFlow 2 version. My Blog post https://medium.com/analytics-vidhya/yolov3-object-detection-in-tensorflow-2-x-8a1a104c46a8 - -## Installation - -First, clone or download this GitHub repository. Install requirements and download pretrained weights: - -``` -git clone https://github.com/anushkadhiman/YOLOv3-TensorFlow-2.x.git -cd YOLOv3-TensorFlow-2.x -```` - -``` -pip install -r ./requirements.txt -````` - -``` -# yolov3 -wget -P model_data https://pjreddie.com/media/files/yolov3.weights - -# yolov3-tiny -wget -P model_data https://pjreddie.com/media/files/yolov3-tiny.weights -`````` - - -## Detection -Start with using pretrained weights to test predictions on both image and video: -``` -python detection_demo.py -```` - -## Result - -### Detection by Pre-trained model - - - - -### Detection by Custom Trained model - - -## References - -1. https://github.com/pjreddie/darknet -- Official YOLOv3 implementation -2. https://github.com/AlexeyAB -- Explanations of parameters -3. https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 -- Models, loss functions - -4. https://pylessons.com/ — Rokas Balsys - - diff --git a/PAR 152/Yolo Tensorflow/checkpoints/checkpoint b/PAR 152/Yolo Tensorflow/checkpoints/checkpoint deleted file mode 100644 index 6590b878cf7a0f8930015f17a619bf8744725c24..0000000000000000000000000000000000000000 --- a/PAR 152/Yolo Tensorflow/checkpoints/checkpoint +++ /dev/null @@ -1,2 +0,0 @@ -model_checkpoint_path: "yolov3_custom_2" -all_model_checkpoint_paths: "yolov3_custom_2" diff --git a/PAR 152/Yolo Tensorflow/detection_custom.py b/PAR 152/Yolo Tensorflow/detection_custom.py deleted file mode 100644 index f965f954612c5c347d6a76b01034f5c83611b334..0000000000000000000000000000000000000000 --- a/PAR 152/Yolo Tensorflow/detection_custom.py +++ /dev/null @@ -1,21 +0,0 @@ -import os -os.environ['CUDA_VISIBLE_DEVICES'] = '0' -import cv2 -import numpy as np -import tensorflow as tf -from yolov3.utils import detect_image, detect_realtime, detect_video, Load_Yolo_model, detect_video_realtime_mp -from yolov3.configs import * - -image_path = "./IMAGES/image.jpg" -video_path = "./IMAGES/video.mp4" - -yolo = Load_Yolo_model() -#detect_image(yolo, image_path, "./IMAGES/detect.jpg", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0)) -#detect_video(yolo, video_path, './IMAGES/detected.mp4', input_size=YOLO_INPUT_SIZE, show=False, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0)) -detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255, 0, 0)) - -detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255, 0, 0)) - - - -#detect_video_realtime_mp(video_path, "Output.mp4", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0), realtime=False) diff --git a/PAR 152/Yolo Tensorflow/detection_demo.py b/PAR 152/Yolo Tensorflow/detection_demo.py deleted file mode 100644 index 75e557d8939d2ee0155dda4c39a4a5cc2fbc3b82..0000000000000000000000000000000000000000 --- a/PAR 152/Yolo Tensorflow/detection_demo.py +++ /dev/null @@ -1,18 +0,0 @@ -import os -os.environ['CUDA_VISIBLE_DEVICES'] = "0" -import cv2 -import numpy as np -import tensorflow as tf -from yolov3.utils import detect_image, detect_realtime, detect_video, Load_Yolo_model, detect_video_realtime_mp -from yolov3.configs import * - -image_path = "image2.jpg" -video_path = "test.mp4" - - -yolo = Load_Yolo_model() -#detect_image(yolo, image_path, "detect.jpg", input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255,0,0)) -#detect_video(yolo, video_path, "", input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255,0,0)) -detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255, 0, 0)) - -#detect_video_realtime_mp(video_path, "Output.mp4", input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255,0,0), realtime=False) diff --git a/PAR 152/Yolo Tensorflow/image.jpg b/PAR 152/Yolo Tensorflow/image.jpg deleted file mode 100644 index 833cc7a147ab4f700dbdfb13c8bffeb05c74d5c8..0000000000000000000000000000000000000000 Binary files a/PAR 152/Yolo Tensorflow/image.jpg and /dev/null differ diff --git a/PAR 152/Yolo Tensorflow/image2.jpg b/PAR 152/Yolo Tensorflow/image2.jpg deleted file mode 100644 index bd97194e3f79c68c0f16ea3952db1ce875886894..0000000000000000000000000000000000000000 Binary files a/PAR 152/Yolo Tensorflow/image2.jpg and /dev/null differ diff --git a/PAR 152/Yolo Tensorflow/model_data/coco/coco.names b/PAR 152/Yolo Tensorflow/model_data/coco/coco.names deleted file mode 100644 index eea3a0b36c2fc9c31f635c0df11de15048c0dfa7..0000000000000000000000000000000000000000 --- a/PAR 152/Yolo Tensorflow/model_data/coco/coco.names +++ /dev/null @@ -1,80 +0,0 @@ -person -bicycle -car -motorbike -aeroplane -bus -train -truck -boat -traffic-light -fire-hydrant -stop-sign -parking-meter -bench -bird -cat -dog -horse -sheep -cow -elephant -bear -zebra -giraffe -backpack -umbrella -handbag -tie -suitcase -frisbee -skis -snowboard -sports-ball -kite -baseball-bat -baseball-glove -skateboard -surfboard -tennis-racket -bottle -wine-glass -cup -fork -knife -spoon -bowl -banana -apple -sandwich -orange -broccoli -carrot -hot-dog -pizza -donut -cake -chair -sofa -pottedplant -bed -diningtable -toilet -tvmonitor -laptop -mouse -remote -keyboard -cell-phone -microwave -oven -toaster -sink -refrigerator -book -clock -vase -scissors -teddy-bear -hair-drier -toothbrush diff --git a/PAR 152/Yolo Tensorflow/model_data/coco/val2017.txt b/PAR 152/Yolo Tensorflow/model_data/coco/val2017.txt deleted file mode 100644 index e341466a7f142854bf3dc4a0623c0908f129ef3a..0000000000000000000000000000000000000000 --- a/PAR 152/Yolo Tensorflow/model_data/coco/val2017.txt +++ /dev/null @@ -1,4952 +0,0 @@ -./model_data/coco/val2017/000000052507.jpg 105,107,182,291,0 66,143,255,247,37 -./model_data/coco/val2017/000000360137.jpg 302,280,572,568,25 355,509,422,624,26 406,342,640,640,0 -./model_data/coco/val2017/000000173799.jpg 156,188,274,477,0 251,258,479,414,20 343,231,401,282,20 478,217,535,294,20 531,223,624,297,20 277,181,376,253,20 473,172,535,223,20 226,165,273,229,20 68,132,141,189,20 396,224,495,262,20 61,161,137,225,20 470,195,527,226,20 236,254,327,313,20 8,176,175,515,0 361,212,472,243,20 224,151,585,407,20 -./model_data/coco/val2017/000000302107.jpg 92,174,346,519,0 167,348,291,404,34 245,140,285,195,0 53,486,111,536,35 0,299,112,573,0 -./model_data/coco/val2017/000000311394.jpg 155,208,208,500,79 2,5,480,624,0 -./model_data/coco/val2017/000000563470.jpg 104,190,117,337,34 86,94,216,323,0 1,8,41,24,56 10,11,57,100,56 -./model_data/coco/val2017/000000395575.jpg 138,112,167,159,0 216,124,280,158,13 -./model_data/coco/val2017/000000212573.jpg 253,5,429,75,25 483,98,640,199,2 0,118,168,255,2 213,126,281,214,2 56,0,135,105,9 374,67,457,414,0 258,54,386,429,0 445,111,495,142,2 237,122,263,143,2 245,107,259,120,2 230,118,241,129,2 172,125,185,146,2 432,112,453,125,2 144,93,152,106,9 162,55,173,65,9 -./model_data/coco/val2017/000000430961.jpg 114,67,125,80,32 39,0,380,314,0 284,89,321,134,35 299,116,352,198,0 -./model_data/coco/val2017/000000283717.jpg 279,147,624,333,68 281,139,617,339,69 296,41,591,155,69 -./model_data/coco/val2017/000000385719.jpg 372,61,540,207,62 120,90,253,208,62 255,207,397,311,63 519,337,553,363,64 432,325,460,350,64 46,280,242,311,66 185,333,375,358,66 192,322,377,340,66 264,281,383,296,66 318,164,349,206,73 100,273,133,288,65 421,203,484,223,73 624,123,629,159,73 533,18,590,82,73 540,95,610,190,73 531,253,589,264,73 199,256,222,271,64 -./model_data/coco/val2017/000000414385.jpg 0,274,75,317,2 151,276,219,325,2 95,280,128,304,2 124,281,147,302,2 127,279,152,299,2 147,281,159,293,2 211,286,215,291,2 399,252,466,374,0 428,364,473,385,36 -./model_data/coco/val2017/000000359833.jpg 168,283,229,349,47 0,158,290,368,47 0,362,150,640,47 54,0,356,76,47 169,103,209,137,47 28,82,74,124,47 0,134,65,183,47 146,138,238,190,47 215,143,256,181,49 71,324,462,630,0 -./model_data/coco/val2017/000000210520.jpg 268,0,366,111,40 164,267,234,335,41 346,98,471,254,41 114,381,137,563,42 394,372,421,540,43 463,51,610,308,45 187,188,218,213,75 513,0,576,45,40 0,202,124,343,41 425,0,485,40,41 0,0,612,612,60 254,28,331,209,75 576,202,601,228,44 424,161,571,237,44 420,375,449,514,44 570,209,603,306,44 68,200,118,248,44 -./model_data/coco/val2017/000000546475.jpg 164,178,221,254,67 32,0,383,630,0 224,106,381,570,0 -./model_data/coco/val2017/000000224807.jpg 295,141,325,176,56 174,141,199,177,56 139,172,440,328,60 163,51,221,159,0 201,57,299,176,0 313,58,420,190,0 396,71,493,236,0 298,102,577,428,0 564,28,619,94,0 322,250,345,284,41 386,133,402,158,41 316,281,365,297,44 387,246,411,274,44 287,270,323,300,45 398,220,429,241,45 152,267,190,285,45 500,221,618,428,24 15,47,94,207,0 1,270,144,398,26 553,223,619,428,26 554,190,604,229,26 256,247,274,284,41 131,248,153,283,41 345,208,362,237,41 371,202,404,211,44 323,181,347,196,45 263,86,287,113,60 571,78,640,213,0 512,91,613,338,0 598,247,640,320,26 181,150,198,169,26 208,185,233,194,44 361,261,395,285,45 243,167,265,182,45 228,187,340,230,45 63,68,176,180,0 62,63,97,101,0 91,63,126,101,0 365,234,431,246,44 0,101,32,156,60 0,139,314,428,0 319,205,353,214,44 345,116,361,143,26 194,180,216,196,45 187,189,197,205,45 0,19,639,169,0 -./model_data/coco/val2017/000000473869.jpg 532,148,559,230,39 51,12,325,401,0 2,310,442,427,40 287,296,361,348,45 547,215,595,283,75 293,232,355,332,44 217,357,269,373,53 499,141,548,288,39 332,270,344,297,39 56,332,69,359,41 577,163,617,278,41 -./model_data/coco/val2017/000000084270.jpg 152,273,163,295,24 484,264,513,334,26 44,435,86,479,28 430,354,460,391,28 524,318,554,379,28 0,247,84,472,0 91,258,143,391,0 125,264,149,356,0 228,255,269,358,0 487,257,533,371,0 208,264,218,292,0 567,260,595,321,0 611,263,636,337,0 170,266,186,317,0 93,276,133,346,26 418,288,428,318,26 231,276,234,285,27 415,266,452,384,0 460,265,479,309,0 617,276,624,295,27 427,332,469,356,28 475,261,488,307,0 153,269,167,318,0 198,357,205,363,74 189,356,196,363,74 203,349,217,374,74 1,4,603,382,0 -./model_data/coco/val2017/000000158548.jpg 139,236,184,305,18 429,186,467,204,2 529,180,574,259,0 208,182,222,223,0 225,190,236,206,0 618,185,626,206,0 258,191,262,202,0 490,186,495,202,0 251,191,255,200,0 327,161,475,198,7 499,184,505,199,0 584,182,591,192,0 589,185,595,196,0 602,189,609,204,0 280,191,290,199,0 543,193,547,197,2 382,171,409,197,3 298,164,320,184,7 513,189,518,202,0 489,174,639,211,0 -./model_data/coco/val2017/000000467315.jpg 396,303,469,405,56 15,306,88,405,56 206,101,253,186,0 1,337,68,420,56 423,335,507,426,56 149,285,306,327,56 101,98,446,378,58 -./model_data/coco/val2017/000000022371.jpg 166,134,201,246,27 93,21,370,271,0 0,130,196,273,63 385,241,425,262,73 -./model_data/coco/val2017/000000044068.jpg 177,161,404,503,77 3,18,480,630,56 -./model_data/coco/val2017/000000446574.jpg 205,35,222,80,39 1,336,204,631,61 219,22,241,81,39 -./model_data/coco/val2017/000000215778.jpg 473,139,541,199,41 133,34,546,395,63 560,233,639,291,64 362,0,414,54,73 289,0,317,46,73 397,0,453,101,73 299,1,341,48,73 330,0,392,53,73 393,0,441,91,73 272,0,308,45,73 258,0,281,43,73 251,0,273,42,73 466,124,502,172,41 164,202,467,284,66 387,9,422,62,73 242,0,263,40,73 410,163,492,198,66 267,0,290,43,73 325,1,355,48,73 -./model_data/coco/val2017/000000485130.jpg 6,120,629,453,55 0,30,640,466,60 -./model_data/coco/val2017/000000230819.jpg 202,153,282,274,0 220,265,293,284,37 -./model_data/coco/val2017/000000021465.jpg 198,6,240,123,75 245,0,363,77,56 -./model_data/coco/val2017/000000321333.jpg 138,197,368,392,77 336,55,631,392,0 57,16,353,388,0 -./model_data/coco/val2017/000000395388.jpg 403,445,480,551,18 173,277,330,594,0 22,205,147,628,0 110,275,154,408,0 174,273,220,341,0 160,336,189,442,0 0,304,18,407,0 4,269,44,415,0 33,264,56,292,0 398,378,479,402,18 321,361,348,405,18 168,429,195,510,25 -./model_data/coco/val2017/000000465718.jpg 115,51,334,191,62 327,30,565,189,62 542,364,584,412,67 0,167,219,404,63 491,357,531,403,64 190,331,431,423,66 29,262,219,399,66 106,98,119,115,0 390,85,428,144,0 186,107,220,159,0 496,75,514,103,0 61,219,80,249,0 -./model_data/coco/val2017/000000365385.jpg 252,38,356,220,79 297,313,640,427,71 350,176,452,332,41 329,118,376,184,79 350,84,392,186,79 112,222,298,427,41 -./model_data/coco/val2017/000000132587.jpg 286,199,321,286,39 14,16,312,405,0 502,0,544,70,0 312,0,367,84,0 0,127,16,157,0 0,73,13,88,14 246,0,288,45,0 263,134,640,425,13 167,278,180,295,39 232,0,265,35,0 -./model_data/coco/val2017/000000310200.jpg 116,83,563,425,54 400,138,640,175,44 187,1,442,76,45 -./model_data/coco/val2017/000000239347.jpg 206,157,529,292,0 334,200,355,226,27 123,119,530,317,59 305,136,419,252,0 -./model_data/coco/val2017/000000558213.jpg 126,288,171,317,1 255,216,313,353,0 133,249,159,324,0 246,343,297,361,36 314,190,640,316,6 121,322,142,328,36 -./model_data/coco/val2017/000000411665.jpg 313,2,639,420,15 42,89,322,374,15 -./model_data/coco/val2017/000000183716.jpg 86,259,118,300,27 220,229,271,477,27 2,47,221,494,0 8,74,349,230,56 148,14,351,483,0 -./model_data/coco/val2017/000000084674.jpg 134,229,174,288,62 421,295,480,327,57 144,171,478,630,0 0,158,195,629,0 395,213,416,262,74 252,370,292,405,54 140,365,159,449,73 195,285,396,634,0 166,313,210,401,57 -./model_data/coco/val2017/000000073326.jpg 53,0,638,473,72 387,205,406,244,39 408,208,428,242,39 517,267,553,335,39 455,214,484,287,39 365,210,389,264,39 492,234,532,323,39 429,181,462,265,39 563,247,618,343,39 494,357,528,410,39 391,316,412,352,39 165,83,181,106,39 191,82,206,103,39 257,277,306,302,45 -./model_data/coco/val2017/000000501368.jpg 119,3,375,493,0 192,316,207,368,39 176,324,188,367,39 155,24,190,45,78 -./model_data/coco/val2017/000000232692.jpg 256,45,398,214,0 585,91,619,148,0 620,93,639,148,0 252,193,396,225,37 492,144,515,170,0 522,141,638,150,37 460,37,525,89,0 411,48,458,92,0 451,43,477,80,0 -./model_data/coco/val2017/000000313783.jpg 362,3,500,209,42 26,100,85,155,51 1,145,49,220,51 6,81,61,116,51 0,26,66,152,51 80,80,143,146,51 37,135,100,185,51 -./model_data/coco/val2017/000000311928.jpg 594,206,639,253,32 249,271,557,336,34 77,30,254,390,0 -./model_data/coco/val2017/000000570756.jpg 202,334,291,353,33 366,327,474,346,33 512,323,624,342,33 119,178,132,184,33 152,174,159,178,33 157,248,179,270,33 340,229,349,233,33 354,209,361,215,33 498,223,508,228,33 224,298,267,346,0 415,290,435,331,0 185,283,192,302,0 555,292,580,335,0 162,284,170,302,0 211,280,221,304,0 150,282,155,301,0 274,283,279,296,0 135,281,143,299,0 290,280,297,297,0 194,282,569,302,0 351,278,358,296,0 190,231,219,248,33 161,146,170,150,33 0,303,53,324,33 485,271,492,291,0 440,168,456,173,33 0,149,520,289,33 0,268,562,310,0 -./model_data/coco/val2017/000000565624.jpg 308,127,622,370,20 40,127,148,282,20 -./model_data/coco/val2017/000000507015.jpg 270,166,351,297,0 367,163,432,306,0 485,185,551,406,0 82,133,130,275,0 111,126,139,236,0 89,94,118,157,0 127,188,141,202,35 420,189,439,205,35 110,126,117,135,35 -./model_data/coco/val2017/000000217060.jpg 247,303,328,374,4 -./model_data/coco/val2017/000000286458.jpg 321,51,358,105,77 319,103,365,144,77 25,2,127,123,24 59,20,311,302,28 347,11,455,139,28 -./model_data/coco/val2017/000000106757.jpg 212,223,421,640,0 276,192,280,201,0 0,35,301,640,20 -./model_data/coco/val2017/000000577735.jpg 62,2,578,444,58 394,250,495,447,75 -./model_data/coco/val2017/000000411530.jpg 518,287,572,418,0 555,292,597,391,0 482,290,501,342,0 495,289,506,304,0 370,293,414,353,0 368,290,381,334,0 334,293,345,338,0 0,289,46,385,31 0,278,25,424,0 426,292,507,454,0 627,283,640,370,0 390,435,509,469,30 343,306,348,337,30 425,295,441,357,0 181,212,185,234,0 385,300,405,318,24 584,299,599,309,24 505,295,527,376,0 523,402,563,425,30 555,390,597,404,30 381,348,405,353,30 400,291,609,474,0 -./model_data/coco/val2017/000000343706.jpg 179,313,310,399,67 0,2,640,489,0 -./model_data/coco/val2017/000000218362.jpg 279,0,385,117,74 97,0,248,67,74 498,83,550,165,74 560,103,637,216,74 175,269,355,418,74 484,301,554,390,74 417,54,489,145,74 241,132,446,256,74 -./model_data/coco/val2017/000000001425.jpg 64,184,440,403,48 486,182,640,383,45 -./model_data/coco/val2017/000000347265.jpg 184,330,255,472,0 190,456,262,480,30 -./model_data/coco/val2017/000000542776.jpg 227,150,391,271,14 392,3,639,239,59 246,197,640,421,0 34,200,640,426,73 -./model_data/coco/val2017/000000311081.jpg 0,533,166,639,61 -./model_data/coco/val2017/000000209222.jpg 470,254,594,392,13 106,106,152,193,0 384,106,409,132,2 292,102,347,123,7 119,125,136,159,26 199,121,235,170,0 226,120,239,165,0 222,119,230,133,0 410,197,561,377,0 484,123,512,171,0 272,113,281,132,0 458,118,500,165,0 431,119,448,151,0 321,124,342,147,0 403,105,416,143,0 458,119,467,131,0 452,119,461,133,0 164,95,485,185,0 -./model_data/coco/val2017/000000491090.jpg 0,136,146,325,3 294,164,380,259,3 116,56,353,484,0 24,203,478,640,3 442,134,478,258,3 441,289,477,482,3 -./model_data/coco/val2017/000000214720.jpg 174,115,375,225,57 260,222,350,308,56 58,142,191,220,57 1,309,375,490,60 20,193,309,333,0 101,366,235,403,43 122,321,211,381,55 48,221,134,272,56 131,24,209,156,58 295,5,374,138,58 227,35,255,70,58 -./model_data/coco/val2017/000000083113.jpg 455,124,620,320,20 245,196,392,274,20 -./model_data/coco/val2017/000000416885.jpg 259,259,500,354,48 64,0,183,322,40 38,15,91,214,40 371,201,500,255,42 0,219,27,268,43 391,201,500,244,44 173,0,500,159,2 180,134,279,215,54 358,217,499,266,43 2,108,500,369,60 -./model_data/coco/val2017/000000272212.jpg 151,279,234,349,19 493,273,527,306,19 518,272,593,311,19 -./model_data/coco/val2017/000000441491.jpg 2,2,385,474,0 323,29,532,277,0 398,71,640,480,0 347,396,428,473,41 283,264,423,340,53 -./model_data/coco/val2017/000000222235.jpg 250,73,341,143,14 119,130,431,386,15 -./model_data/coco/val2017/000000463802.jpg 340,0,640,478,0 284,74,502,473,38 1,2,370,468,77 -./model_data/coco/val2017/000000115946.jpg 162,111,224,174,9 217,497,228,528,0 119,502,172,544,2 185,502,227,529,2 240,503,258,519,2 319,499,350,523,2 308,500,323,514,2 154,500,187,535,2 226,504,236,518,2 255,503,264,517,2 262,503,275,514,2 266,445,277,456,9 387,466,393,480,9 163,474,172,489,9 363,461,371,480,9 57,499,76,542,58 249,414,265,429,9 -./model_data/coco/val2017/000000080340.jpg 181,153,207,218,27 500,111,639,313,56 498,37,640,315,60 145,71,276,324,0 253,6,338,204,0 330,1,432,190,0 421,1,506,224,0 525,0,631,69,0 0,299,45,427,0 546,47,566,101,41 564,69,583,104,41 610,76,628,112,41 234,225,302,401,28 532,42,548,77,40 590,67,610,108,41 632,54,640,78,41 562,44,578,76,41 585,68,591,102,41 577,49,589,83,41 490,0,554,151,0 -./model_data/coco/val2017/000000076731.jpg 50,31,602,346,63 -./model_data/coco/val2017/000000197022.jpg 168,345,639,478,53 25,57,508,340,53 -./model_data/coco/val2017/000000107226.jpg 146,290,253,496,16 57,283,156,512,16 1,360,77,589,16 346,76,480,365,0 11,155,53,217,0 137,131,308,342,0 0,33,208,109,25 85,78,258,127,25 311,105,408,142,25 217,129,299,155,25 232,127,272,165,0 326,133,350,212,0 35,148,83,215,0 103,124,161,240,0 267,137,331,325,0 386,253,479,490,1 344,141,370,202,0 63,111,122,216,0 -./model_data/coco/val2017/000000017627.jpg 264,235,375,302,2 30,233,147,327,2 27,214,105,266,2 168,237,270,297,2 412,234,483,285,2 479,234,569,285,2 1,1,156,473,5 150,224,169,295,0 259,228,273,249,0 344,227,373,254,2 100,241,129,276,2 598,242,640,276,2 551,241,586,278,2 460,231,528,255,2 172,235,182,265,0 187,226,203,248,0 -./model_data/coco/val2017/000000092053.jpg 143,78,275,194,48 0,181,61,288,0 309,0,391,180,41 273,0,311,95,41 341,303,477,426,42 326,259,556,348,43 235,259,352,386,54 382,1,640,422,60 65,71,307,215,45 368,78,640,249,45 96,176,485,427,45 -./model_data/coco/val2017/000000493442.jpg 236,22,483,392,0 324,357,463,390,30 -./model_data/coco/val2017/000000007574.jpg 501,306,533,389,39 483,299,510,381,39 1,168,103,445,72 464,312,485,379,40 452,307,472,372,40 252,242,427,353,69 43,353,308,429,71 102,74,153,89,45 348,300,401,340,45 304,146,362,236,68 205,55,230,92,75 240,57,267,93,75 -./model_data/coco/val2017/000000470924.jpg 474,40,515,74,2 0,229,122,478,56 330,136,352,182,56 578,270,640,480,56 317,69,364,101,56 151,47,212,133,56 32,86,87,116,56 0,55,33,114,56 55,33,88,50,56 16,30,47,45,56 110,153,510,473,60 297,154,318,214,40 327,193,349,253,41 238,241,265,317,41 333,302,422,431,41 205,441,311,474,42 367,312,408,333,42 209,425,329,459,43 367,297,410,316,43 182,274,213,318,43 366,246,399,282,43 166,347,216,388,53 263,249,347,294,53 197,224,284,253,53 295,327,340,357,53 188,300,225,319,53 556,28,611,53,2 499,17,640,61,2 246,79,354,217,0 344,78,478,294,0 403,117,627,480,0 287,18,374,100,0 158,6,220,115,0 215,3,275,120,0 19,113,224,443,0 204,3,240,50,0 287,14,329,67,0 300,3,305,19,0 392,6,396,20,0 399,46,424,67,2 390,36,411,52,2 296,156,317,212,41 282,68,292,77,41 55,58,82,88,56 232,38,278,127,56 138,7,174,71,0 211,343,283,413,53 360,229,388,251,53 133,391,206,435,53 79,121,107,189,56 586,9,591,19,0 385,334,424,431,40 129,33,142,72,56 0,41,89,68,60 1,111,118,220,60 323,8,336,16,0 -./model_data/coco/val2017/000000343315.jpg 520,62,581,210,10 -./model_data/coco/val2017/000000475484.jpg 361,347,424,396,2 75,0,136,52,9 275,23,398,269,12 0,322,21,377,0 81,330,89,363,0 112,332,122,356,0 17,327,26,356,0 120,335,126,349,0 55,329,72,370,0 6,89,37,127,9 148,146,191,197,9 140,337,271,388,2 -./model_data/coco/val2017/000000311002.jpg 276,147,340,295,0 35,148,256,422,0 335,157,352,215,0 0,136,253,286,34 273,86,282,95,32 295,195,315,211,35 348,187,352,194,35 435,191,639,421,0 619,147,640,209,0 -./model_data/coco/val2017/000000536947.jpg 292,133,410,350,72 80,231,143,332,56 1,253,28,320,56 532,202,640,263,7 259,438,307,458,39 173,370,194,388,39 -./model_data/coco/val2017/000000455219.jpg 247,226,441,366,19 313,216,491,340,19 472,202,544,369,0 309,197,334,234,0 -./model_data/coco/val2017/000000269866.jpg 110,50,530,392,68 -./model_data/coco/val2017/000000443426.jpg 193,370,333,504,27 20,203,480,631,0 91,604,276,640,56 -./model_data/coco/val2017/000000407614.jpg 365,0,523,126,58 386,121,511,421,72 494,377,594,425,56 209,200,220,216,41 191,198,202,216,41 344,224,400,359,69 267,213,345,227,71 458,105,509,123,45 355,189,404,224,68 548,25,639,275,37 177,194,191,214,39 379,177,388,196,39 471,78,510,106,45 -./model_data/coco/val2017/000000421060.jpg 139,149,291,277,0 618,175,634,195,0 107,89,110,97,0 138,87,144,98,0 303,212,317,223,0 29,253,35,269,0 132,89,136,96,0 0,264,5,279,0 603,176,619,229,0 629,177,640,229,0 24,253,28,265,0 5,267,7,280,0 575,19,577,26,0 83,223,250,310,30 306,5,635,233,0 -./model_data/coco/val2017/000000191288.jpg 117,65,547,380,17 258,0,391,203,0 -./model_data/coco/val2017/000000269196.jpg 178,188,430,420,18 181,108,427,300,18 4,135,193,349,18 0,47,129,191,18 397,146,640,427,18 -./model_data/coco/val2017/000000249219.jpg 92,184,518,456,5 -./model_data/coco/val2017/000000412887.jpg 1,103,481,631,19 -./model_data/coco/val2017/000000284764.jpg 0,1,511,422,0 350,250,402,284,43 428,293,640,418,45 462,238,530,327,41 419,254,520,360,44 382,154,640,324,60 109,200,252,422,67 -./model_data/coco/val2017/000000360393.jpg 64,62,614,383,53 502,263,640,427,45 579,0,640,180,45 -./model_data/coco/val2017/000000440507.jpg 55,0,129,107,25 46,0,114,109,25 203,146,452,321,28 -./model_data/coco/val2017/000000143961.jpg 300,10,612,269,25 295,8,405,102,25 131,158,229,352,0 309,186,428,308,0 482,178,602,346,0 584,125,639,351,0 57,153,133,284,0 447,267,562,356,0 82,16,152,123,0 231,23,307,95,0 160,73,305,153,0 116,62,161,141,0 150,87,233,148,16 232,3,288,42,16 251,239,353,351,0 131,116,192,159,24 187,34,210,61,24 366,287,432,348,26 0,140,82,326,0 22,123,97,220,0 1,0,577,355,0 -./model_data/coco/val2017/000000520871.jpg 2,104,640,418,60 463,12,567,134,41 1,162,285,214,42 23,175,564,391,53 412,1,502,189,39 -./model_data/coco/val2017/000000433243.jpg 194,134,484,373,22 162,66,548,355,23 -./model_data/coco/val2017/000000579970.jpg 111,230,140,292,58 370,105,407,155,62 264,149,318,205,56 170,172,258,257,57 299,193,316,198,73 184,155,254,194,57 170,151,257,219,57 170,150,258,270,56 -./model_data/coco/val2017/000000527784.jpg 231,77,299,242,39 319,76,388,253,39 0,248,47,306,42 363,208,568,353,48 0,197,638,503,60 291,23,340,203,75 60,197,146,319,48 141,216,270,314,48 -./model_data/coco/val2017/000000270883.jpg 5,2,640,393,59 65,96,546,315,0 248,71,262,85,74 -./model_data/coco/val2017/000000383838.jpg 277,422,362,502,65 521,465,552,585,56 0,8,427,588,0 359,287,546,588,0 -./model_data/coco/val2017/000000021903.jpg 334,224,551,474,0 5,109,319,386,20 615,239,640,332,0 -./model_data/coco/val2017/000000085823.jpg 149,0,395,344,22 329,0,639,359,22 0,2,217,341,22 -./model_data/coco/val2017/000000500826.jpg 164,384,216,426,9 -./model_data/coco/val2017/000000213830.jpg 393,218,409,226,32 491,202,511,239,0 200,171,311,311,0 276,191,388,421,0 203,172,418,357,38 407,239,411,242,32 20,236,53,279,56 0,203,35,286,0 411,204,438,258,0 23,232,28,243,56 -./model_data/coco/val2017/000000537241.jpg 130,24,545,393,54 -./model_data/coco/val2017/000000185250.jpg 167,387,276,567,16 114,195,217,486,0 125,60,166,102,29 0,354,10,423,0 122,364,132,400,29 -./model_data/coco/val2017/000000205776.jpg 91,28,534,268,21 -./model_data/coco/val2017/000000255664.jpg 93,41,323,339,16 315,51,372,103,29 -./model_data/coco/val2017/000000082085.jpg 118,0,639,405,6 107,226,122,299,0 9,252,34,288,0 603,158,627,210,0 483,133,497,215,0 256,196,260,207,0 69,177,115,335,0 210,187,223,210,0 340,217,351,283,0 397,144,426,220,0 243,211,246,229,0 572,111,624,137,0 -./model_data/coco/val2017/000000562059.jpg 2,66,197,309,41 201,371,427,541,44 123,127,427,429,45 0,287,146,435,47 226,53,373,170,47 0,0,427,639,60 -./model_data/coco/val2017/000000128372.jpg 0,73,416,379,5 379,202,446,380,0 445,222,477,320,0 538,208,578,336,0 594,229,610,282,0 611,224,628,277,0 634,230,640,283,0 433,219,456,324,0 548,244,576,295,26 446,263,459,275,26 577,232,593,281,0 366,231,380,243,2 529,264,547,300,26 188,206,216,251,0 586,260,598,274,26 583,248,594,258,26 -./model_data/coco/val2017/000000326970.jpg 143,321,186,338,67 578,255,607,261,67 405,300,430,313,67 0,115,203,477,0 442,18,639,453,0 328,253,457,339,73 82,334,206,386,73 160,233,290,402,26 187,340,261,382,73 610,204,640,230,73 266,31,478,473,0 -./model_data/coco/val2017/000000239843.jpg 200,155,280,370,11 -./model_data/coco/val2017/000000133233.jpg 250,237,326,276,8 220,227,244,249,8 438,231,479,242,8 164,220,180,231,8 396,227,433,238,8 359,202,404,243,8 411,204,500,227,8 212,216,232,226,8 504,165,635,255,8 390,238,428,252,8 417,222,446,236,8 64,207,93,228,8 131,217,162,244,8 16,186,573,258,8 -./model_data/coco/val2017/000000365766.jpg 84,153,198,230,68 76,242,239,448,69 345,266,431,287,71 -./model_data/coco/val2017/000000512648.jpg 406,254,503,401,19 -./model_data/coco/val2017/000000565776.jpg 120,161,157,216,58 453,205,474,235,41 241,197,249,205,41 572,218,638,240,45 162,197,190,213,45 282,198,356,306,69 491,222,554,228,71 298,132,308,179,44 463,119,559,220,72 131,187,143,216,75 98,223,180,244,71 579,210,628,218,47 -./model_data/coco/val2017/000000567740.jpg 1,116,219,424,0 441,113,574,468,0 55,395,276,463,30 347,399,474,468,30 563,189,585,251,24 47,210,87,282,24 -./model_data/coco/val2017/000000068387.jpg 126,195,205,329,0 309,149,398,290,0 8,6,70,118,0 336,108,345,153,34 278,271,293,293,35 195,241,293,334,0 332,152,343,165,35 -./model_data/coco/val2017/000000504711.jpg 32,197,640,398,42 144,0,577,291,55 -./model_data/coco/val2017/000000014380.jpg 75,228,88,237,2 186,259,640,383,6 -./model_data/coco/val2017/000000528399.jpg 53,155,193,298,48 2,301,310,422,60 440,135,572,222,41 508,31,594,157,41 433,28,521,166,41 549,244,611,427,44 339,195,570,396,45 37,50,333,151,45 6,143,170,207,0 572,98,640,302,41 -./model_data/coco/val2017/000000093261.jpg 55,33,261,241,0 328,243,499,370,0 150,112,363,328,33 65,71,264,238,0 -./model_data/coco/val2017/000000148957.jpg 405,50,579,242,54 226,70,406,215,54 66,104,255,273,54 431,237,623,433,54 239,203,452,391,54 47,272,266,459,54 -./model_data/coco/val2017/000000409268.jpg 40,12,437,612,77 -./model_data/coco/val2017/000000286503.jpg 162,285,180,312,0 143,289,161,313,0 234,178,525,380,20 299,289,314,308,0 -./model_data/coco/val2017/000000178982.jpg 322,282,369,360,3 450,282,510,355,3 458,248,498,339,0 321,243,374,350,0 472,62,493,112,9 500,55,513,96,9 561,184,576,203,9 503,193,513,215,9 566,199,582,216,9 -./model_data/coco/val2017/000000090062.jpg 59,126,419,396,19 -./model_data/coco/val2017/000000078565.jpg 201,306,232,323,16 201,193,248,264,8 51,200,115,256,8 412,265,436,345,0 469,286,490,343,0 293,251,301,289,0 496,262,516,337,0 571,244,581,267,0 350,249,364,283,0 332,247,342,280,0 238,245,247,264,0 488,276,504,341,0 540,242,567,269,0 478,249,487,263,0 314,251,325,282,0 183,209,213,240,8 529,259,558,269,8 464,188,508,263,8 513,187,552,255,8 344,252,351,276,0 357,228,376,234,8 255,174,339,283,8 587,232,613,235,8 443,230,459,233,8 96,222,621,286,0 -./model_data/coco/val2017/000000562818.jpg 548,218,553,227,0 304,313,319,319,31 508,263,528,267,31 303,292,307,301,24 483,237,488,247,0 520,229,523,235,0 191,277,201,280,30 321,234,328,252,0 303,282,325,316,0 190,254,199,279,0 448,230,456,242,0 518,243,521,259,0 632,282,639,301,0 508,238,512,247,0 513,239,518,249,0 480,256,495,258,30 441,241,452,242,30 485,262,491,264,31 506,252,513,254,31 355,245,364,247,31 510,263,526,266,30 468,237,470,240,0 507,239,514,253,0 353,229,533,268,0 -./model_data/coco/val2017/000000526392.jpg 38,172,175,329,2 143,174,448,326,2 227,246,499,329,2 480,206,500,247,2 385,39,406,93,9 113,70,153,120,9 148,0,170,52,9 421,3,451,73,9 -./model_data/coco/val2017/000000485027.jpg 26,16,42,31,32 85,179,242,619,0 233,248,322,321,38 -./model_data/coco/val2017/000000240754.jpg 203,79,464,366,19 469,63,639,315,19 22,195,188,294,19 -./model_data/coco/val2017/000000032334.jpg 182,172,227,234,56 84,89,397,476,0 228,5,639,474,0 35,91,175,325,0 149,111,183,175,0 166,248,226,341,40 262,251,338,360,40 0,277,18,362,40 2,106,78,224,0 587,129,637,167,2 -./model_data/coco/val2017/000000376442.jpg 96,110,467,596,61 169,375,268,513,77 -./model_data/coco/val2017/000000204186.jpg 157,50,353,285,0 270,57,391,209,0 38,65,80,193,0 83,47,144,115,0 557,81,589,102,24 591,70,599,92,24 136,88,154,140,26 476,56,499,92,0 458,65,485,149,0 320,71,352,93,0 350,62,392,110,0 513,53,533,93,0 100,74,151,188,0 146,62,184,183,0 123,159,557,483,3 337,108,511,216,3 27,51,63,108,0 521,66,562,190,0 373,89,380,95,26 0,37,639,125,0 -./model_data/coco/val2017/000000473118.jpg 34,0,110,48,1 84,51,222,387,0 68,306,159,387,36 -./model_data/coco/val2017/000000452084.jpg 216,281,622,577,42 246,74,634,549,45 8,22,369,374,45 0,32,604,629,60 289,165,445,363,52 -./model_data/coco/val2017/000000169076.jpg 222,293,592,594,16 23,30,292,265,62 53,75,178,206,0 153,111,252,210,0 194,294,593,593,15 316,328,404,386,59 -./model_data/coco/val2017/000000473821.jpg 275,168,500,292,57 134,169,262,312,56 3,167,81,291,56 422,222,475,247,45 -./model_data/coco/val2017/000000061960.jpg 5,1,411,270,59 19,6,640,370,0 71,208,243,302,59 0,129,640,371,59 -./model_data/coco/val2017/000000495146.jpg 235,376,433,480,2 96,252,638,363,6 534,339,640,461,8 459,358,535,436,8 181,94,260,417,8 421,345,460,480,0 537,415,583,480,0 601,432,639,479,0 147,358,189,480,0 379,341,437,454,0 250,344,300,385,8 506,392,538,480,0 115,377,124,390,0 220,338,236,358,0 355,363,387,377,8 0,344,139,471,7 -./model_data/coco/val2017/000000447465.jpg 266,4,450,412,0 82,64,202,396,0 12,165,220,298,31 330,388,454,419,30 -./model_data/coco/val2017/000000084031.jpg 276,259,296,282,35 97,217,167,360,0 59,32,78,61,0 103,215,118,263,0 45,213,69,270,0 25,212,45,273,0 279,186,376,335,0 183,253,279,350,0 213,207,226,253,0 63,211,79,271,0 2,217,33,271,0 255,185,265,209,0 230,204,241,224,0 422,238,436,247,32 367,228,384,261,34 397,187,408,202,0 79,41,293,270,0 -./model_data/coco/val2017/000000355169.jpg 241,105,316,194,74 -./model_data/coco/val2017/000000151516.jpg 202,224,472,314,14 -./model_data/coco/val2017/000000380711.jpg 258,212,387,488,0 248,237,340,444,37 -./model_data/coco/val2017/000000023230.jpg 311,254,363,277,14 359,248,414,275,14 104,216,147,237,14 4,234,37,242,14 -./model_data/coco/val2017/000000402334.jpg 222,416,252,450,74 127,424,143,458,74 -./model_data/coco/val2017/000000236592.jpg 1,167,243,472,16 231,0,640,480,69 -./model_data/coco/val2017/000000002431.jpg 307,1,430,209,40 106,391,234,567,41 357,415,457,632,41 180,117,244,193,43 44,377,183,468,44 437,480,454,496,44 5,6,457,626,60 102,0,204,120,0 0,0,80,135,0 -./model_data/coco/val2017/000000099114.jpg 200,177,228,205,1 197,180,203,194,1 195,174,206,193,1 242,67,259,101,9 362,220,381,246,26 164,174,188,209,26 360,166,384,252,0 309,164,342,247,0 73,150,119,236,0 159,157,189,240,0 448,160,465,215,0 427,165,436,205,0 406,161,419,205,0 279,63,308,99,9 154,148,169,214,0 480,173,492,217,0 331,161,341,185,0 467,162,478,212,0 346,163,359,192,0 176,151,194,200,0 184,147,425,218,0 -./model_data/coco/val2017/000000341973.jpg 229,48,500,370,0 203,269,270,339,54 287,206,351,269,54 0,344,59,370,13 53,124,301,368,0 -./model_data/coco/val2017/000000236599.jpg 410,264,438,299,0 279,173,290,191,0 322,164,333,188,0 306,96,346,145,33 164,45,196,72,33 180,66,226,93,33 209,62,284,113,33 278,88,315,135,33 369,95,400,114,33 425,49,474,81,33 461,70,500,93,33 72,36,190,131,33 48,84,149,168,33 0,44,26,155,33 238,211,248,256,0 -./model_data/coco/val2017/000000269113.jpg 433,150,608,368,16 305,93,405,210,16 466,194,584,252,16 28,78,169,284,16 -./model_data/coco/val2017/000000250758.jpg 121,113,529,392,22 19,163,95,208,22 -./model_data/coco/val2017/000000226984.jpg 290,9,381,57,58 450,13,514,70,58 177,213,205,286,39 129,199,157,255,39 466,99,541,397,72 162,170,166,184,43 166,169,174,185,43 171,174,177,191,43 182,176,189,191,43 284,171,403,348,69 153,230,213,247,71 169,172,177,186,43 179,188,188,202,43 173,210,190,223,45 117,198,126,221,39 25,224,54,303,40 101,222,123,261,40 80,220,104,265,40 176,168,179,173,43 179,178,181,190,43 180,175,184,189,43 173,175,179,191,43 464,191,476,202,39 501,80,518,104,41 -./model_data/coco/val2017/000000179653.jpg 206,161,299,254,74 -./model_data/coco/val2017/000000169356.jpg 228,0,487,236,0 242,180,478,325,36 -./model_data/coco/val2017/000000330396.jpg 238,65,327,370,0 316,80,371,347,0 361,210,395,247,29 399,161,409,182,0 409,161,417,175,0 390,159,405,183,0 -./model_data/coco/val2017/000000458663.jpg 543,254,607,343,56 495,238,544,309,56 604,258,640,349,56 559,240,608,261,56 498,251,620,325,60 525,225,570,255,57 95,294,260,363,71 61,136,277,261,25 572,201,583,213,41 38,279,50,302,43 621,246,640,262,56 24,314,52,330,76 602,201,614,214,41 596,200,602,212,41 631,200,639,214,41 24,306,31,317,43 24,290,34,311,43 18,300,25,314,43 302,257,417,425,69 527,227,563,258,56 562,198,573,214,41 -./model_data/coco/val2017/000000184338.jpg 16,7,548,421,7 -./model_data/coco/val2017/000000122969.jpg 1,48,387,327,22 0,4,433,328,22 -./model_data/coco/val2017/000000304545.jpg 1,1,640,522,28 -./model_data/coco/val2017/000000469192.jpg 176,225,637,409,7 97,283,103,300,0 389,105,431,132,33 47,40,61,52,33 508,50,549,70,33 372,151,383,163,33 550,220,558,227,33 547,240,558,247,33 341,190,358,211,33 520,141,549,185,33 491,80,575,171,33 613,221,621,229,33 631,201,640,215,33 70,289,76,299,0 545,135,570,160,33 38,154,582,300,33 -./model_data/coco/val2017/000000210502.jpg 0,31,639,444,6 -./model_data/coco/val2017/000000079651.jpg 396,9,511,377,39 150,0,261,390,39 280,0,385,379,39 294,345,632,459,46 179,365,491,473,46 -./model_data/coco/val2017/000000456015.jpg 476,111,623,240,17 283,121,377,228,17 373,107,515,240,17 257,117,335,221,17 328,58,379,133,0 295,64,326,123,0 513,70,565,182,0 405,56,463,173,0 -./model_data/coco/val2017/000000121497.jpg 566,58,640,422,0 0,0,254,480,0 45,229,163,375,0 547,260,596,326,0 174,126,300,282,0 285,50,477,354,0 -./model_data/coco/val2017/000000042628.jpg 481,0,530,109,0 531,0,568,97,0 273,0,311,95,0 225,1,272,83,0 385,0,441,100,0 467,44,496,99,31 530,14,550,50,26 385,214,461,353,10 -./model_data/coco/val2017/000000332570.jpg 102,56,319,442,67 0,44,371,500,0 -./model_data/coco/val2017/000000505565.jpg 269,90,497,354,14 376,100,462,200,14 453,51,524,160,14 562,19,589,70,14 -./model_data/coco/val2017/000000096001.jpg 0,196,640,378,25 296,0,585,182,73 42,58,181,156,45 -./model_data/coco/val2017/000000203639.jpg 80,38,322,617,0 199,152,244,239,27 -./model_data/coco/val2017/000000328286.jpg 191,321,310,363,8 145,341,254,408,8 45,355,181,424,8 118,221,334,282,8 564,208,583,214,8 217,212,228,215,8 -./model_data/coco/val2017/000000261706.jpg 100,59,370,626,15 131,219,204,274,65 1,1,477,631,57 -./model_data/coco/val2017/000000390246.jpg 345,146,435,229,0 283,158,343,191,37 -./model_data/coco/val2017/000000520832.jpg 241,222,378,443,0 279,281,346,400,26 180,65,194,170,25 205,71,220,170,25 539,115,572,212,25 562,132,599,210,25 247,75,262,170,25 103,62,115,190,25 143,60,156,162,25 159,65,177,160,25 199,72,209,195,25 548,117,592,214,25 123,62,135,190,25 153,63,166,161,25 259,74,273,171,25 -./model_data/coco/val2017/000000296317.jpg 311,316,361,396,23 275,333,313,400,23 277,284,310,314,23 -./model_data/coco/val2017/000000231088.jpg 170,346,363,485,25 1,175,225,391,25 102,1,375,268,25 28,386,218,547,25 69,513,265,625,25 235,455,425,628,25 -./model_data/coco/val2017/000000187585.jpg 103,0,549,342,0 62,0,212,292,36 -./model_data/coco/val2017/000000549674.jpg 34,31,315,269,62 325,8,622,337,62 198,310,238,355,67 482,337,537,396,64 57,346,460,458,66 317,263,381,342,41 -./model_data/coco/val2017/000000052565.jpg 167,182,469,387,19 -./model_data/coco/val2017/000000322864.jpg 0,379,427,596,2 292,351,374,396,2 1,354,23,411,2 12,351,73,399,2 286,337,301,365,0 315,313,427,440,2 -./model_data/coco/val2017/000000329080.jpg 111,238,616,472,59 0,183,328,363,59 0,303,20,347,28 -./model_data/coco/val2017/000000479732.jpg 0,54,597,399,48 72,0,225,35,41 1,43,639,421,45 -./model_data/coco/val2017/000000356531.jpg 422,214,441,290,39 475,227,485,245,39 338,274,640,479,60 1,17,410,474,0 442,240,501,332,41 446,436,574,479,42 447,226,459,244,39 417,442,588,479,43 -./model_data/coco/val2017/000000409198.jpg 202,38,456,383,0 578,63,608,75,13 621,62,639,75,13 380,61,407,74,13 191,174,259,239,29 198,46,226,65,13 -./model_data/coco/val2017/000000446117.jpg 1,8,640,425,13 251,149,382,262,49 -./model_data/coco/val2017/000000038576.jpg 69,37,283,290,62 215,510,330,612,64 293,362,346,388,64 41,377,428,514,66 -./model_data/coco/val2017/000000165257.jpg 328,87,459,112,71 -./model_data/coco/val2017/000000001761.jpg 282,139,333,183,4 150,8,224,85,4 11,615,16,627,0 4,616,11,626,0 15,614,21,627,0 36,625,41,632,0 21,617,28,627,0 -./model_data/coco/val2017/000000104803.jpg 66,58,261,455,61 -./model_data/coco/val2017/000000391290.jpg 123,48,235,99,2 223,84,351,289,0 292,66,411,291,0 206,38,275,207,0 427,141,468,160,29 0,22,86,56,25 -./model_data/coco/val2017/000000146498.jpg 107,303,126,312,2 129,297,138,306,2 112,274,128,279,2 131,272,144,277,2 109,278,127,286,2 100,274,109,277,2 -./model_data/coco/val2017/000000077595.jpg 225,84,531,404,15 209,76,640,425,59 0,2,289,420,63 -./model_data/coco/val2017/000000522007.jpg 38,0,204,333,58 108,338,133,355,41 0,202,46,241,47 537,299,640,424,68 395,332,539,472,69 85,322,139,359,71 0,364,59,448,45 85,338,105,356,45 84,338,105,358,41 -./model_data/coco/val2017/000000302165.jpg 105,232,386,370,19 191,222,482,334,19 3,309,216,474,19 310,208,520,283,19 419,205,520,254,19 381,134,573,257,19 572,181,603,210,19 572,174,611,208,19 572,169,620,196,19 554,184,592,220,19 -./model_data/coco/val2017/000000234366.jpg 227,232,264,269,74 -./model_data/coco/val2017/000000167353.jpg 0,37,315,640,74 -./model_data/coco/val2017/000000252701.jpg 301,28,373,77,0 165,31,314,258,0 135,197,330,310,37 336,64,368,74,37 -./model_data/coco/val2017/000000108503.jpg 330,326,356,398,0 361,330,390,400,0 575,206,584,214,0 315,338,358,372,37 363,339,405,378,37 589,210,594,215,0 513,223,516,230,0 623,215,626,223,0 583,207,586,217,0 569,228,571,234,0 613,217,620,223,0 561,230,564,236,0 170,256,174,260,0 76,240,83,258,0 86,259,90,265,0 7,204,584,269,0 -./model_data/coco/val2017/000000495448.jpg 40,15,361,539,55 345,522,375,640,43 -./model_data/coco/val2017/000000435205.jpg 10,95,203,294,77 27,0,497,330,0 -./model_data/coco/val2017/000000445722.jpg 229,143,312,461,0 145,223,171,282,0 140,329,219,386,24 4,1,318,494,8 110,390,242,458,28 43,406,119,457,28 -./model_data/coco/val2017/000000192871.jpg 37,147,607,427,45 348,245,507,393,49 69,158,197,310,49 382,165,552,299,49 35,354,122,416,46 141,161,351,366,47 123,306,240,421,49 235,318,464,425,49 485,333,640,427,60 0,350,145,427,60 -./model_data/coco/val2017/000000194875.jpg 45,290,469,552,3 290,288,638,553,3 159,223,257,324,0 5,228,100,325,0 442,243,499,320,0 512,237,587,320,0 219,168,309,290,0 292,157,365,292,0 441,144,517,289,0 389,154,447,237,0 387,240,506,360,0 304,205,354,278,26 376,92,389,135,39 457,94,468,125,39 417,210,429,235,41 393,298,491,363,56 511,274,531,308,56 580,298,640,475,56 247,287,277,320,56 1,287,63,351,56 114,286,155,330,58 393,201,404,225,75 263,234,328,334,0 0,328,128,566,3 447,95,457,120,39 434,97,447,122,39 412,101,424,135,39 401,101,412,136,39 389,93,399,136,39 366,97,377,136,39 322,94,333,136,39 309,97,322,135,39 344,95,354,136,39 249,130,263,168,39 350,224,467,274,60 183,322,214,332,60 588,239,640,299,0 388,205,399,237,41 109,278,122,317,41 -./model_data/coco/val2017/000000124798.jpg 41,299,137,369,2 574,311,640,425,2 0,293,58,375,2 546,313,593,346,2 496,314,536,340,2 170,238,408,364,5 408,299,476,353,7 244,267,271,294,0 472,313,499,338,2 530,314,551,333,2 591,315,611,336,2 2,269,66,290,25 99,276,143,292,25 125,278,157,293,25 148,279,176,293,25 47,271,88,301,25 -./model_data/coco/val2017/000000489339.jpg 54,90,368,640,0 0,136,426,638,37 -./model_data/coco/val2017/000000457262.jpg 27,122,437,280,46 64,151,457,385,46 4,6,607,592,60 -./model_data/coco/val2017/000000131556.jpg 130,272,448,313,30 577,171,588,198,0 546,176,558,203,0 220,220,244,270,0 228,86,607,300,0 524,181,531,206,0 -./model_data/coco/val2017/000000437392.jpg 154,102,396,621,61 -./model_data/coco/val2017/000000035279.jpg 325,229,402,302,67 1,220,165,463,0 239,187,589,463,38 165,0,408,233,63 464,241,629,414,73 404,0,639,192,26 445,62,526,215,39 404,195,507,266,67 93,226,345,392,73 -./model_data/coco/val2017/000000140840.jpg 204,98,219,146,0 70,114,78,136,0 135,172,205,239,33 218,171,253,221,33 356,168,463,255,33 258,192,326,246,33 335,171,358,234,33 354,135,368,158,33 317,132,332,167,33 273,128,311,157,33 61,191,145,219,33 373,135,400,168,33 239,128,253,154,33 33,197,61,229,33 47,123,52,137,0 347,135,356,148,0 31,124,35,137,0 461,109,492,135,7 0,187,40,225,33 1,106,444,191,33 -./model_data/coco/val2017/000000434230.jpg 238,91,287,199,0 271,145,302,191,0 237,75,267,118,0 281,126,298,149,0 254,245,281,292,75 138,232,156,295,75 337,233,368,309,75 200,216,228,290,75 321,257,356,313,75 62,256,87,313,75 55,251,65,285,75 45,222,95,275,75 94,237,107,272,75 360,246,393,313,75 401,246,430,308,75 379,254,417,312,75 14,60,32,83,45 43,172,67,197,45 337,167,391,258,75 33,176,48,196,45 58,56,237,223,75 -./model_data/coco/val2017/000000559543.jpg 333,161,499,333,57 214,120,319,329,0 283,184,298,203,65 62,160,231,303,56 381,119,402,174,75 -./model_data/coco/val2017/000000266206.jpg 255,300,265,332,39 262,283,287,328,39 -./model_data/coco/val2017/000000563349.jpg 185,247,364,414,0 359,300,391,441,31 -./model_data/coco/val2017/000000504589.jpg 268,363,382,600,0 245,268,309,292,29 0,364,153,632,0 -./model_data/coco/val2017/000000365745.jpg 140,135,544,385,7 1,205,153,298,7 368,117,381,144,9 541,171,551,189,9 576,237,640,392,0 598,257,639,295,24 553,221,575,279,0 434,179,440,191,9 -./model_data/coco/val2017/000000287347.jpg 390,270,426,388,39 425,287,459,398,39 68,56,334,514,0 174,100,287,401,0 177,489,275,638,41 77,596,194,640,41 211,455,355,485,43 269,362,303,381,43 288,305,319,324,45 202,393,359,439,53 228,358,351,390,53 434,268,451,288,39 445,268,458,315,39 464,289,468,300,39 0,573,112,639,63 -./model_data/coco/val2017/000000019924.jpg 142,294,282,500,27 14,29,449,494,0 -./model_data/coco/val2017/000000257566.jpg 257,133,391,242,8 273,110,286,127,0 251,117,265,149,0 291,99,320,136,0 317,104,351,130,0 209,119,220,147,26 251,114,296,174,8 285,118,295,127,0 208,108,234,177,0 226,109,236,140,0 0,233,64,480,0 228,112,236,173,0 235,130,242,149,26 347,112,350,116,67 -./model_data/coco/val2017/000000454750.jpg 0,14,412,421,22 235,168,581,427,22 -./model_data/coco/val2017/000000227399.jpg 16,255,84,396,1 533,184,640,342,3 105,91,460,387,6 90,231,109,256,24 467,222,490,249,26 424,198,442,232,26 578,155,613,203,0 464,168,495,296,0 136,199,211,349,0 78,191,128,321,0 52,202,80,252,0 9,190,89,338,0 0,214,19,349,0 494,180,532,287,0 129,224,141,256,0 204,283,221,317,28 428,175,457,245,0 383,172,426,240,0 67,290,80,303,1 442,178,456,209,0 435,215,459,229,26 494,231,512,245,26 616,158,640,239,0 124,174,476,287,0 -./model_data/coco/val2017/000000573391.jpg 3,201,143,278,21 -./model_data/coco/val2017/000000491757.jpg 316,154,554,365,15 1,8,640,473,59 -./model_data/coco/val2017/000000505451.jpg 200,131,252,164,0 222,145,256,169,37 -./model_data/coco/val2017/000000183675.jpg 113,113,640,412,17 352,15,533,406,0 -./model_data/coco/val2017/000000350023.jpg 537,426,631,479,5 386,357,393,370,0 522,414,531,439,0 377,350,383,363,0 180,441,194,464,0 325,369,344,387,2 197,396,221,418,2 212,385,231,399,2 408,350,414,364,9 346,343,351,367,9 398,430,431,459,2 265,329,280,342,2 255,314,266,322,2 354,400,380,424,2 217,372,237,387,2 226,363,244,377,2 371,388,393,407,2 185,415,214,438,2 345,432,378,459,2 386,362,393,372,1 405,374,425,392,2 119,394,128,418,9 407,332,412,345,0 395,322,398,334,0 175,449,193,470,3 112,289,358,479,2 -./model_data/coco/val2017/000000165500.jpg 418,261,511,311,21 269,256,311,283,21 175,252,209,278,21 -./model_data/coco/val2017/000000404534.jpg 337,312,353,324,2 -./model_data/coco/val2017/000000293044.jpg 0,0,287,160,60 88,16,153,76,51 72,63,171,138,44 152,23,269,140,48 -./model_data/coco/val2017/000000311303.jpg 99,146,282,269,48 546,0,632,91,56 0,54,640,427,60 353,55,622,408,41 0,201,62,225,43 0,0,245,66,0 523,0,543,68,56 91,94,216,181,48 -./model_data/coco/val2017/000000515577.jpg 205,117,246,192,0 221,190,236,215,30 247,158,271,162,30 257,91,285,159,0 -./model_data/coco/val2017/000000448263.jpg 80,6,303,229,0 18,12,81,224,0 215,62,238,108,0 204,32,218,60,0 199,13,217,39,0 84,33,111,75,0 99,99,105,104,32 18,122,52,167,35 158,21,173,47,0 80,69,97,118,0 229,49,248,78,0 221,33,240,56,0 202,72,217,110,0 198,60,208,83,0 0,47,20,80,0 1,0,277,122,0 -./model_data/coco/val2017/000000135890.jpg 173,106,211,155,74 104,107,141,156,74 274,546,284,579,0 83,558,92,574,0 31,552,40,572,0 46,557,59,574,0 258,557,266,579,0 19,555,29,572,0 0,555,7,570,0 290,556,301,575,0 261,552,267,561,0 101,553,115,576,0 -./model_data/coco/val2017/000000196185.jpg 105,155,527,275,4 -./model_data/coco/val2017/000000088265.jpg 167,260,269,466,17 -./model_data/coco/val2017/000000577864.jpg 526,84,556,111,32 127,0,403,335,0 502,0,552,66,0 295,0,487,165,0 -./model_data/coco/val2017/000000055002.jpg 130,3,329,372,61 155,323,315,374,0 -./model_data/coco/val2017/000000275727.jpg 25,143,557,388,6 6,202,24,244,9 -./model_data/coco/val2017/000000157418.jpg 35,26,175,306,39 197,220,454,329,48 413,311,478,532,48 0,262,478,631,60 151,177,219,258,41 0,200,100,321,45 158,239,439,350,45 220,313,480,631,45 -./model_data/coco/val2017/000000159458.jpg 220,217,311,252,16 112,162,516,463,59 525,246,640,428,56 -./model_data/coco/val2017/000000049259.jpg 165,56,285,135,0 -./model_data/coco/val2017/000000509656.jpg 119,129,429,469,22 251,196,383,322,22 -./model_data/coco/val2017/000000104603.jpg 158,234,279,299,21 422,160,443,185,21 -./model_data/coco/val2017/000000024144.jpg 68,23,561,454,53 -./model_data/coco/val2017/000000243989.jpg 154,65,373,438,0 121,249,272,418,36 0,362,14,396,0 393,354,471,438,0 83,177,194,433,0 313,190,446,432,0 480,332,500,438,0 27,406,82,438,0 -./model_data/coco/val2017/000000051314.jpg 227,37,445,343,0 45,251,214,329,37 -./model_data/coco/val2017/000000186345.jpg 188,192,224,247,33 137,145,170,203,33 32,61,89,151,33 317,40,332,57,14 279,55,289,73,14 276,67,286,77,14 261,82,275,101,14 243,226,280,291,33 -./model_data/coco/val2017/000000022623.jpg 4,0,639,451,67 -./model_data/coco/val2017/000000007108.jpg 125,26,418,420,20 401,77,632,426,20 338,0,504,93,20 120,219,203,345,20 567,49,637,372,20 -./model_data/coco/val2017/000000219440.jpg 485,172,640,424,19 231,142,601,421,19 3,130,335,425,19 17,230,128,420,19 594,151,623,164,19 -./model_data/coco/val2017/000000338624.jpg 162,153,205,234,16 525,136,637,307,56 494,147,573,287,56 422,140,503,264,56 299,119,322,167,56 28,84,51,107,2 6,87,23,99,2 224,28,299,225,0 118,80,131,119,0 100,84,115,118,0 82,23,93,48,9 290,168,299,179,49 395,139,471,244,56 373,133,446,237,56 461,144,536,265,56 24,89,30,102,2 305,130,359,209,56 306,127,349,173,56 -./model_data/coco/val2017/000000136466.jpg 32,94,321,476,69 110,274,136,302,74 -./model_data/coco/val2017/000000470173.jpg 226,173,298,219,1 211,173,260,214,1 -./model_data/coco/val2017/000000558558.jpg 515,289,628,328,2 257,186,281,214,9 575,107,617,135,9 627,71,640,139,9 199,181,222,210,9 -./model_data/coco/val2017/000000452321.jpg 389,135,640,435,5 2,209,185,296,5 287,224,397,289,5 172,218,291,293,5 -./model_data/coco/val2017/000000270244.jpg 103,145,357,337,22 -./model_data/coco/val2017/000000282046.jpg 76,166,187,244,13 -./model_data/coco/val2017/000000377635.jpg 284,189,359,199,36 293,182,347,195,36 298,204,309,223,0 284,205,297,221,0 515,217,527,245,0 254,41,379,178,0 -./model_data/coco/val2017/000000343218.jpg 550,226,557,233,32 284,232,290,238,32 174,234,180,240,32 100,235,107,242,32 67,235,74,242,32 602,181,609,187,32 585,188,588,191,32 401,172,407,180,32 483,126,640,190,2 17,131,114,197,2 112,136,230,194,2 244,107,384,388,0 198,99,250,182,38 357,120,500,209,2 288,231,294,237,32 599,190,604,194,32 599,177,605,183,32 593,188,598,193,32 438,181,456,219,38 598,184,608,190,32 397,101,442,240,0 245,139,310,182,2 66,172,613,247,32 -./model_data/coco/val2017/000000034071.jpg 291,233,510,421,12 60,215,297,420,12 -./model_data/coco/val2017/000000023781.jpg 76,120,320,258,50 377,313,492,373,51 481,339,581,421,51 337,285,460,337,51 379,362,482,421,51 425,269,475,305,51 483,381,519,426,51 -./model_data/coco/val2017/000000012670.jpg 301,212,391,348,77 324,232,331,255,24 302,73,325,109,24 263,46,340,242,0 505,103,573,202,0 334,289,443,422,0 383,219,494,414,0 238,262,363,428,0 134,262,283,422,0 40,230,154,428,0 0,266,70,422,0 104,118,196,298,0 220,156,294,339,0 315,172,393,259,0 419,162,477,293,0 556,336,629,428,24 0,217,52,276,24 549,64,578,116,24 433,230,465,277,24 349,73,396,168,0 132,193,192,304,26 154,364,201,427,26 579,131,638,224,26 521,76,542,111,26 312,39,325,74,26 129,157,140,171,67 286,243,305,271,24 360,388,427,427,26 1,0,639,427,0 -./model_data/coco/val2017/000000570456.jpg 294,280,427,412,57 388,178,415,245,56 176,314,191,328,45 46,252,92,277,71 387,174,416,185,73 119,268,152,286,45 448,223,512,302,56 100,241,219,407,60 349,257,438,341,56 284,179,399,286,60 385,180,398,189,73 -./model_data/coco/val2017/000000002149.jpg 0,71,639,421,45 96,94,339,325,47 -./model_data/coco/val2017/000000576654.jpg 501,229,583,382,0 190,319,201,341,0 243,35,492,158,33 -./model_data/coco/val2017/000000437351.jpg 16,18,243,493,0 196,183,306,445,28 284,176,366,438,28 192,27,346,185,28 -./model_data/coco/val2017/000000226903.jpg 7,191,639,362,60 328,99,433,181,1 210,156,233,187,39 324,255,411,280,43 346,250,388,297,44 290,216,366,271,55 543,303,598,324,55 86,194,125,226,55 124,197,154,225,55 134,198,165,222,55 164,193,189,221,55 561,66,639,235,0 211,186,236,194,55 259,225,302,250,55 204,119,234,187,39 604,301,640,338,48 282,191,325,210,55 471,226,514,248,55 206,220,244,246,55 240,211,280,246,55 412,298,532,337,48 68,130,638,334,55 -./model_data/coco/val2017/000000560266.jpg 78,48,320,314,21 295,86,638,348,21 -./model_data/coco/val2017/000000105249.jpg 225,216,346,333,61 137,190,217,214,71 139,199,214,268,71 -./model_data/coco/val2017/000000040757.jpg 1,262,401,532,0 1,261,422,634,59 4,1,212,141,62 -./model_data/coco/val2017/000000047585.jpg 19,8,367,243,25 53,179,247,603,0 179,123,361,603,0 356,190,424,424,0 399,202,424,231,0 347,188,382,410,0 240,204,272,335,27 -./model_data/coco/val2017/000000149622.jpg 154,151,290,332,14 377,100,490,266,14 -./model_data/coco/val2017/000000152465.jpg 413,30,543,439,10 -./model_data/coco/val2017/000000512476.jpg 81,157,133,294,39 483,183,638,389,57 396,289,421,319,44 316,297,424,356,45 57,293,338,405,71 137,255,399,320,71 -./model_data/coco/val2017/000000405972.jpg 114,17,428,342,20 78,239,278,418,20 88,196,305,341,20 -./model_data/coco/val2017/000000016010.jpg 280,259,308,290,19 358,266,447,325,22 332,262,356,286,19 305,263,338,290,19 421,265,446,305,22 -./model_data/coco/val2017/000000224093.jpg 404,133,460,167,19 327,116,374,153,19 147,116,190,146,19 22,136,94,188,19 236,118,251,146,19 414,118,431,142,19 263,127,271,136,19 -./model_data/coco/val2017/000000453634.jpg 251,455,477,632,71 59,350,292,533,61 -./model_data/coco/val2017/000000180188.jpg 18,103,640,357,6 -./model_data/coco/val2017/000000460841.jpg 55,106,181,229,15 38,223,275,369,39 87,319,196,370,0 278,341,496,370,61 -./model_data/coco/val2017/000000069138.jpg 99,47,258,544,9 33,170,106,357,7 -./model_data/coco/val2017/000000212559.jpg 0,246,407,492,18 405,186,518,254,18 276,154,364,215,18 212,138,290,255,18 512,147,594,193,18 513,100,585,174,18 525,180,617,236,18 585,119,640,196,18 586,104,639,127,18 0,204,31,331,18 -./model_data/coco/val2017/000000101420.jpg 0,133,498,368,57 61,60,262,174,15 -./model_data/coco/val2017/000000166391.jpg 147,354,174,371,2 210,358,221,366,2 375,355,389,367,2 100,351,135,373,2 577,336,639,381,2 223,357,233,365,2 139,357,151,371,2 455,341,507,376,7 336,345,365,371,7 28,339,91,377,7 173,353,189,368,7 312,353,327,366,7 576,336,639,381,7 100,350,135,373,7 291,200,305,229,9 269,188,281,224,9 292,229,300,250,9 353,211,362,240,9 364,213,376,240,9 443,227,453,256,9 476,240,486,265,9 509,250,521,271,9 204,210,215,236,9 50,186,68,219,9 69,187,82,217,9 241,358,253,366,2 231,358,238,364,2 252,343,314,356,9 -./model_data/coco/val2017/000000200421.jpg 126,122,502,473,0 381,2,640,474,38 2,78,514,460,59 -./model_data/coco/val2017/000000142092.jpg 144,64,515,397,53 -./model_data/coco/val2017/000000508602.jpg 149,80,296,257,14 1,251,500,424,2 473,239,500,261,2 -./model_data/coco/val2017/000000521540.jpg 37,285,203,480,44 39,67,447,471,46 2,0,640,474,60 -./model_data/coco/val2017/000000370677.jpg 2,49,192,326,0 159,90,351,326,0 348,111,498,328,0 209,60,250,84,54 219,37,256,62,54 155,49,181,59,54 44,41,78,68,54 254,39,289,64,54 139,125,176,149,54 365,57,395,71,54 477,118,500,130,54 447,138,476,149,54 343,64,367,77,54 330,45,355,58,54 424,50,450,63,54 0,0,488,302,54 -./model_data/coco/val2017/000000172617.jpg 116,0,364,400,0 45,172,155,218,73 28,192,109,273,73 0,207,74,291,73 4,84,183,321,28 69,189,153,232,73 47,170,144,211,73 1,155,57,230,73 0,249,21,280,73 41,124,148,200,73 208,50,311,95,73 85,200,155,246,73 -./model_data/coco/val2017/000000085772.jpg 597,275,626,304,32 50,68,378,421,0 38,11,80,216,38 381,293,395,307,32 -./model_data/coco/val2017/000000343934.jpg 175,175,496,415,3 -./model_data/coco/val2017/000000120853.jpg 87,270,600,422,48 102,115,347,285,48 352,69,488,129,67 209,0,326,147,41 331,126,638,309,45 0,52,640,292,60 349,193,425,229,51 565,175,579,182,51 449,145,455,158,51 497,188,522,196,51 -./model_data/coco/val2017/000000242724.jpg 82,141,310,336,17 249,174,524,325,17 330,120,403,319,0 105,99,220,321,0 -./model_data/coco/val2017/000000491464.jpg 218,123,386,423,0 197,65,347,304,34 157,213,208,226,2 208,216,257,225,2 515,220,535,235,2 550,221,583,235,2 581,147,603,157,9 526,150,546,157,9 466,153,496,158,9 334,216,377,221,2 582,221,602,236,2 533,220,546,233,2 497,221,513,233,2 -./model_data/coco/val2017/000000352491.jpg 124,147,639,425,6 469,268,486,279,0 367,261,382,271,0 62,243,71,265,0 76,244,81,259,0 531,266,554,283,0 -./model_data/coco/val2017/000000563648.jpg 220,284,287,344,36 118,471,139,542,36 21,234,84,379,0 39,264,121,463,0 248,430,268,492,0 229,440,248,492,0 222,440,233,489,0 328,443,344,501,0 231,202,358,314,0 313,432,329,471,0 1,173,59,402,0 0,375,84,565,36 103,458,122,550,36 142,432,164,537,36 205,432,224,492,0 39,263,88,321,0 0,151,21,183,0 201,443,210,489,36 237,464,246,489,36 333,493,342,499,36 27,173,103,266,0 1,311,323,639,0 -./model_data/coco/val2017/000000028452.jpg 281,162,308,241,39 1,38,480,632,72 -./model_data/coco/val2017/000000527427.jpg 510,225,527,251,67 292,216,629,468,56 165,148,576,476,0 112,181,242,283,63 75,174,119,237,58 0,166,265,480,60 -./model_data/coco/val2017/000000175438.jpg 297,79,342,125,74 362,106,381,160,9 15,91,45,159,9 107,124,133,179,9 584,236,639,308,2 504,231,590,295,2 436,244,506,286,2 391,239,446,279,2 325,230,368,252,2 249,239,292,266,2 223,239,257,262,2 291,227,312,247,2 201,232,233,256,2 359,236,399,261,2 238,213,261,230,2 283,224,308,240,2 329,242,349,258,2 0,243,51,307,58 166,205,344,245,2 -./model_data/coco/val2017/000000304560.jpg 0,101,452,420,15 -./model_data/coco/val2017/000000067616.jpg 391,339,537,444,2 613,356,640,394,2 217,392,246,458,10 0,344,52,477,0 113,362,151,414,0 161,361,188,398,0 138,365,155,392,0 309,382,336,442,1 549,348,638,416,7 379,338,401,432,12 114,391,201,441,56 264,387,287,431,56 223,389,249,413,56 313,390,325,419,56 345,388,368,421,56 291,380,312,392,56 187,391,198,398,56 243,376,252,396,58 82,362,113,397,0 526,359,588,425,2 83,387,121,440,56 340,390,347,425,56 362,379,381,422,56 285,374,293,394,58 213,394,227,421,60 270,390,317,418,60 352,386,380,406,60 244,393,280,418,60 149,392,182,421,60 340,388,349,411,60 246,391,252,395,75 256,382,261,388,75 287,389,292,393,75 300,382,305,385,75 318,385,322,390,75 360,383,365,389,75 298,369,309,385,58 -./model_data/coco/val2017/000000022479.jpg 260,282,484,481,36 175,435,252,461,13 265,434,303,452,13 34,1,437,457,0 -./model_data/coco/val2017/000000419096.jpg 1,229,587,446,6 -./model_data/coco/val2017/000000416330.jpg 35,0,640,454,15 1,1,640,472,59 -./model_data/coco/val2017/000000322163.jpg 507,282,553,365,39 413,305,473,437,39 491,160,539,221,0 267,60,407,320,0 382,90,443,216,0 480,185,601,307,0 603,181,640,319,0 20,65,248,414,0 601,181,639,269,0 537,350,602,379,65 233,385,347,450,45 96,358,266,462,53 514,45,612,119,58 508,217,607,242,60 85,107,277,207,69 322,292,426,398,45 510,221,529,227,53 194,213,292,352,69 233,230,255,285,68 -./model_data/coco/val2017/000000017115.jpg 242,122,440,602,22 2,96,207,595,22 -./model_data/coco/val2017/000000109827.jpg 157,128,407,371,77 -./model_data/coco/val2017/000000135673.jpg 313,200,416,246,4 220,162,345,206,4 -./model_data/coco/val2017/000000365208.jpg 31,290,139,544,56 175,176,347,602,0 274,187,292,215,26 80,371,278,619,25 -./model_data/coco/val2017/000000544306.jpg 328,410,383,491,74 439,409,498,492,74 -./model_data/coco/val2017/000000415741.jpg 445,202,534,272,56 325,230,533,359,56 227,157,289,264,59 603,316,637,334,73 579,339,625,359,73 578,322,624,348,73 -./model_data/coco/val2017/000000539445.jpg 255,246,470,470,6 104,330,122,344,2 90,328,106,335,2 13,324,24,333,2 -./model_data/coco/val2017/000000074646.jpg 188,459,200,497,0 79,453,100,499,0 393,456,405,479,0 387,479,396,489,0 373,462,382,490,0 387,163,410,188,33 353,595,394,639,41 60,477,65,488,0 398,475,403,489,0 30,477,35,484,0 18,478,20,483,0 39,477,42,483,0 207,474,228,501,56 -./model_data/coco/val2017/000000026564.jpg 554,240,610,353,39 435,194,579,300,63 422,326,469,365,64 215,268,410,326,66 110,204,128,268,73 64,266,164,301,73 50,292,174,347,73 253,90,404,266,62 411,279,436,301,64 126,194,146,268,73 119,192,137,269,73 63,200,79,272,73 97,197,113,272,73 133,188,164,272,73 158,197,170,271,73 153,175,181,270,73 65,195,87,271,73 68,192,99,269,73 96,190,120,269,73 -./model_data/coco/val2017/000000049810.jpg 113,141,639,424,15 0,181,173,419,15 183,68,639,417,13 -./model_data/coco/val2017/000000141671.jpg 181,249,263,293,17 90,282,191,331,17 361,209,437,255,17 316,291,386,325,3 356,251,412,280,3 101,216,148,242,3 243,196,286,219,3 502,189,545,208,13 312,196,353,214,13 183,199,222,216,13 132,200,172,217,13 140,284,166,322,0 321,271,349,312,0 92,180,115,211,0 219,245,240,277,0 44,185,55,213,0 367,235,389,275,0 394,205,413,240,0 57,179,69,214,0 224,186,234,212,0 359,180,416,219,17 115,205,129,239,0 18,182,30,215,0 335,273,361,304,0 106,206,120,231,0 1,175,438,334,0 -./model_data/coco/val2017/000000468632.jpg 74,196,190,409,0 64,179,146,390,0 292,140,417,410,0 476,189,582,423,0 292,62,327,77,29 -./model_data/coco/val2017/000000301981.jpg 184,123,547,387,23 -./model_data/coco/val2017/000000180751.jpg 24,10,250,381,0 512,182,581,224,45 586,340,639,403,0 296,118,357,421,39 359,145,395,321,39 387,146,422,311,39 412,118,438,275,39 436,119,459,278,39 238,130,249,176,39 227,127,239,178,39 212,126,223,177,39 200,134,211,165,39 580,141,596,199,39 452,169,466,278,39 0,0,60,30,62 499,91,562,155,62 451,119,529,229,72 339,146,365,331,39 134,354,216,472,40 412,276,462,380,40 6,115,640,473,60 -./model_data/coco/val2017/000000185890.jpg 31,39,266,608,0 274,80,493,533,0 153,159,192,228,65 173,64,222,130,0 57,42,90,87,0 311,122,322,144,40 203,130,212,148,40 214,129,223,149,40 303,115,317,143,40 360,141,375,188,65 240,105,255,131,65 449,161,466,181,65 0,35,31,232,0 160,115,237,150,60 270,137,338,147,60 -./model_data/coco/val2017/000000006460.jpg 276,138,285,230,37 277,137,332,207,0 -./model_data/coco/val2017/000000468245.jpg 66,222,539,422,59 -./model_data/coco/val2017/000000377882.jpg 226,4,484,376,8 3,216,442,295,8 481,215,639,262,37 490,127,638,179,37 207,162,326,182,8 206,182,320,204,8 277,146,321,160,8 483,331,638,398,37 275,146,321,157,37 0,181,67,214,8 213,148,287,163,37 529,269,640,344,37 205,165,323,180,37 186,186,286,201,37 -./model_data/coco/val2017/000000238410.jpg 335,235,350,291,39 302,269,316,304,39 298,313,319,366,39 366,207,514,328,56 211,185,275,242,56 1,234,174,429,56 491,159,521,199,56 376,171,460,244,56 245,158,304,190,56 224,259,383,475,60 366,192,508,343,0 294,172,359,272,0 71,188,256,349,0 387,208,576,359,0 374,200,626,446,0 0,372,196,472,0 345,269,638,471,0 95,360,130,444,40 479,314,528,406,40 453,282,482,342,40 318,245,332,268,40 140,236,161,268,40 169,168,248,265,0 216,206,225,215,40 432,277,464,297,56 265,124,298,184,58 348,150,374,205,58 11,199,251,444,0 346,2,407,250,25 49,389,108,423,56 217,164,281,216,56 445,360,536,430,56 493,397,508,413,74 305,254,318,280,39 148,194,278,277,56 122,259,144,308,40 271,189,299,225,56 356,140,462,206,56 -./model_data/coco/val2017/000000468954.jpg 70,55,640,422,57 0,0,323,421,0 92,3,623,422,0 350,319,488,367,65 440,372,481,410,65 323,124,360,150,65 331,327,363,370,65 -./model_data/coco/val2017/000000246436.jpg 0,4,402,632,0 238,403,280,462,41 184,438,250,477,45 263,471,431,559,53 166,415,230,448,45 221,318,340,361,68 179,448,480,630,69 -./model_data/coco/val2017/000000020247.jpg 333,176,510,439,21 1,15,86,264,21 -./model_data/coco/val2017/000000133778.jpg 58,76,568,380,19 110,162,453,398,19 -./model_data/coco/val2017/000000188439.jpg 76,209,405,380,7 405,255,417,286,0 -./model_data/coco/val2017/000000129054.jpg 422,199,448,253,22 361,196,411,232,22 308,191,344,237,22 384,199,428,253,22 254,193,296,239,22 196,193,226,243,22 176,197,196,225,22 141,191,162,243,22 335,199,387,233,22 294,197,320,235,22 74,201,124,236,22 191,206,201,241,22 130,203,145,227,22 63,205,75,228,22 -./model_data/coco/val2017/000000037740.jpg 447,185,628,372,58 288,150,379,229,62 209,234,386,449,56 614,155,639,256,56 373,186,454,253,63 359,250,378,263,64 271,222,368,250,66 1,330,139,474,57 626,116,635,143,73 627,41,634,69,73 618,115,629,143,73 612,115,619,141,73 614,158,620,179,73 621,81,636,108,73 611,79,626,106,73 634,85,639,107,73 629,119,639,143,73 615,42,623,69,73 636,46,640,68,73 621,42,628,68,73 388,229,441,245,66 602,192,617,210,73 373,115,639,255,73 -./model_data/coco/val2017/000000352760.jpg 142,80,378,428,0 64,152,410,537,30 -./model_data/coco/val2017/000000240250.jpg 2,354,612,600,60 199,8,511,388,0 319,327,395,349,42 165,50,200,93,0 38,14,117,200,0 135,45,165,79,0 559,306,612,461,41 243,331,320,366,43 297,415,436,583,53 431,424,585,533,53 2,456,259,603,53 0,151,90,357,56 157,103,228,218,56 122,63,170,173,0 90,69,140,127,0 259,102,481,222,0 156,78,217,153,0 78,121,162,289,56 131,105,162,121,60 0,0,62,323,0 104,108,121,130,56 250,247,523,368,56 -./model_data/coco/val2017/000000289222.jpg 259,193,372,295,9 415,84,558,394,9 151,299,370,399,9 0,384,142,479,5 299,415,358,480,0 -./model_data/coco/val2017/000000320632.jpg 4,111,640,475,22 0,56,550,480,22 520,139,614,262,22 240,46,412,235,22 144,92,280,178,22 0,111,105,219,22 -./model_data/coco/val2017/000000557672.jpg 188,19,618,261,25 212,38,526,429,0 197,41,282,150,0 483,196,577,402,0 -./model_data/coco/val2017/000000220310.jpg 64,26,312,302,77 -./model_data/coco/val2017/000000131138.jpg 150,120,318,303,62 224,376,265,433,41 131,384,171,413,44 314,143,449,258,63 267,296,419,375,66 125,111,248,224,58 326,221,423,240,66 534,119,556,140,0 126,335,170,386,41 177,336,220,391,41 264,361,298,390,64 -./model_data/coco/val2017/000000409358.jpg 75,386,309,573,61 308,348,610,422,71 -./model_data/coco/val2017/000000221291.jpg 163,292,244,500,0 176,101,203,150,33 -./model_data/coco/val2017/000000309678.jpg 0,60,191,268,0 0,1,596,411,60 85,92,544,324,53 -./model_data/coco/val2017/000000041872.jpg 523,88,602,176,62 327,255,432,368,56 252,252,323,354,56 0,215,267,357,59 178,139,224,195,74 -./model_data/coco/val2017/000000292236.jpg 101,90,212,486,0 55,121,119,437,0 0,113,31,462,0 55,352,111,431,28 48,106,72,185,0 202,44,332,160,6 24,118,57,246,0 -./model_data/coco/val2017/000000084241.jpg 434,38,455,99,39 38,6,226,312,0 198,23,284,289,0 132,169,155,201,42 255,105,269,155,44 305,171,353,200,45 470,280,621,342,50 22,206,70,225,50 407,91,562,268,69 0,185,42,219,50 501,189,640,281,60 27,322,111,352,44 464,277,629,390,45 0,205,80,248,45 507,44,524,101,39 178,186,208,212,71 249,32,410,279,0 442,273,473,298,48 -./model_data/coco/val2017/000000454404.jpg 264,182,298,208,67 246,25,439,462,0 32,188,292,522,13 28,189,313,506,56 416,4,640,518,58 -./model_data/coco/val2017/000000117719.jpg 367,281,393,337,41 258,86,273,123,39 271,86,286,125,39 283,88,298,126,39 297,89,309,126,39 308,91,320,127,39 66,177,88,246,39 347,96,358,130,39 357,96,371,132,39 370,98,382,132,39 139,101,168,161,39 184,101,201,162,39 341,282,359,338,40 364,284,394,338,40 217,96,238,166,39 0,93,19,149,39 415,161,640,424,0 324,288,344,338,40 6,75,480,338,39 -./model_data/coco/val2017/000000329614.jpg 35,155,127,191,2 153,151,184,176,2 288,153,339,173,2 447,154,479,172,2 121,126,212,165,5 54,146,91,206,0 426,154,456,169,2 25,147,39,154,2 381,153,414,168,2 249,158,259,168,2 209,154,224,167,2 -./model_data/coco/val2017/000000187055.jpg 302,316,323,335,32 176,127,361,461,0 193,317,328,618,0 0,314,321,639,0 284,194,425,483,38 278,195,311,228,32 -./model_data/coco/val2017/000000350833.jpg 142,249,303,415,61 0,353,110,477,71 -./model_data/coco/val2017/000000466156.jpg 185,85,353,202,15 0,18,500,348,2 239,31,263,45,2 274,32,291,40,2 0,13,11,24,2 -./model_data/coco/val2017/000000532481.jpg 250,168,320,233,0 435,294,448,302,2 447,293,459,301,2 460,291,473,300,2 407,287,419,297,2 618,289,629,297,2 512,294,533,299,2 285,370,297,389,0 61,43,107,122,33 238,158,299,213,37 -./model_data/coco/val2017/000000290843.jpg 22,246,242,502,15 215,61,428,621,0 1,2,426,632,59 184,103,428,467,63 -./model_data/coco/val2017/000000474167.jpg 110,14,188,243,39 84,2,346,174,0 395,12,416,73,0 1,260,395,473,53 220,140,375,192,53 333,0,359,44,0 3,166,120,288,60 190,171,427,258,60 351,0,372,30,26 -./model_data/coco/val2017/000000177539.jpg 260,0,480,302,0 0,5,317,427,37 -./model_data/coco/val2017/000000369751.jpg 256,67,318,131,11 115,220,254,268,2 235,183,426,260,2 274,181,293,206,12 268,201,291,250,12 234,219,279,271,12 235,260,275,340,12 102,412,207,624,12 150,314,205,426,12 314,188,322,204,12 -./model_data/coco/val2017/000000440184.jpg 281,168,288,175,32 184,139,275,348,0 368,156,406,226,0 44,147,71,243,0 258,218,315,240,38 494,209,543,238,38 66,173,70,175,41 512,151,588,283,0 528,167,541,211,0 526,171,535,180,38 182,201,186,205,32 387,191,401,203,38 62,213,73,236,38 -./model_data/coco/val2017/000000298697.jpg 352,226,388,244,19 448,213,480,234,19 537,234,556,242,19 376,216,406,237,17 -./model_data/coco/val2017/000000568710.jpg 503,151,541,181,58 412,184,640,374,57 501,287,640,427,0 450,170,478,193,56 436,177,542,195,60 434,158,460,178,69 361,176,379,204,75 621,114,634,137,73 -./model_data/coco/val2017/000000233727.jpg 610,224,640,256,1 528,221,556,264,1 81,83,458,328,5 581,200,615,280,0 24,209,35,226,0 36,213,45,241,0 553,215,579,265,1 504,221,533,282,0 474,218,500,286,0 570,220,591,262,1 494,223,506,260,1 492,212,508,228,1 480,213,494,223,1 454,223,480,257,1 517,200,527,212,0 205,185,234,234,0 532,197,541,217,0 360,179,396,215,0 -./model_data/coco/val2017/000000396205.jpg 175,364,234,436,19 307,386,388,483,19 -./model_data/coco/val2017/000000157138.jpg 174,195,489,300,42 74,28,269,218,55 -./model_data/coco/val2017/000000147415.jpg 69,142,328,259,56 352,4,640,472,0 81,220,393,465,63 26,421,72,479,65 387,302,399,349,39 155,358,330,416,66 400,299,428,350,39 463,283,503,328,41 200,334,441,469,73 91,402,188,473,73 -./model_data/coco/val2017/000000213171.jpg 138,145,257,444,0 213,284,247,329,35 -./model_data/coco/val2017/000000226417.jpg 449,191,499,243,1 154,181,198,219,2 291,184,350,274,3 194,197,231,262,3 102,187,146,268,3 53,67,76,118,9 412,59,427,101,9 369,180,385,204,24 298,191,318,227,24 0,168,50,287,0 183,158,233,256,0 94,160,146,261,0 280,163,311,249,0 476,163,499,242,0 252,175,262,188,0 303,161,351,249,0 361,201,386,251,1 430,210,445,234,10 0,231,21,264,26 352,164,391,232,0 278,174,290,210,0 180,173,186,181,0 281,180,293,215,3 251,185,261,203,3 128,203,140,213,26 -./model_data/coco/val2017/000000474452.jpg 188,180,203,192,5 73,192,103,222,2 154,189,166,198,2 178,189,197,201,2 5,200,69,233,2 162,184,182,190,2 206,192,217,202,2 168,186,180,198,2 250,195,264,209,2 222,185,234,190,2 252,183,264,195,2 42,191,75,213,2 103,194,125,215,2 139,194,161,209,2 1,175,359,217,2 -./model_data/coco/val2017/000000448410.jpg 222,45,406,368,6 377,0,640,431,6 16,274,68,413,0 38,226,95,306,0 52,214,98,290,0 105,187,138,295,0 164,137,186,206,0 0,39,89,112,6 133,227,143,243,26 253,79,258,94,26 204,130,233,212,0 102,214,127,261,0 21,237,88,316,0 189,147,210,203,0 16,361,50,414,26 78,253,97,270,26 350,182,382,214,0 0,308,16,325,13 31,253,60,276,26 97,230,133,347,0 -./model_data/coco/val2017/000000547144.jpg 154,156,302,285,62 430,140,552,257,62 26,224,153,359,63 319,291,352,314,64 586,262,616,279,64 157,278,331,347,66 454,253,593,302,66 581,385,615,418,66 -./model_data/coco/val2017/000000151629.jpg 92,466,131,573,0 259,364,346,431,38 94,486,105,499,32 38,257,364,631,0 22,463,107,605,0 14,538,35,589,38 -./model_data/coco/val2017/000000347544.jpg 244,70,557,404,5 149,232,183,261,7 -./model_data/coco/val2017/000000570448.jpg 207,191,380,217,8 270,159,311,174,8 574,169,612,176,8 313,165,330,207,0 493,155,519,175,8 15,161,35,174,8 119,159,126,170,8 139,167,146,170,8 219,183,237,204,0 78,167,91,174,8 -./model_data/coco/val2017/000000240940.jpg 105,2,291,141,62 3,1,91,295,72 326,72,356,119,73 339,129,357,180,73 345,184,357,231,73 186,65,199,75,2 344,0,347,20,73 328,32,331,64,73 349,25,356,61,73 352,84,356,119,73 333,129,342,175,73 341,179,355,230,73 351,290,357,341,73 336,182,343,227,73 118,306,203,493,15 322,182,336,227,73 -./model_data/coco/val2017/000000271997.jpg 147,587,300,640,27 1,3,485,630,0 -./model_data/coco/val2017/000000505573.jpg 38,1,359,634,16 71,274,289,329,27 -./model_data/coco/val2017/000000480212.jpg 262,159,456,452,67 0,3,637,474,60 -./model_data/coco/val2017/000000503823.jpg 175,120,380,223,8 186,110,500,258,8 350,128,493,175,8 418,125,465,153,8 -./model_data/coco/val2017/000000014007.jpg 340,153,416,298,15 300,255,586,422,72 -./model_data/coco/val2017/000000087470.jpg 454,125,475,149,17 32,91,49,116,17 77,142,229,408,19 446,100,472,142,0 29,77,53,115,0 293,180,381,348,19 416,158,487,271,19 497,139,602,275,19 327,155,434,226,19 290,153,318,170,19 256,150,289,172,19 194,172,299,386,19 198,155,222,168,19 411,143,452,164,19 456,147,500,227,19 585,150,616,224,19 273,130,294,148,19 0,130,85,464,19 451,117,467,145,17 97,105,639,249,19 -./model_data/coco/val2017/000000578093.jpg 2,230,298,388,6 298,299,303,317,0 304,299,310,317,0 310,299,317,315,0 347,297,353,311,0 -./model_data/coco/val2017/000000507473.jpg 291,147,351,190,79 29,8,427,474,0 159,127,238,176,67 -./model_data/coco/val2017/000000573943.jpg 466,206,515,246,7 531,200,583,241,7 393,136,504,165,7 461,345,521,384,7 312,342,366,384,7 409,345,465,383,7 87,311,121,341,7 172,253,210,284,7 282,326,314,358,7 367,334,433,383,7 79,339,130,380,7 334,330,370,362,7 572,198,619,231,7 130,346,314,384,7 -./model_data/coco/val2017/000000547886.jpg 13,172,136,269,17 150,159,285,277,17 272,178,374,284,17 57,130,102,214,0 183,128,203,173,0 194,126,246,227,0 295,137,344,230,0 -./model_data/coco/val2017/000000238039.jpg 124,314,325,593,18 -./model_data/coco/val2017/000000287649.jpg 136,4,640,401,15 1,396,640,480,66 468,0,640,66,73 -./model_data/coco/val2017/000000363784.jpg 100,268,245,373,71 32,442,142,480,61 1,314,108,460,61 -./model_data/coco/val2017/000000333745.jpg 40,88,277,146,25 1,62,98,139,25 0,0,427,447,5 54,144,192,503,0 157,246,183,286,26 199,35,256,124,56 150,33,206,95,56 97,42,158,95,56 385,105,407,138,56 279,104,331,138,56 329,104,390,139,56 -./model_data/coco/val2017/000000509014.jpg 346,235,425,248,30 252,168,330,277,0 337,187,368,234,0 435,151,448,194,0 122,151,125,160,0 532,145,540,170,0 545,169,579,253,0 230,158,244,196,0 199,154,224,221,0 369,197,406,247,0 619,176,640,206,0 514,157,526,198,0 633,210,640,281,0 324,226,351,232,30 421,190,457,196,30 347,160,360,188,0 520,250,556,261,30 367,219,412,224,30 195,211,232,227,30 608,208,626,214,30 524,164,547,171,30 85,133,586,200,0 -./model_data/coco/val2017/000000394199.jpg 52,124,373,480,3 328,35,640,480,0 -./model_data/coco/val2017/000000172946.jpg 128,396,185,421,65 342,172,356,186,65 72,383,118,406,65 232,265,257,277,65 316,116,427,556,0 279,74,335,216,0 342,129,374,175,0 111,110,202,283,0 55,106,209,632,0 12,86,200,398,0 0,25,174,633,0 325,92,374,135,62 177,106,226,242,0 319,111,346,176,0 197,102,376,605,0 222,102,250,155,0 173,266,204,286,65 189,254,210,269,65 280,172,300,256,0 158,71,219,116,0 228,238,249,253,65 -./model_data/coco/val2017/000000289229.jpg 160,166,190,233,27 48,16,338,500,0 -./model_data/coco/val2017/000000284743.jpg 418,55,640,420,0 40,92,360,297,34 402,53,530,259,0 39,92,352,384,0 188,56,271,178,0 275,21,382,209,0 -./model_data/coco/val2017/000000142472.jpg 203,372,334,435,2 350,373,390,413,2 462,365,523,400,2 412,369,469,409,2 576,326,639,391,5 379,356,405,417,0 392,363,426,425,0 534,371,540,389,0 526,362,532,387,0 539,365,548,389,0 278,338,302,368,0 463,364,523,400,7 -./model_data/coco/val2017/000000377368.jpg 420,0,638,94,0 376,146,470,234,55 171,157,431,437,55 336,53,449,141,26 577,31,639,110,41 600,302,639,403,41 59,70,640,481,13 129,68,640,472,60 59,223,161,359,60 -./model_data/coco/val2017/000000373353.jpg 271,216,368,354,5 291,296,351,416,0 423,310,465,419,0 396,302,411,331,0 572,307,582,320,0 251,302,266,330,0 379,301,388,328,0 435,279,439,289,9 424,269,428,279,9 430,294,436,301,9 465,335,496,394,26 302,340,312,362,26 595,298,606,317,0 444,316,502,424,0 479,302,513,408,0 518,308,561,397,0 0,297,102,386,2 606,308,640,385,2 557,315,622,372,2 197,297,218,338,2 514,314,572,361,2 92,294,153,362,2 146,296,180,351,2 174,295,202,343,2 231,306,256,324,2 271,313,374,389,2 495,307,536,351,2 428,305,458,335,2 492,325,511,354,24 301,342,311,363,24 295,337,331,411,0 609,306,619,319,0 415,302,442,331,2 440,281,444,291,9 0,206,483,401,2 -./model_data/coco/val2017/000000161642.jpg 144,184,289,330,74 -./model_data/coco/val2017/000000245102.jpg 404,143,429,173,9 -./model_data/coco/val2017/000000560178.jpg 0,76,279,474,0 232,162,416,299,51 271,47,376,138,50 363,41,571,175,50 -./model_data/coco/val2017/000000177893.jpg 524,203,579,221,2 580,199,614,222,2 70,143,532,281,5 -./model_data/coco/val2017/000000540928.jpg 236,4,541,296,15 20,0,629,432,56 -./model_data/coco/val2017/000000268375.jpg 155,82,420,340,20 0,84,640,359,20 -./model_data/coco/val2017/000000225405.jpg 288,331,341,384,32 107,45,284,451,0 338,100,507,439,0 308,18,338,101,0 -./model_data/coco/val2017/000000297595.jpg 136,231,179,268,0 139,265,201,278,37 -./model_data/coco/val2017/000000133244.jpg 367,118,433,186,56 218,73,279,134,56 241,218,264,271,38 199,107,324,311,0 380,37,416,83,0 105,35,151,82,0 138,5,177,78,0 492,32,547,83,0 297,34,333,82,0 417,38,456,82,0 325,12,360,68,0 331,49,361,82,0 74,35,112,83,0 543,131,606,203,0 459,35,499,83,0 419,96,485,187,56 186,20,210,78,56 234,55,278,77,56 256,38,297,85,0 439,171,447,187,39 1,0,639,116,0 -./model_data/coco/val2017/000000475572.jpg 2,28,271,343,58 65,192,198,337,75 154,153,359,371,77 374,206,453,346,0 430,205,539,350,0 0,315,640,431,13 -./model_data/coco/val2017/000000145620.jpg 495,68,512,121,0 521,68,534,123,0 303,93,421,256,0 513,67,524,120,0 300,155,431,324,3 -./model_data/coco/val2017/000000433374.jpg 115,64,299,234,20 504,69,584,207,20 591,82,640,199,20 225,168,310,245,20 0,105,120,181,20 298,178,375,257,20 -./model_data/coco/val2017/000000280891.jpg 118,95,423,508,0 23,0,247,403,0 254,14,388,146,0 108,73,144,231,26 374,464,426,637,39 145,393,206,453,47 135,447,214,514,47 0,562,88,640,47 109,510,166,592,47 7,606,120,640,47 202,420,296,502,49 204,498,276,573,49 278,474,351,524,49 137,559,254,640,49 241,569,324,640,49 57,457,138,539,49 16,519,109,604,49 174,372,231,427,49 275,425,329,477,49 0,396,95,473,49 1,109,50,335,0 271,491,365,588,49 160,516,244,576,47 -./model_data/coco/val2017/000000221502.jpg 85,61,556,257,13 14,118,135,256,58 -./model_data/coco/val2017/000000296231.jpg 159,230,347,463,62 266,248,285,275,74 505,200,527,225,74 484,356,511,407,73 474,354,500,407,73 436,338,463,395,73 463,342,492,403,73 497,368,506,410,73 509,366,526,414,73 526,365,532,418,73 531,368,548,421,73 438,197,463,222,75 454,342,475,399,73 569,363,592,428,73 494,290,510,328,75 42,207,79,257,0 18,32,34,80,0 572,302,640,480,56 567,145,640,240,58 389,67,452,139,58 31,104,69,171,0 -./model_data/coco/val2017/000000491867.jpg 234,281,288,606,27 401,291,429,332,56 314,209,380,313,0 67,182,162,374,0 53,96,402,629,0 433,284,462,329,56 -./model_data/coco/val2017/000000474078.jpg 584,228,593,238,32 127,273,278,457,0 430,272,504,282,34 365,321,405,344,35 622,0,640,9,35 316,216,474,390,0 238,291,404,454,0 592,0,627,87,0 -./model_data/coco/val2017/000000426166.jpg 105,172,255,296,1 -./model_data/coco/val2017/000000274272.jpg 24,383,214,476,2 0,392,83,480,2 182,199,640,480,5 251,349,339,407,0 211,190,253,236,9 566,192,605,219,9 151,421,174,436,0 404,349,446,443,0 435,293,485,420,0 -./model_data/coco/val2017/000000433774.jpg 98,63,105,77,9 442,110,556,353,12 417,110,461,323,12 128,129,137,136,2 143,128,157,140,2 58,62,64,76,9 59,77,65,88,9 -./model_data/coco/val2017/000000545826.jpg 22,9,284,327,15 1,145,378,330,56 -./model_data/coco/val2017/000000088951.jpg 243,295,292,338,16 128,188,234,319,0 67,235,168,329,13 -./model_data/coco/val2017/000000460967.jpg 60,358,563,554,5 509,430,529,459,0 -./model_data/coco/val2017/000000006723.jpg 171,203,207,222,2 282,202,302,212,2 332,200,345,209,2 361,194,389,224,5 362,192,389,223,7 204,201,242,229,7 -./model_data/coco/val2017/000000375469.jpg 314,73,379,139,0 220,61,301,160,0 236,135,454,168,37 329,123,429,141,37 -./model_data/coco/val2017/000000174231.jpg 68,180,316,286,15 66,141,343,341,63 0,203,150,500,56 -./model_data/coco/val2017/000000558854.jpg 0,10,500,373,60 105,1,365,44,0 356,11,490,200,41 1,138,80,190,44 5,143,231,312,45 218,19,309,89,48 233,188,404,327,48 -./model_data/coco/val2017/000000287545.jpg 239,243,306,348,23 63,110,409,355,23 -./model_data/coco/val2017/000000229221.jpg 146,92,483,421,19 447,242,522,275,19 -./model_data/coco/val2017/000000113589.jpg 368,67,636,362,46 391,207,525,277,47 376,264,543,452,47 124,79,326,198,53 81,128,295,249,53 366,189,568,459,45 86,124,301,253,48 -./model_data/coco/val2017/000000297084.jpg 222,412,286,605,39 323,435,382,605,39 32,264,146,407,56 4,404,603,600,60 145,2,537,413,0 148,380,231,534,41 430,524,492,611,44 390,569,510,612,45 269,535,323,601,45 66,501,204,612,41 76,559,201,606,45 168,161,190,221,40 178,162,213,214,40 -./model_data/coco/val2017/000000438876.jpg 59,116,82,140,32 168,20,349,328,0 339,252,394,327,38 -./model_data/coco/val2017/000000062355.jpg 0,95,95,280,0 532,153,631,332,0 475,0,528,41,0 605,327,640,428,0 578,266,603,332,34 400,175,408,186,35 302,140,407,316,0 -./model_data/coco/val2017/000000425227.jpg 297,494,309,526,0 309,495,323,525,0 213,353,222,365,33 69,66,99,122,33 286,508,310,515,37 -./model_data/coco/val2017/000000239041.jpg 269,205,357,268,62 0,294,87,422,71 61,190,108,243,78 30,280,59,341,39 -./model_data/coco/val2017/000000099024.jpg 1,0,340,204,0 51,118,510,408,33 603,359,640,460,76 -./model_data/coco/val2017/000000158227.jpg 112,9,377,351,0 107,36,158,287,34 -./model_data/coco/val2017/000000571804.jpg 272,188,359,313,61 457,267,558,340,45 352,263,449,333,45 144,198,209,258,45 152,100,290,174,71 357,118,563,214,71 18,147,99,217,71 99,217,152,285,75 150,291,200,331,45 -./model_data/coco/val2017/000000201646.jpg 0,0,289,427,0 267,322,455,421,56 42,317,107,364,65 268,325,465,423,57 -./model_data/coco/val2017/000000316054.jpg 158,195,401,295,6 7,235,69,277,6 95,242,119,273,6 117,258,130,287,0 -./model_data/coco/val2017/000000488166.jpg 0,487,361,632,60 138,104,359,429,0 46,562,214,617,42 45,525,215,602,53 231,421,331,593,41 45,529,208,597,48 -./model_data/coco/val2017/000000064359.jpg 367,153,500,251,22 214,114,346,241,22 144,124,230,205,22 274,13,399,150,23 194,0,309,143,23 108,3,217,151,23 460,25,499,160,23 -./model_data/coco/val2017/000000227482.jpg 72,124,413,480,0 102,333,247,408,29 -./model_data/coco/val2017/000000018837.jpg 24,74,606,473,7 327,14,467,158,0 294,21,342,123,0 371,286,454,480,0 17,235,34,262,0 304,193,328,240,0 115,172,163,232,0 591,254,624,301,2 -./model_data/coco/val2017/000000128748.jpg 307,97,463,632,0 291,449,340,594,34 0,347,20,414,35 156,44,355,590,0 0,79,209,609,0 -./model_data/coco/val2017/000000291490.jpg 117,76,363,319,15 0,2,640,389,59 -./model_data/coco/val2017/000000120584.jpg 267,202,340,276,74 -./model_data/coco/val2017/000000353180.jpg 334,182,397,391,0 120,194,251,399,0 45,188,183,417,0 409,188,505,376,0 285,177,336,386,0 219,176,291,384,0 386,195,438,384,0 552,111,639,387,0 593,132,639,192,24 130,237,164,311,0 458,205,585,359,0 204,78,440,206,5 -./model_data/coco/val2017/000000176634.jpg 76,2,640,471,22 -./model_data/coco/val2017/000000371472.jpg 0,51,35,95,46 52,25,163,105,46 314,21,394,90,46 269,30,315,82,46 0,99,53,226,46 27,37,127,99,46 159,67,192,101,46 176,71,215,98,46 142,97,197,129,46 453,29,480,109,46 189,71,264,105,46 -./model_data/coco/val2017/000000226147.jpg 278,217,356,249,67 258,102,327,147,56 8,227,151,284,56 0,256,480,630,60 207,0,480,409,0 131,1,246,227,0 90,371,174,482,41 194,327,251,368,42 157,320,238,376,43 32,219,87,426,75 193,114,452,320,24 271,114,452,295,26 167,0,230,94,26 451,589,480,640,44 243,351,385,399,48 193,45,202,61,74 201,267,282,317,26 418,571,460,639,42 195,353,211,364,42 221,533,295,589,48 96,491,228,608,48 -./model_data/coco/val2017/000000226883.jpg 477,190,569,315,17 -./model_data/coco/val2017/000000470952.jpg 106,32,317,589,0 252,37,380,399,0 359,86,405,277,0 112,111,132,167,0 24,108,47,180,0 194,492,355,640,30 265,357,398,425,30 0,107,27,182,0 375,75,428,320,0 363,88,398,130,0 346,311,428,319,30 116,358,166,385,30 -./model_data/coco/val2017/000000087742.jpg 150,377,214,473,75 -./model_data/coco/val2017/000000216497.jpg 333,253,402,387,56 0,259,118,438,57 325,238,595,452,60 286,169,338,206,68 537,228,639,356,69 368,245,437,257,71 386,269,468,451,56 292,243,344,379,56 -./model_data/coco/val2017/000000573094.jpg 280,257,303,288,58 31,187,116,268,62 0,250,178,462,56 0,248,179,499,57 257,300,374,499,1 243,287,284,298,73 277,274,291,278,73 229,312,259,321,65 214,316,246,326,65 238,310,263,317,65 190,347,236,372,73 222,338,257,349,73 178,194,188,219,73 169,200,175,221,73 -./model_data/coco/val2017/000000491683.jpg 77,195,121,220,17 1,149,364,165,6 -./model_data/coco/val2017/000000262440.jpg 58,362,71,390,39 208,316,251,394,61 286,334,347,352,71 -./model_data/coco/val2017/000000166768.jpg 309,225,416,630,27 0,125,187,635,0 73,20,425,631,0 -./model_data/coco/val2017/000000362682.jpg 82,56,546,318,5 420,139,449,188,0 1,122,83,224,7 539,133,640,300,7 42,143,62,171,0 -./model_data/coco/val2017/000000187990.jpg 183,52,369,205,0 333,175,375,223,36 -./model_data/coco/val2017/000000428454.jpg 316,126,413,315,0 270,293,429,314,31 194,36,264,105,33 173,131,192,138,2 173,135,204,143,2 -./model_data/coco/val2017/000000415882.jpg 0,327,343,630,59 21,211,331,536,0 -./model_data/coco/val2017/000000068078.jpg 29,492,101,626,16 273,276,304,347,39 176,346,360,631,61 140,295,311,499,71 -./model_data/coco/val2017/000000292908.jpg 179,132,225,191,0 201,168,268,189,37 -./model_data/coco/val2017/000000465129.jpg 578,333,590,368,39 121,319,143,346,74 111,94,308,473,0 420,362,608,392,71 543,335,560,366,39 424,326,438,367,39 358,307,380,330,41 308,340,335,367,46 286,406,424,473,69 284,216,313,246,41 351,328,366,344,41 371,341,379,356,41 244,317,290,359,45 370,328,386,345,41 0,313,75,364,68 -./model_data/coco/val2017/000000527960.jpg 213,216,546,405,13 -./model_data/coco/val2017/000000082180.jpg 0,0,602,420,56 352,168,430,259,77 247,146,356,263,77 -./model_data/coco/val2017/000000428280.jpg 3,189,180,314,56 244,152,312,186,56 187,114,231,181,56 0,184,182,317,13 118,138,163,174,63 121,165,161,171,66 203,179,308,319,56 -./model_data/coco/val2017/000000206579.jpg 280,180,640,475,60 0,1,434,474,0 472,0,621,189,0 551,217,615,274,41 101,0,178,43,0 395,281,585,399,55 607,274,640,305,73 373,47,552,261,56 -./model_data/coco/val2017/000000550691.jpg 116,285,201,356,2 443,285,466,302,2 447,282,461,285,2 192,59,442,410,5 5,216,167,325,5 490,277,500,301,0 248,251,289,285,0 264,271,267,282,27 -./model_data/coco/val2017/000000163257.jpg 100,160,312,206,25 41,0,386,632,0 371,86,425,208,0 -./model_data/coco/val2017/000000293625.jpg 251,159,544,473,0 484,394,538,439,65 78,198,186,353,65 574,138,602,243,39 533,72,640,240,58 1,28,308,473,0 526,429,599,480,40 399,315,516,405,57 -./model_data/coco/val2017/000000041635.jpg 4,166,248,344,19 1,255,32,333,19 208,164,415,325,19 331,147,638,307,19 -./model_data/coco/val2017/000000144784.jpg 244,340,375,490,0 -./model_data/coco/val2017/000000115898.jpg 279,6,462,297,0 139,238,382,312,37 -./model_data/coco/val2017/000000090631.jpg 176,115,457,228,4 -./model_data/coco/val2017/000000276284.jpg 185,181,237,212,2 22,201,66,233,2 119,193,146,207,2 13,197,33,218,2 168,227,447,504,3 -./model_data/coco/val2017/000000209142.jpg 222,58,362,195,50 180,254,314,343,50 473,293,553,374,50 186,134,305,257,50 218,10,640,251,43 87,111,138,172,50 347,114,408,190,50 488,68,525,106,50 233,341,288,399,50 149,84,207,147,50 92,133,265,425,42 0,0,639,425,45 347,218,366,241,51 -./model_data/coco/val2017/000000478420.jpg 87,168,102,196,67 256,96,467,612,0 24,137,159,586,0 -./model_data/coco/val2017/000000511321.jpg 48,405,285,554,8 26,310,224,359,8 210,288,316,307,8 284,278,300,282,8 -./model_data/coco/val2017/000000200162.jpg 3,155,574,339,6 95,1,136,64,9 310,1,347,58,9 404,1,449,97,9 316,53,341,79,9 483,4,515,40,9 249,0,292,83,9 211,164,220,178,9 495,50,511,67,9 -./model_data/coco/val2017/000000483667.jpg 200,399,251,638,27 2,2,426,629,0 67,551,115,640,56 -./model_data/coco/val2017/000000327306.jpg 36,0,186,162,0 37,111,154,186,36 -./model_data/coco/val2017/000000389381.jpg 139,275,547,491,45 58,45,474,327,45 372,277,477,407,50 141,139,252,240,51 1,0,640,533,60 150,202,378,342,47 -./model_data/coco/val2017/000000343524.jpg 272,222,286,236,32 98,34,272,400,0 206,200,323,234,38 -./model_data/coco/val2017/000000009400.jpg 145,95,281,267,0 312,81,460,278,0 447,89,640,365,0 265,230,491,480,63 328,219,500,330,63 85,211,215,281,63 0,173,263,473,63 460,354,542,383,64 458,362,587,472,66 563,47,613,123,0 2,95,104,192,0 523,410,640,475,0 367,59,402,87,0 276,60,366,198,0 32,256,76,319,41 444,105,480,158,63 318,362,428,461,66 403,283,471,320,66 1,279,31,307,66 250,417,314,480,41 251,380,328,476,41 356,281,405,363,41 189,253,209,268,66 457,68,536,222,0 -./model_data/coco/val2017/000000469828.jpg 132,251,213,324,0 144,306,225,328,30 -./model_data/coco/val2017/000000110042.jpg 293,170,340,225,0 333,160,355,226,0 81,105,112,206,0 24,126,47,175,0 134,440,256,609,61 23,210,102,291,58 299,249,349,325,58 0,158,39,551,0 -./model_data/coco/val2017/000000165713.jpg 103,139,264,573,10 -./model_data/coco/val2017/000000220764.jpg 169,173,195,239,0 180,238,191,243,30 175,180,193,197,24 -./model_data/coco/val2017/000000458109.jpg 0,0,640,276,6 80,22,126,90,0 349,42,358,69,0 544,29,564,88,0 576,24,590,86,0 -./model_data/coco/val2017/000000368900.jpg 465,225,632,371,62 332,120,432,214,72 248,116,286,161,14 180,199,196,232,25 128,266,165,327,24 355,287,454,473,56 -./model_data/coco/val2017/000000128598.jpg 240,467,462,632,49 33,433,235,634,49 224,316,417,488,49 366,179,480,352,49 0,200,251,450,47 250,0,480,204,47 113,73,259,209,49 185,148,347,308,49 0,100,146,291,49 0,390,56,576,49 36,21,151,136,49 -./model_data/coco/val2017/000000397681.jpg 405,129,511,256,0 165,15,257,110,45 512,525,555,582,49 544,512,630,565,49 174,424,237,489,49 136,70,226,128,42 530,6,632,125,45 128,394,188,462,49 157,384,200,430,49 208,472,255,510,49 254,259,384,382,51 297,546,336,591,51 256,511,383,637,51 61,273,138,381,51 423,142,444,195,51 172,11,255,62,51 256,385,386,512,51 510,130,640,254,51 3,1,638,505,51 291,31,349,71,55 545,521,638,607,49 150,490,203,510,49 134,459,188,499,49 232,410,255,473,49 264,167,375,242,51 438,324,463,345,51 384,308,395,331,51 384,257,511,383,51 1,31,638,639,51 -./model_data/coco/val2017/000000087144.jpg 349,32,433,61,2 374,77,525,391,0 87,59,244,397,0 1,143,147,375,13 402,148,604,378,13 576,142,640,295,13 220,150,341,266,0 454,31,534,61,2 214,147,376,290,13 148,199,233,250,26 -./model_data/coco/val2017/000000560911.jpg 5,135,481,456,57 227,126,251,146,67 100,38,354,597,0 0,269,134,345,28 0,343,164,633,28 -./model_data/coco/val2017/000000254516.jpg 213,96,402,422,0 101,107,189,261,0 1,215,40,306,0 479,160,633,364,0 587,158,640,346,0 419,145,521,318,0 250,0,363,165,34 61,258,162,339,13 25,0,116,43,0 329,247,440,393,0 172,215,234,413,0 -./model_data/coco/val2017/000000002157.jpg 214,285,328,401,43 403,211,515,283,43 16,173,269,366,55 230,52,291,201,40 138,27,200,169,40 46,17,113,161,40 91,87,157,171,40 163,68,233,176,40 113,15,166,92,40 0,69,50,133,40 50,60,110,154,40 237,48,300,178,40 3,118,63,214,41 490,166,556,233,41 1,33,640,422,60 216,310,408,422,43 -./model_data/coco/val2017/000000235252.jpg 240,154,336,294,23 266,160,349,287,23 341,155,423,280,23 -./model_data/coco/val2017/000000388258.jpg 29,132,428,454,1 499,90,562,121,4 3,186,297,435,13 270,266,316,314,39 -./model_data/coco/val2017/000000503841.jpg 481,142,538,283,9 208,111,277,261,9 -./model_data/coco/val2017/000000053994.jpg 159,58,378,502,12 17,19,63,39,2 5,19,37,34,2 44,22,154,49,2 -./model_data/coco/val2017/000000135410.jpg 0,221,53,313,2 333,248,462,319,2 176,252,364,363,3 44,216,187,535,12 206,196,287,343,0 154,221,379,315,2 0,492,101,640,1 1,214,70,260,2 374,216,445,236,2 117,199,287,237,2 -./model_data/coco/val2017/000000161044.jpg 306,159,330,184,4 361,183,383,205,4 -./model_data/coco/val2017/000000560474.jpg 526,290,639,391,79 0,119,640,474,2 563,40,622,122,0 490,25,555,92,0 18,35,68,131,0 216,43,252,98,0 342,57,391,95,0 403,51,421,81,0 0,63,26,128,0 258,262,350,389,0 586,12,639,85,0 539,284,640,377,79 463,243,510,289,79 317,142,328,184,79 114,120,158,174,79 486,272,640,418,79 347,156,411,219,79 287,148,317,193,79 503,50,538,199,79 486,0,639,24,25 -./model_data/coco/val2017/000000460147.jpg 236,290,296,359,2 283,193,311,218,2 482,196,529,227,2 536,269,640,377,2 326,152,342,164,2 535,219,609,271,2 355,142,362,150,2 460,180,491,208,2 586,169,614,200,2 414,173,438,192,2 159,219,170,230,9 302,172,319,188,2 412,168,419,178,3 371,128,389,145,5 351,126,373,140,5 433,146,456,175,7 540,169,544,188,0 570,233,584,244,0 315,160,329,174,2 412,150,418,159,3 404,157,411,165,3 344,215,419,289,7 472,228,549,285,7 0,236,90,290,7 411,162,419,169,0 339,149,352,158,2 1,119,639,363,2 -./model_data/coco/val2017/000000471869.jpg 0,2,413,493,57 0,35,362,487,77 127,229,236,305,27 -./model_data/coco/val2017/000000429623.jpg 4,167,501,457,53 270,0,514,153,56 0,117,640,473,60 480,270,639,351,42 -./model_data/coco/val2017/000000283070.jpg 250,161,372,271,49 504,201,624,255,49 17,138,154,267,49 507,98,628,162,49 502,286,619,348,49 -./model_data/coco/val2017/000000060835.jpg 203,44,508,425,16 434,326,633,435,45 1,294,366,475,59 -./model_data/coco/val2017/000000010583.jpg 475,191,612,271,43 0,0,612,612,60 220,64,440,209,48 90,135,479,472,48 -./model_data/coco/val2017/000000474881.jpg 225,174,368,290,18 109,132,252,239,18 64,52,192,169,18 237,121,402,282,18 -./model_data/coco/val2017/000000294855.jpg 278,153,305,199,39 1,0,265,170,28 -./model_data/coco/val2017/000000478862.jpg 17,56,640,366,4 405,279,463,404,0 599,280,625,353,0 609,273,630,320,0 591,273,604,346,0 118,303,129,383,0 632,278,640,351,0 619,275,629,349,0 571,279,591,344,0 565,281,577,342,0 122,303,150,390,0 40,291,58,325,0 151,318,164,342,0 80,285,116,389,0 59,290,474,353,0 -./model_data/coco/val2017/000000106266.jpg 412,221,597,395,53 -./model_data/coco/val2017/000000538067.jpg 81,277,95,321,0 108,307,139,338,0 451,214,469,269,0 68,309,97,346,0 46,317,71,341,0 232,34,253,49,33 63,313,76,338,0 -./model_data/coco/val2017/000000418959.jpg 255,150,336,203,14 -./model_data/coco/val2017/000000066817.jpg 20,431,218,605,44 229,466,308,603,44 2,6,229,232,45 400,42,564,201,45 492,108,535,157,51 460,57,503,90,51 463,135,507,169,51 448,153,487,187,51 222,466,307,612,42 503,61,530,87,51 3,1,612,602,60 -./model_data/coco/val2017/000000180878.jpg 354,299,522,380,67 404,203,512,312,55 116,37,427,344,55 405,201,507,311,2 -./model_data/coco/val2017/000000164885.jpg 284,100,343,253,0 401,244,412,273,0 251,249,359,259,30 482,243,490,261,0 285,296,299,311,0 167,305,176,325,0 463,262,479,272,0 348,263,357,281,0 -./model_data/coco/val2017/000000551660.jpg 61,337,158,424,47 176,411,247,472,50 71,321,133,384,50 225,388,330,532,50 127,171,200,214,50 16,146,90,259,50 60,6,150,119,41 40,288,337,570,45 129,299,266,370,47 118,500,188,532,47 277,189,395,305,49 283,455,387,590,44 -./model_data/coco/val2017/000000226171.jpg 245,5,595,243,62 203,153,254,325,39 52,285,148,397,41 50,141,227,286,63 600,176,629,210,41 272,278,640,387,66 0,277,68,314,67 -./model_data/coco/val2017/000000534605.jpg 245,117,393,354,3 330,124,489,273,3 471,149,553,246,3 452,137,600,394,3 283,97,323,216,0 62,48,151,371,0 372,100,407,182,0 -./model_data/coco/val2017/000000097230.jpg 83,168,327,343,20 367,195,588,279,20 -./model_data/coco/val2017/000000398905.jpg 217,31,511,367,0 -./model_data/coco/val2017/000000112626.jpg 267,173,423,471,57 115,184,348,569,28 -./model_data/coco/val2017/000000481582.jpg 197,47,397,421,17 83,124,181,424,0 381,101,502,427,0 306,149,459,331,0 -./model_data/coco/val2017/000000406570.jpg 220,1,427,124,49 156,29,194,60,49 0,227,427,640,47 2,155,46,217,49 81,142,135,194,49 33,200,84,234,49 1,94,158,261,49 -./model_data/coco/val2017/000000193717.jpg 291,202,354,226,2 354,199,402,228,2 130,78,148,103,9 314,27,329,63,9 38,31,401,611,10 400,118,502,305,0 446,195,465,218,26 0,173,40,221,2 328,130,336,156,9 476,215,521,234,2 82,197,126,215,2 340,138,348,158,9 -./model_data/coco/val2017/000000261982.jpg 0,8,251,223,2 409,120,457,212,2 84,0,383,398,0 159,211,349,442,36 357,110,457,200,2 -./model_data/coco/val2017/000000577932.jpg 304,358,341,490,1 495,245,639,536,2 183,227,267,282,2 34,221,101,270,2 295,230,378,472,0 231,233,314,492,0 435,233,460,329,0 385,233,413,330,0 328,215,348,244,0 346,219,367,256,0 128,212,143,261,0 81,141,109,182,9 207,289,251,430,24 308,168,400,248,25 284,267,346,363,26 135,194,149,212,0 121,193,134,212,0 151,206,170,260,0 298,215,320,240,0 0,197,13,212,2 209,293,250,378,26 -./model_data/coco/val2017/000000202001.jpg 0,284,500,461,57 44,228,85,276,67 51,50,455,455,0 -./model_data/coco/val2017/000000463199.jpg 13,56,250,473,0 153,116,275,346,0 291,106,487,480,0 340,71,639,474,0 236,114,338,480,0 351,342,388,390,67 471,178,640,386,24 216,134,274,242,0 119,142,159,190,0 0,0,640,355,5 168,271,245,479,26 579,146,614,191,0 552,139,580,187,0 396,156,425,196,0 607,148,640,197,0 415,171,467,210,0 -./model_data/coco/val2017/000000168458.jpg 129,338,194,535,75 -./model_data/coco/val2017/000000204871.jpg 371,111,455,193,2 552,117,612,184,2 437,128,509,184,2 188,104,213,190,0 451,96,555,172,5 175,146,186,171,0 476,132,487,145,0 224,9,246,39,9 254,12,269,38,9 555,93,611,133,5 122,46,534,602,10 -./model_data/coco/val2017/000000200667.jpg 179,175,350,319,19 -./model_data/coco/val2017/000000317999.jpg 23,127,591,588,59 19,46,295,295,0 184,214,314,394,73 190,190,563,580,0 -./model_data/coco/val2017/000000378454.jpg 47,222,296,364,0 134,327,180,363,29 -./model_data/coco/val2017/000000345356.jpg 119,194,132,239,39 152,260,201,347,67 366,116,640,461,0 329,382,399,480,41 259,269,291,299,41 0,454,47,480,44 318,206,348,247,75 241,286,264,299,41 411,263,432,289,41 1,386,638,473,60 0,100,267,455,0 -./model_data/coco/val2017/000000500423.jpg 0,9,640,332,6 485,207,499,231,0 -./model_data/coco/val2017/000000427160.jpg 387,246,563,503,0 511,230,623,476,0 3,205,254,503,0 244,313,277,356,35 256,319,273,338,32 398,422,411,450,35 -./model_data/coco/val2017/000000355905.jpg 83,64,540,463,16 -./model_data/coco/val2017/000000036660.jpg 268,98,364,203,67 184,132,272,228,67 414,72,484,173,67 2,177,500,317,0 131,100,182,168,67 -./model_data/coco/val2017/000000384670.jpg 308,94,397,325,0 364,23,474,136,0 360,213,396,287,38 423,117,429,126,32 -./model_data/coco/val2017/000000267903.jpg 355,246,524,426,61 76,14,334,184,71 -./model_data/coco/val2017/000000229601.jpg 70,124,79,146,0 63,125,69,139,0 105,120,124,172,0 230,107,259,181,0 87,75,261,351,0 470,66,589,358,0 472,207,496,254,35 196,95,221,196,0 157,123,164,139,0 110,129,115,138,35 87,126,93,140,0 -./model_data/coco/val2017/000000180383.jpg 314,100,417,180,0 0,324,29,382,74 267,77,449,245,62 25,51,622,419,19 -./model_data/coco/val2017/000000002532.jpg 182,305,284,473,0 206,443,266,491,30 -./model_data/coco/val2017/000000009483.jpg 458,210,578,349,62 36,62,177,480,0 375,361,409,380,64 306,317,422,361,66 250,275,280,295,62 217,269,245,287,62 -./model_data/coco/val2017/000000430973.jpg 33,55,611,419,53 -./model_data/coco/val2017/000000082765.jpg 51,431,330,529,63 0,287,426,640,59 -./model_data/coco/val2017/000000245513.jpg 322,255,336,294,14 435,262,453,275,14 125,211,133,219,11 196,124,296,285,23 -./model_data/coco/val2017/000000124636.jpg 25,47,554,423,19 430,189,640,393,19 524,65,572,168,19 -./model_data/coco/val2017/000000522156.jpg 194,38,626,356,53 -./model_data/coco/val2017/000000233033.jpg 135,97,473,335,25 343,306,462,468,56 182,294,228,382,56 127,310,225,471,56 220,352,338,480,56 227,332,385,371,60 511,344,546,405,58 1,293,77,408,58 -./model_data/coco/val2017/000000037670.jpg 436,23,640,185,0 234,85,571,271,65 1,28,332,474,61 -./model_data/coco/val2017/000000502336.jpg 193,289,229,390,0 140,297,191,392,0 604,262,638,382,0 303,276,388,419,0 195,367,222,393,26 348,320,374,351,26 322,321,347,362,26 172,340,185,369,26 142,347,152,365,26 168,288,196,333,0 -./model_data/coco/val2017/000000384651.jpg 0,140,320,348,59 253,280,322,386,41 -./model_data/coco/val2017/000000039785.jpg 201,171,273,260,0 410,116,425,152,0 165,143,222,155,13 224,249,258,275,37 396,126,431,141,37 79,46,89,63,0 -./model_data/coco/val2017/000000342397.jpg 286,137,393,318,0 454,247,474,270,0 454,230,475,251,0 273,272,298,289,0 0,263,8,307,0 241,298,407,333,30 450,267,476,273,30 625,193,640,231,0 612,229,640,234,30 -./model_data/coco/val2017/000000191580.jpg 68,0,160,81,39 193,305,324,450,48 258,15,379,198,42 389,182,457,452,43 250,195,306,259,50 79,192,286,400,50 2,1,478,631,60 0,533,409,640,56 286,202,361,363,48 -./model_data/coco/val2017/000000327605.jpg 157,35,258,378,0 46,340,385,388,30 162,140,167,148,0 -./model_data/coco/val2017/000000429761.jpg 187,77,308,388,0 369,192,412,254,38 192,219,213,275,38 300,59,406,356,0 -./model_data/coco/val2017/000000290081.jpg 1,341,612,605,45 0,31,612,521,49 344,433,612,604,60 0,428,240,612,60 -./model_data/coco/val2017/000000153529.jpg 280,38,427,579,0 192,91,242,254,0 133,81,193,282,0 121,114,145,257,0 101,239,146,281,24 167,281,293,488,24 138,354,177,476,24 73,253,127,294,24 0,146,61,278,26 146,376,287,631,28 224,186,275,259,28 97,137,106,159,0 238,127,253,140,0 296,252,306,299,26 72,254,130,295,28 1,97,56,406,0 0,278,49,335,0 -./model_data/coco/val2017/000000557258.jpg 20,181,295,492,61 -./model_data/coco/val2017/000000179174.jpg 360,114,378,176,0 308,31,335,97,0 334,116,351,167,0 197,266,302,326,28 232,158,297,183,28 133,135,195,163,28 138,153,200,183,28 135,178,205,205,28 121,255,181,272,28 101,269,205,322,28 66,254,125,325,28 46,223,135,253,28 188,221,242,260,28 2,460,138,634,28 0,416,132,520,28 344,115,356,144,0 413,115,428,170,0 390,111,416,182,0 80,68,194,108,25 133,113,149,140,0 1,318,97,386,28 310,96,338,153,0 0,56,427,535,28 -./model_data/coco/val2017/000000378605.jpg 1,491,422,632,60 1,54,426,565,60 273,126,424,372,41 53,320,300,507,54 -./model_data/coco/val2017/000000222094.jpg 107,81,157,156,11 21,215,111,242,2 261,212,294,241,2 107,220,125,236,2 127,209,164,234,2 312,208,330,224,2 170,208,192,228,7 315,209,328,224,7 260,212,293,241,7 289,214,317,231,2 217,213,275,254,7 -./model_data/coco/val2017/000000378873.jpg 411,0,639,90,7 508,0,543,94,0 326,0,402,73,0 280,0,331,92,0 90,0,168,67,0 1,269,67,360,45 31,36,40,41,49 14,38,24,42,49 0,28,45,42,49 455,191,480,202,51 423,229,470,241,51 262,0,295,70,26 461,207,493,215,51 458,197,487,208,51 460,210,501,223,51 365,195,394,220,51 448,198,467,228,51 473,226,485,234,51 202,0,279,87,0 140,0,190,45,0 36,0,99,109,0 1,45,79,119,60 464,219,487,227,51 -./model_data/coco/val2017/000000307145.jpg 251,63,350,121,69 153,91,241,111,71 -./model_data/coco/val2017/000000356498.jpg 107,33,199,132,50 236,9,366,132,50 -./model_data/coco/val2017/000000258388.jpg 143,65,266,307,0 518,210,565,308,0 149,297,231,331,36 408,105,512,359,0 -./model_data/coco/val2017/000000111179.jpg 174,172,203,237,74 228,152,298,223,74 -./model_data/coco/val2017/000000360951.jpg 131,31,374,205,62 395,152,592,304,63 350,254,374,277,64 541,297,579,323,64 112,306,326,365,66 154,226,270,258,66 337,373,370,417,64 -./model_data/coco/val2017/000000095899.jpg 18,78,284,312,11 -./model_data/coco/val2017/000000172571.jpg 199,1,640,80,0 491,0,625,206,40 177,1,265,132,41 368,63,577,116,42 103,117,525,354,53 268,84,358,145,43 490,55,618,116,53 309,31,434,205,43 -./model_data/coco/val2017/000000136633.jpg 57,0,422,449,25 134,253,147,301,0 116,252,135,306,0 108,252,121,300,0 212,479,305,542,45 195,430,253,453,45 257,255,286,310,0 116,204,218,308,25 76,301,100,405,0 68,257,82,281,0 11,252,86,471,0 156,257,166,289,0 77,257,90,281,0 102,264,110,283,0 144,238,177,252,25 7,256,33,344,0 45,240,86,260,25 170,253,179,282,0 -./model_data/coco/val2017/000000005037.jpg 99,20,574,372,5 572,248,600,267,2 28,226,44,246,0 18,221,30,247,0 9,222,21,246,0 595,242,613,271,0 191,147,244,206,0 48,223,61,247,0 623,217,640,361,0 592,248,603,261,2 -./model_data/coco/val2017/000000025228.jpg 171,154,453,418,0 144,363,524,430,37 -./model_data/coco/val2017/000000417085.jpg 428,221,555,342,19 328,194,422,345,19 -./model_data/coco/val2017/000000259571.jpg 24,87,178,221,5 163,56,460,278,7 228,56,238,104,0 229,67,263,110,0 272,81,295,117,0 262,62,282,111,0 413,77,452,107,0 402,86,428,112,0 368,60,393,90,0 339,81,368,110,0 303,79,336,110,0 379,66,413,111,0 421,79,432,91,0 368,74,391,110,0 255,55,286,94,0 62,55,369,143,0 -./model_data/coco/val2017/000000461751.jpg 3,31,640,382,2 1,202,640,569,3 47,112,339,477,0 1,193,167,371,24 268,94,475,218,0 464,120,640,569,0 -./model_data/coco/val2017/000000459757.jpg 201,191,370,309,23 -./model_data/coco/val2017/000000308531.jpg 164,105,202,142,74 307,566,359,606,2 167,605,268,637,13 -./model_data/coco/val2017/000000106389.jpg 91,83,233,276,15 1,78,317,393,56 526,89,621,106,73 521,97,602,111,73 527,105,601,126,73 508,121,582,150,73 519,111,590,130,73 502,134,580,158,73 600,94,616,129,76 50,23,317,203,59 590,111,609,131,76 518,116,583,137,73 -./model_data/coco/val2017/000000481480.jpg 222,265,371,344,17 11,260,159,330,17 81,259,126,290,0 294,262,344,299,0 -./model_data/coco/val2017/000000328959.jpg 19,274,194,499,61 -./model_data/coco/val2017/000000333402.jpg 100,49,518,364,5 476,166,564,392,0 234,168,297,245,0 192,183,221,228,0 514,280,526,289,67 -./model_data/coco/val2017/000000236308.jpg 174,187,222,278,0 49,148,105,278,0 34,265,109,277,30 49,167,84,213,24 178,187,204,226,24 524,187,529,202,0 182,270,217,277,30 -./model_data/coco/val2017/000000321557.jpg 8,23,522,627,3 -./model_data/coco/val2017/000000421455.jpg 202,102,359,346,16 45,184,166,365,67 45,84,217,369,0 2,2,456,365,2 443,289,477,318,7 -./model_data/coco/val2017/000000093965.jpg 57,94,430,423,22 421,44,551,218,22 -./model_data/coco/val2017/000000001490.jpg 448,118,499,241,0 359,230,578,245,37 -./model_data/coco/val2017/000000571264.jpg 61,84,328,399,3 265,29,415,388,0 -./model_data/coco/val2017/000000288430.jpg 89,180,126,266,0 89,149,99,175,0 47,147,57,176,0 155,132,294,202,33 438,132,449,137,8 423,133,433,135,8 400,131,410,135,8 347,129,359,133,8 378,130,386,133,8 146,140,152,148,0 276,161,338,286,0 250,195,274,234,0 471,134,500,145,8 455,140,471,143,8 124,141,132,146,0 -./model_data/coco/val2017/000000111207.jpg 156,350,252,565,0 265,157,355,223,13 183,160,272,209,13 157,551,231,579,36 102,30,217,294,0 126,268,174,287,36 -./model_data/coco/val2017/000000022755.jpg 362,228,420,253,2 441,224,457,232,2 398,228,423,238,2 236,189,375,330,5 -./model_data/coco/val2017/000000089078.jpg 146,14,368,588,0 178,555,349,593,31 -./model_data/coco/val2017/000000099039.jpg 524,109,637,336,0 280,229,483,364,40 127,321,237,384,43 394,318,579,398,44 381,336,425,348,44 287,353,310,364,44 365,356,538,460,45 424,334,578,405,45 126,307,330,342,53 358,298,555,327,53 199,306,223,317,42 523,313,546,325,42 303,336,386,384,45 -./model_data/coco/val2017/000000410221.jpg 270,138,373,255,4 -./model_data/coco/val2017/000000266409.jpg 326,151,451,452,0 372,440,427,480,30 -./model_data/coco/val2017/000000008844.jpg 356,58,581,277,0 534,242,563,321,46 543,259,637,392,46 0,116,387,417,46 370,243,543,383,46 340,186,368,248,0 292,184,335,228,0 -./model_data/coco/val2017/000000297830.jpg 161,59,474,543,16 118,431,165,596,39 -./model_data/coco/val2017/000000524742.jpg 7,0,640,480,6 -./model_data/coco/val2017/000000208423.jpg 349,451,459,480,2 330,421,387,459,2 269,427,346,469,2 185,430,280,479,2 65,437,191,480,2 297,49,331,90,33 459,98,485,118,33 387,114,396,118,33 340,235,353,245,33 232,154,247,170,33 492,320,522,349,33 567,212,586,222,33 423,271,428,274,33 285,264,291,271,33 521,469,635,480,2 429,339,431,341,33 415,432,424,452,0 493,419,501,435,0 272,126,279,134,33 139,240,439,345,33 -./model_data/coco/val2017/000000391375.jpg 243,177,403,417,0 140,329,511,415,13 -./model_data/coco/val2017/000000492758.jpg 547,202,640,327,56 0,213,136,398,56 277,173,301,208,58 320,178,347,206,58 201,184,216,210,75 264,174,282,209,58 53,195,189,317,57 363,351,639,421,57 189,151,228,210,58 300,109,330,206,58 295,178,312,209,58 464,264,499,328,58 54,196,190,325,56 432,191,524,295,56 448,190,515,267,0 -./model_data/coco/val2017/000000397133.jpg 217,240,256,298,39 1,240,347,427,60 388,69,498,347,0 135,249,157,278,43 31,344,99,384,45 59,287,135,328,45 1,164,193,262,69 0,262,62,299,0 119,272,144,306,41 141,267,173,303,41 155,168,182,186,45 157,114,175,129,45 98,304,109,310,50 166,256,174,274,44 86,293,110,305,50 70,296,79,300,50 0,210,191,309,69 96,297,104,301,51 497,203,619,232,71 -./model_data/coco/val2017/000000132622.jpg 11,3,570,512,21 -./model_data/coco/val2017/000000451043.jpg 165,146,250,302,0 202,289,278,305,31 -./model_data/coco/val2017/000000263594.jpg 125,268,166,297,14 33,142,459,290,2 295,145,409,179,2 450,172,500,231,2 456,143,500,182,2 457,137,500,161,2 0,167,58,245,2 45,165,128,189,2 83,159,120,167,2 118,158,147,170,2 16,148,83,187,7 -./model_data/coco/val2017/000000567898.jpg 486,279,571,434,49 192,2,441,235,55 179,0,466,261,45 77,214,328,448,45 332,94,400,164,51 251,141,321,195,51 314,84,339,108,51 266,33,289,56,51 293,16,359,87,51 228,54,303,127,51 368,37,443,110,51 308,178,378,243,51 284,103,306,128,51 378,146,402,171,51 174,319,229,375,51 425,222,524,342,49 360,230,452,294,49 -./model_data/coco/val2017/000000544565.jpg 0,1,640,640,60 1,0,121,257,43 0,327,41,362,44 296,244,403,344,49 249,246,299,327,49 -./model_data/coco/val2017/000000024027.jpg 217,51,446,205,33 249,357,261,375,0 106,355,115,374,0 -./model_data/coco/val2017/000000245576.jpg 205,5,572,395,15 289,4,607,147,62 97,112,145,180,41 97,293,639,465,66 72,6,130,76,76 197,71,271,181,67 -./model_data/coco/val2017/000000298738.jpg 0,127,427,630,21 -./model_data/coco/val2017/000000336232.jpg 12,205,239,327,3 287,57,393,168,5 431,74,437,96,0 55,118,70,143,0 404,139,537,240,2 371,221,640,422,2 0,148,50,252,2 7,145,84,239,2 30,139,112,213,2 85,137,142,192,2 435,43,478,100,5 436,43,480,94,7 488,89,562,137,7 460,76,524,108,7 607,141,640,214,0 156,116,213,166,2 412,107,471,156,2 239,114,291,157,2 149,123,197,181,2 467,102,522,143,2 405,83,438,109,2 98,154,132,205,3 533,135,616,205,2 450,23,454,27,3 86,133,176,307,0 98,1,639,293,2 -./model_data/coco/val2017/000000292415.jpg 73,126,220,257,0 196,192,220,264,36 -./model_data/coco/val2017/000000459634.jpg 315,327,640,530,3 94,300,108,322,3 93,296,108,318,0 -./model_data/coco/val2017/000000005477.jpg 9,105,631,288,4 51,249,301,277,4 -./model_data/coco/val2017/000000469174.jpg 254,71,478,139,4 -./model_data/coco/val2017/000000104424.jpg 95,358,102,366,32 231,279,237,289,32 146,163,264,541,0 223,186,309,308,38 -./model_data/coco/val2017/000000372577.jpg 173,114,341,501,0 228,283,344,331,38 165,0,241,174,0 -./model_data/coco/val2017/000000478286.jpg 154,198,640,319,6 -./model_data/coco/val2017/000000284991.jpg 155,120,400,231,39 85,0,636,423,0 -./model_data/coco/val2017/000000260470.jpg 12,57,178,207,0 278,53,339,134,0 43,238,277,427,55 395,235,464,269,55 337,224,402,259,55 420,204,477,245,55 322,159,354,191,55 510,150,545,174,55 2,193,237,278,55 607,0,640,187,0 417,185,456,217,55 255,53,270,99,0 267,55,277,96,0 326,58,430,126,2 394,230,466,273,54 496,130,527,155,54 311,144,336,166,55 340,139,364,163,55 455,189,497,222,55 0,246,66,317,55 367,200,425,236,55 176,56,200,116,0 231,92,541,284,55 -./model_data/coco/val2017/000000466986.jpg 235,155,466,438,0 0,310,104,478,0 114,370,144,428,43 75,373,92,420,43 348,400,458,417,45 0,152,151,336,68 349,409,467,435,45 -./model_data/coco/val2017/000000396729.jpg 2,23,638,420,59 339,112,457,179,67 246,238,458,423,65 99,94,582,255,73 404,0,595,58,45 -./model_data/coco/val2017/000000574702.jpg 188,292,326,493,3 43,300,185,499,3 85,215,119,302,3 216,264,300,388,0 105,183,147,295,0 164,198,198,229,0 197,191,202,215,0 89,185,108,214,0 89,202,126,275,0 144,177,170,255,0 143,182,156,225,0 141,188,147,204,0 1,184,14,393,0 146,248,205,410,3 27,217,69,307,3 214,222,269,273,3 182,175,186,181,0 163,185,175,210,0 -./model_data/coco/val2017/000000168330.jpg 366,59,401,97,74 131,194,156,212,2 184,208,199,241,10 79,198,120,217,2 12,186,60,227,2 347,59,358,102,74 0,189,26,229,2 -./model_data/coco/val2017/000000271457.jpg 163,208,499,328,13 -./model_data/coco/val2017/000000005600.jpg 89,95,210,241,44 212,138,538,361,45 123,1,374,181,45 -./model_data/coco/val2017/000000159282.jpg 228,189,303,415,75 64,2,511,414,58 -./model_data/coco/val2017/000000033221.jpg 8,101,143,333,0 182,158,223,253,0 263,155,303,265,0 350,88,446,329,0 320,156,333,183,0 368,42,493,105,38 349,188,439,333,26 19,158,42,169,2 0,162,18,171,2 348,158,366,192,0 304,151,310,171,0 324,170,341,200,26 193,171,212,208,26 295,153,303,172,0 322,156,350,255,0 127,146,190,187,7 216,157,255,258,0 250,212,259,229,26 -./model_data/coco/val2017/000000129416.jpg 29,211,53,246,19 141,212,189,244,19 196,224,219,250,19 409,218,471,257,19 56,214,73,237,19 174,230,200,253,19 82,214,102,252,19 269,216,302,233,19 262,219,307,253,19 -./model_data/coco/val2017/000000000285.jpg 1,68,586,632,21 -./model_data/coco/val2017/000000528705.jpg 51,209,287,513,77 309,479,426,639,0 -./model_data/coco/val2017/000000162543.jpg 278,159,347,266,20 208,161,281,268,20 340,163,416,244,20 463,135,520,225,20 245,149,304,176,20 52,158,74,164,25 -./model_data/coco/val2017/000000069795.jpg 168,102,420,405,58 164,208,339,403,75 -./model_data/coco/val2017/000000356432.jpg 138,189,515,394,57 545,204,640,361,57 458,308,552,330,66 62,260,74,277,41 523,209,543,242,41 -./model_data/coco/val2017/000000407646.jpg 73,41,413,393,0 459,248,489,274,32 0,247,105,320,38 -./model_data/coco/val2017/000000491216.jpg 269,180,298,243,58 207,171,245,245,58 166,185,187,243,58 235,198,274,244,58 179,423,270,516,15 323,572,350,640,39 306,191,324,243,39 4,38,109,629,72 113,288,149,320,69 261,205,276,243,39 137,190,151,248,44 298,153,341,177,46 308,103,338,132,46 380,286,401,303,71 103,311,191,567,56 339,289,401,556,69 -./model_data/coco/val2017/000000410487.jpg 30,0,389,373,69 -./model_data/coco/val2017/000000116208.jpg 484,22,568,206,39 356,0,409,136,39 217,90,281,146,40 294,84,358,133,40 451,77,510,151,41 507,351,640,473,41 96,128,577,371,53 560,294,640,402,53 97,17,189,51,53 2,43,116,78,53 601,123,640,291,40 210,0,293,92,56 562,0,639,163,56 248,33,453,127,56 440,0,490,79,56 479,25,492,74,56 0,0,221,272,0 388,1,461,151,39 301,0,364,99,39 1,239,635,472,60 449,76,508,153,40 -./model_data/coco/val2017/000000350148.jpg 89,461,339,625,48 338,131,442,183,2 86,186,119,330,56 0,346,478,630,60 123,5,409,372,0 90,116,185,345,0 320,361,357,379,51 334,343,344,359,51 433,222,480,385,0 390,115,480,239,0 0,112,83,224,2 200,380,236,430,42 204,402,217,443,43 283,373,372,403,55 388,246,458,349,56 409,220,432,239,56 254,264,267,278,74 464,349,480,468,41 296,354,303,374,51 402,235,461,286,60 -./model_data/coco/val2017/000000272049.jpg 0,39,199,110,4 51,32,519,417,7 -./model_data/coco/val2017/000000139077.jpg 280,0,435,155,62 130,131,190,344,0 133,117,167,126,73 133,122,169,128,73 170,122,217,134,73 361,324,420,373,63 160,182,199,220,65 -./model_data/coco/val2017/000000359677.jpg 179,292,231,340,0 199,339,245,352,37 -./model_data/coco/val2017/000000213593.jpg 131,87,257,217,11 392,397,463,426,2 200,377,274,426,2 430,389,482,425,2 259,382,318,424,2 519,380,550,426,0 548,378,564,426,0 314,391,353,423,2 92,397,186,426,2 511,358,522,367,9 -./model_data/coco/val2017/000000100723.jpg 205,42,329,162,11 68,115,75,141,26 256,111,342,253,0 200,181,333,329,0 335,72,364,178,0 3,192,153,333,0 378,188,470,332,0 201,142,257,278,0 465,9,493,44,0 114,48,142,134,0 109,167,198,329,0 55,141,93,179,0 7,106,44,283,0 361,230,402,303,24 389,141,429,174,24 45,60,72,83,0 57,83,114,179,0 4,1,499,332,0 -./model_data/coco/val2017/000000430286.jpg 0,0,638,465,59 158,15,258,158,65 398,22,496,171,65 302,33,383,159,65 -./model_data/coco/val2017/000000148999.jpg 477,334,487,345,0 487,108,623,238,0 422,122,488,239,0 299,165,343,225,0 255,188,298,234,0 496,332,504,344,0 533,335,540,341,0 448,334,460,346,0 345,346,352,353,0 77,185,97,211,9 436,339,443,347,0 415,341,425,350,0 83,312,566,417,6 30,185,175,309,17 412,341,417,349,0 328,344,337,354,0 315,329,539,357,0 -./model_data/coco/val2017/000000553776.jpg 186,200,567,482,3 219,136,423,448,0 -./model_data/coco/val2017/000000038048.jpg 90,194,168,323,10 247,179,282,239,0 78,202,91,210,2 276,207,284,225,26 -./model_data/coco/val2017/000000125072.jpg 184,195,209,210,19 136,197,154,206,19 88,196,111,211,19 223,196,250,212,19 47,201,61,213,19 8,196,32,209,19 -./model_data/coco/val2017/000000197796.jpg 213,96,229,171,39 282,61,304,169,39 312,57,337,155,39 116,120,153,206,39 229,103,255,174,39 66,84,125,220,39 80,247,376,477,71 -./model_data/coco/val2017/000000494427.jpg 15,20,478,520,63 72,319,439,421,66 -./model_data/coco/val2017/000000092124.jpg 247,384,360,630,61 212,350,355,425,71 325,328,348,386,39 -./model_data/coco/val2017/000000309655.jpg 241,203,358,472,0 236,216,255,281,0 389,224,432,292,0 133,231,159,275,0 358,225,377,282,0 221,233,239,276,0 252,219,269,272,0 372,232,392,279,0 89,238,112,283,0 0,222,5,272,0 396,289,439,293,30 89,280,109,282,30 364,277,375,282,30 0,283,56,287,30 25,217,45,285,0 5,282,57,288,31 66,222,94,278,0 3,213,33,298,0 389,284,402,289,30 -./model_data/coco/val2017/000000192904.jpg 176,154,263,247,41 297,227,416,319,41 257,185,270,266,44 296,308,423,332,44 361,72,466,163,54 375,137,405,164,44 1,1,640,431,59 -./model_data/coco/val2017/000000419379.jpg 143,4,269,133,0 41,156,182,261,54 86,323,202,421,54 179,116,321,207,54 19,122,137,202,54 -./model_data/coco/val2017/000000100582.jpg 1,1,640,418,60 337,0,575,34,42 1,0,640,415,53 -./model_data/coco/val2017/000000541123.jpg 304,267,364,355,0 351,135,370,188,0 529,178,571,241,0 459,103,482,134,0 381,146,398,189,0 111,256,166,339,0 447,78,460,92,0 19,150,37,189,0 383,161,411,228,0 292,225,296,230,32 324,164,341,187,56 33,226,61,259,56 52,221,65,234,56 73,178,85,204,56 422,73,436,92,0 77,164,101,203,0 311,69,331,91,0 494,59,507,73,0 67,179,75,183,56 129,74,141,81,56 303,289,320,305,38 563,189,570,195,38 394,182,405,191,38 1,0,639,261,0 -./model_data/coco/val2017/000000050896.jpg 46,57,582,595,45 189,156,330,300,49 201,86,337,181,49 338,121,473,247,49 296,223,443,370,49 142,181,212,307,49 379,329,532,493,49 256,346,382,490,49 113,344,261,497,49 441,214,556,355,49 84,286,198,402,49 199,285,314,392,49 1,1,635,626,60 247,465,388,573,49 -./model_data/coco/val2017/000000155051.jpg 373,6,634,301,74 -./model_data/coco/val2017/000000128051.jpg 115,39,461,254,5 563,187,640,232,7 0,131,146,288,7 87,56,108,105,25 -./model_data/coco/val2017/000000569273.jpg 404,110,573,474,10 212,86,266,162,0 154,79,203,133,0 53,122,81,148,0 13,116,35,137,0 34,100,64,146,0 -./model_data/coco/val2017/000000088970.jpg 82,56,94,71,32 116,131,296,467,0 214,133,281,205,38 -./model_data/coco/val2017/000000474854.jpg 38,338,79,482,56 3,537,421,632,60 15,124,367,568,0 193,280,277,439,46 -./model_data/coco/val2017/000000578871.jpg 284,166,374,243,56 1,239,478,632,60 94,36,389,117,60 330,1,396,63,3 73,1,289,295,0 194,500,386,572,44 268,327,382,398,44 160,459,385,600,45 276,222,354,284,45 170,120,273,194,45 139,327,336,458,45 -./model_data/coco/val2017/000000479953.jpg 294,256,318,279,32 86,99,271,258,0 -./model_data/coco/val2017/000000062353.jpg 15,229,54,304,0 51,232,89,267,0 136,237,160,264,0 80,220,112,268,0 274,155,433,334,23 135,135,311,361,23 337,169,486,333,23 14,233,23,254,0 2,224,27,266,0 -./model_data/coco/val2017/000000060363.jpg 538,217,545,223,14 502,199,508,204,14 508,203,563,231,14 444,187,451,194,14 469,182,472,188,14 421,194,428,201,14 497,197,501,201,14 433,192,439,197,14 395,204,398,210,14 61,54,202,240,74 414,200,419,204,14 603,247,608,252,14 627,258,632,263,14 593,243,639,271,14 -./model_data/coco/val2017/000000339442.jpg 30,87,407,385,48 202,34,404,139,47 21,362,507,505,60 -./model_data/coco/val2017/000000356968.jpg 0,115,558,447,17 -./model_data/coco/val2017/000000021879.jpg 274,78,405,307,0 310,89,347,119,0 423,20,494,78,0 84,49,196,89,0 275,269,376,347,37 352,48,536,85,37 153,69,229,86,37 -./model_data/coco/val2017/000000374551.jpg 28,72,395,214,14 -./model_data/coco/val2017/000000360943.jpg 196,240,277,284,15 -./model_data/coco/val2017/000000060770.jpg 123,106,353,351,22 0,156,153,294,22 -./model_data/coco/val2017/000000221213.jpg 1,82,244,426,6 25,46,640,424,6 -./model_data/coco/val2017/000000084431.jpg 86,70,250,193,62 20,257,325,540,53 -./model_data/coco/val2017/000000278705.jpg 8,135,314,272,2 454,147,563,266,2 93,115,195,289,0 101,277,188,301,36 339,309,440,337,36 360,117,511,335,0 -./model_data/coco/val2017/000000153527.jpg 161,300,191,338,39 407,69,452,123,56 371,69,405,123,56 283,62,319,122,56 90,64,109,107,1 422,46,450,84,0 460,50,477,101,0 479,52,500,88,0 472,53,481,75,0 143,219,207,230,43 448,69,466,100,56 469,70,500,100,56 202,59,247,107,56 408,63,424,99,56 204,58,258,109,57 -./model_data/coco/val2017/000000544444.jpg 126,260,362,517,0 89,507,225,543,30 -./model_data/coco/val2017/000000135902.jpg 1,105,546,361,6 563,240,575,279,0 560,217,640,276,6 -./model_data/coco/val2017/000000388056.jpg 106,22,172,82,34 284,212,320,235,35 283,152,429,291,0 79,68,228,313,0 237,0,295,83,0 393,94,500,301,0 364,0,432,93,0 428,0,489,104,0 267,0,307,46,0 304,0,371,88,0 211,0,257,79,0 108,4,142,72,0 -./model_data/coco/val2017/000000356347.jpg 336,89,640,197,44 396,6,639,414,45 0,1,421,473,45 -./model_data/coco/val2017/000000074860.jpg 146,238,247,312,0 115,304,245,337,31 -./model_data/coco/val2017/000000076261.jpg 239,342,302,386,14 366,177,423,244,14 -./model_data/coco/val2017/000000294162.jpg 48,74,390,455,63 337,415,467,534,64 -./model_data/coco/val2017/000000463918.jpg 143,213,265,354,57 248,72,379,354,0 176,159,204,209,65 327,213,336,223,65 191,126,215,155,65 363,237,485,350,57 432,154,500,359,0 0,63,82,240,58 356,190,373,202,65 52,34,221,359,0 -./model_data/coco/val2017/000000508639.jpg 127,267,339,458,17 -./model_data/coco/val2017/000000274066.jpg 262,154,446,319,0 406,109,522,227,0 415,45,504,133,0 11,209,267,342,37 373,185,402,210,0 171,87,328,281,0 352,112,409,130,37 476,212,578,252,37 478,122,512,130,37 -./model_data/coco/val2017/000000350019.jpg 102,258,370,619,28 125,38,301,265,0 -./model_data/coco/val2017/000000119828.jpg 118,146,438,304,15 344,116,405,165,41 13,0,232,219,63 483,177,500,217,65 314,57,328,102,67 278,153,316,175,64 -./model_data/coco/val2017/000000515077.jpg 525,329,640,470,56 490,273,542,372,56 99,297,173,407,56 196,269,245,338,56 402,283,580,385,60 0,120,114,477,0 442,19,640,219,62 185,336,523,470,57 97,365,111,379,65 574,404,640,479,56 555,358,596,384,56 621,263,640,328,56 -./model_data/coco/val2017/000000219283.jpg 177,217,309,388,77 395,320,437,375,46 120,292,175,331,46 96,302,124,323,46 57,322,174,384,45 -./model_data/coco/val2017/000000512194.jpg 308,293,533,468,75 -./model_data/coco/val2017/000000096549.jpg 62,11,628,168,4 -./model_data/coco/val2017/000000155341.jpg 151,284,393,415,2 50,213,268,308,7 20,259,37,307,0 178,266,194,293,0 226,306,256,334,0 227,263,245,286,0 194,278,215,287,0 277,271,292,291,0 263,220,602,330,7 -./model_data/coco/val2017/000000293071.jpg 0,153,90,219,2 73,148,281,231,2 82,246,166,475,10 273,181,333,239,2 -./model_data/coco/val2017/000000500270.jpg 133,119,188,308,0 67,210,138,251,0 107,301,198,324,36 580,197,594,236,0 546,220,559,232,0 37,181,57,233,0 212,209,217,219,0 192,232,203,236,36 242,224,247,227,36 44,230,60,235,36 248,210,257,228,0 182,218,199,237,0 -./model_data/coco/val2017/000000314294.jpg 294,84,485,245,20 387,3,415,40,20 -./model_data/coco/val2017/000000311180.jpg 93,307,478,484,76 0,103,447,639,0 -./model_data/coco/val2017/000000419653.jpg 76,68,115,139,58 264,171,343,291,56 229,152,266,217,56 349,179,364,242,56 284,227,356,377,56 304,216,622,419,60 341,220,380,346,39 487,65,510,131,39 81,289,130,375,39 203,389,367,478,45 163,321,291,404,45 20,348,90,377,45 554,446,640,480,45 45,136,116,213,68 551,11,640,123,62 1,40,48,194,69 1,191,45,353,69 76,102,110,140,75 337,158,352,182,56 -./model_data/coco/val2017/000000471893.jpg 79,277,494,442,60 444,33,638,436,0 13,138,141,441,0 473,200,518,223,65 29,307,71,321,65 120,208,177,305,56 143,207,229,308,56 314,209,374,262,56 201,361,345,436,56 275,387,389,442,56 250,317,295,330,65 245,133,256,164,73 192,87,290,122,73 217,137,220,165,73 414,183,498,274,0 541,353,587,442,56 622,207,640,250,56 282,136,286,164,73 201,46,206,77,73 202,38,289,76,73 252,136,259,165,73 246,181,250,203,73 273,178,291,194,73 597,20,603,55,73 586,73,590,109,73 189,47,196,78,73 215,137,217,165,73 260,255,394,390,56 384,209,432,261,56 192,267,265,304,56 221,260,259,274,56 -./model_data/coco/val2017/000000005193.jpg 138,113,247,394,0 1,89,218,420,0 223,63,260,186,0 377,98,580,289,0 289,171,409,400,0 239,64,337,414,37 460,73,564,337,37 369,97,389,172,39 360,220,487,374,0 -./model_data/coco/val2017/000000525083.jpg 265,222,292,237,62 224,226,295,306,56 305,227,338,258,56 411,342,615,428,60 188,163,226,348,72 90,227,149,262,68 0,292,55,316,71 291,227,347,277,57 225,227,297,306,57 -./model_data/coco/val2017/000000369037.jpg 133,230,425,640,0 0,0,425,632,20 258,339,367,633,26 39,547,55,598,39 -./model_data/coco/val2017/000000562843.jpg 67,179,242,259,67 213,8,487,233,41 87,243,500,363,76 -./model_data/coco/val2017/000000110721.jpg 15,1,637,352,4 223,310,245,362,0 -./model_data/coco/val2017/000000148662.jpg 74,307,210,435,52 81,0,638,480,0 69,0,423,235,0 0,0,142,247,0 -./model_data/coco/val2017/000000194832.jpg 280,91,343,135,62 2,203,218,419,57 428,206,639,420,57 1,1,640,418,5 0,204,218,425,56 341,185,499,265,56 333,169,455,234,56 199,159,283,166,56 172,164,295,233,56 125,185,290,270,56 425,205,639,425,56 348,218,581,328,56 56,221,286,348,56 54,222,289,351,57 -./model_data/coco/val2017/000000533958.jpg 0,153,150,269,42 -./model_data/coco/val2017/000000369541.jpg 0,116,215,391,16 106,0,189,81,0 274,0,373,81,0 54,0,96,28,0 159,153,229,190,29 84,29,135,74,0 162,0,204,84,0 -./model_data/coco/val2017/000000329041.jpg 222,101,454,427,26 13,9,50,99,26 70,351,290,562,28 77,321,276,476,28 74,286,263,406,28 60,195,243,319,28 2,133,61,238,28 224,3,480,640,0 121,0,221,167,0 11,0,119,184,0 -./model_data/coco/val2017/000000092939.jpg 0,301,44,404,56 369,265,396,287,56 20,113,281,565,0 406,486,424,530,40 207,499,375,627,55 403,228,424,402,0 186,604,239,640,40 186,605,240,640,41 351,265,370,284,56 0,328,26,409,56 91,530,145,609,43 266,478,274,495,43 394,264,408,275,56 179,126,393,518,0 -./model_data/coco/val2017/000000153217.jpg 17,315,160,489,15 40,2,375,418,3 -./model_data/coco/val2017/000000233771.jpg 1,323,63,444,5 462,407,569,601,0 542,359,616,508,0 381,446,490,640,0 229,440,386,640,0 85,378,274,640,0 52,321,504,454,5 173,356,485,458,25 526,101,540,131,74 469,463,546,635,26 532,391,556,425,0 335,396,515,465,25 307,537,391,637,26 349,489,395,535,0 540,407,638,640,0 250,443,286,519,0 484,393,515,469,0 -./model_data/coco/val2017/000000387148.jpg 152,202,177,216,19 236,195,268,217,19 225,201,234,215,19 213,199,225,214,19 380,197,413,218,19 332,203,342,216,19 292,201,322,216,19 422,198,449,217,19 502,195,530,218,19 354,206,360,215,19 99,205,108,215,19 50,195,91,219,19 446,192,488,218,19 411,196,440,217,19 7,197,498,219,19 -./model_data/coco/val2017/000000393469.jpg 218,371,289,530,0 126,191,154,220,0 238,519,387,571,31 109,217,163,226,31 -./model_data/coco/val2017/000000171298.jpg 158,63,530,443,5 469,79,639,409,5 1,50,170,433,5 -./model_data/coco/val2017/000000458325.jpg 342,62,353,88,9 152,69,163,93,9 296,154,369,354,0 271,180,299,236,0 203,178,230,239,0 258,182,273,237,0 237,185,258,230,0 481,183,490,192,0 414,184,426,197,0 309,328,338,349,36 271,200,289,235,0 585,174,614,201,0 550,205,640,390,2 485,197,639,343,2 0,208,71,423,2 448,183,584,310,2 424,192,485,288,2 379,198,422,265,2 0,165,189,332,2 4,211,134,394,2 408,189,480,274,2 356,196,424,256,2 120,163,167,212,2 352,184,421,211,2 249,164,253,170,9 162,69,173,93,9 242,177,243,181,9 288,142,292,152,9 434,177,445,189,0 149,180,192,259,2 220,180,229,205,0 221,191,236,233,0 249,166,254,175,9 356,63,369,88,9 163,171,359,248,2 -./model_data/coco/val2017/000000207728.jpg 86,190,417,369,18 136,55,473,372,18 -./model_data/coco/val2017/000000406417.jpg 218,317,264,422,27 445,278,523,340,27 61,331,90,357,27 375,267,524,632,0 12,292,150,640,0 164,259,351,632,0 -./model_data/coco/val2017/000000420281.jpg 1,23,480,632,0 417,219,480,431,0 148,383,237,505,52 0,254,57,417,0 -./model_data/coco/val2017/000000127660.jpg 17,136,567,513,28 87,11,449,404,0 -./model_data/coco/val2017/000000343803.jpg 19,135,334,609,0 213,299,285,333,29 -./model_data/coco/val2017/000000292024.jpg 156,2,612,452,0 449,315,561,390,42 284,367,573,556,53 5,324,334,580,53 535,470,612,612,41 -./model_data/coco/val2017/000000056344.jpg 0,154,282,302,62 282,154,593,326,62 199,332,232,365,67 408,404,438,455,64 181,389,379,451,66 322,350,354,387,65 159,339,199,381,67 -./model_data/coco/val2017/000000376264.jpg 22,26,103,111,39 262,172,307,240,67 109,203,151,370,43 380,177,640,481,63 263,215,431,403,73 201,386,296,473,41 141,294,195,448,43 1,125,96,238,73 0,22,47,107,39 -./model_data/coco/val2017/000000537672.jpg 109,2,426,633,72 0,240,57,413,56 -./model_data/coco/val2017/000000147729.jpg 254,117,304,192,67 0,87,310,375,0 0,77,162,313,0 306,198,492,369,0 228,91,282,160,0 285,99,368,239,0 326,64,389,146,0 467,26,500,101,0 241,118,330,310,0 341,104,477,210,0 -./model_data/coco/val2017/000000395903.jpg 471,114,576,274,0 518,128,588,282,37 -./model_data/coco/val2017/000000529939.jpg 452,149,537,394,0 420,137,509,315,37 300,82,355,318,37 266,185,316,322,37 257,128,301,228,37 253,86,297,198,37 220,109,255,194,37 443,178,474,292,37 355,158,394,210,37 360,134,393,185,37 352,72,415,302,37 527,142,548,219,37 353,192,404,326,37 21,180,72,355,37 -./model_data/coco/val2017/000000404805.jpg 227,263,362,296,37 220,140,406,300,0 -./model_data/coco/val2017/000000203546.jpg 230,65,521,316,21 -./model_data/coco/val2017/000000456662.jpg 169,34,442,549,72 228,110,367,601,0 -./model_data/coco/val2017/000000290248.jpg 456,362,478,410,26 252,369,271,386,26 384,360,406,404,26 216,395,249,427,28 378,330,425,461,0 327,333,355,446,0 252,327,282,431,0 152,324,189,377,0 190,317,205,398,0 233,319,249,347,0 261,314,276,342,0 19,341,38,359,24 106,322,135,417,0 439,342,483,466,0 47,323,88,377,0 2,366,119,471,7 136,334,146,363,26 127,314,147,351,0 134,319,164,414,0 176,325,198,414,0 483,344,485,366,24 242,341,257,370,26 80,328,97,352,26 417,357,434,395,26 190,356,203,374,26 428,412,450,436,26 0,269,639,457,0 -./model_data/coco/val2017/000000235778.jpg 248,125,451,332,0 524,252,604,331,0 191,127,245,229,33 411,89,461,199,33 575,25,635,311,33 95,112,145,325,33 356,105,413,212,33 140,117,187,327,33 56,93,93,285,33 628,23,640,64,33 237,155,256,185,33 480,61,535,178,33 -./model_data/coco/val2017/000000211120.jpg 471,231,526,272,45 32,62,183,247,77 216,44,370,264,77 394,41,568,266,77 534,96,640,166,77 0,0,640,144,7 -./model_data/coco/val2017/000000257865.jpg 169,78,363,419,0 234,379,400,426,38 -./model_data/coco/val2017/000000463527.jpg 106,109,185,253,39 35,112,116,192,39 220,184,391,328,48 313,141,467,276,48 0,187,158,377,41 72,56,258,200,45 518,121,552,134,42 147,95,189,127,51 179,82,196,94,51 117,90,145,106,51 168,165,176,168,51 -./model_data/coco/val2017/000000356169.jpg 332,323,350,337,2 364,322,382,336,2 22,315,58,355,2 351,322,361,331,2 45,334,62,372,10 340,321,353,334,2 358,293,366,315,9 379,299,382,302,9 278,323,303,332,2 0,295,27,361,2 378,299,379,302,9 -./model_data/coco/val2017/000000370486.jpg 81,53,301,220,25 348,127,421,507,0 305,155,375,477,0 275,163,332,462,0 158,109,276,604,0 0,145,69,504,0 44,145,104,415,0 41,53,76,113,0 245,135,307,493,0 89,265,150,357,26 56,263,75,339,26 18,314,54,346,26 295,281,318,341,26 136,357,156,463,0 140,214,168,307,24 237,154,256,192,0 336,58,368,111,0 292,118,322,162,0 61,202,170,506,0 1,0,405,499,0 -./model_data/coco/val2017/000000164115.jpg 117,201,332,412,37 70,182,180,377,1 -./model_data/coco/val2017/000000329827.jpg 343,223,451,335,0 312,309,411,362,30 -./model_data/coco/val2017/000000416104.jpg 567,298,584,357,39 591,297,610,355,39 564,294,572,348,39 619,287,640,390,39 493,289,510,343,39 481,294,491,332,39 488,182,570,218,25 245,0,638,172,25 1,22,350,238,25 358,224,516,405,0 265,232,365,370,0 352,162,471,291,0 527,221,624,328,0 135,239,186,330,0 52,232,151,429,0 170,248,232,398,0 365,145,450,215,0 471,228,516,318,0 0,247,120,480,0 98,235,156,341,0 573,292,587,351,39 464,289,477,309,39 321,352,519,448,56 247,319,358,480,56 154,308,168,348,56 3,351,138,480,56 119,324,183,437,56 533,389,640,471,56 187,303,229,389,56 509,265,535,300,56 489,266,512,304,56 284,426,638,471,60 532,336,624,400,60 489,328,543,360,60 539,317,559,356,40 247,294,278,331,56 -./model_data/coco/val2017/000000294350.jpg 135,134,205,326,0 261,164,337,298,0 495,152,531,267,69 524,126,638,425,0 210,159,237,210,39 206,163,223,206,39 225,217,254,302,0 323,190,366,269,0 0,0,95,153,45 237,336,286,412,46 70,126,130,161,0 232,90,519,425,0 485,161,495,197,69 -./model_data/coco/val2017/000000457884.jpg 136,163,176,180,2 430,163,490,264,0 522,129,613,310,0 276,117,320,154,35 574,181,598,203,35 478,216,493,227,35 408,165,425,179,2 121,168,145,180,3 121,148,187,180,7 276,116,404,384,0 -./model_data/coco/val2017/000000367386.jpg 120,358,182,434,56 63,338,114,396,56 314,235,640,460,57 73,250,294,385,57 0,354,195,471,60 91,242,121,266,58 120,232,151,265,58 341,370,359,395,41 262,392,314,417,73 369,373,404,391,65 361,373,389,387,65 282,270,320,348,75 250,265,284,287,75 97,253,119,267,75 127,254,149,265,75 279,209,325,350,58 366,413,418,439,73 363,403,412,431,73 358,370,390,381,65 -./model_data/coco/val2017/000000207538.jpg 103,152,411,342,68 -./model_data/coco/val2017/000000146358.jpg 178,93,315,447,0 68,179,150,246,56 269,185,295,266,27 21,262,165,422,55 103,221,115,260,40 0,179,42,242,56 244,113,387,609,0 155,134,217,215,0 191,258,247,279,43 143,142,185,209,0 2,367,275,609,60 -./model_data/coco/val2017/000000163951.jpg 185,413,299,520,56 132,217,352,436,46 -./model_data/coco/val2017/000000364126.jpg 210,130,340,328,0 152,290,337,355,37 -./model_data/coco/val2017/000000412531.jpg 454,255,636,355,2 406,267,491,341,2 66,169,130,324,12 333,280,389,327,2 -./model_data/coco/val2017/000000045472.jpg 243,378,308,428,41 311,377,371,424,41 372,377,435,427,41 434,375,498,428,41 180,383,243,428,41 411,173,628,347,49 -./model_data/coco/val2017/000000161875.jpg 224,125,240,170,27 174,72,281,385,0 -./model_data/coco/val2017/000000198928.jpg 83,382,97,385,2 246,398,307,580,0 103,378,128,385,2 291,165,355,299,9 125,368,206,385,5 277,322,308,358,9 -./model_data/coco/val2017/000000222559.jpg 409,232,415,245,0 348,343,360,383,0 242,377,263,408,0 176,356,194,390,0 606,309,626,333,0 578,302,588,322,0 338,356,358,389,0 405,350,417,394,0 485,209,490,216,0 578,206,600,216,8 456,160,493,227,8 421,190,435,195,8 370,191,414,202,8 230,210,329,224,8 296,152,354,201,8 242,150,308,208,8 404,176,426,189,8 7,343,22,354,37 14,335,26,351,0 213,189,215,193,0 322,200,349,216,8 0,144,73,214,8 202,185,208,188,8 375,198,387,203,8 607,330,632,334,37 239,207,262,219,0 139,178,592,198,8 -./model_data/coco/val2017/000000101762.jpg 41,0,514,344,1 418,69,636,337,15 -./model_data/coco/val2017/000000167122.jpg 32,215,640,480,2 395,198,405,220,0 297,142,381,219,15 228,201,313,218,2 170,205,221,218,2 551,213,579,224,2 -./model_data/coco/val2017/000000346703.jpg 14,5,283,370,0 316,129,549,366,0 266,157,372,357,0 186,376,336,583,0 376,374,473,499,0 104,528,176,640,40 112,388,157,488,41 244,196,322,234,44 420,501,474,531,44 412,513,544,594,55 207,552,376,640,55 24,491,134,592,55 260,184,479,280,57 2,376,63,448,0 454,374,550,522,0 23,447,41,489,44 147,473,160,519,44 93,528,181,631,41 296,377,367,483,57 -./model_data/coco/val2017/000000108244.jpg 182,157,536,352,15 -./model_data/coco/val2017/000000413689.jpg 126,156,145,175,1 1,144,54,167,2 309,157,331,174,2 363,186,426,357,0 443,163,493,345,0 273,154,286,185,0 130,144,142,173,0 612,152,619,177,0 329,155,423,201,25 435,139,522,191,25 310,60,346,73,9 353,186,490,289,26 327,156,337,181,0 391,155,396,160,0 402,112,411,129,9 290,155,303,186,0 244,136,249,142,11 -./model_data/coco/val2017/000000087476.jpg 138,47,374,599,0 334,136,425,477,0 31,41,104,132,0 120,566,372,638,36 169,8,228,117,0 344,70,367,149,0 129,254,322,631,0 348,63,371,90,0 232,64,264,111,0 148,103,245,159,37 250,86,265,107,0 126,34,178,131,0 366,63,400,152,0 -./model_data/coco/val2017/000000345941.jpg 388,110,493,201,44 114,30,283,117,44 456,28,624,164,0 -./model_data/coco/val2017/000000340272.jpg 63,174,174,246,18 426,185,545,265,18 440,168,527,196,18 -./model_data/coco/val2017/000000432553.jpg 0,197,217,472,16 1,213,109,461,16 79,78,146,233,1 203,2,386,519,0 247,0,423,292,13 -./model_data/coco/val2017/000000104782.jpg 250,69,320,369,11 -./model_data/coco/val2017/000000488736.jpg 170,182,317,339,74 339,191,416,347,74 -./model_data/coco/val2017/000000088432.jpg 106,75,127,120,9 169,78,195,125,9 190,99,201,126,9 130,446,222,603,10 6,266,303,400,7 -./model_data/coco/val2017/000000327701.jpg 381,156,399,176,32 329,266,483,419,0 152,331,215,428,0 557,275,573,293,0 115,390,155,423,0 385,209,464,271,38 142,409,153,423,41 553,270,559,283,38 -./model_data/coco/val2017/000000363188.jpg 511,163,521,218,67 256,306,278,318,67 590,198,640,305,2 191,135,341,425,0 308,102,578,420,0 325,157,399,281,0 0,186,208,418,0 0,138,118,420,0 173,156,227,240,0 115,154,145,193,0 97,166,125,212,0 152,155,191,193,0 0,175,34,252,0 160,151,169,161,0 138,155,159,186,0 221,199,312,263,24 282,318,301,386,39 80,158,103,203,0 0,129,305,244,0 -./model_data/coco/val2017/000000157213.jpg 274,75,394,220,20 -./model_data/coco/val2017/000000463037.jpg 611,243,640,259,2 0,98,640,385,4 -./model_data/coco/val2017/000000166166.jpg 167,96,256,160,62 15,121,150,245,56 352,250,500,342,73 295,172,346,291,75 359,101,397,182,56 396,118,431,201,60 169,233,201,246,65 355,286,391,321,73 401,103,447,180,56 -./model_data/coco/val2017/000000559160.jpg 88,256,123,307,0 26,230,72,287,0 104,211,153,315,0 282,394,372,576,36 11,258,93,292,13 207,263,238,344,0 185,179,360,587,0 209,190,283,273,0 -./model_data/coco/val2017/000000404128.jpg 34,147,527,339,4 -./model_data/coco/val2017/000000360661.jpg 75,186,357,355,17 372,204,620,355,17 0,204,80,327,17 216,177,286,257,0 493,180,559,267,0 113,220,146,314,0 0,183,22,230,0 -./model_data/coco/val2017/000000473974.jpg 302,224,609,405,22 67,157,371,405,22 356,159,458,231,22 548,163,627,283,22 0,194,72,303,22 -./model_data/coco/val2017/000000574520.jpg 285,77,418,200,0 234,182,313,256,37 -./model_data/coco/val2017/000000466416.jpg 430,158,450,183,74 187,161,197,186,74 480,403,495,410,2 430,409,445,415,2 507,410,522,419,2 506,403,513,410,2 564,406,586,417,2 528,410,544,418,2 510,406,520,410,2 550,407,565,413,2 529,400,540,405,2 368,419,387,424,2 363,416,376,423,2 428,422,439,425,2 -./model_data/coco/val2017/000000365207.jpg 464,273,557,355,16 69,260,211,463,2 417,177,594,519,2 375,350,431,379,13 399,306,484,490,2 -./model_data/coco/val2017/000000402765.jpg 62,0,460,374,65 0,1,500,369,0 -./model_data/coco/val2017/000000405432.jpg 1,0,500,375,60 300,0,386,30,65 256,72,330,242,54 7,246,107,344,54 -./model_data/coco/val2017/000000390555.jpg 158,186,224,340,0 184,120,250,226,0 310,121,375,232,0 534,117,613,279,0 495,281,608,430,0 358,272,456,433,0 263,181,336,352,0 363,174,429,298,0 30,244,126,425,0 100,295,217,429,0 200,288,300,432,0 298,283,394,425,0 463,327,479,354,27 240,328,252,357,27 77,295,86,319,27 313,94,320,103,27 70,98,77,120,27 140,103,148,119,27 162,343,174,370,27 254,91,267,132,27 424,184,478,325,0 416,221,459,302,26 196,70,570,129,27 329,335,336,355,27 543,338,551,380,27 38,19,635,433,0 -./model_data/coco/val2017/000000572517.jpg 154,191,590,401,14 145,72,339,245,21 -./model_data/coco/val2017/000000164883.jpg 0,2,284,371,0 192,330,236,373,65 204,2,500,370,62 218,312,267,360,65 -./model_data/coco/val2017/000000239773.jpg 90,172,108,187,32 100,63,300,340,0 158,3,293,168,34 406,243,462,300,35 409,139,498,339,0 245,121,294,175,35 -./model_data/coco/val2017/000000022969.jpg 318,75,372,267,23 65,185,177,285,23 -./model_data/coco/val2017/000000485237.jpg 189,21,624,137,4 7,16,325,111,4 0,140,41,159,2 463,142,505,157,7 349,142,399,158,7 127,141,182,158,7 104,143,145,158,2 492,96,508,112,7 -./model_data/coco/val2017/000000106563.jpg 262,461,350,551,74 -./model_data/coco/val2017/000000100624.jpg 176,132,208,186,67 324,108,382,241,0 32,51,322,421,0 263,83,323,246,0 20,211,175,419,24 535,81,576,269,0 265,116,317,175,24 0,252,54,416,2 66,96,97,113,2 -./model_data/coco/val2017/000000253002.jpg 0,0,640,420,5 -./model_data/coco/val2017/000000498709.jpg 0,38,640,423,3 1,175,27,246,2 30,189,109,246,2 164,173,207,218,2 -./model_data/coco/val2017/000000223188.jpg 33,63,378,588,0 0,154,427,631,19 123,157,150,185,74 -./model_data/coco/val2017/000000309484.jpg 2,19,533,629,16 1,1,533,397,0 204,234,311,256,79 202,214,417,287,79 -./model_data/coco/val2017/000000304984.jpg 92,103,196,205,48 12,128,94,285,42 32,71,160,155,45 151,167,260,237,45 33,49,154,106,49 96,105,205,201,55 284,0,385,125,40 180,107,369,218,48 -./model_data/coco/val2017/000000231580.jpg 290,110,532,268,19 284,214,372,310,56 142,31,313,392,0 14,110,73,266,0 0,124,30,284,0 141,367,376,474,0 309,279,441,447,0 94,194,396,250,60 569,322,640,471,0 18,313,202,480,0 -./model_data/coco/val2017/000000519569.jpg 141,306,153,360,39 1,418,89,632,56 149,329,164,362,40 158,330,170,360,40 249,265,289,375,69 87,322,121,365,75 126,391,248,615,56 357,333,426,632,56 -./model_data/coco/val2017/000000498286.jpg 0,9,468,473,16 429,336,618,420,2 432,337,615,420,7 -./model_data/coco/val2017/000000304365.jpg 245,234,406,398,6 449,309,477,364,0 446,338,456,356,28 445,338,456,355,26 -./model_data/coco/val2017/000000057150.jpg 110,66,146,194,0 126,6,157,88,0 176,22,231,148,0 174,13,208,62,0 96,87,216,256,77 31,262,113,315,24 140,41,182,88,24 36,65,78,113,24 56,49,64,69,24 81,55,108,94,24 72,47,90,81,24 203,214,240,320,24 44,111,82,172,24 0,47,20,89,24 192,44,239,264,0 214,16,236,69,0 46,28,76,120,0 15,41,64,171,0 79,31,110,106,0 0,28,28,128,0 109,47,124,66,77 71,22,91,95,0 36,85,126,268,0 40,1,191,33,0 -./model_data/coco/val2017/000000350388.jpg 0,1,480,640,45 213,209,347,326,50 221,291,370,437,50 136,293,259,410,50 92,290,115,318,50 -./model_data/coco/val2017/000000431848.jpg 65,100,375,483,0 88,303,146,399,0 189,384,330,524,36 -./model_data/coco/val2017/000000331604.jpg 260,172,378,310,37 295,149,365,291,0 -./model_data/coco/val2017/000000456865.jpg 87,160,582,306,4 -./model_data/coco/val2017/000000411754.jpg 54,172,100,199,67 35,15,289,237,0 1,185,56,236,24 97,69,141,136,0 84,66,97,107,0 127,62,141,91,0 71,71,79,92,0 280,181,320,240,56 -./model_data/coco/val2017/000000322352.jpg 248,136,356,319,56 210,113,269,151,56 103,99,305,346,60 52,60,134,223,56 148,180,249,354,56 209,123,256,151,56 102,136,134,196,56 399,12,413,40,74 393,131,414,152,75 199,86,224,115,75 463,178,495,212,75 183,98,211,155,75 434,126,500,213,58 377,92,438,154,58 -./model_data/coco/val2017/000000459467.jpg 114,195,471,245,4 -./model_data/coco/val2017/000000527215.jpg 451,207,512,397,0 445,281,455,304,0 553,295,559,305,0 568,292,576,306,0 87,38,114,76,33 487,69,500,75,33 285,277,297,305,0 -./model_data/coco/val2017/000000561009.jpg 241,154,399,422,14 -./model_data/coco/val2017/000000386210.jpg 0,107,28,161,2 0,93,60,144,2 208,140,319,225,47 208,270,315,356,47 208,181,316,292,49 251,91,282,126,49 268,81,303,108,49 246,358,271,382,49 274,358,300,385,49 208,71,323,156,49 264,339,289,367,49 287,334,311,359,49 256,376,284,401,49 72,308,289,601,58 265,409,478,545,58 -./model_data/coco/val2017/000000532530.jpg 514,386,524,415,0 463,383,475,413,0 448,396,459,411,0 540,168,563,190,9 470,392,472,402,0 453,409,465,415,16 -./model_data/coco/val2017/000000179112.jpg 200,134,263,234,67 15,1,348,370,0 -./model_data/coco/val2017/000000465179.jpg 137,163,190,173,79 0,96,373,494,0 0,370,15,400,79 -./model_data/coco/val2017/000000468233.jpg 121,186,197,269,74 -./model_data/coco/val2017/000000157124.jpg 2,129,380,305,71 -./model_data/coco/val2017/000000267670.jpg 109,238,350,315,71 198,200,219,242,39 -./model_data/coco/val2017/000000113720.jpg 82,116,118,215,39 584,211,602,262,56 0,119,608,421,60 191,55,403,254,0 365,18,591,319,0 0,0,119,296,0 194,201,257,324,41 279,214,324,285,41 67,344,225,426,42 211,81,261,124,42 0,341,117,411,43 274,273,553,383,53 62,215,195,269,53 523,108,576,181,0 571,116,640,221,0 147,169,175,218,41 397,278,492,288,42 323,245,340,272,43 98,324,222,382,53 327,252,409,286,53 591,229,640,286,60 -./model_data/coco/val2017/000000002685.jpg 105,277,150,352,39 121,272,180,336,39 137,263,176,311,39 160,248,179,285,39 168,237,185,265,39 140,256,177,290,39 175,235,185,252,39 315,56,638,440,0 281,98,454,344,0 25,218,212,549,0 183,122,316,190,0 154,247,178,288,39 78,189,108,227,40 367,200,386,218,41 401,7,607,344,0 502,255,542,314,26 283,147,297,154,40 140,315,174,352,41 161,132,516,547,0 -./model_data/coco/val2017/000000126107.jpg 224,16,638,250,14 596,418,640,479,8 572,365,584,386,0 593,359,602,373,0 522,368,530,379,0 512,356,520,379,0 568,358,578,383,0 631,363,640,394,0 -./model_data/coco/val2017/000000140270.jpg 213,136,491,303,17 291,61,351,223,0 -./model_data/coco/val2017/000000060347.jpg 102,234,364,595,0 135,290,454,552,13 -./model_data/coco/val2017/000000573258.jpg 39,47,241,472,0 29,94,111,241,24 225,432,382,473,30 -./model_data/coco/val2017/000000110638.jpg 107,2,587,351,20 228,130,438,343,20 0,0,125,307,20 -./model_data/coco/val2017/000000422706.jpg 164,174,285,315,8 4,17,148,225,0 0,5,186,157,0 1,141,120,317,0 252,266,261,275,0 18,208,74,300,26 -./model_data/coco/val2017/000000177935.jpg 46,190,95,229,43 81,171,112,208,43 78,199,101,223,43 77,189,105,217,43 53,175,76,199,44 0,260,451,640,69 79,182,107,211,43 4,153,25,184,44 277,159,312,194,74 80,235,100,251,43 70,232,93,251,43 43,202,101,247,43 47,163,56,176,44 -./model_data/coco/val2017/000000500478.jpg 20,180,58,199,56 23,126,62,144,56 101,80,272,514,0 223,194,274,265,0 32,180,91,241,0 0,179,33,243,0 203,10,269,84,0 182,209,231,260,35 0,58,74,138,0 88,0,138,100,0 133,3,174,62,0 23,145,69,164,56 64,126,106,147,56 26,164,69,183,56 0,161,29,182,56 58,108,103,127,56 103,108,139,129,56 207,120,249,184,0 163,0,213,57,0 0,144,23,161,56 1,127,21,145,56 65,144,106,164,56 291,192,329,264,0 78,173,110,244,0 267,180,295,229,0 216,50,328,240,0 -./model_data/coco/val2017/000000525600.jpg 366,136,458,279,23 179,137,282,299,23 266,84,313,218,23 376,88,407,190,23 463,70,502,121,23 299,104,364,227,23 430,76,540,161,23 421,108,541,269,23 -./model_data/coco/val2017/000000302990.jpg 240,138,465,289,0 475,34,526,77,0 273,233,353,345,37 523,53,561,74,37 -./model_data/coco/val2017/000000465822.jpg 303,271,322,319,39 0,265,232,367,56 392,221,409,234,56 136,85,162,113,74 247,252,378,349,63 53,108,164,273,0 0,170,71,275,0 284,173,325,234,0 326,160,449,346,0 406,172,451,252,0 436,170,500,263,0 65,48,225,266,0 257,174,295,226,0 440,150,471,176,0 45,54,89,249,58 397,242,440,276,63 0,173,30,247,0 210,223,220,239,56 244,223,272,289,56 268,225,306,305,56 424,225,497,324,56 300,229,382,302,56 0,246,49,307,56 226,168,270,253,0 479,181,499,226,0 -./model_data/coco/val2017/000000545958.jpg 380,261,571,396,19 -./model_data/coco/val2017/000000009378.jpg 66,44,473,393,0 307,331,394,392,0 425,336,480,389,0 525,295,587,374,0 190,217,359,258,29 31,363,60,390,0 491,321,536,390,0 522,318,550,358,0 10,361,34,391,0 421,350,441,389,0 -./model_data/coco/val2017/000000447313.jpg 144,202,260,330,22 280,148,443,320,22 303,163,510,347,22 -./model_data/coco/val2017/000000085682.jpg 207,234,216,254,0 510,318,552,425,0 402,290,426,370,0 383,290,396,323,0 334,284,355,308,0 272,274,285,305,0 607,307,640,354,0 374,322,389,371,0 355,290,385,356,0 115,207,118,214,0 208,254,213,255,30 426,378,464,400,30 330,304,353,353,0 478,313,508,405,0 470,310,486,383,0 107,203,572,394,0 -./model_data/coco/val2017/000000352684.jpg 180,288,201,376,27 167,223,290,635,0 300,240,379,526,0 84,251,147,486,0 1,271,42,412,0 374,282,419,427,0 152,250,180,463,0 56,268,96,415,0 38,271,60,378,0 128,265,163,420,0 -./model_data/coco/val2017/000000313130.jpg 181,73,386,473,72 387,127,521,225,68 48,123,127,278,56 93,133,128,158,56 -./model_data/coco/val2017/000000476215.jpg 80,79,275,224,17 8,61,108,211,17 278,94,314,200,0 -./model_data/coco/val2017/000000040036.jpg 161,50,588,395,17 306,26,413,221,0 212,197,256,236,58 -./model_data/coco/val2017/000000532690.jpg 0,250,186,631,57 58,40,500,631,0 373,1,526,629,0 64,494,113,591,65 120,4,389,169,0 -./model_data/coco/val2017/000000210299.jpg 126,124,255,325,0 136,183,260,400,1 -./model_data/coco/val2017/000000052007.jpg 89,60,335,391,5 362,237,407,428,0 315,252,367,395,0 219,255,258,313,0 145,239,190,282,0 45,265,50,279,0 83,272,87,281,0 158,264,166,279,27 -./model_data/coco/val2017/000000142620.jpg 110,203,148,315,39 158,104,345,269,56 503,113,640,417,56 0,203,354,421,60 235,292,279,332,41 164,377,214,426,41 229,379,277,426,41 251,266,302,282,43 191,313,230,325,44 187,292,208,314,49 269,5,629,420,0 99,350,160,399,45 253,321,354,375,45 74,280,123,360,39 110,332,180,377,44 -./model_data/coco/val2017/000000089761.jpg 138,317,392,628,61 -./model_data/coco/val2017/000000054164.jpg 182,105,330,344,0 139,317,266,348,37 -./model_data/coco/val2017/000000289960.jpg 440,290,490,396,0 46,82,234,199,33 -./model_data/coco/val2017/000000252507.jpg 137,277,195,423,0 114,406,227,432,30 -./model_data/coco/val2017/000000198489.jpg 64,58,169,228,58 190,39,428,149,2 104,92,276,432,0 0,415,313,593,25 -./model_data/coco/val2017/000000187271.jpg 98,149,347,614,72 -./model_data/coco/val2017/000000187362.jpg 257,170,343,389,0 291,224,353,319,37 -./model_data/coco/val2017/000000509008.jpg 7,108,625,391,5 -./model_data/coco/val2017/000000351810.jpg 22,111,108,278,0 97,160,255,310,24 5,169,92,369,28 9,122,55,166,0 0,48,44,174,0 95,120,117,155,0 237,175,370,371,28 126,301,237,371,28 100,145,141,198,58 280,173,500,375,24 255,145,327,204,24 65,274,107,305,56 12,190,35,200,60 0,171,58,295,60 88,323,111,374,28 192,156,283,245,28 175,108,197,166,0 -./model_data/coco/val2017/000000419201.jpg 212,119,240,155,14 340,184,360,201,14 307,236,330,247,14 395,229,446,264,17 448,215,461,238,17 258,244,280,266,17 49,265,67,274,14 -./model_data/coco/val2017/000000161879.jpg 54,1,236,342,0 10,296,211,355,36 -./model_data/coco/val2017/000000210230.jpg 213,158,315,244,0 159,235,218,308,0 71,187,196,378,0 190,53,624,452,0 305,414,392,439,51 309,408,363,423,51 162,302,306,352,52 239,412,395,453,52 306,403,316,411,52 0,232,28,289,0 209,267,237,300,0 32,229,91,294,0 237,413,300,442,52 0,301,108,451,0 309,414,358,427,52 311,413,363,420,52 313,408,361,415,52 -./model_data/coco/val2017/000000572956.jpg 0,0,241,333,3 163,101,369,324,3 309,9,421,260,3 329,9,455,242,3 396,55,467,206,3 429,106,475,203,3 146,20,338,160,3 437,84,499,192,3 -./model_data/coco/val2017/000000394206.jpg 453,290,640,473,2 408,350,466,456,3 273,94,360,300,0 250,93,305,263,0 205,161,281,261,0 53,168,470,480,7 233,91,268,150,0 201,105,246,151,0 569,435,638,480,0 0,308,17,350,2 265,215,357,367,0 340,199,443,409,0 190,214,290,419,0 329,15,466,235,0 -./model_data/coco/val2017/000000327769.jpg 201,116,452,259,15 114,11,168,138,39 146,40,490,262,71 0,251,33,416,61 260,2,322,84,41 307,0,362,71,41 334,1,352,51,79 -./model_data/coco/val2017/000000231527.jpg 161,290,283,461,41 69,158,206,338,41 327,145,426,271,49 256,116,367,230,49 301,466,427,632,49 1,359,156,521,49 0,102,427,628,49 71,460,335,640,43 5,8,426,628,60 -./model_data/coco/val2017/000000479099.jpg 383,167,446,203,13 -./model_data/coco/val2017/000000350003.jpg 475,258,528,298,2 228,235,360,309,7 537,255,550,283,0 418,285,426,296,28 536,273,549,284,1 411,258,422,298,0 -./model_data/coco/val2017/000000523241.jpg 364,202,478,235,2 44,198,143,229,2 474,204,500,218,2 324,186,388,218,7 200,156,208,178,9 389,169,393,177,9 166,176,209,219,7 306,203,324,210,2 295,201,310,208,2 203,179,207,186,9 -./model_data/coco/val2017/000000048564.jpg 95,153,140,233,67 4,1,424,630,0 -./model_data/coco/val2017/000000006894.jpg 293,20,640,480,0 0,86,638,474,20 -./model_data/coco/val2017/000000546659.jpg 47,364,420,547,6 169,407,182,429,0 12,380,23,396,0 72,346,80,370,0 -./model_data/coco/val2017/000000216277.jpg 393,73,529,245,67 86,127,342,372,47 454,1,640,164,0 -./model_data/coco/val2017/000000080666.jpg 64,120,534,538,15 195,147,628,623,13 -./model_data/coco/val2017/000000546823.jpg 454,335,482,403,17 485,291,562,441,17 124,270,141,331,0 257,262,278,319,0 554,267,624,384,0 604,264,629,309,0 424,267,448,310,0 30,274,53,347,0 167,258,177,277,0 415,265,430,290,0 407,253,418,284,0 481,251,488,270,0 579,247,600,260,2 0,248,43,266,25 17,248,95,287,25 425,241,470,252,25 197,258,224,267,25 96,254,141,269,25 467,238,502,246,25 454,278,460,292,26 121,281,138,302,26 136,270,146,308,0 319,281,353,311,1 607,246,615,257,2 444,264,465,317,0 5,247,639,328,0 -./model_data/coco/val2017/000000309173.jpg 61,32,318,353,11 81,371,108,417,0 -./model_data/coco/val2017/000000281414.jpg 200,249,230,262,67 64,107,316,580,0 285,300,443,403,24 -./model_data/coco/val2017/000000191013.jpg 142,209,330,398,74 305,551,439,612,2 44,548,224,640,2 122,520,267,608,7 59,542,84,584,0 450,567,474,603,2 366,564,378,577,0 0,621,210,640,2 -./model_data/coco/val2017/000000408830.jpg 74,34,571,416,3 282,1,510,108,3 478,2,561,64,3 500,0,599,30,3 -./model_data/coco/val2017/000000196759.jpg 0,240,41,269,2 575,228,626,255,2 44,167,618,423,7 530,230,577,250,2 -./model_data/coco/val2017/000000512403.jpg 173,367,344,575,73 352,360,529,599,75 218,109,529,604,58 -./model_data/coco/val2017/000000507037.jpg 360,313,538,434,1 178,456,338,480,1 132,314,174,341,1 244,401,296,470,24 31,271,64,322,24 0,255,65,411,0 583,276,640,402,0 237,278,273,361,0 301,257,361,472,0 123,279,152,378,0 372,268,411,347,0 421,263,458,390,0 352,274,375,360,0 284,253,331,436,0 229,273,248,354,0 179,264,224,351,0 0,246,25,383,0 0,424,105,474,1 441,328,599,416,1 428,354,443,380,1 277,341,300,377,1 610,298,634,341,26 205,308,225,319,26 121,271,131,273,53 295,303,311,322,53 71,224,138,431,0 150,263,243,360,0 -./model_data/coco/val2017/000000006213.jpg 406,253,496,286,71 589,292,640,312,71 -./model_data/coco/val2017/000000364884.jpg 284,83,291,104,0 102,123,109,152,0 439,223,449,240,0 336,166,363,184,31 25,157,36,185,0 128,166,141,191,0 81,172,90,193,0 112,156,119,171,0 334,299,348,333,0 333,287,351,305,0 209,88,218,105,0 407,269,419,295,0 472,167,477,183,0 398,303,417,330,0 0,0,499,353,0 -./model_data/coco/val2017/000000464522.jpg 0,104,329,508,16 155,2,494,631,16 -./model_data/coco/val2017/000000540280.jpg 2,8,427,434,25 379,493,394,622,73 115,591,216,599,73 -./model_data/coco/val2017/000000456559.jpg 318,370,427,479,27 142,7,640,480,0 -./model_data/coco/val2017/000000229659.jpg 4,113,14,141,39 52,124,56,147,39 27,124,32,143,39 43,123,51,144,39 56,123,66,145,39 71,123,76,147,39 35,122,38,144,39 15,122,22,141,39 38,123,45,144,39 66,122,73,145,39 117,213,315,429,56 303,196,341,220,56 15,294,89,414,56 212,206,281,218,56 117,243,295,288,60 229,157,280,206,0 478,27,561,147,0 317,139,638,474,63 93,123,99,146,39 97,125,105,148,39 338,200,369,271,56 17,334,343,473,60 339,141,638,471,62 70,26,93,54,74 272,195,303,216,56 82,123,91,148,39 312,218,371,241,60 58,209,166,431,56 129,128,212,212,0 17,120,100,149,39 -./model_data/coco/val2017/000000090891.jpg 244,181,369,411,0 425,184,538,369,0 517,141,611,377,0 380,351,448,388,46 414,41,455,73,46 93,42,122,97,46 24,57,34,66,46 20,246,29,254,46 193,131,205,146,46 233,123,245,133,46 219,204,257,276,46 368,281,421,350,46 491,75,506,92,46 19,333,47,370,46 598,16,634,50,46 143,187,235,371,0 51,105,163,425,0 170,404,192,420,46 1,0,639,430,46 -./model_data/coco/val2017/000000548524.jpg 441,279,465,311,0 434,308,478,316,37 15,170,19,177,0 18,171,22,179,0 -./model_data/coco/val2017/000000165518.jpg 261,262,433,510,3 248,173,423,460,0 -./model_data/coco/val2017/000000448365.jpg 149,34,370,339,0 195,266,345,409,36 445,228,465,258,1 -./model_data/coco/val2017/000000477623.jpg 97,75,554,430,6 -./model_data/coco/val2017/000000067896.jpg 182,61,478,348,74 -./model_data/coco/val2017/000000361586.jpg 352,201,383,240,62 568,160,608,213,24 84,240,111,321,26 204,217,228,275,26 266,303,324,355,28 249,184,291,360,0 93,127,638,353,0 271,253,329,313,26 520,191,543,221,26 557,212,638,269,28 539,255,557,306,28 544,203,559,219,0 548,185,558,199,0 19,133,86,211,62 463,74,491,126,62 177,91,264,163,62 315,217,354,247,62 526,221,548,256,28 -./model_data/coco/val2017/000000417632.jpg 196,162,409,245,39 0,237,89,480,39 247,420,277,479,39 365,2,619,231,0 0,0,397,451,0 428,133,640,480,0 406,176,469,307,40 346,184,390,295,40 290,76,329,128,0 269,78,286,101,0 566,199,639,350,26 461,89,487,159,27 130,343,178,421,40 297,419,348,465,41 0,72,49,210,0 309,441,497,473,45 241,333,266,480,39 -./model_data/coco/val2017/000000084170.jpg 132,261,230,337,2 82,263,141,303,2 202,119,445,364,5 219,261,230,279,2 336,227,355,265,0 0,244,45,288,2 254,225,294,260,0 -./model_data/coco/val2017/000000182202.jpg 57,102,333,336,67 155,0,639,314,63 241,0,640,91,66 0,28,640,379,60 -./model_data/coco/val2017/000000189310.jpg 189,348,302,467,56 -./model_data/coco/val2017/000000416534.jpg 64,198,79,211,58 60,116,80,218,58 0,81,72,221,62 142,164,277,301,56 511,203,640,351,57 379,233,383,254,73 374,234,378,254,73 375,201,379,228,73 355,230,362,254,73 362,201,367,229,73 359,203,362,229,73 371,200,375,229,73 332,198,383,229,73 310,201,315,229,73 304,203,308,229,73 361,231,365,254,73 370,230,372,254,73 364,173,368,197,73 271,169,383,256,73 -./model_data/coco/val2017/000000114884.jpg 217,73,270,131,5 1,51,121,151,5 178,68,224,134,5 258,77,297,122,5 87,61,185,145,5 193,113,206,132,24 341,138,364,158,28 348,128,369,150,28 198,134,211,154,28 74,141,100,166,28 40,138,61,170,28 319,85,487,325,0 371,104,390,151,0 336,101,352,139,0 325,103,348,162,0 471,102,493,164,0 182,106,202,159,0 159,107,173,154,0 295,98,319,159,0 50,104,69,169,0 106,119,134,167,0 11,102,28,168,0 28,109,44,167,0 289,83,317,107,5 372,113,389,129,26 329,138,350,157,26 174,137,197,158,28 114,149,137,166,28 463,236,493,281,26 316,135,330,155,28 383,130,398,147,28 370,87,377,102,0 168,120,176,132,24 -./model_data/coco/val2017/000000162130.jpg 119,311,333,434,13 -./model_data/coco/val2017/000000529966.jpg 32,129,301,360,45 142,162,222,250,49 220,184,285,237,49 40,127,122,202,49 102,105,174,174,49 174,125,245,195,49 116,160,175,243,49 205,209,281,284,49 50,193,134,285,49 364,47,595,203,49 119,240,202,322,49 0,289,28,395,45 -./model_data/coco/val2017/000000009772.jpg 426,91,516,186,62 275,230,333,356,0 322,378,408,397,71 173,379,255,396,71 -./model_data/coco/val2017/000000445602.jpg 359,313,436,448,0 38,263,46,279,0 330,436,480,447,30 68,264,76,280,0 198,233,202,241,0 216,233,221,241,0 217,227,220,233,0 -./model_data/coco/val2017/000000122606.jpg 80,11,542,468,5 372,157,418,207,0 -./model_data/coco/val2017/000000500257.jpg 14,146,35,194,0 451,169,468,186,0 147,157,153,166,0 67,151,76,171,0 254,201,278,226,28 259,163,322,194,28 206,173,235,191,28 360,252,380,292,28 360,142,443,336,0 178,155,207,177,24 107,194,163,243,28 438,243,485,304,28 456,195,500,252,28 328,230,357,264,28 245,153,296,183,28 318,135,337,153,62 294,137,314,153,62 249,138,263,151,62 225,138,238,150,62 211,138,223,150,62 191,139,203,149,62 180,138,190,149,62 164,139,172,149,62 154,139,163,149,62 267,136,281,150,62 91,138,135,259,0 204,191,234,211,28 116,208,189,257,28 233,169,253,200,28 242,150,270,173,28 21,137,499,317,28 -./model_data/coco/val2017/000000267940.jpg 174,148,541,288,8 490,282,507,303,13 -./model_data/coco/val2017/000000226130.jpg 13,146,583,420,52 228,50,585,227,52 0,0,640,426,60 -./model_data/coco/val2017/000000077460.jpg 272,563,284,601,0 184,565,187,572,0 235,561,244,576,0 98,556,116,608,0 116,556,123,566,0 123,554,129,566,0 146,554,152,568,0 156,553,163,572,0 171,557,177,571,0 192,555,198,576,0 221,562,230,576,0 333,398,350,412,33 266,474,273,482,33 235,510,238,514,33 186,481,194,491,33 75,418,86,425,33 45,497,56,503,33 382,456,390,474,33 394,480,400,490,33 400,316,411,336,33 179,467,187,474,33 77,379,81,382,33 310,318,323,337,33 67,549,89,601,0 401,316,406,321,33 313,564,319,582,0 0,532,427,602,0 19,312,423,554,33 -./model_data/coco/val2017/000000150638.jpg 548,106,596,226,39 382,111,437,243,39 437,100,468,154,39 467,99,500,153,39 302,147,354,311,39 149,172,179,285,39 0,66,607,462,60 182,0,330,88,0 169,6,198,61,0 358,247,409,318,41 513,196,555,253,41 365,140,392,182,41 510,170,549,196,41 313,38,337,74,41 591,68,602,82,41 613,66,640,91,41 499,0,579,79,0 145,13,199,87,0 -./model_data/coco/val2017/000000101068.jpg 404,84,638,427,0 362,127,458,242,34 -./model_data/coco/val2017/000000577182.jpg 307,180,341,217,14 2,205,640,421,13 498,181,640,367,13 0,7,45,169,13 -./model_data/coco/val2017/000000499109.jpg 20,90,386,419,48 -./model_data/coco/val2017/000000286422.jpg 394,286,441,306,16 96,21,541,369,8 369,223,398,300,0 139,274,160,319,0 232,290,247,298,0 266,281,278,309,0 -./model_data/coco/val2017/000000436617.jpg 214,183,544,404,60 373,258,403,321,40 316,193,331,218,40 307,267,338,334,40 305,238,330,269,40 343,194,361,227,40 329,171,338,183,40 394,136,565,380,0 8,130,111,275,0 414,142,448,237,0 305,118,423,231,0 327,209,344,250,40 317,192,331,199,40 363,199,379,233,40 2,197,61,310,56 49,181,117,283,56 251,130,325,224,0 381,128,415,197,0 129,135,155,160,0 102,137,134,184,0 419,186,452,242,0 186,127,339,299,0 58,180,255,420,0 291,149,640,420,13 325,332,396,394,26 346,179,357,193,40 36,172,46,187,40 334,254,363,286,41 1,336,63,422,56 129,145,191,192,0 0,177,127,223,60 0,143,37,189,0 399,183,402,220,26 -./model_data/coco/val2017/000000211042.jpg 160,185,286,542,15 165,212,372,340,61 -./model_data/coco/val2017/000000578489.jpg 127,146,415,418,57 347,193,403,240,65 77,97,289,401,0 344,99,455,368,0 493,65,587,370,0 435,111,464,182,0 371,115,539,474,0 524,16,640,480,0 375,50,459,159,0 35,126,47,149,39 61,147,77,176,39 -./model_data/coco/val2017/000000073118.jpg 107,44,612,609,77 0,175,273,604,77 -./model_data/coco/val2017/000000567886.jpg 0,98,198,367,0 0,3,42,86,73 53,1,71,82,73 67,42,218,176,77 34,0,51,85,73 -./model_data/coco/val2017/000000521717.jpg 439,96,491,164,56 293,77,368,218,0 209,180,299,365,0 201,176,245,208,38 198,155,215,172,32 358,21,410,192,0 -./model_data/coco/val2017/000000377000.jpg 0,37,317,558,15 -./model_data/coco/val2017/000000431568.jpg 2,141,328,402,53 259,134,640,419,53 1,0,640,418,60 0,233,86,420,60 2,7,639,250,53 -./model_data/coco/val2017/000000110211.jpg 1,132,177,326,22 160,132,317,266,22 61,149,115,183,22 532,179,583,248,22 543,160,624,254,22 -./model_data/coco/val2017/000000066706.jpg 359,292,470,359,0 357,58,496,497,0 260,462,430,596,41 118,259,237,352,46 162,389,217,436,46 153,434,213,480,46 116,354,177,462,46 522,473,612,544,0 -./model_data/coco/val2017/000000131386.jpg 151,206,490,380,4 225,191,547,305,4 377,186,608,352,4 512,184,640,334,4 -./model_data/coco/val2017/000000031050.jpg 158,248,274,567,75 -./model_data/coco/val2017/000000279927.jpg 211,214,273,243,25 33,181,93,249,25 154,205,207,222,25 438,324,454,342,0 476,285,485,307,0 122,216,163,361,0 404,356,420,380,0 527,310,544,332,0 588,291,603,312,0 399,248,405,255,0 73,201,127,354,0 55,218,89,333,0 158,216,201,348,0 433,284,445,311,0 189,236,258,378,0 313,256,322,267,0 1,26,639,380,0 -./model_data/coco/val2017/000000231169.jpg 146,106,427,439,6 -./model_data/coco/val2017/000000134882.jpg 272,328,424,393,15 27,347,617,620,59 467,382,618,426,63 167,121,194,201,73 78,148,164,171,73 58,101,92,187,73 43,274,57,346,73 163,251,195,305,73 39,260,68,347,73 230,260,284,310,77 222,125,238,206,73 208,130,225,205,73 179,117,215,204,73 134,120,180,176,73 85,139,146,157,73 218,242,233,286,73 76,164,177,200,73 21,102,245,349,73 -./model_data/coco/val2017/000000245320.jpg 365,245,423,311,2 180,92,383,292,0 409,247,424,312,0 226,270,338,320,36 -./model_data/coco/val2017/000000116206.jpg 403,126,640,375,43 140,0,317,118,41 101,129,289,345,51 -./model_data/coco/val2017/000000410612.jpg 174,193,299,242,8 -./model_data/coco/val2017/000000236426.jpg 158,229,169,239,32 171,165,189,183,32 363,87,382,109,38 260,64,405,281,0 21,95,122,228,0 102,37,144,64,0 156,31,194,63,0 202,28,243,64,0 253,22,292,63,0 295,0,353,62,0 152,2,200,59,0 102,3,150,63,0 51,30,95,65,0 298,29,344,64,0 11,51,52,63,56 131,13,153,50,56 11,39,51,60,56 50,0,104,61,0 271,12,297,62,0 1,0,639,247,0 -./model_data/coco/val2017/000000414795.jpg 220,345,339,474,0 53,413,114,474,0 347,366,437,480,0 108,411,207,480,0 96,142,139,216,0 77,265,289,367,20 618,154,640,191,20 130,189,278,269,20 252,240,427,328,20 329,216,487,292,20 416,287,607,406,20 270,312,428,407,20 419,390,522,469,20 1,360,197,436,20 441,46,492,91,20 427,137,543,192,20 386,63,418,86,20 535,400,623,480,0 479,457,515,479,0 336,93,408,149,20 1,0,639,479,20 -./model_data/coco/val2017/000000014831.jpg 1,232,480,638,15 0,0,480,269,59 -./model_data/coco/val2017/000000470779.jpg 418,37,543,410,0 352,45,444,399,0 256,54,403,382,0 61,102,170,392,0 105,70,354,401,0 76,369,193,473,30 95,143,113,190,24 347,362,450,451,31 431,391,584,476,30 171,386,320,479,30 -./model_data/coco/val2017/000000001296.jpg 299,143,371,278,67 371,408,389,424,74 7,1,427,635,0 262,25,409,238,0 -./model_data/coco/val2017/000000166918.jpg 303,566,381,640,40 415,560,457,626,40 120,367,143,412,40 236,333,255,357,41 396,286,480,439,0 0,296,52,421,0 96,294,163,376,0 348,277,389,338,0 296,289,342,336,0 173,380,199,475,39 255,324,270,360,39 56,417,80,480,40 53,403,78,436,40 185,344,198,380,40 351,345,362,357,40 224,323,231,331,40 450,561,480,639,40 80,409,106,454,40 344,349,351,367,40 413,489,480,499,42 405,499,480,506,43 416,442,451,445,43 22,423,52,426,43 209,264,249,330,0 397,249,422,289,0 370,260,394,291,0 33,265,101,409,0 100,282,150,332,0 419,247,445,282,0 439,285,480,333,0 217,305,221,322,39 324,293,337,303,39 276,318,282,337,39 374,451,410,544,40 350,479,397,570,41 339,405,373,444,41 330,368,348,398,41 330,444,375,503,41 328,395,354,424,41 335,542,358,553,44 2,357,381,629,60 144,307,192,351,0 376,395,395,452,40 123,368,140,378,41 63,315,429,609,40 -./model_data/coco/val2017/000000440617.jpg 60,190,420,324,6 0,124,21,194,9 -./model_data/coco/val2017/000000255718.jpg 102,56,388,608,10 -./model_data/coco/val2017/000000168883.jpg 192,194,217,225,67 133,122,375,632,0 288,463,478,640,0 108,390,179,508,26 407,391,479,623,0 0,26,175,632,0 -./model_data/coco/val2017/000000267191.jpg 25,232,138,354,0 524,55,639,246,0 15,45,640,471,20 0,265,235,480,20 227,337,356,479,20 -./model_data/coco/val2017/000000503855.jpg 80,187,133,231,25 241,206,306,250,25 318,264,448,354,25 553,229,636,298,25 0,229,68,288,25 190,130,207,156,0 214,116,232,159,0 248,125,265,160,0 354,120,377,160,0 63,117,87,174,0 529,110,547,146,0 160,111,185,165,0 46,179,67,197,24 156,112,164,145,0 138,119,161,189,0 166,134,170,142,24 0,192,26,225,25 -./model_data/coco/val2017/000000053909.jpg 81,27,362,583,67 2,142,480,631,0 -./model_data/coco/val2017/000000309467.jpg 321,96,385,259,0 449,88,507,242,0 357,127,387,167,24 477,107,508,153,24 302,244,380,265,30 441,227,526,248,30 -./model_data/coco/val2017/000000386352.jpg 345,0,558,202,38 86,91,396,424,0 244,3,395,184,0 489,75,640,407,0 0,100,91,425,0 28,58,145,259,0 19,4,156,150,0 366,0,500,127,0 496,0,624,150,0 101,0,199,72,0 365,86,633,419,0 258,231,424,369,56 170,26,258,201,0 -./model_data/coco/val2017/000000226154.jpg 62,273,131,347,3 145,104,530,382,5 60,257,97,307,0 86,254,123,329,0 206,170,269,224,0 293,191,330,224,0 -./model_data/coco/val2017/000000213035.jpg 314,168,393,221,67 238,170,327,234,67 0,110,311,345,0 195,2,455,112,0 177,0,243,135,40 305,53,635,427,0 -./model_data/coco/val2017/000000507893.jpg 293,553,391,631,61 297,390,390,416,71 -./model_data/coco/val2017/000000551439.jpg 0,139,427,630,59 0,32,425,629,0 84,188,279,398,73 -./model_data/coco/val2017/000000396274.jpg 528,323,573,369,50 -./model_data/coco/val2017/000000223738.jpg 65,196,96,223,32 273,89,596,606,0 66,11,174,237,0 620,93,634,240,0 219,240,292,316,34 189,4,304,228,0 1,93,79,237,0 -./model_data/coco/val2017/000000508370.jpg 0,292,351,565,1 268,53,422,454,0 160,390,176,412,41 198,126,221,160,41 204,81,304,389,0 8,534,33,556,41 -./model_data/coco/val2017/000000322944.jpg 32,4,412,628,0 15,209,414,624,77 -./model_data/coco/val2017/000000362520.jpg 57,131,330,446,0 50,271,424,540,36 -./model_data/coco/val2017/000000282296.jpg 86,54,356,548,72 11,552,61,639,39 0,584,50,640,39 -./model_data/coco/val2017/000000482735.jpg 188,112,249,228,0 198,198,273,238,37 -./model_data/coco/val2017/000000270297.jpg 172,132,217,162,6 181,214,196,249,0 267,198,383,319,6 -./model_data/coco/val2017/000000439854.jpg 230,246,284,322,1 112,155,198,230,0 418,224,447,271,0 283,196,332,313,0 235,204,290,318,0 466,184,477,201,0 100,225,154,259,36 328,211,340,236,0 131,231,175,283,0 333,188,341,211,0 430,240,448,267,24 486,199,492,212,0 489,209,498,218,0 309,197,321,228,0 -./model_data/coco/val2017/000000308793.jpg 334,27,439,178,0 331,0,435,116,30 0,31,202,222,0 374,27,416,69,24 -./model_data/coco/val2017/000000356261.jpg 39,264,327,440,17 77,259,232,298,17 -./model_data/coco/val2017/000000146155.jpg 156,17,383,512,0 6,110,193,512,0 108,122,192,234,0 568,171,640,406,0 132,210,166,299,40 486,285,603,420,40 329,144,372,263,40 0,371,35,511,0 443,250,456,307,39 466,248,476,307,39 475,246,488,307,39 484,245,499,306,39 441,173,454,229,39 398,203,429,218,39 396,220,430,236,39 397,256,431,272,39 446,339,458,385,39 466,337,480,389,39 491,341,507,393,39 453,248,467,308,39 398,185,428,201,39 138,48,626,388,39 -./model_data/coco/val2017/000000191761.jpg 42,27,500,330,45 297,107,500,202,46 278,194,411,274,49 378,199,496,283,49 -./model_data/coco/val2017/000000410712.jpg 578,344,602,375,9 532,136,555,194,9 478,344,486,351,9 508,408,545,425,2 104,408,112,418,0 -./model_data/coco/val2017/000000067213.jpg 402,58,600,260,16 220,329,459,409,2 0,305,197,412,2 141,324,241,405,2 442,340,622,409,2 446,331,507,411,0 494,331,578,410,0 1,360,54,415,0 277,371,310,409,0 597,338,640,410,0 169,307,331,339,2 4,311,20,317,0 0,340,22,408,0 354,366,398,409,0 -./model_data/coco/val2017/000000384808.jpg 20,253,45,348,39 37,262,51,337,39 179,39,328,312,0 44,210,173,303,61 1,308,282,498,71 48,268,63,325,39 278,85,293,117,67 -./model_data/coco/val2017/000000552612.jpg 479,333,592,427,18 301,270,361,309,18 335,265,396,303,18 22,291,61,322,18 110,275,176,331,18 18,308,85,385,18 206,328,280,414,18 183,287,219,349,18 59,280,112,326,18 66,287,107,319,18 -./model_data/coco/val2017/000000026941.jpg 142,0,197,77,0 105,2,132,86,0 275,218,493,307,28 209,58,434,179,28 150,89,232,160,28 145,157,235,224,28 134,220,234,292,28 275,137,485,221,28 230,171,280,298,28 103,166,170,336,28 -./model_data/coco/val2017/000000532058.jpg 354,217,498,285,39 590,1,640,101,39 0,0,640,480,59 78,138,589,433,0 609,143,640,174,65 -./model_data/coco/val2017/000000154431.jpg 76,27,265,226,62 201,340,235,358,73 195,360,239,385,73 125,322,174,345,65 195,263,239,280,65 81,280,114,296,73 200,352,228,371,73 113,266,179,292,73 81,294,117,310,73 82,289,115,303,73 38,143,86,238,75 1,140,38,244,75 -./model_data/coco/val2017/000000082821.jpg 76,134,87,163,0 93,130,100,157,0 480,145,489,168,0 598,129,606,140,0 272,175,299,196,1 304,174,315,195,1 314,179,322,193,1 330,178,353,192,1 413,115,430,124,2 523,110,546,128,2 94,119,103,132,2 11,109,71,134,7 99,280,184,320,8 49,281,120,323,8 0,286,67,328,8 375,237,445,266,8 417,231,488,261,8 533,225,567,243,8 562,218,632,238,8 596,214,640,234,8 530,153,554,168,13 312,177,327,193,1 455,231,509,255,8 486,224,528,252,8 513,225,552,251,8 1,304,14,327,8 582,138,591,162,0 568,137,575,160,0 445,117,454,122,2 541,222,594,243,8 564,144,580,159,1 554,207,639,396,8 -./model_data/coco/val2017/000000122046.jpg 123,77,362,287,25 102,331,193,585,56 82,191,276,606,0 -./model_data/coco/val2017/000000098392.jpg 217,131,267,180,74 244,516,480,640,2 67,531,101,570,2 11,534,54,568,2 350,522,479,585,2 451,505,480,547,2 38,532,82,565,2 270,341,480,585,5 326,379,358,402,0 8,524,20,567,0 301,488,320,508,0 -./model_data/coco/val2017/000000289059.jpg 3,38,393,474,0 348,0,521,369,0 350,278,551,409,38 -./model_data/coco/val2017/000000159791.jpg 109,1,413,368,72 0,294,124,375,56 23,246,120,353,69 283,63,308,83,14 69,238,110,250,45 0,192,30,243,68 37,193,110,241,69 264,306,287,334,0 258,327,288,361,0 227,313,257,343,0 215,315,231,340,0 166,282,191,326,0 148,214,156,230,0 147,204,158,234,0 137,215,145,233,0 -./model_data/coco/val2017/000000287714.jpg 439,212,463,303,39 419,209,441,297,39 422,333,581,400,71 607,350,640,404,41 409,288,435,323,41 -./model_data/coco/val2017/000000321118.jpg 87,3,551,419,63 517,267,638,326,64 -./model_data/coco/val2017/000000000139.jpg 236,142,261,212,58 7,167,156,262,62 557,209,638,287,62 358,218,414,320,56 290,218,352,316,56 413,223,443,304,56 317,219,338,230,56 412,157,465,295,0 384,172,399,207,0 512,205,526,221,68 493,174,513,282,72 604,305,619,351,73 613,308,626,354,73 447,121,461,143,74 549,309,585,399,75 350,208,362,231,75 412,219,421,231,56 241,194,255,212,75 336,199,346,216,75 321,231,446,320,60 -./model_data/coco/val2017/000000004495.jpg 189,111,261,178,62 201,198,497,375,57 4,148,154,327,56 -./model_data/coco/val2017/000000518213.jpg 55,115,488,419,19 0,118,20,149,19 -./model_data/coco/val2017/000000306437.jpg 173,306,250,435,0 88,375,157,416,1 203,396,252,431,36 149,376,175,413,1 409,389,426,415,1 383,375,420,418,1 160,438,426,615,13 -./model_data/coco/val2017/000000144003.jpg 0,142,155,370,72 18,89,244,370,0 181,15,412,368,0 330,0,500,339,0 276,0,451,189,0 193,0,386,181,0 152,254,201,264,43 371,202,426,248,45 178,212,290,296,55 361,212,397,237,65 108,1,215,162,0 368,174,469,360,56 123,177,375,370,60 -./model_data/coco/val2017/000000140203.jpg 485,42,578,114,16 508,20,589,246,0 0,118,43,410,0 7,47,27,113,0 19,0,503,389,7 17,18,37,84,0 229,48,254,90,0 0,20,29,69,0 -./model_data/coco/val2017/000000083531.jpg 433,0,494,64,39 481,2,500,77,39 403,16,434,47,41 163,141,262,171,52 326,199,399,216,52 265,160,337,175,52 205,172,292,191,52 177,161,277,187,52 35,169,180,204,52 35,155,177,186,52 196,180,305,208,52 153,140,244,166,52 255,207,336,223,52 112,121,216,141,52 471,106,500,211,0 433,200,500,272,0 39,180,178,215,52 0,0,87,115,0 120,131,232,156,52 20,0,485,269,52 -./model_data/coco/val2017/000000135604.jpg 424,283,465,319,32 404,99,433,116,2 455,38,554,338,0 -./model_data/coco/val2017/000000067406.jpg 173,252,198,315,0 111,258,131,317,0 378,276,387,297,0 231,193,322,274,33 -./model_data/coco/val2017/000000421757.jpg 24,114,283,272,8 289,156,502,261,8 456,218,465,230,0 -./model_data/coco/val2017/000000493864.jpg 121,84,319,562,0 420,93,438,139,0 429,90,441,106,0 238,205,447,365,37 412,106,446,120,37 435,104,452,114,37 -./model_data/coco/val2017/000000474786.jpg 86,360,374,499,71 174,444,211,500,39 184,428,213,483,39 126,176,248,311,62 243,253,375,341,71 0,426,52,500,71 -./model_data/coco/val2017/000000159399.jpg 263,36,306,56,33 553,313,601,364,0 231,331,244,351,0 172,339,181,349,0 153,330,172,351,0 254,334,262,349,0 345,315,367,342,24 191,83,245,126,33 337,278,383,397,0 -./model_data/coco/val2017/000000061171.jpg 1,84,280,410,17 334,16,638,294,19 321,1,471,184,19 277,0,360,85,19 372,9,630,145,19 441,134,640,461,19 120,2,326,215,19 -./model_data/coco/val2017/000000231508.jpg 127,103,221,144,2 155,306,187,324,35 62,215,217,394,0 248,211,296,275,0 221,218,262,275,0 234,200,263,230,0 230,187,256,227,0 68,233,110,269,0 56,247,72,267,0 30,222,43,269,0 193,147,236,201,0 198,105,216,145,0 174,101,200,157,0 102,171,122,194,13 31,64,39,73,32 113,229,143,263,56 159,159,197,196,56 216,158,255,197,56 265,239,296,275,56 262,233,266,241,56 153,222,185,247,0 224,112,296,152,2 213,180,223,197,56 156,105,177,160,0 71,181,105,205,13 1,83,334,295,0 -./model_data/coco/val2017/000000062692.jpg 102,281,295,549,0 203,394,209,404,38 188,393,209,414,38 -./model_data/coco/val2017/000000209757.jpg 125,25,348,328,0 65,188,88,229,0 177,309,317,343,36 384,176,403,222,0 330,178,342,204,0 309,170,330,235,0 72,226,86,230,36 351,175,363,208,0 365,185,377,209,0 -./model_data/coco/val2017/000000579902.jpg 391,198,556,640,2 189,325,346,582,3 200,232,382,503,0 0,238,195,325,2 338,238,481,334,2 2,216,211,322,2 267,164,327,339,36 474,252,505,287,2 -./model_data/coco/val2017/000000382122.jpg 202,231,230,254,74 -./model_data/coco/val2017/000000543043.jpg 259,276,634,459,2 148,119,393,212,8 0,183,464,346,5 0,363,57,474,2 -./model_data/coco/val2017/000000365098.jpg 40,92,640,390,8 -./model_data/coco/val2017/000000547816.jpg 88,409,99,443,39 98,497,183,632,61 77,410,90,446,39 0,518,11,571,71 -./model_data/coco/val2017/000000368940.jpg 0,98,333,255,71 -./model_data/coco/val2017/000000151938.jpg 242,177,253,225,39 237,107,380,160,25 161,172,340,423,60 273,167,353,287,0 261,157,306,231,0 220,438,269,524,41 247,212,259,226,40 6,2,315,629,0 320,0,470,630,0 -./model_data/coco/val2017/000000289417.jpg 271,26,382,220,0 429,46,459,103,0 252,48,291,96,0 201,7,250,101,0 436,91,458,102,30 451,23,478,92,0 258,7,297,62,0 456,87,473,91,30 142,72,186,83,13 90,71,131,81,13 55,73,78,81,13 245,187,369,234,30 -./model_data/coco/val2017/000000027768.jpg 573,373,611,455,2 0,167,573,603,5 176,376,217,425,0 54,371,82,417,0 410,340,457,422,0 150,366,184,416,0 21,371,53,414,0 167,378,220,400,0 4,373,26,414,0 -./model_data/coco/val2017/000000292155.jpg 1,4,470,474,25 466,442,549,479,0 -./model_data/coco/val2017/000000382088.jpg 187,71,431,419,17 -./model_data/coco/val2017/000000051938.jpg 505,207,510,220,0 278,158,330,278,0 412,218,423,234,0 361,224,379,259,0 405,222,416,249,0 528,200,536,217,0 496,209,502,221,0 270,240,278,262,0 399,200,405,221,0 398,220,405,222,30 340,229,346,242,0 511,204,518,215,0 282,252,319,282,30 -./model_data/coco/val2017/000000039405.jpg 174,160,182,165,32 208,329,238,370,56 180,327,209,370,56 186,219,213,233,38 461,188,486,203,38 205,198,240,283,0 454,158,498,210,0 486,63,505,94,0 456,49,472,75,0 562,458,584,480,0 72,219,111,292,0 257,88,273,108,0 19,321,47,376,0 230,86,251,108,0 236,45,252,75,0 250,45,266,71,0 0,446,182,479,13 214,99,230,108,13 155,102,169,109,13 124,102,140,109,13 553,430,579,458,0 25,76,52,84,13 229,352,262,375,24 155,350,182,376,28 214,341,235,347,28 195,47,212,75,0 10,82,24,91,13 50,62,65,76,13 229,346,231,348,32 1,0,633,445,0 -./model_data/coco/val2017/000000519688.jpg 38,41,521,632,0 2,313,328,638,21 -./model_data/coco/val2017/000000250766.jpg 42,0,396,266,42 0,44,407,197,43 443,91,461,120,51 0,0,498,399,60 114,60,500,404,48 -./model_data/coco/val2017/000000423519.jpg 14,227,449,529,5 -./model_data/coco/val2017/000000094336.jpg 141,15,388,289,15 15,62,488,323,71 -./model_data/coco/val2017/000000255749.jpg 113,117,469,315,5 269,181,313,213,0 86,184,121,325,0 166,170,213,227,0 232,170,266,216,0 -./model_data/coco/val2017/000000440508.jpg 209,155,522,406,6 -./model_data/coco/val2017/000000022589.jpg 182,214,362,342,18 0,251,611,479,18 -./model_data/coco/val2017/000000284106.jpg 94,53,217,139,45 217,74,411,177,45 246,178,308,226,51 0,99,640,416,60 -./model_data/coco/val2017/000000176799.jpg 386,73,496,212,0 71,174,125,201,0 49,211,98,331,0 387,173,433,220,36 85,273,101,330,36 97,186,102,190,67 -./model_data/coco/val2017/000000194746.jpg 194,113,351,166,53 0,0,499,375,69 -./model_data/coco/val2017/000000157601.jpg 110,188,244,334,52 114,211,259,338,48 192,305,397,584,41 0,84,330,418,0 168,497,612,604,60 -./model_data/coco/val2017/000000540414.jpg 407,408,423,456,39 585,178,634,208,5 338,183,384,199,25 384,166,461,189,25 16,149,195,265,25 185,165,278,191,25 228,189,282,280,0 217,256,283,369,0 293,185,340,333,0 77,230,117,273,0 172,198,212,257,0 389,205,431,312,0 164,199,180,245,0 367,309,465,441,0 606,204,628,229,0 340,198,366,272,0 469,296,601,430,0 481,285,541,354,0 475,280,512,323,0 310,210,328,231,26 97,304,150,330,45 177,286,205,306,45 462,319,478,334,45 48,186,612,388,0 -./model_data/coco/val2017/000000129945.jpg 141,51,304,234,0 447,81,616,230,0 317,120,457,227,0 274,40,345,84,34 318,170,345,193,35 -./model_data/coco/val2017/000000334767.jpg 257,60,331,196,0 60,70,159,241,0 355,131,380,165,0 259,183,354,198,30 378,191,411,201,30 104,171,485,247,30 450,60,500,175,0 326,163,385,170,30 140,71,218,231,0 369,67,420,204,0 186,196,215,221,30 -./model_data/coco/val2017/000000231125.jpg 80,127,241,326,0 35,125,104,237,0 120,426,157,459,54 86,419,126,453,54 58,417,91,447,54 4,404,39,434,54 20,379,59,412,54 19,348,43,385,54 37,351,61,380,54 81,362,113,396,54 51,357,72,389,54 4,345,24,383,54 2,382,30,406,54 69,357,88,392,54 34,408,67,442,54 -./model_data/coco/val2017/000000233825.jpg 497,148,640,322,62 7,351,214,480,57 429,254,433,279,73 467,256,470,283,73 232,291,255,328,75 457,221,481,251,75 165,311,321,434,60 291,439,331,449,65 421,379,425,405,73 464,257,467,284,73 419,281,453,314,73 433,350,438,380,73 439,386,450,417,73 445,253,450,281,73 438,318,441,342,73 416,345,451,387,73 431,384,440,411,73 479,301,481,321,73 479,257,483,288,73 408,249,507,435,73 -./model_data/coco/val2017/000000099428.jpg 25,44,589,250,67 33,168,587,360,67 75,260,574,419,67 30,0,640,478,63 28,46,585,248,65 -./model_data/coco/val2017/000000455872.jpg 3,166,96,218,8 14,190,155,257,8 -./model_data/coco/val2017/000000218424.jpg 95,138,314,418,22 232,122,434,386,22 399,78,533,398,22 75,85,242,378,22 -./model_data/coco/val2017/000000465806.jpg 2,1,515,325,0 238,0,464,228,0 184,283,281,404,41 183,254,251,291,46 48,216,176,306,46 181,205,280,257,46 276,226,355,270,46 100,218,155,244,46 107,191,137,224,46 172,244,284,312,46 1,1,210,237,0 423,277,503,359,41 424,289,504,357,45 182,283,279,402,45 -./model_data/coco/val2017/000000297562.jpg 394,306,528,472,56 486,38,561,278,0 397,44,464,262,0 430,54,462,181,0 581,0,640,154,0 355,212,387,228,76 232,211,389,236,76 519,74,639,415,0 222,200,430,480,0 422,45,448,93,0 228,98,263,194,0 272,98,301,123,2 17,207,413,480,0 445,145,481,232,0 361,184,438,221,56 -./model_data/coco/val2017/000000370818.jpg 0,208,28,276,58 1,592,70,640,61 214,452,469,584,71 -./model_data/coco/val2017/000000002261.jpg 283,152,381,271,0 265,250,351,296,37 -./model_data/coco/val2017/000000067534.jpg 94,101,260,634,27 2,0,295,640,0 269,357,306,500,56 -./model_data/coco/val2017/000000196009.jpg 182,320,572,396,44 0,77,640,317,51 215,0,638,138,51 -./model_data/coco/val2017/000000508101.jpg 60,259,429,334,8 410,239,433,330,0 492,297,524,333,0 70,247,151,310,0 -./model_data/coco/val2017/000000352582.jpg 112,195,327,633,0 0,256,80,632,0 171,424,257,464,29 -./model_data/coco/val2017/000000267434.jpg 43,208,143,434,19 94,203,257,454,19 278,195,358,361,19 339,219,435,361,19 401,203,493,354,19 474,223,530,343,19 518,217,638,332,19 -./model_data/coco/val2017/000000507975.jpg 2,70,424,439,17 242,69,468,467,17 23,199,602,387,2 281,14,379,153,0 89,118,138,187,0 346,86,524,453,17 503,107,549,228,17 161,136,189,171,0 179,8,328,245,0 31,115,81,204,0 361,23,451,101,0 -./model_data/coco/val2017/000000023126.jpg 0,278,489,428,17 166,14,278,348,0 457,304,507,412,17 -./model_data/coco/val2017/000000121591.jpg 256,122,378,285,0 258,108,344,187,36 -./model_data/coco/val2017/000000577584.jpg 139,156,350,342,68 63,277,221,357,45 -./model_data/coco/val2017/000000100489.jpg 82,74,307,362,14 -./model_data/coco/val2017/000000133567.jpg 0,82,578,293,6 33,197,131,428,0 -./model_data/coco/val2017/000000084664.jpg 241,380,374,477,44 343,79,559,259,45 1,1,612,282,60 246,379,362,477,42 -./model_data/coco/val2017/000000414170.jpg 222,276,307,467,0 128,273,194,401,0 209,166,229,218,0 254,461,306,493,30 142,397,189,409,30 213,216,223,221,30 141,288,172,320,24 -./model_data/coco/val2017/000000140987.jpg 58,137,368,434,0 264,100,425,325,0 387,335,425,473,41 283,466,424,640,41 104,412,294,521,53 17,219,48,258,41 281,194,314,232,41 297,330,360,409,56 322,260,425,420,56 78,301,97,341,56 15,118,154,435,0 138,100,204,143,0 1,66,68,222,0 272,131,335,223,0 351,37,424,140,58 217,56,334,155,58 8,248,71,296,60 3,417,407,640,60 -./model_data/coco/val2017/000000410510.jpg 295,201,305,211,32 255,183,286,214,38 249,192,341,333,0 -./model_data/coco/val2017/000000377670.jpg 183,217,332,487,77 43,301,143,390,77 2,54,454,548,77 -./model_data/coco/val2017/000000372307.jpg 221,345,270,390,17 -./model_data/coco/val2017/000000203488.jpg 420,194,501,384,12 472,323,640,479,13 -./model_data/coco/val2017/000000018491.jpg 105,155,122,204,34 298,216,319,245,35 318,142,331,158,35 243,184,368,305,0 301,186,422,312,0 330,69,390,207,0 274,68,331,216,0 177,77,209,152,0 69,95,122,217,0 58,61,95,119,0 122,26,164,126,0 13,81,44,147,0 0,82,12,147,0 0,141,223,152,13 -./model_data/coco/val2017/000000426253.jpg 588,86,638,268,39 46,60,593,358,68 -./model_data/coco/val2017/000000234807.jpg 129,218,216,408,17 511,168,640,461,17 3,238,86,291,17 -./model_data/coco/val2017/000000301061.jpg 5,284,71,600,0 128,155,324,408,20 0,3,480,629,7 -./model_data/coco/val2017/000000269316.jpg 498,180,592,390,0 204,139,383,408,0 32,136,221,406,0 168,90,217,106,29 395,147,611,397,0 -./model_data/coco/val2017/000000042102.jpg 123,119,136,261,27 10,376,60,564,26 20,6,240,628,0 -./model_data/coco/val2017/000000208901.jpg 232,148,425,284,4 -./model_data/coco/val2017/000000404839.jpg 26,116,427,632,0 6,235,94,269,65 211,352,257,426,65 0,268,35,307,65 1,115,230,630,0 -./model_data/coco/val2017/000000281032.jpg 210,52,561,422,0 200,273,232,288,44 0,338,308,422,69 296,398,359,427,69 -./model_data/coco/val2017/000000492905.jpg 207,29,312,128,62 181,118,282,143,66 304,135,320,152,64 -./model_data/coco/val2017/000000549167.jpg 1,2,425,632,60 132,281,252,405,50 280,344,351,413,50 303,413,354,457,50 341,259,398,315,50 355,265,386,286,50 395,397,426,437,50 -./model_data/coco/val2017/000000394328.jpg 156,371,356,629,61 -./model_data/coco/val2017/000000066926.jpg 228,34,502,218,54 155,200,640,474,54 450,45,640,230,54 0,122,139,222,54 7,40,179,125,54 105,32,303,156,54 149,0,252,47,54 235,0,368,59,54 360,0,551,73,54 490,2,640,81,54 1,142,320,426,54 1,102,44,139,54 -./model_data/coco/val2017/000000053626.jpg 372,153,444,348,0 124,139,222,386,0 232,156,310,372,0 258,369,323,398,30 136,382,238,429,30 287,344,391,386,30 112,355,180,395,30 290,145,372,360,0 219,340,257,397,30 -./model_data/coco/val2017/000000447187.jpg 566,132,576,141,32 217,196,422,447,0 58,108,228,467,0 492,170,576,303,0 52,24,169,125,34 69,69,180,203,0 490,216,518,237,35 -./model_data/coco/val2017/000000538364.jpg 519,145,587,234,2 261,138,400,268,2 300,173,579,390,3 45,122,84,268,0 593,120,640,339,0 102,167,156,199,13 34,142,62,217,26 270,127,292,179,0 356,123,365,138,0 371,127,376,138,0 385,130,393,140,0 400,128,409,137,0 347,127,354,137,0 375,140,509,382,0 0,111,43,272,0 483,143,516,155,2 480,155,556,240,2 -./model_data/coco/val2017/000000004795.jpg 152,113,548,477,15 0,192,174,474,63 19,2,640,351,62 -./model_data/coco/val2017/000000234413.jpg 149,46,444,456,61 -./model_data/coco/val2017/000000368684.jpg 446,9,640,225,62 0,286,268,474,62 254,380,640,480,59 0,291,267,480,63 39,232,64,289,73 12,238,32,303,73 24,243,42,300,73 0,110,58,122,73 18,200,57,232,73 155,135,327,333,56 17,158,81,222,73 -./model_data/coco/val2017/000000482800.jpg 333,81,499,449,0 128,106,195,368,0 303,88,395,331,0 476,281,500,332,29 -./model_data/coco/val2017/000000477441.jpg 100,155,500,291,4 199,376,220,399,0 488,262,496,276,0 337,275,346,296,0 -./model_data/coco/val2017/000000472046.jpg 286,228,473,312,57 60,264,124,351,56 94,234,202,339,60 354,320,584,420,69 521,272,639,332,71 111,266,122,270,45 291,324,303,338,49 282,318,298,327,49 70,256,100,277,56 190,242,213,269,56 183,252,232,329,56 209,244,223,265,56 296,306,307,318,49 314,322,328,337,49 302,328,316,340,49 307,310,322,326,49 82,251,97,275,56 368,178,383,195,58 553,193,618,261,75 -./model_data/coco/val2017/000000241326.jpg 302,189,467,358,16 26,83,179,232,15 0,0,364,370,57 -./model_data/coco/val2017/000000532575.jpg 2,64,493,427,16 1,0,640,421,8 -./model_data/coco/val2017/000000563267.jpg 468,93,499,183,62 398,211,412,267,39 416,201,428,229,39 435,211,449,266,39 239,34,390,370,0 224,96,288,249,0 246,296,260,317,65 179,223,500,350,60 452,248,467,264,41 -./model_data/coco/val2017/000000439290.jpg 373,175,391,209,46 354,228,445,282,46 406,200,423,232,46 420,212,437,242,46 397,193,414,226,46 366,110,456,171,46 345,157,385,216,46 383,166,398,197,46 -./model_data/coco/val2017/000000045550.jpg 148,309,383,472,48 199,0,241,28,74 116,4,640,475,0 599,69,628,140,0 463,87,509,156,0 65,89,96,119,0 102,60,150,116,0 18,85,63,119,0 455,95,480,156,0 96,375,208,457,45 -./model_data/coco/val2017/000000327592.jpg 1,1,542,355,0 230,187,371,236,55 89,105,211,196,44 388,273,461,330,74 -./model_data/coco/val2017/000000119516.jpg 422,240,448,281,1 371,207,410,351,0 374,243,380,248,67 368,303,387,331,26 433,127,445,151,9 624,159,631,168,9 624,223,638,260,0 528,240,576,276,3 283,185,290,195,9 -./model_data/coco/val2017/000000348216.jpg 0,473,374,640,61 215,265,365,343,61 235,247,356,292,61 256,233,355,274,61 268,226,351,255,61 48,368,368,608,61 161,290,359,425,61 279,222,349,243,61 -./model_data/coco/val2017/000000568981.jpg 17,155,249,377,0 584,219,639,245,36 107,314,179,369,24 568,6,639,230,0 -./model_data/coco/val2017/000000451155.jpg 5,300,478,411,59 237,167,378,474,0 245,213,376,310,63 -./model_data/coco/val2017/000000452891.jpg 59,84,411,547,16 3,1,475,631,13 -./model_data/coco/val2017/000000177357.jpg 71,138,389,253,0 216,153,530,307,37 -./model_data/coco/val2017/000000090155.jpg 66,169,522,328,6 -./model_data/coco/val2017/000000516318.jpg 369,204,506,299,0 361,280,557,306,37 346,185,379,205,14 -./model_data/coco/val2017/000000254016.jpg 338,75,479,131,45 304,172,338,202,54 316,134,348,165,54 346,137,381,171,54 380,138,415,168,54 415,139,447,170,54 405,175,434,208,54 370,173,406,205,54 335,171,370,204,54 276,209,314,226,54 294,198,328,217,54 235,330,297,368,54 327,203,362,221,54 204,369,270,411,54 237,1,418,132,0 14,116,469,460,54 -./model_data/coco/val2017/000000444142.jpg 83,34,267,588,0 104,34,174,180,38 356,128,425,200,56 326,112,378,139,56 303,68,352,92,56 369,62,419,87,56 328,46,376,86,56 348,24,397,47,56 343,86,401,114,56 390,106,427,133,56 410,160,427,193,56 284,25,336,51,56 389,39,427,82,56 -./model_data/coco/val2017/000000402473.jpg 231,85,640,474,15 1,172,440,478,15 -./model_data/coco/val2017/000000224200.jpg 56,239,308,505,16 411,1,640,490,10 -./model_data/coco/val2017/000000530470.jpg 270,270,285,281,2 349,337,422,373,7 241,180,274,204,33 224,260,237,269,2 259,261,284,274,2 313,92,320,96,33 455,242,488,252,2 -./model_data/coco/val2017/000000190853.jpg 0,401,279,639,0 3,141,379,507,46 -./model_data/coco/val2017/000000534394.jpg 9,179,79,227,18 71,183,132,225,18 97,179,141,216,18 129,180,172,223,18 141,185,216,228,18 226,168,242,187,18 279,168,328,210,18 331,151,368,172,18 325,170,373,204,18 364,154,398,192,18 3,224,90,345,2 189,187,237,226,18 388,158,436,195,18 290,155,332,173,18 126,168,174,185,18 0,151,420,227,18 -./model_data/coco/val2017/000000270474.jpg 190,11,327,370,0 287,126,481,238,34 -./model_data/coco/val2017/000000233139.jpg 51,171,227,348,74 535,204,639,338,74 -./model_data/coco/val2017/000000154358.jpg 59,364,83,392,58 242,270,279,312,58 262,299,289,360,56 158,304,223,374,56 1,305,79,366,56 21,379,131,432,60 20,299,71,367,0 63,377,78,391,75 305,282,317,302,75 364,269,391,313,75 254,290,264,306,75 40,448,101,493,26 241,361,279,405,26 37,314,70,329,73 24,383,57,392,73 275,391,311,415,26 331,468,383,573,56 96,424,177,497,26 -./model_data/coco/val2017/000000320664.jpg 2,0,640,472,60 1,194,107,260,42 403,141,640,189,43 255,1,402,123,44 160,208,359,474,52 -./model_data/coco/val2017/000000137246.jpg 99,24,264,82,25 5,54,102,166,25 0,31,58,83,25 131,20,202,87,25 135,73,326,329,0 80,186,148,258,13 255,208,321,261,52 0,201,70,244,13 0,153,102,171,13 287,172,394,299,58 0,165,28,212,60 123,167,168,222,60 147,140,166,159,60 22,135,86,150,60 126,156,139,168,13 123,167,166,186,13 369,93,424,243,0 -./model_data/coco/val2017/000000369081.jpg 254,171,363,367,17 114,173,252,375,17 475,189,533,350,17 -./model_data/coco/val2017/000000478136.jpg 140,178,300,274,54 358,219,518,368,55 297,156,421,230,55 12,176,516,515,60 233,215,360,340,55 185,322,405,435,55 -./model_data/coco/val2017/000000062554.jpg 1,18,640,422,60 574,74,640,175,42 0,159,462,423,45 1,102,398,376,50 527,231,640,390,45 32,354,640,428,45 -./model_data/coco/val2017/000000239318.jpg 40,13,354,412,63 51,317,332,455,66 75,235,323,323,66 310,18,375,248,56 -./model_data/coco/val2017/000000079031.jpg 61,0,331,370,0 0,261,602,421,37 -./model_data/coco/val2017/000000386457.jpg 123,133,241,518,15 -./model_data/coco/val2017/000000008629.jpg 592,284,621,338,42 435,430,605,579,53 429,231,621,395,53 231,434,424,625,53 44,425,182,602,53 21,13,414,344,53 430,20,621,189,53 -./model_data/coco/val2017/000000261061.jpg 260,41,371,334,0 132,229,245,239,34 164,98,204,152,58 20,75,119,122,58 5,124,112,188,58 -./model_data/coco/val2017/000000257896.jpg 216,321,258,377,27 121,22,475,633,0 -./model_data/coco/val2017/000000013774.jpg 270,281,301,368,0 235,209,253,227,29 -./model_data/coco/val2017/000000194940.jpg 280,72,428,212,45 152,139,296,292,45 305,206,433,339,45 167,189,231,258,50 1,0,208,169,41 307,160,377,181,51 299,131,366,160,51 327,146,384,171,51 362,102,417,155,51 377,139,401,161,51 296,107,404,173,51 339,168,398,191,51 -./model_data/coco/val2017/000000224222.jpg 259,74,327,187,0 444,187,506,260,0 32,188,103,251,0 230,164,304,195,37 -./model_data/coco/val2017/000000439522.jpg 41,24,428,605,0 -./model_data/coco/val2017/000000363461.jpg 355,142,457,265,62 438,163,485,402,62 0,185,205,424,56 125,341,340,471,63 85,354,398,473,64 348,309,407,357,66 -./model_data/coco/val2017/000000432898.jpg 145,286,182,299,2 96,279,145,299,2 138,277,187,296,2 209,286,224,298,2 347,267,438,482,0 57,280,64,299,0 374,237,383,245,33 472,127,483,133,33 392,154,398,166,33 316,227,320,235,33 280,255,288,264,33 226,258,238,274,33 55,22,117,69,33 77,238,83,247,33 11,241,26,249,33 425,291,434,311,0 116,281,125,299,0 106,283,112,299,0 319,283,330,310,0 433,286,440,308,0 233,286,237,298,0 368,283,378,304,0 256,284,262,299,0 473,289,484,309,0 293,277,349,299,2 198,288,219,298,2 110,257,116,264,33 94,255,102,261,33 194,286,199,299,0 342,283,360,306,0 227,276,280,299,7 458,272,494,307,7 276,245,288,256,33 112,236,116,242,33 87,282,104,297,2 77,282,87,297,0 102,236,371,277,33 -./model_data/coco/val2017/000000047801.jpg 58,80,560,530,0 211,232,316,271,44 243,357,338,433,55 589,390,599,408,0 579,389,587,408,0 567,397,572,417,0 600,391,606,404,0 -./model_data/coco/val2017/000000425925.jpg 576,146,640,301,39 255,230,296,273,74 323,230,337,278,74 160,411,241,458,2 38,417,59,456,2 54,414,133,463,2 239,410,280,425,2 29,415,47,457,2 152,417,164,450,2 127,424,144,461,0 0,409,43,467,2 139,424,148,461,0 -./model_data/coco/val2017/000000544519.jpg 178,249,386,290,79 1,9,639,420,0 -./model_data/coco/val2017/000000580410.jpg 0,249,133,501,57 237,203,314,337,56 341,188,346,211,73 343,145,348,167,73 281,145,285,168,73 329,190,332,211,73 279,176,317,210,73 331,186,336,211,73 111,430,233,498,26 339,113,348,137,73 299,123,305,137,73 322,276,350,310,73 323,191,327,211,73 293,96,308,109,75 326,78,345,108,75 322,241,329,272,73 330,242,338,275,73 135,295,176,308,63 338,242,352,275,73 -./model_data/coco/val2017/000000569972.jpg 92,225,206,365,0 114,360,219,386,37 -./model_data/coco/val2017/000000028809.jpg 215,158,497,493,46 229,34,498,165,46 225,10,498,102,46 297,0,495,57,46 -./model_data/coco/val2017/000000395701.jpg 95,299,188,390,62 195,310,389,464,56 0,291,71,480,57 434,217,441,251,73 344,214,349,243,73 358,213,363,245,73 425,220,430,249,73 417,219,424,248,73 429,217,435,250,73 478,219,494,253,73 471,376,485,423,39 386,126,509,228,58 449,268,497,314,73 440,219,444,248,73 469,219,478,252,73 354,309,369,338,73 380,216,383,247,73 481,381,490,427,39 389,317,407,351,73 111,88,563,418,73 -./model_data/coco/val2017/000000166747.jpg 212,210,280,360,17 61,261,83,314,26 69,234,122,389,0 158,87,188,167,0 108,236,135,331,0 136,254,151,297,0 338,288,349,312,0 156,91,172,125,0 229,111,287,178,0 258,114,273,143,0 338,279,347,311,0 214,107,231,137,0 186,108,219,169,0 149,253,165,281,0 204,131,253,166,13 137,241,150,255,0 156,117,293,312,7 126,109,290,264,0 -./model_data/coco/val2017/000000295420.jpg 160,168,438,384,7 59,290,92,319,2 469,286,497,351,0 56,271,67,282,2 99,282,145,325,7 -./model_data/coco/val2017/000000514586.jpg 56,110,301,499,0 212,100,330,226,0 241,101,262,158,0 0,9,137,172,34 0,188,83,306,0 276,120,312,152,2 326,114,354,152,7 -./model_data/coco/val2017/000000151480.jpg 376,250,393,264,35 169,247,181,263,35 248,258,264,274,35 259,204,281,253,24 178,204,212,244,24 169,175,223,319,0 265,184,319,329,0 384,188,434,317,0 208,173,252,321,0 410,73,439,121,0 369,27,406,122,0 311,63,340,121,0 293,181,336,314,0 301,252,318,266,35 250,182,286,274,0 353,42,379,122,0 187,94,216,118,24 240,44,261,114,0 -./model_data/coco/val2017/000000575081.jpg 474,21,640,266,62 218,7,322,392,0 215,0,255,39,65 114,286,129,297,65 -./model_data/coco/val2017/000000302760.jpg 214,110,240,190,39 426,262,480,375,39 171,198,318,264,71 -./model_data/coco/val2017/000000068833.jpg 97,202,157,242,62 405,275,502,436,56 0,104,90,436,72 446,33,481,72,74 423,205,501,244,68 519,243,640,253,71 313,228,335,247,45 0,246,25,266,45 277,219,310,247,45 -./model_data/coco/val2017/000000375015.jpg 291,0,640,403,21 -./model_data/coco/val2017/000000128148.jpg 521,138,551,200,58 0,212,63,314,56 67,200,89,230,56 69,192,97,224,56 262,192,506,319,57 45,205,258,368,57 1,206,69,242,60 131,146,138,166,73 103,150,122,158,73 112,124,116,141,73 120,131,130,142,73 280,139,291,191,58 141,144,147,164,73 128,148,131,165,73 111,147,122,168,73 124,199,131,216,73 141,194,151,211,73 113,204,117,220,73 107,199,121,220,73 605,202,640,327,62 129,168,139,194,73 105,175,111,199,73 93,123,338,256,73 -./model_data/coco/val2017/000000472375.jpg 124,196,497,552,16 59,50,560,441,3 288,70,316,96,41 312,76,340,99,41 -./model_data/coco/val2017/000000223955.jpg 175,67,360,329,0 188,78,222,127,29 -./model_data/coco/val2017/000000036678.jpg 0,234,267,294,8 417,237,522,267,8 587,246,627,258,8 503,238,577,267,8 444,172,450,180,74 455,172,461,181,74 -./model_data/coco/val2017/000000314541.jpg 219,264,472,419,13 -./model_data/coco/val2017/000000290768.jpg 264,150,275,192,39 163,191,240,265,41 210,100,236,143,43 195,95,223,142,43 213,201,377,602,69 321,185,361,197,71 152,189,170,258,41 83,193,143,264,41 300,182,322,215,41 -./model_data/coco/val2017/000000094326.jpg 15,222,283,383,13 38,131,208,433,0 -./model_data/coco/val2017/000000297085.jpg 119,6,349,165,62 123,10,345,164,62 207,89,264,209,15 162,115,202,168,77 273,135,297,166,77 298,131,323,165,77 -./model_data/coco/val2017/000000368294.jpg 0,29,345,419,0 288,266,361,333,76 -./model_data/coco/val2017/000000000785.jpg 280,44,499,391,0 205,362,615,400,30 -./model_data/coco/val2017/000000200252.jpg 16,112,500,375,59 382,200,425,218,73 379,195,401,200,73 -./model_data/coco/val2017/000000227765.jpg 305,171,638,367,44 320,258,357,292,51 215,140,236,171,51 266,162,293,188,51 145,262,301,394,51 143,218,163,244,51 276,244,301,273,51 140,92,481,439,51 -./model_data/coco/val2017/000000107087.jpg 49,83,260,347,15 101,0,490,393,56 0,168,637,422,2 -./model_data/coco/val2017/000000300039.jpg 190,127,231,258,39 312,1,412,167,39 87,93,439,332,67 0,43,193,318,0 151,173,190,239,41 199,0,302,131,41 325,57,500,368,60 436,0,500,121,41 222,171,265,224,41 -./model_data/coco/val2017/000000130826.jpg 12,51,341,474,0 52,4,153,188,0 278,0,389,200,0 379,0,464,132,0 205,0,287,59,0 208,67,488,480,0 0,167,640,480,13 368,314,481,414,26 57,2,99,75,26 -./model_data/coco/val2017/000000330369.jpg 82,2,426,305,8 115,92,151,149,0 419,35,435,46,14 465,76,470,82,14 -./model_data/coco/val2017/000000383384.jpg 395,95,464,161,0 318,69,387,166,0 487,78,568,162,0 285,1,310,36,0 365,91,400,101,34 395,108,410,119,35 169,0,185,17,0 145,0,165,16,0 185,82,191,87,32 85,0,100,15,0 29,0,39,16,0 466,198,551,360,0 -./model_data/coco/val2017/000000484296.jpg 385,221,600,362,22 24,46,306,311,22 -./model_data/coco/val2017/000000159977.jpg 199,225,247,314,22 333,54,520,335,23 238,101,243,115,14 259,113,263,121,14 -./model_data/coco/val2017/000000518770.jpg 17,151,71,256,56 6,137,43,169,56 64,126,79,141,56 38,132,61,168,56 277,61,335,249,0 241,89,297,276,0 155,92,224,201,0 116,84,204,363,0 114,131,142,195,65 171,204,206,224,65 287,128,295,135,65 223,125,250,196,56 158,161,189,200,56 0,127,12,176,56 77,122,86,135,56 306,120,318,131,65 54,114,136,375,0 169,125,203,152,26 152,133,198,187,56 100,134,121,140,56 326,149,342,188,56 0,183,32,243,56 -./model_data/coco/val2017/000000257169.jpg 267,450,480,631,61 148,264,478,488,78 258,307,479,437,0 282,474,353,551,26 -./model_data/coco/val2017/000000325527.jpg 192,137,324,278,77 -./model_data/coco/val2017/000000419882.jpg 383,211,594,598,6 94,211,390,602,6 12,207,368,581,6 11,210,342,397,6 434,210,601,328,6 12,199,312,338,6 456,205,603,264,6 -./model_data/coco/val2017/000000288882.jpg 353,1,466,359,23 118,2,380,358,23 -./model_data/coco/val2017/000000002299.jpg 101,226,109,242,27 330,59,337,73,27 409,61,416,76,27 186,60,192,70,27 70,189,134,301,0 139,190,211,298,0 204,187,270,288,0 257,192,330,287,0 327,190,390,285,0 387,193,449,292,0 394,127,435,219,0 331,131,398,248,0 322,129,361,201,0 60,32,113,139,0 99,80,146,154,0 431,134,473,275,0 174,228,180,241,27 234,220,245,235,27 292,228,298,236,27 231,57,237,69,27 279,47,292,60,27 284,118,325,227,0 0,18,499,281,0 -./model_data/coco/val2017/000000154339.jpg 149,78,466,365,74 489,256,621,381,74 -./model_data/coco/val2017/000000187236.jpg 296,46,570,227,15 0,221,412,474,15 4,101,80,229,56 110,0,640,407,57 -./model_data/coco/val2017/000000401862.jpg 0,89,403,387,7 196,203,269,424,0 261,243,310,415,0 388,231,458,460,0 283,233,311,313,0 312,221,351,404,0 438,226,481,442,0 450,139,640,480,0 264,222,284,251,0 380,139,540,240,7 -./model_data/coco/val2017/000000509131.jpg 2,9,246,403,58 385,149,424,279,46 421,167,454,285,46 426,147,481,256,46 279,315,354,382,47 229,306,290,375,47 326,289,401,364,47 371,160,397,267,46 164,338,429,416,49 -./model_data/coco/val2017/000000370270.jpg 295,201,472,632,0 79,202,193,540,0 457,180,480,193,45 263,225,278,230,45 246,242,262,245,45 0,159,66,400,0 147,429,261,535,32 218,226,227,234,45 218,237,227,246,45 -./model_data/coco/val2017/000000522393.jpg 284,525,448,587,8 375,450,408,525,0 397,464,400,468,67 313,503,349,537,0 -./model_data/coco/val2017/000000414261.jpg 390,9,640,393,21 153,65,432,328,21 -./model_data/coco/val2017/000000342128.jpg 326,221,402,326,56 421,231,488,338,56 0,227,16,317,56 465,233,488,326,56 94,28,403,613,0 0,154,42,228,0 39,152,92,247,0 311,151,342,202,0 283,147,306,205,0 397,146,447,158,2 99,136,155,276,38 54,211,111,297,56 272,94,302,149,0 300,89,321,159,0 32,136,53,159,0 23,155,49,207,0 0,154,12,191,0 52,138,65,157,0 376,187,449,194,13 386,200,469,209,13 336,150,373,225,0 460,195,487,278,0 -./model_data/coco/val2017/000000172877.jpg 0,287,148,473,57 262,295,561,479,57 295,188,322,298,27 105,67,506,474,0 611,94,640,151,39 602,101,613,151,39 579,144,640,172,74 371,289,389,304,74 -./model_data/coco/val2017/000000445675.jpg 154,106,335,524,23 -./model_data/coco/val2017/000000111951.jpg 449,293,640,424,61 39,233,159,301,71 220,194,291,236,71 148,217,193,273,75 -./model_data/coco/val2017/000000533493.jpg 83,33,281,281,0 14,9,208,277,0 320,80,453,277,0 191,48,260,127,29 -./model_data/coco/val2017/000000091619.jpg 138,259,255,353,11 -./model_data/coco/val2017/000000408112.jpg 1,100,412,328,4 416,162,639,239,4 586,208,596,233,0 569,209,579,237,0 539,216,547,233,0 509,223,518,236,0 497,223,507,237,0 472,222,480,238,0 551,214,561,228,0 418,214,424,230,0 -./model_data/coco/val2017/000000475678.jpg 158,161,310,472,28 299,134,442,410,28 425,109,619,461,28 32,158,189,438,28 2,134,84,459,28 197,74,295,177,28 398,68,487,178,28 547,107,638,429,28 95,65,202,174,28 290,4,406,152,28 446,23,588,118,28 63,53,131,98,28 -./model_data/coco/val2017/000000076625.jpg 100,166,585,474,6 518,341,573,479,0 563,326,604,451,0 461,320,490,400,0 592,338,640,474,0 520,323,539,350,0 545,329,562,375,0 485,318,516,407,0 586,319,596,341,0 624,355,627,362,67 599,329,616,345,0 575,350,590,366,26 578,426,599,461,26 571,366,579,371,67 514,334,547,450,0 -./model_data/coco/val2017/000000255965.jpg 0,147,548,395,15 -./model_data/coco/val2017/000000166426.jpg 152,10,241,272,39 292,1,337,200,39 209,21,371,56,56 0,39,587,632,60 207,75,241,138,41 2,350,127,555,42 498,350,544,547,43 237,60,251,97,43 362,3,410,207,39 316,167,402,278,41 440,66,462,107,42 -./model_data/coco/val2017/000000266082.jpg 111,268,273,500,10 -./model_data/coco/val2017/000000296224.jpg 0,185,57,226,2 0,173,21,189,2 53,31,583,471,5 332,197,412,253,0 81,193,116,239,2 -./model_data/coco/val2017/000000032735.jpg 146,23,280,154,0 123,9,332,212,30 553,308,640,324,30 585,216,639,322,0 -./model_data/coco/val2017/000000080949.jpg 26,129,625,365,15 3,2,639,408,63 549,0,636,171,39 527,0,572,72,41 -./model_data/coco/val2017/000000476810.jpg 0,14,499,318,15 0,160,640,473,59 242,250,537,317,65 508,18,571,158,73 2,1,69,72,62 603,47,613,156,73 628,26,635,150,73 590,15,625,154,73 614,46,626,154,73 -./model_data/coco/val2017/000000042563.jpg 207,452,320,592,6 -./model_data/coco/val2017/000000366178.jpg 193,170,208,183,2 0,186,18,206,2 189,358,238,433,10 -./model_data/coco/val2017/000000535306.jpg 113,2,325,209,0 150,117,373,231,36 -./model_data/coco/val2017/000000052412.jpg 0,61,297,204,4 303,281,319,290,7 282,276,299,283,7 273,364,279,376,2 339,378,352,393,2 377,376,389,389,2 395,383,410,400,2 566,256,576,262,2 592,300,608,306,2 62,369,88,379,2 208,367,217,381,2 53,393,75,403,2 145,371,158,387,2 304,359,317,371,2 182,394,194,410,2 235,388,248,403,2 1,193,639,425,2 -./model_data/coco/val2017/000000057232.jpg 370,245,585,344,34 366,290,572,384,34 389,232,605,319,34 66,212,420,334,34 319,421,519,560,34 327,436,541,593,34 37,260,276,506,34 46,6,362,75,34 73,102,393,178,34 56,128,409,214,34 511,57,581,152,75 56,37,385,102,34 6,14,612,610,56 373,322,560,415,34 58,61,399,137,34 6,62,599,601,34 -./model_data/coco/val2017/000000306582.jpg 434,247,553,335,19 294,248,374,322,19 153,230,230,305,19 226,234,304,320,19 589,257,640,324,19 446,265,566,328,19 378,266,442,326,19 -./model_data/coco/val2017/000000497568.jpg 1,72,638,386,4 33,282,62,343,0 57,295,76,344,0 45,189,57,203,7 67,301,117,323,7 -./model_data/coco/val2017/000000331352.jpg 28,252,321,492,61 53,61,301,145,71 -./model_data/coco/val2017/000000138241.jpg 103,212,362,454,52 0,2,480,639,60 -./model_data/coco/val2017/000000080659.jpg 308,93,640,386,17 1,185,131,332,17 44,85,384,390,17 141,65,284,232,0 242,63,349,164,0 400,59,541,253,0 226,255,361,360,17 -./model_data/coco/val2017/000000263299.jpg 6,3,298,321,6 -./model_data/coco/val2017/000000260925.jpg 70,236,566,426,15 1,28,640,474,2 547,35,560,57,0 -./model_data/coco/val2017/000000438955.jpg 16,130,45,203,0 62,130,133,231,0 329,104,435,227,0 518,87,600,217,0 493,92,558,208,0 231,132,255,188,0 434,89,452,137,0 416,88,436,138,0 388,94,405,143,0 358,96,377,114,0 205,116,224,135,0 183,118,237,231,0 127,231,264,241,30 503,212,624,220,30 171,140,182,156,0 66,90,534,175,0 -./model_data/coco/val2017/000000407403.jpg 173,142,335,377,75 -./model_data/coco/val2017/000000378139.jpg 114,228,486,322,8 224,264,241,282,0 62,226,113,246,1 391,214,428,229,2 470,214,494,228,2 492,214,512,224,2 520,213,541,224,2 597,220,634,231,8 552,221,611,235,8 429,214,459,228,2 3,229,65,248,1 115,229,148,244,1 230,220,246,238,1 145,213,154,233,0 167,263,187,290,0 153,225,172,243,1 184,228,202,242,1 -./model_data/coco/val2017/000000517069.jpg 140,253,185,266,2 127,249,168,262,2 417,299,541,354,2 228,268,264,291,2 519,228,624,473,0 304,328,640,480,13 270,342,308,376,26 208,233,421,480,0 154,257,188,273,2 215,255,244,273,2 121,241,178,254,7 -./model_data/coco/val2017/000000193162.jpg 100,219,176,288,16 0,249,76,344,16 1,249,79,343,18 303,134,455,331,19 394,97,488,166,0 -./model_data/coco/val2017/000000275392.jpg 67,112,302,624,17 139,91,339,465,0 -./model_data/coco/val2017/000000096493.jpg 2,0,426,640,57 122,2,412,395,0 113,346,225,386,65 -./model_data/coco/val2017/000000287667.jpg 0,0,640,480,60 235,26,318,104,43 422,191,613,265,51 293,189,475,327,51 0,313,80,475,73 -./model_data/coco/val2017/000000435299.jpg 272,32,420,321,15 1,60,636,338,59 -./model_data/coco/val2017/000000398237.jpg 274,107,397,380,0 89,239,525,425,33 297,49,400,135,33 96,35,249,102,33 483,34,538,95,33 -./model_data/coco/val2017/000000429690.jpg 486,178,624,224,13 212,156,336,194,34 259,104,402,366,0 1,0,225,427,0 341,122,390,235,0 388,123,454,255,0 439,122,504,240,0 549,133,603,230,0 588,119,624,176,0 464,116,491,187,0 409,70,426,86,32 497,130,582,235,0 269,104,298,170,0 354,234,622,248,13 -./model_data/coco/val2017/000000252216.jpg 276,36,535,447,17 -./model_data/coco/val2017/000000342186.jpg 0,2,448,631,53 0,0,480,640,60 -./model_data/coco/val2017/000000176847.jpg 246,216,517,359,14 -./model_data/coco/val2017/000000290293.jpg 8,59,463,260,6 560,181,587,228,0 601,185,610,235,0 538,199,549,241,0 -./model_data/coco/val2017/000000496409.jpg 303,95,352,175,0 0,71,22,112,0 303,160,325,181,30 -./model_data/coco/val2017/000000485844.jpg 59,54,218,233,72 189,39,357,385,0 214,306,254,315,43 125,42,147,53,47 382,190,500,250,69 178,303,210,317,43 77,201,143,252,56 33,170,76,242,56 15,255,275,384,60 437,227,501,239,71 147,45,161,51,47 -./model_data/coco/val2017/000000429718.jpg 139,281,356,468,6 170,322,185,349,0 -./model_data/coco/val2017/000000335954.jpg 186,334,612,612,43 273,152,612,533,45 0,126,282,545,45 -./model_data/coco/val2017/000000190676.jpg 6,72,223,146,4 554,30,638,259,0 315,103,327,153,0 432,99,445,141,0 539,95,562,172,0 515,94,535,155,0 466,98,479,141,0 203,113,212,138,0 213,111,223,136,0 492,98,505,145,0 507,95,521,153,0 477,97,494,145,0 567,92,589,124,0 532,91,545,159,0 100,88,584,183,0 -./model_data/coco/val2017/000000334521.jpg 403,243,458,301,14 214,75,323,292,23 77,75,273,285,23 309,212,318,240,0 -./model_data/coco/val2017/000000580757.jpg 336,70,568,416,10 -./model_data/coco/val2017/000000250901.jpg 175,162,349,320,48 360,128,500,302,48 416,0,640,164,0 0,0,208,307,0 211,1,414,130,0 50,115,147,181,73 -./model_data/coco/val2017/000000451308.jpg 358,71,374,90,73 152,19,257,54,28 142,48,264,105,28 136,101,274,141,28 107,132,286,199,28 112,171,293,245,28 117,229,285,284,28 116,276,276,335,28 117,315,281,377,28 119,362,274,439,28 85,425,262,500,28 79,479,270,555,28 64,295,128,444,28 378,105,411,129,73 337,72,355,93,73 322,89,339,104,73 373,58,405,81,73 337,47,351,66,73 340,78,357,96,73 369,11,397,36,73 372,72,410,96,73 264,423,306,520,28 76,87,222,154,28 -./model_data/coco/val2017/000000439623.jpg 73,148,402,323,2 356,178,427,231,2 25,194,64,218,2 61,199,86,219,2 87,116,313,562,10 17,197,45,217,2 0,170,19,224,2 -./model_data/coco/val2017/000000537812.jpg 41,81,243,480,61 294,257,423,431,56 -./model_data/coco/val2017/000000532855.jpg 63,0,348,225,0 238,187,345,243,36 -./model_data/coco/val2017/000000160772.jpg 84,133,557,268,8 159,217,167,232,0 165,218,174,228,0 259,223,269,231,0 305,220,320,230,0 334,221,342,229,0 461,217,465,225,0 185,224,193,232,0 233,222,245,231,0 272,222,280,231,0 254,220,262,229,0 -./model_data/coco/val2017/000000133087.jpg 474,66,513,161,9 151,130,177,191,9 94,130,122,192,9 437,74,465,131,9 -./model_data/coco/val2017/000000071938.jpg 255,121,385,291,67 0,0,593,480,0 48,1,640,474,59 -./model_data/coco/val2017/000000212072.jpg 310,29,460,177,11 -./model_data/coco/val2017/000000007795.jpg 0,191,454,418,59 163,189,483,311,59 133,245,141,258,74 625,256,639,261,65 -./model_data/coco/val2017/000000579655.jpg 279,168,335,274,67 182,1,639,393,0 158,17,252,69,45 52,36,77,74,40 32,17,63,75,40 22,21,40,75,40 12,122,63,191,41 59,237,107,306,41 13,244,61,310,41 104,121,169,189,41 72,21,121,74,41 229,126,262,183,41 59,118,111,154,41 109,237,166,305,41 161,129,229,185,41 62,122,112,191,41 -./model_data/coco/val2017/000000130566.jpg 19,117,579,314,6 -./model_data/coco/val2017/000000507235.jpg 0,161,612,543,45 68,0,353,149,45 0,55,610,612,60 -./model_data/coco/val2017/000000044195.jpg 51,87,188,480,0 160,176,223,408,0 128,259,266,334,31 -./model_data/coco/val2017/000000449432.jpg 3,104,604,290,5 167,275,204,307,28 97,178,169,311,0 203,181,260,352,0 272,188,309,340,0 603,106,640,196,8 308,197,585,307,24 358,201,377,267,26 338,180,368,330,0 379,177,422,320,0 429,172,478,323,0 507,180,541,301,0 474,187,509,309,0 579,181,633,305,0 288,188,359,357,0 524,197,556,297,0 414,186,440,306,0 -./model_data/coco/val2017/000000290592.jpg 199,105,321,331,18 286,128,388,346,18 97,103,250,324,18 398,119,538,378,18 513,116,597,326,18 589,112,640,268,18 52,93,168,284,18 375,91,435,149,18 0,79,100,269,18 64,83,138,145,18 426,94,504,187,18 193,79,260,156,18 -./model_data/coco/val2017/000000436315.jpg 20,138,435,488,53 -./model_data/coco/val2017/000000500716.jpg 0,0,445,500,0 0,46,172,293,76 -./model_data/coco/val2017/000000350405.jpg 260,233,429,266,31 37,145,67,192,0 186,84,398,247,0 -./model_data/coco/val2017/000000153632.jpg 1,123,23,201,42 13,3,328,190,43 43,0,217,49,45 0,2,638,471,60 -./model_data/coco/val2017/000000228144.jpg 1,74,215,410,56 191,2,564,426,56 545,112,639,338,56 0,293,58,426,60 -./model_data/coco/val2017/000000106330.jpg 254,15,578,395,77 -./model_data/coco/val2017/000000426297.jpg 123,16,638,419,22 -./model_data/coco/val2017/000000236166.jpg 7,327,360,599,16 0,1,426,630,0 -./model_data/coco/val2017/000000245311.jpg 185,82,379,404,0 420,172,589,408,0 279,323,539,415,45 397,470,437,497,54 370,455,406,476,54 332,432,351,444,54 452,471,488,497,54 463,432,496,467,54 357,462,389,492,54 249,403,286,433,54 193,382,226,410,54 187,433,221,445,54 229,396,264,429,54 493,450,525,482,54 260,387,594,519,45 441,419,467,448,54 348,425,378,453,54 118,387,593,580,54 -./model_data/coco/val2017/000000349860.jpg 350,349,386,378,2 279,13,465,165,0 336,369,360,386,13 339,107,452,196,36 46,341,64,378,0 217,321,227,352,0 281,349,292,378,2 368,377,383,394,13 -./model_data/coco/val2017/000000058393.jpg 342,163,534,240,0 44,242,591,467,13 418,182,480,227,0 -./model_data/coco/val2017/000000549055.jpg 314,118,472,292,0 249,112,377,304,37 -./model_data/coco/val2017/000000396518.jpg 369,236,500,321,8 309,87,454,288,0 -./model_data/coco/val2017/000000249129.jpg 204,243,293,373,56 97,198,185,326,56 424,70,516,230,56 539,275,640,390,56 182,199,365,268,60 185,154,289,213,77 330,171,427,271,77 402,63,511,185,77 545,178,640,321,77 107,156,184,277,77 197,219,301,326,77 186,232,204,236,43 0,40,76,171,77 209,197,221,215,41 337,225,425,309,56 1,157,69,226,56 587,88,599,111,74 -./model_data/coco/val2017/000000566282.jpg 377,59,420,134,27 99,321,152,375,32 291,167,495,239,2 44,34,203,374,0 353,1,477,345,0 589,185,603,225,0 575,188,587,225,0 514,194,520,214,0 562,183,578,225,0 508,195,515,215,0 -./model_data/coco/val2017/000000171190.jpg 443,330,474,390,40 589,197,608,236,40 543,184,554,199,40 449,263,475,331,40 162,199,171,211,40 290,278,306,312,41 138,260,634,474,60 491,141,593,331,0 375,126,497,304,0 313,144,395,279,0 265,138,341,260,0 115,140,199,266,0 413,228,451,369,39 310,247,337,344,39 357,225,380,269,39 172,200,190,275,39 211,211,227,276,39 197,216,220,290,39 271,205,287,264,39 335,252,352,351,39 44,225,78,306,40 1,157,26,196,40 39,187,51,207,40 233,260,244,291,40 286,174,294,186,40 232,257,259,291,41 202,146,277,244,0 52,143,144,338,0 0,346,340,475,0 0,259,300,470,0 345,165,361,179,40 576,292,640,387,56 341,269,395,368,39 0,279,12,346,40 257,321,302,331,43 506,180,640,350,0 400,138,416,172,40 230,210,263,262,40 -./model_data/coco/val2017/000000519039.jpg 171,109,331,210,7 -./model_data/coco/val2017/000000185599.jpg 175,50,338,228,47 203,221,442,472,47 414,126,640,473,47 326,0,640,236,49 410,115,640,478,49 2,2,247,474,49 -./model_data/coco/val2017/000000103585.jpg 313,346,360,416,61 0,380,89,434,71 193,321,255,340,71 115,308,143,354,75 -./model_data/coco/val2017/000000068765.jpg 1,27,574,470,66 1,57,156,199,64 -./model_data/coco/val2017/000000506454.jpg 207,155,452,284,13 554,72,560,88,0 -./model_data/coco/val2017/000000572408.jpg 96,240,302,467,19 34,442,244,544,19 287,223,316,259,19 230,229,260,253,19 104,248,284,463,18 -./model_data/coco/val2017/000000079565.jpg 219,98,403,336,23 127,149,222,324,23 -./model_data/coco/val2017/000000448448.jpg 136,78,640,480,23 111,2,591,249,23 -./model_data/coco/val2017/000000192191.jpg 127,396,298,539,53 1,44,424,629,69 -./model_data/coco/val2017/000000284623.jpg 36,0,464,412,15 176,148,224,217,39 2,360,563,415,71 37,177,97,330,39 115,200,138,238,79 -./model_data/coco/val2017/000000291861.jpg 96,78,633,425,22 -./model_data/coco/val2017/000000117908.jpg 346,146,500,316,15 0,33,245,316,0 1,1,246,88,72 178,123,428,316,72 233,296,249,320,39 211,279,235,320,39 317,170,354,240,39 286,160,319,227,39 266,156,296,218,39 -./model_data/coco/val2017/000000236845.jpg 47,426,100,469,2 -./model_data/coco/val2017/000000153568.jpg 0,2,499,371,11 -./model_data/coco/val2017/000000484029.jpg 0,159,156,336,11 252,512,305,542,2 290,508,324,538,2 224,504,262,523,2 370,511,389,530,2 340,512,376,532,2 397,513,408,546,2 117,445,140,468,11 -./model_data/coco/val2017/000000479448.jpg 0,5,52,72,44 424,179,500,329,49 149,66,242,136,46 274,165,337,213,46 83,187,165,241,46 146,213,216,340,46 16,150,100,252,46 30,79,187,206,46 327,115,401,191,46 272,208,342,283,46 232,23,314,101,46 284,81,353,138,46 391,30,500,176,41 264,104,331,168,46 161,34,262,111,46 215,239,295,336,46 0,21,425,374,53 70,173,401,317,46 -./model_data/coco/val2017/000000344100.jpg 393,188,501,299,48 142,107,172,163,44 0,0,75,111,63 86,132,169,247,41 0,2,640,421,60 -./model_data/coco/val2017/000000541773.jpg 274,238,320,306,39 219,280,275,460,39 175,252,220,409,39 138,260,189,438,39 549,110,640,210,57 265,2,581,480,0 348,3,406,392,0 250,357,305,474,40 281,425,337,479,40 303,245,330,310,40 141,413,196,480,40 86,28,161,172,0 251,260,275,325,40 164,271,185,331,40 202,288,216,302,40 580,246,640,469,0 0,246,377,473,60 315,153,393,284,0 -./model_data/coco/val2017/000000231747.jpg 312,2,373,138,0 102,242,170,329,34 58,321,164,382,34 114,269,164,347,34 326,367,409,398,34 194,185,205,196,32 322,235,376,283,35 152,151,166,192,0 566,47,635,123,34 287,247,295,339,34 563,276,596,386,34 443,100,459,120,34 205,313,230,341,35 589,111,623,146,35 139,343,168,378,35 -./model_data/coco/val2017/000000231339.jpg 97,0,480,456,72 194,198,430,502,0 229,122,339,190,45 -./model_data/coco/val2017/000000489611.jpg 55,12,524,613,0 509,85,638,199,58 373,350,459,549,65 444,343,543,503,65 -./model_data/coco/val2017/000000189078.jpg 20,66,173,152,46 59,44,180,89,46 21,74,198,205,46 335,7,477,199,47 252,119,355,220,49 183,47,267,134,49 261,60,350,137,49 -./model_data/coco/val2017/000000205401.jpg 105,143,542,270,4 370,217,456,258,8 330,236,341,262,0 415,217,440,234,0 -./model_data/coco/val2017/000000578545.jpg 1,67,640,468,59 390,130,535,274,56 182,92,403,376,0 358,227,510,363,73 -./model_data/coco/val2017/000000242287.jpg 19,383,333,627,1 -./model_data/coco/val2017/000000205289.jpg 147,120,485,284,7 264,145,315,202,0 -./model_data/coco/val2017/000000552883.jpg 243,236,319,250,71 -./model_data/coco/val2017/000000263403.jpg 334,61,414,183,0 389,79,422,185,37 -./model_data/coco/val2017/000000557501.jpg 332,261,427,313,71 416,258,518,317,71 -./model_data/coco/val2017/000000356428.jpg 460,27,500,160,0 56,183,138,243,46 63,225,180,281,46 444,43,473,83,24 0,218,47,281,46 52,210,78,261,46 251,161,266,192,46 421,20,482,151,0 33,0,155,150,0 474,42,481,53,0 474,68,500,90,24 196,143,211,172,46 0,185,36,220,46 -./model_data/coco/val2017/000000050828.jpg 147,189,605,480,59 1,274,124,471,56 84,333,158,408,28 62,234,82,252,65 -./model_data/coco/val2017/000000322844.jpg 1,376,480,640,13 102,95,358,448,77 -./model_data/coco/val2017/000000125778.jpg 553,337,614,443,58 439,199,483,260,58 175,203,185,236,39 153,207,174,240,39 1,234,302,480,57 273,187,429,346,56 140,209,151,246,39 134,209,142,246,39 189,200,198,232,39 182,202,192,234,39 154,209,175,240,75 95,137,177,219,2 125,212,138,247,39 553,405,593,442,75 568,375,603,402,75 -./model_data/coco/val2017/000000553664.jpg 270,139,555,324,63 428,246,497,261,64 217,58,311,136,73 460,65,482,86,73 483,72,500,129,73 542,63,598,128,73 401,274,485,310,66 495,1,510,50,73 408,75,420,130,73 490,325,593,355,67 515,144,531,206,73 509,70,513,128,73 258,0,261,52,73 443,156,453,207,73 467,0,474,51,73 556,1,562,49,73 541,147,546,206,73 97,0,639,292,73 -./model_data/coco/val2017/000000217753.jpg 533,352,597,417,49 511,209,561,250,49 469,252,512,284,49 511,248,567,283,49 496,167,551,224,49 97,261,159,309,47 0,258,140,440,47 271,228,318,272,47 115,149,182,228,47 369,266,412,294,47 0,182,47,222,47 39,153,85,201,47 352,222,402,272,47 563,251,612,285,49 590,168,633,215,49 461,166,640,285,49 478,302,640,461,49 324,195,365,240,47 -./model_data/coco/val2017/000000577149.jpg 107,141,186,301,22 342,164,566,387,22 418,164,500,228,22 190,143,251,316,22 -./model_data/coco/val2017/000000550471.jpg 224,7,340,201,42 254,179,587,367,49 -./model_data/coco/val2017/000000506656.jpg 184,93,566,432,17 352,290,409,310,2 97,176,173,419,0 566,128,640,249,17 167,116,493,413,17 -./model_data/coco/val2017/000000025181.jpg 356,142,640,301,6 97,228,110,248,0 25,244,56,258,13 89,242,105,250,13 50,246,58,257,24 52,221,66,257,0 104,231,109,240,0 183,232,187,240,13 195,232,199,240,13 -./model_data/coco/val2017/000000223747.jpg 39,222,483,370,15 249,98,437,293,0 117,70,500,370,59 -./model_data/coco/val2017/000000172330.jpg 244,219,421,334,15 471,79,637,384,2 61,1,639,311,2 1,1,270,210,2 -./model_data/coco/val2017/000000474293.jpg 212,232,232,252,77 555,288,623,371,26 199,292,220,316,77 225,291,245,316,77 212,290,231,316,77 183,287,206,318,77 183,261,195,290,77 153,248,166,261,77 156,216,169,235,77 263,296,291,313,77 201,218,217,243,77 142,247,157,270,77 156,260,171,275,77 153,293,166,320,77 526,249,637,479,0 136,73,481,319,77 -./model_data/coco/val2017/000000030494.jpg 106,29,286,222,16 263,186,314,199,29 -./model_data/coco/val2017/000000560279.jpg 181,149,434,604,61 325,48,370,171,39 -./model_data/coco/val2017/000000018193.jpg 28,122,396,470,56 251,160,289,196,52 85,45,481,472,0 -./model_data/coco/val2017/000000371529.jpg 207,159,494,590,61 1,192,54,453,61 218,14,274,363,58 33,52,343,575,0 -./model_data/coco/val2017/000000382696.jpg 64,74,209,363,72 231,189,283,203,71 242,170,386,355,69 -./model_data/coco/val2017/000000055150.jpg 89,131,216,240,2 271,113,471,250,2 435,0,640,393,2 206,138,246,208,2 283,108,365,228,0 291,198,344,219,73 265,268,453,338,28 283,200,453,273,28 0,36,191,426,2 257,99,389,234,2 242,149,257,185,2 254,160,266,202,2 342,127,455,221,0 331,244,399,331,24 300,165,343,202,73 -./model_data/coco/val2017/000000017029.jpg 154,105,405,541,16 56,25,569,178,2 319,77,414,122,29 0,44,21,88,2 -./model_data/coco/val2017/000000177065.jpg 345,312,362,328,32 348,208,455,405,0 172,208,250,504,0 36,249,173,381,38 262,383,296,487,38 21,140,158,208,38 142,180,199,282,0 167,220,199,300,0 151,370,174,431,38 38,8,180,554,0 303,261,358,301,24 -./model_data/coco/val2017/000000185409.jpg 239,136,413,323,22 147,108,266,314,22 0,106,161,302,22 2,114,70,159,22 18,75,85,130,22 53,62,120,126,22 84,77,184,230,22 357,156,520,313,22 439,111,606,322,22 523,124,612,209,22 600,153,640,243,22 0,96,27,149,22 -./model_data/coco/val2017/000000344621.jpg 246,152,467,296,57 296,235,316,245,65 238,241,293,264,73 142,137,219,229,56 0,80,30,157,58 365,91,402,123,58 0,169,35,245,58 -./model_data/coco/val2017/000000323202.jpg 0,277,53,460,73 3,46,480,631,61 -./model_data/coco/val2017/000000060899.jpg 285,141,357,282,56 329,166,358,344,56 99,143,238,519,0 0,120,125,336,56 142,266,297,452,56 329,138,360,200,56 234,170,254,236,17 0,585,35,639,73 -./model_data/coco/val2017/000000166521.jpg 194,135,361,280,62 389,277,500,380,62 273,352,275,395,73 281,316,332,324,73 319,402,330,413,73 309,348,315,390,73 302,351,308,392,73 353,347,360,385,73 282,353,297,395,73 524,344,639,426,57 340,346,347,386,73 343,399,347,412,73 324,349,332,389,73 242,403,266,415,73 335,349,339,387,73 296,351,302,391,73 -./model_data/coco/val2017/000000154087.jpg 248,290,292,404,0 219,301,256,398,0 0,281,89,416,0 0,414,68,419,30 18,291,41,393,0 -./model_data/coco/val2017/000000481159.jpg 188,135,445,446,17 -./model_data/coco/val2017/000000343466.jpg 146,122,228,237,69 202,161,297,186,71 -./model_data/coco/val2017/000000378244.jpg 135,261,248,401,0 215,409,260,420,31 213,409,262,420,30 -./model_data/coco/val2017/000000537964.jpg 48,16,216,400,10 -./model_data/coco/val2017/000000063047.jpg 61,217,388,553,0 446,307,466,414,0 464,313,487,405,0 496,306,527,407,0 482,322,492,397,0 493,305,528,395,0 94,350,145,430,41 -./model_data/coco/val2017/000000536073.jpg 77,234,198,461,39 320,387,452,558,41 64,493,244,614,43 -./model_data/coco/val2017/000000023937.jpg 282,104,406,143,19 126,100,277,149,19 396,182,504,258,18 325,110,459,140,19 192,206,322,261,19 395,190,503,234,19 -./model_data/coco/val2017/000000359135.jpg 0,143,389,422,20 130,42,640,427,20 -./model_data/coco/val2017/000000498032.jpg 139,113,450,454,0 389,98,426,218,65 -./model_data/coco/val2017/000000154004.jpg 224,184,323,295,0 123,55,169,242,0 165,63,197,163,0 317,114,355,150,0 295,92,400,126,37 188,70,212,159,0 205,70,228,164,0 322,126,384,191,0 325,112,347,142,0 453,118,515,159,0 71,106,122,154,0 266,107,292,143,0 355,101,393,131,0 314,171,404,269,0 1,50,446,338,0 -./model_data/coco/val2017/000000186282.jpg 271,0,515,310,62 359,358,482,404,64 168,273,331,334,66 -./model_data/coco/val2017/000000350488.jpg 109,102,383,371,22 -./model_data/coco/val2017/000000109992.jpg 23,203,92,320,0 2,310,100,321,31 -./model_data/coco/val2017/000000344909.jpg 109,2,469,630,10 426,195,480,238,2 380,195,438,236,2 362,195,391,234,2 -./model_data/coco/val2017/000000147205.jpg 0,1,640,432,60 0,95,103,216,55 -./model_data/coco/val2017/000000195045.jpg 422,295,473,356,13 0,268,42,299,13 -./model_data/coco/val2017/000000460682.jpg 286,116,402,174,17 -./model_data/coco/val2017/000000225670.jpg 248,141,401,237,16 438,159,469,177,29 292,305,342,309,13 50,297,90,300,13 449,299,501,306,13 466,277,514,282,13 474,268,520,272,13 358,287,417,292,13 238,276,282,280,13 116,281,161,284,13 210,316,247,331,13 244,308,293,312,13 251,302,298,305,13 298,300,347,303,13 304,294,354,299,13 34,111,639,354,13 -./model_data/coco/val2017/000000445658.jpg 0,76,49,414,72 306,174,319,219,39 337,191,350,216,39 534,207,602,245,45 606,181,640,245,68 480,216,544,236,71 167,157,194,188,77 319,193,337,223,39 100,194,129,231,39 281,209,307,223,45 449,217,480,229,71 138,182,293,399,69 -./model_data/coco/val2017/000000480936.jpg 56,73,374,596,56 62,8,373,640,0 0,351,46,554,56 367,229,474,312,73 194,312,234,349,52 -./model_data/coco/val2017/000000560880.jpg 279,352,305,386,16 134,268,186,398,17 189,267,254,394,17 241,285,268,377,0 -./model_data/coco/val2017/000000515579.jpg 335,0,499,237,58 9,24,236,328,0 292,27,328,119,0 14,119,39,140,32 264,51,342,99,13 336,20,369,85,0 207,154,230,180,35 -./model_data/coco/val2017/000000450439.jpg 260,20,480,190,33 18,155,155,215,33 -./model_data/coco/val2017/000000565045.jpg 259,356,333,498,0 265,436,285,460,49 -./model_data/coco/val2017/000000128699.jpg 123,49,265,212,0 19,394,56,443,0 137,346,180,385,0 224,315,264,347,0 192,316,233,364,0 112,198,187,235,36 0,406,33,461,0 122,346,143,390,0 329,262,351,331,0 254,294,301,332,0 243,299,272,338,0 212,314,235,339,0 105,366,129,400,0 -./model_data/coco/val2017/000000323151.jpg 0,240,450,557,53 112,111,299,182,45 312,0,328,40,56 0,6,480,630,60 380,13,480,282,41 -./model_data/coco/val2017/000000078959.jpg 244,62,307,132,46 239,132,337,168,46 198,23,230,113,46 222,175,290,202,46 196,179,312,240,46 225,40,263,116,46 254,0,307,90,46 165,120,194,162,46 153,0,232,79,46 80,118,168,200,46 159,67,213,136,46 136,38,203,100,46 263,45,295,90,46 -./model_data/coco/val2017/000000168974.jpg 107,292,240,349,67 0,86,321,494,0 95,32,183,59,65 -./model_data/coco/val2017/000000221017.jpg 242,226,438,429,14 -./model_data/coco/val2017/000000329456.jpg 38,0,506,421,0 226,21,424,422,0 391,2,505,263,0 518,11,619,295,0 590,77,640,248,0 459,291,501,332,54 37,262,66,351,26 258,203,346,249,26 457,291,502,334,48 -./model_data/coco/val2017/000000335800.jpg 52,255,263,427,9 -./model_data/coco/val2017/000000095069.jpg 263,218,285,237,74 -./model_data/coco/val2017/000000286660.jpg 96,1,371,499,0 6,85,250,500,77 -./model_data/coco/val2017/000000545129.jpg 246,155,403,304,22 210,108,413,247,22 0,105,189,278,22 -./model_data/coco/val2017/000000169169.jpg 117,399,221,480,58 300,410,363,468,58 244,349,284,456,0 290,364,314,427,0 379,365,399,418,0 479,365,500,405,0 552,360,575,442,0 594,366,631,437,0 580,364,594,424,0 531,362,547,432,0 0,404,74,458,58 445,410,491,430,58 632,309,639,335,9 312,364,338,415,0 552,364,562,383,0 428,366,438,416,0 393,364,486,408,2 410,364,417,419,0 551,370,556,410,0 83,165,639,457,0 -./model_data/coco/val2017/000000190007.jpg 246,154,321,249,0 282,242,350,272,37 -./model_data/coco/val2017/000000363666.jpg 258,217,296,238,48 188,155,218,182,48 86,268,128,306,48 433,255,640,419,56 420,65,638,410,0 267,5,427,181,0 16,39,219,414,0 156,0,273,147,0 414,174,445,207,41 194,220,230,253,41 265,171,293,203,41 417,230,434,256,42 366,181,381,208,42 406,294,433,317,54 0,12,58,128,0 112,0,212,54,0 388,219,435,228,43 110,252,130,269,54 107,357,351,414,56 38,149,467,419,60 103,25,201,110,60 43,4,152,38,60 311,313,367,363,41 125,78,136,97,41 144,57,159,71,41 119,52,130,70,41 211,166,239,186,48 123,262,146,281,54 405,313,434,337,54 86,268,127,294,54 375,287,410,325,54 195,32,321,164,56 0,124,100,419,56 391,66,459,178,56 223,244,235,253,43 300,214,318,238,48 210,266,239,302,48 283,199,310,230,48 187,287,213,309,48 173,279,205,308,48 -./model_data/coco/val2017/000000019402.jpg 260,0,637,475,0 0,52,403,480,0 3,304,236,472,53 -./model_data/coco/val2017/000000294163.jpg 273,483,337,552,74 221,494,252,566,74 -./model_data/coco/val2017/000000391648.jpg 293,311,356,372,74 -./model_data/coco/val2017/000000447522.jpg 0,0,640,480,60 241,164,389,286,50 177,151,288,243,50 299,34,361,83,50 588,197,640,291,50 136,96,163,129,50 224,310,329,393,50 0,251,50,329,50 14,106,93,188,50 2,111,141,132,44 418,154,465,177,50 -./model_data/coco/val2017/000000486438.jpg 73,0,592,242,0 202,174,379,272,54 344,314,575,423,54 121,308,344,422,54 27,245,232,376,54 444,267,625,371,54 257,262,439,377,54 156,228,291,309,54 353,191,560,297,54 -./model_data/coco/val2017/000000175535.jpg 0,188,224,391,48 241,215,440,379,48 255,0,330,36,43 1,3,477,631,60 454,453,478,499,42 167,443,395,630,45 0,517,166,640,45 -./model_data/coco/val2017/000000479596.jpg 1,165,638,428,49 404,246,475,316,47 352,213,422,282,47 544,283,612,350,47 296,148,355,199,47 459,225,521,275,47 504,269,545,329,47 505,341,569,378,47 438,197,497,247,47 289,237,364,288,47 72,158,136,187,47 401,192,447,229,47 325,186,381,225,47 559,242,618,289,47 1,66,639,404,47 -./model_data/coco/val2017/000000464689.jpg 507,386,518,415,39 201,386,209,411,39 471,293,480,317,39 481,294,490,316,39 82,296,91,320,39 119,300,128,325,39 69,307,75,326,39 181,301,189,322,39 175,297,182,323,39 55,316,62,328,39 171,394,178,416,39 534,300,547,316,39 531,283,540,310,39 131,294,246,420,39 -./model_data/coco/val2017/000000247838.jpg 309,279,343,320,19 387,287,450,329,19 475,299,510,324,19 597,267,618,294,19 565,270,600,288,19 549,271,561,290,19 344,261,370,277,19 626,254,640,268,19 434,296,475,337,19 461,269,491,292,19 361,279,378,299,19 169,266,228,303,19 -./model_data/coco/val2017/000000434297.jpg 402,247,486,341,50 296,312,386,376,51 422,283,584,391,51 86,96,531,364,48 -./model_data/coco/val2017/000000318114.jpg 124,100,196,303,42 0,1,385,304,60 14,8,139,205,41 202,84,304,157,49 165,157,350,269,55 120,101,379,284,45 -./model_data/coco/val2017/000000351096.jpg 53,37,500,309,76 0,219,100,370,0 -./model_data/coco/val2017/000000306893.jpg 0,238,58,320,3 451,241,500,321,3 5,159,500,257,6 51,40,61,75,9 40,40,49,73,9 463,113,480,164,9 443,47,482,85,9 24,101,45,157,9 21,39,38,75,9 446,103,463,147,9 81,219,101,290,10 404,227,421,292,10 104,181,125,205,0 72,189,82,203,0 56,187,69,203,0 166,194,174,203,0 418,195,431,210,0 98,196,103,203,0 350,196,354,207,0 397,200,403,208,0 436,200,443,209,0 -./model_data/coco/val2017/000000178618.jpg 234,238,413,426,20 0,273,26,366,20 208,286,239,319,20 -./model_data/coco/val2017/000000075456.jpg 100,59,534,358,53 -./model_data/coco/val2017/000000221693.jpg 73,17,525,420,16 441,248,598,385,29 -./model_data/coco/val2017/000000171757.jpg 55,129,312,480,0 415,159,535,480,0 403,140,538,480,0 243,161,269,181,65 520,345,635,479,57 3,354,127,443,56 38,315,75,354,56 281,309,363,447,56 521,347,640,480,59 -./model_data/coco/val2017/000000306700.jpg 1,465,480,632,60 25,66,360,470,0 435,493,480,544,42 46,349,408,608,53 -./model_data/coco/val2017/000000022396.jpg 326,46,603,159,4 -./model_data/coco/val2017/000000343453.jpg 249,54,439,473,0 328,396,411,463,30 -./model_data/coco/val2017/000000263068.jpg 189,130,221,201,36 194,43,280,213,0 -./model_data/coco/val2017/000000401250.jpg 111,116,281,293,0 159,32,354,227,30 -./model_data/coco/val2017/000000403584.jpg 312,252,379,446,0 143,268,166,345,0 247,239,290,434,0 125,287,440,371,37 64,311,72,331,0 117,318,120,331,0 71,322,79,331,0 309,339,314,347,0 111,317,117,331,0 -./model_data/coco/val2017/000000300842.jpg 160,137,640,361,36 -./model_data/coco/val2017/000000195842.jpg 168,195,260,279,62 279,288,452,384,57 565,384,640,474,57 414,47,565,473,0 139,445,239,480,45 420,131,429,161,65 584,313,639,418,56 496,19,535,59,74 443,144,450,154,65 -./model_data/coco/val2017/000000044699.jpg 213,235,309,306,18 437,256,477,318,18 471,253,564,322,18 105,211,216,302,18 -./model_data/coco/val2017/000000382111.jpg 120,115,514,418,17 106,105,259,364,17 438,116,505,151,2 14,124,92,158,2 31,130,46,144,2 0,129,27,164,2 43,129,57,143,2 283,12,410,300,0 199,50,259,145,0 474,127,640,299,7 397,104,474,148,7 14,118,113,216,7 287,110,336,123,2 621,107,640,128,2 -./model_data/coco/val2017/000000349184.jpg 18,126,194,568,0 168,194,191,230,0 399,202,410,235,0 2,204,310,631,13 232,285,260,438,26 369,200,388,236,0 350,202,370,233,0 204,195,229,232,0 384,211,397,236,0 -./model_data/coco/val2017/000000245448.jpg 242,174,536,372,3 477,181,531,218,3 438,187,465,216,3 275,134,367,273,0 157,115,283,420,0 62,147,146,364,0 235,154,261,217,0 378,146,422,233,0 0,175,162,258,7 287,196,311,213,3 613,179,639,214,3 -./model_data/coco/val2017/000000166287.jpg 31,180,65,207,14 28,156,58,169,14 10,107,32,120,14 91,133,123,141,14 152,146,183,157,14 250,149,285,169,14 277,32,313,66,14 393,178,427,190,14 209,154,245,167,14 587,168,632,186,14 476,118,521,126,14 150,221,241,309,19 532,211,582,306,19 596,205,621,231,14 358,172,390,180,14 221,184,361,310,19 1,52,509,316,14 -./model_data/coco/val2017/000000325306.jpg 124,27,503,475,22 595,108,635,327,22 -./model_data/coco/val2017/000000170099.jpg 306,247,607,473,57 97,204,188,473,27 13,37,363,472,0 -./model_data/coco/val2017/000000024919.jpg 292,134,518,285,20 114,148,341,297,20 -./model_data/coco/val2017/000000161925.jpg 247,92,420,633,0 0,100,182,632,0 174,301,251,335,53 -./model_data/coco/val2017/000000457559.jpg 218,341,263,386,32 99,55,350,387,0 363,48,507,379,0 539,43,640,328,0 345,94,402,170,0 407,78,435,124,0 575,46,639,258,0 -./model_data/coco/val2017/000000243344.jpg 131,307,479,631,72 178,161,279,352,15 -./model_data/coco/val2017/000000082986.jpg 358,90,433,207,0 589,65,640,242,0 415,48,444,56,29 159,80,207,180,26 456,76,543,238,0 -./model_data/coco/val2017/000000054593.jpg 521,173,586,234,56 426,169,499,232,56 333,159,358,210,56 345,105,459,339,0 83,169,210,335,0 520,112,585,241,0 2,140,112,329,0 426,110,497,232,0 357,64,407,135,34 110,75,310,183,2 416,74,611,162,2 345,130,392,239,0 496,154,511,169,32 526,214,535,234,39 0,57,64,174,2 0,119,71,201,3 341,207,380,237,24 207,197,248,245,35 -./model_data/coco/val2017/000000554735.jpg 1,84,335,474,0 208,62,591,391,53 -./model_data/coco/val2017/000000186637.jpg 144,130,369,420,23 -./model_data/coco/val2017/000000268000.jpg 426,165,589,216,6 601,176,638,256,0 619,147,639,202,0 -./model_data/coco/val2017/000000468505.jpg 329,224,352,293,39 318,211,337,279,39 136,255,437,447,60 121,53,439,249,0 246,236,280,296,41 250,298,298,341,52 330,90,481,166,1 366,293,415,314,52 420,257,434,280,52 3,152,637,472,57 264,196,289,230,41 169,222,214,246,52 147,283,186,316,52 350,220,379,248,52 -./model_data/coco/val2017/000000321214.jpg 2,5,607,465,0 277,318,539,474,55 487,20,640,211,56 -./model_data/coco/val2017/000000368456.jpg 2,12,637,340,6 -./model_data/coco/val2017/000000300341.jpg 285,337,358,427,0 423,159,453,200,65 95,96,168,121,65 362,344,431,426,0 293,399,324,426,0 47,81,253,422,0 0,350,61,427,0 458,12,481,40,65 400,1,600,427,0 -./model_data/coco/val2017/000000561335.jpg 246,157,386,317,8 209,69,325,166,8 -./model_data/coco/val2017/000000051008.jpg 0,129,402,480,15 236,1,639,472,63 -./model_data/coco/val2017/000000289594.jpg 22,269,65,305,2 336,231,402,461,0 19,263,47,289,2 -./model_data/coco/val2017/000000179141.jpg 0,4,193,277,0 109,49,279,356,0 81,418,360,475,53 276,0,561,467,0 446,42,640,474,0 292,272,332,336,41 205,292,476,432,60 -./model_data/coco/val2017/000000341719.jpg 310,256,362,380,0 522,305,598,412,0 411,256,419,283,0 357,259,372,317,0 543,296,589,409,31 374,256,390,311,0 388,305,412,311,30 374,267,382,315,30 294,357,372,384,30 401,255,413,284,0 -./model_data/coco/val2017/000000320696.jpg 237,158,387,301,0 270,274,364,319,37 -./model_data/coco/val2017/000000502168.jpg 405,133,640,449,8 432,232,471,334,0 438,337,523,458,0 514,316,564,426,0 474,256,510,351,0 591,123,608,168,0 50,78,109,105,8 552,60,615,109,8 278,132,294,143,8 378,85,387,101,8 288,132,291,135,0 285,132,288,135,0 558,287,612,442,0 281,131,285,137,0 -./model_data/coco/val2017/000000578236.jpg 277,157,362,202,14 162,154,216,192,14 38,390,82,432,14 -./model_data/coco/val2017/000000333772.jpg 151,0,416,133,62 171,152,395,351,15 67,123,444,290,15 71,184,190,296,66 112,224,171,262,66 94,117,148,174,41 410,1,500,100,56 287,283,335,321,64 -./model_data/coco/val2017/000000060932.jpg 520,208,552,312,27 87,205,93,232,27 128,214,136,233,27 323,68,640,423,0 174,186,310,387,0 197,164,239,298,0 138,153,192,346,0 96,177,170,382,0 57,174,111,369,0 222,172,277,225,0 222,193,229,200,27 270,222,314,354,0 384,177,414,250,0 188,181,204,218,0 311,185,339,334,0 278,201,289,217,0 0,222,64,286,60 -./model_data/coco/val2017/000000049761.jpg 128,248,213,298,22 345,248,426,290,22 518,233,574,290,22 262,243,350,292,22 486,219,498,227,14 407,198,414,206,14 389,222,395,229,14 420,217,424,222,14 441,240,445,243,14 461,213,465,220,14 505,224,509,230,14 518,205,521,208,14 364,222,371,234,14 332,207,342,212,14 394,219,403,232,14 525,203,529,207,14 466,244,471,250,14 0,169,639,250,14 -./model_data/coco/val2017/000000510329.jpg 211,145,351,286,25 174,105,277,306,0 458,290,513,342,63 96,88,248,310,0 -./model_data/coco/val2017/000000144333.jpg 186,195,202,233,67 74,272,353,625,1 3,132,273,273,2 303,137,401,241,2 0,127,61,195,2 117,123,316,466,0 221,255,335,326,26 210,103,377,213,2 -./model_data/coco/val2017/000000230008.jpg 434,74,640,311,2 13,85,444,353,3 155,60,233,349,0 446,99,495,151,0 -./model_data/coco/val2017/000000528980.jpg 183,525,200,568,11 128,83,360,462,25 81,606,183,640,2 17,618,93,640,2 58,599,107,617,2 87,597,144,628,2 126,574,183,595,2 59,579,109,605,2 10,596,36,607,2 -./model_data/coco/val2017/000000295138.jpg 162,0,386,345,0 168,328,388,371,36 154,262,175,317,36 186,249,278,322,13 -./model_data/coco/val2017/000000422836.jpg 110,164,116,182,56 139,163,152,183,56 97,163,103,183,56 79,161,98,187,56 95,0,228,234,0 269,1,320,237,0 22,154,36,189,0 119,157,135,174,0 154,163,162,184,56 40,164,54,186,56 121,163,134,182,56 157,163,165,180,56 19,81,42,104,58 161,119,246,219,28 10,163,26,185,56 103,163,109,183,56 81,166,93,169,60 16,167,29,169,60 115,165,127,168,60 47,166,54,168,60 0,167,6,175,60 109,165,112,181,56 -./model_data/coco/val2017/000000575500.jpg 87,113,218,307,46 -./model_data/coco/val2017/000000223130.jpg 136,146,319,596,23 -./model_data/coco/val2017/000000287527.jpg 494,447,630,629,27 1,4,305,634,0 245,0,638,635,0 -./model_data/coco/val2017/000000378099.jpg 519,153,609,277,64 31,73,534,251,66 -./model_data/coco/val2017/000000180101.jpg 481,161,622,406,56 231,122,374,226,56 21,187,589,472,60 0,0,335,218,0 397,295,422,358,42 78,407,208,479,42 168,203,337,327,55 0,341,107,480,0 359,40,532,310,0 84,228,146,268,53 0,0,60,247,0 -./model_data/coco/val2017/000000066635.jpg 105,40,395,313,62 508,337,559,373,64 407,292,452,311,65 232,342,499,461,66 -./model_data/coco/val2017/000000244496.jpg 104,182,153,431,27 10,50,264,500,0 -./model_data/coco/val2017/000000462904.jpg 144,185,465,387,17 340,177,639,290,60 55,184,147,200,60 405,175,477,184,60 186,171,227,180,60 190,183,252,190,60 151,149,190,181,0 186,147,209,171,0 213,145,246,179,0 262,140,282,176,0 465,145,495,176,0 413,144,446,183,0 276,146,301,172,0 288,143,312,182,0 467,105,547,177,25 621,118,640,137,25 58,193,147,293,56 523,195,602,293,56 456,192,530,284,56 442,137,473,173,0 337,32,443,124,58 392,130,420,177,58 393,131,421,176,58 155,136,189,169,58 0,147,43,246,0 370,178,417,187,56 338,177,363,187,56 259,177,300,199,56 148,195,186,271,56 229,177,261,203,56 528,176,572,191,56 563,175,607,191,56 404,174,443,186,56 479,178,518,187,56 515,175,547,185,56 280,168,294,179,60 601,180,627,186,60 475,176,558,182,60 8,171,639,273,56 -./model_data/coco/val2017/000000475732.jpg 2,122,640,480,15 -./model_data/coco/val2017/000000279887.jpg 113,93,571,422,3 423,121,542,240,3 88,155,169,236,3 151,150,230,227,3 237,159,270,218,3 369,144,445,205,3 279,148,314,200,3 0,158,126,252,3 217,160,249,202,3 542,155,639,237,3 -./model_data/coco/val2017/000000249550.jpg 290,222,391,369,58 257,255,288,281,58 2,199,257,617,59 -./model_data/coco/val2017/000000142971.jpg 176,73,309,227,0 93,108,240,257,0 414,211,509,298,0 27,156,414,259,37 106,273,558,320,37 307,189,431,318,0 -./model_data/coco/val2017/000000492110.jpg 334,360,428,406,67 31,177,78,229,56 251,4,547,423,0 51,104,156,261,0 42,114,72,161,0 161,368,271,425,41 70,207,343,400,63 234,189,298,279,56 116,185,218,266,56 0,204,51,317,56 155,174,295,193,60 270,179,624,225,60 124,164,199,186,60 18,160,58,181,60 507,264,589,419,56 -./model_data/coco/val2017/000000061747.jpg 228,23,435,518,0 108,437,498,574,30 -./model_data/coco/val2017/000000102644.jpg 33,241,170,433,61 -./model_data/coco/val2017/000000554595.jpg 322,244,453,352,0 162,229,368,335,37 -./model_data/coco/val2017/000000550084.jpg 271,214,500,356,7 85,281,188,303,7 0,257,87,335,7 -./model_data/coco/val2017/000000437205.jpg 0,52,383,640,57 1,14,382,632,0 14,288,159,510,46 -./model_data/coco/val2017/000000133418.jpg 303,36,497,419,0 386,267,640,427,38 -./model_data/coco/val2017/000000277197.jpg 303,245,375,342,56 27,240,138,390,56 91,251,246,314,57 179,327,384,415,60 429,245,597,411,57 244,305,308,368,75 161,267,191,288,75 456,239,468,261,75 160,253,191,287,58 -./model_data/coco/val2017/000000298994.jpg 357,152,408,211,50 264,110,302,143,50 295,134,324,212,50 322,143,361,205,50 66,144,114,212,51 102,156,114,241,51 110,143,128,246,51 317,116,339,134,50 128,132,150,231,51 -./model_data/coco/val2017/000000237517.jpg 151,118,286,316,56 35,175,236,303,56 6,296,475,629,60 169,261,210,344,42 62,480,311,541,43 169,262,209,343,44 335,391,477,517,45 293,309,403,383,45 93,586,128,640,42 1,88,166,507,58 -./model_data/coco/val2017/000000339870.jpg 125,358,196,424,7 418,265,445,301,9 541,307,555,341,9 449,395,466,416,9 372,256,403,303,9 607,345,617,361,9 -./model_data/coco/val2017/000000041888.jpg 195,206,328,306,14 290,238,388,347,14 373,252,534,370,14 -./model_data/coco/val2017/000000366141.jpg 424,177,548,252,62 87,219,139,261,15 53,202,422,435,57 54,286,290,438,56 -./model_data/coco/val2017/000000110449.jpg 146,16,500,362,0 308,258,415,319,63 1,14,247,302,0 10,90,37,163,65 -./model_data/coco/val2017/000000086483.jpg 425,96,436,109,0 436,103,452,110,2 478,105,500,114,2 -./model_data/coco/val2017/000000563604.jpg 110,313,118,333,1 118,277,143,350,0 143,268,176,350,0 184,289,194,319,0 595,278,617,335,0 475,266,489,301,0 454,263,462,291,0 609,299,619,318,26 561,293,567,303,26 562,273,586,318,0 107,295,121,331,0 531,277,560,316,0 446,269,451,285,0 137,225,309,284,5 542,288,558,316,26 -./model_data/coco/val2017/000000119445.jpg 301,91,312,103,32 184,177,348,386,0 522,227,640,400,0 92,240,180,250,34 420,280,453,313,35 442,262,563,397,0 -./model_data/coco/val2017/000000513688.jpg 14,31,393,478,56 376,84,600,255,63 491,285,567,325,64 226,76,640,471,60 -./model_data/coco/val2017/000000039477.jpg 210,219,261,300,58 0,159,103,319,62 341,237,593,421,57 310,272,330,304,58 275,270,298,309,58 448,45,538,137,58 533,58,634,154,58 39,389,69,421,73 33,363,73,408,73 34,363,71,404,73 27,355,61,392,73 29,358,66,396,73 30,365,64,402,73 230,267,257,301,75 259,290,275,309,58 -./model_data/coco/val2017/000000151051.jpg 132,200,264,317,0 132,331,364,417,30 -./model_data/coco/val2017/000000547502.jpg 191,227,297,453,16 345,123,445,251,16 458,200,640,480,16 280,220,348,297,16 466,276,498,321,29 -./model_data/coco/val2017/000000405691.jpg 353,13,441,309,39 195,22,257,216,39 2,28,637,427,60 265,138,369,379,40 455,226,575,427,40 110,54,203,258,40 436,379,561,422,42 439,407,474,427,42 67,414,142,426,44 0,176,35,247,45 542,269,639,383,45 290,0,542,189,58 318,79,495,185,75 -./model_data/coco/val2017/000000458223.jpg 188,192,216,254,1 524,92,568,130,8 147,105,221,249,0 181,164,215,198,24 -./model_data/coco/val2017/000000183127.jpg 350,218,450,262,37 379,180,439,243,0 -./model_data/coco/val2017/000000402774.jpg 111,40,367,194,25 127,158,276,622,0 141,167,268,361,26 -./model_data/coco/val2017/000000063602.jpg 225,170,386,370,63 415,227,451,295,41 327,115,338,169,73 303,141,309,164,73 343,138,354,169,73 337,146,346,170,73 349,147,361,170,73 360,157,370,171,73 -./model_data/coco/val2017/000000261036.jpg 40,125,148,453,0 43,0,78,111,0 308,5,331,114,0 162,440,221,452,29 168,431,226,445,29 84,87,155,126,29 -./model_data/coco/val2017/000000201072.jpg 80,20,407,622,0 28,204,112,303,38 347,29,398,81,0 233,9,303,76,0 46,17,87,69,0 -./model_data/coco/val2017/000000459500.jpg 142,150,219,345,14 219,154,278,347,14 197,45,259,111,74 0,354,59,380,2 -./model_data/coco/val2017/000000426372.jpg 73,104,213,236,2 0,163,61,246,2 20,195,95,268,3 56,44,566,409,7 261,139,383,230,2 -./model_data/coco/val2017/000000050006.jpg 330,373,538,419,8 473,325,613,404,8 530,332,639,391,8 201,357,339,452,8 5,361,245,471,8 383,247,427,285,8 485,260,492,264,8 396,262,401,274,0 566,247,582,253,25 631,265,638,275,0 566,251,574,253,25 -./model_data/coco/val2017/000000289992.jpg 31,300,282,424,71 -./model_data/coco/val2017/000000010995.jpg 107,212,640,474,59 -./model_data/coco/val2017/000000108026.jpg 111,0,640,423,0 85,123,241,167,64 0,167,252,428,66 -./model_data/coco/val2017/000000361180.jpg 168,35,460,381,21 -./model_data/coco/val2017/000000064084.jpg 0,215,55,431,39 0,137,106,436,39 97,333,280,431,60 131,62,272,243,44 491,0,639,58,0 372,121,496,169,43 392,126,529,172,43 342,118,480,169,43 127,115,343,327,45 322,281,523,417,48 0,1,640,430,60 25,58,157,403,39 308,181,522,285,48 477,221,622,302,48 515,262,632,383,48 152,239,373,378,48 187,159,415,302,48 -./model_data/coco/val2017/000000398438.jpg 213,0,500,223,0 160,187,227,225,43 0,1,180,312,55 -./model_data/coco/val2017/000000213816.jpg 0,3,640,435,6 -./model_data/coco/val2017/000000380706.jpg 299,282,371,397,3 221,104,342,189,5 276,170,381,379,0 0,146,19,272,0 25,134,68,249,0 153,147,179,165,2 96,122,155,165,5 21,155,31,176,3 77,125,81,131,9 -./model_data/coco/val2017/000000500565.jpg 375,307,482,382,79 1,3,407,461,0 228,91,638,458,0 -./model_data/coco/val2017/000000134856.jpg 294,380,320,403,17 304,375,311,396,0 59,371,65,383,0 166,373,173,392,0 50,376,70,398,17 154,380,179,401,17 -./model_data/coco/val2017/000000264535.jpg 373,159,590,489,0 574,238,593,293,0 503,238,518,293,0 49,250,435,577,13 501,291,551,311,73 -./model_data/coco/val2017/000000392481.jpg 339,201,461,301,4 -./model_data/coco/val2017/000000055167.jpg 209,131,364,243,5 412,185,418,203,0 132,194,145,228,0 371,179,378,191,0 417,184,421,205,0 392,182,408,194,2 565,213,601,228,2 132,197,140,211,24 161,175,218,229,7 408,183,413,205,0 233,171,253,187,0 -./model_data/coco/val2017/000000117197.jpg 448,156,465,168,67 321,113,537,346,0 -./model_data/coco/val2017/000000478474.jpg 39,229,304,428,7 295,276,360,389,7 419,341,432,351,2 411,344,417,348,2 430,340,439,347,2 470,340,480,348,2 417,342,421,347,2 376,331,393,353,7 -./model_data/coco/val2017/000000376625.jpg 247,253,256,275,2 238,242,254,270,2 228,242,243,264,2 215,245,223,258,3 48,216,83,328,0 540,206,579,331,0 506,206,543,321,0 316,174,344,217,0 595,96,637,243,39 214,240,223,254,0 436,225,458,302,0 360,168,401,221,0 119,243,127,278,0 198,240,204,256,0 134,243,139,272,0 2,240,18,266,0 248,97,442,339,6 -./model_data/coco/val2017/000000324258.jpg 159,348,173,391,39 288,305,302,341,39 624,289,640,332,39 1,258,184,474,57 480,256,634,357,57 170,45,542,474,0 372,108,593,474,0 298,299,369,342,63 495,104,524,138,65 326,151,340,158,65 135,337,181,379,63 118,367,140,383,65 367,218,370,231,73 331,276,358,298,73 368,278,372,296,73 357,277,363,295,73 376,257,379,274,73 464,204,473,217,65 564,165,579,178,65 520,67,540,80,65 331,258,337,274,73 -./model_data/coco/val2017/000000480842.jpg 156,5,546,543,23 67,210,156,484,23 -./model_data/coco/val2017/000000576052.jpg 402,144,496,382,17 427,90,516,252,0 -./model_data/coco/val2017/000000389315.jpg 18,32,627,619,28 339,348,522,547,73 334,446,376,543,73 282,397,350,557,73 268,293,365,415,73 174,304,271,444,73 89,344,180,441,73 71,413,171,560,73 165,422,270,559,73 447,305,557,441,73 416,319,448,360,73 70,350,106,448,73 355,305,414,387,73 204,413,298,558,73 50,312,592,574,73 -./model_data/coco/val2017/000000037777.jpg 102,118,110,135,58 26,215,88,229,56 116,189,166,215,56 79,178,287,226,60 301,74,351,226,72 220,178,258,206,46 137,124,197,195,69 266,134,294,137,71 215,184,233,200,49 231,200,248,216,49 230,178,242,189,49 205,187,220,208,49 241,180,293,225,56 217,200,232,214,49 -./model_data/coco/val2017/000000155179.jpg 11,0,632,404,55 2,385,639,460,60 -./model_data/coco/val2017/000000379453.jpg 116,125,354,311,4 -./model_data/coco/val2017/000000430048.jpg 234,126,278,182,74 213,234,297,276,2 -./model_data/coco/val2017/000000404568.jpg 86,171,405,454,14 -./model_data/coco/val2017/000000289938.jpg 1,117,212,188,25 575,214,640,276,2 551,217,582,259,2 226,258,247,274,52 0,217,62,240,2 214,181,222,200,39 231,177,239,201,39 227,185,231,201,39 257,182,264,200,39 288,181,297,204,39 251,216,258,235,39 204,181,210,192,39 226,214,233,235,39 239,182,244,201,39 224,275,257,295,52 221,312,252,330,52 375,218,386,242,0 361,216,367,242,0 93,216,99,231,0 84,214,93,230,0 328,218,337,248,0 270,181,277,200,39 277,180,284,201,39 186,184,193,202,39 191,184,199,202,39 335,228,339,237,26 154,294,180,315,52 117,176,332,239,39 -./model_data/coco/val2017/000000507667.jpg 211,11,357,63,2 372,18,500,140,3 358,33,375,64,24 305,4,338,53,0 347,13,388,76,0 173,22,193,52,0 424,0,485,99,0 154,14,162,33,0 166,13,172,22,0 201,13,210,28,0 207,14,212,31,0 70,14,93,51,0 94,18,118,51,0 487,17,500,65,0 143,20,152,25,0 -./model_data/coco/val2017/000000383386.jpg 63,72,277,422,77 178,63,425,477,77 356,124,583,455,77 0,0,93,304,56 -./model_data/coco/val2017/000000133969.jpg 355,110,371,231,34 229,277,258,322,35 315,142,518,376,0 215,176,290,319,0 209,110,266,218,0 445,127,510,321,0 321,121,383,203,0 543,177,609,315,0 60,211,235,374,0 0,137,115,373,0 264,107,328,312,0 584,111,640,316,0 375,118,404,167,0 303,176,373,317,0 439,129,466,253,0 79,249,543,259,13 57,111,442,319,0 -./model_data/coco/val2017/000000394677.jpg 0,152,433,335,57 152,95,343,368,0 1,58,192,364,0 208,186,348,233,26 32,150,92,209,26 0,80,52,205,0 424,74,500,374,0 445,166,500,245,26 371,127,470,270,26 72,106,106,131,67 0,137,45,192,26 1,293,123,373,26 -./model_data/coco/val2017/000000423104.jpg 210,217,226,242,29 167,236,263,418,0 -./model_data/coco/val2017/000000561223.jpg 284,173,403,330,0 284,319,382,351,37 -./model_data/coco/val2017/000000530457.jpg 204,332,434,604,75 -./model_data/coco/val2017/000000149222.jpg 3,0,291,251,62 280,1,421,197,62 378,287,439,328,64 79,291,377,377,66 195,150,208,164,0 162,75,204,111,0 236,72,248,89,0 233,209,263,245,15 55,78,77,94,51 -./model_data/coco/val2017/000000022892.jpg 35,76,288,295,16 202,218,451,330,58 237,23,499,254,15 347,229,500,330,60 314,0,500,259,56 -./model_data/coco/val2017/000000261888.jpg 283,233,314,292,17 240,230,269,293,17 339,252,528,397,1 361,143,458,393,0 431,180,475,249,24 236,221,245,230,11 -./model_data/coco/val2017/000000402346.jpg 181,249,565,480,45 0,163,19,288,75 118,276,193,328,75 -./model_data/coco/val2017/000000407083.jpg 5,215,410,630,16 205,81,480,629,0 0,1,480,625,2 -./model_data/coco/val2017/000000442836.jpg 136,37,257,417,0 300,142,449,410,0 406,271,450,316,29 47,150,116,349,0 -./model_data/coco/val2017/000000109118.jpg 248,41,486,604,0 114,141,351,634,0 12,7,178,571,0 402,322,482,410,35 250,385,276,408,32 170,435,279,591,56 -./model_data/coco/val2017/000000235399.jpg 162,225,231,318,16 85,0,500,368,7 304,202,386,298,59 -./model_data/coco/val2017/000000310862.jpg 186,332,308,581,27 5,4,577,602,0 519,379,562,436,60 -./model_data/coco/val2017/000000091495.jpg 14,113,240,422,0 328,217,583,413,0 152,47,339,374,0 209,124,293,202,35 -./model_data/coco/val2017/000000030785.jpg 256,38,617,286,45 350,148,434,220,50 470,92,582,210,50 295,100,413,202,50 432,169,538,232,50 405,93,473,172,50 400,52,475,103,50 5,3,640,471,60 365,59,424,110,50 10,178,302,360,48 -./model_data/coco/val2017/000000214224.jpg 197,235,234,361,39 376,259,412,381,39 284,231,327,380,39 239,231,284,359,39 334,275,367,378,39 391,273,441,377,73 187,319,242,359,41 428,261,446,278,41 -./model_data/coco/val2017/000000242060.jpg 204,47,284,190,41 285,17,358,145,41 0,217,212,311,44 6,236,247,269,44 17,244,247,280,44 237,0,303,108,41 441,248,525,343,55 345,227,430,319,55 425,191,505,278,55 327,146,618,314,55 2,2,640,452,60 122,243,168,257,44 -./model_data/coco/val2017/000000045596.jpg 161,507,207,526,1 326,297,341,310,2 123,348,133,374,0 116,339,135,348,25 59,397,81,437,0 153,485,228,518,1 148,510,227,527,1 202,417,256,455,1 197,428,250,468,1 192,419,232,450,1 182,445,239,481,1 55,383,84,400,25 -./model_data/coco/val2017/000000273132.jpg 122,188,504,624,0 12,274,600,620,13 24,317,270,489,26 -./model_data/coco/val2017/000000208363.jpg 441,351,497,388,53 528,110,615,220,0 1,213,200,474,0 443,222,640,475,0 324,26,391,115,0 196,73,277,203,0 205,123,385,479,0 394,95,484,258,0 408,135,606,462,0 362,89,431,188,0 110,80,178,215,0 301,85,345,131,0 465,208,510,232,53 67,170,266,447,53 494,467,545,479,53 1,102,86,246,0 305,199,336,233,53 183,178,229,263,56 215,302,375,480,56 416,253,466,336,56 142,188,160,200,56 575,360,596,405,56 188,181,239,295,56 373,213,431,348,56 0,71,64,169,0 231,130,248,136,53 471,405,497,416,53 193,218,255,302,56 168,187,242,387,56 233,192,245,297,56 238,196,248,274,56 188,200,253,291,56 0,114,433,479,0 8,243,402,396,56 -./model_data/coco/val2017/000000355240.jpg 193,53,372,282,16 39,83,64,101,2 134,90,228,244,16 35,209,591,355,57 -./model_data/coco/val2017/000000016598.jpg 224,301,345,640,27 340,150,413,267,67 8,17,478,625,0 -./model_data/coco/val2017/000000206831.jpg 18,48,640,426,16 -./model_data/coco/val2017/000000201676.jpg 303,125,476,444,22 218,142,315,434,22 364,114,464,188,22 605,115,638,186,22 514,117,606,187,22 196,127,358,412,22 599,128,620,186,22 -./model_data/coco/val2017/000000109313.jpg 1,341,72,615,57 37,38,323,579,0 253,217,298,245,65 386,215,411,256,73 220,287,238,305,41 194,279,216,306,41 361,233,384,256,73 99,354,130,391,65 413,267,417,295,73 318,267,414,306,73 -./model_data/coco/val2017/000000070048.jpg 369,179,591,377,48 286,0,397,211,40 0,37,217,211,45 2,3,638,473,60 36,202,327,432,41 37,203,329,428,45 -./model_data/coco/val2017/000000043314.jpg 199,98,334,205,0 198,100,333,205,0 282,124,308,194,24 54,155,66,176,0 140,60,319,243,30 -./model_data/coco/val2017/000000261161.jpg 324,26,596,426,16 0,114,252,395,13 -./model_data/coco/val2017/000000482917.jpg 15,76,271,359,16 244,0,412,70,62 0,139,446,370,0 107,252,500,370,57 0,51,62,183,60 -./model_data/coco/val2017/000000349678.jpg 145,290,196,339,74 -./model_data/coco/val2017/000000379842.jpg 369,2,563,318,65 343,20,619,360,73 7,1,315,353,73 270,22,337,352,73 -./model_data/coco/val2017/000000015338.jpg 140,208,190,222,2 0,187,32,214,2 444,171,536,271,5 264,201,348,260,5 67,185,145,221,7 -./model_data/coco/val2017/000000424975.jpg 286,300,315,372,0 545,312,574,335,2 242,304,277,396,0 166,209,202,256,11 -./model_data/coco/val2017/000000098287.jpg 163,254,215,370,0 218,252,235,279,0 236,251,258,288,0 379,253,397,300,0 114,236,134,314,0 269,253,285,279,0 390,253,399,276,0 204,254,226,280,0 283,247,290,278,0 81,300,97,315,35 23,279,83,378,0 79,251,97,317,0 163,234,177,282,34 0,235,25,366,0 361,261,366,282,0 249,284,289,289,13 174,249,189,268,0 -./model_data/coco/val2017/000000237316.jpg 166,243,262,288,71 62,260,162,480,61 -./model_data/coco/val2017/000000319369.jpg 235,181,406,258,25 54,166,268,228,25 597,193,640,220,2 577,194,613,213,2 219,169,283,187,2 478,205,544,326,0 272,207,342,370,0 339,213,383,374,0 255,265,293,356,0 217,70,236,79,9 184,77,202,84,9 184,279,244,362,56 248,282,281,329,56 201,278,254,357,0 162,83,173,89,9 562,203,575,209,2 326,189,369,211,2 254,220,306,242,25 -./model_data/coco/val2017/000000152120.jpg 73,142,597,421,3 224,25,466,312,0 -./model_data/coco/val2017/000000115118.jpg 82,86,504,343,6 -./model_data/coco/val2017/000000334399.jpg 309,218,415,335,74 286,62,448,480,0 552,104,640,477,0 534,153,598,287,26 99,354,213,408,73 490,114,600,405,0 -./model_data/coco/val2017/000000277051.jpg 254,173,438,326,14 65,193,374,361,14 427,65,578,178,56 21,338,506,421,43 0,284,640,422,60 472,133,640,174,60 55,3,186,306,39 614,71,640,117,56 500,99,586,150,14 500,99,586,149,14 -./model_data/coco/val2017/000000347664.jpg 293,193,310,205,19 312,195,332,208,19 342,197,355,206,19 356,197,374,206,19 415,197,439,211,19 449,198,469,210,19 103,190,116,200,19 84,191,94,199,19 278,195,290,204,19 373,199,382,207,19 507,199,528,210,19 522,202,536,210,19 123,190,137,200,19 383,189,514,231,19 -./model_data/coco/val2017/000000170739.jpg 211,38,486,513,20 466,51,639,508,20 0,72,233,428,20 -./model_data/coco/val2017/000000078748.jpg 192,141,450,309,3 443,111,639,333,3 0,185,175,473,3 544,323,640,471,3 56,24,105,115,0 95,17,204,116,0 200,17,251,110,0 244,13,289,111,0 290,17,370,110,0 490,52,527,159,0 580,53,630,123,0 441,26,497,177,0 397,54,429,115,0 364,45,391,111,0 524,71,551,111,0 559,76,608,123,24 428,82,460,119,24 576,49,640,178,0 565,58,598,92,0 0,19,639,209,0 -./model_data/coco/val2017/000000292005.jpg 185,465,202,510,39 219,454,237,503,39 201,453,220,508,39 407,626,480,640,71 304,521,398,623,61 -./model_data/coco/val2017/000000125806.jpg 281,131,640,420,19 1,51,375,420,19 -./model_data/coco/val2017/000000170670.jpg 424,72,463,184,39 383,64,419,170,39 337,57,374,152,39 518,39,640,121,56 0,57,640,420,60 75,207,161,352,41 395,230,477,380,41 463,78,526,196,41 510,197,607,307,42 547,201,618,289,42 561,201,604,289,42 181,163,294,241,45 375,196,585,358,45 64,196,200,283,45 288,147,414,251,45 210,182,281,231,51 290,65,340,164,41 581,268,620,306,42 584,257,632,281,42 52,1,219,120,56 30,238,100,341,39 -./model_data/coco/val2017/000000095862.jpg 115,125,127,150,34 94,275,304,375,0 408,109,428,162,0 58,114,75,149,0 429,79,436,88,0 77,141,113,226,0 356,290,440,370,0 312,343,362,375,0 6,265,125,370,0 265,275,337,375,0 335,295,355,312,0 409,128,413,132,35 359,115,365,121,35 69,127,74,134,35 355,108,369,139,0 446,285,498,375,0 330,298,375,361,0 0,32,457,357,0 -./model_data/coco/val2017/000000276921.jpg 199,226,372,606,77 40,199,243,524,77 -./model_data/coco/val2017/000000547519.jpg 274,132,496,380,21 -./model_data/coco/val2017/000000276024.jpg 248,265,289,367,17 496,262,544,355,17 483,203,553,283,0 235,205,283,320,0 136,271,185,360,19 285,292,312,355,19 188,299,216,356,19 355,269,398,357,19 61,273,97,348,19 -./model_data/coco/val2017/000000011813.jpg 0,332,94,390,56 0,386,168,467,63 -./model_data/coco/val2017/000000259382.jpg 133,96,423,325,23 -./model_data/coco/val2017/000000080273.jpg 171,45,379,419,0 109,377,491,428,31 -./model_data/coco/val2017/000000420840.jpg 491,206,640,419,60 177,7,462,417,0 508,1,639,248,0 208,0,428,54,0 547,266,608,310,55 114,359,186,423,56 -./model_data/coco/val2017/000000314264.jpg 0,330,126,546,58 231,0,471,282,58 77,1,375,572,0 334,158,393,281,75 93,197,105,241,75 -./model_data/coco/val2017/000000482275.jpg 202,159,239,259,27 92,24,390,472,0 241,45,464,468,0 223,446,254,479,41 384,247,532,309,55 480,443,508,466,55 423,442,450,470,55 546,408,605,473,75 503,438,525,464,55 454,433,480,466,55 406,312,503,435,0 373,221,424,257,43 371,430,400,469,55 472,354,498,386,55 496,351,521,385,55 445,355,473,386,55 419,356,444,387,55 393,355,422,390,55 513,351,527,384,55 -./model_data/coco/val2017/000000054123.jpg 527,102,640,294,22 102,113,545,402,22 74,123,170,289,22 0,143,54,362,22 187,108,269,149,22 284,109,391,134,22 -./model_data/coco/val2017/000000134722.jpg 194,189,638,386,6 0,290,43,325,13 -./model_data/coco/val2017/000000078843.jpg 122,3,600,475,0 3,189,444,472,0 424,349,513,480,27 -./model_data/coco/val2017/000000493905.jpg 201,63,214,73,32 231,42,252,135,38 238,124,387,481,0 55,68,130,164,0 248,28,298,121,0 395,0,445,110,0 466,130,517,180,0 403,115,463,177,0 341,105,400,174,0 286,81,344,163,0 230,72,295,160,0 169,67,231,171,0 0,72,51,152,0 517,157,571,180,56 522,122,570,168,56 514,79,567,109,56 400,78,454,119,56 456,80,487,106,56 344,75,396,111,56 286,157,339,173,56 228,156,283,174,56 170,154,226,171,56 346,121,399,154,56 0,148,52,168,56 56,148,110,170,56 292,27,346,131,0 113,154,168,171,56 112,72,171,171,0 116,0,529,172,0 -./model_data/coco/val2017/000000445999.jpg 0,15,409,632,0 139,366,179,420,79 -./model_data/coco/val2017/000000512248.jpg 295,324,420,437,74 -./model_data/coco/val2017/000000562197.jpg 323,9,627,309,50 -./model_data/coco/val2017/000000319184.jpg 146,46,289,274,0 395,28,413,84,0 440,24,468,83,0 21,30,72,136,0 472,26,499,91,0 462,137,488,159,29 271,88,473,273,0 417,33,430,83,0 56,23,92,131,0 -./model_data/coco/val2017/000000551822.jpg 108,254,386,399,48 318,212,547,387,48 114,161,307,296,45 218,23,319,195,41 37,17,119,126,56 0,131,640,453,60 86,23,224,182,41 -./model_data/coco/val2017/000000546717.jpg 6,52,459,425,57 24,74,381,631,0 356,4,471,173,58 182,345,468,615,63 140,497,188,554,64 445,317,465,394,41 -./model_data/coco/val2017/000000065288.jpg 226,189,347,259,14 104,124,180,182,14 24,392,79,427,14 214,237,622,420,56 311,104,366,176,56 22,80,53,115,1 189,58,267,168,0 277,60,345,174,0 394,81,423,123,0 196,69,223,123,0 340,67,377,136,0 419,67,436,98,0 331,38,369,97,0 207,100,268,173,56 43,91,196,182,58 557,69,607,114,58 166,72,199,116,0 149,73,163,94,1 18,85,31,113,1 13,94,22,115,1 204,61,213,67,24 287,74,315,118,0 255,70,298,172,0 430,68,457,122,0 68,53,93,104,0 511,139,638,217,24 386,93,434,129,56 410,139,447,171,56 0,153,48,244,58 610,65,633,98,0 167,101,180,115,56 166,176,206,229,56 181,101,198,123,56 468,114,640,220,56 457,91,516,121,56 195,98,212,130,56 209,97,227,123,56 99,37,613,179,0 122,78,635,426,56 -./model_data/coco/val2017/000000073533.jpg 273,343,359,389,67 472,369,543,404,67 306,39,640,473,0 6,32,467,480,0 -./model_data/coco/val2017/000000334530.jpg 266,229,371,276,37 201,142,309,258,0 -./model_data/coco/val2017/000000170474.jpg 345,34,372,61,32 153,27,457,476,0 64,312,185,462,38 489,408,599,469,56 -./model_data/coco/val2017/000000155154.jpg 80,271,186,347,61 -./model_data/coco/val2017/000000071711.jpg 381,217,640,347,4 54,169,325,357,4 558,298,578,365,0 604,297,630,365,0 419,298,441,368,0 435,304,459,364,0 528,305,547,367,0 40,252,69,320,0 591,292,607,328,0 288,312,292,319,0 142,302,164,360,0 533,321,546,339,26 597,316,607,337,26 593,303,610,374,0 434,319,441,337,26 -./model_data/coco/val2017/000000397327.jpg 131,93,299,421,61 322,62,577,188,71 -./model_data/coco/val2017/000000096825.jpg 289,239,355,403,0 316,253,355,283,24 274,380,367,408,30 -./model_data/coco/val2017/000000376307.jpg 3,224,69,293,56 139,190,199,269,0 109,306,142,343,47 190,303,229,340,47 99,263,142,292,49 175,227,207,258,49 11,309,39,328,46 69,341,130,412,46 219,370,248,424,46 237,370,297,427,46 40,302,78,333,46 51,332,120,390,46 155,324,190,380,46 183,369,220,453,46 255,355,335,439,46 241,384,268,434,46 207,386,240,453,46 165,348,190,399,46 73,288,101,311,47 0,279,361,500,60 247,148,375,421,0 195,153,265,250,0 316,443,353,484,41 151,299,201,338,51 30,292,51,311,51 128,326,169,386,46 136,287,170,325,47 -./model_data/coco/val2017/000000463647.jpg 452,63,640,218,7 291,56,489,148,7 -./model_data/coco/val2017/000000345385.jpg 181,1,640,480,59 1,176,497,480,0 1,66,459,238,0 -./model_data/coco/val2017/000000549390.jpg 187,87,397,382,0 449,179,469,205,0 550,188,573,232,0 589,212,603,234,1 621,194,640,233,0 433,163,479,253,0 593,187,625,231,0 103,237,211,367,24 509,186,521,205,0 519,187,526,204,0 574,196,583,207,0 530,194,544,207,0 64,199,384,427,1 429,222,480,260,1 549,205,567,237,1 598,210,618,244,1 591,192,606,209,0 582,198,587,206,0 626,211,640,236,1 -./model_data/coco/val2017/000000343976.jpg 404,258,428,268,2 378,249,398,262,2 139,247,144,259,0 95,272,105,294,0 95,283,103,297,0 164,251,184,266,2 434,248,454,262,2 391,252,397,256,2 158,273,171,283,2 -./model_data/coco/val2017/000000126226.jpg 21,2,202,271,0 96,46,317,235,0 105,0,268,184,0 448,32,491,120,34 468,64,521,119,34 256,32,267,160,34 347,31,359,153,34 165,367,273,471,35 194,307,283,356,35 354,227,408,259,35 362,175,424,195,35 0,200,17,380,0 370,0,405,108,0 293,32,303,135,34 265,101,275,190,34 469,68,505,135,34 289,93,365,163,34 356,46,370,162,34 285,253,324,274,35 429,142,453,163,35 423,161,440,182,35 0,130,84,347,0 -./model_data/coco/val2017/000000455352.jpg 302,417,399,513,74 311,158,381,225,74 -./model_data/coco/val2017/000000519338.jpg 158,76,485,377,6 -./model_data/coco/val2017/000000312489.jpg 48,99,117,286,0 204,83,298,279,0 178,153,365,209,37 194,43,203,47,8 -./model_data/coco/val2017/000000351589.jpg 84,127,408,389,13 283,115,453,297,58 0,96,126,327,58 -./model_data/coco/val2017/000000086956.jpg 214,325,399,631,0 40,141,226,515,0 0,411,64,522,26 1,518,123,631,57 134,136,263,308,34 247,131,480,639,0 -./model_data/coco/val2017/000000565391.jpg 188,278,357,321,15 1,506,102,628,2 1,116,480,635,7 -./model_data/coco/val2017/000000190753.jpg 156,302,172,342,56 217,291,231,314,56 167,245,220,411,0 224,255,268,311,0 243,253,333,374,0 345,250,382,311,0 354,226,388,269,0 510,219,529,246,0 590,217,606,237,0 59,262,138,308,13 382,311,457,402,28 438,257,473,300,1 233,279,440,434,13 434,255,526,343,13 314,245,354,272,13 350,284,381,304,24 612,246,625,251,36 505,230,533,247,13 584,225,599,237,13 627,222,637,230,13 126,260,191,305,13 -./model_data/coco/val2017/000000226802.jpg 519,192,570,216,2 504,188,527,210,2 365,199,400,222,3 370,166,442,213,5 240,175,319,203,5 22,190,42,244,0 112,185,135,248,0 317,188,323,213,0 333,188,342,216,0 598,190,611,224,0 489,188,496,208,0 473,187,480,209,0 450,190,461,219,0 56,191,73,220,0 16,190,25,206,0 386,191,395,214,0 568,193,631,218,2 437,171,464,205,5 410,192,417,220,0 327,177,363,199,5 363,176,372,194,5 282,189,291,207,0 185,181,604,223,0 -./model_data/coco/val2017/000000183648.jpg 455,179,573,428,0 194,197,368,428,0 117,209,254,421,0 0,0,572,428,20 -./model_data/coco/val2017/000000291664.jpg 280,169,489,498,16 131,65,315,461,10 -./model_data/coco/val2017/000000351331.jpg 548,54,635,390,42 77,35,512,440,53 2,1,639,472,60 -./model_data/coco/val2017/000000440475.jpg 263,172,361,233,62 293,306,406,386,56 463,250,588,340,57 211,274,505,409,60 491,183,526,256,0 520,257,588,351,56 144,232,190,270,56 70,341,165,427,56 444,299,542,361,56 613,302,639,349,56 83,262,114,272,47 457,390,516,427,75 595,390,639,427,75 74,267,123,280,45 378,132,397,138,73 165,293,197,401,75 198,277,227,402,75 201,222,210,242,73 432,230,453,280,75 193,221,201,242,75 192,182,201,199,75 186,158,202,175,75 452,235,526,269,56 472,211,493,225,56 178,263,250,282,57 404,266,482,279,57 -./model_data/coco/val2017/000000210099.jpg 155,81,384,448,15 35,65,614,473,56 -./model_data/coco/val2017/000000113354.jpg 260,158,402,352,22 366,174,482,317,22 3,151,268,327,22 -./model_data/coco/val2017/000000174004.jpg 14,109,616,374,7 -./model_data/coco/val2017/000000514508.jpg 114,119,568,414,62 144,159,258,475,0 251,246,360,394,0 340,255,417,387,0 404,246,477,384,0 -./model_data/coco/val2017/000000267300.jpg 1,28,640,424,16 70,0,210,212,58 3,161,638,303,59 -./model_data/coco/val2017/000000163290.jpg 30,439,229,588,22 253,285,312,515,23 186,331,225,361,23 -./model_data/coco/val2017/000000446522.jpg 151,336,364,508,16 2,0,125,608,72 85,224,389,632,56 418,365,480,627,60 -./model_data/coco/val2017/000000127263.jpg 134,17,382,369,0 261,47,462,404,0 440,37,485,63,29 501,106,640,174,2 292,112,334,148,2 0,88,169,136,2 -./model_data/coco/val2017/000000535253.jpg 42,282,178,447,41 419,250,591,488,46 19,409,134,539,41 20,28,94,203,73 29,205,87,305,73 60,21,132,126,73 146,172,175,207,53 197,136,222,170,53 -./model_data/coco/val2017/000000513567.jpg 124,281,227,349,52 445,155,562,211,52 135,277,303,474,26 543,318,627,426,26 282,125,298,170,0 298,109,371,341,0 324,2,615,475,0 547,108,591,193,0 589,124,640,305,0 579,95,608,196,0 23,76,349,474,0 629,108,640,130,0 0,150,23,179,2 288,99,329,213,0 -./model_data/coco/val2017/000000568814.jpg 80,254,368,358,27 138,2,640,355,0 0,245,55,353,0 107,249,127,304,0 0,318,28,355,56 6,318,98,333,60 -./model_data/coco/val2017/000000263463.jpg 297,113,389,251,16 0,71,545,427,2 261,338,639,422,13 386,291,416,317,5 -./model_data/coco/val2017/000000029596.jpg 566,63,640,268,62 264,227,312,347,56 436,235,509,348,56 0,260,254,423,57 312,253,437,277,60 188,241,199,258,75 506,264,575,280,73 408,257,421,265,41 326,253,337,260,41 31,84,84,164,58 46,147,70,164,75 -./model_data/coco/val2017/000000430073.jpg 216,186,372,308,19 360,211,396,263,56 501,208,528,272,56 553,207,590,257,56 571,247,639,313,56 439,229,484,288,56 469,191,484,206,56 509,252,574,321,56 290,196,402,251,60 0,192,61,444,0 230,113,246,147,0 496,206,557,308,0 56,163,141,402,0 148,134,159,156,26 362,157,368,165,41 386,157,393,166,41 179,128,201,185,0 116,122,139,179,0 450,201,501,288,0 547,205,635,296,0 194,117,210,171,0 399,156,443,259,0 257,123,279,147,0 0,153,24,185,3 410,158,415,169,41 162,178,201,218,0 134,137,142,157,26 140,119,272,181,0 -./model_data/coco/val2017/000000055072.jpg 49,46,511,427,23 -./model_data/coco/val2017/000000581357.jpg 262,93,482,340,0 428,400,451,445,0 487,412,507,435,0 523,404,536,441,0 554,388,575,440,0 578,389,591,414,0 229,303,374,368,36 192,444,221,463,13 180,440,201,478,0 249,419,262,444,0 211,420,234,460,0 230,420,249,458,0 245,440,350,458,13 19,261,48,338,0 -./model_data/coco/val2017/000000080057.jpg 0,10,381,403,77 -./model_data/coco/val2017/000000014473.jpg 0,154,593,308,6 320,271,335,313,0 277,269,297,307,0 201,258,220,295,0 155,253,172,287,0 119,245,137,280,0 77,245,94,273,0 25,225,39,261,0 -./model_data/coco/val2017/000000176778.jpg 264,397,337,640,15 12,210,301,546,61 -./model_data/coco/val2017/000000181666.jpg 168,303,215,418,18 273,267,351,411,18 340,276,428,392,18 429,299,494,405,18 272,165,324,269,0 51,189,75,215,0 0,182,15,261,0 538,291,595,406,18 468,255,503,287,18 441,265,463,298,18 0,284,27,372,18 219,314,271,425,18 458,213,503,242,18 78,288,152,410,18 600,279,640,383,18 481,299,554,403,18 -./model_data/coco/val2017/000000118209.jpg 9,72,362,452,17 386,42,602,451,17 -./model_data/coco/val2017/000000394611.jpg 394,208,448,317,23 85,202,189,305,23 -./model_data/coco/val2017/000000438269.jpg 49,287,265,594,14 -./model_data/coco/val2017/000000261318.jpg 172,218,200,264,67 91,179,304,577,0 0,353,76,639,28 353,392,425,629,28 73,449,147,555,26 127,308,335,640,56 -./model_data/coco/val2017/000000218997.jpg 341,414,357,430,32 548,145,555,152,32 41,215,48,219,32 337,188,342,193,32 416,223,422,228,32 424,326,435,333,32 491,166,495,170,32 422,174,426,178,32 411,326,420,331,32 54,76,156,398,0 127,46,234,336,0 294,345,436,473,0 242,63,334,337,0 582,100,594,130,0 605,105,618,130,0 220,392,392,405,34 115,509,170,572,34 115,63,152,88,0 251,98,268,120,0 151,351,166,383,34 251,213,262,338,34 235,86,249,122,0 260,224,267,232,32 205,212,226,323,34 566,86,573,101,0 529,87,536,100,0 487,75,502,94,0 -./model_data/coco/val2017/000000131938.jpg 110,17,410,607,15 125,185,325,477,27 -./model_data/coco/val2017/000000048396.jpg 311,215,352,415,56 300,327,640,420,60 124,0,357,421,0 405,51,601,380,0 526,326,587,388,41 280,121,310,285,43 380,379,489,425,55 -./model_data/coco/val2017/000000179285.jpg 206,240,361,404,32 15,21,428,616,38 -./model_data/coco/val2017/000000040083.jpg 30,205,123,328,56 290,162,338,215,1 134,136,253,209,2 223,130,268,188,2 38,110,212,285,0 257,139,397,293,0 62,1,457,111,25 275,126,285,194,0 125,156,138,184,1 270,129,280,143,2 156,281,179,302,39 -./model_data/coco/val2017/000000445365.jpg 31,247,231,640,23 186,116,427,629,23 -./model_data/coco/val2017/000000114770.jpg 148,139,533,334,2 119,237,444,395,3 300,0,640,176,4 -./model_data/coco/val2017/000000029187.jpg 211,83,463,467,17 112,115,232,351,0 -./model_data/coco/val2017/000000516143.jpg 63,183,549,387,5 549,269,567,342,0 -./model_data/coco/val2017/000000452515.jpg 90,168,100,182,32 169,35,211,139,0 87,310,171,473,0 167,337,185,393,38 40,14,81,110,0 -./model_data/coco/val2017/000000556158.jpg 147,140,287,463,0 176,422,267,462,30 -./model_data/coco/val2017/000000537355.jpg 262,277,285,331,10 -./model_data/coco/val2017/000000332455.jpg 44,0,424,628,61 -./model_data/coco/val2017/000000183391.jpg 90,8,236,143,38 70,97,105,169,0 81,120,107,170,0 32,182,82,249,0 110,191,159,244,0 298,239,346,318,0 241,215,284,273,0 231,192,272,256,0 215,162,260,230,0 210,140,251,196,0 245,316,297,376,0 261,243,303,328,0 308,310,352,341,56 135,309,172,335,56 88,309,134,334,56 140,340,183,370,56 110,342,138,366,56 80,222,107,250,56 73,196,99,217,56 323,341,354,371,56 54,328,67,335,56 0,248,30,271,56 75,250,104,271,56 98,341,112,367,56 80,250,131,300,0 124,279,165,327,56 210,112,488,593,0 96,71,439,367,56 0,0,631,380,0 -./model_data/coco/val2017/000000257478.jpg 253,22,431,373,0 372,164,417,209,35 -./model_data/coco/val2017/000000056127.jpg 49,279,73,307,41 67,280,90,306,41 85,281,104,305,41 128,298,245,471,69 346,323,440,335,71 351,242,482,323,72 331,410,580,580,13 485,568,580,640,13 -./model_data/coco/val2017/000000475191.jpg 182,90,420,415,0 382,26,416,141,38 -./model_data/coco/val2017/000000514979.jpg 156,38,490,414,20 452,4,640,412,20 -./model_data/coco/val2017/000000007977.jpg 104,144,262,420,0 199,346,267,426,36 66,210,74,224,0 42,210,50,224,0 38,213,43,223,0 80,208,87,224,0 -./model_data/coco/val2017/000000209613.jpg 555,232,606,279,16 130,182,161,216,16 168,182,201,212,16 298,234,419,336,18 155,261,273,352,18 48,273,119,377,18 179,246,274,310,18 217,244,319,328,18 108,247,202,343,18 -./model_data/coco/val2017/000000579893.jpg 353,126,493,328,11 -./model_data/coco/val2017/000000533816.jpg 168,185,211,245,38 417,325,463,379,38 398,129,486,426,0 105,136,176,370,0 447,116,503,186,0 444,69,522,153,0 351,0,392,137,0 506,0,563,51,0 264,116,374,404,0 385,0,423,138,0 249,79,304,139,0 112,82,153,142,0 50,87,109,139,0 210,93,254,137,0 536,65,610,150,0 -./model_data/coco/val2017/000000520264.jpg 273,293,288,343,39 243,300,266,377,39 255,296,268,338,39 266,298,272,343,39 287,308,295,343,39 323,198,434,480,0 52,448,107,479,43 255,378,304,388,43 30,401,136,434,53 86,446,155,479,53 98,306,247,421,68 238,306,249,327,39 262,296,275,335,39 460,324,483,373,40 265,338,281,375,40 0,434,22,480,40 610,410,639,471,71 331,168,558,480,0 -./model_data/coco/val2017/000000115870.jpg 433,81,576,227,58 20,267,107,348,58 143,177,459,346,57 304,198,509,364,57 16,185,79,298,0 63,180,154,297,0 185,243,620,426,0 273,103,332,181,0 202,66,273,359,0 77,188,84,204,67 372,354,456,407,73 2,366,72,393,73 200,152,215,174,41 81,300,115,319,73 337,220,639,418,57 -./model_data/coco/val2017/000000269932.jpg 209,53,375,229,17 34,45,375,498,56 -./model_data/coco/val2017/000000438907.jpg 48,163,129,490,0 123,21,302,402,0 27,348,149,391,36 132,359,260,433,36 -./model_data/coco/val2017/000000251119.jpg 66,173,500,329,48 59,176,495,321,52 -./model_data/coco/val2017/000000357081.jpg 236,95,626,348,19 126,133,295,295,19 -./model_data/coco/val2017/000000087038.jpg 253,271,312,332,1 226,229,237,259,0 257,224,301,321,0 68,238,84,281,0 79,232,107,283,0 98,234,117,280,0 326,223,339,262,0 155,246,170,268,1 298,316,362,364,36 345,173,418,358,0 239,225,250,258,0 167,234,182,271,0 209,231,218,265,0 408,231,425,266,0 204,229,211,263,0 195,228,205,265,0 1,190,639,291,0 -./model_data/coco/val2017/000000463849.jpg 60,332,68,359,0 51,335,60,357,0 296,346,302,352,0 76,335,108,358,2 461,325,503,351,2 509,327,541,344,2 435,329,463,346,2 421,382,531,411,8 0,514,119,564,8 386,363,453,378,8 40,392,205,447,8 117,330,127,347,0 0,486,80,518,8 118,388,201,401,8 0,451,93,495,8 348,351,388,359,8 153,373,209,383,8 226,344,248,351,8 413,375,484,400,8 126,380,200,391,8 491,335,511,354,3 334,347,353,356,8 0,336,41,362,2 160,323,181,342,2 158,335,406,378,8 -./model_data/coco/val2017/000000248631.jpg 3,90,429,433,63 460,273,618,439,64 -./model_data/coco/val2017/000000546219.jpg 400,372,503,421,56 33,364,124,422,56 215,344,241,368,41 277,311,292,336,41 199,333,219,364,41 327,305,344,343,41 236,370,276,395,42 166,314,392,407,60 0,248,93,427,0 72,219,141,340,0 82,248,202,421,0 192,321,211,349,41 288,373,305,392,43 331,369,363,375,43 336,369,362,377,44 188,365,255,388,45 188,278,207,323,56 293,236,476,421,0 465,230,570,427,0 0,214,26,296,0 369,211,409,326,0 451,198,604,371,0 250,222,349,316,0 560,339,611,426,26 238,312,249,353,39 342,308,352,349,39 289,316,301,341,39 255,309,273,341,40 267,304,282,332,40 313,318,336,344,41 266,302,284,317,41 349,334,370,357,41 248,324,258,351,41 225,305,245,318,41 556,316,599,404,56 259,272,334,279,56 306,362,367,389,45 324,342,356,363,41 247,306,263,326,41 215,325,236,343,41 241,311,247,317,41 216,307,362,357,41 -./model_data/coco/val2017/000000218091.jpg 570,143,614,232,62 0,231,94,385,57 223,99,444,263,59 521,198,549,208,65 174,384,236,424,56 0,169,154,280,56 0,169,153,288,57 -./model_data/coco/val2017/000000173383.jpg 37,302,241,394,43 141,53,370,295,55 470,203,504,247,41 0,208,640,425,60 -./model_data/coco/val2017/000000560312.jpg 536,173,599,212,62 330,330,564,417,57 -./model_data/coco/val2017/000000520707.jpg 96,221,134,320,26 326,138,405,394,0 141,169,182,227,0 0,143,98,473,0 582,177,592,194,26 459,147,518,223,0 580,145,618,237,0 402,155,451,292,0 529,150,559,229,0 282,165,298,194,0 431,152,460,286,0 99,179,202,413,0 153,192,190,281,26 428,194,458,240,26 255,287,324,346,28 180,170,249,365,0 551,144,576,175,0 323,141,347,282,0 569,127,585,139,62 552,129,569,140,62 104,130,144,163,62 235,142,512,183,0 -./model_data/coco/val2017/000000117645.jpg 395,166,428,222,0 415,203,429,230,31 -./model_data/coco/val2017/000000084477.jpg 232,36,630,364,25 212,240,386,392,56 283,215,300,240,0 -./model_data/coco/val2017/000000374083.jpg 80,2,298,383,0 8,161,323,634,0 97,552,221,640,43 206,454,384,624,55 285,357,399,435,55 250,267,307,283,44 222,382,426,640,60 99,510,233,640,44 -./model_data/coco/val2017/000000062025.jpg 192,280,202,304,39 224,280,231,303,39 124,280,150,321,41 82,285,108,327,41 41,536,209,631,61 194,360,375,457,71 -./model_data/coco/val2017/000000187249.jpg 32,1,484,385,62 473,0,640,472,39 136,126,374,315,0 267,127,454,320,0 -./model_data/coco/val2017/000000350002.jpg 2,107,396,638,0 0,101,163,282,78 -./model_data/coco/val2017/000000023023.jpg 406,232,574,412,26 206,166,409,424,28 -./model_data/coco/val2017/000000224337.jpg 0,0,365,425,0 422,152,507,296,0 395,167,446,286,0 233,289,500,361,53 440,144,639,355,0 -./model_data/coco/val2017/000000188906.jpg 0,0,498,359,46 -./model_data/coco/val2017/000000553731.jpg 172,56,432,422,0 316,148,325,163,67 392,336,568,428,0 20,118,138,209,0 363,135,426,211,0 583,193,639,422,0 409,0,640,428,0 -./model_data/coco/val2017/000000288762.jpg 249,27,640,174,42 231,120,330,219,51 411,158,442,228,51 426,181,493,263,51 356,301,426,325,51 440,162,467,186,51 450,142,491,180,51 178,294,223,306,51 295,122,388,184,51 220,245,341,289,51 1,0,639,419,60 308,17,366,94,51 251,84,276,113,51 214,197,273,262,51 214,319,284,344,51 -./model_data/coco/val2017/000000293324.jpg 368,226,582,321,4 81,232,201,309,4 28,302,141,330,5 189,272,407,310,4 230,301,302,330,7 164,292,234,330,7 586,314,624,329,7 31,276,62,303,4 301,305,316,327,7 544,312,581,328,7 -./model_data/coco/val2017/000000213086.jpg 0,112,143,438,0 98,146,374,497,69 250,95,264,135,73 235,74,281,134,73 261,94,292,154,75 -./model_data/coco/val2017/000000516804.jpg 262,442,322,476,5 183,441,249,473,5 -./model_data/coco/val2017/000000473406.jpg 376,223,417,364,39 355,226,388,336,39 84,93,330,619,0 315,307,361,411,41 26,271,65,319,41 36,249,53,285,43 321,448,459,546,47 0,246,153,338,71 0,236,59,272,71 -./model_data/coco/val2017/000000113403.jpg 248,96,454,333,77 47,98,290,314,77 423,155,565,341,77 0,0,638,441,59 -./model_data/coco/val2017/000000016502.jpg 75,237,183,314,18 -./model_data/coco/val2017/000000474039.jpg 171,60,391,396,0 322,25,640,397,77 0,1,237,401,77 -./model_data/coco/val2017/000000089697.jpg 253,233,350,360,0 187,246,276,352,0 96,287,215,352,13 327,282,483,351,13 -./model_data/coco/val2017/000000335529.jpg 340,198,365,217,8 147,193,199,210,8 165,238,230,268,8 272,182,324,199,8 31,284,435,467,13 224,188,253,200,8 339,192,381,201,8 293,198,304,206,8 347,183,380,195,8 474,198,521,213,8 460,193,489,211,8 385,191,405,199,8 -./model_data/coco/val2017/000000019742.jpg 172,72,338,347,75 -./model_data/coco/val2017/000000310980.jpg 0,2,556,421,63 50,358,402,416,66 332,152,640,427,77 -./model_data/coco/val2017/000000209753.jpg 41,64,425,630,0 362,345,464,459,62 308,350,364,385,67 -./model_data/coco/val2017/000000238013.jpg 391,135,431,168,32 42,63,294,329,0 260,315,284,333,32 0,202,55,238,38 -./model_data/coco/val2017/000000383621.jpg 33,207,447,298,4 -./model_data/coco/val2017/000000500464.jpg 264,323,278,370,39 157,32,171,64,79 0,226,211,355,71 139,48,168,86,78 168,45,173,64,79 -./model_data/coco/val2017/000000227478.jpg 18,146,327,442,0 28,129,249,400,0 121,77,378,148,13 77,152,351,473,13 139,289,188,313,26 60,20,216,83,13 -./model_data/coco/val2017/000000326128.jpg 239,184,368,593,0 106,548,455,601,31 268,247,390,425,24 -./model_data/coco/val2017/000000007386.jpg 180,281,219,326,16 51,12,600,400,3 221,100,289,166,1 218,158,279,214,1 398,144,519,235,7 -./model_data/coco/val2017/000000304812.jpg 94,378,124,452,0 76,390,134,431,37 240,347,246,356,0 175,404,195,419,0 289,354,293,357,0 242,355,248,358,37 75,352,79,355,37 78,349,81,355,0 309,353,314,356,0 -./model_data/coco/val2017/000000068933.jpg 279,49,493,256,22 143,51,269,273,22 6,58,140,265,22 -./model_data/coco/val2017/000000179642.jpg 125,379,200,427,38 1,17,103,418,0 160,95,400,427,0 246,386,267,426,39 229,384,248,427,39 209,0,284,63,0 327,11,378,71,0 496,0,601,76,0 380,0,510,76,0 110,0,212,401,0 280,0,351,66,0 565,0,640,79,0 247,0,279,43,0 146,288,239,380,38 204,192,360,404,56 414,277,568,426,56 473,20,515,74,56 85,1,122,40,56 0,1,80,49,56 275,13,306,64,56 369,18,394,36,56 -./model_data/coco/val2017/000000239717.jpg 304,196,331,253,39 0,76,554,632,0 495,54,553,276,0 392,135,501,287,0 323,125,542,329,0 454,60,517,175,0 382,97,421,150,0 367,96,392,162,0 219,176,268,255,0 -./model_data/coco/val2017/000000290771.jpg 0,288,41,441,62 288,251,569,408,57 0,283,14,311,56 220,350,274,372,73 42,430,86,442,73 39,417,83,431,73 318,374,593,471,56 187,324,334,421,60 78,277,116,307,56 66,408,341,470,56 533,240,640,330,56 49,269,69,304,56 40,424,82,436,73 29,376,72,388,73 592,217,611,225,73 36,400,84,425,73 240,346,253,378,41 -./model_data/coco/val2017/000000333237.jpg 39,172,454,389,59 285,161,334,217,56 399,181,467,267,56 -./model_data/coco/val2017/000000364166.jpg 194,126,500,371,22 119,1,500,258,22 -./model_data/coco/val2017/000000452122.jpg 78,132,543,270,4 -./model_data/coco/val2017/000000250205.jpg 197,126,380,326,14 87,123,240,299,14 -./model_data/coco/val2017/000000006771.jpg 267,264,300,306,67 532,127,640,328,0 0,0,247,422,0 64,185,223,349,0 386,131,480,228,0 386,156,570,427,0 534,166,640,418,0 187,100,438,427,0 102,146,202,228,0 -./model_data/coco/val2017/000000271402.jpg 129,95,411,565,0 24,63,191,575,0 192,309,301,535,38 -./model_data/coco/val2017/000000482978.jpg 0,0,640,354,6 571,184,640,343,56 -./model_data/coco/val2017/000000190841.jpg 338,49,460,191,0 347,182,445,203,36 -./model_data/coco/val2017/000000414133.jpg 465,198,640,337,2 12,225,57,246,2 46,221,67,235,2 199,211,256,245,2 68,220,90,226,2 87,226,92,234,10 294,208,375,288,11 -./model_data/coco/val2017/000000264441.jpg 16,198,372,418,15 1,5,374,492,56 -./model_data/coco/val2017/000000473015.jpg 213,153,282,192,14 214,71,261,98,14 223,57,245,66,14 227,100,246,107,14 219,35,256,51,14 -./model_data/coco/val2017/000000437898.jpg 234,121,390,379,72 574,269,598,298,41 340,197,538,422,69 1,247,123,311,71 12,330,57,381,41 65,228,82,249,41 393,197,405,216,43 387,194,396,209,43 394,194,406,212,43 556,207,570,245,44 547,217,557,245,44 394,210,404,226,43 396,189,408,209,43 -./model_data/coco/val2017/000000389812.jpg 136,42,551,473,0 313,414,396,478,46 244,375,328,419,46 181,308,424,473,46 -./model_data/coco/val2017/000000532129.jpg 0,0,640,422,60 591,0,640,145,41 49,41,588,393,53 28,0,212,30,45 -./model_data/coco/val2017/000000145020.jpg 257,189,280,275,0 87,217,103,278,0 0,193,30,277,0 0,242,42,302,0 46,240,94,299,0 530,210,640,357,77 529,147,577,216,77 139,194,157,224,0 217,201,237,270,0 202,190,220,236,0 115,195,143,227,0 258,180,275,202,0 25,199,29,208,0 556,146,612,209,77 568,107,614,161,77 166,211,183,273,0 63,199,68,209,0 27,201,236,269,0 -./model_data/coco/val2017/000000001268.jpg 192,224,267,258,14 124,124,264,141,8 0,129,105,144,8 23,213,76,282,0 501,77,640,421,0 402,205,467,293,0 0,209,24,289,0 528,180,558,199,67 21,231,44,282,24 492,197,595,425,26 291,86,413,143,8 -./model_data/coco/val2017/000000011197.jpg 553,162,601,191,1 400,153,486,194,2 172,143,212,167,2 309,112,362,253,0 17,112,44,186,0 567,146,590,191,0 179,68,187,87,9 248,19,284,58,9 219,73,229,90,9 302,119,314,131,0 89,95,95,105,9 42,94,50,109,9 4,140,24,174,24 558,106,571,116,9 578,152,595,166,24 300,128,320,245,0 -./model_data/coco/val2017/000000066523.jpg 1,299,431,627,59 -./model_data/coco/val2017/000000025986.jpg 370,203,448,319,41 230,184,304,274,44 14,125,349,287,45 38,134,182,218,50 165,213,202,260,50 502,191,585,264,50 562,31,640,122,45 98,211,171,257,50 411,123,454,155,54 471,111,513,142,54 435,114,476,146,54 443,93,480,120,54 503,88,546,128,54 511,120,558,153,54 540,101,569,134,54 212,182,250,200,50 264,170,277,186,50 45,217,100,252,50 -./model_data/coco/val2017/000000486104.jpg 86,131,124,234,0 226,148,269,235,0 140,173,178,237,0 228,73,248,107,0 99,31,118,65,0 138,128,165,189,0 116,52,135,84,0 135,39,155,73,0 122,175,138,189,0 168,226,177,236,35 124,8,152,39,0 138,10,163,38,0 198,181,217,188,13 198,49,278,59,13 225,164,267,186,34 202,55,217,82,0 191,57,208,90,0 1,14,498,195,0 -./model_data/coco/val2017/000000381360.jpg 27,84,181,304,0 80,288,175,347,37 -./model_data/coco/val2017/000000570688.jpg 176,237,257,258,33 331,64,389,85,33 281,216,422,265,33 222,265,395,323,33 240,124,264,136,33 431,29,450,44,33 116,178,136,191,33 232,20,242,30,33 221,179,453,241,33 461,252,480,269,33 506,195,523,215,33 521,361,568,480,0 497,381,528,478,0 452,369,505,480,0 404,345,457,480,0 293,385,350,444,0 260,341,308,465,0 215,327,257,470,0 27,361,52,426,0 33,339,59,414,0 154,379,213,420,0 92,372,119,417,0 570,344,593,356,2 600,343,614,355,2 616,344,623,352,2 323,160,465,215,33 280,92,326,106,33 475,347,492,355,2 558,345,577,355,2 487,346,499,355,2 472,348,482,354,2 59,364,83,397,0 386,348,396,356,2 404,346,422,355,2 140,359,173,407,0 54,0,622,263,33 4,187,635,452,0 -./model_data/coco/val2017/000000162858.jpg 147,164,163,217,9 299,170,313,206,9 20,341,41,398,0 20,369,36,400,1 50,345,208,477,2 301,339,428,488,2 359,339,426,542,2 262,325,399,456,2 51,326,91,343,2 42,273,81,307,2 0,298,23,336,2 124,245,148,263,2 37,338,80,381,2 81,317,195,375,2 0,319,16,375,2 0,312,20,356,2 101,241,111,246,2 -./model_data/coco/val2017/000000211674.jpg 184,259,199,268,2 205,38,541,390,5 284,44,317,85,0 86,251,91,265,0 4,243,27,265,58 376,11,417,45,0 325,27,340,46,0 264,84,280,107,0 250,94,268,122,0 422,24,472,59,0 259,82,295,118,0 238,108,264,131,0 346,27,387,86,0 381,200,435,265,0 101,254,108,281,0 218,152,226,183,0 229,135,248,156,0 -./model_data/coco/val2017/000000581482.jpg 404,205,508,305,74 517,219,545,318,74 -./model_data/coco/val2017/000000347930.jpg 161,103,415,438,16 1,68,640,480,57 209,79,258,125,32 -./model_data/coco/val2017/000000180296.jpg 339,132,640,355,24 118,91,640,360,28 495,0,614,63,56 0,91,58,137,56 23,8,198,99,56 -./model_data/coco/val2017/000000275791.jpg 198,143,483,244,6 489,247,640,315,8 334,263,478,367,8 513,325,640,422,8 0,354,179,422,8 463,227,602,311,8 150,294,386,421,8 561,209,640,251,8 -./model_data/coco/val2017/000000546826.jpg 327,1,640,480,76 -./model_data/coco/val2017/000000046804.jpg 223,62,459,364,18 -./model_data/coco/val2017/000000223959.jpg 134,5,189,248,38 142,28,317,618,0 -./model_data/coco/val2017/000000475064.jpg 117,303,279,427,0 180,291,369,374,54 352,354,374,427,0 384,314,409,425,0 -./model_data/coco/val2017/000000243626.jpg 68,0,146,54,41 295,45,372,228,42 -./model_data/coco/val2017/000000454978.jpg 124,212,237,374,3 -./model_data/coco/val2017/000000301718.jpg 153,210,213,389,39 26,267,74,376,39 2,273,480,632,60 305,0,479,372,0 4,22,212,280,0 2,298,60,487,41 347,289,379,315,42 295,397,480,417,43 71,320,156,365,45 15,483,57,629,43 43,227,102,277,42 -./model_data/coco/val2017/000000570471.jpg 32,101,97,174,56 48,0,375,494,0 23,228,79,312,41 45,414,144,474,55 0,370,101,448,55 0,328,62,388,55 0,250,36,291,45 55,471,134,500,55 198,87,375,253,0 71,266,207,490,60 -./model_data/coco/val2017/000000069213.jpg 276,9,521,409,0 67,17,281,404,0 471,101,592,273,3 618,47,640,133,0 432,68,501,152,0 498,49,511,80,0 554,79,584,95,0 248,43,303,123,0 -./model_data/coco/val2017/000000306136.jpg 35,443,85,563,1 100,323,427,613,5 95,429,123,466,0 252,397,300,450,0 386,406,407,451,0 80,443,114,541,0 294,379,314,448,0 -./model_data/coco/val2017/000000206027.jpg 250,0,349,213,39 363,1,468,239,39 2,1,98,281,39 3,160,640,475,60 67,259,551,451,53 83,1,183,239,39 -./model_data/coco/val2017/000000246454.jpg 0,270,318,431,16 2,219,324,590,16 438,337,593,604,26 0,2,95,339,0 116,15,553,559,0 -./model_data/coco/val2017/000000255747.jpg 100,85,558,411,48 7,2,256,192,48 0,0,640,480,60 -./model_data/coco/val2017/000000524456.jpg 0,2,420,258,63 368,349,584,432,64 59,83,353,241,66 120,0,636,298,0 375,269,640,451,0 517,121,597,205,26 -./model_data/coco/val2017/000000163611.jpg 172,2,275,133,41 49,335,267,472,42 1,103,640,480,53 0,4,183,118,53 585,175,640,193,43 4,1,640,214,60 -./model_data/coco/val2017/000000295797.jpg 95,394,215,542,74 260,405,360,554,74 -./model_data/coco/val2017/000000003845.jpg 1,1,500,368,60 105,0,183,55,41 137,44,424,93,42 121,206,178,270,50 171,186,266,257,50 49,162,103,207,50 191,251,259,318,51 258,189,296,262,51 170,83,205,136,51 108,85,162,122,51 144,44,422,88,44 211,136,278,197,51 -./model_data/coco/val2017/000000399462.jpg 80,36,279,305,0 78,1,108,81,0 19,0,61,83,0 0,98,153,193,33 -./model_data/coco/val2017/000000438304.jpg 381,175,406,199,32 107,55,307,456,0 255,147,442,235,38 59,179,123,221,38 41,118,179,369,0 -./model_data/coco/val2017/000000192607.jpg 1,209,469,412,7 456,223,518,382,0 -./model_data/coco/val2017/000000509260.jpg 32,201,236,370,62 283,204,297,258,73 266,121,276,172,73 130,114,141,164,73 282,298,295,343,73 304,357,310,374,73 296,118,306,173,73 253,289,277,344,73 311,120,324,173,73 309,287,324,345,73 277,45,299,85,73 326,359,335,375,73 147,46,167,80,73 241,36,258,83,73 51,25,388,374,73 -./model_data/coco/val2017/000000414340.jpg 304,166,343,204,74 -./model_data/coco/val2017/000000275058.jpg 205,148,276,283,0 173,264,257,310,37 -./model_data/coco/val2017/000000397303.jpg 268,274,305,368,27 399,180,431,346,27 231,185,367,374,0 336,65,530,459,0 440,83,487,149,0 508,139,578,263,0 300,82,342,231,0 214,96,241,175,0 123,101,142,120,0 101,106,119,142,0 81,99,95,133,0 176,116,196,139,0 35,267,173,343,63 416,87,431,116,0 522,296,640,480,56 327,166,376,249,56 129,151,159,210,56 185,142,224,194,56 21,219,68,259,56 253,159,279,185,56 49,351,288,449,27 125,375,353,478,27 81,384,311,472,27 164,382,364,479,27 15,357,114,392,27 57,232,109,274,56 168,153,199,212,56 49,192,76,228,56 272,161,330,235,56 0,171,11,217,56 247,143,260,156,0 590,51,633,137,26 16,103,32,120,0 0,238,132,329,60 0,336,104,375,27 104,370,336,432,27 357,276,398,327,56 14,185,58,246,56 0,121,329,256,56 136,98,364,169,0 -./model_data/coco/val2017/000000181499.jpg 167,382,288,506,0 231,6,640,505,63 255,262,627,410,66 -./model_data/coco/val2017/000000128112.jpg 129,183,177,280,0 148,275,169,287,30 -./model_data/coco/val2017/000000047828.jpg 116,155,230,220,8 103,235,118,291,0 36,243,59,310,0 19,247,39,306,0 88,232,107,289,0 55,242,71,298,0 25,211,37,247,0 15,214,26,247,0 0,213,10,249,0 15,165,28,174,2 72,237,98,309,0 103,164,107,170,0 180,160,187,174,0 -./model_data/coco/val2017/000000394275.jpg 90,83,612,372,5 417,164,441,215,0 389,184,402,215,0 371,187,383,214,0 212,166,243,208,0 619,247,624,258,0 545,185,558,217,0 257,158,294,207,0 148,141,208,199,0 485,178,493,215,0 -./model_data/coco/val2017/000000470121.jpg 1,2,131,222,39 2,19,640,471,60 53,281,228,417,45 534,284,640,424,45 447,168,583,284,55 153,178,254,289,55 371,55,439,112,55 418,333,506,434,55 167,65,233,125,55 212,17,276,59,55 300,45,348,81,55 278,194,334,267,55 333,176,391,249,55 -./model_data/coco/val2017/000000297698.jpg 305,185,511,274,0 296,217,602,300,30 561,373,585,441,0 538,384,555,408,0 384,384,403,398,0 421,378,437,399,0 -./model_data/coco/val2017/000000232563.jpg 1,0,436,229,25 1,218,127,292,25 96,89,366,621,0 344,392,384,549,26 0,280,136,629,0 -./model_data/coco/val2017/000000015497.jpg 32,20,484,454,15 147,336,246,456,64 0,1,640,480,57 -./model_data/coco/val2017/000000417779.jpg 199,100,257,144,2 0,108,20,155,2 264,198,404,473,10 192,103,204,131,2 471,85,490,128,0 156,46,173,62,11 -./model_data/coco/val2017/000000032610.jpg 302,117,430,255,63 55,80,241,260,63 384,75,533,199,63 70,211,376,427,24 244,94,377,221,63 155,17,290,179,63 298,18,456,117,63 -./model_data/coco/val2017/000000150265.jpg 305,163,344,266,10 122,375,322,629,0 67,29,119,132,0 18,0,79,104,0 161,0,189,78,0 249,443,286,539,26 12,78,163,402,0 91,0,130,69,0 -./model_data/coco/val2017/000000232646.jpg 497,94,595,193,11 -./model_data/coco/val2017/000000160728.jpg 139,345,290,384,8 269,265,338,385,0 247,275,282,355,0 213,276,230,290,0 199,280,211,293,0 192,271,202,284,0 510,239,526,247,2 487,237,506,244,2 481,238,492,243,2 470,236,488,244,2 330,249,408,270,8 176,287,243,303,8 142,280,232,298,8 202,250,209,261,0 608,315,628,339,0 202,271,212,289,0 189,256,196,270,0 454,236,465,244,2 544,236,561,243,2 243,252,287,265,8 271,242,302,262,8 196,263,243,279,8 574,273,615,284,8 276,199,336,261,8 153,333,278,354,37 600,265,608,273,0 497,238,507,244,2 463,237,474,245,2 507,235,515,243,2 37,248,114,261,8 0,244,41,269,8 473,240,534,267,8 80,367,184,426,37 581,265,591,278,0 228,250,234,260,0 591,268,598,276,0 391,245,422,263,8 76,369,189,425,8 -./model_data/coco/val2017/000000512836.jpg 284,290,451,419,16 64,275,172,410,16 140,150,288,526,0 105,45,306,249,25 62,78,115,231,0 206,229,284,350,26 81,115,108,179,26 -./model_data/coco/val2017/000000348481.jpg 480,278,522,360,67 313,23,596,175,63 483,178,581,256,64 170,43,302,177,73 141,353,203,438,73 9,365,77,468,65 -./model_data/coco/val2017/000000246308.jpg 226,377,390,495,62 109,408,240,536,63 312,590,350,622,64 116,581,312,634,66 28,563,109,640,56 -./model_data/coco/val2017/000000244750.jpg 97,85,281,280,0 43,141,132,264,0 175,276,219,402,40 126,274,170,406,40 223,271,270,403,40 7,309,52,406,41 341,173,393,282,0 230,148,296,243,0 0,359,391,462,60 -./model_data/coco/val2017/000000186632.jpg 2,213,169,306,62 412,388,440,439,39 459,405,480,445,71 253,371,341,442,75 166,361,183,398,39 186,360,203,401,39 167,398,192,453,39 -./model_data/coco/val2017/000000283520.jpg 328,126,465,381,0 450,243,469,262,29 223,197,247,215,29 171,130,241,367,0 -./model_data/coco/val2017/000000529568.jpg 0,351,70,502,58 0,426,229,630,60 68,287,86,306,41 99,290,117,306,41 66,220,82,253,41 68,471,95,488,45 69,467,97,475,45 69,459,95,471,45 130,396,232,533,69 290,385,453,477,71 385,247,394,291,73 0,421,23,501,75 13,415,46,462,75 16,215,34,248,40 30,217,45,247,40 55,222,67,250,40 42,220,56,250,40 84,288,99,306,41 104,230,117,258,41 14,295,43,305,45 14,293,44,295,45 45,288,62,295,45 373,249,385,292,73 93,229,105,253,40 10,217,22,250,40 104,231,113,255,40 113,232,123,258,40 98,230,108,256,40 41,223,47,241,40 41,294,61,306,41 84,290,88,300,41 304,267,314,283,41 15,273,44,294,45 360,241,384,293,73 394,250,403,293,73 -./model_data/coco/val2017/000000551815.jpg 256,128,640,352,15 20,115,639,480,15 0,150,138,480,59 -./model_data/coco/val2017/000000521231.jpg 93,166,337,456,21 -./model_data/coco/val2017/000000305695.jpg 227,244,276,317,22 468,238,507,278,22 413,227,466,269,22 0,213,130,382,7 527,242,580,280,22 546,236,607,281,22 95,217,123,228,2 -./model_data/coco/val2017/000000570169.jpg 41,2,421,339,77 -./model_data/coco/val2017/000000449909.jpg 47,165,336,427,0 314,90,581,358,23 -./model_data/coco/val2017/000000273493.jpg 320,133,324,136,32 365,157,390,204,0 68,118,121,243,0 392,174,404,179,38 110,189,120,204,38 -./model_data/coco/val2017/000000210708.jpg 44,139,350,285,20 112,7,381,268,20 -./model_data/coco/val2017/000000352584.jpg 30,14,311,480,61 -./model_data/coco/val2017/000000241319.jpg 456,122,571,304,79 128,102,199,307,79 428,153,485,246,79 105,37,143,131,39 106,221,176,315,41 1,319,640,389,71 0,176,134,325,26 511,214,588,307,41 196,151,239,239,79 470,229,511,244,41 -./model_data/coco/val2017/000000226592.jpg 71,24,640,444,59 -./model_data/coco/val2017/000000161978.jpg 261,163,305,254,0 190,10,234,86,0 248,8,373,98,0 398,10,446,56,0 450,307,495,337,0 530,9,629,122,0 33,166,114,252,0 507,165,556,256,0 179,297,230,372,0 30,296,77,354,0 163,363,240,382,36 274,372,424,407,36 238,76,325,103,36 438,328,581,376,36 15,47,537,363,36 422,165,472,281,0 542,107,625,149,36 280,296,388,388,0 550,294,626,367,0 482,162,513,255,0 -./model_data/coco/val2017/000000435208.jpg 339,262,397,303,62 0,336,197,631,57 17,307,152,503,0 218,86,291,196,0 13,297,32,313,41 140,310,260,423,56 270,392,480,632,60 164,272,221,319,63 406,312,414,317,64 337,313,399,323,66 317,64,339,87,74 -./model_data/coco/val2017/000000522889.jpg 338,87,412,171,56 382,145,409,172,56 149,204,358,612,0 234,16,343,206,0 66,149,154,250,38 213,0,291,177,0 -./model_data/coco/val2017/000000256916.jpg 442,3,580,168,56 558,0,640,178,56 68,208,442,459,53 154,25,391,182,53 1,48,110,128,53 0,0,638,478,60 104,127,211,160,43 206,412,269,480,43 533,175,640,433,53 -./model_data/coco/val2017/000000050145.jpg 152,220,371,315,1 203,91,379,319,0 176,161,220,225,0 360,154,388,209,0 176,144,248,164,25 182,186,206,229,24 348,178,388,239,1 243,196,277,230,1 425,143,471,166,25 470,157,480,188,0 390,185,411,210,1 -./model_data/coco/val2017/000000407518.jpg 372,89,557,384,14 -./model_data/coco/val2017/000000564280.jpg 86,8,604,414,16 1,0,640,419,57 303,278,464,307,65 306,302,446,346,65 -./model_data/coco/val2017/000000403385.jpg 411,237,504,480,61 9,313,151,391,71 -./model_data/coco/val2017/000000364636.jpg 118,88,638,527,16 335,7,640,141,13 -./model_data/coco/val2017/000000025603.jpg 256,235,417,306,56 115,174,207,286,56 184,185,305,293,56 135,157,152,169,56 4,274,637,474,60 430,105,496,133,60 322,109,640,414,0 308,315,398,471,41 35,402,161,480,41 38,337,235,452,53 467,365,639,480,73 243,151,320,187,56 401,151,443,283,56 369,140,408,240,56 114,160,133,169,56 456,112,487,149,56 516,86,531,108,56 153,173,376,276,60 436,144,460,169,60 520,54,565,104,0 489,62,513,93,0 574,28,639,215,0 38,168,105,281,56 -./model_data/coco/val2017/000000533536.jpg 111,0,640,447,62 89,282,401,480,15 -./model_data/coco/val2017/000000515445.jpg 247,375,271,436,0 482,380,509,432,0 520,372,550,433,0 510,372,527,431,37 238,391,266,411,37 549,373,569,435,0 408,301,420,309,0 -./model_data/coco/val2017/000000449312.jpg 54,1,375,409,0 304,52,498,151,2 288,321,376,372,54 425,278,497,336,54 345,286,423,332,54 -./model_data/coco/val2017/000000160556.jpg 453,76,638,423,0 564,141,602,185,67 346,272,462,329,66 0,106,349,376,68 13,57,96,124,77 439,243,473,271,63 181,107,216,137,77 279,133,405,263,62 395,245,413,285,67 -./model_data/coco/val2017/000000081988.jpg 268,129,517,366,0 320,274,408,396,0 470,313,590,402,0 174,293,247,387,0 47,283,158,392,0 472,383,572,400,37 312,376,430,397,37 181,378,267,396,37 70,380,172,395,37 -./model_data/coco/val2017/000000089670.jpg 0,197,73,252,44 125,116,521,357,55 564,175,582,302,39 -./model_data/coco/val2017/000000013177.jpg 269,2,381,198,1 0,14,240,422,3 301,61,616,412,0 -./model_data/coco/val2017/000000408774.jpg 166,124,215,212,0 0,109,32,330,0 219,162,282,181,0 33,135,86,218,0 220,174,227,180,35 165,172,177,186,35 -./model_data/coco/val2017/000000000802.jpg 245,185,410,541,72 33,289,159,520,69 -./model_data/coco/val2017/000000442822.jpg 63,204,378,375,8 276,186,424,257,8 367,183,478,238,8 396,158,534,220,8 440,150,583,203,8 484,140,632,195,8 212,135,359,176,8 292,131,406,169,8 133,107,197,140,8 343,134,476,162,8 167,134,314,217,8 17,101,107,148,8 177,102,228,136,8 119,164,243,222,8 0,0,623,252,8 -./model_data/coco/val2017/000000083540.jpg 334,241,381,417,0 290,402,461,419,30 -./model_data/coco/val2017/000000074200.jpg 1,1,57,115,0 257,1,409,302,37 431,0,640,431,37 48,81,141,318,37 446,385,462,421,0 477,383,491,422,0 402,342,416,371,0 418,347,429,373,0 389,347,404,366,0 -./model_data/coco/val2017/000000053505.jpg 161,503,287,631,61 275,267,288,311,39 263,267,275,312,39 138,272,153,317,39 176,271,191,316,39 162,272,176,316,39 151,271,164,315,39 239,268,250,313,39 251,268,263,313,39 -./model_data/coco/val2017/000000017031.jpg 80,34,360,334,23 -./model_data/coco/val2017/000000175443.jpg 123,255,363,569,77 9,402,49,558,58 -./model_data/coco/val2017/000000431140.jpg 1,147,267,473,61 271,173,640,474,71 -./model_data/coco/val2017/000000481573.jpg 376,83,561,628,0 0,149,445,639,36 -./model_data/coco/val2017/000000191845.jpg 432,241,546,311,25 393,167,483,220,25 201,182,268,236,25 107,210,177,256,25 251,152,318,202,25 256,66,326,115,25 213,69,278,107,25 211,133,250,195,25 51,140,115,178,25 167,44,218,79,25 522,310,574,350,26 80,232,103,265,26 135,262,165,292,26 436,217,466,254,26 575,99,606,134,26 10,158,27,191,26 223,224,283,318,0 142,112,203,211,0 176,74,240,142,0 283,100,348,194,0 257,0,301,57,0 157,21,195,58,0 493,11,553,123,0 110,103,149,171,0 24,13,35,28,26 128,105,151,124,26 111,82,141,107,26 497,52,513,74,26 407,258,438,295,28 269,196,343,280,0 419,215,463,314,0 339,42,409,146,0 86,15,129,52,25 134,245,208,336,0 214,154,277,237,0 23,88,65,124,25 472,87,496,113,26 46,1,639,221,25 0,0,639,360,0 -./model_data/coco/val2017/000000384468.jpg 243,85,357,265,0 184,98,295,257,0 260,82,399,266,0 556,268,612,437,0 19,195,530,475,20 0,262,91,370,2 -./model_data/coco/val2017/000000128675.jpg 112,251,132,268,0 320,14,356,84,33 321,343,447,401,37 470,419,618,428,37 122,265,129,269,37 338,310,388,443,0 440,410,469,428,0 -./model_data/coco/val2017/000000534601.jpg 85,0,384,327,77 -./model_data/coco/val2017/000000140076.jpg 44,158,59,208,39 251,293,277,375,39 18,263,115,371,56 364,225,431,348,56 420,267,500,369,56 221,178,305,255,56 236,271,270,331,75 34,159,45,194,39 23,263,47,285,39 20,162,28,173,39 9,154,17,184,39 39,263,62,287,39 4,150,10,174,39 0,292,23,316,39 33,215,49,267,40 19,223,33,254,40 10,226,21,254,40 29,220,38,244,40 0,213,63,251,40 81,221,141,340,56 79,205,419,375,60 -./model_data/coco/val2017/000000501523.jpg 208,112,497,398,15 461,6,547,144,39 284,0,349,35,41 104,0,640,467,71 539,49,604,170,39 -./model_data/coco/val2017/000000277005.jpg 15,321,128,384,1 391,251,552,336,2 551,285,586,320,2 47,219,447,319,6 185,258,231,386,0 224,272,247,357,0 128,277,141,306,24 146,270,174,331,0 96,259,132,355,0 43,273,101,359,0 625,274,640,325,0 608,278,623,327,0 595,276,607,324,0 284,271,296,323,0 175,272,197,353,0 132,266,157,333,0 82,270,91,284,0 89,262,100,319,0 48,296,63,311,24 192,280,203,308,24 107,252,407,330,0 -./model_data/coco/val2017/000000089648.jpg 150,191,163,203,67 224,125,404,257,0 58,4,206,105,0 28,197,243,363,0 411,100,545,265,0 37,119,207,293,0 488,130,556,192,63 245,300,344,411,56 236,227,332,331,56 441,278,536,419,56 427,211,524,345,56 389,38,467,113,56 63,64,160,150,56 406,148,445,279,56 403,91,433,138,56 371,2,449,106,56 377,0,434,20,56 354,64,371,74,67 354,99,371,112,67 331,168,348,180,67 121,256,139,271,67 0,73,29,111,73 477,309,530,348,73 459,241,512,275,73 18,362,203,427,0 0,0,68,88,0 487,298,631,427,0 256,53,355,128,0 33,318,151,399,56 275,338,333,379,73 255,0,295,17,73 412,68,459,96,73 88,0,211,89,0 536,156,566,212,24 411,129,421,150,56 239,4,357,111,0 465,359,506,427,56 106,1,366,426,56 -./model_data/coco/val2017/000000545594.jpg 77,22,292,509,0 396,240,593,413,0 350,244,437,360,0 262,283,391,393,0 530,179,638,502,0 0,159,35,228,0 6,116,218,436,24 300,275,334,323,0 255,218,307,330,0 -./model_data/coco/val2017/000000023359.jpg 247,92,349,262,0 265,172,300,292,31 -./model_data/coco/val2017/000000037689.jpg 64,131,78,168,0 329,138,367,171,0 215,63,271,105,0 200,219,211,245,0 39,141,60,165,0 276,262,284,283,0 201,64,229,105,31 318,124,349,187,31 316,281,320,302,0 306,273,312,299,0 292,272,302,293,0 285,263,295,290,0 189,211,195,234,0 92,146,108,181,0 170,205,179,224,0 0,5,581,301,0 -./model_data/coco/val2017/000000433915.jpg 1,1,575,473,62 134,60,507,419,0 44,61,286,406,0 220,354,278,409,27 -./model_data/coco/val2017/000000409867.jpg 74,494,141,604,15 279,488,379,616,15 -./model_data/coco/val2017/000000244592.jpg 215,58,500,369,22 55,126,178,266,22 143,120,265,257,22 -./model_data/coco/val2017/000000461573.jpg 205,58,485,332,13 139,49,328,234,13 -./model_data/coco/val2017/000000279769.jpg 126,74,435,168,46 448,89,640,408,60 -./model_data/coco/val2017/000000153510.jpg 419,42,548,206,50 381,9,482,71,50 240,118,360,252,50 67,57,118,114,50 269,304,344,330,51 478,229,539,301,50 -./model_data/coco/val2017/000000311392.jpg 490,130,559,275,0 596,184,610,210,0 610,189,640,222,0 0,76,547,427,19 -./model_data/coco/val2017/000000554838.jpg 70,379,433,632,72 80,304,135,387,39 308,301,362,382,39 -./model_data/coco/val2017/000000402615.jpg 243,158,250,165,32 20,191,39,210,32 511,180,567,294,0 536,154,562,191,0 456,150,468,182,0 474,209,513,231,38 472,148,488,162,0 401,134,410,144,0 154,144,159,152,0 223,149,232,173,0 574,131,597,135,13 582,120,603,127,13 199,148,202,151,32 608,123,622,148,0 469,102,480,115,0 483,94,495,110,0 293,64,299,74,0 280,64,286,76,0 167,63,172,75,0 1,0,639,187,0 -./model_data/coco/val2017/000000214205.jpg 252,311,404,359,4 -./model_data/coco/val2017/000000327601.jpg 48,46,319,423,0 25,284,93,420,75 51,198,249,408,56 -./model_data/coco/val2017/000000158744.jpg 142,173,296,269,57 321,113,340,128,2 485,163,574,277,56 450,78,523,323,0 605,93,639,123,2 592,92,638,121,2 535,112,541,124,10 377,114,384,126,10 630,101,640,126,2 433,236,463,295,28 25,142,138,239,56 145,173,295,269,56 -./model_data/coco/val2017/000000082807.jpg 123,74,516,478,16 74,183,473,452,56 0,405,640,591,60 287,483,444,592,55 -./model_data/coco/val2017/000000426795.jpg 377,306,579,472,56 57,19,470,473,0 -./model_data/coco/val2017/000000221708.jpg 373,266,466,445,56 270,265,384,472,56 210,255,285,424,56 239,263,445,335,60 283,254,328,284,56 309,251,360,294,58 132,171,240,353,72 64,256,101,259,71 426,228,455,262,62 -./model_data/coco/val2017/000000201025.jpg 1,0,150,489,20 78,33,374,477,20 -./model_data/coco/val2017/000000316015.jpg 128,85,330,215,62 306,164,461,368,15 0,257,55,311,63 124,232,325,315,66 392,141,407,179,73 422,150,493,168,73 0,272,47,310,73 59,276,112,307,67 384,144,400,172,73 -./model_data/coco/val2017/000000241668.jpg 262,281,314,606,27 0,28,317,629,0 290,432,357,478,55 27,431,57,547,56 229,88,387,632,0 -./model_data/coco/val2017/000000450488.jpg 2,283,183,478,59 79,212,99,216,71 71,206,108,218,71 231,187,278,251,62 -./model_data/coco/val2017/000000564336.jpg 531,140,587,239,39 66,182,254,360,56 240,181,331,231,56 193,183,241,240,56 377,184,428,220,56 172,140,640,316,60 105,100,191,190,0 184,154,236,194,63 274,155,415,218,2 411,170,489,196,2 570,127,640,188,7 96,187,198,211,60 0,162,62,262,56 602,173,619,180,2 426,150,447,193,12 -./model_data/coco/val2017/000000168619.jpg 117,267,159,311,13 -./model_data/coco/val2017/000000578500.jpg 268,143,329,196,58 204,139,228,176,56 157,135,184,190,56 117,135,154,192,56 192,137,206,184,56 311,149,468,238,57 499,116,640,290,57 1,147,134,247,57 124,150,213,155,60 344,92,351,122,75 441,71,451,113,75 118,153,127,173,75 291,179,306,189,75 498,115,640,290,56 -./model_data/coco/val2017/000000512985.jpg 433,124,499,340,0 391,175,561,237,37 -./model_data/coco/val2017/000000446207.jpg 108,282,501,469,67 -./model_data/coco/val2017/000000512776.jpg 16,20,162,323,0 138,17,447,297,0 132,20,235,93,35 -./model_data/coco/val2017/000000441468.jpg 98,137,157,183,2 210,124,252,167,2 246,127,269,150,2 245,368,352,589,10 307,126,312,149,0 285,129,291,144,0 192,134,195,145,0 161,135,165,147,0 197,134,201,145,0 302,128,306,148,0 368,123,387,182,0 -./model_data/coco/val2017/000000177489.jpg 473,127,492,187,39 359,264,633,472,56 47,276,272,471,56 192,198,447,376,60 340,81,612,403,0 59,118,350,472,0 360,203,379,247,40 199,206,221,262,40 231,216,314,264,45 275,203,293,212,49 261,199,279,212,49 355,262,386,272,53 319,258,355,272,53 441,145,460,187,39 255,199,317,221,45 263,248,313,264,42 291,208,297,212,49 308,229,331,262,40 404,72,418,131,44 423,72,437,127,44 322,203,366,238,56 -./model_data/coco/val2017/000000160666.jpg 0,240,570,411,79 -./model_data/coco/val2017/000000093717.jpg 372,267,494,325,36 208,52,468,325,0 532,165,589,330,0 209,247,254,311,0 217,344,264,405,0 243,275,260,313,0 167,335,183,374,0 115,311,164,379,0 9,334,72,396,0 574,220,633,316,0 133,362,164,380,36 48,380,76,398,36 216,300,243,312,36 222,390,249,409,36 253,369,265,404,0 508,295,542,331,1 485,290,638,336,1 83,364,112,385,1 238,298,265,314,1 87,344,105,379,0 103,357,111,372,0 48,173,55,180,36 -./model_data/coco/val2017/000000535608.jpg 306,157,428,189,25 384,237,423,278,56 284,220,333,278,56 43,207,118,224,0 198,159,210,190,0 180,171,195,191,0 452,177,497,205,0 450,182,477,202,56 57,199,112,220,0 479,201,491,206,26 14,210,34,222,26 -./model_data/coco/val2017/000000326462.jpg 22,398,400,588,0 96,126,427,444,54 -./model_data/coco/val2017/000000085157.jpg 0,377,110,480,56 493,310,599,480,56 598,223,635,313,56 211,211,374,459,60 230,113,343,261,0 411,88,639,439,0 0,98,258,480,0 139,124,217,284,0 267,246,306,312,41 298,242,351,276,45 304,114,545,472,0 485,93,612,251,0 293,218,323,246,41 208,244,247,303,41 347,235,381,279,41 304,302,339,309,42 0,107,49,187,0 324,216,349,241,41 340,211,364,235,41 300,309,343,325,53 208,222,231,254,56 -./model_data/coco/val2017/000000154213.jpg 384,122,500,335,76 -./model_data/coco/val2017/000000524108.jpg 1,106,528,395,3 78,58,640,396,3 155,44,440,120,3 130,4,284,37,3 90,7,372,121,3 590,75,640,244,3 552,33,636,149,3 2,4,121,144,3 262,0,413,53,3 494,135,630,261,3 423,18,524,79,3 121,20,316,51,3 -./model_data/coco/val2017/000000459437.jpg 331,95,638,426,18 310,99,519,361,18 209,102,363,386,18 0,185,217,350,0 206,290,266,338,45 194,125,253,250,18 -./model_data/coco/val2017/000000138115.jpg 1,5,448,602,0 100,320,309,512,49 -./model_data/coco/val2017/000000400367.jpg 11,241,127,321,2 102,242,149,308,2 153,235,180,291,2 186,234,225,263,2 222,233,235,254,2 103,233,174,297,2 228,231,245,244,2 398,239,436,261,2 379,237,392,252,2 352,230,367,240,2 332,175,340,187,9 474,182,483,204,9 207,200,216,208,9 202,232,228,257,2 385,237,406,254,2 270,168,279,185,9 362,234,376,251,2 216,158,226,170,9 239,212,408,254,2 -./model_data/coco/val2017/000000368038.jpg 70,17,633,300,6 -./model_data/coco/val2017/000000277020.jpg 282,187,303,275,27 424,207,438,237,27 187,79,344,355,0 0,8,248,360,0 346,129,465,275,0 385,248,414,285,41 369,259,387,281,45 143,325,249,360,56 223,249,449,334,60 445,1,640,357,0 192,210,243,236,45 177,297,194,338,56 -./model_data/coco/val2017/000000205514.jpg 0,121,44,299,58 82,226,106,255,58 217,124,279,175,62 368,196,532,312,57 2,181,115,325,57 346,195,495,243,57 80,112,117,145,73 86,164,91,190,73 107,72,122,98,75 164,177,335,371,56 467,241,579,381,56 3,183,113,294,56 540,234,634,359,56 609,235,640,266,60 83,69,85,95,73 91,163,95,188,73 133,180,145,189,73 325,144,327,157,73 145,119,149,146,73 313,175,316,184,73 124,124,137,145,75 98,165,104,191,73 322,143,325,156,73 319,111,322,125,73 152,189,232,308,56 164,177,334,370,57 -./model_data/coco/val2017/000000078823.jpg 197,117,368,339,16 58,81,189,207,58 9,160,475,474,2 1,150,187,411,2 594,175,639,303,2 -./model_data/coco/val2017/000000560256.jpg 155,328,257,404,46 245,232,566,408,46 227,332,292,407,46 136,410,228,466,46 150,400,205,422,46 122,316,292,474,46 484,396,546,448,49 525,327,640,424,49 242,135,275,163,47 430,147,468,178,47 195,80,224,108,47 460,169,487,193,47 508,151,582,196,47 390,125,594,203,47 160,98,183,120,47 213,62,241,91,47 214,92,242,121,47 240,69,265,87,47 226,110,253,130,47 295,79,329,97,47 543,401,621,474,49 53,246,70,264,49 42,292,56,307,49 42,270,61,288,49 60,271,72,276,49 71,260,86,272,49 76,244,96,260,49 0,63,346,228,47 -./model_data/coco/val2017/000000313034.jpg 192,228,207,266,39 232,180,250,263,39 553,169,574,191,74 2,109,325,473,0 294,88,548,473,0 304,274,331,331,42 215,277,312,331,55 595,204,602,219,39 232,180,251,256,75 289,141,310,202,0 602,274,613,288,41 -./model_data/coco/val2017/000000488592.jpg 273,477,323,564,1 2,474,105,557,1 168,457,210,483,1 265,431,310,542,0 254,431,267,469,0 240,430,250,469,0 234,433,241,457,0 214,431,227,467,0 252,411,309,430,25 248,430,259,456,0 223,432,232,459,0 179,462,201,485,1 169,463,178,489,1 -./model_data/coco/val2017/000000548506.jpg 351,0,582,297,46 451,2,640,206,46 226,81,640,381,46 59,7,362,173,47 2,188,256,425,47 73,167,303,334,47 1,57,74,231,47 35,63,131,196,47 -./model_data/coco/val2017/000000147498.jpg 308,282,316,288,14 371,184,379,193,14 223,338,232,344,14 348,245,357,251,14 198,366,205,372,14 175,376,180,381,14 165,369,174,376,14 206,326,215,333,14 374,261,383,268,14 349,213,357,221,14 149,306,157,315,14 173,288,182,297,14 322,239,332,246,14 267,218,274,223,14 288,306,296,313,14 362,155,372,164,14 294,161,304,167,14 190,401,198,408,14 227,327,232,331,14 279,284,287,291,14 291,296,300,304,14 178,316,187,325,14 1,93,485,523,14 -./model_data/coco/val2017/000000140583.jpg 521,297,549,346,18 385,292,408,343,18 410,294,434,336,18 455,294,477,339,18 427,283,447,330,18 308,280,321,291,18 349,288,371,340,18 368,290,384,339,18 317,256,338,296,0 288,262,303,300,0 444,293,458,330,18 475,290,493,337,18 494,294,520,337,18 322,292,336,326,18 334,289,350,324,18 161,258,201,286,7 366,287,389,337,19 457,293,479,338,19 436,269,476,297,19 468,266,509,296,19 420,273,440,288,19 262,265,530,312,18 -./model_data/coco/val2017/000000166509.jpg 165,51,182,87,9 562,78,591,150,9 -./model_data/coco/val2017/000000426376.jpg 171,259,264,405,0 218,392,278,413,31 -./model_data/coco/val2017/000000341058.jpg 203,490,216,528,39 181,564,312,632,56 171,534,359,575,60 89,229,359,352,25 182,505,198,551,39 332,582,358,640,56 279,506,357,541,56 -./model_data/coco/val2017/000000371749.jpg 31,230,282,370,57 224,0,500,367,0 139,94,400,368,0 284,164,367,231,65 125,174,189,213,65 213,228,262,268,65 109,22,210,137,16 -./model_data/coco/val2017/000000185802.jpg 228,375,313,556,25 2,374,254,605,56 348,428,478,627,56 33,111,233,465,46 -./model_data/coco/val2017/000000463842.jpg 73,125,571,270,59 524,279,548,370,39 394,277,421,362,39 356,273,386,353,39 295,296,315,349,39 237,255,266,337,39 222,252,245,333,39 174,277,191,329,39 182,245,207,326,39 47,234,71,314,39 80,234,107,316,39 107,234,135,320,39 415,315,433,375,39 149,239,173,321,39 25,110,575,397,39 -./model_data/coco/val2017/000000281409.jpg 343,185,404,219,34 332,113,585,408,0 79,228,273,405,0 554,0,638,71,0 479,0,559,71,0 380,4,468,73,0 134,0,225,94,0 50,0,112,68,0 4,0,62,85,0 393,32,466,65,56 312,32,386,74,56 471,32,491,71,56 0,3,17,45,56 392,0,468,35,0 318,1,382,76,0 232,330,271,369,35 1,45,55,88,56 9,162,139,403,0 296,0,390,55,0 -./model_data/coco/val2017/000000263860.jpg 259,86,640,426,20 0,51,307,426,20 -./model_data/coco/val2017/000000342971.jpg 110,143,214,160,29 27,123,233,630,0 -./model_data/coco/val2017/000000467848.jpg 211,216,605,425,7 23,285,252,382,7 579,298,631,415,0 -./model_data/coco/val2017/000000356505.jpg 335,342,483,372,37 222,85,398,355,0 -./model_data/coco/val2017/000000555005.jpg 108,150,552,479,16 0,88,636,474,59 431,0,465,104,73 322,2,347,95,73 275,1,292,94,73 376,3,403,106,73 448,3,477,102,73 401,27,426,99,73 388,0,416,105,73 373,14,385,89,73 304,1,328,75,73 -./model_data/coco/val2017/000000140420.jpg 402,233,448,308,3 -./model_data/coco/val2017/000000570664.jpg 275,130,461,325,15 0,23,104,329,0 176,11,357,169,15 -./model_data/coco/val2017/000000123321.jpg 11,15,602,599,45 157,465,298,570,50 353,64,586,383,50 232,343,348,457,50 297,448,388,568,50 36,45,293,313,50 308,129,372,228,50 193,245,299,343,50 384,462,438,536,50 66,394,180,459,50 90,290,154,319,50 267,247,358,358,50 48,392,73,439,51 548,244,591,290,51 390,73,428,89,51 424,235,459,254,51 323,107,337,122,51 288,32,366,91,51 138,211,159,226,51 385,375,401,390,51 306,306,329,327,51 -./model_data/coco/val2017/000000313562.jpg 238,48,636,472,0 24,104,117,311,0 0,262,79,348,46 50,428,79,465,51 74,407,148,440,51 0,401,288,480,51 -./model_data/coco/val2017/000000150224.jpg 33,102,322,202,25 428,315,555,421,56 205,289,290,404,0 409,267,534,377,0 346,213,424,399,0 407,241,452,351,0 378,282,476,417,0 312,336,336,362,0 165,371,220,409,26 587,335,640,376,24 576,369,640,420,24 537,364,580,418,24 271,360,348,414,24 273,361,348,415,26 -./model_data/coco/val2017/000000320743.jpg 149,53,221,206,0 307,28,345,90,0 438,55,526,205,0 521,31,567,107,0 172,11,197,55,0 107,10,141,111,0 322,20,343,53,0 71,5,99,78,0 0,0,25,121,0 155,45,173,67,0 271,131,542,348,20 112,66,640,335,20 257,52,385,150,20 177,36,277,147,20 0,68,73,309,20 53,66,232,195,20 617,152,640,266,20 94,32,158,73,20 -./model_data/coco/val2017/000000045728.jpg 11,24,356,155,42 321,61,638,143,43 -./model_data/coco/val2017/000000149406.jpg 86,364,488,599,3 -./model_data/coco/val2017/000000320425.jpg 81,155,172,307,23 176,162,230,367,23 177,154,311,376,23 259,159,470,385,23 298,107,459,470,23 383,175,584,385,23 386,178,442,244,23 338,366,433,480,23 23,169,160,323,23 558,421,640,480,23 -./model_data/coco/val2017/000000360097.jpg 464,87,499,134,0 296,51,340,76,28 254,34,296,72,28 224,30,252,71,28 196,41,227,82,28 182,89,214,130,28 205,77,236,125,28 241,99,263,124,28 229,117,251,157,28 212,127,230,168,28 193,128,215,171,28 253,80,298,106,28 98,35,142,62,28 301,63,336,103,28 0,0,488,158,28 -./model_data/coco/val2017/000000463174.jpg 103,244,130,270,32 218,15,520,425,0 10,233,228,336,38 -./model_data/coco/val2017/000000428867.jpg 87,108,218,299,77 151,122,234,271,77 205,129,277,226,77 228,54,301,182,77 480,150,497,218,56 2,148,432,328,60 423,132,437,149,56 -./model_data/coco/val2017/000000376093.jpg 67,113,266,345,0 224,125,381,351,0 0,188,92,368,0 313,229,334,257,41 354,360,380,417,41 66,324,189,436,53 158,316,216,346,53 0,352,28,443,53 278,348,451,439,60 409,101,586,471,0 170,344,310,473,0 420,228,444,260,41 297,347,322,388,41 -./model_data/coco/val2017/000000054931.jpg 0,87,148,283,17 197,154,382,623,0 -./model_data/coco/val2017/000000370900.jpg 146,40,322,270,77 2,198,326,472,77 293,46,597,472,77 588,386,640,468,77 -./model_data/coco/val2017/000000137950.jpg 4,32,535,173,4 -./model_data/coco/val2017/000000105912.jpg 38,134,81,161,2 182,110,344,173,5 339,150,354,191,0 243,150,252,178,0 234,145,245,178,0 215,143,228,172,0 393,153,397,166,0 31,130,43,156,0 54,130,71,160,0 5,121,14,156,0 361,156,372,187,0 0,123,37,155,2 373,156,386,188,0 421,105,454,209,0 295,119,332,199,0 109,97,209,321,10 228,147,431,180,0 -./model_data/coco/val2017/000000309391.jpg 423,198,452,219,1 437,120,459,139,2 79,252,103,324,0 126,221,141,280,0 604,269,626,356,0 429,186,446,217,0 526,127,539,149,0 95,0,131,50,9 247,59,269,100,9 299,67,308,91,9 362,81,370,87,9 598,187,608,220,9 625,211,637,255,9 301,83,317,111,9 551,118,557,133,9 114,156,126,199,9 19,239,43,291,0 134,252,150,289,1 264,207,291,234,2 485,224,601,346,5 475,11,491,43,9 203,222,218,268,0 378,119,390,149,0 32,257,42,301,0 18,263,33,321,0 257,236,325,288,2 331,212,374,244,2 384,146,412,172,2 311,189,364,213,2 261,229,316,243,2 450,125,475,145,2 368,127,375,146,0 545,210,552,225,0 344,215,348,219,0 450,50,455,55,9 163,218,172,261,0 5,109,582,193,9 -./model_data/coco/val2017/000000566923.jpg 76,224,289,421,10 134,16,570,420,0 104,2,253,298,0 221,13,334,242,0 502,59,584,224,0 560,75,640,420,0 304,22,521,420,0 71,2,151,197,0 57,0,123,132,0 0,0,32,87,0 215,39,245,178,26 19,6,61,111,0 -./model_data/coco/val2017/000000568213.jpg 351,13,463,266,0 110,34,276,264,0 77,97,118,126,29 -./model_data/coco/val2017/000000132408.jpg 232,237,349,481,17 127,256,232,477,17 31,296,96,439,0 395,304,416,362,0 364,308,423,353,17 420,320,429,386,0 -./model_data/coco/val2017/000000306733.jpg 282,253,466,355,58 586,324,602,363,39 571,322,587,362,39 96,362,136,425,39 186,393,361,426,71 0,299,49,400,58 446,326,545,426,61 -./model_data/coco/val2017/000000117425.jpg 1,187,457,419,60 276,7,573,426,0 387,181,431,361,44 115,240,200,364,55 538,0,640,417,0 0,40,69,208,0 0,191,80,322,41 -./model_data/coco/val2017/000000256941.jpg 107,226,282,500,1 0,250,86,494,1 21,0,332,106,25 -./model_data/coco/val2017/000000262895.jpg 152,302,279,495,27 0,6,334,500,0 -./model_data/coco/val2017/000000284698.jpg 19,165,221,333,0 1,155,234,499,3 -./model_data/coco/val2017/000000009914.jpg 2,154,199,358,45 132,0,257,62,45 434,300,592,480,43 153,188,492,480,48 528,162,637,471,48 431,0,640,199,60 518,185,640,464,52 -./model_data/coco/val2017/000000462728.jpg 210,203,264,246,16 93,137,120,172,0 166,215,337,270,37 -./model_data/coco/val2017/000000355610.jpg 1,38,356,422,77 -./model_data/coco/val2017/000000325483.jpg 110,393,127,440,39 569,299,584,321,39 1,300,338,473,57 444,262,640,420,57 119,102,302,478,0 348,132,515,480,0 569,318,587,343,41 281,331,320,366,63 69,369,164,428,63 184,167,210,236,65 492,171,504,206,65 139,417,172,432,65 65,417,91,432,65 322,271,338,276,73 299,247,305,262,73 239,176,249,194,65 319,310,323,327,73 304,242,344,264,73 272,290,297,308,73 298,290,302,305,73 311,312,316,328,73 325,307,333,325,73 339,264,344,281,73 301,289,308,306,73 305,247,308,264,73 331,308,344,325,73 311,288,315,304,73 -./model_data/coco/val2017/000000073153.jpg 341,109,355,126,67 206,12,397,633,0 -./model_data/coco/val2017/000000575187.jpg 0,160,257,347,0 269,52,497,167,23 64,289,133,327,73 -./model_data/coco/val2017/000000031248.jpg 19,113,107,333,58 194,234,375,330,56 415,244,499,329,56 1,284,106,329,57 54,33,154,71,73 76,160,82,189,73 52,72,127,108,73 96,158,102,189,73 259,153,277,167,45 0,71,94,291,58 422,138,500,250,58 442,83,453,115,73 386,81,390,114,73 384,125,393,151,73 81,161,87,188,73 428,159,436,187,73 89,158,93,188,73 392,53,395,77,73 0,284,107,333,56 125,117,132,146,73 53,117,149,149,73 -./model_data/coco/val2017/000000003661.jpg 61,0,553,348,46 0,163,115,207,66 567,19,640,240,41 -./model_data/coco/val2017/000000320232.jpg 150,385,199,412,2 34,392,52,418,0 0,378,21,421,0 196,374,217,440,0 138,300,146,317,9 134,303,138,318,9 37,386,52,397,25 47,383,64,389,25 210,281,224,293,9 6,384,33,391,25 -./model_data/coco/val2017/000000203095.jpg 503,297,586,376,47 424,150,491,247,51 402,137,443,237,51 298,107,405,167,50 0,109,116,416,69 -./model_data/coco/val2017/000000127955.jpg 310,31,621,381,21 4,96,361,411,21 -./model_data/coco/val2017/000000513524.jpg 291,13,505,336,0 147,294,456,380,37 -./model_data/coco/val2017/000000305309.jpg 379,52,521,374,0 0,103,188,404,0 509,1,593,64,34 79,134,177,346,0 -./model_data/coco/val2017/000000179214.jpg 0,197,338,471,53 -./model_data/coco/val2017/000000370375.jpg 10,192,273,306,34 186,87,376,632,0 333,312,388,376,32 -./model_data/coco/val2017/000000372466.jpg 176,0,639,124,63 21,116,309,218,64 0,72,157,157,66 345,48,543,102,66 30,16,95,49,56 311,0,373,43,41 93,29,109,47,41 -./model_data/coco/val2017/000000360960.jpg 74,77,389,230,25 169,215,359,575,0 23,104,139,439,0 0,102,58,427,0 364,96,426,416,0 324,191,396,459,0 -./model_data/coco/val2017/000000166563.jpg 79,43,522,373,20 -./model_data/coco/val2017/000000191672.jpg 363,152,481,255,0 397,199,436,283,37 -./model_data/coco/val2017/000000330818.jpg 4,145,185,555,0 2,426,33,566,39 253,228,273,292,39 229,245,250,289,39 326,1,425,84,74 28,424,120,551,39 195,235,212,288,39 268,233,286,265,39 172,421,426,632,69 -./model_data/coco/val2017/000000493284.jpg 161,224,312,420,20 307,136,568,421,20 3,36,299,427,20 260,92,423,330,20 419,76,640,366,20 419,39,640,109,20 -./model_data/coco/val2017/000000422998.jpg 47,197,136,427,39 423,201,508,427,39 324,221,437,346,48 1,0,518,321,0 123,381,237,419,43 -./model_data/coco/val2017/000000509719.jpg 250,142,435,361,14 426,1,639,264,14 -./model_data/coco/val2017/000000499775.jpg 517,318,636,368,2 190,225,357,386,5 -./model_data/coco/val2017/000000083172.jpg 397,53,438,121,0 54,0,98,110,0 137,168,168,201,38 162,144,240,313,0 240,59,248,67,32 396,65,436,118,56 -./model_data/coco/val2017/000000054967.jpg 108,425,153,462,2 108,428,155,465,2 182,419,198,435,2 243,431,281,466,2 194,419,211,430,2 229,414,241,425,2 98,344,375,406,9 150,419,174,439,2 385,421,424,637,0 216,402,220,407,9 97,400,108,428,9 212,433,267,475,2 3,433,55,469,2 210,417,224,429,2 201,417,215,429,2 52,424,95,461,2 0,421,192,473,2 -./model_data/coco/val2017/000000372819.jpg 427,192,468,278,16 216,223,274,321,16 226,139,268,231,16 280,109,314,186,16 442,33,525,163,0 543,22,610,173,0 486,77,639,162,13 524,75,640,88,60 -./model_data/coco/val2017/000000186624.jpg 128,1,639,516,6 40,297,97,477,0 1,112,209,414,6 31,314,76,360,26 79,311,102,341,24 -./model_data/coco/val2017/000000160864.jpg 290,173,343,269,56 284,59,525,360,0 436,68,586,301,0 542,45,611,257,0 6,168,191,371,0 310,19,371,109,34 130,42,213,106,34 571,170,587,266,34 149,228,195,276,35 181,0,271,86,0 624,222,631,230,32 452,18,488,89,34 252,269,300,281,34 280,168,322,260,56 528,82,541,106,35 593,150,607,177,35 398,253,425,271,35 132,86,256,296,0 -./model_data/coco/val2017/000000376278.jpg 40,77,613,324,22 464,95,640,180,22 598,16,640,125,22 -./model_data/coco/val2017/000000439180.jpg 578,178,608,274,17 91,203,146,347,17 461,186,507,289,17 394,181,462,337,17 337,206,380,337,17 173,202,231,355,17 155,192,188,338,17 272,178,325,347,17 512,192,553,278,17 35,159,183,236,7 186,145,273,194,7 86,162,157,280,0 15,204,35,268,0 0,204,13,268,0 163,159,199,204,0 254,171,279,219,0 233,173,268,263,0 269,152,340,266,0 469,149,517,241,0 387,146,472,270,0 200,160,252,300,0 554,182,577,236,17 338,150,391,221,0 576,141,615,220,0 519,160,564,237,0 263,205,275,227,17 605,184,620,220,17 272,142,639,319,0 -./model_data/coco/val2017/000000023751.jpg 187,111,289,184,33 -./model_data/coco/val2017/000000329323.jpg 41,272,222,504,0 95,44,250,279,0 48,47,96,336,0 346,85,425,290,0 300,37,357,151,0 240,54,330,145,0 1,129,109,640,0 71,11,162,263,0 121,441,395,638,0 10,43,75,245,0 400,79,425,149,0 225,96,310,241,0 281,140,364,268,0 0,18,424,359,0 -./model_data/coco/val2017/000000103548.jpg 472,233,510,268,18 379,235,400,259,18 306,220,338,248,18 247,224,272,252,18 204,222,237,250,18 405,236,437,260,18 334,226,369,257,18 174,220,200,248,18 231,215,255,244,18 285,216,307,244,18 394,221,424,232,18 450,224,489,259,18 538,207,566,297,0 574,231,622,265,18 459,226,502,258,18 411,228,455,259,18 394,230,413,256,18 165,211,188,235,18 349,209,373,220,18 143,209,411,261,18 -./model_data/coco/val2017/000000440171.jpg 66,7,194,182,0 1,142,411,618,20 332,345,383,399,0 -./model_data/coco/val2017/000000055950.jpg 305,156,322,173,32 82,69,305,389,0 80,118,194,222,38 -./model_data/coco/val2017/000000113051.jpg 34,198,446,382,8 -./model_data/coco/val2017/000000209530.jpg 430,216,455,296,39 379,302,446,427,39 345,132,443,315,0 183,152,237,253,0 300,299,355,392,40 180,348,245,398,53 211,242,384,269,53 258,160,334,235,0 0,1,168,428,0 288,366,369,428,40 285,231,292,242,41 372,342,446,428,41 248,188,275,203,53 153,42,206,84,62 411,82,624,395,0 97,130,263,355,0 302,164,367,244,0 292,359,370,420,41 192,369,287,426,43 350,332,395,341,43 223,301,236,305,43 218,212,252,227,53 289,278,310,311,39 -./model_data/coco/val2017/000000033114.jpg 163,172,503,276,4 245,336,318,456,12 160,342,184,375,12 556,351,581,386,12 224,344,239,366,12 410,260,541,401,12 539,351,554,369,12 349,332,394,377,12 -./model_data/coco/val2017/000000051961.jpg 231,243,301,391,12 -./model_data/coco/val2017/000000038210.jpg 69,266,207,539,0 24,332,43,376,0 113,537,318,557,30 -./model_data/coco/val2017/000000007888.jpg 184,250,302,417,74 319,242,470,403,74 -./model_data/coco/val2017/000000377946.jpg 509,252,638,425,2 0,186,81,274,2 88,53,455,391,7 553,100,566,132,9 158,42,181,76,9 613,162,640,220,0 582,169,594,191,0 539,169,554,205,0 591,165,600,208,0 628,164,635,180,0 568,164,572,179,0 0,143,91,200,5 550,138,563,151,9 554,167,569,212,0 612,160,625,211,0 600,161,614,193,2 474,81,482,102,42 218,109,227,187,42 97,172,113,271,42 267,107,276,190,43 -./model_data/coco/val2017/000000289516.jpg 120,187,246,323,74 38,198,72,328,74 -./model_data/coco/val2017/000000206411.jpg 2,194,176,376,0 172,0,471,360,61 -./model_data/coco/val2017/000000379476.jpg 446,384,485,513,56 332,285,374,344,56 316,250,333,320,56 204,354,366,397,60 234,274,338,347,60 214,406,311,638,40 263,395,342,596,40 229,323,280,407,40 274,326,308,399,40 27,298,60,377,40 50,295,80,370,40 237,296,269,323,40 265,297,281,326,40 264,246,293,249,60 391,347,423,427,56 350,311,384,398,56 262,248,297,255,60 186,396,418,487,60 107,419,485,633,60 0,300,225,616,60 256,261,311,277,60 262,255,299,261,60 201,258,236,284,60 -./model_data/coco/val2017/000000530854.jpg 1,154,460,419,25 385,67,640,369,25 193,94,451,218,25 406,63,611,129,25 259,41,513,100,25 558,42,639,81,25 0,90,183,170,25 59,133,142,169,0 -./model_data/coco/val2017/000000148783.jpg 82,190,437,569,22 297,122,438,463,22 -./model_data/coco/val2017/000000312263.jpg 229,548,303,612,74 -./model_data/coco/val2017/000000286708.jpg 37,107,640,449,15 -./model_data/coco/val2017/000000520531.jpg 224,105,565,455,15 0,90,138,326,56 113,344,267,401,65 507,163,533,235,73 547,88,559,144,73 549,0,560,52,73 540,248,552,293,73 559,169,584,240,73 540,0,553,51,73 548,184,564,237,73 537,186,552,235,73 567,79,585,151,73 89,290,150,316,73 482,169,496,230,73 519,86,529,136,73 179,1,234,49,77 21,310,97,350,65 494,164,513,232,73 386,0,639,325,73 -./model_data/coco/val2017/000000521956.jpg 0,1,347,326,0 17,1,49,190,38 -./model_data/coco/val2017/000000064898.jpg 416,237,524,302,0 457,280,561,303,37 298,230,378,259,37 343,204,398,255,0 -./model_data/coco/val2017/000000401446.jpg 155,2,371,135,25 244,10,416,469,0 330,139,416,259,26 -./model_data/coco/val2017/000000390902.jpg 49,73,266,499,0 53,432,92,500,38 180,59,227,182,0 -./model_data/coco/val2017/000000165336.jpg 204,173,359,411,23 310,132,476,413,23 -./model_data/coco/val2017/000000141821.jpg 514,155,640,472,39 47,1,584,114,0 83,105,542,469,53 0,286,95,386,45 0,45,67,159,0 -./model_data/coco/val2017/000000331280.jpg 71,69,365,274,17 395,46,500,237,17 264,187,344,327,0 364,106,419,166,0 15,170,88,322,0 0,109,68,174,0 307,49,361,108,0 259,31,309,97,0 344,32,369,69,0 488,48,500,95,0 205,75,223,97,0 431,191,480,284,0 405,26,448,71,0 365,54,412,121,0 18,26,98,171,0 204,2,468,99,0 -./model_data/coco/val2017/000000180798.jpg 175,145,302,451,67 -./model_data/coco/val2017/000000293390.jpg 392,21,419,90,39 457,8,469,44,79 469,9,477,45,79 494,11,502,49,79 192,84,385,138,71 -./model_data/coco/val2017/000000402720.jpg 332,366,371,507,39 212,462,251,533,39 375,471,416,497,67 247,226,414,428,0 375,242,610,540,0 0,261,187,533,0 206,346,244,441,40 298,405,341,533,40 400,380,448,501,40 187,330,217,411,40 257,421,306,534,40 135,463,202,494,43 177,431,220,460,53 578,271,610,331,40 125,437,188,463,42 -./model_data/coco/val2017/000000214200.jpg 97,180,317,434,11 28,487,427,626,2 303,487,424,535,2 327,454,426,489,2 -./model_data/coco/val2017/000000051598.jpg 100,319,115,346,39 0,430,140,536,71 -./model_data/coco/val2017/000000269121.jpg 148,30,358,595,0 330,210,431,335,38 -./model_data/coco/val2017/000000024610.jpg 67,283,220,480,56 456,302,640,473,57 24,246,145,320,63 327,320,424,361,73 378,381,389,424,73 329,368,424,424,73 266,327,288,371,73 311,330,326,373,73 228,322,239,374,73 248,330,252,370,73 277,406,324,421,73 519,302,609,403,24 11,261,34,326,39 3,386,14,421,56 0,386,3,424,56 0,323,59,349,73 -./model_data/coco/val2017/000000530099.jpg 161,179,428,299,15 113,234,499,369,2 -./model_data/coco/val2017/000000414510.jpg 147,391,424,483,1 195,193,380,287,2 46,197,106,240,2 169,163,237,238,2 54,267,134,388,0 192,186,250,276,0 146,264,155,274,67 223,30,480,286,7 92,306,116,393,24 98,301,162,382,26 99,321,159,383,24 13,194,27,204,2 115,247,202,406,0 -./model_data/coco/val2017/000000539962.jpg 26,279,52,305,56 53,251,66,278,0 337,308,349,320,0 333,308,360,324,0 437,287,470,321,29 75,256,87,293,0 0,214,64,239,25 62,217,91,242,25 88,225,123,275,25 6,283,22,311,56 50,278,64,303,56 59,279,71,303,56 88,278,102,296,56 102,276,115,297,56 112,276,123,294,56 0,205,37,236,25 18,283,28,310,56 407,286,538,386,60 -./model_data/coco/val2017/000000297427.jpg 330,473,578,609,0 174,86,518,304,54 99,0,256,112,0 81,1,558,192,0 -./model_data/coco/val2017/000000520077.jpg 36,28,103,269,39 590,162,640,207,64 131,201,451,251,73 80,375,381,421,73 113,307,431,358,73 173,95,461,167,73 137,117,438,144,73 422,0,541,350,73 1,293,113,389,73 146,247,432,277,73 193,51,428,113,73 234,38,436,70,73 80,211,426,287,73 87,1,431,51,62 119,153,463,209,73 429,254,587,410,73 1,10,470,426,73 -./model_data/coco/val2017/000000523229.jpg 80,291,386,640,61 -./model_data/coco/val2017/000000458992.jpg 1,2,458,412,0 273,322,437,417,42 61,371,145,401,43 0,392,461,639,53 -./model_data/coco/val2017/000000499768.jpg 42,39,209,113,2 242,22,343,242,10 0,64,46,105,2 -./model_data/coco/val2017/000000085665.jpg 234,231,440,602,33 -./model_data/coco/val2017/000000281759.jpg 199,87,329,200,25 343,102,480,213,25 54,73,205,204,25 261,235,424,346,25 463,91,601,215,25 206,131,284,406,0 95,97,199,403,0 381,139,466,418,0 299,143,376,415,0 32,299,108,321,7 458,139,532,422,0 213,190,227,274,0 -./model_data/coco/val2017/000000493772.jpg 272,262,343,286,25 284,285,336,441,0 -./model_data/coco/val2017/000000388846.jpg 469,329,640,405,56 333,295,365,327,0 359,292,377,322,0 339,261,357,313,0 282,306,340,326,0 45,333,120,365,0 172,307,196,336,0 441,304,541,333,0 418,253,429,282,0 256,302,274,332,0 119,335,146,353,0 542,310,574,334,24 465,239,640,319,25 0,288,117,422,25 137,273,245,344,25 78,282,141,309,25 111,277,161,303,25 200,274,267,301,25 234,273,284,295,25 384,231,403,238,25 449,249,526,288,25 593,230,640,256,25 251,271,300,292,25 462,312,612,389,56 72,339,97,351,0 369,273,380,286,0 571,231,615,249,25 605,220,609,232,0 544,382,551,393,56 473,313,521,321,56 453,307,473,317,56 21,221,604,309,25 0,213,626,359,0 -./model_data/coco/val2017/000000019432.jpg 344,58,416,166,56 190,15,238,57,56 522,57,596,173,56 282,15,354,165,56 356,14,419,64,56 420,14,480,61,56 479,15,540,66,56 411,60,467,167,56 224,58,292,167,56 166,56,232,166,56 55,26,209,430,0 88,242,161,379,38 538,18,596,65,56 320,271,342,291,32 74,12,133,56,56 1,9,639,297,56 -./model_data/coco/val2017/000000367818.jpg 143,49,548,391,17 91,74,219,402,0 -./model_data/coco/val2017/000000303818.jpg 312,66,480,311,5 162,199,174,217,24 4,198,134,276,2 240,195,255,258,0 189,196,215,266,0 173,190,196,250,0 181,180,198,243,0 154,190,177,255,0 311,200,338,277,0 268,205,273,230,0 197,186,228,258,0 36,180,52,199,0 11,184,25,217,0 110,169,122,175,2 211,223,227,247,26 290,201,311,277,0 188,218,196,234,26 251,201,281,271,0 -./model_data/coco/val2017/000000235857.jpg 52,113,321,277,19 255,107,548,352,19 360,82,459,118,19 -./model_data/coco/val2017/000000155443.jpg 160,196,375,284,6 208,182,214,189,9 589,201,640,269,6 -./model_data/coco/val2017/000000451084.jpg 167,121,315,378,0 185,304,285,420,36 -./model_data/coco/val2017/000000070739.jpg 222,129,632,474,0 0,0,567,473,0 477,309,566,479,40 538,285,637,480,40 596,204,639,353,0 -./model_data/coco/val2017/000000144984.jpg 0,318,425,640,57 76,175,398,632,0 89,432,155,492,65 0,306,145,383,57 326,387,353,428,65 -./model_data/coco/val2017/000000305317.jpg 50,95,79,134,33 206,134,213,139,33 171,407,183,434,0 85,411,90,419,0 68,416,80,434,0 265,402,274,423,0 110,406,121,434,0 132,402,143,436,0 141,403,148,435,0 190,415,198,435,0 15,399,26,434,0 92,409,99,435,0 187,404,193,424,0 232,408,241,432,0 24,420,41,436,33 250,344,266,424,33 45,404,52,420,0 223,405,235,432,0 -./model_data/coco/val2017/000000170893.jpg 270,80,638,474,16 65,311,407,474,61 -./model_data/coco/val2017/000000448810.jpg 51,335,97,375,0 -./model_data/coco/val2017/000000356612.jpg 201,187,323,287,2 283,164,318,202,2 0,130,251,223,5 554,168,614,279,0 528,169,565,273,0 505,211,614,330,1 310,99,525,308,7 63,157,75,174,0 57,158,64,174,0 224,199,283,299,19 140,194,206,312,19 59,193,134,314,19 317,196,402,341,19 202,183,221,213,19 404,202,483,336,19 51,186,118,262,19 376,144,410,182,0 446,150,495,187,0 22,162,30,175,0 112,202,155,306,19 241,179,261,190,19 -./model_data/coco/val2017/000000364322.jpg 107,147,475,311,18 114,266,561,473,18 493,303,640,474,18 408,126,597,296,18 481,79,639,212,18 177,9,259,79,18 140,50,256,146,18 6,212,220,460,18 582,157,640,312,18 558,56,640,94,18 454,61,578,141,18 410,1,508,118,18 317,113,486,181,18 105,118,254,217,18 13,36,100,124,18 0,77,105,426,18 -./model_data/coco/val2017/000000291634.jpg 40,311,408,571,1 57,243,411,464,3 349,189,385,283,0 285,192,304,289,0 217,197,236,252,0 9,193,34,277,0 314,194,340,287,0 162,202,181,238,0 134,200,141,228,0 17,224,168,384,3 205,196,220,248,0 0,194,14,284,0 15,218,182,350,3 18,265,42,309,3 139,199,147,230,0 28,212,49,257,3 32,239,53,264,3 -./model_data/coco/val2017/000000153782.jpg 112,202,163,250,74 74,216,83,261,74 -./model_data/coco/val2017/000000334309.jpg 256,250,375,336,67 302,81,373,119,2 379,79,409,97,2 268,92,294,126,2 0,38,415,420,0 0,114,50,295,0 92,119,135,147,2 252,220,345,267,53 3,117,43,170,0 249,218,351,271,48 -./model_data/coco/val2017/000000091654.jpg 1,0,212,235,44 1,1,639,480,60 34,0,637,460,45 -./model_data/coco/val2017/000000112110.jpg 211,0,433,298,0 216,284,381,364,28 -./model_data/coco/val2017/000000000776.jpg 1,56,345,527,77 2,278,320,632,77 94,5,427,550,77 1,0,428,640,59 -./model_data/coco/val2017/000000120420.jpg 153,188,424,263,67 114,108,545,480,0 468,91,498,181,0 430,88,462,183,0 401,117,429,180,0 36,150,68,167,13 370,98,390,135,0 355,92,372,121,0 13,99,20,119,0 339,100,353,111,0 26,168,35,179,14 8,168,18,175,14 393,87,434,120,25 30,114,62,168,0 388,98,408,157,0 206,163,215,169,14 201,158,208,165,14 39,177,54,185,14 3,176,10,184,14 193,165,203,172,14 224,163,231,169,14 190,155,196,162,14 36,176,45,183,14 66,172,68,176,14 231,156,237,164,14 219,159,227,164,14 -./model_data/coco/val2017/000000400794.jpg 57,139,81,198,39 0,1,425,577,0 1,562,232,632,42 159,530,350,622,53 55,473,122,535,53 -./model_data/coco/val2017/000000433204.jpg 245,253,312,319,3 276,244,301,313,0 423,234,445,298,0 442,239,458,294,0 463,236,478,288,0 392,248,426,261,2 472,238,492,260,2 289,255,296,266,0 -./model_data/coco/val2017/000000031118.jpg 302,105,317,128,74 329,104,348,127,74 561,341,576,393,0 580,345,593,384,0 597,345,608,383,0 588,344,597,382,0 490,339,506,388,0 91,339,106,356,2 504,344,517,387,0 629,345,640,388,0 303,339,314,377,0 73,342,97,363,2 558,341,564,379,0 159,337,163,348,0 294,338,303,377,0 311,356,313,362,0 573,351,582,373,0 -./model_data/coco/val2017/000000373705.jpg 492,65,579,210,0 206,129,250,202,0 94,85,136,201,0 130,154,166,204,0 0,159,10,186,0 620,135,639,208,0 365,165,555,424,10 -./model_data/coco/val2017/000000284296.jpg 399,165,526,271,23 255,139,358,247,23 97,124,219,235,23 -./model_data/coco/val2017/000000557172.jpg 493,310,503,338,39 605,371,640,446,61 258,355,491,480,71 422,292,440,312,39 -./model_data/coco/val2017/000000100283.jpg 206,32,469,308,11 177,404,274,435,2 87,399,121,418,2 43,403,87,421,2 103,404,145,424,2 292,403,414,428,2 -./model_data/coco/val2017/000000142238.jpg 359,115,375,133,32 465,210,532,353,0 435,125,505,275,0 420,183,469,356,0 585,229,598,267,0 270,117,324,259,0 241,183,286,353,0 47,220,83,359,0 336,208,391,356,0 617,247,640,316,0 282,206,329,355,0 269,124,296,184,0 0,242,9,286,0 152,217,211,356,0 75,111,591,372,0 -./model_data/coco/val2017/000000415990.jpg 484,278,499,366,16 7,168,49,219,19 48,169,92,194,19 119,172,184,217,19 158,173,217,230,19 200,172,226,194,19 232,174,285,233,19 334,172,417,228,19 270,173,296,222,19 46,193,80,221,19 79,170,124,227,19 213,193,243,225,19 409,177,480,232,19 293,158,331,238,0 322,194,357,226,19 439,156,474,243,0 45,169,499,239,19 -./model_data/coco/val2017/000000039551.jpg 587,164,601,177,32 119,53,315,338,0 43,100,135,149,38 -./model_data/coco/val2017/000000301421.jpg 281,53,431,180,62 5,287,182,420,56 347,224,382,282,67 244,280,498,415,63 136,234,255,298,66 295,96,376,154,2 560,195,640,427,56 214,237,257,258,67 227,247,263,262,65 341,292,385,336,64 -./model_data/coco/val2017/000000248334.jpg 193,63,500,287,8 329,170,390,217,0 388,192,405,217,0 415,180,458,218,0 464,196,481,226,0 469,186,487,221,0 484,183,497,211,0 417,194,430,213,0 451,186,461,212,0 441,184,454,210,0 -./model_data/coco/val2017/000000270122.jpg 304,179,340,228,0 310,225,328,232,37 -./model_data/coco/val2017/000000357238.jpg 225,522,233,545,0 169,141,228,212,33 -./model_data/coco/val2017/000000570782.jpg 496,201,537,221,64 299,195,499,255,66 137,125,183,270,39 261,253,436,332,66 72,282,304,402,66 30,147,307,404,63 248,161,438,330,63 85,253,163,288,65 -./model_data/coco/val2017/000000157098.jpg 197,11,375,329,23 96,19,222,333,23 436,61,500,216,23 -./model_data/coco/val2017/000000556765.jpg 230,101,554,380,20 -./model_data/coco/val2017/000000173033.jpg 182,205,398,494,21 141,352,231,433,21 -./model_data/coco/val2017/000000081061.jpg 206,65,615,255,57 94,59,236,278,56 367,236,543,338,28 -./model_data/coco/val2017/000000276018.jpg 147,22,268,278,0 120,34,284,205,0 256,17,378,257,0 298,27,346,98,77 0,0,130,640,0 66,115,136,280,0 377,17,416,164,0 153,125,416,552,0 109,190,219,273,0 23,251,203,640,0 142,254,258,635,0 48,372,143,535,77 -./model_data/coco/val2017/000000170278.jpg 122,143,598,479,16 4,127,639,495,59 -./model_data/coco/val2017/000000404191.jpg 26,48,356,493,72 -./model_data/coco/val2017/000000267933.jpg 418,90,461,119,17 357,88,377,116,17 313,90,357,118,17 265,89,307,113,17 212,88,258,115,17 248,89,277,114,17 153,88,201,114,17 92,89,139,116,17 292,87,325,114,17 134,89,167,112,17 58,91,94,116,17 -./model_data/coco/val2017/000000058350.jpg 42,154,520,472,57 432,77,640,470,0 139,80,467,475,0 552,282,587,365,43 323,277,444,379,53 572,335,640,371,43 -./model_data/coco/val2017/000000509258.jpg 111,336,143,362,13 -./model_data/coco/val2017/000000102331.jpg 136,110,362,264,3 197,46,276,153,0 -./model_data/coco/val2017/000000184384.jpg 0,181,640,473,60 3,3,133,318,41 96,2,215,207,41 338,352,511,473,49 392,1,522,60,0 155,16,502,370,55 -./model_data/coco/val2017/000000264968.jpg 113,21,268,486,0 244,0,300,92,0 193,0,247,99,0 170,92,241,313,34 60,0,106,121,0 0,0,62,178,0 140,0,161,21,0 160,0,200,93,0 -./model_data/coco/val2017/000000396338.jpg 0,133,291,422,2 302,182,334,282,0 174,179,194,240,0 388,105,621,287,7 116,155,283,252,7 290,214,312,244,24 569,178,598,199,0 415,175,479,290,0 412,143,640,420,2 355,209,390,265,3 291,212,313,246,26 275,190,293,243,0 -./model_data/coco/val2017/000000067310.jpg 13,120,238,368,0 148,425,207,521,0 188,412,209,453,0 133,430,160,525,0 185,403,245,529,0 121,287,228,384,36 -./model_data/coco/val2017/000000323263.jpg 501,123,510,134,67 107,131,256,382,0 258,147,366,254,0 435,84,536,386,0 169,83,245,159,0 118,85,180,232,0 110,254,147,288,26 -./model_data/coco/val2017/000000308193.jpg 196,234,283,326,74 -./model_data/coco/val2017/000000270908.jpg 31,30,366,206,0 338,151,485,272,38 -./model_data/coco/val2017/000000449579.jpg 98,77,133,171,38 121,52,255,320,0 -./model_data/coco/val2017/000000453166.jpg 89,145,106,221,27 371,117,387,157,27 247,115,263,157,27 505,115,517,138,27 2,57,170,419,0 314,41,465,424,0 451,46,629,420,0 165,40,326,425,0 -./model_data/coco/val2017/000000312406.jpg 40,131,294,364,46 412,192,530,299,45 -./model_data/coco/val2017/000000512657.jpg 339,309,622,419,57 587,313,637,342,74 167,54,359,422,0 0,267,203,419,0 399,193,488,426,0 157,87,180,103,65 419,223,429,258,65 198,158,536,228,37 77,240,103,266,74 201,54,232,73,65 -./model_data/coco/val2017/000000189475.jpg 117,240,187,367,39 161,308,191,375,39 338,164,398,260,56 198,176,258,297,56 215,143,239,181,56 360,244,400,302,41 406,220,443,291,41 23,333,63,374,41 200,318,314,335,43 251,332,316,352,53 3,21,218,352,0 230,81,364,293,0 236,17,318,154,0 322,67,354,133,0 400,57,432,125,0 407,33,497,158,0 396,90,500,233,0 167,253,205,358,41 455,246,500,369,41 331,337,414,364,43 174,28,250,130,58 279,226,497,331,60 203,275,363,316,60 361,67,409,130,72 207,64,243,131,75 61,295,107,352,39 200,335,276,352,42 335,333,391,347,43 3,243,14,289,56 356,23,428,70,58 387,51,403,66,75 0,85,52,266,0 170,99,220,177,0 351,100,415,169,0 23,70,55,109,0 374,196,413,277,41 -./model_data/coco/val2017/000000445834.jpg 424,180,517,415,0 544,191,605,415,0 281,89,370,188,0 157,17,554,378,5 357,134,425,226,0 -./model_data/coco/val2017/000000224119.jpg 177,146,247,245,0 243,172,265,193,0 382,224,396,242,0 297,114,350,154,62 132,0,268,25,62 31,146,63,176,62 126,172,150,193,62 81,183,145,204,0 357,182,381,200,62 366,191,387,209,62 372,201,390,214,62 339,161,372,186,62 -./model_data/coco/val2017/000000170191.jpg 0,170,479,513,59 447,8,633,520,0 113,478,284,523,28 -./model_data/coco/val2017/000000136334.jpg 191,276,273,387,0 200,374,321,391,30 -./model_data/coco/val2017/000000189226.jpg 365,186,458,392,10 -./model_data/coco/val2017/000000311295.jpg 498,226,575,289,22 30,212,77,254,22 221,225,266,273,22 464,168,486,246,23 203,158,210,169,23 227,168,232,177,23 245,179,291,239,23 398,176,419,205,23 245,203,266,237,23 89,214,105,255,22 -./model_data/coco/val2017/000000442661.jpg 108,126,364,480,23 -./model_data/coco/val2017/000000454798.jpg 140,99,426,363,17 538,137,556,161,0 601,156,617,176,0 566,150,625,165,7 527,149,568,189,17 266,62,336,228,0 451,143,534,173,5 -./model_data/coco/val2017/000000322895.jpg 119,163,184,213,62 110,243,310,455,57 152,190,175,244,56 380,306,640,474,57 209,224,304,297,56 304,220,387,286,56 85,195,95,214,75 375,284,420,302,45 125,236,304,313,57 -./model_data/coco/val2017/000000424135.jpg 253,303,317,445,0 155,265,209,385,0 129,153,391,579,74 -./model_data/coco/val2017/000000472678.jpg 140,146,319,287,62 305,153,479,290,62 125,286,154,369,39 594,366,638,473,56 150,332,309,358,66 495,375,534,402,64 225,372,260,388,67 238,355,335,395,73 108,359,351,413,73 223,245,234,255,0 240,244,251,256,0 244,208,254,219,0 243,190,255,201,0 224,372,259,387,65 -./model_data/coco/val2017/000000354307.jpg 0,0,500,370,0 -./model_data/coco/val2017/000000357748.jpg 53,1,640,424,5 38,189,51,230,0 24,195,39,229,0 7,190,22,228,0 47,193,52,227,0 -./model_data/coco/val2017/000000021503.jpg 436,48,640,150,64 256,46,478,109,65 0,37,209,142,66 346,174,640,338,48 70,132,349,216,48 308,100,582,208,48 0,233,508,480,48 0,190,111,273,48 -./model_data/coco/val2017/000000351609.jpg 202,0,259,71,44 0,65,499,333,45 0,88,471,333,49 388,0,500,200,41 -./model_data/coco/val2017/000000413395.jpg 30,248,193,420,15 140,191,386,416,15 0,177,640,296,57 320,39,640,389,0 414,200,459,313,40 -./model_data/coco/val2017/000000240049.jpg 188,174,426,631,0 26,139,299,398,23 356,102,425,210,23 178,186,299,525,0 -./model_data/coco/val2017/000000060823.jpg 363,434,427,477,14 443,119,566,314,19 23,279,184,374,19 168,38,269,220,0 380,269,633,393,19 160,218,188,232,45 114,217,138,229,45 138,220,163,230,45 99,212,123,229,45 137,213,173,218,45 115,204,140,217,45 138,205,173,212,45 130,179,151,187,45 140,191,151,198,45 254,377,281,434,14 263,345,310,395,14 393,76,451,133,14 388,129,403,156,14 228,292,243,321,14 274,328,299,364,14 376,297,404,318,14 413,278,429,288,14 554,76,607,119,14 588,189,623,215,14 188,304,229,332,14 138,217,170,220,45 38,52,127,200,0 252,304,280,321,14 211,119,616,437,14 -./model_data/coco/val2017/000000139872.jpg 66,32,481,427,16 0,158,99,474,0 407,323,547,452,29 588,343,639,479,0 -./model_data/coco/val2017/000000418696.jpg 185,272,221,293,2 516,275,587,308,2 147,268,174,288,7 360,158,369,182,9 160,154,178,182,9 67,259,72,264,9 348,172,358,182,9 97,254,105,261,9 75,256,80,263,9 -./model_data/coco/val2017/000000219271.jpg 2,350,132,468,7 129,426,196,500,0 245,358,267,421,0 262,354,283,413,0 299,331,327,375,0 323,316,350,370,0 113,424,136,447,0 318,263,342,298,7 190,281,298,392,7 262,274,323,333,7 332,260,350,288,7 55,468,81,499,0 31,352,41,366,0 73,484,103,500,0 37,357,49,389,0 163,423,173,443,0 0,377,13,422,0 217,388,242,477,0 83,46,349,499,0 -./model_data/coco/val2017/000000197658.jpg 152,394,250,460,35 178,140,562,579,0 -./model_data/coco/val2017/000000516677.jpg 139,200,182,295,0 178,194,216,299,0 274,195,319,308,0 314,161,366,308,0 455,151,498,313,0 324,257,450,389,0 318,185,342,294,0 361,187,368,202,0 197,202,222,245,24 595,332,625,359,26 389,232,440,297,0 278,268,307,307,24 346,302,412,381,24 511,332,618,389,24 159,207,172,211,24 172,293,202,306,30 214,284,273,312,30 512,281,540,304,30 555,306,591,341,26 125,284,191,303,30 63,318,203,344,30 6,344,157,394,30 -./model_data/coco/val2017/000000570736.jpg 139,348,274,555,61 260,346,427,418,71 -./model_data/coco/val2017/000000038070.jpg 165,36,360,355,61 -./model_data/coco/val2017/000000019042.jpg 308,165,329,205,14 344,1,391,11,2 221,8,246,13,2 -./model_data/coco/val2017/000000029675.jpg 5,0,478,273,60 29,157,336,351,52 79,225,394,474,52 148,343,478,640,52 -./model_data/coco/val2017/000000423798.jpg 56,148,78,176,9 115,191,130,211,9 284,181,290,196,9 48,150,64,191,9 343,230,351,240,9 455,228,463,239,9 356,231,363,239,9 -./model_data/coco/val2017/000000132931.jpg 317,64,449,357,0 170,101,251,329,0 176,181,205,212,35 -./model_data/coco/val2017/000000400803.jpg 108,97,364,401,8 218,271,238,317,0 175,259,227,322,0 -./model_data/coco/val2017/000000550349.jpg 100,134,480,548,5 0,335,80,549,0 40,334,95,516,0 3,324,68,640,0 76,367,101,430,26 223,296,298,383,0 354,291,427,375,0 28,506,52,637,25 247,312,265,337,9 -./model_data/coco/val2017/000000331799.jpg 545,55,640,295,0 189,3,474,391,0 3,199,234,419,0 561,400,627,447,46 608,335,640,365,49 498,324,573,381,46 535,396,639,464,46 594,357,640,388,46 580,337,608,360,49 0,139,50,238,0 603,383,640,456,46 425,397,460,425,47 390,384,429,417,47 447,370,497,404,47 356,399,381,437,47 305,408,343,448,47 424,369,460,391,47 418,383,458,407,47 346,395,361,434,47 -./model_data/coco/val2017/000000019221.jpg 244,339,552,474,0 85,128,448,448,50 -./model_data/coco/val2017/000000537991.jpg 0,367,140,480,57 95,3,374,473,0 247,205,288,252,67 156,171,203,231,67 491,330,640,472,63 0,388,118,441,63 0,206,368,427,57 -./model_data/coco/val2017/000000076468.jpg 245,241,275,294,38 441,171,475,208,0 210,153,297,325,0 396,125,427,164,0 120,156,148,199,0 294,153,360,324,0 504,174,531,202,0 368,105,401,145,0 39,159,65,197,0 456,49,485,85,0 328,221,359,280,38 441,418,539,480,56 373,14,393,45,0 419,78,443,109,0 149,157,179,201,0 443,74,473,97,0 543,425,639,472,56 366,191,394,201,56 326,110,348,126,56 303,112,326,128,56 159,128,184,148,56 85,112,110,132,56 133,128,158,146,56 64,112,84,127,56 375,68,395,84,56 0,0,639,350,0 -./model_data/coco/val2017/000000354829.jpg 81,84,371,238,2 319,206,349,260,10 -./model_data/coco/val2017/000000332351.jpg 372,164,397,206,0 496,181,512,202,0 545,188,571,201,0 456,162,472,174,0 205,160,216,177,0 171,167,195,190,0 140,169,161,193,0 546,196,557,201,37 370,206,413,213,37 202,167,229,177,37 108,178,124,186,37 408,151,431,173,37 9,201,64,210,37 422,179,434,194,0 24,190,42,211,0 95,164,110,187,0 549,156,564,171,0 415,179,440,193,37 259,169,268,196,0 155,166,164,175,0 250,169,280,189,37 24,167,282,178,0 -./model_data/coco/val2017/000000228942.jpg 539,124,640,234,2 0,133,380,298,2 613,103,622,120,9 631,96,638,108,9 542,121,559,157,0 571,125,587,150,0 523,128,543,176,0 81,109,106,139,0 78,114,99,138,0 587,127,597,149,0 601,129,612,144,0 1,18,14,34,9 629,34,640,80,9 165,152,211,189,0 611,125,622,138,0 566,123,580,151,0 68,22,575,185,6 521,126,533,174,0 -./model_data/coco/val2017/000000185472.jpg 426,241,488,368,1 371,120,485,230,6 446,157,552,358,0 619,252,640,340,24 409,156,430,168,0 588,139,640,306,0 590,263,620,307,24 619,313,640,343,1 594,348,640,471,0 -./model_data/coco/val2017/000000288685.jpg 291,285,341,344,16 161,235,321,373,18 47,235,152,366,18 74,223,198,367,18 256,254,324,370,18 81,78,175,246,0 224,115,261,179,0 429,96,491,173,0 510,117,558,192,0 170,94,211,162,0 272,102,324,164,0 320,89,377,184,0 381,96,430,163,0 174,116,199,169,26 477,147,527,276,0 136,89,171,142,0 0,105,67,176,0 1,150,53,288,0 323,245,533,290,13 23,88,69,150,0 516,224,546,235,13 253,239,280,261,18 1,71,639,316,0 -./model_data/coco/val2017/000000009769.jpg 139,200,183,274,0 551,258,563,279,10 310,203,350,241,0 252,200,300,235,0 84,187,463,376,7 -./model_data/coco/val2017/000000300233.jpg 131,245,351,468,45 463,97,625,240,39 153,114,267,236,44 243,84,356,199,44 -./model_data/coco/val2017/000000104198.jpg 287,117,497,315,11 -./model_data/coco/val2017/000000156071.jpg 305,76,467,122,2 446,74,528,120,2 7,202,134,418,0 461,131,524,263,0 419,85,459,183,0 0,139,51,270,0 227,101,299,251,0 505,96,565,265,0 214,45,243,71,0 340,111,409,241,0 564,80,614,267,0 602,95,640,221,0 341,229,403,305,18 388,78,414,115,0 273,99,313,167,0 281,77,310,106,0 0,0,639,462,0 -./model_data/coco/val2017/000000359855.jpg 139,19,558,327,28 -./model_data/coco/val2017/000000412894.jpg 302,338,363,473,9 195,488,243,619,0 249,436,271,498,0 268,428,283,477,0 360,420,375,468,0 359,475,418,606,0 162,523,209,640,0 0,537,63,640,0 35,487,78,538,0 60,469,106,540,0 319,524,369,640,0 359,499,376,532,24 195,430,211,485,0 271,615,303,638,24 208,505,229,537,26 168,545,176,578,26 353,546,376,587,26 102,512,154,640,0 397,410,407,440,0 0,400,426,639,0 -./model_data/coco/val2017/000000138856.jpg 348,149,413,183,45 0,0,640,472,69 -./model_data/coco/val2017/000000369812.jpg 322,521,396,569,2 387,522,443,561,2 243,516,276,542,2 456,497,638,628,2 220,514,240,529,2 118,514,130,543,0 144,513,152,539,0 152,516,160,539,0 183,515,191,533,0 166,516,174,542,0 388,517,394,527,0 209,514,228,529,2 306,485,362,523,5 190,495,209,528,7 157,518,163,541,0 118,523,124,531,26 460,497,639,632,7 155,526,158,533,26 -./model_data/coco/val2017/000000361506.jpg 480,258,570,287,2 151,4,333,140,0 221,126,297,199,36 344,239,359,252,11 -./model_data/coco/val2017/000000498919.jpg 290,206,351,263,49 327,240,398,308,49 310,221,369,282,49 245,223,290,278,49 201,1,211,10,47 53,125,85,144,47 169,55,202,85,47 124,73,154,102,47 189,5,203,15,47 166,3,184,17,47 61,27,187,105,47 45,90,65,110,47 94,89,140,137,47 251,43,280,64,47 226,46,250,62,47 223,73,256,97,47 278,191,333,242,49 156,245,355,319,49 378,161,428,207,49 327,166,432,319,49 285,76,328,114,49 29,164,74,194,49 182,4,191,15,47 -./model_data/coco/val2017/000000034139.jpg 435,193,502,234,26 26,101,427,386,28 451,98,595,381,0 449,111,524,381,0 -./model_data/coco/val2017/000000466602.jpg 102,411,309,632,30 0,51,244,640,0 192,550,480,640,30 -./model_data/coco/val2017/000000000632.jpg 3,266,404,475,59 183,136,244,228,58 455,192,464,228,73 453,252,461,286,73 444,297,450,337,73 505,191,518,227,73 487,199,494,227,73 244,230,349,318,56 347,212,429,355,58 460,191,490,227,73 527,248,551,289,73 519,193,523,227,73 497,55,501,82,73 524,97,527,135,73 493,155,525,162,73 454,245,503,257,73 461,253,470,286,73 416,43,569,346,73 -./model_data/coco/val2017/000000389566.jpg 204,204,306,301,18 279,221,304,239,18 465,190,540,277,18 317,193,415,303,18 434,205,497,281,18 126,220,254,320,18 262,214,334,305,18 376,184,398,199,18 44,213,135,311,18 0,244,49,308,18 457,160,504,194,2 185,190,219,219,18 399,208,451,301,18 413,185,440,201,18 13,184,461,311,18 -./model_data/coco/val2017/000000377393.jpg 227,74,230,82,0 143,238,236,301,25 505,199,520,213,74 532,196,540,212,74 565,16,570,28,0 573,17,577,28,0 391,102,396,114,0 326,0,329,6,0 523,110,527,119,0 572,59,586,67,25 612,66,628,73,25 579,17,583,28,0 396,98,400,111,0 598,135,603,149,0 100,40,104,49,0 -./model_data/coco/val2017/000000570834.jpg 275,269,356,417,1 323,265,400,430,1 355,257,434,419,1 166,209,196,284,1 259,230,288,290,1 184,164,253,350,0 245,222,281,289,1 282,225,312,295,1 149,195,179,238,1 393,253,467,410,1 296,220,320,268,1 192,235,200,285,1 -./model_data/coco/val2017/000000445846.jpg 568,119,638,422,72 62,252,164,408,69 296,266,395,271,71 64,170,93,214,68 -./model_data/coco/val2017/000000064523.jpg 537,296,567,314,2 118,214,210,434,0 198,217,288,437,0 283,218,370,444,0 368,228,455,444,0 449,228,536,443,0 447,152,522,305,0 373,149,449,284,0 228,143,301,293,0 164,151,229,296,0 396,330,441,443,38 303,326,352,444,38 469,331,514,437,38 417,219,456,271,38 252,208,288,263,38 187,201,231,243,38 123,318,170,439,38 219,317,263,443,38 468,222,513,274,38 82,151,160,425,0 331,205,372,254,38 185,237,223,277,38 298,130,379,267,0 -./model_data/coco/val2017/000000132544.jpg 285,70,456,174,25 353,235,373,255,32 0,110,307,317,2 380,193,485,222,34 333,148,461,350,0 481,74,600,361,0 306,147,377,254,0 368,219,417,266,35 436,81,529,282,0 576,0,640,111,0 240,196,298,254,0 596,94,639,238,0 281,197,314,255,0 16,9,181,365,0 584,62,618,239,0 -./model_data/coco/val2017/000000061584.jpg 249,163,323,278,17 61,164,100,228,56 234,96,315,281,0 233,102,288,152,0 14,174,56,230,60 0,167,36,235,56 -./model_data/coco/val2017/000000248400.jpg 0,7,251,418,0 554,274,639,334,45 273,370,523,421,53 194,142,237,264,58 -./model_data/coco/val2017/000000210273.jpg 467,178,502,195,1 96,189,223,318,5 228,133,294,222,5 576,159,640,234,5 293,100,341,159,5 530,154,548,193,0 489,176,506,193,1 306,142,377,216,5 450,74,478,107,5 471,157,494,198,0 129,176,141,198,0 572,71,609,109,5 325,71,347,100,5 116,167,127,199,0 205,125,214,154,0 234,110,243,135,0 1,256,17,312,0 330,199,379,240,2 417,262,500,338,2 298,251,373,319,2 267,217,325,267,2 176,298,254,364,2 362,118,424,194,5 340,91,382,143,5 187,137,203,167,0 221,112,228,137,0 482,158,488,173,0 108,183,123,207,0 421,139,452,179,2 412,110,436,124,2 318,309,393,371,2 307,227,373,272,2 517,114,552,136,2 503,138,540,165,2 409,176,455,212,2 355,87,389,119,5 584,122,623,158,2 357,71,384,90,5 68,212,80,248,0 594,79,631,121,5 155,170,174,189,0 91,61,639,322,2 379,72,521,283,5 -./model_data/coco/val2017/000000465549.jpg 79,95,294,423,0 277,111,567,427,0 500,194,640,407,57 67,232,124,335,58 160,177,178,201,65 99,299,117,333,75 147,285,164,322,75 278,185,318,245,65 79,210,116,225,65 115,210,166,322,58 234,341,367,428,60 435,238,460,293,65 -./model_data/coco/val2017/000000579158.jpg 0,2,574,420,4 28,330,51,344,28 187,322,219,345,28 220,327,247,341,28 94,336,121,357,28 130,334,161,352,28 136,309,184,347,28 0,138,150,219,7 253,321,283,337,28 -./model_data/coco/val2017/000000277689.jpg 139,279,217,371,40 83,336,206,424,40 91,301,191,362,40 558,276,602,336,40 5,300,140,402,40 601,280,635,309,40 600,300,639,368,40 285,208,640,418,55 212,282,231,343,40 208,296,278,360,40 337,281,359,333,40 139,279,217,368,41 83,339,205,424,41 205,338,285,411,41 557,279,603,339,41 602,299,639,346,41 600,281,634,311,41 322,284,362,331,41 276,311,317,379,41 0,392,252,418,60 317,282,339,317,40 9,278,98,424,40 -./model_data/coco/val2017/000000183049.jpg 395,448,426,533,74 224,271,275,408,73 175,277,213,406,73 193,92,240,227,73 84,85,109,219,73 1,287,193,409,73 255,100,308,232,73 1,419,336,560,73 273,279,312,412,73 232,98,273,228,73 198,297,238,408,73 341,312,358,413,73 302,276,343,414,73 260,291,294,415,73 55,88,403,383,73 -./model_data/coco/val2017/000000546964.jpg 4,236,332,471,56 454,131,496,203,56 478,133,573,271,56 610,146,640,235,56 109,147,171,216,56 433,124,459,186,56 0,163,43,240,56 146,267,235,356,56 498,326,640,471,57 161,170,423,290,57 453,140,511,152,60 303,85,315,109,0 313,75,344,129,0 408,80,432,150,0 607,84,640,139,0 329,204,379,228,75 220,92,245,144,75 375,96,404,162,75 283,75,307,154,0 614,104,627,130,27 287,129,362,172,56 631,181,640,193,56 419,82,442,152,0 336,85,347,94,0 252,79,274,169,0 390,89,408,153,0 238,85,269,166,0 508,125,531,144,56 -./model_data/coco/val2017/000000210394.jpg 551,252,638,314,1 243,243,252,258,3 182,242,219,287,3 252,131,440,327,5 194,223,216,274,0 420,225,461,332,0 507,228,517,266,0 550,230,571,279,0 586,230,606,285,0 208,227,224,274,0 478,226,505,307,0 498,226,540,327,0 454,229,463,248,0 243,224,255,246,0 104,227,119,257,0 138,226,147,260,0 461,231,474,294,0 47,175,639,307,0 -./model_data/coco/val2017/000000321790.jpg 125,8,310,422,0 276,137,484,297,38 -./model_data/coco/val2017/000000464089.jpg 611,323,631,340,32 37,98,104,297,0 117,244,278,480,0 517,124,537,182,0 105,122,137,184,0 325,108,489,439,0 593,105,634,235,0 345,77,397,212,34 258,316,307,357,35 333,107,374,175,0 620,133,639,232,0 32,159,62,217,34 47,111,63,140,0 515,134,527,230,0 -./model_data/coco/val2017/000000024021.jpg 286,236,346,324,0 328,233,390,332,0 619,61,640,115,0 455,237,520,338,0 403,237,468,336,0 542,212,566,245,0 581,161,638,244,0 518,51,551,110,0 366,131,401,200,0 327,132,389,203,0 255,161,297,228,0 170,130,220,219,0 179,252,186,273,27 229,250,237,267,27 234,198,242,217,27 351,268,359,289,27 526,266,537,284,27 450,198,457,225,27 378,156,383,162,27 485,275,502,294,27 600,252,603,263,27 31,201,38,211,27 68,204,74,215,27 413,198,418,212,27 339,167,375,239,0 301,161,308,178,27 111,73,635,237,27 1,39,639,366,0 -./model_data/coco/val2017/000000320490.jpg 605,222,614,254,39 565,220,576,257,39 613,225,623,252,39 313,199,467,425,0 458,319,541,385,34 548,173,576,203,32 -./model_data/coco/val2017/000000224664.jpg 368,250,374,266,0 304,224,308,230,0 374,249,380,261,0 562,72,592,90,33 365,151,383,170,33 271,147,282,158,33 406,305,416,315,0 398,163,407,172,33 256,194,266,207,33 230,181,238,190,33 193,218,197,222,0 625,227,628,233,0 305,175,311,179,33 513,255,522,262,0 218,220,221,228,0 -./model_data/coco/val2017/000000572620.jpg 550,364,573,374,39 330,225,392,291,36 11,244,43,300,0 40,246,71,300,0 277,91,388,283,0 405,210,440,277,0 478,196,513,291,0 110,243,129,285,0 437,186,486,327,0 276,228,305,299,0 111,287,151,332,0 276,280,301,298,36 74,260,110,313,0 550,156,605,231,0 581,107,638,403,0 159,252,179,283,0 7,131,618,355,0 -./model_data/coco/val2017/000000376900.jpg 113,372,147,419,38 272,313,284,335,0 367,304,417,383,0 216,311,238,348,0 78,175,236,600,0 56,309,85,364,0 237,316,274,382,0 0,296,58,384,0 32,294,39,300,0 290,328,320,382,0 403,319,421,348,0 441,305,458,347,0 330,296,376,381,0 366,302,389,336,0 1,270,479,470,0 -./model_data/coco/val2017/000000018737.jpg 254,159,592,407,3 -./model_data/coco/val2017/000000384850.jpg 304,462,408,629,61 -./model_data/coco/val2017/000000379441.jpg 338,282,563,471,57 92,377,176,406,63 485,355,506,369,65 564,454,601,480,65 412,220,416,250,73 355,266,391,278,73 412,265,422,295,73 392,323,428,328,73 297,271,300,291,73 315,262,352,290,73 282,264,289,291,73 354,281,391,285,73 434,219,440,248,73 430,223,434,249,73 381,218,389,250,73 415,225,421,249,73 24,345,251,478,13 471,196,541,252,59 288,322,331,330,73 272,167,440,338,73 -./model_data/coco/val2017/000000396526.jpg 171,57,249,206,58 100,196,166,326,56 167,206,245,333,56 79,166,121,191,56 173,174,231,190,56 252,279,434,333,56 199,162,211,204,75 315,178,329,221,75 265,63,375,222,58 44,176,253,301,60 282,222,319,240,73 -./model_data/coco/val2017/000000184400.jpg 4,206,454,316,6 549,460,584,480,9 -./model_data/coco/val2017/000000199977.jpg 91,153,223,310,4 -./model_data/coco/val2017/000000165831.jpg 175,152,323,251,50 136,248,284,341,50 118,230,177,295,50 449,138,563,236,50 417,291,473,351,50 324,110,404,161,50 0,2,640,472,60 519,0,640,79,39 0,95,640,450,45 116,103,189,160,51 383,373,492,425,51 259,376,354,427,51 128,351,219,418,51 244,256,341,355,51 300,177,369,275,51 504,193,583,274,51 493,303,627,432,51 540,140,623,213,51 64,142,121,200,51 89,298,173,372,51 333,236,407,317,51 362,275,513,409,51 37,107,629,434,51 -./model_data/coco/val2017/000000213605.jpg 358,445,479,592,2 17,365,385,566,5 410,579,480,640,3 102,448,137,479,0 -./model_data/coco/val2017/000000034205.jpg 291,3,583,98,50 579,62,640,197,50 545,0,640,165,50 -./model_data/coco/val2017/000000185292.jpg 176,433,201,482,0 177,476,217,485,37 -./model_data/coco/val2017/000000079588.jpg 207,127,238,178,74 409,375,423,415,0 302,379,315,422,0 390,377,404,417,0 286,383,304,422,0 320,384,328,406,0 -./model_data/coco/val2017/000000338304.jpg 168,413,243,517,18 65,473,235,640,18 191,422,335,598,18 88,387,207,488,18 266,217,410,466,0 250,237,318,364,0 150,252,212,389,0 94,291,161,425,0 0,298,101,488,0 49,305,123,473,0 200,255,249,360,0 189,0,425,439,0 304,189,384,273,0 241,355,353,486,18 0,483,146,639,18 199,525,347,638,18 36,311,56,339,0 100,286,114,310,0 74,393,122,427,26 33,430,84,496,26 73,265,88,327,0 270,355,365,452,18 193,354,338,494,18 230,155,255,186,67 230,253,279,360,0 0,89,387,591,0 -./model_data/coco/val2017/000000372317.jpg 34,79,583,265,5 14,174,26,197,12 -./model_data/coco/val2017/000000493286.jpg 67,162,598,350,2 4,52,633,211,4 596,160,640,193,4 85,161,138,224,0 495,176,505,183,2 580,178,592,183,2 306,189,347,221,0 122,165,137,200,0 -./model_data/coco/val2017/000000400922.jpg 379,124,407,139,4 285,289,352,354,74 -./model_data/coco/val2017/000000245026.jpg 178,32,424,307,0 522,343,585,421,41 191,270,430,405,55 517,357,631,399,73 -./model_data/coco/val2017/000000089045.jpg 432,122,474,168,58 65,188,123,370,56 191,132,469,229,57 594,215,638,276,57 446,157,467,168,75 591,122,611,153,56 214,54,230,77,74 513,148,640,166,60 234,216,322,248,73 -./model_data/coco/val2017/000000348243.jpg 60,180,310,510,17 163,386,248,482,17 -./model_data/coco/val2017/000000494759.jpg 467,265,510,397,0 264,86,380,176,33 516,265,564,394,0 -./model_data/coco/val2017/000000261116.jpg 253,124,357,188,42 451,166,500,187,42 230,140,305,187,55 16,137,66,183,55 408,111,494,184,55 108,282,500,369,13 0,156,31,205,55 0,1,152,96,55 0,0,500,228,60 0,221,176,370,0 339,206,500,375,0 -./model_data/coco/val2017/000000376206.jpg 202,165,306,236,0 163,188,346,246,37 -./model_data/coco/val2017/000000147338.jpg 120,93,373,560,10 1,77,186,211,7 186,40,480,221,7 408,26,480,73,7 0,100,50,119,7 0,76,185,210,2 -./model_data/coco/val2017/000000193926.jpg 368,18,613,84,1 33,18,281,226,46 380,115,586,196,46 380,267,462,428,46 158,23,346,225,46 22,86,87,167,47 149,95,216,145,47 86,77,153,133,49 370,94,616,225,24 24,254,108,389,0 18,12,349,227,45 412,320,621,462,0 -./model_data/coco/val2017/000000172649.jpg 423,47,574,161,0 411,112,444,161,36 -./model_data/coco/val2017/000000206994.jpg 221,193,599,329,6 83,278,136,308,13 -./model_data/coco/val2017/000000292997.jpg 313,248,516,315,2 408,234,481,270,2 325,228,351,245,2 392,194,584,266,7 474,110,509,167,9 608,230,638,299,0 432,239,442,248,0 515,193,530,212,9 506,194,518,212,9 0,212,190,383,2 4,162,18,189,9 215,198,227,211,9 363,228,377,246,0 -./model_data/coco/val2017/000000509735.jpg 170,236,331,335,22 4,232,186,334,22 103,191,157,232,22 261,5,611,375,23 338,139,434,371,23 -./model_data/coco/val2017/000000163640.jpg 102,137,291,456,0 447,132,611,457,0 259,249,292,280,54 85,263,120,395,24 249,275,364,320,45 290,161,380,309,0 -./model_data/coco/val2017/000000433980.jpg 77,291,152,435,67 2,1,351,493,0 -./model_data/coco/val2017/000000043581.jpg 182,193,615,373,53 364,139,563,172,42 0,68,640,427,60 456,140,502,209,43 -./model_data/coco/val2017/000000011760.jpg 453,87,605,418,22 268,100,388,396,22 35,99,215,387,22 -./model_data/coco/val2017/000000199395.jpg 91,191,161,254,33 319,489,344,518,0 50,483,70,506,0 173,473,179,485,0 44,472,48,484,0 33,471,38,484,0 37,472,40,484,0 232,479,237,486,0 84,445,97,450,8 27,477,32,485,0 31,479,34,481,0 333,471,340,484,0 10,471,17,484,0 -./model_data/coco/val2017/000000269942.jpg 92,460,151,508,2 92,452,126,473,2 261,257,294,318,9 181,157,231,256,9 377,421,384,439,9 172,279,198,333,9 63,421,74,436,9 91,444,99,451,2 104,444,112,449,2 68,391,73,402,9 -./model_data/coco/val2017/000000572678.jpg 145,192,322,292,57 522,274,609,417,56 265,222,327,308,56 340,196,422,244,56 338,193,429,242,57 202,244,560,420,60 246,340,292,373,44 305,295,326,348,41 373,381,411,423,42 395,393,429,425,43 326,299,362,308,43 239,342,276,371,44 469,335,518,351,44 494,264,501,271,44 434,418,449,425,44 322,294,362,303,44 329,234,363,248,45 182,344,327,420,56 410,203,453,289,75 394,279,435,365,40 445,239,476,286,40 367,252,393,287,40 414,225,425,245,40 473,241,488,273,41 445,278,465,326,41 20,191,40,213,41 49,203,56,212,41 486,291,538,308,43 498,263,512,275,44 455,217,512,265,56 162,229,284,327,56 395,158,476,306,58 414,138,426,173,58 469,331,518,346,42 -./model_data/coco/val2017/000000399655.jpg 15,26,499,333,16 0,1,500,371,57 -./model_data/coco/val2017/000000187513.jpg 20,490,124,526,71 105,455,256,639,61 -./model_data/coco/val2017/000000377575.jpg 58,159,280,622,16 234,194,327,481,10 -./model_data/coco/val2017/000000296222.jpg 1,295,34,475,56 129,38,523,474,0 456,162,504,231,41 313,446,361,459,42 358,423,419,459,53 277,333,393,428,26 538,380,640,473,56 26,294,117,474,56 -./model_data/coco/val2017/000000423944.jpg 92,208,107,299,27 -./model_data/coco/val2017/000000370813.jpg 110,169,294,431,36 156,0,365,185,0 -./model_data/coco/val2017/000000458702.jpg 109,153,155,294,12 3,447,153,498,2 175,153,234,291,12 0,446,116,500,2 -./model_data/coco/val2017/000000312552.jpg 165,129,207,161,53 110,47,399,295,0 -./model_data/coco/val2017/000000553669.jpg 359,93,499,133,2 490,106,615,139,2 46,192,266,474,0 87,103,129,139,0 65,97,91,141,0 3,319,350,434,13 123,231,220,291,63 188,76,296,101,2 240,103,404,143,2 82,81,228,123,2 511,82,521,100,0 0,94,29,141,0 459,108,490,153,0 484,79,495,90,0 16,119,70,141,13 400,130,501,152,13 507,131,612,153,13 0,220,46,338,0 594,110,640,161,0 573,93,639,132,2 378,79,509,101,7 122,118,165,133,13 167,121,257,139,13 -./model_data/coco/val2017/000000417249.jpg 325,216,470,543,0 179,250,313,495,0 167,239,201,293,0 3,211,121,381,0 162,392,230,496,28 171,261,245,313,28 141,328,221,382,28 298,339,319,391,26 343,475,360,489,0 -./model_data/coco/val2017/000000569030.jpg 426,117,477,154,2 283,178,352,321,10 30,59,114,135,0 330,100,346,141,0 259,96,271,144,0 377,96,394,146,0 0,165,172,323,13 12,133,152,165,13 72,96,114,134,24 233,51,244,66,9 211,14,225,32,9 246,94,263,142,0 296,104,305,145,0 0,70,116,137,7 458,114,500,234,7 298,36,311,70,9 299,110,307,119,26 333,93,338,105,0 356,99,366,134,0 471,93,486,115,0 216,101,231,137,0 240,99,250,120,0 116,109,152,127,2 282,104,295,144,0 -./model_data/coco/val2017/000000325991.jpg 145,43,342,334,0 319,218,370,233,29 -./model_data/coco/val2017/000000012062.jpg 130,70,565,279,18 0,174,270,422,18 344,292,640,418,18 601,58,640,131,32 -./model_data/coco/val2017/000000349594.jpg 29,21,413,493,0 174,267,268,357,54 -./model_data/coco/val2017/000000167902.jpg 106,57,340,305,14 -./model_data/coco/val2017/000000323709.jpg 66,130,470,257,4 -./model_data/coco/val2017/000000085911.jpg 193,168,440,279,33 -./model_data/coco/val2017/000000236690.jpg 312,28,487,336,14 -./model_data/coco/val2017/000000520659.jpg 464,274,639,376,37 419,263,466,350,37 444,266,498,361,37 319,276,362,343,37 297,267,362,339,37 246,275,288,331,37 235,272,273,336,37 173,271,208,338,37 264,283,312,339,37 329,191,356,263,0 407,188,428,231,0 428,189,448,247,0 455,187,481,229,0 543,190,571,248,0 524,188,543,241,0 428,223,495,274,0 225,199,251,260,0 250,197,265,218,0 165,236,184,272,0 291,195,315,251,0 381,195,394,231,0 355,192,400,216,25 405,268,450,349,37 132,234,175,272,56 149,277,191,334,37 113,243,146,274,56 491,196,512,250,0 350,270,389,342,37 379,269,432,346,37 46,274,384,339,37 113,49,639,389,0 -./model_data/coco/val2017/000000509403.jpg 513,212,589,346,16 359,59,480,374,0 175,126,212,233,0 40,163,93,292,0 24,221,49,247,29 -./model_data/coco/val2017/000000292488.jpg 343,110,373,190,67 73,69,421,426,0 -./model_data/coco/val2017/000000367680.jpg 140,148,174,208,17 286,167,389,240,2 43,125,197,192,5 248,151,272,197,0 168,158,180,177,0 43,140,51,162,0 37,140,45,162,0 334,175,363,191,0 323,150,447,210,7 236,150,250,197,0 387,139,397,150,0 395,140,401,150,0 0,142,46,197,7 194,155,215,184,0 -./model_data/coco/val2017/000000273712.jpg 1,80,314,599,72 -./model_data/coco/val2017/000000538458.jpg 616,119,622,135,9 296,190,370,228,36 464,240,514,277,36 506,171,523,185,7 553,304,599,332,36 487,106,640,312,0 609,94,621,114,9 490,149,498,156,9 296,35,398,182,0 -./model_data/coco/val2017/000000569059.jpg 231,38,394,205,62 387,401,640,473,56 461,275,502,295,64 242,267,437,339,66 193,178,207,200,0 201,184,215,213,0 397,191,442,208,67 210,184,225,212,0 219,176,231,210,0 227,178,235,189,0 180,178,199,212,0 396,151,418,179,0 211,177,219,193,0 226,172,241,210,0 -./model_data/coco/val2017/000000578967.jpg 14,140,640,463,6 -./model_data/coco/val2017/000000357941.jpg 134,199,425,370,62 161,135,400,212,15 23,211,44,263,67 -./model_data/coco/val2017/000000112997.jpg 58,64,427,563,67 4,76,403,479,0 -./model_data/coco/val2017/000000386277.jpg 211,101,473,374,49 -./model_data/coco/val2017/000000500663.jpg 288,353,326,377,19 397,340,417,352,19 442,323,451,329,19 -./model_data/coco/val2017/000000328683.jpg 163,36,298,239,12 169,251,220,499,58 -./model_data/coco/val2017/000000237864.jpg 436,243,484,323,16 63,117,332,306,20 -./model_data/coco/val2017/000000001353.jpg 66,323,256,462,6 214,154,281,283,0 148,136,224,189,0 138,198,266,382,0 62,213,178,356,0 133,180,210,253,0 188,182,220,245,0 -./model_data/coco/val2017/000000512929.jpg 32,89,343,484,0 16,539,121,592,45 173,462,440,605,45 18,180,70,242,69 20,72,66,180,69 277,59,593,539,0 335,442,400,573,44 -./model_data/coco/val2017/000000011699.jpg 187,99,432,632,0 60,82,223,418,0 5,240,57,308,0 257,218,366,483,26 1,399,279,632,28 8,172,128,404,26 -./model_data/coco/val2017/000000013729.jpg 518,241,530,283,39 252,65,336,373,0 358,54,491,432,0 540,244,551,290,39 231,141,396,280,65 246,261,262,266,65 77,89,261,475,0 153,79,228,343,0 478,368,640,478,60 615,270,625,283,41 312,206,401,339,57 -./model_data/coco/val2017/000000285894.jpg 1,133,127,328,0 394,54,500,324,0 126,28,271,328,23 85,191,182,325,23 221,232,364,329,0 -./model_data/coco/val2017/000000015272.jpg 41,38,276,136,9 -./model_data/coco/val2017/000000548246.jpg 403,152,505,427,0 0,112,159,422,0 25,333,192,361,38 535,366,548,383,32 539,356,551,370,32 527,350,543,368,32 517,362,535,377,32 150,207,158,215,32 504,381,516,393,32 501,366,516,381,32 501,354,513,368,32 531,381,545,397,32 513,349,527,365,32 523,345,534,354,32 518,378,531,391,32 405,222,465,355,38 250,153,344,377,0 543,354,555,367,32 214,100,423,423,0 -./model_data/coco/val2017/000000078915.jpg 135,295,154,316,32 155,296,208,407,38 131,392,301,640,0 243,5,317,84,0 357,12,417,88,0 316,4,363,86,0 190,0,305,50,0 114,0,201,53,0 256,86,330,185,0 73,0,153,36,0 458,66,481,202,0 38,0,115,46,0 -./model_data/coco/val2017/000000112378.jpg 131,145,217,186,56 233,343,325,412,46 316,330,360,352,46 331,365,393,403,46 210,322,291,363,46 215,395,267,426,46 18,254,488,466,60 0,380,94,480,13 319,344,357,368,46 -./model_data/coco/val2017/000000142585.jpg 178,266,366,442,2 152,307,188,379,2 126,348,157,442,3 0,0,88,493,5 91,287,165,436,0 93,225,108,259,9 221,228,247,270,9 96,285,128,355,0 171,309,192,336,2 348,295,375,358,2 170,264,361,443,7 -./model_data/coco/val2017/000000326174.jpg 198,340,343,409,37 93,230,272,321,37 81,262,211,329,37 508,283,614,333,37 372,224,435,405,0 510,232,599,406,0 131,221,226,407,0 281,222,315,354,0 286,260,341,349,0 290,393,361,402,37 90,213,143,403,0 207,282,240,399,0 -./model_data/coco/val2017/000000166642.jpg 50,57,537,329,20 -./model_data/coco/val2017/000000163562.jpg 134,0,452,333,0 87,224,197,297,29 -./model_data/coco/val2017/000000236914.jpg 15,313,635,442,60 17,17,387,421,77 286,115,492,318,77 1,134,62,437,56 486,102,616,400,39 -./model_data/coco/val2017/000000273760.jpg 126,34,303,545,0 129,293,158,386,38 -./model_data/coco/val2017/000000246968.jpg 2,191,56,340,58 398,240,426,318,39 437,243,451,294,39 423,243,441,311,39 130,218,142,250,39 124,231,137,269,39 326,389,477,423,56 183,135,303,315,0 90,238,100,266,39 297,159,381,222,68 68,280,91,335,40 88,267,146,344,41 138,282,163,328,44 363,232,396,253,46 350,235,377,252,46 299,157,384,301,69 122,273,167,303,71 379,253,397,290,39 383,287,392,308,39 146,302,168,331,41 89,341,130,355,65 145,293,160,304,71 -./model_data/coco/val2017/000000266400.jpg 72,37,105,113,1 106,51,628,391,3 153,41,364,125,3 83,115,393,250,3 126,25,332,97,3 138,0,301,78,3 131,1,247,60,3 98,2,471,153,3 36,0,74,54,0 0,0,15,139,0 136,3,236,26,3 169,0,217,15,3 -./model_data/coco/val2017/000000181542.jpg 1,130,122,202,2 10,256,360,412,3 373,306,640,499,3 0,253,73,353,3 1,69,199,185,5 187,130,310,462,0 330,124,348,143,0 540,147,640,365,0 431,115,570,324,0 350,125,372,144,0 286,117,308,144,0 363,122,372,140,0 103,110,215,411,0 33,160,103,261,0 273,114,465,244,7 272,114,284,148,0 215,119,228,148,0 362,250,554,377,3 607,123,632,163,0 307,126,322,144,0 0,93,613,248,0 -./model_data/coco/val2017/000000492937.jpg 423,82,588,303,6 355,24,452,341,0 20,16,494,601,1 -./model_data/coco/val2017/000000243075.jpg 1,83,551,566,21 -./model_data/coco/val2017/000000455597.jpg 466,159,493,207,39 531,162,563,211,39 104,226,329,441,0 65,217,126,402,0 182,164,209,174,45 293,167,313,172,45 210,151,233,155,45 185,149,210,155,45 181,152,209,164,45 308,312,545,445,69 394,302,629,433,69 171,160,182,172,41 443,262,473,284,44 556,156,577,208,41 435,249,491,284,44 -./model_data/coco/val2017/000000421834.jpg 56,161,419,275,14 -./model_data/coco/val2017/000000522638.jpg 0,0,383,423,77 -./model_data/coco/val2017/000000272136.jpg 2,51,640,422,4 89,248,109,273,0 -./model_data/coco/val2017/000000329447.jpg 466,336,631,455,16 295,146,489,459,19 185,114,317,440,19 75,118,273,450,19 3,134,79,449,19 -./model_data/coco/val2017/000000378284.jpg 106,0,533,122,0 541,273,640,387,42 81,108,499,331,53 2,60,640,422,60 547,284,640,367,43 1,2,107,124,0 595,298,640,331,43 -./model_data/coco/val2017/000000476770.jpg 301,178,338,214,35 613,56,623,71,0 235,116,348,302,0 362,40,449,273,0 341,30,610,420,0 0,75,34,150,0 28,69,65,111,0 593,71,640,112,0 583,65,608,91,0 72,63,113,101,0 78,18,95,44,0 269,73,332,112,0 47,54,71,91,0 400,39,437,74,35 536,179,586,244,35 326,72,359,112,0 1,1,639,166,0 -./model_data/coco/val2017/000000273711.jpg 450,59,548,147,56 1,214,78,392,56 539,236,622,445,56 374,281,444,338,44 345,298,410,368,45 220,297,344,386,45 161,362,333,473,45 212,232,247,274,47 213,217,251,237,49 237,253,270,287,49 250,218,292,238,49 200,308,216,320,51 175,304,235,331,51 549,0,640,70,0 450,202,563,273,45 153,279,248,361,45 257,235,360,320,45 355,254,435,331,45 447,182,535,202,45 77,256,167,295,47 341,368,404,403,48 382,394,438,454,48 431,382,501,460,48 389,373,434,397,48 56,76,566,480,60 22,286,64,365,56 527,43,638,473,0 217,16,323,69,56 53,0,122,113,56 1,97,51,172,56 342,299,411,371,41 327,391,353,442,48 389,218,435,259,48 433,373,478,397,48 343,394,362,449,48 354,400,434,460,48 214,233,247,266,49 -./model_data/coco/val2017/000000546556.jpg 9,170,638,275,18 125,180,143,188,18 302,206,330,221,18 611,218,637,230,18 -./model_data/coco/val2017/000000112798.jpg 66,138,509,300,15 0,46,96,227,63 334,95,370,149,73 623,129,640,193,73 -./model_data/coco/val2017/000000162035.jpg 57,0,203,327,0 368,149,456,350,77 400,0,458,17,0 252,0,306,46,0 256,5,345,143,77 -./model_data/coco/val2017/000000251824.jpg 469,87,500,151,73 364,160,500,305,76 0,104,500,370,0 -./model_data/coco/val2017/000000374545.jpg 247,566,273,603,0 174,521,187,557,0 208,527,225,562,0 168,526,175,543,0 521,546,544,581,0 126,531,134,544,0 479,583,497,614,0 45,532,54,559,0 116,531,120,543,0 471,590,506,623,1 61,531,72,557,0 287,547,297,559,0 144,531,154,543,0 177,265,216,283,33 54,532,61,557,0 12,524,393,557,0 -./model_data/coco/val2017/000000393093.jpg 282,355,358,401,2 367,321,422,355,2 438,290,470,315,2 4,146,639,221,6 563,361,619,424,0 464,305,494,332,2 465,284,488,302,2 401,304,439,331,2 474,280,498,293,2 -./model_data/coco/val2017/000000424642.jpg 421,224,456,241,39 21,125,103,339,0 366,157,453,316,0 83,320,105,331,29 99,297,119,305,29 307,180,312,197,0 252,206,266,231,29 -./model_data/coco/val2017/000000456394.jpg 4,0,196,120,3 0,10,13,56,2 90,0,204,20,2 -./model_data/coco/val2017/000000437239.jpg 67,217,88,235,2 126,216,147,230,2 184,140,260,383,0 485,127,566,368,0 536,146,629,380,0 22,132,84,365,0 240,308,561,403,13 53,266,355,347,29 499,212,520,244,29 581,188,612,216,29 362,308,422,360,24 4,212,23,223,2 512,214,522,243,29 -./model_data/coco/val2017/000000496597.jpg 364,294,434,313,8 373,290,380,297,0 411,293,421,304,0 -./model_data/coco/val2017/000000328117.jpg 316,327,387,396,54 244,300,319,359,54 85,293,165,363,54 172,454,261,555,54 329,452,431,550,54 242,495,346,583,54 238,426,322,500,54 239,361,333,433,54 181,277,252,326,54 120,285,182,334,54 147,394,231,480,54 -./model_data/coco/val2017/000000186042.jpg 111,65,202,251,0 93,239,252,259,30 -./model_data/coco/val2017/000000015278.jpg 0,40,640,472,50 -./model_data/coco/val2017/000000389197.jpg 169,207,331,336,0 517,3,567,39,0 466,0,524,35,0 567,0,619,55,0 201,293,323,364,37 228,0,314,119,0 313,0,347,54,0 410,0,456,41,0 456,0,489,40,0 344,0,387,51,0 375,0,417,16,0 -./model_data/coco/val2017/000000506279.jpg 11,79,640,630,60 282,90,425,494,40 -./model_data/coco/val2017/000000111609.jpg 428,51,640,421,59 350,82,475,354,0 506,352,640,429,63 -./model_data/coco/val2017/000000245764.jpg 194,176,494,480,15 270,14,582,480,61 -./model_data/coco/val2017/000000427649.jpg 223,282,286,363,8 -./model_data/coco/val2017/000000183965.jpg 380,210,506,355,48 133,89,302,240,41 381,210,504,357,52 336,152,563,380,45 2,1,640,472,60 -./model_data/coco/val2017/000000184324.jpg 460,338,548,393,1 455,303,533,358,1 276,237,344,270,2 243,234,271,250,2 458,271,481,312,1 118,206,157,258,7 104,261,120,301,26 414,264,430,285,26 546,347,591,410,26 438,248,455,305,0 413,251,440,311,0 364,242,390,303,0 351,233,369,287,0 336,232,349,257,0 326,232,338,251,0 117,208,156,259,5 415,262,430,287,24 9,319,104,425,0 565,251,592,320,0 31,218,83,382,0 80,240,135,387,0 33,227,47,250,0 2,221,33,332,0 454,242,475,258,2 426,242,461,263,2 280,233,295,243,2 583,290,591,309,25 235,225,247,258,0 104,224,120,239,2 69,306,80,330,26 307,218,317,229,11 3,199,597,424,0 -./model_data/coco/val2017/000000130465.jpg 447,101,543,169,74 127,215,174,259,74 -./model_data/coco/val2017/000000116362.jpg 26,44,435,268,44 190,244,322,309,47 72,27,591,417,45 22,402,253,596,45 441,168,494,213,47 340,330,464,373,47 28,247,591,597,60 313,108,441,234,51 -./model_data/coco/val2017/000000136772.jpg 66,20,435,317,45 73,30,377,226,49 -./model_data/coco/val2017/000000177861.jpg 266,233,413,296,25 86,274,162,296,25 159,306,214,338,2 141,296,176,321,2 368,359,395,426,26 464,376,480,428,1 309,291,383,507,0 0,353,70,640,0 257,302,313,323,2 35,281,80,296,25 289,380,315,448,25 419,375,458,432,56 388,375,450,445,60 11,292,54,388,0 148,304,155,333,24 126,307,157,350,24 155,345,174,398,25 298,373,328,464,25 116,295,163,414,0 -./model_data/coco/val2017/000000519208.jpg 282,33,639,401,0 0,0,640,400,20 -./model_data/coco/val2017/000000326542.jpg 380,315,464,423,0 496,285,504,306,0 365,412,452,422,30 192,265,200,277,0 -./model_data/coco/val2017/000000357567.jpg 281,365,480,619,61 472,456,480,485,71 -./model_data/coco/val2017/000000095155.jpg 125,58,194,138,0 446,44,522,147,0 439,213,578,384,0 113,247,221,377,0 151,351,239,383,31 120,126,151,144,31 417,140,525,159,31 539,366,582,391,31 -./model_data/coco/val2017/000000450100.jpg 151,393,443,632,44 46,169,330,580,55 0,0,480,453,60 151,1,480,241,41 -./model_data/coco/val2017/000000371699.jpg 297,537,400,639,16 276,275,480,530,60 1,247,66,392,0 341,282,406,330,63 69,435,90,486,73 136,295,177,339,56 71,435,96,485,73 51,507,63,558,73 57,438,69,492,73 115,420,167,467,73 368,257,393,275,73 398,269,419,281,73 43,442,56,500,73 62,438,77,489,73 74,434,99,480,73 78,431,111,478,73 57,504,70,557,73 53,503,66,558,73 46,424,125,495,73 -./model_data/coco/val2017/000000559348.jpg 265,144,279,175,34 34,267,152,457,0 228,236,246,248,35 145,187,219,282,0 210,201,252,281,0 242,171,295,289,0 34,138,73,197,0 90,137,127,174,0 275,124,306,174,0 494,144,525,196,0 433,144,460,178,0 28,56,47,83,0 441,124,468,161,0 388,104,416,142,0 301,91,334,132,0 112,122,589,204,0 -./model_data/coco/val2017/000000492282.jpg 42,344,289,535,17 22,359,141,511,17 317,304,470,487,17 424,317,479,420,17 292,325,339,387,17 158,230,231,422,0 365,263,398,328,0 380,270,429,408,0 0,262,47,442,0 -./model_data/coco/val2017/000000291619.jpg 341,100,429,283,0 407,117,434,129,29 131,129,230,322,0 -./model_data/coco/val2017/000000097022.jpg 515,198,613,253,68 414,216,461,253,70 253,254,335,263,71 230,235,252,254,62 167,265,236,358,69 316,270,416,380,69 -./model_data/coco/val2017/000000064718.jpg 324,55,350,80,32 122,44,434,457,0 65,123,143,264,38 -./model_data/coco/val2017/000000326248.jpg 464,255,527,349,56 418,224,473,257,38 408,75,466,166,0 270,51,324,151,0 0,102,19,169,0 388,254,451,348,56 170,123,253,322,56 124,2,165,86,0 396,0,441,21,0 10,181,74,364,0 95,0,130,24,0 366,0,393,38,0 165,0,218,99,0 157,14,249,47,25 190,151,219,163,56 0,258,22,351,56 587,0,623,78,0 39,66,95,168,0 536,0,584,80,0 168,60,482,374,0 -./model_data/coco/val2017/000000157928.jpg 0,99,108,247,2 180,103,301,201,2 94,24,216,366,0 260,130,434,302,0 265,259,518,415,30 297,84,443,169,24 113,18,200,128,24 259,259,480,455,30 -./model_data/coco/val2017/000000159112.jpg 1,2,640,444,53 -./model_data/coco/val2017/000000001532.jpg 1,369,119,472,2 501,397,551,443,2 200,401,233,427,2 106,375,185,435,2 225,391,245,406,7 426,399,490,454,2 405,402,431,429,2 225,361,420,480,2 -./model_data/coco/val2017/000000281693.jpg 60,58,604,294,4 360,280,462,337,7 0,136,164,308,4 557,254,640,335,4 580,135,639,207,4 31,280,81,313,7 -./model_data/coco/val2017/000000012280.jpg 143,241,193,369,0 174,313,224,372,28 0,126,56,191,62 339,250,353,312,0 307,280,318,298,0 -./model_data/coco/val2017/000000555050.jpg 221,170,277,223,19 470,201,500,237,57 339,201,358,232,56 358,200,377,231,56 317,200,341,231,56 470,202,500,236,56 344,171,362,203,56 386,199,458,232,57 419,172,457,204,57 0,177,235,269,2 40,147,64,170,2 97,185,125,213,0 5,50,36,132,9 102,78,137,113,9 437,85,459,149,9 201,105,217,135,9 313,197,321,229,56 326,203,380,230,60 -./model_data/coco/val2017/000000530162.jpg 126,18,508,236,25 0,156,29,223,25 307,271,438,426,0 176,274,310,422,0 534,310,639,426,0 0,142,54,387,0 139,165,251,421,0 396,283,465,427,0 141,187,162,225,0 265,145,417,364,0 41,162,150,424,0 123,205,142,240,0 -./model_data/coco/val2017/000000222863.jpg 146,1,388,426,19 -./model_data/coco/val2017/000000239627.jpg 389,0,464,111,39 464,0,553,106,39 331,212,395,284,41 329,278,385,338,41 439,265,512,341,41 358,325,466,392,41 456,288,540,363,44 425,173,501,248,44 343,207,402,267,44 332,211,395,279,45 410,197,479,260,45 0,49,614,422,71 413,193,479,259,41 441,269,510,339,45 -./model_data/coco/val2017/000000484760.jpg 491,269,525,302,74 -./model_data/coco/val2017/000000468925.jpg 1,110,472,443,48 57,210,238,339,46 297,148,434,271,46 45,114,320,268,46 531,67,574,95,44 0,1,92,118,41 505,66,540,108,43 -./model_data/coco/val2017/000000338532.jpg 151,123,319,430,23 317,288,321,307,0 325,288,333,301,0 -./model_data/coco/val2017/000000302030.jpg 436,0,537,88,62 0,133,226,354,63 562,109,584,126,64 418,91,555,128,66 175,111,301,151,73 163,12,178,69,73 139,18,148,66,73 0,1,103,41,73 15,43,113,110,73 187,106,298,124,73 108,21,125,66,73 0,86,156,245,56 389,175,640,354,56 194,92,302,112,73 196,265,403,357,73 186,16,208,69,73 157,97,173,143,73 135,18,144,66,73 177,16,191,67,73 105,1,217,159,73 -./model_data/coco/val2017/000000542423.jpg 16,216,37,225,2 349,202,406,342,0 326,259,536,344,13 400,269,432,300,26 318,220,324,232,0 176,218,182,231,0 110,216,130,225,2 55,217,74,224,2 80,218,96,222,2 601,226,623,234,2 509,228,518,233,2 495,228,499,233,2 398,269,421,299,24 158,216,161,224,0 -./model_data/coco/val2017/000000495054.jpg 28,133,585,282,4 0,242,58,267,7 0,264,68,289,7 383,272,451,290,7 400,283,501,303,7 547,247,639,307,7 81,266,104,289,7 136,252,159,270,7 -./model_data/coco/val2017/000000237928.jpg 286,88,432,532,72 76,238,203,312,68 1,322,90,368,69 1,344,115,592,69 -./model_data/coco/val2017/000000028449.jpg 1,85,228,422,20 194,99,455,391,20 250,57,556,142,20 429,122,640,291,20 404,35,613,127,20 -./model_data/coco/val2017/000000554328.jpg 270,276,300,286,32 239,81,431,491,0 434,39,640,493,0 436,303,543,421,35 128,232,192,343,35 0,19,210,492,0 -./model_data/coco/val2017/000000388927.jpg 183,208,393,531,67 293,0,442,235,0 2,2,314,275,0 0,317,345,640,0 -./model_data/coco/val2017/000000229747.jpg 172,191,421,344,4 -./model_data/coco/val2017/000000504635.jpg 173,177,355,392,22 334,187,521,417,22 500,170,639,374,22 401,231,505,390,22 -./model_data/coco/val2017/000000341828.jpg 338,259,440,402,67 0,4,601,603,0 37,440,287,606,48 -./model_data/coco/val2017/000000513580.jpg 108,308,247,397,3 128,114,506,322,4 145,284,211,373,0 -./model_data/coco/val2017/000000439994.jpg 336,443,401,595,0 43,90,79,164,0 206,140,243,179,0 71,305,104,353,0 181,443,191,456,35 193,312,233,353,0 172,290,187,313,0 158,309,188,355,0 270,143,293,170,0 103,418,185,542,0 123,312,150,354,0 223,286,249,329,0 268,280,297,306,0 4,1,428,216,13 307,168,336,188,0 34,424,312,447,13 0,172,427,371,13 184,79,199,92,56 234,280,250,290,56 174,107,193,115,56 151,296,171,308,56 251,281,266,291,56 364,276,378,285,56 0,0,427,458,0 -./model_data/coco/val2017/000000292060.jpg 397,227,428,630,72 298,271,323,298,41 271,271,296,298,41 179,269,204,300,41 207,271,232,300,41 170,384,348,413,71 202,359,216,393,39 312,343,322,356,43 315,344,326,358,43 322,343,333,355,43 325,350,337,364,43 320,350,331,363,43 315,364,324,377,43 0,351,172,637,69 358,350,408,394,68 318,364,327,376,43 321,363,334,375,43 -./model_data/coco/val2017/000000503755.jpg 21,79,480,632,0 0,378,54,629,38 -./model_data/coco/val2017/000000215072.jpg 244,1,637,260,25 46,239,141,426,56 256,239,416,446,56 222,184,392,358,0 115,148,244,381,0 218,412,238,449,39 257,433,300,450,45 246,363,284,404,41 196,416,216,449,39 -./model_data/coco/val2017/000000013659.jpg 364,290,488,456,56 305,145,398,269,56 482,173,569,322,56 188,124,277,194,56 377,416,422,473,56 384,144,573,282,60 605,216,640,352,60 152,217,379,479,0 406,9,491,151,0 331,94,461,265,0 519,75,638,239,0 53,348,199,460,63 97,253,199,336,63 89,321,118,372,41 194,78,234,115,62 282,217,331,310,56 567,160,610,284,56 480,75,518,154,0 -./model_data/coco/val2017/000000111086.jpg 447,207,500,312,2 299,206,455,310,2 325,139,456,212,2 211,224,299,283,2 227,161,330,219,2 164,227,224,282,2 187,178,247,226,2 122,240,171,284,2 151,192,188,224,2 97,249,129,283,2 0,1,500,215,8 104,226,120,243,0 126,201,156,232,2 400,92,451,138,0 340,250,369,273,0 72,253,98,284,2 436,88,464,122,0 -./model_data/coco/val2017/000000127494.jpg 9,38,232,197,44 -./model_data/coco/val2017/000000342006.jpg 171,503,272,550,8 393,251,420,277,74 103,473,330,523,8 0,480,67,496,8 -./model_data/coco/val2017/000000245915.jpg 376,189,473,246,20 445,205,500,276,20 402,164,493,211,20 480,119,499,167,20 439,100,491,148,20 270,190,363,265,20 222,149,322,196,20 245,125,312,158,20 299,115,363,167,20 72,121,170,178,20 389,118,486,167,20 179,142,270,190,20 38,101,84,150,20 79,127,219,184,20 -./model_data/coco/val2017/000000361268.jpg 325,226,534,358,19 -./model_data/coco/val2017/000000119995.jpg 39,12,257,485,0 257,214,428,266,38 335,32,451,235,0 431,0,468,25,0 364,0,401,15,0 297,0,365,14,0 -./model_data/coco/val2017/000000395180.jpg 57,262,103,446,1 407,200,550,215,8 32,122,167,436,0 446,187,458,203,0 494,188,508,204,0 510,192,520,205,0 142,202,152,207,67 477,189,493,203,0 464,187,477,201,0 -./model_data/coco/val2017/000000243867.jpg 2,213,237,353,2 546,207,637,422,2 53,100,546,311,5 0,223,34,264,0 -./model_data/coco/val2017/000000116589.jpg 262,77,456,369,22 0,75,285,375,22 375,71,500,209,22 -./model_data/coco/val2017/000000170595.jpg 23,153,594,588,60 301,202,589,430,48 -./model_data/coco/val2017/000000428111.jpg 372,275,389,290,0 74,175,124,204,36 75,86,176,201,0 333,291,354,315,0 379,261,410,289,0 346,314,367,333,24 318,304,366,342,1 -./model_data/coco/val2017/000000055022.jpg 25,145,335,640,1 134,165,317,352,1 196,153,375,312,1 325,123,376,240,1 245,116,357,229,1 426,90,467,170,0 423,107,444,168,0 251,196,334,331,1 245,0,281,80,1 -./model_data/coco/val2017/000000308394.jpg 75,164,222,421,0 88,235,157,428,25 183,258,504,421,13 122,307,193,353,26 -./model_data/coco/val2017/000000530836.jpg 341,279,358,315,39 0,206,55,415,72 574,213,640,395,72 366,293,403,315,45 289,305,299,316,46 319,306,325,313,47 306,305,315,315,47 199,279,266,372,69 256,269,351,277,71 327,300,340,312,41 265,293,411,429,60 76,246,196,383,69 391,176,403,187,75 297,304,307,315,47 382,263,400,272,45 83,256,113,277,45 124,270,149,277,45 624,209,640,215,45 0,190,30,209,45 194,179,203,187,75 195,149,204,158,75 389,152,399,158,75 156,254,191,278,45 -./model_data/coco/val2017/000000456143.jpg 301,123,604,321,48 13,214,242,305,45 1,38,407,202,53 57,142,72,223,51 70,143,173,220,51 158,183,212,221,51 10,194,57,281,51 449,264,495,301,51 -./model_data/coco/val2017/000000203629.jpg 275,195,287,214,67 483,357,553,418,41 148,135,385,418,0 385,172,640,426,0 1,144,200,421,0 104,161,165,312,0 361,153,430,275,0 154,161,215,218,0 436,158,470,214,0 418,182,469,228,0 459,156,503,216,0 94,154,131,225,0 0,184,28,240,0 576,344,636,419,41 -./model_data/coco/val2017/000000034760.jpg 193,299,206,329,39 209,374,256,459,61 1,406,131,510,71 168,316,186,360,39 -./model_data/coco/val2017/000000008211.jpg 141,161,252,310,3 322,250,377,344,56 412,282,448,340,56 411,181,478,345,0 325,203,410,353,0 308,190,354,257,1 -./model_data/coco/val2017/000000504439.jpg 291,82,487,239,22 0,1,187,243,22 -./model_data/coco/val2017/000000056350.jpg 291,253,612,397,0 388,403,612,576,0 143,463,299,598,0 341,0,490,167,61 93,325,239,528,0 62,527,120,584,0 314,529,572,612,0 5,385,125,532,0 74,494,166,612,0 202,333,451,497,0 -./model_data/coco/val2017/000000237118.jpg 239,150,466,618,0 422,385,467,597,26 210,209,311,614,72 -./model_data/coco/val2017/000000559513.jpg 168,1,280,145,39 355,82,639,153,42 294,0,371,162,39 430,58,640,370,43 0,147,80,321,60 -./model_data/coco/val2017/000000383842.jpg 255,50,580,434,0 296,103,400,387,0 332,97,359,146,0 228,34,329,397,0 537,123,619,276,0 1,210,248,402,63 146,130,235,260,26 364,90,387,108,0 289,104,313,204,27 356,153,373,199,27 516,325,571,378,65 382,96,431,159,0 219,83,250,182,0 306,70,340,154,0 249,239,304,286,65 363,35,495,335,0 -./model_data/coco/val2017/000000447314.jpg 88,227,221,400,0 46,289,129,405,0 484,317,517,357,33 11,219,44,271,0 41,217,51,233,0 377,345,384,358,0 241,297,251,309,0 38,215,44,228,0 208,284,212,293,0 212,285,219,296,0 217,290,223,298,0 -./model_data/coco/val2017/000000268831.jpg 67,94,98,143,61 26,118,53,149,61 140,147,236,182,71 -./model_data/coco/val2017/000000015517.jpg 162,322,348,406,5 0,306,127,362,5 230,275,319,302,5 374,292,489,314,5 361,275,447,288,5 433,283,515,312,5 322,285,418,306,5 116,263,172,282,5 338,263,403,282,5 273,262,337,276,5 489,272,538,305,5 145,274,236,297,5 182,270,254,278,5 197,248,461,293,5 -./model_data/coco/val2017/000000551804.jpg 219,81,436,362,0 346,60,386,200,38 -./model_data/coco/val2017/000000452784.jpg 1,63,407,303,0 0,304,480,640,45 333,457,407,542,50 73,325,479,568,50 54,376,480,640,50 0,266,276,398,71 -./model_data/coco/val2017/000000094852.jpg 132,118,442,401,20 237,248,333,409,20 -./model_data/coco/val2017/000000127182.jpg 314,261,385,361,58 52,149,137,265,68 18,367,193,618,69 1,336,31,365,43 348,334,370,366,75 7,371,34,391,43 7,342,37,371,43 14,351,38,376,43 391,361,427,373,71 249,384,388,551,72 -./model_data/coco/val2017/000000193245.jpg 176,0,216,26,33 148,55,179,75,33 213,22,243,60,33 272,0,312,16,33 361,0,386,10,33 470,48,497,64,33 125,5,142,18,33 78,176,146,372,0 294,200,304,235,0 239,190,267,275,0 251,178,294,287,0 398,192,417,231,0 416,183,443,252,0 462,165,497,290,0 151,202,182,269,0 413,195,420,221,0 373,191,378,205,0 333,200,342,227,0 234,76,249,86,33 74,117,86,125,33 322,192,324,202,0 73,135,84,142,33 399,94,406,99,33 228,0,251,8,33 328,194,332,206,0 358,187,413,214,0 -./model_data/coco/val2017/000000297396.jpg 326,85,500,251,55 70,76,233,234,55 206,69,348,227,55 279,40,354,87,55 275,19,315,57,55 356,1,498,96,55 159,23,259,125,55 0,102,500,370,60 114,0,198,85,43 -./model_data/coco/val2017/000000508586.jpg 20,138,195,254,22 301,173,428,242,22 316,151,352,192,22 349,157,390,192,22 429,161,499,245,22 506,158,626,248,22 422,163,439,187,22 0,157,39,172,22 597,191,632,227,22 625,166,640,197,22 -./model_data/coco/val2017/000000248810.jpg 62,131,299,467,23 238,139,246,161,0 -./model_data/coco/val2017/000000190756.jpg 116,103,492,424,3 129,32,422,195,0 -./model_data/coco/val2017/000000158660.jpg 334,278,612,422,45 71,251,327,367,45 70,183,320,295,46 324,205,457,329,47 435,265,567,344,47 515,264,610,343,47 0,95,59,175,0 393,127,543,251,69 381,266,467,338,47 473,5,612,294,0 -./model_data/coco/val2017/000000528862.jpg 162,147,205,266,23 233,172,255,247,23 254,149,317,276,23 343,153,365,237,23 184,65,219,167,23 321,133,343,221,23 43,102,77,265,23 -./model_data/coco/val2017/000000018150.jpg 274,230,308,287,39 210,82,312,248,57 356,27,640,480,0 3,2,412,432,0 317,227,412,300,53 210,105,251,160,24 222,459,288,480,53 -./model_data/coco/val2017/000000469067.jpg 292,244,555,472,15 0,184,557,473,0 1,167,640,472,59 515,418,561,472,67 513,416,561,474,65 -./model_data/coco/val2017/000000057149.jpg 269,269,468,420,2 118,213,516,304,6 323,234,408,272,5 363,144,391,161,9 262,172,294,182,9 333,263,408,274,2 -./model_data/coco/val2017/000000553339.jpg 66,270,69,277,9 58,268,65,279,9 78,272,81,278,9 47,281,56,286,2 90,277,93,283,9 51,269,55,277,9 20,276,25,281,9 -./model_data/coco/val2017/000000317433.jpg 248,23,464,397,17 449,64,634,399,17 29,138,123,381,0 -./model_data/coco/val2017/000000174018.jpg 85,4,498,351,77 4,14,197,309,77 -./model_data/coco/val2017/000000527616.jpg 206,14,413,196,62 256,52,379,170,0 296,103,324,165,27 230,112,283,162,57 -./model_data/coco/val2017/000000007088.jpg 82,173,304,268,25 229,152,369,187,7 179,208,276,462,0 47,181,59,191,2 -./model_data/coco/val2017/000000063965.jpg 2,0,640,420,0 63,181,163,272,44 206,117,471,277,55 -./model_data/coco/val2017/000000031093.jpg 217,77,449,328,0 248,317,342,330,36 549,9,579,46,0 619,81,638,100,24 483,17,507,26,36 497,0,529,38,0 -./model_data/coco/val2017/000000230450.jpg 301,247,374,263,2 303,172,312,192,9 395,226,404,245,9 396,249,404,256,9 182,228,260,403,12 133,238,184,334,12 418,202,639,471,12 103,238,118,283,12 111,238,135,290,12 361,249,402,264,3 -./model_data/coco/val2017/000000402519.jpg 282,186,357,397,14 -./model_data/coco/val2017/000000423971.jpg 223,0,398,425,61 -./model_data/coco/val2017/000000491470.jpg 295,47,311,82,9 292,119,297,152,9 300,127,314,152,9 -./model_data/coco/val2017/000000576955.jpg 333,93,443,344,17 308,52,426,257,0 239,16,269,114,0 -./model_data/coco/val2017/000000489091.jpg 0,303,67,400,61 143,296,250,350,71 -./model_data/coco/val2017/000000026465.jpg 398,198,459,258,67 358,53,498,133,56 0,0,131,295,0 106,4,396,292,63 114,157,397,293,66 39,291,125,367,65 -./model_data/coco/val2017/000000447200.jpg 8,13,530,454,16 -./model_data/coco/val2017/000000506178.jpg 309,99,375,213,0 70,90,300,494,0 2,428,122,492,59 253,256,293,287,65 153,248,174,266,65 -./model_data/coco/val2017/000000090003.jpg 219,213,493,365,16 144,205,329,325,16 136,248,189,275,29 -./model_data/coco/val2017/000000429281.jpg 288,140,309,174,47 0,102,207,402,46 146,118,480,389,46 338,149,368,171,49 374,168,397,181,47 96,0,225,40,47 356,0,480,61,47 267,129,293,151,49 278,151,291,171,49 206,141,229,170,49 101,1,229,39,49 261,6,289,35,49 231,5,262,28,49 232,21,261,41,49 282,30,316,42,49 280,12,313,31,49 301,1,329,35,49 313,17,348,40,49 -./model_data/coco/val2017/000000278749.jpg 178,114,207,134,2 78,107,116,127,2 113,106,125,118,2 114,98,146,190,0 42,97,85,216,0 204,105,222,145,0 232,107,242,143,0 142,128,150,140,26 256,107,263,124,0 221,109,230,133,0 458,94,480,168,0 242,108,254,140,0 228,108,233,131,0 238,117,241,122,26 468,138,500,168,0 238,114,243,130,0 327,122,389,306,0 -./model_data/coco/val2017/000000368335.jpg 154,218,267,488,17 264,202,411,466,2 75,209,165,326,2 1,95,123,516,2 0,96,123,523,7 251,247,298,294,2 -./model_data/coco/val2017/000000471567.jpg 552,399,561,426,0 161,118,444,336,23 60,366,67,378,0 299,372,304,380,0 -./model_data/coco/val2017/000000347163.jpg 66,40,386,359,11 -./model_data/coco/val2017/000000311518.jpg 188,202,493,284,8 -./model_data/coco/val2017/000000114907.jpg 192,37,585,290,19 315,74,431,284,0 41,127,117,306,0 0,120,76,301,0 34,334,122,425,0 271,315,369,425,0 242,264,418,419,0 507,379,579,424,0 517,290,559,349,0 346,272,429,399,0 34,258,159,368,0 79,369,161,425,0 151,357,212,425,0 1,1,194,210,7 125,292,194,362,0 0,153,639,424,0 -./model_data/coco/val2017/000000229553.jpg 58,55,504,386,0 161,362,544,426,36 -./model_data/coco/val2017/000000405195.jpg 392,110,417,136,74 594,223,640,473,0 381,225,443,253,52 175,253,221,281,54 96,357,168,392,54 126,258,178,285,54 71,247,117,275,54 34,265,82,296,54 32,252,69,271,54 50,229,90,248,54 82,218,126,237,54 80,263,128,290,54 277,222,323,243,54 225,155,272,167,54 360,178,444,207,0 171,149,219,169,54 398,223,461,252,52 1,123,603,402,54 -./model_data/coco/val2017/000000530052.jpg 182,352,304,427,51 240,297,397,373,51 343,239,539,365,51 443,274,598,343,51 259,287,404,331,51 237,314,380,410,51 325,166,522,230,51 390,181,484,210,51 202,218,241,280,51 191,297,283,374,51 401,177,542,193,51 57,143,640,355,51 1,69,66,111,51 0,18,627,426,51 -./model_data/coco/val2017/000000455555.jpg 123,102,454,475,0 471,45,623,240,0 155,402,306,536,36 -./model_data/coco/val2017/000000171050.jpg 174,251,470,632,10 -./model_data/coco/val2017/000000425702.jpg 294,110,343,240,0 236,134,385,187,37 -./model_data/coco/val2017/000000198960.jpg 76,174,321,353,18 271,212,504,365,18 391,191,582,345,18 -./model_data/coco/val2017/000000125211.jpg 73,88,640,472,22 -./model_data/coco/val2017/000000203580.jpg 315,56,577,140,25 333,219,551,325,13 339,226,549,268,60 -./model_data/coco/val2017/000000289659.jpg 201,75,529,368,23 -./model_data/coco/val2017/000000365095.jpg 484,232,519,260,32 352,73,534,270,0 -./model_data/coco/val2017/000000006040.jpg 63,84,601,306,6 379,206,397,223,0 331,201,356,228,0 296,201,317,225,0 0,180,29,219,2 261,197,280,221,0 198,198,208,216,0 374,202,388,223,0 350,200,360,232,0 126,201,133,210,0 139,197,145,210,0 0,158,55,211,7 -./model_data/coco/val2017/000000464786.jpg 25,52,615,422,52 0,0,157,428,0 -./model_data/coco/val2017/000000257624.jpg 115,567,219,640,32 65,602,169,640,32 117,1,379,629,0 -./model_data/coco/val2017/000000042178.jpg 163,228,476,469,6 17,229,284,358,6 122,287,314,436,6 -./model_data/coco/val2017/000000013004.jpg 44,72,343,290,46 1,6,375,484,60 -./model_data/coco/val2017/000000020571.jpg 121,18,344,605,8 288,69,423,379,8 45,171,62,178,8 71,168,82,174,8 87,165,99,170,8 151,165,161,171,8 493,150,507,189,0 479,157,492,186,0 488,162,497,187,0 479,168,491,182,26 183,116,198,180,8 506,170,512,185,26 -./model_data/coco/val2017/000000023666.jpg 159,470,276,618,61 -./model_data/coco/val2017/000000253695.jpg 69,40,380,632,0 260,37,374,168,35 -./model_data/coco/val2017/000000303305.jpg 18,56,626,361,5 591,203,640,255,2 181,170,203,215,0 478,146,508,208,0 228,195,242,207,0 -./model_data/coco/val2017/000000420230.jpg 20,19,394,627,20 -./model_data/coco/val2017/000000442161.jpg 0,49,234,375,0 312,76,473,370,0 156,145,259,267,40 277,138,343,233,40 443,153,482,237,40 168,57,326,369,0 167,320,219,370,26 435,101,499,204,0 -./model_data/coco/val2017/000000419312.jpg 0,69,92,235,41 18,10,115,147,41 165,326,227,494,42 254,243,375,289,43 92,357,132,374,51 95,308,180,379,51 315,0,374,87,45 185,315,205,331,51 0,5,375,493,60 189,0,290,24,45 244,41,336,134,55 0,0,24,78,41 -./model_data/coco/val2017/000000050331.jpg 366,92,504,236,50 33,157,112,268,50 1,57,399,473,58 298,90,640,480,58 -./model_data/coco/val2017/000000361571.jpg 255,7,640,420,16 -./model_data/coco/val2017/000000402118.jpg 184,65,485,311,0 201,266,532,338,31 -./model_data/coco/val2017/000000198510.jpg 1,12,256,425,6 268,189,500,632,0 -./model_data/coco/val2017/000000187243.jpg 0,237,314,633,0 276,54,427,346,61 0,26,65,56,71 -./model_data/coco/val2017/000000185157.jpg 235,554,374,638,1 11,531,297,640,1 148,575,222,640,1 114,522,174,575,1 0,511,58,626,1 57,555,95,574,1 -./model_data/coco/val2017/000000081394.jpg 618,147,639,179,2 532,172,633,224,3 521,201,543,247,3 547,152,569,183,0 84,19,524,435,7 611,179,640,220,3 -./model_data/coco/val2017/000000296634.jpg 234,41,607,419,45 44,40,224,218,45 40,224,225,406,45 57,305,102,348,51 182,378,218,386,51 152,360,214,365,51 49,256,62,297,51 93,358,143,367,51 64,320,77,353,51 54,45,216,211,50 115,234,182,268,51 175,247,222,258,51 -./model_data/coco/val2017/000000279278.jpg 506,157,578,239,16 157,1,289,290,0 344,0,480,321,0 235,1,314,245,0 140,12,185,203,0 564,17,640,422,0 463,58,524,151,1 108,35,148,154,1 1,81,46,160,1 0,89,16,170,1 0,10,107,100,1 262,173,376,290,36 531,0,587,64,41 455,64,480,123,26 282,56,309,126,26 483,23,603,145,1 288,0,349,182,0 334,48,365,157,1 502,25,639,149,1 1,258,279,422,1 116,40,148,94,1 90,0,136,80,0 15,5,128,157,1 -./model_data/coco/val2017/000000329219.jpg 297,252,357,360,16 175,1,323,332,0 13,0,22,42,43 159,127,181,144,41 361,70,380,87,41 43,0,53,49,42 68,0,81,51,44 82,64,86,90,44 330,60,345,77,41 331,80,346,97,41 334,95,350,112,41 355,51,371,72,41 349,91,359,109,41 358,91,375,107,41 349,74,364,89,41 197,134,248,153,71 50,60,61,87,44 354,151,367,161,41 335,136,346,146,41 344,57,356,74,41 340,147,350,157,41 -./model_data/coco/val2017/000000172856.jpg 131,195,277,395,11 -./model_data/coco/val2017/000000182155.jpg 2,265,541,420,57 94,22,592,420,0 218,149,248,252,65 456,89,486,170,65 338,51,544,419,0 508,244,583,281,65 490,98,510,136,65 -./model_data/coco/val2017/000000565778.jpg 159,132,504,347,6 422,191,438,269,0 405,188,426,270,0 395,228,405,256,0 183,324,194,335,9 183,305,193,323,9 265,232,271,248,0 -./model_data/coco/val2017/000000463618.jpg 63,2,341,121,62 105,185,193,271,14 471,0,640,303,57 236,9,522,445,0 234,142,409,388,0 -./model_data/coco/val2017/000000533145.jpg 291,218,473,369,62 0,0,194,290,0 1,42,348,337,65 -./model_data/coco/val2017/000000272364.jpg 140,150,326,640,23 259,103,428,640,23 58,214,205,628,23 162,272,219,381,23 -./model_data/coco/val2017/000000378673.jpg 238,46,415,270,0 252,171,273,222,0 313,262,410,291,36 198,178,224,224,0 488,154,504,193,0 148,178,160,201,0 161,179,179,203,0 501,156,514,201,0 524,161,542,210,0 561,176,573,190,0 276,177,306,194,2 472,188,495,199,2 545,176,560,201,0 398,181,414,211,0 132,166,142,205,0 45,150,82,172,2 99,165,133,184,2 0,163,21,171,2 454,181,473,212,0 14,146,619,226,0 -./model_data/coco/val2017/000000535578.jpg 230,426,348,511,18 232,354,270,413,18 260,245,304,284,18 100,239,155,273,18 374,200,397,215,18 348,195,370,209,18 89,137,101,153,18 70,136,82,150,18 121,111,131,119,18 133,114,137,120,18 29,132,38,145,18 -./model_data/coco/val2017/000000152214.jpg 192,366,288,639,27 74,3,473,626,0 -./model_data/coco/val2017/000000470773.jpg 122,0,285,217,0 140,307,194,349,44 252,294,292,348,44 197,308,241,346,44 203,373,278,426,43 343,310,382,353,44 283,321,334,367,45 231,321,287,364,45 335,323,382,366,45 334,354,392,423,45 223,344,288,417,45 102,353,180,415,45 178,317,240,364,45 255,2,381,180,58 80,383,157,418,43 5,380,90,418,43 139,380,209,425,43 303,357,378,399,43 367,168,407,194,43 340,394,363,427,44 294,304,336,348,44 138,377,211,426,44 126,318,182,364,45 277,354,339,422,45 481,283,513,311,54 506,318,542,351,54 443,189,473,215,54 476,313,508,340,54 513,292,546,319,54 487,119,503,135,54 89,160,162,253,41 32,331,137,414,45 -./model_data/coco/val2017/000000069356.jpg 612,156,639,206,2 74,110,179,489,0 416,131,527,458,0 567,113,628,379,0 285,335,326,379,46 326,339,361,373,46 311,340,342,374,46 338,333,366,359,46 339,318,361,349,46 320,317,339,340,46 279,314,346,347,46 276,298,289,312,47 351,327,394,351,47 260,284,271,293,47 220,254,324,319,47 196,252,208,264,47 626,155,640,268,0 437,152,455,193,0 556,155,577,200,0 57,204,65,211,47 75,168,92,185,47 141,199,195,246,47 -./model_data/coco/val2017/000000069106.jpg 74,146,257,273,22 296,115,434,240,22 207,116,309,248,22 56,132,188,255,22 -./model_data/coco/val2017/000000410496.jpg 24,92,263,618,0 196,3,268,96,0 124,0,198,84,0 81,44,136,173,0 9,48,82,151,0 0,128,48,218,0 233,1,300,82,0 18,6,102,202,38 241,116,311,230,0 301,126,380,232,0 254,189,304,235,0 0,196,44,244,0 303,184,367,235,0 369,38,387,60,56 299,44,313,78,56 217,20,236,32,56 304,53,350,123,0 15,0,423,196,0 -./model_data/coco/val2017/000000526103.jpg 242,0,424,81,25 100,77,388,327,20 140,408,290,474,20 -./model_data/coco/val2017/000000248980.jpg 344,135,389,214,50 197,100,261,152,50 277,182,330,232,50 124,41,217,105,50 92,107,199,216,50 298,35,350,98,50 185,163,228,205,49 277,133,342,192,49 200,215,272,264,49 245,52,300,87,49 -./model_data/coco/val2017/000000047769.jpg 384,235,489,368,62 0,263,197,375,57 315,273,387,369,56 200,352,312,375,60 304,277,352,344,56 220,266,287,354,56 -./model_data/coco/val2017/000000104666.jpg 522,267,639,387,62 54,246,62,279,73 83,236,100,298,73 92,241,110,299,73 0,227,141,302,73 36,319,75,379,73 228,228,300,323,57 50,157,65,199,73 101,152,125,192,73 75,155,91,203,73 36,158,45,198,73 59,156,78,203,73 22,161,34,204,73 16,324,40,345,73 95,157,106,192,73 8,151,172,390,73 -./model_data/coco/val2017/000000082715.jpg 170,118,306,206,0 218,71,332,198,37 -./model_data/coco/val2017/000000446206.jpg 13,273,187,371,5 121,155,633,227,6 132,325,141,337,0 150,321,159,334,0 143,320,150,335,0 354,361,367,385,0 -./model_data/coco/val2017/000000516601.jpg 415,219,442,300,0 480,215,502,268,0 503,222,539,282,0 555,227,571,265,0 570,220,584,239,0 592,216,609,252,0 413,289,444,301,30 362,293,437,297,31 506,277,533,284,31 557,217,567,228,0 403,226,409,238,0 387,226,390,237,0 382,225,386,237,0 399,224,404,236,0 388,225,395,237,0 592,245,612,254,30 401,236,410,238,31 481,263,495,268,31 526,264,564,266,30 -./model_data/coco/val2017/000000085089.jpg 458,254,639,412,0 24,331,236,420,0 239,210,418,428,40 272,0,428,196,40 158,114,327,337,40 319,130,590,428,40 0,0,304,418,0 -./model_data/coco/val2017/000000084362.jpg 531,0,639,152,62 260,250,555,447,15 236,95,397,123,7 374,142,474,263,0 0,259,640,480,56 516,304,560,316,65 0,109,200,388,57 0,274,640,473,57 -./model_data/coco/val2017/000000065350.jpg 221,41,409,261,0 462,30,632,266,0 54,1,266,85,2 0,0,63,66,2 286,23,347,85,1 448,186,530,246,24 534,241,634,257,36 528,71,637,258,0 219,3,392,88,1 464,0,596,94,1 467,42,506,93,2 529,218,560,245,24 193,153,298,229,36 468,253,610,286,36 596,0,640,97,1 -./model_data/coco/val2017/000000315187.jpg 194,350,320,401,2 3,351,33,366,2 293,287,560,414,5 58,345,65,364,0 67,345,74,364,0 365,288,372,294,9 159,310,164,324,9 349,291,354,302,9 329,322,348,338,0 417,324,427,336,0 427,325,436,335,0 -./model_data/coco/val2017/000000448256.jpg 66,87,178,426,0 423,125,497,219,0 267,81,479,336,0 157,262,173,295,39 155,75,589,307,8 243,0,639,419,7 -./model_data/coco/val2017/000000050165.jpg 116,246,453,328,6 -./model_data/coco/val2017/000000399764.jpg 133,1,412,575,0 1,170,327,527,19 -./model_data/coco/val2017/000000284445.jpg 98,333,137,345,5 150,278,164,309,9 185,175,225,244,9 427,275,442,301,9 166,306,300,594,0 121,311,129,328,9 171,288,184,312,9 194,362,279,417,24 459,317,528,519,0 515,315,560,453,0 286,327,355,529,0 351,314,417,528,0 387,315,427,407,0 603,320,639,570,0 464,328,483,357,0 543,329,597,512,0 271,341,288,379,0 438,330,469,417,0 4,320,33,350,5 226,156,302,271,9 284,336,308,391,0 572,324,601,366,2 582,321,621,448,0 112,322,447,416,0 -./model_data/coco/val2017/000000281447.jpg 248,134,576,415,17 86,168,104,209,17 35,181,58,208,17 -./model_data/coco/val2017/000000312586.jpg 179,243,439,383,21 388,119,448,156,21 536,42,588,85,21 -./model_data/coco/val2017/000000380913.jpg 166,253,187,262,67 66,208,84,225,67 440,297,483,315,67 291,198,597,289,67 291,200,295,207,67 256,168,375,421,0 376,158,535,420,0 116,168,260,422,0 0,151,160,427,0 0,148,43,338,0 521,191,640,423,0 265,306,358,338,26 117,279,250,337,26 522,304,628,344,26 -./model_data/coco/val2017/000000032901.jpg 351,198,382,381,27 478,415,605,546,56 267,486,408,545,56 594,295,630,322,56 24,99,325,544,0 309,99,458,546,0 435,109,602,543,0 50,149,58,178,39 5,145,17,177,39 0,140,8,178,39 618,262,628,284,40 618,307,634,344,41 586,262,599,298,56 597,318,639,377,60 1,200,22,345,0 26,146,39,178,39 16,144,26,177,39 38,151,48,178,39 0,492,71,546,56 0,376,59,437,60 185,135,333,536,0 -./model_data/coco/val2017/000000170116.jpg 80,0,640,473,72 144,64,159,94,0 120,62,159,103,0 102,63,124,107,0 113,22,129,62,0 122,17,146,63,0 112,104,154,143,0 591,169,619,234,0 572,167,593,237,0 -./model_data/coco/val2017/000000256195.jpg 101,58,563,388,6 -./model_data/coco/val2017/000000025560.jpg 155,1,555,262,62 133,185,510,344,15 189,29,352,224,0 0,423,78,480,41 -./model_data/coco/val2017/000000134886.jpg 429,373,493,434,2 139,182,367,251,4 504,375,541,438,0 550,368,574,398,0 418,382,434,415,0 609,366,623,378,0 505,391,516,409,0 581,347,603,370,0 577,367,587,382,0 455,382,465,390,0 493,408,501,429,0 600,369,611,380,0 -./model_data/coco/val2017/000000008277.jpg 386,83,612,393,42 19,34,464,361,45 0,70,612,612,45 270,181,363,257,50 121,158,217,242,50 209,162,278,270,50 268,119,320,173,50 360,211,385,264,50 194,254,270,316,50 202,82,282,167,50 290,98,353,169,50 257,226,345,297,50 278,149,379,217,50 -./model_data/coco/val2017/000000266892.jpg 25,187,34,189,56 284,99,314,179,38 225,205,249,243,38 405,173,426,191,0 189,138,213,179,0 341,139,369,183,0 360,140,385,188,0 373,135,390,174,0 387,146,413,184,0 408,145,430,191,0 428,145,452,171,0 458,151,473,182,0 472,142,490,191,0 109,161,142,190,0 31,160,65,190,0 338,170,371,190,0 0,86,639,389,0 -./model_data/coco/val2017/000000523100.jpg 185,119,212,167,39 153,86,187,178,39 251,26,480,262,0 1,327,478,628,45 1,376,475,632,49 83,247,194,335,49 0,80,163,235,69 200,78,228,175,39 128,211,150,235,49 226,229,338,327,49 -./model_data/coco/val2017/000000551304.jpg 128,80,366,551,61 -./model_data/coco/val2017/000000540962.jpg 394,141,466,218,62 331,227,472,400,57 8,219,291,379,57 185,170,233,220,56 -./model_data/coco/val2017/000000229111.jpg 68,18,371,492,0 31,139,119,397,65 104,145,172,352,65 -./model_data/coco/val2017/000000414638.jpg 23,0,226,191,41 534,262,607,604,42 492,266,547,612,43 0,2,612,601,60 296,239,472,486,48 106,200,334,352,48 -./model_data/coco/val2017/000000378116.jpg 320,99,491,273,0 447,250,506,299,37 -./model_data/coco/val2017/000000163314.jpg 109,244,123,262,24 417,263,432,282,26 135,258,154,278,28 98,238,121,289,0 432,254,441,268,26 178,244,189,258,26 322,219,332,245,0 138,230,154,283,0 409,235,434,293,0 60,233,85,296,0 298,232,326,293,0 44,234,65,287,0 179,229,197,278,0 363,231,379,287,0 291,225,307,254,0 297,231,307,286,0 317,251,324,261,24 476,252,486,269,24 342,254,353,277,24 426,237,453,290,0 349,229,367,289,0 163,225,473,299,0 -./model_data/coco/val2017/000000297578.jpg 240,75,269,198,27 152,7,326,276,0 14,94,78,249,0 235,174,303,279,26 418,97,474,209,2 121,203,176,277,2 424,183,477,261,2 50,130,80,161,2 82,15,173,281,0 0,155,19,217,2 -./model_data/coco/val2017/000000489842.jpg 49,26,91,109,75 413,337,567,566,0 344,93,398,184,0 243,38,324,167,0 283,369,450,556,0 146,386,296,559,0 114,123,205,242,0 196,128,289,254,0 250,116,299,206,0 317,121,367,174,0 119,221,215,548,0 7,204,139,559,0 289,216,408,450,0 144,74,167,124,27 197,77,215,109,27 278,103,291,121,27 454,181,467,200,27 348,91,358,116,27 470,266,497,336,27 423,286,440,327,27 532,372,640,560,0 19,5,620,532,0 -./model_data/coco/val2017/000000100510.jpg 29,71,369,342,17 180,24,265,144,0 524,140,568,232,0 0,6,17,56,0 576,184,591,228,56 325,188,350,233,56 -./model_data/coco/val2017/000000419408.jpg 141,193,196,221,2 226,111,361,277,0 487,166,632,310,0 434,224,580,334,13 538,203,597,224,13 229,257,331,289,36 582,301,631,320,36 480,190,544,216,2 36,215,72,229,13 625,208,640,275,13 18,187,94,214,2 351,192,372,206,2 -./model_data/coco/val2017/000000170955.jpg 467,120,486,217,27 408,5,637,420,0 -./model_data/coco/val2017/000000577539.jpg 16,1,451,330,45 442,2,500,103,0 249,181,328,226,46 167,157,247,217,46 0,2,170,327,0 -./model_data/coco/val2017/000000174123.jpg 117,345,268,399,0 50,106,183,384,42 0,0,495,368,53 0,0,500,399,60 344,0,499,37,0 308,0,367,59,43 -./model_data/coco/val2017/000000089880.jpg 145,13,295,185,16 256,42,419,193,16 -./model_data/coco/val2017/000000502737.jpg 0,294,291,640,0 122,127,357,467,55 1,0,480,631,0 16,29,199,344,41 -./model_data/coco/val2017/000000284282.jpg 64,91,499,328,60 -./model_data/coco/val2017/000000119088.jpg 472,19,499,97,0 41,50,85,171,0 165,279,195,289,29 222,173,321,285,0 -./model_data/coco/val2017/000000567432.jpg 170,236,377,411,4 -./model_data/coco/val2017/000000222735.jpg 140,2,416,183,62 155,27,272,157,0 10,319,394,606,65 2,112,155,410,57 0,351,474,640,60 -./model_data/coco/val2017/000000483531.jpg 109,262,640,480,59 -./model_data/coco/val2017/000000007784.jpg 93,86,334,306,33 -./model_data/coco/val2017/000000496722.jpg 285,151,300,162,2 298,151,314,158,2 341,147,350,157,2 348,147,360,159,2 274,152,286,159,2 394,147,417,157,2 271,136,273,145,9 331,136,335,139,9 337,141,339,145,9 326,148,332,154,2 332,147,340,153,2 556,102,627,204,12 312,149,326,161,2 -./model_data/coco/val2017/000000364297.jpg 22,91,634,405,15 0,262,405,421,66 1,1,337,218,62 -./model_data/coco/val2017/000000451150.jpg 13,234,242,426,54 1,14,240,243,54 230,61,429,270,54 241,266,435,452,54 8,437,247,630,54 248,454,432,627,54 -./model_data/coco/val2017/000000221155.jpg 136,343,246,433,19 345,342,497,462,19 -./model_data/coco/val2017/000000566436.jpg 73,0,401,285,0 10,96,515,421,13 -./model_data/coco/val2017/000000464251.jpg 136,237,273,338,14 0,347,178,456,56 373,349,639,452,56 -./model_data/coco/val2017/000000422886.jpg 21,28,640,632,0 265,253,407,451,52 0,446,355,640,57 -./model_data/coco/val2017/000000527528.jpg 60,353,65,364,0 134,349,138,359,0 303,230,510,291,33 436,0,463,8,33 381,219,526,283,33 205,254,266,289,33 413,374,502,397,13 177,324,213,357,33 -./model_data/coco/val2017/000000294783.jpg 321,226,378,261,57 22,293,302,421,59 551,252,557,271,73 545,279,554,303,73 523,218,528,238,73 559,253,565,272,73 595,290,605,310,73 585,251,597,275,73 522,245,527,268,73 578,291,584,307,73 614,291,625,313,73 598,252,609,275,73 538,218,547,240,73 550,218,562,241,73 622,220,639,243,73 570,289,579,307,73 301,263,327,294,24 332,263,368,295,28 526,246,553,271,73 577,217,609,238,74 389,177,639,317,73 -./model_data/coco/val2017/000000271471.jpg 329,1,625,179,0 141,152,391,268,46 167,192,405,299,46 195,218,447,345,46 107,259,233,325,46 92,224,150,304,46 102,1,489,245,0 -./model_data/coco/val2017/000000087244.jpg 149,164,292,487,10 182,0,239,108,0 227,63,262,87,13 -./model_data/coco/val2017/000000133000.jpg 69,173,601,405,6 166,254,184,272,0 99,247,120,264,0 -./model_data/coco/val2017/000000526728.jpg 389,171,452,198,2 163,170,202,190,2 247,150,319,278,0 195,140,258,271,0 324,296,380,369,28 237,271,308,369,28 185,267,241,369,28 283,326,322,375,28 371,313,418,374,28 160,292,188,374,28 264,244,296,273,26 464,171,500,201,2 153,168,165,179,2 -./model_data/coco/val2017/000000447917.jpg 0,194,82,234,1 363,108,436,291,0 465,252,504,292,32 133,69,206,228,0 327,107,389,235,0 0,318,188,361,0 -./model_data/coco/val2017/000000067315.jpg 130,3,323,427,27 459,0,640,422,0 520,0,638,293,27 2,0,540,422,0 -./model_data/coco/val2017/000000383921.jpg 32,231,395,345,20 167,185,476,288,20 407,151,547,300,20 349,127,459,190,20 228,106,355,187,20 104,300,242,441,20 0,321,201,480,20 0,133,337,431,20 0,118,59,165,20 299,173,410,228,20 -./model_data/coco/val2017/000000367569.jpg 0,488,249,640,57 188,485,219,497,65 83,339,154,382,73 152,509,253,555,63 126,506,148,516,67 -./model_data/coco/val2017/000000426241.jpg 344,84,476,189,62 440,226,465,241,64 313,191,441,234,66 7,208,127,260,66 127,224,156,242,64 364,97,437,177,0 129,192,233,228,63 -./model_data/coco/val2017/000000408696.jpg 250,42,491,461,0 409,40,637,472,0 247,274,354,416,61 451,29,508,84,0 426,87,450,135,0 -./model_data/coco/val2017/000000098520.jpg 85,129,615,285,4 0,298,26,351,7 85,259,188,285,7 -./model_data/coco/val2017/000000098839.jpg 50,59,569,414,62 112,113,399,474,15 431,274,492,298,45 -./model_data/coco/val2017/000000399560.jpg 144,116,604,336,15 146,100,640,355,63 -./model_data/coco/val2017/000000376856.jpg 240,91,292,127,74 -./model_data/coco/val2017/000000407524.jpg 298,89,632,440,50 262,50,357,160,50 210,0,263,30,50 -./model_data/coco/val2017/000000523175.jpg 72,72,473,309,44 130,210,198,263,51 275,269,346,328,51 1,0,495,370,45 341,186,372,236,51 0,1,500,251,60 -./model_data/coco/val2017/000000065455.jpg 79,190,235,282,23 0,108,312,311,23 346,151,475,231,0 380,189,500,262,0 366,97,380,121,0 467,83,500,148,0 412,84,440,125,0 450,133,500,193,0 395,124,427,185,0 399,107,415,119,0 448,84,466,98,0 349,98,358,123,0 372,264,500,374,0 443,97,475,125,0 454,116,492,153,0 313,73,499,373,0 -./model_data/coco/val2017/000000447342.jpg 23,330,91,366,2 606,321,640,358,2 85,263,303,383,5 371,277,535,411,5 550,312,583,326,2 529,311,555,323,2 576,303,586,313,2 550,304,579,315,2 608,300,619,308,2 595,296,609,307,2 301,326,327,351,2 369,277,530,413,7 336,315,383,348,7 -./model_data/coco/val2017/000000005503.jpg 34,178,275,473,61 -./model_data/coco/val2017/000000525155.jpg 178,32,640,360,18 263,80,640,419,0 -./model_data/coco/val2017/000000053529.jpg 140,197,247,270,16 52,64,141,273,0 2,0,500,326,7 -./model_data/coco/val2017/000000522713.jpg 384,247,400,272,8 406,251,419,269,8 437,263,467,271,8 306,277,317,288,0 359,268,376,273,8 514,251,529,275,8 392,271,407,274,8 510,266,521,270,8 410,283,561,355,13 480,270,501,274,8 490,269,494,272,0 522,257,524,260,8 437,263,448,267,8 -./model_data/coco/val2017/000000112298.jpg 265,147,284,210,39 240,133,256,208,39 306,161,328,188,39 329,131,372,209,39 128,216,319,480,0 58,69,244,202,38 319,163,338,208,39 379,137,414,210,39 363,141,381,208,39 -./model_data/coco/val2017/000000259097.jpg 193,142,233,257,0 203,120,217,124,29 -./model_data/coco/val2017/000000540932.jpg 201,246,239,259,37 187,233,203,271,37 217,288,240,333,0 235,289,251,335,0 17,302,33,345,0 209,232,226,252,0 175,261,198,281,0 78,125,90,140,0 401,199,422,211,0 66,130,100,146,37 402,206,434,209,37 -./model_data/coco/val2017/000000163057.jpg 577,268,589,275,2 569,266,584,274,2 290,270,306,279,2 145,146,175,158,33 344,160,357,172,33 617,20,627,34,33 457,138,501,181,33 44,245,97,379,0 133,266,147,303,0 423,265,449,312,0 217,270,231,306,0 227,260,240,306,0 280,271,291,292,0 406,271,415,293,0 324,260,337,314,0 334,265,345,302,0 312,267,335,323,0 447,262,471,322,0 492,265,505,304,0 566,268,571,275,2 207,280,214,301,0 167,269,184,299,33 5,257,639,327,0 -./model_data/coco/val2017/000000284279.jpg 347,160,583,400,14 -./model_data/coco/val2017/000000091406.jpg 1,0,70,90,62 130,163,181,227,56 172,147,229,194,56 98,159,135,187,56 222,160,240,168,56 443,375,640,423,60 181,162,250,253,60 19,185,154,217,60 190,177,272,262,60 245,48,350,300,0 315,76,432,320,0 402,29,498,329,0 470,61,585,397,0 129,342,268,413,53 166,385,210,415,53 0,262,171,367,53 150,37,161,57,73 186,59,190,77,73 201,56,216,77,73 173,59,178,77,73 190,58,195,76,73 262,388,357,424,53 2,202,23,214,53 407,351,452,391,43 2,154,174,197,60 571,207,640,389,60 194,59,198,78,73 204,30,207,50,73 594,147,619,189,73 151,82,168,107,73 198,57,202,77,73 149,60,166,78,73 613,149,638,192,73 344,411,417,423,53 187,168,208,211,56 581,147,600,189,73 140,26,629,307,73 -./model_data/coco/val2017/000000366884.jpg 297,399,404,480,16 89,445,182,480,16 407,188,461,267,56 418,177,494,286,0 179,339,487,472,59 32,73,76,122,73 0,233,21,265,73 0,163,25,173,73 284,191,305,207,73 382,208,395,211,73 6,87,32,120,73 0,173,22,183,73 112,232,182,349,28 319,270,364,311,28 432,162,481,197,62 459,215,477,222,66 -./model_data/coco/val2017/000000361238.jpg 96,2,360,255,0 581,20,640,131,0 0,327,24,448,41 39,319,500,467,53 306,230,597,436,53 42,241,311,346,53 3,230,108,306,24 3,299,75,392,41 412,64,469,136,58 0,238,640,480,60 -./model_data/coco/val2017/000000140439.jpg 93,289,124,336,58 34,255,81,337,58 0,255,39,316,58 31,556,395,628,60 168,316,286,628,75 93,314,124,338,75 34,289,84,339,75 127,269,169,336,75 136,281,168,336,58 -./model_data/coco/val2017/000000145591.jpg 294,49,612,474,74 -./model_data/coco/val2017/000000482477.jpg 147,83,429,488,14 -./model_data/coco/val2017/000000498747.jpg 110,417,169,474,39 284,200,297,229,67 132,37,604,480,0 352,2,496,269,0 1,3,112,475,0 485,60,529,161,0 448,4,499,166,0 483,30,605,229,0 473,85,640,479,0 135,15,260,291,0 32,0,147,475,0 -./model_data/coco/val2017/000000304291.jpg 272,101,418,375,17 -./model_data/coco/val2017/000000136915.jpg 212,174,246,335,27 75,77,329,422,0 412,112,579,422,0 125,265,328,351,34 11,213,58,227,73 578,288,640,427,0 126,2,136,71,73 156,1,187,73,73 627,219,640,287,56 -./model_data/coco/val2017/000000005001.jpg 173,204,281,443,76 10,32,69,201,0 225,255,352,480,0 77,244,190,479,0 41,95,148,474,0 119,81,188,269,0 50,58,135,142,0 171,31,251,185,0 297,50,355,137,0 211,88,335,281,0 354,91,517,470,0 434,40,505,160,0 424,22,469,93,0 535,275,594,347,26 500,159,545,258,1 208,61,297,210,0 450,334,470,392,76 523,26,639,314,0 -./model_data/coco/val2017/000000261535.jpg 197,115,330,547,0 305,335,375,489,38 76,533,98,554,32 395,495,415,513,32 130,578,148,596,32 46,555,72,574,32 207,319,215,331,32 -./model_data/coco/val2017/000000215644.jpg 208,212,456,352,68 478,436,517,479,45 487,436,525,479,45 494,437,534,480,45 610,423,630,461,45 513,431,542,480,45 506,432,538,479,45 598,402,611,480,45 501,412,509,436,44 -./model_data/coco/val2017/000000554156.jpg 116,90,456,423,0 418,0,521,188,38 -./model_data/coco/val2017/000000147740.jpg 0,284,181,473,2 4,145,96,350,0 66,167,128,354,0 106,220,144,353,0 382,128,424,243,0 193,293,455,472,0 230,125,390,278,46 366,228,395,282,46 375,144,395,177,0 0,202,89,389,3 376,206,431,361,3 224,350,299,478,26 557,83,640,470,0 -./model_data/coco/val2017/000000394510.jpg 0,0,362,198,2 307,68,425,384,0 292,312,406,419,36 406,13,595,203,1 549,16,640,150,1 407,0,640,120,2 -./model_data/coco/val2017/000000357816.jpg 405,189,426,211,32 401,46,499,248,0 13,65,306,447,0 1,80,96,288,0 267,184,351,235,34 347,104,384,138,35 3,5,305,85,2 179,102,464,250,13 17,28,123,123,25 284,1,382,261,0 -./model_data/coco/val2017/000000227511.jpg 65,286,226,375,2 225,261,267,294,2 156,256,175,270,2 240,258,271,285,2 79,272,84,279,10 182,258,195,267,2 138,260,153,268,2 -./model_data/coco/val2017/000000034257.jpg 29,2,237,87,50 229,21,253,54,50 279,10,415,84,50 270,11,329,49,50 126,165,373,279,51 272,173,285,201,51 -./model_data/coco/val2017/000000113235.jpg 72,214,133,260,17 0,365,182,474,0 118,346,389,463,51 61,199,89,210,2 -./model_data/coco/val2017/000000007278.jpg 189,59,311,154,0 283,57,337,119,37 -./model_data/coco/val2017/000000532071.jpg 134,177,366,280,21 -./model_data/coco/val2017/000000010764.jpg 218,80,483,395,0 388,210,483,278,35 -./model_data/coco/val2017/000000109916.jpg 109,8,353,218,45 282,198,587,467,45 121,25,342,188,55 -./model_data/coco/val2017/000000461009.jpg 478,108,543,308,0 536,79,612,344,0 228,257,346,361,47 0,145,122,319,0 127,147,212,245,0 345,142,444,276,0 4,25,610,612,0 427,231,486,337,56 114,242,166,294,56 0,194,79,528,56 -./model_data/coco/val2017/000000345469.jpg 227,324,257,347,54 405,314,422,328,54 373,324,395,352,54 406,326,429,352,54 331,404,366,421,54 252,373,292,401,54 173,381,201,401,54 72,392,103,409,54 328,414,365,431,54 295,409,325,428,54 222,381,256,397,54 239,244,266,262,54 423,326,446,354,54 14,144,459,602,54 -./model_data/coco/val2017/000000546325.jpg 0,267,480,612,57 118,547,216,635,65 1,511,306,640,60 -./model_data/coco/val2017/000000307172.jpg 2,67,580,418,60 0,0,382,176,0 0,138,34,279,41 328,75,404,126,45 44,131,574,408,53 -./model_data/coco/val2017/000000189828.jpg 367,102,566,202,4 -./model_data/coco/val2017/000000496854.jpg 174,0,437,179,25 339,222,368,240,27 276,156,444,480,0 247,202,299,335,0 85,149,278,480,0 607,278,639,405,0 611,224,636,289,0 203,47,238,107,9 284,171,336,204,25 167,211,249,416,26 240,246,257,288,26 630,238,638,268,26 327,202,341,221,0 570,248,602,298,0 362,176,637,473,0 -./model_data/coco/val2017/000000355325.jpg 0,155,478,442,60 77,0,371,356,40 293,97,460,276,41 48,96,124,165,44 339,362,375,399,44 35,121,186,226,45 23,326,378,637,53 0,327,478,631,60 239,168,301,277,40 105,382,478,629,53 352,3,478,142,0 -./model_data/coco/val2017/000000033104.jpg 23,27,213,463,0 148,35,380,475,0 289,21,396,181,0 361,0,428,97,0 270,0,365,57,13 215,415,307,442,30 6,249,77,279,30 396,28,428,293,0 0,15,51,255,0 -./model_data/coco/val2017/000000489305.jpg 132,97,305,212,45 43,91,131,163,45 80,132,102,149,46 49,115,67,127,46 98,110,122,128,46 0,0,278,164,0 155,130,167,150,46 204,121,228,138,46 -./model_data/coco/val2017/000000108440.jpg 14,166,502,228,6 -./model_data/coco/val2017/000000337987.jpg 157,56,417,480,14 -./model_data/coco/val2017/000000092416.jpg 287,387,342,550,39 66,48,367,640,0 0,227,27,287,0 18,215,43,277,0 240,270,324,600,27 430,305,480,640,0 7,225,36,284,0 85,153,184,253,8 -./model_data/coco/val2017/000000074256.jpg 119,86,385,293,6 171,77,366,429,0 339,71,600,473,0 515,141,631,226,0 0,55,91,474,0 352,188,374,221,0 114,80,382,292,5 178,337,207,350,67 67,259,103,282,67 79,330,254,480,26 1,112,73,274,6 347,393,478,480,26 577,181,640,359,24 -./model_data/coco/val2017/000000335450.jpg 308,24,605,423,17 258,176,369,388,17 167,172,182,183,17 -./model_data/coco/val2017/000000183709.jpg 403,241,448,304,2 45,236,99,267,2 213,139,253,194,9 78,212,316,633,0 0,243,136,592,0 311,227,334,281,0 293,229,305,278,0 257,234,271,277,0 243,229,255,277,0 300,112,477,628,0 93,329,233,640,26 309,252,314,273,0 279,226,293,276,0 336,236,398,279,2 209,188,223,221,9 198,187,208,211,9 356,206,364,223,9 270,230,280,276,0 215,223,232,277,0 0,219,109,358,0 135,230,150,251,2 265,242,275,258,26 324,236,333,260,26 395,240,425,272,2 -./model_data/coco/val2017/000000534673.jpg 43,79,593,404,5 391,192,416,233,0 0,223,41,323,0 -./model_data/coco/val2017/000000471450.jpg 451,305,532,372,21 68,288,140,325,21 109,245,170,286,21 -./model_data/coco/val2017/000000004395.jpg 176,275,273,631,27 1,1,425,638,0 -./model_data/coco/val2017/000000285047.jpg 337,473,404,517,67 1,149,424,629,0 195,541,258,591,41 -./model_data/coco/val2017/000000048504.jpg 528,267,585,404,0 0,201,152,211,13 0,178,212,188,13 197,202,369,405,20 352,230,531,415,20 15,250,49,302,0 -./model_data/coco/val2017/000000205333.jpg 138,81,160,140,0 78,104,89,135,0 119,139,177,146,30 -./model_data/coco/val2017/000000174371.jpg 3,478,107,511,39 230,361,296,387,67 224,92,640,501,0 366,164,409,306,0 193,162,357,504,0 305,171,387,496,0 80,132,232,501,0 1,143,134,489,0 -./model_data/coco/val2017/000000491366.jpg 409,118,500,258,62 88,117,217,358,0 0,56,178,375,0 154,244,180,273,65 0,273,205,375,57 190,149,229,185,74 153,158,198,207,74 219,261,250,273,65 245,254,275,273,65 168,214,196,225,66 -./model_data/coco/val2017/000000410934.jpg 189,139,296,247,50 -./model_data/coco/val2017/000000296284.jpg 100,210,136,255,54 99,79,132,114,54 127,211,172,254,54 146,76,183,113,54 9,79,52,118,54 14,218,59,256,54 76,210,115,254,54 125,81,158,115,54 75,83,106,115,54 0,219,26,259,54 -./model_data/coco/val2017/000000409630.jpg 27,137,387,289,66 49,0,398,120,66 385,146,469,273,64 -./model_data/coco/val2017/000000344268.jpg 289,255,312,333,27 112,58,441,500,0 -./model_data/coco/val2017/000000050149.jpg 118,103,133,132,46 92,36,183,194,46 177,40,260,199,46 269,121,284,156,46 367,103,378,122,46 293,159,368,257,46 440,202,451,221,46 402,58,476,178,46 130,185,226,353,46 417,170,500,295,46 72,205,114,259,46 35,39,106,202,46 409,337,498,364,45 294,55,315,76,46 10,41,413,193,46 -./model_data/coco/val2017/000000199551.jpg 0,166,640,423,59 123,152,423,253,0 -./model_data/coco/val2017/000000089296.jpg 221,107,436,424,0 541,0,640,257,0 387,296,399,308,32 593,333,606,346,32 460,372,473,385,32 347,35,397,132,34 -./model_data/coco/val2017/000000336628.jpg 258,110,428,450,0 126,61,274,582,0 345,2,428,305,0 240,44,307,147,0 191,119,208,126,67 36,131,86,149,0 0,0,427,638,5 351,164,387,272,0 -./model_data/coco/val2017/000000022935.jpg 49,194,188,334,32 20,18,457,473,0 422,25,634,474,0 -./model_data/coco/val2017/000000270402.jpg 69,73,351,359,20 79,31,200,283,20 -./model_data/coco/val2017/000000197388.jpg 139,102,361,343,0 287,61,362,227,0 540,48,640,272,0 372,170,639,388,0 0,43,90,263,0 267,218,393,240,30 141,270,639,328,30 234,330,397,359,30 0,259,106,295,30 -./model_data/coco/val2017/000000058655.jpg 225,133,349,200,74 -./model_data/coco/val2017/000000564023.jpg 178,405,251,521,61 -./model_data/coco/val2017/000000290179.jpg 256,323,264,328,2 330,356,341,360,2 257,363,291,380,8 323,381,357,398,8 176,345,221,364,8 103,329,121,337,5 132,319,144,324,5 232,238,240,246,74 221,237,227,246,74 73,331,94,345,7 157,326,158,330,0 154,328,155,332,0 22,351,24,355,0 25,351,28,354,0 303,346,330,359,5 338,357,343,360,5 -./model_data/coco/val2017/000000455937.jpg 331,102,468,205,62 342,287,585,474,57 119,148,254,357,0 102,176,151,215,63 222,191,296,241,73 491,237,540,276,73 79,315,164,401,28 63,204,77,225,41 333,276,583,480,56 30,215,129,273,57 244,227,251,233,65 599,9,619,37,74 58,316,184,424,26 0,200,180,368,56 -./model_data/coco/val2017/000000229948.jpg 302,85,531,333,17 386,122,614,329,17 200,111,287,246,0 82,175,120,207,0 116,174,154,206,0 290,174,315,226,0 621,159,640,223,0 51,182,79,207,0 24,181,56,226,0 6,187,29,229,0 0,183,16,229,0 146,163,157,200,0 88,181,95,196,0 367,2,640,157,7 223,141,234,157,27 605,185,623,215,0 604,169,620,187,0 126,199,130,206,27 -./model_data/coco/val2017/000000127624.jpg 100,418,612,565,6 -./model_data/coco/val2017/000000578792.jpg 179,105,591,326,3 136,77,493,202,0 -./model_data/coco/val2017/000000425906.jpg 111,406,169,473,0 59,412,117,465,0 247,445,301,493,0 60,136,179,231,0 347,462,407,522,0 106,118,283,270,31 315,448,373,502,0 37,401,77,460,0 3,398,49,452,0 400,470,424,513,0 170,417,258,520,0 157,416,184,464,0 415,487,458,517,0 0,379,25,433,0 -./model_data/coco/val2017/000000199442.jpg 260,76,443,239,0 164,204,406,265,37 -./model_data/coco/val2017/000000575357.jpg 250,158,616,358,16 39,129,141,189,29 -./model_data/coco/val2017/000000035062.jpg 0,58,423,640,59 155,68,199,106,0 -./model_data/coco/val2017/000000440336.jpg 96,115,226,281,0 189,130,234,258,0 268,109,345,257,0 436,92,500,265,0 257,158,300,173,29 242,184,276,243,0 421,216,440,223,29 -./model_data/coco/val2017/000000409211.jpg 175,139,194,157,32 328,8,445,80,38 365,142,412,305,0 134,142,188,217,0 32,132,121,229,0 4,0,70,94,0 70,0,140,98,0 104,162,146,219,0 177,0,222,77,0 267,5,380,427,0 53,0,96,54,0 122,0,168,73,0 0,162,49,226,0 8,114,57,184,0 0,137,17,190,0 -./model_data/coco/val2017/000000563758.jpg 0,6,429,633,77 -./model_data/coco/val2017/000000384350.jpg 144,132,639,253,4 0,48,492,188,4 -./model_data/coco/val2017/000000442746.jpg 311,130,364,150,2 182,105,234,228,0 222,133,239,140,29 15,97,20,107,9 61,99,66,111,9 44,68,48,79,9 -./model_data/coco/val2017/000000376284.jpg 37,46,97,119,2 71,26,254,143,2 348,0,499,72,2 246,37,302,81,2 209,28,271,59,2 18,50,65,110,2 274,5,408,329,10 0,67,19,102,2 0,64,19,75,2 -./model_data/coco/val2017/000000569917.jpg 161,316,201,407,39 326,281,342,356,79 337,280,353,354,79 1,429,136,632,61 149,317,477,516,71 -./model_data/coco/val2017/000000569700.jpg 197,226,279,336,75 7,23,436,338,58 -./model_data/coco/val2017/000000104619.jpg 136,72,322,465,23 -./model_data/coco/val2017/000000261097.jpg 138,325,171,395,38 128,188,197,422,0 227,96,246,126,0 25,104,44,121,0 0,130,26,166,0 44,194,71,216,0 121,163,134,180,0 246,184,272,215,0 274,183,296,213,0 277,448,333,500,0 228,164,253,187,0 86,244,124,292,56 123,43,139,70,0 230,187,258,215,13 249,179,325,187,13 97,175,129,184,13 96,197,111,209,13 97,187,125,195,13 229,178,333,238,13 85,85,150,94,13 3,180,67,193,13 229,215,294,239,13 180,214,219,220,13 188,181,214,216,0 66,222,102,276,0 0,0,332,499,0 4,179,229,232,13 -./model_data/coco/val2017/000000297147.jpg 14,14,615,448,3 62,29,72,58,0 23,35,30,47,0 24,40,30,47,3 -./model_data/coco/val2017/000000008899.jpg 140,398,180,493,10 23,346,73,450,1 -./model_data/coco/val2017/000000154644.jpg 224,163,337,227,67 3,60,498,493,0 0,88,56,428,40 385,82,500,404,0 -./model_data/coco/val2017/000000003553.jpg 153,0,420,308,0 186,262,367,371,36 -./model_data/coco/val2017/000000016451.jpg 152,123,285,159,25 174,193,209,241,56 516,157,532,180,0 239,292,329,371,37 502,390,569,452,26 535,377,612,464,26 170,156,211,168,25 228,195,278,257,56 495,453,580,550,26 374,350,474,483,37 530,306,612,383,56 495,450,579,512,24 -./model_data/coco/val2017/000000235057.jpg 30,1,339,491,23 -./model_data/coco/val2017/000000539883.jpg 253,104,482,332,62 374,335,445,359,73 378,317,444,352,73 202,249,634,427,13 303,145,326,242,0 410,338,459,364,65 253,273,277,286,65 443,348,458,374,65 -./model_data/coco/val2017/000000551780.jpg 240,59,440,400,74 51,102,99,192,44 -./model_data/coco/val2017/000000410650.jpg 303,19,312,28,32 493,94,530,114,56 557,130,586,146,56 179,125,233,177,38 170,113,260,381,0 73,141,122,182,0 175,144,205,181,0 116,103,148,153,0 171,108,202,153,0 169,89,205,140,0 201,108,235,143,0 187,63,241,142,0 314,100,349,156,0 437,125,471,156,0 160,45,182,81,0 539,150,566,170,56 355,110,384,132,56 570,150,601,170,56 599,151,629,169,56 585,129,615,159,56 518,93,549,113,56 480,76,507,105,56 530,75,561,94,56 412,112,440,131,56 556,75,580,90,56 103,47,135,97,0 390,38,414,43,56 121,143,150,181,0 1,2,632,168,56 5,0,639,178,0 -./model_data/coco/val2017/000000384513.jpg 102,218,238,378,17 -./model_data/coco/val2017/000000346638.jpg 326,0,619,282,62 462,73,562,435,39 85,387,275,468,64 128,304,471,434,66 -./model_data/coco/val2017/000000181796.jpg 2,17,634,355,60 105,0,239,197,40 213,60,298,154,41 495,47,552,98,41 405,178,594,220,42 422,154,640,351,43 95,165,228,209,44 241,1,287,35,41 519,29,564,58,41 311,49,506,102,43 543,11,560,39,44 541,38,588,64,44 476,32,521,66,41 493,0,506,46,44 426,5,509,18,44 -./model_data/coco/val2017/000000508482.jpg 0,2,480,536,6 -./model_data/coco/val2017/000000521405.jpg 0,179,305,402,79 0,211,426,636,71 -./model_data/coco/val2017/000000377486.jpg 427,115,526,387,17 562,22,639,170,17 267,177,400,275,19 361,13,561,296,0 40,0,61,26,0 114,1,163,25,0 609,0,640,44,0 509,0,550,64,0 27,0,51,25,0 -./model_data/coco/val2017/000000167159.jpg 0,0,500,371,59 109,197,252,364,73 -./model_data/coco/val2017/000000242946.jpg 405,65,418,90,56 498,58,512,68,56 2,108,11,204,56 207,0,359,174,0 406,0,640,238,0 6,0,175,203,0 415,25,475,98,0 509,16,551,100,0 235,165,270,215,41 297,224,344,279,41 421,182,460,221,44 270,175,349,225,45 585,223,640,264,45 42,453,152,474,45 24,199,92,233,45 0,148,640,473,60 360,90,525,138,60 493,78,502,82,45 251,246,299,273,45 0,435,32,480,45 280,372,294,416,51 292,363,308,408,51 219,222,232,254,51 211,226,222,254,51 226,218,255,258,51 307,367,373,408,51 306,385,368,435,51 97,420,147,460,51 289,383,303,414,51 400,101,492,199,56 479,83,513,94,60 363,159,395,208,41 149,170,191,198,41 219,171,237,202,41 468,80,480,103,41 448,367,640,472,45 265,388,333,448,51 330,77,401,163,56 209,117,220,168,56 561,245,620,303,41 585,298,640,411,41 -./model_data/coco/val2017/000000157847.jpg 374,93,403,114,14 -./model_data/coco/val2017/000000441247.jpg 221,220,301,347,56 290,202,344,327,56 25,283,224,418,56 526,189,640,418,57 245,163,290,230,0 335,184,387,268,0 54,222,309,344,60 387,122,433,270,72 34,150,54,177,74 128,179,163,213,68 155,228,162,235,49 162,231,167,234,49 82,157,95,175,75 92,201,104,219,75 88,184,96,197,75 468,353,561,421,24 444,231,497,276,26 529,186,640,424,56 21,284,224,424,57 0,366,71,423,60 332,205,360,261,69 130,180,160,214,69 287,205,301,229,39 109,247,122,261,46 -./model_data/coco/val2017/000000177213.jpg 0,107,638,354,60 170,0,640,140,0 563,111,640,262,41 584,146,640,354,41 461,140,572,174,42 416,137,485,144,43 96,87,508,312,53 -./model_data/coco/val2017/000000451144.jpg 379,193,451,379,0 516,204,588,362,0 336,362,517,397,30 550,228,580,282,24 -./model_data/coco/val2017/000000147725.jpg 402,174,577,265,2 130,179,154,214,2 153,111,384,257,5 315,157,343,184,0 71,171,149,266,7 606,182,619,213,0 121,172,135,196,2 535,184,588,219,2 33,181,40,215,2 559,182,607,226,2 -./model_data/coco/val2017/000000464872.jpg 241,163,430,265,22 388,154,498,257,22 -./model_data/coco/val2017/000000033005.jpg 303,232,369,266,38 272,150,329,332,0 -./model_data/coco/val2017/000000347456.jpg 384,199,502,288,20 461,144,622,282,20 -./model_data/coco/val2017/000000256775.jpg 380,313,414,412,0 275,274,283,299,0 392,272,402,293,0 224,289,238,309,0 284,272,294,300,0 499,16,616,188,33 453,302,511,436,0 478,273,505,386,0 -./model_data/coco/val2017/000000167898.jpg 370,269,619,480,61 249,177,466,277,71 433,77,462,153,39 -./model_data/coco/val2017/000000345361.jpg 447,54,476,89,2 0,191,495,353,60 274,38,424,342,0 46,90,293,280,0 198,251,223,283,41 78,211,97,238,41 47,189,65,211,41 83,205,103,236,41 111,187,197,242,44 143,260,188,278,55 118,232,145,251,55 -./model_data/coco/val2017/000000389316.jpg 219,64,534,303,20 93,79,218,335,20 535,56,624,271,0 -./model_data/coco/val2017/000000366611.jpg 0,165,172,377,16 145,251,216,325,32 -./model_data/coco/val2017/000000347335.jpg 0,1,141,185,41 263,17,291,153,43 214,4,320,148,42 0,1,480,638,60 136,5,175,120,41 -./model_data/coco/val2017/000000118367.jpg 154,31,442,322,52 156,26,447,320,48 247,132,288,150,51 0,64,418,394,0 335,159,381,218,51 212,242,283,308,51 185,266,207,283,51 236,144,271,165,51 301,245,317,265,51 297,226,327,247,51 -./model_data/coco/val2017/000000393014.jpg 39,176,351,344,48 466,130,639,240,48 468,128,639,236,52 46,175,346,319,52 -./model_data/coco/val2017/000000030504.jpg 189,109,394,490,0 173,404,278,601,30 296,139,394,270,24 -./model_data/coco/val2017/000000008021.jpg 318,198,340,299,27 3,255,309,478,0 435,285,640,480,0 244,101,441,368,0 443,367,451,386,39 436,368,444,385,39 431,369,437,386,39 -./model_data/coco/val2017/000000357430.jpg 0,15,637,370,53 -./model_data/coco/val2017/000000529105.jpg 179,163,477,357,17 -./model_data/coco/val2017/000000331569.jpg 238,19,612,565,41 -./model_data/coco/val2017/000000095707.jpg 569,107,604,315,43 512,161,640,340,45 0,10,95,105,45 279,7,513,235,55 107,202,251,344,55 87,103,180,230,55 252,264,409,360,55 0,0,640,360,60 503,300,531,360,43 -./model_data/coco/val2017/000000515982.jpg 159,271,414,394,0 341,2,591,415,0 612,0,640,94,0 340,20,406,69,35 27,41,51,65,32 -./model_data/coco/val2017/000000478393.jpg 100,163,246,231,15 1,361,256,512,15 2,8,479,635,59 250,163,480,503,77 -./model_data/coco/val2017/000000139260.jpg 77,0,124,223,44 77,178,598,306,46 66,135,187,199,46 465,132,576,191,46 0,167,640,363,45 0,3,640,380,60 -./model_data/coco/val2017/000000015254.jpg 524,27,623,398,44 380,163,592,390,45 1,166,379,383,45 63,8,370,167,45 397,21,441,165,51 473,27,521,159,51 378,11,406,155,51 376,9,524,160,51 -./model_data/coco/val2017/000000154947.jpg 228,435,396,602,18 -./model_data/coco/val2017/000000324927.jpg 254,236,450,350,41 93,357,342,619,53 0,15,279,306,53 -./model_data/coco/val2017/000000038829.jpg 99,208,283,411,1 292,261,427,408,1 2,236,110,384,3 213,82,348,392,0 414,128,452,228,0 439,127,541,323,0 311,100,406,359,0 584,138,640,256,0 392,60,418,133,0 533,154,640,241,3 166,199,215,243,24 396,193,635,362,3 -./model_data/coco/val2017/000000233370.jpg 11,396,418,546,0 72,273,371,462,28 -./model_data/coco/val2017/000000263474.jpg 10,201,384,616,61 -./model_data/coco/val2017/000000362434.jpg 104,86,223,173,73 179,53,411,279,77 -./model_data/coco/val2017/000000395801.jpg 452,106,501,155,74 430,299,449,324,2 460,285,471,293,2 414,440,459,475,26 447,313,457,326,26 399,362,510,473,0 253,320,305,467,0 446,300,464,359,0 468,296,492,359,0 222,295,239,337,0 486,298,502,340,0 487,281,496,288,2 474,443,500,478,13 243,460,299,479,16 463,290,477,339,0 504,294,515,322,0 500,295,506,309,0 446,297,456,321,0 490,291,497,302,0 454,296,460,303,0 495,279,504,286,2 505,272,511,278,2 502,284,512,292,2 408,283,413,296,0 490,288,499,297,2 -./model_data/coco/val2017/000000181816.jpg 275,63,637,177,2 116,211,549,411,13 261,56,314,81,2 152,34,229,143,58 529,41,577,103,58 607,29,640,118,58 27,72,107,149,58 7,27,27,86,0 181,76,309,465,0 115,27,129,68,0 39,90,164,141,58 -./model_data/coco/val2017/000000368982.jpg 15,182,544,441,76 -./model_data/coco/val2017/000000247917.jpg 456,222,598,557,0 386,214,483,557,0 250,240,337,576,0 149,238,262,588,0 34,204,152,596,0 307,199,359,312,0 335,97,484,301,0 556,386,591,440,35 460,403,491,456,35 375,411,415,473,35 296,420,341,485,35 148,346,208,406,35 120,408,160,479,35 328,241,414,572,0 52,55,221,554,0 162,206,255,327,0 -./model_data/coco/val2017/000000233567.jpg 121,238,303,617,18 70,170,372,467,18 92,89,366,247,18 459,147,478,322,18 118,53,252,154,18 121,240,302,620,19 319,58,449,162,18 -./model_data/coco/val2017/000000531134.jpg 438,167,492,283,9 167,144,356,462,9 120,303,161,410,0 19,424,87,480,0 357,325,396,447,0 391,318,431,426,0 427,321,450,415,0 421,379,433,406,26 119,367,128,394,26 485,238,499,274,0 111,447,139,480,0 517,450,575,480,1 127,369,142,402,26 33,457,43,480,26 -./model_data/coco/val2017/000000274460.jpg 284,329,347,411,37 501,326,601,397,37 139,334,204,423,37 26,337,113,365,37 111,262,157,284,24 33,290,135,410,0 131,290,218,408,0 450,280,505,376,0 204,179,271,329,0 260,169,317,326,0 309,188,359,319,0 511,212,555,318,0 340,271,390,378,0 323,249,395,352,0 154,174,206,314,0 353,190,390,281,0 438,184,495,332,0 21,180,54,196,1 235,179,263,193,1 7,197,44,291,0 -./model_data/coco/val2017/000000552775.jpg 286,96,305,124,39 251,93,271,122,39 319,190,332,217,44 250,177,273,229,44 41,120,373,500,69 1,133,95,337,0 241,198,340,282,45 140,55,169,121,39 233,92,251,118,39 219,251,262,282,43 0,0,138,443,72 -./model_data/coco/val2017/000000122927.jpg 313,159,552,331,14 11,170,137,288,14 -./model_data/coco/val2017/000000488673.jpg 350,392,404,557,39 396,290,413,316,39 410,290,430,325,39 0,67,230,503,0 155,184,444,474,0 240,441,312,575,40 208,569,335,632,41 24,494,54,540,45 233,434,351,497,55 150,321,188,387,56 344,392,375,460,40 238,496,313,554,41 140,302,195,338,45 343,393,376,460,41 276,428,338,455,55 -./model_data/coco/val2017/000000206025.jpg 167,373,252,640,27 4,79,424,629,0 -./model_data/coco/val2017/000000490470.jpg 1,0,194,306,8 379,2,640,292,8 285,237,399,273,8 -./model_data/coco/val2017/000000327780.jpg 233,2,420,383,42 0,36,508,463,55 -./model_data/coco/val2017/000000289343.jpg 473,395,511,424,16 204,235,264,412,0 0,499,340,606,13 204,304,256,456,1 -./model_data/coco/val2017/000000071756.jpg 130,79,322,364,21 274,138,438,377,21 -./model_data/coco/val2017/000000465585.jpg 250,416,327,509,50 331,406,427,575,50 40,517,112,577,50 43,343,88,401,50 275,337,327,390,51 206,289,276,369,51 209,202,241,258,50 328,84,411,208,50 181,254,251,329,50 37,265,141,346,50 61,376,135,462,50 137,433,206,503,50 272,269,334,327,50 92,90,173,130,50 336,310,392,361,51 199,404,280,468,51 224,48,280,100,50 1,28,426,587,50 -./model_data/coco/val2017/000000121417.jpg 162,79,436,322,25 103,144,441,629,0 45,1,111,99,0 256,2,353,66,0 411,0,443,55,0 85,0,117,62,0 222,319,287,377,26 238,183,264,209,67 367,0,410,36,0 158,0,263,56,0 451,0,479,51,0 204,0,244,33,0 332,412,478,502,13 -./model_data/coco/val2017/000000462643.jpg 20,41,302,539,67 0,87,392,635,0 -./model_data/coco/val2017/000000035770.jpg 144,462,362,639,61 38,106,480,403,71 252,19,348,120,61 47,26,304,302,71 -./model_data/coco/val2017/000000213224.jpg 205,324,322,510,75 60,374,120,535,75 0,414,427,638,60 0,371,46,438,56 386,349,427,458,56 0,432,50,462,56 -./model_data/coco/val2017/000000235064.jpg 112,131,545,418,21 -./model_data/coco/val2017/000000014226.jpg 59,399,226,472,56 394,16,593,271,56 208,30,541,370,0 221,236,434,369,63 0,357,87,474,56 595,27,640,231,56 154,295,639,470,60 311,290,334,312,47 -./model_data/coco/val2017/000000391722.jpg 178,127,230,373,27 514,541,587,562,67 218,99,612,560,0 154,373,302,439,55 583,293,635,528,0 0,252,109,573,0 3,537,635,640,60 548,274,586,311,0 39,1,291,564,0 -./model_data/coco/val2017/000000322829.jpg 81,47,540,336,13 -./model_data/coco/val2017/000000061333.jpg 11,101,299,317,15 0,136,497,356,59 56,31,244,149,73 254,0,500,49,73 357,69,381,144,73 332,66,351,155,73 434,79,459,191,73 442,59,474,193,73 345,67,363,148,73 373,74,397,147,73 185,0,192,25,73 325,67,335,155,73 251,62,270,111,73 201,0,210,25,73 34,0,499,232,73 -./model_data/coco/val2017/000000313454.jpg 88,147,109,226,27 10,75,139,383,0 324,277,341,315,40 262,254,312,311,56 138,123,305,259,58 307,265,323,313,39 387,266,401,308,39 -./model_data/coco/val2017/000000521509.jpg 122,267,475,420,59 150,186,267,370,0 253,12,301,49,58 135,353,198,427,75 170,325,228,421,75 209,32,231,51,75 389,11,442,51,58 324,23,362,50,58 -./model_data/coco/val2017/000000079229.jpg 108,291,201,342,16 202,192,488,348,17 331,121,392,280,0 -./model_data/coco/val2017/000000008532.jpg 418,370,498,426,27 155,9,640,426,0 -./model_data/coco/val2017/000000173057.jpg 202,124,250,181,74 273,131,299,193,74 323,583,347,640,0 127,511,379,597,13 24,570,114,612,13 424,482,437,506,0 252,512,280,541,0 174,521,203,585,0 6,540,38,610,0 333,578,360,640,0 154,527,200,588,0 91,543,137,612,0 3,485,23,503,0 66,477,85,499,0 44,483,57,503,0 272,477,281,497,0 30,482,43,505,0 21,452,240,504,0 -./model_data/coco/val2017/000000463542.jpg 293,246,344,254,30 91,227,168,239,30 100,132,160,236,0 190,52,203,74,0 97,41,107,60,0 294,160,341,255,0 236,121,258,173,0 500,159,550,253,0 503,131,531,178,0 261,101,288,137,0 464,86,479,122,0 555,81,577,108,0 449,56,468,77,0 276,63,287,86,0 123,61,141,68,31 284,66,298,96,0 225,167,267,175,31 225,168,267,173,30 449,117,489,123,30 260,134,284,139,30 436,113,444,115,30 495,83,504,85,30 622,143,636,149,30 288,93,298,98,30 566,106,578,110,30 11,0,639,158,0 -./model_data/coco/val2017/000000021604.jpg 246,245,297,568,27 41,47,480,628,0 -./model_data/coco/val2017/000000158956.jpg 169,39,492,418,0 206,171,217,320,43 167,309,293,352,55 608,313,639,425,56 213,375,264,420,26 -./model_data/coco/val2017/000000079969.jpg 270,109,291,208,38 174,191,291,523,0 332,237,368,281,0 293,213,333,259,0 353,185,382,226,0 341,170,366,206,0 375,161,398,202,0 358,94,374,126,0 292,74,324,136,0 178,89,207,127,0 280,122,291,133,32 330,282,362,313,56 332,246,362,257,56 335,201,365,242,0 235,108,260,144,0 157,80,180,107,0 280,366,298,376,56 290,260,340,315,0 1,0,425,389,0 -./model_data/coco/val2017/000000308476.jpg 70,88,537,408,21 527,216,596,286,32 -./model_data/coco/val2017/000000090208.jpg 162,36,507,405,5 30,105,187,348,5 0,138,57,319,5 -./model_data/coco/val2017/000000138550.jpg 402,26,488,115,56 95,40,218,238,56 264,121,368,343,10 167,45,317,243,60 -./model_data/coco/val2017/000000532901.jpg 85,161,524,350,57 100,135,177,180,56 440,141,499,178,56 195,177,226,200,75 -./model_data/coco/val2017/000000101780.jpg 72,174,201,528,23 372,221,466,340,23 0,256,105,403,23 0,309,59,408,23 -./model_data/coco/val2017/000000206838.jpg 326,167,571,440,17 114,138,307,362,17 197,91,291,335,0 335,94,465,371,0 -./model_data/coco/val2017/000000094751.jpg 313,274,375,310,2 109,83,147,158,9 66,252,76,269,0 107,253,114,268,0 200,253,207,267,0 247,251,255,260,0 75,252,81,267,0 56,254,63,268,0 247,276,299,282,13 96,253,105,266,0 132,265,167,287,2 1,224,12,247,9 218,231,227,250,9 309,271,318,283,0 237,250,246,259,0 272,251,279,264,0 177,254,182,268,0 -./model_data/coco/val2017/000000031817.jpg 0,147,332,633,3 0,68,330,609,0 286,0,334,229,0 0,77,39,187,0 218,0,334,292,0 0,0,64,132,0 -./model_data/coco/val2017/000000467511.jpg 4,157,400,562,3 275,55,377,535,0 22,70,176,391,0 387,42,409,115,9 330,28,369,82,9 390,149,416,181,9 -./model_data/coco/val2017/000000141597.jpg 377,234,554,350,2 544,243,617,329,2 39,131,400,329,7 -./model_data/coco/val2017/000000299355.jpg 44,155,300,336,50 136,265,263,365,50 -./model_data/coco/val2017/000000488710.jpg 0,22,258,395,0 -./model_data/coco/val2017/000000034873.jpg 545,176,604,272,56 482,169,528,219,56 346,200,518,228,60 409,194,449,216,45 307,188,322,197,47 143,257,292,285,71 125,201,148,225,41 493,209,559,263,56 394,151,438,200,62 -./model_data/coco/val2017/000000099242.jpg 290,78,412,287,0 315,267,431,299,30 -./model_data/coco/val2017/000000482487.jpg 134,139,246,250,74 330,383,368,427,74 -./model_data/coco/val2017/000000265816.jpg 147,253,302,389,17 375,220,444,323,0 92,274,151,349,58 339,304,377,354,58 241,325,265,350,58 -./model_data/coco/val2017/000000289741.jpg 512,428,553,473,56 473,424,512,473,56 217,419,258,454,56 541,400,571,418,56 125,414,158,433,56 3,395,62,414,56 128,314,167,335,56 198,71,461,157,8 451,63,608,162,8 156,157,174,162,8 156,308,164,315,0 29,402,63,480,0 367,295,384,341,0 59,339,84,382,0 150,386,176,451,0 606,313,627,346,0 197,294,209,303,0 86,371,110,388,0 240,326,427,466,25 381,287,515,371,25 254,263,355,330,25 429,264,530,327,25 15,252,104,336,25 0,236,27,273,25 56,418,76,443,26 100,429,131,470,0 182,407,223,429,0 609,311,633,335,0 61,453,70,477,26 97,441,119,480,26 118,317,134,333,56 385,311,399,332,0 100,313,126,333,56 153,336,198,364,56 68,312,104,331,56 491,398,507,406,56 149,303,158,313,0 191,323,232,339,56 13,319,486,421,56 -./model_data/coco/val2017/000000173044.jpg 61,305,112,355,74 -./model_data/coco/val2017/000000087875.jpg 144,167,298,485,10 -./model_data/coco/val2017/000000121673.jpg 152,83,333,242,0 177,239,444,289,37 -./model_data/coco/val2017/000000558073.jpg 122,111,364,308,15 -./model_data/coco/val2017/000000151857.jpg 50,69,640,397,6 -./model_data/coco/val2017/000000282912.jpg 1,114,446,633,23 -./model_data/coco/val2017/000000367095.jpg 95,279,175,427,56 69,173,151,269,56 518,133,576,200,56 435,230,640,420,60 146,98,191,153,0 130,118,388,427,0 541,95,603,200,0 0,155,169,286,60 404,291,441,331,41 297,141,356,202,60 252,204,358,275,63 301,272,393,309,66 519,233,577,264,56 460,117,515,238,58 349,322,374,326,64 431,263,451,292,76 311,94,351,150,0 7,108,34,164,0 102,141,122,167,58 227,94,240,118,58 348,175,443,287,62 182,111,240,139,62 32,106,101,169,62 585,101,619,133,62 319,124,321,128,56 -./model_data/coco/val2017/000000161397.jpg 90,278,239,365,75 0,234,110,349,75 282,0,366,180,0 -./model_data/coco/val2017/000000530820.jpg 252,13,448,428,0 288,145,426,270,38 -./model_data/coco/val2017/000000228214.jpg 123,384,188,553,39 343,265,429,331,25 194,330,251,376,67 287,475,406,640,0 396,381,429,463,0 373,388,399,461,0 1,18,386,622,0 340,320,428,464,25 -./model_data/coco/val2017/000000194216.jpg 193,97,245,162,21 165,137,187,165,21 122,137,139,163,21 -./model_data/coco/val2017/000000480985.jpg 14,68,343,489,3 284,300,329,364,3 47,296,75,329,0 32,298,49,328,0 320,275,347,379,0 10,302,23,328,0 266,293,290,382,0 369,278,375,324,0 345,306,372,332,3 343,296,361,307,3 0,329,35,366,3 290,299,305,319,0 302,298,314,316,0 -./model_data/coco/val2017/000000301563.jpg 214,82,374,295,0 64,46,98,116,0 262,275,416,311,30 223,105,301,168,24 168,52,213,118,0 183,109,211,118,30 91,118,124,125,30 -./model_data/coco/val2017/000000513181.jpg 67,236,273,299,8 491,280,509,291,2 306,278,331,287,2 373,281,387,287,2 507,281,513,289,2 344,280,356,287,2 521,279,534,288,2 557,284,570,289,2 574,281,582,287,2 256,289,297,299,8 597,281,616,291,2 468,283,481,288,2 461,280,478,286,2 383,279,405,289,7 -./model_data/coco/val2017/000000251537.jpg 432,309,623,591,51 3,2,640,212,60 -./model_data/coco/val2017/000000391140.jpg 81,87,396,473,0 120,86,167,147,65 313,327,331,350,65 -./model_data/coco/val2017/000000404922.jpg 120,25,242,465,0 236,141,352,475,0 34,302,152,377,38 315,265,348,348,38 42,186,139,455,0 -./model_data/coco/val2017/000000153299.jpg 57,208,272,489,23 30,32,401,479,23 -./model_data/coco/val2017/000000060855.jpg 269,61,424,223,47 203,187,333,323,49 328,199,480,359,49 135,106,268,232,49 14,96,140,229,49 24,208,201,384,47 162,11,292,123,49 -./model_data/coco/val2017/000000106235.jpg 279,16,346,143,58 192,27,278,156,58 1,118,640,472,57 117,249,177,266,65 445,305,472,316,65 111,242,162,254,65 2,280,351,472,56 536,140,640,315,56 373,232,596,415,60 110,270,142,281,65 -./model_data/coco/val2017/000000017714.jpg 97,81,569,472,60 199,118,308,202,41 367,330,520,444,42 293,408,483,452,42 301,372,486,436,43 132,246,334,459,53 356,205,457,238,44 449,274,478,305,46 424,290,453,319,46 443,298,486,332,46 483,302,512,343,46 506,323,535,363,46 179,273,225,300,46 147,304,185,333,46 473,301,488,317,46 314,177,412,253,41 259,318,282,363,46 -./model_data/coco/val2017/000000015079.jpg 452,9,627,384,43 55,103,384,352,48 203,8,476,223,48 -./model_data/coco/val2017/000000032887.jpg 141,57,145,61,67 373,119,499,464,0 96,48,159,195,0 446,159,517,280,24 -./model_data/coco/val2017/000000424521.jpg 45,139,179,301,0 26,263,139,312,36 -./model_data/coco/val2017/000000513041.jpg 61,153,546,473,60 4,0,383,255,0 0,140,129,472,40 469,129,640,480,40 173,217,401,325,53 241,22,326,124,40 484,46,594,263,40 376,2,595,159,0 569,0,640,181,0 68,106,94,127,56 -./model_data/coco/val2017/000000197528.jpg 128,116,390,637,15 -./model_data/coco/val2017/000000288584.jpg 179,166,241,257,56 100,119,206,146,60 183,300,220,376,26 422,176,446,244,26 118,83,190,333,0 127,257,211,426,0 399,143,489,399,0 477,89,518,254,0 523,77,612,183,0 545,38,608,112,0 423,177,445,245,24 586,106,595,129,24 19,294,105,426,0 544,117,617,245,0 618,116,640,220,0 625,153,636,187,24 75,337,119,427,26 6,0,59,53,56 546,106,558,126,24 -./model_data/coco/val2017/000000389684.jpg 357,47,640,413,5 116,214,169,335,0 -./model_data/coco/val2017/000000474170.jpg 291,204,384,282,20 250,186,366,282,20 -./model_data/coco/val2017/000000529148.jpg 472,133,639,426,0 452,68,639,344,0 376,53,550,227,63 2,126,275,418,63 294,220,501,420,63 252,329,315,371,64 270,116,306,139,73 0,318,200,420,66 216,169,234,220,73 208,177,222,224,73 314,0,322,39,73 224,169,248,221,73 210,171,229,223,73 240,165,254,211,73 254,164,261,210,73 256,154,306,196,73 328,0,336,35,73 -./model_data/coco/val2017/000000046048.jpg 275,123,640,475,59 144,268,180,279,73 165,352,219,367,73 407,137,502,273,0 -./model_data/coco/val2017/000000187745.jpg 207,166,322,236,4 -./model_data/coco/val2017/000000468124.jpg 31,284,67,298,2 64,134,614,374,5 59,281,65,289,0 -./model_data/coco/val2017/000000049060.jpg 11,89,640,406,6 450,206,475,278,0 467,176,489,272,0 483,188,511,283,0 501,199,519,276,0 512,196,536,279,0 419,148,440,231,0 -./model_data/coco/val2017/000000409542.jpg 184,101,270,194,74 134,111,166,202,74 70,431,145,631,0 257,449,305,592,0 407,450,427,578,0 38,468,76,606,0 375,444,414,565,0 304,442,356,575,0 -./model_data/coco/val2017/000000502599.jpg 126,291,380,403,4 0,97,475,306,4 381,0,640,421,4 -./model_data/coco/val2017/000000475904.jpg 446,95,484,133,14 358,254,640,420,8 -./model_data/coco/val2017/000000244411.jpg 355,134,500,347,19 73,148,244,309,19 225,219,251,230,19 16,205,40,216,19 59,149,80,157,19 586,180,594,185,19 545,132,549,135,19 510,130,517,133,19 272,268,313,281,19 341,265,361,278,19 -./model_data/coco/val2017/000000032038.jpg 0,1,97,139,0 0,121,330,297,53 148,60,199,110,39 0,244,332,397,60 -./model_data/coco/val2017/000000182441.jpg 256,155,308,173,14 439,120,480,147,14 486,198,525,235,14 554,230,586,253,14 440,270,464,290,14 246,137,275,151,14 215,252,241,267,14 42,209,91,234,14 50,240,72,259,14 234,204,250,224,14 223,189,279,207,14 105,203,129,214,14 147,188,167,199,14 240,156,252,167,14 296,183,336,201,14 428,232,453,258,14 478,145,496,176,14 338,246,353,254,14 360,93,385,104,14 296,226,305,236,14 282,239,291,249,14 336,71,345,84,14 180,251,193,260,14 222,290,256,382,0 226,85,252,96,14 495,263,506,286,14 1,0,639,367,14 -./model_data/coco/val2017/000000449198.jpg 33,118,42,132,9 284,159,292,169,11 -./model_data/coco/val2017/000000338718.jpg 35,37,187,134,2 66,13,500,189,2 -./model_data/coco/val2017/000000035682.jpg 7,321,480,632,60 96,2,353,309,0 400,105,468,226,0 18,69,73,133,0 64,374,191,496,41 255,412,367,513,54 207,322,258,361,54 158,207,225,264,54 118,471,288,640,55 360,193,422,286,26 100,277,162,380,41 356,419,459,512,54 442,202,480,386,56 443,108,480,204,0 272,329,309,357,54 270,327,310,357,55 0,164,63,315,56 387,179,425,345,56 -./model_data/coco/val2017/000000407943.jpg 68,0,583,425,25 334,220,499,420,0 44,230,72,258,0 44,214,96,307,0 -./model_data/coco/val2017/000000322574.jpg 188,17,412,132,45 186,16,411,130,41 388,176,600,329,48 1,96,640,381,52 -./model_data/coco/val2017/000000449996.jpg 130,249,261,292,4 112,293,235,339,4 392,271,466,294,4 501,282,563,298,4 557,259,640,296,4 133,375,209,428,4 444,112,499,129,4 380,308,401,317,7 474,317,498,325,7 332,297,376,316,7 457,313,472,320,7 -./model_data/coco/val2017/000000029640.jpg 389,128,453,176,51 453,159,508,212,51 172,233,215,268,51 185,124,265,192,51 0,4,524,397,50 145,133,255,215,50 85,20,154,97,50 25,106,102,203,50 420,43,640,325,44 114,185,175,240,51 378,98,431,151,51 1,201,640,421,69 286,64,320,101,51 145,40,173,65,51 -./model_data/coco/val2017/000000535094.jpg 60,1,236,113,0 0,0,110,360,0 320,77,639,421,19 -./model_data/coco/val2017/000000165351.jpg 0,240,544,418,46 185,177,354,259,46 114,120,540,254,46 136,67,549,175,46 440,225,532,330,46 0,0,612,52,60 -./model_data/coco/val2017/000000371677.jpg 112,79,348,232,62 356,78,586,232,62 506,368,573,423,64 146,364,194,410,64 349,331,494,407,66 212,332,347,413,66 291,0,371,92,77 305,234,416,372,41 0,101,200,316,63 -./model_data/coco/val2017/000000507223.jpg 0,201,134,640,0 122,269,279,330,34 380,434,458,515,35 88,0,156,53,0 162,1,218,49,0 249,231,480,640,0 181,0,291,43,0 136,0,196,51,0 109,95,310,627,0 -./model_data/coco/val2017/000000523807.jpg 17,255,122,375,39 363,265,440,370,39 129,202,348,370,0 84,135,407,313,52 125,254,210,375,39 410,75,500,370,0 -./model_data/coco/val2017/000000091500.jpg 507,126,527,178,39 413,274,544,473,56 516,382,639,480,56 460,177,640,281,60 1,220,148,301,60 101,144,515,472,0 0,110,284,480,0 72,334,112,356,65 299,351,335,373,65 294,127,332,134,71 575,168,610,190,45 571,224,640,300,56 47,397,125,480,56 493,160,508,186,41 575,167,610,191,41 572,182,617,198,53 470,129,490,180,39 458,128,476,180,39 -./model_data/coco/val2017/000000081766.jpg 472,75,601,146,16 30,126,199,249,16 230,153,495,456,16 -./model_data/coco/val2017/000000283038.jpg 114,12,339,256,11 0,186,48,215,2 53,163,124,203,7 355,110,364,127,9 80,159,89,168,9 31,138,37,150,9 -./model_data/coco/val2017/000000551794.jpg 175,257,324,466,3 171,210,310,442,0 247,258,314,320,24 -./model_data/coco/val2017/000000323496.jpg 20,73,41,89,32 230,1,268,104,0 192,1,227,111,0 85,0,122,111,0 145,2,175,76,0 344,0,376,59,0 136,72,278,142,38 71,50,94,101,38 186,13,205,65,38 385,59,499,88,13 223,22,240,40,38 148,41,157,65,38 264,38,277,57,38 256,56,455,333,0 411,50,500,67,13 442,41,499,52,13 -./model_data/coco/val2017/000000179898.jpg 0,125,217,203,60 281,225,424,410,52 84,242,284,399,52 431,146,516,294,0 360,117,450,225,0 526,134,586,260,0 106,194,180,267,0 0,201,127,456,0 473,182,640,385,0 498,297,636,480,0 0,330,61,474,0 119,154,205,218,56 37,118,101,143,56 0,184,84,287,56 212,25,246,78,73 627,84,634,127,73 630,72,640,129,73 617,86,631,125,73 610,70,637,128,73 195,11,237,79,73 93,20,482,480,0 378,37,422,87,24 2,89,54,152,56 127,102,172,142,56 500,161,537,177,73 612,74,632,125,73 -./model_data/coco/val2017/000000443303.jpg 192,98,500,316,15 0,68,500,375,28 369,0,461,32,73 -./model_data/coco/val2017/000000551350.jpg 432,229,529,318,13 179,249,318,307,13 252,181,476,248,60 594,78,624,83,60 481,80,538,84,13 585,89,609,94,13 484,75,538,93,60 626,68,638,70,60 -./model_data/coco/val2017/000000042070.jpg 108,18,576,456,5 551,309,578,315,2 0,306,30,363,0 -./model_data/coco/val2017/000000235241.jpg 180,68,481,421,0 43,46,195,426,0 595,378,640,427,0 437,397,471,425,0 441,56,571,176,29 345,302,538,387,25 515,325,600,427,0 -./model_data/coco/val2017/000000398377.jpg 132,120,491,353,57 18,130,31,147,67 242,121,245,130,67 342,179,350,191,67 237,139,242,148,67 0,77,179,367,0 162,73,375,367,0 285,34,494,348,0 45,222,148,247,73 6,234,164,316,26 311,144,455,244,26 171,212,344,311,26 415,82,441,121,0 467,34,500,170,0 -./model_data/coco/val2017/000000546011.jpg 52,118,152,283,22 200,115,376,282,22 270,112,461,283,22 -./model_data/coco/val2017/000000491497.jpg 1,180,92,367,62 167,293,354,492,56 296,217,375,267,73 343,150,353,196,73 337,276,345,332,73 338,155,344,195,73 324,276,333,330,73 349,283,355,333,73 299,147,313,196,73 319,280,327,328,73 310,146,344,197,73 165,284,356,500,57 -./model_data/coco/val2017/000000430871.jpg 39,45,184,420,12 408,47,416,55,9 -./model_data/coco/val2017/000000278353.jpg 85,43,531,611,18 -./model_data/coco/val2017/000000235836.jpg 134,412,167,444,32 220,282,376,607,0 67,225,219,396,56 282,230,426,411,56 0,272,69,380,56 -./model_data/coco/val2017/000000234526.jpg 0,109,254,351,23 404,129,409,141,0 423,127,429,144,0 391,134,397,141,0 250,301,525,605,0 516,267,612,610,0 270,122,274,135,0 468,134,472,148,0 459,131,465,145,0 413,129,417,137,0 331,127,335,139,0 -./model_data/coco/val2017/000000058384.jpg 0,179,210,220,6 328,179,383,269,20 304,203,337,270,20 272,187,314,270,20 -./model_data/coco/val2017/000000346905.jpg 24,49,317,414,20 309,256,396,412,20 289,1,638,406,20 -./model_data/coco/val2017/000000363207.jpg 268,134,352,340,0 505,326,640,480,0 203,208,330,370,55 456,158,640,397,0 481,272,519,327,0 361,341,378,402,40 372,336,391,393,40 376,355,431,384,45 122,399,206,449,45 409,316,511,376,55 66,188,518,473,60 316,172,417,360,0 416,251,478,328,0 0,272,233,479,60 -./model_data/coco/val2017/000000276055.jpg 430,321,442,357,39 467,323,499,352,56 143,341,177,374,56 375,349,499,375,60 78,23,425,369,0 326,42,500,363,25 310,155,366,252,41 62,115,93,217,51 -./model_data/coco/val2017/000000377113.jpg 149,61,347,388,0 32,0,82,102,0 292,1,341,117,0 372,1,410,114,0 617,1,639,23,0 273,355,422,393,30 521,0,581,141,0 575,4,633,141,0 166,0,197,88,0 86,0,112,58,0 -./model_data/coco/val2017/000000150930.jpg 123,173,258,399,74 -./model_data/coco/val2017/000000297343.jpg 59,154,249,346,11 -./model_data/coco/val2017/000000003156.jpg 4,15,366,635,0 0,162,61,223,71 255,248,443,615,61 -./model_data/coco/val2017/000000021167.jpg 21,114,223,625,0 259,297,314,378,40 255,172,321,287,27 187,38,426,640,0 -./model_data/coco/val2017/000000002473.jpg 243,93,374,243,0 436,280,498,380,0 119,341,143,385,0 32,328,58,355,0 285,216,328,266,30 -./model_data/coco/val2017/000000336309.jpg 122,190,285,237,4 -./model_data/coco/val2017/000000548267.jpg 595,411,624,428,18 468,403,482,420,18 539,403,555,415,18 488,402,509,418,18 392,446,428,480,18 363,433,389,456,18 237,438,269,457,18 565,409,588,429,18 153,439,185,470,18 128,450,151,477,18 242,450,271,479,18 204,458,241,479,18 256,438,276,459,18 -./model_data/coco/val2017/000000262048.jpg 73,144,511,365,25 279,358,526,561,0 23,384,313,526,0 548,303,587,370,0 569,264,583,277,0 121,314,152,381,0 12,362,236,430,37 447,372,545,379,37 551,253,556,264,0 537,258,549,268,0 540,263,553,301,0 37,183,112,400,0 518,261,526,275,0 -./model_data/coco/val2017/000000001000.jpg 47,303,94,390,38 20,226,73,348,26 196,224,267,341,26 115,152,198,380,0 405,120,443,165,0 265,95,354,411,0 209,174,308,423,0 504,191,640,480,0 410,208,525,480,0 380,159,469,479,0 330,154,413,468,0 410,107,498,228,0 183,121,279,394,0 209,163,271,221,24 42,223,98,274,24 52,185,111,397,0 349,118,402,159,0 -./model_data/coco/val2017/000000319935.jpg 186,170,218,192,62 401,239,640,392,57 105,230,255,372,57 425,203,470,258,56 475,220,532,264,58 531,217,560,246,58 14,198,217,303,59 381,199,433,251,60 358,266,406,284,73 328,270,376,298,73 367,199,402,248,56 104,229,258,375,56 238,195,293,225,57 -./model_data/coco/val2017/000000146457.jpg 348,43,371,111,39 507,58,543,124,39 1,286,99,379,56 0,216,622,474,60 0,0,263,363,0 177,0,335,264,0 572,399,640,480,45 580,79,600,132,39 500,88,509,121,39 386,243,523,294,53 322,275,449,326,53 541,189,597,290,39 201,43,211,62,39 -./model_data/coco/val2017/000000117525.jpg 32,317,203,494,16 150,80,500,494,0 -./model_data/coco/val2017/000000057027.jpg 47,24,593,408,20 0,1,214,195,20 180,262,363,404,20 0,174,89,376,20 -./model_data/coco/val2017/000000048153.jpg 90,75,432,369,0 0,2,499,314,13 -./model_data/coco/val2017/000000348488.jpg 36,104,370,384,17 263,83,420,387,17 184,88,554,461,17 443,97,586,293,17 4,0,609,463,75 -./model_data/coco/val2017/000000411774.jpg 145,34,337,420,38 5,71,327,493,0 -./model_data/coco/val2017/000000564127.jpg 111,214,307,570,61 -./model_data/coco/val2017/000000301867.jpg 208,40,447,173,25 429,182,536,325,26 119,174,191,334,26 255,102,389,480,0 146,108,306,480,0 351,116,489,480,0 242,348,272,417,26 -./model_data/coco/val2017/000000453722.jpg 174,139,270,202,62 0,303,209,421,57 558,215,640,396,57 1,262,210,419,56 -./model_data/coco/val2017/000000017959.jpg 1,334,28,408,0 122,340,145,403,0 21,329,38,403,0 539,345,545,360,0 565,345,572,358,0 571,349,577,357,0 592,341,598,358,0 450,343,458,351,0 240,400,264,421,24 242,121,459,229,33 446,201,599,310,33 271,176,419,267,33 191,272,324,398,33 164,141,331,344,33 23,203,172,408,33 349,95,640,277,33 272,233,325,331,33 331,240,380,402,33 174,384,231,396,33 431,349,436,361,0 560,341,565,353,0 463,346,468,360,0 406,347,413,362,0 604,350,609,356,0 0,132,639,371,0 -./model_data/coco/val2017/000000579900.jpg 212,143,260,211,50 145,265,188,305,50 1,35,375,448,53 336,176,366,217,50 271,213,314,246,50 274,296,314,334,50 118,96,166,136,50 122,167,157,203,50 195,355,249,409,50 221,62,271,110,50 39,163,73,201,50 289,244,318,271,50 183,281,213,316,50 47,148,291,398,50 -./model_data/coco/val2017/000000346968.jpg 368,222,391,257,67 55,40,508,420,0 409,0,640,92,73 426,63,640,140,73 0,233,177,425,56 -./model_data/coco/val2017/000000468577.jpg 2,101,610,490,59 90,263,467,450,0 -./model_data/coco/val2017/000000300155.jpg 279,153,456,351,14 -./model_data/coco/val2017/000000456303.jpg 72,65,208,247,0 113,307,178,394,0 1,344,117,396,31 174,344,221,378,26 85,257,106,321,0 53,47,101,76,31 -./model_data/coco/val2017/000000491071.jpg 4,408,134,455,71 277,408,408,458,71 -./model_data/coco/val2017/000000546976.jpg 24,123,486,370,3 47,94,422,367,0 35,235,49,250,41 -./model_data/coco/val2017/000000417911.jpg 201,38,357,204,0 244,173,463,274,37 -./model_data/coco/val2017/000000552902.jpg 129,106,461,314,22 -./model_data/coco/val2017/000000138492.jpg 89,45,374,607,16 89,93,224,153,29 -./model_data/coco/val2017/000000266981.jpg 200,409,224,434,2 323,411,392,450,2 308,408,326,421,2 159,408,201,510,0 339,378,412,583,0 111,416,169,449,2 120,411,178,439,2 144,409,183,433,2 50,401,67,437,0 72,409,82,432,0 395,411,415,420,2 175,408,186,414,2 219,406,230,419,0 40,408,49,430,0 273,444,330,589,28 97,399,106,414,0 106,403,115,413,0 136,401,144,411,0 212,404,425,434,2 378,407,395,425,2 198,404,216,411,2 105,452,124,464,28 279,404,299,422,2 95,414,122,442,0 265,392,306,418,5 184,415,286,572,0 87,405,96,432,0 116,402,123,411,0 64,394,407,437,0 -./model_data/coco/val2017/000000432468.jpg 0,31,368,231,15 1,262,425,631,28 -./model_data/coco/val2017/000000305343.jpg 341,150,560,358,16 60,124,305,392,41 -./model_data/coco/val2017/000000224724.jpg 315,540,390,576,3 181,488,232,639,0 391,509,402,533,0 401,508,409,533,0 283,514,319,572,2 285,509,421,564,2 160,514,202,565,26 336,526,356,554,0 408,512,420,536,0 -./model_data/coco/val2017/000000123633.jpg 83,375,159,473,56 121,255,338,479,0 361,205,558,422,0 299,0,564,391,0 114,0,270,283,0 455,2,546,122,0 589,127,640,160,73 604,0,640,43,73 595,180,635,279,73 579,173,612,276,73 617,185,640,281,73 251,386,316,452,76 269,412,459,474,60 523,377,640,480,45 -./model_data/coco/val2017/000000262227.jpg 0,40,213,632,62 172,220,369,558,63 425,145,471,203,73 411,250,429,301,73 383,153,407,209,73 373,272,385,306,73 445,246,474,308,73 375,257,387,272,73 407,163,422,208,73 364,354,383,407,73 381,256,393,308,73 -./model_data/coco/val2017/000000286523.jpg 422,318,482,453,67 1,157,523,504,0 -./model_data/coco/val2017/000000455716.jpg 8,1,636,427,3 0,31,171,269,3 426,167,522,229,24 424,166,583,233,26 -./model_data/coco/val2017/000000189213.jpg 346,158,424,286,56 125,179,180,238,56 225,46,322,197,72 -./model_data/coco/val2017/000000516708.jpg 167,303,184,324,9 -./model_data/coco/val2017/000000075612.jpg 73,274,97,331,56 1,294,62,340,56 440,285,449,289,65 94,188,257,473,0 201,205,315,405,0 311,171,382,465,0 380,190,444,422,0 422,195,463,393,0 139,162,178,191,0 250,181,311,421,0 362,183,403,302,0 244,168,284,225,0 82,221,130,306,0 182,173,221,253,0 2,245,82,327,0 301,303,318,339,56 452,264,484,334,56 51,268,85,289,56 199,188,227,201,65 371,296,384,308,65 -./model_data/coco/val2017/000000375763.jpg 232,217,314,344,18 406,173,478,299,18 288,193,367,304,18 122,196,194,302,18 40,197,124,304,18 63,186,141,283,18 270,179,326,223,18 468,184,541,303,18 184,191,255,300,18 220,184,277,214,18 347,178,424,281,18 161,182,204,210,18 -./model_data/coco/val2017/000000080153.jpg 204,358,291,538,16 187,127,305,415,0 98,371,400,503,30 -./model_data/coco/val2017/000000420069.jpg 309,159,335,207,34 61,147,160,457,0 228,187,240,215,0 408,189,420,215,0 514,186,534,242,0 570,202,577,217,0 580,196,595,223,0 35,190,63,218,0 276,188,284,202,0 2,198,11,222,0 301,177,348,311,0 11,264,65,270,34 32,268,64,271,34 23,270,55,274,34 34,195,48,211,56 437,152,441,156,32 -./model_data/coco/val2017/000000190648.jpg 53,261,510,475,59 312,226,419,289,56 -./model_data/coco/val2017/000000381639.jpg 41,21,467,139,4 179,229,281,587,0 210,41,232,85,0 193,46,207,71,0 237,64,260,103,0 271,92,290,136,0 332,98,353,162,0 464,91,485,159,0 307,94,324,157,0 484,83,507,154,0 352,106,365,128,24 317,103,333,128,24 254,397,280,473,26 329,110,340,126,26 221,52,233,72,24 -./model_data/coco/val2017/000000064868.jpg 179,170,343,258,16 9,8,296,331,0 194,88,453,369,69 358,0,377,50,39 225,93,282,153,56 279,0,295,35,56 -./model_data/coco/val2017/000000125850.jpg 110,19,579,444,15 63,7,592,460,45 -./model_data/coco/val2017/000000442323.jpg 216,149,373,297,62 443,217,593,374,56 435,385,640,480,59 210,291,237,307,65 1,322,36,473,28 -./model_data/coco/val2017/000000036539.jpg 167,292,264,532,0 74,358,119,458,0 135,515,306,542,31 -./model_data/coco/val2017/000000146363.jpg 218,84,473,230,25 212,220,417,312,56 104,311,222,375,56 -./model_data/coco/val2017/000000406129.jpg 253,86,267,100,32 163,154,363,592,0 222,62,273,178,38 -./model_data/coco/val2017/000000566042.jpg 181,21,500,330,23 288,32,500,264,23 139,141,415,328,23 68,190,277,333,23 0,242,148,333,23 183,217,278,331,23 -./model_data/coco/val2017/000000273617.jpg 129,165,164,203,11 -./model_data/coco/val2017/000000005529.jpg 79,116,256,450,0 100,403,188,442,30 -./model_data/coco/val2017/000000227985.jpg 320,110,595,429,48 64,2,418,390,48 542,53,640,142,43 0,1,640,474,60 -./model_data/coco/val2017/000000426268.jpg 610,248,640,265,2 623,242,632,247,2 7,44,599,274,6 271,122,311,189,0 -./model_data/coco/val2017/000000329455.jpg 0,55,632,478,60 375,1,639,122,60 1,3,151,279,0 412,69,454,136,41 55,378,166,480,41 119,133,545,372,53 564,96,640,176,56 160,393,270,480,41 0,287,23,419,41 284,0,514,136,56 6,0,79,59,60 67,2,375,217,0 573,285,640,375,0 -./model_data/coco/val2017/000000056545.jpg 131,31,367,629,14 -./model_data/coco/val2017/000000555009.jpg 266,1,490,170,62 72,8,263,184,62 472,120,499,245,39 450,112,495,224,39 0,106,162,327,63 392,270,451,326,64 169,211,354,278,66 0,209,164,326,66 379,151,426,234,41 -./model_data/coco/val2017/000000274411.jpg 199,312,217,330,32 1,155,394,469,2 152,333,188,456,38 148,141,265,538,0 314,231,426,308,2 -./model_data/coco/val2017/000000312237.jpg 341,199,357,225,24 329,176,351,242,0 386,202,423,236,0 399,189,442,232,0 211,223,220,238,0 257,226,261,231,0 470,211,484,237,0 481,216,492,226,0 278,212,289,232,0 310,209,317,224,0 24,239,30,251,0 109,196,115,208,0 314,217,320,230,0 92,222,111,242,8 424,183,482,229,25 347,202,353,218,26 462,223,499,237,8 194,230,299,246,37 347,217,357,226,26 153,207,159,217,33 184,230,299,248,33 375,213,392,219,25 131,226,214,248,0 -./model_data/coco/val2017/000000007511.jpg 386,240,509,472,0 269,272,282,305,0 385,274,391,282,0 614,297,630,309,0 523,276,531,297,0 205,127,221,161,33 554,169,565,180,33 608,390,640,424,24 605,296,615,308,0 623,280,629,295,0 610,277,616,286,0 602,276,610,289,0 511,286,520,299,0 592,272,597,288,0 238,281,252,306,0 596,293,606,308,0 337,272,604,300,0 -./model_data/coco/val2017/000000171788.jpg 402,348,425,373,32 64,108,426,626,0 269,362,325,522,38 -./model_data/coco/val2017/000000493334.jpg 208,10,250,116,67 1,0,492,303,55 -./model_data/coco/val2017/000000381971.jpg 234,272,427,398,17 468,273,526,291,2 166,237,220,328,0 139,275,163,308,0 129,277,151,307,0 112,273,135,338,0 310,268,336,292,0 553,320,590,391,10 117,290,132,316,26 398,334,410,360,26 412,274,460,291,2 621,275,637,282,2 430,251,439,260,11 118,297,132,316,24 374,304,408,382,0 319,342,338,379,0 -./model_data/coco/val2017/000000134689.jpg 38,76,373,578,23 -./model_data/coco/val2017/000000441586.jpg 30,151,233,286,1 395,146,426,224,1 536,158,605,202,1 306,17,407,272,0 249,115,269,167,0 276,135,488,403,3 99,117,116,136,0 114,115,130,136,0 525,74,549,96,11 396,136,431,183,0 -./model_data/coco/val2017/000000248111.jpg 427,194,535,427,72 320,248,396,359,69 198,260,274,282,71 342,388,397,427,26 416,245,427,272,39 311,365,325,388,41 -./model_data/coco/val2017/000000033759.jpg 596,129,623,154,32 77,56,269,449,0 77,174,111,237,34 288,67,340,105,2 285,22,623,168,7 -./model_data/coco/val2017/000000161008.jpg 84,0,574,473,76 -./model_data/coco/val2017/000000165681.jpg 108,119,134,144,2 273,277,588,439,3 198,283,339,438,3 102,232,416,438,3 74,172,250,412,3 317,116,376,226,0 351,106,406,258,0 308,109,334,218,0 383,51,415,105,0 137,111,146,146,0 318,67,328,82,0 300,69,318,83,0 44,182,96,242,3 516,136,639,254,3 456,129,574,234,3 46,169,173,307,3 47,152,139,224,3 80,93,178,130,7 416,46,443,104,0 373,54,386,77,0 55,156,169,317,3 423,345,640,437,3 289,130,317,195,3 122,91,178,101,60 345,61,371,110,0 154,115,167,132,0 384,249,558,338,3 107,113,135,141,7 1,40,518,131,0 20,112,639,443,3 -./model_data/coco/val2017/000000176037.jpg 274,127,538,326,5 61,212,83,257,0 210,215,226,253,0 203,216,218,250,0 65,216,79,231,24 215,221,220,231,24 581,219,595,250,0 564,220,571,247,0 557,224,607,242,2 574,226,629,246,2 39,216,52,237,2 545,200,553,212,9 286,136,300,162,9 540,223,563,241,2 234,210,244,218,2 -./model_data/coco/val2017/000000239857.jpg 293,121,363,272,0 28,125,56,171,0 275,141,302,158,29 168,175,193,211,56 194,175,221,210,56 222,175,251,208,56 133,175,162,210,56 108,174,136,212,56 53,175,82,210,56 164,166,187,203,56 248,171,265,208,56 194,167,215,173,56 81,174,107,211,56 28,169,54,212,56 227,169,249,178,56 94,171,231,176,60 8,127,45,223,0 69,134,97,174,0 134,169,153,173,56 105,170,128,179,56 -./model_data/coco/val2017/000000408120.jpg 259,85,321,141,25 268,74,337,102,2 345,75,390,100,2 242,68,256,92,2 285,104,318,207,0 -./model_data/coco/val2017/000000338219.jpg 22,89,529,543,3 354,151,631,330,3 547,143,640,292,3 163,8,260,169,0 153,138,173,171,0 31,144,44,184,0 82,144,102,169,0 103,139,118,167,0 44,164,74,195,56 606,162,620,174,0 117,151,130,168,0 66,149,74,179,0 147,152,156,170,0 73,150,79,186,0 167,149,178,173,0 0,159,37,197,3 62,153,69,170,0 123,138,151,170,0 3,150,428,200,0 -./model_data/coco/val2017/000000035326.jpg 132,260,190,291,39 134,284,190,317,39 55,217,85,258,43 102,306,623,480,69 127,212,188,241,39 130,234,186,265,39 -./model_data/coco/val2017/000000324818.jpg 392,134,524,383,14 195,116,372,421,14 -./model_data/coco/val2017/000000541634.jpg 78,33,224,324,41 514,72,553,108,44 109,253,506,551,45 155,321,244,379,50 317,389,380,442,50 171,397,204,432,50 0,82,117,270,41 463,237,575,353,41 160,6,604,278,60 6,10,605,601,60 563,225,603,309,44 -./model_data/coco/val2017/000000358195.jpg 202,106,340,545,0 266,470,366,556,36 -./model_data/coco/val2017/000000303713.jpg 231,85,241,96,32 89,320,110,382,38 89,326,258,632,0 24,423,52,454,0 274,420,349,523,0 340,424,390,526,0 11,504,57,538,26 283,362,306,394,0 52,428,120,541,0 52,320,97,370,0 258,282,282,313,0 318,197,351,227,0 0,419,19,455,0 117,499,182,541,24 11,506,55,539,24 47,463,68,502,56 333,458,349,491,56 343,448,352,457,56 233,462,270,536,56 155,479,175,513,56 338,423,363,432,56 378,448,412,464,63 291,293,335,333,0 228,375,263,420,0 128,330,156,363,0 0,42,426,472,0 -./model_data/coco/val2017/000000201426.jpg 379,266,423,367,56 0,349,638,480,60 387,64,640,403,0 49,303,169,458,41 490,276,590,400,41 221,386,410,445,53 0,159,72,212,55 0,6,298,410,0 380,262,435,371,56 -./model_data/coco/val2017/000000411817.jpg 7,89,190,268,62 380,276,453,480,0 347,128,394,334,0 443,184,588,479,0 543,144,623,318,0 580,221,639,474,0 542,95,584,188,0 570,81,636,214,0 565,177,578,195,67 390,352,439,379,65 624,76,640,136,62 626,192,640,229,0 251,83,350,207,62 391,78,455,177,62 469,76,519,152,62 517,74,551,132,62 -./model_data/coco/val2017/000000450202.jpg 0,133,375,492,60 0,0,46,56,0 8,0,52,43,0 151,43,240,243,40 4,42,112,287,40 271,40,363,235,40 117,235,322,325,42 -./model_data/coco/val2017/000000272148.jpg 199,250,212,264,0 278,262,296,279,0 145,224,164,237,0 120,176,126,180,0 111,208,120,213,0 263,334,318,342,37 275,266,288,274,37 553,159,554,167,0 537,154,542,162,0 146,214,152,224,0 258,324,307,340,0 247,169,253,171,0 285,183,288,188,0 125,184,141,190,0 163,227,165,231,37 198,258,206,264,37 161,216,167,220,37 113,212,118,214,37 132,185,141,188,37 233,184,253,185,37 151,231,166,240,37 140,141,623,190,0 116,154,300,191,37 -./model_data/coco/val2017/000000004765.jpg 212,126,403,385,0 257,335,540,423,37 -./model_data/coco/val2017/000000214192.jpg 352,282,469,389,3 450,17,576,222,0 234,151,453,369,0 499,118,629,219,3 -./model_data/coco/val2017/000000219485.jpg 200,540,252,625,15 -./model_data/coco/val2017/000000500211.jpg 326,223,391,474,25 393,232,465,472,25 560,237,608,362,25 503,258,579,457,25 454,277,484,395,25 261,284,301,413,25 49,285,86,347,25 173,286,202,480,25 124,278,163,389,25 316,266,338,402,25 201,271,251,395,25 463,414,640,480,56 1,305,15,375,25 -./model_data/coco/val2017/000000571008.jpg 147,44,492,375,11 -./model_data/coco/val2017/000000543047.jpg 0,249,209,472,57 455,235,638,479,57 357,215,412,288,56 302,220,355,293,56 370,180,392,205,56 397,177,419,206,56 426,176,452,224,56 283,203,439,290,60 288,363,313,379,45 342,152,370,168,68 358,327,400,351,73 463,189,505,223,26 499,205,507,217,41 508,203,516,215,41 388,177,400,179,71 329,337,345,363,41 -./model_data/coco/val2017/000000133343.jpg 72,301,163,468,27 2,9,293,474,0 -./model_data/coco/val2017/000000152771.jpg 335,282,449,367,1 568,273,599,302,2 241,295,259,327,10 1,259,66,291,2 607,275,637,303,2 613,295,622,318,10 -./model_data/coco/val2017/000000377239.jpg 402,340,446,408,39 315,26,640,407,25 266,158,549,419,0 80,166,157,395,0 507,386,552,427,26 0,159,61,427,0 -./model_data/coco/val2017/000000041633.jpg 561,326,627,371,2 606,326,640,363,2 8,173,571,423,7 -./model_data/coco/val2017/000000345027.jpg 366,311,452,377,3 207,272,268,286,8 225,280,286,299,8 372,267,378,284,0 380,265,384,280,0 383,265,389,282,0 462,267,465,278,0 150,288,277,363,7 377,267,381,282,0 427,272,434,279,0 280,276,327,291,8 332,208,373,282,8 571,265,587,270,8 297,263,350,287,8 115,335,220,386,13 467,266,480,273,25 310,183,326,189,33 307,166,311,171,33 294,144,297,146,33 357,228,366,234,33 333,202,338,206,33 385,253,392,256,33 346,214,349,217,33 458,268,461,278,0 500,273,505,278,0 493,273,498,279,0 419,267,424,279,0 472,270,475,274,0 164,163,199,293,8 390,271,394,278,0 414,267,419,279,0 601,264,636,274,8 618,265,620,267,25 604,274,625,288,56 462,267,592,296,0 -./model_data/coco/val2017/000000324715.jpg 29,71,318,329,63 345,188,478,303,76 -./model_data/coco/val2017/000000526256.jpg 169,272,257,368,74 499,305,536,402,74 -./model_data/coco/val2017/000000526751.jpg 239,272,554,400,8 522,200,566,210,8 315,198,348,213,8 579,208,621,218,8 0,149,38,205,8 408,255,491,283,8 67,195,92,202,8 321,195,359,209,8 -./model_data/coco/val2017/000000116068.jpg 225,119,316,370,0 5,116,87,352,0 66,167,246,363,33 113,47,220,375,0 -./model_data/coco/val2017/000000340894.jpg 0,156,51,238,56 327,67,436,160,0 281,16,501,235,62 385,294,425,314,67 549,256,587,316,41 440,208,464,223,41 58,56,309,365,63 469,325,545,365,64 84,337,448,473,66 82,224,282,313,66 57,55,262,220,62 -./model_data/coco/val2017/000000027982.jpg 38,92,157,322,61 374,108,465,147,71 -./model_data/coco/val2017/000000383676.jpg 259,150,473,428,23 227,183,318,423,23 -./model_data/coco/val2017/000000296657.jpg 276,120,300,183,27 374,156,405,189,27 497,137,526,181,27 195,175,215,202,27 563,102,572,106,67 55,135,195,263,0 151,137,246,264,0 434,99,597,327,0 344,125,427,327,0 196,272,202,290,10 119,179,138,200,27 284,156,337,319,0 154,85,344,338,0 299,197,308,214,27 -./model_data/coco/val2017/000000289415.jpg 210,41,454,164,0 2,215,72,342,44 186,186,357,248,53 136,162,195,186,53 50,149,125,184,53 302,252,440,322,53 8,126,639,409,53 188,119,274,134,53 169,158,218,179,53 -./model_data/coco/val2017/000000511076.jpg 266,262,307,307,14 296,242,323,279,14 340,227,389,264,14 204,250,244,296,14 165,263,201,313,14 173,248,199,282,14 143,147,208,243,14 223,85,270,167,14 186,88,263,147,14 271,198,318,265,14 297,217,319,250,14 179,116,221,151,2 352,72,542,376,0 132,254,178,299,14 451,252,636,415,13 139,122,150,154,0 311,279,358,330,14 472,208,574,277,26 55,160,370,364,14 -./model_data/coco/val2017/000000167240.jpg 132,116,355,422,75 -./model_data/coco/val2017/000000493799.jpg 0,2,640,483,60 1,77,97,269,42 369,350,527,477,51 486,283,548,363,51 428,224,529,344,51 463,269,531,344,51 -./model_data/coco/val2017/000000340175.jpg 60,240,169,394,56 557,237,640,326,56 427,176,610,244,57 46,189,249,278,60 175,211,288,337,13 39,125,56,160,73 50,89,55,109,73 44,61,47,80,73 79,94,85,111,73 108,74,120,91,73 81,94,87,112,73 115,97,122,114,73 43,158,46,176,73 94,158,101,180,73 56,124,68,154,73 199,192,208,200,47 191,194,199,201,47 183,192,192,201,47 95,202,119,222,56 43,218,79,338,56 209,174,261,239,56 136,115,200,198,58 35,159,37,170,73 268,157,278,172,75 48,183,53,204,73 47,168,76,177,73 401,160,413,173,75 133,190,150,204,56 26,55,139,284,73 -./model_data/coco/val2017/000000505942.jpg 283,32,306,85,9 88,2,117,61,9 42,100,115,261,0 17,105,62,253,0 459,163,499,205,2 199,73,214,104,9 307,27,329,87,9 -./model_data/coco/val2017/000000207844.jpg 408,149,640,255,25 237,194,364,267,25 366,202,433,230,25 509,303,596,352,0 94,328,171,410,0 342,249,366,275,0 211,195,245,214,25 1,181,25,209,25 130,363,171,394,73 361,221,376,269,0 337,225,357,271,0 366,246,402,281,0 421,252,438,273,0 298,235,310,270,0 223,229,237,249,0 630,267,640,284,0 541,254,544,260,0 234,244,242,253,0 207,398,220,418,41 137,397,402,472,56 308,270,415,342,56 269,268,321,337,56 210,263,284,326,56 177,258,221,320,56 94,251,168,307,56 69,248,106,306,56 41,246,86,303,56 45,332,155,479,56 421,301,470,355,56 209,238,220,251,0 15,246,52,298,56 0,242,35,291,56 0,168,253,329,25 36,227,626,408,0 -./model_data/coco/val2017/000000280930.jpg 255,1,529,420,0 0,248,243,420,69 488,126,640,418,72 242,51,283,92,39 -./model_data/coco/val2017/000000286849.jpg 122,314,257,425,23 103,96,285,251,23 57,73,148,159,23 111,195,267,314,23 -./model_data/coco/val2017/000000395343.jpg 194,304,310,361,56 221,383,315,480,41 298,218,435,474,75 25,303,232,478,75 457,167,606,475,75 0,331,23,417,45 1,354,639,473,60 -./model_data/coco/val2017/000000554002.jpg 427,77,616,363,16 403,36,463,311,0 260,0,414,336,0 202,1,303,279,0 155,1,251,273,0 19,2,109,257,0 0,2,38,251,0 107,0,144,112,0 26,0,94,67,26 404,0,469,45,26 570,38,599,66,0 511,56,530,101,56 531,42,551,99,0 472,53,497,77,0 -./model_data/coco/val2017/000000555412.jpg 0,2,640,422,53 -./model_data/coco/val2017/000000018833.jpg 186,46,507,370,15 -./model_data/coco/val2017/000000052891.jpg 146,125,518,427,16 29,289,305,422,29 612,127,617,131,0 608,126,613,132,0 597,125,601,130,0 587,127,590,130,0 595,127,598,131,0 604,129,608,131,0 -./model_data/coco/val2017/000000475779.jpg 0,119,466,480,20 -./model_data/coco/val2017/000000551215.jpg 71,68,319,511,0 160,141,206,240,38 -./model_data/coco/val2017/000000222991.jpg 119,1,191,543,25 -./model_data/coco/val2017/000000283318.jpg 479,276,580,351,2 467,273,517,330,2 455,269,478,290,2 422,268,433,282,2 508,335,534,399,10 601,265,608,284,0 594,266,599,285,0 470,269,484,274,2 368,263,378,287,0 -./model_data/coco/val2017/000000187734.jpg 516,292,524,302,32 525,303,534,314,32 514,302,524,312,32 528,284,537,294,32 504,307,516,317,32 110,139,204,408,0 40,107,132,453,0 158,116,213,277,0 1,109,51,235,0 208,239,279,311,0 88,125,116,252,0 14,140,56,380,0 529,273,539,284,32 525,275,530,285,32 524,294,534,304,32 502,289,512,298,32 493,281,504,294,32 521,285,529,294,32 126,215,189,265,38 195,274,225,307,38 0,129,15,200,0 269,233,331,301,0 106,137,120,172,0 506,274,515,283,32 411,83,455,120,56 516,311,523,319,32 487,270,544,323,32 -./model_data/coco/val2017/000000205542.jpg 206,86,366,262,77 -./model_data/coco/val2017/000000338905.jpg 238,242,251,301,39 396,186,445,228,3 444,193,480,264,3 227,179,237,197,39 52,215,92,295,56 20,287,151,356,56 76,195,104,247,56 88,179,116,220,56 265,298,287,333,40 230,257,254,305,40 222,229,232,246,41 175,301,222,307,43 294,259,309,268,43 330,209,411,299,0 285,170,336,237,0 265,154,297,223,0 83,161,180,290,0 71,202,214,358,0 250,234,408,360,0 145,161,181,226,0 186,146,239,199,0 365,223,480,360,0 0,0,477,110,25 91,53,478,152,25 277,262,292,307,39 211,211,224,237,40 247,145,279,188,56 353,173,413,223,58 114,143,169,200,0 308,166,350,192,0 246,278,261,326,39 221,191,226,201,39 177,278,204,291,48 215,141,239,175,56 239,138,256,146,56 226,230,260,264,60 169,187,312,360,60 207,321,226,334,45 -./model_data/coco/val2017/000000127394.jpg 333,166,346,184,39 0,86,92,335,0 244,166,268,198,41 354,305,397,366,41 343,164,368,215,41 163,199,187,241,41 129,340,169,491,44 187,408,329,525,44 186,286,248,302,44 45,302,99,335,44 67,77,194,248,0 168,51,277,224,0 319,159,333,217,39 303,175,323,219,39 97,419,264,568,45 62,317,162,369,53 329,227,409,317,0 391,92,409,146,0 133,114,214,222,56 0,207,409,628,60 373,373,409,396,44 260,48,325,153,0 -./model_data/coco/val2017/000000263966.jpg 196,35,412,410,17 96,330,192,423,0 449,176,583,373,18 -./model_data/coco/val2017/000000384661.jpg 391,100,415,135,39 419,1,498,368,72 43,13,298,276,69 359,37,373,83,44 412,55,441,97,44 386,133,413,177,39 137,25,255,42,74 -./model_data/coco/val2017/000000466256.jpg 0,0,640,419,60 110,129,357,420,42 314,58,484,96,51 334,92,400,137,51 381,90,438,184,51 186,101,276,112,51 236,72,262,102,51 382,66,429,82,51 373,23,424,36,51 265,31,277,44,51 265,43,293,69,51 431,60,440,82,51 -./model_data/coco/val2017/000000099053.jpg 403,0,640,304,42 37,81,623,544,45 94,311,183,372,50 226,398,273,453,50 448,296,505,340,50 359,412,400,466,50 392,392,436,454,50 0,0,640,559,60 -./model_data/coco/val2017/000000130579.jpg 174,71,332,556,0 175,186,239,243,35 -./model_data/coco/val2017/000000534270.jpg 237,350,312,413,16 225,195,331,410,0 137,135,239,411,0 475,168,509,182,8 109,99,249,128,8 74,138,98,151,8 230,169,316,199,25 169,130,251,181,25 107,310,147,327,25 254,300,338,349,25 -./model_data/coco/val2017/000000009590.jpg 427,227,450,276,39 178,97,199,123,74 179,253,640,417,60 136,155,231,293,0 259,177,323,253,0 0,52,237,427,0 347,270,385,310,41 522,237,582,291,41 363,298,415,310,44 534,368,591,427,44 424,276,472,305,45 338,256,404,272,45 287,273,323,293,45 242,258,267,272,45 384,272,419,300,45 371,168,457,266,0 541,214,567,236,41 466,262,491,300,41 184,280,207,306,41 416,256,430,273,45 130,235,143,268,56 243,348,363,421,0 423,275,471,305,41 325,251,346,265,41 478,258,522,278,41 251,250,276,270,41 551,301,580,311,44 513,109,640,286,0 301,234,327,264,41 -./model_data/coco/val2017/000000435206.jpg 382,167,387,179,18 301,157,329,184,19 426,147,439,166,19 205,159,260,169,8 424,199,452,275,0 344,195,370,241,0 302,187,320,238,0 338,146,361,163,19 352,137,366,146,19 365,135,382,145,19 316,146,339,156,19 449,144,459,149,19 238,147,256,159,20 294,142,304,157,19 239,148,256,160,19 -./model_data/coco/val2017/000000015751.jpg 152,231,298,399,14 107,322,153,371,14 43,347,170,397,14 222,381,269,427,14 -./model_data/coco/val2017/000000199310.jpg 217,34,427,632,0 138,128,240,263,38 -./model_data/coco/val2017/000000059598.jpg 64,271,161,309,67 531,53,595,105,0 587,46,639,232,0 215,335,388,429,46 166,88,451,330,63 505,290,574,366,64 571,84,608,108,63 214,246,435,284,66 545,101,620,223,56 256,311,340,380,55 -./model_data/coco/val2017/000000508312.jpg 380,88,478,329,69 462,81,491,274,0 110,210,337,295,69 383,124,479,217,68 -./model_data/coco/val2017/000000523811.jpg 106,177,205,307,14 -./model_data/coco/val2017/000000462629.jpg 230,135,330,363,72 151,150,236,362,72 67,112,159,236,72 435,150,548,359,72 36,158,72,324,72 468,117,563,259,72 107,100,214,153,72 475,254,612,419,72 72,233,155,349,72 -./model_data/coco/val2017/000000308631.jpg 22,49,576,387,3 484,54,594,244,0 425,0,493,151,0 246,0,335,103,0 163,0,242,114,0 573,1,640,303,0 49,0,86,75,0 79,0,146,69,0 557,0,611,65,0 323,0,434,88,0 577,1,603,18,24 487,0,513,55,24 0,0,40,263,0 -./model_data/coco/val2017/000000528578.jpg 528,197,540,216,74 503,198,516,217,74 468,340,471,345,0 475,341,477,345,0 437,339,440,342,0 447,338,450,342,0 444,340,446,342,0 489,339,491,347,0 336,336,339,339,0 89,333,93,336,0 20,332,24,337,0 453,340,455,342,0 376,336,380,340,0 -./model_data/coco/val2017/000000549136.jpg 184,227,283,304,77 -./model_data/coco/val2017/000000342367.jpg 53,2,640,480,62 190,128,345,385,0 318,329,469,476,0 121,353,209,374,73 293,318,370,391,63 411,277,547,425,0 -./model_data/coco/val2017/000000481567.jpg 210,132,402,457,3 243,92,384,281,0 -./model_data/coco/val2017/000000167540.jpg 163,74,487,331,4 -./model_data/coco/val2017/000000319607.jpg 202,489,268,549,1 198,440,246,518,0 146,50,218,306,9 33,566,84,639,0 487,288,503,301,0 307,369,384,449,2 422,271,519,344,5 196,464,208,490,24 325,392,355,429,0 293,289,315,314,9 -./model_data/coco/val2017/000000145597.jpg 300,303,355,360,39 106,231,180,266,39 359,325,382,362,41 166,355,263,480,26 315,10,474,219,0 476,33,640,265,0 355,123,640,480,0 0,65,198,480,0 37,12,160,210,0 445,156,497,217,26 98,220,179,257,39 295,159,310,179,40 298,270,324,302,41 371,282,384,296,49 385,286,396,294,49 376,290,388,300,49 382,279,394,289,49 388,255,395,258,49 377,300,393,318,49 -./model_data/coco/val2017/000000121031.jpg 75,159,228,433,17 385,182,447,256,17 267,172,284,209,17 230,218,290,308,17 128,114,223,330,0 390,160,429,245,0 211,148,293,290,0 257,153,292,208,0 -./model_data/coco/val2017/000000350607.jpg 64,101,548,314,13 -./model_data/coco/val2017/000000321887.jpg 0,44,486,419,18 -./model_data/coco/val2017/000000248752.jpg 145,78,414,368,0 221,91,359,157,34 -./model_data/coco/val2017/000000462614.jpg 126,240,235,327,58 16,287,171,468,61 406,243,527,288,71 555,344,640,453,56 -./model_data/coco/val2017/000000460229.jpg 51,80,286,305,11 227,300,381,459,7 243,8,273,78,9 199,0,230,47,9 -./model_data/coco/val2017/000000471756.jpg 275,137,637,314,0 261,284,539,327,37 -./model_data/coco/val2017/000000456292.jpg 178,335,317,512,15 382,502,428,610,39 -./model_data/coco/val2017/000000331317.jpg 239,270,639,481,74 56,150,77,216,0 -./model_data/coco/val2017/000000290619.jpg 49,62,280,447,46 -./model_data/coco/val2017/000000288391.jpg 10,47,165,347,67 -./model_data/coco/val2017/000000010977.jpg 240,255,300,339,61 343,213,418,253,71 -./model_data/coco/val2017/000000414034.jpg 0,156,640,480,59 61,1,451,474,0 359,73,472,235,65 346,228,457,351,41 343,226,457,351,39 -./model_data/coco/val2017/000000451693.jpg 69,50,573,363,53 -./model_data/coco/val2017/000000051738.jpg 106,117,500,375,59 103,162,217,219,56 1,207,53,280,28 -./model_data/coco/val2017/000000486046.jpg 77,375,167,480,22 194,26,573,474,23 0,432,103,474,22 -./model_data/coco/val2017/000000015956.jpg 129,84,365,303,17 493,126,514,147,74 42,83,67,107,74 365,138,446,336,0 -./model_data/coco/val2017/000000089556.jpg 294,156,418,227,2 267,143,364,193,2 182,151,239,192,2 106,155,147,164,2 401,129,439,144,2 235,265,311,390,10 579,122,619,132,2 362,136,386,145,2 587,142,630,186,2 1,166,297,386,2 250,143,282,189,2 321,127,627,328,7 1,139,78,194,7 136,138,179,150,2 255,143,369,196,7 -./model_data/coco/val2017/000000162732.jpg 81,170,149,222,32 111,37,261,427,0 226,23,450,427,0 211,30,326,420,0 19,16,148,422,0 529,6,640,420,0 -./model_data/coco/val2017/000000480944.jpg 255,346,314,377,2 132,356,225,392,2 131,344,224,376,2 21,354,123,398,2 372,351,392,373,2 385,352,403,373,2 464,348,479,367,2 300,192,315,228,9 220,330,299,381,5 305,332,354,353,5 407,341,449,371,5 342,46,399,243,9 212,202,240,252,9 71,216,116,286,11 -./model_data/coco/val2017/000000258541.jpg 104,141,152,374,27 19,29,261,443,0 -./model_data/coco/val2017/000000222317.jpg 223,197,450,287,16 98,96,640,475,57 0,427,19,441,65 -./model_data/coco/val2017/000000144932.jpg 478,183,556,233,8 502,220,506,224,0 528,199,533,210,0 -./model_data/coco/val2017/000000325347.jpg 291,0,365,90,56 398,3,473,91,56 115,4,171,98,0 225,210,333,259,38 233,45,294,93,24 291,74,471,303,0 463,48,532,97,24 -./model_data/coco/val2017/000000575205.jpg 126,205,469,320,4 -./model_data/coco/val2017/000000125405.jpg 220,109,383,406,16 450,4,580,171,16 234,234,316,284,29 -./model_data/coco/val2017/000000433134.jpg 224,6,640,475,15 -./model_data/coco/val2017/000000407002.jpg 210,187,326,572,0 57,527,370,611,30 -./model_data/coco/val2017/000000378515.jpg 349,94,407,170,1 240,231,394,420,0 281,42,357,267,0 122,165,215,290,0 178,25,231,134,0 68,40,111,152,0 223,405,296,486,46 264,29,301,137,0 47,30,86,108,0 286,20,317,113,0 160,36,187,101,0 165,445,231,509,46 266,462,335,541,46 191,544,247,601,46 350,521,414,568,46 275,401,319,463,46 120,485,217,605,46 95,455,154,523,46 385,594,407,613,46 197,326,224,348,46 166,326,198,350,46 294,439,373,521,46 373,492,424,542,46 91,13,424,639,46 -./model_data/coco/val2017/000000166277.jpg 1,2,361,499,15 325,239,454,416,41 165,307,332,548,41 424,179,480,348,41 -./model_data/coco/val2017/000000263644.jpg 69,391,426,612,59 -./model_data/coco/val2017/000000084492.jpg 235,97,409,353,0 189,476,213,515,0 267,270,346,403,36 264,400,426,553,13 388,510,418,525,2 229,493,268,520,2 266,500,336,525,2 -./model_data/coco/val2017/000000279145.jpg 2,91,165,411,58 283,310,519,479,58 145,23,278,197,58 11,4,157,177,58 332,71,398,137,58 103,322,206,468,15 193,147,468,382,13 501,144,639,450,58 405,26,500,161,58 -./model_data/coco/val2017/000000450758.jpg 443,122,540,239,23 346,139,396,229,23 318,114,392,231,23 220,141,245,221,23 263,144,297,223,23 102,135,132,217,23 296,158,342,227,23 -./model_data/coco/val2017/000000120572.jpg 468,265,509,281,13 131,123,150,146,74 -./model_data/coco/val2017/000000078032.jpg 59,320,250,383,13 592,168,639,199,8 370,251,487,337,13 -./model_data/coco/val2017/000000163118.jpg 264,71,375,426,0 150,75,296,375,0 270,56,320,87,29 -./model_data/coco/val2017/000000549220.jpg 0,86,451,480,16 248,2,387,229,0 358,33,480,235,0 1,344,480,520,36 350,56,407,98,73 391,8,480,217,0 441,35,480,111,0 360,146,417,226,13 -./model_data/coco/val2017/000000349837.jpg 14,104,77,270,72 66,94,137,289,72 138,62,236,314,72 234,29,347,328,72 335,10,460,329,72 460,0,500,328,72 -./model_data/coco/val2017/000000013597.jpg 69,29,531,420,55 0,0,639,420,60 -./model_data/coco/val2017/000000155571.jpg 13,7,415,422,20 -./model_data/coco/val2017/000000167572.jpg 492,249,593,275,42 447,289,600,322,43 101,50,279,351,45 307,173,509,389,48 302,2,518,203,48 144,273,207,398,49 0,0,154,131,56 65,126,630,420,60 509,0,640,150,0 172,0,514,128,0 269,391,358,425,41 152,357,270,425,41 501,0,577,128,56 0,1,154,120,60 -./model_data/coco/val2017/000000525247.jpg 2,96,384,415,15 195,22,639,421,63 -./model_data/coco/val2017/000000462756.jpg 259,128,499,380,3 65,138,299,243,7 37,185,69,206,2 -./model_data/coco/val2017/000000106912.jpg 234,230,284,397,0 217,382,290,406,36 -./model_data/coco/val2017/000000347693.jpg 269,238,435,321,59 10,271,104,379,59 -./model_data/coco/val2017/000000103723.jpg 341,335,480,639,0 155,222,386,570,20 157,371,175,389,0 164,380,174,411,0 388,385,407,419,0 367,385,383,405,0 352,384,359,404,0 403,382,416,407,0 -./model_data/coco/val2017/000000199236.jpg 102,128,411,400,17 465,189,491,223,0 482,166,532,228,0 535,167,563,224,0 610,177,631,295,0 502,197,526,225,0 572,171,610,254,0 559,177,576,222,0 417,180,453,289,0 147,180,178,217,0 220,62,310,304,0 187,182,201,208,0 208,192,228,214,0 476,169,495,205,0 1,170,570,223,0 -./model_data/coco/val2017/000000166165.jpg 265,22,491,314,0 89,333,188,568,0 316,97,542,273,38 159,339,176,408,38 -./model_data/coco/val2017/000000133631.jpg 93,51,425,612,20 -./model_data/coco/val2017/000000574823.jpg 26,57,82,190,0 70,68,115,187,0 318,112,375,180,0 262,105,274,115,32 319,44,373,167,0 343,152,366,170,35 87,31,324,492,0 -./model_data/coco/val2017/000000344795.jpg 50,22,586,352,69 225,156,420,264,55 -./model_data/coco/val2017/000000474021.jpg 188,310,201,355,39 317,211,324,219,74 20,271,353,375,57 17,81,225,370,0 250,16,500,369,0 329,124,416,369,0 367,184,380,198,65 166,171,182,213,65 261,264,290,342,65 316,160,341,184,73 278,176,311,225,73 183,258,283,375,0 83,202,109,219,65 312,255,321,273,73 293,154,304,176,73 313,184,338,205,73 296,134,301,151,73 310,136,319,156,73 307,230,316,248,73 281,225,289,244,73 302,253,312,272,73 408,198,424,211,74 339,143,347,160,73 332,143,338,159,73 326,140,333,158,73 265,132,373,292,73 -./model_data/coco/val2017/000000423617.jpg 126,289,264,401,2 408,341,565,466,2 14,80,33,106,3 150,118,442,339,5 50,42,204,201,5 15,61,32,100,0 336,467,455,480,2 120,116,144,137,0 323,247,344,270,0 159,313,189,338,0 451,368,486,390,0 0,153,56,221,2 -./model_data/coco/val2017/000000460927.jpg 112,61,481,309,21 -./model_data/coco/val2017/000000259640.jpg 546,267,640,354,1 508,268,529,315,1 92,337,112,355,49 419,243,500,391,26 397,338,489,425,1 396,204,509,426,0 583,219,622,280,0 551,223,584,296,0 484,228,516,323,0 459,221,485,310,0 355,212,393,349,0 350,227,375,356,0 386,261,407,309,1 75,61,351,355,7 492,255,518,291,26 411,222,427,241,0 515,223,544,323,0 131,357,140,366,49 0,346,140,391,49 109,339,224,385,49 575,241,602,276,24 -./model_data/coco/val2017/000000016249.jpg 42,116,190,349,0 275,38,346,164,0 314,98,454,281,0 422,101,500,259,0 222,199,286,312,13 468,99,500,144,0 29,200,172,349,13 376,153,470,261,13 324,182,399,281,13 275,67,304,135,24 427,172,474,255,56 -./model_data/coco/val2017/000000302452.jpg 358,202,368,213,67 134,105,269,403,23 210,158,270,238,0 88,222,152,280,0 87,182,117,228,0 0,178,55,290,0 308,217,335,261,0 309,168,389,260,0 84,142,126,204,0 115,176,161,251,0 203,68,246,117,39 391,186,403,229,0 -./model_data/coco/val2017/000000048555.jpg 86,252,239,333,17 215,252,271,317,17 208,230,247,279,0 167,230,209,289,0 238,246,289,314,17 238,225,258,255,0 -./model_data/coco/val2017/000000122672.jpg 226,108,539,327,0 133,244,550,344,37 -./model_data/coco/val2017/000000487583.jpg 53,92,426,535,61 342,165,410,243,41 -./model_data/coco/val2017/000000093353.jpg 3,98,300,477,0 382,360,495,442,73 157,80,640,444,52 1,98,105,191,56 141,68,322,131,56 -./model_data/coco/val2017/000000492362.jpg 97,104,266,556,0 268,165,354,441,0 79,496,319,607,36 141,155,196,283,24 249,0,427,98,25 8,3,291,55,25 328,251,349,275,26 70,113,106,143,45 79,201,119,222,52 80,224,121,245,52 78,328,128,362,45 82,245,124,268,52 393,181,427,382,0 -./model_data/coco/val2017/000000554291.jpg 211,78,493,416,15 443,38,640,240,57 3,233,640,428,60 209,69,500,415,16 187,54,512,400,45 105,74,206,129,45 452,32,640,238,56 91,251,212,331,64 -./model_data/coco/val2017/000000567825.jpg 19,0,187,304,39 13,259,293,571,48 237,7,389,358,40 -./model_data/coco/val2017/000000418961.jpg 161,212,286,363,74 -./model_data/coco/val2017/000000047121.jpg 325,71,640,393,15 77,106,136,251,39 0,205,74,259,45 2,122,640,474,71 -./model_data/coco/val2017/000000492284.jpg 233,162,385,254,15 363,20,592,474,0 492,105,594,266,24 296,131,392,242,24 -./model_data/coco/val2017/000000118405.jpg 290,352,311,370,45 547,360,572,427,0 -./model_data/coco/val2017/000000377497.jpg 44,33,432,582,22 -./model_data/coco/val2017/000000185473.jpg 515,69,588,173,17 60,65,114,165,17 217,47,294,172,17 115,51,188,169,17 333,75,378,168,17 272,56,341,168,17 473,65,494,92,0 505,65,523,99,0 552,63,568,78,0 537,64,554,82,0 397,31,442,73,0 395,53,466,171,17 488,91,531,163,17 359,58,401,167,17 187,57,228,168,17 333,64,358,85,17 -./model_data/coco/val2017/000000301376.jpg 246,372,302,417,2 1,392,98,478,2 290,366,331,443,0 234,365,280,412,2 291,362,321,379,2 182,357,204,409,0 207,366,216,404,0 196,359,207,405,0 263,210,283,260,9 65,0,111,131,9 260,266,279,300,9 217,368,223,380,12 305,379,320,397,26 306,398,329,450,1 279,361,291,372,2 323,370,333,400,2 82,256,100,295,9 311,317,315,329,9 83,94,111,152,9 281,297,286,320,9 215,363,244,398,2 -./model_data/coco/val2017/000000108864.jpg 116,178,331,393,20 309,190,525,406,20 -./model_data/coco/val2017/000000210789.jpg 29,84,305,249,25 152,124,244,428,0 126,236,191,442,0 10,106,52,172,7 222,148,358,228,7 -./model_data/coco/val2017/000000340015.jpg 1,1,639,120,60 0,1,640,474,53 -./model_data/coco/val2017/000000442306.jpg 81,78,461,362,25 249,145,417,601,0 -./model_data/coco/val2017/000000551820.jpg 22,182,142,297,38 106,143,422,425,0 199,157,257,375,0 56,196,119,317,0 14,234,40,292,0 452,190,531,365,0 536,228,562,302,0 575,233,599,303,0 408,234,426,280,0 420,240,444,287,0 399,267,431,320,0 141,231,154,268,0 475,258,494,298,38 197,179,223,231,38 504,231,528,302,0 611,240,631,307,0 0,222,618,323,0 -./model_data/coco/val2017/000000134322.jpg 5,365,16,407,0 206,373,219,404,0 106,300,113,328,0 146,304,156,331,0 203,315,207,332,0 315,328,323,348,0 321,318,326,342,0 353,321,358,331,0 394,324,401,345,0 432,327,438,349,0 24,367,43,408,0 41,298,49,323,0 44,460,71,480,0 522,45,608,120,33 1,275,633,407,0 -./model_data/coco/val2017/000000054605.jpg 4,22,612,605,60 319,311,521,417,42 359,300,531,409,42 261,350,518,601,55 0,207,78,406,41 85,72,259,451,41 480,13,576,213,56 286,99,386,212,56 543,40,612,71,60 488,0,538,102,0 526,0,610,255,0 0,0,301,211,0 306,42,348,64,60 419,1,468,89,56 247,3,319,74,0 -./model_data/coco/val2017/000000117374.jpg 303,57,331,113,14 460,266,551,380,15 71,218,162,281,15 -./model_data/coco/val2017/000000273715.jpg 257,159,315,277,0 438,153,500,301,0 260,275,288,284,30 59,179,78,213,0 164,174,201,272,0 -./model_data/coco/val2017/000000023899.jpg 1,32,611,419,0 214,145,397,345,0 476,107,640,347,0 442,289,463,306,65 540,338,598,392,65 341,122,608,328,57 199,121,252,138,65 497,308,527,330,65 607,241,634,257,65 -./model_data/coco/val2017/000000106281.jpg 102,69,287,418,6 183,48,351,141,6 -./model_data/coco/val2017/000000294695.jpg 554,184,605,320,0 108,277,154,387,0 220,289,267,406,0 72,220,76,232,0 54,224,64,232,0 123,222,126,226,0 116,19,373,167,33 600,206,612,234,0 606,187,640,330,0 -./model_data/coco/val2017/000000122166.jpg 87,357,130,461,1 320,292,446,401,2 516,301,546,320,2 460,302,509,347,2 367,280,453,358,2 158,264,323,417,2 76,225,155,433,0 505,305,519,343,0 390,251,401,270,9 338,192,345,209,9 324,245,334,265,9 567,298,583,321,0 524,268,528,273,9 162,255,189,324,0 306,237,319,267,9 512,266,518,274,9 581,276,586,287,9 591,300,597,320,0 5,286,35,362,0 546,304,552,315,1 600,296,633,316,2 35,301,84,405,3 492,287,497,296,9 84,296,130,359,24 551,273,567,284,2 535,279,549,295,2 545,284,557,299,2 158,263,323,413,7 460,302,510,346,7 -./model_data/coco/val2017/000000231549.jpg 119,350,508,480,59 88,411,107,438,41 560,406,623,423,74 -./model_data/coco/val2017/000000501005.jpg 449,177,609,394,0 130,57,303,310,0 105,50,192,113,34 361,194,410,236,35 379,176,532,342,0 -./model_data/coco/val2017/000000118515.jpg 270,118,395,278,15 150,199,640,299,13 -./model_data/coco/val2017/000000530466.jpg 74,108,117,145,56 1,0,640,451,6 541,103,557,116,62 -./model_data/coco/val2017/000000454661.jpg 247,185,639,359,2 149,207,300,324,2 0,184,180,373,2 249,121,417,223,5 273,38,315,149,9 165,116,192,186,9 234,62,268,163,9 60,162,78,188,9 41,117,57,149,9 50,168,59,185,9 -./model_data/coco/val2017/000000478721.jpg 368,238,433,284,2 31,227,81,267,2 318,241,332,279,0 309,243,320,278,0 576,266,598,290,0 426,234,497,286,7 497,249,556,289,7 0,220,16,267,7 368,237,433,286,7 163,167,408,237,33 582,249,640,293,2 324,228,391,367,0 241,221,308,332,0 -./model_data/coco/val2017/000000198641.jpg 94,112,385,305,62 0,111,110,353,62 221,184,495,422,15 0,363,265,472,66 571,275,588,296,74 413,178,574,299,63 427,298,596,361,63 -./model_data/coco/val2017/000000161781.jpg 260,20,466,363,0 144,335,502,382,30 -./model_data/coco/val2017/000000541952.jpg 214,476,288,550,74 -./model_data/coco/val2017/000000071451.jpg 1,168,383,632,59 -./model_data/coco/val2017/000000093437.jpg 432,169,500,261,56 40,204,99,304,56 0,178,26,301,56 78,8,429,355,0 575,205,594,238,41 455,223,470,226,73 454,226,469,228,73 579,187,593,206,39 118,164,145,194,74 147,167,160,191,75 440,212,461,220,73 490,212,523,222,73 426,275,640,360,60 -./model_data/coco/val2017/000000260261.jpg 2,173,354,464,7 174,154,343,624,0 179,285,220,318,43 396,222,401,231,0 -./model_data/coco/val2017/000000485480.jpg 66,114,210,259,0 0,90,88,251,0 367,93,422,100,34 205,139,228,184,35 271,47,431,213,0 -./model_data/coco/val2017/000000523033.jpg 564,190,589,206,0 287,175,302,186,0 31,160,44,176,0 290,186,305,191,37 578,202,588,205,37 -./model_data/coco/val2017/000000182162.jpg 105,159,292,330,57 116,300,173,383,28 12,230,88,268,63 18,271,61,281,65 60,265,84,279,65 45,99,50,120,73 66,107,78,118,73 58,144,74,149,73 36,66,55,93,73 -./model_data/coco/val2017/000000366225.jpg 69,7,452,319,62 50,249,95,322,67 464,559,524,629,64 85,523,439,604,66 -./model_data/coco/val2017/000000444275.jpg 347,171,493,249,68 -./model_data/coco/val2017/000000148508.jpg 377,199,407,225,2 166,117,277,274,5 427,179,469,377,0 321,210,336,244,0 119,222,137,269,0 53,219,70,280,0 456,187,507,397,0 236,286,373,420,0 41,222,58,288,0 152,219,162,262,0 291,215,300,238,0 475,162,503,175,2 575,171,618,208,0 454,185,532,396,0 90,238,121,278,0 28,219,48,294,0 3,163,639,424,0 -./model_data/coco/val2017/000000252332.jpg 83,0,538,455,11 -./model_data/coco/val2017/000000085576.jpg 0,261,125,400,61 -./model_data/coco/val2017/000000109055.jpg 128,91,469,445,15 2,2,639,473,1 -./model_data/coco/val2017/000000356125.jpg 0,107,72,450,0 0,144,600,456,20 51,157,226,240,20 -./model_data/coco/val2017/000000115245.jpg 92,143,219,309,24 254,166,565,589,28 38,68,127,182,28 351,136,498,221,24 215,209,342,488,28 466,99,568,189,56 423,72,466,140,56 315,56,339,92,56 285,45,301,70,56 564,150,612,209,56 130,4,240,89,24 229,95,303,142,26 0,0,26,48,0 93,0,151,44,0 152,14,161,26,56 210,0,291,70,0 -./model_data/coco/val2017/000000098853.jpg 0,136,20,161,32 264,267,279,355,56 152,88,204,137,56 6,197,85,259,38 83,185,294,511,0 220,204,272,305,0 138,104,201,220,0 100,107,146,205,0 311,99,364,210,0 346,91,426,215,0 244,49,302,174,0 50,48,103,127,0 45,93,101,190,0 102,48,144,121,0 196,1,251,88,0 300,87,352,136,56 353,87,402,128,56 401,88,426,138,56 0,97,36,189,0 203,89,250,141,56 292,0,343,89,0 372,178,406,208,56 303,142,333,200,56 158,34,197,75,56 0,0,426,179,0 -./model_data/coco/val2017/000000407868.jpg 203,241,248,341,0 380,250,393,298,0 80,261,103,301,0 579,256,596,268,13 166,139,255,213,33 607,255,626,266,13 50,296,58,306,29 539,257,557,269,13 -./model_data/coco/val2017/000000128658.jpg 375,125,561,304,46 -./model_data/coco/val2017/000000243495.jpg 192,165,352,476,61 -./model_data/coco/val2017/000000514914.jpg 563,168,619,223,61 202,134,321,182,71 0,270,329,361,71 -./model_data/coco/val2017/000000227491.jpg 143,159,323,474,0 40,341,569,480,13 139,256,167,283,54 307,326,338,341,54 302,340,338,401,39 139,256,167,283,48 -./model_data/coco/val2017/000000432085.jpg 198,4,500,369,0 18,215,82,252,64 205,178,294,235,48 112,103,160,216,39 155,177,242,233,48 -./model_data/coco/val2017/000000498807.jpg 106,34,424,348,0 254,286,455,366,37 -./model_data/coco/val2017/000000267351.jpg 339,294,360,388,74 434,254,527,330,74 -./model_data/coco/val2017/000000291791.jpg 13,20,587,477,3 289,0,392,100,0 0,0,120,278,0 140,0,295,100,0 531,148,628,289,24 197,0,260,54,26 527,147,626,294,26 -./model_data/coco/val2017/000000280779.jpg 331,141,436,443,0 347,184,399,241,24 290,406,436,446,30 -./model_data/coco/val2017/000000025393.jpg 430,203,453,299,27 202,139,230,258,27 148,73,286,474,0 0,200,45,236,2 19,198,69,240,2 68,199,98,235,2 96,195,125,223,2 90,184,115,245,0 371,136,494,478,0 -./model_data/coco/val2017/000000521819.jpg 489,359,527,386,2 559,361,601,387,2 104,371,120,386,2 75,374,91,387,2 235,255,255,263,29 105,283,162,421,0 218,267,275,421,0 258,265,316,423,0 531,290,565,421,0 332,311,368,417,0 361,303,418,421,0 194,270,244,412,0 181,334,209,399,0 290,276,349,420,0 -./model_data/coco/val2017/000000154718.jpg 30,44,295,371,61 34,326,365,494,0 -./model_data/coco/val2017/000000399205.jpg 264,178,285,197,67 316,199,321,204,67 390,211,438,258,67 73,24,281,480,0 313,77,443,473,0 392,92,503,441,0 394,2,638,470,0 508,116,555,238,0 4,171,63,223,3 479,123,487,150,0 490,119,506,163,0 237,88,365,433,0 508,121,525,159,0 45,120,98,266,0 506,123,514,145,0 485,124,491,150,0 -./model_data/coco/val2017/000000175387.jpg 168,197,272,346,61 -./model_data/coco/val2017/000000015335.jpg 2,143,547,317,57 365,15,640,473,0 173,139,381,474,0 237,46,337,153,0 1,71,214,448,0 508,35,558,164,0 554,23,590,87,0 0,429,98,480,45 541,21,616,162,0 343,53,511,165,0 160,66,238,151,0 599,422,640,480,41 2,306,47,323,67 362,102,386,130,0 535,21,565,68,0 -./model_data/coco/val2017/000000395633.jpg 449,238,465,278,0 390,103,401,113,0 1,41,563,375,8 -./model_data/coco/val2017/000000427655.jpg 51,230,263,608,17 298,173,372,295,0 156,168,233,257,0 297,183,310,193,0 274,184,290,194,0 286,228,299,264,0 302,216,317,229,0 8,226,23,266,0 230,223,276,264,2 367,219,393,268,2 376,223,390,233,2 388,177,427,259,5 263,174,329,259,5 220,226,233,254,73 -./model_data/coco/val2017/000000314034.jpg 327,296,346,308,14 379,294,410,308,14 405,299,433,314,14 503,290,529,304,14 349,293,378,304,14 234,295,251,300,14 489,220,570,274,19 416,219,464,274,19 428,189,499,230,19 326,219,388,277,19 310,211,338,275,19 280,218,314,277,19 243,213,280,279,19 135,213,224,266,19 145,200,213,230,19 121,197,162,230,19 24,205,95,244,19 222,203,280,242,19 260,193,306,221,19 358,219,412,277,19 110,195,156,220,19 327,292,348,302,14 237,184,288,206,19 318,300,328,306,14 456,292,486,302,14 14,126,629,230,19 -./model_data/coco/val2017/000000383289.jpg 412,76,449,103,67 1,164,349,433,2 0,145,209,180,2 323,37,533,345,0 594,232,638,272,2 315,148,639,267,2 -./model_data/coco/val2017/000000530146.jpg 570,242,640,289,42 2,284,114,361,43 397,0,497,53,41 14,77,640,628,45 0,0,640,630,60 520,2,640,102,39 -./model_data/coco/val2017/000000205834.jpg 129,20,539,408,16 143,296,370,422,45 -./model_data/coco/val2017/000000074058.jpg 172,33,377,216,25 283,133,370,174,25 425,250,462,352,1 444,209,554,358,1 401,213,418,230,2 583,207,640,348,2 563,218,593,241,2 40,223,113,353,56 128,165,197,291,0 27,158,102,334,0 276,199,294,217,0 256,196,270,230,0 466,197,575,274,7 40,0,166,38,25 332,165,383,217,25 344,187,384,202,25 202,219,238,274,56 235,207,252,215,56 288,222,305,256,56 0,240,14,259,56 131,233,178,291,56 287,198,317,227,0 585,213,611,234,2 169,218,212,263,60 278,215,317,223,60 471,222,497,272,26 256,219,267,244,56 -./model_data/coco/val2017/000000497628.jpg 28,270,453,401,59 0,432,480,640,57 -./model_data/coco/val2017/000000356248.jpg 2,205,27,275,39 32,241,49,271,39 11,544,338,640,56 231,547,478,632,56 413,129,478,243,56 114,230,478,638,0 47,88,201,247,0 175,91,303,272,0 107,249,145,288,41 97,224,102,240,44 92,222,98,247,44 161,248,191,295,41 73,238,108,284,41 64,74,117,154,58 157,165,335,398,0 23,236,33,268,39 295,276,326,307,45 1,412,119,562,56 175,147,196,182,56 1,320,167,370,60 166,45,228,95,58 0,107,33,198,58 -./model_data/coco/val2017/000000405279.jpg 314,336,326,369,0 413,335,433,375,0 411,350,482,376,13 518,325,522,333,0 516,331,530,341,13 522,180,540,195,33 392,201,426,254,33 149,129,193,174,33 67,227,86,246,33 36,234,66,270,33 130,254,141,267,33 329,179,346,194,33 273,283,280,294,33 281,259,290,268,33 390,264,402,280,33 291,334,306,367,0 185,276,190,284,33 363,262,372,267,33 356,231,367,244,33 32,128,538,299,33 -./model_data/coco/val2017/000000335328.jpg 336,221,492,330,0 51,330,216,428,0 122,380,181,434,37 -./model_data/coco/val2017/000000271116.jpg 146,125,205,363,27 460,184,551,336,27 411,191,420,215,27 308,190,315,221,27 116,311,151,322,67 0,195,111,413,56 607,235,640,401,56 335,44,640,422,0 0,0,338,424,0 272,153,349,220,0 381,153,455,223,0 425,202,447,238,40 337,231,365,251,41 376,167,411,212,0 253,173,273,197,0 284,168,302,188,0 240,186,248,197,27 284,211,299,220,41 311,244,331,254,44 370,327,399,356,67 236,164,262,197,0 464,202,475,237,40 308,199,322,224,40 474,201,487,232,40 261,197,275,223,40 329,199,351,236,40 388,199,403,213,40 292,243,315,253,42 347,186,361,200,0 33,80,98,100,0 363,186,380,201,0 444,177,470,227,0 349,177,372,206,0 403,221,426,239,41 241,212,485,352,60 -./model_data/coco/val2017/000000182923.jpg 33,113,47,156,27 40,40,273,434,0 10,38,57,114,0 97,36,148,125,0 139,46,192,131,0 0,82,71,210,0 220,48,272,131,0 271,54,320,130,0 319,41,373,130,0 165,6,219,75,0 264,12,305,99,0 86,0,134,67,0 274,104,355,248,0 1,7,57,53,38 183,50,224,117,0 1,0,374,249,0 -./model_data/coco/val2017/000000517056.jpg 2,200,254,430,56 10,243,640,471,60 49,96,254,424,0 259,39,450,357,0 324,346,368,411,43 182,405,298,437,43 441,349,471,374,55 174,358,526,480,55 563,379,591,423,42 437,342,454,352,42 459,328,498,337,42 93,435,227,455,43 547,392,576,423,55 556,154,640,210,60 437,343,454,351,43 -./model_data/coco/val2017/000000154000.jpg 33,61,545,439,7 496,177,572,373,7 601,268,639,291,7 -./model_data/coco/val2017/000000015440.jpg 116,115,229,223,11 192,182,262,260,5 113,191,144,253,5 -./model_data/coco/val2017/000000537802.jpg 35,16,584,412,77 550,18,640,226,77 -./model_data/coco/val2017/000000404923.jpg 195,106,364,475,0 186,85,321,180,34 354,0,401,67,0 590,108,639,326,0 504,0,528,17,0 -./model_data/coco/val2017/000000273232.jpg 359,278,462,363,16 178,174,320,379,0 435,224,440,230,0 393,35,424,68,33 23,230,35,234,37 19,224,28,234,0 547,209,550,213,33 528,172,539,190,33 460,197,465,204,33 259,68,388,222,37 39,41,74,64,33 522,210,527,216,33 630,209,633,213,33 123,199,127,204,33 116,218,120,223,33 103,215,105,218,33 -./model_data/coco/val2017/000000105923.jpg 31,200,114,251,2 207,191,210,201,0 187,191,191,201,0 129,189,133,199,0 421,87,550,329,20 174,191,178,202,0 101,191,104,200,0 139,191,142,201,0 224,188,229,216,0 -./model_data/coco/val2017/000000239537.jpg 210,258,229,275,32 263,25,522,406,0 274,223,319,312,38 -./model_data/coco/val2017/000000213547.jpg 49,263,59,299,39 58,277,70,299,39 70,268,81,299,39 40,263,51,298,39 27,259,41,298,39 41,316,63,355,39 61,318,70,352,39 76,314,91,354,39 59,357,69,389,39 51,360,60,389,39 90,275,103,299,39 123,139,355,606,0 276,133,480,629,0 163,448,298,638,17 11,227,143,476,72 36,361,47,389,39 269,0,285,17,74 251,326,299,346,55 88,358,100,391,39 26,131,479,435,39 -./model_data/coco/val2017/000000182611.jpg 236,249,255,292,39 0,265,478,630,60 45,0,362,434,0 255,256,266,285,39 191,238,213,288,39 259,365,350,448,48 191,497,345,618,45 372,356,471,417,45 370,495,452,612,45 257,365,350,443,55 203,371,262,435,55 270,65,480,611,0 283,553,320,598,44 173,592,224,639,45 117,571,178,610,45 80,552,133,601,45 37,530,97,567,45 136,537,185,581,45 215,615,276,640,45 320,555,415,640,45 0,210,49,471,69 266,261,271,278,39 320,556,418,630,41 381,410,476,505,45 0,459,33,522,48 -./model_data/coco/val2017/000000508730.jpg 360,116,574,470,0 320,371,582,478,56 313,269,577,478,61 468,0,640,477,71 62,344,293,478,61 31,107,300,478,0 -./model_data/coco/val2017/000000025139.jpg 0,2,341,328,22 313,28,458,248,22 -./model_data/coco/val2017/000000387098.jpg 40,30,241,222,62 237,24,469,183,62 221,174,265,311,39 111,235,161,287,41 222,280,281,344,41 273,168,491,363,63 446,187,466,217,44 471,285,524,318,64 480,348,511,365,64 300,280,463,339,66 244,386,328,403,66 42,208,115,278,41 519,278,557,288,65 532,288,548,303,65 0,317,63,330,73 0,229,55,243,73 3,289,61,299,73 554,365,625,443,73 0,249,52,262,73 0,241,49,251,73 0,144,40,151,73 0,106,37,135,73 0,88,36,96,73 233,361,459,412,66 -./model_data/coco/val2017/000000447088.jpg 320,14,464,324,0 277,9,432,313,0 141,10,245,312,0 75,61,156,140,34 307,200,312,212,34 425,106,453,139,34 -./model_data/coco/val2017/000000132703.jpg 90,146,298,317,0 94,309,277,364,36 -./model_data/coco/val2017/000000131379.jpg 0,4,640,472,55 -./model_data/coco/val2017/000000296969.jpg 422,73,553,318,23 317,208,435,317,23 129,29,323,323,23 363,70,618,320,23 617,202,640,313,23 58,296,173,324,23 610,59,639,131,23 -./model_data/coco/val2017/000000469246.jpg 114,32,640,445,6 147,236,180,301,0 182,235,197,269,0 112,238,120,254,0 171,231,181,269,0 131,242,135,252,0 137,282,153,302,28 125,241,127,251,0 120,238,125,253,0 -./model_data/coco/val2017/000000497867.jpg 54,66,589,331,5 219,188,245,217,0 391,143,431,211,0 254,184,273,207,0 -./model_data/coco/val2017/000000350679.jpg 31,76,401,428,0 20,50,122,293,0 291,12,404,349,0 367,106,435,306,0 7,94,97,352,0 83,70,169,232,0 186,66,242,130,0 344,332,414,344,43 408,202,498,343,55 165,68,204,140,0 0,78,59,423,0 218,111,229,129,27 64,88,86,161,27 324,131,332,189,27 269,202,575,422,60 401,396,422,422,55 407,260,423,280,55 341,410,362,424,55 379,418,400,427,55 361,333,459,388,55 387,403,404,421,55 344,385,369,402,55 381,390,402,410,55 363,396,383,409,55 345,397,367,412,55 334,90,374,211,0 -./model_data/coco/val2017/000000536038.jpg 2,99,358,632,59 130,225,274,388,73 7,300,358,637,0 90,145,243,316,0 -./model_data/coco/val2017/000000365387.jpg 331,234,618,417,59 121,223,276,385,61 271,112,372,214,71 274,0,291,17,41 -./model_data/coco/val2017/000000377723.jpg 377,148,611,344,5 324,237,353,342,0 71,228,97,333,0 89,235,115,338,0 132,231,163,351,0 184,234,221,340,0 220,235,242,336,0 239,230,269,339,0 488,230,518,255,0 294,235,330,343,0 314,226,328,258,0 62,247,74,274,24 326,268,350,288,26 357,282,373,299,26 277,294,302,327,26 231,289,241,312,26 268,234,293,338,0 349,228,375,339,0 211,275,222,298,26 236,221,255,251,0 215,225,355,263,0 -./model_data/coco/val2017/000000463730.jpg 511,186,640,323,2 336,219,353,258,3 369,62,541,293,5 197,110,317,273,5 151,184,209,310,0 130,184,189,312,0 299,174,329,276,0 82,209,104,253,0 358,146,370,172,0 39,180,81,301,0 330,188,360,244,0 391,111,418,143,0 356,201,371,249,2 318,188,340,203,2 160,233,176,266,24 578,202,609,225,0 556,171,587,221,0 127,208,141,252,0 611,172,631,223,0 490,98,525,144,0 82,229,98,255,3 1,116,603,267,0 -./model_data/coco/val2017/000000120777.jpg 293,158,369,256,48 285,14,375,145,41 121,124,205,209,48 -./model_data/coco/val2017/000000280710.jpg 83,243,139,297,5 158,204,498,355,5 273,294,344,474,0 160,278,251,475,0 514,272,582,441,0 440,289,465,313,0 335,284,365,358,0 601,289,634,367,0 27,289,35,312,0 264,287,287,352,0 44,255,49,270,9 45,272,47,283,9 9,315,80,401,24 602,307,613,324,26 47,278,59,310,0 24,269,46,292,5 495,261,531,335,5 334,317,342,324,26 409,330,443,359,28 11,271,96,480,0 302,419,359,480,26 302,289,312,296,0 -./model_data/coco/val2017/000000417043.jpg 0,224,250,474,13 -./model_data/coco/val2017/000000148730.jpg 214,101,492,292,8 546,242,589,256,8 -./model_data/coco/val2017/000000173004.jpg 23,0,139,170,39 92,0,153,121,39 0,48,640,480,60 124,6,214,152,41 398,222,583,304,42 197,49,318,73,42 123,216,282,368,43 263,182,414,307,53 452,102,585,167,53 284,57,378,120,53 469,162,640,254,53 203,1,338,56,56 362,0,539,52,56 363,59,501,79,43 0,46,86,239,39 -./model_data/coco/val2017/000000375078.jpg 213,208,283,633,75 209,213,286,631,39 -./model_data/coco/val2017/000000418062.jpg 186,176,427,629,0 0,153,195,627,0 92,512,144,639,40 231,460,288,574,40 335,178,427,319,0 -./model_data/coco/val2017/000000574810.jpg 64,93,279,460,15 -./model_data/coco/val2017/000000143572.jpg 230,170,412,423,0 405,140,432,187,0 237,137,261,164,0 202,136,224,171,0 480,219,511,244,0 181,150,209,204,0 174,130,199,165,0 237,151,264,211,0 150,199,248,249,38 118,142,148,195,0 153,277,205,311,0 426,151,460,210,0 427,36,448,66,0 559,50,585,87,0 55,146,590,378,0 -./model_data/coco/val2017/000000063154.jpg 243,195,349,225,37 252,137,390,216,0 -./model_data/coco/val2017/000000396580.jpg 371,181,485,201,8 553,160,603,176,13 -./model_data/coco/val2017/000000530975.jpg 295,112,403,148,25 286,205,485,282,56 0,142,70,232,0 389,134,475,223,0 2,278,640,474,60 14,146,72,268,0 37,196,114,276,60 219,70,284,325,42 118,303,417,447,52 446,200,478,237,56 370,51,462,117,58 371,142,394,185,58 119,47,260,151,58 319,143,397,216,0 497,210,518,249,56 511,194,535,258,56 0,205,30,278,56 147,191,164,211,56 175,191,179,210,56 233,204,321,254,60 227,169,235,183,0 13,233,53,280,26 108,119,157,251,0 -./model_data/coco/val2017/000000218439.jpg 0,310,54,428,62 0,192,453,634,0 0,405,162,581,59 99,358,480,640,59 344,412,383,433,67 284,309,347,325,79 372,438,442,544,41 245,265,266,293,0 216,276,226,291,0 414,243,431,268,0 422,236,444,261,0 437,229,459,255,0 446,180,473,213,0 -./model_data/coco/val2017/000000194724.jpg 418,0,521,258,39 101,0,385,136,72 511,42,638,142,56 0,96,35,209,56 1,115,640,473,60 514,133,609,262,41 283,337,477,454,53 80,139,430,242,73 190,2,214,51,39 395,335,549,441,53 575,221,640,289,67 170,0,192,54,39 261,0,280,52,39 280,0,299,53,39 299,0,320,52,39 209,1,233,51,39 96,273,158,332,42 232,261,536,419,53 339,2,357,51,39 -./model_data/coco/val2017/000000100238.jpg 197,351,211,364,39 194,79,425,480,0 347,0,529,474,0 489,214,622,477,0 1,33,214,472,0 68,236,144,303,29 264,242,351,300,29 364,68,393,126,26 175,160,271,433,26 415,98,491,174,29 -./model_data/coco/val2017/000000303893.jpg 389,186,444,222,48 231,261,286,279,48 87,46,328,410,0 306,90,535,373,0 617,32,640,55,13 460,18,613,68,13 -./model_data/coco/val2017/000000031749.jpg 91,257,272,464,74 -./model_data/coco/val2017/000000544811.jpg 325,243,429,339,14 478,193,598,286,14 -./model_data/coco/val2017/000000325114.jpg 69,105,208,290,61 -./model_data/coco/val2017/000000468332.jpg 1,383,479,424,60 219,32,254,43,2 204,171,215,183,74 300,382,479,424,55 537,85,640,217,0 180,153,447,391,0 470,286,640,419,0 421,106,549,383,0 57,1,251,393,0 50,59,63,95,0 38,54,52,94,0 19,62,40,94,0 265,154,306,199,0 35,313,237,351,13 322,102,405,235,0 -./model_data/coco/val2017/000000517523.jpg 58,37,615,217,4 -./model_data/coco/val2017/000000309938.jpg 100,110,439,342,16 1,230,282,371,73 394,148,537,258,73 437,230,541,262,73 438,231,609,304,73 521,125,640,224,73 537,217,640,248,73 -./model_data/coco/val2017/000000054654.jpg 99,50,371,632,0 1,414,219,636,69 -./model_data/coco/val2017/000000052591.jpg 11,92,283,628,0 207,0,276,610,30 -./model_data/coco/val2017/000000355677.jpg 279,311,450,398,37 -./model_data/coco/val2017/000000550797.jpg 51,214,302,605,61 -./model_data/coco/val2017/000000000724.jpg 120,71,254,224,11 123,279,145,309,7 128,267,141,275,2 202,259,221,285,11 -./model_data/coco/val2017/000000308753.jpg 249,229,409,277,21 -./model_data/coco/val2017/000000198805.jpg 53,249,135,303,2 10,234,139,281,2 129,155,612,390,7 50,228,96,247,2 0,230,8,248,2 22,233,69,256,2 68,215,146,246,7 37,227,96,249,7 -./model_data/coco/val2017/000000026926.jpg 61,187,137,230,2 134,159,208,245,2 126,26,386,639,10 -./model_data/coco/val2017/000000267169.jpg 436,88,566,230,39 234,1,359,169,0 0,85,461,422,20 372,239,588,427,20 483,153,638,283,0 -./model_data/coco/val2017/000000000885.jpg 277,189,417,398,0 281,89,392,259,0 595,25,639,253,0 434,0,467,13,0 287,0,332,11,0 400,268,481,308,38 541,1,607,11,0 1,0,60,9,0 499,0,574,14,0 -./model_data/coco/val2017/000000091779.jpg 0,48,328,179,52 574,75,640,151,45 211,144,640,474,52 102,100,477,326,52 406,1,499,98,41 20,0,115,97,56 1,275,177,473,60 108,99,461,326,48 -./model_data/coco/val2017/000000352618.jpg 4,143,640,419,45 3,147,134,315,46 482,226,640,339,46 330,187,566,347,49 -./model_data/coco/val2017/000000216739.jpg 27,243,59,297,14 0,48,423,427,23 0,305,17,337,14 29,254,45,281,14 -./model_data/coco/val2017/000000543581.jpg 258,134,352,224,16 0,104,103,198,62 181,182,262,247,62 485,318,629,403,15 251,123,557,346,57 532,208,546,239,39 384,342,414,401,39 262,92,267,108,73 262,112,265,126,73 264,131,267,145,73 264,148,270,163,73 269,131,272,143,73 234,128,255,138,73 265,111,271,127,73 259,113,262,127,73 275,92,279,106,73 262,131,264,145,73 88,228,115,240,73 571,247,592,254,65 -./model_data/coco/val2017/000000525286.jpg 25,174,289,448,74 -./model_data/coco/val2017/000000382009.jpg 196,17,451,427,0 387,288,530,382,38 64,107,229,315,56 1,149,87,301,56 -./model_data/coco/val2017/000000563281.jpg 233,170,263,220,79 112,1,253,494,0 -./model_data/coco/val2017/000000409424.jpg 314,278,415,376,47 58,349,139,442,47 259,364,396,480,49 43,263,121,359,49 393,331,461,398,49 1,57,480,631,60 -./model_data/coco/val2017/000000489046.jpg 400,168,486,308,14 -./model_data/coco/val2017/000000257370.jpg 273,158,614,474,62 494,55,640,475,0 581,58,640,82,65 504,14,583,137,58 113,175,130,225,65 0,50,181,473,0 -./model_data/coco/val2017/000000253835.jpg 2,135,277,338,6 482,107,577,437,0 456,269,496,349,0 413,190,424,201,9 453,158,468,182,9 515,153,620,275,24 399,262,516,423,24 364,166,385,186,74 493,178,536,244,39 -./model_data/coco/val2017/000000029984.jpg 321,165,618,276,25 255,290,406,438,56 126,215,180,251,0 218,208,264,253,0 282,175,301,197,0 399,291,497,436,56 331,156,358,197,0 -./model_data/coco/val2017/000000336053.jpg 453,9,502,93,56 406,10,448,93,56 46,62,262,189,56 591,27,640,55,56 502,13,516,35,56 0,182,640,474,60 13,19,248,219,0 440,52,640,419,0 396,225,500,408,40 84,193,173,310,40 239,260,282,364,42 190,207,212,249,44 0,0,80,126,0 82,195,172,297,41 395,227,500,410,41 361,232,399,294,51 46,281,76,295,51 511,0,584,58,0 241,134,300,223,40 241,132,300,225,41 0,281,20,315,51 369,217,374,232,51 0,317,8,324,51 603,219,640,325,56 520,40,590,57,60 -./model_data/coco/val2017/000000203294.jpg 149,110,540,343,5 39,208,83,333,0 65,224,87,313,0 119,220,163,314,0 533,212,640,337,7 26,237,44,270,26 26,238,42,267,24 -./model_data/coco/val2017/000000304817.jpg 37,211,590,446,31 -./model_data/coco/val2017/000000393282.jpg 320,244,472,532,23 124,348,236,484,23 -./model_data/coco/val2017/000000150726.jpg 150,170,407,438,23 56,204,267,463,23 -./model_data/coco/val2017/000000086755.jpg 300,309,414,326,30 303,289,360,308,30 354,230,377,260,24 324,220,394,326,0 331,203,366,301,0 -./model_data/coco/val2017/000000482585.jpg 21,78,443,390,6 444,156,564,303,6 611,249,622,260,26 579,215,593,262,0 584,192,596,215,9 586,218,616,288,0 -./model_data/coco/val2017/000000156076.jpg 332,126,361,196,39 318,129,339,207,39 132,1,281,206,0 395,3,617,190,0 454,125,489,159,41 158,221,215,231,43 468,101,499,128,44 200,338,320,452,53 139,261,476,440,53 330,195,567,278,53 470,168,538,187,53 512,190,608,223,45 189,230,209,241,53 209,147,234,162,67 0,4,199,277,0 259,178,294,243,39 184,210,198,226,42 138,335,309,426,53 2,124,608,471,60 -./model_data/coco/val2017/000000500477.jpg 3,0,391,254,0 1,1,640,474,18 -./model_data/coco/val2017/000000243204.jpg 45,453,115,524,48 198,35,480,629,0 2,313,267,632,69 3,309,137,457,44 -./model_data/coco/val2017/000000451879.jpg 239,14,269,43,32 0,88,299,431,0 0,77,135,438,0 355,0,481,282,0 43,128,122,187,35 248,130,494,432,0 -./model_data/coco/val2017/000000062808.jpg 474,110,564,155,67 237,184,290,236,56 319,192,387,234,56 3,11,275,398,0 358,6,640,391,0 488,273,576,325,43 464,432,640,476,43 133,273,509,427,53 315,128,344,159,0 239,168,252,199,39 102,385,639,473,60 258,235,363,272,60 285,196,321,210,60 378,184,399,191,60 -./model_data/coco/val2017/000000472030.jpg 497,368,640,474,13 -./model_data/coco/val2017/000000099810.jpg 26,75,353,317,56 209,235,500,328,60 74,3,373,327,0 362,298,410,332,54 405,283,450,325,54 375,261,423,301,54 332,274,376,320,54 196,267,236,297,54 -./model_data/coco/val2017/000000429598.jpg 0,107,191,475,72 613,113,636,191,39 328,182,491,318,69 494,288,640,359,71 -./model_data/coco/val2017/000000462371.jpg 277,109,319,160,27 34,25,201,401,0 0,0,108,394,0 140,185,254,395,0 274,20,464,232,0 305,139,330,188,41 410,265,440,272,43 401,169,500,339,55 210,18,416,396,0 354,21,484,196,0 132,12,272,204,0 -./model_data/coco/val2017/000000143068.jpg 533,128,581,211,0 501,126,532,212,0 149,21,328,60,33 433,89,515,150,33 92,154,97,166,0 125,157,128,162,0 374,146,375,151,0 102,155,105,165,0 620,140,630,168,0 148,156,151,161,0 142,156,145,160,0 624,120,640,191,0 132,158,134,162,0 231,121,307,189,33 578,136,626,213,0 1,126,631,175,0 -./model_data/coco/val2017/000000249025.jpg 107,196,298,443,75 -./model_data/coco/val2017/000000152686.jpg 614,90,635,108,32 231,23,407,389,0 0,110,35,388,0 311,11,395,61,38 -./model_data/coco/val2017/000000497344.jpg 359,234,440,303,67 111,2,500,330,0 0,169,195,325,63 2,60,47,175,39 -./model_data/coco/val2017/000000356094.jpg 185,35,342,384,0 405,117,471,335,0 304,84,459,124,34 402,228,424,253,35 -./model_data/coco/val2017/000000181859.jpg 96,221,328,489,15 64,267,358,544,71 -./model_data/coco/val2017/000000060102.jpg 38,18,148,130,32 194,0,631,360,0 0,105,305,355,0 -./model_data/coco/val2017/000000492878.jpg 53,337,121,454,39 215,159,242,304,79 15,297,629,616,71 188,244,284,397,41 24,155,159,377,41 242,198,289,292,44 53,77,182,282,41 232,132,301,263,41 -./model_data/coco/val2017/000000416991.jpg 233,96,279,139,25 206,98,241,110,25 468,148,521,156,60 399,145,453,151,60 300,141,319,145,60 243,138,277,141,60 556,152,620,188,60 160,134,178,137,60 271,140,301,143,60 214,135,243,140,60 171,99,215,135,25 152,101,181,135,25 261,93,300,141,25 295,88,340,141,25 336,86,404,104,25 452,78,535,100,25 533,72,631,152,25 391,77,470,104,25 402,100,456,105,25 118,104,140,135,25 543,158,581,187,56 462,145,481,156,56 419,149,431,168,56 593,154,607,178,56 352,148,368,171,56 430,141,446,177,56 614,148,628,190,56 500,147,518,182,56 390,142,407,175,56 372,147,391,173,56 334,137,351,169,56 542,147,556,161,56 350,143,395,145,60 317,147,346,151,13 500,164,523,173,13 496,152,549,159,13 341,100,391,109,25 442,141,452,168,56 134,100,161,114,25 126,120,553,162,60 184,133,339,166,56 -./model_data/coco/val2017/000000172977.jpg 33,29,551,478,22 -./model_data/coco/val2017/000000147223.jpg 1,156,149,293,2 42,141,157,199,2 157,45,555,333,5 583,103,595,130,2 598,98,640,118,2 -./model_data/coco/val2017/000000393115.jpg 166,3,572,574,0 47,135,565,571,36 -./model_data/coco/val2017/000000111036.jpg 43,18,401,634,69 251,3,424,141,2 -./model_data/coco/val2017/000000190236.jpg 168,78,223,142,62 349,71,403,125,62 251,159,358,294,56 296,74,346,126,62 384,110,456,174,63 374,146,384,155,64 308,134,368,157,66 199,315,305,386,24 578,211,638,314,32 139,179,156,216,39 270,104,278,126,39 277,99,285,125,39 475,148,488,180,39 486,136,501,172,39 561,95,615,158,58 198,132,238,156,66 396,149,445,169,66 235,134,264,148,73 237,127,261,142,73 547,88,564,133,75 121,197,141,234,39 459,137,477,172,41 447,161,471,188,41 480,138,503,172,41 472,155,488,181,41 296,142,300,148,64 130,128,154,139,73 129,145,153,152,73 -./model_data/coco/val2017/000000107094.jpg 476,77,625,422,0 582,188,618,250,24 364,367,525,426,30 -./model_data/coco/val2017/000000243199.jpg 0,30,387,329,59 260,3,496,327,63 -./model_data/coco/val2017/000000104669.jpg 0,21,500,375,60 462,120,499,369,42 0,162,75,375,43 287,129,380,229,49 199,163,385,334,50 318,182,388,246,51 176,243,229,320,51 221,175,239,245,51 187,294,211,352,51 235,186,281,221,51 153,251,178,317,50 175,237,210,265,51 210,215,228,248,51 174,251,185,297,51 196,204,222,246,51 -./model_data/coco/val2017/000000184762.jpg 1,1,433,370,74 -./model_data/coco/val2017/000000360325.jpg 138,192,458,428,18 401,65,601,422,18 165,66,404,233,18 188,42,321,127,18 135,69,209,110,18 35,81,198,397,18 0,32,63,82,18 61,52,112,74,18 0,68,83,422,18 336,112,451,207,18 397,69,481,109,18 581,83,640,326,18 372,97,460,151,18 0,29,402,143,18 -./model_data/coco/val2017/000000156278.jpg 437,41,482,86,74 525,343,617,383,56 539,195,565,199,43 521,208,524,242,43 466,259,540,274,71 341,172,385,176,43 540,199,565,202,43 541,210,563,213,43 278,305,336,333,45 581,241,592,244,47 294,398,385,425,56 407,264,464,275,71 78,286,165,415,72 536,183,572,189,43 533,160,579,167,43 535,169,572,176,43 538,191,569,194,43 542,206,564,210,43 351,192,378,196,43 322,159,383,164,43 287,352,327,369,45 422,384,534,425,45 595,240,602,244,47 605,240,613,245,47 62,231,81,272,73 346,186,384,192,43 282,357,336,391,45 181,358,225,396,45 123,144,579,238,43 -./model_data/coco/val2017/000000209972.jpg 331,42,450,236,8 -./model_data/coco/val2017/000000359219.jpg 386,129,432,391,42 438,3,640,381,43 1,103,328,455,53 337,51,640,319,53 1,1,640,471,69 -./model_data/coco/val2017/000000263969.jpg 409,205,445,284,27 220,145,458,599,0 224,57,638,600,0 153,441,244,474,43 82,460,249,601,55 -./model_data/coco/val2017/000000025424.jpg 381,36,415,55,32 290,124,411,273,38 129,243,315,640,0 -./model_data/coco/val2017/000000567011.jpg 329,276,455,291,37 399,188,476,270,0 -./model_data/coco/val2017/000000325031.jpg 78,66,571,549,20 566,145,587,196,0 590,176,612,226,0 587,173,598,192,0 598,169,623,189,0 34,179,46,201,0 541,177,550,201,0 551,167,560,177,0 72,179,80,192,0 15,173,23,185,0 52,165,57,175,0 42,180,52,190,0 599,165,605,180,0 547,193,600,219,13 78,163,81,173,0 544,189,548,199,27 0,161,631,193,0 -./model_data/coco/val2017/000000417285.jpg 245,41,373,217,41 426,97,526,125,42 211,165,329,256,44 0,89,181,230,55 183,7,213,141,0 498,79,634,208,55 -./model_data/coco/val2017/000000065798.jpg 282,241,302,256,34 243,297,252,309,35 477,274,525,384,0 275,250,319,316,0 372,213,386,224,0 194,249,219,316,0 216,272,246,316,0 200,241,220,259,0 419,256,443,285,0 391,231,407,252,0 266,217,282,233,0 447,211,461,220,0 354,177,369,193,0 260,396,263,398,32 618,445,622,448,32 312,215,324,226,0 456,254,476,283,0 0,32,639,293,0 -./model_data/coco/val2017/000000130613.jpg 130,5,313,44,43 434,147,562,262,51 601,146,638,347,51 591,337,640,389,42 235,0,640,50,60 -./model_data/coco/val2017/000000011149.jpg 198,91,422,272,1 0,68,136,350,3 0,3,75,121,0 417,1,500,315,0 88,58,199,230,1 -./model_data/coco/val2017/000000134096.jpg 214,106,640,473,15 2,406,364,480,71 417,132,555,226,61 1,132,38,313,61 -./model_data/coco/val2017/000000292225.jpg 65,130,101,175,0 230,152,246,174,0 95,146,110,156,38 -./model_data/coco/val2017/000000579307.jpg 176,168,274,385,0 256,222,379,640,0 153,294,332,477,33 206,259,252,317,33 195,208,262,255,24 -./model_data/coco/val2017/000000295231.jpg 1,215,370,618,18 156,107,349,233,18 1,11,391,126,18 343,65,480,211,18 311,160,458,321,18 0,83,187,242,18 0,164,279,547,18 -./model_data/coco/val2017/000000550714.jpg 3,187,640,474,46 5,2,639,473,0 -./model_data/coco/val2017/000000125936.jpg 326,69,333,91,39 338,59,350,92,39 349,63,359,93,39 359,57,371,92,39 370,59,381,92,39 379,55,393,93,39 380,137,388,156,39 392,61,401,92,39 389,140,395,157,39 400,139,407,156,39 151,281,249,323,46 131,237,210,320,46 200,213,318,256,46 273,260,422,323,46 292,247,330,268,46 243,290,296,323,47 207,241,247,279,47 170,261,219,305,47 331,262,367,282,47 400,64,500,326,0 263,113,371,274,0 0,97,145,322,0 149,120,202,225,0 81,131,217,321,0 394,139,400,156,39 333,69,339,92,39 275,282,307,304,47 220,273,261,296,47 364,116,370,132,39 -./model_data/coco/val2017/000000142324.jpg 313,249,324,303,1 211,261,248,361,1 347,245,469,451,3 0,139,76,384,0 72,202,119,367,0 123,188,163,332,0 458,194,498,208,7 193,171,261,340,0 195,196,209,210,0 268,192,294,225,0 66,158,126,278,0 346,146,472,281,0 117,187,137,256,0 585,199,640,307,0 391,207,437,251,0 294,178,339,281,0 272,217,290,255,3 283,195,328,291,0 35,315,81,450,26 150,179,549,342,0 -./model_data/coco/val2017/000000008762.jpg 58,85,79,146,9 163,106,186,144,9 504,230,517,241,9 495,178,515,220,9 109,285,122,292,2 0,279,27,302,2 484,229,494,245,9 -./model_data/coco/val2017/000000174482.jpg 187,5,498,386,1 398,80,479,117,2 148,71,240,115,2 109,26,117,38,9 95,67,101,75,9 364,86,395,110,2 81,76,108,94,2 122,79,131,94,2 506,25,640,137,7 396,80,478,116,7 476,81,520,120,7 32,58,37,61,9 -./model_data/coco/val2017/000000123480.jpg 212,313,241,341,79 278,374,296,386,79 108,111,394,461,0 146,182,172,264,67 -./model_data/coco/val2017/000000427256.jpg 130,18,248,129,34 421,354,486,406,35 6,89,285,474,0 416,248,640,484,0 383,66,477,173,0 390,16,440,95,0 339,54,391,145,0 309,94,383,172,0 240,48,323,148,0 286,2,367,92,0 374,1,467,78,0 546,59,634,150,0 0,13,59,219,0 0,54,38,191,0 400,100,540,271,0 21,0,639,311,0 -./model_data/coco/val2017/000000052462.jpg 142,123,292,349,22 403,93,529,317,22 -./model_data/coco/val2017/000000236721.jpg 104,108,165,168,41 162,125,227,187,41 432,283,536,384,41 160,106,284,126,44 425,87,566,204,46 316,75,437,190,45 67,180,301,412,45 224,116,281,177,45 545,305,626,388,41 -./model_data/coco/val2017/000000416758.jpg 444,63,640,395,19 397,63,602,315,19 64,75,421,443,19 47,229,255,379,19 -./model_data/coco/val2017/000000020107.jpg 121,87,333,494,10 -./model_data/coco/val2017/000000572388.jpg 123,312,302,492,54 224,96,305,147,54 258,125,349,244,54 240,263,349,442,54 0,1,185,452,15 -./model_data/coco/val2017/000000571857.jpg 169,222,206,301,0 116,221,147,301,0 268,189,426,229,4 2,194,89,224,4 130,246,136,256,41 387,269,398,288,39 400,273,405,286,39 414,268,423,287,39 424,262,524,296,1 159,235,214,299,56 98,249,154,298,56 480,261,534,281,1 272,193,376,205,4 0,161,501,291,4 -./model_data/coco/val2017/000000385205.jpg 31,7,632,405,15 29,267,173,390,51 -./model_data/coco/val2017/000000044652.jpg 77,168,271,249,4 -./model_data/coco/val2017/000000340930.jpg 1,0,625,474,76 240,70,344,203,76 -./model_data/coco/val2017/000000097988.jpg 15,332,124,421,1 412,274,428,286,1 319,310,452,374,13 90,287,140,323,13 195,211,320,598,0 35,233,104,438,0 181,241,205,324,0 395,248,413,308,0 437,245,451,298,0 444,241,476,326,0 469,241,490,325,0 286,231,308,289,0 304,239,321,286,0 85,242,97,283,0 96,347,167,402,1 322,247,335,290,0 371,240,396,304,0 1,227,600,448,0 -./model_data/coco/val2017/000000168337.jpg 302,307,352,393,10 555,187,580,231,24 471,281,504,313,24 538,172,583,306,0 22,324,85,401,28 44,227,100,385,0 -./model_data/coco/val2017/000000430875.jpg 196,270,245,334,9 372,275,404,338,9 49,48,105,155,9 -./model_data/coco/val2017/000000345466.jpg 124,102,136,117,32 377,0,457,63,0 110,45,403,315,0 442,0,500,63,0 285,107,330,152,35 80,0,188,89,0 84,46,120,95,24 354,0,362,85,34 172,0,236,61,0 373,4,383,18,41 0,1,62,65,0 -./model_data/coco/val2017/000000002923.jpg 270,242,281,255,14 135,236,144,251,14 170,158,183,165,14 246,189,309,206,8 112,191,143,214,8 24,196,52,214,8 464,146,500,216,8 -./model_data/coco/val2017/000000506707.jpg 572,117,640,337,0 470,110,594,365,0 174,172,250,331,0 280,83,360,371,0 380,124,463,305,0 457,157,507,270,0 175,153,274,271,2 366,167,389,283,2 459,265,502,276,13 333,142,360,192,35 346,267,398,318,34 27,110,137,377,0 332,128,380,318,0 0,211,31,320,56 0,158,39,189,2 137,246,152,261,56 -./model_data/coco/val2017/000000459153.jpg 109,180,391,531,0 25,202,362,602,13 231,289,342,386,63 328,403,366,473,24 -./model_data/coco/val2017/000000013923.jpg 289,140,314,200,58 260,152,279,200,58 339,143,406,211,62 213,232,335,370,56 244,286,337,410,56 444,313,570,422,56 406,244,492,338,56 14,201,179,327,57 307,324,500,422,60 438,237,452,271,75 381,331,401,368,75 418,76,431,108,39 413,78,421,109,39 566,34,616,123,45 610,128,640,227,45 531,117,561,185,45 428,201,457,270,58 357,280,419,368,58 240,369,339,427,56 -./model_data/coco/val2017/000000132116.jpg 333,1,609,340,45 1,268,433,612,45 213,361,406,577,50 470,181,612,312,50 195,270,362,416,50 335,66,491,216,50 1,1,612,612,60 410,207,487,276,50 -./model_data/coco/val2017/000000460379.jpg 184,400,253,487,23 336,270,400,394,23 47,300,100,512,23 -./model_data/coco/val2017/000000311883.jpg 55,112,640,216,6 27,160,37,170,9 36,160,53,171,9 481,139,493,154,9 505,140,524,153,9 508,124,524,138,9 525,126,539,139,9 -./model_data/coco/val2017/000000530061.jpg 0,80,139,248,57 512,226,639,446,56 82,22,621,446,0 166,255,188,306,44 86,243,329,416,45 0,134,95,265,0 0,253,640,455,60 -./model_data/coco/val2017/000000276285.jpg 5,139,427,411,60 79,2,390,140,0 0,73,71,198,41 243,503,335,630,42 322,48,380,135,41 397,111,427,259,41 136,126,224,162,43 71,238,317,351,53 1,4,89,76,56 354,17,427,114,56 -./model_data/coco/val2017/000000513283.jpg 547,94,614,341,39 478,98,533,277,39 419,408,640,512,60 0,332,220,399,53 0,78,222,216,0 320,373,640,436,43 0,386,230,443,53 10,201,276,310,60 -./model_data/coco/val2017/000000128476.jpg 132,51,166,86,41 172,51,207,66,41 537,60,570,95,41 502,265,640,425,55 0,250,232,421,55 244,213,492,420,55 87,176,289,317,55 297,126,590,341,55 0,150,119,261,55 574,186,640,269,55 161,114,355,239,55 182,0,375,188,0 0,0,147,162,0 -./model_data/coco/val2017/000000382030.jpg 113,76,458,148,25 406,9,445,56,58 0,1,497,369,60 2,48,106,218,32 -./model_data/coco/val2017/000000193494.jpg 69,330,329,585,59 -./model_data/coco/val2017/000000581206.jpg 147,282,393,488,52 39,140,348,373,52 0,2,469,217,0 -./model_data/coco/val2017/000000227187.jpg 81,187,176,254,14 0,210,46,251,14 110,160,156,199,14 142,299,250,327,46 319,278,398,297,46 222,253,274,298,46 0,235,127,284,46 242,211,300,269,14 51,223,111,241,46 272,254,319,292,46 380,205,457,260,14 -./model_data/coco/val2017/000000427997.jpg 324,92,380,133,38 370,137,393,157,0 196,127,217,155,0 149,110,167,140,0 148,67,166,84,0 242,63,346,273,0 151,80,164,96,0 508,130,544,190,0 399,129,417,155,0 361,131,374,157,0 335,126,362,156,0 460,121,484,155,0 457,109,474,134,0 229,144,246,160,56 65,130,79,149,56 480,110,498,130,0 514,168,526,191,56 1,0,639,405,0 -./model_data/coco/val2017/000000194506.jpg 284,143,413,241,21 80,118,300,275,21 -./model_data/coco/val2017/000000180487.jpg 50,58,292,193,25 40,80,382,385,0 549,122,640,350,0 416,295,488,344,41 132,361,228,427,56 207,337,640,421,60 -./model_data/coco/val2017/000000573008.jpg 250,224,315,291,74 -./model_data/coco/val2017/000000047819.jpg 128,91,479,329,17 217,101,297,150,28 223,62,314,123,28 41,83,117,307,0 -./model_data/coco/val2017/000000580418.jpg 437,214,599,422,19 69,245,366,428,19 0,173,165,423,19 598,252,639,361,2 564,248,626,344,2 153,207,249,261,2 603,212,617,231,11 422,222,468,312,19 476,226,490,240,0 108,130,125,169,11 -./model_data/coco/val2017/000000434204.jpg 117,2,236,226,0 67,1,100,44,0 315,74,391,147,13 404,245,500,329,13 177,195,229,236,36 314,36,331,61,13 310,62,340,117,24 186,0,210,49,0 244,0,322,153,0 -./model_data/coco/val2017/000000248284.jpg 283,80,426,159,25 255,150,382,411,0 300,141,320,161,9 176,30,202,68,9 256,231,308,318,26 358,120,427,313,0 -./model_data/coco/val2017/000000492992.jpg 213,203,320,319,14 46,286,427,632,19 -./model_data/coco/val2017/000000459954.jpg 264,133,373,279,72 242,148,274,291,0 187,147,244,325,72 255,255,360,369,72 366,45,500,208,72 198,286,328,375,72 0,106,200,328,72 17,254,189,369,72 196,97,268,135,72 354,201,476,375,72 -./model_data/coco/val2017/000000099182.jpg 360,173,497,327,59 184,0,378,282,0 56,88,391,334,73 -./model_data/coco/val2017/000000500049.jpg 0,74,498,261,4 -./model_data/coco/val2017/000000448076.jpg 418,177,512,314,58 170,185,246,285,58 554,69,624,181,62 48,170,134,461,0 114,171,196,394,0 234,177,283,347,0 309,168,355,346,0 2,184,30,361,0 109,283,128,291,65 266,178,317,364,0 546,306,574,350,26 570,306,611,368,26 174,267,243,336,56 230,257,285,319,56 455,261,559,363,56 310,278,373,320,56 378,240,446,320,56 -./model_data/coco/val2017/000000308799.jpg 243,224,253,254,39 222,233,231,255,39 253,235,261,258,39 222,224,229,239,39 76,249,193,266,71 229,245,238,257,41 264,152,332,255,69 262,249,332,331,69 -./model_data/coco/val2017/000000511384.jpg 370,511,407,599,0 101,53,215,191,29 81,0,120,49,0 -./model_data/coco/val2017/000000183104.jpg 29,181,339,467,23 237,46,629,350,23 -./model_data/coco/val2017/000000380203.jpg 42,109,388,572,17 -./model_data/coco/val2017/000000438017.jpg 341,416,377,445,2 310,416,339,433,2 274,415,303,436,2 165,310,178,346,9 198,241,361,267,9 76,408,120,504,2 204,417,213,429,2 386,415,399,425,2 -./model_data/coco/val2017/000000282037.jpg 199,71,212,84,32 616,91,621,100,56 424,194,640,449,0 414,131,438,175,0 463,132,481,176,0 600,126,617,180,0 126,87,195,213,0 379,316,442,381,35 554,59,564,64,56 582,50,588,53,56 586,32,590,34,56 421,78,430,82,56 551,38,557,41,56 375,77,384,82,56 512,57,518,60,56 467,87,476,97,56 523,120,533,132,0 486,124,496,133,0 501,122,508,133,0 519,82,526,100,0 599,52,604,62,0 89,134,99,160,0 74,131,84,160,0 551,53,558,57,56 568,44,572,46,56 573,34,578,37,56 82,133,91,160,0 357,8,639,95,56 56,11,639,165,0 -./model_data/coco/val2017/000000255824.jpg 0,1,639,478,60 243,1,565,190,41 151,144,464,422,55 -./model_data/coco/val2017/000000459662.jpg 331,65,640,479,0 1,60,368,469,0 155,159,278,276,54 334,184,434,297,54 1,3,388,336,56 -./model_data/coco/val2017/000000084650.jpg 279,178,546,347,15 188,237,555,472,28 465,139,610,326,24 407,116,611,326,28 134,113,370,304,28 409,117,534,181,24 205,184,327,276,26 -./model_data/coco/val2017/000000349480.jpg 304,346,363,380,46 305,344,385,408,46 286,342,317,377,49 32,125,260,374,77 160,1,625,379,77 202,77,288,213,26 329,312,355,347,39 247,326,280,349,41 323,161,378,188,45 199,317,257,353,45 292,386,314,404,47 210,317,246,345,55 337,154,370,180,55 0,0,196,130,58 272,243,310,271,41 265,338,293,369,47 417,381,501,450,58 -./model_data/coco/val2017/000000468965.jpg 379,236,405,338,27 223,78,371,473,0 350,177,461,474,0 98,166,177,425,0 78,196,110,306,0 0,244,37,368,0 9,86,117,169,33 332,250,472,322,33 26,196,54,252,0 6,192,33,249,0 0,192,17,250,0 266,205,295,210,27 128,231,140,239,27 624,210,640,412,0 442,197,461,229,0 -./model_data/coco/val2017/000000153011.jpg 326,217,398,253,2 364,213,421,238,2 462,214,482,241,2 477,84,640,305,5 75,282,164,409,56 0,113,317,277,7 466,234,484,280,26 479,118,640,302,7 430,208,476,349,0 414,202,443,342,0 97,201,203,383,0 216,193,247,289,0 0,204,28,355,0 20,229,37,283,0 136,216,182,322,0 164,191,195,242,0 513,264,591,380,60 367,249,414,335,60 346,240,394,309,60 221,235,272,308,60 24,220,71,312,0 174,234,205,273,26 41,253,94,345,56 25,254,47,262,60 363,211,381,220,2 -./model_data/coco/val2017/000000196141.jpg 0,111,22,130,32 76,62,150,105,2 247,74,417,375,0 555,99,603,212,0 440,73,457,105,0 158,151,254,183,34 452,208,495,251,35 166,72,234,115,2 243,75,300,118,2 453,206,631,417,0 36,67,66,163,0 468,72,583,136,2 357,81,398,123,2 -./model_data/coco/val2017/000000568690.jpg 130,181,287,324,15 93,281,421,631,61 -./model_data/coco/val2017/000000251572.jpg 190,128,640,424,16 0,100,171,420,57 40,7,639,420,0 -./model_data/coco/val2017/000000144798.jpg 386,163,425,251,39 156,458,425,631,61 32,395,125,496,73 181,188,231,265,41 -./model_data/coco/val2017/000000138979.jpg 312,174,640,420,2 75,88,640,382,5 186,186,231,232,0 76,216,124,322,0 48,225,88,375,0 292,179,341,243,0 182,204,199,221,0 -./model_data/coco/val2017/000000366711.jpg 28,102,241,327,0 194,349,260,420,49 273,248,335,305,49 360,234,427,285,49 225,288,302,365,49 260,356,332,430,49 185,286,230,333,49 377,276,424,353,49 274,163,356,241,49 226,219,298,294,49 304,419,357,496,49 235,192,275,223,49 166,344,202,392,49 303,229,370,298,49 1,160,417,488,49 -./model_data/coco/val2017/000000228436.jpg 112,170,556,481,1 29,151,93,182,2 7,154,69,189,2 51,181,57,196,1 109,141,125,154,2 502,148,549,163,2 462,145,485,159,2 427,144,445,153,2 0,207,10,226,2 119,141,133,153,2 351,164,385,180,8 287,138,356,167,8 252,136,288,154,8 236,135,258,149,8 514,150,640,208,8 100,164,253,294,8 0,162,36,215,2 384,144,406,153,2 369,152,521,196,8 164,156,193,170,8 190,157,212,172,8 221,142,233,145,8 144,142,191,163,8 160,135,186,143,8 133,137,142,147,2 369,143,390,153,2 0,272,107,427,8 81,143,122,161,2 263,125,555,170,2 -./model_data/coco/val2017/000000274708.jpg 96,165,137,267,0 240,190,261,216,0 254,193,275,219,0 338,199,351,227,0 298,210,328,265,0 87,244,146,279,30 355,235,374,256,0 -./model_data/coco/val2017/000000066038.jpg 8,361,47,387,14 499,232,621,311,56 432,248,530,294,56 350,283,424,339,56 338,264,376,341,56 322,234,352,351,0 125,246,217,270,0 219,204,272,302,0 369,253,489,284,0 269,244,329,346,0 329,157,518,338,25 61,159,183,205,25 134,157,345,336,25 466,163,607,285,25 161,246,233,274,0 167,226,275,294,56 -./model_data/coco/val2017/000000046031.jpg 219,100,533,418,63 547,350,601,402,64 107,293,169,359,64 0,288,73,374,66 0,2,151,210,62 109,237,151,290,67 -./model_data/coco/val2017/000000196754.jpg 118,293,199,377,11 215,302,375,499,56 -./model_data/coco/val2017/000000312421.jpg 525,294,640,388,60 134,377,640,421,60 25,110,126,314,3 495,120,587,261,0 432,143,480,252,0 38,111,70,204,0 185,106,249,154,0 56,1,483,154,25 125,137,438,413,28 0,240,164,427,0 589,136,640,259,0 529,0,640,139,25 -./model_data/coco/val2017/000000104572.jpg 90,292,234,369,71 373,205,416,224,71 389,198,430,215,71 407,193,441,207,71 448,200,468,223,61 0,359,84,419,71 -./model_data/coco/val2017/000000019109.jpg 16,255,95,395,3 71,253,155,385,3 142,257,191,376,3 186,271,320,366,3 312,251,372,354,3 361,256,404,348,3 430,252,490,338,3 378,249,461,344,3 4,219,28,261,0 44,224,77,283,0 347,229,370,268,0 286,212,304,269,0 445,241,456,266,0 552,227,581,263,0 540,233,554,247,0 596,221,611,273,0 25,223,47,264,0 366,227,390,281,0 0,235,18,372,0 475,246,482,250,0 559,250,612,325,3 592,269,620,314,3 600,260,639,297,3 283,250,340,349,3 370,254,381,264,26 55,174,81,232,0 457,251,527,336,3 216,234,582,350,3 -./model_data/coco/val2017/000000287291.jpg 0,225,128,370,2 352,189,382,221,2 305,186,326,215,2 455,183,498,213,2 110,61,150,98,9 137,156,167,248,0 247,173,268,230,0 329,176,338,223,0 265,198,279,214,2 332,176,354,228,0 457,182,498,213,7 380,176,466,230,7 153,63,168,95,9 108,19,150,54,9 431,184,438,192,0 100,167,114,227,0 0,183,94,255,2 476,189,500,226,2 -./model_data/coco/val2017/000000562561.jpg 190,42,607,475,16 90,180,253,409,16 199,157,317,241,25 -./model_data/coco/val2017/000000292456.jpg 249,173,392,341,3 184,45,312,300,0 322,68,354,160,0 129,31,190,270,0 149,153,223,219,26 315,152,363,226,28 190,112,216,152,58 312,156,360,226,26 -./model_data/coco/val2017/000000144300.jpg 45,69,581,389,3 509,68,578,179,0 606,68,640,255,0 0,0,320,232,7 0,0,322,234,5 299,50,377,149,5 356,56,498,171,5 354,55,494,173,7 574,141,626,178,7 -./model_data/coco/val2017/000000406997.jpg 196,156,452,478,18 445,94,598,439,0 449,0,624,280,0 213,0,333,220,0 175,69,240,328,0 431,41,564,194,26 228,0,340,171,0 -./model_data/coco/val2017/000000028285.jpg 306,205,330,229,74 -./model_data/coco/val2017/000000548555.jpg 2,28,333,421,0 0,0,625,426,52 -./model_data/coco/val2017/000000431693.jpg 116,235,130,249,32 172,143,469,369,0 109,270,189,309,38 141,88,163,141,38 108,94,128,148,38 -./model_data/coco/val2017/000000066135.jpg 7,36,500,351,6 -./model_data/coco/val2017/000000306139.jpg 578,220,630,292,56 423,197,506,257,56 0,89,22,120,56 123,204,139,255,56 350,208,567,426,0 278,108,355,212,0 470,124,602,294,0 114,193,196,345,0 130,129,213,266,0 338,37,396,171,0 294,238,374,328,63 511,300,606,400,63 144,324,281,426,24 143,178,333,417,0 556,280,576,341,39 4,220,58,369,56 4,134,36,203,56 373,237,415,284,63 483,263,541,300,63 261,188,355,249,63 251,226,281,276,63 62,318,206,426,56 8,149,115,241,60 250,188,640,419,60 316,78,347,100,63 322,108,431,251,0 -./model_data/coco/val2017/000000136600.jpg 183,58,234,174,39 150,377,175,409,67 494,313,525,348,45 219,197,461,420,63 409,55,468,164,39 -./model_data/coco/val2017/000000262487.jpg 129,108,245,369,0 233,277,334,476,0 221,96,264,195,34 198,274,428,463,0 -./model_data/coco/val2017/000000373315.jpg 85,207,215,434,0 165,413,213,442,36 -./model_data/coco/val2017/000000215114.jpg 0,1,500,631,72 167,128,323,508,0 271,516,329,625,39 287,478,331,561,39 276,244,314,348,39 298,433,332,490,39 296,204,338,326,39 -./model_data/coco/val2017/000000467776.jpg 119,214,226,380,19 269,80,438,380,19 121,76,144,87,18 79,74,97,86,18 95,76,110,85,18 160,75,173,86,18 37,76,50,84,18 15,81,34,88,18 -./model_data/coco/val2017/000000002587.jpg 52,0,450,357,46 172,10,417,266,54 -./model_data/coco/val2017/000000269632.jpg 554,237,640,344,2 493,273,531,323,2 98,53,492,360,5 57,243,96,278,2 38,223,62,303,0 -./model_data/coco/val2017/000000577862.jpg 173,21,543,424,23 419,42,598,409,23 -./model_data/coco/val2017/000000426329.jpg 210,0,436,141,62 281,255,457,423,55 102,226,261,378,55 410,226,566,388,55 465,161,567,201,55 264,146,353,183,55 0,301,103,423,55 256,212,412,343,55 344,175,467,236,55 176,137,265,182,55 131,196,251,243,55 0,222,109,308,55 7,181,127,252,55 234,184,345,288,55 472,205,601,241,55 85,129,639,427,55 -./model_data/coco/val2017/000000454067.jpg 87,90,222,218,62 197,36,479,406,0 452,345,472,370,65 223,127,268,145,73 285,23,297,28,73 313,27,327,32,73 351,39,356,62,73 -./model_data/coco/val2017/000000566524.jpg 264,131,445,300,6 490,221,495,235,0 505,222,518,275,0 495,223,499,233,0 500,223,503,233,0 357,184,371,198,0 543,213,569,274,0 -./model_data/coco/val2017/000000163258.jpg 92,218,261,480,61 546,221,638,280,71 -./model_data/coco/val2017/000000267537.jpg 89,74,280,205,25 262,61,438,140,25 107,103,298,385,0 190,105,285,235,0 279,85,515,372,0 0,0,79,233,0 387,0,424,53,0 341,83,475,308,0 498,0,635,234,0 68,0,178,160,0 447,195,640,246,13 445,163,537,191,13 409,127,640,170,13 415,140,528,159,13 411,95,499,122,13 399,75,508,99,13 462,245,637,309,13 2,243,124,320,13 179,64,293,88,13 329,49,524,67,13 163,159,181,190,27 165,0,248,68,0 48,0,85,61,0 318,29,638,51,13 599,79,640,91,13 -./model_data/coco/val2017/000000372718.jpg 260,396,398,630,75 -./model_data/coco/val2017/000000110359.jpg 223,150,426,378,4 -./model_data/coco/val2017/000000562207.jpg 180,201,270,411,0 101,193,183,425,0 209,63,409,407,20 372,202,426,367,0 171,314,207,351,45 -./model_data/coco/val2017/000000023034.jpg 253,213,302,344,17 419,0,640,422,0 233,146,318,266,0 299,181,375,276,17 519,137,640,306,24 -./model_data/coco/val2017/000000547854.jpg 44,1,640,414,0 56,417,463,630,53 473,408,640,540,60 0,0,97,208,0 0,390,67,457,53 -./model_data/coco/val2017/000000493019.jpg 206,210,273,381,22 256,199,338,383,22 318,201,424,385,22 411,205,595,359,22 320,177,516,212,22 320,159,465,195,22 162,156,320,211,22 36,158,260,316,22 -./model_data/coco/val2017/000000482100.jpg 245,4,281,51,58 270,0,322,29,58 158,0,210,34,58 421,148,577,321,61 250,165,427,320,61 338,0,379,39,58 387,0,443,39,58 -./model_data/coco/val2017/000000534639.jpg 24,199,48,222,2 12,29,530,449,6 529,179,625,241,6 617,176,624,194,9 547,89,569,126,9 -./model_data/coco/val2017/000000000872.jpg 408,172,427,188,32 145,100,437,558,0 163,126,429,606,0 368,157,426,203,35 -./model_data/coco/val2017/000000259690.jpg 446,112,575,150,2 620,115,639,121,2 573,119,639,152,7 545,100,621,121,7 380,167,472,211,34 148,136,360,348,0 292,85,430,386,0 167,104,187,145,0 99,125,135,200,0 26,105,72,157,0 175,120,215,196,0 252,127,274,171,0 35,163,165,196,13 175,161,242,188,13 148,123,180,201,0 70,106,106,172,0 67,129,96,204,0 244,128,261,177,0 410,129,459,158,2 404,129,431,139,2 156,203,335,411,56 207,101,220,132,0 132,149,150,152,13 193,104,215,144,0 543,78,640,151,5 27,98,252,212,0 -./model_data/coco/val2017/000000297681.jpg 404,284,532,333,2 -./model_data/coco/val2017/000000002006.jpg 46,80,609,426,5 313,189,377,256,0 5,252,50,361,0 334,218,347,234,27 27,272,32,304,27 9,51,33,76,0 55,0,69,31,9 121,65,127,76,9 -./model_data/coco/val2017/000000122962.jpg 203,65,288,201,0 242,133,319,246,0 223,270,264,291,53 240,282,266,297,53 252,232,297,257,53 386,143,407,151,53 442,9,449,17,67 288,288,411,418,0 300,92,353,190,0 440,211,543,384,0 428,0,467,103,0 497,65,608,240,0 57,290,198,417,0 144,179,237,340,0 209,12,256,106,0 104,0,188,215,0 41,0,146,200,0 268,335,291,377,53 328,257,370,272,53 313,206,340,222,53 340,184,371,193,53 399,128,419,136,53 408,168,434,180,53 147,349,211,379,53 318,291,345,308,53 175,303,254,364,60 330,19,399,116,0 138,342,188,359,53 132,115,448,416,60 353,109,482,228,53 1,1,639,373,0 -./model_data/coco/val2017/000000279714.jpg 221,433,425,605,2 143,35,233,438,34 0,427,40,613,2 355,343,375,365,32 31,425,261,627,12 -./model_data/coco/val2017/000000216636.jpg 0,0,459,344,55 -./model_data/coco/val2017/000000047010.jpg 302,200,407,310,23 427,201,517,305,23 75,211,218,320,23 541,359,584,405,19 -./model_data/coco/val2017/000000280325.jpg 338,160,491,358,12 -./model_data/coco/val2017/000000494863.jpg 1,127,639,369,6 8,234,133,305,6 -./model_data/coco/val2017/000000094614.jpg 286,70,442,363,0 388,100,407,128,24 223,390,258,399,30 234,349,339,397,30 333,114,401,186,24 -./model_data/coco/val2017/000000133645.jpg 208,183,348,302,8 294,123,349,147,8 31,157,82,164,8 129,145,209,151,8 403,317,502,407,13 505,131,523,137,8 85,148,108,164,8 177,137,208,145,8 -./model_data/coco/val2017/000000565877.jpg 0,191,425,640,57 7,71,293,598,0 277,375,316,513,73 149,501,167,518,74 50,513,407,640,63 -./model_data/coco/val2017/000000136355.jpg 513,84,603,155,58 328,0,566,187,58 326,123,381,186,58 448,175,513,298,58 362,235,406,421,56 46,254,141,421,56 180,223,210,263,56 74,249,387,421,60 580,74,640,421,72 221,87,239,114,39 477,287,535,323,45 533,288,592,318,45 212,241,248,302,75 491,298,507,308,49 508,298,525,309,49 183,160,275,300,58 242,250,287,270,45 554,299,569,306,49 566,296,580,306,49 -./model_data/coco/val2017/000000046378.jpg 281,103,506,343,14 2,0,609,248,15 -./model_data/coco/val2017/000000482970.jpg 180,107,466,349,63 574,323,616,357,64 -./model_data/coco/val2017/000000303566.jpg 206,88,248,121,2 440,97,468,150,24 294,102,311,140,26 9,162,46,222,26 191,152,207,165,26 339,90,347,96,2 346,92,364,110,2 425,84,444,113,2 333,83,343,87,2 299,89,324,105,2 0,102,50,311,0 19,26,145,244,0 210,86,249,107,2 317,337,411,397,47 291,354,438,426,47 433,379,461,409,47 411,325,592,426,47 566,324,586,344,47 343,313,363,332,47 388,276,488,333,47 503,308,640,374,47 326,304,344,327,47 566,380,640,420,47 0,344,71,419,47 40,339,195,422,47 191,199,252,209,49 281,174,291,182,49 162,220,222,242,49 212,215,224,222,49 212,206,242,223,49 122,54,163,205,0 167,86,200,172,0 197,98,251,165,0 257,80,302,164,0 304,95,339,166,0 426,74,480,193,0 469,71,514,210,0 522,77,573,261,0 562,109,638,275,0 573,78,606,141,0 342,86,384,106,2 179,110,195,150,26 280,181,286,183,49 266,173,274,182,49 272,173,276,178,49 278,171,285,180,49 260,160,306,184,49 298,172,303,177,49 200,212,211,221,49 540,57,592,109,0 0,200,44,236,26 18,288,135,341,47 290,163,340,187,49 160,161,321,243,49 94,56,583,245,0 7,275,638,425,47 -./model_data/coco/val2017/000000434247.jpg 300,293,308,300,14 450,249,462,254,14 416,248,425,254,14 326,245,335,253,14 317,251,320,254,14 433,266,447,276,14 461,266,474,273,14 490,275,499,281,14 447,273,458,283,14 470,246,487,252,14 316,281,324,289,14 323,273,333,283,14 342,270,354,280,14 122,292,162,319,17 137,279,151,305,0 365,269,376,289,0 554,264,563,281,0 403,270,412,286,0 355,276,380,297,17 545,269,564,288,17 393,276,415,298,17 16,294,66,325,17 516,270,535,290,17 488,261,495,270,14 518,265,535,277,0 36,283,46,314,0 297,244,501,305,14 -./model_data/coco/val2017/000000142790.jpg 258,143,423,267,0 150,172,295,282,0 8,277,310,323,31 364,239,441,293,30 -./model_data/coco/val2017/000000201775.jpg 235,227,312,346,61 350,221,442,351,61 0,243,145,314,71 -./model_data/coco/val2017/000000157390.jpg 237,292,411,446,50 253,93,358,193,50 84,153,202,263,50 185,245,252,309,50 262,220,320,275,50 360,122,511,374,50 20,0,623,473,45 379,98,431,132,50 307,285,433,360,51 91,259,208,333,51 282,185,408,298,51 221,137,290,239,51 201,253,279,334,51 110,253,339,445,51 464,245,533,337,51 250,39,423,134,51 378,81,527,273,51 0,0,637,480,60 162,83,206,167,51 154,31,246,87,51 195,88,237,216,51 213,56,252,144,51 74,84,266,306,51 -./model_data/coco/val2017/000000259597.jpg 208,105,235,174,67 23,27,295,303,0 347,13,422,153,0 272,79,325,146,0 246,146,639,306,13 319,88,348,152,0 10,76,40,135,0 230,91,264,144,0 451,24,527,229,0 596,55,639,162,0 562,48,614,157,0 516,44,569,157,0 29,93,106,213,0 335,70,358,112,0 372,184,445,296,56 432,84,458,152,0 0,179,38,260,56 31,160,53,210,56 0,32,579,237,0 -./model_data/coco/val2017/000000260105.jpg 275,0,365,59,41 415,1,566,126,42 473,17,525,115,43 242,8,279,28,44 0,0,106,25,53 -./model_data/coco/val2017/000000565853.jpg 5,200,47,280,58 256,145,401,226,62 337,321,363,371,39 157,107,271,339,0 163,309,186,372,39 445,325,471,373,39 65,359,81,374,39 202,364,219,375,39 260,213,264,218,65 27,293,109,347,24 30,296,108,347,26 34,69,102,294,58 -./model_data/coco/val2017/000000044279.jpg 172,288,232,310,45 13,168,200,295,69 155,120,297,420,0 276,65,572,425,0 528,244,542,261,43 449,357,512,382,45 574,107,640,134,45 499,196,558,218,45 512,258,535,275,45 529,281,550,297,45 107,324,188,425,69 -./model_data/coco/val2017/000000222458.jpg 510,206,524,233,0 487,250,553,290,13 592,239,636,268,13 534,211,541,230,0 565,220,581,228,13 450,196,483,283,0 600,204,615,237,0 587,205,600,238,0 233,258,376,346,13 -./model_data/coco/val2017/000000076211.jpg 377,181,427,232,74 -./model_data/coco/val2017/000000291551.jpg 146,110,409,415,0 151,424,178,479,0 191,425,206,464,0 228,390,386,558,36 126,427,155,475,0 130,450,146,469,36 167,445,200,467,13 -./model_data/coco/val2017/000000370042.jpg 271,186,332,336,75 392,178,462,324,75 537,261,556,310,75 498,213,552,314,75 559,200,614,310,75 352,244,399,330,75 197,269,239,318,75 15,263,54,328,75 111,263,148,321,75 493,250,504,278,75 232,268,261,314,75 145,270,188,321,75 220,163,254,214,75 43,147,139,222,75 -./model_data/coco/val2017/000000051976.jpg 257,229,312,248,37 286,197,314,244,0 -./model_data/coco/val2017/000000057244.jpg 0,2,640,332,6 -./model_data/coco/val2017/000000516038.jpg 193,360,202,371,32 54,226,206,435,0 134,324,167,351,35 258,166,284,193,35 371,0,438,66,0 417,17,431,43,35 201,104,296,229,0 -./model_data/coco/val2017/000000336209.jpg 326,299,586,406,13 346,270,401,287,36 271,124,383,287,0 -./model_data/coco/val2017/000000251065.jpg 133,125,355,533,61 -./model_data/coco/val2017/000000108495.jpg 73,3,333,494,0 92,314,294,447,36 -./model_data/coco/val2017/000000109798.jpg 202,156,404,321,54 50,92,264,178,54 7,175,219,315,54 403,222,497,327,60 -./model_data/coco/val2017/000000131131.jpg 53,88,560,418,62 79,168,460,474,15 -./model_data/coco/val2017/000000014439.jpg 76,122,99,153,56 98,131,118,155,56 163,85,621,340,33 86,156,104,171,24 413,89,507,288,0 268,89,298,168,0 279,79,298,112,0 363,57,383,113,0 328,38,347,79,0 378,40,396,82,0 505,114,597,271,0 578,112,613,198,0 25,116,65,154,0 187,44,200,61,0 169,47,178,61,0 164,82,198,166,0 100,154,119,169,24 57,155,92,173,24 64,132,85,153,24 103,45,128,93,0 155,7,602,177,0 -./model_data/coco/val2017/000000429011.jpg 425,203,631,297,2 520,163,533,203,9 46,146,257,279,7 271,196,275,200,27 -./model_data/coco/val2017/000000575970.jpg 561,183,594,224,58 278,314,384,474,56 428,316,548,466,56 544,309,640,468,56 237,257,638,440,60 14,112,84,473,72 406,256,439,284,45 346,254,367,266,46 361,255,369,263,47 472,211,530,236,68 333,230,401,239,71 300,244,323,278,75 471,248,494,282,41 436,166,444,178,41 477,169,485,180,41 338,254,385,283,45 481,109,505,125,45 507,113,531,125,45 480,137,501,146,45 502,137,526,151,45 346,258,356,265,47 369,260,380,267,47 427,163,435,180,41 427,84,463,93,45 276,83,296,90,45 480,88,517,97,45 244,83,262,89,45 373,255,471,277,69 415,242,472,260,69 -./model_data/coco/val2017/000000150649.jpg 108,145,187,266,0 119,22,193,129,0 203,21,274,121,0 447,140,500,292,0 113,234,146,273,36 327,119,377,135,36 198,116,240,127,36 116,121,152,133,36 466,245,500,296,36 397,81,399,86,0 316,37,376,128,0 -./model_data/coco/val2017/000000033109.jpg 479,206,508,229,2 506,203,528,221,2 518,184,544,214,5 201,94,470,304,7 129,235,150,239,2 480,202,494,214,2 469,206,480,222,2 491,189,511,208,7 168,228,209,238,2 -./model_data/coco/val2017/000000089271.jpg 0,169,620,517,15 -./model_data/coco/val2017/000000396863.jpg 95,102,276,414,17 550,16,640,421,17 90,16,208,267,0 227,279,241,295,0 -./model_data/coco/val2017/000000119038.jpg 485,233,600,334,19 508,198,625,324,19 359,205,429,271,19 -./model_data/coco/val2017/000000079014.jpg 145,153,264,284,49 0,89,290,445,0 -./model_data/coco/val2017/000000365642.jpg 382,20,426,94,2 106,44,169,82,2 185,36,226,69,2 98,122,352,605,0 222,43,263,68,2 210,415,324,561,61 0,26,93,93,2 -./model_data/coco/val2017/000000520301.jpg 112,154,480,634,16 -./model_data/coco/val2017/000000449661.jpg 368,64,447,154,0 121,83,169,101,71 286,76,471,168,59 582,81,640,169,59 47,57,95,93,62 265,74,337,168,56 -./model_data/coco/val2017/000000415716.jpg 110,47,143,65,74 363,283,549,479,56 0,331,93,408,56 151,264,210,283,63 207,276,227,284,64 276,226,319,294,75 0,379,239,472,57 -./model_data/coco/val2017/000000231097.jpg 503,1,620,70,42 1,89,46,214,45 116,196,264,322,50 254,156,352,316,50 330,213,499,307,50 173,172,223,219,51 349,73,556,198,42 5,0,120,58,41 8,1,131,60,45 0,1,640,479,60 225,184,283,242,50 -./model_data/coco/val2017/000000052017.jpg 52,84,482,286,4 338,167,361,188,0 -./model_data/coco/val2017/000000140556.jpg 381,241,492,457,10 135,5,339,450,0 466,16,618,450,0 56,70,172,449,0 5,259,47,274,7 284,74,369,312,0 -./model_data/coco/val2017/000000074733.jpg 1,122,610,605,60 0,0,161,74,0 536,123,612,258,41 116,53,188,178,41 48,70,126,202,41 0,86,57,235,41 281,395,445,599,41 100,254,356,401,53 288,200,496,333,53 180,39,245,156,41 305,1,331,34,41 394,323,541,566,41 359,0,383,33,41 241,4,454,82,60 484,273,612,484,41 236,80,316,127,0 348,66,478,142,56 464,0,541,128,56 564,234,612,426,41 -./model_data/coco/val2017/000000106881.jpg 208,239,272,400,14 -./model_data/coco/val2017/000000469652.jpg 0,29,572,439,23 -./model_data/coco/val2017/000000476119.jpg 240,77,444,196,2 91,16,332,394,0 77,361,196,414,36 8,91,58,128,2 268,55,416,95,7 -./model_data/coco/val2017/000000210388.jpg 314,207,399,367,0 0,141,76,410,0 192,154,306,369,0 280,258,339,343,28 -./model_data/coco/val2017/000000190637.jpg 312,267,374,359,65 19,369,81,418,65 1,147,428,631,59 14,182,378,421,0 -./model_data/coco/val2017/000000175251.jpg 300,351,515,409,79 93,18,612,606,0 -./model_data/coco/val2017/000000524850.jpg 0,19,323,313,4 310,82,498,177,5 468,46,488,59,7 462,57,480,67,7 267,152,276,172,26 416,166,424,177,26 293,183,306,218,28 410,113,423,141,0 439,210,477,303,0 271,145,286,189,0 179,103,185,127,0 298,153,315,208,0 403,132,417,172,0 413,155,436,207,0 428,169,460,227,0 349,161,374,224,0 489,30,500,34,4 313,177,319,186,26 448,177,457,198,26 365,197,380,216,28 234,120,252,149,0 382,125,399,170,0 455,170,499,236,0 459,233,478,270,24 401,170,414,193,24 214,118,219,128,24 232,121,239,132,24 128,126,135,134,24 407,138,415,153,24 388,131,399,149,24 483,182,499,212,24 446,177,458,197,24 246,121,250,124,24 344,198,356,218,26 389,161,412,221,0 344,198,356,218,28 484,57,500,66,7 453,198,460,214,26 483,181,499,211,26 277,156,283,172,26 122,46,439,221,0 -./model_data/coco/val2017/000000263679.jpg 124,222,186,334,0 465,171,523,315,0 106,62,319,328,33 109,245,119,255,33 105,233,113,242,33 347,261,356,273,0 308,254,354,274,0 -./model_data/coco/val2017/000000522751.jpg 206,4,341,107,9 0,44,99,134,9 473,201,495,243,9 261,269,276,302,9 581,313,598,325,9 619,311,637,324,9 -./model_data/coco/val2017/000000231237.jpg 65,17,310,369,58 86,250,256,458,75 -./model_data/coco/val2017/000000109976.jpg 177,143,189,179,39 172,154,179,178,39 158,0,376,126,68 113,170,378,289,69 118,254,257,468,69 203,171,212,197,39 189,168,196,195,39 -./model_data/coco/val2017/000000540502.jpg 6,93,40,127,58 69,111,217,359,72 340,219,381,229,45 355,205,369,213,47 345,217,352,222,47 368,212,380,222,49 327,129,394,159,68 318,203,391,229,69 287,177,326,199,70 254,165,260,180,44 433,211,455,225,45 354,217,365,223,49 2,205,26,290,56 216,202,239,208,71 257,180,266,198,75 271,178,282,198,75 320,203,481,260,60 22,210,35,225,60 360,206,369,213,49 24,233,52,316,56 -./model_data/coco/val2017/000000568147.jpg 147,28,356,436,12 0,31,36,67,0 383,0,414,34,0 373,0,480,24,2 316,0,347,28,2 238,0,253,28,0 225,0,238,29,0 -./model_data/coco/val2017/000000071877.jpg 87,44,346,318,0 188,219,359,328,36 0,182,8,209,9 -./model_data/coco/val2017/000000215245.jpg 158,290,331,414,22 309,267,448,339,22 233,199,289,233,22 160,199,207,230,22 193,204,235,226,22 13,268,219,421,22 324,309,404,411,22 -./model_data/coco/val2017/000000252219.jpg 326,174,397,371,0 9,167,131,393,0 510,171,634,387,0 560,90,640,157,25 46,211,79,262,26 345,226,356,248,41 337,44,398,101,9 -./model_data/coco/val2017/000000106048.jpg 145,66,523,319,5 -./model_data/coco/val2017/000000284725.jpg 147,290,378,376,2 79,151,155,170,2 276,138,334,151,2 355,134,415,151,2 68,134,501,309,5 607,125,631,146,2 0,152,54,183,2 629,120,639,142,0 409,175,422,196,0 524,127,531,138,0 402,133,408,149,0 373,140,386,152,0 186,145,203,164,0 -./model_data/coco/val2017/000000313588.jpg 346,189,480,289,25 152,285,195,312,2 340,224,480,576,0 417,322,479,401,26 229,247,335,334,7 -./model_data/coco/val2017/000000391144.jpg 113,35,582,340,20 488,48,640,336,20 254,0,617,328,20 35,34,269,333,20 0,5,76,308,20 249,226,320,328,20 -./model_data/coco/val2017/000000568195.jpg 123,136,356,447,0 286,139,427,464,0 5,77,153,571,0 183,399,218,428,43 289,594,316,640,39 336,591,385,640,39 330,494,425,512,42 341,491,414,509,42 0,503,427,640,60 39,0,91,46,74 332,502,399,517,42 346,507,420,520,42 198,415,318,498,55 -./model_data/coco/val2017/000000427338.jpg 352,203,393,235,3 354,188,387,224,0 247,190,272,225,0 229,201,282,229,3 -./model_data/coco/val2017/000000334977.jpg 138,21,284,299,67 331,18,477,299,67 296,22,321,302,67 -./model_data/coco/val2017/000000361142.jpg 142,250,163,271,74 109,257,115,276,74 47,528,185,613,2 154,500,251,562,2 287,513,463,628,2 0,520,61,576,2 53,515,108,550,2 290,503,302,540,0 248,505,256,527,0 122,512,164,531,2 297,510,352,532,2 431,499,463,514,2 102,509,137,529,2 142,504,157,512,2 75,511,98,516,2 248,492,252,505,0 -./model_data/coco/val2017/000000558114.jpg 301,217,317,260,27 219,256,240,268,63 261,174,398,468,0 0,169,69,480,0 321,179,487,480,0 440,156,558,467,0 196,239,229,280,0 554,161,583,202,0 593,144,608,172,0 273,215,298,255,0 545,151,639,471,0 353,126,381,156,0 266,197,295,228,0 551,234,589,288,56 578,161,601,202,0 155,261,166,270,41 221,193,242,239,0 1,6,639,278,0 -./model_data/coco/val2017/000000504580.jpg 520,187,608,414,23 62,103,250,351,23 1,296,24,332,23 -./model_data/coco/val2017/000000097924.jpg 223,73,442,320,17 106,124,233,355,0 298,163,422,344,0 410,191,493,320,0 38,54,377,346,7 1,109,63,255,7 -./model_data/coco/val2017/000000018380.jpg 123,121,536,426,60 430,349,475,392,42 203,402,217,426,42 247,219,272,237,42 169,348,244,354,43 445,357,499,403,43 424,346,481,364,44 247,219,271,237,44 318,347,416,426,45 257,242,334,296,45 294,156,343,177,45 443,406,523,426,45 311,190,353,216,45 304,215,359,239,45 296,64,359,130,0 0,168,129,419,0 67,151,176,409,0 487,133,640,426,0 454,184,534,343,0 395,137,456,250,0 187,133,236,238,0 220,78,264,173,0 379,63,459,199,0 370,76,407,168,0 227,121,278,215,0 226,31,280,118,0 389,257,422,332,40 236,317,274,372,41 405,304,442,358,41 235,295,269,321,41 364,229,387,249,41 292,183,309,207,41 281,215,304,242,41 350,173,364,196,41 344,163,357,184,41 357,243,382,282,41 290,166,305,185,41 278,261,287,271,51 308,253,313,258,51 513,88,524,118,75 284,322,320,421,40 330,122,356,180,40 252,242,278,310,40 305,145,318,156,41 220,253,236,256,43 379,220,419,228,43 454,128,472,186,56 140,102,233,303,0 346,274,363,305,44 283,249,298,255,51 271,322,298,392,40 292,185,308,205,40 242,374,287,426,41 264,24,552,268,0 -./model_data/coco/val2017/000000428562.jpg 34,27,450,454,18 455,98,638,409,18 546,1,640,102,18 483,66,560,146,18 198,28,429,166,18 28,2,141,161,0 316,0,352,52,0 214,0,237,64,0 333,354,640,480,18 391,0,423,28,26 281,0,299,58,0 304,0,319,50,0 132,114,206,159,18 226,0,268,33,18 391,0,458,85,0 -./model_data/coco/val2017/000000540466.jpg 370,93,624,280,25 435,183,628,370,0 -./model_data/coco/val2017/000000543528.jpg 187,83,524,244,4 -./model_data/coco/val2017/000000217425.jpg 232,137,387,254,74 -./model_data/coco/val2017/000000464144.jpg 61,184,316,575,0 5,529,291,608,30 -./model_data/coco/val2017/000000400082.jpg 376,84,500,236,41 68,84,203,182,52 156,143,334,279,73 3,30,498,277,60 -./model_data/coco/val2017/000000188465.jpg 382,157,414,182,34 232,249,327,368,0 318,172,388,271,0 362,211,409,264,0 389,183,442,262,0 175,106,211,180,0 135,134,161,170,0 94,154,120,186,0 47,171,68,205,0 455,92,490,121,0 463,112,497,143,0 291,186,313,206,0 424,197,435,208,56 57,132,86,160,0 364,239,376,252,35 427,177,452,193,56 479,175,503,204,56 117,152,150,209,0 466,177,492,193,56 451,197,478,209,56 399,177,427,193,56 621,172,640,185,56 586,175,597,202,56 0,0,639,218,0 -./model_data/coco/val2017/000000165039.jpg 382,161,566,239,2 609,162,639,221,2 18,192,51,253,2 91,47,403,343,5 483,147,496,163,0 439,154,446,164,0 423,155,432,166,0 457,150,465,162,0 355,10,384,89,9 549,1,580,42,9 406,158,414,169,0 465,155,471,162,0 456,152,461,161,0 0,213,24,268,2 5,203,24,237,2 49,198,110,260,2 41,188,59,246,2 0,193,29,214,2 406,93,414,129,9 8,145,15,171,9 543,140,560,181,0 534,146,548,177,0 439,100,447,119,9 -./model_data/coco/val2017/000000348045.jpg 453,399,585,579,61 5,411,139,593,61 238,408,361,595,61 -./model_data/coco/val2017/000000214539.jpg 266,310,305,348,32 227,93,452,357,0 568,61,640,339,0 482,157,512,261,0 24,190,50,241,0 81,193,131,283,0 122,193,167,281,0 188,188,249,274,0 80,190,115,286,0 140,192,213,275,0 114,195,127,216,0 201,173,219,202,0 44,184,63,216,0 108,196,119,216,0 349,231,441,240,13 401,212,453,232,13 1,55,570,294,0 -./model_data/coco/val2017/000000477955.jpg 180,434,258,612,0 328,10,369,90,33 177,478,214,573,37 334,503,339,511,33 -./model_data/coco/val2017/000000323355.jpg 86,342,280,507,53 100,33,445,630,0 396,503,480,639,0 -./model_data/coco/val2017/000000189752.jpg 0,194,640,480,60 99,1,174,107,0 0,0,97,114,0 249,101,322,228,42 76,343,501,444,43 351,214,633,358,53 298,195,436,245,53 142,0,638,240,0 505,60,620,223,41 43,62,80,125,41 0,104,157,155,60 0,213,212,252,56 500,63,621,227,40 -./model_data/coco/val2017/000000262631.jpg 63,491,95,548,0 73,87,365,557,75 338,326,444,540,75 102,507,124,550,0 0,533,31,554,0 19,454,26,473,39 38,451,46,473,39 57,455,63,473,39 94,454,103,476,39 82,452,95,476,39 13,473,24,496,39 33,477,43,496,39 99,477,105,496,39 -./model_data/coco/val2017/000000313182.jpg 180,128,573,387,5 0,251,57,396,0 426,212,439,254,0 412,234,430,254,0 49,277,76,313,26 17,278,49,343,26 564,229,594,242,2 564,245,578,266,2 361,210,387,253,0 3,241,40,285,0 302,221,308,234,0 5,240,42,285,0 42,240,76,339,0 248,227,260,250,0 -./model_data/coco/val2017/000000410880.jpg 0,203,77,369,13 88,75,320,374,77 291,30,316,127,0 266,62,298,86,2 125,44,159,82,32 84,39,119,75,32 375,66,389,80,2 102,65,139,100,2 303,184,314,212,56 155,220,310,350,56 -./model_data/coco/val2017/000000243148.jpg 129,72,481,355,0 121,186,484,331,30 350,242,565,293,30 254,1,640,355,0 -./model_data/coco/val2017/000000424162.jpg 76,294,235,478,16 305,230,422,474,1 481,240,596,480,1 372,257,450,448,1 3,173,123,302,2 583,171,615,203,2 296,133,439,470,0 453,119,589,477,0 416,163,547,237,24 351,126,457,248,0 517,155,549,179,1 182,114,325,207,7 445,155,464,173,2 -./model_data/coco/val2017/000000563653.jpg 517,253,618,298,2 179,250,212,279,2 299,253,345,279,2 371,250,408,277,2 232,254,272,277,2 218,259,230,266,2 282,251,307,273,2 102,235,136,320,0 65,236,106,320,0 70,247,82,284,26 156,249,170,266,2 170,255,174,266,2 339,240,380,276,7 198,215,205,227,9 257,218,262,228,9 -./model_data/coco/val2017/000000223090.jpg 44,73,134,472,43 123,191,164,389,51 153,228,212,420,51 159,180,197,280,51 -./model_data/coco/val2017/000000554579.jpg 200,345,464,605,16 0,58,193,552,0 170,69,334,439,0 303,83,487,402,0 360,276,430,343,26 17,385,59,444,77 -./model_data/coco/val2017/000000072852.jpg 324,307,355,384,0 291,308,327,384,0 331,319,354,352,26 133,444,289,598,1 -./model_data/coco/val2017/000000453708.jpg 214,169,402,421,0 0,174,63,312,0 601,244,640,376,0 303,124,423,182,46 411,144,463,227,46 233,5,429,175,46 93,315,158,366,46 126,290,146,313,46 0,347,181,427,0 0,255,84,383,0 453,236,569,427,0 516,238,564,381,0 467,222,494,264,0 177,331,248,426,0 -./model_data/coco/val2017/000000170545.jpg 283,291,305,306,2 122,280,147,294,2 193,218,205,235,9 239,212,248,240,9 488,283,496,295,9 518,286,522,292,9 116,166,131,201,9 65,185,74,206,9 271,227,283,244,9 486,226,496,251,9 89,176,100,201,9 -./model_data/coco/val2017/000000398028.jpg 287,143,418,377,0 0,113,89,371,0 109,141,384,640,0 47,24,119,73,0 329,24,372,67,0 380,22,419,68,0 226,37,322,238,34 29,24,46,56,0 197,26,251,62,0 105,21,157,51,0 0,23,38,57,0 274,27,305,70,0 -./model_data/coco/val2017/000000353970.jpg 43,0,482,381,15 0,0,640,421,56 -./model_data/coco/val2017/000000491008.jpg 65,333,153,363,56 537,339,640,427,56 456,336,549,422,56 2,352,217,422,60 446,301,622,366,60 215,173,341,425,0 353,147,474,427,0 289,288,394,340,53 0,308,133,330,60 439,146,540,258,8 252,237,289,257,27 106,357,122,371,43 119,376,132,397,43 80,310,147,342,56 0,319,32,367,56 0,299,42,315,56 91,384,218,427,56 160,263,174,324,56 460,306,484,324,56 194,271,212,332,56 170,264,198,328,56 34,188,83,246,58 168,268,210,285,60 303,347,353,394,56 59,298,115,313,56 0,257,202,426,56 -./model_data/coco/val2017/000000205282.jpg 290,36,628,479,23 11,181,267,476,23 224,341,391,474,23 101,261,202,366,23 612,295,638,351,23 -./model_data/coco/val2017/000000547336.jpg 171,428,208,461,67 99,25,471,438,0 164,380,206,434,41 120,168,274,309,73 435,422,502,474,26 122,452,195,480,73 465,161,640,363,10 -./model_data/coco/val2017/000000255165.jpg 218,239,349,345,62 420,373,460,415,41 0,286,162,426,63 199,403,369,442,66 216,376,371,407,66 564,318,609,349,73 559,384,616,409,73 22,366,128,407,66 358,237,495,362,62 190,67,276,155,62 167,199,180,267,73 129,199,141,256,73 145,200,160,260,73 495,408,536,428,73 138,202,149,256,73 160,194,174,263,73 188,308,195,342,73 180,309,186,339,73 569,377,635,402,73 143,289,177,344,73 533,457,606,480,73 472,370,504,399,64 122,270,639,479,73 -./model_data/coco/val2017/000000133819.jpg 146,85,566,361,5 480,127,639,260,5 618,163,640,265,5 99,208,119,276,0 26,211,54,245,0 66,207,90,283,0 61,212,76,243,0 45,208,63,244,0 0,210,23,245,0 94,211,103,239,0 490,210,509,232,0 469,207,491,234,0 63,115,91,179,9 549,3,594,76,9 99,132,120,181,9 576,255,620,327,12 12,231,22,245,26 106,247,118,266,26 502,202,519,229,0 435,205,459,237,0 301,211,307,220,9 -./model_data/coco/val2017/000000552371.jpg 149,0,449,251,17 288,2,640,421,17 -./model_data/coco/val2017/000000475365.jpg 4,0,453,426,6 -./model_data/coco/val2017/000000006954.jpg 1,107,163,454,0 197,124,368,372,0 362,151,450,315,0 145,136,267,330,0 359,117,640,386,0 248,224,365,347,29 457,229,601,373,29 -./model_data/coco/val2017/000000337055.jpg 131,1,626,422,0 431,273,640,422,28 -./model_data/coco/val2017/000000507797.jpg 1,0,225,333,5 93,183,170,376,0 147,168,206,360,0 73,103,129,240,0 515,171,579,316,0 26,187,96,391,0 509,180,524,216,0 562,177,578,210,0 57,299,100,348,26 139,263,178,324,26 79,162,128,321,0 550,227,576,263,26 197,177,230,206,2 487,181,503,218,2 226,105,492,271,5 -./model_data/coco/val2017/000000097278.jpg 84,77,330,576,0 0,542,399,593,31 -./model_data/coco/val2017/000000125129.jpg 241,122,247,129,67 0,110,106,251,56 178,114,375,288,56 451,219,500,329,56 2,224,353,329,60 136,54,338,265,0 98,0,194,226,0 365,1,476,299,0 246,116,250,121,67 44,285,160,333,73 -./model_data/coco/val2017/000000259625.jpg 141,163,379,307,20 -./model_data/coco/val2017/000000467176.jpg 349,101,486,212,62 268,221,406,423,0 468,251,597,428,0 17,190,185,428,0 58,157,169,405,0 17,218,52,288,0 158,213,167,233,65 223,233,245,240,65 0,229,37,317,56 28,283,39,295,65 233,154,248,184,73 378,158,389,172,0 566,290,640,427,57 503,243,518,255,65 514,269,532,280,65 209,228,224,240,65 225,197,250,210,73 233,222,256,232,73 207,188,234,208,73 239,118,245,131,73 236,87,243,109,73 221,89,225,110,73 211,90,219,110,73 247,85,253,109,73 252,85,256,108,73 241,87,248,108,73 223,89,228,108,73 173,210,183,227,41 150,97,157,108,73 132,81,275,204,73 -./model_data/coco/val2017/000000293858.jpg 374,19,494,271,39 49,2,187,181,56 227,4,295,136,56 135,4,249,35,60 3,127,500,447,60 323,80,403,207,41 123,208,156,245,51 118,213,140,235,51 119,149,255,262,51 112,176,136,188,51 83,199,452,412,52 -./model_data/coco/val2017/000000061268.jpg 162,143,509,319,6 53,276,79,332,0 544,198,566,235,9 445,139,461,156,9 135,241,147,253,9 57,282,74,313,26 467,136,484,152,9 -./model_data/coco/val2017/000000137294.jpg 262,145,639,427,0 440,173,496,240,0 151,174,446,425,69 -./model_data/coco/val2017/000000012667.jpg 283,48,447,290,46 -./model_data/coco/val2017/000000258883.jpg 0,65,280,348,0 223,189,348,241,45 19,301,308,416,53 0,465,350,600,53 59,153,87,187,74 318,342,425,465,53 -./model_data/coco/val2017/000000248112.jpg 261,198,303,329,0 626,207,640,288,0 235,213,270,252,38 600,257,633,272,38 -./model_data/coco/val2017/000000094185.jpg 231,222,381,473,77 167,243,229,330,77 198,199,226,229,77 152,244,170,275,77 154,305,171,335,77 419,271,455,302,77 428,308,455,340,77 468,273,494,300,77 395,314,426,344,77 597,402,627,480,77 0,252,25,362,0 415,192,442,231,77 -./model_data/coco/val2017/000000335081.jpg 52,66,275,392,77 196,161,371,392,77 332,148,545,294,14 0,0,198,230,77 -./model_data/coco/val2017/000000415748.jpg 128,160,196,224,0 34,280,300,615,20 -./model_data/coco/val2017/000000273198.jpg 112,0,223,37,2 89,0,117,19,2 0,0,102,205,0 257,0,386,33,2 73,76,125,211,10 -./model_data/coco/val2017/000000218249.jpg 200,71,522,252,48 1,2,640,421,60 -./model_data/coco/val2017/000000075393.jpg 176,322,423,381,42 21,172,348,253,42 398,129,579,185,42 274,116,400,172,42 -./model_data/coco/val2017/000000530624.jpg 96,107,615,301,16 0,0,640,467,59 -./model_data/coco/val2017/000000156292.jpg 133,241,271,372,74 277,244,339,302,74 66,243,128,303,74 58,306,126,372,74 143,394,270,516,74 183,500,229,632,0 61,378,126,552,0 182,519,213,581,26 -./model_data/coco/val2017/000000153229.jpg 339,147,495,444,0 518,177,580,388,0 233,30,337,392,0 517,217,640,454,0 120,223,189,393,0 118,206,201,381,0 339,10,383,19,29 523,238,540,272,29 168,33,300,404,0 -./model_data/coco/val2017/000000420916.jpg 528,174,613,315,0 445,188,538,334,0 263,245,637,395,13 284,193,461,356,0 221,352,285,400,24 -./model_data/coco/val2017/000000207585.jpg 232,42,526,443,77 58,150,258,431,77 431,111,602,324,77 179,69,395,450,77 130,231,199,293,27 341,137,419,196,27 -./model_data/coco/val2017/000000514797.jpg 224,123,352,439,0 383,158,511,433,0 11,270,76,438,0 265,103,556,167,33 -./model_data/coco/val2017/000000341094.jpg 311,172,352,211,0 13,31,232,364,21 -./model_data/coco/val2017/000000167486.jpg 237,231,370,452,1 250,187,285,259,0 492,154,533,302,0 146,80,265,426,0 479,193,504,257,0 368,174,399,297,0 307,302,348,342,1 205,134,231,171,0 216,197,250,234,0 264,6,462,277,62 -./model_data/coco/val2017/000000070254.jpg 272,82,494,302,6 115,192,200,311,0 61,170,113,359,0 142,133,167,245,0 210,174,243,213,0 175,175,224,249,0 249,151,266,206,0 104,236,173,323,13 70,295,133,368,26 179,214,196,225,26 193,178,228,221,0 168,203,209,247,13 43,236,64,281,26 210,199,225,209,13 217,220,230,243,24 241,163,255,187,24 -./model_data/coco/val2017/000000146831.jpg 125,133,215,154,2 271,146,359,361,0 294,308,367,371,36 217,144,249,152,2 1,248,108,404,0 -./model_data/coco/val2017/000000517832.jpg 128,221,474,568,16 2,140,640,549,56 -./model_data/coco/val2017/000000197004.jpg 74,19,604,402,48 172,0,640,147,66 -./model_data/coco/val2017/000000480021.jpg 302,97,451,160,2 114,107,269,163,2 222,227,528,462,3 59,152,285,315,3 71,88,80,111,27 363,53,574,471,0 511,58,639,428,0 99,77,223,274,0 2,53,118,291,0 -./model_data/coco/val2017/000000061108.jpg 136,179,251,316,16 117,132,632,478,1 463,2,489,27,2 6,150,131,302,13 55,55,230,192,13 166,76,275,213,13 488,5,506,19,2 530,7,553,20,2 559,9,586,22,2 -./model_data/coco/val2017/000000124975.jpg 174,53,587,413,22 118,29,588,394,22 -./model_data/coco/val2017/000000416256.jpg 117,86,368,239,15 121,210,315,313,66 28,123,138,227,66 -./model_data/coco/val2017/000000389532.jpg 33,271,69,308,14 74,48,117,91,14 467,139,526,309,0 593,343,602,350,8 -./model_data/coco/val2017/000000255401.jpg 31,34,138,270,61 310,159,415,358,71 386,406,416,453,39 353,431,388,453,39 191,114,284,287,61 -./model_data/coco/val2017/000000340451.jpg 42,166,569,369,13 238,45,394,381,0 -./model_data/coco/val2017/000000055528.jpg 447,110,474,219,79 2,69,640,480,57 144,5,544,474,0 512,421,587,480,65 550,420,637,480,65 152,430,269,480,73 524,293,529,320,74 -./model_data/coco/val2017/000000096960.jpg 24,117,435,417,21 -./model_data/coco/val2017/000000572900.jpg 136,192,149,202,48 360,165,489,372,0 110,153,159,289,0 345,199,388,219,29 586,182,598,234,0 545,182,555,231,0 613,175,627,236,0 224,192,257,230,58 277,194,304,225,58 3,171,45,323,0 547,173,557,191,0 -./model_data/coco/val2017/000000081738.jpg 0,158,37,409,39 453,138,639,473,0 330,144,501,222,43 105,136,536,376,55 1,206,632,472,60 -./model_data/coco/val2017/000000183437.jpg 177,229,280,347,0 129,175,179,323,0 177,180,225,284,0 61,283,384,621,20 100,217,134,249,0 78,256,125,321,20 -./model_data/coco/val2017/000000095843.jpg 130,63,566,395,5 -./model_data/coco/val2017/000000010363.jpg 245,108,471,243,15 147,28,159,66,39 90,27,640,361,2 492,0,635,52,1 -./model_data/coco/val2017/000000481390.jpg 169,77,344,121,13 341,201,436,341,0 33,302,110,472,0 246,275,369,415,0 281,268,410,449,0 291,21,335,78,0 539,200,612,369,0 440,116,527,260,0 206,148,335,290,0 27,35,94,196,0 64,3,128,136,0 391,289,515,427,0 202,9,248,57,0 298,41,314,73,27 366,51,375,78,27 412,13,419,31,27 271,43,276,62,27 222,30,227,46,27 330,289,351,311,32 173,55,220,114,56 255,67,299,114,56 226,63,271,123,56 285,73,327,110,56 312,76,354,121,56 324,27,341,43,56 354,32,369,48,56 380,37,401,54,56 158,36,173,84,56 204,58,246,122,56 525,11,558,43,56 473,89,509,150,0 103,12,108,20,27 511,8,529,40,56 478,69,500,92,56 0,0,626,183,0 -./model_data/coco/val2017/000000577959.jpg 205,276,216,311,0 378,65,476,185,33 -./model_data/coco/val2017/000000356424.jpg 24,455,92,640,39 325,193,387,227,2 338,320,480,457,56 2,386,480,631,60 35,68,337,457,0 130,460,235,628,41 19,471,116,587,41 0,305,40,407,56 297,114,480,340,0 254,168,312,271,0 -./model_data/coco/val2017/000000363840.jpg 469,40,640,204,62 395,238,639,473,56 274,84,518,354,63 0,91,195,308,63 536,244,582,278,64 581,232,628,265,64 322,307,593,419,66 211,147,285,218,26 124,352,147,400,39 319,34,348,77,0 279,89,459,234,62 0,95,124,245,62 -./model_data/coco/val2017/000000576566.jpg 141,17,329,438,0 119,312,290,475,36 135,521,201,577,36 129,553,202,627,36 -./model_data/coco/val2017/000000383337.jpg 292,287,640,475,60 236,2,437,141,0 83,385,199,448,54 76,361,197,436,54 223,353,280,384,54 356,298,413,331,54 335,325,430,363,54 441,213,546,295,54 494,183,605,270,54 171,1,639,364,0 279,323,309,355,54 -./model_data/coco/val2017/000000225532.jpg 227,247,263,266,2 295,244,314,260,2 274,246,297,258,2 331,246,351,257,2 191,242,221,261,2 368,220,500,351,2 351,248,367,258,2 264,239,270,242,2 -./model_data/coco/val2017/000000050638.jpg 344,65,473,382,0 415,169,487,265,77 -./model_data/coco/val2017/000000014888.jpg 0,3,639,441,19 -./model_data/coco/val2017/000000367228.jpg 28,16,142,132,33 72,183,252,500,0 -./model_data/coco/val2017/000000404249.jpg 37,123,290,523,0 89,480,226,558,36 -./model_data/coco/val2017/000000093154.jpg 143,273,210,309,2 315,272,349,302,2 330,251,351,270,2 33,290,61,315,2 0,284,38,320,2 276,253,289,266,2 302,255,321,269,2 381,254,399,269,2 332,247,340,252,2 299,228,301,232,9 312,225,316,231,9 288,228,290,232,9 329,226,333,232,9 88,271,108,289,2 319,246,328,255,2 350,256,363,266,2 303,229,308,235,9 334,233,337,242,9 -./model_data/coco/val2017/000000334006.jpg 0,209,179,330,2 220,121,519,341,7 547,219,569,266,0 511,181,590,259,7 622,205,634,216,11 -./model_data/coco/val2017/000000453584.jpg 252,164,517,346,13 238,150,294,263,56 321,154,370,265,56 394,159,436,183,56 493,154,523,223,56 434,164,471,180,56 316,162,329,193,56 -./model_data/coco/val2017/000000058111.jpg 32,22,494,484,15 152,16,217,51,73 166,10,257,44,73 0,66,125,92,73 1,24,143,57,73 0,54,110,66,73 -./model_data/coco/val2017/000000256868.jpg 138,179,297,381,0 408,206,497,271,0 312,59,414,251,0 517,227,566,289,13 438,226,525,288,13 313,226,388,264,36 10,190,28,218,0 588,249,600,279,0 84,225,132,254,13 372,225,443,261,13 44,224,67,251,13 121,226,166,260,13 -./model_data/coco/val2017/000000488270.jpg 352,225,471,262,4 -./model_data/coco/val2017/000000396568.jpg 82,203,415,355,6 -./model_data/coco/val2017/000000433192.jpg 83,85,499,369,59 141,142,264,229,63 256,163,299,179,73 -./model_data/coco/val2017/000000026690.jpg 244,164,383,315,0 161,444,216,500,0 254,497,297,539,0 327,548,373,640,0 367,564,410,640,0 217,249,255,293,36 287,515,324,544,0 82,400,115,462,0 217,470,250,539,0 34,297,105,449,0 271,539,313,588,72 196,489,222,536,0 0,346,48,420,0 228,515,260,560,0 103,433,135,472,0 252,523,276,567,0 -./model_data/coco/val2017/000000299720.jpg 319,2,519,427,23 -./model_data/coco/val2017/000000129322.jpg 157,394,247,593,61 -./model_data/coco/val2017/000000244833.jpg 547,12,613,119,0 392,32,539,148,0 0,2,471,427,3 399,38,640,422,3 184,5,263,69,0 28,200,239,423,56 316,155,431,337,56 161,114,251,218,56 118,67,190,138,56 215,99,310,203,56 350,96,395,137,56 293,175,344,215,56 87,134,183,236,56 180,62,240,127,56 0,238,95,428,56 382,79,443,144,56 366,146,485,323,56 68,70,137,142,56 330,93,388,152,63 327,11,419,98,0 20,55,506,233,56 -./model_data/coco/val2017/000000383339.jpg 350,257,356,265,14 250,292,271,319,0 -./model_data/coco/val2017/000000068409.jpg 415,80,425,103,27 474,18,637,259,0 503,1,640,97,0 200,16,369,248,0 346,5,486,260,0 408,0,518,152,0 253,0,411,94,0 88,0,184,83,0 110,17,265,252,0 3,5,151,258,0 291,90,306,121,27 192,81,208,119,27 80,77,94,106,27 561,89,571,110,27 209,2,282,80,0 454,0,465,16,27 -./model_data/coco/val2017/000000281929.jpg 115,203,517,477,1 326,123,348,181,27 256,62,426,477,0 -./model_data/coco/val2017/000000021839.jpg 261,203,282,262,9 211,392,277,577,0 409,462,435,521,0 431,457,456,525,0 168,456,182,505,0 47,448,60,497,0 467,471,478,509,0 217,439,245,470,26 448,468,457,497,26 424,471,433,496,26 428,491,438,506,26 24,453,48,498,0 59,457,68,483,0 0,456,32,518,2 450,472,461,525,0 -./model_data/coco/val2017/000000537506.jpg 183,1,348,105,25 0,0,172,100,25 322,20,368,63,25 105,49,332,173,2 26,75,157,391,0 379,218,516,346,47 444,194,548,294,47 554,23,600,83,2 506,80,600,257,0 224,123,261,200,26 238,71,317,311,0 372,213,600,400,0 320,52,441,109,2 -./model_data/coco/val2017/000000308165.jpg 121,205,277,361,0 169,349,274,391,36 -./model_data/coco/val2017/000000410456.jpg 379,186,455,300,0 173,151,268,302,0 499,161,569,339,0 313,221,338,266,0 362,235,380,265,0 49,119,178,323,0 112,146,199,310,0 153,291,344,310,37 0,316,287,334,37 390,297,446,314,37 513,298,573,316,37 -./model_data/coco/val2017/000000200961.jpg 229,210,263,252,29 253,197,349,358,0 288,158,305,185,0 515,158,545,171,2 350,135,441,175,7 298,154,361,184,7 456,147,510,176,7 435,140,465,159,7 -./model_data/coco/val2017/000000303908.jpg 343,61,399,80,8 269,62,358,85,8 399,36,412,43,2 93,204,580,427,13 395,65,441,80,8 564,234,640,421,13 -./model_data/coco/val2017/000000028993.jpg 288,220,450,603,10 152,240,247,481,10 95,225,102,233,9 92,243,97,248,9 54,239,61,246,9 146,243,156,271,0 62,245,73,273,0 92,250,99,272,0 98,248,107,272,0 114,247,121,272,0 134,244,145,272,0 29,239,43,276,0 54,253,62,271,0 125,247,132,272,0 238,237,330,537,10 -./model_data/coco/val2017/000000060090.jpg 224,97,495,341,6 551,174,563,216,0 534,182,542,222,0 541,177,547,221,0 617,184,626,232,0 551,205,563,259,0 -./model_data/coco/val2017/000000078170.jpg 573,347,599,407,39 501,285,518,317,67 58,433,78,445,67 4,248,235,548,0 498,203,627,429,0 16,354,131,511,26 153,421,303,518,26 138,241,320,454,56 0,0,640,639,6 508,362,564,432,26 -./model_data/coco/val2017/000000445248.jpg 33,72,352,316,20 307,100,445,387,20 334,51,596,318,20 -./model_data/coco/val2017/000000343496.jpg 164,80,204,121,11 255,197,308,225,2 369,229,387,270,10 55,203,111,323,0 55,219,92,286,26 619,212,629,217,2 -./model_data/coco/val2017/000000511599.jpg 40,240,560,278,8 328,115,455,130,8 0,124,46,135,8 176,222,196,288,0 243,211,264,289,0 300,227,328,307,0 327,228,359,258,0 397,259,442,321,0 421,221,444,265,0 458,227,483,297,0 505,96,537,104,8 514,224,535,308,0 528,225,543,295,0 502,97,547,117,7 474,239,496,277,24 521,239,537,281,26 522,239,538,276,24 388,213,417,298,0 322,241,352,276,28 252,257,269,278,28 241,255,246,270,28 313,224,328,247,0 237,115,304,130,8 -./model_data/coco/val2017/000000565563.jpg 83,229,207,332,2 2,223,84,284,2 259,210,287,233,2 281,204,304,220,2 99,215,147,251,2 142,211,181,225,2 308,200,316,216,0 178,206,254,243,2 269,208,291,231,2 258,203,270,215,2 234,204,254,213,2 347,230,400,353,59 -./model_data/coco/val2017/000000565597.jpg 31,131,477,536,53 1,376,478,631,60 160,1,478,220,53 0,53,137,218,53 -./model_data/coco/val2017/000000229753.jpg 199,199,369,418,23 393,150,538,420,23 -./model_data/coco/val2017/000000032941.jpg 315,194,350,225,2 266,196,301,224,2 179,192,212,213,2 206,127,216,157,9 302,197,314,206,2 261,192,269,210,2 316,169,343,203,5 268,169,304,203,7 266,198,305,225,7 100,192,110,220,0 386,191,392,210,0 369,191,375,202,0 225,146,231,175,9 -./model_data/coco/val2017/000000402783.jpg 246,266,419,437,49 110,68,510,365,49 -./model_data/coco/val2017/000000189820.jpg 190,81,274,179,62 367,134,618,412,56 160,268,194,289,64 247,184,312,215,66 363,158,439,182,66 148,144,182,218,73 30,167,87,269,73 327,117,348,156,73 148,149,174,220,73 206,177,231,217,41 324,128,330,163,73 357,118,361,151,73 0,73,46,118,62 84,340,274,422,66 329,122,336,161,73 20,253,146,315,73 -./model_data/coco/val2017/000000296649.jpg 427,329,640,422,2 228,282,263,314,2 348,287,368,312,2 259,328,432,427,3 0,324,174,427,3 322,290,387,418,0 273,292,324,421,0 1,266,116,422,0 424,270,531,400,0 259,281,285,316,0 281,276,296,317,0 256,311,282,379,1 228,272,262,316,7 448,35,453,39,14 457,125,461,127,14 104,267,123,296,0 120,271,137,296,0 257,281,269,323,0 269,274,277,292,0 420,360,573,405,3 562,43,568,47,14 553,106,557,110,14 556,309,588,355,0 494,276,587,402,0 230,271,263,287,2 300,280,325,334,0 -./model_data/coco/val2017/000000477288.jpg 362,120,480,199,25 185,0,480,138,25 0,38,105,147,25 92,83,233,262,25 1,128,53,188,25 160,131,303,251,25 299,309,480,636,0 194,69,388,593,0 133,207,263,475,0 0,117,165,565,0 101,199,151,319,0 137,243,170,329,0 426,202,479,351,0 377,234,441,320,0 370,246,398,301,0 -./model_data/coco/val2017/000000302882.jpg 230,86,323,313,67 0,55,388,400,0 -./model_data/coco/val2017/000000504000.jpg 25,43,621,216,4 564,123,586,176,0 539,123,545,142,0 562,118,570,138,0 585,123,590,139,0 586,118,598,141,0 556,123,564,139,0 568,124,573,133,0 614,125,629,171,0 629,123,640,176,0 0,48,102,140,4 581,122,587,137,0 489,116,494,123,0 526,124,535,143,0 545,124,553,139,0 502,119,609,188,0 -./model_data/coco/val2017/000000410428.jpg 5,160,248,405,18 234,195,341,334,18 332,172,492,317,18 304,134,335,164,18 209,145,221,160,18 362,117,372,123,18 402,113,408,118,18 368,111,378,120,18 388,105,400,115,18 19,130,31,138,18 -./model_data/coco/val2017/000000176606.jpg 214,100,459,370,18 63,195,128,249,2 25,179,70,347,0 28,250,37,256,67 -./model_data/coco/val2017/000000481413.jpg 201,101,334,334,0 293,201,352,285,29 -./model_data/coco/val2017/000000344888.jpg 417,165,533,258,17 382,143,434,259,17 314,156,344,163,2 389,156,404,163,2 29,150,48,160,2 6,149,16,162,2 432,163,509,263,17 290,153,308,162,2 289,152,309,163,7 -./model_data/coco/val2017/000000300659.jpg 229,61,255,110,4 269,113,297,163,4 308,165,336,213,4 254,180,284,226,4 311,222,340,269,4 305,282,335,330,4 203,194,233,239,4 -./model_data/coco/val2017/000000460494.jpg 0,0,640,419,60 0,313,342,426,42 459,163,619,202,43 0,0,130,99,45 112,202,233,315,50 188,266,286,341,50 228,212,328,328,50 200,156,375,239,51 148,0,286,153,41 -./model_data/coco/val2017/000000261732.jpg 424,146,439,159,32 145,43,312,355,0 288,74,392,117,38 437,218,448,224,32 -./model_data/coco/val2017/000000195918.jpg 300,121,484,249,62 36,118,242,276,62 528,188,639,334,63 284,285,318,303,64 99,294,268,338,66 0,378,186,428,56 -./model_data/coco/val2017/000000150417.jpg 280,0,513,262,72 105,147,285,326,56 182,167,591,473,60 112,70,341,335,0 477,191,504,234,41 358,242,468,334,45 269,308,384,402,55 51,107,69,125,41 34,102,51,125,41 358,242,468,336,41 350,234,388,279,41 379,2,640,449,0 -./model_data/coco/val2017/000000488075.jpg 620,143,633,184,39 630,156,639,186,39 411,179,416,191,39 415,179,421,190,39 444,164,449,174,39 436,179,438,188,39 414,251,600,450,56 101,395,210,480,56 353,109,425,153,68 501,426,618,479,45 235,117,267,320,72 431,164,439,175,39 348,164,416,197,69 577,325,640,444,56 -./model_data/coco/val2017/000000400161.jpg 165,0,390,99,0 43,112,114,197,65 315,118,396,181,65 200,98,279,190,65 435,74,520,176,65 62,54,66,88,73 371,1,475,49,73 170,36,190,96,73 555,0,562,48,73 394,59,402,92,73 429,59,446,92,73 195,38,209,95,73 528,0,536,46,73 225,36,237,65,73 402,60,412,92,73 545,0,554,47,73 19,56,28,88,73 412,60,433,92,73 0,0,639,109,73 -./model_data/coco/val2017/000000556000.jpg 231,288,265,450,56 223,104,333,512,0 452,103,632,515,0 0,126,188,515,0 157,339,223,509,0 314,266,456,427,56 221,175,255,219,65 0,492,15,510,73 134,268,223,431,56 306,359,479,508,56 0,321,20,394,62 -./model_data/coco/val2017/000000097337.jpg 156,96,299,189,62 346,147,500,301,57 347,149,498,304,56 459,264,500,306,56 212,125,424,368,60 244,104,292,173,0 181,104,250,175,0 165,115,197,173,0 0,168,129,374,57 -./model_data/coco/val2017/000000383606.jpg 302,125,349,281,0 134,279,389,412,71 355,282,377,313,41 303,284,324,313,41 -./model_data/coco/val2017/000000149770.jpg 65,31,146,108,0 59,96,144,110,37 -./model_data/coco/val2017/000000348012.jpg 0,3,640,250,76 -./model_data/coco/val2017/000000511999.jpg 524,212,605,275,2 615,229,640,279,2 144,116,524,416,6 106,183,144,322,0 160,199,209,337,0 214,195,244,327,0 -./model_data/coco/val2017/000000575243.jpg 242,142,364,220,25 524,128,640,362,2 443,123,575,283,2 377,142,427,231,2 287,174,335,333,0 436,79,443,94,9 607,104,621,115,9 355,70,367,84,9 442,79,453,94,9 265,111,273,120,9 -./model_data/coco/val2017/000000492077.jpg 357,181,368,187,2 356,179,367,184,2 323,177,342,198,2 0,0,183,250,5 186,291,269,457,1 266,239,300,333,1 274,0,305,33,9 441,80,458,115,9 485,167,514,225,0 173,157,275,445,0 247,158,311,316,0 318,178,336,235,0 294,169,329,295,0 316,244,323,268,1 346,182,356,188,2 408,123,415,138,9 1,112,204,478,0 504,170,514,191,0 512,168,521,194,0 466,171,472,188,0 437,179,443,195,0 512,172,516,185,0 45,411,95,480,1 225,133,235,149,9 466,149,472,156,9 365,162,370,169,9 -./model_data/coco/val2017/000000182417.jpg 339,202,530,396,44 188,208,402,345,55 212,163,368,257,55 539,403,639,480,45 1,94,640,473,60 517,0,639,180,41 0,250,30,293,44 0,221,48,305,45 -./model_data/coco/val2017/000000384666.jpg 172,137,235,245,0 361,103,387,139,0 139,101,151,133,0 310,124,341,168,0 202,50,208,64,0 226,50,230,62,0 319,162,341,169,30 177,236,228,256,30 366,132,389,138,30 233,181,271,194,30 75,64,79,70,0 336,49,337,56,0 240,132,266,189,0 131,131,160,134,30 -./model_data/coco/val2017/000000005586.jpg 140,69,177,160,0 131,169,199,226,0 131,90,146,103,38 65,36,76,44,0 136,24,147,44,0 146,29,155,44,0 154,31,162,44,0 186,32,197,44,0 272,73,295,110,0 178,26,186,43,0 100,27,109,42,0 291,62,301,104,0 111,36,121,42,0 301,39,311,48,0 0,0,319,239,0 -./model_data/coco/val2017/000000379533.jpg 49,221,178,312,20 175,252,203,308,20 174,396,468,556,22 -./model_data/coco/val2017/000000233238.jpg 342,428,411,603,39 170,475,186,598,39 152,408,174,460,39 6,373,45,515,39 123,431,170,630,39 232,491,304,635,39 177,430,364,535,45 5,123,143,454,0 39,177,197,356,0 334,128,480,500,0 113,163,168,318,0 131,169,239,314,0 318,189,365,298,0 70,124,190,319,0 1,142,63,524,0 412,545,480,582,44 260,245,309,290,56 308,171,413,302,0 194,304,254,320,44 111,415,220,462,44 301,533,343,549,44 102,321,398,433,60 176,457,231,639,39 154,458,181,598,39 1,388,480,631,60 -./model_data/coco/val2017/000000382125.jpg 81,232,145,277,56 149,221,178,253,56 615,334,639,439,56 620,261,640,340,56 116,419,640,480,60 0,115,352,475,0 36,157,144,299,0 0,158,33,245,0 410,428,474,474,41 196,332,303,410,53 581,174,640,276,0 116,164,165,257,0 296,153,360,357,0 327,248,350,262,41 366,451,412,480,53 1,316,50,412,56 0,247,23,318,56 347,100,633,471,0 504,155,624,335,0 371,209,423,276,0 325,310,341,353,56 18,235,28,241,60 492,411,610,480,41 30,219,47,241,41 5,216,22,244,41 180,460,255,480,41 0,240,56,318,60 -./model_data/coco/val2017/000000213033.jpg 401,272,445,282,8 122,182,340,632,0 23,139,333,312,25 450,216,480,284,8 20,258,40,270,8 4,265,20,269,8 -./model_data/coco/val2017/000000219578.jpg 29,115,468,363,16 420,148,637,277,15 0,140,238,422,57 8,28,640,286,57 -./model_data/coco/val2017/000000147745.jpg 32,23,379,415,7 354,129,579,367,7 -./model_data/coco/val2017/000000053624.jpg 129,5,146,62,0 219,12,239,35,0 247,109,405,383,20 149,5,169,41,0 244,0,253,30,0 179,1,192,40,0 -./model_data/coco/val2017/000000455624.jpg 179,139,511,390,3 0,121,48,289,0 143,163,177,198,0 128,174,151,197,0 463,138,498,193,0 438,122,489,192,0 418,133,451,182,0 391,123,413,157,0 522,132,563,198,0 580,144,628,205,0 275,58,465,329,0 495,130,549,196,0 59,121,125,230,0 614,143,640,206,0 37,147,222,294,0 -./model_data/coco/val2017/000000449603.jpg 175,198,296,269,0 278,242,294,272,37 -./model_data/coco/val2017/000000462031.jpg 58,182,350,629,0 325,510,433,637,0 285,69,448,314,34 -./model_data/coco/val2017/000000355257.jpg 250,11,277,92,39 276,213,640,399,59 326,230,636,330,0 -./model_data/coco/val2017/000000085478.jpg 313,181,525,300,21 -./model_data/coco/val2017/000000484404.jpg 0,196,209,298,5 296,281,324,306,0 478,210,545,247,5 300,293,345,319,0 97,312,561,480,56 536,310,626,447,56 368,294,410,318,56 345,274,379,315,56 471,260,486,290,56 374,279,411,308,0 314,203,394,268,5 490,295,558,405,56 353,283,377,316,56 588,295,623,323,56 409,257,433,320,56 309,274,333,285,56 -./model_data/coco/val2017/000000212226.jpg 235,84,393,270,0 54,0,418,331,7 -./model_data/coco/val2017/000000563882.jpg 0,102,570,424,0 253,108,379,231,0 75,9,202,221,0 141,46,192,166,0 404,0,545,130,0 1,0,350,293,0 473,102,563,296,56 184,102,270,174,0 573,66,640,295,56 413,121,511,276,56 388,148,469,290,56 364,234,450,273,67 181,98,261,219,0 -./model_data/coco/val2017/000000042276.jpg 146,16,252,105,58 59,15,154,247,61 -./model_data/coco/val2017/000000057672.jpg 11,190,640,305,8 161,130,212,241,0 271,186,327,276,0 342,195,402,279,0 417,191,484,289,0 552,197,612,291,0 481,199,549,281,0 517,192,556,261,0 310,182,346,256,0 380,196,429,258,0 453,191,489,253,0 336,60,348,82,0 189,57,235,72,2 234,60,255,71,2 67,53,99,69,2 122,45,172,70,7 -./model_data/coco/val2017/000000042296.jpg 188,218,307,322,32 0,271,101,346,32 148,5,588,303,21 97,279,210,345,32 -./model_data/coco/val2017/000000098633.jpg 27,189,399,591,55 -./model_data/coco/val2017/000000146667.jpg 581,2,640,99,2 105,0,238,54,2 4,46,517,528,3 251,37,456,306,0 162,1,208,128,0 64,17,109,138,0 540,24,583,130,0 529,9,549,123,0 431,14,477,84,0 334,25,361,85,0 27,24,77,144,0 511,15,536,119,0 149,49,171,71,0 162,17,193,55,24 21,42,53,85,26 71,37,98,78,26 230,107,243,132,26 431,49,454,83,26 373,23,387,61,26 411,129,443,185,26 399,30,403,34,47 477,16,517,58,0 349,51,380,84,26 228,4,276,196,0 -./model_data/coco/val2017/000000319100.jpg 466,231,499,303,62 0,118,453,333,57 236,53,442,333,0 74,45,284,328,0 239,217,295,258,65 347,234,375,250,65 437,165,448,185,39 -./model_data/coco/val2017/000000005060.jpg 231,370,242,389,67 159,309,324,498,0 -./model_data/coco/val2017/000000308587.jpg 112,368,120,384,0 361,341,365,353,0 93,349,99,360,0 262,174,302,210,33 54,245,75,281,33 81,339,105,348,8 359,120,394,165,33 270,352,276,364,0 447,322,450,330,0 354,325,357,330,0 422,322,424,330,0 434,317,438,324,0 411,314,415,322,0 388,319,391,326,0 72,325,82,330,0 102,323,105,332,0 39,329,42,335,0 -./model_data/coco/val2017/000000416451.jpg 521,382,547,480,39 617,349,637,431,39 237,277,449,460,57 27,88,292,480,0 407,226,531,417,0 177,181,229,200,65 471,290,479,317,65 568,355,586,405,40 601,369,620,408,40 545,422,553,466,41 564,160,573,191,73 558,204,567,246,73 557,267,576,300,73 546,305,568,342,73 519,203,532,241,73 551,267,570,301,73 565,436,632,462,73 560,410,604,419,73 504,268,534,279,73 566,206,572,246,73 546,304,584,353,73 563,269,580,301,73 489,309,510,335,65 569,380,609,405,65 487,404,510,415,65 507,401,530,414,65 511,298,526,330,73 479,83,639,474,73 -./model_data/coco/val2017/000000126592.jpg 259,160,397,295,11 316,269,509,327,2 111,250,193,289,2 0,258,56,310,2 89,261,139,296,2 202,253,259,281,2 22,255,95,299,2 606,259,640,325,2 182,260,214,284,2 384,248,494,291,2 246,252,278,275,2 433,252,479,268,2 440,254,478,267,2 -./model_data/coco/val2017/000000328030.jpg 102,175,383,493,77 0,164,145,441,77 136,54,383,345,77 5,6,145,257,77 82,0,233,96,77 -./model_data/coco/val2017/000000415238.jpg 216,6,398,357,58 448,281,522,344,56 224,367,401,468,56 -./model_data/coco/val2017/000000273642.jpg 8,6,375,500,16 2,224,221,492,65 -./model_data/coco/val2017/000000565962.jpg 149,65,479,318,15 24,132,158,316,0 -./model_data/coco/val2017/000000027696.jpg 1,0,341,70,0 369,0,420,53,42 22,45,593,378,53 262,19,445,73,43 -./model_data/coco/val2017/000000463522.jpg 522,278,567,314,16 29,192,385,480,17 523,229,547,285,0 519,245,527,279,0 616,232,633,284,0 546,227,568,291,0 518,244,524,257,24 546,239,575,273,24 627,233,640,281,0 475,239,482,254,0 483,239,490,255,0 493,238,500,256,0 506,239,510,253,0 512,240,519,269,0 605,235,616,253,0 0,209,233,426,17 437,237,441,249,0 404,235,409,249,0 396,247,412,257,1 421,243,432,255,1 492,253,498,266,1 375,205,472,263,0 -./model_data/coco/val2017/000000148739.jpg 74,120,165,240,0 140,231,176,247,37 -./model_data/coco/val2017/000000011615.jpg 289,165,355,203,7 -./model_data/coco/val2017/000000482436.jpg 263,82,340,236,72 300,146,388,247,0 83,105,266,396,0 345,225,398,244,45 285,200,288,212,39 246,217,264,239,41 232,225,429,275,60 282,199,285,209,39 336,74,423,225,72 -./model_data/coco/val2017/000000521719.jpg 242,65,334,427,33 142,139,274,389,33 153,575,333,640,25 1,153,91,389,33 250,229,416,599,33 134,63,221,163,33 55,9,137,323,33 117,133,161,258,33 -./model_data/coco/val2017/000000086582.jpg 206,132,289,235,58 0,20,179,201,0 69,162,134,254,58 291,156,380,242,58 139,183,204,253,58 308,102,635,396,63 398,362,528,418,64 -./model_data/coco/val2017/000000210855.jpg 357,233,370,270,39 345,235,359,271,39 194,254,270,391,61 415,281,505,302,71 384,243,395,270,75 -./model_data/coco/val2017/000000252559.jpg 106,460,135,530,0 63,456,89,540,0 45,458,68,527,0 216,451,270,625,0 87,462,112,538,0 25,458,47,529,0 43,453,53,472,0 0,457,18,530,0 82,463,93,528,0 145,490,179,616,0 16,463,31,521,0 160,471,241,636,0 61,458,71,471,0 -./model_data/coco/val2017/000000475150.jpg 140,46,640,421,23 -./model_data/coco/val2017/000000565469.jpg 161,70,212,108,74 -./model_data/coco/val2017/000000022192.jpg 71,120,215,375,16 0,254,640,426,59 251,151,475,324,26 -./model_data/coco/val2017/000000401244.jpg 100,59,319,559,0 175,240,270,288,29 -./model_data/coco/val2017/000000322724.jpg 238,177,358,402,0 169,317,196,385,0 254,402,321,425,30 -./model_data/coco/val2017/000000428218.jpg 67,190,115,309,0 288,207,311,222,29 565,206,640,357,0 -./model_data/coco/val2017/000000458045.jpg 456,175,500,187,34 297,200,319,224,35 366,138,459,271,0 470,112,500,222,0 429,109,455,219,0 195,116,240,236,0 97,103,141,199,0 93,164,99,222,34 207,175,319,271,0 64,132,201,267,0 453,126,475,223,0 -./model_data/coco/val2017/000000234779.jpg 237,135,583,384,48 87,85,284,230,48 -./model_data/coco/val2017/000000381587.jpg 208,239,242,301,39 60,282,93,320,39 7,211,416,422,60 219,428,422,634,60 373,8,421,152,60 3,433,212,635,60 262,246,293,287,41 11,294,61,359,41 128,200,151,220,44 219,462,329,630,45 83,520,175,615,45 90,445,166,517,45 11,454,82,516,45 3,537,79,612,45 96,334,171,388,45 50,380,110,424,45 92,374,188,425,45 302,276,354,306,45 218,8,401,148,45 74,10,218,184,45 344,224,424,371,0 48,199,173,264,0 106,210,159,244,45 233,200,254,225,41 207,205,228,232,41 90,246,132,268,41 302,200,409,240,0 7,259,21,282,0 123,235,162,256,45 232,272,270,313,41 1,33,420,311,45 -./model_data/coco/val2017/000000407960.jpg 55,158,354,376,15 198,105,283,161,45 372,1,640,422,69 -./model_data/coco/val2017/000000374052.jpg 104,255,533,311,14 594,332,629,369,14 474,353,500,398,14 184,359,221,391,14 115,365,141,406,14 563,384,590,419,14 163,349,191,385,14 172,375,233,414,14 245,364,275,395,14 301,373,331,406,14 310,148,438,399,0 437,79,467,156,0 12,175,527,405,13 375,405,418,427,41 230,356,250,386,14 374,94,398,108,0 46,93,58,123,0 464,84,485,124,0 118,168,148,226,14 193,343,396,426,14 -./model_data/coco/val2017/000000561366.jpg 352,89,600,259,67 84,7,640,166,66 -./model_data/coco/val2017/000000442480.jpg 62,170,619,259,4 49,222,141,271,7 256,239,270,268,0 304,212,322,249,0 -./model_data/coco/val2017/000000225757.jpg 319,40,481,195,62 0,60,79,174,62 126,48,297,182,62 266,194,288,241,67 251,283,295,337,64 88,232,273,300,66 314,231,475,354,63 95,217,166,237,65 80,192,101,234,67 -./model_data/coco/val2017/000000370711.jpg 264,204,355,369,0 65,149,160,429,25 58,139,100,429,25 190,162,241,323,25 225,103,251,325,25 497,211,521,436,25 509,212,534,430,25 559,272,579,429,25 566,213,605,419,25 219,121,291,400,25 600,280,616,394,25 503,218,527,281,25 197,122,216,181,25 132,142,225,349,25 0,83,635,449,25 -./model_data/coco/val2017/000000001503.jpg 0,99,126,235,63 120,177,158,200,64 161,152,315,197,66 125,11,237,100,62 305,154,319,164,64 -./model_data/coco/val2017/000000102805.jpg 378,266,606,338,2 344,262,412,288,2 59,75,290,415,0 229,340,348,424,29 507,254,547,271,8 52,394,122,426,24 153,196,258,388,24 460,251,507,267,7 378,258,404,262,2 403,260,429,282,2 -./model_data/coco/val2017/000000008690.jpg 136,18,351,396,0 285,73,516,396,0 74,10,175,302,0 379,390,637,474,0 52,309,640,480,18 -./model_data/coco/val2017/000000402433.jpg 273,233,461,382,53 298,162,529,267,53 139,15,360,169,3 -./model_data/coco/val2017/000000545007.jpg 194,297,350,465,74 73,318,159,495,74 151,31,279,265,0 -./model_data/coco/val2017/000000453001.jpg 461,234,553,345,58 523,130,566,209,58 138,18,276,469,0 492,280,638,472,13 264,262,375,410,28 0,365,158,480,58 0,229,158,390,58 9,166,78,204,58 387,208,420,297,58 352,109,553,384,0 -./model_data/coco/val2017/000000058029.jpg 112,353,279,478,61 306,414,471,478,71 -./model_data/coco/val2017/000000474028.jpg 135,289,186,340,32 407,76,596,362,0 591,142,636,253,0 235,156,275,262,0 119,176,178,230,0 106,152,151,266,0 75,173,113,272,0 20,176,57,267,0 501,145,543,219,0 537,170,558,232,0 126,224,318,397,0 220,198,234,242,0 0,199,11,252,0 578,215,586,228,0 1,213,588,248,0 -./model_data/coco/val2017/000000489014.jpg 311,229,398,274,16 39,2,544,382,8 98,250,129,284,0 -./model_data/coco/val2017/000000102820.jpg 22,12,414,532,0 45,485,253,568,55 -./model_data/coco/val2017/000000368212.jpg 242,206,257,345,79 57,169,450,640,61 17,43,385,608,0 -./model_data/coco/val2017/000000270677.jpg 184,90,453,638,0 417,496,495,640,36 -./model_data/coco/val2017/000000230993.jpg 53,40,395,257,25 370,65,619,197,25 369,185,504,397,0 99,224,283,401,0 217,247,282,351,24 311,217,414,404,26 221,249,280,350,26 -./model_data/coco/val2017/000000521052.jpg 11,262,77,341,2 44,18,625,474,7 -./model_data/coco/val2017/000000318908.jpg 93,0,387,287,16 -./model_data/coco/val2017/000000529122.jpg 141,100,296,277,0 243,77,311,158,0 355,236,378,251,54 274,262,299,280,54 288,225,308,238,54 307,234,329,251,54 378,241,404,254,54 410,252,435,266,54 309,231,332,247,54 401,265,430,281,54 431,272,455,281,54 433,266,460,281,54 369,255,396,279,54 19,105,99,261,26 29,18,164,275,0 348,245,372,261,54 359,110,456,193,62 477,0,485,18,43 253,252,272,266,54 123,185,493,280,54 -./model_data/coco/val2017/000000571598.jpg 60,316,109,480,27 514,290,560,480,27 175,94,463,480,0 0,107,204,480,0 456,120,640,472,0 444,261,469,290,0 162,252,221,305,0 571,348,615,421,65 93,448,141,480,65 9,267,16,279,0 111,284,181,341,0 351,371,398,422,65 476,267,493,279,0 465,270,479,283,0 136,269,149,296,0 -./model_data/coco/val2017/000000559707.jpg 198,44,478,161,42 153,61,329,227,50 243,236,478,479,50 75,391,298,600,50 0,251,88,367,50 -./model_data/coco/val2017/000000276804.jpg 296,367,315,415,0 219,474,265,585,0 228,440,257,491,34 283,473,339,611,0 178,394,188,405,35 306,381,311,387,35 281,520,305,599,0 151,379,187,460,0 -./model_data/coco/val2017/000000421923.jpg 183,309,295,334,73 186,190,295,209,73 186,325,303,367,73 356,494,425,632,75 185,207,300,222,73 185,220,299,233,73 178,137,228,231,73 156,128,217,234,73 166,259,225,358,73 92,123,102,235,73 94,121,124,234,73 247,308,425,640,58 359,527,412,622,41 -./model_data/coco/val2017/000000097679.jpg 103,159,521,375,2 274,220,322,256,0 194,155,328,187,31 217,205,241,243,0 358,159,632,330,2 -./model_data/coco/val2017/000000363875.jpg 2,153,558,630,3 107,15,408,422,0 0,3,558,385,5 -./model_data/coco/val2017/000000155291.jpg 34,81,595,350,15 -./model_data/coco/val2017/000000534827.jpg 300,297,556,444,3 535,296,612,391,3 296,288,376,374,3 403,225,496,415,0 108,225,192,381,0 361,249,412,328,0 586,277,612,333,0 405,288,492,350,26 18,280,265,410,3 557,319,612,415,3 -./model_data/coco/val2017/000000497599.jpg 308,374,383,531,56 0,1,333,632,0 179,526,425,640,63 391,395,427,503,56 333,177,427,330,0 360,292,427,437,0 301,332,346,380,56 148,337,278,625,0 -./model_data/coco/val2017/000000328337.jpg 71,36,390,422,0 127,32,264,167,29 -./model_data/coco/val2017/000000336265.jpg 241,301,273,363,0 285,301,318,310,29 -./model_data/coco/val2017/000000157046.jpg 294,152,447,375,65 1,67,90,328,0 340,197,498,368,0 -./model_data/coco/val2017/000000423506.jpg 88,264,163,500,27 188,69,374,500,0 276,481,340,500,41 2,27,234,408,0 251,289,318,374,27 -./model_data/coco/val2017/000000192716.jpg 109,171,414,490,11 0,589,55,638,2 137,595,234,640,2 38,595,53,624,0 -./model_data/coco/val2017/000000419974.jpg 61,389,192,527,16 337,375,420,532,39 63,234,76,269,39 176,307,192,362,56 94,264,425,629,60 112,261,194,350,60 108,211,155,284,0 299,257,310,265,58 293,227,315,271,58 310,250,334,275,58 157,186,183,265,58 337,339,349,363,42 194,457,348,531,43 294,350,325,372,43 45,245,135,322,13 52,232,66,267,39 265,540,309,612,40 173,190,192,234,58 180,101,367,445,0 295,528,370,634,41 130,276,146,283,43 343,378,360,387,43 167,287,187,296,42 155,105,219,252,58 0,274,98,394,69 -./model_data/coco/val2017/000000124277.jpg 431,182,448,196,2 299,134,610,392,6 506,300,529,313,2 266,14,300,64,6 431,182,448,198,7 591,299,609,319,7 592,300,609,319,2 -./model_data/coco/val2017/000000203931.jpg 1,398,159,444,13 199,110,281,192,34 115,182,304,595,0 237,99,267,132,0 174,105,201,132,0 134,113,162,145,0 90,107,121,159,0 71,120,102,163,0 65,64,86,100,0 17,21,59,71,0 152,29,173,53,0 253,366,310,436,0 286,133,306,161,0 306,211,332,251,0 171,198,202,232,35 318,236,352,283,0 0,0,427,451,0 -./model_data/coco/val2017/000000521259.jpg 270,166,300,197,29 409,126,461,148,29 573,192,599,214,29 403,36,529,367,0 519,95,599,298,0 42,44,268,457,0 289,151,351,244,0 486,155,524,173,29 223,140,240,188,0 239,138,260,201,0 328,142,347,198,0 254,152,298,237,0 211,138,226,177,0 192,142,209,165,0 30,176,71,420,0 352,144,365,176,0 82,138,92,164,0 0,120,58,216,7 0,120,58,223,2 0,126,630,230,0 -./model_data/coco/val2017/000000377814.jpg 308,158,547,403,54 3,7,240,202,54 43,183,327,480,54 476,132,640,321,54 388,2,556,158,54 231,4,427,184,54 -./model_data/coco/val2017/000000474164.jpg 250,174,343,365,16 2,287,629,631,7 28,378,121,428,2 -./model_data/coco/val2017/000000051326.jpg 346,158,639,422,75 -./model_data/coco/val2017/000000186980.jpg 45,287,242,631,56 233,262,358,519,56 15,305,413,628,60 17,144,157,362,72 162,342,205,367,45 272,315,305,332,45 430,260,457,452,69 195,249,271,261,71 285,251,335,267,71 224,306,243,366,40 197,367,235,383,43 218,366,249,385,44 406,212,457,265,68 296,327,343,346,43 -./model_data/coco/val2017/000000378453.jpg 101,222,201,288,22 304,201,380,255,22 377,198,480,260,22 323,174,392,204,22 75,196,138,250,22 63,190,127,247,22 36,175,107,228,22 205,174,227,225,22 138,172,166,211,22 108,159,160,204,22 135,208,201,279,22 160,170,179,202,22 181,201,216,257,22 7,141,429,208,22 -./model_data/coco/val2017/000000283268.jpg 313,0,542,391,0 193,161,456,332,52 0,235,436,422,0 -./model_data/coco/val2017/000000132796.jpg 47,231,151,341,56 290,68,403,399,0 401,61,548,246,0 0,145,147,330,0 408,139,580,273,13 37,229,159,339,13 146,186,640,419,20 1,322,167,419,20 439,104,507,175,24 -./model_data/coco/val2017/000000338325.jpg 117,140,452,300,4 -./model_data/coco/val2017/000000253452.jpg 444,150,640,362,41 8,78,50,194,42 73,22,243,120,55 24,94,62,176,43 0,72,30,148,44 142,148,312,221,51 102,191,123,209,51 457,78,581,171,54 458,51,541,103,54 323,77,431,161,54 363,30,469,84,54 494,64,617,137,54 371,73,472,150,54 100,0,131,21,43 0,0,640,426,60 -./model_data/coco/val2017/000000179392.jpg 112,49,478,546,16 61,1,480,262,62 389,430,479,566,66 0,286,140,487,73 1,116,93,271,73 117,42,480,593,15 -./model_data/coco/val2017/000000483999.jpg 131,146,525,423,60 0,195,128,420,0 109,166,231,405,0 200,105,285,207,0 399,139,510,330,0 483,176,622,268,0 295,245,640,422,0 364,117,439,234,0 113,115,206,211,0 338,302,370,351,41 321,282,349,312,41 173,355,195,384,42 555,172,640,208,60 254,136,310,149,60 0,129,30,209,0 427,115,516,191,0 364,120,399,163,0 375,386,416,428,41 200,346,221,398,41 257,273,284,298,41 284,223,296,243,41 325,216,346,234,41 246,242,270,284,41 298,257,327,291,41 336,206,354,231,41 294,124,317,169,56 557,147,588,183,56 493,137,515,184,56 341,132,359,159,56 533,149,559,186,56 19,145,36,204,56 262,128,293,195,56 295,232,316,255,41 271,203,286,218,41 150,409,220,420,44 29,106,40,173,25 333,195,347,209,41 226,247,243,259,42 364,215,379,225,42 134,404,218,423,43 371,285,393,301,42 251,176,360,298,41 -./model_data/coco/val2017/000000003501.jpg 125,67,263,223,50 74,174,257,361,50 12,8,603,583,45 -./model_data/coco/val2017/000000529528.jpg 26,123,266,326,45 386,34,473,102,45 42,143,259,270,55 -./model_data/coco/val2017/000000153797.jpg 142,97,155,108,32 386,182,416,225,35 322,107,436,327,0 -./model_data/coco/val2017/000000517687.jpg 158,24,305,347,67 324,19,501,349,67 0,1,640,355,60 -./model_data/coco/val2017/000000400815.jpg 100,137,551,418,0 0,329,206,427,28 1,0,640,425,7 -./model_data/coco/val2017/000000569825.jpg 188,26,305,466,0 200,255,248,312,35 206,133,214,153,0 81,6,169,86,0 252,12,287,52,0 14,64,51,130,0 -./model_data/coco/val2017/000000079837.jpg 114,347,203,419,8 224,355,273,376,8 281,343,357,361,8 384,343,426,354,8 344,341,390,353,8 81,353,118,367,8 186,343,207,358,8 106,344,134,357,8 -./model_data/coco/val2017/000000006763.jpg 219,64,371,191,62 79,131,333,462,0 2,94,236,477,0 136,235,181,415,27 2,442,327,494,60 36,439,71,464,67 0,212,48,335,0 -./model_data/coco/val2017/000000358525.jpg 4,96,435,432,0 228,302,628,478,63 0,44,245,180,28 296,206,538,284,28 -./model_data/coco/val2017/000000186449.jpg 117,179,380,605,0 372,34,436,199,0 316,12,377,140,0 214,13,303,165,0 63,0,243,234,0 197,1,244,62,0 0,2,36,253,0 0,133,436,590,13 74,4,163,129,24 182,96,251,184,24 26,17,79,120,24 31,178,90,280,28 395,148,436,197,26 260,224,366,457,28 174,159,255,198,28 -./model_data/coco/val2017/000000446703.jpg 92,106,404,268,77 -./model_data/coco/val2017/000000134112.jpg 193,65,487,271,16 2,6,499,347,59 1,88,394,333,63 -./model_data/coco/val2017/000000443969.jpg 181,28,475,149,25 242,106,371,416,0 0,109,132,579,0 68,46,157,272,0 180,8,486,269,0 119,85,137,135,0 181,82,195,122,0 -./model_data/coco/val2017/000000090284.jpg 67,143,586,564,0 461,338,578,438,38 -./model_data/coco/val2017/000000326541.jpg 173,92,219,211,67 254,101,294,177,67 0,8,266,355,0 324,164,419,311,0 457,22,640,360,0 295,139,346,242,0 242,268,334,355,2 262,29,619,355,0 416,119,447,183,0 -./model_data/coco/val2017/000000030675.jpg 150,136,640,300,6 -./model_data/coco/val2017/000000539143.jpg 0,135,593,362,6 -./model_data/coco/val2017/000000270066.jpg 92,77,576,382,3 65,0,579,154,7 -./model_data/coco/val2017/000000531135.jpg 309,206,325,225,34 364,223,403,276,0 298,174,313,199,0 470,177,481,206,0 88,173,101,189,0 445,162,450,169,0 355,231,390,274,0 288,205,330,271,0 206,164,215,178,0 381,169,390,196,0 80,190,119,217,0 299,187,303,191,35 443,164,446,167,0 462,163,467,171,0 473,166,478,173,0 95,181,98,183,35 111,198,116,202,35 448,151,499,173,0 -./model_data/coco/val2017/000000238866.jpg 275,301,399,412,54 142,196,246,282,54 283,173,382,249,54 381,137,481,202,54 32,220,160,321,54 336,86,423,148,54 216,102,308,165,54 114,332,238,431,54 465,269,571,360,54 131,84,226,141,54 193,147,292,224,54 346,47,421,92,54 -./model_data/coco/val2017/000000178744.jpg 168,164,388,287,8 374,194,385,208,0 226,240,236,257,0 231,230,238,240,0 256,228,267,240,0 209,222,220,235,0 186,219,194,232,0 214,234,224,243,0 176,221,182,229,0 247,228,259,243,0 -./model_data/coco/val2017/000000384616.jpg 371,191,453,466,10 -./model_data/coco/val2017/000000066886.jpg 118,33,598,426,0 -./model_data/coco/val2017/000000300913.jpg 8,4,500,370,15 0,1,500,370,57 122,0,241,60,57 -./model_data/coco/val2017/000000196442.jpg 99,151,249,287,0 98,223,251,290,30 547,346,553,356,0 322,340,335,359,0 341,345,346,351,0 -./model_data/coco/val2017/000000257084.jpg 129,134,145,169,0 168,0,336,187,0 311,1,385,175,0 273,0,321,118,0 171,111,200,190,0 205,157,385,215,36 146,113,169,178,0 362,0,460,187,0 432,182,484,200,36 163,119,225,151,36 122,183,157,219,56 -./model_data/coco/val2017/000000334555.jpg 125,160,170,206,2 448,182,580,260,2 118,163,123,169,67 0,68,100,233,7 126,204,137,233,26 86,127,143,267,0 15,134,77,274,0 194,137,211,193,0 152,141,166,181,0 210,133,224,155,0 247,137,260,149,0 164,140,185,193,0 613,146,640,245,0 567,156,578,189,0 69,142,99,247,0 224,137,240,151,0 178,138,191,191,0 199,124,548,374,19 159,137,170,177,0 611,147,621,196,2 -./model_data/coco/val2017/000000166259.jpg 233,179,306,312,14 294,148,405,337,14 155,165,234,299,14 287,180,336,302,14 -./model_data/coco/val2017/000000114871.jpg 201,30,544,360,46 3,3,640,420,60 -./model_data/coco/val2017/000000182021.jpg 119,18,189,141,34 135,293,182,344,35 50,211,165,351,0 166,316,182,343,0 149,69,303,354,0 -./model_data/coco/val2017/000000386879.jpg 19,243,187,437,38 62,48,424,640,0 -./model_data/coco/val2017/000000064462.jpg 171,1,326,320,0 203,291,329,378,30 -./model_data/coco/val2017/000000002153.jpg 283,274,466,445,0 371,207,433,405,0 372,184,459,236,34 174,0,239,119,0 275,302,379,436,0 -./model_data/coco/val2017/000000485972.jpg 320,428,392,640,42 159,124,408,287,51 250,36,327,138,51 219,115,424,171,51 32,331,303,581,55 1,214,426,631,60 -./model_data/coco/val2017/000000156643.jpg 9,7,202,474,39 198,135,482,360,0 508,178,577,276,0 559,160,640,303,0 509,161,523,187,0 0,125,46,334,0 484,311,559,421,41 218,319,407,436,55 286,145,300,188,0 132,1,240,327,0 583,293,640,399,56 527,271,589,307,56 452,242,531,311,60 1,334,640,474,60 185,325,481,478,60 260,168,281,186,0 507,178,542,214,0 265,283,289,342,43 568,192,598,221,56 294,0,503,256,77 475,126,509,193,0 -./model_data/coco/val2017/000000550322.jpg 76,163,194,393,76 120,166,227,389,76 74,315,258,544,41 238,276,419,370,44 0,452,361,640,60 206,211,391,386,44 -./model_data/coco/val2017/000000064495.jpg 230,40,412,228,12 -./model_data/coco/val2017/000000268378.jpg 72,270,118,358,56 83,233,128,342,56 199,226,428,354,60 390,143,621,359,0 347,117,459,246,0 114,142,284,359,0 0,57,113,359,0 321,248,342,302,40 313,274,339,323,40 249,239,273,264,42 407,259,434,305,42 210,124,302,225,0 266,217,285,259,40 363,128,513,297,0 92,118,176,315,0 230,55,307,197,0 314,273,341,323,41 290,203,304,236,40 76,47,150,223,0 365,256,390,300,40 364,256,391,299,41 -./model_data/coco/val2017/000000542127.jpg 192,63,255,120,30 317,114,354,193,30 227,361,238,372,0 211,82,256,140,0 284,343,311,376,0 357,357,373,375,0 302,345,327,377,0 418,350,432,368,0 328,135,390,186,0 212,392,243,425,0 200,385,227,410,0 125,336,150,365,0 207,390,232,415,0 192,377,216,403,0 179,375,199,395,0 317,125,348,146,30 101,333,445,384,0 -./model_data/coco/val2017/000000465430.jpg 33,118,308,383,48 360,134,593,359,48 197,8,563,66,44 -./model_data/coco/val2017/000000449190.jpg 220,160,411,345,48 326,166,527,353,48 338,36,482,175,41 342,39,481,170,45 365,60,465,119,51 -./model_data/coco/val2017/000000407650.jpg 284,211,358,294,0 267,277,363,302,31 -./model_data/coco/val2017/000000210915.jpg 131,115,415,296,0 286,61,467,182,37 -./model_data/coco/val2017/000000260266.jpg 51,516,125,551,2 123,523,182,557,2 177,527,215,554,2 330,401,346,439,9 346,31,386,145,9 257,536,267,542,2 348,403,367,440,9 311,42,347,135,9 -./model_data/coco/val2017/000000206487.jpg 0,209,239,479,2 483,281,556,410,3 1,143,452,320,5 475,197,561,375,0 408,280,464,320,2 524,203,574,369,0 317,310,344,321,2 550,170,640,480,7 -./model_data/coco/val2017/000000545219.jpg 113,90,591,414,5 130,260,309,472,0 32,265,85,445,0 264,303,360,474,0 484,272,561,480,0 18,306,40,367,26 549,273,608,404,0 18,294,51,367,24 -./model_data/coco/val2017/000000510095.jpg 424,133,539,362,0 517,92,531,205,34 445,32,454,46,10 -./model_data/coco/val2017/000000359540.jpg 152,170,282,341,0 427,204,508,346,0 65,50,114,142,0 342,213,433,338,0 508,40,528,78,0 125,201,174,213,34 339,201,358,227,35 370,62,374,67,32 363,57,375,67,32 -./model_data/coco/val2017/000000488664.jpg 10,297,510,413,6 564,364,591,378,2 591,369,604,378,2 -./model_data/coco/val2017/000000333697.jpg 153,100,199,201,11 -./model_data/coco/val2017/000000319617.jpg 15,12,116,123,41 0,79,107,235,41 137,44,314,153,52 0,0,319,236,60 -./model_data/coco/val2017/000000274219.jpg 176,323,259,367,27 2,5,464,629,0 -./model_data/coco/val2017/000000415536.jpg 258,173,381,317,5 277,226,301,249,0 -./model_data/coco/val2017/000000559842.jpg 292,326,328,361,32 551,97,622,320,0 467,123,543,319,0 475,174,520,315,0 408,198,455,319,0 332,185,414,352,0 332,99,406,219,0 169,184,276,337,0 249,173,297,307,0 294,176,346,333,0 327,180,359,235,0 63,185,96,270,0 177,140,191,163,41 125,194,182,297,56 13,175,95,339,0 16,217,22,259,56 256,109,313,215,0 0,86,639,307,0 -./model_data/coco/val2017/000000293794.jpg 317,300,329,323,27 261,245,395,353,0 97,292,171,379,0 230,285,257,352,0 253,290,271,319,0 210,286,233,301,2 195,289,211,300,2 292,447,371,535,46 131,501,241,584,46 160,408,236,512,46 237,350,311,413,46 121,527,176,639,46 347,413,403,457,46 0,569,124,640,46 239,485,357,559,46 235,532,293,633,46 48,525,148,631,46 121,450,185,523,46 148,430,190,494,46 25,321,126,569,0 203,285,213,291,2 328,529,428,640,46 0,248,36,561,0 68,329,427,639,46 -./model_data/coco/val2017/000000199055.jpg 143,34,391,599,0 162,488,349,611,36 -./model_data/coco/val2017/000000206271.jpg 214,293,314,430,61 22,301,119,439,61 -./model_data/coco/val2017/000000042528.jpg 413,183,533,416,67 2,192,516,487,0 15,157,289,393,56 -./model_data/coco/val2017/000000088345.jpg 487,226,624,362,74 144,200,417,425,0 0,363,65,425,0 -./model_data/coco/val2017/000000577976.jpg 473,270,513,306,2 0,275,104,307,2 509,249,640,336,7 390,269,476,303,7 -./model_data/coco/val2017/000000412240.jpg 148,47,411,292,16 -./model_data/coco/val2017/000000101884.jpg 464,57,501,90,74 291,360,332,390,7 162,361,179,379,7 -./model_data/coco/val2017/000000135872.jpg 270,42,359,143,62 191,177,224,266,62 389,144,538,391,56 185,174,295,272,63 309,167,369,197,66 333,176,403,205,66 298,207,366,238,73 378,141,396,159,41 407,157,429,166,64 409,169,413,172,64 410,166,427,176,64 382,168,402,175,64 -./model_data/coco/val2017/000000477805.jpg 383,12,584,386,0 163,308,225,353,0 70,227,250,407,63 -./model_data/coco/val2017/000000292082.jpg 195,331,242,411,27 72,168,281,490,0 248,206,474,619,0 310,325,360,342,27 24,236,549,574,56 -./model_data/coco/val2017/000000073702.jpg 128,154,332,227,25 44,245,72,353,24 45,246,70,356,26 254,251,464,582,26 122,193,461,640,0 1,147,229,616,0 -./model_data/coco/val2017/000000065736.jpg 335,62,357,82,32 185,5,376,408,0 278,25,393,107,38 -./model_data/coco/val2017/000000382743.jpg 104,209,187,296,33 278,296,377,348,33 606,339,628,371,33 579,370,617,400,33 395,306,639,474,25 0,0,121,268,25 584,362,640,435,25 533,325,566,377,33 -./model_data/coco/val2017/000000351362.jpg 392,388,409,423,39 271,464,308,516,61 305,413,409,506,71 321,388,340,416,45 -./model_data/coco/val2017/000000121586.jpg 96,57,298,194,62 338,328,352,394,73 594,348,639,361,73 539,332,590,347,73 331,422,373,432,73 296,322,318,396,73 590,327,623,350,73 599,245,639,308,73 614,399,640,430,73 314,326,333,394,73 543,319,591,333,73 310,326,324,395,73 332,328,346,392,73 187,101,237,148,15 220,411,268,439,73 34,310,601,465,73 -./model_data/coco/val2017/000000547383.jpg 134,174,588,407,18 100,32,447,215,18 493,1,590,10,18 -./model_data/coco/val2017/000000354547.jpg 211,157,224,211,27 61,97,77,117,0 95,61,272,632,0 -./model_data/coco/val2017/000000538236.jpg 172,2,216,99,0 206,0,285,80,0 114,24,175,91,0 201,16,234,86,26 348,211,574,368,52 213,99,432,229,52 64,0,117,54,0 516,0,580,37,0 0,239,130,428,52 360,95,622,210,52 326,321,341,344,52 156,189,193,210,52 150,225,395,404,52 0,121,230,259,52 -./model_data/coco/val2017/000000501243.jpg 85,98,360,363,22 53,121,209,353,22 306,136,580,374,22 -./model_data/coco/val2017/000000338191.jpg 186,25,453,612,10 534,187,594,317,10 544,340,604,456,10 32,39,102,163,10 537,493,606,596,10 25,343,91,461,10 524,40,609,179,10 35,494,88,592,10 12,185,100,318,10 -./model_data/coco/val2017/000000112634.jpg 3,24,576,443,23 578,193,640,307,23 -./model_data/coco/val2017/000000078266.jpg 55,96,149,204,72 268,192,281,206,47 268,194,279,204,49 15,194,171,228,71 255,146,259,166,43 251,144,255,166,43 271,144,277,167,43 267,143,272,167,43 263,144,266,166,43 259,145,263,167,43 374,211,420,226,45 259,205,274,214,45 284,200,290,209,51 281,201,287,212,51 272,187,283,200,51 -./model_data/coco/val2017/000000542856.jpg 3,169,594,380,5 547,56,574,132,9 186,264,237,316,0 238,265,289,315,0 135,264,185,316,0 484,237,495,279,0 -./model_data/coco/val2017/000000176446.jpg 2,0,230,253,63 223,24,640,276,73 -./model_data/coco/val2017/000000312340.jpg 139,111,406,343,15 -./model_data/coco/val2017/000000234607.jpg 1,85,190,453,0 165,74,375,463,0 127,266,171,280,65 167,250,180,261,65 175,262,183,279,65 -./model_data/coco/val2017/000000205647.jpg 47,207,524,320,7 -./model_data/coco/val2017/000000002592.jpg 0,0,637,361,60 222,34,432,247,41 27,216,616,314,43 -./model_data/coco/val2017/000000097585.jpg 122,478,195,639,75 2,488,60,634,75 8,348,78,466,75 277,418,340,577,75 391,475,479,640,75 385,293,480,457,75 397,111,460,253,75 245,87,344,228,75 114,282,214,455,75 128,113,192,249,75 33,59,94,182,75 119,0,209,97,75 22,196,72,304,75 41,0,443,95,75 -./model_data/coco/val2017/000000581781.jpg 136,216,433,316,46 214,375,446,437,46 561,6,639,41,46 467,0,538,25,46 48,85,169,151,46 467,280,640,458,46 2,184,139,343,46 206,306,446,405,46 439,94,599,266,46 582,141,640,228,46 75,105,173,212,46 2,2,44,172,46 193,183,442,246,46 0,20,639,477,46 -./model_data/coco/val2017/000000499266.jpg 62,94,591,397,67 0,23,269,480,0 452,8,540,108,0 536,44,583,103,0 587,104,639,169,56 -./model_data/coco/val2017/000000173371.jpg 551,44,611,165,41 30,352,79,573,42 564,399,612,612,42 309,0,511,84,42 426,9,612,162,43 71,85,409,420,53 287,383,448,532,53 2,82,72,345,53 1,1,610,607,60 2,449,64,546,53 -./model_data/coco/val2017/000000310072.jpg 223,0,482,69,2 0,1,135,68,2 170,0,241,36,2 120,87,528,311,13 631,7,640,22,2 0,0,131,71,7 228,0,480,68,7 -./model_data/coco/val2017/000000435003.jpg 171,109,335,261,62 235,192,640,422,56 0,190,243,358,63 434,249,465,264,64 251,243,404,288,66 55,269,201,329,66 334,128,425,246,62 -./model_data/coco/val2017/000000499622.jpg 93,77,361,388,3 151,41,273,336,0 -./model_data/coco/val2017/000000242678.jpg 319,183,438,315,17 351,163,413,227,0 -./model_data/coco/val2017/000000211825.jpg 0,0,488,295,0 229,192,375,347,55 410,104,440,132,73 458,55,640,277,69 391,95,410,130,73 586,84,640,286,0 -./model_data/coco/val2017/000000079144.jpg 138,141,272,264,21 254,179,342,365,21 -./model_data/coco/val2017/000000371552.jpg 152,329,200,378,32 304,116,340,181,0 29,199,148,234,0 134,149,176,226,0 567,209,583,223,32 560,182,608,220,0 183,56,289,374,0 348,139,381,220,0 277,194,355,219,13 276,179,352,195,13 -./model_data/coco/val2017/000000489924.jpg 83,0,545,542,0 252,431,457,610,36 -./model_data/coco/val2017/000000385997.jpg 296,299,414,396,16 461,147,599,300,58 356,141,487,287,56 203,340,214,351,32 215,372,227,383,32 447,445,468,478,39 507,421,528,468,39 294,285,424,425,59 549,235,572,266,75 -./model_data/coco/val2017/000000181753.jpg 332,229,594,391,57 49,241,303,418,57 299,256,316,285,75 33,91,104,201,17 257,288,280,291,73 254,292,284,297,73 250,297,287,303,73 261,282,275,289,73 45,240,304,422,56 515,272,639,423,56 359,347,390,375,41 234,338,490,416,60 258,291,281,295,73 355,345,391,377,45 -./model_data/coco/val2017/000000581100.jpg 375,170,457,378,23 235,142,387,400,23 453,218,527,263,19 90,239,204,304,19 -./model_data/coco/val2017/000000031296.jpg 276,181,285,206,39 233,0,269,29,74 287,151,292,163,39 280,152,284,164,39 291,140,297,149,39 274,137,280,162,39 303,167,310,182,39 296,137,303,153,39 294,193,300,211,39 384,203,475,368,56 211,251,338,425,56 85,258,174,383,56 550,170,636,303,56 164,194,400,259,60 535,163,562,184,60 230,169,247,185,41 248,159,264,173,41 248,173,265,186,41 2,166,70,245,60 462,113,549,132,60 560,113,640,282,0 514,100,583,261,0 347,122,479,354,0 369,116,431,203,0 321,96,404,181,0 277,91,334,152,0 216,98,264,171,0 196,109,232,180,0 142,120,202,245,0 412,69,462,135,0 63,113,223,395,0 30,108,87,253,0 319,141,327,159,41 6,158,14,171,41 235,100,260,132,56 176,102,202,117,56 506,145,546,258,56 107,105,140,146,56 474,119,506,185,56 287,169,297,200,39 240,139,349,170,60 144,109,279,125,60 493,131,529,185,60 226,63,254,84,0 422,175,435,203,27 12,157,21,169,41 211,91,219,99,41 147,103,176,155,56 65,107,91,132,56 269,99,294,151,56 467,112,490,166,56 423,81,427,90,67 320,103,359,129,56 -./model_data/coco/val2017/000000115885.jpg 345,3,500,250,15 219,166,499,375,59 0,33,370,375,63 -./model_data/coco/val2017/000000425221.jpg 154,296,215,312,4 2,397,68,503,0 346,473,393,517,0 260,513,470,632,13 120,494,215,638,13 200,499,265,574,13 59,525,112,578,13 3,447,27,501,24 362,522,459,640,56 253,519,356,577,56 328,518,389,589,56 31,557,169,632,56 132,499,216,582,56 53,566,133,587,56 183,498,205,510,56 330,520,426,615,56 304,495,325,507,56 266,497,341,538,13 208,409,255,475,4 437,492,475,542,28 165,495,182,510,56 129,496,192,535,56 65,587,153,612,56 -./model_data/coco/val2017/000000099054.jpg 142,243,263,289,4 2,58,427,602,4 60,549,102,602,0 261,468,277,495,0 298,492,330,569,0 195,326,230,395,7 -./model_data/coco/val2017/000000068093.jpg 332,75,640,185,2 231,77,358,282,3 0,115,603,478,3 378,60,569,452,0 349,30,462,310,0 -./model_data/coco/val2017/000000542625.jpg 208,213,297,315,14 375,147,491,210,2 83,182,133,220,2 2,1,145,355,7 138,59,148,86,9 372,11,388,23,9 410,4,428,15,9 243,284,305,457,12 303,87,316,95,2 478,81,489,100,9 511,132,516,144,10 505,131,521,158,10 520,149,640,228,2 286,221,640,478,2 624,182,640,223,2 -./model_data/coco/val2017/000000402992.jpg 417,173,584,311,19 303,115,460,213,19 456,101,571,184,19 44,26,181,93,19 131,9,208,53,19 182,3,250,31,19 40,32,125,67,19 145,197,432,409,19 17,134,315,282,19 59,96,240,159,19 -./model_data/coco/val2017/000000105335.jpg 78,289,203,382,51 267,290,353,358,51 388,365,476,435,51 21,245,117,312,51 2,233,612,562,45 174,0,596,283,0 237,277,284,342,50 119,560,330,612,0 201,388,241,422,51 0,394,83,453,51 231,306,313,371,51 -./model_data/coco/val2017/000000162415.jpg 38,99,488,631,0 271,292,478,526,35 -./model_data/coco/val2017/000000013546.jpg 468,4,576,258,0 455,44,474,101,0 510,208,550,258,36 205,115,299,142,13 102,115,176,144,13 456,99,467,101,36 315,110,397,134,13 413,107,491,133,13 -./model_data/coco/val2017/000000180560.jpg 251,55,605,426,0 0,8,368,421,0 261,340,347,400,55 -./model_data/coco/val2017/000000156924.jpg 178,89,468,330,0 179,309,209,327,65 115,184,162,332,56 33,156,66,177,65 51,44,295,327,0 122,142,137,156,65 266,166,289,196,65 -./model_data/coco/val2017/000000486573.jpg 264,404,387,593,75 -./model_data/coco/val2017/000000477689.jpg 186,286,293,566,27 43,65,419,589,0 -./model_data/coco/val2017/000000246963.jpg 460,225,533,317,3 394,193,431,250,3 167,151,233,242,3 213,136,274,219,3 90,136,150,214,3 83,97,138,144,0 150,121,216,212,0 221,109,277,218,0 438,150,528,295,0 360,129,438,248,0 437,81,480,125,11 -./model_data/coco/val2017/000000139883.jpg 144,347,268,425,29 249,295,339,363,29 252,398,356,427,29 74,406,172,427,29 -./model_data/coco/val2017/000000264335.jpg 63,45,346,592,14 -./model_data/coco/val2017/000000424721.jpg 300,81,370,150,47 392,157,415,242,51 222,129,281,250,51 244,149,294,250,51 240,135,393,302,51 162,133,250,211,47 0,0,56,66,56 -./model_data/coco/val2017/000000148707.jpg 315,194,387,266,49 214,175,280,245,49 -./model_data/coco/val2017/000000399296.jpg 411,104,509,189,52 389,87,486,163,52 351,75,464,153,52 327,170,386,225,52 320,51,418,119,52 335,59,432,135,52 308,191,368,242,52 302,209,356,258,52 363,160,412,208,52 371,138,416,190,52 554,73,640,267,0 352,147,401,209,52 -./model_data/coco/val2017/000000403817.jpg 57,47,332,371,15 330,127,500,370,63 343,127,500,347,62 -./model_data/coco/val2017/000000161609.jpg 245,270,375,348,16 109,188,169,340,0 158,211,207,346,0 278,67,640,475,0 72,201,434,473,24 139,275,158,322,26 182,227,208,284,26 -./model_data/coco/val2017/000000242411.jpg 145,238,217,308,74 276,598,424,640,2 90,608,163,640,2 8,570,102,639,7 159,521,337,633,7 32,500,43,525,9 236,588,298,640,0 76,564,86,571,9 105,246,114,307,74 125,623,242,640,2 -./model_data/coco/val2017/000000009448.jpg 1,1,549,392,25 128,101,382,631,0 -./model_data/coco/val2017/000000034452.jpg 318,178,405,314,0 326,250,349,263,29 381,249,398,271,29 -./model_data/coco/val2017/000000289702.jpg 330,198,606,422,16 137,43,291,249,16 -./model_data/coco/val2017/000000363072.jpg 0,313,441,487,6 -./model_data/coco/val2017/000000499313.jpg 44,35,592,397,53 506,0,575,19,41 4,0,640,468,60 522,1,640,104,40 397,1,501,72,41 -./model_data/coco/val2017/000000299609.jpg 185,323,291,410,17 -./model_data/coco/val2017/000000102411.jpg 188,181,416,357,3 239,146,281,197,0 218,126,337,354,0 28,142,60,251,0 276,123,392,320,0 202,174,216,213,0 389,166,430,207,0 569,164,618,231,0 103,198,119,219,0 178,179,193,214,0 59,154,119,252,0 1,198,38,293,2 508,140,554,193,0 437,224,445,237,26 -./model_data/coco/val2017/000000516173.jpg 58,156,227,585,0 167,51,193,82,0 170,283,238,446,37 -./model_data/coco/val2017/000000088269.jpg 82,307,426,480,48 391,99,618,326,48 339,14,586,145,44 29,2,566,313,45 -./model_data/coco/val2017/000000286182.jpg 191,194,234,286,39 169,197,195,242,39 151,193,173,235,39 190,200,210,241,39 4,164,26,223,39 82,175,119,232,39 378,403,477,514,56 41,254,473,631,60 221,94,357,307,0 91,455,189,477,42 354,454,410,473,42 269,370,366,395,44 142,474,256,581,45 265,434,384,544,45 225,332,286,387,45 145,335,213,389,45 117,270,240,342,45 325,468,352,496,50 270,443,299,477,50 322,488,341,501,50 299,448,324,466,50 308,492,336,522,50 271,470,289,498,50 28,177,47,215,39 127,196,150,235,39 458,372,478,407,73 429,323,476,374,73 44,182,73,230,39 211,100,228,131,39 306,471,320,482,50 345,491,368,518,50 319,465,332,483,50 260,309,270,318,51 280,330,294,341,51 435,329,478,401,73 -./model_data/coco/val2017/000000308466.jpg 181,351,338,480,61 52,412,232,480,71 -./model_data/coco/val2017/000000258793.jpg 592,233,616,246,2 439,375,532,471,12 179,231,195,268,0 576,232,597,244,2 -./model_data/coco/val2017/000000345252.jpg 90,104,235,276,62 513,290,627,479,56 225,321,376,347,66 29,149,221,295,63 205,28,598,478,0 -./model_data/coco/val2017/000000460333.jpg 146,238,429,359,59 385,289,640,475,56 153,281,234,393,56 301,218,399,332,0 -./model_data/coco/val2017/000000442456.jpg 158,115,166,118,67 209,69,618,246,2 607,20,640,128,0 606,32,621,56,26 1,44,204,103,2 1,93,211,209,2 111,33,230,284,0 0,41,35,57,2 204,72,614,245,7 -./model_data/coco/val2017/000000322610.jpg 281,124,538,211,25 204,310,240,402,26 100,226,137,324,26 383,327,465,423,26 14,153,41,206,26 49,147,72,181,26 106,108,238,469,0 42,130,78,239,0 88,126,125,272,0 109,133,139,218,0 225,114,246,280,0 359,194,501,474,0 77,142,99,219,0 0,143,10,162,0 419,373,639,474,13 546,140,640,420,0 0,209,14,332,0 5,124,49,280,0 0,325,25,422,26 213,167,238,254,0 0,133,22,229,0 544,138,640,193,25 73,155,93,185,26 -./model_data/coco/val2017/000000528524.jpg 271,215,347,357,18 124,268,263,520,18 -./model_data/coco/val2017/000000079034.jpg 211,103,327,406,10 202,101,227,113,2 161,100,189,111,2 256,101,269,115,2 151,100,159,110,2 5,99,23,111,2 -./model_data/coco/val2017/000000244019.jpg 265,106,347,369,10 -./model_data/coco/val2017/000000137106.jpg 0,164,492,335,0 0,2,640,427,59 -./model_data/coco/val2017/000000229997.jpg 133,61,194,165,14 220,40,317,130,14 273,291,382,404,14 416,309,558,389,14 0,260,96,353,14 196,115,430,306,21 -./model_data/coco/val2017/000000294831.jpg 515,152,640,354,0 171,112,523,310,53 484,10,625,124,63 299,21,640,103,60 612,4,640,53,41 -./model_data/coco/val2017/000000081594.jpg 194,205,385,399,25 168,248,302,631,0 174,418,196,477,26 -./model_data/coco/val2017/000000273551.jpg 0,222,129,383,3 459,199,640,451,3 49,191,472,450,3 -./model_data/coco/val2017/000000562581.jpg 549,299,556,305,32 222,153,228,160,32 45,82,132,194,0 49,68,73,112,38 -./model_data/coco/val2017/000000229358.jpg 198,75,215,118,39 299,170,311,241,27 468,0,496,153,27 271,95,378,243,0 464,0,640,423,0 451,322,482,361,41 305,360,555,421,71 410,300,458,316,45 335,150,354,171,67 369,280,391,361,79 -./model_data/coco/val2017/000000248616.jpg 515,251,536,273,32 182,72,313,376,0 0,70,184,399,0 370,84,585,345,0 462,204,491,258,38 237,57,296,181,38 165,218,186,233,38 -./model_data/coco/val2017/000000502136.jpg 3,289,124,393,58 332,304,399,385,58 352,338,380,385,75 48,347,75,394,75 -./model_data/coco/val2017/000000265777.jpg 2,298,606,572,60 223,10,522,374,0 254,101,331,382,40 533,139,595,343,40 57,395,505,538,53 11,481,565,602,53 -./model_data/coco/val2017/000000455085.jpg 2,4,412,552,5 177,256,224,324,0 -./model_data/coco/val2017/000000129062.jpg 451,302,587,351,25 0,198,112,474,12 532,343,625,474,0 431,425,512,480,60 106,424,297,480,60 312,416,492,476,60 143,381,163,426,12 -./model_data/coco/val2017/000000227898.jpg 46,198,263,345,17 577,187,640,304,2 324,138,398,244,0 469,174,515,212,0 439,199,493,273,0 501,185,550,269,0 0,242,15,263,0 52,242,114,287,13 -./model_data/coco/val2017/000000208208.jpg 267,0,640,241,4 -./model_data/coco/val2017/000000518326.jpg 67,177,533,467,59 197,86,492,265,59 234,275,298,459,0 300,376,379,436,0 488,103,640,250,59 -./model_data/coco/val2017/000000308328.jpg 148,201,231,377,0 311,166,396,281,0 545,247,630,391,0 372,321,506,436,28 502,396,640,480,28 296,182,340,251,28 196,150,255,199,28 230,214,264,231,28 205,224,256,266,28 256,174,307,203,28 129,193,144,213,28 262,228,302,251,28 32,299,164,479,0 216,253,639,480,7 135,176,169,225,28 263,191,308,233,28 213,197,260,220,28 162,177,214,220,28 71,77,394,340,7 386,41,610,245,7 -./model_data/coco/val2017/000000436738.jpg 370,348,467,391,2 451,346,500,381,2 154,296,388,401,5 380,306,452,354,7 121,287,133,313,9 104,283,113,311,9 133,333,152,396,0 61,339,90,408,0 133,364,145,374,73 264,347,396,404,2 -./model_data/coco/val2017/000000172595.jpg 348,19,465,162,62 20,34,234,360,56 0,0,43,49,56 228,31,336,143,63 339,192,377,220,64 253,142,363,207,66 548,117,605,147,73 218,186,324,287,26 602,104,611,127,39 208,10,218,22,39 479,2,558,73,62 573,5,639,120,62 208,114,226,122,67 54,22,81,25,66 218,193,321,285,24 -./model_data/coco/val2017/000000031269.jpg 170,191,448,362,22 397,167,618,341,22 0,211,73,381,22 -./model_data/coco/val2017/000000131444.jpg 180,359,265,625,27 67,5,478,628,0 -./model_data/coco/val2017/000000078426.jpg 0,64,275,319,15 15,146,500,330,60 267,76,356,165,41 -./model_data/coco/val2017/000000221872.jpg 28,262,389,404,51 28,231,357,346,51 52,292,383,407,51 553,1,632,425,42 377,0,576,178,45 7,3,404,421,45 391,176,614,422,45 -./model_data/coco/val2017/000000190923.jpg 261,1,329,110,9 307,352,372,460,26 328,296,375,500,0 0,225,33,387,0 317,294,328,326,0 303,289,312,323,0 297,289,305,324,0 292,287,299,322,0 331,296,344,328,0 214,272,221,300,0 207,272,212,297,0 272,281,279,314,0 202,269,209,291,0 10,196,52,255,7 178,263,183,281,0 164,258,170,280,0 58,236,233,306,0 -./model_data/coco/val2017/000000365886.jpg 44,163,166,369,67 0,1,500,369,0 -./model_data/coco/val2017/000000232348.jpg 126,143,410,472,70 -./model_data/coco/val2017/000000193181.jpg 211,35,241,160,34 21,110,307,500,0 188,325,419,568,0 236,22,293,88,0 284,58,326,125,0 45,3,100,103,0 14,1,60,122,0 339,70,364,103,0 247,60,295,123,0 328,6,365,57,0 155,42,190,100,0 389,63,426,128,0 192,433,238,474,35 114,9,150,72,0 380,42,421,95,0 1,0,425,163,0 -./model_data/coco/val2017/000000160012.jpg 1,1,109,389,39 0,85,148,197,56 3,157,638,454,60 507,5,613,73,2 155,0,539,182,0 501,142,524,164,42 484,132,519,153,43 99,200,620,460,53 393,155,629,233,53 -./model_data/coco/val2017/000000078420.jpg 289,249,639,480,15 397,0,591,155,56 0,2,443,474,63 -./model_data/coco/val2017/000000396200.jpg 384,192,417,212,2 621,177,639,255,2 527,70,541,100,9 474,66,487,100,9 338,279,366,300,36 536,317,571,339,36 503,191,522,217,2 274,111,288,128,9 294,114,308,128,9 563,0,594,37,9 256,233,283,258,32 472,153,621,323,0 414,172,494,214,7 308,102,390,283,0 -./model_data/coco/val2017/000000232649.jpg 123,320,375,500,61 1,227,204,355,71 5,0,91,108,0 -./model_data/coco/val2017/000000496954.jpg 386,0,534,183,39 0,185,230,480,42 472,69,640,327,45 494,82,640,249,49 165,196,426,415,55 4,0,369,130,55 -./model_data/coco/val2017/000000481386.jpg 41,472,86,510,39 96,96,320,582,0 410,69,426,101,40 287,135,311,160,41 354,133,374,158,41 50,228,131,276,45 9,407,64,446,39 0,403,55,429,39 273,145,288,160,41 359,117,384,134,41 296,176,310,193,41 315,176,324,194,41 319,179,336,205,41 133,395,160,443,39 49,400,89,440,39 317,140,338,159,41 310,123,328,146,41 3,401,33,410,39 29,466,73,498,39 64,493,84,518,39 301,68,322,108,40 386,70,412,102,40 276,89,287,108,40 369,71,388,104,40 352,59,366,103,40 289,92,301,108,40 396,57,411,66,40 250,91,265,111,40 270,135,288,147,41 0,15,100,146,58 59,51,426,221,41 -./model_data/coco/val2017/000000026204.jpg 374,257,509,330,2 253,198,401,304,5 33,235,56,287,0 15,228,36,280,0 522,259,603,307,2 133,195,211,302,7 388,246,432,270,2 578,253,639,318,2 110,159,125,189,9 354,229,374,254,0 65,235,69,248,0 163,242,291,332,2 430,245,523,304,7 -./model_data/coco/val2017/000000151820.jpg 131,310,282,427,56 348,291,512,421,56 497,271,637,425,56 597,211,637,274,56 353,185,372,207,56 186,217,424,306,60 302,234,320,251,41 217,266,227,282,44 591,271,629,418,26 249,139,335,235,0 136,131,239,263,0 342,158,531,426,0 354,140,445,231,0 63,144,211,383,0 214,226,229,257,40 227,243,243,276,40 331,221,347,254,40 246,234,260,250,41 512,223,521,232,44 248,188,264,215,56 34,227,74,422,56 543,150,600,256,0 387,201,407,249,39 349,239,364,270,40 191,252,210,266,41 503,175,600,355,0 -./model_data/coco/val2017/000000186873.jpg 92,220,612,281,8 207,205,228,231,0 223,202,250,233,0 340,198,368,241,0 265,203,289,235,0 290,208,310,235,0 311,204,346,246,0 167,213,200,235,0 245,205,265,234,0 107,196,125,222,0 -./model_data/coco/val2017/000000491725.jpg 165,167,296,190,8 295,127,385,189,8 234,165,261,171,8 450,165,499,186,8 395,166,410,174,8 0,160,74,191,8 127,107,234,179,8 70,98,99,181,8 381,170,457,189,8 0,115,61,147,8 0,143,67,169,8 -./model_data/coco/val2017/000000241297.jpg 137,135,437,384,6 -./model_data/coco/val2017/000000527695.jpg 1,2,640,425,60 54,0,640,426,45 219,176,349,292,50 307,91,561,300,50 201,30,407,179,50 358,81,443,171,50 419,0,526,86,50 162,34,227,101,50 329,0,472,56,50 -./model_data/coco/val2017/000000185950.jpg 66,64,260,317,0 153,309,196,355,36 -./model_data/coco/val2017/000000515350.jpg 172,164,239,214,0 172,199,279,226,37 -./model_data/coco/val2017/000000320554.jpg 223,195,345,294,15 40,0,483,278,13 -./model_data/coco/val2017/000000027620.jpg 298,172,613,479,56 224,40,367,163,63 236,175,391,209,66 394,168,424,182,64 15,391,146,448,66 177,108,215,173,39 241,129,346,149,66 -./model_data/coco/val2017/000000037751.jpg 291,241,325,314,3 364,370,539,480,3 279,197,336,300,0 299,214,326,247,24 -./model_data/coco/val2017/000000203864.jpg 251,100,432,439,0 108,82,217,337,0 338,272,422,327,38 78,162,115,199,38 112,155,125,165,32 -./model_data/coco/val2017/000000580197.jpg 584,220,629,245,27 189,306,454,474,0 492,84,640,465,0 179,231,235,248,27 65,98,318,480,0 -./model_data/coco/val2017/000000121242.jpg 316,156,512,321,17 615,192,639,208,2 58,196,64,204,2 28,193,53,205,2 483,191,576,264,2 567,180,605,191,2 617,181,638,191,2 7,194,24,201,2 97,193,111,202,2 239,102,293,216,0 58,205,108,304,0 109,165,153,217,0 328,144,537,215,17 570,194,575,210,0 569,186,593,200,2 606,195,612,209,0 574,193,582,210,0 583,187,604,197,2 66,192,92,202,2 0,198,13,208,2 47,193,60,200,2 513,191,571,220,7 1,182,616,203,2 -./model_data/coco/val2017/000000042889.jpg 63,376,349,500,66 58,49,343,350,77 -./model_data/coco/val2017/000000403122.jpg 208,395,219,406,32 140,261,220,527,0 48,207,80,252,0 186,369,283,415,38 277,125,294,141,0 276,51,327,101,0 370,128,383,144,0 382,94,425,168,0 357,95,386,135,0 381,56,414,93,0 351,54,383,95,0 303,128,332,142,0 247,121,271,139,56 256,112,279,129,56 105,193,134,254,0 312,110,347,143,0 -./model_data/coco/val2017/000000527220.jpg 3,3,166,158,2 345,3,441,155,3 335,6,433,128,3 395,5,498,165,3 -./model_data/coco/val2017/000000001818.jpg 178,1,640,425,22 0,1,637,425,22 -./model_data/coco/val2017/000000255912.jpg 296,63,573,296,48 291,14,563,133,48 0,1,640,355,60 153,212,283,312,50 556,0,640,99,39 -./model_data/coco/val2017/000000529762.jpg 284,325,348,397,48 1,269,640,480,60 236,58,640,474,0 409,166,510,394,40 140,330,327,461,45 220,262,307,306,67 0,310,211,371,73 -./model_data/coco/val2017/000000446651.jpg 0,78,223,328,2 491,231,640,421,3 257,82,603,426,0 182,182,325,421,0 288,109,320,160,0 -./model_data/coco/val2017/000000285349.jpg 21,33,425,375,75 -./model_data/coco/val2017/000000348881.jpg 567,273,599,347,0 0,1,161,265,4 251,106,274,168,0 0,23,30,64,4 561,313,573,333,28 -./model_data/coco/val2017/000000389933.jpg 3,82,533,474,16 1,0,640,472,57 -./model_data/coco/val2017/000000212800.jpg 42,213,562,352,8 283,204,359,277,0 169,178,214,252,0 401,191,440,228,0 324,197,370,263,0 437,187,471,223,0 78,175,106,230,0 105,161,153,242,0 25,130,100,180,25 48,128,138,174,25 105,112,222,197,25 168,121,246,170,25 228,127,346,172,25 185,172,269,199,25 256,166,356,222,25 315,144,416,195,25 340,108,451,147,25 188,120,250,140,25 433,150,513,223,25 240,115,308,146,25 254,205,305,270,0 219,197,265,264,0 201,200,242,258,0 141,180,179,244,0 421,185,444,215,0 103,164,127,199,0 342,125,447,163,25 51,153,412,250,0 -./model_data/coco/val2017/000000345261.jpg 330,333,440,575,23 133,337,242,568,23 -./model_data/coco/val2017/000000152870.jpg 209,25,418,618,23 142,267,188,339,23 -./model_data/coco/val2017/000000311909.jpg 0,46,639,448,5 -./model_data/coco/val2017/000000561679.jpg 245,323,292,350,2 -./model_data/coco/val2017/000000019786.jpg 71,58,324,318,57 166,0,303,370,0 250,16,479,371,0 444,86,483,131,63 295,345,310,367,65 254,73,263,91,65 -./model_data/coco/val2017/000000574425.jpg 164,22,620,383,5 69,144,169,241,5 -./model_data/coco/val2017/000000088462.jpg 297,49,640,271,5 24,187,82,230,2 173,180,232,219,2 144,182,184,212,2 93,182,118,203,2 81,180,100,198,2 78,177,94,193,2 335,163,350,188,11 130,184,157,207,2 112,184,136,205,2 71,176,85,189,2 44,176,62,188,2 60,176,71,185,2 54,160,61,167,2 47,155,53,160,2 42,159,53,169,5 -./model_data/coco/val2017/000000562443.jpg 70,2,503,436,22 -./model_data/coco/val2017/000000192699.jpg 416,290,640,450,3 0,200,315,450,0 95,378,304,457,3 490,259,532,335,24 258,41,524,457,0 -./model_data/coco/val2017/000000286907.jpg 232,340,381,565,61 -./model_data/coco/val2017/000000472623.jpg 153,231,178,303,0 125,239,152,305,0 247,228,425,529,0 191,347,425,602,1 -./model_data/coco/val2017/000000282298.jpg 472,43,577,142,74 351,293,372,334,24 90,328,114,368,26 178,259,238,478,0 252,272,306,441,0 302,271,328,342,0 404,278,431,349,0 449,273,495,392,0 525,277,571,414,0 337,287,345,313,24 451,53,460,162,74 342,266,363,359,0 1,268,63,423,0 217,263,262,409,0 98,272,151,434,0 41,268,72,325,0 363,267,431,467,0 354,273,376,399,0 1,253,639,479,0 -./model_data/coco/val2017/000000404484.jpg 86,90,169,165,16 207,69,314,151,58 25,45,44,118,62 176,23,262,107,0 53,116,93,145,77 -./model_data/coco/val2017/000000225946.jpg 182,159,509,273,6 67,204,99,258,11 -./model_data/coco/val2017/000000361621.jpg 46,1,595,424,15 0,177,637,422,71 -./model_data/coco/val2017/000000509451.jpg 327,119,360,175,27 88,33,116,103,27 0,48,129,369,0 99,61,204,375,0 150,97,287,375,0 245,64,363,370,0 297,11,430,367,0 52,0,500,370,0 438,347,497,375,39 104,57,114,92,39 143,278,167,314,41 82,276,104,319,41 -./model_data/coco/val2017/000000504389.jpg 399,73,466,239,0 42,91,103,203,0 367,134,426,153,38 100,123,134,138,38 -./model_data/coco/val2017/000000384136.jpg 228,70,465,409,0 315,187,398,414,78 -./model_data/coco/val2017/000000365655.jpg 45,161,456,317,5 543,254,553,285,0 -./model_data/coco/val2017/000000341921.jpg 357,173,372,183,2 228,170,234,175,2 490,182,509,189,2 288,244,405,386,0 235,288,522,472,13 278,334,333,355,73 469,383,531,423,24 435,178,452,186,2 539,181,556,188,2 -./model_data/coco/val2017/000000159684.jpg 73,139,639,358,6 6,116,38,148,74 -./model_data/coco/val2017/000000302536.jpg 227,210,341,344,57 111,178,117,183,32 116,172,121,177,32 114,33,305,371,0 282,190,300,202,65 106,183,113,188,32 101,175,106,179,32 107,172,112,176,32 84,177,90,183,32 0,306,71,370,0 -./model_data/coco/val2017/000000541291.jpg 28,277,272,403,71 75,266,181,287,71 -./model_data/coco/val2017/000000237984.jpg 112,94,243,229,56 28,135,638,417,13 -./model_data/coco/val2017/000000157767.jpg 196,144,314,421,0 465,159,560,421,0 447,164,485,279,0 562,59,640,422,0 74,178,141,376,0 131,185,178,345,0 30,201,79,370,0 393,227,402,236,67 300,233,318,244,67 376,269,405,284,45 191,188,249,405,26 0,190,49,395,0 177,193,211,315,0 476,195,488,209,0 478,190,500,220,0 282,229,295,255,41 360,216,386,238,73 328,157,423,269,0 170,242,185,272,26 391,257,414,271,41 309,286,528,427,60 391,177,420,221,0 336,261,343,271,44 335,271,352,284,41 411,251,420,261,44 -./model_data/coco/val2017/000000145781.jpg 3,0,604,340,16 311,202,640,480,39 0,166,96,304,39 -./model_data/coco/val2017/000000286553.jpg 10,379,68,479,39 0,383,19,480,39 11,140,47,245,25 34,146,71,249,25 429,401,492,473,56 15,269,55,382,56 0,329,441,480,60 52,11,387,365,0 277,58,640,479,0 250,329,280,384,41 154,378,236,426,42 231,387,338,400,42 38,404,114,430,43 38,357,213,452,53 186,406,378,474,53 299,392,344,400,43 0,392,17,479,41 190,447,258,480,41 -./model_data/coco/val2017/000000456496.jpg 403,332,438,398,14 128,289,180,344,14 17,291,93,337,14 149,67,291,306,0 266,179,304,231,26 -./model_data/coco/val2017/000000246883.jpg 257,226,305,351,0 385,229,421,358,0 329,264,481,304,37 294,263,320,311,37 -./model_data/coco/val2017/000000252294.jpg 75,1,292,491,59 52,48,239,460,0 230,79,304,246,0 1,2,166,494,59 338,124,362,164,41 -./model_data/coco/val2017/000000553788.jpg 0,229,640,358,59 0,26,373,315,0 283,190,607,329,63 -./model_data/coco/val2017/000000482319.jpg 186,140,587,473,56 24,46,369,472,0 262,118,584,373,0 186,317,540,443,0 367,232,400,299,79 105,110,125,140,73 78,106,101,143,73 112,102,137,137,73 88,105,116,144,73 124,108,138,128,73 371,236,388,275,79 361,291,368,301,79 -./model_data/coco/val2017/000000048924.jpg 283,108,467,406,3 383,224,444,291,24 266,204,345,248,26 -./model_data/coco/val2017/000000070229.jpg 453,312,477,381,0 7,204,481,625,13 287,365,348,433,13 4,262,375,631,77 -./model_data/coco/val2017/000000524280.jpg 73,12,640,631,15 -./model_data/coco/val2017/000000084752.jpg 23,99,620,329,4 492,345,523,364,2 517,346,547,362,2 288,345,304,356,2 298,343,315,355,2 549,339,588,363,7 475,337,504,354,7 528,335,554,348,2 378,345,395,362,2 377,340,384,349,2 558,333,582,342,2 310,340,333,356,7 585,343,618,361,2 -./model_data/coco/val2017/000000442993.jpg 136,140,155,156,74 228,469,301,483,8 363,313,371,325,58 339,314,361,329,58 342,262,348,271,58 361,259,370,270,58 245,312,267,328,58 177,307,211,322,58 27,331,43,347,58 332,262,342,271,58 28,255,37,270,58 292,510,366,520,8 304,482,370,491,8 240,480,306,494,8 237,494,304,505,8 -./model_data/coco/val2017/000000362716.jpg 435,177,465,210,32 113,42,505,423,0 132,11,221,165,38 -./model_data/coco/val2017/000000370208.jpg 62,107,443,335,1 0,194,48,261,0 181,18,229,104,12 217,18,272,104,12 -./model_data/coco/val2017/000000016439.jpg 134,165,369,354,63 412,262,455,353,40 -./model_data/coco/val2017/000000464476.jpg 279,209,485,370,62 155,38,269,152,6 50,58,117,247,0 281,40,446,207,62 -./model_data/coco/val2017/000000338560.jpg 56,165,137,200,2 102,160,177,197,2 0,166,58,205,2 404,152,466,182,2 35,164,83,184,2 197,100,209,122,9 263,120,274,141,9 155,103,171,111,9 205,101,221,109,9 132,165,318,612,10 108,59,135,70,9 176,58,205,70,9 -./model_data/coco/val2017/000000534041.jpg 194,38,396,368,0 223,2,500,369,0 256,206,300,230,52 71,60,225,138,26 378,0,472,152,0 345,0,378,82,0 365,95,500,192,13 0,257,283,374,60 135,167,206,318,39 52,1,96,58,56 0,0,49,56,56 48,18,103,59,13 395,23,436,74,24 400,49,436,69,60 228,14,288,28,60 -./model_data/coco/val2017/000000461036.jpg 200,124,308,235,21 -./model_data/coco/val2017/000000490515.jpg 190,117,511,304,0 225,145,273,218,24 488,216,511,307,31 -./model_data/coco/val2017/000000228981.jpg 93,124,247,373,67 402,150,487,340,67 -./model_data/coco/val2017/000000568584.jpg 0,162,293,420,57 224,24,255,54,74 331,158,546,404,56 298,66,541,374,0 -./model_data/coco/val2017/000000043435.jpg 462,219,483,268,0 167,466,207,482,37 105,477,200,514,37 442,236,509,277,37 183,428,219,473,0 -./model_data/coco/val2017/000000127092.jpg 147,408,218,458,2 62,381,121,416,2 24,420,48,477,0 32,450,43,470,26 387,432,399,455,10 379,343,390,367,11 548,406,588,448,58 0,347,15,371,2 -./model_data/coco/val2017/000000071226.jpg 187,147,528,416,16 67,53,227,217,16 313,58,465,129,15 42,224,119,308,73 1,282,94,344,73 1,17,640,417,59 -./model_data/coco/val2017/000000031322.jpg 411,206,469,293,14 106,190,198,239,14 476,14,481,27,0 480,15,487,27,0 321,51,420,86,8 176,37,234,60,8 404,53,494,89,8 610,74,640,102,8 275,46,326,69,8 119,44,193,74,8 51,46,122,76,8 16,53,68,78,8 245,44,288,61,8 468,48,517,63,8 279,232,327,273,14 239,129,269,169,14 221,117,251,140,14 223,102,257,123,14 276,133,320,147,14 360,168,397,214,14 560,188,580,202,14 230,194,264,228,14 456,155,520,191,14 365,144,397,178,14 288,24,334,56,8 328,131,380,161,14 252,105,547,177,14 -./model_data/coco/val2017/000000240023.jpg 178,557,204,584,32 400,95,480,215,56 214,142,404,640,0 386,1,479,50,0 262,0,355,32,0 158,0,236,30,0 146,408,312,464,38 130,0,168,25,0 67,0,141,25,0 -./model_data/coco/val2017/000000231822.jpg 460,0,499,101,39 1,4,500,355,60 88,23,163,154,41 193,2,259,135,41 298,194,346,333,42 333,201,350,304,43 295,168,404,241,44 322,139,434,214,45 155,139,275,241,48 58,180,178,278,48 182,232,224,266,50 212,231,242,269,50 231,206,286,277,50 354,251,435,318,55 -./model_data/coco/val2017/000000259830.jpg 267,444,361,568,1 338,426,425,579,1 0,383,120,533,3 0,349,35,455,0 220,476,288,560,1 -./model_data/coco/val2017/000000125952.jpg 60,5,311,584,28 -./model_data/coco/val2017/000000460683.jpg 364,357,463,497,56 0,0,381,632,0 348,305,458,419,0 192,87,304,539,27 436,479,478,640,56 418,350,476,483,60 -./model_data/coco/val2017/000000335658.jpg 384,259,480,420,64 1,104,326,274,66 -./model_data/coco/val2017/000000449406.jpg 104,97,310,274,22 -./model_data/coco/val2017/000000245651.jpg 2,34,362,371,55 -./model_data/coco/val2017/000000292446.jpg 32,0,110,109,62 241,107,349,289,62 265,188,612,354,0 366,109,491,210,0 193,62,252,170,0 262,82,278,112,0 278,384,413,477,53 75,418,162,491,53 452,361,523,396,53 144,75,185,145,62 26,37,149,155,63 0,107,10,136,0 534,373,597,411,53 -./model_data/coco/val2017/000000338625.jpg 10,236,125,277,2 530,204,577,243,2 136,80,486,319,5 599,191,628,256,0 615,199,630,252,0 113,226,128,259,0 133,225,145,244,0 39,234,50,250,0 4,234,20,272,0 403,201,421,223,0 632,192,640,232,0 524,209,532,217,2 115,250,126,264,1 3,248,9,255,26 -./model_data/coco/val2017/000000043816.jpg 93,215,108,227,32 250,80,453,344,0 479,193,640,370,0 318,187,427,220,34 480,227,527,274,35 -./model_data/coco/val2017/000000364557.jpg 193,148,252,285,0 181,181,233,232,37 309,192,335,232,37 276,158,316,288,0 -./model_data/coco/val2017/000000559547.jpg 463,185,487,206,32 0,25,201,485,0 210,7,389,477,0 163,300,229,491,34 455,1,640,491,0 228,320,266,384,35 -./model_data/coco/val2017/000000125472.jpg 88,1,403,500,0 7,490,287,558,36 -./model_data/coco/val2017/000000347174.jpg 109,0,427,640,59 166,53,419,419,0 -./model_data/coco/val2017/000000273420.jpg 123,241,185,324,56 169,107,270,306,0 383,216,425,236,2 174,286,191,311,41 190,126,202,146,67 2,291,499,395,59 -./model_data/coco/val2017/000000453040.jpg 60,230,392,640,55 0,290,480,400,60 -./model_data/coco/val2017/000000572303.jpg 12,33,620,352,6 0,279,19,335,2 -./model_data/coco/val2017/000000323751.jpg 119,114,484,368,6 476,95,482,112,9 572,105,578,115,9 552,208,568,280,0 545,396,574,424,13 208,247,232,268,0 571,95,576,105,9 217,259,222,269,27 468,108,503,128,6 -./model_data/coco/val2017/000000511453.jpg 161,2,280,192,39 0,0,89,173,39 0,177,612,603,53 -./model_data/coco/val2017/000000192670.jpg 565,172,583,186,32 0,118,163,196,2 220,95,399,177,2 367,120,513,363,0 550,100,592,209,0 543,101,563,157,0 584,95,621,209,0 10,123,59,209,0 601,86,639,209,0 507,113,541,206,0 222,266,257,309,35 499,195,542,230,34 565,114,573,131,39 79,154,128,212,56 43,165,59,211,56 108,231,256,391,0 0,154,34,212,0 359,92,516,159,2 166,101,227,162,7 55,101,161,158,2 544,80,586,98,2 -./model_data/coco/val2017/000000127517.jpg 397,0,640,158,25 3,0,134,456,37 129,1,257,434,37 231,2,372,420,37 310,0,460,405,37 408,0,518,381,37 478,44,527,354,37 509,74,580,365,37 580,50,623,339,37 612,84,639,316,37 532,58,598,356,37 -./model_data/coco/val2017/000000074209.jpg 171,197,181,223,39 163,193,170,223,39 546,130,591,182,74 318,338,408,480,56 414,322,501,480,56 495,298,584,463,56 514,226,531,236,46 529,236,541,247,47 518,233,530,243,47 539,236,550,246,47 528,230,540,237,49 549,235,560,241,49 0,233,617,480,60 199,237,280,269,69 242,256,413,290,71 304,192,320,222,41 117,220,143,238,45 506,226,569,250,45 220,359,320,474,56 2,97,114,260,72 417,238,427,268,39 -./model_data/coco/val2017/000000314709.jpg 223,89,338,273,0 176,243,386,292,30 -./model_data/coco/val2017/000000229849.jpg 59,123,152,176,38 151,152,408,529,0 385,281,424,355,0 380,238,423,287,0 332,233,390,306,0 211,245,247,293,0 138,246,209,291,0 93,311,151,379,0 93,353,150,420,0 163,378,235,420,0 360,288,407,370,0 13,354,78,419,0 43,320,97,383,0 137,337,166,380,56 169,305,212,361,56 46,304,87,322,56 394,359,427,382,56 115,260,148,274,56 274,171,309,189,56 143,320,192,364,56 86,304,127,324,56 28,321,59,339,56 54,245,87,263,56 62,215,88,232,56 306,99,340,151,0 134,247,169,260,56 109,288,148,305,56 0,16,426,380,56 1,0,426,430,0 -./model_data/coco/val2017/000000544605.jpg 278,307,321,349,9 -./model_data/coco/val2017/000000320642.jpg 143,25,302,317,0 2,5,143,318,0 347,180,420,315,0 442,165,498,314,0 144,132,189,164,65 233,122,248,139,65 -./model_data/coco/val2017/000000473219.jpg 470,10,542,119,58 235,9,297,113,58 326,90,500,428,0 138,116,338,422,0 265,116,409,421,0 380,11,463,99,58 154,5,218,106,58 348,216,370,259,27 303,3,369,112,58 496,236,614,418,56 97,154,338,274,56 472,163,588,241,56 250,226,298,420,56 122,225,244,298,56 278,255,379,308,73 81,0,150,37,58 499,134,640,426,0 0,179,175,420,0 0,149,90,219,56 0,220,30,297,56 586,165,610,236,56 572,0,638,46,58 -./model_data/coco/val2017/000000504074.jpg 484,156,569,238,56 40,137,146,255,56 320,157,407,304,56 100,75,203,359,0 249,231,405,352,63 134,192,150,224,40 522,198,640,422,56 545,199,631,406,56 260,87,553,427,0 -./model_data/coco/val2017/000000314177.jpg 167,280,323,599,0 206,557,275,598,61 -./model_data/coco/val2017/000000143556.jpg 20,299,198,628,3 337,268,401,445,3 15,232,239,521,0 377,231,472,474,0 368,237,411,290,0 134,226,178,284,0 390,211,422,266,0 421,218,447,236,0 439,203,472,266,0 368,271,480,499,3 -./model_data/coco/val2017/000000561256.jpg 321,120,534,472,0 523,308,635,349,71 510,308,535,352,71 -./model_data/coco/val2017/000000070158.jpg 124,186,408,599,22 27,97,159,512,22 15,22,348,285,22 -./model_data/coco/val2017/000000466085.jpg 228,397,425,563,71 -./model_data/coco/val2017/000000496571.jpg 23,186,73,256,67 50,1,310,165,0 257,183,304,245,41 239,437,347,464,42 193,102,227,180,42 254,377,277,494,44 372,230,426,303,45 290,361,359,434,41 358,329,421,388,41 117,203,178,265,41 274,359,291,497,43 77,191,181,206,43 82,559,349,640,0 0,132,427,520,60 -./model_data/coco/val2017/000000404479.jpg 620,342,628,349,2 70,343,85,349,2 186,230,622,366,4 -./model_data/coco/val2017/000000102356.jpg 166,52,403,412,0 14,166,380,629,3 -./model_data/coco/val2017/000000344059.jpg 190,152,486,422,23 51,160,207,396,23 -./model_data/coco/val2017/000000393569.jpg 375,380,579,453,59 452,169,592,322,59 375,121,571,341,0 64,226,167,450,61 374,314,501,411,24 111,174,133,231,39 82,185,108,235,39 40,297,103,381,71 366,16,604,82,59 443,205,522,287,63 -./model_data/coco/val2017/000000253386.jpg 145,24,461,327,16 2,0,83,277,0 419,1,499,321,0 -./model_data/coco/val2017/000000125245.jpg 145,103,267,244,50 -./model_data/coco/val2017/000000525322.jpg 235,210,442,349,4 119,140,349,252,4 -./model_data/coco/val2017/000000293300.jpg 0,281,91,422,0 201,75,474,311,20 118,145,237,285,20 -./model_data/coco/val2017/000000555972.jpg 2,335,113,408,57 97,291,263,640,75 259,571,480,640,56 270,384,390,421,73 241,379,275,408,73 245,369,270,396,73 310,233,338,321,75 50,262,82,328,75 250,443,480,592,60 276,377,388,402,73 -./model_data/coco/val2017/000000491213.jpg 60,81,303,243,2 232,111,260,121,2 46,119,56,143,0 290,92,298,105,9 259,84,262,89,9 242,84,247,93,9 195,2,640,474,3 48,81,146,149,7 -./model_data/coco/val2017/000000455448.jpg 0,160,356,639,0 53,86,460,455,55 234,2,478,584,0 -./model_data/coco/val2017/000000161032.jpg 324,145,476,268,25 353,201,525,399,0 -./model_data/coco/val2017/000000298396.jpg 310,323,363,392,56 607,362,640,472,56 238,323,608,472,60 352,388,471,464,45 365,411,430,433,46 64,262,252,315,71 409,174,419,194,76 423,174,435,188,76 141,147,181,156,43 149,159,177,166,43 148,173,179,181,43 154,189,173,191,43 371,213,459,351,56 446,311,581,340,56 456,148,565,266,69 454,281,558,324,69 39,0,89,42,74 154,184,176,186,43 155,193,174,196,43 153,196,175,199,43 156,206,174,208,43 138,208,143,246,43 377,260,382,304,43 384,266,391,296,43 401,258,409,297,43 161,246,177,259,45 300,226,318,240,45 -./model_data/coco/val2017/000000464358.jpg 52,195,422,423,59 281,164,385,279,56 471,81,533,155,62 -./model_data/coco/val2017/000000179487.jpg 181,340,207,364,32 396,250,408,264,32 140,224,376,583,0 225,168,280,229,0 184,156,209,188,0 18,129,83,256,0 173,143,246,248,0 108,150,180,258,0 249,295,299,386,38 64,194,131,258,0 81,133,130,189,0 455,198,512,419,0 264,131,280,207,0 228,125,278,188,0 334,113,408,402,0 0,159,41,264,0 -./model_data/coco/val2017/000000471789.jpg 484,428,516,454,16 375,314,396,366,0 368,273,387,326,0 368,289,376,301,29 320,40,419,69,33 266,241,282,262,0 242,245,251,257,0 216,235,221,246,0 208,233,216,243,0 504,386,521,449,0 239,245,244,255,0 120,355,132,373,0 56,320,66,349,0 446,392,469,451,0 256,243,264,260,0 -./model_data/coco/val2017/000000009891.jpg 107,137,124,188,27 284,79,640,299,2 206,92,357,416,0 76,105,202,286,0 305,112,354,155,0 438,119,476,153,0 174,244,310,405,28 198,129,239,188,2 158,134,208,169,2 411,292,491,382,24 414,243,492,349,28 339,286,397,313,24 230,152,243,198,2 -./model_data/coco/val2017/000000281754.jpg 31,0,412,220,25 50,20,234,588,0 144,187,299,620,0 0,241,56,313,26 -./model_data/coco/val2017/000000427034.jpg 280,177,640,352,16 232,87,639,325,0 1,101,640,478,63 64,96,79,134,74 208,26,241,85,16 -./model_data/coco/val2017/000000450399.jpg 270,64,432,248,0 205,49,318,175,0 372,61,445,214,0 532,73,569,131,0 53,1,266,300,0 590,65,631,116,0 294,430,339,473,54 189,443,235,476,54 268,307,295,321,54 308,256,345,272,54 356,217,384,236,54 355,426,400,466,54 247,423,299,470,54 283,413,338,444,54 298,399,343,419,54 210,452,266,480,54 158,417,215,447,54 149,444,201,473,54 612,39,640,112,0 487,168,640,322,0 486,62,544,114,0 179,74,256,143,0 188,187,251,220,45 203,296,340,384,45 331,426,358,451,54 578,80,635,138,0 553,61,570,78,0 493,177,545,212,67 473,49,515,107,0 202,119,226,144,44 159,180,561,479,54 227,62,256,114,0 -./model_data/coco/val2017/000000170613.jpg 23,161,224,497,0 205,251,414,359,37 28,158,142,370,37 263,180,404,451,0 -./model_data/coco/val2017/000000217285.jpg 323,130,355,238,34 409,322,445,358,35 261,162,369,414,0 510,168,583,427,0 376,210,474,422,0 422,56,464,117,0 308,72,348,120,0 238,48,313,114,0 173,46,221,112,0 131,70,174,113,0 335,75,380,120,0 598,39,640,91,0 577,183,629,268,0 595,107,629,128,56 594,89,630,107,56 560,86,596,104,56 504,102,561,126,56 528,86,561,105,56 444,101,493,124,56 58,73,105,111,0 483,102,520,125,56 612,108,640,129,56 626,90,640,109,56 530,26,593,87,0 1,1,639,268,0 -./model_data/coco/val2017/000000013291.jpg 288,138,499,300,0 238,135,319,282,0 41,66,166,298,0 90,151,135,194,29 217,185,250,221,29 182,195,215,232,29 252,165,294,206,29 159,136,244,267,0 -./model_data/coco/val2017/000000504415.jpg 185,131,193,139,32 0,185,109,230,2 81,178,285,242,2 248,188,302,226,2 330,149,406,306,0 300,162,349,187,38 213,165,273,179,2 492,185,603,226,2 -./model_data/coco/val2017/000000541055.jpg 271,79,335,283,0 201,101,287,324,0 154,78,208,313,0 325,79,488,326,0 73,300,200,317,30 274,112,288,156,24 274,112,308,162,24 399,116,449,170,24 209,52,275,157,0 153,312,349,340,30 193,286,406,306,30 -./model_data/coco/val2017/000000025394.jpg 41,133,287,552,0 355,409,419,574,40 327,269,337,295,40 213,372,256,430,39 51,0,75,51,39 84,1,102,57,39 263,17,294,104,39 147,0,163,61,39 129,18,146,68,39 311,67,331,112,39 332,71,346,116,39 42,143,71,160,39 172,7,184,41,39 342,76,352,117,39 344,263,359,296,40 365,260,375,293,40 356,265,366,284,40 244,438,375,628,41 366,477,480,556,0 233,21,251,93,39 360,83,372,120,39 336,266,346,293,40 435,258,480,410,0 358,280,366,294,40 23,41,479,457,39 -./model_data/coco/val2017/000000255536.jpg 166,226,241,321,56 30,219,74,305,56 110,232,165,317,56 71,235,120,304,56 119,130,177,151,3 134,120,163,149,0 124,119,148,152,0 184,120,374,306,25 -./model_data/coco/val2017/000000050326.jpg 10,32,181,286,0 436,95,499,147,33 313,0,500,260,56 -./model_data/coco/val2017/000000151000.jpg 246,47,297,75,67 175,35,390,416,0 566,320,607,426,0 136,139,252,424,0 224,170,301,401,26 556,367,583,412,26 488,382,516,425,26 453,224,518,424,0 492,265,548,426,0 362,175,422,379,0 600,379,640,426,0 207,228,225,251,27 165,281,199,301,67 -./model_data/coco/val2017/000000058539.jpg 305,222,355,421,27 415,136,640,418,2 202,144,300,411,2 0,26,79,414,0 218,60,535,416,0 36,17,220,421,0 205,84,258,123,0 214,118,281,144,2 30,88,58,121,2 433,109,474,173,0 522,42,640,151,2 -./model_data/coco/val2017/000000194471.jpg 68,138,235,332,0 129,309,258,363,36 -./model_data/coco/val2017/000000129113.jpg 0,2,640,475,60 22,151,611,309,44 -./model_data/coco/val2017/000000146489.jpg 180,3,291,323,39 1,279,88,416,67 1,79,202,410,40 317,144,627,262,53 2,2,640,480,60 69,0,196,170,40 -./model_data/coco/val2017/000000307658.jpg 2,54,530,631,21 -./model_data/coco/val2017/000000132329.jpg 163,31,215,213,39 217,32,267,213,39 265,32,321,214,39 107,85,161,214,39 2,3,426,634,72 -./model_data/coco/val2017/000000326082.jpg 229,202,273,234,62 478,253,568,408,56 530,219,577,243,56 608,240,634,292,56 2,265,269,421,57 27,209,136,303,57 446,225,619,389,60 533,241,565,253,46 153,264,199,277,63 211,287,231,292,65 519,241,577,260,45 460,234,468,254,56 609,234,629,250,56 461,232,533,342,56 473,226,492,251,56 27,208,137,300,56 604,75,638,105,74 -./model_data/coco/val2017/000000431896.jpg 106,56,575,401,6 -./model_data/coco/val2017/000000553511.jpg 48,260,190,319,2 183,269,231,307,2 324,265,384,296,2 269,182,275,201,9 319,181,327,199,9 83,27,105,75,9 397,296,416,333,10 439,259,459,295,0 97,270,113,282,0 321,260,331,269,2 454,255,500,266,2 430,235,438,244,9 112,189,125,216,9 45,166,54,189,9 0,153,6,188,9 -./model_data/coco/val2017/000000458768.jpg 48,252,205,348,57 282,229,346,253,13 479,304,631,346,69 411,246,427,295,69 205,330,308,365,71 408,206,428,252,69 -./model_data/coco/val2017/000000054592.jpg 290,44,534,412,0 100,159,205,322,0 273,46,344,411,30 437,61,541,230,24 63,269,206,304,30 -./model_data/coco/val2017/000000398810.jpg 221,148,498,433,15 96,131,194,213,15 -./model_data/coco/val2017/000000471087.jpg 131,261,208,493,27 14,27,409,492,0 -./model_data/coco/val2017/000000507081.jpg 4,63,79,631,72 47,375,125,528,56 352,323,370,354,41 309,322,317,335,41 44,368,108,427,60 347,417,435,630,69 -./model_data/coco/val2017/000000119452.jpg 34,0,640,480,46 219,1,341,133,46 1,182,312,473,49 486,66,640,408,49 389,221,465,305,47 458,262,496,342,47 -./model_data/coco/val2017/000000225184.jpg 192,353,234,393,16 323,455,369,519,18 379,431,429,494,18 268,431,322,500,18 -./model_data/coco/val2017/000000414673.jpg 153,94,200,180,0 463,264,499,328,0 289,62,342,185,0 161,129,249,254,0 130,138,164,178,0 414,111,448,145,0 452,119,499,244,0 188,93,217,152,0 109,90,149,141,0 79,93,118,188,0 130,170,166,192,34 252,215,262,224,32 468,179,487,194,35 90,137,104,155,35 339,290,408,306,34 1,97,27,137,56 38,86,71,141,0 0,85,20,135,0 245,107,279,156,0 111,100,143,145,56 191,103,222,148,56 330,115,343,147,56 468,109,491,125,56 36,101,78,140,56 60,0,499,331,0 -./model_data/coco/val2017/000000343561.jpg 13,138,161,333,0 204,243,345,413,1 352,180,462,351,1 585,147,640,257,1 19,251,189,420,1 594,156,613,222,1 546,170,569,236,1 18,123,37,181,26 209,85,227,117,26 313,103,397,239,0 359,94,459,268,0 479,92,549,196,0 419,38,433,56,0 112,87,204,278,0 444,164,638,423,0 99,0,157,121,0 157,0,194,68,0 248,30,276,91,0 459,85,492,111,1 566,130,598,203,1 130,207,185,287,1 321,194,388,325,1 432,174,490,274,1 125,208,222,318,1 62,67,84,99,26 16,26,59,138,0 175,26,216,154,0 199,131,333,370,0 1,0,639,228,0 66,45,163,91,1 -./model_data/coco/val2017/000000403353.jpg 2,144,457,473,59 172,306,305,399,73 -./model_data/coco/val2017/000000502229.jpg 8,487,572,566,6 11,503,391,577,6 10,542,274,601,6 495,457,598,483,6 -./model_data/coco/val2017/000000001993.jpg 258,194,614,414,59 109,250,227,408,56 0,298,35,408,56 0,251,154,419,60 -./model_data/coco/val2017/000000036494.jpg 387,345,395,368,39 290,287,295,301,39 199,199,202,208,39 389,38,567,251,74 287,356,410,416,60 106,220,143,281,0 178,266,218,388,0 374,291,420,356,0 245,255,288,348,0 569,283,611,330,0 605,276,627,311,0 117,279,143,298,45 287,297,302,312,60 469,282,506,295,60 277,271,302,279,60 69,338,110,369,60 533,317,597,340,60 461,260,497,276,60 407,342,467,360,60 366,254,389,258,60 359,281,411,299,60 200,251,208,260,60 350,212,358,233,75 404,324,457,422,0 286,270,291,277,41 307,368,331,381,45 415,376,462,424,56 364,386,415,423,56 271,389,324,423,56 34,361,105,424,56 487,351,523,421,56 616,305,629,328,56 360,273,379,288,56 377,255,396,284,56 391,274,410,288,56 533,326,562,368,56 315,305,381,369,0 401,253,425,289,0 207,373,265,424,56 569,321,613,377,56 85,362,113,390,60 159,200,184,236,72 332,344,396,423,0 507,299,549,360,0 528,283,559,318,0 287,264,290,276,39 261,343,286,414,56 224,274,266,391,0 306,316,341,353,60 85,220,611,384,0 180,252,624,426,60 149,252,526,325,56 -./model_data/coco/val2017/000000412286.jpg 165,111,179,125,32 89,149,141,207,38 76,155,206,450,0 -./model_data/coco/val2017/000000455157.jpg 243,135,446,308,25 286,286,589,526,60 159,158,332,504,0 210,365,459,564,13 353,329,634,496,13 547,322,640,370,13 530,257,640,326,60 274,272,341,299,63 -./model_data/coco/val2017/000000024243.jpg 310,49,389,315,0 41,60,307,473,0 556,69,560,80,0 564,67,573,94,0 533,66,541,81,0 272,9,539,340,72 0,308,28,347,41 30,275,60,327,41 581,68,587,90,0 626,69,634,93,0 591,69,602,86,0 619,89,639,315,0 574,67,581,91,0 551,66,558,75,0 0,316,22,358,41 290,167,306,192,41 541,66,549,79,0 601,72,608,79,0 558,50,592,80,0 -./model_data/coco/val2017/000000250137.jpg 2,7,431,151,25 73,306,99,342,41 145,312,432,633,26 153,184,416,511,0 366,235,480,475,0 0,192,158,640,0 56,198,163,553,0 0,451,31,640,0 329,249,388,329,0 426,227,469,291,0 448,219,480,359,0 350,208,389,256,0 0,228,22,277,0 405,400,455,633,26 -./model_data/coco/val2017/000000430056.jpg 219,123,400,276,48 101,117,500,164,66 56,118,232,273,48 -./model_data/coco/val2017/000000213255.jpg 185,402,231,530,39 231,400,279,532,39 274,403,327,537,39 192,135,345,219,2 388,132,438,170,2 361,93,365,101,9 375,364,394,395,52 317,388,350,449,52 331,136,386,167,2 439,145,452,158,2 373,106,381,117,9 467,89,471,94,9 346,392,379,449,48 328,358,343,393,52 358,365,375,392,52 295,371,327,378,52 321,338,335,365,52 256,374,330,384,52 364,338,382,369,52 273,364,328,374,52 253,342,265,366,52 116,134,207,200,2 378,339,397,369,52 464,131,475,153,2 473,133,480,140,2 344,370,359,392,52 1,10,223,630,0 335,340,350,366,52 257,340,372,450,52 -./model_data/coco/val2017/000000033368.jpg 180,102,191,117,32 158,41,258,434,0 134,234,168,320,38 -./model_data/coco/val2017/000000289586.jpg 92,97,426,640,23 -./model_data/coco/val2017/000000565607.jpg 446,0,616,286,10 16,197,182,281,58 179,184,335,269,58 334,160,413,252,58 396,159,472,228,58 587,145,639,218,58 311,81,405,164,58 38,148,86,195,58 96,45,127,108,58 356,12,400,45,58 -./model_data/coco/val2017/000000157756.jpg 227,152,267,186,74 32,438,60,513,0 69,436,94,509,0 402,452,432,516,0 466,453,477,477,0 157,441,164,465,0 6,441,79,487,2 87,441,102,506,0 231,467,282,508,1 376,372,396,419,9 461,420,469,435,9 471,402,480,424,9 406,389,424,436,9 54,463,60,473,26 447,450,464,475,0 317,446,434,507,7 397,442,416,472,0 319,446,327,462,0 102,448,110,463,0 314,457,332,489,2 -./model_data/coco/val2017/000000411953.jpg 182,166,238,340,27 73,53,360,375,0 313,288,382,375,0 -./model_data/coco/val2017/000000216516.jpg 135,118,245,587,0 0,528,410,618,30 -./model_data/coco/val2017/000000057238.jpg 32,187,116,335,56 0,217,34,371,56 0,218,57,258,60 168,55,375,492,72 -./model_data/coco/val2017/000000018575.jpg 527,52,606,143,39 7,1,640,472,60 0,134,20,198,43 459,71,537,165,39 468,2,553,91,39 317,162,637,470,45 1,191,268,425,48 231,0,363,79,40 -./model_data/coco/val2017/000000215723.jpg 76,29,422,122,25 1,97,640,474,2 370,0,515,170,9 178,113,296,263,0 346,132,469,257,0 4,92,638,472,7 -./model_data/coco/val2017/000000516916.jpg 282,77,421,187,62 2,69,152,195,62 195,219,225,238,67 344,203,382,217,67 90,197,295,421,56 369,91,540,241,63 145,84,256,185,63 451,218,639,393,63 390,242,419,266,64 222,200,386,269,66 -./model_data/coco/val2017/000000556873.jpg 99,334,243,490,55 -./model_data/coco/val2017/000000204329.jpg 172,272,202,290,0 241,244,250,272,0 226,277,245,292,0 57,123,171,503,37 17,270,54,280,0 346,238,416,244,0 5,245,9,252,0 353,239,359,245,0 29,272,33,276,0 -./model_data/coco/val2017/000000189806.jpg 263,193,443,296,16 130,165,225,269,15 448,28,499,197,57 23,5,73,84,57 -./model_data/coco/val2017/000000416745.jpg 288,419,373,607,61 176,373,228,405,71 -./model_data/coco/val2017/000000438862.jpg 162,323,203,363,32 44,47,227,363,0 125,33,180,154,0 580,88,636,109,13 252,93,282,112,13 301,93,334,105,13 249,80,440,417,0 408,11,506,288,0 482,39,519,141,0 483,90,503,124,0 -./model_data/coco/val2017/000000506004.jpg 105,386,149,412,8 28,379,98,405,8 544,305,553,314,74 537,306,540,314,74 -./model_data/coco/val2017/000000101787.jpg 182,281,221,314,4 -./model_data/coco/val2017/000000231831.jpg 37,160,480,639,15 197,175,309,280,73 1,190,72,228,65 0,190,73,229,67 148,399,237,440,73 18,141,145,190,73 220,195,333,259,73 36,125,113,151,76 20,0,154,164,56 -./model_data/coco/val2017/000000422670.jpg 26,2,639,420,59 184,47,585,412,0 33,249,315,426,0 163,148,239,281,73 -./model_data/coco/val2017/000000543300.jpg 23,265,593,393,8 -./model_data/coco/val2017/000000209747.jpg 170,59,341,283,15 0,147,499,350,71 -./model_data/coco/val2017/000000333956.jpg 24,170,210,592,12 0,410,62,571,13 -./model_data/coco/val2017/000000121506.jpg 93,60,578,256,25 26,357,135,395,60 19,424,418,601,13 67,384,176,453,13 19,448,138,569,13 397,475,546,589,56 407,259,528,302,2 24,429,412,591,60 19,452,201,577,56 -./model_data/coco/val2017/000000433103.jpg 93,284,333,409,63 221,221,406,318,63 478,158,523,220,63 537,157,597,215,63 0,13,288,420,0 141,24,422,418,0 282,41,467,419,0 401,79,544,317,0 422,68,443,108,0 538,45,624,273,0 569,5,640,219,0 0,115,56,424,56 468,93,596,177,0 344,54,500,384,0 371,176,458,265,63 505,146,542,207,63 522,16,582,109,0 467,69,528,165,0 428,169,509,243,63 -./model_data/coco/val2017/000000451090.jpg 147,116,380,317,8 -./model_data/coco/val2017/000000338428.jpg 0,0,222,185,5 55,11,596,325,7 564,93,640,160,7 549,82,640,118,7 -./model_data/coco/val2017/000000130599.jpg 0,113,463,475,0 -./model_data/coco/val2017/000000039480.jpg 280,292,421,364,38 243,164,342,421,0 -./model_data/coco/val2017/000000323799.jpg 143,265,177,303,29 75,263,92,311,29 393,178,431,219,29 516,230,559,278,29 60,115,135,403,0 516,206,571,390,0 115,152,180,364,0 155,97,235,356,0 224,111,294,347,0 326,112,390,346,0 372,122,447,359,0 484,116,572,391,0 283,130,341,351,0 390,101,506,370,0 72,131,164,229,0 243,163,280,197,29 -./model_data/coco/val2017/000000129492.jpg 156,76,475,477,0 328,143,500,365,0 259,2,456,187,0 392,272,439,303,65 211,0,475,199,56 369,374,409,411,65 2,145,110,204,73 0,129,86,172,73 0,122,63,169,73 -./model_data/coco/val2017/000000029393.jpg 170,157,365,341,16 344,244,352,254,49 322,230,331,243,49 356,165,369,181,49 -./model_data/coco/val2017/000000052413.jpg 210,92,356,322,67 0,264,335,369,0 0,65,492,317,0 187,46,225,98,41 265,0,335,96,56 -./model_data/coco/val2017/000000357501.jpg 25,21,502,470,76 -./model_data/coco/val2017/000000572462.jpg 377,554,396,582,39 12,11,361,292,6 219,375,307,599,0 339,437,434,601,0 422,380,474,591,0 356,481,434,599,24 516,475,598,600,13 467,433,516,575,24 284,476,315,541,24 228,429,275,458,24 450,415,466,469,27 333,405,370,465,0 362,410,373,435,0 59,457,78,479,0 371,405,397,447,0 133,108,186,150,0 534,390,575,557,0 -./model_data/coco/val2017/000000272416.jpg 282,152,594,347,61 -./model_data/coco/val2017/000000435081.jpg 134,195,186,245,48 317,455,354,480,42 399,195,441,223,42 432,162,473,182,43 76,456,120,466,44 24,471,59,492,44 455,323,485,350,51 453,311,485,331,51 429,328,460,349,51 36,342,66,369,54 314,258,371,309,55 263,459,311,491,43 200,328,236,368,43 80,77,100,81,44 82,150,126,191,45 81,54,118,86,45 327,139,368,173,45 34,403,69,430,45 413,70,475,116,45 192,206,248,249,48 393,422,436,460,53 2,323,22,352,54 252,381,292,441,55 126,251,165,328,56 129,262,249,375,60 375,126,497,251,60 376,377,498,494,60 5,391,125,497,60 48,269,125,375,60 1,141,126,248,60 252,28,371,125,60 125,3,249,123,60 369,1,497,122,60 66,377,92,414,75 424,135,460,163,41 30,255,62,311,41 280,91,307,103,44 445,11,496,66,45 197,154,249,176,48 164,169,211,210,48 126,139,153,171,48 212,167,248,207,48 189,299,218,329,48 181,261,199,281,48 146,151,185,181,48 16,442,35,468,54 61,325,92,355,54 2,86,16,105,54 249,278,276,311,55 26,214,50,238,55 328,177,350,201,55 298,171,323,196,55 268,294,303,328,55 318,434,349,459,55 37,59,57,77,55 92,276,121,300,55 279,91,307,103,42 149,304,187,332,42 71,19,87,36,55 356,386,375,430,45 54,438,85,456,45 86,29,99,47,55 0,14,333,467,55 -./model_data/coco/val2017/000000092839.jpg 79,23,640,511,21 -./model_data/coco/val2017/000000507575.jpg 267,19,389,114,62 132,315,171,345,67 111,30,233,139,63 447,296,480,327,64 231,261,413,296,66 2,334,143,429,73 263,23,394,146,63 118,111,226,126,66 -./model_data/coco/val2017/000000121744.jpg 313,285,441,354,38 163,73,384,421,0 498,30,637,426,0 442,0,515,94,0 328,5,437,101,0 118,5,219,129,0 83,15,127,107,0 224,3,321,98,0 541,1,624,110,0 24,17,117,129,0 278,173,335,310,38 323,169,372,308,38 350,167,413,289,38 185,1,237,85,0 48,35,81,64,0 -./model_data/coco/val2017/000000212453.jpg 70,0,137,111,0 138,0,201,108,0 152,113,209,208,0 313,0,359,101,0 371,15,417,99,0 406,0,453,96,0 208,108,258,207,0 362,99,398,192,0 197,312,465,640,61 -./model_data/coco/val2017/000000177714.jpg 578,105,639,158,42 181,63,271,120,47 366,53,417,108,51 121,238,213,323,51 79,216,164,258,51 291,209,349,242,51 588,290,640,332,51 373,202,431,261,51 357,167,392,219,51 376,112,416,151,51 226,110,262,140,51 -./model_data/coco/val2017/000000288062.jpg 121,337,359,588,61 -./model_data/coco/val2017/000000004134.jpg 397,191,435,361,27 236,45,584,420,0 42,44,320,419,0 258,165,275,203,0 303,123,333,270,0 469,109,527,180,0 576,106,636,316,0 0,110,70,269,0 257,186,310,269,0 190,118,231,255,0 224,255,240,280,40 221,243,235,277,40 21,247,36,278,40 211,247,315,332,60 237,129,266,206,0 19,148,35,219,27 322,147,329,164,27 242,198,249,215,40 255,231,295,270,56 277,182,298,214,56 516,142,537,180,0 551,149,640,425,0 289,171,300,195,56 0,252,56,381,60 346,136,382,200,0 334,184,350,202,60 -./model_data/coco/val2017/000000177015.jpg 312,182,611,361,15 178,191,639,479,57 8,172,295,414,63 2,5,640,474,0 2,162,84,406,57 96,1,205,246,72 -./model_data/coco/val2017/000000249786.jpg 298,121,345,178,0 278,164,371,190,30 527,192,534,200,0 349,231,352,236,0 344,231,350,245,0 316,236,321,243,0 94,307,100,319,0 245,251,251,261,0 257,264,260,273,0 98,335,106,346,0 90,331,99,344,0 336,234,344,247,0 -./model_data/coco/val2017/000000090108.jpg 214,224,230,256,39 526,254,637,420,61 107,253,251,300,71 -./model_data/coco/val2017/000000369757.jpg 287,133,530,218,53 40,121,300,205,53 579,141,640,260,53 107,208,317,245,53 204,300,343,352,52 -./model_data/coco/val2017/000000581317.jpg 406,142,428,178,67 409,55,613,354,0 -./model_data/coco/val2017/000000513484.jpg 7,31,480,400,21 -./model_data/coco/val2017/000000410878.jpg 47,34,326,417,3 361,117,397,130,13 546,150,578,163,13 -./model_data/coco/val2017/000000303863.jpg 1,119,585,344,6 613,216,633,297,0 566,207,597,294,0 130,200,141,219,0 115,200,123,215,0 18,209,25,216,0 498,184,515,207,0 620,240,634,262,26 602,201,637,297,0 -./model_data/coco/val2017/000000314182.jpg 167,101,375,322,45 0,129,174,325,45 37,269,293,500,45 181,107,334,261,50 288,114,357,177,51 218,168,375,268,51 103,50,258,162,45 287,174,345,219,51 326,137,367,166,51 -./model_data/coco/val2017/000000279730.jpg 197,128,415,280,48 0,0,97,142,0 46,166,177,333,41 391,31,472,127,41 196,206,371,328,0 410,101,500,243,0 198,129,413,283,52 -./model_data/coco/val2017/000000050679.jpg 475,168,563,223,2 32,189,132,223,2 382,196,416,219,2 133,100,347,312,49 346,184,386,220,2 417,197,451,219,2 607,205,626,219,2 450,195,477,219,2 586,207,603,219,2 0,192,56,221,2 570,210,584,219,2 405,194,435,206,2 563,205,570,219,2 -./model_data/coco/val2017/000000516871.jpg 4,0,640,412,60 132,24,266,123,45 160,145,263,225,50 68,133,252,299,50 62,128,577,373,45 -./model_data/coco/val2017/000000119911.jpg 103,63,132,79,2 147,60,171,74,2 86,65,99,77,2 126,60,147,74,2 97,66,104,75,2 276,97,420,334,0 274,301,381,336,36 -./model_data/coco/val2017/000000172648.jpg 193,129,638,385,7 332,202,406,393,0 80,214,112,277,0 0,216,25,254,2 -./model_data/coco/val2017/000000109441.jpg 195,336,205,359,9 128,333,141,356,9 458,444,470,462,10 316,322,325,345,9 350,315,362,342,9 244,284,261,321,9 101,275,123,314,9 269,300,292,322,9 125,421,145,431,2 160,418,170,428,2 106,418,121,427,2 86,420,104,427,2 60,419,73,427,2 -./model_data/coco/val2017/000000309452.jpg 245,134,386,474,14 -./model_data/coco/val2017/000000210032.jpg 382,135,640,239,14 131,0,278,83,0 521,88,636,219,14 40,173,134,253,42 4,163,129,281,43 32,40,88,82,0 198,59,219,91,41 89,58,117,93,41 176,58,200,92,41 99,153,357,271,48 0,159,640,396,60 0,139,59,197,0 43,89,344,190,56 30,78,88,121,56 26,41,52,81,0 -./model_data/coco/val2017/000000317024.jpg 97,20,565,464,22 -./model_data/coco/val2017/000000324614.jpg 151,232,274,292,79 0,76,355,427,0 -./model_data/coco/val2017/000000188592.jpg 73,127,342,640,0 188,321,278,384,47 -./model_data/coco/val2017/000000177383.jpg 8,67,388,485,6 -./model_data/coco/val2017/000000271728.jpg 114,210,256,294,15 0,89,333,422,57 424,177,543,259,63 137,307,231,328,65 175,94,212,141,41 491,48,639,257,57 599,277,639,307,73 575,275,639,313,73 -./model_data/coco/val2017/000000318455.jpg 3,163,640,474,60 375,213,439,285,43 396,177,525,271,55 5,380,89,452,55 146,321,218,394,55 0,357,45,390,55 0,328,38,357,55 14,300,61,334,55 76,285,133,332,55 293,277,343,322,55 132,282,193,324,55 167,302,223,344,55 106,319,163,367,55 57,346,121,402,55 224,259,275,305,55 24,200,417,371,55 -./model_data/coco/val2017/000000006471.jpg 256,70,353,303,0 87,184,241,324,0 87,71,153,140,0 169,74,221,131,0 387,60,475,113,0 215,76,262,130,0 301,28,364,98,34 39,0,76,14,0 138,115,191,134,13 340,97,419,119,13 213,230,242,263,35 147,103,152,118,39 17,96,68,149,0 49,80,102,143,0 86,107,91,123,39 16,141,126,323,0 -./model_data/coco/val2017/000000186296.jpg 42,122,577,414,15 -./model_data/coco/val2017/000000369370.jpg 25,202,483,475,48 224,68,638,295,48 0,43,204,213,48 0,5,188,53,48 194,22,314,122,49 177,0,312,82,49 355,1,638,128,60 -./model_data/coco/val2017/000000357978.jpg 149,118,174,162,58 180,106,203,128,62 139,163,177,234,56 31,114,60,190,0 242,122,328,370,0 97,107,159,286,0 153,103,257,375,0 76,158,88,177,0 249,252,258,264,65 64,163,88,217,56 150,143,162,171,75 145,160,151,174,56 0,176,95,259,57 447,313,455,322,65 -./model_data/coco/val2017/000000435880.jpg 479,87,497,132,39 460,90,479,135,39 0,416,114,478,57 378,139,569,465,72 585,231,605,242,45 633,225,640,242,41 85,369,107,391,63 -./model_data/coco/val2017/000000479155.jpg 66,224,263,328,16 330,1,451,255,0 484,42,499,166,0 255,129,317,330,0 186,88,233,156,0 0,0,85,332,0 139,0,185,55,0 62,1,153,233,0 159,133,173,146,47 151,130,161,143,47 151,96,195,142,47 224,89,303,140,47 311,78,344,108,49 0,123,62,246,26 170,164,241,234,26 263,87,342,133,47 417,0,436,20,0 438,0,469,11,0 172,132,185,145,47 -./model_data/coco/val2017/000000094944.jpg 358,224,467,404,0 176,189,202,266,0 338,332,524,385,31 564,263,627,276,31 174,198,195,221,24 569,230,625,294,0 539,286,629,295,30 159,261,230,269,30 384,229,440,328,24 -./model_data/coco/val2017/000000537270.jpg 360,214,411,282,67 486,172,528,211,67 496,200,638,278,56 146,5,431,411,0 348,43,515,327,0 0,2,467,474,0 539,230,615,312,41 336,404,454,480,67 -./model_data/coco/val2017/000000166478.jpg 1,164,639,421,57 413,253,504,287,67 72,82,580,419,0 190,12,234,39,45 0,0,33,32,45 102,1,162,34,45 93,230,232,340,63 415,276,517,304,73 -./model_data/coco/val2017/000000076416.jpg 345,221,399,313,67 116,129,566,378,5 71,269,89,304,0 84,283,113,308,1 470,264,510,306,0 0,263,12,282,0 83,268,91,283,0 -./model_data/coco/val2017/000000515266.jpg 598,105,635,130,2 270,99,629,263,7 89,179,640,413,13 22,63,336,224,7 -./model_data/coco/val2017/000000345397.jpg 148,164,238,371,27 235,125,500,267,67 9,1,500,367,0 -./model_data/coco/val2017/000000178469.jpg 91,76,541,408,63 132,279,497,344,66 460,162,542,255,41 89,137,142,265,41 81,29,92,60,73 75,30,85,61,73 87,30,100,60,73 -./model_data/coco/val2017/000000006818.jpg 186,471,287,527,61 -./model_data/coco/val2017/000000055299.jpg 433,213,473,326,14 94,231,124,264,25 25,218,103,251,25 -./model_data/coco/val2017/000000379800.jpg 140,311,165,330,2 58,300,107,317,2 562,318,640,376,2 543,340,566,362,2 219,105,519,418,6 569,234,604,272,11 100,291,107,300,11 -./model_data/coco/val2017/000000369503.jpg 392,0,500,375,0 263,148,398,165,71 -./model_data/coco/val2017/000000253742.jpg 391,92,529,472,0 299,109,364,250,0 24,115,93,273,0 156,110,225,243,0 538,155,586,267,0 409,154,482,283,24 103,110,163,243,0 139,80,278,161,25 337,0,615,186,25 0,99,41,123,25 283,94,410,183,25 606,108,640,155,25 578,126,613,145,25 519,121,600,159,25 606,153,640,191,25 0,104,101,164,25 97,169,120,204,26 586,151,622,255,0 250,126,305,240,0 357,181,393,251,0 207,140,258,158,25 301,67,350,104,25 235,192,244,213,26 102,141,147,229,26 233,105,303,134,25 621,194,638,254,0 83,94,167,150,25 410,199,473,285,26 593,109,629,133,25 -./model_data/coco/val2017/000000123213.jpg 510,48,558,88,56 243,175,445,381,0 409,160,598,384,0 396,0,456,79,0 200,0,268,61,0 78,2,190,53,0 222,55,282,190,34 243,223,273,280,35 556,52,608,91,56 175,0,241,47,0 0,0,63,49,0 170,2,180,19,0 256,0,306,67,0 444,38,493,82,13 123,0,177,34,0 91,84,329,349,0 -./model_data/coco/val2017/000000250282.jpg 369,230,380,275,27 157,308,164,326,27 162,77,171,103,27 1,187,71,384,0 343,182,407,323,0 556,196,632,369,0 120,85,167,194,0 172,276,259,411,0 373,131,426,265,0 285,90,338,229,0 343,78,398,183,0 461,94,527,196,0 245,40,303,131,0 206,43,242,131,0 267,136,321,266,0 270,80,285,87,27 286,308,293,330,27 85,126,95,137,27 415,122,425,129,27 449,89,461,127,27 357,310,366,332,27 424,312,438,331,27 496,316,506,332,27 558,136,566,152,27 205,190,268,328,0 330,80,336,89,27 59,82,522,148,27 0,34,639,422,0 -./model_data/coco/val2017/000000574297.jpg 132,119,416,411,17 241,76,326,298,0 -./model_data/coco/val2017/000000489764.jpg 105,17,640,538,0 45,406,185,478,65 118,157,126,182,73 120,188,127,206,73 104,122,115,148,73 116,121,134,153,73 112,154,120,182,73 94,266,104,338,73 0,255,81,399,56 -./model_data/coco/val2017/000000550426.jpg 144,322,314,625,75 -./model_data/coco/val2017/000000113867.jpg 327,109,373,132,74 -./model_data/coco/val2017/000000466339.jpg 14,501,157,605,15 -./model_data/coco/val2017/000000046252.jpg 143,175,275,360,0 470,174,530,380,0 205,131,236,195,34 337,275,370,306,35 336,234,423,377,0 -./model_data/coco/val2017/000000347254.jpg 150,248,298,499,27 177,177,249,242,56 291,348,342,428,56 0,26,319,493,0 252,153,316,240,0 300,135,374,412,0 244,235,303,339,41 239,127,262,236,0 247,127,281,201,0 -./model_data/coco/val2017/000000057597.jpg 242,286,266,309,32 72,84,138,100,2 332,104,427,134,2 323,89,359,106,2 317,152,442,316,0 412,166,517,331,0 518,142,607,247,0 174,121,191,163,0 155,141,176,160,0 259,144,274,164,0 135,92,153,121,0 254,120,274,149,0 276,118,295,151,0 0,103,108,124,13 211,120,238,127,13 372,142,383,152,24 396,143,404,152,24 424,154,434,167,24 406,155,417,165,24 521,131,621,279,0 519,103,553,127,2 505,103,555,128,7 226,77,309,128,7 130,108,162,126,13 421,147,435,154,24 268,144,281,163,0 324,89,359,112,7 199,122,214,163,0 222,121,234,154,0 326,141,394,163,13 382,143,439,156,13 400,152,425,155,13 21,85,636,167,0 -./model_data/coco/val2017/000000254814.jpg 69,269,119,296,1 496,129,529,155,1 265,231,284,250,1 9,163,91,220,2 0,51,80,130,7 418,99,432,128,9 212,200,226,236,9 217,262,227,280,9 169,277,199,322,0 552,284,573,337,0 540,314,562,349,0 468,280,484,315,0 280,216,302,238,0 487,178,507,215,0 60,200,80,229,0 109,116,127,145,0 451,290,467,310,0 504,302,519,327,0 560,313,574,345,1 328,221,343,251,1 225,234,270,266,1 188,203,203,220,1 284,233,300,267,3 92,250,140,279,3 146,260,181,285,3 578,201,619,237,3 476,188,517,222,3 228,189,261,215,3 125,234,153,264,3 488,78,500,102,0 587,190,611,228,0 588,179,624,205,1 348,178,385,207,3 44,215,95,246,3 393,182,441,212,3 545,345,564,370,3 520,289,541,331,0 379,307,543,426,2 235,250,262,282,3 302,275,432,367,5 150,44,261,98,7 25,23,625,368,0 510,141,606,179,3 -./model_data/coco/val2017/000000066231.jpg 333,137,445,426,0 451,157,499,307,0 300,144,337,204,0 526,183,536,202,0 144,144,202,264,0 1,196,81,409,0 245,144,286,204,0 285,276,330,292,45 326,281,359,292,45 573,274,635,330,46 576,315,621,346,47 622,291,640,313,49 86,275,101,320,39 176,248,186,269,39 184,248,191,269,39 212,229,226,269,39 631,274,640,292,47 99,325,302,385,71 427,185,441,198,0 7,169,50,247,0 614,304,640,345,49 490,207,640,420,72 297,205,307,230,43 314,204,317,214,43 273,265,328,289,45 251,204,274,216,45 -./model_data/coco/val2017/000000044260.jpg 212,229,266,275,47 242,70,292,117,47 159,4,216,56,47 348,314,382,349,47 611,177,640,209,47 371,356,395,384,47 -./model_data/coco/val2017/000000102707.jpg 323,186,479,592,39 477,361,607,605,41 6,373,605,605,69 -./model_data/coco/val2017/000000331817.jpg 315,86,640,244,0 423,209,532,480,40 469,175,556,342,40 295,179,332,224,42 273,339,435,471,45 0,245,248,289,43 256,192,332,260,45 306,186,472,299,45 51,135,262,251,45 374,273,589,411,45 77,276,184,376,55 16,73,101,155,58 0,69,640,480,60 174,253,281,318,55 0,150,68,197,55 293,355,415,433,55 157,5,541,145,62 -./model_data/coco/val2017/000000202445.jpg 141,264,587,531,15 11,159,591,596,59 -./model_data/coco/val2017/000000061418.jpg 109,224,197,357,56 4,245,118,404,56 490,38,628,116,8 288,81,448,154,8 257,251,378,423,0 186,189,258,318,0 497,172,576,260,0 492,239,610,410,0 246,121,279,215,0 68,106,95,208,0 603,208,625,321,56 53,116,80,209,0 157,210,231,324,56 560,224,637,296,56 571,324,640,414,56 -./model_data/coco/val2017/000000355817.jpg 132,131,628,333,5 511,201,595,255,0 411,199,432,237,0 -./model_data/coco/val2017/000000082688.jpg 0,102,503,428,0 544,311,608,336,65 428,388,454,415,65 292,51,414,253,0 302,378,325,423,67 309,29,624,428,0 -./model_data/coco/val2017/000000070774.jpg 438,63,456,74,14 261,173,506,223,1 263,152,465,181,1 80,154,425,383,3 269,56,278,64,14 305,53,313,65,14 280,206,503,277,1 194,45,202,54,14 590,55,597,63,14 175,46,194,64,14 183,40,188,48,14 442,72,447,78,14 -./model_data/coco/val2017/000000568439.jpg 212,112,400,314,5 102,151,215,296,5 397,187,443,265,5 463,201,510,261,5 500,235,548,289,24 582,243,597,268,24 73,254,80,258,26 490,206,563,402,0 593,227,623,307,0 561,230,598,311,0 237,224,259,246,0 56,243,68,281,0 40,246,52,280,0 47,251,55,264,26 624,233,636,282,0 31,244,41,277,0 68,243,77,268,0 561,230,572,296,0 46,243,56,256,0 25,241,33,261,0 630,248,637,259,26 95,244,103,275,0 59,252,68,260,26 93,259,100,269,26 566,277,589,309,0 -./model_data/coco/val2017/000000327617.jpg 63,106,251,629,0 144,300,240,509,38 -./model_data/coco/val2017/000000500613.jpg 556,201,640,283,2 159,101,526,364,7 502,212,568,247,7 31,213,60,247,7 64,206,103,246,7 552,190,618,232,7 -./model_data/coco/val2017/000000140640.jpg 428,13,583,161,58 405,342,640,426,60 111,54,300,421,0 435,88,603,376,0 477,364,593,424,55 426,355,483,387,43 482,397,515,425,55 450,410,491,424,55 413,401,450,425,55 449,384,484,403,55 273,52,483,425,0 -./model_data/coco/val2017/000000079188.jpg 0,10,451,640,23 -./model_data/coco/val2017/000000139871.jpg 14,97,626,315,4 -./model_data/coco/val2017/000000125257.jpg 343,89,393,230,0 336,215,409,238,31 -./model_data/coco/val2017/000000032811.jpg 81,352,163,400,14 -./model_data/coco/val2017/000000235784.jpg 214,186,253,298,24 241,147,345,411,0 -./model_data/coco/val2017/000000486040.jpg 203,250,301,334,56 0,390,430,631,63 0,251,287,461,63 364,400,433,434,64 352,139,418,221,58 357,186,396,237,41 -./model_data/coco/val2017/000000460347.jpg 328,69,382,114,2 338,13,376,37,2 258,6,301,47,2 148,58,268,237,5 220,157,246,176,0 168,155,175,166,0 153,9,195,48,2 -./model_data/coco/val2017/000000545407.jpg 176,175,476,298,4 -./model_data/coco/val2017/000000074457.jpg 432,157,472,250,0 364,186,543,230,37 -./model_data/coco/val2017/000000491130.jpg 100,115,415,477,0 10,222,326,568,31 52,152,115,257,0 -./model_data/coco/val2017/000000265108.jpg 196,424,219,611,25 250,386,352,609,28 -./model_data/coco/val2017/000000441442.jpg 154,140,471,313,17 29,181,44,205,56 251,52,326,229,0 1,165,30,205,0 -./model_data/coco/val2017/000000426836.jpg 327,413,351,488,0 181,99,253,127,33 -./model_data/coco/val2017/000000060886.jpg 122,166,131,174,35 94,139,131,220,0 173,150,219,232,0 474,37,498,102,0 255,1,291,63,0 289,155,342,237,0 241,159,282,239,0 15,0,37,57,0 152,0,171,24,0 180,0,209,37,0 292,0,306,27,0 270,151,309,233,0 218,159,247,236,0 199,147,235,233,0 50,0,454,241,0 -./model_data/coco/val2017/000000537053.jpg 160,45,383,603,23 -./model_data/coco/val2017/000000357903.jpg 5,113,473,565,53 73,4,435,94,53 -./model_data/coco/val2017/000000328430.jpg 387,240,401,251,32 179,466,228,517,56 207,266,243,340,38 99,321,241,605,0 232,432,282,544,0 342,412,375,527,0 271,382,287,397,0 404,380,416,394,0 362,382,378,392,0 69,381,87,396,0 324,389,330,396,0 342,470,346,474,32 388,382,402,395,0 285,378,307,398,0 416,371,430,394,0 250,388,264,397,0 179,379,192,396,0 295,31,373,397,0 -./model_data/coco/val2017/000000241677.jpg 346,321,421,388,17 494,269,510,297,0 455,284,483,311,0 296,308,346,384,17 480,320,544,408,17 217,172,286,221,17 354,185,383,240,17 317,203,349,256,17 320,280,349,324,17 442,332,488,422,17 130,177,209,222,17 383,171,409,226,17 547,342,585,437,17 1,185,39,227,17 361,293,385,320,0 303,243,342,313,17 -./model_data/coco/val2017/000000295713.jpg 451,161,470,176,67 413,101,541,370,0 547,11,610,69,0 527,45,555,70,0 49,232,249,356,13 355,251,634,367,13 376,188,453,259,26 259,157,588,285,13 542,0,590,60,0 188,0,221,55,0 590,0,598,15,0 601,0,629,48,0 -./model_data/coco/val2017/000000571313.jpg 205,168,323,335,72 329,419,480,632,59 324,304,431,422,60 6,348,123,398,66 0,517,169,640,56 0,251,87,365,62 129,335,155,356,64 3,246,96,377,68 -./model_data/coco/val2017/000000580294.jpg 411,3,640,438,0 2,320,192,438,45 365,171,410,200,45 442,186,496,212,71 0,330,343,443,44 4,245,441,408,69 495,184,500,214,79 450,172,497,211,45 405,174,435,198,41 -./model_data/coco/val2017/000000572555.jpg 146,56,584,357,6 386,18,394,64,9 154,42,167,86,9 258,0,288,62,9 -./model_data/coco/val2017/000000348708.jpg 58,146,379,463,45 0,115,243,539,46 4,3,383,633,60 -./model_data/coco/val2017/000000565989.jpg 188,275,248,320,74 13,368,85,459,20 -./model_data/coco/val2017/000000223789.jpg 1,260,284,484,71 182,136,210,198,39 213,133,240,190,39 -./model_data/coco/val2017/000000398652.jpg 164,107,245,298,58 317,172,409,265,58 436,109,499,194,58 138,69,205,239,58 321,90,357,171,58 403,0,489,202,58 240,51,285,144,58 0,7,96,100,58 272,107,319,145,58 153,19,236,190,58 29,171,572,387,60 362,15,424,182,58 240,134,323,271,58 396,187,499,262,58 -./model_data/coco/val2017/000000032861.jpg 40,47,366,275,25 86,197,312,640,0 -./model_data/coco/val2017/000000357737.jpg 45,136,407,465,1 63,112,398,257,2 134,98,261,127,2 405,21,587,455,0 228,109,442,463,3 123,97,141,127,0 153,89,174,109,0 19,141,70,174,1 576,88,583,91,2 27,88,193,165,7 167,95,173,103,0 -./model_data/coco/val2017/000000221281.jpg 0,176,296,583,23 143,309,279,475,23 0,253,50,355,23 -./model_data/coco/val2017/000000367195.jpg 130,64,311,189,16 295,4,499,162,57 0,66,90,137,0 -./model_data/coco/val2017/000000376310.jpg 354,368,440,404,71 457,377,553,418,71 575,389,640,434,71 599,289,626,311,61 -./model_data/coco/val2017/000000289393.jpg 522,333,639,473,14 32,86,274,234,23 81,200,356,411,19 0,20,38,317,58 -./model_data/coco/val2017/000000482719.jpg 2,19,640,473,45 187,101,629,455,46 194,225,350,365,47 248,0,499,138,56 118,0,253,54,56 526,8,638,114,68 -./model_data/coco/val2017/000000072795.jpg 329,304,334,330,34 401,297,412,313,35 310,252,361,339,0 438,236,482,336,0 400,275,443,334,0 53,191,77,246,0 184,416,323,473,0 335,371,428,480,0 517,251,640,475,0 92,428,188,480,0 425,371,481,437,0 333,373,378,470,0 283,417,341,480,0 391,191,405,206,0 0,0,639,479,0 -./model_data/coco/val2017/000000131431.jpg 150,238,246,390,74 -./model_data/coco/val2017/000000424776.jpg 16,87,602,329,4 -./model_data/coco/val2017/000000372203.jpg 332,282,357,330,10 142,217,291,314,13 -./model_data/coco/val2017/000000515828.jpg 146,61,155,84,39 37,29,45,46,39 31,47,50,55,39 412,18,420,39,39 155,59,163,83,39 78,0,150,89,56 256,109,337,223,38 273,46,405,429,0 222,1,311,77,0 114,0,191,66,56 -./model_data/coco/val2017/000000012576.jpg 418,41,480,124,62 140,200,217,345,41 364,209,455,377,41 317,287,480,312,42 392,403,480,493,43 0,375,449,640,53 272,118,311,194,41 381,112,426,171,41 2,319,143,337,42 306,190,480,234,53 87,173,251,228,53 1,100,480,628,60 193,15,285,151,0 419,370,480,441,42 288,302,480,320,43 -./model_data/coco/val2017/000000110884.jpg 16,347,80,410,45 375,446,613,625,61 28,351,313,481,71 -./model_data/coco/val2017/000000575372.jpg 404,74,455,191,9 266,164,303,264,9 120,384,151,438,9 601,378,635,447,9 -./model_data/coco/val2017/000000473121.jpg 302,128,474,222,0 379,213,484,223,30 -./model_data/coco/val2017/000000554266.jpg 273,149,538,233,59 274,130,407,234,0 376,130,628,233,0 75,214,143,249,59 -./model_data/coco/val2017/000000202228.jpg 128,172,312,476,0 -./model_data/coco/val2017/000000180792.jpg 131,313,237,493,61 -./model_data/coco/val2017/000000196843.jpg 442,263,557,408,1 1,50,638,430,5 0,377,133,480,1 0,366,16,388,1 -./model_data/coco/val2017/000000110784.jpg 200,273,287,387,5 185,271,234,382,0 0,232,273,419,7 -./model_data/coco/val2017/000000066841.jpg 114,108,197,216,44 256,161,319,230,44 51,422,98,482,44 9,280,69,340,44 65,107,324,442,70 0,26,93,214,39 224,422,267,479,44 -./model_data/coco/val2017/000000360564.jpg 224,217,345,381,61 328,134,392,158,71 -./model_data/coco/val2017/000000280918.jpg 572,159,608,230,39 0,8,264,480,0 181,103,640,478,69 83,38,371,479,0 317,351,412,404,44 97,0,319,96,72 -./model_data/coco/val2017/000000288042.jpg 550,196,603,359,0 237,233,257,242,7 530,162,626,221,25 -./model_data/coco/val2017/000000166664.jpg 0,144,137,427,2 383,50,558,292,20 -./model_data/coco/val2017/000000459887.jpg 155,44,274,79,45 0,21,480,612,46 1,18,480,630,45 -./model_data/coco/val2017/000000439773.jpg 190,8,640,299,0 1,9,208,183,77 239,331,409,442,67 -./model_data/coco/val2017/000000420472.jpg 331,209,640,369,23 4,47,312,367,23 -./model_data/coco/val2017/000000034417.jpg 381,64,438,120,0 339,54,380,122,0 286,55,311,99,0 123,46,159,100,0 445,53,479,88,0 448,71,460,90,27 63,200,99,224,54 83,205,123,230,54 45,222,60,240,54 46,230,79,257,54 103,180,139,202,54 122,188,155,208,54 143,179,176,194,54 162,185,195,201,54 176,179,207,197,54 201,186,232,202,54 214,182,241,195,54 232,186,259,201,54 318,76,330,91,0 261,189,287,200,54 100,135,495,179,54 -./model_data/coco/val2017/000000490171.jpg 275,231,384,308,16 55,247,293,310,0 181,281,459,314,37 -./model_data/coco/val2017/000000167128.jpg 286,5,640,420,20 296,238,458,427,20 110,8,398,410,20 -./model_data/coco/val2017/000000329542.jpg 71,38,308,267,0 123,254,262,392,55 0,35,101,168,55 101,130,228,262,55 404,102,533,188,41 274,228,405,362,55 -./model_data/coco/val2017/000000020992.jpg 0,0,500,333,0 2,217,218,325,52 -./model_data/coco/val2017/000000061658.jpg 179,151,273,320,50 265,158,373,281,50 196,335,323,463,50 92,393,256,473,50 3,308,127,463,50 9,208,131,350,50 446,11,624,228,50 97,235,202,386,50 492,0,608,49,50 398,3,505,74,50 240,257,396,441,50 367,115,482,301,50 -./model_data/coco/val2017/000000295478.jpg 48,492,140,576,16 151,35,348,615,0 199,226,332,362,26 -./model_data/coco/val2017/000000098018.jpg 157,400,174,427,44 105,356,152,391,45 110,412,178,427,45 8,164,47,215,75 383,242,477,321,75 -./model_data/coco/val2017/000000109900.jpg 105,136,387,232,4 0,135,114,171,4 183,182,232,333,0 62,176,126,376,0 292,195,321,269,0 265,200,298,283,0 255,198,268,218,0 19,174,75,353,0 212,190,288,345,0 504,197,525,215,0 184,194,202,252,0 123,197,143,254,0 366,69,618,300,7 -./model_data/coco/val2017/000000010707.jpg 212,330,229,391,39 532,247,640,480,57 0,201,236,427,57 100,351,308,474,60 228,147,397,457,0 347,187,472,452,0 422,2,600,473,0 121,357,148,415,41 429,46,447,113,65 162,348,181,408,39 126,343,151,371,41 124,249,201,274,63 233,363,265,395,65 74,323,163,450,24 193,361,213,380,65 -./model_data/coco/val2017/000000262938.jpg 434,246,602,358,16 116,242,292,380,16 1,44,312,251,16 255,13,582,254,16 3,221,640,462,73 -./model_data/coco/val2017/000000010092.jpg 93,187,439,376,59 579,389,639,426,56 546,263,639,425,60 185,104,213,141,14 538,204,640,406,56 -./model_data/coco/val2017/000000176857.jpg 217,139,263,221,15 145,11,175,75,0 259,60,360,217,0 225,4,293,156,0 335,93,345,105,0 346,77,360,142,0 356,82,378,147,0 246,29,262,39,67 76,20,158,238,0 294,23,335,87,0 267,92,298,155,26 161,62,230,224,0 149,86,167,97,67 109,33,230,226,0 390,146,437,189,0 113,0,148,19,0 -./model_data/coco/val2017/000000522940.jpg 8,17,367,383,11 -./model_data/coco/val2017/000000498857.jpg 159,87,329,319,23 -./model_data/coco/val2017/000000153669.jpg 423,24,518,126,34 589,303,625,346,35 341,55,557,403,0 488,192,592,309,0 577,207,614,312,0 108,127,185,299,0 50,119,119,302,0 0,126,78,299,0 237,40,294,84,0 321,0,390,85,0 421,28,472,87,0 501,206,540,272,0 451,200,503,307,0 280,0,335,65,0 206,240,282,301,13 280,102,362,301,0 1,0,639,335,0 -./model_data/coco/val2017/000000303653.jpg 71,162,387,359,17 3,160,127,279,17 340,163,551,301,17 583,163,618,201,56 216,69,286,264,0 10,110,83,260,0 394,95,462,258,0 -./model_data/coco/val2017/000000519611.jpg 144,112,506,385,21 -./model_data/coco/val2017/000000222299.jpg 133,43,222,77,39 276,208,306,299,39 270,136,361,165,39 408,154,451,178,67 359,50,455,150,63 357,50,458,151,73 162,144,272,217,73 393,242,441,306,73 4,0,500,367,59 -./model_data/coco/val2017/000000458054.jpg 33,0,336,426,61 228,172,424,353,61 236,11,505,390,61 346,73,540,313,61 448,41,586,206,61 399,28,550,241,61 539,78,640,229,61 0,0,201,426,61 504,135,556,170,61 428,129,563,233,61 -./model_data/coco/val2017/000000407825.jpg 158,217,353,398,74 412,108,499,181,45 287,1,499,136,58 92,19,197,170,14 106,90,404,424,47 -./model_data/coco/val2017/000000343149.jpg 277,136,341,206,74 0,487,22,618,0 259,465,301,564,0 428,446,479,593,0 50,474,101,623,0 5,471,33,518,67 -./model_data/coco/val2017/000000232684.jpg 247,10,638,420,0 41,166,311,398,63 -./model_data/coco/val2017/000000427500.jpg 173,296,344,460,10 0,5,43,136,2 -./model_data/coco/val2017/000000384527.jpg 321,55,397,215,58 461,277,640,470,56 466,159,593,301,56 203,300,552,472,56 317,184,500,268,60 391,104,574,194,1 31,165,79,212,74 369,230,396,254,41 596,161,603,198,73 608,113,615,152,73 602,157,610,200,73 592,108,611,152,73 614,113,621,153,73 619,116,628,154,73 609,163,640,208,73 603,207,624,248,73 596,209,604,248,73 438,189,454,207,41 468,205,484,224,41 622,114,639,154,73 611,112,617,151,73 591,206,597,244,73 361,139,383,212,75 408,231,440,251,41 328,221,354,251,41 344,267,428,298,73 129,8,639,270,73 -./model_data/coco/val2017/000000151657.jpg 142,143,179,341,27 198,107,342,632,0 10,16,214,633,0 -./model_data/coco/val2017/000000058705.jpg 139,315,192,481,27 1,102,295,475,0 249,118,640,473,0 45,193,89,289,46 -./model_data/coco/val2017/000000184611.jpg 70,150,432,475,1 594,98,622,119,2 427,131,472,248,0 255,122,293,159,0 104,107,284,454,0 0,129,60,330,0 228,114,248,159,0 248,118,271,157,0 432,100,453,146,0 533,96,545,131,0 260,178,331,292,28 559,98,571,134,0 543,93,552,129,0 499,99,516,131,0 621,100,640,115,2 473,171,508,192,28 456,127,489,154,28 377,253,422,333,28 207,241,292,310,28 168,121,185,150,0 0,157,78,215,26 173,126,212,178,0 64,109,639,432,0 -./model_data/coco/val2017/000000356387.jpg 45,262,228,331,1 139,265,267,332,3 216,220,312,308,3 269,232,329,280,3 191,203,202,220,3 361,205,413,331,0 206,261,255,283,1 0,187,17,250,0 304,216,315,236,0 281,209,289,231,0 253,206,265,235,0 242,206,253,232,0 399,236,416,279,24 365,214,379,234,0 327,213,338,250,0 155,192,162,216,0 183,196,195,220,0 334,224,345,244,0 293,209,301,232,0 346,206,365,279,0 63,191,349,247,0 -./model_data/coco/val2017/000000076547.jpg 0,234,196,478,1 0,130,247,350,6 415,204,587,463,0 499,262,503,283,27 228,296,596,471,13 449,412,570,480,13 139,283,223,415,24 276,202,295,227,9 385,252,481,308,63 496,366,582,403,56 308,298,491,325,60 328,363,413,385,56 491,345,622,428,56 -./model_data/coco/val2017/000000319534.jpg 243,85,430,471,0 128,95,168,279,0 490,124,639,319,0 193,153,278,290,0 73,134,107,273,0 3,143,28,209,0 1,194,73,270,0 1,3,640,474,5 -./model_data/coco/val2017/000000564133.jpg 333,164,424,278,20 205,179,282,285,20 148,188,224,283,20 289,202,334,260,20 410,191,457,305,20 261,191,294,251,20 423,144,556,329,20 52,194,84,224,20 -./model_data/coco/val2017/000000526197.jpg 164,301,334,368,54 0,313,67,376,54 185,188,251,206,54 45,180,87,197,54 284,186,342,202,54 13,179,49,193,54 0,304,428,563,60 -./model_data/coco/val2017/000000130386.jpg 270,455,296,497,1 171,436,226,468,2 28,435,36,460,0 34,438,41,461,0 52,457,70,477,13 46,462,82,500,0 75,441,85,481,0 216,425,225,442,0 190,428,194,436,0 263,458,285,497,1 113,473,158,500,13 339,461,368,500,1 -./model_data/coco/val2017/000000520910.jpg 160,162,241,471,0 115,318,172,362,71 117,430,152,522,61 -./model_data/coco/val2017/000000486112.jpg 414,157,640,422,0 5,27,639,421,20 -./model_data/coco/val2017/000000315450.jpg 46,230,150,299,2 161,112,434,304,5 423,122,639,307,5 134,85,148,117,9 9,75,26,109,9 115,135,124,155,9 75,174,83,191,9 20,178,26,190,9 40,142,48,160,9 48,222,76,243,2 129,213,162,264,7 5,220,56,262,2 0,226,11,252,2 119,204,161,232,5 36,190,41,196,9 52,186,60,193,9 62,185,70,193,9 47,99,77,110,9 66,146,72,158,9 -./model_data/coco/val2017/000000329319.jpg 86,243,390,506,15 157,237,428,640,56 156,237,428,631,13 0,106,132,323,60 -./model_data/coco/val2017/000000173008.jpg 242,66,508,474,0 257,196,311,290,46 49,444,93,475,49 345,92,444,198,68 0,300,67,424,70 24,421,143,480,46 174,325,207,345,55 104,364,152,382,55 140,341,175,374,55 211,317,228,337,55 124,353,146,371,55 166,404,187,423,55 473,319,522,477,69 488,265,512,309,41 189,399,240,420,76 194,341,214,353,55 225,271,273,390,69 144,381,161,391,55 -./model_data/coco/val2017/000000138819.jpg 475,368,621,480,61 121,21,469,227,71 -./model_data/coco/val2017/000000430377.jpg 83,46,266,556,0 17,554,399,618,30 26,230,37,261,0 14,258,40,261,30 -./model_data/coco/val2017/000000334371.jpg 540,259,595,291,2 48,257,168,297,2 233,185,426,296,5 171,228,199,297,0 16,170,122,260,5 416,205,546,291,5 98,182,117,226,9 237,189,254,228,9 122,201,131,223,9 -./model_data/coco/val2017/000000027932.jpg 33,130,192,253,35 -./model_data/coco/val2017/000000224675.jpg 281,49,400,294,0 0,0,193,296,0 0,69,117,300,26 131,37,194,212,33 362,101,400,194,33 -./model_data/coco/val2017/000000555012.jpg 295,0,445,200,61 -./model_data/coco/val2017/000000184321.jpg 162,173,267,287,6 -./model_data/coco/val2017/000000140929.jpg 209,21,640,274,74 -./model_data/coco/val2017/000000038678.jpg 20,339,139,435,48 0,110,398,602,0 74,85,165,318,0 139,93,184,254,0 53,184,76,256,0 19,336,135,435,54 147,549,268,640,41 -./model_data/coco/val2017/000000059044.jpg 118,355,227,402,65 343,182,374,205,65 285,98,332,186,0 258,110,295,230,0 169,0,338,422,0 83,61,187,209,0 2,52,150,316,0 68,42,114,171,0 373,77,409,172,0 520,77,564,313,0 483,99,527,273,0 329,80,420,409,0 433,67,512,296,0 21,308,97,353,65 255,74,292,134,0 287,156,312,184,65 308,275,334,285,65 312,212,339,239,65 307,87,329,112,0 301,62,542,211,0 -./model_data/coco/val2017/000000344816.jpg 143,52,505,378,6 -./model_data/coco/val2017/000000332845.jpg 391,262,480,317,56 312,130,456,314,0 76,293,640,469,59 279,239,327,286,63 -./model_data/coco/val2017/000000114049.jpg 150,84,332,335,0 55,161,141,432,0 288,150,330,239,0 144,126,258,241,24 181,397,283,639,28 141,346,279,610,28 129,328,249,614,28 109,288,162,433,28 125,217,187,330,28 281,375,327,535,56 54,271,110,516,56 299,195,306,205,67 79,14,196,144,0 285,0,316,59,0 352,157,369,238,0 0,390,45,499,56 -./model_data/coco/val2017/000000195754.jpg 448,137,543,229,62 194,188,350,280,57 304,170,318,204,56 401,309,597,419,57 63,231,233,365,56 154,228,226,301,60 405,309,608,417,56 490,234,605,322,56 -./model_data/coco/val2017/000000350122.jpg 347,373,415,475,1 2,143,327,278,5 499,269,510,291,26 195,264,219,298,26 369,307,444,474,0 96,206,151,380,0 31,201,102,396,0 157,236,194,365,0 196,217,254,366,0 497,251,518,311,0 271,230,307,277,0 535,247,553,303,0 342,233,376,332,0 1,139,330,283,6 423,254,432,273,24 146,267,163,314,24 87,228,123,277,24 325,250,343,279,24 357,250,377,276,24 241,235,276,277,24 470,276,477,291,26 411,258,422,274,26 298,234,340,342,0 368,233,396,275,0 396,243,413,274,0 343,248,364,280,24 411,239,421,261,0 485,280,501,304,1 448,268,455,284,26 535,276,541,285,26 382,250,399,279,24 236,209,639,372,0 -./model_data/coco/val2017/000000366199.jpg 237,171,414,252,15 0,221,638,412,59 -./model_data/coco/val2017/000000254368.jpg 11,123,389,633,59 33,65,392,459,0 -./model_data/coco/val2017/000000091615.jpg 84,43,149,116,62 336,166,369,178,45 449,141,613,371,69 78,240,233,324,71 265,127,286,156,75 453,167,462,181,41 43,153,62,157,73 41,156,64,159,73 446,166,454,181,41 43,162,60,165,73 69,145,79,163,39 474,36,623,122,68 -./model_data/coco/val2017/000000569976.jpg 128,1,340,411,0 20,336,238,627,0 194,209,339,438,78 188,265,333,449,0 168,473,277,511,56 0,521,263,640,56 208,492,333,640,56 -./model_data/coco/val2017/000000107851.jpg 391,239,404,254,0 225,236,232,248,0 317,240,362,323,0 398,251,413,284,0 301,292,404,467,20 401,299,434,386,20 212,249,257,287,20 4,254,62,303,20 241,240,248,257,0 357,240,406,331,0 216,233,227,251,0 37,227,62,266,0 16,228,31,260,0 30,229,41,250,0 414,255,436,301,0 408,252,419,269,0 231,234,240,251,0 328,238,423,266,0 -./model_data/coco/val2017/000000144706.jpg 396,370,447,396,2 268,120,300,184,9 495,368,548,405,7 498,369,547,403,2 476,307,500,326,9 166,155,189,198,9 477,236,501,292,9 -./model_data/coco/val2017/000000397354.jpg 296,282,316,359,39 46,279,78,352,39 142,245,156,285,39 317,323,330,364,39 80,195,96,238,39 525,312,556,342,39 507,363,638,474,56 198,407,351,474,56 0,328,395,415,60 338,153,401,333,0 245,175,362,339,0 474,240,638,471,0 138,169,219,347,0 338,212,532,478,0 448,159,587,353,72 246,330,266,359,41 204,322,231,353,41 233,239,243,271,39 436,123,447,151,40 419,123,433,151,40 328,329,355,384,41 128,209,155,225,45 188,351,220,372,45 51,236,136,290,68 14,257,159,344,69 220,269,252,278,71 517,324,603,382,0 410,123,420,151,40 397,124,408,150,40 407,162,417,183,41 396,162,407,183,41 416,161,431,187,41 397,90,409,114,41 223,245,233,270,39 434,162,449,184,40 -./model_data/coco/val2017/000000416837.jpg 109,243,218,331,19 -./model_data/coco/val2017/000000499031.jpg 121,196,238,574,0 70,217,123,308,46 2,175,109,583,0 287,146,425,574,0 -./model_data/coco/val2017/000000318080.jpg 58,134,374,338,21 355,124,640,324,21 -./model_data/coco/val2017/000000376478.jpg 48,197,268,547,75 -./model_data/coco/val2017/000000285788.jpg 406,249,451,327,14 191,151,264,315,23 112,119,190,230,23 90,121,114,153,23 -./model_data/coco/val2017/000000085376.jpg 166,331,266,385,2 38,320,193,375,2 2,370,90,461,2 134,319,202,343,2 206,323,279,335,2 13,307,71,327,2 14,413,345,625,3 0,307,18,365,0 244,332,279,346,2 423,319,480,415,7 241,315,442,432,7 -./model_data/coco/val2017/000000390301.jpg 174,82,254,290,10 -./model_data/coco/val2017/000000405306.jpg 11,1,640,412,15 0,234,493,417,59 -./model_data/coco/val2017/000000229858.jpg 300,253,359,510,19 216,120,329,441,19 -./model_data/coco/val2017/000000232244.jpg 3,33,483,375,20 -./model_data/coco/val2017/000000570539.jpg 139,130,295,312,0 0,1,369,500,5 0,102,72,264,0 37,150,104,244,0 13,180,125,297,26 107,134,118,152,0 118,139,129,153,0 134,134,145,152,0 -./model_data/coco/val2017/000000040471.jpg 302,325,308,339,39 309,323,317,339,39 317,319,327,340,39 326,316,338,340,39 335,224,387,521,72 164,317,188,337,41 186,319,221,343,45 31,306,96,338,68 292,251,310,266,41 216,297,232,315,44 237,303,248,316,44 194,267,222,289,46 204,217,214,225,47 0,342,75,365,71 178,325,191,348,41 16,306,36,331,43 22,318,32,330,43 15,300,31,317,43 1,384,88,608,69 237,298,243,311,44 -./model_data/coco/val2017/000000172083.jpg 521,112,585,133,71 459,124,585,201,71 532,107,582,123,71 349,223,449,319,71 -./model_data/coco/val2017/000000146825.jpg 51,80,637,277,6 55,147,65,194,0 11,145,31,203,0 38,152,56,204,0 62,143,67,163,0 25,138,46,200,0 47,142,59,182,0 315,17,347,58,74 12,158,32,183,26 56,165,63,175,26 -./model_data/coco/val2017/000000164363.jpg 58,6,570,511,74 -./model_data/coco/val2017/000000392818.jpg 0,10,500,447,16 -./model_data/coco/val2017/000000207306.jpg 85,177,99,208,0 46,148,268,353,77 -./model_data/coco/val2017/000000173091.jpg 335,48,556,453,39 185,353,329,473,47 39,84,327,447,48 9,10,599,603,60 -./model_data/coco/val2017/000000018519.jpg 124,225,355,399,0 -./model_data/coco/val2017/000000147518.jpg 113,442,253,615,61 414,337,480,388,71 161,316,318,453,61 320,459,354,513,73 -./model_data/coco/val2017/000000173302.jpg 573,223,581,247,39 594,231,601,245,39 435,178,442,191,39 399,99,413,129,39 200,226,298,418,56 285,226,359,358,56 566,249,620,262,56 354,222,403,304,56 528,267,589,299,56 590,290,638,306,56 450,284,546,298,56 339,290,640,360,60 266,167,312,225,0 307,161,341,225,0 208,220,247,230,69 513,246,535,265,56 415,143,422,159,39 249,209,258,223,39 337,322,472,425,56 501,256,639,300,60 524,223,640,262,60 75,157,88,162,45 88,157,101,162,45 60,156,72,163,45 -./model_data/coco/val2017/000000080274.jpg 184,175,474,401,20 71,128,507,397,20 -./model_data/coco/val2017/000000392228.jpg 181,413,299,520,74 -./model_data/coco/val2017/000000520009.jpg 0,334,216,412,2 220,289,408,393,5 449,335,484,410,0 449,322,485,367,0 319,136,332,153,74 266,172,325,257,9 106,283,113,307,9 0,226,18,264,9 186,334,193,344,0 366,137,374,153,74 -./model_data/coco/val2017/000000063552.jpg 133,18,563,453,15 0,282,604,586,15 -./model_data/coco/val2017/000000484415.jpg 0,30,194,236,0 0,7,230,237,61 -./model_data/coco/val2017/000000052996.jpg 224,114,417,326,72 148,252,171,279,41 118,269,151,294,41 108,307,181,350,45 208,279,285,312,45 422,174,476,321,26 69,129,158,287,0 161,98,248,291,0 520,120,633,420,0 562,193,640,289,24 135,294,151,311,41 168,283,185,312,41 0,293,68,304,43 448,225,508,272,73 610,143,640,223,0 434,123,555,426,0 560,101,623,205,0 184,269,200,296,41 172,270,184,285,41 0,214,36,285,69 0,112,91,287,0 0,249,217,426,60 165,290,180,311,41 -./model_data/coco/val2017/000000047571.jpg 303,163,578,358,17 179,115,254,279,0 123,130,182,218,0 -./model_data/coco/val2017/000000024567.jpg 351,306,478,587,56 0,0,420,476,0 44,380,125,507,52 120,385,265,472,52 186,436,362,548,52 51,468,201,575,52 137,527,307,583,52 284,522,414,640,52 101,582,293,639,52 -./model_data/coco/val2017/000000457078.jpg 0,221,146,395,62 318,440,409,480,56 106,424,152,480,41 393,363,415,370,73 39,365,142,431,65 339,244,378,273,73 65,400,146,428,65 393,296,417,301,73 392,334,416,339,73 391,353,430,361,73 349,349,384,355,73 340,430,395,474,73 392,358,432,366,73 348,352,386,382,73 391,413,429,425,73 338,218,378,244,73 213,324,218,369,73 452,40,640,373,0 -./model_data/coco/val2017/000000384949.jpg 172,254,199,267,14 489,217,519,234,14 353,228,376,241,14 520,182,540,202,14 578,210,598,214,14 602,219,626,238,14 548,321,568,337,8 605,325,614,337,8 374,316,390,320,8 86,268,109,290,14 434,277,466,299,14 582,204,593,210,14 66,104,91,128,74 535,328,547,336,8 -./model_data/coco/val2017/000000346232.jpg 274,326,306,358,2 345,316,425,366,2 285,315,364,571,0 179,317,282,587,0 74,342,141,452,24 192,359,258,480,24 306,368,355,450,24 144,318,179,407,0 168,316,192,400,0 190,316,208,351,0 38,320,69,398,0 12,322,39,379,0 341,315,426,385,7 251,367,280,410,24 271,196,427,308,25 132,323,143,344,0 60,302,157,577,0 242,325,287,501,0 64,321,93,359,0 37,307,78,324,25 -./model_data/coco/val2017/000000486479.jpg 65,52,301,234,16 0,0,499,297,59 -./model_data/coco/val2017/000000521601.jpg 221,261,403,435,54 0,0,635,473,45 -./model_data/coco/val2017/000000414676.jpg 102,155,143,185,74 186,170,210,219,74 -./model_data/coco/val2017/000000007991.jpg 0,157,147,257,43 170,70,480,339,51 6,115,151,159,43 -./model_data/coco/val2017/000000259854.jpg 297,396,341,466,0 -./model_data/coco/val2017/000000229311.jpg 365,198,385,263,39 52,169,88,186,45 130,222,401,331,71 217,149,230,180,75 234,162,256,183,75 232,163,254,184,41 -./model_data/coco/val2017/000000161799.jpg 578,212,614,289,0 191,72,305,238,0 220,192,291,242,36 589,285,605,291,36 286,244,296,273,0 48,226,71,266,0 325,237,336,276,0 301,240,314,279,0 -./model_data/coco/val2017/000000322429.jpg 19,196,63,233,41 33,70,202,133,45 15,470,105,615,75 179,455,246,561,75 371,475,426,542,75 274,470,329,517,75 330,187,372,225,41 60,199,71,228,41 73,199,84,230,41 207,567,259,619,41 88,509,182,598,41 314,70,357,145,75 378,161,442,226,41 66,201,77,229,41 261,161,334,227,41 244,511,337,624,75 365,47,445,145,75 88,508,180,599,75 348,531,424,621,75 223,337,337,437,45 151,364,231,442,45 -./model_data/coco/val2017/000000184978.jpg 146,294,253,482,0 176,478,232,490,31 -./model_data/coco/val2017/000000175364.jpg 240,57,255,92,39 232,116,244,142,39 577,106,600,143,40 42,126,58,150,41 158,250,261,428,69 430,232,581,354,69 67,217,127,259,70 404,199,453,231,70 259,227,338,245,71 230,52,242,94,39 447,124,466,141,41 342,197,355,220,44 555,319,600,352,45 424,80,432,93,41 432,79,443,92,41 446,79,458,92,41 462,76,467,88,41 234,305,613,455,60 -./model_data/coco/val2017/000000527029.jpg 23,214,310,632,0 332,501,362,540,41 389,288,423,301,46 461,406,491,425,46 601,397,623,412,46 435,229,563,313,46 563,262,599,287,46 603,213,632,231,46 490,401,518,416,46 465,366,496,381,46 477,377,504,395,46 466,376,489,391,46 443,381,474,399,46 562,353,620,405,46 474,407,585,476,46 54,21,639,590,46 -./model_data/coco/val2017/000000035197.jpg 27,0,260,425,0 369,239,415,321,0 1,347,195,452,36 -./model_data/coco/val2017/000000397639.jpg 383,256,479,403,18 232,178,383,397,18 -./model_data/coco/val2017/000000017379.jpg 145,214,310,322,62 379,522,478,575,71 4,590,190,640,71 216,233,263,313,0 157,242,197,314,0 -./model_data/coco/val2017/000000463283.jpg 31,79,456,591,41 210,109,599,434,49 502,1,600,136,41 0,0,612,603,60 -./model_data/coco/val2017/000000018770.jpg 268,175,361,377,27 173,0,640,422,0 -./model_data/coco/val2017/000000193348.jpg 258,390,426,577,79 0,77,426,628,0 -./model_data/coco/val2017/000000288862.jpg 377,332,427,429,0 302,406,325,462,0 112,133,249,195,36 375,397,427,428,36 320,417,334,458,0 148,158,292,483,0 -./model_data/coco/val2017/000000007818.jpg 0,77,640,427,60 332,158,413,352,40 399,187,443,284,40 136,150,227,329,40 446,265,554,282,43 288,215,358,314,75 121,304,168,332,42 8,260,115,309,56 461,314,640,357,43 210,265,283,274,43 615,273,640,318,56 -./model_data/coco/val2017/000000148719.jpg 96,96,582,379,7 0,108,259,319,7 545,115,633,183,7 192,116,222,151,7 231,118,273,148,7 1,119,43,163,0 -./model_data/coco/val2017/000000278973.jpg 81,101,276,293,0 149,260,294,317,37 -./model_data/coco/val2017/000000330790.jpg 181,67,454,421,20 0,156,223,421,20 558,154,640,334,20 -./model_data/coco/val2017/000000476415.jpg 212,31,296,471,27 56,0,426,631,0 -./model_data/coco/val2017/000000086220.jpg 38,142,514,260,5 169,188,180,201,0 297,225,313,250,0 134,209,445,335,2 0,212,31,236,2 33,145,513,263,6 -./model_data/coco/val2017/000000003255.jpg 246,319,257,357,0 261,311,273,356,0 271,313,289,358,0 295,313,317,352,0 276,353,290,358,30 257,343,263,354,24 271,318,282,337,24 235,317,244,355,0 307,332,317,349,24 242,315,250,357,0 -./model_data/coco/val2017/000000298904.jpg 56,14,399,621,75 -./model_data/coco/val2017/000000279774.jpg 289,103,304,121,56 237,82,263,121,56 192,63,231,157,0 265,81,307,124,0 44,153,256,492,0 169,265,304,320,34 190,63,200,98,0 82,79,112,156,0 257,85,290,123,0 -./model_data/coco/val2017/000000049759.jpg 487,133,520,167,32 210,167,242,277,0 424,167,448,252,0 405,170,431,246,0 471,158,589,457,0 354,167,373,239,0 379,170,398,244,0 458,170,483,260,0 550,173,586,283,0 365,171,380,229,0 332,166,369,263,0 176,171,210,242,0 30,170,61,254,0 155,174,176,232,0 45,167,564,232,0 -./model_data/coco/val2017/000000045070.jpg 0,437,640,589,17 109,40,435,486,0 -./model_data/coco/val2017/000000275749.jpg 108,223,189,371,62 12,233,64,314,62 280,319,298,375,39 216,308,236,358,39 216,263,229,307,39 259,225,281,306,56 311,125,399,352,0 269,192,328,339,0 60,96,153,239,0 160,337,367,370,60 238,328,263,364,41 235,287,248,312,41 0,342,74,370,63 249,357,281,371,64 158,72,204,123,0 0,291,13,353,62 124,93,221,295,0 166,95,227,238,0 45,233,113,375,62 -./model_data/coco/val2017/000000073946.jpg 99,92,275,421,0 249,44,448,395,37 1,65,188,426,59 316,390,392,428,0 360,68,640,422,0 -./model_data/coco/val2017/000000466835.jpg 171,54,355,429,46 -./model_data/coco/val2017/000000485802.jpg 206,193,222,211,4 -./model_data/coco/val2017/000000221754.jpg 152,260,187,278,2 85,258,106,271,2 71,260,87,271,2 534,175,555,229,9 577,169,604,234,9 554,177,566,231,9 282,262,288,285,0 243,262,256,288,0 510,265,518,294,0 503,266,512,296,0 488,266,497,293,0 236,258,240,280,0 580,270,640,299,7 152,261,187,278,7 495,264,507,291,0 -./model_data/coco/val2017/000000138639.jpg 430,328,466,350,2 389,327,417,348,2 149,259,160,277,9 408,344,441,413,26 400,324,446,462,0 568,327,638,479,0 103,317,120,342,0 134,319,188,401,0 165,317,175,330,0 187,313,196,332,0 290,315,298,339,0 211,314,219,333,0 195,313,209,337,0 69,304,75,321,0 59,303,66,323,0 124,360,199,418,1 33,308,54,339,0 572,354,586,398,26 80,303,88,323,0 0,252,631,359,0 -./model_data/coco/val2017/000000214869.jpg 229,232,413,472,67 0,3,640,474,0 -./model_data/coco/val2017/000000050811.jpg 448,314,521,576,39 524,316,595,592,39 448,332,467,443,39 239,263,302,417,27 72,66,466,491,0 164,448,368,535,45 594,477,640,518,65 9,473,55,499,67 3,451,640,595,60 -./model_data/coco/val2017/000000193743.jpg 116,43,396,629,0 375,380,390,533,38 340,616,409,640,0 221,605,316,632,0 367,0,424,43,0 -./model_data/coco/val2017/000000459396.jpg 17,155,437,545,19 466,99,563,245,19 203,144,314,172,19 -./model_data/coco/val2017/000000173830.jpg 187,185,417,570,0 120,553,506,583,30 -./model_data/coco/val2017/000000505638.jpg 0,7,522,468,6 81,164,100,232,0 189,193,214,217,0 0,160,10,210,0 34,176,48,214,0 -./model_data/coco/val2017/000000559956.jpg 312,92,475,472,18 434,132,640,474,18 501,52,640,295,18 244,158,271,224,39 152,396,185,435,39 0,65,237,472,0 78,6,335,302,0 2,231,55,474,26 324,0,501,204,0 -./model_data/coco/val2017/000000253819.jpg 196,5,472,321,0 300,238,408,343,36 -./model_data/coco/val2017/000000154425.jpg 140,1,412,420,0 362,150,606,358,33 -./model_data/coco/val2017/000000088848.jpg 131,31,244,251,10 410,125,496,306,10 410,474,474,619,0 468,470,519,614,0 143,363,232,624,0 565,469,613,613,0 576,495,613,563,24 323,391,587,558,8 150,443,176,542,26 460,568,471,595,26 518,470,592,615,0 -./model_data/coco/val2017/000000397279.jpg 262,91,508,332,0 270,142,344,191,38 349,188,367,202,38 -./model_data/coco/val2017/000000424551.jpg 251,214,348,397,0 461,148,479,179,0 247,331,408,425,30 -./model_data/coco/val2017/000000474344.jpg 164,98,301,416,0 230,36,251,207,34 505,206,558,330,0 -./model_data/coco/val2017/000000327890.jpg 604,202,621,214,2 619,203,639,213,2 533,204,550,214,2 567,202,580,213,2 515,202,531,214,2 493,205,509,214,2 557,198,569,213,2 104,277,418,416,13 239,243,419,307,13 15,248,120,336,13 577,202,591,213,2 456,228,510,252,13 593,203,605,214,2 -./model_data/coco/val2017/000000047740.jpg 0,147,476,355,0 351,39,457,135,0 279,0,466,119,33 226,0,640,237,33 185,328,215,358,0 486,329,521,358,0 -./model_data/coco/val2017/000000171382.jpg 262,184,441,249,2 0,175,275,277,2 598,152,602,161,9 578,174,582,179,9 560,167,564,170,9 114,72,127,93,9 552,162,557,170,9 618,178,621,182,9 106,12,304,257,0 363,145,398,281,0 389,153,422,282,0 441,150,487,282,0 486,125,557,310,0 113,151,160,284,0 134,223,251,367,36 229,186,248,217,0 172,185,212,278,0 255,181,271,221,0 542,182,578,209,2 576,190,599,213,2 598,194,612,207,2 623,178,627,186,9 612,182,618,187,9 32,177,48,208,24 9,149,42,284,0 539,152,544,157,9 596,163,600,172,9 504,67,539,98,9 378,181,400,204,24 139,171,150,179,24 249,148,301,168,25 288,149,324,169,25 617,193,638,211,2 581,181,585,185,9 454,168,481,223,26 528,139,536,149,67 103,68,567,171,9 -./model_data/coco/val2017/000000437331.jpg 252,92,328,245,37 255,122,355,239,0 -./model_data/coco/val2017/000000447611.jpg 325,0,500,216,0 0,0,158,123,0 245,0,283,168,43 274,164,431,180,43 101,86,231,157,43 54,140,351,239,63 -./model_data/coco/val2017/000000344029.jpg 27,226,47,266,2 1,223,39,270,2 91,112,595,404,5 188,241,210,267,0 212,243,227,257,0 257,220,296,272,0 376,227,381,250,27 183,231,195,254,0 40,228,68,264,2 39,214,95,248,5 241,250,251,267,0 345,199,415,265,0 -./model_data/coco/val2017/000000159311.jpg 1,0,309,268,22 48,1,346,225,22 -./model_data/coco/val2017/000000325838.jpg 159,133,362,321,56 18,5,147,162,56 505,6,640,184,56 445,92,603,239,56 2,194,27,393,56 196,63,372,377,0 373,197,566,334,63 66,241,235,423,63 311,340,349,374,64 297,263,392,324,66 101,326,206,402,66 414,252,480,321,66 543,243,564,257,67 403,293,533,346,63 404,304,533,357,63 398,303,529,369,63 396,314,525,380,63 396,327,522,390,63 -./model_data/coco/val2017/000000311950.jpg 153,170,294,456,52 -./model_data/coco/val2017/000000162581.jpg 149,140,327,511,0 146,66,217,182,38 -./model_data/coco/val2017/000000283113.jpg 1,101,291,520,52 311,105,480,438,52 207,0,364,106,41 -./model_data/coco/val2017/000000353518.jpg 495,132,586,202,8 419,132,503,188,8 297,135,411,191,8 135,128,310,179,8 62,130,192,173,8 554,130,612,155,8 200,138,301,159,8 289,159,302,170,0 593,142,598,147,0 -./model_data/coco/val2017/000000119641.jpg 160,362,166,371,27 256,342,276,386,0 148,349,176,404,0 275,343,302,393,0 514,356,533,382,0 128,353,152,379,0 501,365,518,398,0 118,394,183,472,20 248,389,302,457,20 294,400,400,449,20 497,391,536,435,20 604,383,640,430,20 384,389,424,444,20 140,363,142,369,27 262,369,279,392,0 375,365,393,404,0 398,354,419,383,0 620,357,637,389,0 355,363,377,400,0 340,371,359,406,0 387,351,401,385,0 -./model_data/coco/val2017/000000557884.jpg 208,140,391,527,75 -./model_data/coco/val2017/000000358923.jpg 221,20,619,173,25 402,143,486,232,67 24,83,572,420,0 315,2,608,428,0 251,154,397,422,0 574,53,639,427,0 -./model_data/coco/val2017/000000072813.jpg 228,133,496,320,16 53,30,208,172,62 0,145,640,474,59 -./model_data/coco/val2017/000000455267.jpg 225,226,306,297,50 335,138,487,331,50 258,338,355,374,50 233,295,296,351,50 137,265,196,304,50 184,195,268,243,50 276,190,335,248,50 294,265,367,355,50 303,233,354,273,51 173,325,205,360,51 0,44,590,474,69 276,339,303,351,50 215,165,254,205,51 413,324,436,343,51 159,237,194,271,51 -./model_data/coco/val2017/000000189698.jpg 101,293,268,418,7 -./model_data/coco/val2017/000000163746.jpg 174,0,229,59,4 517,0,574,61,4 126,159,249,478,0 450,161,574,477,0 58,217,109,396,0 343,251,374,295,0 0,248,31,295,0 386,218,447,400,0 370,253,380,265,0 360,246,370,258,0 17,245,26,257,0 27,253,37,265,0 328,252,339,260,0 -./model_data/coco/val2017/000000157807.jpg 103,155,478,377,15 96,292,381,427,61 539,102,640,216,71 -./model_data/coco/val2017/000000493566.jpg 25,65,635,219,6 1,71,97,236,6 -./model_data/coco/val2017/000000242934.jpg 32,157,69,209,56 50,97,137,195,56 146,98,414,195,57 279,60,318,69,73 302,76,305,84,73 394,97,433,139,60 283,87,285,94,73 276,70,283,83,73 305,77,308,84,73 298,76,301,84,73 296,76,298,84,73 284,75,297,84,73 315,75,318,85,73 282,87,285,94,73 310,76,313,84,73 29,0,47,138,62 -./model_data/coco/val2017/000000340697.jpg 0,112,81,284,39 188,112,254,283,39 122,110,194,283,39 237,0,311,60,39 254,108,318,280,39 317,109,384,289,39 388,0,472,66,39 50,109,137,283,39 379,112,456,293,39 82,0,151,62,39 7,1,82,63,39 321,0,389,62,39 2,75,61,186,39 64,0,499,296,39 -./model_data/coco/val2017/000000141328.jpg 471,2,573,127,44 1,0,640,474,45 443,179,552,300,50 370,143,436,217,50 76,3,215,64,50 374,1,441,56,50 185,237,263,273,50 35,346,173,449,50 447,296,527,373,50 7,187,118,355,50 136,78,182,166,50 218,5,246,50,50 28,415,107,480,50 5,164,82,241,50 0,430,34,480,50 116,274,629,368,50 -./model_data/coco/val2017/000000505169.jpg 346,494,427,596,61 -./model_data/coco/val2017/000000290833.jpg 200,49,638,364,22 11,115,291,356,22 -./model_data/coco/val2017/000000553094.jpg 178,46,454,396,4 -./model_data/coco/val2017/000000521141.jpg 148,249,202,281,2 304,241,374,273,2 308,235,353,250,2 221,242,247,257,2 265,241,308,261,2 141,240,166,257,2 89,253,106,269,2 246,240,271,260,2 200,236,227,257,2 48,258,104,404,0 2,245,51,434,0 73,249,115,377,0 130,244,138,253,2 115,245,123,252,2 -./model_data/coco/val2017/000000480122.jpg 132,233,153,264,39 60,394,189,483,56 369,499,502,640,56 477,421,631,629,56 475,339,574,537,56 5,366,612,632,60 218,154,233,174,43 232,153,244,168,43 233,167,248,179,43 392,193,406,219,44 260,406,371,473,45 278,372,345,439,46 117,270,239,336,71 457,264,615,294,71 249,262,336,390,72 222,154,239,178,43 229,164,244,179,43 242,158,248,167,43 1,272,146,518,69 579,415,634,476,56 217,359,294,430,56 -./model_data/coco/val2017/000000323828.jpg 140,69,305,557,6 44,130,88,153,2 75,129,89,139,2 74,116,89,129,2 201,406,228,441,17 381,15,416,28,2 208,10,248,20,2 160,6,190,19,2 264,10,300,20,2 -./model_data/coco/val2017/000000356427.jpg 161,66,295,422,0 419,268,521,322,24 371,290,470,338,24 358,372,412,427,26 408,347,478,418,26 278,332,363,425,24 300,317,388,378,24 389,315,445,349,28 -./model_data/coco/val2017/000000485895.jpg 386,127,478,295,23 -./model_data/coco/val2017/000000338901.jpg 272,140,640,369,16 76,2,638,473,57 0,426,87,477,65 0,430,19,449,65 -./model_data/coco/val2017/000000116479.jpg 42,341,127,458,56 41,341,120,454,57 58,80,328,632,59 -./model_data/coco/val2017/000000276720.jpg 276,281,311,317,2 243,279,269,300,2 206,280,220,292,2 276,281,311,316,7 243,278,269,300,7 -./model_data/coco/val2017/000000182805.jpg 279,132,373,345,16 325,185,562,355,16 306,0,640,119,25 95,0,423,352,0 44,91,233,360,26 -./model_data/coco/val2017/000000571718.jpg 413,4,624,419,0 219,11,305,72,0 0,265,54,286,46 0,234,111,287,46 224,159,294,230,46 66,253,146,301,46 295,223,322,273,46 262,149,341,178,46 197,177,244,229,46 249,229,327,303,46 109,204,180,286,46 204,239,265,300,46 257,168,299,209,46 33,52,91,199,56 0,33,71,194,56 214,61,271,114,56 346,63,388,136,56 179,48,225,107,56 381,74,426,118,56 450,64,497,81,56 296,41,335,76,56 182,18,227,62,56 45,22,87,59,56 127,26,171,63,56 268,61,316,97,56 16,199,106,249,46 84,85,183,102,60 492,105,531,153,60 585,212,639,384,60 337,255,394,294,46 310,75,355,109,56 263,89,351,121,60 424,79,498,166,60 126,139,476,354,46 -./model_data/coco/val2017/000000281687.jpg 325,165,375,190,67 291,133,433,375,0 361,161,493,375,0 3,124,146,369,0 199,211,233,374,0 257,223,289,264,0 134,246,150,293,0 214,207,358,370,26 239,245,258,286,0 103,247,122,294,0 402,252,416,268,67 392,283,455,349,26 79,227,112,348,0 150,252,158,277,2 229,245,241,296,0 90,136,102,148,67 -./model_data/coco/val2017/000000015597.jpg 104,319,197,384,36 311,420,425,462,1 8,177,203,375,0 -./model_data/coco/val2017/000000014038.jpg 469,187,504,256,62 76,103,91,128,39 46,106,56,124,39 500,303,640,422,60 303,187,356,260,59 580,406,612,427,67 18,153,148,421,72 507,270,544,284,73 501,291,544,306,73 502,285,544,300,73 518,239,543,246,73 507,200,550,211,73 504,274,539,291,73 236,292,258,312,39 168,214,233,244,57 496,38,556,131,58 498,210,551,222,73 562,286,639,315,56 500,283,542,296,73 518,245,540,249,73 508,168,550,173,73 506,171,553,178,73 160,286,234,324,68 502,310,539,345,73 497,100,568,312,73 -./model_data/coco/val2017/000000036936.jpg 157,184,291,350,58 70,86,187,179,62 331,89,481,255,0 342,39,582,337,0 236,124,640,399,57 324,297,356,332,41 298,277,325,323,41 152,290,178,333,41 86,308,103,330,41 100,303,115,323,41 128,309,145,329,41 251,375,287,404,67 27,12,67,18,73 114,305,129,326,41 139,302,154,321,41 56,306,72,325,41 70,299,86,319,41 277,320,320,355,45 362,193,403,220,65 593,262,612,279,65 286,182,331,200,73 35,11,72,16,73 -./model_data/coco/val2017/000000046872.jpg 604,147,639,170,2 0,76,491,280,7 503,127,599,370,0 211,44,301,197,0 591,157,606,169,2 612,153,640,176,2 -./model_data/coco/val2017/000000045229.jpg 59,189,71,219,39 261,414,281,426,45 29,429,101,479,69 317,406,388,479,69 607,156,624,210,39 128,279,146,310,39 524,321,534,334,39 348,388,380,423,58 313,387,350,424,58 280,354,304,383,58 303,357,332,384,58 595,292,638,359,73 360,368,369,378,58 368,365,382,381,58 384,367,396,378,58 395,367,411,377,58 257,357,281,384,58 609,307,622,362,73 629,314,640,369,73 625,303,639,370,73 97,234,110,252,39 0,398,98,479,69 -./model_data/coco/val2017/000000383443.jpg 235,123,283,164,62 0,266,54,289,71 354,202,379,207,71 141,237,174,247,65 -./model_data/coco/val2017/000000057760.jpg 338,108,344,126,33 318,120,321,124,33 125,214,135,241,0 115,233,129,241,16 187,200,196,219,0 286,201,293,215,0 240,216,248,236,0 345,205,352,217,0 391,209,398,231,0 455,201,461,218,0 238,202,244,221,0 130,206,141,213,0 167,197,177,219,0 73,208,86,230,0 175,203,184,220,0 214,202,222,216,0 452,215,458,218,16 291,211,300,215,16 117,214,125,233,0 -./model_data/coco/val2017/000000060507.jpg 130,215,141,225,32 153,192,190,198,34 307,214,328,230,35 196,190,207,198,35 152,166,254,299,0 305,188,380,271,0 193,61,226,104,0 316,59,349,87,0 252,65,297,96,0 225,57,257,96,0 125,63,168,111,0 89,66,128,112,0 529,20,573,63,0 386,51,419,78,0 351,56,372,83,0 289,48,319,92,0 304,157,381,256,0 160,87,184,105,56 58,54,61,58,67 449,44,511,72,0 -./model_data/coco/val2017/000000465675.jpg 112,180,360,241,8 165,152,331,198,8 341,165,512,272,7 -./model_data/coco/val2017/000000544052.jpg 135,382,342,619,36 370,483,463,593,36 -./model_data/coco/val2017/000000252716.jpg 269,184,300,291,0 206,249,212,266,0 71,254,78,264,0 205,522,388,616,29 -./model_data/coco/val2017/000000011122.jpg 250,162,329,244,11 -./model_data/coco/val2017/000000519491.jpg 174,493,288,597,74 211,206,282,270,14 -./model_data/coco/val2017/000000429109.jpg 475,259,514,289,1 306,182,611,284,5 4,181,178,262,6 253,147,503,221,6 196,319,212,340,0 254,231,270,251,0 273,224,288,253,0 625,211,640,236,2 479,239,502,276,0 108,249,375,401,5 -./model_data/coco/val2017/000000244099.jpg 148,131,262,216,17 184,98,229,182,0 -./model_data/coco/val2017/000000579070.jpg 352,179,378,236,27 197,271,233,380,39 278,25,471,264,0 0,89,81,265,0 101,29,292,231,0 126,329,174,361,42 470,163,500,244,56 0,207,536,427,60 227,58,349,147,60 0,49,46,95,60 493,115,640,333,0 330,269,355,296,41 145,230,167,258,41 194,219,216,246,41 438,329,466,371,41 5,280,34,314,41 35,265,64,300,41 379,332,411,374,41 458,243,502,305,41 167,230,190,258,41 148,200,170,226,41 4,262,32,283,41 401,315,430,352,41 231,68,255,87,45 278,85,307,98,45 75,1,165,153,56 482,87,555,248,56 1,0,105,89,0 368,356,417,426,41 429,310,640,373,0 10,10,562,426,41 -./model_data/coco/val2017/000000230166.jpg 297,165,493,298,18 52,174,193,285,18 17,158,132,268,18 245,202,298,248,18 590,183,640,269,18 581,167,640,255,18 592,209,640,290,18 542,202,601,245,18 15,174,66,249,18 0,178,37,237,18 279,174,330,212,18 343,176,381,189,18 187,183,250,260,18 137,163,564,235,18 -./model_data/coco/val2017/000000483050.jpg 10,208,640,472,59 625,267,640,288,41 76,273,114,292,74 -./model_data/coco/val2017/000000057725.jpg 368,76,388,104,74 414,75,433,103,74 -./model_data/coco/val2017/000000015660.jpg 154,189,208,264,0 153,291,320,342,37 227,49,240,72,33 87,34,118,69,33 462,26,485,46,33 452,111,459,120,33 601,110,609,123,33 -./model_data/coco/val2017/000000216296.jpg 477,42,602,239,0 192,123,379,402,0 295,125,334,167,38 289,0,379,160,0 535,154,543,160,74 -./model_data/coco/val2017/000000245173.jpg 242,161,285,201,74 430,546,472,578,1 404,546,428,577,1 -./model_data/coco/val2017/000000401991.jpg 190,130,577,353,16 26,37,218,140,15 0,0,638,379,59 26,37,217,147,16 -./model_data/coco/val2017/000000283037.jpg 0,357,92,447,2 191,199,225,269,9 -./model_data/coco/val2017/000000255483.jpg 4,213,434,424,0 169,269,286,300,76 18,123,235,407,73 -./model_data/coco/val2017/000000266768.jpg 63,389,494,590,60 126,257,189,429,0 61,286,261,569,0 315,251,419,402,0 343,275,505,577,0 171,236,195,267,0 268,240,313,295,0 423,242,485,347,0 59,484,135,522,13 418,484,496,511,13 315,396,347,415,45 153,253,215,378,0 239,249,278,291,0 213,252,263,305,0 315,372,337,397,41 202,357,220,386,41 207,344,226,352,45 189,412,227,422,67 321,230,348,258,0 105,255,137,292,0 309,247,339,321,0 -./model_data/coco/val2017/000000322959.jpg 237,287,470,353,42 329,265,496,340,43 428,333,592,491,45 466,200,592,323,46 413,26,565,190,47 516,102,593,233,49 266,130,413,274,45 459,181,505,233,46 25,34,599,594,60 -./model_data/coco/val2017/000000127530.jpg 503,253,544,292,32 254,15,542,440,0 301,100,408,200,38 -./model_data/coco/val2017/000000226662.jpg 87,18,605,444,3 548,9,599,206,0 10,10,533,323,3 483,10,562,214,0 -./model_data/coco/val2017/000000571893.jpg 333,150,346,233,73 412,167,453,235,73 310,154,326,234,73 441,187,475,237,75 465,185,480,225,75 2,124,322,284,69 401,160,428,236,73 394,161,419,236,73 378,155,408,235,73 325,153,333,234,73 344,151,365,235,73 278,124,291,233,73 291,133,303,233,73 299,141,328,235,73 361,159,387,235,73 0,141,15,156,74 297,284,309,374,73 270,167,447,392,73 -./model_data/coco/val2017/000000127476.jpg 0,44,480,620,53 -./model_data/coco/val2017/000000100428.jpg 283,235,473,258,27 261,100,620,484,0 119,85,249,484,0 185,242,268,422,27 -./model_data/coco/val2017/000000200839.jpg 88,168,465,318,5 2,224,31,282,0 143,240,176,268,73 234,202,264,244,73 303,193,339,242,73 358,195,408,261,73 197,236,233,275,73 -./model_data/coco/val2017/000000045090.jpg 296,81,314,101,0 198,120,231,131,37 308,99,323,103,37 174,88,205,112,0 -./model_data/coco/val2017/000000372260.jpg 260,325,327,433,58 0,315,117,526,2 189,64,282,157,74 118,304,147,334,2 86,298,124,340,2 244,507,309,560,58 132,505,198,562,58 192,458,274,500,58 158,453,219,497,58 255,431,322,497,58 175,435,224,456,58 3,297,35,313,2 -./model_data/coco/val2017/000000316666.jpg 96,315,502,376,60 49,240,58,292,73 456,218,505,318,39 536,94,564,164,40 579,90,605,161,40 553,101,573,145,40 627,124,640,157,40 389,264,424,311,40 262,263,286,305,40 67,238,74,291,73 98,171,120,200,74 291,308,328,350,75 531,410,558,441,41 69,127,79,179,73 61,124,68,180,73 57,239,67,291,73 73,239,81,287,73 78,127,85,179,73 51,125,66,181,73 81,237,92,290,73 326,311,354,345,75 488,202,499,273,75 365,280,399,290,75 126,273,158,283,75 558,412,586,447,41 509,411,531,440,41 616,414,640,445,41 481,405,506,440,41 544,388,553,393,41 550,398,573,405,41 536,403,542,408,41 536,403,562,414,41 328,309,355,345,41 136,363,188,384,45 184,353,232,371,45 585,413,616,447,41 590,406,619,414,41 604,388,625,398,41 564,405,591,416,41 574,401,595,407,41 -./model_data/coco/val2017/000000100274.jpg 488,145,528,194,6 266,101,379,427,6 91,169,110,184,2 107,166,117,179,2 173,205,230,225,2 162,215,231,239,7 90,138,117,154,7 83,136,107,151,7 0,180,13,195,2 -./model_data/coco/val2017/000000385029.jpg 248,0,302,166,39 379,0,442,180,39 0,1,638,474,60 0,308,272,478,0 429,123,513,253,40 325,106,388,230,40 175,162,220,292,44 84,124,274,266,45 258,238,475,403,53 94,160,185,291,42 -./model_data/coco/val2017/000000230362.jpg 486,334,619,364,8 212,311,288,343,8 273,172,352,339,8 334,182,462,350,8 607,311,640,371,8 202,323,228,344,8 461,322,519,352,8 452,315,525,335,8 121,321,162,342,8 147,192,207,341,8 426,312,453,333,8 77,160,136,338,8 255,297,296,326,8 -./model_data/coco/val2017/000000443498.jpg 185,118,470,386,5 -./model_data/coco/val2017/000000471991.jpg 237,240,256,260,56 -./model_data/coco/val2017/000000351823.jpg 100,87,309,596,0 121,280,146,360,38 -./model_data/coco/val2017/000000459195.jpg 228,84,307,339,0 137,80,222,313,0 254,221,287,248,29 319,190,356,213,29 320,204,357,220,29 174,218,178,243,29 298,86,401,331,0 -./model_data/coco/val2017/000000425390.jpg 7,65,459,355,15 69,20,500,369,63 -./model_data/coco/val2017/000000136033.jpg 367,326,389,370,58 314,371,433,423,71 -./model_data/coco/val2017/000000201934.jpg 261,160,297,192,2 282,159,305,185,2 290,155,311,178,2 306,155,321,172,2 311,154,324,166,2 0,58,262,297,5 -./model_data/coco/val2017/000000353096.jpg 106,23,399,277,62 444,289,496,321,64 99,277,396,323,66 -./model_data/coco/val2017/000000521282.jpg 68,298,285,628,75 -./model_data/coco/val2017/000000297353.jpg 44,367,575,583,59 176,63,473,484,0 596,387,612,434,39 85,424,141,443,73 -./model_data/coco/val2017/000000117914.jpg 16,245,29,273,39 8,277,181,500,61 132,425,333,500,71 -./model_data/coco/val2017/000000220858.jpg 227,26,241,44,14 167,212,485,327,8 118,127,133,147,0 284,107,292,125,0 96,126,118,152,0 33,118,37,125,0 21,115,25,123,0 4,121,14,130,14 184,142,191,148,14 -./model_data/coco/val2017/000000149375.jpg 208,42,393,375,0 87,139,107,196,0 121,150,149,196,0 514,142,537,216,0 217,298,324,383,36 526,191,544,213,36 -./model_data/coco/val2017/000000315492.jpg 160,148,334,460,0 18,358,144,512,77 17,351,198,574,61 481,488,588,596,77 -./model_data/coco/val2017/000000429530.jpg 417,148,614,416,75 111,157,335,451,75 28,49,182,409,75 249,48,415,404,75 -./model_data/coco/val2017/000000012120.jpg 389,200,394,204,32 375,19,386,33,56 359,18,371,33,56 349,7,360,19,56 103,131,127,141,38 3,235,61,311,0 89,112,119,178,0 568,84,586,120,0 555,90,572,116,0 532,86,559,117,0 512,76,537,100,0 447,77,468,105,0 482,92,504,125,0 518,96,535,115,0 487,220,502,239,38 299,7,312,21,56 375,8,387,22,56 131,27,148,36,56 472,123,480,155,56 632,103,640,124,0 496,75,510,102,0 512,124,531,142,0 482,208,547,324,0 285,7,297,22,56 1,0,639,289,0 -./model_data/coco/val2017/000000031217.jpg 601,90,608,97,32 263,151,396,310,0 390,164,440,194,38 -./model_data/coco/val2017/000000077396.jpg 270,40,496,188,62 230,202,393,368,15 92,344,264,480,15 446,302,635,480,60 128,221,240,351,56 141,150,237,216,63 351,40,397,48,65 489,228,513,238,65 564,307,640,363,73 -./model_data/coco/val2017/000000531707.jpg 169,213,256,397,0 251,212,331,393,0 384,224,476,396,0 182,276,477,404,13 331,221,392,376,0 -./model_data/coco/val2017/000000059920.jpg 232,316,427,632,61 0,416,135,565,61 -./model_data/coco/val2017/000000199681.jpg 2,1,640,480,68 119,19,315,262,77 -./model_data/coco/val2017/000000229216.jpg 126,365,168,395,67 143,9,585,422,0 49,5,357,420,0 -./model_data/coco/val2017/000000413247.jpg 392,185,438,335,39 0,149,318,385,63 247,360,320,406,64 446,251,634,315,73 436,274,640,411,24 -./model_data/coco/val2017/000000561465.jpg 224,48,410,216,54 56,15,237,178,54 1,1,75,170,54 368,317,612,605,55 15,137,69,180,54 0,205,338,612,60 -./model_data/coco/val2017/000000549930.jpg 37,15,384,165,25 80,160,295,558,0 37,190,43,210,0 80,188,90,207,0 336,288,375,392,0 2,186,9,199,0 9,197,15,201,0 506,178,519,200,25 457,180,487,194,25 465,197,493,206,25 363,187,380,195,25 330,190,348,198,25 324,178,342,183,25 444,194,459,198,25 488,197,506,202,25 512,194,531,203,25 59,186,81,193,25 249,190,270,198,25 396,189,414,196,25 261,150,359,557,0 129,192,136,219,0 311,183,639,206,25 -./model_data/coco/val2017/000000162366.jpg 357,157,539,401,12 -./model_data/coco/val2017/000000444879.jpg 187,183,429,362,6 -./model_data/coco/val2017/000000326627.jpg 290,397,344,437,2 354,403,370,425,2 377,399,403,415,2 398,398,409,411,2 498,396,507,404,2 340,402,361,428,2 413,393,432,414,2 398,394,413,409,2 249,406,263,417,2 467,393,474,397,2 468,379,472,382,9 460,388,462,390,9 472,379,473,381,9 -./model_data/coco/val2017/000000417876.jpg 203,96,263,302,23 304,165,369,296,23 402,291,422,308,14 428,290,451,308,14 0,291,35,304,14 390,125,416,140,14 -./model_data/coco/val2017/000000234757.jpg 361,210,426,270,13 284,75,357,360,12 152,20,195,45,13 -./model_data/coco/val2017/000000180011.jpg 212,461,432,632,0 78,295,370,640,23 396,285,480,640,23 0,132,220,548,23 304,178,414,436,23 1,490,192,640,23 -./model_data/coco/val2017/000000465836.jpg 152,126,218,318,0 263,123,326,311,0 215,122,272,308,0 213,305,271,346,30 158,313,205,353,30 272,287,373,350,30 277,154,312,190,24 -./model_data/coco/val2017/000000017905.jpg 232,133,292,280,9 431,576,469,640,10 81,229,200,593,0 -./model_data/coco/val2017/000000476787.jpg 472,99,565,246,39 233,232,562,265,43 25,243,216,262,43 68,60,285,193,45 189,262,445,424,53 568,118,640,295,39 536,202,577,308,39 357,82,416,185,41 416,8,527,178,39 293,10,358,99,39 477,186,544,292,39 -./model_data/coco/val2017/000000498463.jpg 212,5,485,474,72 486,184,587,250,68 -./model_data/coco/val2017/000000393838.jpg 157,261,189,289,51 5,0,639,420,69 222,309,278,342,51 247,262,278,286,51 275,189,302,214,51 85,249,113,281,51 157,161,177,193,51 198,305,224,335,51 313,292,342,328,51 187,219,203,251,51 156,241,185,264,51 164,142,198,173,51 349,139,383,170,51 0,0,80,201,39 147,161,166,195,51 108,110,452,353,51 -./model_data/coco/val2017/000000117492.jpg 182,279,235,364,77 438,199,459,229,77 415,228,450,253,77 502,221,529,253,77 38,227,237,423,0 186,197,298,420,0 1,170,58,259,0 283,137,343,310,0 331,170,366,281,0 441,171,474,284,0 414,217,442,300,0 34,198,101,320,0 225,157,298,342,0 375,130,424,292,0 370,143,468,168,25 364,209,377,234,77 222,283,290,368,77 351,151,377,249,0 575,145,636,260,0 82,178,94,214,56 0,201,34,264,56 214,191,223,230,56 523,190,548,251,0 1,132,633,288,0 -./model_data/coco/val2017/000000095786.jpg 234,163,461,334,41 184,0,447,198,41 0,31,232,291,75 183,0,447,195,75 -./model_data/coco/val2017/000000376322.jpg 202,283,240,368,39 154,253,187,327,39 64,466,156,503,67 164,327,190,378,41 370,399,424,506,41 194,364,243,465,41 48,563,260,640,42 68,545,261,617,42 80,401,178,422,42 137,396,197,412,42 335,547,472,640,44 48,455,193,479,44 307,463,359,497,55 388,152,478,369,0 2,355,129,475,0 0,197,84,370,0 322,159,434,398,0 78,223,106,314,0 97,229,142,279,0 258,217,362,348,0 229,215,286,310,0 292,203,315,227,0 163,283,184,306,40 155,305,171,328,41 320,427,352,442,42 330,421,372,435,42 76,390,170,395,43 420,437,474,447,43 348,448,372,452,43 135,374,159,384,44 88,257,112,277,60 327,182,373,272,0 123,234,147,269,0 246,395,284,456,41 189,306,207,327,41 4,272,478,631,60 61,226,90,320,0 428,448,478,585,40 387,243,427,329,40 408,362,478,427,0 232,333,259,381,41 416,491,430,503,44 1,169,418,321,0 -./model_data/coco/val2017/000000361730.jpg 142,362,181,436,0 562,341,597,450,0 552,366,563,399,0 374,394,393,426,0 426,351,455,419,0 264,379,269,397,0 342,370,348,388,0 220,382,255,427,0 156,403,225,433,13 104,402,124,437,0 31,414,116,452,13 208,162,245,188,33 407,251,420,257,33 356,241,368,250,33 266,287,287,303,33 395,215,411,225,33 427,268,470,308,33 365,188,377,198,33 567,264,637,303,33 275,241,341,258,33 291,294,338,306,33 525,141,540,161,33 622,431,640,451,24 273,224,287,232,33 463,389,496,468,0 444,166,458,172,33 402,383,429,428,0 598,357,626,451,0 122,386,129,405,0 7,370,500,442,0 35,106,639,479,33 -./model_data/coco/val2017/000000419098.jpg 9,18,591,553,76 155,121,530,507,76 323,293,620,547,76 -./model_data/coco/val2017/000000351559.jpg 440,124,527,271,9 -./model_data/coco/val2017/000000293474.jpg 211,149,289,274,10 379,28,391,52,73 345,27,353,43,73 351,27,361,52,73 353,28,385,52,73 385,38,396,54,73 -./model_data/coco/val2017/000000371042.jpg 462,183,517,279,0 511,175,536,186,38 130,207,161,226,38 124,222,174,246,38 21,321,68,353,24 65,323,78,355,39 51,161,103,263,0 85,153,130,318,0 586,151,595,156,32 -./model_data/coco/val2017/000000088485.jpg 188,0,421,422,0 169,263,286,353,29 -./model_data/coco/val2017/000000400044.jpg 249,468,483,562,31 181,309,435,540,0 -./model_data/coco/val2017/000000452793.jpg 374,50,640,420,72 256,202,365,228,71 -./model_data/coco/val2017/000000315257.jpg 63,115,554,394,14 -./model_data/coco/val2017/000000375278.jpg 3,24,230,352,15 2,44,195,206,0 240,102,333,239,73 258,228,333,433,73 0,32,227,349,16 0,54,277,493,28 -./model_data/coco/val2017/000000535858.jpg 407,277,447,288,37 364,208,452,279,0 -./model_data/coco/val2017/000000260106.jpg 110,110,377,475,17 99,394,138,488,0 0,331,21,379,0 72,408,94,488,0 0,393,61,488,17 168,90,328,296,0 -./model_data/coco/val2017/000000459272.jpg 313,470,406,527,67 1,79,398,632,0 360,337,386,453,0 344,337,367,450,0 303,330,331,450,0 381,332,402,369,0 379,311,480,536,0 401,252,480,422,0 333,363,349,437,0 287,330,321,450,0 335,347,351,367,0 -./model_data/coco/val2017/000000105455.jpg 124,146,185,210,74 189,153,215,213,74 333,517,350,531,2 -./model_data/coco/val2017/000000123131.jpg 75,30,602,354,7 72,183,154,268,7 49,226,79,287,7 0,219,39,284,7 -./model_data/coco/val2017/000000546829.jpg 208,147,293,289,16 119,143,469,402,13 -./model_data/coco/val2017/000000107339.jpg 137,70,239,125,57 3,70,140,135,57 123,18,183,139,0 43,82,84,136,0 123,52,127,55,65 142,102,160,108,73 152,103,169,110,73 129,52,132,53,65 -./model_data/coco/val2017/000000565153.jpg 109,164,167,220,11 163,304,200,371,12 -./model_data/coco/val2017/000000431876.jpg 173,362,407,546,17 21,362,255,533,17 284,318,330,404,0 223,328,266,390,0 126,330,159,378,0 330,366,360,401,0 176,324,215,380,0 126,275,146,334,9 387,397,417,446,24 362,384,377,405,0 372,378,405,514,0 -./model_data/coco/val2017/000000439426.jpg 138,94,467,415,54 548,181,640,258,0 195,0,379,68,0 1,112,223,397,0 -./model_data/coco/val2017/000000564091.jpg 170,264,208,339,39 9,0,324,370,0 223,62,246,74,67 354,304,427,418,26 219,55,250,91,67 -./model_data/coco/val2017/000000409475.jpg 127,141,300,474,0 352,155,576,480,0 -./model_data/coco/val2017/000000364102.jpg 248,126,331,373,0 113,169,162,188,29 -./model_data/coco/val2017/000000092660.jpg 305,259,397,333,50 206,248,267,319,50 249,196,334,273,50 537,189,599,233,50 428,175,475,205,50 352,159,413,192,50 339,178,424,234,50 474,150,512,176,50 424,121,473,146,50 17,117,627,359,53 225,227,270,260,50 472,227,545,296,50 0,0,87,159,39 457,190,499,221,50 471,16,548,82,41 493,217,574,265,50 195,112,597,302,50 -./model_data/coco/val2017/000000316404.jpg 131,379,149,402,32 528,348,540,364,32 58,28,222,439,0 335,1,564,439,0 364,186,592,363,38 74,361,96,444,38 -./model_data/coco/val2017/000000298251.jpg 71,91,135,134,22 521,105,562,145,22 560,62,584,102,22 257,44,279,79,22 415,109,467,126,22 266,69,295,81,22 183,79,203,93,22 378,70,395,100,22 502,81,520,111,22 -./model_data/coco/val2017/000000374369.jpg 227,33,383,365,0 191,323,466,384,30 -./model_data/coco/val2017/000000370478.jpg 0,169,109,480,59 86,236,249,402,63 134,79,213,99,73 86,79,135,99,73 83,91,138,118,73 136,87,212,107,73 240,154,389,354,24 382,156,515,401,28 78,50,140,87,73 137,95,214,116,73 73,34,134,74,73 196,276,247,324,73 -./model_data/coco/val2017/000000201148.jpg 145,155,351,229,6 536,128,544,138,0 546,120,559,138,0 449,127,484,173,9 -./model_data/coco/val2017/000000441553.jpg 5,50,330,398,6 225,258,260,390,0 160,255,212,401,0 452,265,462,278,0 397,263,439,392,0 515,264,535,298,0 337,268,384,388,0 552,283,618,476,0 387,262,407,324,0 442,275,480,400,0 427,269,443,302,0 460,238,468,246,9 263,259,290,334,0 263,275,315,416,0 515,35,548,143,9 189,278,204,312,26 516,305,561,451,0 276,224,573,384,0 -./model_data/coco/val2017/000000493613.jpg 231,180,567,277,36 -./model_data/coco/val2017/000000232088.jpg 53,140,214,261,62 122,266,568,473,57 578,397,640,438,63 614,461,625,468,64 527,414,626,466,66 316,276,495,370,56 446,270,475,281,65 -./model_data/coco/val2017/000000082846.jpg 83,171,561,443,5 59,176,73,193,11 47,184,65,206,11 -./model_data/coco/val2017/000000558421.jpg 299,241,533,351,6 512,275,526,286,0 635,93,640,96,14 599,75,602,76,14 579,66,584,68,14 587,72,590,75,14 573,57,575,59,14 590,64,596,68,14 608,78,613,81,14 392,21,398,24,14 401,25,405,27,14 410,22,415,24,14 547,58,552,61,14 543,52,546,55,14 126,36,627,175,14 -./model_data/coco/val2017/000000123585.jpg 212,200,308,391,14 0,45,175,150,14 333,432,480,587,14 54,289,177,321,42 139,0,268,59,14 355,0,480,66,14 -./model_data/coco/val2017/000000560011.jpg 29,284,328,395,64 2,324,325,493,66 126,163,288,270,45 1,114,177,247,45 -./model_data/coco/val2017/000000088218.jpg 212,278,315,461,9 -./model_data/coco/val2017/000000092177.jpg 259,192,373,261,37 133,179,503,542,55 186,231,344,290,37 -./model_data/coco/val2017/000000193674.jpg 405,162,461,338,16 426,120,574,282,0 238,222,557,303,37 -./model_data/coco/val2017/000000494634.jpg 1,111,480,473,15 415,15,428,48,40 262,321,640,477,63 125,64,138,115,39 384,15,400,51,40 400,17,415,49,40 426,17,437,48,40 214,0,281,124,69 -./model_data/coco/val2017/000000336587.jpg 247,0,342,96,11 605,286,639,344,7 -./model_data/coco/val2017/000000324158.jpg 196,183,220,236,16 44,161,80,174,2 22,167,52,175,2 40,154,90,168,2 80,149,108,160,2 117,144,139,156,2 223,243,252,263,36 8,167,47,188,2 90,171,139,189,2 135,148,146,155,2 9,161,34,167,2 0,169,15,195,2 446,108,459,115,2 473,105,493,113,2 202,96,274,249,0 -./model_data/coco/val2017/000000462576.jpg 239,311,375,399,49 465,1,625,206,41 57,39,175,83,45 1,0,638,464,60 143,13,181,49,41 75,3,98,46,41 82,21,114,58,41 -./model_data/coco/val2017/000000092091.jpg 181,127,328,232,62 1,139,200,403,56 65,135,247,344,56 310,125,640,324,57 243,165,448,479,0 428,244,640,383,77 380,247,454,314,79 541,12,578,37,8 1,370,221,478,57 -./model_data/coco/val2017/000000118921.jpg 308,132,472,358,0 352,323,444,403,30 387,336,438,370,30 -./model_data/coco/val2017/000000505789.jpg 272,61,300,99,74 118,345,190,583,0 181,377,291,629,0 200,363,219,393,0 258,367,297,495,0 175,373,202,413,0 316,378,345,470,0 284,398,299,428,26 354,477,480,640,58 334,363,378,510,0 321,390,339,439,0 -./model_data/coco/val2017/000000304396.jpg 215,139,276,201,74 101,151,140,233,74 -./model_data/coco/val2017/000000425361.jpg 24,136,155,482,56 104,20,366,451,0 293,186,350,332,40 426,362,474,406,42 324,413,408,430,43 529,457,575,478,45 381,409,483,457,53 479,199,639,354,63 583,356,640,382,64 -./model_data/coco/val2017/000000252776.jpg 74,55,358,640,0 0,133,83,615,0 164,531,185,554,38 63,0,148,44,0 49,357,159,559,13 -./model_data/coco/val2017/000000515025.jpg 218,193,524,403,15 151,282,183,327,39 0,258,638,422,60 416,113,523,158,2 206,12,419,286,0 79,94,266,176,7 545,114,601,154,7 33,274,70,314,41 601,115,640,153,2 400,117,419,133,2 -./model_data/coco/val2017/000000050380.jpg 202,163,350,422,17 1,252,120,426,56 189,37,325,300,0 331,0,551,422,0 0,108,70,404,0 -./model_data/coco/val2017/000000332318.jpg 159,379,175,387,19 200,370,210,383,19 211,385,225,393,19 247,371,266,385,19 261,381,269,394,19 106,386,122,394,19 90,388,104,396,19 62,389,83,398,19 350,370,364,378,19 395,379,472,429,7 540,394,591,426,7 474,397,508,420,7 67,373,76,387,19 121,382,131,385,19 510,391,558,422,7 120,394,134,401,19 282,369,289,381,19 0,364,363,407,19 -./model_data/coco/val2017/000000124442.jpg 121,179,192,269,33 195,168,284,382,0 -./model_data/coco/val2017/000000186929.jpg 0,1,333,494,49 -./model_data/coco/val2017/000000137727.jpg 0,91,574,264,6 230,156,250,195,0 240,185,284,238,0 332,230,353,259,28 299,198,317,222,28 222,231,248,273,28 559,187,578,211,0 254,232,276,268,28 206,236,232,275,28 286,231,308,263,28 246,239,254,269,28 275,239,287,255,28 611,205,624,220,2 431,263,460,295,24 458,262,479,293,24 305,246,319,263,28 389,206,402,222,28 378,204,389,221,28 355,210,367,221,28 582,194,615,223,2 276,253,302,266,24 287,211,298,222,28 459,261,478,292,26 317,248,331,263,26 319,250,330,261,24 330,210,346,222,24 -./model_data/coco/val2017/000000022705.jpg 81,212,105,278,39 136,47,392,546,72 143,83,363,608,0 179,210,204,293,40 23,256,54,280,45 -./model_data/coco/val2017/000000078404.jpg 218,9,405,306,0 167,1,280,305,0 73,138,386,330,13 128,14,206,142,0 292,258,358,321,26 382,283,438,322,26 -./model_data/coco/val2017/000000419601.jpg 35,129,208,231,57 150,174,343,285,57 150,173,340,303,59 145,193,185,204,73 143,199,176,207,73 406,199,432,207,73 458,190,500,258,57 322,156,388,218,56 459,191,500,245,56 -./model_data/coco/val2017/000000151962.jpg 342,239,449,359,16 65,97,470,471,2 53,378,91,469,0 -./model_data/coco/val2017/000000457848.jpg 189,49,637,422,3 119,45,611,333,3 63,63,353,273,3 0,2,74,282,0 400,0,420,131,0 323,3,367,129,0 259,0,313,74,0 374,0,406,121,0 -./model_data/coco/val2017/000000463690.jpg 190,64,207,116,27 271,83,330,140,32 163,20,244,232,0 49,20,97,211,0 259,141,520,421,0 1,18,46,215,0 -./model_data/coco/val2017/000000499181.jpg 535,192,627,232,2 271,281,293,329,9 107,154,133,238,9 222,317,247,335,9 110,410,125,428,0 19,390,195,479,2 0,274,71,314,2 491,235,584,279,2 573,277,640,360,2 328,252,391,264,2 237,285,250,314,9 250,280,271,317,9 248,320,270,359,11 -./model_data/coco/val2017/000000519764.jpg 205,118,386,254,15 68,0,500,369,56 0,1,50,83,63 -./model_data/coco/val2017/000000214753.jpg 252,193,314,306,17 232,125,295,247,0 360,114,417,249,0 323,166,474,321,17 -./model_data/coco/val2017/000000351530.jpg 237,157,251,164,67 135,111,298,278,0 134,116,249,208,0 0,146,132,248,1 149,131,197,272,0 247,135,356,287,56 320,135,385,301,56 344,133,416,309,56 444,135,640,354,56 388,124,507,298,56 417,126,563,326,56 533,139,591,194,56 561,216,640,377,56 204,185,237,282,56 526,198,640,357,56 322,128,469,298,13 448,137,637,348,13 2,77,113,202,0 560,216,640,373,13 529,199,639,359,13 294,181,334,294,56 226,183,258,282,56 375,125,476,196,56 -./model_data/coco/val2017/000000299887.jpg 5,130,320,475,3 210,106,444,478,0 370,122,518,480,0 0,179,47,214,7 -./model_data/coco/val2017/000000003934.jpg 132,226,375,354,57 31,74,102,318,0 295,132,325,207,0 93,89,155,168,0 153,127,164,139,41 186,209,217,222,65 162,303,213,311,65 152,82,204,225,0 202,106,233,232,0 219,280,238,309,40 352,157,363,177,40 362,160,374,175,40 61,149,208,466,0 259,142,278,163,0 -./model_data/coco/val2017/000000104119.jpg 134,1,430,454,14 479,234,618,346,14 28,253,125,321,14 -./model_data/coco/val2017/000000557916.jpg 0,0,640,426,59 143,65,530,419,0 109,88,186,182,77 400,0,466,75,75 -./model_data/coco/val2017/000000372349.jpg 166,300,212,323,39 244,199,361,335,0 432,44,497,208,0 283,318,309,331,45 287,234,293,242,79 -./model_data/coco/val2017/000000105264.jpg 61,112,356,402,19 396,110,494,324,0 537,181,575,295,0 316,173,361,301,0 482,214,521,280,0 434,197,466,297,0 15,202,61,283,0 0,205,29,279,0 40,255,86,312,0 -./model_data/coco/val2017/000000392933.jpg 112,200,194,351,23 -./model_data/coco/val2017/000000367082.jpg 100,74,476,420,16 17,44,454,494,56 6,222,451,500,57 -./model_data/coco/val2017/000000224051.jpg 348,74,504,362,1 238,161,307,213,2 312,175,337,198,2 -./model_data/coco/val2017/000000561958.jpg 358,223,448,423,0 232,173,273,295,0 277,229,332,332,0 317,171,391,327,0 273,183,293,244,0 165,182,198,245,0 104,170,124,247,0 153,179,170,241,0 489,188,515,253,0 448,157,495,289,0 325,138,351,174,31 243,242,250,288,31 419,180,438,260,31 197,178,227,290,31 435,173,479,284,30 436,173,482,286,31 129,177,152,247,0 558,173,611,210,30 601,185,611,227,30 163,188,174,234,30 203,206,227,289,30 145,217,152,246,30 491,231,500,252,30 119,214,133,236,30 442,205,473,222,30 326,139,384,230,30 1,164,639,270,0 -./model_data/coco/val2017/000000143931.jpg 0,0,638,472,5 449,155,537,294,0 -./model_data/coco/val2017/000000437110.jpg 228,233,249,251,74 -./model_data/coco/val2017/000000308430.jpg 119,9,640,479,45 0,142,61,376,73 384,311,413,396,51 377,214,431,271,51 208,293,337,357,51 231,113,279,229,51 323,67,341,163,51 309,357,383,385,51 417,334,474,356,51 428,155,446,187,51 278,121,294,142,51 379,199,453,229,51 430,234,463,305,51 505,323,547,366,51 1,11,299,274,60 177,122,211,200,51 0,201,289,480,69 252,61,441,459,51 -./model_data/coco/val2017/000000161820.jpg 77,1,428,634,46 -./model_data/coco/val2017/000000044590.jpg 452,100,475,160,0 305,108,327,132,0 432,98,453,152,0 56,102,75,135,0 61,95,112,191,0 487,94,511,146,0 323,102,367,181,0 540,96,578,142,0 584,87,606,138,0 573,78,640,134,2 614,83,636,144,0 610,85,621,139,0 210,127,270,177,3 52,137,120,192,3 275,126,291,165,3 307,123,371,184,3 528,120,587,157,3 367,125,412,160,3 100,135,160,183,3 186,130,216,169,3 285,129,323,170,3 404,119,442,152,3 485,113,534,144,3 5,120,60,195,3 464,95,485,148,0 -./model_data/coco/val2017/000000531036.jpg 381,281,455,465,0 151,54,477,447,5 0,220,157,406,5 387,348,411,360,73 -./model_data/coco/val2017/000000096427.jpg 242,91,397,427,0 1,39,74,421,0 64,176,201,240,38 295,0,351,137,0 -./model_data/coco/val2017/000000386134.jpg 171,295,589,569,50 -./model_data/coco/val2017/000000038118.jpg 125,218,213,346,0 142,354,170,373,30 -./model_data/coco/val2017/000000135670.jpg 196,199,301,373,1 -./model_data/coco/val2017/000000336658.jpg 133,260,173,274,2 94,256,122,279,2 458,289,575,370,5 405,256,478,280,5 73,302,79,325,0 52,294,59,316,0 63,294,69,318,0 42,287,50,308,0 17,285,24,309,0 170,249,174,262,0 6,283,13,307,0 72,257,97,269,2 387,254,408,269,2 283,261,311,271,2 231,265,247,273,2 563,272,631,327,5 69,297,78,307,0 271,264,275,275,0 266,262,270,268,0 292,267,296,276,0 301,266,306,276,0 54,288,61,294,0 114,248,566,278,0 -./model_data/coco/val2017/000000437514.jpg 376,1,630,533,58 23,197,433,506,13 352,171,414,218,0 -./model_data/coco/val2017/000000404678.jpg 0,175,81,413,57 382,227,538,425,56 470,176,501,225,56 605,164,640,277,56 217,242,488,349,60 145,93,301,315,0 50,148,278,422,0 79,145,208,370,0 261,93,319,159,0 365,101,476,271,0 400,88,459,160,0 322,242,351,305,40 362,215,386,270,40 275,146,331,216,40 290,256,319,279,45 211,113,239,186,0 361,90,396,166,0 347,158,362,185,40 329,237,356,265,40 230,144,379,210,60 619,129,640,176,0 0,126,177,423,13 376,140,389,153,40 128,109,379,187,57 -./model_data/coco/val2017/000000312192.jpg 12,1,147,217,39 4,95,640,471,60 297,11,640,224,0 0,21,88,277,40 182,2,230,75,40 127,0,170,59,40 238,72,303,104,42 46,135,604,415,53 234,25,455,81,45 0,150,29,213,39 138,86,212,112,42 -./model_data/coco/val2017/000000136715.jpg 507,45,639,314,2 71,103,432,421,3 360,137,456,281,3 67,175,127,275,3 508,46,638,324,7 135,48,386,400,0 0,70,85,420,0 157,108,183,140,0 382,73,411,94,0 404,75,442,132,0 445,80,501,233,0 472,63,492,87,0 108,106,162,274,0 333,88,378,132,0 453,60,476,112,0 376,92,425,131,0 25,225,79,309,3 454,212,518,278,3 485,89,509,118,0 28,51,55,100,0 27,18,595,160,0 -./model_data/coco/val2017/000000183246.jpg 326,239,369,312,2 161,227,280,283,7 203,195,210,221,0 215,208,221,221,0 396,293,431,320,2 215,0,500,400,2 256,125,270,155,9 323,51,336,105,9 256,161,265,180,9 270,161,274,176,9 285,260,306,270,2 342,86,361,119,9 446,90,487,140,9 234,148,249,183,9 362,80,372,110,9 430,111,451,138,9 306,265,316,272,2 215,0,500,400,7 -./model_data/coco/val2017/000000091921.jpg 313,223,601,417,22 72,295,233,392,22 -./model_data/coco/val2017/000000491613.jpg 40,30,264,259,22 -./model_data/coco/val2017/000000068286.jpg 23,46,550,365,59 -./model_data/coco/val2017/000000375430.jpg 472,28,640,301,56 286,69,411,224,56 5,191,640,422,60 19,189,169,262,45 -./model_data/coco/val2017/000000369675.jpg 2,90,639,413,6 412,173,438,214,0 60,188,87,228,0 507,184,522,211,0 607,128,623,141,74 277,176,298,208,0 325,166,347,224,0 444,175,455,212,0 -./model_data/coco/val2017/000000387387.jpg 41,211,611,378,5 -./model_data/coco/val2017/000000255917.jpg 222,217,241,238,9 175,331,254,389,2 50,329,130,384,2 271,333,300,375,2 324,327,405,362,2 352,331,358,338,0 235,259,262,281,2 149,329,186,363,2 175,322,218,335,2 115,328,175,375,2 268,327,306,372,2 274,324,315,368,2 203,304,231,322,2 213,317,280,382,2 186,312,220,324,2 166,289,200,320,7 59,253,311,337,2 -./model_data/coco/val2017/000000129756.jpg 61,324,123,357,16 399,339,434,364,16 353,371,406,458,18 433,369,481,468,18 247,216,308,354,0 551,400,596,467,18 510,392,551,467,18 479,371,519,467,18 394,371,454,456,18 -./model_data/coco/val2017/000000116825.jpg 74,5,393,355,15 377,130,508,259,43 17,2,417,355,59 -./model_data/coco/val2017/000000581062.jpg 131,51,194,164,0 128,152,178,169,36 -./model_data/coco/val2017/000000301135.jpg 300,349,410,395,2 123,346,183,377,2 89,349,131,374,2 277,443,426,566,13 59,432,88,471,24 0,346,28,403,24 221,441,273,476,26 126,422,164,442,26 134,373,160,413,0 234,397,336,547,0 17,323,53,488,0 106,389,186,500,0 125,383,182,440,0 65,381,152,492,0 285,449,414,522,0 206,396,278,541,0 246,339,261,379,0 280,341,294,377,0 308,338,325,364,0 139,445,181,488,13 276,456,302,472,26 49,359,105,407,1 47,344,59,358,2 -./model_data/coco/val2017/000000322211.jpg 89,0,640,474,60 0,0,264,474,60 146,167,281,293,54 265,96,396,225,54 388,58,514,182,54 471,140,617,281,54 197,265,350,423,54 214,28,343,141,54 403,316,559,474,54 112,82,233,195,54 267,394,427,473,54 334,0,449,87,54 338,187,488,328,54 -./model_data/coco/val2017/000000535156.jpg 133,50,531,438,20 1,112,198,241,20 373,190,569,420,20 -./model_data/coco/val2017/000000434996.jpg 170,115,327,244,15 0,0,500,370,59 293,99,415,190,77 110,69,318,156,77 67,108,226,297,77 -./model_data/coco/val2017/000000036844.jpg 215,167,293,232,58 154,205,196,250,58 202,214,235,243,58 240,204,262,239,58 373,220,423,257,62 149,251,334,381,57 412,280,607,411,57 118,243,236,403,1 54,223,113,268,58 411,341,436,355,65 556,272,567,290,41 436,395,578,478,62 514,344,640,438,72 4,248,126,409,56 -./model_data/coco/val2017/000000445792.jpg 23,83,449,370,57 32,47,500,375,0 242,58,285,99,65 0,186,48,375,58 444,150,494,188,67 356,20,388,84,65 387,27,499,231,57 -./model_data/coco/val2017/000000097994.jpg 505,235,532,299,39 511,281,546,328,41 33,241,200,383,63 382,200,513,324,63 74,181,191,266,63 441,327,473,355,64 217,307,400,351,66 62,306,203,383,66 603,268,621,336,73 592,356,640,427,73 393,265,500,304,66 86,233,191,263,66 595,258,614,335,73 600,257,630,335,73 254,271,279,290,74 236,170,397,269,62 515,328,597,373,73 591,261,609,334,73 618,272,639,335,73 619,305,640,347,41 -./model_data/coco/val2017/000000194716.jpg 378,211,436,231,67 373,110,518,420,0 544,1,640,30,2 147,36,478,421,0 -./model_data/coco/val2017/000000172547.jpg 397,321,417,332,17 444,323,462,333,17 422,323,440,333,17 326,320,342,326,17 256,307,265,313,17 220,314,224,318,17 232,310,245,315,17 -./model_data/coco/val2017/000000168593.jpg 512,222,637,442,56 0,119,274,480,72 255,110,390,446,72 -./model_data/coco/val2017/000000511647.jpg 0,0,276,480,0 322,69,335,84,33 -./model_data/coco/val2017/000000212895.jpg 182,27,297,631,23 -./model_data/coco/val2017/000000171611.jpg 327,263,357,284,16 56,250,386,326,8 156,241,191,298,0 500,47,578,250,8 345,82,402,242,8 -./model_data/coco/val2017/000000342295.jpg 216,253,333,486,61 -./model_data/coco/val2017/000000187144.jpg 2,120,412,382,5 546,218,640,253,5 397,248,423,325,0 413,244,438,318,0 367,250,399,330,0 409,221,522,252,5 449,232,474,319,0 437,244,457,297,0 480,245,497,295,0 369,260,389,291,26 478,253,486,271,26 392,274,401,293,26 424,248,441,309,0 539,243,549,266,0 410,243,417,262,0 406,218,639,251,6 469,249,483,272,24 406,260,414,277,26 -./model_data/coco/val2017/000000059386.jpg 210,181,339,490,23 112,259,231,469,23 67,243,207,450,23 143,312,189,455,23 264,217,290,228,2 60,229,84,255,22 266,237,388,473,23 257,243,296,335,23 322,179,330,206,23 339,179,354,204,23 -./model_data/coco/val2017/000000145665.jpg 1,278,198,542,0 383,263,429,296,36 -./model_data/coco/val2017/000000531495.jpg 63,302,213,347,8 136,256,221,282,8 239,231,300,249,8 408,200,444,214,8 499,190,540,209,8 312,203,343,214,8 363,200,399,211,8 443,199,481,214,8 -./model_data/coco/val2017/000000281179.jpg 145,54,155,82,9 163,35,171,56,9 144,23,155,49,9 240,126,252,147,10 620,136,640,173,13 79,20,89,38,9 76,54,88,79,9 108,22,116,53,9 111,3,128,22,9 144,46,153,57,9 -./model_data/coco/val2017/000000197870.jpg 49,190,208,379,14 505,70,578,255,0 0,130,506,352,13 -./model_data/coco/val2017/000000341196.jpg 426,108,451,134,0 444,97,459,120,0 186,178,237,229,0 179,213,239,238,37 -./model_data/coco/val2017/000000205324.jpg 305,216,363,232,29 2,20,245,272,0 51,0,188,278,0 -./model_data/coco/val2017/000000016228.jpg 340,152,537,352,17 527,233,623,292,13 196,189,243,302,0 314,178,351,233,0 76,196,109,263,0 117,195,130,255,0 121,188,144,257,0 38,200,53,262,0 156,197,166,219,0 349,129,477,193,25 591,161,633,174,25 223,214,228,243,27 66,205,80,260,0 8,222,30,263,0 264,195,283,219,0 528,170,547,200,0 85,202,105,257,0 119,135,346,319,6 618,153,633,165,25 6,194,18,253,0 13,166,629,293,0 -./model_data/coco/val2017/000000030213.jpg 490,111,635,352,72 305,333,570,444,56 294,220,343,247,45 374,165,471,232,71 605,84,622,96,47 601,80,615,91,47 21,193,175,306,69 244,163,256,179,39 280,181,311,237,39 267,144,271,151,39 160,218,411,449,60 596,86,605,94,47 579,87,595,96,47 570,80,593,95,47 -./model_data/coco/val2017/000000389451.jpg 293,135,359,165,8 340,164,351,184,0 113,151,127,174,0 319,142,336,158,0 355,147,362,153,0 380,144,384,148,0 310,161,318,180,0 365,143,369,149,0 559,132,565,138,0 13,270,87,327,19 134,283,228,352,19 452,258,535,330,19 552,256,619,317,19 599,137,605,144,0 530,136,545,140,0 565,135,572,141,0 133,171,138,176,0 -./model_data/coco/val2017/000000295316.jpg 351,172,382,218,0 94,200,132,232,0 184,173,229,229,0 361,244,434,271,0 310,216,376,223,37 170,221,211,232,37 112,203,131,224,37 377,258,413,270,37 -./model_data/coco/val2017/000000423123.jpg 308,245,342,256,67 317,149,570,421,72 36,88,388,421,0 178,44,430,353,0 0,82,303,299,24 494,229,640,425,0 0,0,50,141,0 -./model_data/coco/val2017/000000039769.jpg 332,79,371,185,65 41,74,175,119,65 1,0,639,473,57 1,1,640,479,59 17,54,318,469,15 347,25,640,369,15 -./model_data/coco/val2017/000000129812.jpg 196,1,403,261,0 29,74,624,350,30 -./model_data/coco/val2017/000000110999.jpg 273,352,359,474,41 83,509,147,592,42 99,503,208,581,43 199,439,282,529,47 239,420,301,472,47 91,316,153,366,47 131,384,207,438,49 89,533,138,585,44 280,457,352,521,49 114,134,271,310,0 34,404,252,479,45 -./model_data/coco/val2017/000000213445.jpg 105,105,306,392,15 85,311,349,432,45 12,36,35,113,73 110,2,241,113,56 221,6,407,291,56 11,124,39,208,73 4,124,14,208,73 201,30,232,56,73 0,42,13,112,73 282,0,289,25,73 200,63,221,85,73 275,0,282,25,73 238,0,293,25,73 227,9,408,293,57 -./model_data/coco/val2017/000000039670.jpg 48,101,572,452,6 -./model_data/coco/val2017/000000479248.jpg 164,155,409,309,62 480,357,535,425,74 353,319,383,343,41 9,408,44,432,45 302,182,396,283,0 207,411,215,459,73 257,412,263,447,73 307,414,312,464,73 357,422,361,474,73 142,408,432,473,73 421,190,440,210,74 235,109,253,125,74 187,204,312,283,0 152,311,170,335,41 313,302,352,342,75 187,298,206,335,75 227,299,263,339,75 114,286,152,334,75 422,292,454,341,75 464,388,491,429,75 571,262,607,305,75 385,291,417,340,75 355,319,381,341,75 209,309,226,337,75 152,311,170,334,75 48,373,83,422,39 -./model_data/coco/val2017/000000353051.jpg 327,7,640,362,17 129,123,276,405,0 -./model_data/coco/val2017/000000094157.jpg 111,211,140,241,74 55,605,66,637,0 66,611,78,639,0 85,606,100,640,0 139,607,151,638,0 161,606,171,634,0 183,609,193,629,0 149,608,160,636,0 11,606,26,640,0 157,606,164,619,0 223,605,229,615,0 34,617,40,628,0 106,607,114,633,0 49,618,57,632,0 46,602,212,626,0 -./model_data/coco/val2017/000000394559.jpg 165,175,323,514,0 169,110,225,254,38 -./model_data/coco/val2017/000000453981.jpg 210,102,422,342,21 113,168,609,425,21 -./model_data/coco/val2017/000000250619.jpg 203,106,489,343,25 263,298,454,366,0 218,306,251,340,26 244,313,265,327,26 179,304,250,341,24 238,287,317,326,24 179,306,222,344,26 -./model_data/coco/val2017/000000244379.jpg 86,53,116,110,9 206,49,233,106,9 286,294,295,303,2 -./model_data/coco/val2017/000000352900.jpg 0,35,45,97,42 0,0,202,133,43 451,129,538,210,50 220,102,349,220,50 495,188,574,330,50 441,68,482,107,50 1,32,640,423,45 463,242,496,278,50 165,78,269,173,50 -./model_data/coco/val2017/000000270705.jpg 133,24,366,562,14 -./model_data/coco/val2017/000000033638.jpg 62,243,202,509,0 366,384,398,409,44 176,349,184,356,44 345,259,365,328,44 243,238,257,248,45 260,413,425,569,69 136,374,265,585,69 256,241,279,249,45 -./model_data/coco/val2017/000000357459.jpg 268,98,466,386,16 0,146,171,327,0 97,85,286,189,29 -./model_data/coco/val2017/000000037988.jpg 350,60,361,72,32 305,142,406,451,0 144,2,235,115,0 282,251,317,339,38 375,3,436,47,0 -./model_data/coco/val2017/000000406611.jpg 41,416,175,445,30 414,437,484,448,30 298,387,355,391,30 438,336,478,446,0 420,355,435,400,0 413,322,421,338,0 317,290,324,305,0 363,297,373,308,0 386,294,390,304,0 401,287,407,298,0 412,287,419,305,0 53,333,122,479,0 28,312,41,358,0 358,353,375,393,0 455,352,478,379,24 275,373,286,379,30 369,383,392,390,30 387,381,404,389,30 56,311,75,343,30 81,314,88,318,30 80,290,92,316,0 265,343,273,356,24 225,322,235,338,24 260,356,270,366,30 31,242,504,403,0 -./model_data/coco/val2017/000000066771.jpg 308,132,448,393,57 1,334,640,472,60 2,0,349,420,0 375,2,640,431,0 367,208,431,282,67 449,391,559,479,41 301,401,404,474,41 119,330,241,402,41 156,429,216,480,41 110,346,148,366,44 66,435,150,480,45 -./model_data/coco/val2017/000000442009.jpg 0,210,14,243,39 13,182,26,207,39 579,265,599,278,71 47,305,79,369,75 -./model_data/coco/val2017/000000490125.jpg 33,173,79,239,14 100,162,149,221,14 158,184,193,245,14 201,179,239,214,14 206,167,240,206,14 223,152,248,188,14 240,173,278,223,14 296,160,317,196,14 378,171,416,236,14 338,174,372,211,14 307,135,343,190,14 350,154,395,201,14 142,33,361,121,7 376,181,434,225,14 38,178,480,215,14 -./model_data/coco/val2017/000000215259.jpg 0,221,118,375,57 177,95,281,449,0 20,79,225,447,0 163,146,181,160,65 275,159,286,169,65 199,161,216,178,65 260,158,277,191,65 304,332,331,344,65 -./model_data/coco/val2017/000000426203.jpg 176,116,320,308,0 217,248,277,365,36 265,501,338,524,2 227,494,268,521,2 256,500,272,511,2 385,507,422,526,2 266,411,425,556,13 199,476,221,506,0 -./model_data/coco/val2017/000000472298.jpg 77,209,613,267,8 168,161,239,238,0 308,181,354,236,0 -./model_data/coco/val2017/000000445439.jpg 0,0,506,425,22 -./model_data/coco/val2017/000000069224.jpg 194,286,232,370,39 8,105,83,200,56 0,190,74,374,56 264,208,500,375,60 196,33,330,270,0 237,288,270,312,54 175,262,212,292,56 0,83,9,108,56 48,99,237,375,0 1,103,73,143,60 225,303,238,325,54 139,50,179,81,56 5,36,36,58,56 -./model_data/coco/val2017/000000528314.jpg 238,419,345,572,0 346,150,372,222,0 156,184,182,244,0 120,181,143,253,0 98,186,123,255,0 63,189,83,237,0 51,165,72,193,0 212,148,235,169,0 24,183,53,239,0 219,450,259,568,30 -./model_data/coco/val2017/000000179765.jpg 94,6,604,388,3 -./model_data/coco/val2017/000000184791.jpg 131,311,286,399,45 316,273,395,348,49 92,221,155,289,49 134,199,183,237,49 347,196,443,243,45 440,251,514,320,49 267,269,291,285,49 -./model_data/coco/val2017/000000226058.jpg 1,42,640,474,57 271,155,509,414,77 151,129,371,389,77 -./model_data/coco/val2017/000000453841.jpg 200,161,402,327,2 459,170,498,198,2 2,145,150,264,7 136,20,155,58,9 315,110,331,138,9 262,184,282,198,0 331,111,338,132,9 425,132,433,150,9 466,220,486,258,10 386,182,400,221,0 0,209,31,299,2 187,196,196,208,2 195,196,203,206,2 427,44,464,105,9 377,189,387,198,2 -./model_data/coco/val2017/000000064499.jpg 1,151,380,469,22 98,187,343,428,22 -./model_data/coco/val2017/000000523957.jpg 214,333,269,362,36 434,234,471,285,0 81,299,117,342,0 43,303,71,343,0 32,310,54,339,0 452,169,490,267,0 427,184,458,250,0 55,82,316,354,0 343,169,404,339,0 126,290,147,316,36 118,267,143,336,0 77,302,95,339,0 517,213,557,255,0 -./model_data/coco/val2017/000000334417.jpg 328,350,366,404,27 269,210,350,256,48 100,64,597,415,0 270,213,349,256,53 -./model_data/coco/val2017/000000556193.jpg 230,162,291,269,62 271,36,420,333,0 74,59,273,326,0 259,177,272,187,65 303,305,314,332,65 256,168,267,177,65 -./model_data/coco/val2017/000000453860.jpg 32,35,276,356,28 344,40,605,378,28 -./model_data/coco/val2017/000000088040.jpg 348,0,426,64,39 273,34,333,100,39 49,263,116,351,41 61,81,172,177,41 50,519,201,573,42 323,186,398,334,42 39,77,87,281,44 262,494,363,593,45 106,193,166,253,45 0,62,50,254,43 81,105,145,208,44 316,373,414,468,45 0,3,426,630,60 -./model_data/coco/val2017/000000314914.jpg 342,265,480,367,7 -./model_data/coco/val2017/000000433515.jpg 204,95,511,210,33 424,310,431,330,0 454,300,463,327,0 283,305,298,335,0 360,303,369,328,0 345,321,352,332,0 128,312,161,330,2 506,300,511,317,0 306,305,316,333,0 399,308,409,331,0 551,289,558,302,0 410,310,419,331,0 315,306,326,332,0 434,293,444,301,2 524,283,540,292,2 605,271,628,277,2 585,274,603,281,2 386,296,402,305,2 465,289,485,299,2 236,306,247,313,2 489,286,505,296,2 83,316,93,330,0 256,305,289,315,2 536,283,547,290,2 544,277,552,285,2 433,303,444,331,0 102,287,625,344,0 -./model_data/coco/val2017/000000220732.jpg 450,236,627,277,2 0,275,640,480,5 415,164,638,256,5 362,195,380,230,0 18,170,376,277,7 193,260,314,278,2 1,170,109,248,5 0,258,47,278,2 -./model_data/coco/val2017/000000484893.jpg 249,118,432,305,18 202,2,345,153,18 597,144,639,321,18 591,15,639,125,18 1,107,372,423,0 270,240,526,422,0 362,1,546,140,18 -./model_data/coco/val2017/000000494913.jpg 235,91,325,170,62 499,255,536,276,15 1,280,277,422,57 481,243,640,423,57 325,89,343,110,74 566,167,584,186,73 607,177,612,191,73 593,173,595,188,73 447,218,468,243,26 457,266,474,292,41 478,285,492,296,42 480,185,517,247,56 383,260,516,397,60 589,172,593,187,73 584,170,590,187,73 561,207,581,229,73 518,176,540,193,62 494,173,513,188,62 572,189,582,194,73 587,196,592,209,73 592,197,598,210,73 596,175,599,188,73 598,175,601,189,73 606,171,612,191,73 565,185,570,204,73 521,230,627,338,0 517,153,625,236,73 -./model_data/coco/val2017/000000365521.jpg 214,37,403,253,0 268,258,297,320,0 312,289,340,329,0 337,274,370,335,0 365,298,389,338,0 399,306,424,340,0 105,164,162,289,0 13,139,51,229,0 218,243,326,275,36 240,269,273,314,0 296,289,315,324,0 57,195,101,248,0 200,207,232,239,0 289,281,313,320,0 -./model_data/coco/val2017/000000475223.jpg 240,222,414,336,14 497,241,553,310,14 -./model_data/coco/val2017/000000358427.jpg 115,223,640,381,42 288,21,538,413,50 142,92,215,326,50 -./model_data/coco/val2017/000000162092.jpg 251,41,617,640,0 1,258,95,638,0 90,71,258,234,0 0,49,92,223,0 90,492,197,563,55 224,94,303,226,0 106,38,159,98,0 185,49,229,132,0 239,43,300,97,0 234,280,324,355,42 232,508,333,556,55 138,609,362,632,56 294,94,356,228,0 219,528,432,607,55 202,72,272,159,0 68,54,109,207,0 -./model_data/coco/val2017/000000512564.jpg 254,255,277,272,2 197,216,214,225,2 380,276,451,347,5 148,230,178,239,9 166,212,171,228,9 405,242,415,248,9 237,214,245,221,2 266,220,278,226,2 234,211,241,217,2 123,244,129,261,0 96,263,102,285,0 412,303,420,315,0 123,286,160,319,2 262,197,268,200,9 293,395,301,418,9 119,339,176,399,7 35,289,45,309,9 -./model_data/coco/val2017/000000574315.jpg 181,105,433,340,15 2,1,640,470,57 333,0,640,412,0 0,257,557,473,63 147,343,504,472,66 -./model_data/coco/val2017/000000441286.jpg 229,128,353,279,0 225,274,305,302,37 -./model_data/coco/val2017/000000315001.jpg 94,265,119,315,14 216,123,271,166,14 373,292,429,339,14 581,385,629,404,14 387,388,431,405,14 84,280,100,287,14 64,270,84,278,14 88,411,130,426,14 96,393,133,413,14 361,477,427,510,14 258,197,272,207,14 275,193,293,207,14 287,174,301,181,14 348,159,359,165,14 445,137,458,146,14 429,165,445,170,14 359,362,401,393,14 526,150,540,159,14 204,270,225,280,14 7,106,610,284,14 -./model_data/coco/val2017/000000458755.jpg 1,27,322,333,18 3,1,445,154,18 69,37,577,473,0 567,1,640,88,0 590,91,639,188,0 250,87,372,219,0 -./model_data/coco/val2017/000000520324.jpg 191,244,640,356,4 206,218,352,275,4 172,264,182,274,0 -./model_data/coco/val2017/000000015746.jpg 71,197,350,575,10 -./model_data/coco/val2017/000000309964.jpg 0,8,559,275,25 542,93,640,231,2 90,94,249,416,0 340,95,524,421,0 243,249,330,363,24 -./model_data/coco/val2017/000000094871.jpg 285,123,381,363,18 280,0,376,142,0 0,0,49,161,0 123,0,285,391,0 41,130,224,383,18 97,411,476,630,18 250,20,298,216,26 369,73,477,494,0 244,209,350,331,18 5,0,28,31,26 -./model_data/coco/val2017/000000349302.jpg 115,86,256,385,23 269,120,388,382,23 -./model_data/coco/val2017/000000013201.jpg 93,86,319,510,0 107,427,175,523,36 -./model_data/coco/val2017/000000506310.jpg 46,252,122,367,39 32,86,86,219,39 2,273,92,414,39 236,113,408,341,72 1,76,39,241,39 98,378,152,425,39 -./model_data/coco/val2017/000000466125.jpg 49,0,427,199,25 7,202,259,639,0 0,344,51,568,24 264,368,300,485,56 282,319,365,424,60 281,293,367,330,73 291,72,426,193,0 298,329,360,389,63 320,305,427,639,0 -./model_data/coco/val2017/000000213422.jpg 49,162,89,220,56 0,160,555,422,59 -./model_data/coco/val2017/000000033707.jpg 155,159,470,531,23 299,213,456,506,23 -./model_data/coco/val2017/000000559099.jpg 380,180,494,291,19 273,165,301,198,19 171,163,211,190,19 24,178,125,246,19 33,168,75,186,19 377,159,405,177,19 333,157,353,173,19 555,152,577,166,19 587,153,614,167,19 151,164,162,178,19 404,154,415,167,19 426,158,437,175,19 110,165,140,185,19 108,164,134,174,19 436,155,456,169,19 492,157,503,173,19 364,156,373,165,19 27,140,639,178,19 -./model_data/coco/val2017/000000110972.jpg 85,8,509,434,21 -./model_data/coco/val2017/000000011051.jpg 195,197,256,424,27 249,77,634,536,0 7,2,393,527,0 -./model_data/coco/val2017/000000043737.jpg 23,120,149,243,74 99,426,168,461,2 111,416,192,454,2 14,422,31,436,2 161,422,198,442,2 0,415,17,441,2 -./model_data/coco/val2017/000000090956.jpg 227,167,307,247,0 278,236,320,250,30 -./model_data/coco/val2017/000000315219.jpg 132,2,159,105,78 -./model_data/coco/val2017/000000567197.jpg 290,257,449,342,7 202,216,223,235,0 206,257,350,342,7 272,286,285,298,0 71,297,116,333,2 45,302,72,328,2 15,299,42,322,2 0,286,12,336,2 427,258,500,338,7 -./model_data/coco/val2017/000000322968.jpg 230,70,279,113,74 -./model_data/coco/val2017/000000354072.jpg 51,284,70,327,39 86,281,186,344,71 0,318,359,640,58 -./model_data/coco/val2017/000000098261.jpg 20,28,216,145,14 193,64,319,173,14 -./model_data/coco/val2017/000000427055.jpg 403,60,496,149,74 319,309,365,340,2 550,297,564,308,2 524,298,537,309,2 586,296,603,305,2 504,282,516,293,11 600,296,618,310,2 286,300,317,320,2 630,302,640,313,2 -./model_data/coco/val2017/000000262682.jpg 31,351,38,361,44 28,285,42,329,44 30,349,32,362,44 37,356,130,496,69 275,408,345,438,71 218,380,305,424,71 19,347,29,363,44 368,341,394,398,58 -./model_data/coco/val2017/000000107554.jpg 93,174,118,213,2 0,198,552,325,37 -./model_data/coco/val2017/000000251140.jpg 172,279,353,464,1 182,208,215,316,1 124,202,213,422,0 191,274,269,364,0 14,53,351,474,73 -./model_data/coco/val2017/000000119677.jpg 197,40,375,261,55 384,238,640,359,42 -./model_data/coco/val2017/000000193429.jpg 208,101,421,304,0 134,277,519,374,31 -./model_data/coco/val2017/000000359937.jpg 45,5,572,469,5 565,252,640,394,5 -./model_data/coco/val2017/000000377588.jpg 301,202,348,315,0 223,361,271,426,0 489,73,509,121,0 232,212,309,235,0 77,203,124,274,0 318,173,372,232,0 228,348,244,407,34 296,257,309,274,35 361,205,374,212,35 500,98,508,106,35 -./model_data/coco/val2017/000000319696.jpg 361,90,413,222,39 14,70,304,246,68 262,101,289,115,74 323,66,357,118,77 435,0,500,106,58 -./model_data/coco/val2017/000000108253.jpg 242,0,366,319,39 1,1,480,632,60 0,0,82,117,41 188,240,213,254,42 122,354,480,600,53 110,270,256,340,53 471,239,480,248,44 0,363,132,395,53 189,295,260,354,53 0,33,159,318,0 16,304,128,319,43 420,241,480,342,39 114,270,216,319,53 -./model_data/coco/val2017/000000446005.jpg 301,170,410,329,69 312,92,407,151,68 51,200,172,221,71 242,192,275,203,73 274,196,308,202,73 -./model_data/coco/val2017/000000249180.jpg 156,225,166,240,67 139,210,200,414,0 345,147,398,205,0 461,263,474,299,0 -./model_data/coco/val2017/000000549738.jpg 131,398,151,408,2 244,401,274,412,2 320,404,345,416,2 353,405,385,420,2 378,390,393,425,0 596,400,608,425,0 95,154,304,345,33 422,408,457,424,2 477,398,488,424,0 390,408,400,425,0 114,398,130,408,2 504,416,536,426,2 177,399,206,409,2 280,402,313,414,2 -./model_data/coco/val2017/000000186422.jpg 498,276,562,348,14 188,107,453,305,21 -./model_data/coco/val2017/000000080932.jpg 48,284,367,383,56 1,322,480,630,60 64,141,365,462,0 247,35,425,385,0 0,325,50,479,41 61,445,241,532,42 162,361,305,497,53 410,132,440,175,41 449,131,473,172,41 29,170,75,175,42 -./model_data/coco/val2017/000000164602.jpg 243,164,289,187,79 351,216,400,225,79 10,68,480,474,0 1,305,87,373,71 462,358,551,426,71 245,127,546,480,0 -./model_data/coco/val2017/000000007816.jpg 240,152,467,360,3 491,56,519,162,0 564,59,587,174,0 573,53,598,82,0 581,47,621,186,0 415,122,479,176,0 505,53,544,165,0 362,107,384,149,0 386,147,419,168,0 244,34,295,144,0 271,77,455,277,0 -./model_data/coco/val2017/000000293245.jpg 169,138,584,450,3 377,183,404,219,58 586,200,610,228,58 489,206,505,227,58 -./model_data/coco/val2017/000000203317.jpg 212,211,470,414,1 -./model_data/coco/val2017/000000248314.jpg 447,1,637,326,56 297,245,388,310,44 229,298,334,382,45 0,8,358,328,63 224,385,338,463,64 367,0,407,83,39 117,127,312,286,66 538,362,640,479,56 -./model_data/coco/val2017/000000460929.jpg 289,1,421,415,39 178,356,332,633,52 -./model_data/coco/val2017/000000424349.jpg 323,135,561,421,0 307,202,382,232,53 148,149,474,332,69 229,329,338,420,69 17,135,179,426,0 224,124,334,138,53 -./model_data/coco/val2017/000000222118.jpg 246,197,251,210,67 152,131,362,423,0 185,296,342,427,26 -./model_data/coco/val2017/000000156372.jpg 120,282,266,500,56 0,273,335,490,8 3,368,94,497,24 46,318,221,500,24 -./model_data/coco/val2017/000000490936.jpg 352,106,374,143,2 5,128,44,225,0 272,91,279,119,0 166,95,187,145,0 224,99,241,148,0 216,105,228,148,0 193,105,208,148,0 202,101,209,127,0 284,100,291,119,0 185,101,196,144,0 68,170,104,236,1 289,145,391,188,3 442,47,480,120,7 405,44,410,53,9 387,59,391,64,9 347,73,353,79,9 196,142,209,175,10 346,85,352,103,0 340,229,377,268,1 376,81,451,168,2 190,192,404,299,3 351,207,422,277,3 333,178,407,228,3 393,187,414,226,3 314,149,379,162,3 319,127,412,180,3 37,102,58,122,0 108,203,416,393,3 259,92,269,130,0 300,87,306,96,0 0,333,460,627,3 297,164,402,196,3 228,213,293,239,3 298,142,336,168,3 307,81,380,117,0 112,92,444,496,3 -./model_data/coco/val2017/000000277584.jpg 255,143,465,389,15 11,130,598,396,13 -./model_data/coco/val2017/000000447169.jpg 71,0,87,43,39 532,191,562,215,74 2,242,243,470,69 492,399,592,480,56 -./model_data/coco/val2017/000000122745.jpg 216,110,357,252,11 -./model_data/coco/val2017/000000364587.jpg 174,119,432,351,6 -./model_data/coco/val2017/000000025057.jpg 409,110,426,160,39 332,129,422,204,29 97,244,142,325,0 127,6,428,422,0 -./model_data/coco/val2017/000000450075.jpg 209,277,351,480,27 125,143,333,479,0 0,196,36,478,0 275,26,640,473,0 -./model_data/coco/val2017/000000376112.jpg 81,453,343,617,30 148,247,216,379,24 341,315,379,370,24 249,248,257,279,24 106,186,259,549,0 193,203,258,313,0 325,287,388,459,0 318,256,343,309,0 333,221,342,256,0 259,210,288,264,0 298,212,315,245,0 287,202,300,243,0 242,238,277,316,0 249,202,271,248,0 225,177,247,223,0 358,227,370,254,0 229,184,242,202,24 217,173,237,206,0 366,233,371,239,24 314,426,406,479,30 133,406,316,536,30 269,261,287,268,30 123,108,368,489,0 -./model_data/coco/val2017/000000474095.jpg 56,24,277,494,0 136,362,167,437,61 -./model_data/coco/val2017/000000167067.jpg 184,275,327,346,27 3,0,375,493,0 -./model_data/coco/val2017/000000104612.jpg 156,135,326,334,50 150,97,229,155,50 117,323,158,404,50 41,118,151,289,50 475,240,529,337,50 50,286,135,368,50 148,273,301,423,50 313,202,455,301,50 432,77,554,117,50 397,46,445,109,50 417,97,537,163,50 496,304,574,366,50 -./model_data/coco/val2017/000000125572.jpg 366,359,461,427,1 47,313,126,354,5 305,335,316,362,0 248,335,256,362,0 237,336,244,361,0 393,315,435,418,0 448,336,459,348,0 150,336,157,355,0 183,341,192,356,0 70,110,99,137,74 45,112,55,136,74 559,305,639,361,7 534,319,572,357,7 157,289,166,320,9 304,311,317,326,9 127,333,135,367,0 85,336,102,369,0 16,320,48,352,5 318,315,323,324,9 212,312,224,325,9 253,335,261,361,0 132,335,151,368,0 490,342,507,360,3 428,364,457,382,26 441,338,447,357,0 308,340,315,351,24 277,335,285,363,0 219,346,235,357,3 21,333,541,373,0 -./model_data/coco/val2017/000000151662.jpg 72,154,470,474,23 67,206,115,239,23 -./model_data/coco/val2017/000000279541.jpg 345,202,463,280,53 402,161,478,224,53 251,128,404,178,53 176,187,391,240,53 99,146,236,196,53 140,118,296,148,53 1,122,138,157,53 0,107,63,129,53 0,95,55,106,53 110,0,256,124,0 83,89,117,98,53 -./model_data/coco/val2017/000000269682.jpg 552,312,570,345,9 296,325,316,374,9 256,337,283,367,9 422,329,435,358,9 328,409,337,430,9 618,403,626,424,9 552,408,564,433,9 346,414,356,435,9 393,462,404,478,9 201,433,211,469,9 -./model_data/coco/val2017/000000130586.jpg 103,220,325,640,0 17,64,197,283,33 -./model_data/coco/val2017/000000411938.jpg 293,284,414,426,1 427,278,605,421,1 98,175,119,189,2 597,191,636,228,3 264,156,419,421,0 167,275,263,422,0 54,315,191,427,0 387,141,524,419,0 363,161,403,245,0 243,194,370,352,77 1,290,37,427,0 146,230,170,272,24 155,130,244,305,0 229,258,263,327,1 316,309,347,415,1 165,243,239,270,1 118,225,148,278,41 -./model_data/coco/val2017/000000341681.jpg 540,83,556,98,32 209,141,426,321,0 407,93,467,152,38 -./model_data/coco/val2017/000000354753.jpg 366,135,387,155,9 421,131,441,151,9 487,131,506,149,9 319,210,358,235,2 141,220,153,230,2 475,214,489,225,2 15,386,638,480,2 489,218,497,223,2 307,139,325,161,9 -./model_data/coco/val2017/000000484978.jpg 87,65,322,312,0 389,362,427,412,41 434,318,527,404,41 411,417,518,491,42 517,413,639,437,43 406,262,446,323,41 560,287,612,360,41 511,340,558,395,41 113,278,182,332,41 84,309,121,341,41 613,294,640,356,41 246,194,301,213,44 525,298,561,341,45 0,292,640,491,60 235,293,283,350,41 525,297,562,342,41 404,327,442,379,41 545,333,618,356,44 337,297,385,318,44 302,347,377,372,42 -./model_data/coco/val2017/000000415194.jpg 0,135,72,283,72 217,202,343,408,56 40,221,253,255,60 155,208,196,233,45 502,193,565,225,45 466,212,640,279,71 185,96,193,110,41 190,199,206,211,44 64,195,112,233,56 538,200,561,207,46 172,95,181,111,41 -./model_data/coco/val2017/000000274687.jpg 413,0,571,253,56 2,104,640,474,1 0,123,424,418,59 -./model_data/coco/val2017/000000338986.jpg 294,523,403,626,2 11,394,192,575,6 368,549,403,639,2 284,506,403,583,2 -./model_data/coco/val2017/000000563702.jpg 1,217,93,270,7 268,168,614,317,7 83,219,195,287,7 217,245,239,302,0 309,241,327,301,0 -./model_data/coco/val2017/000000209829.jpg 397,225,443,264,0 339,141,398,295,0 567,239,600,266,0 320,284,382,293,37 -./model_data/coco/val2017/000000056288.jpg 82,76,422,331,48 409,198,640,275,66 231,0,631,166,62 -./model_data/coco/val2017/000000357888.jpg 301,159,561,468,0 548,420,554,429,74 205,158,388,303,33 185,436,203,464,39 220,434,240,459,39 254,431,276,449,39 256,403,273,423,39 237,401,258,426,39 166,373,185,398,40 185,376,203,399,40 590,175,607,200,41 606,172,629,198,41 599,67,634,92,41 620,263,633,279,41 584,374,640,400,45 588,365,601,374,47 210,311,239,358,75 222,405,240,432,39 202,404,221,432,39 182,405,201,433,39 165,407,184,436,39 205,436,222,461,39 219,461,241,480,39 167,467,185,480,39 225,368,242,399,40 205,369,223,403,40 245,367,258,404,40 269,342,289,358,41 556,350,583,380,41 603,262,623,281,41 555,177,567,204,41 616,374,631,382,47 596,373,607,379,47 615,365,628,376,47 198,405,208,425,39 187,336,557,479,39 -./model_data/coco/val2017/000000369771.jpg 2,1,640,474,60 0,165,340,239,42 2,56,357,475,45 345,4,640,360,45 127,385,208,446,50 211,317,258,349,50 295,254,326,279,50 143,341,157,361,50 6,363,32,384,50 0,49,295,260,48 -./model_data/coco/val2017/000000562229.jpg 274,123,455,568,0 485,257,509,290,0 253,499,418,588,36 501,256,516,286,0 -./model_data/coco/val2017/000000379332.jpg 90,142,162,323,0 430,121,500,333,0 0,78,93,265,38 71,40,478,329,0 51,253,105,327,56 -./model_data/coco/val2017/000000323895.jpg 314,1,458,209,0 437,13,492,98,38 93,0,198,32,0 -./model_data/coco/val2017/000000455981.jpg 57,5,438,569,61 -./model_data/coco/val2017/000000007281.jpg 349,188,461,357,17 471,179,548,355,17 344,132,473,299,0 465,122,527,195,0 551,193,568,222,0 572,201,580,212,0 592,203,601,217,0 255,199,261,206,0 601,203,607,214,0 634,209,638,215,0 0,225,34,271,0 534,209,538,213,0 -./model_data/coco/val2017/000000244181.jpg 47,0,207,131,39 113,89,499,313,48 4,198,376,434,48 423,54,594,186,48 0,28,640,473,60 -./model_data/coco/val2017/000000511398.jpg 12,46,526,402,16 -./model_data/coco/val2017/000000576031.jpg 224,78,403,469,0 265,121,295,162,0 143,112,212,225,0 141,125,173,210,0 201,433,570,480,30 -./model_data/coco/val2017/000000178028.jpg 89,302,109,353,39 276,221,300,263,41 126,305,281,393,71 350,37,375,106,78 184,34,216,109,78 253,209,280,222,41 251,212,280,309,40 255,223,277,261,41 273,211,294,224,41 333,41,348,61,78 -./model_data/coco/val2017/000000293804.jpg 289,179,312,236,58 96,159,131,189,58 2,186,206,327,57 259,189,499,333,57 295,207,315,237,75 259,185,499,328,56 -./model_data/coco/val2017/000000405249.jpg 0,141,457,364,60 53,144,145,203,55 258,0,396,187,0 440,117,500,360,0 178,0,280,116,0 379,60,468,209,0 144,44,267,163,0 91,20,159,157,0 0,6,49,169,0 177,173,459,369,0 383,0,500,117,0 0,0,192,116,0 124,229,155,242,47 148,251,168,263,47 198,216,226,230,55 161,161,372,247,55 210,303,226,313,47 64,324,76,332,47 -./model_data/coco/val2017/000000578922.jpg 0,0,526,634,58 422,542,525,640,39 537,590,597,638,39 472,236,559,330,79 317,499,428,640,41 376,293,450,391,41 175,454,296,628,75 -./model_data/coco/val2017/000000541664.jpg 101,88,455,297,66 80,0,459,298,63 -./model_data/coco/val2017/000000157365.jpg 1,193,125,376,2 208,160,282,234,2 2,171,111,242,2 231,89,245,104,9 106,116,232,480,0 0,90,12,149,9 354,114,427,236,2 141,468,207,496,36 313,15,345,52,9 -./model_data/coco/val2017/000000397351.jpg 251,6,640,254,2 0,78,375,180,2 79,142,118,266,51 86,274,154,290,51 0,305,85,322,51 0,249,321,420,51 248,247,304,280,51 540,303,555,322,51 586,345,604,364,51 582,280,602,302,51 506,88,535,149,0 40,41,301,278,0 -./model_data/coco/val2017/000000213935.jpg 327,42,607,321,47 0,21,247,419,47 60,136,338,417,49 501,0,640,194,47 -./model_data/coco/val2017/000000502732.jpg 69,83,396,630,72 -./model_data/coco/val2017/000000546626.jpg 53,22,112,200,39 0,65,300,396,60 131,177,223,250,67 109,78,210,183,41 -./model_data/coco/val2017/000000552842.jpg 337,203,476,312,0 364,246,387,267,35 -./model_data/coco/val2017/000000451571.jpg 61,76,399,301,53 51,76,399,295,48 446,3,609,121,56 -./model_data/coco/val2017/000000149568.jpg 125,114,453,484,16 102,115,355,294,16 145,0,328,396,0 82,161,130,192,29 -./model_data/coco/val2017/000000458410.jpg 110,236,190,286,62 382,236,640,479,57 325,190,332,205,40 293,191,304,207,40 304,189,314,206,40 1,259,39,264,73 2,265,14,272,73 281,190,291,204,40 33,241,57,245,73 56,236,84,250,73 0,234,21,251,73 320,190,326,206,40 270,191,280,205,40 314,190,322,203,40 18,249,72,261,73 27,232,34,242,73 0,232,93,309,60 -./model_data/coco/val2017/000000188296.jpg 287,36,322,70,32 1,288,119,388,2 368,259,401,290,2 81,202,240,504,0 189,57,362,471,0 258,33,377,428,0 435,139,604,595,0 505,180,532,204,0 567,174,640,464,0 361,243,413,268,2 182,300,237,347,2 344,235,455,386,7 403,246,480,464,0 -./model_data/coco/val2017/000000189451.jpg 217,0,323,222,43 313,26,538,301,55 -./model_data/coco/val2017/000000013348.jpg 0,142,566,285,4 349,270,356,291,0 17,280,26,293,0 117,270,129,289,0 52,269,77,284,7 81,255,115,273,7 0,228,54,246,4 16,289,40,308,7 75,271,103,285,7 173,240,180,251,0 124,250,129,256,0 148,244,160,255,0 -./model_data/coco/val2017/000000256407.jpg 290,382,326,424,41 332,284,375,321,41 315,231,357,271,41 220,180,259,223,41 123,234,164,270,41 109,290,155,329,41 169,386,206,429,41 98,179,383,457,74 228,400,265,444,41 167,197,203,237,41 277,193,312,235,41 321,342,368,382,41 123,350,165,385,41 -./model_data/coco/val2017/000000374982.jpg 283,23,375,169,56 266,5,309,136,56 256,0,277,105,56 224,0,265,60,56 279,101,375,347,0 262,273,319,324,41 29,275,80,313,41 0,270,372,500,53 1,1,138,41,60 65,3,302,292,0 238,0,261,24,56 2,55,131,162,60 302,11,375,54,60 -./model_data/coco/val2017/000000537827.jpg 103,165,239,394,0 436,117,502,354,0 438,236,465,275,35 102,296,133,330,35 -./model_data/coco/val2017/000000407574.jpg 84,379,312,545,46 93,97,382,436,46 -./model_data/coco/val2017/000000202339.jpg 149,106,162,173,27 207,71,462,297,5 0,0,83,327,5 102,35,275,435,0 73,282,132,374,26 406,308,480,565,28 458,560,480,598,0 -./model_data/coco/val2017/000000016958.jpg 565,234,628,359,56 308,227,377,359,56 427,212,497,242,73 349,299,452,339,73 278,87,306,140,75 23,73,65,138,75 93,43,117,138,75 437,240,568,427,56 -./model_data/coco/val2017/000000154705.jpg 216,207,298,268,63 520,311,548,332,64 418,303,437,321,64 321,275,441,306,66 200,273,300,289,66 139,200,207,252,73 198,201,233,242,73 333,194,432,278,62 -./model_data/coco/val2017/000000177934.jpg 571,283,580,308,39 554,167,601,207,2 298,170,373,230,2 425,163,465,203,2 457,157,555,231,2 304,166,353,196,2 70,196,327,366,3 182,185,234,275,3 352,154,405,338,0 227,164,271,277,0 403,148,445,288,0 463,151,530,278,0 189,144,234,220,0 0,102,256,230,7 256,148,329,196,7 392,150,410,224,0 544,160,586,195,2 422,153,440,165,7 -./model_data/coco/val2017/000000263796.jpg 183,261,353,592,61 -./model_data/coco/val2017/000000258911.jpg 3,208,376,419,19 0,191,416,397,19 355,190,483,306,19 10,152,432,237,19 111,142,452,203,19 545,102,637,419,0 543,199,640,424,0 316,88,355,173,0 -./model_data/coco/val2017/000000155451.jpg 526,305,556,325,9 460,29,540,157,9 359,386,376,398,2 557,329,567,340,2 536,336,546,341,2 568,312,578,322,9 453,333,458,338,9 437,339,440,345,9 490,1,604,138,9 504,315,514,325,9 -./model_data/coco/val2017/000000534664.jpg 301,0,420,398,28 415,114,608,259,28 0,196,171,400,28 0,0,182,206,28 152,0,315,398,28 414,241,634,395,28 529,122,639,363,28 -./model_data/coco/val2017/000000256192.jpg 90,68,568,446,3 21,35,54,111,0 120,9,157,91,0 80,62,119,178,0 152,22,197,103,0 49,70,95,188,0 351,69,378,108,0 372,62,397,106,0 242,75,276,117,0 182,61,202,102,0 387,78,417,163,0 499,107,518,161,0 202,50,234,101,0 240,64,263,88,0 12,113,53,150,26 584,143,603,169,26 588,105,606,138,26 0,0,639,355,0 -./model_data/coco/val2017/000000129135.jpg 1,162,640,350,6 300,366,545,465,13 -./model_data/coco/val2017/000000032570.jpg 169,162,310,292,0 243,250,386,315,37 -./model_data/coco/val2017/000000216419.jpg 108,95,264,244,74 582,336,605,392,9 -./model_data/coco/val2017/000000393056.jpg 271,189,333,284,0 248,282,284,295,37 -./model_data/coco/val2017/000000312278.jpg 60,25,374,235,28 373,61,614,248,28 -./model_data/coco/val2017/000000085329.jpg 252,36,598,410,0 360,280,446,408,27 -./model_data/coco/val2017/000000439525.jpg 88,330,127,469,39 120,332,158,459,39 156,312,183,453,39 1,498,241,631,60 157,102,430,582,0 74,491,192,569,55 170,474,187,494,43 -./model_data/coco/val2017/000000241602.jpg 545,224,552,253,39 539,224,547,253,39 179,264,233,351,61 453,246,517,257,71 207,203,219,227,75 197,179,222,227,58 456,252,582,264,71 -./model_data/coco/val2017/000000353027.jpg 51,4,360,291,53 56,141,640,423,53 0,0,237,232,0 -./model_data/coco/val2017/000000418281.jpg 105,250,283,384,19 325,309,395,352,19 -./model_data/coco/val2017/000000516316.jpg 429,271,537,341,22 108,272,240,354,22 432,150,434,155,14 334,147,336,149,14 367,146,370,152,14 325,139,329,144,14 268,149,273,153,14 258,144,263,146,14 416,146,421,150,14 142,153,145,154,14 136,144,139,146,14 -./model_data/coco/val2017/000000158945.jpg 97,42,157,227,0 133,173,414,592,20 393,256,427,370,0 209,109,400,238,56 -./model_data/coco/val2017/000000333069.jpg 90,198,330,587,23 238,188,403,397,23 -./model_data/coco/val2017/000000334719.jpg 580,149,601,201,0 210,137,299,296,0 303,173,341,275,0 603,142,624,200,0 111,154,149,266,0 47,226,69,270,0 294,237,316,250,29 552,77,567,113,0 82,246,94,259,39 -./model_data/coco/val2017/000000192964.jpg 81,333,185,386,36 336,502,428,559,13 92,60,286,352,0 -./model_data/coco/val2017/000000080022.jpg 279,108,426,426,0 308,241,401,313,38 304,247,324,268,32 -./model_data/coco/val2017/000000152740.jpg 167,165,248,216,19 147,177,183,243,19 402,223,457,281,19 457,147,509,193,19 250,86,316,123,19 176,129,229,167,19 166,119,210,153,19 92,109,115,142,19 240,92,267,115,19 300,148,371,199,19 485,252,509,283,19 581,247,640,287,19 533,114,574,149,19 350,124,368,150,19 196,105,448,198,19 -./model_data/coco/val2017/000000473237.jpg 417,179,580,347,56 48,0,619,420,0 128,265,354,385,53 -./model_data/coco/val2017/000000140286.jpg 96,249,269,445,17 417,226,517,328,0 254,265,282,337,0 -./model_data/coco/val2017/000000012639.jpg 21,310,182,556,0 23,201,106,255,0 67,172,100,231,0 86,177,113,209,0 121,189,153,230,0 169,163,201,231,0 230,192,250,262,34 311,134,332,216,0 327,170,359,220,0 132,349,184,399,35 410,125,467,292,0 275,193,290,205,0 154,193,170,231,0 98,193,146,247,0 198,204,317,518,0 22,144,309,227,0 -./model_data/coco/val2017/000000054628.jpg 253,197,335,328,56 81,198,109,233,56 67,181,114,251,56 57,166,76,185,56 77,147,100,181,56 261,150,292,191,56 280,111,302,143,0 174,30,254,168,55 159,158,260,222,55 2,326,375,500,60 243,184,365,302,60 83,174,175,314,60 148,274,263,356,55 137,372,282,483,55 257,182,283,203,56 42,104,77,154,58 329,100,369,147,58 139,149,158,172,56 166,139,174,146,56 70,183,93,228,56 322,149,342,180,56 73,212,120,317,56 311,177,327,200,56 237,127,312,167,56 -./model_data/coco/val2017/000000394940.jpg 41,440,339,518,43 207,438,311,502,55 1,402,426,632,60 0,77,425,490,0 -./model_data/coco/val2017/000000509824.jpg 16,292,622,530,57 495,239,534,263,45 133,215,154,258,75 113,218,134,260,75 305,559,339,583,45 369,548,403,573,45 136,522,203,582,73 536,284,554,320,73 -./model_data/coco/val2017/000000484351.jpg 297,244,317,285,39 454,195,470,252,27 150,56,163,104,27 195,187,256,242,56 541,166,613,282,56 152,327,183,354,44 277,136,374,245,0 388,113,570,421,0 122,28,178,183,0 0,243,90,420,0 395,115,440,192,0 270,47,303,102,0 329,36,384,219,0 183,48,225,161,0 225,50,271,156,0 440,103,461,128,0 223,88,249,110,26 178,279,201,328,39 182,322,207,355,47 242,216,467,426,0 65,170,87,203,26 374,128,394,185,56 619,199,640,280,56 101,253,302,378,60 180,220,356,295,60 192,321,519,426,60 72,255,180,335,73 172,151,190,165,73 495,110,574,214,0 0,59,80,203,0 501,43,521,51,73 586,56,590,82,73 1,9,639,246,0 -./model_data/coco/val2017/000000485071.jpg 251,177,385,273,0 171,209,253,263,37 -./model_data/coco/val2017/000000553221.jpg 340,103,450,215,0 403,290,408,311,0 235,350,243,356,37 399,202,466,214,37 210,305,224,330,0 310,162,331,195,33 526,104,567,147,33 85,159,97,182,33 43,0,74,23,33 146,75,168,103,33 235,286,242,296,0 246,287,252,295,0 266,287,272,297,0 420,304,438,326,0 454,299,464,327,0 479,286,486,299,0 209,322,235,349,0 311,289,318,305,0 184,295,189,313,0 255,290,261,297,0 -./model_data/coco/val2017/000000217219.jpg 0,2,639,353,59 -./model_data/coco/val2017/000000025096.jpg 1,37,212,328,0 39,310,143,386,43 224,471,274,500,22 101,277,326,409,36 0,213,33,252,56 0,232,375,500,60 -./model_data/coco/val2017/000000217872.jpg 150,167,298,242,0 148,179,233,233,31 -./model_data/coco/val2017/000000250127.jpg 1,1,640,598,6 237,179,373,602,0 141,143,405,294,25 219,249,285,403,26 326,287,342,302,67 -./model_data/coco/val2017/000000416170.jpg 56,459,146,558,15 251,428,299,561,58 -./model_data/coco/val2017/000000017207.jpg 482,82,638,318,2 9,203,46,242,2 40,1,489,373,5 0,191,31,302,0 0,234,24,302,3 -./model_data/coco/val2017/000000017178.jpg 374,173,433,267,17 328,160,377,260,17 256,201,313,234,17 458,175,511,211,17 433,108,640,427,2 -./model_data/coco/val2017/000000494869.jpg 0,421,154,629,16 181,88,361,435,0 330,227,351,243,44 310,237,347,261,45 342,236,392,265,45 154,156,166,205,39 170,186,195,201,45 369,253,427,283,45 197,321,288,519,0 -./model_data/coco/val2017/000000236784.jpg 230,193,496,324,16 1,194,243,348,16 0,98,500,394,57 -./model_data/coco/val2017/000000031735.jpg 17,99,220,290,58 544,188,601,264,58 298,233,640,457,57 14,314,48,381,73 0,295,37,389,73 -./model_data/coco/val2017/000000488251.jpg 109,42,512,354,17 175,32,468,360,0 97,186,115,233,0 511,192,534,224,2 545,186,582,199,2 97,163,120,203,5 -./model_data/coco/val2017/000000398203.jpg 246,344,307,405,32 301,96,466,385,0 426,68,499,200,0 425,0,640,422,0 209,17,361,371,0 105,35,220,388,0 0,31,137,418,0 237,1,307,95,0 96,131,133,191,0 200,140,237,245,0 62,188,159,283,0 222,124,254,280,0 404,100,431,164,0 -./model_data/coco/val2017/000000272566.jpg 206,90,380,308,0 299,136,319,165,41 339,125,396,264,0 423,306,453,339,46 371,340,390,365,46 324,332,362,355,46 396,253,467,313,46 353,265,396,342,46 379,300,417,349,46 451,313,481,349,46 123,202,149,220,46 208,315,227,335,47 140,347,165,372,47 75,308,296,409,47 326,333,377,377,46 312,309,358,328,46 324,276,360,299,46 456,286,502,316,46 130,217,144,227,46 100,181,517,401,46 -./model_data/coco/val2017/000000033854.jpg 369,215,437,261,3 244,209,345,261,3 480,144,640,242,5 418,222,640,422,2 136,193,165,204,2 0,217,269,420,2 445,193,454,228,0 466,195,486,246,0 454,194,464,229,0 424,187,436,224,0 377,186,401,221,0 45,187,57,223,0 127,191,131,203,0 439,193,447,227,0 468,195,472,206,0 312,189,329,218,0 177,195,196,203,2 342,204,387,256,3 261,218,348,268,3 392,208,398,218,0 405,188,428,223,0 462,199,468,209,0 -./model_data/coco/val2017/000000359781.jpg 117,11,538,473,23 -./model_data/coco/val2017/000000153343.jpg 362,161,564,382,77 64,163,286,386,77 -./model_data/coco/val2017/000000060449.jpg 0,420,261,493,60 42,342,260,470,63 0,521,41,640,56 362,534,480,640,57 363,510,479,640,56 -./model_data/coco/val2017/000000385190.jpg 231,83,247,154,39 197,78,203,86,9 9,190,27,239,0 205,150,225,201,0 249,160,276,189,0 -./model_data/coco/val2017/000000227044.jpg 121,40,635,429,15 7,0,74,44,39 4,228,469,460,71 194,0,259,41,41 114,0,174,43,41 5,0,74,41,41 196,1,268,42,39 627,399,640,452,61 -./model_data/coco/val2017/000000290163.jpg 138,185,426,460,0 1,276,228,559,0 426,398,507,468,45 400,351,482,415,45 428,328,502,378,45 490,319,512,357,45 491,355,512,410,45 0,2,272,406,0 429,0,512,166,0 258,432,394,507,53 168,1,267,174,56 378,56,512,332,56 4,325,512,638,60 -./model_data/coco/val2017/000000232538.jpg 0,282,33,305,2 22,284,61,305,2 85,196,500,361,6 532,307,611,342,13 -./model_data/coco/val2017/000000512330.jpg 90,0,426,640,72 327,107,365,228,39 313,120,332,234,39 230,236,257,256,39 206,239,230,253,39 151,341,180,374,39 158,240,182,258,39 183,239,206,258,39 258,234,289,255,39 302,431,333,529,39 156,172,188,218,39 121,237,158,259,39 332,358,359,431,39 221,397,260,425,39 109,156,360,407,39 -./model_data/coco/val2017/000000269314.jpg 285,173,381,267,15 91,264,280,432,46 -./model_data/coco/val2017/000000046497.jpg 0,93,180,332,8 189,108,361,327,0 133,54,332,327,0 16,254,106,332,0 -./model_data/coco/val2017/000000047112.jpg 11,76,81,215,56 189,96,219,123,56 165,97,191,120,56 231,98,271,129,56 396,32,484,206,40 294,12,386,207,40 114,199,640,480,53 0,189,640,473,60 503,120,640,167,0 551,0,568,40,39 534,4,550,41,39 73,69,90,78,39 63,29,88,41,39 61,9,85,21,39 36,62,57,70,39 386,15,420,34,39 585,6,595,37,39 96,228,152,238,43 605,108,639,152,56 273,98,302,138,56 49,103,325,211,60 384,0,416,17,39 1,103,25,142,56 500,161,640,240,45 87,94,118,114,56 -./model_data/coco/val2017/000000006012.jpg 328,25,548,502,46 98,23,306,504,46 -./model_data/coco/val2017/000000361919.jpg 431,387,471,393,31 484,408,531,418,31 376,330,441,425,0 461,311,536,424,0 441,323,466,391,0 607,297,640,410,0 148,334,152,344,0 146,354,155,385,0 91,353,109,381,0 419,307,430,319,0 175,347,183,371,0 116,351,120,366,0 0,350,16,380,0 193,347,208,381,0 89,377,106,383,30 179,371,186,373,30 181,347,188,371,0 2,378,10,381,30 605,406,640,412,30 431,387,471,392,30 205,381,210,381,30 22,304,520,416,0 -./model_data/coco/val2017/000000396903.jpg 24,276,408,402,4 212,312,223,327,0 260,316,271,331,0 -./model_data/coco/val2017/000000232489.jpg 0,37,627,618,53 -./model_data/coco/val2017/000000464824.jpg 361,0,480,74,2 230,262,308,351,10 131,79,480,631,0 -./model_data/coco/val2017/000000284762.jpg 141,53,286,384,9 -./model_data/coco/val2017/000000061471.jpg 272,200,424,480,16 181,86,208,159,39 174,0,435,220,61 -./model_data/coco/val2017/000000434479.jpg 10,85,234,244,53 6,179,480,426,53 1,47,640,420,60 419,208,639,350,56 -./model_data/coco/val2017/000000017899.jpg 204,584,219,624,14 4,318,131,440,56 125,256,193,363,56 0,279,480,632,60 1,11,244,391,0 356,91,478,224,57 413,489,480,607,41 122,366,173,379,44 326,355,354,380,55 417,427,480,499,41 249,380,303,445,52 -./model_data/coco/val2017/000000217400.jpg 0,130,535,367,6 257,218,280,241,0 94,225,104,238,0 -./model_data/coco/val2017/000000323571.jpg 354,572,411,602,2 72,593,152,629,2 216,570,338,634,7 33,588,155,640,7 78,414,132,520,9 -./model_data/coco/val2017/000000082696.jpg 103,313,240,498,14 96,150,267,385,56 31,140,124,379,56 1,138,61,359,56 170,120,258,233,56 278,141,427,387,56 275,133,371,254,56 222,131,314,253,56 93,143,393,188,60 0,4,112,146,0 120,60,140,87,41 324,114,387,171,56 -./model_data/coco/val2017/000000139099.jpg 218,250,640,453,3 252,106,318,321,0 498,107,547,203,0 353,95,387,180,0 171,91,219,191,0 0,151,210,415,0 557,90,613,235,0 303,61,545,446,0 214,220,260,247,47 557,144,568,169,26 12,158,77,223,0 156,148,247,224,1 302,164,429,287,16 43,196,106,287,24 171,114,188,169,26 12,197,106,284,26 351,143,359,155,26 133,130,158,179,26 177,151,201,190,26 0,386,34,437,46 117,106,172,179,0 249,88,311,183,0 215,98,239,149,0 509,98,637,206,2 0,6,132,36,25 211,236,253,253,47 221,220,230,230,47 223,102,262,160,0 48,99,127,179,0 137,85,639,203,0 -./model_data/coco/val2017/000000398742.jpg 219,203,296,276,32 1,405,98,502,2 352,413,427,493,2 56,430,327,629,0 258,485,427,630,0 2,44,375,542,0 294,445,326,514,0 13,531,63,597,0 -./model_data/coco/val2017/000000304180.jpg 273,92,397,404,0 546,68,640,411,0 0,0,127,141,0 276,258,343,399,36 419,83,502,187,0 -./model_data/coco/val2017/000000144114.jpg 25,188,580,344,4 284,220,319,252,0 -./model_data/coco/val2017/000000226408.jpg 12,118,387,401,0 0,114,306,462,59 105,0,309,170,77 -./model_data/coco/val2017/000000450559.jpg 71,34,303,360,0 181,215,341,373,36 -./model_data/coco/val2017/000000295809.jpg 533,108,639,139,2 296,119,318,137,2 322,120,333,133,2 355,125,362,132,2 520,61,528,81,9 378,22,386,43,9 232,67,241,89,9 248,112,255,139,0 125,291,464,493,1 82,35,94,65,9 71,38,81,64,9 505,60,514,80,9 50,103,151,140,2 607,14,616,48,9 71,67,77,82,9 305,117,323,136,2 84,66,94,82,9 403,98,407,109,9 292,117,297,133,0 433,130,436,137,10 -./model_data/coco/val2017/000000424545.jpg 146,43,500,309,15 -./model_data/coco/val2017/000000072281.jpg 94,15,354,501,0 95,436,363,541,36 -./model_data/coco/val2017/000000425226.jpg 230,366,274,393,39 326,0,342,41,39 299,2,321,44,39 286,0,305,50,39 230,4,249,53,39 73,206,373,578,0 138,38,395,619,72 6,163,96,189,45 14,177,139,245,68 295,352,315,389,39 314,466,327,527,39 167,0,218,61,75 92,239,110,249,46 -./model_data/coco/val2017/000000051610.jpg 0,301,640,420,59 345,98,590,401,0 45,215,293,403,63 -./model_data/coco/val2017/000000495732.jpg 121,350,297,496,57 197,131,426,564,0 125,343,195,513,0 49,335,77,354,65 211,168,229,195,65 4,45,154,630,0 -./model_data/coco/val2017/000000181303.jpg 228,81,288,309,0 185,49,321,127,33 -./model_data/coco/val2017/000000311190.jpg 43,150,328,491,16 0,45,24,159,0 -./model_data/coco/val2017/000000119365.jpg 324,292,374,374,67 5,306,425,634,0 121,143,417,486,63 141,309,338,427,66 0,198,229,547,0 -./model_data/coco/val2017/000000080671.jpg 201,331,465,377,30 219,117,422,369,0 -./model_data/coco/val2017/000000278463.jpg 124,239,225,336,15 446,255,472,301,39 1,213,66,401,58 439,311,474,337,67 216,223,368,378,63 39,340,92,418,41 546,385,630,407,73 558,342,626,352,73 363,327,518,408,73 558,377,630,394,73 560,341,627,348,73 532,287,603,320,73 61,263,101,344,39 556,330,621,344,73 297,198,356,223,73 -./model_data/coco/val2017/000000234660.jpg 236,102,640,466,6 35,90,616,324,6 -./model_data/coco/val2017/000000579635.jpg 433,260,470,314,0 185,84,231,150,8 463,303,497,315,37 -./model_data/coco/val2017/000000188689.jpg 36,118,304,205,8 26,149,54,171,8 33,79,199,180,8 -./model_data/coco/val2017/000000195165.jpg 376,243,394,289,39 344,186,353,230,39 315,202,328,235,39 489,274,561,316,45 504,225,524,235,45 485,216,504,227,45 488,196,510,210,45 351,291,495,331,71 326,200,340,231,39 352,184,359,229,39 504,236,524,244,45 329,263,347,312,39 0,351,66,470,61 356,198,374,231,39 543,236,562,261,39 415,206,434,229,39 391,266,405,290,39 295,196,557,331,39 -./model_data/coco/val2017/000000179265.jpg 286,150,438,260,5 223,164,285,189,2 462,157,519,192,7 390,103,396,117,0 284,161,290,178,12 451,215,483,234,13 438,207,447,234,13 585,158,590,169,0 -./model_data/coco/val2017/000000555597.jpg 153,359,309,439,7 219,381,232,407,0 434,408,631,504,2 306,386,396,425,2 184,423,441,510,2 58,391,160,431,2 510,381,618,410,2 438,442,447,466,12 388,384,483,420,2 335,375,386,388,2 6,400,42,433,2 576,368,621,383,2 83,375,110,385,2 163,374,195,385,2 420,373,441,381,2 146,448,200,509,12 -./model_data/coco/val2017/000000001675.jpg 0,14,640,307,15 61,367,569,473,66 -./model_data/coco/val2017/000000416343.jpg 190,250,311,624,0 0,238,68,580,0 264,263,427,639,0 13,13,209,640,37 0,391,62,640,56 247,386,293,585,56 374,143,394,229,73 -./model_data/coco/val2017/000000479912.jpg 0,226,325,446,4 117,336,121,351,0 128,331,131,344,0 90,342,95,355,0 385,353,460,385,7 431,507,478,619,7 113,260,145,278,4 -./model_data/coco/val2017/000000275198.jpg 400,250,420,292,39 262,259,299,375,39 251,248,269,301,39 352,414,536,480,56 81,229,561,472,60 452,175,501,251,0 298,114,423,250,0 203,181,296,285,0 294,46,543,156,25 134,148,344,264,25 501,101,640,193,25 286,140,326,166,56 396,229,414,249,41 308,331,332,375,41 194,390,213,439,42 481,298,489,327,42 383,350,457,372,42 232,384,238,426,43 471,294,482,330,43 193,313,236,335,43 322,239,350,261,44 338,284,364,303,44 482,300,490,327,44 239,285,247,313,44 283,317,332,354,45 357,288,440,333,45 262,275,354,322,45 379,248,435,288,45 277,345,304,392,41 197,313,222,354,41 312,261,330,277,41 423,268,438,298,41 343,238,374,248,43 496,224,507,251,56 486,257,640,463,0 230,378,245,425,43 444,263,471,330,39 380,231,395,251,41 330,246,372,278,45 0,44,184,480,0 -./model_data/coco/val2017/000000263425.jpg 183,100,283,217,0 389,38,483,185,0 -./model_data/coco/val2017/000000405970.jpg 9,203,82,332,58 163,138,276,205,62 502,202,640,427,57 353,257,395,273,73 329,202,336,214,41 355,270,393,278,73 0,328,76,411,56 0,287,164,427,56 -./model_data/coco/val2017/000000222825.jpg 173,346,185,383,39 73,242,156,565,72 269,322,426,600,69 -./model_data/coco/val2017/000000119233.jpg 380,0,455,91,14 12,97,457,260,15 335,21,352,47,44 316,24,326,48,44 60,11,314,216,63 20,39,61,91,41 352,19,364,40,44 329,29,337,46,44 0,207,45,237,67 -./model_data/coco/val2017/000000526706.jpg 610,187,640,262,19 171,238,316,346,19 354,183,544,315,19 109,190,364,346,19 -./model_data/coco/val2017/000000116439.jpg 1,388,270,513,8 39,292,276,438,0 341,60,429,174,26 284,0,361,121,26 286,232,336,278,26 110,97,171,273,26 288,200,320,241,26 370,63,429,182,26 387,385,429,418,8 289,275,317,314,26 285,143,336,203,26 395,283,428,381,56 -./model_data/coco/val2017/000000309495.jpg 138,229,326,428,61 -./model_data/coco/val2017/000000297022.jpg 81,125,582,350,7 259,140,316,335,0 124,207,189,330,0 191,221,245,321,0 -./model_data/coco/val2017/000000400573.jpg 1,1,480,630,0 343,308,351,328,0 317,306,329,330,0 195,319,408,437,54 330,308,336,324,0 -./model_data/coco/val2017/000000283785.jpg 249,234,292,264,77 336,213,373,264,77 445,239,497,309,77 376,220,407,251,77 464,157,495,211,0 339,189,383,318,0 205,231,231,270,0 162,83,235,331,0 6,147,107,331,0 277,196,305,287,0 393,175,419,201,0 327,200,347,228,0 381,188,397,215,0 137,164,143,177,73 289,157,292,166,73 304,157,307,166,73 115,186,122,209,73 127,186,146,209,73 132,163,136,177,73 96,185,115,208,73 112,161,132,178,73 297,157,300,165,73 286,157,326,169,73 382,137,421,194,0 381,201,422,330,0 407,294,500,332,0 232,163,260,177,73 209,265,233,291,77 47,204,89,239,77 426,189,441,211,0 50,146,499,311,0 -./model_data/coco/val2017/000000581615.jpg 139,386,330,621,61 -./model_data/coco/val2017/000000479126.jpg 53,201,201,415,56 333,223,431,371,56 519,266,640,421,56 336,156,573,413,0 261,302,423,421,63 149,258,165,291,40 108,148,217,416,0 494,220,584,309,56 -./model_data/coco/val2017/000000137576.jpg 306,183,348,228,19 268,205,336,283,19 255,211,315,298,19 125,273,225,397,19 1,307,120,481,19 0,363,55,494,19 44,185,235,348,19 314,179,359,259,19 204,163,319,230,19 -./model_data/coco/val2017/000000571943.jpg 40,114,216,335,9 -./model_data/coco/val2017/000000189436.jpg 2,56,381,614,77 1,415,480,634,60 80,240,325,372,27 349,123,422,182,62 82,108,155,179,62 -./model_data/coco/val2017/000000346707.jpg 233,124,245,164,46 260,30,315,82,46 0,230,140,430,46 167,98,234,200,46 -./model_data/coco/val2017/000000132375.jpg 0,249,640,480,60 596,33,640,69,1 495,51,534,71,1 581,43,597,68,0 570,46,582,67,0 554,49,576,71,0 330,212,464,452,75 -./model_data/coco/val2017/000000579321.jpg 200,89,600,340,16 94,0,335,211,0 -./model_data/coco/val2017/000000373382.jpg 140,74,333,602,0 309,242,376,356,0 375,231,442,353,0 415,185,467,273,0 342,162,394,261,0 376,137,410,194,0 142,84,202,231,38 268,247,314,359,0 351,204,402,279,0 277,179,338,247,0 331,102,388,177,0 312,328,352,341,26 449,152,480,252,0 396,114,423,163,0 287,215,326,288,0 214,0,479,360,0 -./model_data/coco/val2017/000000347370.jpg 69,60,403,329,49 0,62,94,343,0 -./model_data/coco/val2017/000000303499.jpg 183,185,326,449,17 40,15,160,309,0 196,36,332,318,0 4,160,177,452,17 144,243,176,334,17 210,283,229,333,17 308,255,332,335,17 172,259,185,296,0 -./model_data/coco/val2017/000000375493.jpg 162,263,231,289,15 162,309,252,360,15 252,24,381,473,0 338,242,369,256,39 0,259,23,297,15 341,290,425,448,10 415,99,422,106,11 -./model_data/coco/val2017/000000020059.jpg 109,200,217,307,22 341,185,506,300,22 -./model_data/coco/val2017/000000450303.jpg 107,287,123,329,39 122,276,189,309,56 127,252,536,381,60 453,223,598,348,0 432,207,476,262,0 522,205,575,267,0 570,206,640,301,0 220,207,350,289,0 312,217,353,255,0 0,411,154,473,56 199,260,231,293,56 267,256,299,280,56 35,293,130,429,56 583,278,639,335,56 573,244,593,268,56 0,10,18,64,74 318,241,380,275,63 248,253,321,293,63 405,236,462,265,63 589,321,639,358,56 308,238,318,247,56 560,249,574,280,39 212,309,235,355,39 371,234,382,260,39 403,259,456,318,63 522,240,532,259,63 435,319,448,326,67 -./model_data/coco/val2017/000000318238.jpg 2,289,447,572,16 168,162,348,339,16 0,90,478,632,59 248,106,357,210,15 -./model_data/coco/val2017/000000343076.jpg 0,17,456,631,15 1,327,387,465,63 -./model_data/coco/val2017/000000164637.jpg 108,310,381,360,71 -./model_data/coco/val2017/000000388903.jpg 301,118,328,149,67 81,51,208,310,0 241,27,468,327,0 178,74,225,216,0 84,201,241,332,47 209,143,298,332,26 399,141,418,254,26 15,280,81,332,28 460,154,500,219,1 -./model_data/coco/val2017/000000143998.jpg 0,0,612,603,60 364,126,612,324,43 2,44,293,522,51 22,7,376,516,51 43,27,459,450,51 63,114,405,522,51 46,410,179,612,51 -./model_data/coco/val2017/000000050844.jpg 13,49,212,384,77 94,144,329,481,77 -./model_data/coco/val2017/000000031620.jpg 404,436,474,640,56 185,239,380,435,0 183,221,237,332,0 146,277,191,331,55 0,287,29,355,0 215,256,225,294,27 184,305,189,314,43 0,364,18,395,56 28,253,88,389,0 219,314,228,335,41 -./model_data/coco/val2017/000000417465.jpg 60,19,585,414,21 -./model_data/coco/val2017/000000020553.jpg 364,132,382,167,39 391,133,407,191,39 406,132,418,186,39 170,79,285,168,77 240,179,271,233,77 85,142,178,255,25 123,192,241,296,56 405,132,417,186,75 273,115,302,161,77 362,166,383,192,41 321,163,427,203,60 -./model_data/coco/val2017/000000579091.jpg 221,51,357,195,50 139,146,473,419,50 469,262,640,387,50 -./model_data/coco/val2017/000000567640.jpg 560,353,610,401,32 287,43,488,371,0 0,79,192,380,0 0,81,48,290,0 24,58,66,166,0 168,52,220,154,0 144,75,339,393,0 237,71,296,127,2 304,60,404,134,2 304,58,397,131,7 146,58,263,339,0 -./model_data/coco/val2017/000000436883.jpg 572,154,640,362,2 99,37,561,381,5 572,167,592,221,0 558,167,572,222,0 562,158,572,173,0 4,147,21,200,2 14,104,104,259,5 0,295,20,358,28 185,135,200,174,0 569,150,640,369,7 570,141,587,183,0 585,143,595,178,0 -./model_data/coco/val2017/000000292330.jpg 175,30,633,324,16 135,279,516,310,34 -./model_data/coco/val2017/000000163155.jpg 5,154,542,398,15 -./model_data/coco/val2017/000000217957.jpg 178,328,273,445,74 -./model_data/coco/val2017/000000243034.jpg 189,242,233,281,74 119,547,139,577,0 106,536,112,557,0 126,537,136,550,0 78,566,107,594,0 292,547,310,580,0 285,532,291,556,0 400,530,407,548,0 34,542,41,560,0 20,536,30,559,0 101,536,107,556,0 -./model_data/coco/val2017/000000025386.jpg 163,119,353,468,0 0,109,296,639,0 303,101,315,129,0 353,259,427,640,56 0,164,81,273,56 0,520,138,640,56 294,314,334,357,48 252,397,292,439,52 -./model_data/coco/val2017/000000439715.jpg 131,237,468,474,17 255,167,337,395,0 525,280,561,344,0 560,274,598,363,0 410,271,460,335,0 342,268,366,300,0 363,270,384,297,0 330,227,392,255,25 508,267,568,286,25 113,261,150,273,25 343,252,412,270,25 114,269,149,400,0 48,275,79,343,0 329,270,338,291,0 384,270,418,309,0 508,283,535,385,0 0,276,71,480,0 592,262,640,288,25 392,252,414,276,25 -./model_data/coco/val2017/000000548339.jpg 102,127,125,185,39 186,30,533,498,0 363,2,516,194,0 546,1,640,248,0 201,65,279,203,34 110,0,228,184,0 43,131,324,360,13 213,0,326,132,0 396,184,640,347,13 210,116,295,182,26 185,165,234,227,35 -./model_data/coco/val2017/000000039914.jpg 51,210,322,562,0 264,301,308,524,0 253,271,423,392,33 405,224,413,238,0 436,221,453,233,0 474,220,480,227,0 120,217,127,234,0 106,218,113,234,0 384,221,392,238,0 457,222,465,231,0 417,215,421,224,0 -./model_data/coco/val2017/000000217948.jpg 360,1,639,100,21 272,79,640,340,21 222,205,591,420,21 -./model_data/coco/val2017/000000098716.jpg 367,110,507,199,0 59,156,80,189,0 177,176,495,318,13 587,146,638,275,13 15,153,35,190,0 -./model_data/coco/val2017/000000387383.jpg 69,108,640,473,15 0,112,640,478,59 -./model_data/coco/val2017/000000318138.jpg 119,38,480,633,0 4,0,178,601,0 105,467,207,572,65 246,342,305,396,65 128,73,235,500,0 -./model_data/coco/val2017/000000032817.jpg 86,0,279,467,0 136,361,258,505,61 359,59,480,401,0 -./model_data/coco/val2017/000000461405.jpg 269,193,344,311,18 108,188,240,310,18 343,225,398,313,18 36,194,123,313,18 353,188,446,260,18 416,216,461,299,18 492,181,576,298,18 536,216,629,300,18 0,225,50,312,18 579,187,640,298,18 194,232,277,282,18 218,200,297,241,18 -./model_data/coco/val2017/000000389804.jpg 162,133,276,334,61 510,238,640,407,71 -./model_data/coco/val2017/000000335427.jpg 45,116,280,442,42 4,141,241,442,44 436,79,621,255,50 450,208,531,309,50 367,218,453,303,50 310,9,530,202,50 521,39,577,93,50 296,161,360,211,50 234,4,630,356,45 355,91,460,229,50 -./model_data/coco/val2017/000000561889.jpg 357,264,432,363,50 246,322,377,446,50 374,343,404,391,51 335,403,360,441,51 347,255,393,297,51 220,380,267,429,51 311,53,612,260,42 450,13,557,387,43 -./model_data/coco/val2017/000000465180.jpg 256,0,315,71,0 80,97,201,195,0 443,150,533,244,0 613,252,640,366,0 131,92,340,235,20 158,313,315,376,20 387,279,467,353,20 533,349,640,420,20 436,226,532,339,0 132,59,371,154,20 412,213,546,260,20 281,262,417,375,0 -./model_data/coco/val2017/000000314251.jpg 43,432,107,478,3 113,348,141,387,3 228,340,251,376,3 218,320,228,337,3 196,335,212,363,3 288,316,297,332,3 226,306,253,366,0 72,338,129,468,0 116,313,144,373,0 144,306,161,335,0 196,307,218,351,0 186,306,199,331,0 259,303,271,322,0 217,303,232,324,0 40,341,124,472,0 286,304,304,327,0 313,297,328,329,0 152,312,189,381,0 152,355,181,397,3 187,331,197,356,3 243,300,260,312,2 -./model_data/coco/val2017/000000412362.jpg 326,240,357,391,27 1,121,277,492,0 212,107,480,493,0 442,71,640,491,0 110,416,156,491,41 585,443,640,498,26 461,363,510,477,40 -./model_data/coco/val2017/000000030828.jpg 225,75,294,159,12 181,160,576,265,0 57,156,600,338,13 82,187,233,237,24 0,174,20,229,2 -./model_data/coco/val2017/000000531771.jpg 27,31,372,598,69 -./model_data/coco/val2017/000000227686.jpg 17,226,342,625,17 -./model_data/coco/val2017/000000361103.jpg 326,275,344,322,1 535,268,561,331,1 491,123,527,227,9 0,65,165,404,9 609,151,620,181,9 519,356,545,414,24 273,297,330,419,0 496,306,536,421,0 545,223,563,273,0 597,204,613,245,0 497,237,519,315,0 527,219,545,289,0 314,241,348,326,0 579,198,598,245,0 364,212,380,258,0 615,198,629,232,0 174,219,264,413,9 519,338,544,414,26 450,172,480,265,58 308,316,310,322,67 472,386,506,427,0 570,213,577,224,26 555,234,566,256,26 472,168,496,267,58 496,289,536,351,0 561,220,570,252,0 564,179,639,251,0 -./model_data/coco/val2017/000000468501.jpg 306,126,327,192,56 412,209,500,297,57 356,126,500,270,0 218,76,329,369,0 125,153,135,161,65 119,221,162,258,26 198,125,263,249,56 129,80,258,317,0 256,176,277,229,56 244,75,256,87,65 383,147,500,232,57 -./model_data/coco/val2017/000000222455.jpg 33,266,561,576,69 22,296,571,593,68 -./model_data/coco/val2017/000000124659.jpg 197,163,393,232,57 166,219,190,241,74 51,194,138,304,56 101,172,161,259,56 581,337,640,462,56 312,178,345,204,63 53,118,60,146,73 47,111,56,146,73 50,164,71,191,73 95,152,100,174,73 72,155,84,183,73 76,196,85,217,73 70,112,80,139,73 92,113,97,136,73 153,174,182,178,73 102,146,113,171,73 50,155,63,164,73 151,184,184,189,73 154,177,184,181,73 -./model_data/coco/val2017/000000032285.jpg 72,231,165,401,61 -./model_data/coco/val2017/000000088250.jpg 0,108,470,419,20 310,122,640,419,20 -./model_data/coco/val2017/000000416269.jpg 53,107,551,333,6 -./model_data/coco/val2017/000000059635.jpg 350,489,423,620,0 274,175,375,314,0 183,88,210,164,0 373,42,399,110,0 73,430,104,481,0 178,402,202,435,0 373,357,398,425,0 104,374,125,437,0 453,344,476,426,0 2,372,29,444,0 182,111,193,147,37 457,27,478,97,0 416,37,436,97,0 257,69,277,97,1 257,382,281,412,1 242,73,269,92,1 328,383,353,408,1 323,74,337,90,1 189,119,249,324,0 307,503,420,631,37 172,423,225,469,37 135,176,200,281,37 54,135,120,149,37 260,298,363,325,37 56,451,117,460,37 2,10,481,448,0 -./model_data/coco/val2017/000000172396.jpg 136,124,515,235,53 2,1,638,346,69 -./model_data/coco/val2017/000000337498.jpg 59,24,209,79,43 562,158,639,191,43 470,114,581,144,43 99,92,591,407,53 324,2,438,74,41 0,0,68,200,41 -./model_data/coco/val2017/000000563603.jpg 120,219,233,398,23 179,211,264,380,23 235,209,328,381,23 247,236,300,292,23 -./model_data/coco/val2017/000000276707.jpg 0,450,111,480,2 466,389,485,446,0 400,402,410,459,0 620,410,639,478,0 -./model_data/coco/val2017/000000369310.jpg 189,263,253,355,65 276,86,355,156,56 187,70,216,156,56 345,59,384,210,56 341,66,352,100,56 212,102,375,213,60 174,303,203,330,65 26,0,244,600,0 211,68,228,108,56 -./model_data/coco/val2017/000000451435.jpg 97,115,102,120,32 443,255,448,260,32 41,66,79,155,0 23,111,58,124,38 -./model_data/coco/val2017/000000017182.jpg 184,233,250,294,56 240,230,299,306,73 275,229,311,301,73 292,226,322,298,73 305,226,334,297,73 314,228,346,294,73 318,228,356,293,73 428,261,455,280,47 -./model_data/coco/val2017/000000193884.jpg 376,118,438,178,11 -./model_data/coco/val2017/000000331075.jpg 4,110,544,606,16 -./model_data/coco/val2017/000000542089.jpg 65,292,157,353,71 -./model_data/coco/val2017/000000126216.jpg 404,153,549,260,20 189,150,289,244,20 148,148,218,237,20 296,191,368,247,20 -./model_data/coco/val2017/000000299553.jpg 193,446,209,500,0 348,359,370,431,0 122,412,130,423,0 197,402,208,423,0 173,416,181,441,0 185,173,219,233,33 121,110,160,124,33 164,229,180,282,33 339,285,359,300,33 100,405,111,427,0 39,473,56,500,0 298,466,341,499,0 271,356,306,428,0 73,426,86,462,0 110,409,119,434,0 178,451,198,500,0 300,344,327,423,0 1,0,374,499,0 -./model_data/coco/val2017/000000130699.jpg 523,240,559,292,2 196,236,243,245,2 261,229,298,319,0 83,228,117,310,0 364,235,420,326,0 467,225,505,340,0 496,227,518,273,0 494,52,506,72,0 437,256,454,291,2 189,28,397,71,7 371,121,400,130,29 602,257,640,392,0 13,243,58,288,2 569,63,618,73,2 450,241,540,293,2 565,230,636,250,2 381,245,422,272,2 -./model_data/coco/val2017/000000319721.jpg 155,148,375,640,17 1,168,177,630,0 134,255,161,353,0 0,169,32,259,0 -./model_data/coco/val2017/000000413404.jpg 134,327,144,331,14 148,326,160,330,14 167,325,176,329,14 598,235,639,422,0 576,249,614,408,0 193,297,317,341,13 460,294,579,337,13 381,292,456,325,13 90,300,113,337,13 535,291,578,296,13 573,272,596,331,26 410,279,461,301,13 -./model_data/coco/val2017/000000439593.jpg 86,52,519,469,6 513,77,640,463,6 0,199,34,361,0 31,206,63,304,0 57,216,69,239,0 77,217,92,262,0 68,219,78,255,0 29,286,50,332,26 36,221,61,266,26 75,216,81,229,0 -./model_data/coco/val2017/000000231879.jpg 453,270,638,420,56 25,357,62,426,56 291,2,487,426,0 63,132,292,420,0 121,1,296,149,0 237,114,334,315,0 419,112,538,203,55 448,0,558,421,0 527,183,640,356,60 -./model_data/coco/val2017/000000369323.jpg 306,100,312,106,32 42,66,300,462,0 104,98,223,357,0 289,37,349,152,38 278,130,377,317,0 -./model_data/coco/val2017/000000283412.jpg 1,2,440,418,16 0,283,133,427,41 427,99,637,262,59 -./model_data/coco/val2017/000000545100.jpg 431,134,453,170,67 564,248,615,269,2 168,231,206,247,2 272,235,310,250,2 388,121,566,426,0 142,331,170,391,0 101,328,118,387,0 42,230,54,248,2 44,207,52,223,9 38,209,46,229,9 350,257,357,271,9 -./model_data/coco/val2017/000000217614.jpg 161,391,250,541,23 -./model_data/coco/val2017/000000041990.jpg 215,130,387,402,0 43,136,228,409,0 367,126,593,373,0 95,386,149,411,30 -./model_data/coco/val2017/000000122217.jpg 162,294,224,370,0 85,273,140,367,0 179,363,203,380,36 97,361,122,373,36 -./model_data/coco/val2017/000000417608.jpg 22,67,432,411,48 0,0,69,39,44 15,24,178,114,45 602,27,640,157,56 395,0,473,69,56 475,4,533,79,56 530,1,561,64,56 276,0,387,97,56 352,47,606,341,48 -./model_data/coco/val2017/000000427077.jpg 116,76,272,407,0 113,109,282,135,34 -./model_data/coco/val2017/000000192047.jpg 86,517,434,632,71 -./model_data/coco/val2017/000000453302.jpg 60,30,269,238,39 20,141,161,375,72 247,194,281,221,70 287,205,354,221,71 443,207,490,232,56 159,179,241,227,68 42,85,138,142,68 -./model_data/coco/val2017/000000261712.jpg 328,152,460,341,23 203,175,267,322,23 -./model_data/coco/val2017/000000533855.jpg 367,116,640,355,54 -./model_data/coco/val2017/000000434548.jpg 182,124,353,435,0 298,226,340,275,35 189,124,196,131,32 -./model_data/coco/val2017/000000117744.jpg 80,28,237,418,0 120,362,234,525,38 -./model_data/coco/val2017/000000220584.jpg 250,154,424,262,0 382,291,492,331,37 -./model_data/coco/val2017/000000336356.jpg 321,233,385,320,39 120,14,351,312,0 126,67,182,188,0 5,30,123,268,0 311,81,335,123,0 298,313,385,463,40 57,277,131,415,40 376,434,426,598,42 353,432,384,599,43 35,337,62,382,43 123,287,316,381,53 51,100,127,208,0 0,268,41,328,56 0,230,427,631,60 -./model_data/coco/val2017/000000278848.jpg 404,343,438,377,2 70,43,388,302,5 83,381,190,639,0 168,360,238,633,0 357,393,439,605,0 102,273,274,326,25 254,332,420,436,25 281,290,431,342,25 297,428,360,616,0 436,352,479,394,2 -./model_data/coco/val2017/000000480275.jpg 469,82,525,141,0 395,90,487,172,46 486,103,572,171,46 398,194,639,380,0 355,117,402,145,46 322,125,394,158,46 312,125,325,145,46 317,139,330,156,46 293,113,318,135,46 321,163,335,177,46 373,163,395,174,46 349,163,367,174,46 -./model_data/coco/val2017/000000390826.jpg 278,153,314,251,39 261,1,633,417,0 192,144,327,371,21 -./model_data/coco/val2017/000000343937.jpg 275,15,409,409,0 331,382,407,422,31 -./model_data/coco/val2017/000000163117.jpg 91,111,103,124,33 22,148,39,166,33 45,197,63,220,33 180,178,195,196,33 68,16,90,49,33 151,167,159,178,33 163,93,176,110,33 123,181,135,195,33 183,141,193,155,33 221,191,229,202,33 156,302,236,363,26 219,200,374,493,0 149,230,233,494,0 129,258,175,496,0 87,270,131,434,0 56,258,68,306,0 37,265,49,302,0 0,273,20,354,0 114,275,141,319,0 91,261,102,275,0 227,276,260,313,0 246,278,362,438,24 267,137,280,148,33 214,204,222,212,33 72,269,85,306,0 16,259,28,301,0 116,328,133,367,26 -./model_data/coco/val2017/000000307598.jpg 83,224,539,385,6 148,96,176,160,9 265,102,293,165,9 372,104,404,172,9 -./model_data/coco/val2017/000000431727.jpg 277,177,524,349,21 365,93,532,200,21 -./model_data/coco/val2017/000000532761.jpg 536,149,640,345,62 0,229,231,474,57 213,356,253,366,65 375,200,536,335,56 116,190,181,236,58 230,367,252,377,64 -./model_data/coco/val2017/000000029397.jpg 326,3,539,202,0 18,147,609,413,13 -./model_data/coco/val2017/000000050943.jpg 312,191,342,223,0 320,220,356,225,37 -./model_data/coco/val2017/000000082812.jpg 0,224,326,355,6 347,228,421,360,0 303,252,340,357,0 248,262,290,358,0 415,223,454,283,0 327,241,351,316,0 262,272,287,317,24 347,264,391,320,24 588,175,640,309,0 479,209,511,285,0 300,270,323,317,26 423,272,476,354,28 240,316,273,359,28 408,248,418,263,28 504,193,572,322,0 390,224,411,267,0 377,223,397,264,0 333,251,362,282,24 341,303,363,339,26 476,250,500,283,28 506,266,545,311,28 303,319,318,359,28 445,244,463,272,28 454,202,484,268,0 -./model_data/coco/val2017/000000548780.jpg 581,219,621,250,58 5,361,61,408,14 325,64,531,375,0 236,71,401,370,0 245,0,403,142,0 175,0,261,210,0 103,0,183,211,0 509,17,555,129,0 165,107,560,366,13 251,177,331,210,26 168,344,235,380,14 15,216,187,249,58 534,54,544,94,24 372,141,483,239,26 97,103,129,136,26 200,23,239,84,26 -./model_data/coco/val2017/000000172935.jpg 154,95,232,182,0 169,150,268,208,30 300,253,374,354,0 19,262,112,282,8 124,262,257,288,8 -./model_data/coco/val2017/000000514376.jpg 575,267,608,290,2 599,256,613,267,2 288,182,503,339,5 573,260,593,275,2 474,150,486,177,9 207,140,245,154,9 187,142,199,173,9 21,288,82,302,13 -./model_data/coco/val2017/000000579818.jpg 1,89,523,222,6 429,114,457,158,0 87,183,91,187,0 -./model_data/coco/val2017/000000415727.jpg 94,34,229,329,0 1,2,134,172,0 441,147,527,440,34 231,243,364,472,24 372,16,443,355,34 386,167,490,473,34 440,186,534,468,34 428,101,501,337,34 161,92,481,474,0 1,13,47,93,13 443,96,470,251,34 -./model_data/coco/val2017/000000334483.jpg 95,138,243,338,0 237,94,391,356,0 39,420,210,599,0 324,368,464,456,55 236,500,275,540,55 365,513,441,572,55 254,599,334,640,55 248,366,305,390,55 361,337,406,384,55 0,420,69,640,0 438,186,480,309,0 338,351,362,371,43 195,495,238,537,55 0,88,234,425,0 37,500,236,640,0 265,78,327,156,0 16,367,190,532,26 426,590,480,635,55 372,575,473,635,55 276,403,311,416,42 -./model_data/coco/val2017/000000239274.jpg 69,184,405,516,8 267,383,282,415,0 280,383,299,429,0 316,388,338,427,0 324,366,334,393,0 524,460,546,492,0 558,441,580,485,0 295,363,308,401,0 342,363,356,397,0 335,359,347,387,0 353,390,371,412,0 300,349,310,383,0 127,284,132,292,0 557,431,569,466,0 -./model_data/coco/val2017/000000532493.jpg 169,67,362,200,0 130,53,228,205,37 -./model_data/coco/val2017/000000492968.jpg 102,40,352,349,0 236,311,377,379,31 -./model_data/coco/val2017/000000236730.jpg 0,15,379,633,22 -./model_data/coco/val2017/000000287874.jpg 200,126,403,314,6 436,218,450,271,0 398,214,412,233,0 419,205,434,256,0 365,190,375,202,0 412,204,422,246,0 433,205,440,231,0 102,257,126,287,13 117,227,138,251,13 431,245,445,267,28 386,193,400,217,0 155,160,162,179,0 422,241,429,254,28 450,221,460,271,0 446,249,456,261,26 -./model_data/coco/val2017/000000066561.jpg 187,70,608,369,18 53,135,220,391,18 -./model_data/coco/val2017/000000176232.jpg 171,389,279,619,75 421,479,480,559,73 -./model_data/coco/val2017/000000311789.jpg 2,1,640,398,15 0,210,179,288,66 -./model_data/coco/val2017/000000519522.jpg 108,246,150,299,74 172,247,205,295,74 369,400,378,418,74 -./model_data/coco/val2017/000000039951.jpg 383,276,396,291,32 240,163,351,361,0 324,288,408,357,38 10,8,45,59,0 46,38,89,59,0 -./model_data/coco/val2017/000000368752.jpg 229,3,480,319,0 127,0,279,71,0 0,262,84,462,41 207,323,362,362,44 214,334,300,392,55 350,431,480,531,45 80,411,172,488,45 0,6,249,401,0 0,292,480,640,60 -./model_data/coco/val2017/000000477227.jpg 0,143,10,157,2 64,122,351,252,8 500,152,530,170,7 27,148,57,160,7 14,145,29,158,7 403,250,409,258,0 517,161,530,168,2 217,243,463,304,8 -./model_data/coco/val2017/000000388215.jpg 242,72,253,83,32 245,86,419,412,0 332,113,356,143,38 -./model_data/coco/val2017/000000017436.jpg 110,490,177,635,0 22,534,177,630,13 229,480,258,506,13 -./model_data/coco/val2017/000000476258.jpg 256,37,514,306,0 270,250,506,347,36 -./model_data/coco/val2017/000000369442.jpg 326,265,390,320,18 437,196,467,261,0 573,204,622,338,0 549,192,591,328,0 391,200,421,258,0 377,201,399,266,0 489,229,509,271,0 311,204,340,262,0 241,207,269,304,0 292,269,329,327,18 312,255,338,276,18 412,263,473,323,18 464,267,495,328,18 491,269,516,311,18 159,266,181,315,18 386,258,450,323,18 2,0,163,474,0 209,215,236,306,0 266,214,290,306,0 191,217,221,304,0 544,235,561,285,2 381,269,405,321,18 173,267,202,312,18 375,136,392,164,11 -./model_data/coco/val2017/000000191471.jpg 120,23,511,421,11 -./model_data/coco/val2017/000000191614.jpg 73,310,228,480,17 295,302,425,404,17 347,289,381,356,0 -./model_data/coco/val2017/000000389109.jpg 270,168,420,329,0 3,140,135,335,0 0,391,370,587,53 333,328,427,374,56 250,280,396,346,56 88,278,162,347,56 128,265,174,290,56 0,340,427,640,60 129,258,258,285,60 0,279,94,389,60 288,361,375,385,67 168,195,215,259,0 14,175,58,268,0 245,258,266,275,56 364,277,426,330,60 397,196,426,275,0 241,206,281,265,0 -./model_data/coco/val2017/000000501023.jpg 67,13,102,50,11 40,39,43,45,9 255,99,308,145,11 -./model_data/coco/val2017/000000485424.jpg 377,304,416,386,39 410,331,442,402,39 274,38,465,137,28 334,227,370,258,41 298,144,452,255,69 521,171,546,233,39 53,213,82,252,39 466,195,492,255,39 50,237,113,315,39 -./model_data/coco/val2017/000000063740.jpg 208,32,412,211,62 113,98,136,120,0 423,36,483,62,0 161,86,200,113,0 114,291,176,363,41 269,262,328,309,41 314,312,404,333,46 262,291,308,332,49 393,50,613,254,63 228,330,598,412,66 407,193,607,237,66 -./model_data/coco/val2017/000000190140.jpg 355,155,434,302,16 2,162,540,376,8 158,141,296,303,0 0,0,640,156,8 -./model_data/coco/val2017/000000361147.jpg 98,149,151,181,56 55,45,117,173,0 309,53,354,115,0 356,51,416,152,0 395,86,417,187,0 114,21,242,233,38 35,90,97,183,0 0,102,64,184,0 19,114,50,131,56 135,120,198,183,0 119,114,164,145,56 372,153,401,185,56 107,131,136,150,56 177,48,405,595,0 222,127,258,169,0 -./model_data/coco/val2017/000000507042.jpg 12,183,156,582,23 43,348,369,599,23 179,113,390,478,23 -./model_data/coco/val2017/000000171740.jpg 0,248,434,480,57 161,5,183,40,74 515,255,547,291,41 -./model_data/coco/val2017/000000562448.jpg 25,165,472,307,5 89,208,110,234,0 108,205,125,235,0 -./model_data/coco/val2017/000000407298.jpg 369,315,457,472,32 0,0,385,480,0 298,119,581,479,35 -./model_data/coco/val2017/000000011511.jpg 90,38,130,190,0 139,32,189,172,0 35,44,85,190,0 37,227,315,415,13 286,348,398,433,26 448,260,516,364,26 483,50,530,100,3 24,95,48,149,26 90,78,101,104,26 1,51,62,214,0 -./model_data/coco/val2017/000000436551.jpg 46,67,529,413,14 490,71,639,331,14 -./model_data/coco/val2017/000000039956.jpg 0,211,361,405,59 518,184,639,319,56 -./model_data/coco/val2017/000000511760.jpg 148,490,165,497,2 240,492,263,499,2 267,491,296,502,2 115,487,157,587,0 160,529,181,587,0 233,37,259,51,33 235,35,259,38,33 -./model_data/coco/val2017/000000565012.jpg 152,195,172,208,2 323,209,338,247,9 537,196,583,232,7 152,195,171,209,7 333,151,348,187,9 295,144,316,194,9 298,209,310,241,9 395,175,402,181,2 346,178,360,186,2 36,218,40,226,12 -./model_data/coco/val2017/000000020333.jpg 178,283,241,510,27 51,106,367,566,0 1,494,264,630,45 -./model_data/coco/val2017/000000190307.jpg 209,24,339,524,0 240,463,325,529,37 -./model_data/coco/val2017/000000308545.jpg 192,225,363,422,17 512,298,639,422,17 175,101,638,426,0 397,288,532,422,17 -./model_data/coco/val2017/000000451714.jpg 179,106,320,564,0 155,204,190,325,0 327,151,331,161,0 322,160,326,167,0 446,148,452,160,0 120,496,480,635,30 -./model_data/coco/val2017/000000328601.jpg 79,16,333,632,0 70,90,127,319,38 328,255,372,300,32 -./model_data/coco/val2017/000000386912.jpg 210,143,430,419,0 212,373,306,419,66 573,338,591,416,73 582,173,595,229,73 493,135,580,144,73 542,1,565,85,73 587,356,640,385,73 607,176,631,234,73 565,342,580,415,73 558,343,574,412,73 474,318,521,400,73 519,325,540,406,73 591,173,607,230,73 383,247,431,419,56 42,253,217,471,62 577,6,592,86,73 597,174,617,233,73 82,0,639,479,73 -./model_data/coco/val2017/000000039484.jpg 314,336,415,392,2 428,340,522,396,2 391,334,449,388,2 36,365,266,437,2 0,347,113,436,2 256,344,300,381,2 2,338,39,356,2 604,11,632,23,4 604,344,613,368,0 583,346,600,385,0 547,346,569,373,0 613,342,627,384,0 524,344,533,361,0 518,346,527,361,0 297,341,314,380,0 116,337,129,364,0 46,309,51,320,9 461,329,466,336,0 547,343,558,357,0 564,342,583,361,0 14,303,22,310,9 612,358,625,383,56 598,358,607,385,56 550,360,578,387,56 523,357,542,381,56 571,360,588,364,60 138,343,178,365,2 208,330,275,376,2 177,333,217,366,2 41,323,44,335,9 52,320,58,328,9 580,345,590,361,0 42,340,83,352,2 628,357,640,373,60 233,332,255,378,0 127,336,140,363,0 -./model_data/coco/val2017/000000046463.jpg 25,66,443,332,48 0,40,260,395,0 0,0,500,117,69 -./model_data/coco/val2017/000000341469.jpg 212,287,456,588,1 188,4,407,633,0 5,464,132,570,26 130,133,254,223,26 97,388,263,515,28 414,78,457,322,0 5,463,131,571,28 64,359,219,443,28 133,470,243,553,28 115,112,240,168,28 126,132,256,221,28 26,157,130,221,28 8,441,99,490,28 -./model_data/coco/val2017/000000479030.jpg 366,87,387,100,2 102,59,587,275,6 484,68,491,76,2 525,57,533,64,2 487,56,504,63,2 178,86,193,98,2 512,64,523,72,2 473,60,480,66,2 456,58,470,70,7 543,55,550,61,2 518,51,521,56,2 592,43,599,50,9 -./model_data/coco/val2017/000000038825.jpg 335,0,640,393,22 112,0,468,378,22 -./model_data/coco/val2017/000000131273.jpg 120,0,480,596,16 -./model_data/coco/val2017/000000256518.jpg 430,46,557,213,41 182,0,281,116,41 85,151,139,164,44 506,229,640,368,44 270,0,512,96,45 322,37,452,80,48 1,1,639,421,60 94,145,321,296,48 -./model_data/coco/val2017/000000506933.jpg 68,187,211,416,67 0,3,640,472,0 613,164,640,192,73 1,91,262,272,73 538,161,640,315,56 -./model_data/coco/val2017/000000494188.jpg 135,379,371,622,14 93,119,242,411,56 0,0,176,598,56 253,78,344,337,0 189,133,252,342,0 339,233,354,295,0 51,0,233,281,0 385,250,401,272,0 252,241,291,310,26 432,210,460,264,25 402,274,411,290,56 0,134,72,218,0 242,251,256,293,0 363,220,388,271,25 329,225,365,243,25 375,274,385,291,56 -./model_data/coco/val2017/000000453341.jpg 0,228,75,322,62 38,328,640,474,57 106,309,141,344,67 0,313,52,337,66 66,326,74,337,64 224,309,272,350,77 513,233,535,299,62 -./model_data/coco/val2017/000000328238.jpg 174,120,351,426,0 490,123,538,185,0 529,116,571,174,0 447,121,465,149,0 463,118,482,156,0 473,123,496,159,0 387,157,431,171,13 105,89,155,132,29 544,145,596,184,0 396,169,425,189,24 528,145,562,186,56 485,145,518,183,56 547,146,569,176,56 -./model_data/coco/val2017/000000286994.jpg 329,312,440,384,20 297,232,330,253,20 488,224,536,247,20 114,218,166,250,20 251,241,272,254,20 271,240,295,253,20 363,240,388,250,20 51,224,86,241,20 0,217,26,237,20 -./model_data/coco/val2017/000000126110.jpg 105,52,161,184,16 0,0,319,237,7 261,104,290,191,0 -./model_data/coco/val2017/000000460160.jpg 257,237,398,297,14 -./model_data/coco/val2017/000000104455.jpg 76,25,597,395,22 168,199,359,352,22 -./model_data/coco/val2017/000000350054.jpg 139,30,371,184,62 226,107,299,232,15 180,137,220,193,77 287,143,320,189,77 321,145,348,186,77 -./model_data/coco/val2017/000000476704.jpg 497,280,552,386,1 575,233,632,277,2 530,224,543,240,2 107,81,522,350,5 13,146,119,280,7 590,263,618,307,13 543,225,585,238,2 632,235,640,259,2 -./model_data/coco/val2017/000000161861.jpg 176,79,275,315,0 148,179,222,230,38 -./model_data/coco/val2017/000000044877.jpg 106,24,372,417,0 286,172,592,299,38 30,297,59,332,32 499,374,600,426,38 332,109,500,381,0 0,342,32,425,0 -./model_data/coco/val2017/000000475387.jpg 2,139,555,363,6 609,217,636,296,0 576,214,602,295,0 603,209,625,293,0 531,203,550,275,0 571,256,591,280,26 547,257,561,277,28 276,111,293,152,0 624,208,634,228,0 403,116,414,137,0 298,111,308,152,0 305,106,318,128,0 367,108,384,143,0 450,119,461,133,24 573,257,590,281,24 244,116,258,152,0 -./model_data/coco/val2017/000000405205.jpg 70,22,511,374,5 500,115,549,283,7 1,108,39,343,5 -./model_data/coco/val2017/000000410735.jpg 163,229,220,254,44 26,184,222,329,45 38,346,224,481,45 232,116,619,484,45 227,209,402,492,0 45,30,196,146,45 -./model_data/coco/val2017/000000307074.jpg 418,280,428,290,11 146,278,164,290,2 216,272,234,282,2 192,275,211,284,2 162,278,186,289,2 178,274,192,282,2 121,281,146,296,2 55,273,75,283,2 242,266,248,271,2 156,227,162,246,9 205,231,208,239,9 256,131,271,160,9 17,82,105,238,9 219,270,229,275,2 132,271,139,276,2 123,270,131,277,2 288,276,320,287,2 240,251,247,266,9 197,231,201,244,9 265,160,273,191,9 -./model_data/coco/val2017/000000164969.jpg 83,23,502,422,53 -./model_data/coco/val2017/000000027972.jpg 359,84,502,241,0 296,158,472,246,37 -./model_data/coco/val2017/000000304404.jpg 131,0,283,24,25 0,0,108,52,25 248,123,306,176,34 93,212,127,244,35 168,91,342,312,0 0,167,102,321,0 362,123,399,240,0 399,121,439,238,0 442,174,495,238,0 476,160,518,238,0 501,154,521,218,0 15,52,48,83,0 599,124,640,233,0 287,61,313,87,0 201,58,225,84,0 158,171,207,244,0 528,158,579,238,0 0,8,604,251,0 -./model_data/coco/val2017/000000139684.jpg 156,94,226,141,62 190,236,330,295,15 2,206,414,328,57 300,134,401,224,56 184,198,226,209,73 184,201,226,214,73 365,163,489,290,56 195,209,225,220,73 187,194,211,205,73 280,90,291,113,75 230,130,241,145,75 173,206,270,261,60 -./model_data/coco/val2017/000000211069.jpg 253,197,446,402,23 0,225,128,375,23 -./model_data/coco/val2017/000000286908.jpg 318,322,632,629,60 1,216,324,422,60 6,436,139,582,45 221,514,317,632,45 395,487,532,627,45 222,306,318,412,45 213,87,316,211,45 106,94,213,201,45 323,345,404,455,45 36,8,123,86,45 150,290,211,354,45 5,71,99,211,45 14,300,158,422,45 552,193,618,250,54 146,506,222,583,45 323,242,636,314,60 152,289,212,352,41 206,218,280,260,45 6,517,244,633,60 57,0,639,639,45 -./model_data/coco/val2017/000000001584.jpg 126,90,524,535,5 190,304,249,370,0 435,338,451,363,0 298,334,333,368,0 174,170,203,193,0 297,160,322,181,0 121,389,128,410,0 568,316,612,404,5 91,388,104,423,0 212,168,230,189,0 78,377,97,430,0 101,397,115,429,0 113,391,126,430,0 502,315,566,385,5 -./model_data/coco/val2017/000000393226.jpg 0,209,38,252,2 38,207,104,247,2 454,207,503,225,2 131,118,418,311,7 507,190,636,279,7 486,123,495,139,9 586,109,599,131,9 507,173,513,183,9 94,193,154,337,0 405,209,429,222,2 481,206,535,225,2 449,163,456,177,9 495,173,503,182,9 432,175,443,185,9 429,202,480,224,2 -./model_data/coco/val2017/000000005992.jpg 204,158,504,423,18 425,124,580,411,18 548,213,640,420,18 25,125,235,368,18 548,165,640,290,18 -./model_data/coco/val2017/000000268729.jpg 82,262,191,388,22 198,269,337,399,22 300,283,461,402,22 330,303,589,475,22 273,112,318,281,23 12,228,25,239,0 355,199,362,211,0 0,225,9,241,0 376,205,381,212,0 382,205,389,212,0 -./model_data/coco/val2017/000000051712.jpg 141,51,304,297,0 78,259,330,332,30 -./model_data/coco/val2017/000000199771.jpg 367,264,440,421,39 256,391,301,425,41 285,291,370,420,41 393,335,580,419,43 560,46,601,69,73 306,28,409,284,0 244,104,343,270,0 370,66,565,364,0 544,23,640,399,0 157,69,216,239,0 0,90,87,227,0 8,60,94,169,0 191,293,305,391,45 547,377,638,424,48 148,75,192,241,0 0,125,15,283,0 476,386,542,424,48 411,399,494,425,48 494,0,516,25,74 36,55,230,416,0 -./model_data/coco/val2017/000000312720.jpg 404,228,443,308,0 382,285,449,315,30 -./model_data/coco/val2017/000000032081.jpg 113,78,255,469,0 75,129,123,236,38 -./model_data/coco/val2017/000000079408.jpg 39,7,414,406,11 -./model_data/coco/val2017/000000403565.jpg 39,318,357,532,1 227,475,326,526,24 181,230,281,520,0 -./model_data/coco/val2017/000000180135.jpg 0,5,252,462,0 1,349,238,488,36 -./model_data/coco/val2017/000000344614.jpg 319,66,429,189,74 211,85,270,215,74 -./model_data/coco/val2017/000000074092.jpg 229,93,239,103,32 109,283,134,354,0 22,159,44,192,0 41,185,55,195,0 0,231,29,256,0 221,88,231,163,38 124,184,151,204,0 293,294,311,338,0 0,230,8,253,0 66,277,106,354,0 150,187,168,207,0 125,191,139,204,0 100,191,125,211,0 56,184,77,207,0 145,163,234,431,0 5,162,143,263,0 -./model_data/coco/val2017/000000065485.jpg 387,97,472,178,16 7,34,640,364,2 -./model_data/coco/val2017/000000293200.jpg 124,148,139,178,39 112,151,126,178,39 590,169,639,206,33 219,0,261,83,33 308,151,442,426,0 93,77,204,400,0 198,151,210,162,24 80,98,123,245,0 0,175,58,422,0 0,82,99,391,0 274,126,309,184,0 318,130,345,161,0 377,130,421,199,0 609,134,634,174,0 462,163,510,194,0 139,131,225,258,33 414,145,428,171,0 166,116,239,359,0 502,122,537,194,0 71,84,621,204,0 -./model_data/coco/val2017/000000206218.jpg 360,101,629,317,63 393,232,568,275,66 -./model_data/coco/val2017/000000490413.jpg 8,45,636,211,4 -./model_data/coco/val2017/000000236412.jpg 93,54,579,428,53 551,60,611,101,44 -./model_data/coco/val2017/000000523194.jpg 175,241,207,310,10 526,88,585,139,11 -./model_data/coco/val2017/000000488385.jpg 25,2,372,631,3 380,0,452,81,3 -./model_data/coco/val2017/000000349152.jpg 206,195,254,272,54 241,190,285,269,54 274,187,320,273,54 306,180,342,273,54 198,163,234,204,54 1,0,480,631,60 255,157,286,198,54 220,119,291,154,54 74,423,194,533,54 0,419,75,526,54 225,156,263,197,54 48,525,177,640,54 305,0,367,24,44 286,151,311,187,54 307,24,345,43,43 0,38,429,637,54 -./model_data/coco/val2017/000000573626.jpg 184,129,243,183,19 284,147,317,204,19 -./model_data/coco/val2017/000000223182.jpg 407,413,441,521,39 362,442,385,520,39 43,31,200,176,0 225,22,499,524,0 522,2,638,523,0 171,298,270,519,38 0,117,39,172,0 0,323,409,515,13 24,119,469,335,56 479,0,538,53,56 311,0,436,131,0 -./model_data/coco/val2017/000000286507.jpg 114,153,601,292,6 -./model_data/coco/val2017/000000357060.jpg 232,164,348,237,14 -./model_data/coco/val2017/000000060052.jpg 20,1,640,421,25 0,0,393,422,0 -./model_data/coco/val2017/000000128654.jpg 70,31,478,376,0 176,274,252,313,29 -./model_data/coco/val2017/000000085195.jpg 252,233,639,355,42 264,103,484,294,55 0,91,640,480,60 -./model_data/coco/val2017/000000450686.jpg 166,166,366,467,67 25,173,387,640,0 -./model_data/coco/val2017/000000135561.jpg 246,278,405,472,72 433,221,449,236,74 100,379,183,434,70 414,326,444,343,45 408,284,428,294,45 565,396,617,425,71 557,374,577,396,41 406,264,417,286,39 -./model_data/coco/val2017/000000339823.jpg 70,39,395,358,25 17,184,357,635,0 -./model_data/coco/val2017/000000527750.jpg 286,181,427,405,72 176,124,291,464,0 16,288,183,485,69 331,141,344,183,39 52,391,128,436,45 100,341,131,370,45 -./model_data/coco/val2017/000000442463.jpg 206,242,380,467,0 215,447,375,488,36 -./model_data/coco/val2017/000000262587.jpg 336,212,415,250,37 327,154,413,234,0 -./model_data/coco/val2017/000000249643.jpg 1,54,506,450,6 506,177,638,274,6 352,196,380,224,0 -./model_data/coco/val2017/000000125062.jpg 178,323,422,622,77 97,291,291,560,77 21,261,203,492,77 1,227,125,442,77 206,3,278,304,73 260,0,336,395,73 323,0,418,353,73 387,2,427,365,73 156,4,211,300,73 71,0,171,267,73 -./model_data/coco/val2017/000000140658.jpg 144,124,184,159,74 -./model_data/coco/val2017/000000361551.jpg 374,178,480,231,7 319,369,450,553,0 442,394,480,456,0 3,362,63,507,0 371,344,403,412,0 226,360,296,525,0 79,143,119,172,7 179,452,224,499,24 50,421,87,475,24 146,450,181,492,24 308,447,330,489,28 0,438,20,492,28 109,453,152,495,28 25,134,73,159,7 251,449,272,493,28 283,450,310,488,28 435,454,465,500,28 -./model_data/coco/val2017/000000027186.jpg 2,167,196,420,57 360,162,640,423,57 162,38,410,422,0 361,181,388,211,65 -./model_data/coco/val2017/000000161128.jpg 269,389,316,416,2 97,386,105,416,0 306,383,335,396,2 199,355,236,439,5 360,398,365,409,10 136,386,145,410,0 106,389,114,416,0 232,387,242,404,2 40,380,78,417,2 145,383,153,389,2 200,357,238,440,7 0,391,49,438,2 284,381,302,391,2 0,399,10,457,2 -./model_data/coco/val2017/000000441543.jpg 93,64,570,381,25 217,283,352,398,0 0,218,156,397,0 403,351,551,397,0 579,251,619,383,0 519,343,616,401,0 510,239,593,358,0 484,235,549,335,0 589,236,632,320,0 137,269,240,398,0 451,296,519,369,0 145,308,227,403,24 550,273,573,292,67 484,231,520,270,0 398,244,468,383,0 86,237,112,261,0 -./model_data/coco/val2017/000000253433.jpg 0,2,640,472,57 118,10,520,466,77 -./model_data/coco/val2017/000000555705.jpg 320,20,640,310,15 0,51,331,305,15 -./model_data/coco/val2017/000000067180.jpg 102,39,353,524,0 50,307,480,533,13 -./model_data/coco/val2017/000000276434.jpg 3,199,635,418,60 328,211,376,247,43 351,0,640,361,0 244,284,347,325,49 180,150,279,173,49 128,225,373,406,55 1,84,147,217,55 136,106,311,237,55 180,116,220,130,49 364,1,640,238,0 333,257,354,282,49 -./model_data/coco/val2017/000000247806.jpg 337,230,380,274,74 -./model_data/coco/val2017/000000138954.jpg 287,77,544,556,47 0,0,612,612,60 -./model_data/coco/val2017/000000051309.jpg 10,162,209,273,17 67,46,343,271,17 205,105,351,270,17 310,81,622,272,17 -./model_data/coco/val2017/000000126137.jpg 115,33,179,118,56 167,329,239,426,38 175,35,475,421,0 378,29,410,77,0 431,16,469,66,0 248,35,287,68,0 0,45,50,138,0 269,54,319,105,0 187,7,234,153,0 276,26,301,64,0 213,0,251,73,0 260,0,301,41,0 589,23,640,80,0 580,78,639,207,0 361,16,406,27,56 1,0,544,121,0 -./model_data/coco/val2017/000000438226.jpg 220,4,337,119,48 333,27,466,159,48 0,3,66,241,40 545,39,607,111,42 0,0,640,286,60 219,5,457,156,52 -./model_data/coco/val2017/000000568290.jpg 538,203,578,225,2 563,214,570,229,3 513,207,528,222,3 191,126,476,292,5 559,198,572,225,0 545,174,612,221,7 615,203,629,217,3 630,198,638,216,0 299,192,330,224,0 482,209,491,227,3 -./model_data/coco/val2017/000000076417.jpg 275,143,422,306,16 190,153,640,469,2 439,27,505,159,9 6,2,70,127,9 185,154,640,472,7 -./model_data/coco/val2017/000000357742.jpg 143,437,225,619,0 157,448,197,510,24 -./model_data/coco/val2017/000000169996.jpg 151,343,260,439,1 399,329,481,427,1 212,303,408,427,2 568,294,618,340,2 171,287,245,415,0 2,264,264,425,7 207,203,229,263,9 158,127,180,160,9 199,146,210,154,9 236,224,258,258,9 155,281,169,300,0 264,247,286,277,9 339,286,353,305,0 404,283,479,391,0 300,319,327,344,0 244,261,420,342,7 -./model_data/coco/val2017/000000508917.jpg 182,140,456,288,6 23,175,58,267,0 52,186,66,234,0 68,188,99,256,0 132,203,158,239,0 143,201,171,239,0 153,199,173,237,0 163,197,187,237,0 522,186,554,274,0 278,179,289,187,0 119,201,143,242,0 104,211,134,241,13 538,200,550,230,26 530,51,640,100,74 473,191,478,205,0 81,212,92,228,26 63,213,70,228,26 578,201,601,246,0 -./model_data/coco/val2017/000000210030.jpg 237,132,397,361,42 99,65,331,280,55 1,2,498,393,60 -./model_data/coco/val2017/000000246522.jpg 226,288,260,327,74 -./model_data/coco/val2017/000000134034.jpg 85,259,136,355,17 361,262,422,346,17 -./model_data/coco/val2017/000000110282.jpg 422,86,495,233,9 -./model_data/coco/val2017/000000127987.jpg 24,0,347,235,62 310,40,536,234,62 346,261,640,384,66 -./model_data/coco/val2017/000000105014.jpg 215,429,359,640,42 28,61,339,468,45 263,196,338,288,50 261,128,320,180,50 235,140,310,206,51 0,0,427,640,60 -./model_data/coco/val2017/000000476514.jpg 170,38,373,194,25 300,203,325,335,27 261,124,388,586,0 47,56,298,628,0 257,409,291,453,26 -./model_data/coco/val2017/000000466567.jpg 104,227,358,463,54 -./model_data/coco/val2017/000000230983.jpg 406,210,429,274,2 395,209,427,264,2 148,146,289,321,0 162,312,220,392,36 419,239,429,295,2 386,212,404,251,2 383,214,389,236,2 -./model_data/coco/val2017/000000566758.jpg 538,177,633,227,2 31,106,527,351,5 -./model_data/coco/val2017/000000459809.jpg 93,403,118,428,0 339,410,347,428,0 543,402,559,428,0 373,253,578,378,33 140,420,150,428,0 355,404,368,427,0 49,408,70,428,0 58,337,79,371,8 -./model_data/coco/val2017/000000537153.jpg 443,353,456,378,0 427,355,440,387,0 398,363,466,391,13 -./model_data/coco/val2017/000000155145.jpg 95,186,407,220,8 52,207,208,226,8 330,175,354,198,0 312,174,337,201,0 205,165,260,202,25 0,194,20,225,8 117,194,145,226,0 -./model_data/coco/val2017/000000265518.jpg 56,42,220,195,41 100,405,388,558,42 251,185,462,375,48 378,253,420,283,50 368,216,399,248,50 -./model_data/coco/val2017/000000287959.jpg 1,0,447,446,48 -./model_data/coco/val2017/000000036861.jpg 167,37,241,236,12 93,35,169,234,12 -./model_data/coco/val2017/000000523782.jpg 260,223,327,244,14 207,0,640,185,7 3,30,640,472,7 -./model_data/coco/val2017/000000127270.jpg 259,0,328,88,0 43,0,118,78,0 65,7,231,111,38 135,20,200,50,13 55,27,80,88,56 0,0,69,90,0 276,43,311,67,26 182,0,271,88,0 39,48,286,492,0 -./model_data/coco/val2017/000000305609.jpg 1,159,612,604,60 364,285,499,462,48 300,136,448,191,48 516,110,612,211,42 343,53,364,147,44 16,353,206,498,45 294,2,612,157,0 591,321,611,343,43 337,109,451,170,45 206,264,264,367,39 109,280,140,396,44 236,379,407,553,48 -./model_data/coco/val2017/000000431545.jpg 142,81,237,290,0 279,0,327,91,0 182,145,211,161,35 219,151,237,175,35 -./model_data/coco/val2017/000000186938.jpg 222,47,602,364,14 -./model_data/coco/val2017/000000438774.jpg 12,158,29,209,39 531,206,619,256,56 333,51,458,382,0 161,40,291,373,0 314,114,356,164,0 439,72,486,232,0 206,77,279,333,0 291,172,304,206,40 272,155,288,185,40 414,230,493,281,55 258,95,303,129,68 24,181,128,193,71 262,161,281,203,40 324,162,343,207,40 300,190,319,204,41 304,70,400,162,72 374,251,640,420,60 -./model_data/coco/val2017/000000205105.jpg 329,20,340,30,32 142,127,303,427,0 146,107,201,191,38 279,311,286,317,32 282,307,288,313,32 188,311,195,318,32 319,307,325,314,32 173,308,180,314,32 626,307,636,315,32 607,259,612,264,32 337,272,341,276,32 615,264,619,270,32 442,306,448,312,32 325,273,329,277,32 169,20,637,322,32 -./model_data/coco/val2017/000000413552.jpg 204,186,226,205,79 93,29,425,571,0 0,0,426,640,0 -./model_data/coco/val2017/000000006614.jpg 18,40,482,251,47 122,68,306,250,49 -./model_data/coco/val2017/000000562243.jpg 289,347,382,639,27 86,58,565,629,0 -./model_data/coco/val2017/000000376365.jpg 214,23,500,322,75 346,115,397,184,0 64,200,170,329,41 472,176,491,214,56 296,172,328,184,56 214,0,500,319,58 390,174,426,188,57 -./model_data/coco/val2017/000000183500.jpg 307,201,326,230,0 93,75,540,340,4 -./model_data/coco/val2017/000000335177.jpg 552,295,613,317,2 186,302,308,342,7 338,239,372,274,11 -./model_data/coco/val2017/000000332901.jpg 1,118,341,291,18 347,107,638,301,18 191,37,223,106,0 222,58,238,103,0 479,64,494,91,0 423,68,441,95,0 43,48,68,78,0 372,63,398,97,0 571,139,640,183,18 -./model_data/coco/val2017/000000434459.jpg 32,227,458,457,60 160,42,319,303,0 366,49,607,457,0 548,74,601,212,0 350,92,358,139,0 328,285,397,314,43 235,212,319,226,43 136,371,172,413,55 129,261,223,319,56 214,240,263,288,56 328,203,392,247,56 547,149,582,215,56 576,245,596,275,56 421,168,444,231,56 336,137,347,156,56 407,137,423,191,56 240,285,339,339,55 254,365,316,402,55 336,343,365,383,55 373,233,385,249,55 391,224,415,237,55 75,337,116,363,55 347,247,368,256,55 417,368,560,457,56 292,155,327,219,56 320,131,347,176,56 314,86,340,122,0 295,128,331,215,0 305,115,340,155,0 192,76,219,103,0 191,70,203,100,0 408,131,430,164,56 325,146,358,205,56 329,202,364,221,56 -./model_data/coco/val2017/000000049269.jpg 6,315,275,632,16 90,27,428,502,17 -./model_data/coco/val2017/000000502347.jpg 269,86,296,99,4 8,356,39,370,8 219,360,249,367,8 84,365,94,369,8 271,329,301,352,8 387,319,403,350,8 411,330,437,352,8 307,346,328,353,8 126,360,155,370,8 153,364,191,369,8 -./model_data/coco/val2017/000000423229.jpg 258,111,627,349,6 571,199,589,222,0 449,189,456,219,0 587,191,595,206,0 581,190,588,202,0 599,194,613,220,0 469,214,498,253,0 241,59,258,88,9 422,191,435,208,0 575,192,580,204,0 605,197,611,213,0 485,196,504,233,0 -./model_data/coco/val2017/000000575815.jpg 99,47,515,386,53 -./model_data/coco/val2017/000000535523.jpg 76,105,241,278,56 80,0,208,205,0 0,1,96,335,0 246,295,273,312,54 430,358,451,374,54 472,404,493,420,54 442,403,464,421,54 397,399,414,407,54 119,333,153,352,54 345,387,365,402,54 351,394,371,412,54 335,401,352,412,54 357,414,372,425,54 372,373,392,386,54 376,395,397,410,54 537,193,615,279,45 405,403,424,414,54 283,349,515,427,54 -./model_data/coco/val2017/000000562121.jpg 363,200,482,394,22 318,202,438,386,22 142,226,158,249,22 -./model_data/coco/val2017/000000458255.jpg 282,185,463,327,15 88,181,217,326,0 0,51,637,428,59 181,170,249,271,73 144,247,415,422,59 -./model_data/coco/val2017/000000201418.jpg 314,107,364,173,62 287,228,367,303,28 267,317,425,370,28 197,193,230,223,28 195,217,254,266,28 214,228,299,318,28 164,176,191,192,28 42,135,113,374,0 136,142,166,215,0 171,197,195,215,28 163,175,178,187,28 223,131,227,135,62 248,130,251,136,62 87,139,98,177,0 477,137,493,174,0 469,141,479,172,0 438,142,461,170,0 413,135,427,166,0 386,142,401,164,0 172,139,183,164,0 98,139,112,160,0 209,138,220,159,0 101,267,112,281,26 185,211,214,245,28 162,164,196,182,28 155,143,169,156,0 134,141,144,188,0 209,130,220,136,62 43,136,469,173,0 -./model_data/coco/val2017/000000080413.jpg 224,112,392,263,77 -./model_data/coco/val2017/000000443844.jpg 470,47,572,290,0 347,247,510,371,13 484,268,552,302,36 -./model_data/coco/val2017/000000012748.jpg 1,50,241,555,17 217,188,480,632,0 220,138,480,632,0 -./model_data/coco/val2017/000000148620.jpg 222,61,428,198,62 26,140,197,277,63 452,258,488,287,64 220,228,422,281,66 51,221,169,252,66 -./model_data/coco/val2017/000000237071.jpg 362,150,387,175,32 181,103,467,426,0 103,258,200,339,38 -./model_data/coco/val2017/000000065074.jpg 2,229,424,616,59 322,305,348,320,73 -./model_data/coco/val2017/000000300276.jpg 307,40,468,269,0 138,55,259,268,0 3,73,114,275,0 238,300,364,350,55 432,324,457,346,55 296,258,389,297,55 127,153,142,181,0 285,177,309,202,13 261,264,304,284,45 483,325,505,354,55 377,317,402,342,55 424,284,442,300,55 404,319,428,344,55 442,287,469,305,55 388,279,413,302,55 108,183,141,222,56 106,183,136,205,56 101,179,135,203,56 104,177,133,182,56 426,275,447,291,55 414,275,425,282,55 454,323,483,351,55 285,178,308,202,60 247,213,560,280,60 248,246,290,261,45 212,289,255,323,45 403,284,424,302,55 126,160,147,166,60 111,306,258,354,60 216,260,503,330,55 -./model_data/coco/val2017/000000203389.jpg 202,330,402,480,3 144,319,214,450,3 32,235,166,418,0 177,204,253,316,0 227,257,314,315,24 178,245,220,274,24 408,232,526,300,24 329,149,608,408,0 182,198,366,480,0 0,228,181,472,0 81,255,136,340,0 542,183,640,480,0 37,298,95,379,24 47,343,101,393,0 356,250,582,479,0 -./model_data/coco/val2017/000000181421.jpg 137,232,614,320,8 303,166,373,263,0 390,167,475,262,0 339,152,426,262,0 277,108,469,167,25 -./model_data/coco/val2017/000000553990.jpg 41,77,410,369,17 193,37,332,197,0 -./model_data/coco/val2017/000000181969.jpg 18,23,573,632,16 2,0,573,626,57 -./model_data/coco/val2017/000000118594.jpg 36,18,595,339,19 521,5,640,312,19 -./model_data/coco/val2017/000000206135.jpg 38,304,120,455,19 172,302,233,439,19 116,307,175,440,19 232,297,300,435,19 140,112,162,132,74 -./model_data/coco/val2017/000000471023.jpg 566,62,640,413,6 152,224,181,263,0 216,228,239,259,0 296,215,307,262,0 312,210,332,250,0 337,207,348,237,0 372,202,378,233,0 387,205,393,228,0 272,217,286,260,0 603,229,640,372,56 212,221,224,255,0 251,234,267,275,0 196,222,210,247,0 599,202,640,232,56 600,207,640,270,56 589,201,622,268,56 589,149,640,209,0 258,218,274,244,0 -./model_data/coco/val2017/000000035963.jpg 166,147,340,337,77 275,183,396,321,77 -./model_data/coco/val2017/000000212166.jpg 86,13,532,410,0 -./model_data/coco/val2017/000000214703.jpg 232,320,365,370,0 260,384,383,443,0 225,413,296,441,37 239,354,300,372,37 -./model_data/coco/val2017/000000387916.jpg 219,371,241,375,30 164,347,227,405,31 345,257,438,423,0 262,272,297,374,0 324,258,367,379,0 172,272,206,360,0 114,278,182,408,0 217,308,245,375,0 446,274,494,374,0 496,255,532,378,0 419,276,453,369,0 3,287,27,359,0 317,373,360,378,30 503,372,545,379,30 203,327,218,357,0 67,215,131,423,30 449,369,501,381,30 19,278,41,391,30 0,271,14,366,30 448,258,479,373,0 -./model_data/coco/val2017/000000569565.jpg 132,191,445,317,7 475,233,621,292,7 -./model_data/coco/val2017/000000176901.jpg 166,88,249,181,0 301,224,417,340,0 309,183,472,253,30 243,239,343,285,30 132,159,251,190,30 356,81,428,223,0 -./model_data/coco/val2017/000000533206.jpg 0,1,78,181,39 110,125,422,349,48 332,0,437,157,40 597,2,640,177,40 290,0,373,116,40 398,150,574,291,45 10,241,257,326,42 201,321,255,421,43 -./model_data/coco/val2017/000000189775.jpg 96,145,158,209,38 153,109,288,346,0 311,130,354,172,0 350,124,391,171,0 397,119,436,172,0 531,110,574,157,0 551,61,585,107,0 484,115,531,175,0 85,90,130,258,0 392,108,419,148,0 415,87,451,138,0 446,105,490,150,0 247,113,282,141,56 274,114,318,152,56 336,66,364,98,56 158,66,184,87,56 201,89,214,107,56 132,88,146,108,56 236,44,242,60,56 522,43,552,64,56 520,70,549,122,0 197,65,216,83,56 537,20,559,44,56 164,76,213,159,0 0,0,639,269,0 -./model_data/coco/val2017/000000068628.jpg 238,0,490,221,0 283,194,396,304,36 -./model_data/coco/val2017/000000368961.jpg 231,190,411,414,20 162,199,270,365,20 485,78,640,474,0 318,343,326,361,32 0,197,104,480,0 -./model_data/coco/val2017/000000312213.jpg 310,25,640,473,15 0,3,400,428,63 -./model_data/coco/val2017/000000163682.jpg 13,338,195,633,56 191,271,250,481,27 41,132,389,640,0 -./model_data/coco/val2017/000000545730.jpg 559,281,633,329,22 167,311,241,359,22 394,290,480,340,22 84,345,142,392,22 0,347,69,398,22 0,324,53,349,22 110,312,170,365,22 27,343,94,391,22 236,303,320,352,22 -./model_data/coco/val2017/000000392722.jpg 396,268,433,289,2 374,268,402,286,2 354,267,376,284,2 333,263,355,283,2 313,268,354,294,2 300,264,322,291,2 426,143,640,343,5 456,251,485,345,0 533,251,574,368,0 318,258,340,322,0 580,252,625,382,0 279,264,289,288,0 510,250,525,265,0 323,269,338,288,24 570,270,588,330,26 -./model_data/coco/val2017/000000023272.jpg 186,73,312,145,15 0,0,499,371,2 -./model_data/coco/val2017/000000455301.jpg 119,37,429,478,0 1,380,270,475,73 0,139,204,382,59 139,115,544,317,0 -./model_data/coco/val2017/000000509699.jpg 388,226,478,364,62 336,338,369,349,73 327,338,373,357,73 328,326,381,341,73 327,347,370,362,73 146,156,347,389,56 553,217,565,230,74 diff --git a/PAR 152/Yolo Tensorflow/test.mp4 b/PAR 152/Yolo Tensorflow/test.mp4 deleted file mode 100644 index 4544299c1f9c1a8dca0635c646a817336ecb5598..0000000000000000000000000000000000000000 Binary files a/PAR 152/Yolo Tensorflow/test.mp4 and /dev/null differ diff --git a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/configs.cpython-310.pyc b/PAR 152/Yolo Tensorflow/yolov3/__pycache__/configs.cpython-310.pyc deleted file mode 100644 index 1ccdfb272053e4f2c64fb3218bae3239c61100d4..0000000000000000000000000000000000000000 Binary files a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/configs.cpython-310.pyc and /dev/null differ diff --git a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/configs.cpython-36.pyc b/PAR 152/Yolo Tensorflow/yolov3/__pycache__/configs.cpython-36.pyc deleted file mode 100644 index 5b97746a270f5fc8b3f64840053375bb5956d56b..0000000000000000000000000000000000000000 Binary files a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/configs.cpython-36.pyc and /dev/null differ diff --git a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/dataset.cpython-36.pyc b/PAR 152/Yolo Tensorflow/yolov3/__pycache__/dataset.cpython-36.pyc deleted file mode 100644 index 719cb64aca17a5cbd061597bd72e9a0a3a906239..0000000000000000000000000000000000000000 Binary files a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/dataset.cpython-36.pyc and /dev/null differ diff --git a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/utils.cpython-310.pyc b/PAR 152/Yolo Tensorflow/yolov3/__pycache__/utils.cpython-310.pyc deleted file mode 100644 index e5cdb2f91ff0e4a6f6aed326e241386ada2d9a2a..0000000000000000000000000000000000000000 Binary files a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/utils.cpython-310.pyc and /dev/null differ diff --git a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/utils.cpython-36.pyc b/PAR 152/Yolo Tensorflow/yolov3/__pycache__/utils.cpython-36.pyc deleted file mode 100644 index 9d7049fcbaf1fb409e92cefd0dd71fd48e89aa5a..0000000000000000000000000000000000000000 Binary files a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/utils.cpython-36.pyc and /dev/null differ diff --git a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/yolov3.cpython-310.pyc b/PAR 152/Yolo Tensorflow/yolov3/__pycache__/yolov3.cpython-310.pyc deleted file mode 100644 index a5b3371e6e49c4ca75a87ab43766a96a10733623..0000000000000000000000000000000000000000 Binary files a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/yolov3.cpython-310.pyc and /dev/null differ diff --git a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/yolov3.cpython-36.pyc b/PAR 152/Yolo Tensorflow/yolov3/__pycache__/yolov3.cpython-36.pyc deleted file mode 100644 index 802d7fe714a03c7159d5c3c4e274059e37753a81..0000000000000000000000000000000000000000 Binary files a/PAR 152/Yolo Tensorflow/yolov3/__pycache__/yolov3.cpython-36.pyc and /dev/null differ diff --git a/PAR 152/Yolo Tensorflow/yolov3/configs.py b/PAR 152/Yolo Tensorflow/yolov3/configs.py deleted file mode 100644 index 20d95e9e511f3ec4cc2f8163840f0c8ca5c1bed9..0000000000000000000000000000000000000000 --- a/PAR 152/Yolo Tensorflow/yolov3/configs.py +++ /dev/null @@ -1,53 +0,0 @@ -# YOLO options -YOLO_TYPE = "yolov3" -YOLO_FRAMEWORK = "tf" # "tf" or "trt" -YOLO_V3_WEIGHTS = "model_data/yolov3.weights" -YOLO_V3_TINY_WEIGHTS = "model_data/yolov3-tiny.weights" -YOLO_TRT_QUANTIZE_MODE = "INT8" # INT8, FP16, FP32 -YOLO_CUSTOM_WEIGHTS = False # "checkpoints/yolov3_custom" # used in evaluate_mAP.py and custom model detection, if not using leave False - # YOLO_CUSTOM_WEIGHTS also used with TensorRT and custom model detection -YOLO_COCO_CLASSES = "model_data/coco/coco.names" -YOLO_STRIDES = [8, 16, 32] -YOLO_IOU_LOSS_THRESH = 0.5 -YOLO_ANCHOR_PER_SCALE = 3 -YOLO_MAX_BBOX_PER_SCALE = 100 -YOLO_INPUT_SIZE = 416 -YOLO_ANCHORS = [[[10, 13], [16, 30], [33, 23]], - [[30, 61], [62, 45], [59, 119]], - [[116, 90], [156, 198], [373, 326]]] -# Train options -TRAIN_YOLO_TINY = False -TRAIN_SAVE_BEST_ONLY = True # saves only best model according validation loss (True recommended) -TRAIN_SAVE_CHECKPOINT = False # saves all best validated checkpoints in training process (may require a lot disk space) (False recommended) -TRAIN_CLASSES = "model_data/custom_data.names" -TRAIN_ANNOT_PATH = "model_data/custom_data_train.txt" -TRAIN_LOGDIR = "log" -TRAIN_CHECKPOINTS_FOLDER = "checkpoints" -TRAIN_MODEL_NAME = f"{YOLO_TYPE}_custom" -TRAIN_LOAD_IMAGES_TO_RAM = True # With True faster training, but need more RAM -TRAIN_BATCH_SIZE = 4 -TRAIN_INPUT_SIZE = 416 -TRAIN_DATA_AUG = True -TRAIN_TRANSFER = True -TRAIN_FROM_CHECKPOINT = False # "checkpoints/yolov3_custom" -TRAIN_LR_INIT = 1e-4 -TRAIN_LR_END = 1e-6 -TRAIN_WARMUP_EPOCHS = 2 -TRAIN_EPOCHS = 100 - -# TEST options -TEST_ANNOT_PATH = "model_data/custom_data_test.txt" -TEST_BATCH_SIZE = 4 -TEST_INPUT_SIZE = 416 -TEST_DATA_AUG = False -TEST_DECTECTED_IMAGE_PATH = "" -TEST_SCORE_THRESHOLD = 0.3 -TEST_IOU_THRESHOLD = 0.45 - - -#YOLOv3-TINY WORKAROUND -if TRAIN_YOLO_TINY: - YOLO_STRIDES = [16, 32, 64] - YOLO_ANCHORS = [[[10, 14], [23, 27], [37, 58]], - [[81, 82], [135, 169], [344, 319]], - [[0, 0], [0, 0], [0, 0]]] diff --git a/PAR 152/Yolo Tensorflow/yolov3_detection.ipynb b/PAR 152/Yolo Tensorflow/yolov3_detection.ipynb deleted file mode 100644 index 11ebd1a85bbd1edbe0038c25109d715cef26c6e7..0000000000000000000000000000000000000000 --- a/PAR 152/Yolo Tensorflow/yolov3_detection.ipynb +++ /dev/null @@ -1 +0,0 @@ -{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"yolov3_detection.ipynb","provenance":[],"mount_file_id":"1Gx2gYPm0v8mLGJ0KMzSp5fAheLmKS3E9","authorship_tag":"ABX9TyNuLd7Zxcw0PjcvH4xS0gMw"},"kernelspec":{"name":"python3","display_name":"Python 3"},"accelerator":"GPU"},"cells":[{"cell_type":"code","metadata":{"id":"K0w7AFxLg83A","executionInfo":{"status":"ok","timestamp":1603021651522,"user_tz":-330,"elapsed":2008,"user":{"displayName":"Anushka Dhiman","photoUrl":"","userId":"07819850712982590893"}},"outputId":"c1a3d8ea-469d-47b2-a885-1cf14d50d018","colab":{"base_uri":"https://localhost:8080/","height":119}},"source":["!git clone https://github.com/anushkadhiman/YOLOv3-TensorFlow-2.x.git"],"execution_count":2,"outputs":[{"output_type":"stream","text":["Cloning into 'YOLOv3-TensorFlow-2.x'...\n","remote: Enumerating objects: 47, done.\u001b[K\n","remote: Counting objects: 100% (47/47), done.\u001b[K\n","remote: Compressing objects: 100% (40/40), done.\u001b[K\n","remote: Total 47 (delta 10), reused 22 (delta 1), pack-reused 0\u001b[K\n","Unpacking objects: 100% (47/47), done.\n"],"name":"stdout"}]},{"cell_type":"code","metadata":{"id":"T2WQNiX0hblI","executionInfo":{"status":"ok","timestamp":1603021688828,"user_tz":-330,"elapsed":977,"user":{"displayName":"Anushka Dhiman","photoUrl":"","userId":"07819850712982590893"}},"outputId":"d27a56d6-74dc-45b3-a0db-a5e9b0027682","colab":{"base_uri":"https://localhost:8080/","height":34}},"source":["cd /content/YOLOv3-TensorFlow-2.x"],"execution_count":4,"outputs":[{"output_type":"stream","text":["/content/YOLOv3-TensorFlow-2.x\n"],"name":"stdout"}]},{"cell_type":"code","metadata":{"id":"fBuEYwuKiZdO","executionInfo":{"status":"ok","timestamp":1603022537261,"user_tz":-330,"elapsed":136358,"user":{"displayName":"Anushka Dhiman","photoUrl":"","userId":"07819850712982590893"}},"outputId":"d44812b7-5d87-4c9b-fb1a-06ce4095380b","colab":{"base_uri":"https://localhost:8080/","height":1000}},"source":["!pip install -r ./requirements.txt"],"execution_count":6,"outputs":[{"output_type":"stream","text":["Requirement already satisfied: numpy>=1.18.2 in /usr/local/lib/python3.6/dist-packages (from -r ./requirements.txt (line 1)) (1.18.5)\n","Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.6/dist-packages (from -r ./requirements.txt (line 2)) (1.4.1)\n","Collecting wget>=3.2\n"," Downloading https://files.pythonhosted.org/packages/47/6a/62e288da7bcda82b935ff0c6cfe542970f04e29c756b0e147251b2fb251f/wget-3.2.zip\n","Requirement already satisfied: seaborn>=0.10.0 in /usr/local/lib/python3.6/dist-packages (from -r ./requirements.txt (line 4)) (0.11.0)\n","Collecting tensorflow==2.3.1\n","\u001b[?25l Downloading https://files.pythonhosted.org/packages/ad/ad/769c195c72ac72040635c66cd9ba7b0f4b4fc1ac67e59b99fa6988446c22/tensorflow-2.3.1-cp36-cp36m-manylinux2010_x86_64.whl (320.4MB)\n","\u001b[K |████████████████████████████████| 320.4MB 53kB/s \n","\u001b[?25hCollecting tensorflow-gpu==2.3.1\n","\u001b[?25l Downloading https://files.pythonhosted.org/packages/18/99/ac32fd13d56e40d4c3e6150030132519997c0bb1f06f448d970e81b177e5/tensorflow_gpu-2.3.1-cp36-cp36m-manylinux2010_x86_64.whl (320.4MB)\n","\u001b[K |████████████████████████████████| 320.4MB 52kB/s \n","\u001b[?25hRequirement already satisfied: opencv-python==4.1.2.30 in /usr/local/lib/python3.6/dist-packages (from -r ./requirements.txt (line 7)) (4.1.2.30)\n","Collecting tqdm==4.43.0\n","\u001b[?25l Downloading https://files.pythonhosted.org/packages/47/55/fd9170ba08a1a64a18a7f8a18f088037316f2a41be04d2fe6ece5a653e8f/tqdm-4.43.0-py2.py3-none-any.whl (59kB)\n","\u001b[K |████████████████████████████████| 61kB 8.7MB/s \n","\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from -r ./requirements.txt (line 9)) (1.1.2)\n","Collecting awscli\n","\u001b[?25l Downloading https://files.pythonhosted.org/packages/ef/7c/319d222915f7d44d37119af0ef0650ee1542fee6295b9d04e8011f3b9cc5/awscli-1.18.159-py2.py3-none-any.whl (3.4MB)\n","\u001b[K |████████████████████████████████| 3.4MB 54.7MB/s \n","\u001b[?25hRequirement already satisfied: urllib3 in /usr/local/lib/python3.6/dist-packages (from -r ./requirements.txt (line 11)) (1.24.3)\n","Collecting mss\n","\u001b[?25l Downloading https://files.pythonhosted.org/packages/98/fe/b658d2a62efcad506d680e988cce0ff7d3e09bef288d67be062753ecfd73/mss-6.0.0-py3-none-any.whl (76kB)\n","\u001b[K |████████████████████████████████| 81kB 13.4MB/s \n","\u001b[?25hRequirement already satisfied: matplotlib>=2.2 in /usr/local/lib/python3.6/dist-packages (from seaborn>=0.10.0->-r ./requirements.txt (line 4)) (3.2.2)\n","Requirement already satisfied: tensorboard<3,>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (2.3.0)\n","Requirement already satisfied: tensorflow-estimator<2.4.0,>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (2.3.0)\n","Requirement already satisfied: astunparse==1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (1.6.3)\n","Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (1.15.0)\n","Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (0.35.1)\n","Requirement already satisfied: h5py<2.11.0,>=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (2.10.0)\n","Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (1.32.0)\n","Requirement already satisfied: google-pasta>=0.1.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (0.2.0)\n","Requirement already satisfied: keras-preprocessing<1.2,>=1.1.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (1.1.2)\n","Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (3.3.0)\n","Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (3.12.4)\n","Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (1.12.1)\n","Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (0.3.3)\n","Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (1.1.0)\n","Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.3.1->-r ./requirements.txt (line 5)) (0.10.0)\n","Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->-r ./requirements.txt (line 9)) (2018.9)\n","Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.6/dist-packages (from pandas->-r ./requirements.txt (line 9)) (2.8.1)\n","Collecting rsa<=4.5.0,>=3.1.2; python_version != \"3.4\"\n"," Downloading https://files.pythonhosted.org/packages/26/f8/8127fdda0294f044121d20aac7785feb810e159098447967a6103dedfb96/rsa-4.5-py2.py3-none-any.whl\n","Collecting colorama<0.4.4,>=0.2.5; python_version != \"3.4\"\n"," Downloading https://files.pythonhosted.org/packages/c9/dc/45cdef1b4d119eb96316b3117e6d5708a08029992b2fee2c143c7a0a5cc5/colorama-0.4.3-py2.py3-none-any.whl\n","Requirement already satisfied: PyYAML<5.4,>=3.10; python_version != \"3.4\" in /usr/local/lib/python3.6/dist-packages (from awscli->-r ./requirements.txt (line 10)) (3.13)\n","Collecting docutils<0.16,>=0.10\n","\u001b[?25l Downloading https://files.pythonhosted.org/packages/22/cd/a6aa959dca619918ccb55023b4cb151949c64d4d5d55b3f4ffd7eee0c6e8/docutils-0.15.2-py3-none-any.whl (547kB)\n","\u001b[K |████████████████████████████████| 552kB 23.9MB/s \n","\u001b[?25hCollecting s3transfer<0.4.0,>=0.3.0\n","\u001b[?25l Downloading https://files.pythonhosted.org/packages/69/79/e6afb3d8b0b4e96cefbdc690f741d7dd24547ff1f94240c997a26fa908d3/s3transfer-0.3.3-py2.py3-none-any.whl (69kB)\n","\u001b[K |████████████████████████████████| 71kB 12.2MB/s \n","\u001b[?25hCollecting botocore==1.18.18\n","\u001b[?25l Downloading https://files.pythonhosted.org/packages/2d/72/984ac8f33b5c8df5ff63f323a8724f65b4d0f8956968b942b77d35d3a1ef/botocore-1.18.18-py2.py3-none-any.whl (6.7MB)\n","\u001b[K |████████████████████████████████| 6.7MB 51.7MB/s \n","\u001b[?25hRequirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.2->seaborn>=0.10.0->-r ./requirements.txt (line 4)) (1.2.0)\n","Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.2->seaborn>=0.10.0->-r ./requirements.txt (line 4)) (2.4.7)\n","Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.2->seaborn>=0.10.0->-r ./requirements.txt (line 4)) (0.10.0)\n","Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (1.17.2)\n","Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (50.3.0)\n","Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (3.2.2)\n","Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (0.4.1)\n","Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (1.0.1)\n","Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (1.7.0)\n","Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (2.23.0)\n","Requirement already satisfied: pyasn1>=0.1.3 in /usr/local/lib/python3.6/dist-packages (from rsa<=4.5.0,>=3.1.2; python_version != \"3.4\"->awscli->-r ./requirements.txt (line 10)) (0.4.8)\n","Collecting jmespath<1.0.0,>=0.7.1\n"," Downloading https://files.pythonhosted.org/packages/07/cb/5f001272b6faeb23c1c9e0acc04d48eaaf5c862c17709d20e3469c6e0139/jmespath-0.10.0-py2.py3-none-any.whl\n","Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (4.1.1)\n","Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (0.2.8)\n","Requirement already satisfied: importlib-metadata; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from markdown>=2.6.8->tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (2.0.0)\n","Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (1.3.0)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (2020.6.20)\n","Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (3.0.4)\n","Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (2.10)\n","Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata; python_version < \"3.8\"->markdown>=2.6.8->tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (3.2.0)\n","Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<3,>=2.3.0->tensorflow==2.3.1->-r ./requirements.txt (line 5)) (3.1.0)\n","Building wheels for collected packages: wget\n"," Building wheel for wget (setup.py) ... \u001b[?25l\u001b[?25hdone\n"," Created wheel for wget: filename=wget-3.2-cp36-none-any.whl size=9682 sha256=28df1b4926901098899501da7fb7882c20913bec3bb57d85f7e436ae29efdcf1\n"," Stored in directory: /root/.cache/pip/wheels/40/15/30/7d8f7cea2902b4db79e3fea550d7d7b85ecb27ef992b618f3f\n","Successfully built wget\n","\u001b[31mERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3 which is incompatible.\u001b[0m\n","Installing collected packages: wget, tensorflow, tensorflow-gpu, tqdm, rsa, colorama, docutils, jmespath, botocore, s3transfer, awscli, mss\n"," Found existing installation: tensorflow 2.3.0\n"," Uninstalling tensorflow-2.3.0:\n"," Successfully uninstalled tensorflow-2.3.0\n"," Found existing installation: tqdm 4.41.1\n"," Uninstalling tqdm-4.41.1:\n"," Successfully uninstalled tqdm-4.41.1\n"," Found existing installation: rsa 4.6\n"," Uninstalling rsa-4.6:\n"," Successfully uninstalled rsa-4.6\n"," Found existing installation: docutils 0.16\n"," Uninstalling docutils-0.16:\n"," Successfully uninstalled docutils-0.16\n","Successfully installed awscli-1.18.159 botocore-1.18.18 colorama-0.4.3 docutils-0.15.2 jmespath-0.10.0 mss-6.0.0 rsa-4.5 s3transfer-0.3.3 tensorflow-2.3.1 tensorflow-gpu-2.3.1 tqdm-4.43.0 wget-3.2\n"],"name":"stdout"}]},{"cell_type":"code","metadata":{"id":"arre0QSZjSdz","executionInfo":{"status":"ok","timestamp":1603022133224,"user_tz":-330,"elapsed":177853,"user":{"displayName":"Anushka Dhiman","photoUrl":"","userId":"07819850712982590893"}},"outputId":"b4edd5ce-97d9-4802-e2d0-b5d2de7fc01d","colab":{"base_uri":"https://localhost:8080/","height":204}},"source":["# yolov3\n","!wget -P model_data https://pjreddie.com/media/files/yolov3.weights"],"execution_count":5,"outputs":[{"output_type":"stream","text":["--2020-10-18 11:52:35-- https://pjreddie.com/media/files/yolov3.weights\n","Resolving pjreddie.com (pjreddie.com)... 128.208.4.108\n","Connecting to pjreddie.com (pjreddie.com)|128.208.4.108|:443... connected.\n","HTTP request sent, awaiting response... 200 OK\n","Length: 248007048 (237M) [application/octet-stream]\n","Saving to: ‘model_data/yolov3.weights’\n","\n","yolov3.weights 100%[===================>] 236.52M 5.00MB/s in 2m 56s \n","\n","2020-10-18 11:55:31 (1.34 MB/s) - ‘model_data/yolov3.weights’ saved [248007048/248007048]\n","\n"],"name":"stdout"}]},{"cell_type":"code","metadata":{"id":"OvJwMLfRjeBz","executionInfo":{"status":"ok","timestamp":1603023615887,"user_tz":-330,"elapsed":61479,"user":{"displayName":"Anushka Dhiman","photoUrl":"","userId":"07819850712982590893"}},"outputId":"366723b7-7873-4b67-ef4a-1507fbc5fe02","colab":{"base_uri":"https://localhost:8080/","height":1000}},"source":["! python detection_demo.py"],"execution_count":15,"outputs":[{"output_type":"stream","text":["2020-10-18 12:19:14.879826: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1\n","2020-10-18 12:19:16.132763: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.1\n","2020-10-18 12:19:16.169474: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n","2020-10-18 12:19:16.170030: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: \n","pciBusID: 0000:00:04.0 name: Tesla T4 computeCapability: 7.5\n","coreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.73GiB deviceMemoryBandwidth: 298.08GiB/s\n","2020-10-18 12:19:16.170069: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1\n","2020-10-18 12:19:16.171606: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10\n","2020-10-18 12:19:16.173379: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10\n","2020-10-18 12:19:16.173825: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10\n","2020-10-18 12:19:16.175668: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10\n","2020-10-18 12:19:16.176584: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10\n","2020-10-18 12:19:16.180299: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7\n","2020-10-18 12:19:16.180414: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n","2020-10-18 12:19:16.180989: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n","2020-10-18 12:19:16.181472: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0\n","GPUs [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]\n","2020-10-18 12:19:16.196735: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX2 FMA\n","To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n","2020-10-18 12:19:16.201657: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2200000000 Hz\n","2020-10-18 12:19:16.201841: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x2922d80 initialized for platform Host (this does not guarantee that XLA will be used). Devices:\n","2020-10-18 12:19:16.201869: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version\n","2020-10-18 12:19:16.306688: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n","2020-10-18 12:19:16.307314: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x2922f40 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n","2020-10-18 12:19:16.307342: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Tesla T4, Compute Capability 7.5\n","2020-10-18 12:19:16.307516: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n","2020-10-18 12:19:16.308043: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: \n","pciBusID: 0000:00:04.0 name: Tesla T4 computeCapability: 7.5\n","coreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.73GiB deviceMemoryBandwidth: 298.08GiB/s\n","2020-10-18 12:19:16.308094: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1\n","2020-10-18 12:19:16.308130: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10\n","2020-10-18 12:19:16.308152: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10\n","2020-10-18 12:19:16.308179: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10\n","2020-10-18 12:19:16.308203: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10\n","2020-10-18 12:19:16.308221: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10\n","2020-10-18 12:19:16.308240: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7\n","2020-10-18 12:19:16.308311: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n","2020-10-18 12:19:16.308864: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n","2020-10-18 12:19:16.309341: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0\n","2020-10-18 12:19:16.309400: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1\n","2020-10-18 12:19:17.020096: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix:\n","2020-10-18 12:19:17.020164: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263] 0 \n","2020-10-18 12:19:17.020181: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0: N \n","2020-10-18 12:19:17.020386: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n","2020-10-18 12:19:17.021036: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n","2020-10-18 12:19:17.021574: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 13936 MB memory) -> physical GPU (device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5)\n","OpenCV: FFMPEG: tag 0x44495658/'XVID' is not supported with codec id 12 and format 'mp4 / MP4 (MPEG-4 Part 14)'\n","OpenCV: FFMPEG: fallback to use tag 0x7634706d/'mp4v'\n","2020-10-18 12:19:20.772402: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7\n","2020-10-18 12:19:22.433127: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10\n","Time: 3715.51ms, Detection FPS: 0.3, total FPS: 0.3\n","Time: 1888.72ms, Detection FPS: 0.5, total FPS: 0.5\n","Time: 1278.97ms, Detection FPS: 0.8, total FPS: 0.8\n","Time: 974.44ms, Detection FPS: 1.0, total FPS: 1.0\n","Time: 791.33ms, Detection FPS: 1.3, total FPS: 1.2\n","Time: 669.98ms, Detection FPS: 1.5, total FPS: 1.5\n","Time: 583.90ms, Detection FPS: 1.7, total FPS: 1.7\n","Time: 518.40ms, Detection FPS: 1.9, total FPS: 1.9\n","Time: 467.50ms, Detection FPS: 2.1, total FPS: 2.1\n","Time: 426.62ms, Detection FPS: 2.3, total FPS: 2.3\n","Time: 393.35ms, Detection FPS: 2.5, total FPS: 2.5\n","Time: 365.48ms, Detection FPS: 2.7, total FPS: 2.6\n","Time: 341.84ms, Detection FPS: 2.9, total FPS: 2.8\n","Time: 321.54ms, Detection FPS: 3.1, total FPS: 3.0\n","Time: 304.62ms, Detection FPS: 3.3, total FPS: 3.1\n","Time: 289.27ms, Detection FPS: 3.5, total FPS: 3.3\n","Time: 275.72ms, Detection FPS: 3.6, total FPS: 3.5\n","Time: 263.84ms, Detection FPS: 3.8, total FPS: 3.6\n","Time: 253.43ms, Detection FPS: 3.9, total FPS: 3.8\n","Time: 244.04ms, Detection FPS: 4.1, total FPS: 3.9\n","Time: 61.67ms, Detection FPS: 16.2, total FPS: 13.4\n","Time: 61.89ms, Detection FPS: 16.2, total FPS: 13.4\n","Time: 62.29ms, Detection FPS: 16.1, total FPS: 13.3\n","Time: 62.66ms, Detection FPS: 16.0, total FPS: 13.2\n","Time: 63.71ms, Detection FPS: 15.7, total FPS: 13.0\n","Time: 64.05ms, Detection FPS: 15.6, total FPS: 12.9\n","Time: 64.04ms, Detection FPS: 15.6, total FPS: 12.9\n","Time: 64.38ms, Detection FPS: 15.5, total FPS: 12.9\n","Time: 64.79ms, Detection FPS: 15.4, total FPS: 12.8\n","Time: 65.25ms, Detection FPS: 15.3, total FPS: 12.7\n","Time: 65.62ms, Detection FPS: 15.2, total FPS: 12.7\n","Time: 66.09ms, Detection FPS: 15.1, total FPS: 12.6\n","Time: 66.52ms, Detection FPS: 15.0, total FPS: 12.5\n","Time: 67.28ms, Detection FPS: 14.9, total FPS: 12.4\n","Time: 67.41ms, Detection FPS: 14.8, total FPS: 12.4\n","Time: 68.17ms, Detection FPS: 14.7, total FPS: 12.3\n","Time: 68.64ms, Detection FPS: 14.6, total FPS: 12.2\n","Time: 69.16ms, Detection FPS: 14.5, total FPS: 12.2\n","Time: 69.40ms, Detection FPS: 14.4, total FPS: 12.1\n","Time: 69.63ms, Detection FPS: 14.4, total FPS: 12.1\n","Time: 69.69ms, Detection FPS: 14.3, total FPS: 12.1\n","Time: 69.97ms, Detection FPS: 14.3, total FPS: 12.1\n","Time: 70.37ms, Detection FPS: 14.2, total FPS: 12.0\n","Time: 70.46ms, Detection FPS: 14.2, total FPS: 12.0\n","Time: 70.48ms, Detection FPS: 14.2, total FPS: 12.0\n","Time: 70.57ms, Detection FPS: 14.2, total FPS: 12.0\n","Time: 70.73ms, Detection FPS: 14.1, total FPS: 12.0\n","Time: 71.00ms, Detection FPS: 14.1, total FPS: 12.0\n","Time: 71.21ms, Detection FPS: 14.0, total FPS: 12.0\n","Time: 71.58ms, Detection FPS: 14.0, total FPS: 11.9\n","Time: 71.72ms, Detection FPS: 13.9, total FPS: 11.9\n","Time: 72.09ms, Detection FPS: 13.9, total FPS: 11.8\n","Time: 72.36ms, Detection FPS: 13.8, total FPS: 11.8\n","Time: 72.57ms, Detection FPS: 13.8, total FPS: 11.7\n","Time: 72.71ms, Detection FPS: 13.8, total FPS: 11.7\n","Time: 72.75ms, Detection FPS: 13.7, total FPS: 11.7\n","Time: 73.00ms, Detection FPS: 13.7, total FPS: 11.7\n","Time: 73.05ms, Detection FPS: 13.7, total FPS: 11.7\n","Time: 73.17ms, Detection FPS: 13.7, total FPS: 11.7\n","Time: 73.30ms, Detection FPS: 13.6, total FPS: 11.7\n","Time: 73.70ms, Detection FPS: 13.6, total FPS: 11.6\n","Time: 73.83ms, Detection FPS: 13.5, total FPS: 11.6\n","Time: 73.92ms, Detection FPS: 13.5, total FPS: 11.6\n","Time: 74.03ms, Detection FPS: 13.5, total FPS: 11.6\n","Time: 73.68ms, Detection FPS: 13.6, total FPS: 11.6\n","Time: 73.93ms, Detection FPS: 13.5, total FPS: 11.6\n","Time: 74.02ms, Detection FPS: 13.5, total FPS: 11.5\n","Time: 74.07ms, Detection FPS: 13.5, total FPS: 11.5\n","Time: 74.13ms, Detection FPS: 13.5, total FPS: 11.5\n","Time: 74.54ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.66ms, Detection FPS: 13.4, total FPS: 11.4\n","Time: 74.77ms, Detection FPS: 13.4, total FPS: 11.4\n","Time: 74.90ms, Detection FPS: 13.4, total FPS: 11.4\n","Time: 75.08ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.27ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.53ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.82ms, Detection FPS: 13.2, total FPS: 11.2\n","Time: 76.23ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.71ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 76.84ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 76.67ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 76.88ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 76.70ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 76.75ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 76.77ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 76.69ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 76.84ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 77.32ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.79ms, Detection FPS: 12.9, total FPS: 11.0\n","Time: 77.44ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.56ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.55ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.44ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.00ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 76.90ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 76.56ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.57ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.28ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 75.79ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.71ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.64ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.40ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.49ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.56ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.52ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.85ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.83ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.39ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 74.92ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 74.93ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 74.78ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.63ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.68ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.73ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 75.02ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.26ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.06ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 74.93ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.01ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 74.94ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 74.95ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.01ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.02ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.51ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.78ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.46ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.38ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.48ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.39ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.18ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.28ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.21ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.70ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.72ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.37ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.10ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.23ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.48ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.47ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.48ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.81ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 76.35ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.42ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.16ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 75.94ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.91ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.88ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.74ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.81ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.98ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 76.36ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 81.62ms, Detection FPS: 12.3, total FPS: 10.6\n","Time: 81.25ms, Detection FPS: 12.3, total FPS: 10.6\n","Time: 81.25ms, Detection FPS: 12.3, total FPS: 10.6\n","Time: 81.17ms, Detection FPS: 12.3, total FPS: 10.6\n","Time: 81.21ms, Detection FPS: 12.3, total FPS: 10.6\n","Time: 81.04ms, Detection FPS: 12.3, total FPS: 10.7\n","Time: 80.96ms, Detection FPS: 12.4, total FPS: 10.7\n","Time: 81.12ms, Detection FPS: 12.3, total FPS: 10.7\n","Time: 81.62ms, Detection FPS: 12.3, total FPS: 10.6\n","Time: 81.28ms, Detection FPS: 12.3, total FPS: 10.6\n","Time: 80.84ms, Detection FPS: 12.4, total FPS: 10.7\n","Time: 80.59ms, Detection FPS: 12.4, total FPS: 10.7\n","Time: 80.24ms, Detection FPS: 12.5, total FPS: 10.8\n","Time: 80.18ms, Detection FPS: 12.5, total FPS: 10.8\n","Time: 80.16ms, Detection FPS: 12.5, total FPS: 10.8\n","Time: 80.35ms, Detection FPS: 12.4, total FPS: 10.8\n","Time: 80.35ms, Detection FPS: 12.4, total FPS: 10.8\n","Time: 80.79ms, Detection FPS: 12.4, total FPS: 10.7\n","Time: 80.61ms, Detection FPS: 12.4, total FPS: 10.7\n","Time: 80.14ms, Detection FPS: 12.5, total FPS: 10.8\n","Time: 74.98ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.00ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.12ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.43ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.64ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.88ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 76.10ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 75.98ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.69ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.82ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.90ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 76.09ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.23ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.90ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 77.07ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 77.43ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.59ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.51ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.63ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.90ms, Detection FPS: 12.8, total FPS: 11.0\n","Time: 77.91ms, Detection FPS: 12.8, total FPS: 11.0\n","Time: 77.91ms, Detection FPS: 12.8, total FPS: 11.0\n","Time: 77.76ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.65ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.69ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.35ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 76.91ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 76.97ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 77.10ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 76.95ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 76.61ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.60ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.52ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.20ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 75.97ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.49ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.52ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.19ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.08ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.00ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 74.98ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 74.78ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 75.04ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.07ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 74.78ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.77ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.91ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 74.80ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.67ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.68ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.83ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.94ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 74.92ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 74.85ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 75.07ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.25ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.17ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.41ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.58ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.53ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.93ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 76.26ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.15ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.05ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.19ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.26ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.27ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.21ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.05ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.32ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.25ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 75.97ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 76.08ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 75.79ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.53ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.47ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.40ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.12ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.32ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.17ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 74.64ms, Detection FPS: 13.4, total FPS: 11.6\n","Time: 74.43ms, Detection FPS: 13.4, total FPS: 11.6\n","Time: 74.46ms, Detection FPS: 13.4, total FPS: 11.6\n","Time: 74.64ms, Detection FPS: 13.4, total FPS: 11.6\n","Time: 74.94ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.12ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.23ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.90ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 76.22ms, Detection FPS: 13.1, total FPS: 11.4\n","Time: 76.14ms, Detection FPS: 13.1, total FPS: 11.4\n","Time: 76.40ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.38ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.26ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.26ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.24ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.00ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 76.21ms, Detection FPS: 13.1, total FPS: 11.4\n","Time: 76.28ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 75.99ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.99ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 76.20ms, Detection FPS: 13.1, total FPS: 11.4\n","Time: 76.26ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.04ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.77ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.41ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.46ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.29ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 74.57ms, Detection FPS: 13.4, total FPS: 11.6\n","Time: 74.37ms, Detection FPS: 13.4, total FPS: 11.6\n","Time: 74.42ms, Detection FPS: 13.4, total FPS: 11.6\n","Time: 74.37ms, Detection FPS: 13.4, total FPS: 11.6\n","Time: 74.52ms, Detection FPS: 13.4, total FPS: 11.6\n","Time: 74.68ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.66ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 75.00ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.03ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 74.90ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.81ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.89ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 75.09ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 74.86ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.86ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.94ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.21ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.12ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.08ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.29ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.26ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.16ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.08ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.05ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 74.99ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 75.22ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.25ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.03ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.42ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.75ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.98ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.96ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.79ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.92ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 76.19ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.41ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.32ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 76.50ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.55ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.48ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.77ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 76.76ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 77.00ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 77.24ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.32ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 77.07ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 77.20ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 77.16ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 76.79ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 76.33ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.06ms, Detection FPS: 13.1, total FPS: 11.3\n","Time: 75.89ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 76.35ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.37ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 75.99ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.71ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.63ms, Detection FPS: 13.2, total FPS: 11.4\n","Time: 75.47ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.22ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.06ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.13ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.38ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 74.96ms, Detection FPS: 13.3, total FPS: 11.5\n","Time: 74.59ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.46ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.54ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.37ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.36ms, Detection FPS: 13.4, total FPS: 11.6\n","Time: 74.48ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.45ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.89ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.95ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 74.64ms, Detection FPS: 13.4, total FPS: 11.5\n","Time: 74.87ms, Detection FPS: 13.4, total FPS: 11.4\n","Time: 75.19ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.40ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.44ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.57ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.68ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 76.45ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.35ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.24ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.40ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.50ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.51ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.33ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.48ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.74ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 76.94ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 77.26ms, Detection FPS: 12.9, total FPS: 11.1\n","Time: 76.87ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 77.08ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 77.11ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 76.78ms, Detection FPS: 13.0, total FPS: 11.2\n","Time: 76.46ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.22ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.15ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.28ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 76.13ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 75.65ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.51ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.34ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.33ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.15ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.12ms, Detection FPS: 13.3, total FPS: 11.4\n","Time: 75.26ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.62ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.35ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.09ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 74.97ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.07ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.14ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.12ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.28ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.38ms, Detection FPS: 13.3, total FPS: 11.2\n","Time: 75.83ms, Detection FPS: 13.2, total FPS: 11.2\n","Time: 76.00ms, Detection FPS: 13.2, total FPS: 11.1\n","Time: 76.26ms, Detection FPS: 13.1, total FPS: 11.1\n","Time: 76.57ms, Detection FPS: 13.1, total FPS: 11.1\n","Time: 76.73ms, Detection FPS: 13.0, total FPS: 11.0\n","Time: 76.91ms, Detection FPS: 13.0, total FPS: 11.0\n","Time: 77.06ms, Detection FPS: 13.0, total FPS: 11.0\n","Time: 77.39ms, Detection FPS: 12.9, total FPS: 10.9\n","Time: 77.54ms, Detection FPS: 12.9, total FPS: 10.9\n","Time: 78.04ms, Detection FPS: 12.8, total FPS: 10.9\n","Time: 78.02ms, Detection FPS: 12.8, total FPS: 10.9\n","Time: 77.52ms, Detection FPS: 12.9, total FPS: 10.9\n","Time: 77.51ms, Detection FPS: 12.9, total FPS: 10.9\n","Time: 77.49ms, Detection FPS: 12.9, total FPS: 11.0\n","Time: 77.57ms, Detection FPS: 12.9, total FPS: 11.0\n","Time: 77.50ms, Detection FPS: 12.9, total FPS: 11.0\n","Time: 77.29ms, Detection FPS: 12.9, total FPS: 11.0\n","Time: 77.06ms, Detection FPS: 13.0, total FPS: 11.0\n","Time: 77.19ms, Detection FPS: 13.0, total FPS: 11.0\n","Time: 77.04ms, Detection FPS: 13.0, total FPS: 11.0\n","Time: 76.77ms, Detection FPS: 13.0, total FPS: 11.1\n","Time: 76.56ms, Detection FPS: 13.1, total FPS: 11.1\n","Time: 76.08ms, Detection FPS: 13.1, total FPS: 11.2\n","Time: 75.92ms, Detection FPS: 13.2, total FPS: 11.2\n","Time: 75.59ms, Detection FPS: 13.2, total FPS: 11.2\n","Time: 75.42ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.44ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.56ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.57ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.24ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.09ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.25ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.31ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.47ms, Detection FPS: 13.2, total FPS: 11.3\n","Time: 75.26ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.28ms, Detection FPS: 13.3, total FPS: 11.3\n","Time: 75.49ms, Detection FPS: 13.2, total FPS: 11.2\n","Time: 75.55ms, Detection FPS: 13.2, total FPS: 11.2\n","Time: 75.50ms, Detection FPS: 13.2, total FPS: 11.2\n","Time: 75.57ms, Detection FPS: 13.2, total FPS: 11.2\n","Time: 75.68ms, Detection FPS: 13.2, total FPS: 11.2\n","Time: 75.89ms, Detection FPS: 13.2, total FPS: 11.1\n","Time: 75.98ms, Detection FPS: 13.2, total FPS: 11.1\n","Time: 76.04ms, Detection FPS: 13.2, total FPS: 11.1\n","Time: 76.15ms, Detection FPS: 13.1, total FPS: 11.1\n","Time: 76.59ms, Detection FPS: 13.1, total FPS: 11.1\n","Time: 76.39ms, Detection FPS: 13.1, total FPS: 11.1\n","Time: 75.78ms, Detection FPS: 13.2, total FPS: 11.2\n","Time: 76.07ms, Detection FPS: 13.1, total FPS: 11.1\n","Time: 75.91ms, Detection FPS: 13.2, total FPS: 11.2\n"],"name":"stdout"}]},{"cell_type":"code","metadata":{"id":"I9QzvM6plx7N"},"source":[""],"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/.gitignore b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..a50f3a15ad47dc23e18a7df1b536b127bee32071 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/.gitignore @@ -0,0 +1,3 @@ +*.pyc +model_data +configs.py \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/Collect_training_data.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/Collect_training_data.py new file mode 100644 index 0000000000000000000000000000000000000000..124cf0253c88f85f68948f860b097a92f333f7e7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/Collect_training_data.py @@ -0,0 +1,122 @@ +#================================================================ +# +# File name : Collect_training_data.py +# Author : PyLessons +# Created date: 2020-09-27 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : YOLO detection to XML example script +# +#================================================================ +import os +import subprocess +import time +from datetime import datetime +import cv2 +import mss +import numpy as np +import tensorflow as tf +from yolov3.utils import * +from yolov3.configs import * +from yolov3.yolov4 import read_class_names +from tools.Detection_to_XML import CreateXMLfile +import random + +def draw_enemy(image, bboxes, CLASSES=YOLO_COCO_CLASSES, show_label=True, show_confidence = True, Text_colors=(255,255,0), rectangle_colors='', tracking=False): + NUM_CLASS = read_class_names(CLASSES) + num_classes = len(NUM_CLASS) + image_h, image_w, _ = image.shape + hsv_tuples = [(1.0 * x / num_classes, 1., 1.) for x in range(num_classes)] + colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) + colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors)) + + random.seed(0) + random.shuffle(colors) + random.seed(None) + + detection_list = [] + + for i, bbox in enumerate(bboxes): + coor = np.array(bbox[:4], dtype=np.int32) + score = bbox[4] + class_ind = int(bbox[5]) + bbox_color = rectangle_colors if rectangle_colors != '' else colors[class_ind] + bbox_thick = int(0.6 * (image_h + image_w) / 1000) + if bbox_thick < 1: bbox_thick = 1 + fontScale = 0.75 * bbox_thick + (x1, y1), (x2, y2) = (coor[0], coor[1]), (coor[2], coor[3]) + + # put object rectangle + cv2.rectangle(image, (x1, y1), (x2, y2), bbox_color, bbox_thick*2) + + x, y = int(x1+(x2-x1)/2), int(y1+(y2-y1)/2) + + if show_label: + # get text label + score_str = " {:.2f}".format(score) if show_confidence else "" + + if tracking: score_str = " "+str(score) + + label = "{}".format(NUM_CLASS[class_ind]) + score_str + + # get text size + (text_width, text_height), baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_COMPLEX_SMALL, + fontScale, thickness=bbox_thick) + # put filled text rectangle + cv2.rectangle(image, (x1, y1), (x1 + text_width, y1 - text_height - baseline), bbox_color, thickness=cv2.FILLED) + + # put text above rectangle + cv2.putText(image, label, (x1, y1-4), cv2.FONT_HERSHEY_COMPLEX_SMALL, fontScale, Text_colors, bbox_thick, lineType=cv2.LINE_AA) + + return image + +def detect_enemy(Yolo, original_image, input_size=416, CLASSES=YOLO_COCO_CLASSES, score_threshold=0.3, iou_threshold=0.45, rectangle_colors=''): + image_data = image_preprocess(original_image, [input_size, input_size]) + image_data = image_data[np.newaxis, ...].astype(np.float32) + + if YOLO_FRAMEWORK == "tf": + pred_bbox = Yolo.predict(image_data) + + elif YOLO_FRAMEWORK == "trt": + batched_input = tf.constant(image_data) + result = Yolo(batched_input) + pred_bbox = [] + for key, value in result.items(): + value = value.numpy() + pred_bbox.append(value) + + pred_bbox = [tf.reshape(x, (-1, tf.shape(x)[-1])) for x in pred_bbox] + pred_bbox = tf.concat(pred_bbox, axis=0) + + bboxes = postprocess_boxes(pred_bbox, original_image, input_size, score_threshold) + bboxes = nms(bboxes, iou_threshold, method='nms') + + image = draw_enemy(original_image, bboxes, CLASSES=CLASSES, rectangle_colors=rectangle_colors) + + return image, bboxes + +offset = 30 +times = [] +sct = mss.mss() +yolo = Load_Yolo_model() +while True: + t1 = time.time() + img = np.array(sct.grab({"top": 87-offset, "left": 1920, "width": 1280, "height": 720, "mon": -1})) + img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB) + image, bboxes = detect_enemy(yolo, np.copy(img), input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0)) + if len(bboxes) > 0: + CreateXMLfile("XML_Detections", str(int(time.time())), img, bboxes, read_class_names(TRAIN_CLASSES)) + print("got it") + time.sleep(2) + + t2 = time.time() + times.append(t2-t1) + times = times[-20:] + ms = sum(times)/len(times)*1000 + fps = 1000 / ms + print("FPS", fps) + + #cv2.imshow("Detection image", img) + #if cv2.waitKey(25) & 0xFF == ord("q"): + #cv2.destroyAllWindows() + #break diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/IMAGES/cone.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/IMAGES/cone.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8fd4668bb1622e3e5daf6cd01f5ee3dbce74f6b9 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/IMAGES/cone.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/IMAGES/cone_detect.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/IMAGES/cone_detect.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eb9b0793d8b024737cb172cb3f46ce16e70bce3b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/IMAGES/cone_detect.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/LICENSE b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..2733f4f504e98a76ab4b12bbb88535ad89e01a21 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2022 pythonlessons + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/README.md b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/README.md new file mode 100644 index 0000000000000000000000000000000000000000..9e2e6b4d8764ea3123a5f916d8a0d6c8d5e00bb6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/README.md @@ -0,0 +1,170 @@ +# TensorFlow-2.x-YOLOv3 and YOLOv4 tutorials + +YOLOv3 and YOLOv4 implementation in TensorFlow 2.x, with support for training, transfer training, object tracking mAP and so on... +Code was tested with following specs: +- i7-7700k CPU and Nvidia 1080TI GPU +- OS Ubuntu 18.04 +- CUDA 10.1 +- cuDNN v7.6.5 +- TensorRT-6.0.1.5 +- Tensorflow-GPU 2.3.1 +- Code was tested on Ubuntu and Windows 10 (TensorRT not supported officially) + +## Installation +First, clone or download this GitHub repository. +Install requirements and download pretrained weights: +``` +pip install -r ./requirements.txt + +# yolov3 +wget -P model_data https://pjreddie.com/media/files/yolov3.weights + +# yolov3-tiny +wget -P model_data https://pjreddie.com/media/files/yolov3-tiny.weights + +# yolov4 +wget -P model_data https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights + +# yolov4-tiny +wget -P model_data https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights +``` + +## Quick start +Start with using pretrained weights to test predictions on both image and video: +``` +python detection_demo.py +``` + +<p align="center"> + <img width="100%" src="IMAGES/city_pred.jpg" style="max-width:100%;"></a> +</p> + +## Quick training for custom mnist dataset +mnist folder contains mnist images, create training data: +``` +python mnist/make_data.py +``` +`./yolov3/configs.py` file is already configured for mnist training. + +Now, you can train it and then evaluate your model +``` +python train.py +tensorboard --logdir=log +``` +Track training progress in Tensorboard and go to http://localhost:6006/: +<p align="center"> + <img width="100%" src="IMAGES/tensorboard.png" style="max-width:100%;"></a> +</p> + +Test detection with `detect_mnist.py` script: +``` +python detect_mnist.py +``` +Results: +<p align="center"> + <img width="40%" src="IMAGES/mnist_test.jpg" style="max-width:40%;"></a> +</p> + +## Custom YOLOv3 & YOLOv4 object detection training +Custom training required to prepare dataset first, how to prepare dataset and train custom model you can read in following link:<br> +https://pylessons.com/YOLOv3-TF2-custrom-train/<br> +More about YOLOv4 training you can read [on this link](https://pylessons.com/YOLOv4-TF2-training/). I didn’t have time to implement all YOLOv4 Bag-Of-Freebies to improve the training process… Maybe later I’ll find time to do that, but now I leave it as it is. I recommended to use [Alex's Darknet](https://github.com/AlexeyAB/darknet) to train your custom model, if you need maximum performance, otherwise, you can use my implementation. + +## Google Colab Custom Yolo v3 training +To learn more about Google Colab Free gpu training, visit my [text version tutorial](https://pylessons.com/YOLOv3-TF2-GoogleColab/) + +## Yolo v3 Tiny train and detection +To get detailed instructions how to use Yolov3-Tiny, follow my text version tutorial [YOLOv3-Tiny support](https://pylessons.com/YOLOv3-TF2-Tiny/). Short instructions: +- Get YOLOv3-Tiny weights: ```wget -P model_data https://pjreddie.com/media/files/yolov3-tiny.weights``` +- From `yolov3/configs.py` change `TRAIN_YOLO_TINY` from `False` to `True` +- Run `detection_demo.py` script. + +## Yolo v3 Object tracking +To learn more about Object tracking with Deep SORT, visit [Following link](https://pylessons.com/YOLOv3-TF2-DeepSort/). +Quick test: +- Clone this repository; +- Make sure object detection works for you; +- Run object_tracking.py script +<p align="center"> + <img src="IMAGES/tracking_results.gif"></a> +</p> + +## YOLOv3 vs YOLOv4 comparison on 1080TI: + +YOLO FPS on COCO 2017 Dataset: +| Detection | 320x320 | 416x416 | 512x512 | +|--------------|---------|---------|---------| +| YoloV3 FPS | 24.38 | 20.94 | 18.57 | +| YoloV4 FPS | 22.15 | 18.69 | 16.50 | + +TensorRT FPS on COCO 2017 Dataset: +| Detection | 320x320 | 416x416 | 512x512 | 608x608 | +|-----------------|---------|---------|---------|---------| +| YoloV4 FP32 FPS | 31.23 | 27.30 | 22.63 | 18.17 | +| YoloV4 FP16 FPS | 30.33 | 25.44 | 21.94 | 17.99 | +| YoloV4 INT8 FPS | 85.18 | 62.02 | 47.50 | 37.32 | +| YoloV3 INT8 FPS | 84.65 | 52.72 | 38.22 | 28.75 | + +mAP on COCO 2017 Dataset: +| Detection | 320x320 | 416x416 | 512x512 | +|------------------|---------|---------|---------| +| YoloV3 mAP50 | 49.85 | 55.31 | 57.48 | +| YoloV4 mAP50 | 48.58 | 56.92 | 61.71 | + +TensorRT mAP on COCO 2017 Dataset: +| Detection | 320x320 | 416x416 | 512x512 | 608x608 | +|-------------------|---------|---------|---------|---------| +| YoloV4 FP32 mAP50 | 48.58 | 56.92 | 61.71 | 63.92 | +| YoloV4 FP16 mAP50 | 48.57 | 56.92 | 61.69 | 63.92 | +| YoloV4 INT8 mAP50 | 40.61 | 48.36 | 52.84 | 54.53 | +| YoloV3 INT8 mAP50 | 44.19 | 48.64 | 50.10 | 50.69 | + +## Converting YOLO to TensorRT +I will give two examples, both will be for YOLOv4 model,quantize_mode=INT8 and model input size will be 608. Detailed tutorial is on this [link](https://pylessons.com/YOLOv4-TF2-TensorRT/). +### Default weights from COCO dataset: +- Download weights from links above; +- In `configs.py` script choose your `YOLO_TYPE`; +- In `configs.py` script set `YOLO_INPUT_SIZE = 608`; +- In `configs.py` script set `YOLO_FRAMEWORK = "trt"`; +- From main directory in terminal type `python tools/Convert_to_pb.py`; +- From main directory in terminal type `python tools/Convert_to_TRT.py`; +- In `configs.py` script set `YOLO_CUSTOM_WEIGHTS = f'checkpoints/{YOLO_TYPE}-trt-{YOLO_TRT_QUANTIZE_MODE}–{YOLO_INPUT_SIZE}'`; +- Now you can run `detection_demo.py`, best to test with `detect_video` function. + +### Custom trained YOLO weights: +- Download weights from links above; +- In `configs.py` script choose your `YOLO_TYPE`; +- In `configs.py` script set `YOLO_INPUT_SIZE = 608`; +- Train custom YOLO model with instructions above; +- In `configs.py` script set `YOLO_CUSTOM_WEIGHTS = f"{YOLO_TYPE}_custom"`; +- In `configs.py` script make sure that `TRAIN_CLASSES` is with your custom classes text file; +- From main directory in terminal type `python tools/Convert_to_pb.py`; +- From main directory in terminal type `python tools/Convert_to_TRT.py`; +- In `configs.py` script set `YOLO_FRAMEWORK = "trt"`; +- In `configs.py` script set `YOLO_CUSTOM_WEIGHTS = f'checkpoints/{YOLO_TYPE}-trt-{YOLO_TRT_QUANTIZE_MODE}–{YOLO_INPUT_SIZE}'`; +- Now you can run `detection_custom.py`, to test custom trained and converted TensorRT model. + +What is done: +-------------------- +- [x] Detection with original weights [Tutorial link](https://pylessons.com/YOLOv3-TF2-introduction/) +- [x] Mnist detection training [Tutorial link](https://pylessons.com/YOLOv3-TF2-mnist/) +- [x] Custom detection training [Tutorial link1](https://pylessons.com/YOLOv3-TF2-custrom-train/), [link2](https://pylessons.com/YOLOv3-TF2-custrom-images/) +- [x] Google Colab training [Tutorial link](https://pylessons.com/YOLOv3-TF2-GoogleColab/) +- [x] YOLOv3-Tiny support [Tutorial link](https://pylessons.com/YOLOv3-TF2-Tiny/) +- [X] Object tracking [Tutorial link](https://pylessons.com/YOLOv3-TF2-DeepSort/) +- [X] Mean Average Precision (mAP) [Tutorial link](https://pylessons.com/YOLOv3-TF2-mAP/) +- [X] Yolo v3 on Raspberry Pi [Tutorial link](https://pylessons.com/YOLOv3-TF2-RaspberryPi/) +- [X] YOLOv4 and YOLOv4-tiny detection [Tutorial link](https://pylessons.com/YOLOv4-TF2-introduction/) +- [X] YOLOv4 and YOLOv4-tiny detection training (Not fully) [Tutorial link](https://pylessons.com/YOLOv4-TF2-training/) +- [X] Convert to TensorRT model [Tutorial link](https://pylessons.com/YOLOv4-TF2-TensorRT/) +- [X] Add multiprocessing after detection (drawing bbox) [Tutorial link](https://pylessons.com/YOLOv4-TF2-multiprocessing/) +- [X] Generate YOLO Object Detection training data from its own results [Tutorial link](https://pylessons.com/YOLOv4-TF2-CreateXML/) +- [X] Counter-strike Global Offensive realtime YOLOv4 Object Detection aimbot [Tutorial link](https://pylessons.com/YOLOv4-TF2-CSGO-aimbot/) + +To be continued... (not anytime soon) +-------------------- +- [ ] Converting to TensorFlow Lite +- [ ] YOLO on Android (Leaving it for future, will need to convert everythin to java... not ready for this) +- [ ] Generating anchors +- [ ] YOLACT: Real-time Instance Segmentation +- [ ] Model pruning (Pruning is a technique in deep learning that aids in the development of smaller and more efficient neural networks. It's a model optimization technique that involves eliminating unnecessary values in the weight tensor.) diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/YOLOv3_colab_training.ipynb b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/YOLOv3_colab_training.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..c61593049a347b3ec4b1ed55447f57b7ba83aebc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/YOLOv3_colab_training.ipynb @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"accelerator":"GPU","colab":{"name":"YOLOv3_colab_training.ipynb","provenance":[],"collapsed_sections":[]},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.6.9"}},"cells":[{"cell_type":"markdown","metadata":{"id":"twluDsqOaqRW"},"source":["\n","========================================================<br>\n","<br>\n"," File name : YOLOv3_colab_training.ipynb<br>\n"," Author : PyLessons<br>\n"," Created date: 2020-09-30<br>\n"," Website : https://pylessons.com/YOLOv3-TF2-GoogleColab<br>\n"," GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3<br>\n"," Description : Train custom model on Google colab tutorial<br>\n","<br>\n","================================================================\n","\n","\n","**Open this notebook from google drive**<br>\n","**Go to \"Edit\" -> \"Notebook settings\" and enable GPU.**\n"]},{"cell_type":"code","metadata":{"id":"srBiJiFEaKl1","executionInfo":{"status":"ok","timestamp":1601446581065,"user_tz":-180,"elapsed":1009,"user":{"displayName":"Python Lessons","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GgMQmMhFapKcavl337-vY17yrbowBHBlZQ5qYQv=s64","userId":"12382394757900236362"}},"outputId":"b3a94fa4-c78c-4db9-d400-f14bf19732e0","colab":{"base_uri":"https://localhost:8080/","height":357}},"source":["# Check if NVIDIA GPU is enabled\n","!nvidia-smi"],"execution_count":1,"outputs":[{"output_type":"stream","text":["Wed Sep 30 06:16:20 2020 \n","+-----------------------------------------------------------------------------+\n","| NVIDIA-SMI 455.23.05 Driver Version: 418.67 CUDA Version: 10.1 |\n","|-------------------------------+----------------------+----------------------+\n","| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n","| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n","| | | MIG M. |\n","|===============================+======================+======================|\n","| 0 Tesla P100-PCIE... Off | 00000000:00:04.0 Off | 0 |\n","| N/A 41C P0 28W / 250W | 0MiB / 16280MiB | 0% Default |\n","| | | ERR! |\n","+-------------------------------+----------------------+----------------------+\n"," \n","+-----------------------------------------------------------------------------+\n","| Processes: |\n","| GPU GI CI PID Type Process name GPU Memory |\n","| ID ID Usage |\n","|=============================================================================|\n","| No running processes found |\n","+-----------------------------------------------------------------------------+\n"],"name":"stdout"}]},{"cell_type":"markdown","metadata":{"id":"sj3eAw1OXOnB"},"source":["**Connect and authorize google drive with google colab:**"]},{"cell_type":"code","metadata":{"id":"PjjcQSpya_FR","executionInfo":{"status":"ok","timestamp":1601446598010,"user_tz":-180,"elapsed":17936,"user":{"displayName":"Python Lessons","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GgMQmMhFapKcavl337-vY17yrbowBHBlZQ5qYQv=s64","userId":"12382394757900236362"}},"outputId":"c6e2509b-27ea-45c0-e923-a8fc89e52f3d","colab":{"base_uri":"https://localhost:8080/","height":51}},"source":["from google.colab import drive\n","drive.mount('/content/gdrive')\n","!ls"],"execution_count":2,"outputs":[{"output_type":"stream","text":["Mounted at /content/gdrive\n","gdrive\tsample_data\n"],"name":"stdout"}]},{"cell_type":"markdown","metadata":{"id":"h5GywMhIKCd0"},"source":["**Open our project \"TensorFlow-2.x-YOLOv3\" direcotry in google drive:**"]},{"cell_type":"code","metadata":{"id":"iYM4wmy-cFlK","executionInfo":{"status":"ok","timestamp":1601446598379,"user_tz":-180,"elapsed":3922,"user":{"displayName":"Python Lessons","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GgMQmMhFapKcavl337-vY17yrbowBHBlZQ5qYQv=s64","userId":"12382394757900236362"}},"outputId":"d7879aa3-ca3c-4e1f-f7c5-6685f56f07cf","colab":{"base_uri":"https://localhost:8080/","height":170}},"source":["%cd gdrive/My\\ Drive/TensorFlow-2.x-YOLOv3/\n","!ls"],"execution_count":3,"outputs":[{"output_type":"stream","text":["/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3\n","CAPTCHA_solver_v3.h5 IMAGES\t\t __pycache__\n","checkpoints\t log\t\t requirements.txt\n","custom_dataset\t mAP\t\t save_program_screen.py\n","deep_sort\t mnist\t\t tools\n","detection_custom.py model_data\t train.py\n","detection_demo.py mp_test.py\t yolov3\n","detect_mnist.py multiprc.py\t YOLOv3_colab_training.ipynb\n","evaluate_mAP.py object_tracker.py\n"],"name":"stdout"}]},{"cell_type":"markdown","metadata":{"id":"24u5FY2ZKbrc"},"source":["**Install all required libraries for our project:**"]},{"cell_type":"code","metadata":{"id":"adhpOaKT9lWC"},"source":["!pip install -r ./requirements.txt"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"1DMiQtY7Koy7"},"source":["**Download yolov3.weights if you don't have it:**"]},{"cell_type":"code","metadata":{"id":"UX-LG3R6An5U"},"source":["!wget -P model_data https://pjreddie.com/media/files/yolov3.weights"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"DDmBbAUKLUkB"},"source":["**Test if TensorFlow works with gpu for you, in output should see similar results:**\n","```\n","2.3.0\n","'/device:GPU:0'\n","```"]},{"cell_type":"code","metadata":{"id":"M3cWo7hhc-qO","executionInfo":{"status":"ok","timestamp":1601446634334,"user_tz":-180,"elapsed":7965,"user":{"displayName":"Python Lessons","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GgMQmMhFapKcavl337-vY17yrbowBHBlZQ5qYQv=s64","userId":"12382394757900236362"}},"outputId":"1a7edf1a-a3a9-450e-ace2-34bf1ad2c6a8","colab":{"base_uri":"https://localhost:8080/","height":52}},"source":["import tensorflow as tf\n","print(tf.__version__)\n","tf.test.gpu_device_name()"],"execution_count":5,"outputs":[{"output_type":"stream","text":["2.3.0\n"],"name":"stdout"},{"output_type":"execute_result","data":{"application/vnd.google.colaboratory.intrinsic+json":{"type":"string"},"text/plain":["'/device:GPU:0'"]},"metadata":{"tags":[]},"execution_count":5}]},{"cell_type":"markdown","metadata":{"id":"sX0TGlJhMGd_"},"source":["**Test by loading trained model:**"]},{"cell_type":"code","metadata":{"id":"NUKLydfYCo4r","executionInfo":{"status":"ok","timestamp":1601446652047,"user_tz":-180,"elapsed":16498,"user":{"displayName":"Python Lessons","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GgMQmMhFapKcavl337-vY17yrbowBHBlZQ5qYQv=s64","userId":"12382394757900236362"}}},"source":["import cv2\n","import numpy as np\n","import matplotlib\n","import matplotlib.pyplot as plt\n","%matplotlib inline \n","import tensorflow as tf\n","from yolov3.yolov4 import Create_Yolo\n","from yolov3.utils import load_yolo_weights, detect_image\n","from yolov3.configs import *\n","\n","if YOLO_TYPE == \"yolov4\":\n"," Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS\n","if YOLO_TYPE == \"yolov3\":\n"," Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS\n","\n","yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE)\n","load_yolo_weights(yolo, Darknet_weights) # use Darknet weights"],"execution_count":6,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"qdpGgKUUMJOe"},"source":["**Test by testing detection on original model:**"]},{"cell_type":"code","metadata":{"id":"PcNcPmvLC5fl","executionInfo":{"status":"ok","timestamp":1601446675762,"user_tz":-180,"elapsed":19238,"user":{"displayName":"Python Lessons","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GgMQmMhFapKcavl337-vY17yrbowBHBlZQ5qYQv=s64","userId":"12382394757900236362"}},"outputId":"52d4b8fa-aa52-47a4-a835-5342342e073c","colab":{"base_uri":"https://localhost:8080/","height":884,"output_embedded_package_id":"1yJ7Wt-vDQ42A4wLCjMsACdBP8uCGWsSG"}},"source":["image_path = \"./IMAGES/street.jpg\"\n","\n","image = detect_image(yolo, image_path, '', input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255,0,0))\n","image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n","\n","plt.figure(figsize=(30,15))\n","plt.imshow(image)"],"execution_count":7,"outputs":[{"output_type":"display_data","data":{"text/plain":"Output hidden; open in https://colab.research.google.com to view."},"metadata":{}}]},{"cell_type":"markdown","metadata":{"id":"f81_fxA5Naqm"},"source":["**Run `XML_to_YOLOv3.py` script to convert XML files to YOLOv3 annotations files:**"]},{"cell_type":"code","metadata":{"id":"pXlFGBAp7Ibg","executionInfo":{"status":"ok","timestamp":1596814215969,"user_tz":-180,"elapsed":428158,"user":{"displayName":"Python Lessons","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GgMQmMhFapKcavl337-vY17yrbowBHBlZQ5qYQv=s64","userId":"12382394757900236362"}},"outputId":"340f3942-c2b3-4e2a-bf5f-267e12d696fb","colab":{"base_uri":"https://localhost:8080/","height":1000}},"source":["!python tools/XML_to_YOLOv3.py"],"execution_count":null,"outputs":[{"output_type":"stream","text":["/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/1.jpg 650,576,959,749,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/2.jpg 215,190,409,294,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/3.jpg 845,429,932,488,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/4.jpg 71,113,397,220,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/6.jpg 784,493,944,593,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/7.jpg 275,215,463,262,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/8.jpg 323,508,500,609,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/9.jpg 140,177,238,200,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/10.jpg 154,126,315,174,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=754.jpg 506,459,807,537,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1511.jpg 897,364,970,386,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=409.jpg 608,367,662,382,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=31.jpg 555,314,608,328,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=748.jpg 565,321,636,340,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1316.jpg 1015,388,1085,406,0 569,387,641,407,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=109.jpg 374,537,605,600,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=389.jpg 568,586,849,670,0 94,408,202,438,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1449.jpg 61,443,167,475,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=10.jpg 739,415,951,471,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1171.jpg 906,396,981,417,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=942.jpg 570,328,644,349,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=1.jpg 690,438,942,510,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=282.jpg 489,401,584,433,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=619.jpg 579,367,653,388,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1090.jpg 552,385,653,413,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1177.jpg 963,370,1025,387,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=418.jpg 652,412,735,433,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=148.jpg 631,348,695,368,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1093.jpg 0,370,103,397,0 515,533,742,589,0 1071,424,1165,449,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=20.jpg 778,403,881,429,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=671.jpg 563,385,638,405,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1121.jpg 603,363,686,386,0 1155,429,1270,458,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=428.jpg 615,416,709,441,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=758.jpg 502,476,819,553,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=82.jpg 736,363,816,384,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=311.jpg 592,420,735,463,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=905.jpg 213,450,348,485,0 652,326,717,343,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1596.jpg 562,352,647,377,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1613.jpg 168,401,243,423,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=586.jpg 593,367,670,389,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1060.jpg 525,601,715,646,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1357.jpg 605,357,677,379,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1197.jpg 524,465,727,514,0 1112,408,1211,433,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=598.jpg 625,526,875,601,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=696.jpg 721,379,820,405,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=823.jpg 684,564,868,610,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=752.jpg 525,418,760,475,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=557.jpg 508,410,641,444,0 1028,377,1118,400,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=511.jpg 989,363,1058,381,0 595,338,654,356,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=263.jpg 535,520,754,592,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1257.jpg 512,470,709,515,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=693.jpg 847,320,920,342,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=340.jpg 601,359,654,375,0 390,341,432,356,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=542.jpg 600,393,803,454,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=121.jpg 689,492,820,525,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=614.jpg 685,413,803,447,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=535.jpg 587,409,669,431,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=734.jpg 190,427,277,449,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=635.jpg 657,350,744,373,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=11.jpg 779,376,948,423,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=450.jpg 196,376,282,400,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1471.jpg 595,465,760,511,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=350.jpg 345,321,433,347,0 744,523,958,588,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=685.jpg 613,369,681,388,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=33.jpg 602,398,727,432,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=783.jpg 532,324,597,342,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=822.jpg 661,483,806,519,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1509.jpg 856,357,929,378,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=503.jpg 946,366,1041,392,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=74.jpg 621,300,736,334,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=37.jpg 551,315,740,368,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1054.jpg 556,373,622,389,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=71.jpg 175,437,324,482,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=453.jpg 0,413,113,451,0 618,355,671,370,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=558.jpg 464,491,665,542,0 1160,416,1280,446,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=775.jpg 596,398,767,439,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=32.jpg 586,358,679,380,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=431.jpg 603,562,778,605,0 986,372,1065,393,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1077.jpg 654,330,735,351,0 1132,433,1236,460,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=807.jpg 585,403,676,427,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=532.jpg 666,370,745,393,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1072.jpg 541,567,699,607,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=539.jpg 625,416,714,439,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=189.jpg 947,369,1018,389,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=411.jpg 152,386,232,406,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1088.jpg 70,364,178,393,0 653,385,746,411,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=613.jpg 673,427,807,462,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1390.jpg 551,396,633,419,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=755.jpg 504,476,823,554,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=430.jpg 612,506,752,542,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1084.jpg 625,368,731,396,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=588.jpg 579,407,778,466,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=462.jpg 626,357,703,376,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=889.jpg 354,448,562,500,0 745,383,831,405,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=119.jpg 160,413,253,440,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1205.jpg 476,450,651,493,0 1120,456,1237,487,0 803,345,861,361,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=156.jpg 588,316,628,329,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=403.jpg 593,357,698,388,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=776.jpg 584,376,724,410,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=342.jpg 603,377,677,397,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1127.jpg 872,341,951,363,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=149.jpg 649,337,714,355,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=87.jpg 468,448,703,509,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=749.jpg 563,330,667,357,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=80.jpg 778,366,868,392,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=557.jpg 597,356,747,402,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1139.jpg 582,384,671,406,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=296.jpg 1102,508,1252,547,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1172.jpg 881,389,949,408,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1554.jpg 569,437,663,464,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1078.jpg 684,336,749,356,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1071.jpg 527,603,715,650,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=597.jpg 629,531,871,597,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=830.jpg 694,592,898,646,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1087.jpg 532,337,609,358,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=588.jpg 615,382,703,407,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=908.jpg 631,400,715,423,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=314.jpg 639,483,841,541,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=345.jpg 586,386,657,406,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=907.jpg 614,415,721,443,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=920.jpg 183,382,290,410,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1310.jpg 131,400,210,421,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=325.jpg 556,398,648,434,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=363.jpg 1124,388,1222,413,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1145.jpg 538,384,641,411,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1317.jpg 567,374,626,392,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1157.jpg 493,484,672,527,0 1082,398,1174,423,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=778.jpg 500,356,601,382,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1086.jpg 1003,391,1076,413,0 554,331,621,350,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=780.jpg 212,343,305,367,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1372.jpg 1011,368,1109,396,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=621.jpg 617,350,683,368,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=895.jpg 462,498,727,562,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=472.jpg 606,408,719,438,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=56.jpg 666,254,767,283,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1117.jpg 479,433,607,467,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1057.jpg 538,550,695,592,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=50.jpg 98,374,184,404,0 630,430,717,457,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1413.jpg 561,418,653,446,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1114.jpg 528,484,698,524,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=226.jpg 806,473,998,525,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1126.jpg 663,354,741,377,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1464.jpg 510,425,643,463,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=498.jpg 880,357,933,371,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=723.jpg 362,630,652,719,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=23.jpg 567,268,645,291,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1124.jpg 609,337,675,356,0 1069,404,1147,423,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1462.jpg 552,387,655,413,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=482.jpg 119,377,209,400,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=910.jpg 599,366,674,386,0 916,338,980,355,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=519.jpg 937,366,1014,384,0 375,460,560,507,0 1172,347,1232,363,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=421.jpg 30,404,125,430,0 660,405,732,424,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=61.jpg 115,437,246,473,0 1091,437,1261,483,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=936.jpg 622,333,691,353,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1400.jpg 571,395,634,416,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=53.jpg 674,247,772,279,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=753.jpg 518,444,780,506,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=600.jpg 628,528,875,602,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1300.jpg 519,378,586,399,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1115.jpg 516,451,665,489,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=617.jpg 685,406,794,435,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=274.jpg 611,389,685,410,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=915.jpg 594,376,672,398,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=698.jpg 498,339,562,358,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1118.jpg 509,397,611,422,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=513.jpg 1102,405,1208,431,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=570.jpg 624,339,680,354,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=3.jpg 768,396,869,420,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1202.jpg 459,572,768,648,0 1176,434,1280,463,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1299.jpg 527,388,593,408,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=341.jpg 595,378,666,397,0 446,324,478,333,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=750.jpg 552,371,701,408,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=140.jpg 942,403,1040,434,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=820.jpg 198,386,279,409,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=540.jpg 601,418,684,440,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=324.jpg 1147,384,1248,412,0 628,527,870,594,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=200.jpg 762,391,871,422,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=92.jpg 208,376,329,414,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=781.jpg 115,384,228,413,0 602,355,667,371,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1122.jpg 575,340,643,359,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=582.jpg 1048,394,1149,422,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=83.jpg 564,307,614,323,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=900.jpg 19,345,123,374,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1395.jpg 520,506,651,541,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1398.jpg 545,413,627,437,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=914.jpg 550,387,633,409,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1203.jpg 1026,401,1116,425,0 471,548,745,615,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=893.jpg 356,476,597,536,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=347.jpg 550,333,636,360,0 998,364,1110,399,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=280.jpg 882,513,1049,561,0 1120,324,1174,341,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1391.jpg 514,491,657,529,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1092.jpg 10,367,113,392,0 1070,419,1159,443,0 519,520,734,575,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=267.jpg 610,346,656,361,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=816.jpg 1029,530,1256,605,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=593.jpg 654,395,766,427,0 235,335,296,353,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1260.jpg 1132,423,1252,453,0 537,390,637,417,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=339.jpg 346,354,395,367,0 579,345,625,357,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=294.jpg 333,558,489,604,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=540.jpg 601,303,729,339,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1132.jpg 1054,433,1138,455,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=344.jpg 636,387,708,409,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=423.jpg 226,346,286,361,0 598,403,673,423,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=326.jpg 193,461,279,490,0 625,525,868,591,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1397.jpg 524,454,625,483,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=256.jpg 565,355,677,389,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=13.jpg 739,334,884,373,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=815.jpg 235,382,303,400,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1304.jpg 536,368,603,388,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=42.jpg 203,404,281,433,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=272.jpg 628,384,696,402,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=528.jpg 485,392,590,421,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=466.jpg 624,439,786,483,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1150.jpg 516,422,648,452,0 1147,414,1257,445,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1550.jpg 534,411,621,437,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=52.jpg 98,375,182,403,0 627,430,719,456,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=113.jpg 370,533,599,594,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=112.jpg 368,555,605,614,0 1030,289,1120,318,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=334.jpg 255,478,439,530,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=299.jpg 1061,412,1132,434,0 597,392,657,410,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=315.jpg 625,520,868,587,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1063.jpg 526,603,714,647,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=553.jpg 844,368,922,390,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=890.jpg 351,473,590,530,0 776,390,869,414,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=599.jpg 628,528,871,604,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1083.jpg 608,361,709,386,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=410.jpg 431,389,568,428,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=225.jpg 782,432,922,469,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1353.jpg 617,343,676,360,0 1007,376,1071,396,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=72.jpg 90,468,262,523,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=906.jpg 417,464,560,502,0 703,344,769,362,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=899.jpg 410,355,513,383,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=561.jpg 541,393,643,420,0 1002,384,1083,405,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=724.jpg 398,593,661,673,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=786.jpg 487,338,567,359,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=493.jpg 762,426,843,450,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=580.jpg 1109,387,1213,419,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=108.jpg 407,436,579,483,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1393.jpg 453,665,695,719,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=270.jpg 618,357,673,373,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=650.jpg 675,649,873,706,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1059.jpg 526,600,714,648,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=521.jpg 1116,427,1264,460,0 313,545,560,608,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=833.jpg 691,592,900,646,0 1185,404,1280,433,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=674.jpg 506,376,573,395,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=564.jpg 506,373,595,397,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=898.jpg 600,383,724,417,0 1034,392,1102,412,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=57.jpg 660,257,750,283,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=438.jpg 633,594,814,639,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=894.jpg 464,500,727,564,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=99.jpg 666,606,890,666,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=349.jpg 392,333,483,362,0 805,472,986,527,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=54.jpg 705,255,805,283,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=279.jpg 826,465,951,498,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=909.jpg 598,370,673,390,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=587.jpg 590,371,680,398,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=471.jpg 624,406,745,437,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=71.jpg 427,316,571,352,0 33,229,127,254,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1261.jpg 982,392,1089,420,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=787.jpg 483,353,568,376,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1082.jpg 600,332,682,354,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=789.jpg 526,343,611,365,0 27,338,123,362,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1056.jpg 549,485,673,515,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=120.jpg 311,376,375,395,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=642.jpg 620,427,699,450,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=821.jpg 640,401,728,424,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=446.jpg 52,382,153,409,0 595,351,644,365,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1170.jpg 1023,440,1125,465,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=307.jpg 961,389,1034,410,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=7.jpg 693,439,942,508,0 276,269,336,286,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=558.jpg 612,300,715,331,0 978,318,1060,344,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=186.jpg 932,353,992,370,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=51.jpg 540,368,778,439,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1605.jpg 626,452,734,483,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1089.jpg 575,397,685,425,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=436.jpg 1099,401,1191,421,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=897.jpg 622,429,764,464,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=697.jpg 534,353,613,374,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=276.jpg 692,417,790,443,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=785.jpg 491,331,562,352,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=165.jpg 1071,381,1171,407,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=150.jpg 623,336,685,356,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=56.jpg 597,404,741,451,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=525.jpg 513,389,621,418,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=312.jpg 641,368,752,401,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=152.jpg 550,337,605,356,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1371.jpg 912,348,989,372,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1354.jpg 595,355,664,376,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=429.jpg 617,453,729,483,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=6.jpg 845,373,950,403,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=509.jpg 853,339,925,358,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=488.jpg 928,437,1044,471,0 567,652,774,709,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=835.jpg 539,431,623,453,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=18.jpg 602,313,713,344,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=84.jpg 549,333,635,355,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=791.jpg 525,339,609,362,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=164.jpg 970,345,1045,366,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=125.jpg 736,407,834,436,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1309.jpg 68,424,160,449,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1465.jpg 505,411,635,447,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1181.jpg 540,409,693,449,0 973,368,1047,388,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=6.jpg 692,437,936,510,0 180,292,257,314,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=17.jpg 640,314,767,350,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=892.jpg 352,470,589,531,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=343.jpg 644,388,715,408,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=316.jpg 1169,425,1267,453,0 624,526,867,593,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=362.jpg 937,345,1007,362,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=408.jpg 473,330,577,360,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=888.jpg 335,391,487,428,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1463.jpg 536,407,654,437,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=536.jpg 572,409,662,431,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=452.jpg 7,414,119,445,0 618,372,677,390,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1175.jpg 953,385,1023,404,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=301.jpg 1108,452,1219,480,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=769.jpg 516,459,795,522,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=533.jpg 880,379,966,403,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1143.jpg 540,391,640,416,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=735.jpg 30,427,131,454,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1414.jpg 542,430,628,455,0 1087,437,1183,463,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=451.jpg 119,395,216,423,0 651,380,713,396,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=292.jpg 193,522,340,570,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1073.jpg 601,513,741,549,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=72.jpg 325,353,482,393,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1470.jpg 501,491,691,541,0 1040,345,1108,366,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=59.jpg 628,243,703,266,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1199.jpg 458,572,766,649,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1356.jpg 606,360,682,383,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1551.jpg 555,420,646,447,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1062.jpg 527,601,714,646,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=585.jpg 587,373,761,425,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=658.jpg 166,441,291,478,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1159.jpg 593,400,682,422,0 1190,393,1274,417,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=809.jpg 537,466,641,490,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1399.jpg 553,389,625,411,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1302.jpg 550,384,616,402,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1116.jpg 506,450,644,484,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=624.jpg 1160,440,1278,472,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=520.jpg 340,508,563,562,0 868,344,929,360,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=414.jpg 593,407,668,424,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1091.jpg 532,454,692,496,0 1183,454,1280,485,0 872,359,933,376,0 95,352,185,380,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=36.jpg 574,251,683,282,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1394.jpg 475,601,679,657,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=374.jpg 1047,421,1136,445,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=916.jpg 556,372,624,390,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=935.jpg 626,330,689,349,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=896.jpg 464,497,716,558,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=353.jpg 322,309,407,336,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=585.jpg 603,341,668,362,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=531.jpg 80,402,178,430,0 662,436,810,482,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=445.jpg 606,377,661,393,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=834.jpg 644,483,764,512,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=412.jpg 394,466,583,522,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=728.jpg 1055,432,1217,487,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1297.jpg 990,395,1070,416,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=259.jpg 540,504,748,569,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1075.jpg 638,434,737,461,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1469.jpg 479,539,737,608,0 1127,358,1206,380,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=647.jpg 551,549,697,605,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=827.jpg 657,525,853,585,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=184.jpg 210,447,297,475,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1151.jpg 497,467,666,507,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1553.jpg 566,447,675,477,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=21.jpg 556,276,650,304,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=770.jpg 541,429,752,477,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1259.jpg 517,451,682,491,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=411.jpg 405,438,578,486,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=793.jpg 619,620,787,661,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=243.jpg 544,369,598,385,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=281.jpg 955,603,1176,664,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=603.jpg 632,533,869,597,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=312.jpg 663,406,794,443,0 1089,417,1170,440,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1131.jpg 36,441,267,500,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1209.jpg 578,352,658,374,0 64,400,170,428,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=98.jpg 667,553,852,602,0 38,447,145,486,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1468.jpg 881,504,1100,568,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1125.jpg 599,339,672,360,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1208.jpg 73,404,181,436,0 615,351,689,372,0 891,346,949,363,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=541.jpg 599,349,765,398,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1186.jpg 530,464,731,514,0 1036,386,1120,407,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=487.jpg 1107,391,1261,434,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1207.jpg 595,376,696,404,0 912,358,977,377,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=117.jpg 714,271,782,295,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=782.jpg 614,329,685,347,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1552.jpg 592,440,698,469,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=790.jpg 530,340,613,361,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=259.jpg 990,380,1058,399,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1472.jpg 537,484,722,538,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=258.jpg 550,467,735,525,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=162.jpg 570,399,712,438,0 1008,283,1093,309,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=822.jpg 652,558,883,627,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=464.jpg 608,412,742,448,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=830.jpg 656,497,831,552,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=675.jpg 564,365,632,385,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=328.jpg 673,388,783,427,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=484.jpg 567,403,658,428,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=490.jpg 456,408,528,425,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=530.jpg 544,376,626,399,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1466.jpg 522,398,634,430,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=110.jpg 363,574,615,641,0 1030,292,1120,319,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=161.jpg 576,368,689,403,0 1091,324,1192,355,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1142.jpg 551,388,649,411,0 1080,419,1169,441,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=288.jpg 1061,561,1251,619,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=5.jpg 695,439,936,506,0 23,339,130,368,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=38.jpg 535,372,785,446,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=171.jpg 823,378,907,401,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=618.jpg 575,372,668,396,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=432.jpg 610,643,831,703,0 1033,384,1121,407,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=257.jpg 556,414,701,454,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1510.jpg 869,357,945,379,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1301.jpg 556,380,623,399,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=69.jpg 236,406,348,439,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=154.jpg 552,331,600,346,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=298.jpg 696,409,773,432,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1095.jpg 513,535,744,588,0 1074,425,1163,448,0 0,370,103,398,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=716.jpg 363,629,653,717,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1129.jpg 539,323,621,345,0 937,320,1011,341,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=462.jpg 392,478,581,528,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=405.jpg 706,425,826,464,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=474.jpg 553,344,630,366,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=392.jpg 708,442,855,487,0 255,388,342,415,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=537.jpg 1041,447,1186,499,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=434.jpg 1088,397,1189,421,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=384.jpg 1061,440,1150,463,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=199.jpg 584,351,664,372,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=245.jpg 559,390,627,409,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=444.jpg 597,393,661,411,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=644.jpg 634,494,752,529,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=486.jpg 1021,376,1149,413,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=612.jpg 670,485,845,536,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=156.jpg 483,446,671,497,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=615.jpg 712,413,830,448,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=191.jpg 1038,378,1127,401,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_002.mp4#t=654.jpg 1149,504,1269,549,0 110,504,235,549,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=1119.jpg 586,408,676,431,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/nightride_type3_001.mp4#t=16.jpg 676,328,810,364,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_003.mp4#t=45.jpg 874,364,999,397,0 0,458,102,496,0 650,386,716,407,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/train/dayride_type1_001.mp4#t=86.jpg 477,434,694,487,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1549.jpg 568,413,652,438,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=913.jpg 555,381,636,403,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_002.mp4#t=244.jpg 828,510,1052,574,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=352.jpg 678,617,949,695,0 323,312,410,340,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=604.jpg 630,536,878,606,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=151.jpg 564,332,625,350,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=751.jpg 537,397,735,448,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=413.jpg 153,372,216,388,0 583,392,654,411,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=695.jpg 996,397,1117,429,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1396.jpg 525,468,641,500,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=467.jpg 663,520,887,577,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_002.mp4#t=324.jpg 622,394,716,426,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=784.jpg 500,337,563,355,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=45.jpg 536,373,788,447,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=155.jpg 487,429,666,480,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=515.jpg 486,344,552,362,0 1153,425,1280,456,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=282.jpg 1007,645,1250,712,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1141.jpg 561,382,654,405,0 976,391,1051,411,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=715.jpg 465,451,644,501,0 1120,288,1215,317,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1412.jpg 567,372,644,392,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=116.jpg 385,450,562,502,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=581.jpg 1042,386,1138,416,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_003.mp4#t=296.jpg 1173,410,1267,436,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=404.jpg 562,327,657,356,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_002.mp4#t=792.jpg 614,574,762,611,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=386.jpg 720,385,848,421,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_003.mp4#t=100.jpg 663,638,911,698,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1058.jpg 529,589,711,634,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1392.jpg 483,583,674,631,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=616.jpg 706,410,820,441,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_002.mp4#t=643.jpg 609,465,709,496,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1055.jpg 113,399,192,420,0 562,413,649,436,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=154.jpg 521,367,658,407,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_002.mp4#t=352.jpg 541,580,825,665,0 52,411,164,441,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_002.mp4#t=528.jpg 54,377,154,405,0 663,504,866,564,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1094.jpg 0,369,104,398,0 519,537,741,587,0 1073,424,1164,449,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=589.jpg 553,369,636,392,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1206.jpg 592,406,728,441,0 1153,446,1264,478,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1182.jpg 535,448,719,495,0 1017,381,1101,404,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1458.jpg 198,394,280,419,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=37.jpg 603,410,735,443,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=293.jpg 294,536,444,583,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=465.jpg 616,456,788,499,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=891.jpg 351,472,589,529,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=607.jpg 632,547,891,623,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=543.jpg 599,418,823,484,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=777.jpg 565,364,684,393,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=788.jpg 499,351,582,372,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=153.jpg 562,336,616,352,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=586.jpg 573,433,810,504,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_003.mp4#t=89.jpg 561,348,634,372,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=163.jpg 894,331,951,346,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_002.mp4#t=657.jpg 305,414,397,445,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=596.jpg 621,497,843,561,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_003.mp4#t=46.jpg 643,404,718,426,0 940,392,1116,442,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=485.jpg 600,589,783,639,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=676.jpg 575,368,643,388,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=792.jpg 541,347,623,368,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=64.jpg 628,408,777,448,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1135.jpg 645,417,767,449,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=55.jpg 746,267,865,301,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=684.jpg 573,351,631,370,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=201.jpg 846,418,968,451,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=475.jpg 707,320,785,345,0 1166,360,1263,390,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=824.jpg 696,589,893,637,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1130.jpg 408,385,544,419,0 898,341,975,363,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1074.jpg 601,506,726,540,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1174.jpg 849,390,919,408,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=517.jpg 1069,408,1177,436,0 457,373,551,401,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=772.jpg 571,400,753,443,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1193.jpg 540,425,699,464,0 1034,385,1121,408,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=912.jpg 605,387,689,411,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=816.jpg 304,384,373,403,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=594.jpg 598,389,709,420,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_002.mp4#t=817.jpg 791,580,1064,665,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=808.jpg 566,466,693,498,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=779.jpg 362,336,447,358,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1192.jpg 536,450,718,494,0 1035,386,1120,408,0 158,344,243,366,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=555.jpg 957,352,1036,374,0 558,336,614,352,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=472.jpg 544,326,633,354,0 1113,375,1229,410,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=903.jpg 638,323,700,341,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_002.mp4#t=323.jpg 607,373,689,401,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=773.jpg 587,391,741,429,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=203.jpg 14,504,213,566,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_002.mp4#t=235.jpg 827,511,1050,574,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=52.jpg 588,286,708,322,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=172.jpg 854,378,927,398,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_003.mp4#t=97.jpg 669,487,811,528,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1198.jpg 477,543,754,609,0 1175,429,1280,459,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_003.mp4#t=320.jpg 626,529,866,593,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=582.jpg 607,291,711,321,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_003.mp4#t=33.jpg 73,395,188,438,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=2.jpg 693,442,943,508,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_003.mp4#t=95.jpg 146,483,257,523,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=85.jpg 515,375,664,416,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=522.jpg 901,368,997,392,0 309,542,569,611,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_002.mp4#t=75.jpg 97,608,310,679,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=793.jpg 538,337,619,357,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=491.jpg 144,351,212,369,0 519,389,584,405,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=163.jpg 525,405,679,449,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_003.mp4#t=44.jpg 822,344,909,371,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=147.jpg 621,333,667,348,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/nightride_type3_001.mp4#t=358.jpg 0,410,144,452,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=595.jpg 626,432,772,470,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1456.jpg 50,452,164,483,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=771.jpg 555,408,754,454,0\n","/content/gdrive/My Drive/TensorFlow-2.x-YOLOv3/custom_dataset/test/dayride_type1_001.mp4#t=1085.jpg 583,346,662,367,0\n","Dataset_names: ['license-plate']\n"],"name":"stdout"}]},{"cell_type":"markdown","metadata":{"id":"5CYGwaPfV3H6"},"source":["**Start training custom model:**"]},{"cell_type":"code","metadata":{"id":"rUxAdSEQEdpG"},"source":["from train import *\n","tf.keras.backend.clear_session()\n","main()"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"7YNbZxosPRNw"},"source":["**Create Yolo v3 custom model and load custom trained weights**"]},{"cell_type":"code","metadata":{"id":"W5CuaoSI3KRm","executionInfo":{"status":"ok","timestamp":1601446697304,"user_tz":-180,"elapsed":13637,"user":{"displayName":"Python Lessons","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GgMQmMhFapKcavl337-vY17yrbowBHBlZQ5qYQv=s64","userId":"12382394757900236362"}},"outputId":"684fc60e-fd68-4378-9e3d-7f2ab599e439","colab":{"base_uri":"https://localhost:8080/","height":34}},"source":["yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES)\n","yolo.load_weights(\"./checkpoints/yolov3_custom\") # use keras weights"],"execution_count":8,"outputs":[{"output_type":"execute_result","data":{"text/plain":["<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x7f9d9124e128>"]},"metadata":{"tags":[]},"execution_count":8}]},{"cell_type":"markdown","metadata":{"id":"dwqeCYh_PTuw"},"source":["**Test the detection with `IMAGES/plate_2.jpg` image**"]},{"cell_type":"code","metadata":{"id":"bx94uGmLPJz5","executionInfo":{"status":"ok","timestamp":1601446712563,"user_tz":-180,"elapsed":9187,"user":{"displayName":"Python Lessons","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GgMQmMhFapKcavl337-vY17yrbowBHBlZQ5qYQv=s64","userId":"12382394757900236362"}},"outputId":"64ed8c06-805e-40cd-8df2-792b043d5a74","colab":{"base_uri":"https://localhost:8080/","height":883}},"source":["image_path = \"./IMAGES/plate_1.jpg\"\n","image = detect_image(yolo, image_path, \"\", input_size=YOLO_INPUT_SIZE, show=False, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0))\n","image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n","\n","plt.figure(figsize=(30,15))\n","plt.imshow(image)"],"execution_count":9,"outputs":[{"output_type":"execute_result","data":{"text/plain":["<matplotlib.image.AxesImage at 0x7f9d90e9e6d8>"]},"metadata":{"tags":[]},"execution_count":9},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABJsAAANRCAYAAABEI71BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9yZIsWZIddu5gk08R8V68KfPlUF0TUA1CugQU8gsowh23JD8AK34AvwULrPkFEOGS3GDRggYEBKoJdnVXZWVWvjkifLTpDlyo6rXr/iJfZlVXSlcXXFMi44W7uZvZtXt1OHpUr4ox4ixnOctZznKWs5zlLGc5y1nOcpaznOUsZ/lDiP6HvoCznOUsZznLWc5ylrOc5SxnOctZznKWs/zpyBlsOstZznKWs5zlLGc5y1nOcpaznOUsZznLH0zOYNNZznKWs5zlLGc5y1nOcpaznOUsZznLWf5gcgabznKWs5zlLGc5y1nOcpaznOUsZznLWc7yB5Mz2HSWs5zlLGc5y1nOcpaznOUsZznLWc5ylj+YnMGms5zlLGc5y1nOcpaznOUsZznLWc5ylrP8weR7A5uUUv+jUuq/KKV+qZT637+v85zlLGc5y1nOcpaznOUsZznLWc5ylrOc5Y9HVIzxD/+lShkA/x+A/wHAVwD+EsD/EmP8xR/8ZGc5y1nOcpaznOUsZznLWc5ylrOc5Sxn+aMR+z19738H4Jcxxr8DAKXU/wHgfwJwL9iklIoAoKAABRD+dQyCKf59HzSmsn/Hk78/dGz+mW86x+l7HxJFl48Yp8+dXq9S2evvvfmBL8+PVfSjFL0eA/2tNZ0ghkivnRx/7wV9SL7rZ06vO377Zz44DtkxiufDKSaqlYJSQIgxvXffZdx7qd8wzjF72Arvn/MbrvL9k8cPzJp04/H472+8oNMZ/XuCwyq79/jhcT+6VHV8GWnO/T6X8S2fl2f9rdcU318O6R/xm2/rg2v4viE++cB3GbPfV1R6QHKy+H2d6k9c1Pt/pSU3jajiN3jK4DTpooD3dNR90+K7zLXfR/X+rvJN58jvQw740HXk96hwfOyH7GT++n3v5UfIzFbZJ77pmrTW0EohxIgQPH3qnud5/5nETijEGNPxH7ITSilExCMbfvqdii8g8ho1WkNrhRAifAjHnznxCRQApfnz4XiNa6WgtUKMeO97vhcR08VrId5303+wUynW77+bXvtOfhf//nY35XS+fdOMVtln5J1sziY78/4Z01z7Dtf9/mf1iQ2MH5zj3/l707e9/xruee++Y+5dC99gb+/zg7/TdZ64Rt/2noz1B78TKnvWClprKKUQQkBkx3nSc+/fpVKndv93uCMl5/8dBuLvYSwUO0enQ5Lr//vem/Tj73YpMgdO58m9z+8D3/Mh+Tbf7ujefp8v/y4K5tvkuxhUOd997/0DOnq/65r7fT4vcv8xx7PnW9XdHyAU+j7kQ2vs7/P5o3j1Az7J7+6Lfcv1yP9yv/c0dL3nGABvY4yP7vvO7wts+hjAl9nfXwH477/5cAWtLOq6QmEtQgjwwUMpwBjFOoHuyPtAjhg7jwqRg+KIGMiwaE2fiwEIfnIgFIDCaBg9OZ8RgBxiDTmNPkT4QM5EYEujIg221oBWQAhAiLRYFDuJdUW/+yFgHCNCiHDB05drAArQRkEdnYO+HwqA4eOCOp4hMTvEGiilUZSALYBxCGj3DtoozOYFtFHoW49xiMkQKA1oExER4T07AWGaITHSzcnk0UZDaUX3qoHgAT/GI6OZ7tsoaJt9TwS8Y7DrHmVKTqdCWWpYq+BchHP0LJyjDyl+VlVlUZYGbgwYe48YaUyVAuq6hLUaw+DQ9w5a8RDzdSmlQN8W+XMBkPmkJsdO7tUHYBzpQrWmi/aefkQhyveSE2JoVjIiprSG0hpAhI6R16BmYCUSKAYgKnZ+JJhQQMw0g8wlANAhQEUKYLwPNF957jM+ezT/lCFHymidjXuE0nTPWk2f82ECkeRq6bICnPNQKqIsac6PI+A9oHWEtRExKoyjSmOlFBACBUk0Z2ScdLpGQMFaoLCA9xFdFyg48w4hBFhrYLRBCAGj8/zdfA7I5xWMVQg+wo8yfnTdxtB8DQHwPLdPgyej6SfGbPgZtFSG1kkICiHwWjc8JhDHWSNEzUEhL+hpYk8elZxT68n7uscCkdqisTLGkCPMr/sQMDr3XkDzR2Rf/94yrSccgQH3HSfHnLyDDFaQg0H2hH6gYgpyAz900WuKj3HOYb9vEUIgewKgKGi+ylyJkfR9jAxg4OSxnlh9NkkwGrCGjhv9hxyR9wPd9HrSufzKidORz2sXjsepLDTKQgMBiJ70/uA9fCC9pkD3Y9jkjBSTodAGhgGUEAICaB3kVyhAP42jSc8qIsIHfzR3lTLQ2iCCxpFiPw0FBmli4KUT0vcopXCxWmE2m6HrOuz2OwBAUVgoAKMbEIJH8B7Ry9XxOUOAAtCUJUprMTqHYRyhYkxOj2IF6KHgFWCsRVEW8BFohxGB9biMveg1aw1ijOj6ESEEXKyWmM9naNsO290BiPHoWK0VnA/wLsBYg7oqEELEft/CeZ+uu65rLOYNRuex27fwIUy24b7A6LsoAx2nYDnXiQrQVrOPZaCUgncBfvR0Hj2tOwUFzc8qBqREVgg40bHyxGlh5I5yVVgYreGcw+jGey9V4Tj4kLn5/nHHC4AOIV9NfLLpPfq3UQW0muyRD4F8M/HhBBTg+xU/JfkCkXRxVVQobAEfPEY/Hq01U1horTH6gNHLIIst5pFJv6fX5JqapoIxJo3lMAw4HPYAkECS+8fj/phZYdIZInJGYxT5yBEIgdax95PxkkSfZr3iT3SXMfQdIZD/JmekOU/fPY4ew+Dz05O/BPbL+L6VpvsqSvKphmGEZ18wRsAYDVvQqvUj+UHWWhhj4L2H9/7oOYhfo5WG1jqBwMYYzGdzaK1xOBzQDz2stbC2AAAEntiRv8SwbxhCSOcI/vh+oMhvSPEI23KlyQ9TWsGNDsPw/pyfEqlko5TOn5CsL/Yvc78xHvukAMUFRWHJBoyOdRDFM9ooGKPhfcAw8FhF8rOryqIoDMbBoe/Go/Nr9hvDkU059vu0nvxVAvEiRn5G+bECop9i6CpXEievy/eSb8d2wke2xeTLmlJBG6S1H6HSPJ3CD/pPkRPMJ6D4KBaguMuDDFzmx91rq7/BTAtdAnGKfZQcn/xB/snjLweeO0h6Wb6ePMz8RJmeSrHb9P6kW44v/AjQSReFtFYBWvv5szFGoSgMzScXOO6iixSdoTUdAwDD4Nm/Eh2gUZYTvJB/j9ghrTWstXwtdF3eU6wz2ZLpXxxyTfcTARX1NLZActaTHQIongYyPaETMAuOD6cxO/a4vw1EktirLE0GYsf3xlNA3WnNT+9pTeOl1HSN0dM4aU2+KKA4xlJH1wqESXfLtIiAMTGdS2Kz4+s++uvkdfJ9tVZHMTA/KjhH9yZ63vuIcfR0HcAX748SyfcFNn2rKKX+JYB/yf/GarXCf/PP/hzPnj1DVZWoqgplVWC5JOOgONB++/YN7tZ3OBwO2K7X8N5jGHsgBmhDxr4oLCneEBHYCVU8wWZNg7IoCGwgtyUtkqoqYayhH6MxOodu6MnZdm4ycnp6OGVV4WJ1gaIscHmxRFFYbDY77Pct3t3e4KvffkULyxAYUc9q2MLC+QDnPUbn0PYtAEAXdIzWJgWzSlIrIaIoCnz+2ee4uLiANjQRX7x4ib/+xX8BAFxerfjeKxhtYS0bktHh0O7gvYdzDiEGjMMI5xwvbgelNMqyhLUGF5cXBPwV9B3DMGC33TMQ4QAAy+UKTTNDUViUVYEQAvp+gPceh/0B4zjywke6D2sM5vMFyqLE9fVDLJdzdN2Atu2x3W7x5ZdfwXuPqixhjcXTp0/w4MEDHPYH3N3cYRgG3N2t4X3AcjlHWZbo+w5d18Fag6a0KMsCV1dXKMsSo3dwPuD29havX7+GNhp1Tdd8cXGBqqpRVBWKogSgECLgnMd2u8E4UnDiXUBRVijLCkVZYrlcwhgDYysopWluhICiqtDMGlRVhcePrlFYi2EM8CFivV5jvV6jbVvc3N6SQmGldGj36Ps+zaeqqvDgwRWqqsJHz55hPpvh17/6FX7zmy/RtS222y0QI4rCwBiD5XKJuq5xdXWJ6+trzOdzPH36BNZaNoARm+0Gh8Mew9Cha3coigIPHj5EWRYoiwrW2uS0vbt5h7/5m79B3/fwfkSMAVpbaG3QdS32+x2MMZjNFjCGHBwtDjWvofmcns2DBw9RliXmM/pbnNf9/oCvv36F3W6PX/ziF7i9vUNd16iqCsETyEKGrKD5uFqhaWrM5zPM5w26tsPtzQ3cOOLQHhCCx3w+R11XGMcR/dARaNWPkyOnAKMVdObgaa1RVSXpF6M4NjDQ2sKHgIHX/uBIkT56/ARXDx7i4uISTx8/g9YaEo5Gdg18CImBAZgUIEhgPzkPYgjZsdD6yCmIISR2AzEh1P0RxT9yOWWd3OconYJNYtAnR12R06JUAoa8c/DeseMhx5jkQBOIOmAcerx+/QZ/9Vd/hcN+j3HoEYJH01So65LOywC4OP2FMdOc58eiNIPXIH3tRo/gA4zWsJZA1H5wiEGSI4BSGlpphMg6GAqaA3+5bu/IRgCT803B4eTFCvgZYySAUhgzEShLi6ooKNDoBnjnsT8c4JxDVVW8xizKogQU4CKNTVmUFPjydYQIntsB4zCw3qOx0drAmNyxZLApRhhDQaExFrYku6s1gTV36y3atqMoS2nEGOC8g9Yai+UCVVniJz/5CZ4/f462PWC92cAYjVlTQymFvu/g3Ihf/epX+PWvfkU6gwPQ7foObhxhFK15zWMNRKhI99Hu9nDjCFuWMGWB5eUFnnz0EXyIuNtu4ZxLILC1BpYTYeM4YhgGvHr1Gn3f49NPP8XTp08wjiO6fkBhLVarFelgAbMVgwX8XW3b4hd//dfYbrbw3iPEiKvLC1xfXyPEiLbrKfjltR+/CVFIY45sHWXriT1Q5x3NpdGh73vSh9awv1RQgCwaStN1GqNR1zWsLXD98BrL5QrdocNhd0DX9bh5d4thHLHf7+FGB2M0tNHw3sFxcC1AQlORP9G2LQ6HQ1rb9JvuwTCLTRuDwrIvZw2DxiqB8MF7WjPOIwSPtm3hvYe1FprnWmELHusCRhvU9QzWFkmfHA4H3NzccoKEQAlbWJ7zrFfk+rVCVdM6efbsGa4fXiMED+cdQvDoh55scl3DWAsPhRAVlDbQrJcEjOj7Hm4k32scJLiPsMbi8eNHmM1mKMsCRVHgN7/5An/5l38JrTU+/vgjNHWNpmlQFEXyO2KMiHly5gSsm0Ajti98/7NZg9msIfvGvuBms8U4jmnOyrPJE4Ey17ynz0jgpLVG0zTkN48jQvDYbLa4u7tLgY5SCmVVQRuDYRwxOofZrMHq4gLWUrI5xoiXL19hu93C8Xyt6wqXl5ccB9B9yJwVfSPJhBACtust+mHAOI4EvEBAC4vlcgmtNW5vb7Hf73F5dYmHD68xm8/w+MkTGGPgxhE+BPR9h3EcsNvt8O7du/T9NNY0V/uhRz90sNaiaRo0TYMf/tkPMF/McXd3h/1+j5ubG7x48ZJ9Dk62FgW00ei7Hl3fI8YJNJNxVZwBU/zscrCrqgiYLKwh37dpsFqtJkAVBDDJOjZWw3uPruvJx2Idbi0ds9/vsbnbHF2jMRNjcwISdLKl+TyR5+u9R98PiBEoy4JtA12DIDmiB8Vuy/rTbEMBer8sC/YxyQ/0nuaDcyMO7Q4REbNFSSClIl1nrUVZVYgK8JHAje1+j27oUZQlyqpGBOAZgHIqCBQFRE5QR0oOB8+/k16dlLBmvayT3edn5BwCg32KJ76KnD7ntRh9gB9pLg0tPY/gPCe7SDQ0Cm2PwDjyITXrwinxfb9hyEBwkz0rJWslMsjBiQYvgJKQAQrMZg0A8HsBXUfrYRxH9P3IdiawXqP51DQN6rrGarXC48ePYIxJdrDvB9J7o4MbHc8Dk/RTWssgwMm5kcBLx368JAiNgTYaVVlhMV/AaA1jSRe4kdbRMIx0vcOIzXrLCcU9xnGEMQX7JDQvSfetOTb2eB+AQqZnJhWrtWHQW/N6JHtpjMEwjJku1Smeyf18sdn0bOl8w9CTP+Adoh85npqhLEtcXFzCmALjOMJ7h81mg7u7Ozjn0LYdg+KBcI9AttEYC2vLo3MZJiXIWj6+xjLpDK1V0sF0757vf9IBxpDuePfuhs4/3ofQknxfYNNvAXyS/f2cX0sSY/xXAP4VAFhbxLqq8cknn+AnP/kJ5vMZlssFmqbGw4cPSFHFgBgCvvjNr/Hy5Uts1mu8ef0KoxvRtgSElCU5yGVZoixLIEYENsRKkdOyWCxQVzUFlcokI6WUQt00sIUltL+0GMYBu8OBQJp+QIxxcsx4ws3nMzx+/BhVVeHRo0coyxI3NzdYr9f46uvfwhjK2opjN18tMyDEo+97bPYbRACWA3dTWBhrQSaDg5oQUFc1fv4XP8eTx0+S4vrlL3+JzWaNGCMePnyIqqqwWCwIrCsLVFWJvu9xc3MD7x3GcYAPdN5hoMU/DAOMMajrGmVZ4MmTJ1guFygKcnq6rkuTehgGAMD19WOsVitUVYW6rglkOhDItF6vMfRDBjaBHYQSD64eQJ711dUVDocW+/0eb9++Q9NUGIeBHK6ixA9+8EN8/PHHWN/d4fXLV2jbFi9evIJzjsGiCn3fousOKAuDxYyu5eOPP0LT1OgGcmhevHiBv/u7CsZYzBcrlGWJp0+fYj6fo6pnKKuGFpzWGIYRr169Qd/36Hl8qnqGZrZA0zR4+PAhbFGgKGgOEWDn0cxmWKyWWCwW+MHnn6GqK3Sdw+g8Xr9+jVevXmGz2eCrr74ipcY07ru7Oxw4Yw8As9kMH3/8ERaLBX7605/i6uoK//7f/RWWy/+I3W6Ht2/fAoioqhLWGFxfX2OxWOCjjz7CZ5/RmP7ohz9CWZaURIkRb968ws3tDdrDHpvNDeq6xmeff4KmaTBv5iiKAs47DOOAr776Cv/2365wOBzQdR2BfxyUbjYbvHv3jsCqBw9grUVVVUmBkhM7w+XlJWazGZ4/f05/ry7RNE26x/V6jV/+7d/i3btbhBDw4sULzOdzNE2TgjmtSXEXhcXTp4+xWi5xcbHCxcUKu90WL7/+La0dNhIXFxeYz+cYhg5tt4d3Dl3bsfOEBPoITixg03w+I0OlyBmwtkBRlBidw35/oDU6jIgR+LMf/ggfP3+OJ4+f4Ud/9mMYYxlsUogg4MkHz2wFBUSDnLWkBWpKeFNMtMoJVJkc+uTYGvMnCTTl8l2YTXKcBFnyW3HATE4TgTHD0GMc+vS9WnMyweiku7u2xeGwwxdf/Bpdd8B6vUbX0txZLOZomjoDhiYjXRYFrBEmD1JwrpSC4Qc1dCPGwXHmnECKtu0RY0gOJNkRzSD+AMooFdM8iAHD6ND3pHONkQwdZwjBzF6todiWjWPP40LnKIsSVVnCO4d232EcR2w2G4zjyABtjaIoUdfsWDIwJ8FMPu7OU4a/bdujQJPA9xOwiQOnoihhbQFbWBSsK8j5iXjx8jU2my2UNlDCahxHWGvw4OEDzOYz/Lf/4l/gpz/5KfaHPdabNYzRWC7mUEqh6w4YhgHL5RLOOVijURfkjL15RYkIQR9LW6Aq6bwxeHLWNAV71axB1dS4fvwYP/jhD+FjxJubG74WmwKesizhnEu6kZgnBzx58hiffPJJSsaIL1AURRoT+R4JqsRRfFsUyR5cX1/jo48+QkREPzKzigGEKMjBPetGZAJh3/8Zx5GDhB77/f4o0Kuq6r3rkyBBfIlPPvkM19fX2G12uHu3xn6/x1dffo2u63B7e4u+72EL+owbR3RdyxlWAngpyWex3+/TuJyCGlabdF7y5TTq8thBd86l8RoZtFmv10fgaWFLlCXNX7m3+XyFsqxSoHt3tyYmfIzpvglYs0e6SGl6f7GYo6pK/OhHP8Lz588RGSB23pH/GSOqpoEpSkSlEZWBNga2rI70235PyaVxGNCzfQIiisLis08/xYoTK3Vd4T/9p0t88cUXsNbgxz/+MVarJSWXqiqxbYL38KOA0ccJCwGalKZEn9JToL9arbBareCc4yByxJs35PdMyaNs7XOyVaTruqMkmWWA1RgCUodhwLt379A0dfqcNgaz2QzGWrR9j77vcXFxgUePH6MoCsxms+TH39zcYBhG9D35g48fP+ZEr4VWOoHkYjdF5zjn8Pb1OxwOB7Rty9dIwZRco9yfMQaPHz3Gx8+f4+rqCj/88Y9QFAUn2ijp2LYH3NzcoCiKIwaVnPtw2GN/2HEweIHVaom/+PnPcXV1ia+//ho3Nzf47W/JVwnMrqK5VsFag91uhwOD/wTS0byOMUKZguKWDGxyziU/qygKVGWBsiAQ7fr6mgJvbdL6TkGh1elZe+fQti2C92n8tpsNDJ9DzlcUhplhArJJUKrTd58KAVodAKT1RIG9OfIT5fOU4LZJ58j7Al6Kj1mwnhyGAcPQY7N9hxADVpczlLXleR5RlBScR6UwBg8fPN7d3mG736NqZmjmc0QAY4wIiHDeE6uWE4cxEjM+BHovxAgXxN6+D5aRT6BhFJd7jyN83yewSUUCjoCJfBN9gOtdSsx75+AHSgbIiBplUJpjNqaAS1qRvae/9b3Pgc8EpcAgx5SsjJxsEdAWmGyH3FvJiXUBEEMI2O12aU21bZvsHRENaH6vVivM53NcX1/j888/pzlakQ5s25YSNf2YfJrE2ExgOOlDedbeewZjJ7DJWIqP57MZHj54kOyzUgpDP2AcCXzZ7fZoDy3evH6Dvh9wd0eEBWsL/jEoy4JjWvIZQySQ5tQfPf1b/HrBHAhop+Q/kSB6TuqoZFMFiMp1lvzIGPd9B+8d/Ngj+AFNU+Pi4gJN0+DZs2coyyrp69evX0PryPE7CEQefdIh3ise/zo9Y9FdE7gra9okDCBfr5JYy/WSfF58WwC4u7vDMY3vffm+wKa/BPBjpdQPQCDT/wzgf/2mg2MI6IeOb5aUcAyE7rlxQAyGHe3I6DahqlVdoYwF5nMaTFlyRVGiLAse/JEyvYxMiyMfY2DaJSHXVMDCZVw8QYy1qCpyUBUvGAGb3DhiHAfEELHf7TFwRrMsS2zWG+z3e3TslPvgMTpGOa1hBJVAqGEcMAwjZbFDoElpLCyY5aQ0gvcYxpEmNyOdIQSEGNjp7hh5bhFj4IwCI+5aJTYSJHOuVTKcMh7GmAxBXSWjLBlz0WcTTdDxj2F0O6RAijL5htD+qDKl5NC2B3jvsNvtkgEBSAGOY49hGFFYSzCbpuwIgYcFo74jL4A+3RsZQ82Ubof9fkegWuSMvPdp8ZCT6Ckb6xyKtoctDqiqCrP5HForXF9fc3DF2QZtoTQtsIEzZr0eKUjigSm8jDFzXWLEOA7o+jEpTcdjphTw8PoBCltgsZij48ysBFqivLfbbTJojx5do24qRHBmlzNcosCVApwbcXl5gRACqrKCNWSobm9vsN1uMPQd2naL5WpJDpstUv+Qw+GAu/Ud3rx5g9evXyeHQSmVWEeSFRTlmDsWokCHYUhKqq5r1HWN7WaLsiwRPJXHbrc7fPnlV1iv19hs1jgc9ijLMgFSk3NFc8pwBqFpGlxcXCDGkOZxiLRuxGFzbsAwEkjWdx2zO8iwBFBaggJO4jl7T5mMwHrAOc9lhOTQAUA/upSd3e/3uLm9wZdffUnBuKJ5UTdzYhQmcCFS2U7KYsSj+SLrMRGWTh0GhfRseFr9SQNOp4BS/vops+m9z3Awza8CULBGwdQlPzcOdjQQvMPr1wT8OjfCjT1evXqJoW8R/IjCahSGHHihiCum3KeMr6YfpFLWCIVAmVEGYDxnlryXjK9LTDkJAsXpkdJYobgnQFJsFZdiiysa5CSKp0WMfC0hjQB9k9CsyU5UdQFjFfqhhDYKRVnAlpYYHYVhX4FLSWJAjCpldQncQ1qT00Pg8hNPwSgxmqb3dPTQ0cAHD+0dAAp8YkRi+1pbwNiC7S0lSR49foT5fIaHDwlMDzFgd9jDGo2iLKG1wugGmOCTc3RxscKnz5/DaIXxpz9G8B5922IcBhTMljFGoywKhOBx8+YtukOLwXu44PH42TP8+J/+U/TDgPi3f4v94ZB0t4Ay4hsASE63BN55wChBITl9HrPZ7AhwpyzmgGEYjgIsY0j/T0kafQQ45etBriNfH5N99unv3FHM72MKRu2R0y/Hy/UXRYH5nBi9QzckxmBZFQgxJABXWHzWGNRVBXBZRIxkzw6HPWKMKPn8Rk8l70oBJrG/pNwgoONAIATK2Hrv4J3jkhpiOGljUGiNWQJPC5RFnRxiYwya2YznDflUu/0BI/sOFV9/kBIKXnsyn0OMGMYBUEA/DhhGmhOjGxL4GGMklrRSOPQdDt1A11XVR8/scDhQoq/v0R1aGv9CA6oEQKC4MTqBXgR82PS8hSXr/QQcdIc2gc/0jA0zL45ZnXlwL6CeXP8wDNhsNilAOtW74qfJa/v9/oihRtl8sv273Q5d12G73WK9Xqfg1fD5IoC+69B2XZqrsvZjjJSAOxwSg1P8ITc6aA6yBYDI11MIxHbre1qPEhgRYNGkAG8cR+x2O9zd3eH6+hqz2SyxnawlfUitKkoorbHd77MyLW7zIGsVEf0wUAKyLFHVDeaLBRbLFZrZGuX+AFsUCEyJMJZAyLLi59B3TD3jNQ4kv9MqkwD/0+B0HEcCizjh4Bk4yoEgAQjHEVAaE9jkPdoDgRyy7ntOIoufRUDzLI0x6asR+/3hCNQWvXeqg/LrlYSsiOggKYNU6rhUUfSUXI/EIem8Sa949oUVZvMGzbxCM5vh6uoKARHb/Q7dMODlm9fYbNYouhb7dk/jzAk8H7m9BWUkmcHLvqAXXUqxlrCfcnAkgU7aMNjk4PuB2OogprPRxBqV0v7ITKEgdv8oMYBk2z00AsLRelRKI6rIhFeqzcnX6uRQkgfwIacx/94ECGfJhhwYye1I4DhV1gs+19kAACAASURBVL28lzPzhmFIsYnYEvm77wcMXZ9YlkpsmZp0FgHHdK5BwFfxKYyB0hpuHIEQE9iktYZ3IVXZ9GyXh2HEyLZ26IlJ5l2AtwYxEINK4n6FiSV+6m/K/MslB4vEXubgvABSkrjJwVf5rhxsEmZT3+7Qd/uk58qSKkaqqj465263S4AQ+VTTc6O412Yx/LQmc4bmKZMrB8jyeSDvl2V59J7WJpXbfUi+F7ApxuiUUv8bgP8TVBH7r2OM//mbjg+RED1jNWazhnsieXjnMA4DojXQmpQesXN6QEWucScEXGuFsR8QvE9ZD+dcQlypplBAE2k2Ok2eAIWoyGmXTHWhLJSi7HZhC6orZ7DpsD9gvyNFsdtuU8mBLQpCgLsWh0OL0Y1wzGICgKgUhnKgbLQhJs3QDwiIMC5AG42ybqAUZSi01oghECLLmbrFcpGyerKIiVnUwHuXZfAjgxCclVJg4zVNPlIakR3KGeq6xuXlJS4vLycD7sWYCD2PFqhzAo54Hk9yeIyhUkbLWSi6VqL+UTlXj+12kwAgUVjDMKAfehRWqJWKSyqLBBgI0DSBTeORUy10cGuJwq60SRR7YMqAbbdbHA4HGFtCmwKL5ZKcharGkyfXKIqSkXaFfnDoesoKr9drBvqIFizKwMsYy3qLwDAM6LqJQeYdUYBtQZT5xWKBw/6AnrPkooz3+90Rm8xYgydPH2O2baAUMA4DdtsdH7vHMAzY73e4uXmHi4sLdF1HQVtBc3a325KjHzy8J6dCaY2CQUkA2O/2iYH14sULDMOApmlQliWurq6O6LFd1+H169dUNsLOixi7riPQWEAoUUwC1A3DgPbQ4tWrN9jv97i9vcVut8N8Pj8yeADSM9VGs7Jd4OrqCt47YlIojQAKCHb7PbDbkQMSHQWaHZeLmDnTuKXvTiTnIZA+iVFj9C6BvVpb1HWNhxeXRPl3np15YLfbwTmPru1ZsZcwxuLh9SPM5gss5kvUVY0xsO7C5IwbpQA1sUUUQE7mfTpaCf6kyPlIyMIHFO8/crkvQ/dNr01AOfcZYyN/XPaUByNUOjD4EV999Rt88cUX4t/j7vYWfXdA8CPK0rKetSisMMpi0qVKMZDFmzEcLXhQ2WwKilknKpAOHnpZK3wPJd9DzDJCMUB6GSl2JoP0/TvtdwG5Bv5cpMBj6j3DWczoObNWwnuDvie7WdYlCi7ZsQUFt0gxAZ3Xc1JDovDc4U+ZUkzAvDhbprCULAkeOnpEH6EcgwqGyuYMlz1RoFZjNpvh+voaTdPg6UdPMJ/P8fjJEywvVhiDg91YykZWBDb1g4XzpB+ttbi6usLP/vxnmM9mWC3msMZgfXuLw34Po1QCmi5WS8QY8PrFSxz2e7y9ucXteo2Pnj/Hz/75P8d2v8dmt8PN7S1ub29TOZ0EwzL/uq5LQffkSPfJlgFI+lmyn7mzNwwD+r4/AgBMzmKMXNKidQpGj7Pq5ujv/LslCSO/JSElgXoONqmT7w0M3sv3Udk0sclUVNCRZllVEUBirOa+kGTLy6JAUzcEFnVU6vhmt8V2u8V8PsdisYDWinpkZvfBSw0hBoTA7KVhTGPlPfmEISWo6FkUFYH88+WCHXoqD5/uy2C2mKEoqmSL7HqNwQ0IIaKIpbRSQciCtxgo8QB4mIGAha7v0Q0DnBtTGaf0EltcXEBrja7t8O7mHYwtUDWz5OMASMyAoevRHg6UYG2oxDwmsMmkjHHbtsTSx5SEkUCi61oM/YDtZs0lklR2Iu0PUnkuP2vDzCLJxltrE/Aivk3XdSfB7eQz5SDAZrNJyTCZO7vdDkoprNfrxP47HA4oyxKLxQJFCBirChGY1k7b4o4BKQHYJHNvbQFjLJeJtHT/zA/23qNkpqLMBblOAX/lHuuaSsxCiOleN5sNbpi9OJ/PAQW8e/cO2mhcXj1AVVcoqgpV06Bcr7lnnSDAgLbE5gyRwKa6aVDVNZrZDMvVBVYXl5jd3KLe7WGKMs0rzeBXwaC6Pey5CSyByQGRfBHvoUwBrY+ZzznIIyCt5qSZzHVbFFBAql4I0SPGkOKh+8AmiSWsJZZUVVV4+PABZrMmnXuz2eLFi5cpuJXnkiccpSxXAtzEwMvYyDIXRbfcp7vkNYnlhB1Mpk7mo4cPDiEo1E2JBw+usFwt8fTZMzjv8erNG+wOVDp1d3cLZQw0g32GdWByArgvSYgRLs2lwOCTgGA4ApuAqURNK0PEgNHBDyMUFAoGmQpbMOOMfgRsivKTg00MqkcV4aN+by2SH6IQtYAj5nitprI69qWVJJ2O/SjxnfL1e+w/2WQf8meYWHfi03Lslj8ziQt2ux23cimSLiNmU4++64+vQzPdIxLkn5cJC1CZgB4G2rpDi/7QJUBHM8NbQaU52nWka4eBAK6+7+GMhzEukVr8Se8+IaXkPmbyiuIxMJPPW8+VSjkDUoDVoigS60nsvdx/Dk6NnMjYbgrst4ra1JQlVyxRyxRZe8JSl8S/VhpNUySAaQIFp7WYg0aynsgfnTABmQ95mfJ0rEps4dy+OvcPBDbxBf4bAP/md/kM1etTl9/IAEaIHiGyQ64UZ4tdGmABJYwxsE0NRDBt1HK9tjTdGnjwZZGJs0Lnlt4CUwNGDgA44IuBqZYCbMQJnZayH1lYMQYUtsByscDTJ0+owTM3QFVZBiMqmoxOehCEMAHTGdo5ZQWyji/ZhM+zALKwhVIsk84W1O2WHH1qsupciXEc0PcqKZecuSLnFqaHLBxRSnKelC3JGDreeyjLzxOs8CLSYiLHhGptrbFo2wNiyqpPRid9l9gE7qGQ15UDlMkTlgopxIDSUOCYjBuYFcDZghy5n2p6HcqyRln6lI0zWrNjTdTgHGwqyzIZRMqEBvTMYNgfDthz/yo5V4jHxkWuQ2igUo8ri5r6GDmA59uDBw8wjiOaZgbP1zxwo8uypO8QIC1wbyjpPVBYjaqy8MGnQMcbCkQP7SHRZGVe5fNJ7qHgMhXJXuSZLbkXceiEUZZnuORzm80WXdcn6iYxGsqMsp0xKjjLEaM/Us4E4FHZGpFPOJPAPagCNxqU569SxpwdP6VSY3cdNIICpP+M1oZYHQweiBF1PlAtv6f16AMp6m4Y0TRzPLp+BOpJw8wNNdFVs+g8rWfRRTLv6R/cqTJLUn1Yjf/jljwrmv/9TcfmAT+9Jk4T/xsxG9OstwnblMN+j/XdHTluANr2kAB6zX29tCZGiexldPT9AgTyeRE5Oyr/Y7sivZROwYDJ2HNz60hMW6UU9XtJoKc03dfpPrORYJ1MFyK9NeR7xDmeAlS2cZHq8UOYehYonX/3xAKOkRwSLz3IIo1GURawcgzfh/eTMyJ6QBvN5eMTU0WcSdmoAGoqETOFxXyxQFVTQDo6h0PXYbc/oO06YqLEgLajRAMUJX9WFxd4+uwZrh48SH13rCXdP/VvDPBuRJDNL2AwnxMg1Q0j+nHEfLHA8uICUWsqXQW4/8OQPZMpABARx+y+DKcEfDmLSWudbLMwCaQc3VpLgB/HC1P2ewKb3p//x6yC+8AmcWbvA6tyx3nSvxOjhRI4G2htUJc1ZnUDKcUStkRZlllQSfPJWirFkDkl/gWVE1nUVXU0poF1dp75z4MOgJvz5yCb1ih53BaLBbNvSYdLUHqke2WWh5h6UeTzNne0qRFq4Hng4Nw09hLgIAVGEUM/oLNUBqFYf5xmjdP5mMEkLCbLfoZkmiV5Jz1BhJEtiT0BfrTWsMYm3ypGD2J5By4JmfRBPp7iW4kNTwkxttn5nJLP5kFHDjzJsQKwylwT/0VKzKy1qJsG2hgEUBZ+ZABErof0Ykhroyyr5FsFHxKjW4LgfH4kEJf9k6QHLDUBz9l+MlcFBCaG9CEBWcLGkHucniE9v6mXkIX0pcuBm5xJaPRUIiafqWsal2Y2o/5V7F9JaW6uV3IWWg7+AeyXaTUln6FQcCArzEvZJCP1bM1ADhlLywBMWZbcTqNMz05ExlL0wuTX4L21k193WnNZvHIKohytzSwYljhvqmAIzBoOTFIYEOHRth3atoXh0kTPAPvQUw9G0kcGtiyhDJd9Z7YHWiMqnWKvCNoQhxKT4sPy45drVkgbJyhFbRK0NdCRGE2WW7dYY6d+dEojRsWNwuMR60SADklQvT8+x2N9KkIoSJiMismGi0+iss2xvuk7ZH7JfMtjwVN2T25PZO1LLLjdblMMoZRKCYORdY2AHABoBwIgPVsAiZWZgx50TKCqpTAiuEA2QNg2mpg2SS+EmIBKAadlTGhjqsCxt3/vvuSecqbTqS6UeSnHyTqfGJVV6rOX95mTz8h9vc+akjUgJfAT5pHbE7lWackgzKbpHnQaj3yu5eclG3XMYM0TT6frNn8W+bV+m/yDNQg/Fa0VjNW8M4LHOIwEIPCkjLBsCLiW040Yhg4AZTkLa6mu/oRJsd1ajKODUnsypNpkTYKnQEVzXTs1pCTHOEaizEZQ41VZmuSIcM8lZqAApNyl3Ggxn2N1scTnP/iMlRk1D353e4MDl9eN3qXMyuhGrHfbdJ7gKavs2TAgTjvjyCTJaygB6vdT11VydmUxUAPBGnkDM3Fa8h4OYggFoRUKpGQuxDEmR6BAjDFlryRDJpMaAGb1DLa2mZLw6A59UmY3t++SMjowPVcrBR89nB/RdQfsdlv0QwcpY7GFgfdT8/MYFSIIoSZnnoIfaw0qZuPID/XIGhGCODIloAwiNPquw9e7HcqygnMeVd2kWtmirLGYNahrl0qkpCF06nVhDO30NAy4W2+htcar19TosrAESBlWeqLIxWHQWqcSxmEYUPDOK1dXV9Rsu7DoSkLGHz16NAGRPmC326LrKFsqfUS+/vprDMOAm7dvuXk6rYeHD6/wyfOP4BgRjzGkLNTbd2/x9ddf4/b2NoGJNJ8IXNvv91gsFpjNZhjHEW1Lvbak6Z4oIrmG3EhJDwcgN6CUgai56enFxQUWizmkYX0IBGLGSNRS6hMzQilijbRti0PLvVPGAdZoWK1RVTUuLldw44g7BcQQkrKXmGMKCpmmrSgjpGKEtUSHN4Ya6wOeadWAcwOcF2ebdttZb7YIIaCZL1GWFX7yk5/in/yTiKaZ4fLi6oiGipRlymHjEyFLSDrD6PuP+a9UcuNPQZTocQ1rM+AJgOKtZUKgYAaBaPd+7PH2zSv85otfsV4KKAqLy4sVoBT6ruWyDg2t6TlpAIlplv0W0DvGSAFyFLsRiElT2BT4ilEXZqgEInkgCADGuAms0RRklmVxNA55VlX+DYAB0anHxhSQTkGAguIya4WypN6EFLRzRjWKI8UAcWLl0k0bYzFfzmGNRQhyzinTLZ+vqoo32pC+H/RdFIDTs4n8r6gUolGomhqPnz2BLQoqN9rtUL57h8GxvuGyIykpXy1nmM1n+Pzzz7FarVAWNoGG1houay/gXYnDYY/dbgvvHS4vViiKAg8fPiS7aog59PjJY3z06aeo3r1LDqowMJbL5VFCJnfUi6Ig+8IBWM7yEP2YAG92zvf7Pay1mM1mePjwIZbLZeqhNYxDmhfjODKpTKWdlPIAGJgYoOKM5uDSqXMq9lZKmwAcZWPzuSgMJwLcHF68eIknj57g+cfPsZgv8OzZR9BKY7lcYrfb4eXLl3j9+jWXbAGLxQw/+9nP0DQNfvnLX+LNmzd4d/MWb968RlVZXF5dwpqpR1LftVRGEPAeSCZiiwKGnXlh6NRz6jv49OlTKqEJ1NyX/L/tUaAgImVoolfyflUSGAAxCyama6H3CtR1hbbV8G+pIe1mu6E+jxzY0BxhvlScAGOtAWs1UBMrtmka1FWdMt4hhFQGNpuJv0aM/mEseG7QDq6IBXzTUJ+svqVdnIMCPDMsg0/6ku7bJ5/OWou+77Hb7RLolNvyXK+cBpzCUJHxk9YEMgcB8l+ur6+JJfzwIQxnwyOAu/Ua290Ot7e3+PrFi+Q/xhhTn7DZbIb5fJHmgfMO3aGD9yGNlbAJJzAPxIbzISWxxMfIeyKNjn7KqsL19TUBVMxuHoaedBXPs2MQNqa1Q6WxM9R1k3qEKUWVBrvdLgF31AeWgFVpAH95eZlKPmezWfLDD4cD1usNQnAoiiL523kPFQGxnXMIfsQ4UJnNfr9HVXIPTVAfFQr4DWwxJf1k8xGxDwmY5+CY+qGWWK1WqOsqPdOqGlJvmhy8zteQBNgEqNXpuvN1LOssB6ZO16joPlkLebnWMDIwGhy22w5qD0BFhOiw2++pDBrA7rDnvqtjin3myyWgFaJm+8PFCFFNO0vHNPc5sJZ1IBMMiYow/YN/dFTQpYKGhuWST2t4kwNORgUf4OIIz/EDAAQd0s6hIca0k2IOeuQNnenqjtdoSjLxFebJS6XeB/lyfZiDTALQS082SfifJpYBpGcnf4v/L/GIMIKPkgohIHoP6qPGjb0Ts2cCik1BIPF8XicQPkYkn38cRxz2U2xKPk2VbFxREDGi4mSEsCEPh5YrTqi1AZXmcS/PjMEu1yv2VvSoJJ9EH8ox8iPx5nK5RNM0eMB9pcQmSFx9mtih38dkBKnkoefRpbV06kPKucuiSOA3+ciU8M7Pk4Nlk62f/EmZk/l6FF2Y24Ppef4jA5uY6wPJHqiT7HE+oJSZPV5owFTvTseZlFUInEGihyPoMiG/gEqMKmNEqeffzVS+capZD4Fqw3MKpFxHymbw5GrmDTeKLOBDQNv3cJ76WjhecMYY7r/0zYj/pBfiye+c2TR1/qcjZGJJ/6a8zlIhRpqEEojnykAymrKziFxP7jQD0kOLmrKNI9HSU4ARj7OSMkZi8AGkbJ30HVJ6ykGGSMFZDFOn8SwRQcyDqGXmAFpj2p6Tn21m1AK/luYcOz4quy4Bggw7MQBv16pk8dJWskpZCGtFEONhHBARKTOlFPa7HXa7HRZzoiULa06UCGVeBrhxTMypHFmm5m4lxqHA0J9k1CP3HUJEWRapHKNtW+6LNQUdgIExxBCisSZGFBBT4CG9JHKarPyI8ygA2Wm2OZccHc+dhTyrr5QG9eTWKKs6sc+IeUFbfEJJVphASu8dPz+aCTmryXtPjTI5U7harSird9gfKcVUp5EtJTHO9LZKTVRjBINNKjkko3NwTnrSKIxOWJbSWyOkMSxLj9xgpbmfjW2EAMgZ8CT6RB29+ictp/PoNND58PEUzHnuGRSZETAlHCiYQgQKq7n8l0ARmseOkwvZNvfTifgFmgDSr4NsAgGOiHp6ZryJRQiBIarp6aYfdfxUJRyV80dmtcWgUtXce5/J7KHRerIIop/EYU7OJumKgIwFcDyiRw7OZNOmjFe6DsVjy86ZrE+lp7UDTt5Mu57IOaS3HzVOhVKpObiUf9SzGawxiWXqZM2BHEop2YuI1BOnLLFYLkhPuRF93/IudOQ89dI3ghvLGk07kRVFgZLBN1rTxCoW+0a602fZxMnZPwUuJgftJEjJfIHJTkzbG8t71hYJOJFpl54DUjL9nrkgOvK+Z0fvi22a2B947zjqf3TMJpVrScFQFqQ750gXjhO7wViDuiEHu+L+exLk13XNwMEcu/12YvmGCK8C2/gJtBzTGp3mXWJLaEoqGEu7TgnDRBrRyo6mzk1NcOnZvW/3c9YPMLFV5HrLssDoRtIRemIzTSALPUPpL9J3vCGB1oiamNRgVqDYjBxsBqZkZ75+6Gcq3QXPece7wypFvp42Fe3apxTc6DCMPbH6s2BD7lHsvAABeWJRQAJhIAhbOw9AT21+DroqpY5aVog/Ks9EmDKJXc6AXVmWBB5mrKAJINcp4D7W98flZPmmNbmIjroPkA8xJtsvc6vWmkv0PXruFQMg3busy3wO5QwenfVjPGU8pJLo9EPxyRQUlwghwtrhSI9YY1OAKn55DhREBi68ntg/xlAfGqgpieEDoHymP9h2REzAT+5bkk/vUvJWAAB5vvnzSHboiEVmj8YmX8e57co/m3+fjFtK5J6CLqLXIK1C6JmOo4MdBlqHmPxV8Po37FNDKXglTCVKJCo9gU2Zss14RuI5sg6VtKGEJvxdVGYsvdWmHmtH4E5CqtKMzu5PvTdfprHD+6+ncXtvCWRzPrynA+8/brqoYyBi0iOnLKP8ueV+bl7hAhwDjIk8ocT7wVG8knS/pjEkf4obBGSAmBs93Ojo9SAbpWh+3hrG0O5+WinATLvJ5ozeCSxS9w7i6TM49efzBI0xJt2H+ASnjKbTsZHxyb8TkJ1WQ/JTpZfsaYleDvZJM/lT/+T0PnKmVj4v7/MhTn3x0+On7793Sh3JHwXYREsswg8Dho6yl0VZoKxKVFWJorBoakJHL1YLPHhwifZwwDpQBtoHh9ETjdhoMQJUiqcUOBPGlEY7PXiqv0Uyaos5NZEMQq0bqZ+Scw777Y76QZWEHCJ7GNJgkBp4VUcZi8vLS9RNg+vHjxAjaJvZ0aE9tFivN0lpeU+BjFYGhS1QlTV88DDBUzPyrk9lYlpPOpG2r9QpayI7egFM/fYOPqi0qI6dhRPDxaCSNLIdxyFRHymrnW/tOCSGC/WxccxEiajrBtRfaYDVGt4HcswUKMMSFKTBuCgg6qtkEEFbuVruOUVllOSQSu15BPXxKQoxZBpaFShmDSgbSUBWcoQZXVdac++uySGg5t/kvDZMiQ7MUPrtV19hGEeUVYOqnqGqaAveoiixWMxgizJl9A9ti/V2A6UUXr6kbW7fvKNdUT777DNcPbhKLALnaIc8Ywxub26w224xm82wXC7TvGmaBsvVAo8ePULwDvvdNq0XrRTtXKgUFoupJ4QxBofDAS9fvcB+t0NdFdis15AgoqpLLnV0+MUv/nO2s6LCZrNJvRZEwYiDIaV1eZ2+zCFxJE+dhniyPubzeVLWopy1NlhdXKIsK0hD04AAH6nfTUCAisAwDmj7jrKNhkDMruvQtgdqwu8dPv7oGZ4+fYLrR9f45PnH2Gw3+H9/odAeKGj14Vh5y3oIkWqdk9PLCnscBxwOHWIE9f5Smhobjo5375qhsAWur68BKIw+JmeUGI410aeZ8RYlSy7OveHmvPp4p7kQAjf+zMZTcVbsTxB9us+ofdMx94EhAG27e3PzFuMw4LDf0aYS3I/v9uYGv/71r2GtxaeffMy7lDo8un6Armu5Ea3H7c1bKABFSZT34BzGQJARzYnJQ/ScqTTWIHASg0pWuTQnBNC+dOwMg9iy1IsuIhh6ntKEPIQAJeVlFAWRbYrkQBltkkMFBWqszD1vxNmQBqZGk/8bAunJ6AMcB1gH3sUulYVxSRmtS+pLJhlvctyolYVhCy0Oe/LLODGgAyVrNDS0ncq0qQ8UP0NEjH4EtMLoPdnkskA9a1BVDep6htXFJT569jGggDdv3tLW5A8uoYzGolrg4cMr9H2PN2/fIDiHZjbH1YNLPHr0CFYb/Orv/hb/9//1H9C2BzjeEehytcSsaeDHASP3OXn18iX1XzSkQ1vuw3N5fY3oHPw4YrPZYr3e8JbOEYp3wKJdZkbexpnGrCgqzOfL5LQK6BxjwHy+gNa0S81yuUDfC9uGNjKpKmHeUvPww6FLm4b4ECa9ZDT1HNHUIyGN6gkYMNHz2bfhQJtKq1t4H3A4tFBKM5gOdF0P7136DO1EdAEAmM8X8D6kPjoh0K5E+/0eb169ARQx0o3WeP7Jx/j5z/+C9OvIvbRKao68XC2gDeD9mJIhr9+8ZsYbJbS6Q4uefYgYIwprsVwtUbCdKYoilSSlMjbWjdpQWeTFxQUFyr1sO0125TjRxv1BTsCm1WqF5XKJZ8+e4ZNPPkn9mJwbsdms4b3Dc965THb27bqJ4bvb7aGNRj1foFksAJVrDfrDuRE+OAqIOOFJoBUSI89YTf6PVgQwOWCzWSMEh4vVBWazBs2swXw+o0QpyH+6u7vlXpZTxjnv5SPJQmHmyK5J8/kczjlcXl7Ce5/GWpKN0kQ8LykVcEG+cxgGvH79OiVbvPdph1ljTOox5KMAA+SjVSUxaIZhoAbLIaRyUq2ptBIx0m5fRsHM7ZHNaNs2lZ3J853PFyiLEvPFAg375n3fU7ka22Bipk4A0ZOnT/Dn/+xniDHiP/zH/wdv371L303Nd48Br5wFN/lAxLTv+z61G/Des+/BoEgK3AlwKooKTRPZL5xaVgDA6uICj64fJabIKUhDgEtMrJPdjmKU5XwxJbubBj64BEQV3MdTVdVRqVbg78g3pqmqEtaa1JeJALKprcKUqFap7E7GRBgeOVgkTC3nHLbbbXrWOQAqvhkw+e8C8EpwXhQWMdI29VWtYSzZKTc6dOgBbAg80sSoVVC0u1tRYV7PEVXEGMkWtsMAsC3Uxk7ZbEWABQAqtUvrGAxQCdgUJd9FAKan90LkDUkI1Z5scggILsANXBbIfqPEKZH5SqcsJJrv02ui11XKSnKp+lFqS3wmWkOnpVQ5gHlsO94Hm2KMqYersAlz0EL0gZSqSZwDICXtE9ih5B4pjgHA4zCVbRtjYMeCmK8+MnmBjunajnsQUpJEAfAxQOkIpz3H9QZWe9qAxBgoZVBVDYwpeJ05SMsBpUCtNLRCzLdQZzkFq3Mgf0riTGV1cv2i/2azGWKMaROju7u7xAI9LVujcYoYhxZuoMoOYUx3XZvG3BiTeugKeCWbEiGO2bVPa/aUhTYxVWkccxspoHF+3wIC5rqQ4kew/UrVkPfKHwXYBCAZf+8cBdJa6P/HjKaiKFBXFRzv3JV23YhMD/UTC0eyxUrRTimIk0EXBBmQXlEMclgD58H9XsC9HhwGoa2GAGPcUXAtylWyRQnk0CY5lBerC0QANTM5YiSFDZ7ouQGVbQihSNFNfT2mgBbIAadpO1JBbwU8kozy6cI4zUgIRXhaNGNaOFKycpqJkMWVdltz085yMer0PNLkVDTWIVNuxK7iZ6VVQqJzJYsYO9OppgAAIABJREFUE6od0+5KE9of+bkW0jfJv19/q7VsCSsZeVa+3LdF5oAxNr1/OBywPxxQlD3Kipyy2WxGDVszhU9OGDMogNRcdX13hwOXkOXzWGqaAaI6r+/uuJGqS7t0lGVx9PuYXYDEahDHUEDOw2GP0fWoqhIXr1aJzSSlhZKhXq83CWxUSh31bZDz5Ewvoc2LMynHCM08Z3idKiRZH6fMOW0MN4CvsnrwYxopFI5qlWU+OO8Std57j7IqsVgucXFxiYfX16SMmxrOjRidZ5YcZ9FjTHPae2q2aMHN0pVkH4QuG2Fj5OBsxDCMkGZ6xig0dQOlNbqBGBgpE8sOhFYaHse9IpRSCDpAQzOGNI1VYrlkSbD/GiQ3gqdZGXntvswLQGWzXdui7ztst+vUpyHGgDdvXuPLL79gELfCfDZDjAF1XYFK7DSX4PZQiLC2IZp9jECgjSOg2aHMn5M4KWrSmZGBQtIrKukRCTm1VjCBeiQBXDquNWf5cESLF3RR7FfOrGIVkPQ/QD0igjp2NRWQesTRzqyOd9lxE0CVjykfD8icPGaDJH078W34WMoMq6DSDoqJ5QRhfWU9Y2KEFiDN2LSVcVGUmM3nnFCIGDNWgbEWzWyWMvYxBhhLAdWspj5CX//2K6w3a2w3G+y3WypFd48RLi4QvUfk8lw/jkCMCWxygXaGHYdps4mpH920OYBSEzNJXo9xYjaJoyY6M0bNiRfpy1Sn76LPmaOfyVmlHliy26wwtVXygwyP+sTgVYpsWdDTZ/JMdNt2UKpLWVKlJpZE3pdRsusSRIpjnXRwmFicXUslCMvFnHfJneOjjz8i0PdwmHrd+TH5RwUzUDvejYzuNwOb+j71OhNw0+ZgU8aYkH6Ccu2pNB4KwU/Nh3PfJd1jpmtElwhwcHFxgcePH8MHj1W7p36HBQEm0mCb+jdRvxDxgSKYYWMMCu47FiAMCmEB0hykAFghhMy2Y0ogTsxBYYIPGAZioFtr0dQ1lksGFUzJfqlOJRenASQFzuo9XzG1hMj6e0qvHgkqBVgQlrCUo4hdF7Bps9kkXSEBV564ArjfSuajKcU9hmJMfb+O2PM8dnRPFAOcPjf5bjm3MRaF9NJkwNtlfkyIU4Av19c0NT799DkigL/79RfY8o56ebsDpKcECPieB2gCBng/MZvIp0Faq8c/E8ggPn8+Rysu1ZPxPAUgKMaZgsZxHDFmO/SJbx9HSjjIa1prmCxGApDslgBXQETbEuAnGyBUVY3lcpV0hvh9ObNwup/3A9eqqqhlCCep5VnLupV+sKe+e84M1ZwEKUvambmpDWyhqCwtUMDtRw9lFHRB/ZQQmd2YGFGRTLqijS/IHuFYJGTh+CJhOtNbQng+/pj4llBJf7Mbm8Y4+Kwc9SSmg1LcLFsYwd8seYJO/pleyf6Rbx6bs1Pysf4QmyUnKEgsMu3+O13L8TOazpH77jHG1BtZc+JYKcj+Jmm90eF07caMEPCc2moMzGbkZ8tPRYPi9qBkjAM9Z07OGKMRIfaDdInEcOKvfVNG95ThdBSfYurBJPd8qmNFF4hObbmVjuguAW2SD+zHozU5+QUTECvrZtJRwoiK2XUet+LIgcrptZD8mPz55cfl2MHp+qTf9w7bkfxxgE1sYGMM8MFBB0qbjuOAzWbNRrSF0VQGQTtTzQAVYLRGM6OaThUjvB+TwSbKv0IE7Y5mTJzovFEmBqjfhvcYmRET2DtQoFpOy07tfZTOfEIJULDjWvT9YQ8XPC4uLvDk6VMYSw1LKXMzoYzyYMuiRIgRZUGGUnkFOCDonLoY3/tcrthzIAiYKPtt2/K1GqZIE2OM0G7FhnLaYjdfUOKExBjTbiVpVxXO+gizS2s99cjBhKA65xLDQ+4lxpiMEAEwHX8XgYxlWWA2a4ihtqOg8nDYcwZmgbKc+j0Er3j77YCuo6zybrflGvwhfa/0IBLKvi0qGOsxXyzw8OFD6tnDtb77/R4t72yyP1DDO6qBL7C6uEJZVule9ocD7jZrAKQ4Qoy0uwvX4ss1SHZA+rB0bZuUyt3dHay16PoWs7sGq4sVbt69RddKH6RMIShSoqKsisJCaaCqKzx69AjL5RJD1+N6s8Ew9BjHAVVZYD6n3UW0oefy+vXr1F9Ask+r1SrNMXEwBam/urpKbDZRmsfOGC/pbI3IM8prjb330PzMxTmj7DoASNlHYANEdcvJYfU+bWsq19n3A3a7Ha6uLtOcO+wP2O32BMCN47QBQGZY8vVDYNqArj/wNXFQoC20tWjbno2chtE9ZnPahU76emlT4NGjR3j8+DGqsiKgjHe7SFkbLlOMMcJow8wm8RSmevHckCFOXs2fGvh0WhqgTqzWh0AmiUSC9+jaA7rugLY9YOh7VGWBqiygQLuFAsBvvviCQaaQxn8xn1OfGEfrsyorFGWRwCrJ/gKT0+Qcbf0evIbxwmzifhLDyNk2DRUVfFkz8yBAKwNYhYKBGGuoJ4FWU8ZIMV1IgGBiIo3cf4XXui3ZEciYqeysib62tqDSuSCgRYALEeBsNABOjlBvGnKSJ90szyVRvRUxEQMIhCcbQddAmdzJySIRuOv+5xfBgVKM6PoBvQt4NAwoyoqCibpBUVUYnMd6u8PoHbTlnnBuRAwB680WWiuMi0XaVWa5WkFrjYoTKLNZQzu6zGo00iCUwTbvHJdoa0SlsFjMgRgxDiNub27x5s2b1G9us9mkHbjW63Vi88YY006iMnbAFCTlfWMkgD+d2wJWpKbNXGIdEWGLEvr/J+/NlixJjivBY2a+3y2WzKxEAVUEyRlwpGXwThF+AT+aD5SmzAt7HmYIAiAbJIAu1JqRsdzFV1vmQVXNzG9mYdikyEh1zy0JyazIiHvd3cx0OXr0qAkMNBJoIIwMOSpGG6qgM5tPJtkqRawjAJjGCc7S8Aon7fuamClVhahF6D2x6kQg2S7km6ZxxjjOGPsJD9+953tk4Ct4tI5AtdvbW5xPZ/SXHsfjEf/4j/+I8+lE7CVOiIkVPbOgNWmmKVWiKkp4TkClzerV/V0EgXKNIGFuOOej1o8E35JgCuABqMgekyQvr+4Kc7fv+5X2lgws8V6YtEOMeyTOaZs2xlxR+8hajMtCwKiYdpVNWwpS4NKoWT/N2gWX/oK2rdHqlqfvpmTC2oVAr6rEdrdBtyH2s1YahTYIwWO328G5ND0sxl0hZO3fHybwufSCgE1SRBINJymitG0b3yNPeOR5AIjT4GTSrPh7pWjoiTaG4qp5xsJ7X5IxrXVshyStyyrZRqWZPZM0fpxzeHl5ietKzJcyiu5XVYV5muO6xQltWXw8LwvmxWJxhAgK0Nz3fVzTHDhTSmGelzj8BUDUX2uaBgABTjFJNwZN3cZz71waWS6sobwQdXd3B+ccXr1+hfv7ezw+PuJyucT7zVuByPD7OJkqf46kGdOwvuWFJ04zw5yvReyO2Hq5JgDMmi9jzJqDTLlmkwC9AjbJ3pDiuwCT+RAEYWRIN4h85c9YXrL/5OW9g7U3UCpgu2tQVgWmecC0jCgZoIMClkBaav/0X/8F337zgOOpx8PjMxWVyxIBwGSJQQouIAdm15N9Zjsd/0NeY4leDlBQgcgLy2yxDCzUrkuOHzPh8UBFLMUAkBYmkxSW+DM8FBafCr8CHMizzZ+9Ullp6Bp0QgLMcsAn34tiK67zSrELApYIu1W+8v0g+0j2hRQDcnAr6gLyMxXWn7QNUjxD+bYCybzYxeE4n9hfJ6A6vpcPcf8REE5kkHGcofUlXj/9KVNdgaZtUFYl6oaA+sXO1M1kbWR3S+6zjjnTnszvMRU2svZVBonkfEseKDHFtS/KfbqdZ9iFmE3e+6jnK2dJOmBEMkQ+y2nKm/Lnkccm8qzyvUO+IDFexf9G1nwGlEmMdw16e89yM3/k9YMAm6SiE6KmBH1Z62Etiw2zyBtVVUooHYjiz61dSgFj38Mu3LcciKmjNLUBhIIAprIUpDHwlyfR38Bi5OCLEdaTTLork0POX+JkI0VVa7y8vOB0OvFYZmrTkhHNJjpnaeXjZ8CJfgghTtQBgOBDNiHvQwT6GlFesUuQNopsxrqm5CJNCEoJXu5Q8/vL6eZCiRQhuNy4yHNoWwo83UK6OsnQpPuVlwTkaWx0iGBhyYKv01iAAAiHaRrZ6E2wNoE9wYHBphDbAPt+gA/5iEeNqiJqbRRudQFFGbDb7XhiShlb6UoOopZxxOlMVO3Hx0cYU2C3P6Kq6njwh3HE6XxGQIiH9HQ+Y5rnaKRDCBHsqmty3l3XYc4CG60VhpGmY+2/2ON8PqEqKRAXEM4YA2cMYBADBakQlGWBm5ub2Hp52e+p3Wwc0HUN9rstlAJ8oMBCxv/KK584IkYyB1N3u138u+wHAZs+Vhm5Nr7iJCQgmlkHwNoltlXK85P3s070wHgveRKJnJeZ9y+iBpY4QR8ChnFC3w/oexIXL3g6oeEpWcmBJ4035xwul573qYqsg8IU8EF0nBYUZkbbdjgcbrDfH3C4uUXTUivkfr/ns5vOa37/afMLS4SpK5C9r9fRQk6s+TdUEP5HeV0HPx+zr/LvHweb6OW9xzyNBECONHmxqgoW2g/UVmUttAYXKkiIWWuFtmmolaqgYL6sSlRlCedIX2V9rZkt8x7eK3ifTShlsMk7L8rXQFCoOGFSWsMETW3PhpJ98QOagVYaZZxckHeOE37SbKFqno6tVTKNTpgTErQZDZ52KsCtTVU8LQLjRRZQOIjeXf7MY1uDSiL6iT3MeiiKqrGyhnnVfRWws0+SqDoE0Qta4GZK+AphS1QViqqCtQ59PwAKqGpuW+Yg7dJfyCYqhbKgKumm66ABlFrDO0dM4sKga1vc7Hd8MbRWYz+Qz2fWUNu2UAFwi8WRQSWxb33fE9OVW6aEEi+JVx7wCTAvwZskvpJ8XYPwkZXAQMzMf8rezl8EUrDQOIcQWps4wDIy6HQZwSalgLppsCzUkj4OqcVOKY1SK4RgqHJq6fOsZZ2+xTFzlyQFhn7A+XiOfrssSzRtFfVxttstAeoghu8vfvELvHv3DsZQ0tW2LTabDUTnCEAMcHVNg+0FXKrrCnd3d9HHXrdtCBBD5ztpD9G+SpV4+Yy6rleJkqyBxDQ5EEFxjwAwgcdoj7Gq3jR1vEY5TzI0w4aARZII7jnNW8zjOkLBLhVfs8c0DZjmCXVTQzTPyIb5+LzKwqDr2jjNjNroFACDrlvHc7nPoVbJtJfkZ8Tf5omSJBq5GHAsiHJMJMlpDjJI0TAHYCUBlTaww+FAYtZ9j4HHn0OBWY5mdWYKI2A4YpKz2WxhMlH5y+USQVwphEpxWBKzeV4i0JSL8wIE/skQBCdMPAZ9pZgmgJu8pEVoHBOrLgfJZM+Ir9LaoKrqFftBEk4BMPN12O+JPXRzuMFut1tJG8hzl1jfuwXeURx4uVwiMJDAv5bZPD4mqCqhD9HGA2lanRRGu65dXRe1B8+rxFPOZWxrzfZXzlrKv4yh4TNUDOji2SSfvAaWrvdf+jcHYxT2+w2qukQ/XjBMPSqOUQMC+mnkzgKHx8dnFKczivoZRVmi7TZQSmPxDi54YiDyfnBBYlS20fyveexxnWwrkMbYPCwYLxPZMVNCKx2nTKro+hQMaK/X0hXDhcccPOKRx9nnrFlJ6tqu8LqqFUPnj7OVruVVcrsgvkrOe36ec60hAaVXOmUqdT3Ivs33v5c/hbnMzMDClCQbECh+tjZNO89Zxsh+nwom3GrnA4rCwLl1O6ZmUop0TZVVhUoBLVo4Z3G+HPn6HTHahYWdgXDX+zLPU/KiaX5teeePgPAiQZOvY1pnev/FWiyxfTesnrvEEk3TxDhDummUdtAhsRq9n6J/y9c3LzZIDpSzEOXf8zUTcExYz+n9FJ8V/NHXDwJsoo1FKCUYaILoJlnL54ZaE4aRKtc0inbmhwIW/fa8WMJbToKtlKiSjpFSWIlILnFSFmCtgSloclgIBPQEnlSngGzz8efEjQb6rNhiQA7l22+/xThNuPvtPeqmxvHlyJUSjU234ahDRyfnA7VKCNtjWRY4m7cGRj8BYC36nW90ea03cgLRJBCJyYTQvZGIFnKvQOr3FIOSJ86yOQVNld+1jvSmaK0WUJ4hdG5KVuK4cS2Hmdo7nLNxPY3RqOuKW8qoDSWwjpNShFRTQEjXI1UYmQqQJpYkhF+u1RQVDI/FfX5+5kPcQSlNiYvWOCwO85KqPhTsroVTKSGjKnPbUnWxqms477HdbuM9Xgdt2+0mCqBfLmc5EfF6lmVBaQjsaNsG+z0JsEogRYH6h89eHGccNx5C3FP5tYhBFMOaG1FZ49xR5XttlYwCHwSt+c8AWL2fOLJlmWNbT0Ay6gI6y34OvDFlJLmMC5bzMi/UuiEGPX7NMzFFjKFKBj930rzi0ex8Lpz3gGKGoQ+wjphV87wwIE06K2VRMrtAryqSok3x+PiEoijR1A1SNYrFMn0SUP04cBRrZR/7x//pXh+rZH7sZ2SvrgIj/ve6rvHqzWvM04SuazHPE7abDpuuxeV8xidvPllpmSzzDMctqy2DEfvdHkBAXVWxEmkDGPhh9o5zgGYmLBQHknRWNDTRtw2JHgcyqTCGAaUABJMKGHm1z7qU5JtCEytKKRYN5mBEEXAF0LlWnmnlXiquBFjS74LBH8V2kn5GCzDthUFHQUaAIBUKIaQ2tRAQEy+tDYy8d/QjAZAgJYJNTKGH+CKWtZAv0VlQHsqQVpq3Dm6xmJcZx9ORbKtiUWMGhX3wmBdiMh4OBygAXduhLEtinL484enpEXVTk29tW0rghwsu/QXOLljmCWVRoGsJYCzLEmVRwBT0OXVNbEQCZEYqVrDeirWOBcultU9xUaXkSVRFBGWKgrS7lCIGhDEzJ2WG9f62CAHMonFxjxRFWpNhnIjZxDqC2tDEUwHFxU4qxWtvkNYNiDZ5sRQHLbMltoVPnwFIWzOvkwsxoLWOdIWWJQm3KqVxONzgzetPsNlu8NlPPou6LsZQAv7LX/4S59MJ7969w/PzM+q6ZhYD+3O27VpTocUYQ5MEqwplUZDOHbOvacLwlirSDLh7z1qcOk3NoftJmhPOBShtAaXSRF+k5Gpmfy2xQwQJC4OqrrHd7XD/6hWcs+g2Hfr+gnfvvsM0T5jmCS8vL1iWFkorTPNMwvZNgwPrc273e2z2OzEeBKZkYIH3HvABwXue2Ej6THksJuDN7e0tT81bCzMvy4K+vxB70dpVoB9tlicQWVrCnUtC8XI9oseUJ6BSYBJgbSXaC8SiTA7CiP/LE5W84p8XJKuqgnWep7yy3IMACkqhqWt0bYuiIF/rOMZKbJkyfmbXddhut3FSFiVQfEaErZInw4TIE7ulSOLh5/MJv/rVrwEgMjfLskTdNBinCVSQYp0nvW7JVFrH9zMMvlV1TWy+4FE3NZq2JVsSYxpE9vRiHQqTEsDNZhPB+zyWESA0ZxfQQIy8CBJIKy1rRRS908j8U4o1BpP2li9LNNmkOQDY7Xbouja+l7C5ZC/kLY/CXJL9I8Xza5HkfA/lZ0KS8mTXUlyQs89lf0uRZZ4tvA8Yxhn9OMM7hbJYEBAwzRbzaDH2C/rzjLIJqIKGdwoy9XV2Fo71DqFAQzTY9wlgKPqPQYxQ9K+IsaNWxGZ21iG4wHUmgqmUoN/8+5o/K4RARWMAQRHAImQHFVKEkz6DW+wykEsKNyr+mcuPIMUO0Takv18TFOR7OeggcVcew8va5nGZ6PWKHZApq/JeFOsnUWznpWWTC8Z8I3VVoShKimM4Dx4GmrK5zGswi6RLLgAQ9cLIluo4URKg7oIAkmkxhUmdQ1rBGGLABiR7JrZCihKyH3NbJs8iZ//ke54Kj+m8inSKPIPrAmq6L7bvbHsFbBJbLNdUVVUEmwCwPloBrYhIk7qcFJxbf0YeP0gLr2hZC2FEQGE56+lndcw1EwNK51vse18/CLAJAAdCEvUIG8diHAcErsYBgcCmeaJJcN4xCOQoGOZJc4QDhQhIeEegFYFHgAIFj1K1k3YcGpFpUDctatUAYDFWbsPTHFBFdoJ8hrNQMMTMCIl+fTwecfrqKxJgdA5N27CwXEBhCtzcHGIw7oPHtCxwIek2zPOCcZzgV4wPrA6cOMWPIdexR3kFPtHv5UCTOJdURU3VwxwB9d6vqkNSxZWNKVUOWk+aUjdzxTfSjQ0l+WnDiugpCZ07F2CXBUTLo8CrLA26TYt+aHgkOQk7W0frZbSB8w7TOMBog9vbW9Ly2G5RNy0uF2q9I6YX3WGk/JoSWhew1uLbb79FWVa4vb1DWZEY+Ju6ZvCxxuVywddff00tW5chTksKIfB4cAoYROi74vHfd3e32QEnNo1UhYMPaJsWAR7PL0/ROC3Lgm+++YbWXSloBdzf36Msfxqrym3boigpWKVx5mmtQwismWVjsGEtgW5FYbh6qqOjj22FmchfbhjFqAqdM53btLa5URZgMkfE5StpawADVy1MSbotmp2FEJrFyefOIiBgnCaMPBLXGINxGHEqTlG8NjIQhgFVXZIYcduiy1iIa/tDlROtNJqmo6RyJNbVOIwR7GqaFsbICHQVWxwEQDufLzifLui6Dq9fv0GaNEXaQGubHICMTfL/t9cqMPo3/sy6EkS2vOs6fP4nP4X3FqfnZ8zTiK5t0DUN4AO+/rOvcLlc8PT0xNXkHvMyY7/boa1qVEWF3astFIjV4r2PdPYV+GkYaFAUOBbKoNA8DlazzfUMQGqyNWXByVFgBkqkqCXwlc6f5c8qACOMOg2nqH1EcTEgBBrrjuDhLH2OJKdAHhgVKyaI0hpz1N9j/6E1wNNb6J4SQCSFmHleMHEbSRmuqNPsu6qqInFVSMEgA5r4bj3bIwI0HAACT6rGwA4j3OQwjAPePTygrMif1Q1VIpXRcN6jHwbUVYU3b95QUGcoRP3yi2/x5Re/J5BpuyUGTV0DIeBff/PPeH55Ie6HArq2xaeffEL6IW1Ho4L5q9t00Teezxccj6fo/6i1hoS7raVkZLslplTbdsyGnTCOE4rCcfsPuDUc0W40TYvb2/soKu5cQFlWDEZLAWRCz5PNyrJGVdFwCxUTaRZmjtP+UlJJgzc8Zp4iuyxzDOqllUqAcmmDDJ407SjmYLDJCoPBRbtvjMEnb9/iz//8z/H27Vv81V/9FdqmwXfffYP+csGvfvUr/O3f/m1kbDjn0G46VE2Ny/mEmdkt1jnUVYXDgaa0vnnzhlrSmAGW77GC9dNEPweOCk2mMCjrCsrwZEQvCX8B4wO0JVAgtTHTPly4rWGxNGwCXmG2JFxf8B64f3WPzz7/jOLOkdrnv/jyC/QjaTj2w0DsCRVoT9Y1Nrst2u0GIQTsDgfsDnsqOUrex+dQfKpdFizTzEaGbBm1By0xcem6Dm/fvsXlcsHj40MsIgHANI0YhgvssmC4EOs6n2iYMyAILLVckEut7DkrLweGJGHK2+QFCAAS2CQj6cXn55pLeUIjxT1hvtV1TW2fnIBKPGEYvO/aDvv9AWVBk9qWZcGl76GVQl0n7S6tNfb7Pe7u7mKhCeDiZ1Z8c95hnHnSbhZHFGUZi1eP7x/xd//579juUMxXNy22gQAfpYkqSmx3LnopBaUNjC5gTImipKFG3ZaYsz5QAbLbbLDb7whQESa3c/DOYl4s5nkBKqAEPffNZoOCAXdhVIpQ+YfMJg2HBNg472jAELcQGkOC8zKcRgBay++VJ5NlUcRkVimFV69eYbvdxPfq+wGPj0+RqbEsS9wrMsFR4j1AEmATfz/fk9eslyUDgFdgChDXW65dAEWyr3SGLsNALKYmQOkSgMK0zBiGGefjhOPziLr1aCxQlh4K5GNGO8N6B9HEkzY6OTcIiP+fg00QsEna4MQnWo9gPenSirasDwhKMZmCfLVncLzQpKwcJI4ICWhaadcqjq9jwVqAzvWzStiSyupBOq5xHkflQJC8JJ7O2aR57C4tpVJQT/7yvMoZD4cDfvrTn6JtW9zc3KDgvSW+aBypEHw6kVC2Y5/asQ8wpkBhSM5gGEZ47zBPc9xbStFQo6+//greU3uv5vWDCjifKbcIwTMopOP02pYHMBWFQVXSxFFjVLw3aaPNGU1iF3OQOWc+yd6VM0edNcRIFJkSYYblnSB5wT6RWLgVeRyQ5+LjOMb3b5oG2+2WunOKIvrHpV635kmxSmx4jgUIpiAEi4KLO3nBIJ9AKXmhECWE8JCGjeGPpjI/GLApJsnyn7TB8cFRivlCbCAReILP9eHjd5FFCj615V0zfkgnKtHj1qwNv7o2F9lR3NeK9JkC0ggy6j07NEMoKtHcLlR5KUysYilJqbl6SlU7FjfzSYAvBB0TDb76FeIvmz+vTgGIwak8C6l2kfL8hwwUeQ70vWSMUsUwjZHPQYZUQcmecSAdk+trInud/v/a0eQUbRGBDoFaC6U1RgxkjqTDE4Anv0+J3BXrhit98izp9z3A7ZuOkytjCpqQpojOWkGjKFWG/BYIoGk+AroFBCinouOt6xp120SaeV5FkP0XHwgS7TIP+pRUP4KPAtex6qPoOZKRWo/dFCZXP1CQMk4jtRZy1dRojcUmjRD5bPndSDH36QzI/0uVU4JEMZL5PeWtcmL4rimo+e9c72VhJMo4bmBdcaEgK+vbzlB7CRJkspacs2vK6IoFxs6CWAtpMkZkwvAUL+5WAnXU29jO432IyWKunbDf38QqA0Csjnyt45lVawudfH923vFH7fj/sK8cPPp/+7kPbAnSs9JaAyGJLPeXHtMw4nQ6YRwnLIuFMQXKkuy0855to4r2XJ5xyJg4AuLEr0ABIWWRudYAra/WIf6cAu0LrbSccgiDlPYcVbbFVqX3Skw4Y3xkUZIvSOcsBsTxvcmf0ZlaC1bKPo26PHyf8gyVIsYoARksXARsAAAgAElEQVQ+MgAo6PMk4F1VzO7l9wzpPWVSHv8afYbOfRrdL5SMK6YWRGHXGKNhhV1alRjGAXZZ0DQ12q5BCA7e29U5twvZvr7vcTqdqOUotKjKEuV2i8IYbHgSZnAOzpJ/lqqq2CeD3B6vk51Una9W7FFZI/E/1/ZdEkNJgPOpM3Vdx+Q92Z5MUDnkz5eZk4Eq5AQWiS3j1oNCBMY1M4xkPwHWrsFapaQ9IrVghuirE7gq7WhVReuz2+3QNA3evn2LTz75BDc3N7H4dD5fcDq+4P3De3zzzTcrm77dbgEgTmukAS3Jj+dV9HwCjvg/rVKiFMFTk4SH6ZrzNdFX54NjAf/hxD4piuSsifzfgDS1LW8rENatFBiEoUWxnUa76UjoHiIQnvRKBKjRShG7KdDEXUqU0nnN9wq1kAdOnGwEFUUDMI/DrqxmPOO0VwNo6iSQ++ccwEj7JDFL8qq+xMgmWwNpZ5T1k+eZx6USu8hnVFWJEFosV4wXec7XHkEGuFRliTJbj7yVJV5rpjmSfH66j9znEEOsB5SCdQRi3twSQ01eRVHy+Q0IgYCM1XlnYEGKj1IAFnstMbdzPk37ZPshjKB0rcxwgwOwwOsUw+Z7Vn7eZc9aa806gGkdtCYAL/8Z2Vt0b4mhHyKDSTo9UjwnceF1AVo+S+xkHovle+ljeUoe8+Yx0ce+8n1K+Ye8H33GPM2YpwWAxtBT29DiLKZpYV0fGkZRlTXJlGiDoNiPxzoL73mZIsvsJMrTQHY53tTqD/ob6zYppRko0leAEZ1Hlb1Fij1SHCH/n/uaj319H/n9g3yLg5l1oW59vvO1un6v3I4m9uCHItL55wrIKF+yN0IAirJCrQygDMZxgVIO3jEQwjGQ0SabbFfAe4eymIkhy4zIup5IKD4DQDxEs4iK8N7TcyqMQVkVcUiFMHJ0oWECxe6m8B/15R/NUbLv58/1GsSX74mvzOOX6+ebg01iQ4R0AyDa/DzPzv012aUirjk9O5rEJzbk+hxd31tu2/P1Xe27f+frBwE2hfhFiX/wySHSmMvAB5Uc8zyP0Ira4Qtlopiijz2dwjhi0SxHmjD0fjIGkIIt4w1EN0OQeGnjkhehsWl6AlUBSlRl9QFiGJF7U6DaVjjsD3DO4fHhPXwIaDcdyqqkijIzI/qBtHGojc5j4eBIazqwy6wxhiEmq0CaZGPMWtxR+uwl8DACvrDYnPS9yv3njkD+lHuhXuoqbmY5QIJwH49HNE0TA5VVAh1C6p8AVtcozkOQ02EYIsKqlErjdi8XnM9HlGWJ3XaDZZ6w21HwWhQagEdRUItdKApU3Ms/MeslKG6NAnjkqoNzI6zPRvgWDtqUGMcRRxYS/vbb72BMgddv3mC32+H29h73r+nwvXr1CiEELJYCiKenJ0popxHO0yjXTz75hMZedi0KdsK5Q5Z9QkkmtYMuy8ysowKHwwFaa8iUHpcxqBJNk6rPgpS3bRvBIpke8uWXX+L48kJ6SJ7Q/apg/atASe6J7znXDRHtg/1+v6p8LMuC0+mE4/GIp6cn9H2/AqdyEDKvmolgfK7ZNC8LsQ0k2aioMqgQ4FifZprG+L55j7Kwq0T4TmuN25sbTsp1TOLn2WJZHLqOe8FNkRlSAmGlzeByIaFOmlwiE5BaWusLaYIQ4AekhNRgnha41qEsKnRth9PpjN/85jfMriP2maxb8I5tmwjme/iqgjIhVliTNfSMLikAiT7+PxPg9H0B5sd+Jv9TXhIrKgWe7BRwfDnh5fkZL89POL484/HxEV988QcoBdze3mGz2aIoaIR9U1ckpAwt8gjUauI8nAtwFggaUIVC8PRFGk0E6lBdU8QWNUh1tWDfQ0lGWdYwpuJEkfwS2WDHTJmZzzKBYV2nI9hNARF90VmSwoYAVmCWjSQkyYYXRRpzHDgRmqc0jQkAB1cpEDcmwBj2X46EMouiQlU50rnYUMvv+XIhwMgSW0Zrh0X7LIpWnEBTgkX3SixdbRzM6QxTlEDZAFrGZLcYxxG/+OU/oiwKlOzTX795hU9//GOcji94ePgWSqnYMjMOPewy4+tvvsbv//AF2rrGzWGP3XaLn3z6KXabDbz9E9zeHHA5n3B8fo7+xTsHow2sd2i1hr6qmpcV2Zubmxt0XYe7uzvsdruV3s/1FFqhti/LgufnZ4RAjJy6rrHdbqEUVT7l70qp2MY0DEO0b2JDnfcY+gHLQm1j0CLEm9ihwpaSwBygFr6iSO0uy2KhtYVSNoInQAo8hUUtSawMsCiKEofDAU3T4Kc//Slev36NV69e4Uc/+hGmacIf/vAHXC4X/Oaf/yueHt/jH/7h/8avf/0r3N3d4bPPP8d+v8ef/dmfoa5r/Ou//Ase3j2g61p0XQuEwCyM1GaTayzRNlIwSpLi9fjmuq65Ok2VXWlpoGQhxRqyV+Z5RlnM2SQjYLPpQIKyJlajhcmTWgYoUBddqXwoCmlnFPjss8+ouHBzQN008JDx5z6yCSVuEmb4PE2YqiEyhAqTioKS2FGL4RbeW77uCcPQc4Wc2eWLxdD3TLYgBn4SIReApWBhaA2l+tiOIb44BzPyhCMXipXkQzR2ZH222y32+33UDAKwEsUX/yd7Ue5vv9ujvq8xLwuGaYQI6coayzMAKJaQa9ntd2iaNiZH79+/j89Urn3DrXXJFiZturxoap3Fy/EF/+0Pf4ApChRlie12i8//5E/w9u1bfPXVV3j37h1Op1OcNFwUJbQuo4RBPiTg6fEZ3oV4xo/HI7cwUvuZc9KaA3RdF4Gm7XYLYbWFQEL1AGmzaaVXjK2u6+LflSLG+6xSHNVtOmx3O27VDTH28CEVc9mxIvg0LEKGp0iCLHti5smS8szk54WpJG2RHYP6ectlSnhT94XWOsaokqvIXpK/54BYngzLz+X2gRj9hthfQ0/s8lMPpWnK8Lws3D1QY7/d4/bulliiBXdqzDTsQ6GAgaE8UzPgUzCYpSjIEGZTJEMEITME0ucEAKWhiwCtiCmmQGtEpScXJ9QZzVpOKvtTre+3yHI7xdcQp71egU0SF8mgjvR9UAvfqkixzvkkTsifr5xZ8VGiOZTnanLepJAiQJTsxc1mg7Zt0bEcSd8PGKcZVd2g3ezRlwOGyQLzjH6YYRcHM1sABmVZM2M4aYHNI9nyaZ4wT1SsGfoB3gfUTcVneuH8XSZ+E4BVlAV2+z3aDQ11qBtq+VTMLK2aCkqryDyU/Z7vw7wokeez8qcAOBLfn8/n+Pd8j6/Bt6TtRGeFfqZpGhSbZjXlnFjTQ7R3uXxHyjNqmoAdcy2wfVq4/XuJDKt0plJLnOhByf3lun2Su8r+kOd0HZd/3+sHATbJK1ZbNCV8QKpwAVeUZKTDtkbMpd82+3+shRENVyMArsAKbVELNXX98KTCSKyYNAXIcICQV29iFU4RLbuuG8zzjNPlzHRBZgcZUMIbPhQjox2SKtxKM+0OiAFEeinGc1L1mm5PjAjhWvAq/gw9B65mq1S1v074ZDTkNStE7leYQ/KeudgcBTuII9zjtVytec5++aCaETy3yhE9Up55UYg+lVQAaeIgOEiJ+8gloxGrRlm12DmHoAwKRn6F5bMsBPRdLjTNoKpbtH0fjazsFXlmtFcyJxHBpQpllaiXsv/WzmBdwc4R5bjvM/YT7SHSN6HEIlWcyrKMgXU+TUWco9EariBWoGUNjetqlTgXAQ/zVw5IiQOKTi7bw7muV37uoiNDMtKi9SL3F+hArPaVPNPrymte8ZIx6vIztAfyylliq3jP7AwEiI6FMJuEnpEHOpA/PSAVbVlCeW85i8u84Hy+oCwrXC6XGCjTlKQgNbJ0r0jPj96XmCBKy8haAjKUnPOrA/QxcOb6dR1IyPfy6osA7d8H+OSf929xLP89L3HS+XXm4P31Prz+XUriZiwzTSQ8nc44Ho88NezygbZIAumzYQq8jjJVLuo1BBEKZUYThY8gMW0tNcgIXmodGIwCNAjIoQtVV9ec9ihhBGKDxcaKPk+IyRd9P/2O94j/nxhOMkWOK2hRFyWdAbDvVMjtPX3RY+LpciDNKQTNLS0lvKProOA7Z3sxswohbdGgot8wxoFYUwQGB+WgDfsqTQoNIZDO4VIUaMW2c4V0YBZLYLBMeSogCXgwzzPZN2vhhSVrSDtC0wViHAaEjDW8WAulqa0r2htOLrRaV+5zpsB1RTB/5TY0FRTWQqXXZ0zsqAwIEYYLMhsmz1MplwXCH/rsENasnrUNTNNo8spmWVa8/olRk0+8ads2ggo0jIXuTwotj4+PeHqkv4vwcXqfigPYiu1gTawf77HMC0yR7PbHqqaijSKxFjHlwupZyv3K+Ub2PMS2yyTcGGcx6zCEBLAAiKy3xJqVFod1NTmtfxqW0bYdmrbBEgWnHZVPs/eM8ZRJSV5+BnN7JEUWAhbY/1sCJcT/Ou/ifs/Xm8AFzfuYGRVXyWksCuL7v5/v82tAIGemyfXKWknyIgNRZC0oXiF2dVmWgAJc8FxcE6mLFFddJ2pyLvN1l7MrQLGI1V+fjevzKvpxi10ABRrmoxSqioDMihMvSmLzFngVAQj6K7VISWx07R4l+bXxOmXoUMndBxrWKmJtZOdWdIDk3r4PkMnZGAJiCAiQ4oz1GstFRkAuW0cBlGS9hMlelhUls1p/8CU2Mo+/r/fP6pl4v/qZ/M+8aC3XGDXWgA/2pjGsNWelXZb3j0Fcj4LzhqIoyXfFJdTQSC1rZPv5mk3qIqDPTXEb+ezA9fQArziPVIrzL2E5JT/rRfcr+4yc5RR3V/zd9d7F9f8DyVfI2iLA58sd5MLx0df3nfX834TRdM2ouY4nr98vZwcBybaSzRWSB7GbfQCcz3PK9fsoRa2vQAZqxdZzYn9ro6A0nbeqKlHXLFjPRZrIaOLuIllUpTKQPfP1+f19zAZ+LBa+Bl5ysCkXXL+OtcUXCNhUVgWaiuAZYwa27y7a/fxz5PyFEFAWpP+Y1jHFlXKur6fK0Tpd6dBd+WL53tpfXe+lD761ev1gwCYJNI/HI00I6prVgRdwodAGFfcIFmxYp3HErHQUDqfAuIhVXKVASb9S2G426BgxLQoDu1icLz2cdRjnGeMkYoV8XQC8s3BuYWPmCbU2BcpCoypqNBxszDypQfQVNtst7u7uMc8z6qbBvMxwHEymBiFOVgAUBR2OutCxzzYEj8ABvmgdlUWFxSYnICJrfT/CuYCmqVEU0noHGnk8zggIKNgxNW2DsixWG0cm0AhtnBIo+v6U9ctSO0rFn1Omz+Hquhgco0lviJwhH4CrbFkqZ2nTa9zd3fF1lBjHCeMw4vj8nPUFSwsUM9gy5F7eM4QQn6EAMPO84OX5BUtWfSkrh7Ki92iaJlailmXBd999h4eHB3z19beom3/NEH2DuumgtYmC1MpoGGZ/PT09UQ+tI50u6VmnoJMo70oBxqgYAAujiBD5C7Q2mCb6/0IbGE2tmL///W9RlRXevdvFYI6SghbDQODGPM+4nC/48ssv8fDuHTbbDbquZbPD4sDsEA+HA+q6jiKUl8slVooBJK2tosAwDHh8fMQwDKukxfs0GlqckwCDSqk43leqXvIAVgZ8pJ7qEIMQStpput4t3rx5DQD49ttv0Q8D7l+9Qt3QWN+AgJvbW9zf32O329O4cF1gWSymacaF9bUcDwWQCjJAYGgAsMw2Js0U3JEmjtIadd2iLEm/ZLE0DWKz2XJ1khK1YRzjWPTHRxr5/PJyjNXIoihw2O+w6Vrc39/j008/pb1kSPthHAYs1kKHwCm7sHY0qrKhxIiuPIKDf+yVVx3kmctZkxbI3/72t/ibv/kbVFWFv/7rv8ann34aK/jXtpmW7MPg4j/6ytsgrr+uP+cacCQ9PovvvnuH/+Pv/jNeXp5xOr6QUHjbomtaKBgc9nfw3uN0vCCEMwQwn7zFMlPgItWzic+gVC6VCnBGLDXpw5mKqMrGKNYXIxsOkCYdBaLS+qoxT8IgYAFuTzpJRleoKho8oRo6L3XVoSgLlEVNmgVOYQmOk17AWZqI6BjELIzhhIWnNrEYuPcedqH9q5UGlEFZVIBCnLIp7Kl5njGMI4zRcVrRYi9wlijsRUN2ryobWEWVx+AdiqKCNiUXb9jWcot2y9OydodDFPClMeILHp+fsSwOVUl7qtAaptCoqwqbruX9TcBaaQwaHoKgOLGL+hgy8MDwlLOuw+FwQNu26NlGvXr9BvvtFl/94Qt45zD2PR7fP9DvztS61vQj6qZFu7uBVxrKpGA0n1QmNjEf0S2V+tPpFMGEXF9kxyyD29tb3N3d4Xw+4+uvv8bxeARAvvZ8PmMcx1UwWhQFtwrUKKuK2c7EFBvHicFFAiWHYcIwjHyuqYX65eUlskWEfk8M2A77fR19WVEU+NnP7tF1HfuAGX1/wcPDA8UJDTFZHh7e4/n5iNPpiMfHJ/4MGmBxOV+wLDN0UeLP/pf/FYf9AXe396jqGu/ePUArhb4fobTB/nDAj3/yKccGJubtQOCEPTHKC1PANDSdqGkbQFF1e2bB5mkkjaxzT5qMLnhoFmk2rPU1LeT3vSLg0gWPcZ4wWxIGdoRgAt7Dsr7T8/GIL778AzOdepwvZ3z1zTd4//SE/X6P2/0eddtimCYAAZbBy5fTEef+TKL6LEZtnY3nMYSwZjaNwzrZAyJoJG2W2+0Wzrk4BXYYRzw8PEQwMDIrQiqazMsEaxdiS5gy+kAgMdsF/MqBfKliCwMrL6DKl4hnV1WF3Y40tyR+EZ3Euq5xf38fxbul6CUT/RKYwIWGwBxRTWe8aztsN1uczmccT2cURYG2bYmBfD5TYcFSZf/h4QGnE41Gr+oKZVnFe4gix1rBsjh3VVaAFiBrQVVXuH/1Cm3bYr8/0HTgZcHD4xNeXk44XXr0rPFljEFRVSjrCuM0YRhJS6ZqSFPtMgzQhcH7pyd4kD5YUVWAIl2wHHTutltsNhscjy84DjSIYHHMUmXx+HGa43Tt29vb+Lvee5zP56iZpAWIZEBrYRBemOcLM+djrB8IGEOg6chVVaEqS3RtC62IvTaOI56fnzBNY/w9Ap67GNvlAKMwWSSP897Hqa/ClJA9J/FHzmzKX9cJ78cSfwBxQIfU7DTrD8oQh3EeMS8zNDS23RaFLjGPMwIAx6OcjNLQVQXNrciKJxVLG5hSLGzNib5dbIxdg5LzTXECFKJdC4HbvDnG0SBWaxknKXouxisSFDeJBWa0DK3B6v5pYEj+vALZL0gxKURWJf0zg3FIYIKsm5zry+XCdr5ZsXOBNDjheDxGgKJt2/izotUUByTJVXHOJWddcoinpxf0/YhuCbBeYxhG9P3ExXHJyRTm2WGePYaBNOGamqZziqaz7J9+6LFYKmzUimKalhmDu90Gr97ck19hH1NWJekuc6eSTMD0CMRwL4CbmxsgBDw8PMR8Rvac+HXZm8Kaze2jMGOFQSy2K3/Gok2YF+eF+Spg0+1hi/2uw/PzM4SpK35fpqIKCC17VQoxcq5SS3MR12tZlsjIlBfl86mdOScR5HIDYrdztqsA/CF8eI6vXz8gsAlRa6Y0Bt7R5uF4BHLGjBxGHg2rlYZdHBR4xKC1MUnIExXD1Y66KtHUVXTW80wB2gLAjzx5x1B1hK6LmCei/eRdQFC06WWkZazsBBI6V1pDGY2u7XDY7zExVXiaJgzTjGVVcUjIo+GqalFWMEzfdm6JLBfa5FzZAVVTfMYuIrq85s2QIfEh0ZgJlAn8jNYVtbVuiDCYEIOfnGlCB6+EtCBKlT5P5EMIAFfq5ZAKLV42dGILceABoG7buF7WLnDWYpnmSItMrJ+sChioApEbVKUSeCCAk4iDRmRYF9CGprnQNVJLgfce44XE66BOAI/5lgB9sz2g4Cl23ntUdY1uW0Co+CEENG0Tq2wCgK2ZZesqNBkJOgfGsJaVtdBVzeKNFs/Pz0znH1GWJfb7PVMoE4jinMM4jTgej2SsDNGNwYG1UjT1SvSlRLRznmdorXG5XGKVTphPsoekcp2Dg/KZuXB4XnmWqoiATQQiJzoqOVJqExGjJs9aG0o0RPtDnJtoYghY17YN2q4jUXZTxKlHNEVKNC0KaE1tTrHaoCnZd6xZImdG2CJaMYBggADSmqlrup6G9bsABbtYbgkl0I10ZM6rPfPm9Svc3hw+mJyRO1CtuCWMAwcafFAiQVDrKsvHbWnaB+Ls80qGnIXvvvsOf//3f4+mafCXf/mXePPmzQdAUzzH+JBF9R995QGlnMdchyv//LyKmr6fAqZ/+qd/wsO7d7AL2am3n3yC6jUBgU3TwlqL52eaBiJUYe88bBA2Ib3vwgLJKite54wPevYCeORsgZy9SNXLwEimTAMJzI6KLXgKUeQ5ta6U7N8KBvup8oegOCcOsJZ1fKgmCw3yiwBPoKS/0FWFQD40EJgrlXtKxChomBdKjqFK6MgOpGKFVoZbUOm6vEZkYWkOiqXqGoMuz1pPRYXtdo+7+ztM00TDGvoeTy8nBG8jUxfcSpC37cj0WWPIzxvZ7/KMgaRjx/6lqmh6VFmWBN5PE7pug9dv3uByPqNpO9iFKuB2WRAcj7jnquo8z3HRZW9KgJZP47pmc+S277o6XNc1uq6LDKG+73E8HleCquJfcxaH1hoqJGDZhUDTu1h30JjEBpbrm6YJ4zhiHMcINuWiwiEEEhvntsm6pkTzRz/6FLe3t1GI+PHxEccjtVeLwOjlQonrl19+id/85jfxvXO7cjjscX9zgw0npVprXM6X6DuIBdRgvz9QO2BJrX/jSC01yzzD2qRb4TXbP9Z4kql0wj6kSV4W87LQhDmi+sXpYFAqMowAYkkRAMRAC8dgPgQoAYdDoIlzRxqFfTod0fdnnM9nDMMQwcyiKOIUVdHhcRMNkpAJjj6Q3qKsKYDYwibspPhvmW0V0EgprHRPRKPpcrnEqUF520yevBDTrwC13goDOrA9+TizSWKT77P3IYTo+6WNLG95E4ahJK3SWiUgg1yXcw51PfNUV06kwYwPrVGVNDX2FBBFceu6RpBz4qi4NS9zHP6itUZZVyjKItqi3E/GwrPWrMVJtqNg9uNms8HNzQ3quoF1Dn0/YBhHArZ4aIRmIEIbgzkOyKGJmiEELJaGKQzDiLoeYPl3ZB9KXANFo9ebtsHpfCIRe9mPrH/nfcAyU0zQdR2apomxrbQICWNXcSIpcZbkBHGClZ1h7RLXNIQAy2c3AnK8ps65yJCXAoH8TN4+ec0slBhXilmSmF6zRCQGzBmf+euauZMDT9ffC5ryH68odgOzvz2f+WmcMC0zFBRqtnve0T6wgYAgbRQUx4uS94lfpGnCVEpalgVBBdLSCtxNEWSKmvxJ06gLQ3mAnTlp14jTMyu2ed7yv3GhXHIzOQffxyxZf1sBQWy7j7ZA2v3o3xWUWbfMrbo/eJ1kbaVtTXyStM+Jf8v162SP5estdiIHmWRvDwP5JlPUKKqFc2+SunAsXQCwfrELDLRqzPWUYq64hxaaKhwZb5Q7ElhWo21reNC0d+aiEQs0eNjBsii4tFwHZlcb1LxfpRiUs5dyRpLWOvq/3IYKAUR+ToAgYwwJ/3Px+RpsSvEEfeb+sMftYQfvPZ6eHmFtGuSVxyOr4pT3mOf19yWmBFS8DlmTZOfTBM+8cCE+4dpX5JI3H/MT3/f6wYBNSqmY+DZ1FR++bPKyXI8dlNsLQVJOoCpLBA5MROvJ2lS5kQMgVUqZAiSBnrOOdJ+cI3RLpQrqdbVdgtB8gWjChEeh+VAsC46nE6GwlwsFRaz9EpheqTX19pIgK+gzAcDTVLZxGjFN5PS0NjEploBR8ahDZx1GRlURqPqNQM/FsW4VBYa0oUmbJLFchEpBxprGd5MBQQQZxLiQo/BZ25IAVrKWQn3nUcbCCFJEg6Z/M6vqkxg3erYESNQ1IcEQQImdV16Nk7G+CkqGRGXrHaDDWuslp8wDRK+Nuld8aKqqTevpPebFYZoTYOJ9QOscUJQRrS6rCg1X5SPqbDSGccT9/T0bGrMy6oJ2IwTc3d3i009/hLqu8fbtJxGcAgAnoJPWsYXQGEr0QvA81p2TXDY8RpNx2+/3uDnc4Ob2ZgXaKk0AbF59Em0lSQ4Ebc8R+u12C2vtWlskS8jyapQY3JxhIw4oes38T2ETZsa7LEs0dcugSyZOqkUUl6nwPNVFa5oGuN/tcdgfkPTJSLepLEqaHBjomvpxQMho6loZDtJBbZTaoO02KIoSm66G4VaQtu1QV8TsSwGVjtoVsueKosDNzc0HE1WmaQJCQM3nQr5vGKhgxIKB2jKeqYBU/c6f1bXBzynq8t65dsU8zzidTvj973+Ptm1xOp0I6M+A348lJPLKbfG/95WzruR6Zc/IK99b0gMv+7EwIrDa4LC/gV1snH656bZomo6F5rmFwdGZbgRsYqHd/PlXBSU1ivdjDgrHewcz4iTQQ2DNBgryMpgMJLydEipaB59as11qkQ5QFHjZAOcBrem+7ezgXIDWJTGAwGPFeT2NJpZuCIgtYk4AXuexWLr/caYq9TTbmDyUZYlpnuGsh9HEZKL3q+A92XBlDKA0nCewrGlaZg/mrRQ0EVRscVnV0Jldt9YheMAomnhS1TW8JtsujI6qLHF7c+Bgn0AmSTKDZwYEB8aFMdhtN6irAnZ5E5nOWhHT6Jtvv6WfNQZDf8HDu3eYxgmAwu5wg8CJplYaSgs7rAB8iBNNX716FfeaaKU453C50LCP7XYbk2qZxJSD88LSvbm5iSyQuHcZ6BeWgoBTch423Sa1MUKKTGnqYK7nQWfExtZpay3/exqCQAyGGl3XYr/fk08uSCdP/PvIybX3SctFmL59P2AaR7Rth5/97C9Is/HlBVCKNAq7Dq9fv8Ld/R3ePzzgt//yr5C28LIs8bOf/eDHStEAACAASURBVAVevXoF6yz6fuBCGQEqMkk1tX+kFoBhGNnWcHGKRXcLBioCgLIoMM8znp+f8cUXX0Sf0Pc9uq6Ddz4yOIAUrAtIIsG+MHZubm7wk5/8BDSNbsTpdMRXX30ZY1GZbFtWBaxd8PJyhPM2ClcL2OS8p0l32SvFIQZt00afVxiKAcUux+l7IHD49evX0fe+e/eQihXMqVRK4eXlBdTyRa2k2pjItHQxhl0XIQGsfPZ1cp/bvhBS2/44jpEFXdd1BDjHcYxxhLz3x4ojAvhKO5nm869NmoRlNPHgvXORUXXpByAA58sZwzji/fv3OJ/PKCuaJCjFnaqqEADMdonAkIDTAZT866JAt93y1NgCPgDTPOPp6QnGFLGwFQJQVTRZWNqbUnVfKvtJBkFAtZ4Zd8/PL3h5eQGAOMVLco9xJEAnj7cCAxDwgePgGvv9PsZ28zzjm2++oSlXC4kmy7POQXHRVRKtqDyRHPs+gl9aa6jtNgrdi95VEjmX0e0jHh8fEQIx3EII2O12FG/t99jtdhiGIbLY2rbFPM+4u7uLbfoCaAmTPt9nYgPlz2tw6WPf85YkL+YlgR6WdTjHiQrLQKBCRNug6Tr4ELAII4nzvMUusI4lJpYZztFUcaUUT8f2cNYROATEwjqYbSN2iw4Xgzz8PYkXwECiSCWI40/1rBDP5rXNoKKKAr6HQaKUgqLEkOBkJaQBaj8jlqNZnXHJqa7PZyzgq7TX6Z7JhuTTBYX9Jeua5w5iH2QPDX2PcZqhdImgCppIN40UG7C/rIqCtK6U4vsNxK4Dok6zgGvLMqK/HOnzC9rv06ih4IgFZpiUoClWG8YBi13QX0j3rixL1E0NFQBvPcUXGXNMctQ8d/y+Im8e7xtj4rmo6xq73S7mTzkoK3ZCcqRUVE2ay8TS2jFztI9nUXxW0zTx75T7j6t2bWItFREcFBuVA4750KQotO7T5PBcp+raH/z3FKB/QGATIthUGoPCkECy0NgV0+TiDWaHRf6UB0W9uaJzkQ6AgE0SkBbMFklgE/dDhlQFMcV6w0UAIAObJFESbQAwLXjhgExGty7WxqRCM6pqONHJFVyoOuxJ/HEYuWI5RbDJZ9MVtNZxnDRR6S2886iqJRoRooBKXz+xviQgU0pBB6l2ge+DxjN4bt+YZ6ogiZOQ+xXRTnqFDGxScaNTMm6icZI2OtnMAh7kTAzHAXfTDBSIKqJYA6mqnA4LjXdGAJRXEcBTSq0o5iuDkRnzNMaeKxtaoyybdOBCwPky4HTuo5i5Ui5WM2Xka8FVdUmupnmGdRaGExUBXyTgFWPQNA0KY7Asd5jnCZvNBp9//nkMjrXWOD5Te1B80iFgYUCLxHdtTHzjKEoGkpZ5xs3NDW5vb2NCRqtFlE0R3BZDIsBTDjBKNaPrOhr5HALu7u7ieZKgXaoM10GDVLKipkF2jnzk6+S2QKWzqkk82Ogirk/s1VaUYAurT5hZu90e+8MFh8NNrOqSI6hQFBVCWAAsHMQOcNZGtkdZGpSmgLUOl/4CpQyqukVZamw2W2y2W2hNbA/SISmZSUXsmGWx8awIZXW32632LsDjlAE42wAmaVIZRYKS2ohosaDBCsjOznWL3HWikDuCCGRlZ02m5v3ud79jOv+RRLNZ8D+vaFy/rt//3/vKNaPkfYXdkr+ksvb4+Ih5nlfCk03Toq4aXmsSVHbWouu2aOo2BibOeWhlYuJNwZGFXWbGOzk0bEG2JIKggMBH8Xkw+OGlIu0DbCBwPzENNGgaXQFdFCsbFgWELemvyVAIhIBl8VDwCEzXD94DrLukTIFCcztcYI0Ro3lkOOna2Vghp/Zv6xZqq1hmnM8XQAHTRL6vYXFXqhQ6FEWAVsRkqcoGCDoWXaAUVx4JbApI4CWJixfJP4RA7e9aw/mAaRIxYmJDbbc7WOvQTzNm6+g5KaCuStxwW68wWdq64WIPs2oV6QBVVQGtA7xrYDSxiOdpwPn4gmka8d2338IuM4wCLucTxn7ANNFaHw43tNcYsCdmFwVhwQcUWuP29g5v3qRgWcCmHPS8ubmJ+1DAd4kzJDG85fZe0TsSWyqBothssZXOkRh4t9kAULC89pQscBUyAtAMNlkuoo0TiwsTs0ybxO69ubnFbrtDXdPoZ6nYa60zsImEVyl+qJJdtw79hVhPt7e3+NOf/inGccQ333wDrTV+/vOf49WrV/jxT36Mt28/wf/5X/4L/uH/+gdM00TtjRuNv/iL/w0///nP8c///E/4xS/+ATOzJrTWeP36FZqmjrGTUpoB/4BxmEDjr3ssdsFht8d+t2NmVs37kJ7f09MTV5WpzX+aptgWSrIBSbMiZ1fkmj91XeP29hY/+clPOAaweHl5xi9/+Y84n89QStEADQ14X2NZbGwn3Gy3qOqKW5csrLMYr6rfOVBe1dSuQq3RmnSsuJ1eAn1K7Gq8efMJpmnEH774Ak9PT1TZX2aUZYkts8hyO5pXvMl2CTC5LiLkjIdc++djbBIBGZZlwfl8jkK3VUX3LAK0uZ/5GHAlBcXklxOzJm/vlPYjZx0W28c2S+c8np6fcb6cWaPvhLaj6XFa08S6qqqohXIh+7dIUUP8GYNNm+0Ob968gXMeL6czlnnBMD5FHylJYFXVxKzje0iDhoQR4FdJ3zyTvb1cLnh5fsHL80tsz6IzRzH5OI4RnLlcLqt12TQtatY8kzZKkTOQ1t1lGuM+kMRT7lGe5zgOq/zHOYcLt/0KcAAk0fJhGCLYJOtuuWBNBeGkm1PXNW5ubnA4HLDb7aKO2zAMUZ5hu93GIpJSKu5x+Zx8/10DH3+MPaGUwhQojopaoo6Kji742MGAQGDTdrPB/uZA7EUWY5fq6/lyRj84+EBSCQCwzGmaGDvuxEICx0cu05NUQEriBGYKKXILiK1g9JXdTEr+IktIznSMlX0qFn/sJcwnj6wFUXFbIE/FlWK/5NLyWdfnU94vtyHyb9Iidg02CWstB5tkTUMIuPQ0FdjDwHmNaV64NSx1zBCrsYw5sHcOM7f0ahU4Nma/tYy4nF/IvtcFQnAoSgXAwRQGRUlyO1pRLjcMNJn7fD7Hdt+N3xCDGgQkG2MiS02ef359+ZrksXauuyiArcQHd3d30d/nvy+tyjnYRJNlNWQCcVVR9wqdlzH65GVZ0DQN9vt9tLnLYmEXh2XJB8UU7B8TuCS+Xb4kt8jPfM5GXeEuH33924rOPxywCSKcRjQbeqgpmXIujeikMboKQUuLxYfq+vSAAK2oDU7FRI1YQEHTYXfWfVQUNgRqXFHZtQlwTS+hmkkiksAmSbqDUghCeeOkAVytkUAvQMEYpvpJ8OhcDK7l8ySgFwZRCGJcUhsfgU+U9Mrv0X1Q8Kmw7n8WMfEEpCEGpyI06TwFmzK6NbU5pYAisSzSagZmSiXWEz1vnkTJP6viZ+Vi41KdkYkrBQcdOVsjZ1bIe1/v+RzUkL1RVhVMBh7WTY1aKMpFwc+T0d0gjLWAeaE1lVYLMbjxeYbU3ypGBAgoPE02lOeUTy4kwyN/VzHpSIwhSxReu1wddBEp9DFozp0TjQflqReZsXfWw4UFohom309Jo4nvlwNIOfskb3fKQY+cbXZtlD4ALbIz5gK1i8UqENNlA0hQ0IfAejIFmq6NiaHsRWtdao3hL9Fq6ocBl77HNE6RjSdtKJbZHstiGdxk4eKgoGDiz1OvuLSiOkrGAuDdhVhgSqFuGmx3+6iBQ8AH/X5dV3j9+jV2ux1ev36Nu9ubmHiWZRF78GPfu/dA8Dz9q6MDySV/pYu4ZrmzuA7qrwOJ/MzkZ0HeK086PhbkfczR/EeBpvw98v0he0q+T9oRzxiGAV999RX6vo/JSNsQ0+7l+Rmn8xkjJ9vLstBoY7FhvI/7nrQxZIrXMk+YpzFWvBFCHGiQxmVjPQGG968EjgJIew4WxGYsMwE42hiYggFzDmQEYHXWwrH+0szBrwSjYs4KQ+AnFOKYCw25LgKDROA0BJA2ifdxcsu8TAR82wXDSLotNVeZq8jwIhtVNy0CyJ/Qc7SxCCLtbkAys2Q3WMycbcfIAZHcY13XqKuK9IYsgfTTPMN5h3Gms1xVFaq6hp1nfPLmDbyzMNsNaWxME/rLBRMzPYzWmKcRwRewywTvWCAZ5M/meSbQ5dJjWWam7lPS0HYdClNg27XUEqPINw3DiGGcUHPbBBiIAUj/Q8HB1Tw8QLy3Is2rpuFWWvbJ0ZfZXL+QWr+cJdZxVVbwrSc9x2nCNE4IPqCqa4j+lzB9pmnELOugwALJBbVrzcS68CFAgQCopmkIfL254dZKKp137QZ13YDaLSjmmSZpew4YioH3QUCAQtvK1KuSYxXDGjy72D58d39PyUhZsjamikBP3bTEILAW0zzz86pQ1w3atiMw/9JDa4X7V/fQ2gBG0V7ixNM6i2EcYZcFLy/PmKYRGswGVgoN0/9p4msqkBhTUMLJdkSqtmudiXVLSe6fBCxQCliWGX0/xHaR+D7aoCwrLNzKNY40jbaqK7YBxDIkDarEfCCf4uFVmgAl7CYBE4Qpk6YDFXBui6oqCSC+XACQD06C2bTWIYj4LjGfikJiRsmEHeLwgCu7/33sBiAlp1Lllj/zwsSa6bj2L/lXnjBJYiNJLYGgyT8YY4idHkiEmRglqe04th+bJORv+CtwEdmy1mrAOmak+0MExtumwWItjscTFTCzZyQtN8452EVxIrsWvc6Tc0nQJT4K3GpFQHn6kjZVmhYpfkbYe2lClLCOJEYULay5KmGXOe5LEgheMxBEoDzGC9mez69ZAAQBD/N2KYolUkFZfqdtW+x2O2w2m9jud91mJe298v8yXe8a4LwGm/Iz+WHRi68lrqcDuIBaVgYmaEAFOAcoFUDTVjyBFVpBmSp1mgHoBwXvGai7+iyVPpHtPBV5KY716XjTJyAoH2NGhMR6FoYu/T7H/VCRQZ3d7OpPygXJL0SToWQ6XvpwxTmqTL9TnE8btgcCNuU5UX6+PxaPXYOOsmfy2FPOvgCtAk6KHpT4wGVxsM7DOmCayDb2zFQkkEXBWg2jwX7dEpmA8ymjKU8wDDbBO3QtSVLUFWkoB2+xzAHOaThHjGVTGirKM9g0DD3GoY/sZmMM6qIm/S8kuyNsLSlE5O3zkjdVVRXvWb4nz0wYlumcC9Cciu/SKZSKxoIBWFirIyEkB4Dy31vnt6Kjm2+l9SRQWdOcvbTGEz5kEa7219X3ZW3/La8fBNgUwRelUUiVwFksSzJMZWEAb2C5j1kp6j4nx68ikJIW1QDBc4AmLB2iyy2ex/lpYgEJG8h7RwZBrEdArLoaTeoYyWmS2LNzCgADYtbHB++9h7IWinusnXVZu470SFISUSleBkNJtlTeAOoxRhAnVQMQdhI9NQowW2bN1OneIcEvbY6KhRO1FlaYQppQlDasvL+M6LaWq0PzQuDfQlXmoq5QlRUdimC5ms5BTEzQGGjyVFGTNaNro890TqpcqZ9faKvjOKGqJpRFAVRp2l2eVMf3Il/CgGBYGUcgGc3NRlT/aR3qpkVZMcW3Io0Xen5Ji6QoKyhdRMojoLiFItFJida5xIqTcw6dbVHVFYNPxMA6n88rmuOma9E0NWSqjdCkhdXnnGXRwRQQehaQJFbTFANhQrtr1HXFdEkS2IYS3a0JYz8glmhUWgfRhUhApI/tphIcSvVCGAzXlfyPVUiugRFJzoURsjCTEEoovwXKkhkRPI778fkZ/TCiKAt0mw2GccK8WMyzxTSS+OU4zZjmBcM44XwhvaT3j0949+4B5/MJ87zg5nCDg7SQRPbWROKfLBRdVxa29hFcMoZBLx8wjhOWxXFrxQlFUeDwcuTq/RZFWaFtO3z22edxzzVNgz//8z/Ffr/Hm9evcHPYRyellYLhtRkGHmk6TVjmCZvtBkVF7XMSmJQVJXN5wC57Mu8RF5qsnOnr8yJ2MgUCITrSvAL5/9VLHCKAlcaM9x7Pz8/43e9+h5eXF/z617+OwBONMi/R8J41HAA9Pz9hHKl1oS4rFoOkc0Tjp5MN6S8XXE6nWGEW+0W+RFh0BEKLI5dEICZFUoAQgChQQHm59MRGlTYRTUMlqAhB920XGl3unMM0U4XPsj6IC2Rnt5sdbg4Htk80vUhsgWjOSLQQQoDlZGIYBthlwTCOGEYGEjyB16ZMAZEUDEIIqJsGbz55h4Kr26SXR6BsCIiBjwiME9CksxbAJbaYSXLh+Xn4QJpDCmA9RNExCdhsOmy2W3z2+ed4dXdLQwvKH6EyGv35iGnscbmcMfU9vF1wOr6gKAyctQjeRSasWyzO5wv6ywXv3z9imkbc39yirRvsdzvc3d1hs+nw6Y/eUlDGwf/j0xNeXo7Y7Q9UrIk6WTqKgNZ1E4snigVXd1tqUa7KGt6DBcvJ14/jDFM48pcesNZjmhaEoLDZ7NC2G7x+/QmBTFWD7XYfEzGl+Zw7RxMVL30cOkK2q0Y9V+iYmSZM56ah/3/16hX+03/639HycApjEpPi6ekRX3/zFcZhjJMapWjWNC2/R4n7u3uOKYTlS2uljY56e/evX/N6GgYmFUxRoW467A+3UNrg4eEdLOtYdh21dcvQlHcPD1BK4dMffwZT1DCGkjkqHirYweHl+Yi+v+Crr77C6XSEtR5t26HbKGx3GtqUaJsu2kJqtzLx/AogmoMRkghI4iAMGwCxoHQ6neC9Q99f8PLywtpNNJFWNN+6rsU4Dnj37h1OpxO6zQZlVaKqqWUxhAAbUlWcbDAVAxU8nJZEAoBWEbwUsECS+RDojMzzjOenJ0zjiL6nRITuSdqlHJQSdnO5YomSVlzg1iUb/UMCuFKynyeRsXCaxQnXviFvzwAQn69cUw74y9c8z1GeQq4h1/eR+5dJfxI3CLu/buo4JGccR1Q1FQ2bpkbd1KiaGuf+ElmxidmfimyOkAiYktjJVd1imiZ8990DjscjmqZGVZURgAkhYJ4WOOvRXrEcKFlLYr0ytZGKSB7B09pvNl0UTt9ut2jbDlVVMwhZILEbDJqmRcusJmFHVBXFk2/fkg2bpxF2mWNLTtO0UboidlxYFwugIVBhRIoickakq0RGoyuV9HlkzcjNUJwkujN3d3d4+/ZtHIDw9PQUGU3iy0+nE5qmiZ0B+cCSfO9dxx75HgTySV8M8rC/Fd0ipT1Ko9EUxBgdJ4XFWpwuAd4vQHDQitrPu6amHEVTkeZ0fiYmUyw2kKXP4ycXRL/XwS4TrTlS8TwEAF5BByp0Bcd+GZ4KlPBwIRWelVI0jEL+Uyr6ccXAFgAEapQlrkLINCtB7012i4IRuSe6ZmIzFSW1xsvnyLPNX6uidATpVYxhhQQg1309kVrOu6ztMAz47rvvVt8zpoLSBos9YVl8LMxorbFpG5II8Q7eznB2gbNTZDYheMrBFaBlop9WeH27hzY66uOO04hhWuLCKG1Q1BW8d3h5eo9+HChGGHpiaHtHHQpbA12mHKuqKmw2m5UuoQBHeacTkFh+wkaVZyYAbM7sExsszL6+72MepZj+ZozBPAEqrCfPSo4nvyet+7JWxhguYid9XFq3Kf5MAs4T2LTqcsrsr+yT64L2v/f1gwCb4ouNtojzChiicF0VIYQaSkHpvBf9wyqKnNhrpJw+TxKFHLWWNj0JeojebLQmppIkZ9miJCV2FT+PbofQnjXzQKo+H3sAXLHOkkP5eWnXEQZN+mwSpfPc1pMMtoDeUr0wq/eO1wdibkCCnpB+j+5VgfqP6ZopQdUpaFIkUqty/igydpQj5F/xeunrO766FgFzokaNBBpuDVik9ZVnnipi+fPPGTcBgYV71cqxrRH+lFTyBXKrnYH3LJKY/b4camhFbSMZLV/uT9ZamE2iW0SVB7qyeU6TDcZxhNYqJnxVUXLFihI8YSKIkRJjR38viMHjHK9GEh+3i+WKXRCSQqq8XRkt+R0xdvm9XoNN11VNecn7CmtnZQCdjB933LJKzy8AiDTzhVuMZmp9df8PdW+2JcmRXAleXWxx99hzw74VqsjhSxfnlfwQPvKPZ3rOVHX3NAmCLCCBzETG4pstus2DiKiqeUTW1BzWA9pwAhEZ4W5upqYqKnLlypUgDEUFpepsLBnjvOGDWB8C0Hadh9YWXSstuA2XzQXMa4eGx09rhbbp0LUdUgLaljbhjhlLUsZnWbfJcn15mS/klJ6dnVXGv8sZPwnupTOj2Jl6DQjI2HYtg3ikv5YSWLy5ZF/q7/V8Fye/FqAV5/0UcOp7Ckg/NBeeynZ9KPPx//eoAbAPAZR1ZlmEYsXBMboAx23bISGh71YASBC0bVrYGHLGzbBwp+YGE33Xo2tJeHcaRwqm6WogOl9aSzAmOjHVhkwXziaPwSbOaJLGzQzNQvzqEdiUMiMvBGJ/RNbpI3CGgquzzQaXFxfQUoq8AJtiycTyHhhYC2oaqSOVCEbTuHJwxbpvNeAYY0TX93jG+iWiGVOv8eBpnbZtx11iac1EtvXOe6zX60yjr1mSGWxSokME1pahssZ+tcL5Zo2+I7C8EX0xHpMYYnHsY0SKvOdUwB/ZU96ThD5/MpdS9uGl+QVpFwobSToZnWbdxd4gldbcNdMgnzuWz1NBLeazzGUpW5EyOrEPsncgKiQ4+EDXkxmPSjFoRPZ/t9tnjT3Zs2kvcdAMWFHAqDFNe+4KdsD2YcsswKFyconFtBinVBzp2taKL5XbUwsDNIE7AdM6HYbmJFCUMsgG1pbOYQJy1+WSEF8pl2lKm2vKVpekGHdwMhbGBJC/U/ym04y9HLWNqTPTcq2yV8n6Ec2jU59BkhKOy7WUVtDGE1iI0hlK3pt9NxCrQeyJ1hEijUDNUXQ1r4TRA/Qr0twiYIpK8FfMyCulGDaPaSmjQ05S1npVMofrhEW9D9QlJHWgItdV7wGyFuosvhyZvaINoiFR/5yOlPE4CWbk88jWG/LfDM3R1bzK9yDd1PKzlmcDbphQ+/285yae4PKsRbxeXnIaUJY5zyBHLHOlfg3tHTaPRe3Ly/2f6hKeHrLG6oQSMfbMwrbGWEABAQlCDAt7B1Did+GXKUU6sZWNk3OUZ8qNGYQ5ZiXJVQSC6/Jf+XwBHmptulMGmATuMldr1kgZx2XTkNP5SN3cuKpFcZKHu1E2DAgorWCcg1LMFHEO8zzBpgBleYz5XDGE/Lmyr+dyKrZFlGtISNIFD0UYnBLAHIXIuFf/p+MxBUTmf97H1OM4ZnGkxGSBhEcvLAsKEkuKf6mq+0HCo3V26uvVPt5TTLPTqoZ6jstrBcQX/6FtFYwFaWvOAl4mpKjhvQZg4RSQokf0c2Yue0f6poZBJhp3AmXRtdBRY9Y0r8bxiElAQ9Y+alNASBHSbCqTSiI996ifWDOqJG5Pbb7cn+xdQAHr6jVf7/31uAloVGsH1nsuIDI9RCgoftTjipPl+6W6qfahyb8Eig7UozmoBKysf/c4Nj6NNapJ+eR5T49fEdhEXT08O98xegaVCORg3Abz7DAO1Ka5sQaApSBBcavJBBgdKHvKgmyyuE4D4sWAMgMnRaBpCA3WRsM0JGJqjS3CsQCzWrpy9QlwmrJ/eaNVBGxIFjkl0t1QitotFpYHGQ6ji3ETgy6octeRQ+59xGE/5Ov2PqLvN2hTwuUFsSa8l1adLosmN02LIn5G9xuZYiqtIQUUojae5A5pZWCtQtfz4oncMlQXoClFBRUjYmBwIyRAJUxxhp89oJLs8VXNMBnDWiCcss0k0EzUyuLIE0gzLzIj5ZmaEmRUBlO0E+Qg59UuMhYCAGljEGJE07S4uFjD2gaOF3nbNgwuNJxpo7kYE7XIvL+/p3blrPYvG22/InS7bqH6/v17DOOAYTgihoDLy0tsuNWs1Dhvtw9QCrkrXN9SKYq1Bl3PwACXZo7jWGUZSLtpmtaIoQgrH4+HrPEwDlS6IAGPlB3V3WXEERDtIWFciWM/zzN++eWXRWajdnCLuGzphiavq7/HlLJgPlHfCYhpuCRiu93RGvEJq97Bh4SuW6PvVtQ1xnmsVhtY28KYhuMxg6bpcXZ2ia+++g1ubl7QhhIjWs74NqxXg5QWGmRA6XZpjEHbdNxZUrISZFZpHvQw1qDv17BcOte2LW5uqCREMpzWklA7lULQ2u26BkoRm842lm0EfVEnpHtoq6mrSgi4v7+H9wHXN8+w2RSBfRnj2jmQbKKIBcsmpLXO5Xsxklba5eUlfve73+VszXa7zbbrKe0k2dhq0cD/zCGZmDrbXH9OCAQUvXr1Cjc3N7i5ucl6D85RN5JxmogNoTQxiqRb4WqVBRkFJGq4RGWzoWwyAbAsKjo7UFap1PkrZjaJGDOJ88sekj05upmchaSAPwYOELNQpVq2LU5ACjGX4uWAVwJ4VcYoa8q10nYXILCkZD8z4MVAljggfnbws4PSwigqPqqMtzgutmmwvrigkrjZ5fknLERh0LSd6CfSZ3kf4Pgcsp5KKbQ4RNQiXsYRAJW6zY5L/SZcXl7iq6++onJUZhQcjgcM4wjEgJV0kdWGxMBtB6Vozs9ABnq11ri+umHBe2K3HYcRSj1gnKjkxBoLz6yDu7t7EnlOGlfPXuBwPHIr9AtQx9o5N4IAyGYK62Kz2SyCo9PS41PKe9tSWa3WOr9XhJWl+5P3HhOPmZsJKJ9YB7AwDxR++OFHUOlByGvaGI0vvrjDRx99jIuLC1xcXMBagz/+8b/h+++/x+3tLV6//hECjIsd6PsC4oomT4x1G/MzYj111Bp7HCe8ffcOgcsgbWPxu9/+LW5unuHm5hmur2+4TILawx8PBL4maPTdGtdXN/jmm99CAbi+usFqtcbxQIGCtRYt+ywvnr9g7bsOx+MRL168xNnZJbSm1tneky5i3/c4Pz8DCeVTUCx2kNgwpXOSlCII60X23fqZ7fd7jOOIX355Akru8wAAIABJREFUm9nIwsSQeVB3lauTPlo7KKUJ1KBUKfl4iTssWQPD4LME3tSh1HCZITF06q6CxyM1nfj0k8/wzVffwLImSWJZCAFOgKXWEK1zYiUKg/bUvop/IoFS1jBdlHeUfUf8plMGlHRYEuZX7WfnzwCBWZKXbNsWraGyt8aQlhUSldFYzUCa1rlszXJXsZvjDcZpwu3tbenUpk0OYOnaYmnGo4sNJn8/ASnieDjg3bt3uLm5wccffcIsxn/LAEj9JawEAYxpznBXOmvydUi56YqZh6WjYE+dpk0DampS2CF10C6Aw/6wx24bMYwkzC12xnuPt2/fEgDFYEvWyNEawzBkiQcA6FoSGK+D4M1mgxRj7mYsdk0aKNE4EKuq+Hm0exhj8r0Jc0n8vP1+j4uLi2wbSVagdHCUtSPzo/Y3ahDu1FesQWt6ATFdri4v0PctfHAI3sE2DfrVGs45vP3lHQ6HA37++TX2ux1m53AYDjDWkkQBgGEaKfEJajBVbeUc+StYTX6D1QnJSnKnBxgsBhTczLFGUkAU1jHZAK0MDHeOlfUgwKrROlf0iCB+fk0Vr9X7tiyexdZfvVRlgEkzqLtEEmrw4CkQ5bSsVZ6Z2A1h5cheJP6lvFbiOWmUI8muszOKY+eJ4lK5YK2AYxyhFbALgdjKboabuPs4axtotqazm+DdzMzPIoECBZLNmCcYa6m8uu1wdnEBpTSGeYL3AToltNbCKIUUIqLyrFWY0No2+/+ShJX9tkyLUg0g41QTIQDkhLzYzHr8pIOmrLUaxBeSxzCM2PsJ0niABPXnvI/Jepc4Tp7BZn0GY0gGgV5zxPE4ZJtVJ47qaR5j0Xes54m8tk7GyOctlslfcPyKwKaSFayzZrVzDRRNBF2J5ipUyHxMEMUI6gBQzl9Q4+U58+cn+p8sdGm3mJSC0QmpQvlkA6L3nV7r46MsaJ2z4bmbUaJSuZQEKS+GomSSuGNJTJyNZOMQOUBKKbMtoAAVSB+ASvwk4/v4fgko5xI3rfLv6QLlOpDrWZNezqzMbhKGRkI1MSPTPAvjSbNBNUY9msxKaUAnGMkoSKYqUgvhIGUKJ+V0+aJPxp7Gt0bwAW2WRrbOcJHzFTNgErIDwKUzVYZnmjyXS4y5G0ofE33nwEQysnIfkUvtKFN1RPCBdHtAIsgUxBiIHZDNX4SEqSSOSlGklK44uYprfAuzSmrzybmeObjySKnUbYvjLfNYNpiakXTKbJJyDynBkGyWOK/y/CXgrJ3fnK0S1pN0Z+T/tKZ5J+MUIzGbLLP6RLtMutEZXhMl001z0toGm83ZAnRXoPUsIC7AYsepMAM0OwLGWO4WpOBDaYudEpWbXFxccuecLmfdU0IufZDufjSXCMAQVmKINs87QdITpHSVnT1HzQQoYOJ22a7QmJ+iu8r4eu9zMFXbJtFTEOZG13V49uxZdvRq0VxZk2UtLRka8rv/zCGbLFA6f9QBjGzo6zWVyQgwJc6wALQpJSDSmui7Dt753CFM2FsCbFlDnULkXPnLUVBFJW/FXtZgU529kmSC2HIepfru6EuBWgzKz2VAwdz6hZOSx1QhO4lKUZZOt5UzjpSrYR99ZPWa6Dyi85TltWxZU+K5VTQGnXPQ1qI/21CLeOeJVVQFGiEWOrnQsFNCbj8vwL0EerT2GWxKJF5eg02H/R7zNONwPOBw2GO9XuPZzU0O7GJKGMcBSLQuu0pcmTrmEYNJbDd1l+lzMCVlJ9JtNERiVM6zQzBkV2IopcjzNJfW7G2bgzAJyGstEnGs6xbGdWa3ZHjxaD4TsEBlb0qBg/MWSmkO8EUbLgHK5BIIseVUEoPcHU2ekfgkl5db7PeHDFQaY/D+/Xu8fv0ad3d3ePPmbQaZpFwgxjZfK7F4WEiYyyKFVaS1RmxZk2NPTU9WPWnTASoLWhPL2vLc8oWhlZCTX2ebc0AVUVUBSQsLTBOobxpsNhPZ5NUK1JgkMcMrZD+JPrvJzrPsV/QcHtuW+rNk/QmQIjZUuvQB6ZHNFQCnQpoX5wcUkpLSJbmnQLZeaaRQdUplbSWtyN4IyCmyAlLOsVqtccXg4GrdU4nUMFXXkTKIVu4xLRh7EvRI4kDmowQgEgiJXaj9JXnNKdukLqkXUE4Oub8UE1LLmnycCBbNFLNg2TC7Qhd2QdO20IaSO1RSSuW8IkKfkDJjKe9Pi70Gj1P4iZjEAsC1XVvYDFrhqX02xggoVLpcEc67fN464JZzLViSHPzLHDtlVBT7r3IyBHvkUmEZexEVbyw1U8psCU/C9LWfYKoGPcQWjRRop7L2EoDZudIkKcaKGWkY7KENRsqEJIEuQbO1NjdFUUplP0iSrzJ+4nvIvDhlNsk4iM94yt6gF0RYrXF5cY71egXnZ3g/o2la9OsNrd2JJFhkPwmBfFebIuxMunfjMMJ5h67v0bQtb8uUUBfxb9FFk+tSKB0gc9AuGFQEV4oAURLrJ4CO+H2nQI9+InhUSlVspRN34+RIFdOqnODRixa/e4rBcgo41Gyl08SKzN9T3+jULpANFEYR6TFJzJgSNQGICgjzjBgclYZOQxUrAkrApnHANI0UOyXPnWSpKuIwEMhimga2adG2jmUQNDzbQvEnFEDXE6gplaxLuf9TduZiGDNOUNj18vvaDye2Fc3DupOn+LAlQVFL9NCcF2F0aoLlnrS3Yp/lWQmrkkgntPeJvyI24amZc3o8BUSe3v+fe/9Tx68HbErI7XCJIkmLnLSGCGjRWjHd/AybzZr1T6hURUFhmkbSRkpUL5segU0A1a6XfwOl/Ea6Fk3TDOfnzDyAwiPhWOccodhJ6nhTrkNVvKlpY2CapnoUNTpKpWEhigg6CcdmMEohU6R9IFFVcjAdhmHKC4GciMTXJuCQQVRE6xQ9KgWVM/XifCWk8h4tG0mJgeWaid5NDp4E5uK80XsMAA1jZKEwfZLLJMSJVAxaKaVgDZdN5Zi7gHtayjwy0Ha6IS/BuwWKXxvHmE4cDkGQK+owDD2r6n2RAzDvqG3uPJPIrgSsABAimT4xMqvVGi8/eoXz83N8+eWXaJoGP7/9GXd3d3j16iWM1dis1/j441cEUB0oYySBE2ULjuyolOujjd5jGKhELrGwt8xH76VETUPrkmFNiWnEpjhvxugMhJ2fn+exOgUlajZMnbUACrX51AjV4N0p/VmCofrQyiCpBNtwm3BmNknHGXL0SWx4s96gjZFq7TcbtH0PKMpzQFF56zCMAB6w3x0wDhMzAkicWebcMAw4DgO0MTgOEwfODQc/Ngs4K0i5KG1Gx+yMUjep9XqD589fIKWEA4vH3v/4A2ZXnMfz83PqrNk06DoqZekaKg+yDXclTAluIsbeT69/wv39Hfa7HQ77HdbrDWVrvMf+sMc4jFitNyyGa7Owc51JkWBfnD8JOOQZvXnzBiklXF5e4urqCl999RX+6Z/+CVpr/M3f/A0uLy9zlkbeX6+nWkT0Pws0na5JcVzlqEFTYdrJWpP7lvsEChg+sxh823bEwFFFi8QaYia17VKriPQVaH5qQ2U6tDWoDFBShrIu+TsBj+gvJz+Ko3jyZ7lNTRuLMjp36cx/r1+bwC2alx8BlR7v82p5Xdqaop8nmVLRkTH8HIMCNLijIq9n1kG0jYGxvNY4bWpYc0mKp5UlIIuAWOoQphRduOj/UTkbfbwx9BneXSGEyCLZI3XWOjsD6ZQRCH1+tsE4jTz3CAi0UvZji2hvCCFrkwTvcWA2ymrFQA4SdGI2XdtBAdnh25xdYL8/YHN2hhAi+q7H3//9/44h20VgHAccjwOcI+DF2gYff/wJvv766+wsCvgpQtVKabx6RXvCarWGUgYiDkuMgD2o26sDoLBeb/Dq1UeU5ADjkeyfzN5jdj6XRhZbTQzYeaYs5uGwxzjO+O677yoWbsR33/0rXr9+jXGk161WK6xWa+6md8Yt2XUW1qbg1WO7fWDwWZpnNNDawvuI97d38N7jyy/OWSS4R98baJ0wcgfdaSan+DhM2B9GzC4A2kCbYsOO3CnweDxiHAYYS12CM+PBUofR9XqDtmtzSVuMJDgvvlbX91ivqYxWKYV5mkkXLESM3Plw5lK3frXCi5cv870aY3Dz7Bk2Z9RxdL3ZUGcrR50chV2TADrHpKAOCtM84/zigjLptiH9kH6NfrXi0lEOysJEyb9sOzSXA5ImX/AEfk6TA0Cd9+i6GkRTGra0DYGDwjBz84x5dJQQtCSVIM1caI6QmGVirZgMQJiir7RarRZgkzFmUfouv0spZQBsaXJUBvskYSWvB6hc9Pr6uoBMKcHP1JhD9jJh/5PPXVgvbdtCm/K3ruugrQEUdeNcrVboOtJvEraFsFUNA+N0fgJUEgPtSSnAGEzOY7vbYnN2TuAGkBOGpmlAlFDmVCjFDClOhGp6dtPsoI2FbRs0bcN2HdwcwqLhBgjGGszOISng4WGL49Fiu9tj5GRSlCA4A3sG1hK78P7uLo+HsJDneYbRithNDODUTAe596ax2GzWCzDBMQNV9sZxHPHLu3f5GXvvMyO7AD3SVEhnECqltGBEjeOIy8tLpJRwfn6edW5krZOdWSbtn6o4qf1PSWDKtdMKIn+WQKIGSlOisu1arDcrhNDiZXyO8/MNfvvbb9H1HdbrDTbnZ8RMX/VISNju95hnx/urwuFwxO39PYL33LghomEJE2109iVNTrDTNTdmwmw9gU0hsX9CzQFEoFsAVXA8o1CYgkYvWV0ZyFJl35ZqkNpFEFiVsW2IYLlIiqeYEGLIIFld5fPnjtoXq/2/el7Vz0RK5gTY6LoOqxWVugo7dtWv0NgG1ihoRXGh4uS5ZR8otQ2QDBBbqLSC0Qqr3nLFgeJ9e8Q8DUw+cOXeAVjdYm40XAhwfsIUmEWlCsNcGwulLXxIQEjwxgJJ54oFSaSd2sqyL7oF4eNUVkTAICl9Ff9V/iY2tAbnBIQNgQGqYYdpOEDKrEVzTpJdYp/lfcYY9nVL4oVwCp8ZWjUAfloemJLKdrxOLAhY/CTgywfhD//f8cCvB2wCM1Ekw8RZHs1MHcMThYztCudn53j2TEQsqdTt4T5hDAOLVS/BphwgQBbSwmsHwPoNKSL6CPhEpSypPGR6CNSGOPgAldwiuHYuSuMoAJQlhwTqig1FZS2kZjR40tKgzSxRwMMgDoFt1M4zJUC6bUm5Xq0lIE5WLm9LLFquAa0DlIpImbkSEVPkyZxAOkzFhBVbVAydjB0ZFWGDCNhEWijSOSHlrjwyScm4RsO6SYnAqQJ2UTkcOY7cOYENMDVSSYuJvgSa1MkmrculP0LplzocSQKmvAEWwMRXTrewf+R9xkhZCY1L17W4vr6m1tBffw1rLX55/w57LuvRWqHrW1xdX2GeZ7QdtxzP3dBIt4lQ7C4bOK01gnfUmSEF1kpROTgNDM5SbW5hNiGJPkpB3LXWaDnLtdlscpZTwFO5x+V4PWbQlPF/Gvkuc2TZsS6vQ1kP0DCKHD8J8kV4XwTj5TlQO/XSQStV5wEUpmlG4rIPMcTU2cjmzEY8DBgnAlCmac5aS9YqdK2BMU2O5xWKpss8TZidAwmxklN3cXHJQRTRsN+/f4/tbr9gE0iwRG3cDdquRWsbboGsmbU1YZom3N3d4d27t5jGEfM0EhWY2T4SxErGGihMIBlv+VmyHbIh1k7bbrfj0qIGz549w8uXL/EP//APEOq/BBk1w6kAtPpREPHXYDbJ9zqrKfdXa6koVbo1yiGbu/xNKUXlXwxMPir1+9DlRiAjIRmEPnnx6T9P/r3IKCogqXQCRj3x4dV+kCnz9XtS9ZVfz394xKZKkHroxbVrBaXLOBBQrxkM4j1JnFgB08AOv04wLE7KEVYBGgVMg3QVqm5LUdIiX2v+bHne1fUlEvYOAi6clOD2fYfZOXRdiw2XPkSUzONpxi0D3syiUXxv0XuE2YEJEEVE3Xu0bY/1+gxKG8SY0DQtvv7mNwBKucfbt2/x008/4e3btxAB6uvrG7x69VHOJA7DgO12ixCI8aqUyiUkok8kyS5pKEHJAQreu67D5eUV7YGWmlTERAQ4HyNCxUKTI8aIh4cHHI9HvH//PjNO37whcVYComa8efMGd3d32VehILDDarVeBKneF6FtanZBoJ2UBZFNoCB7J80ujOHzNGga8iPmWcAx0piaZ09BNQMuJHZuAYTcFW8YRsyzg2GwxAqAozX61TrPpVqHK7LepNYaTdug42YbWnFJ9uEABw/nHZLsC5pKQS8vL3KizlSMRyl7stZSoxovzEDSYRKbIyWMq9Uq60gpKBaIpkBr9h5aB0yTI38BonGpss2IsUhIePYFMsijDYKmEuHEdq3reirtb1ogchCpFKQE2BgH0acDSnK1DmLlq5TwLfUWJROeg2G2+3WGvbbfwpL50Lo8OzujvYi1muZphp9d3lckYJLPkntfCkgTMGWszc9dAt8QQ2GCBemeVkAqup6UWZ1iz3zwOA7ElAgcYNqGACJjDPvtugIJFWOFiliVqbDGjKGunLR/gBgXxlRt2Onz4KjcxxiDYRgz8y+llDtSA1y6mDTmmfwDay2Vv1UAjzQwWnHZeGNFEJ67ZXUt2q4FUK2fGOG4i1aWOphnbCt5Ckoc9MxYFFtThISFAQ8gg1OFfUfgJWmLVR2bq6Muz6x9THVy/wuQKc83aQ6l0bSWmbIGStmc3CNQMaFf9fjkk4+htMLZ+QWurq5pDfUEjN5tt9Qdlcfh9u6OGtDMJAESk4LRlgGnMh+tXs5xlTSM9kRyiLR/Ge2y/0VgEzH4kBJiXOppPh6jajzq+BGyf54m/EoiHhxrUWxDmsNJ/IKEBbhxOuYy1vUhrxEbIOMg/qE8z5DXHflj5+fn2S7EGNEIUyh5pEAxI/XvAxpDFTRKWbDGOayixmDnG2pyYQ1VmMzTiJmBTSnhDEyEQGrQGI3jOJEObgAmNyEBaLuGztP2sA2AGOFihDYBWlmEkLKkSJ1QP2VqPQU21UxQeZ2UyMn7T5mMkrzNMgkMNgHAcDxiGo4M+BSwVc5Vr928dlj3VmwqPYdxoSt1ut7E5hOuuYz3hPkq75fY4/Ec+V+M2UQ+L3doq7zsGMsraCMnZsb19TVevfqImDpaIcaAaZxZ5NMDoDKAVLXrLMhrCZgXTgt/iojGqbhslQr+fQKxkqSspehTSDc6Mg5djOw8CwAkAAmzJixydotgbpvF/MqXQYJCiEeoEClAZ3orZS2Ivh5jgnMB1GWO27JJDiAVB0kmZ2IkThsDaxQZQE1ZaAqyVYnlgcwSCqF0MkkMaEgZHYFNNeDFgILmTB4Ku8AYXhx87UBECAQahUSBjnQBQyKQSO5bSgZqx0mct4Xh1sgtmQFwRnrp2EAZJOhM1ZYuLtZa9Fw64UPCOLn8HjE8NdIbmGkxjiPuH+6htcbd3R3u7u5y4NG2BEhJ1ihwBtxxWZ04WWK4eJBROm+UzIFiwfeaASWGQxxWucaCXhOpQcAl2XTkvPK7D4EJNdiXS11i6WpTl5XKZwsgUCP5YhihKJCSbCNSQvCe6t9nz6BqhHeBu3bFDLgOxwEH7jrnnENzSaKzgMY0OWy3e/z7v/87drs9s7kMAa85Y0EdlA4HqguXkkPkTn+UNYkxYpgmhBjx6tVHuHn2jPUMVvDe4927dxjGEa9/+hkP2+2iqx91JfQZKJesErU1JaDp/vYWx+MRb9++wS+//EIPKKUsTBsDZda6rsvlXE+BfPLsZZOp57hsFus1aRlccnezes7U5XOSiYnF+D4KRv4azKb6M+p5JHOkpibLNdZU4Poasl3LJS0JOeUF3k2YQq04YBDgYbFXJlTn+MC9nuJIoHIZCvr+go04nf5DFTJTUuXkp/mQ04tV1WsSA1zVM5PXKEiJObO3NDMjtSQoABhh1MrekaprSDnIEk2qFFE0qFTGqcrlKLqrYjNOR6wcWikkLRoVsg+TVoPVGska3jdonMCZtFMm5sJpZrvCkSVSBGKiezXaIBmghYINAco26NZrBsPEsZcAnvbr2c1w3uHFixd4/vw5uq7Dp59+is8//5wZVtS57vpADA5xzCTYFUFdcfLFNhpjcH19ncuQhVZvuRFFApUH+BC5DCDmvUFstegz3N/f4/b2Fm3b4vLyEkDR/dvtdllDQ/R1Xr16tQgGa7ste9DV1RVCCHj2/Dkuzi+wWq+zNtYXX3yJGAIuzi/RNC3u7nb4l3/5d/zyywNWqzUuL6/wySef5DLKu7s7hBhgmCXlQ2B2Cz3bjpmjKYlvoYnhJAG+KiKqxmjWzExo2sJ+3nF3Se/I2b+9vWUnn/Y/AerW6zWuLq+zvZMxuL29xe3tLd6/f4+7O/p5v9/j9vYO4ziUwNFQEOC9wzRPbDuJRdiy1g09PwpG1uszzloTGw8pZZFaz9nsrCuUuxWXzLJjBnMIEdvtjv0uRR0nD8cc1GmtME4j5mlGQkn6iJZazRCv52Ht09Ul8nXCAcDidfJV/67+Xv9sLSWExVdDAowqQbiUzOXgmu0UATjCCuHvWkMy/jJXHXf1BIs3C6PHOk40MaNwZgZGAjHBwMHi7ByOx0P2M0W8v77HlGIe99MEnFIa1jQZ5JNEifgatf6hXLMEn7LX1Xu31gqeP3e1WuPVqwbPnz/H73//+1wCnlLirl0uayRZS+X/mu9rOA6w1qBp7eK56MqXrffX2pdUimKxet+Vv0lyp/Y/akZIHYQDBcDK9l+pPBYL0Kb6+SnQg6w5A04e2D54YsomAi6ITUT2gkoKA1b9CjfXN7i4uMTVzQ2tLWNIK7Tp4FhrcJ5nzLPHul+jMS06S4yQvuthTZOBTKSE6GkPEhZ0YxtY3WQfm+zBlBl2SrE+rbGghKph0EnYEDi5V/5lHYTx75NASYpIA9VuvRi7hJS1gZMCNKpSwJN986lnUCeNJXaU39V+Wm0z5Her1Qoff/wxlFIZhAzeIcWI4GdEP9E9IEArhc2qR2MM1qsOXUuAUdtQiSgxmxTpNCru4sudcqd5RmLQiFiGVNlxe7/F23fvcRwnvHtPXUyVobHUpoXmRLPShpwXTQ2AhH0mtrJmJtVgjYxPDUDVtrWev3X5W21T6vGVdRKZhTaPA9w8kQ1j1riMrbD5pRtdvS7naSLyCh9SjVM/51Nw8XTe1Nd8umZPf0f//uDpFsevBmwCB87kiABQAnwUEEgpap9rrcbLlx/hyy++IqMcKJN/2O3hZpcXYYJ0A6nLvwKA8jDoYZdyFP4lTY50GqxXhtlHBEd/l8VEYBOXwkEhnZ9jvd5AmdLRQJgxUIrQ8AQYwzXCmkCnHCRCsqAKwUcgkUPT2BZ9t0Lf92hbaskcY+S2rAnaqMo+EZgjSHr+Lf/d2gQ0xG6S64uKJ6amDZ+0tLibmiP2TR2syuZInxWhFKHWShkoxR0jWKNJOjLVTCliXzGaqlQGRIKPiIHbZWsDa4Gu6/Pn188kQ1uVzpVhZy9viMbksqlMF9REqaQsUMeAVnlNAhAiME6uWqQFkFgYDAaNfvnlLVJK+PnNz3jz5g32hz2UohLQV69eoUa5tw/3OB4O2O932cgJIp5BstxxI5UaXwijYNkFAUAuoxOdiGIchMdFKLVQMgUwrX/3IcNUO4+L8a82HjGsUtInjlUNotqGsnas348UA5IK8DPRl+dpzmylaZ7RzZ7BIsC5gN1uj4eHLe7vH+DmGRdnl+g6KgUZhgm3t/f44x//O+7u7nB2dkYB2MUlLs4vebxiFmyfpgkPD/ck2u6JZeHcjP2esiZQ5Jx8+9tv8fkXX2C32wOgYEmEOn94/RoP211udRpjxCeffALHrAyjS827dx7jdMRhv8ef/vQn7HY7/Md//Afev3+PVd9j1Xc4Ho44Hg4gkJIcu6axi2dSPyPZAKWUQVpma130EWTOnc4bCdJCCNhsNrlUtNjHEtz+NY/aKa+dbvmselNPqYi513+rnVaa4eAgT+aqZAGR7yOPYcKiO6YEQTWbKDsFFZuoJuZQcJTIYalBogx0pOUbnjwSEFUFHlUnesSQWlxwuQG6YWL01C9RispAAjWMUACUlNYlzY6WJD3AYGf9AViCWqhFWuU5JJyYCSSwJBWX/9D+TQC5IGvZn9YKVsAupiJrfgitNVQqYqmjXwERkffpmk6eu2/JdYh+Bu+jSmmopiVdNm7wsWYILfgAN3kGDJqFoLvontzf3eOzzz5D3/f49ttv8bvf/Q7KFAB/GuYqgRUz07L+nZQjSOnBRx99hBipXLTvexa8ZrYMs31dCPCVPRcQWSmVwfzD4YDdbrdY18fjMbMIZP+oA8AYI+7v77njWgV2cTntOHIp89k5+n6V54U2Bn/7t/8bUkok8Gw03r69xTDMuL+7x/nZBbSy+OabOdudn39+g81mzaWSBo6TCOIs9z2VRIkAaorEiEKi7qlKZSyeNIsuVpSpbs4BRLx99wbb7T0lIbakaSNMM44Rs327OL/Ap599hr7rcXFxAQD4wx/+gNevX+PZs2d4/fo17u/v8PPPP+Nw2OPt27cYx6H4oxwDUuBNrNympYtcrVa4ubmh5Fbb5WCs3lfnacI0UIB2ONLeb6r9UfSqZC8RDQ7vA25vb3mMxqw5AiAn0opWFa0vATdO2Qw1sAgUML8uwRa7LOuqZpvW+zyAhQ8g801+bpqG/DNOMFptEJvIPhvvYWwDBJyUzoVKa2YDc2e0KtCtr9cHKtGUtdrMLZrGUcMDAWlZBwWKKw/486ZxxMPDNoNUZ2dnC+2rAsg9HazR/kzJShH/Luu0BKxyLhmzwpIj/1YANtpCIrMKz3B5cYG/+7u/wz//8z/j+fPnuXnBcDxgGku5zna7xX/9P/5PPDw84E9/+hO22y02mzWMLf6hQgH/8nNk4HfJNCOmnGh4yXUK2LRI2oq9TSdNYCq7J3+vP+OpufJBLy2nAAAgAElEQVTU2NY+j+wPKSXstiNi9GisRWMNmrbBNM5Ums7agOdn5+i7FS6vr3Hz/DmB9xyrXSaqUNjv9zgcD/A+4f36Ia85rTW6lhJ9+/0hg9nOTQxA0LV1nWhY0QiTHWV9TN7r6nJC7xyohHri/fHxPWu9BJtO3a/EdiglgZ/Az1R+JnA0gK4hgdaUPAsZ/2LTlknM0/Vdl1JJQl6ex/F4xDAMWK1W3KzhHF999VXVLTVit91imgY0JqHVCUCESpRseHZ1ib7r8OLZNS4vztE1FutVQxqrlsE6zfkx1nuTtZISMM0iI+HhQsQPP77G//zue9zdPeB//M9/I7aaDwgxIcGQnpZSgDKICRg9KV5JFYQcomkn41XHWnWMI1UYp4QEGdcabKrXwikQNY7Etk5hRgwzYuwWaw1A1nw6Pz/P55cqDRJsR2YrCxuyJsXIZ1ez7RHAWH89NS/qc/ylgNOvB2xCAWNoWQg4JAYazEoAkEzZULWC9w5udhARSnpwfFbZcdkhlrIzAIvXaEVisMkYGKUAxe2uG9Zx0UXYLyWKUpIuxlMMTw02Adw6OCYg8ENjGipX0lMQxL571CQ+KE5JShQ0OdZAyteqi6CeYWeUAKeUwR3FDks26BLU5wCsGnm1nGzyXSudM8P8iKpJWPv9/PfFaQv1ksAFA61UyVCnGgRMpUvIYuNi4dXK4CoG7UoEVBnX6lLy9ajqnqK0EBYjoKEQobhUUkQQCaFnw1Fl0cp84i5RCUzbpTbrujIGssFKJk82X3E6xTgty75kDMq9qPzMy/OJMSJVGzVlRVXeeEgEnDQtahCVziv15G4BQNQOQX2vp/PidN7Ur6vBplNDugBzOfiHiKcmLo0ACW4Cpcwi6QQppyzOjegpcfAkmyCQhcFX63V2/oBS1um9h7BXpFTPzY4B50RdH89bHstXlPnuV7BNg08++RjPX7zEarVijYIZ+/0ew0CtsbXSWK3WuL66xsXFJW+8VNYBVTJ9ubzNmNyR6uXLV+j7HquuQ993uHl2Q6UtSmGz2cD7QPoEzJQoNscsnsFpJkLWYP39NItVB6dPOdJPb1D/+UM+9y8571P3tbyXxMtd5YRgNgAM2igWaZctob7TfJ4PXIo6zR+Kbcl/f8K2qpSZQH/uUHx9+VVJ0Ji8QRXgKn+Tvz062aNrVEiFMFWDVzxG1RDm68aj+63vQ8b6QwFC2SNk7SulYVTKWVmIEyMNHOQiKjAqKWJgac4My5/lOeY94YkroCFT5VbFSRRmBeQyqnkFZnAo7s5S/S2y9g+ArDNjrGF2BF0EMZikRTgnq1JcZEoTCovSh2XThKZp0LUdNR5oWXOBM7YxlJbJEgDLIcEdZebnvNaBxyKnEiTUdlmcaTkkmBSQJMaItuvRNMJ4BIxtoDSdh6YUDYLoY6y5K848P0cIAat+zWsdWX9is94gBM8NFHTuYib2HeKYC5arQDqXIcE2pMVHrJfCIJIunKJpI2UWAJUlyv2TnmTIYweUbK7cf98TEKW1xv39HZVlZP1BWg8UEJImn02FvZJ4DUswJOWAua19iPCGugbnZjA8r6QsUynF48+i9oFLVSq2MJK0AxcfQzoiCgsHOWCQ/bP2H2tAX9itMs/qYCOvg8pXqN9T7rnY57L2q4SfrD0OGJXiokKlYFD2SdJPYj8hRRDTnn00pRB80afMzGlmP5XEG6+the9R5jgFliqvxePxAGuJWVczNyqrwmO6LPuqA1AFYieEam6ltPSVZKyeYkKImLtW1PG6a1ucbc5wdnaG9XqNvu/JT1it0DYNtKJSI2FPziwTUCcQrTUZbJJrpGRLQg0e1ke5vqJVQxUJhY0kPsMp47kOauvfn86j+nNPQY96Hj0FNvGb+Pk72k8g4cqYSxihgHn28CFiGEYcDkcC0SeWQOH06/FwpDLeifTzrGlwcXHJIFYDrTTcHLDHEYpZcol9CQKTNLQutr++p+yXADmWMVojRnCKHJA4RmE5R2SHK/fPtw7Zf4vfzy+VUYDYqGr2lp9P/Lx6Hp8+T1nf9VqXZyhf9XyX/Ufsubx2agek6NA1CqtGAQhAFPZSi75r0HcNVh0Dh0KaSD7v1Yl9BxpbTc3AEu/PkUpKiRVlse5aTKse55sNrLEYnWf944DJeSQoRE4UUrd2g6aSiqjt1+kYSRnhafJWWLIlaVD24jqxKmDmqSh+En/BAzFIGb/JMWhKyOXC4gvUCYQQiWQgoCaAR8/zqbVZ/3wKjj11nK7dv+T41YBNGtR23FqLEEloLaNxMcI73twnGtSzzRoPD9QifnaEvIuuiUx+YrnYHCiQ8+sWBlYpEnuD0UhtC5ss2o5EfCutbnBP6RycOxeglc9opjhhZWMhAGsYjkhJIWRHvhJ906KHwa0RGWSjTmPIwQwF0wEAt25vOnTdCqvVBm3bgfSZAqP1gQSmlYHRDRrbISECzPSS+nIBNUR/giYYXWJ2fpUCcrkW2EEAQqASB6k6IKF0Bp9iAfGMaaAtMTL6npxnoZQ6N2enTcAmzQJwpYsaPX9TbfqkD1WMb4zkvAq9GigLIbIxlt/FlJAq0WN6HMRsMtYisOGYZw9jDM7OztD1/YIJJc5jv7JoQsTl5SVlfs/P0Pc9lFK4u7vLG27f99CG2EL7/R4//vgj5nnOLa5bFqaW9poEFPIUEaCL56hs5BkcTZVYH28sCQHTRGtgZqcxG0lFmTPvPfZ7YlvVtcaS1T4FKeo5ceoAPAVIycYjGTzJppcShETBilLwnkXyuUyEgF0DbYHVegOAnC5jyrxvmhYpUmnJOJAQ7ewCQgTWZ+f4/MsvERPw4sVLIKm83r0LOB5HEn+cqA3q4XBkG6PQ2A6fffYZfvftN7kN+3qzxquPPsZqvcbsCNB+/fon/I///v/gYfuAH354jXEc0LQkQPn5Z5+T2PbVJT777LOKjQQM44DheISxGk2jsV6t8fXXXyOlhG+++QreU4aubYhltzk/B6CwWZPehbVtpr/LeJ/qEp1ujPXvJDNcl8zVpXb1upCj3nTqoOWvwXKqP+/UianBs9qJkXlZA2dCGOezLvwtxf+ThMHi85+CKU72TYUKEBFBvsrGgZ1JKXXNQEouMWMHST3xedlxLGh5KZmlv9B6LJ26Fs7jIhii65QMpgCqSgAlnUCmk+xLxupPb15ExwVw4uYXxFTV2crINebSJiznmgDdEvgScE/gEdhplARDHosaBGOtOaMSTEq0AbE3Ljp0QutSSkOD2K0CVGm9XBdaGSS9BNaCD6yFw+xMLo2KMWIaqXRWgL3jYciJgbYlHRRtdGaWKQabdMd7kKb77Pt+0WWXtH90ee58LTLkijldFHRH3O92cM7h4eEB99stdrsd3r17h3mecTgcFkkKEvteZ5aDMSbrpohtlr8JIztGan8eY8yBrGhJpJSy8KnzgYGMxGCRhjbc0WkcEQKxQYdxgrUtPv30M6QU8cmnnyLFmPexlEhXT2uDz774gu+/OMWa96RpmqAAbvqB/DXNDvPkYBtiMWitYG1CTJTIeXh4wLu37/DDD6/hnMPxeAQAtC11tRMHvGlabLc79L3LwILYxL7vcXNzg83ZBm3bYLvbYr/fwnufyxJpXyNHfxWoTNs2HZqGnts8eShFnVOLdEIsQEVS8LMnIMo0sJZ0rzabc/Q9JRy22y3evHnDPicLz56wU43WLKWw9E29Z/aapjEUzaC6rFNARwmapBRmGIYFoKmUWgSN8l38ESnrOGWiyv5f2/nEa8oow63emdlUCf/n5BsLyStFSdpgArQeoY3B4XDEMJGW4fF4RELKzEAB0ajZzwRXgR+yVpr8WvrMcRzx44+v0bYtzs9pzdQaJdmOaNESpa+sI1Xty/PsYMyUm3XUMYIkV0pSvARslAgn/SStNT756BWuLi+xXq1xttngxYsXuZyewMIG67XCin1rrTSO3SE/E2E6TvOI43DIz10pTvpWz7FsaGX/lfkkHRmli6SMl/gNp/IJ4vvKvl0nyOo28QKK1QnK2u+Ua60DdwHJwE0nxnHGOAzouxa+5Y55aqB9ircD7+nztrsjbu/Ynu52iDFlxuzM5VfjOCEFjdXmDL/56nekkSUEhfA97t5vgRjhZ/Z3DagEfNWgMT1IZmRGColkVkKgsm1Na94YSrrrBAQEzDRw+RkotoGSoAaq3A9kr+GmJRl4QZXskoP32FSxplR5f/09nzP75wVskTVesyPlOQjjTUCPeZ6zAHzTNNTIgBvKxBgQ/QijA87XDS42LRA9kh9htMbVBXUSPV8brHsNDdJEjt7DjQNJAMRwkvRSAHfWnmaPmIB+dYa26dFqhYv1CioBn378EtPkcBhmzC7gzdtfsH/YwceEKVAi5cUnz9B2PWzXwTCLVOzaKaAsIJrES8aYzP6SKgpJGkjSop7rNblA7IGsCdL4nRH8iOglVqXXtczEPh6P2O/32G632G63SCnh+vqa1izHKHUiQUr0pTKgBsmWfnwhC9SsxFOA6img+C85fjVgkxwZKIhkeDMrIpGjHQItMOreNWSwSdrD1lQ/0QQS8IcclscBBjFlKHATg0DBV3G+ZY6XwH1Z8pFAGzt7ivTFAE5M5KTRKdggag1lqIxBa0LXAwNCIaRFJzXJYKlHBodL8iCfKYgP8n1TJkPztRBIBKYjPgUYFMMH4GTsIAFfHRlU8yxV45QSsv5UFnqsxowWJ42FFuBLgmjZUPJ8qK5r+eSqD8digDhGKA59NbeAqlY8UaZZRSnpAZTyTyLAAozJuMjm2TSWuoxxba3jDjyK54Yw4pxzOOz3GKcJ2+0W3nlsNiv03D6bxprEezPwJJuA0o+ck/r6GE5FSqDuE9VrH4NDS6cxxuW56iyUBPwf+pL5l6r3SnZHnl39OyBC6ZTfU6/3GEhk3jAQK2LBROdmgUVjcvtgJCAGyvorpSgL1ZDwrbUNZY8Z6IoxwhqLtqFrJtZTWrIOUsKLFy/w8tUrXF9d4dNPP8V6s8HzFy/Q9SsOOg657h5QzApQWJ8R8Csi8efnZ1j1PXfY43XNbAeaF+Rsd+xQUcvuyK2MqWyPBHQpUKaHUa93Op4CfZ7MAlbPcjGjT0Ck+j2L+fXEuf6ax196voXTWb8fKpsDlZCbCtQ2Iq/3D13Dh34r6JVS2bzLeit2V15fj1m1HUDAnw88E3X69rJGFFK5BpTnotLpplAupwxHKn/KAJgqNlZev7Dn1QkWg3U6nnm7WdiMx0fKr+cbOPmsJ06vVAYKAX6eGZWRPyzecPpx1Z7Gt1OVxeU9Ll/K0lYu9o9UEl85SHyiA4vioJmANLomBcUJmJJUMY3UhJ3cP7s5+cxKZX0a6Q6Yx48dwuB97pAVpXzFewwhwJrSIUy+ZA+OkYLaKOXW1f3n+0GxL5LJp0FR3J2tRYKUwxb9H22KRo0xelFyLuycOvAVEFVVn1lEokXrkj7b6AhqdiKzu6xnaVFOeoZFKDUlsL1vM8hy6uTTvZcOaJ3oNV5cEJDRtNxVqmgTEou8kkbg8wXP+oeGuuoppfK8kaA7LkBlRZ+tS6mYJLWGYSR9klCXxkcugwJgErwm/5CCmKIHpLSCIbEWpLRkwNZgvjy3HDiyL13Pa/l+Cg5IMgmLubLUgRQAAeA5GhMaYxG1KSV0MoaKkqs0R4AsBhcjVNQwZoYKJnc+E58fWsGqZfAUIzcXiRVrnGOCXBnAwHUMIZecrtdnaBqeX498KCmlWcYBee9MIF2asGSA1fFH/SXvXQRzKbH23mPB3mEY0HUdCa6DkxFs18TnrwNG0oek610wHVLKAEWMUs4I1qtdBpzS3RAoZX8yJvJ+VO/zgfRyfagZTgkpSYIICEHGN2YfUcAWuUb6m3wW8vjRhWuAfVcCNUNmfkTx8cla0fXHhMSdBad5xn5/QIiRwEats0g7yZWQf7ZhRllg0MjahjYiQbFSNsVktzlxkRk/nNQj03XC4M73IV+FBfVUEiil6t75WZednV6jFGlHPnVI3HbqG9bfT+2CPNPTcsiSUFpWRNTnWVx9ZS9o3omcRyQACRHRO0Sd4OYJ86Sp2iR5xOAxj0diFccAET8XJy8lalYxTo5K5SMQugg3j4ghQKWIlm2l8wlkDEn3yYWE2QcoBm/btoWqKm9q2YXTmMiI5pcpoukAsl3JFS9ti/V6ndd4SqXb46kNpq+AeTYIXiE4w2sg5kSBPBcB8mt939LIYPncZb9fxFrxtIrhA97vKT5QPdPyvfiqf+741YBNMZF4HzEOHJwXqthMAx6p69ZwPGCaBszzCESfxcFDiLi/v8M0DuwQEBLYtC2kthNKwcdAoA6XVGmlYRrSibIsiKcUzVoSqJaOc2BnQgJp2geN0jCGEMeSOSe3KUEhgijTYZqRAm1+IZIwt0qUHURuy0povedscDZkia5TQyO4QO3SWwfXOARHHRAQU66QUGwMddIwitvEcrtpayzRl3leGm1gDd13ZEBPc/me1QatpfGzxiJEal3rvUfk9L7ioCAxaJNCQAwJKZBjbVkccdWteVOMecHFmDVqOStv8vDReJSOYN5FxESbClENOePF9FWjSaAxOwQQseAakCkbfnYO2ImVjm4CoAhoQ0GGw+w4e6d4wzQWgIKxBBR0fYfVesXAgmRPiaWCFOGmGdv7B3z/b99jfzjg9vY9vPP49NNP8Pz5M9b26SAC9EAJrLu2Rde0OeuYUmKnraDU1PKUwLvEGzWxBQ1adrDFEMZE7CcpG1TQxITLGlwM6CjWuvERPkUYI13OAmZXWH21IQ2BWEohRgZXEnxI8IHqxmNSgCpdG2PgNeUigvOwnUG/YmHGtoOCwnq1Qtu06LsWq7ZD37YsyGgRAzngN1c3+OqLL/Hs+gYaCof9Hn/843/Df/zHn6g+PkZ8++1v8fXXZ3j58iW+/fZbrNdrvHr1Cl3X5mBms17j7GxDmRlu3frmzVscjwN+fP0j3r19hxATjLH46KOP8Pvf/56ePXecurg8x+XlOQnMc0ZDAA4JUikbrzlzTx5H2bQKQ4+cQEDxugixzFFgOY+f2hCyba1YaTKvZAOS7E2dRawdVvmbfF79/a951EGCrF2yKYkD+3KN4jjFGOECtS22tjBYCR3gbpEAoGQcawcvLbS4F8DUh0S6T3B9Cf+XjCVVQB/wLqCWIFF+ZT2e8nNabtyL4F8C7HqjF6dBkJ+TI5U3015TXVtudaYUpL2ygChKZ3plkZxih9coLUTf7CSHkBZMuZpKXkp3KhoQABVjFvvO4y/zQAClLBqeWOBcUZIGBDJXfi4HGnyLp1O0vm++F211HqDE6eMIIGmFbtVBwK2UgLuHe2z3O9xvH/DL7XuczRPm2dMexqdRCjRHJFYEOOEie1klTl8d8lrxSZTm7rtG4+Jyg01YYb1Z4+WLF7kJRfABw0gO9eyoMUqI1Nn2/uEe3333HZxzeP3jD1Cq6DqRE9yD9EKo/ETAl6ZpYNmhjZGY4aRjqNF0xAJp2w5tR9lr6dQrbdXXayovDt7DTS4nWFJKaFvqBDTPpcmIsCPkWUUuEasFU7WSZx04sPQcWCrMMwm4r9bkozx79gKr9RrPn3+Ej159AursStd4fnaBpu0Y0NEQIWjaF8mXuLg4h1IKL1++xMcff4KUIsbxGe7u7vBf/+v/haa5w/V1D6XA3RFX8CFgt9uyDt+E/e4ABQvnqDlMf3eHlEo54mq1ovLoJDaqNKwgP8YiJQXnqHX27e0thmHIbOm+79Cwjgix5pjtlFJuWCPQads2WK16en6BGOIhJtjGwocIawOcdxiZsXd3d0edCJnZpFECK9kDJJkL/puUagFFa7QurZGgiuwzsdClnXzDVQdKE6jacmONcZqJrc5lJjGR3wywDQNw9/CAw/GA+/t7HIcBtmmw2pzBmAbOB4zTiP3xgO1ui3GauGOZxXpNXXgdi7L3XJo+O4cff/yRmQjUTa0W8LbWsB9MflLXNOjaBtF3CCFQ12j21UnP1SO4AD8HpMB+o1bZ1yBtp8DlXpqEy0GMUDfPQIokTr/boe86rFcr7PfU7OT58+f4x3/8R3z88cdoDJUhpZTgo8/s/FJ6nNhnc5lVpJTK+4ywnC3HAZqBFwVFFSap1uyJmOchB6yJbUcNvtI+YyofP2LWc9Yjs5aSe/M054RoAmvaag1rqFOcNRbpbM3lp9yoQZOuF8U4Ys/pWsZpymLRPsRq7wBciAgpoXUOs/eYJtKV84EE5RMU5mnGPLvcobNpWrx8/hJXV1fY7/aYpglt01HsBIWm6Sr/BBgHssk+evgw5+qFGCOVZmkD2xi0XcN7CsV6ogucJJ5CAQzy2FQ+gSTVFO+PVISaucZPbHh1x2692Js/BDTVQHwtfi3gvYAcwtwThk/NYHPO4f7+HtZaen8IGA73mKcB7pAwtBEpzPDTHgoJnaXka99ZtNYQ6ynS/pS8A5BgjYIRv0pxjJ2oOuJhu4cPAevNJbp+jePgsD+OSNCIiuxMY2k85umIu7v3mFzEYfK4uLrCb9oW680KMwOTwpJVinWcVCmREy0k8bm0MQg8l2UtNE2DfrXCmvX7NDPaACw00ERgXnxu6pDr4NwI7yaMw4Dtw31mKQPA+/fv83keHh6yplPTUHOA0ITMbCaQcilpUjObahC9HCW+iDEu/X+VYcKMtGbdXfz541cDNomhJQ0W0SWIRX+GMzvjOOB42KNtLO7uVlWgS0AU1SjbygiS96mNIObs3LCTIy1MxSkEgJS4k50AEJHZRkmYGvQ6GfwCQIihEGOhEJOCR8hOZjYuinV4UjrReK07nQkqzKg0FGUJ2SmjQLt60vUTl2tkNFsCWMWd3sTn1abSyeJziR3XULk8rbEWOtJ3AAhM6yZ7XyD+lH9GXkTCbKKM8bLzSdbVqIJlYZrlUzMQJs+5MK/yHRLAJBRUMdYogVk+Nz4QiDCQqHVxAEXcNvI8BBR3F9cwulDijTXU8YNLMPRUdxOkDxMa48PDA3a7HW7f38I5h6urS5yfn2XghuZMmV+1s5eDlUQgjkbJLlC5C193nqRcbsfvl+8hFIooqs8Splze8BIAVQDWGAr6Lpk7eVY1e6kGZMscJo0yFasYV+ZALF8KqrSVZeHdhjMPBIya3EI2a4oloOcOQH3XASnBzTNub+/wyy+/wDsSmf3ssxHGUIvrzz//HFdXV/jNb36DzWYNfZoUYEBvGkfsd3vc3t3h559+xk8//YT1eoPLqyucn53h299+i4uLi+y0GkNA0lNHjAIcF1sjjE1ZD5KppHEJ2U5BFVC9fm0uB/0gALTsKqeAXH5VZ29kI5Vz18DIh0rmCshS1moGCarPe/o1i0vMAFMN4JB94ElUA8T8HrGVGgU0yKdMyOLQ8n7JPGcDnu1PDQapk4tMj6/3Q0Nd3/uj15Ra+MfvU49+VjIGcg3Ak++nf6YPXFJGxfifi52GfopVyV89NtVV5D/Kj8Ky4fETu59SeX6yLz8JhuoTYKzeVPlZka2tEL/EtJ/qRmOep2T/U/V+sS15TE/HXVVrRsvYgtmXpNVIn4s8D6d5xjhNGMYRtmlYX27Bb1tcbh5yeQypfkrVeqjuRZhUgh+2HYnONk2LsOYghfelU92/YRi45GXAxMxvcSwlKOi6LjcPEECnbr8sZbaiBXF2doamabDmknKlNdquz+C5UgptK5206LnPAOaRGonULHNjDbRfZnMBBtaAzNSqtUGiYpYMAynFUWb/ymp0gUrVVqs16yf26Nou70NaaVxcXKJtu/x+70v3VZmjFGgGLmfb5LHxPqBtqJS77URAeoPr6ysCWhK4e+hEoNM4QesjjDWYOFCTZyEC5dYYNEbc75IgA8rYOOezzszd3T2cm3F2tkHX0X2kWHQgnwoiQuhIVyzS2jCGdIpQLXfHIJlzDsdhwDRNuYxOa2qyIiWGQOmUK+tZ5gpQmoacgk2ZuZPAwsgJKUREU0pJRB9TKdL9ct7DynliJN1SAAl0LmIZk6iz844EoaXBDYNTzjtMLByu2F+wjc1+UMvdh40x8I6kBaxtWB9rWeZGEg9VRzxTOlc1/LMMaoqJGdfs16TyjEV0GyC/LEQCiROA2c5AoJgkRYVhGDEOI6Z2wsxNY77//nscj0fsdjs8f/6cyocV+Z0+eBSWg/gNpcOVBMNKKSBWJVIhIBqLZNPCn4gxlHglVbImqegySemp2CttDCzbRB9EDzQgKpmTBjFEDMfjyfgWHTGlgNgEdL7NDKe8BwqLKyF3Cz9lbXjPYCgH/gQ2RdrrlSYbPlCyVTSbxnHCPDms10DP+nJUvngG76jc1RjDl0HgsIDyNB7MKo0ePrrMEgwhEAhpapH5ysdim5+3v3oPSYDoIua9qgKIkIr3UvtFiyPHuktmXZkjj/8tRz2m5TkXv7FmPNVJJfDeMI7kb0sp9jwM8PMI5TzS5BD9DD9toVLEoAhwtDpRBX0MSEG0uChx3jakz5cJDqBurc4F3N49wHmP9eaArt9gdhGTizC2Qbu+AJSBVtRsKQSPaRwwuojj4NGuqNFE0zTw0cEn6mI4TRM1fqh8bWkapYyG5vWUAFhmOtUJXSlH71erXK0A0DxagE2KQGxJyhCA38HNI7RSOB6oBFa0FWUNi+0v4v2lXLou6xUWZv1MS1zMsd+C9Y1so+qk4YJYUsX8NIf/FwObXHCY3Yh5njBNIySIBaT2NKFrG2i1QtsYeE8bvfeONhjvgBQQWVfIOY1pona1kyOGj3OeGDqgdstJkY6TSgoWmhOpASrRZPfSWtEHpIiyKeZAr7iZjwZbc3c0BdhgoaJG1IAOEbZpYVrSYOr6NVICRm6hG9OQGVUSrAefYK3QXQ2MtlwWRJ3pZjUhOMpsIoGzddS2kwJMPk/wiMx6UUpBJw2daDJKkJwp8yFhPk7QRiPOtIkZpaGMBRXBiSNLwKC0ik8hAElU2FcAACAASURBVJxxc+DFNc+ViHXktr8JIQV47i6ndccGh1hoGopFWUvgYQ2hrMJ6EqcxGguDkzIgFt0toE+ECzMQCsrfdD2a1mZHAJCFmeAcOVGSEQaPfQI5TSGSCGfXNWgaA63BzhfRu6P3QIhQicctgZloEV3TkoHyAcPhQHpAswMUYBtxCGlxBx8xpjEDUuxpAwDcPCN4nxe91poEDbVCy4h80zRkzGLCzI6pzCMfI2XiWJNDRQAmAkHaREupnEYXIygTRF3kAv0POiE7OjExww0Ktu9hYsQcIzyPmZtn2BBZC0xRJWUCOmPRs4iqG8ZsrJXWSD4gJQU/ThgPR4TZobMN1l2P6/MLDE2L3cMW3/3Ld4g+oms73N894O//y3/BN19/jVcvX2Gz2eDrr7/Cl198gYvLS3zy8cccmFAwdzyOcG7mYKzDbr/H9//2PQ77Pf7t+++x2+1xeXmJ3//+91hvNri+vuauRmdoW3r+1mrEEDCOjhkHvFkuHAVF3bWyU0eWg8pm6xJFYmxBlS50MRU6NTkbEUFJoLwUAK0BDKNLdzZx+oXl17bN8jpqJyiJXZOAvgr+T9EN8QdrfOL0SOU1GVhi8xkil7Dy6xR3YlEgsBpgvAGJmTb03WphODIwwCy/4In6L2B3vi5xwvPB72MQ7wmM6On7+dDOqpZ/SmDWIepxZCBJCThTSoGUrPvqPAucJFHQQ6BEeR7lJY8ZbqfQH7EgFWnwJUpmIPIY5veWvY2Hm+aDUtBJXpfyWYvORIVt8fPNz3kxdqqyY6oaZ1WQlsXLVdY4zGOlqdtpPekkG5zvWFEWPyXkhIWUjWUGsNGsq0cBPnVPLd3olAKmecJ294DjcACJzXN5fAzQ0Hl/lZLe3JFWxq5+IGn5Y3bVquXlowg8MwMyA4IaydCzbywxYbvOcMnwhhMY57g4P4Pj9tAxsXbNPFMwaIgt4pxjNhXZbTe7rJe02+8QQ8Q4HjEcEx62D/xMNJWjKIWU2RpUclbWsyQOhJ2rMfmREiYhckmKRd/1Cye34T1EQJT8JBOxnhagZg6cAGvpe9cSe6ZrVjjfXNCoMujXNA3td7JP8X0rpSlBoRSCD2hsg/3ugD/8338AQILkwzjg4vwSX3z+JbquhW0atKxDSeXylL2/urzBzELKUAx6MBN7nmZ454CYMI0T2qZB3/VoGuoW1HU9fGC2Ggf5t7d3uLu7ZwCRxcnjHsYMWbiYfENPfo4qySltDGbncRwGKK1ofzIGN89usF6vIFqd4zDg9u495nnGw8NDDpBjjLlETEFhmgmYpE5xMT8LXnU5YJEgqJTXJLbHxI4hPdZErK5QNfKBwuFwBBIwOc8lTjZ3o7PWIiJhmkY473F/d4/7h4cMHGht0fUrrFZrZocRm8iaBk0T0LYkVbDfHyAMbGsbnJ+f4+WrV8Rq6XryA62mygqupojBw80T328DZRKQiKkdmBmGBAzdQHGEtujbFVrbwZoWKQDDYaJ17QJsY3Hz7BqrvsfkiJGz2+8QUmAmIFc/JCZKJuA4jgjv38P98Q+4/OEHXFxe4l/+9V9hDSUU53nG8XighP3soA2V9l/6GcNxwPF4RAgew3Bk348AosS0hBAiEMn2STdoOYiAmnhMFfvUovFKz1dsd4gBUcAe0Qszmnz6DBcCfd+Qb8RAlcQ5BCbQtczzAB9m+DDDzpakBSxVZnjn4J3DL7fvcdwfxGwWYEVrNKrlJATZ+2E4YrvbYnYOu92eyqC4jM5ojdWqR9e3MA01HoggAO9wPGK72yHEiPXZGm52SKD5G9jeEfNNI7rAwLjndUH2PYES1rOb8x6fUoQyBlYpSDWD+HlakbafghLNEyhVROuNJh8gNzjI+3MeCAjRQBK0Ek8oxQC/KgnxRz6DkmdcGEsA+Q5aq6xZVBIDfK/sux6PB7x584ZBD/q9H3cIbkLUM6KaYU3CylIVheHd0s8jnJvALR9gFNku0rmKrLxS2DhKA8oqbFYtfGiwWndo2gbGRmgboUwD09JePEfSNO5WFmeXa8TDjDB4hEQd+yKo1IZs54yH7RZt2+Li8hIRCYfjkWIsY9B0ba5CijHk+DSmBHD1UkwJk3PYbbdQDIKnJGLmkf0Ow83JaH3Q84x5HxZ9RGssNd3QGufnlxiOI1IE7u7u0XcrDMMIgBmkVi0AQmPKV4waKRnESGzN+rkCS/kTmQPyPmMZaDvZi2NefH/++NWATUDK5UrTPP6/1L1ZsyTJcTV2Ysmtlrv0OisAQqQgsw+EKPKFZhTJd/5pmcz0xmeJH0VImME20z3dd6sl1wjXg7tHRNbtIfgI1VjP3bKyMiMjPNyPHz+OceyTk2WM0ucITe1RVx2qymGZJykFGZJDD4CNdSDMi8Ew9lISAMCUrBGu7Scw6m0I3DYVBjYGBq3CgiCfMY9Sf9zU8ELLU0dJQwmkbjvyGTJxYQ1c9DAxIhrARkLVNKnDSycCwOZshZ7I//L9EJclCfDCBtwJ2MQdbCgSzpItiIHg3CJdK1rohqB0TWG78viCgwftFAcA0WRgappGWGNBPoiIo5TdSUCqmxuzfwQgEyG3GICFCIsguWzYslPOLK0FYZlBnu8FYhhTzXYghOTMWBF0hHQeZGdummaQp8yISQ8AUJKOSQLbIpwJNrZ100jrYqaxA9lBnaeJGTwhJrDJgMuP+kV0EQqwiQOfiHnmTFRYGFgykeBgYNTQhCAgh2d66bnPWUDnYGuXAp2URVjW2geamVKKqsYqLFJrAMflaNpdganjM6ZhzHPTWHbsZSyjdLDRUsd5ZkE55ysWzQsS2Mk6YgkmQohcVjcvuaW2tRZekfh5hgkByzzjrGCTEcYcvJRrVGiqOok0WmvhWwNYApkFMRLmAmyqHYNNV7s9al/h+HjAN/M3iIHBpnme8de//GtYa/GrX/0Kb9++xatXL/Dixa1szEhrN0bC+cysgP0e6LoGx+MJ//7v/zceHh7wxz/+EcMw4O///u/xy1/+krPaL14AANPfiaQjjMEwB4zDmMRpNStV0pettWmulqShy4yRZpCbpmL6+MV5YC1MEMdQ29CLo5W9eJP0XpI2i2T5rDGwVbEFKAhcAE2Q8dHPUF2NFQhDyQg+fz07RgB0gIN2SHYyUBKPNQBnjpxLDgUgnQp1I5R55rUeWJ+nBLMl2GQ8j4lNl3OxMxJSqR6MjucFIvBfeFH6X/E7IgSKq6OsLceQnn2UUVBMCZ7l3xWowcXvKAcIP85yg9yrevfsmfLPELatyzgPgYEogQYjaWcwZTbp5zk4m4EBFJf4aaBJj7HAj2hMrA5PY7UWs1S2cHksB08k1YEZLIqkjMtc2qVj5Y2HNwyYT/PIWc7awxX3Mc0jng5POPfn5NATYhoTSxbaCYwTN2uG7bN7St9TBlVM4bDLfNRMrjUyXAJY856mIujrbnJEwF/87GfJniizZpS27woEaHmEil4fDgccj0exW5zZPd0duMNb32OcJvTDhNN54E6BkgyoqlpkC0QYVYAk5xy6roNzDtPCzE8v7FRvPLqNMtOFeRH9iqVQ/lNh+ZKhrAHWvHCyS5ttKEOCx4KP13stNYaAnIEGWDDeuwqn4wn//d/+Pc0PANht99ht97mEQhYml1C1PJ4LJ6CGccQwDqkbXoDBMknwMOfyLX7GHXcda5oENk0Ti0vfPzzi4fGJ9YlGlpXoBwU9VCQYaV/Q0gll9ocYEMKcADnvPSoRtlf/53g84MPHj6umJakTW/EZmeWQ29ozOGBRV24VtH5K/DpKhxzVbCJESVYKC6hgZi1Sfp9EdusK290OkYhbmE8THh6e8PHujv2mENA0HXeS7Taw1gEiy+B9Be8D6qbBNE14OhwwL+wb13WN7W6H169fC+uvFX/HYV7mBBiEuEhClZjpBQCS/A7LgrEfYAgYmp5Z2LZCU7eofANvKwabziMIhHkOaNoa26/3ePHyFnOYMS8zqrsaj4cHGGexxACzBAh8i3mcMA0s+P3d99+h6zo0bYM3b95Au1Wczyc8PNxjv9/jf/7rX2HTddhsO0TiYPh8PkEF0w2MJCQt+/+GKyYWWV8KNmkzHg0+ea5ZGBOzf05lcMr7SFz4YNXE8qJDqVUZxgJV4zMwKsw5XZcGCtBy7DYtI6wXvTTPzMvhPGCeZtw93KM/ndN9KBDgnJP35BKzvj/j4fEJSwgYxA9uug2cSB5w44cK3ltYx/vdEhecBKQKFLDZbDC6kUuXbd6jFWxawiTzOHesZLDLYIm8v5QMbessyBpwt8zC5kGTKdCB5+dlpAOnu9BSjUBETADTimHjuGFUBupLMXD1K8scT94bnTTNSLGG+IJV5TFNVtj2SzovAxa83/zww3t4Kfk1BgjjEbRMiBgRzYhN49HedPBW2mIQ4XieMfdnWAN4C8BbVDUn8iHgNe/7FtaxTIg1Bpu2QSRC3dbwtYcNBOMJsA6oHCIAs7AcTyVg0xCBiB6sQsNPCZZjw2lecDgc0G022N9cAwDO/RlhCdjsdtiC38MJ9gy2RtEZC8S4wjRPOByPILBMUCSCMzbNVVf51AAqMYwMUnWXliE757HpNvDeY7/b43xiduPjwyO2mx2GfoR3FbbbBt77xHbNzNEMNgEORFbAJo2Ls13XdQ7BOJyzCJElfyxnNdjsFDP8v+Ii/1mATcYAdcVlSFxP7hLirRRNr6CTZcZOVXk0dS0spaLNvK5OY1LNN4zhiQRGTznYEQCGIDW+QAwLnDHwiPBJd4ezR85xra0TGq6K9UYgdSlSxzgZ5xgRIWwPQHTluFxEW5waw0ZWH1ZJ1+P7Yu2EpvZoahYjVqdWN27vMsspSukNiBAXqf+GotSMmJM6BkmAWkW6pTGt0UwwYKS1pmBpyVNWBlK03AmO/8ZibQz2c/AYBViKQYXd+DOcGMFABDIBZc2oGkUu1RKdDgkCuaOLOjTZcdbOdcbkNtmuyi1hVQ/JLlYCD60XjymLp4aM6bfSEndZ0mckJL0wzMpGCZFbsIa4SOma/rNZ9FPK/KyIiZYU1bJ0YAkLLGVRN2eNlp/LHM4vy4tEYLDcqUszzalcQZ5HWhvGggwlQ6SthVP8ZrITm4PXXCKXnhWQno1SQnUOV74CDOCrCn5ZYKdJgCrOCICAtuZygsp5nk8Q1DzkrizeORbxs07a0JpUNvLhwwecTid02y32ux1e3N7i888+R4wB+90Oxlq8fv0KV1d7NA137YnEugqkxgdIHX1ijHh44FJHLQ/48ssvYa3F27fMkHKOM8Kqt2Ct04R+7jwV1d5oRyVTtOq2opNWMBbkxYLlmd1kDAO8lzRom8AqnohW1y6KUisFM1brqnxy5WwqEDis2T9aLpqOFbAofw7hcrfJ75dgRd9OihwgZU/W17PGsfQg/TzNpvNXZqKSsPM4GOXrtU7mI3JTgrDoRprvSzO1K/Ho8kbo4sb+kxc9+55SRnh9yuycf/p5yAgkYelPIXkFw0cWrI7n80vW55bHnQqR0/KVgEW9JtLHqwCkSZ1S87kuadnymZfPtpguQAmelPeP1ZgkAOnZS0c4M/mSrYOsEw2ejEnlICWYYXReQbEsLQczSYNBfQpmHxyTzlDZGj0SIV60+45EMJQ7LOqkS768MWl4LkEzkwA+Zk8lIFemhbIXEyiZTqzAQJ7jDABY1NK5rQxQlPVU16wfs9l0uL6+wjiOePHiFvM8CwDB5UjzsmCcFwzjDHHO5IMuWXCFPSjGZJlnBMxcZjeNUmKl870soS2HTDP0SH9N7E3i+2sb7vhaeQ/vbNJi4vdzNKhdeMt9NjOk2OGephlEKIAqFGsv299SukEZ0cYSrIBQvqpQN3XSYZznGVVVYZ5z57tSQFZLFZOItoBiWsbIIJJPQWzSotMhjsqArYQRwRqW7ItG1rXqOKlGBIyiibTMAX1/xvncCzvaJA1P1RDU/WxZZlkPJoFQLMQs/gBFLEa0fkLueKzPkQoBdU4qsNYMM4kY2K3l+EAk4rteuvxVqKWJSlWxqL2v5BlbB+MifF1l/19M27xIaemYS0pVc2W/36MTzcavv/4K87xgu33APGfR3cdxQt/3OB1ZGyqGyBpJ0sVvu9ng6emI0/GEsETUVQtnHc6nM7da7weM44RhGDH0AwiUSubYTuVYRYN01akNywJvnASh4M6LixE5B+Du7g5BErXKpj+dTpzgJAbMupbLZU/C/FFbY9SYkHBuCpkOnn+8LhhEgIDBEri6wgYZVwDlAMS+aLZ2WRb292LAojECCIaynmJ0zJTRmGa1+OWfEf067z2quk4scAjDJtR1uvoyBlxCgKWISLmxR1UJW15MFOu3ZakJLSeuqwo3N9e4vbnF09MTQljwJBo+qnW5LAFBEhcKrI2jitYzSzQ3AogIwSeQNkkTyIVk9yrPCW4mkzfaVFocA0LQcjYpZ9T96sIPZ/IBM3ZKAFjL4fS4/8qrTHYasTeaTFDAMAH3UuJlreU9E0CcTqAw4aomNA1fa1s3qLxD5eROwwwHVTsO8I6fBTPugvh4yl7LjRRizZI1bdugajrYOYJsQCCDmVjH69z36MeJEwHLBEJA3VjUDSeXvPdYonR+N6XETDEnpUpAY8glspyNlvlqjKdadkHGhUjAphhzHOgc3MzjpTk31fechh7zNGCZl7Q2SlFx3S90zxjHMXW+K6/5MsmtDZEukznl882vvLYv4w/9R9nhy67rj7z+LMAmaw02mxpdx613WSRvhCKr1hg0FXepauoqla10sqE7w5PbS2Yn6wSwI0AATwrZPFWcLYgGyjSxgLCRzbPzDq230o62k+DFSTaIN7NFhJANcdtdDVxJAoxIkmUXIInAD4YML6N5CZjDiCUSjAhU8lhoh7MKAIthOufQtdtUErcsC+ZpYTpnJFS+QqzZaKuWQ9q0hFGkLSidoOVZSyODBc4yQGFiEDTeIoKZT0atcwRgpXWtY2ZM9EFK8wjRcFtQaFkQgLgs4sxYOMP36q0DfIUZHEyUNab6/LLSfg4OWOgxO80KBi20YJSMjPMCdjS59eRut0WkiGkaEWKQds0BzILjcjEngpVsMA1GaYcaxOFi35rFcbWDHjt/IZVshhjgnGEDWjFzqaocai8d60RviDWKmF6udNREUZ/42WhdfNvUaOpqZQiS06Diu9rNRp51qV0VliAOXG5bqiy2qmJ2XyQuMeC/U5qL+ln8XCgxytLvxbGDszDIWWXnHGt8GBb85I4Rk8x/1lQi59Fsr9E1LSrD9xBgYQJnUMdphrEWTVXDVEDlPXd4sw79+YzHhwf8+te/xsPDA77++id4+/oNfvaTn+Kv/9t/EyYXOzvdpmEnAzoekVvcAtKNhNuGb7cb3N3d4fvv3uPu7g7n8xnGGPzN3/wNXr1+hZubG+z3O/TnHg8Pj/De4/bFrWh1EUg640URQTXi4XiXW/mWLYDLsS0NeNJAKDtQAchobwmqS9AtZWwE3UiQys6UIqv2K+X6CDAayepuR+X18PVnBoUcQpQ6bJW/k6PXQfTq+vXY8lzFPz1GvydKXdNKsCmmz4ogsghLkFIGSq2vq8qKU0mpZHcap5UD5z0nN5j9JHTiEFcb5n8FairHQV/a3+v53wwkNvzk+4zhsjYjLJdcjnI5V/R4yPHPx3Z9jfo3KZsD4RmGRUUQa/IcASUYAbKTXcwjPRel9wkcUpwnH6OJH+c9bDm1aA2MpvfJRXwKtAOyuOwl2JTHqtD2kARIuk39DLC9a1phqcxsexmkcTgeT3j//j0en544e17XHCR7n4RSS00HDQzKV7nHr5xmeZ72Yr0QEaZRdD90eAu7rvY5B1hZF0wDStaFBDZd+3w9pgtbj3UJskQRcNf/R8pzO4J1DfthwTIHnE5HnM8n9P2Ah4dHLs26v2PWzOGIYRgxzxOmeeRM/AV7S/VzvLOoRKxYW9NrUGiKjpwGQF3VePHyJe8LSUfHp2YCLEpvksNfsjGi+IK8pzGI45xfzTlOCKosgYW2vOdEIF+F900CBJy3UkIRis/J+lq501x28MvgDWDW9jhOcM7j1Stm3fR9j1IrsZzPmqxMIKQGm/L7pq5we6v71ILT8YTD4YTj8YRpGnE6HQEAXdvC+1pKBR3micWUNXAkImxknDmJwbYyLhERSKVySStLhZ3FpyA5hpnY/FyqukmC0MxKsslv5PthUeiqrhFixLgEGMfrtGnbNA/bbiNMWCN+ONAPA5faDQOeDgcAQCPaiq/fvsWLF7f4xf/0C/zd3/0tpmnGDz/cYRgGvHv3DufzGQ/3D3h8fMSHDx/w+9//nvWmAgeLD/cP2G23mMcF0zij7TogGszTgvuP91jmiMfHJxyejjg8HfH0+AQA8G2Fbl4wz0H2PPGtxJed5wl9f8a8zGhdDW+5yUzXdjK+PKd++9tvYQwwDD2mcUhzu//yS8QYUNcVrq6vsNlucDwc17YSBiaCZSbS7x20f4NqNLF2lZaBE6wzqCsH44yUN5rUSEJgK5mXgMprqK4r+/yWxZ+JEOcFIKRum1l+IZc7aykSnGVgqa7Ryvzzwszq2hZe9JN0/9A9YJonmUc814w1aDctYiTUdc0ghSA9dcPaOuq/bjYdvv76K7x+9RqTgMVPD48JwDkcDpinGZO0k68qD+dZ2oWb77DeGlFErBfWda3cShuvfDnHLDMN7IG8h5R7mLK/9HmHsEATQUyKyI1+9OuCBcY872RdavH8qVeZeEn7HBFubzkpcTqdVp3gp2nC09NT+p5ihFl6IMwwtxvsbzt4Y7Hf7NA2FbquYYHwyuPUNKA4I8wTrDVoai/yNnHl4HCy14OMgasBgsVmf4Wm26CfFphhxrgE9McR4zTj/uEBx9MZj4dHnIceERGbvcV2z5/ftg3GWYByGLiqgvVu/XnsNMv8ZKkM1eMlIgbGnGOArYifiCgdU46jzqe0PymgJvdqxJF31oqONSX9pqZpEhnmeOQ1rk2JSiBRMRHdX0rm6aW/lBMpCjRJZ11bgI1F10+C+jF/cgr9eYBNIKQsCcRx1I1DbyRn5dmJtdZJa3SDqqphrWx0ZRtfmOyYGG25GBTUh2ZusohfBtaRPtvK5r0W/wY0247iK/EnRDaU7EE6Aay1ZU1MBjHKMdlRVWqpR1Vx5oMFLpWlAikbY+dWW8QSKTpuBRARVzMSFgpw8Gny5ZToOhjkjV2F/sz6/guHKLMctGOaIOMRIIkcdAEBhQMbWRRdsyYr9gUfyMY/ivtgstCkOn78u8xc0utWOnB6NFQEv0UAz1zKIvigzIwyVhaYVQE2i2kOq88ppoZOw/RZKm4fC4OYrk3H0OSsQ3IWi69pHqWx+nQ23iB3qFiNQ/GcdJCSg63ZoPJ+JMCxirTb4vmDn5NS49dA4FpwGurkroKnS/Ck6IJBALNSsuicnpfA9PkQmdl0+RzL6wCA/X4Pay1evnyJ169f4/r6GnXDwpI2snlz1mUbQ5kxxNkRDdgjQuDSybOUNe52e3jPguK77U4MO5J10QlHCiyLk1Z2pACQHAwvVPBUBncxdmzX1mBT+oA02OvPThO+/KkEb8o/8UmR+RyX4ERGfNKvzbOD8o+mAILkDwQkRkmqkvrERrQCFYrzF+YgdbzQhEkShFZwQH+H9fv5WLkLDSpj7u6pDh3bYZJ7lLX+KRZNetPzP/1YMifvB88PkGFbjYYOkwJBvA4p2QV9DCWo9Pw8+Tnkn8yz3+d9tPj0y3mgf7k4FlDWTgFBlI9Q16uex+DimPy82DZddA2lzI4hYPW8LwdTf4wGosuUnaR85wKs6fkK21juc5dZ5bzJ8NdxmvD0dGANHGMTs1DvQxs25PJnPHvxNZk0ndKB+tlpml1OtE95cp9gsl2uVSNJosJ2piEsp/MzZ/Fir5OD09oqvxLBe02KAZW3aGruuDVPE7zlxELbNAw2LTPmaQR3lhMfQtYjB0dOWNPZzzMCWupa44YpSLZ86KXNtdyjS75Usc41aDZmNb6sj6Hi44sk7Aq/RfwSYxR8CwhRGQNBfJa48lFX2WLLIttVXfNYudy9NflIci0xZt9Qg4rtdpsYA0kLqbi2GCODIFAfLu+VmnCsK9Ym8s6hH86ppJA7cE2YxgkwSLqOzmbBdrWbadSEEclSDAUjxuTP1wDFijZhcpVIdG5CyPpSVssva2YNe5dtp4yldRZeWPubmcv89rsdX/u8YJimpKGqfrSvPDcFMhnI0THJYB/PuaaqYGDRdVzWud3uYIzF9dUVzre3ePX6Fb788svUaMRZi1cvX2G72WAaufNi07S4vr7BdrvDzc0tdvu96L8xUH19dc3l1DY34zCGdcJGKZvkEs+QkykSKDZtg912i2WeWfczBE6ahkXmIH3yn65f7x2ahsEV7VhtRZA+gU3alZp4C2QQU3Q81cYQl7IbGFgbYEjYSobXZ04vq59mkh9iIhd5RfmFPlsTn1+3sr8WJQ2o/YJJrMWu5Y6YDhZhLgEYSuuIRcEBBZsi1OcnLDODy3PgTo76TBhs0koEZewsKYGfbIxzCJa1eRQEjJRLypSdnnbJH3k+2Q5Bmg8VfnvUGCvHDM9iB4qrc12enyjHIevfr9+zsv7GfPJv+rnlteQuym4VrxhjEvg0jtwswi4TDC3cAGCusCzqk3FCk9cvdwmNIJANsFbnl0nMuDzLWBtP96f8s3w1FiDuLreIHiN30QZgLXxl0dlKEpSVCHibZHPquk6l4ZoMiFo1soqv8vPQuH8JuaOqHqd2t2RF63NRYgHJ/FHFRwupWotxdb5VBYtgCKXeXvncyjgsx/E5jrrEAcr7kl/+aGxXAk2f8kfL158F2BQi4XSeMM4LlxBZi7bdACBxIiPmZcIUo4hzG7Rti7bbIda84S/zjLu7e/R9D1d5Lt2pDKrKJmeOIn8Wb3jMTKLIosgG6uyIMJtjIWzjKsAY1jEWI8yTilu6OystBQAAIABJREFURyIEygYgEjCME6aZBQe7TSPXzJvoNHFpmHYv0W4nVVVhv78WwcgdNhuu756mGWEO6M8jxnHEw8NjWqQAcDyfME4jlhBEWNvC2QCyhGmZME4jqiqiamoABO15khZwegoFyu0AkjpaB5LyJZ9aj/IGztRazQSw0+nEaSNYqxOfDbQ6VvrRnDGRzUU2TGMW0RICYJAYP/yiwsnnDVSNXVWJ2OCP6cakM2g2gDOZyzzD2grGzgAMog+FzoTHvPCGax07WCVKrJsfi4BK6+EomQjRDXHCYFHKtxd2k55jCcxq8oEFWyNIjCPfiBoPZw2UTaDGQNjMK+NRGrE85ky1ZQp5nuPes4GuK3bKSbqipOACBKDosCCAjIrxJ6dWjSYIzmTw0RasHB23yldo6w4GgIey7CwoAqdzj2kYsdlu8OLVKyzLjI93d1Lj7+S58/GRSNZXg3/+539G27b4p3/6Z/zyl3+N/dUeVSvtZWcGN8dhThuBZqHaDbO/YNghOhxOGIYRHz5+xPfv3mGz2eB/+du/Rdu2ePnyFm3TYJoXnE49YiTOglkW2luWiPOZO0LVdYPNdiebKD9H77T8kie2kYCSAGEf5ZctumLqAIaoHlsJIuhaKgGEDFYkboOBejFpfmTQJgM6lw6Q0YiCocB8MZAsnGdHMxLvMHEhcVKz0Hfa5DS7nSJckwCOtFkr3iFfI0WYJQMHKDb0dI3Wwsm92qqS+zFYIoHiAiySZQ8hgw9StsHjEFPLeNbIkzbwRUlvueZ0HaQgS39eBeeyiUujigzYZPzCQBMo+sxkrugYFFCJVW21Ys7ID8XGTomllBzcIvAFie0UlkcGEFIYyM+YEs8tMVPTvSWUC6m+P89HI9emcIReG88dIj2PPn8G01DoHVz6KKVT/Mx/ofXxJrFvaK29BcDY4h7AzGLjdGzFdnmb1kUQXTpf8b6vduzDx4/4P//t33ifqyo0HZduQXIYIRKc6OLAiLyEjoYEz3rd6Y5knUBKSkrHzcrfrXHc5TbfbQaG8mlSIElGjxE7I+5PiHpvee2XQGaBPMGYS9YUkvah9IRgzEHe09QOTe2waR3izU58gM9E6JsFoTlwJSln5OcUZJ8kEWLmRhW8x8zSLKUfRmYuDmcp52M9yxikAcmy4Nf/z39wAk4CdmasB2HiLmnPJ6JUuuadR90wADRPrIf45Zdf4vrmmu0ReG4ugcWAF0lyzWGGm0TrMIY0jjCsyeIc6/3My5QYcOXebEW8O4jPwCXdzEByUnY0zjOWENBuNnj72WcARBtQE5jpSWUgBWmfzsmjGNnH8d5hv90ABHz//R9xODzh6f4J/fGMYejx8PgAgDC0vbSer1FXFcpkbVsxq97CAIFkD+ckrHPc6am08wxIcIl+CEFY+AumgZ9T026kU9MWL1++xmbT4e3bzzigI17L0zRjGmfuZFix6PftS54XN7dc3vTd99/j//3NN6kRStM0uLq6wma7xXa3R9u2GAVUIyLucuc9jk8HNFWDaRhhwOVV+6trdCGgbTdY5hlvXr/B+XTE0+Mj/ul//UeAgLqq4JzFbrtD3TQY+xHjMMIYC+85OP3ssy/QNC3u7h9wPJ7w7bff4vXrN+iHHh8f72AMsN3sYIzD4XDCD3fv8XB/j4eHJ2lyxHIhm02HTdPi7Zs3+PrLLzEOE+4/fsQwDPjjd3/A+XzCbreDc1bKdka0XQftEDjPXKradQ0+++wta71K0xgL7TyLVB1R1Q03BRgHzPOCjz98xPncQ7tKxhgxjAuMPBuNIWAMrJO4KbG2DVgD1TJ7X2yPE18axMn3oHY+2YSIWQLvKDax8R61q7Ftd7i+umGf7NUr9qWx9jVSHBYjJgGSjHQLt57XXozMGF2WgKfjAeM043Q+o+8H1HXNmlhJQ23Eu3fv8e233+Lh8QHGsjba9fU1hmHA8XAQTbUo95dZS7zHrwNzHvN1h2C1s3nPzwAXgNSF7PL9VABNlwCRHqNd1rw0E9DfJ5JCMXbPfJ2L82lHU628UXvqnEPf9wlcUlBFQZSnpyeEZYGjGQ4RjzagNQuctTieJ0SyqBveDMl4wLNcDAJJAy/pAg5OlCaw3TgwhMEasmQMlsA6pvNisESDKQDDuKAfFpz6EcfziAiLptmiqls0myvs9tfYbHeo6xbWnQEAm80Gb968QV3XuLm5YRsorGdu6NAk8Ke8Z/1Zv5ZadKoVWZZrPgebeC+0hn0AJ2zAeZ7x+MjVFDFGtp1ti81mA+ccawOGgJubm5Tk1ueolRT6rEppGCJK8Vk5F0rfIBERrIW1PMcJmfGVfIQ/8fqzAJsA7h4XopZIFHWkolmQ9XkENYYK2DHFWTMm0zyjNlwPqchwzr6I4ynZGWU0GXHerWh4aLe5pMoJBSokKCKk4Cj/M2kRqIaQ6vxYk8Gm0mCouCEDAfqwWfxNVl7q+MwC31JCJ4teO6sEoVOTsKh4wtiUJSuZM5eO+vqlAUHxVUGpEhFNAVbBGgLAHbFikTmSkXlmuLIBWwUVMrBRRPeeBcAGCVEvUWE5AZJUu0a7+j3WBjhvSAQVTl/VM1/QS9lx+nFEl88fsSw8v5yRNu6Xx1ubxpGBhsyuKmGET13zSouk+ApgPQ75itIz4PcHaDlUCkIkmHKWW4qqfpARAMZYw4JwaU5Q3uBMXldFfnM1LjlkzkaPtaS4O58zmXGkmYBIhKpmrSdmyPF80fWvIvlaL/7555/j6uoKn3/+OV6/fo2q9ik7rYF0FCcmiNPkfBZGBFQjY8YwDOKYzthuDW5ubtB1G7Rtw+UYUj/NwYNP8359bWyPypdzqxihfEQqKfKjGQHBCiRg1zfJmKIMXDMbKS0JPSqhHPK9GIJPzbXVWVcXVYI8z7kXcWUfczmWhQTBAFSe5VNAgtrQFVhRrGHNZj2f5TLPrDJHC8YpSXCb1vXanqEIfoMAUtYSYNdjrMG4LVGRAjjijzX6GGDSAZdXa9bf68CgeGZUjgg7q0mwLaNVq3M9f4b5/vWfMYRPKTNk0MusLrm8CiNr3xgtl2C7pTOOp1Te1/QiS+ArXTMVU1AsBCWQJL/o4ms5bpfwExXflI+ntD/5/i66Q6a9DskWMdiiJTl84nEa8fj0xKWzbZu6GOk9JwDXFJ+F4iIor1UqLpj/LPsF1KYWd6ggbTkC4gxC9sO0sevA5lvNeKJ+otoTFHOlGEQFIkvtLoIy2Uwa43K/UUDOOP/MLuhayHYsz80Q+IcYGBCapWx9niYMAwcv9amXAIc7bjk3cbl1jJhnRtKWZcY4DqKXMgujR9g7Ur6WStJFCFiBCT3GGIMXL19gu2xXGora9ELHXZkxJdu4HIcYOTE6LzNcjAwuFf6Ejh0h635ocmn9bBmgajtmcHgJVC4DQr03/bnMYEdpLOKcxbZtQUSo6yaVICUfDmxnKLIMQgwRwYbkD6uPAAAUdP8Xi23zMzZQUfHMlHZil2fMqRnJsgR41XUCAz113aQgX222cxOf01oBmwhWEpqjsJkeHp+ybypjkPR3nF/t00SceAjGSCMeYXZNM2tCes/rfmOkY6LDbrvB1X6Pq/0VjAGauoazDpuug68qjMOIoR/TyvW+wosXr0RIvsJ2u0Xf93j//geczkfMcUFEFH0tBon6c59amHMsoF3cPKqa/Zyr/RXGasA0DNxdMLGlfe5WG1k/de3fMutEtVwaAT+tPKsogYz3vB6WhRsBOTfBeSc+oS3sDa//uEgzmbSnWpgo4ulQn1cFrplhAukgDd1vCoOt3aXV19M1kpJlMEkWpapqdG2Huq7ReC6d1Xmf2DVEGKU7tpWkppIQYogYR7Y1xlkMUgo3z0uSgAC4jHAcR5zPZ5xOJwZ/iOeYdmNLgTlxs4h1nCBi6hqsXwA66xel9Z1+U4BBl+/n8WGJE0LWgCptgDJfNNFdxjj/WZn3j70UOClZUiVLv/Q3Sruoz0T7AgZhzc1LSHI0S4jSsU3nggXJviG5JJ5qEmeLTFxqOhNkf1pChFn4fCFQ+sefQViY1iTzqEHXbdA0HdRfUV9eS9WU3aS2VlmmJdusjNGUiFDuQUnqZVlWz/gSbAJp4oUUooABEMkmALnU/CpBIrVn5TWU+0S5L5R/07iyBJvSvENanjnGk3ltbelb6ud8yl/Lrz8LsEk33mXhrlaqZ6O2jChn5pZAWAIwzwHjyO0vHx4PmMYRT0/cSaVtA9pIoABUPiRjY2DhbIXKWVgTYCFCkTKIvnLCLNA6RYtgNKAUSqbQ1lxkByzEmETikAxkVpHmKg3u/gAYtB3B+RrOVfCO2+i2XStdM1gfgsGkgGmc0fdD6rhW6r00TYPNZsMlR6L3oxRXINPsygkdY0RA1oZIzmbM4urqMAG5MxaIWODPQNpegzMZzmW2EzLoYa2VBcbMJucc6poFmDPNL28s5QLljbDI8BagT1mH7C6cOHZaY3JeNQwNYcE4DlCx9WEcEGI2BCEssKJVxNkvYOh7OOcxTUz752fj00KDYWYVgQVBnTNYIjumEpaloFrZLLoIlT4eQsAcGDBcos9gVAGilYZIu9GpU6X0dM1URS9AirUyjhLoG6b+a+BnjDqKDNpYBzgYVNEhRpcACiKCjVqmpOMPkLCanLa+tdlhBbEzOhO3f+YSpaw9pU6PsxaNr2AImPqZ9ZPCAiNOvHZx6yRLdzwe8Pj4iD/84Q/47W9/i8p7/Mu//AuMtbh9cYu2bfHmzRs0G84ALXOE6kslhN5kUFSzSDES+p5LUn//+z/iw4cP0JK8m5srbLcb1HWFUTSnNADz3qGuK1lD/Fy7ruW6c+fhnM5tiO3IOAFJZJfAkLgGChIjoQAUlBXB3jSlsc7fZENKoBxpJgCA/zzP3Ewhd6ZEIb7MIIJu6EqLB1FyEDXjbMQh5bkt9rEAPPTKjTGICoqSiFgWNsBZZhnBGMApUF7E66sxg5SC5pcxhc5N4ZiZ0o8tHZ8iIIERZp23cNFzVz4C672tQB0dj098r/dWHKvfeGcAYucpSrMSPcQ6uQadC8W46XMsPy8H/UgY1eoz1YlPZ0Ph1Of57+zFfVG+qqzbvt4b9D71g4l4j+B4mNI8zdhKcXEKakDvP4M3/Gd+DsXHFq9LYObHX2mpFOBJBu/0a15fz8E5EoZiwDROsM5iu2lZfFjOcTyc8N133+P25gY/+9lf4Pb2RSGGKhpPhY2wF8BLCehcIDvF1MnAkq6FpL2Xpl0e60i6hgvBTxltK+/RrCOzbE1y4IG8nqi8OCo+XMYIZEA2X6fIQKXAk7tE5nPos+Y9TewZFaeVEzk5EYmwdl1xQBRDixA2vPeJdhazh4MwmgIImkQIOB17YQmrniDvb9x9iwP4p6enVKqk/pIG+B8/fsQ8z/jd736Hb7/9duUzXb40cEuJkwunHsagqhkksM5hDmF1bGKXFgkkfa+eV0GXqqoSu+EyUNFXmTG/DCq02681FmGW9uTWo9vs8PkXX2G/u04dGHPSjrVugoB+0ziJzpl0Net7LudS/8wVbBmnJZDqp3JJUggB/ThiniaczmcMw4DHwwkE4DyOqLsNpmXBi1cvmcUn4xgiC/AaEChkxp2xBm3XgQzQbTcpYz+MI5x0YqrqGpX3uNrvAQKGYWAgc2HR6+PxhHle8H/927/jf/vf/w+8ePkKf/lXv0DdNMxq9BWa2gPYIi4LXr9+kfwuq8/KaBe1IGAdXx/rWlk4f43duMUSFgzjhNP5hP0Nj3m3beG8xfLtgg/vP+B4OuB0OsMYYCd+x2azwX67xabrUFc1KEY0bQ1CxNX1Hs5bTNMoZUqqvZiGT3xEh6auQSHCS9c1lp1gEFATnk3dMKNLAJRU5hdyd1zrPPb7LShyx8VA7Nsbx6L0DHqxdihfh5Py4hmLYf81aUtKd0IvZbPWs2bnEgKskAfGaWKmVT9iHGfee1yFEAi3twuc9Wg2O7RNzXHIqskHYQ5hxWyq6gpV0yBGwjyxDWi6FsM4ouu22O25AcTxeMQPHz7gX//1X9G2Lb755hvc39/jdDzhfD6nMaq8x/X1Nbqu1V1c5igDf8NQA2AmvXXcgVJZSpcSGum60z5l0TQ8j25vb1cgub7PGKTmMZfgRxkbWcOxp4KZfd/jeDyuE+qfAJouk/pqM8tr5qQBaxaprptzDrvdDi9fvkQIAfv9Hssyw4YZlgL2rcOutaiaDU7DjDkQxmlmYe155O7kcQEFjqdYOVi1/Xi/iSFgiZHL4ggJbPLdEa5usERgDsAcIs7TgmmOgPFwroEDoXIEX3ewrsa8BHz77W8BY/F0OGIYOfnQNAyA7/d7KMBYAjl67yXQEwp7rwCf2m5NCig7rIxJEuij/qus5YVYv2kG0Pc9jDHYbrcpnlYgTGMm3eOqqlrNCWNMKhXVkmwlrlzG0vq8LwFJ9vssnHcw0RS///8Zs0mdlmUJyZMxgEgd5S5YMTKqGQLX3U7TgvOZs1r9MGIcJ2jdpzUeISi6LwvHWHgnKJ0yiAQc8t7BOgMyAplaUVuHcmYUEOCyGK48CMAiQZyAHmrxNfdLMFIKZFHXBG0pasAPrqlbOK/1lxZK/57mCeM4ihq9ijfblLnRCVVS9YwxSRfg06izDq98XxgONiIGWvqgRg0AnAjrkmguWWl7bGFS4Jk6mKhzKPR4neDl+fjznrObdDJogFQawxKVvQScQJyVI4W7FfyT0i9I17lxGhMLJSPSrMOwLNxNhTOoMTmmTjpNqBttwSUpjriNpLEAzYSJsr5BkbRJ85uDKr7+qOV8ktl0rmSlrf9xKcJaLNAXIJu+FwREySRycJnhCo5tGWgyRVtBBRi1RW0ZnEFmcAbKkN5njUklGzmYZDCKAlDWNEYpaeD5X4sQYAOKhMNxwDxOcIavIYrBVOPunMPTEzti9w8P+Hh3h/1+j1/96lfcuni/g698CmBiICyL0FelpEuWLq+4YoNl4zxjGCbc3z/g/fv3uL29xevXr7HZbNE0lVCER9FfyHOurpnWr0KfdV0x6PqJAEWB1TR6hNX6uswE6XMpv+ZovhBxXkew6ZdE69g9BZRRmWlRav2RMkPpARrpWFmAFxTEqYiih2diymhmDbcLh6X4XmdCyuSLA0veCyBarvHy53IMiZn3xe2qU50u/b+w4eXzgZlOEYCDdJJiQPXys3/s9Z8do0olRoHGItg2Ll93KonTcwIp4E+Pt/z5U8dAlluxHi/fZ00mSBVvh06WstgMpCs/j20Ch9K9oZRLWAFkWJ0Hz86jh0eIttYnx/FPPYA8R8yzNYDEQGbWERLye+nYAxkMDpLUYTu47vg1jiOeHp/QtR023QbbzTZlAxkgiZiTMLJFVeVStB9/KVss/8z3lD+5SuyC9agYqB6KsvNUw0Pss4A90WWhUD1PuRcRZe0lflDlWBb6UjKWsBlsCmJYFGRj20OpM6Yx7DzrzHm2RtOEUPQJKB+luTzsR14hlM+b17C17F8Mw5wApb7vcTqd0Pc9C0A/PGAYhvTz+x/e41EaP6gTX+4XAFIJxOUxQNaU2+w22JotXMyaMwo2Xe4/l6DVKoGGDDJlqYEioKYsPp7GrASbiMsyNCvP429RVQ2ubyrs91dpNhBlTZHD4cBd3M5nUDwwI3hmiQhle6jtZd8urO6xch5e2V/IAdm8LBinCcM4itTEgqppcDwdUdWVlKHXnNCV8YwSbBnxP638raoqBIopALdSHjJJ10Tt5te1HZZ5wXa75Q62wyAgJIM0f/zjd/jv//4f+PrrET/9i/8BddMmvS++DyB7fnk+Fttx+qfN1Cq179ahaYB+uMXrN2ds+zPIMBMPlkBgu3E4HHHuzxjHCV46YHnHIFHTNKirmjs3C6ATgmeAQ3zbZdHkar5ABT1AzJBippWATcamMjoFPduGS3KmaUrNc8q/xxjhvUHbdDznloAYDIzjRkHMIqtW68E4A0sE8llDkYSSwu6lAWy+X+88rBNZFLNId0gucw1EcL5CfR5Q+ZoB5yglzU3LjCKb5z+Bm0KRzHnAoGpq1E3D558jlhAQDdCMUgZZVbi/v8f9/T2OhwN+881vUHn+Xd8z+0xBBQCwzqHbbCTxqE4XryeN14gifMVjVIJFuWHBp/xFEv+Xy9V2ux02m80KrAL4+TZNnbqmKbCQrk9ZhZJ8VSAixoi+71c2o/x6mWjKcUh4BkbqvShwofasaRrc3NwkllBYFpgwwcSAzhMaDzhfYZojQpi5FBUEogCKAQYRoMD6n5Lg9k7ApiCNveYJhzPLWjB2aeCGBcbXiLDyz2CBZckcY2FsxduMBaxjckcIER8+3GEJEf0wYF7YXuz3e2bPNc0KfFUfFsDq5zIG13K18lmXz/ySfZRewtTTPToSYZH9fRxHPsRntqaybCfp3K3PV59/mVxTf0XtdAkorZPdeT4kv6CYC+Vn53nzpx3mPx+wiVQPIGfunZVyOCL4uoYNEb7iNrDGOgQ5fl4CliWiqhoAjoNPOIQADP0kzh8loMgaB+sdOJltoKVyvAHIJg4JXOOSN2KSjmXahS1wZm2cJgAGTd3BVQ77ugEMMyeWGEGI0tWE30PEBlC72SQNEenCxe1XRSxQS3QiV0l2mw5X19e4ubnBi5cvcXd3D+8roSWq7sgGvvJo0KTJUdXSFlczCU60QARsUUCInV/ePSMBNoigmVNKrBS7xIigjq4ASsmTNAzKeZcnZSVZy0ARNjg4aeELAyxRgDSbdkkkhoIGQQbJMeeyK6Fal2BT0K5bHAEZqygtZCzDioaoRkEXzSK024eHexhjMUrZFIxoeAAgMhKoS2ZBHE+9jxilGxnlkrMyGNCFXG7il/XbQbIWeg+IXKZUFlQkOqwGGYFbD1trsTgWOq0FJFOgNQVmxHRNGC7ZMIZgLeC9TYFqJAIZ1UyTgFU6AnFMwr+MiLJ2ZZMzYF0U6FQQMX8HBiqlg82yMBPAWm5ZrRlDAnDue8QQ0Q+8kVhj0W02uL29xedffpEcI+ddYtXFiELo3yRASG4HMJD1RVK3z5vw6cS1+gRC3TS4ut7jzdtXaOoG0xxgFr4nK3OYxSNt0pHmz9fnyuWAvNZtApXl45M7mLZyib4UjCj9jnRsmjt6vM4DGWGra8Skea9/SscYy8/Y8DFRhNhz1AmQdiAU4VAGF6SE0cqxkim0zqQMdGa96PVKwGcyq0GZQtzNQ/QdIpcWX5aIleVUOsaCe0owx7+gYpSMERF4MBMixlyenIA9CahAkHJKSlldPR+XQbgszC6fkT6TChZSeU4U1yT/UwKhJlCoADysE1sX1c4Si8eiBHI4g0+RRD9p/VwNPyxZw0g6U8ZpKYvOB0aZojBwNRrnX7ukW6b3bOU9yqaxRkphDDvzREBcxDFx/DsrYv869/it/J9et9VycqPXnZ8L9N7UsUXB5il+XjF85Gt+Jli98mMRsMPaZPsuX7rPoPYwRgMXm84bI7Dd7vH5F1/giy++wE9/9hf4/PPP0LYtAKBp6uyUS9mJsifTlrh6fnj+y9V3+RWJEJe8P3KKSvZoHQ+ySSzfyD6ROhupkxwjaI7lkk8ocCwB6mRnZD4YU4gA8/dG0SYtWy8Bc4qIhjiYFZtrZJDzfevDefYkVg0F2Nxpmerq4sQ+5dMkn13cOSOgWF07OA9cXe/Rdi32+y1rKs0zhuEN5mnGV19/iWma8fT0iGHouaurtzx3xO7M84TcCS6mD8tBBHc1DlGY9LIvaVJrGMa0118Gc6ndunRTLoVfeR5R6o54CX5pCTgva5vO50RGIkb1zdjnNI6DGV/4Vrqnq9h03XVcXjaM6G/PiR0eY8D4ZkwddBcRqJ4lsajdPskYLGB9o3bLHeZuXr5EJMLtq1eY5xnnc49hGHF7+wKvXr3EZrMFRWAaZ0yhTwyM0+kM69int5a7TwHAeegxjKyX5H0l+olsS7UD8Xa7Tdqog2h/OevgXYX91RW6rsOLF8xQdN7CewvnlG0PxCVgFD/PFuOtDpEBwVoPZ53YCpttnwEeHo84HAZ8//4HvHv3DuM04nzuQRRRdznQHYYRy8yJTvaHKnhX4f7uAU93Dzg9HXGUTmjOs515/eo1iCJ+/R+/xvvTO652aBvu2Nu0aJsGH48nnE+nNA+SToyxwmotKg0i4FyVhIbTP+0wJkl+3e/nmZ976xyMcyCon71gkK5byqifppEBo2XBPI3wzuFqu4N3Hgb82RYeRtggdd3xOjKeAYXTidelH1DVA+qq4c6/kXB4OmDse7YCRRdlArF2Y2EzfFXB1xW0yiVGwnkYsATWTNMqkY8fP8I7D+9qdN0Gb9++xX6/x+++/R2+/eZb7m4ondaaqoZtG2TQVn36Bcaw/6bliAo2KdBQghbAZSIkijZvvieNNUr2kq4LtRcKNqiNsNZiu+tgDesqaelo+ZmXJWBKYPgU6HT5fQmexBhZS7lt8eLFC3z99dcAgOPxyPZiOCPOEyosqLHAUMBpmEAxYOrP0rmbJS5YA1YdP+7GWlec6OXKnxnDOOHpcASBYH0tGp4zXGVB1ksXQwvrWzhHqJoFCyYs44xlWhDGGcN8wLIEPDweWEB8WbCEiOvrMTG29H5LXSa26UOK6VopU9YxUzJI+Vz1WaudLvcDPYZBW5s0m7Q6BUUzMCVB6Hv1OgFOik3ThKZp0novn2uZ4FB7piAaERUVPPqMC/ad/E7LVjNo9qeSavz6swGbVGRTwSZrADI209ElePdVA+crQMCmORCmKWCaI6q6Q11nrYglEMJ55I28YaHrpu2k1MUlGrx2xJnDzB0MBBSJJDovIaAX+qCrPAs8Cp07xlziVjVb1HWL3W6HrmtxOJzw4eOdII8LWAxZwSYHX9niOoywsFi7YBpnLAJ2qLAmAdjtdri9vcXLV6/x+vVb/PDDR/iqhplmTPMZFAM2mw18VcF5jzqJy4ljU9C5jTGgGJLJ51w3AAAgAElEQVQz60V1Xye/i4ToWHfApRaQhep+5OsKRLCWJKjlD7OF06RldCEEBGLUn8edAY05rHURYKwARVn1Pzm28r4lBJhoEC2X45Sll5odypT1kIywLvi6rtLYW8uMmnnhcqnH8SDBvbQ7tjaNozLlSKJ/3gCYNjwHpqlOywJK5Uq5A8uK1RXWaLi+CIBV0EYeHJnnufvSgEVAMkYMKEyWARG0rQTPXsS49RNUw0uBEMM6YZIB0rb2ZAgmMsxFJMLQTjLqmsmOpTB0cZWFweJucAbREoLhssxZAl/nHOs3Cdg0TzPO5wHDMOD9+/eIMeKrr77CzX6PV29e4yc//UnqLseGQsZzYSBXA6W8AWcAIwbOPgIscjvNAU+HY8rytF2Lm9sbfPnV5wghJjFw57htbd1UidGkj8z5jO4QgHlZcD6PRRYx/y2PTfpfCuCVpaaAiAbhZZkEaUC+CiY5CHSQIETLVjR3qYGjaME5a8Cy/0VwiTxGejcalGZwASBrYWKEqxxcpfMpz1vFU2IEFHsuHfUcTrvV+VfzWp8VZeBK/yl7IjMiI7TFduUVqBwxz5x9n8Yxa6JRziylrh3CLMxTlqnTmlnK85vS+yG2r3SwVuzMyGCqNgnQdtYUiUFoCEBpGGwiYTZOog3jBFjRfYYCl8JQASRa5U050TOxFl5spRX9jsq5pBVonOMui8cTOxueU++Vr+CtNH7wDFI56f5lPdtg7zwq6ZJqPE/WMAvLQoTvnfV8HgNAWMMKWhrxmpx16TzWWwGbhIVaAE0KbJXBdknvViZmidOU6/FTL74OdZI/DeoADLY3TZXms5ZAxgjsrq7xk5/+DF9//TX+x1/8Aq9evUTbbQAATVujaeu8DkjsDCHlsXQt/Gefn68339cwcPtxa7POyvpEBcAlV8D2QWyKAA1hCZiDlJ/JhRqZsypvp6VuCXw0Js1HBS1dshBICzOvAZkXiLyHwwDErJfcmoSDQsGl5IapACgVvOc/6VwvyzNVjzIB0wq6Cd6ZbA8MaudAxGBFjIBzRQMGGS9Z1qvPNYbtzTzzPn04HKTFN4tqq41RUCSEgPP5LOyZEeeey7bGkUWa+/6MZQmpdK8MBrX8qKpYM0jZU+o3qc0qwSb9V2an1d/R96eg1HHDG+vAga+sfdX9Kbsr8Xhw04QwL5hG7no2DD3LLQizqO/79O/x8RHTNOH+/k7a3UuAXNdod7sE6miAQ0Q4Ph1wPvVo21ZErp0w0UYcTkcMhVaOdoYy1rLvbyzO/RnDOKLvB1S+ghMtJ4rcWWyz2WC327FA8eGA/sz+u5agfPH5F3j56iVub1/IeDl4z41TxpED/WWaGAQywuSWzoVEkgAgLj9jtgnrmLD4Nic+Pnx8xLv3d3j37j1+97vfpySPtRZ1y2DTsgT0/YAQZrGbDk3FoNEP332Hw+MjtpsOf9husd/v8JOffI3NZoOf/OQrdF2HP/zu9zg8PmG73WK76VD7CpuuQ9d26M9nfPz4kX0smReAJCZkA85iwQTnqsQOm6YZ0zxhmieoZpIG1gRwjCJNkIzx7N8FwjjOuL9/TMkeIsI4DJjGEeM44HQ4omtb/OwnP0XXOtFojdJ90qOuamx3O2HieYzTgKfjGX0/AsbB2BPqquHE4UJ4fHhAjCE1LILYPQJJUydK/oP13MHcWoe64hbx2rvcOp9En9+9ewdrLGI0uL66xt/93d/hF7/4BSwsvv/ue5zPZ9zf38MYg6+//AqbzUasKkmsodpbPGec471U12XJGktSJcnmq9/HnST1njSOKplR1tk090sQuownrHO42l+hqlh7SJmc+ll6bAk2ldehNkdt1TPmJK3Z6nVd4+rqCm/evMFf/uVfwlrLpYfzjNPhEdPQw8wDzDzgfDzgh3d/xDQMeLj7iHkcsd1t0LUNvDWovQV30uZ4sW0qeOcSK7EfBjw8PgLGoN1sYV2FKs5wi4Wt2BdyFVcOGRjUbUC0FYblxE1h5hnngRsDvfv+HbPWeFkkdp/OCWUNkcQs1tpUvmqtxXa7BZDB26ZpEiOqrC7SY9Sm6zlSWaQQBLzVhCElP1FBJvVfS8ZU3/eIMYru7Ij9fn9RcpmTEGUyowSb9FUCUyCZG8TaY7DSrKZ49iXz+j97/dmATZqFs84lR4kHhev5TbDQrvKs3yQiYBIMazrLGJPKdlSTxxhwTai18MOURAOtsylzRgTMcUaggIiIYJjxs8RFsg8ceFZ1zRubgAXqQFjrEKJFUzc4n3kTPZ97FjA0BnUlImMpuco5SOccxrGGgWZUCH3fi5MSpC2vqtUDwzCm+lhddJy9GdD354QurzLEmrk0QJC6el0EMQTEZV5RMfWlZV4wQIxZKJ1PBvlZDbqKUGd0XY2RGixmFmlntNJpEpXk4sUbRNaw0Q8sjSPfo5XsiBhgMKBNVOpIlfXsfB52LqrELAsxyrPRQJJgXTa4vLClExMIkXJZG28qlC6cAxVl2fCYySPn+xbWggZY+hlEGnyGFehnjRFNGzVARUmM6m5AmVQ5GAgxssaWgBkl7EGSmQNyAGZVQ8MyAOuIx5efsSnOkZ58Gi9le6CYW16CS5CBMVkoj2LEMrFztala7qJIJE7sgMfHRxARbm5uUNc1fv7zn+PNmzd4/fr1ugwBeYzL56uMGr1KzS6zQ2gkGMy0UWstNtst6qZB13ZQsUoVwtMOfijWaIwZwAWy07YsMW0uMUZE5A38kjK7AueQM0YcsOX3KIMmA0Ili4nfY/V3Nv9uzX5SILd4guJwkmYv+KLT/GfgnbBMIWnqBeJ7iisbQGk8S90Uvg8OLiEAJSF3BQQy0M/rphDwl46hBGTwUy44Egloz2A3SMurOdu0hIW7zKl2mdL6oY7ylDpBztMsXcjYoXEJ4M6MJmU/aVlIArtkEwYVzpnclxFGklLMiQgkAvIKEjFKwkyrOQg7QZ6alYwlxciivGlZm4L9ZKR7J+tdMCDEICAzWLXk22IJC8Z+BCAgkQjQ6v2aEiTSNVQCSRaJrUFBg1gBIIyDt8zu1E5vzrg0H5VhyoBUBpsUc1P8Yg0oPf+6dnrLqazr9fk60zVlrTZ5kPfnA9LWk515cQgB1FUL6zzOp7Nk4g0mAcS/+/4dDodjcj6LD4Uxcq+yRrNwrOowsX0p97fyq8AyDMjIOfRyoe8xCt8wc5GQ2a/Jfog9IGtgyMrRacjTzwo+JxaTLe0KQKrNp3tAYfucy40cEtilpXS2sFcw+ZhiE8sgYD6uZHAaIIPiKBshZPup/g37Ktn+6zouG02kMZY32HRvK/PICTRwsLjZtFgWD+cMmqYCd4uS5NK0BetBjgIwzRinSbQ2J2YECTA1TbPsFetATcskykCkDP5KzabyX1zZ0jVzmucPMytcxZ27IvF6VD+63MPyHk7pHMoVVwTP+QrOMrPXOAdf13BVhWWeUbc1lnlOtvnqao/rm2u0bYPb2xdFuT9hu9lhGkZUdY2ubWGdQ11xF6p2u2HQru9x7nu+RkkALDP7pMPIrIJxmlh/xuUERllKwvFAFGYWYbvdiqbMFre3t9jv9+i6Dt6zNiNgMY4BYeEkT5iZJe6ELaPMJk3uTfMsDFy2I8yyb2CNwTBMOJ8HnM89zv0AEMFVDr5iFhFrTfkE/Og/El9ot92hcg6btsG267Df77Db7bDdbLDdckJbS5SIVIiak7Qr8CGEtC+lbqvE6+1TZUC6PhPQL10Hubscr0idKlyi18BXDr6uUDUTly9RSAnOcWC2RX8+47F9QNc0ePXyFdqmwTJPkkwBxnGCJuQNGBDl4N4XtkDtOScnp8Ai+Ao46TMHgCB+NzMSKdk1ax0qz4wVZQdb62AsAxnK/tJxUTtzKV+y8t2RWU1l3MPJMFr5CJevH/MLNRmuItVaClkCVMk3pGLNlslrAUNKDd+SyXIZfyTbQevzfur7y4Sb3kspSq6MLBCleemqGs4azNMEYxxgHYzzsBWh7bbY7bfw1qDxvDORxEObroH3Dv25x7k/w/oa48wVGtv9FVxVsw6Tr2G8B3wN52s03RaRgHpaEI1DNQb4KYJ7DXG3S195qebgtaySMFFAnssxKytjdF2VX5XhpXOmHOfS3pe6TsYYdA2zWyvnUhdyELF+ngiEdx2L42ujMADJz5ymKe0jl/NJX7quL0u2L+ekleRy8VteQmAChB6TPIlPT+/0+vMBm8APvG6aVALgnUNV1YAGMwiYI9fwRgCwDsscEI0DLFPlYRhhn2Tgj8dzEoRWVpE6PGlsBHCaA7d1t42DrR2XyC2TIIeyWW02aKqaDVHkWsnD4QiA25l679E2LeqqQggR8xL4XlKJGn+Ws5zFcr4Qz15CQidVrFoDwkgGXdvh48ePaJomCcZ9/PgRd3d3OB6PeHi8RwhcO7vdbFFXVcqM6SaiRnrN+pnhrMO2m1f6AbnVpUuZ4SAX5LS2VIMwykZIF0XZDUEdAO78EJKoo7VO2nLGNeOJMqIOYAW+6DHyDQws622IloC1DbxxMKYWoyEAQJRg0ho0DY+f8xWs86wVhglAABFT5q1DoiFqrfY4zqmMDobbkhLVmKUEL5IG05T9B2IxVwDcEaOu2PlbfCpzADIqHrGunfUuC1KrWTAyOUIIzH6Q742cx1mLqmbBgTqBbQpLiQMJQDvUWQNYsvk58ixFdCSAgIDBxkjwzaBRXLLgO0CwxqP2ldRtd7DWYpJWzorIT+OE0+EA7xxefHGD3XaHZZywzDN+eP8DvvnmG1xfX+Mf/uEf8PbtW/zjP/4jfv7zn6PddLnESaKxEDTIkcDbAtbrmHNg3A88H9umRtNUWBY1+JSyxy9evJCaeP47Ua5JbltudzzPUYQq8/xTnavj8YhxnNC2DZqGKbVKbb3MRpfPVue2vlbGX6K/GpltkV6U/VO5+9z6XHGo9AH5h/I9mbnB9jLGgHlaEOaAeZkwTCNiCBiHSWwZl4k8Ho54Oh6L80SMg4pPnjFNY2pqAAFmKRKmicsuxmnEPCuVW8QnAzuM4zDl7Oo8giI/Y4ASS4T3X84aRuKA7v7ugSn/kj2ufZ3s33a/hXNsl62xmOYRc1gwnHucjmfMy4xTf0JYFkw9l1voWkHxJdUdFSBdQgMSEijHBAJCeYyAAgBs5UTvLtOptVxbxAcSQ02dewBc6pgCEqDUXgMpq1SfSi6HVFBCmxso6FiWTGZ0Yz1nUptsAQeMOGKpa6uAJlpGp50KTWI2IX1WBrL4uK5rUNWSTNLhk28us6mXvytf6tiWTmAGmdQptCnJxMGCrsEcOG03W9zevgAR4XzmFsifff4FrvbX+MMfvkdVNSAyuL97xPk04Pe/+wMAko42mUHsfYXdbs+JDHmO/Nlc9pt0WTyXdDgpT2atSdFzNAzi7K+2qOuqKDE3eYwVRNZ24ihAI3mG+XE6RBHuRT5VeuxIx+l5TDkNnnULNIDoGALWisZVabbS94XhgWbzRcdIxMtSQ6viup+90vuRGwWIHQ5RhYDX4B0KYPiyLCQH5eoLYQU2KXhVVVzMUNc7mSfZ11EGjy6cQJT3zyLYXB0TlDHFoFTf93j37h36vsdvfvMbPD4+Jl2psoPUJfj0KbCpDO6cc8LMj/C+QrQOzvsEUgKQMl9hUBSBdd1U8BXrLtUS8AfRKfVNg8pXaDYbKCjt5PkzM5xF3ClGdF2HzXaDuq6x318xe1nmhLPctRfFGvWuAozhJIfc8zxxKdcwcnL13bsfcD6f0Q8DDscjnp6e8O3vfgvnHG5ubrDf73E+n1f6KdM04e7uHtay2HJV1/js88/xV3/1V6hr3q+7boO7uydYe5b9LrA/HkJqCKLsAACJwdoP7KfHwBUJzjnc3ryC9x4f7w748OEjPny4ww8/3ME5i6vrLYxpsel22F/t0TWdpEu5ZJoCJ1oMGXz91VfYdh3qyqGpK2w2Hd6+foOu6/D2s7eoa97fxnHEZulEO8klrR/18XkcpzSfdO0ZmDS/vPOY2zGBsWonubTTc9LB1+wvSrdAIqBtO1ztr7HZbbG73svcnmGsxfUNa95M44R5mvH0+Ij333+Ppq7x9edfwDuPd99/h8PhEafDEfcPT9huAzY7LrHrui3qukNTf4SzPiU+vJX78x7T04x+OCPGBUS5TAkAM5tAGMeJpUkCs7EAA2uY0cv+vxQsGYOHhwc0TQNjOBGvMZB2IdvtdhjHkcumYgZnQlgSu0qT6goQwxAsrTVtn/uCtLJPLBDO7Pj9fo/r6+sEOI3jKJUBSB0k1SYo86U8jzaUUs0mAJktT+wDXxIAStaT3uMl2JS02IryMgVX9FqVEaQxJ2DRtBtsqwoEA1u9gwmEZnOFOga8/vwLvHn1EpW3aCpNsPMzvdozK/Hx4QEPj484Ho/w3Ttwme5r1HUD41nzLcAikIX1Hv7/Y+5NmytLjivBE8td34I1t8qsIosUKYqiRNl0y7qlsTFNS9aj/t/6MmNjMhupZRIlFlmsqszKTCABvO3uscwHd497kUUt/Y2PBoJEAm+5N8LD/fg5x0sCm7wp0PY9PHJElUGZFu04wYaI1XqDwju+BjpJ40MIyZhbHkvvI/mMS/NtYToJi7Ku6wT4AUj3oW1bHI/HlO8CQF2VyKyh3NXaR2CTMDUFdBSvQanVY4w4HIjccnFxke6V3NvfBpoupX6Pz8dZfg+O2XMetvCqZGbTvwc0Ab9TYJP4QzDYAUBGxaeTHypJGoIMQFHsp6MUFd1hHoMYFWk2VQS0iexLkrLatLEMd1xddIiI0LmBYrAp91RoZcWAGCLW9QpFnqcLTfpkjRDJM4omMSjMzBZ5HZ0OZgoANH3OMH0TAAWsQCMgrbUMVChm7UQUZQExEQdmlo/hqR+Wu9pK6bnoFESVK6bAsitAEqYZJV9qO+lvBHigz5HSpgi4acKEmAKrUkTZxAJsstY+og7HFFBV2pjOOaZQq8QckLu0pM4vK+f5Hc2PuAjWwjr4qDzn277ojDz6IrBSmCyCbi/N1IQtF2NEYO+hJNHzj7sBv/W9q/k5P/5KzBI1AxnLxPJRgfVoZy8y5MVVEZBrvn/zlZJ+uFxlYh8tLyitFaUBHRXPglhe72XX46NDUq4xZt+Yj8EVgJK1KA7DUJjchL7rMDkHY2lq3fX1NZ49e8Z09wsaB8qfR97yfEli+tzpGsT5OszxYv59ATTl0CjKAlrz9Dx8NymgezP7U9FhFNNryRVYUozpQj66NY8e32FjpNupUrGY2HbgYob9hoQlRD9jhk8Uk+CY3pSsAPkdvmsE5Dja9+M0UuExOriJhxOMPbxjsCkI2BSwPx5xOJ4ohmq6BtNI0zD7vuVpRp4B3Hm90O94HlE+8jrRi0Jl9q+YJgabZqwGmv0qZIoagb4ENrUtjUhPtA2+BCFGwFBhOXLndHL0WceBukVOQN4onlsugU3qUcUuFb1iBsiykFze5IVvHIOgdA6wnxL7QmlFsTzGABPZnH9h2E50Ze4kI85gk6xllqGJtwz95ezHJWsfkXT1htdV5AUbBCBIMSKCNxmDC1TAa8yxSSlAO2lICLikHgNb8rkXQJYAUgrgvF5hciOyzKRrO2+Pj9g+CSxTj/5NrrthmfdvGzEtwJrRDDax9GAJSghTrq5WaDvyG+n7noG1HOMw4XA4oO96tE2L/f6ALM8x9B01TkqaFiWLzloyXxavDsoxDLSx0Jql7JrGpGsBmwx5vKX8h8Gms2aDosh4vShO2vV8ndUcbx9dq5TnyFpZsL+0Ygbw/DdYxOyE+Cjx8Hp8X5axXJ4bWJytXBzIepHTY36atCgW92Gxhb5zbvOT8HqNSj3+nbgAitJWmPdAeknJHeJ8NgYKD1j81exPAyxkkFKECdMUUMkjhp7bLp5FAEw5H0Ti5wNtWxqzTmx7kuGAi4hZQidWBFIwfPz4uPE2F4Qsr2OWdIgRpu9pCIKsEb4w1GAYmLlK47c9AvIQEDJanxHiB6aIDcUFBilkOUdHhIFl9pwj8ATEnnI+YJymNEFXgWS+EF+rEGYWpmLFgVIpD868h7FUIDVNB20MNtsNRjexZUX1GGTzIU2I6rv+0chwxbHAGgKopTCmhifneYtcbx5qEdK5LnFIzjXvI0myvQegiNmrZvl1SPdPmL+ewTXL1072HsUAayxslmG1WuFssyGwKSPgQSYV2oV0at428zqQtUDbRgAQ8iWlpgPF9qXEXNQTkm/Q2tb8vkQ1wmqSIPnRPLCoKNjDrqxgrcHV1SWKssDEliBlUSB6j8xaAuO1+JRlCIGac1mWYRodkLGRsVbp9Q3natrMh7z3Hn5iGR1mRQCUTCibr/k0ThhGyikUUW5hs4nrTDqLRQqWgGyW0D48PLCCZf68y2sXkiIipPWS5FEcHz4u6B/HlXlS6px3znYgKSYsGL7/2mPJWFq+xjIP/62N+8Xf/2tMpo8ZTUs51/J5BIgSsFMmQTrv4YOh+hyaTbs1bJYDMaIsa1SrNcvo5DyhM69ebVAUOYZxQt6PyJ1HWdXQ2qCqV8jzAlFbtnsAKfRNltiDmk3sbZbBZjls5pjMolCUBax/zMaSa/6xj5EAaUtm0cf1xJJoIcDvksghBuLCepJ6IstI3lzkOYo8ozMvklVMVVWpXl7axCzvqcS9WR77XX+BZf0r58tve3x8Ni/rkuXvLOutf+vxOwM2KUMADJl8A2CAAorpq9DwCElCl+UK2hYwtsRVsYLzHm/ffIvT8QRjCYUvshL15hxGm+RjVNcrGvNZVVit1yiLApcXl8SqqgjMGeOEKbJcStEicuy3sSqJ2SQTnU7HE16/fo1hGHA8nDCNE5qmocJ5nND3PYyh4JpZi9V6jbwosKpXqGtCPlerNWaaXkDDRm6yWMZxwn53hNIan336GbbbM5xfnKOsK1xcXeEHP/wh2q7D6XQkE0Q+iGjCAx0o0zTRGNG+Y9rtnFyFyKajWiiNbCAbNXSkJNnYDEpRJ8x7j/c3t9jtHlJRZoxBUZZQQEK68zxHlhNdeLMmMEcS/u3ZGeq6RsMUaOcchr5HiGJ4OTODpGijhSLACCdxbFas43zweu+AqFOHJYTZF0nkkwTOkS8KvS/AmgxGZ8jOS35R8lIQNprWM5Ag5ocDF6yeJZfpoBffApEjcKeorms4T+NAbWZR15Q8TG6i6RsLkGM+XCjxipLBAum7JGVgtoFUmCTX+6hrEqUWj2nEpgSUsATrOGWWiXM0Jpe7bwzkJRaWXFeodH1EpEJJFXvVBA8NhcxkgI2ko1aK/Aqcx5e//hJvXr/G1eUV/rf/9J/w6tUr/OV//ys8e/aMUHqjyHdknCff8IIAMHcLbGbJPyUqMLYCxYavQsUPYON+BRRVjSwG5GUJm2Xo+w5t20Abg7IoYKyBj2JyS93d6MjAnwpZYnutNiussWL2lwExkuy8ZnmzxY8oAnMwl4Iaj4K5dx4PuwObF5J/C5m3jpimCaeWzBfbU4tpcuiHDv04sN8GxZDJEyPpdDhh7AeWwQUGmyhJGqaB1rAwmzx5NoQQkkePF0AmBLhAhqN5WZKnRlYs1ipR4POcTAqrmsctZxY6WkCR94bmeBA5aYwhoJ4mTtRk3LJmEF+jqimJtcwSEeq6BAmlFPKS7hl5HQW0XYv7h3uM44jD7oDJTViVG2ijsVlvcH52jqIssD3bQmmNvu0WzCYksBRQid0pjKQEpHChsLyfJhIoZs1s4imyUqU1oMFdWoq3JjO0hxRJTXz0CQSRwQdBSllPccBHuU4xMQwnT7HXu4X3YHgcN1jkmMbXJvAcAALHC/6PAGt0BvNUlI7lPvIfOkTodwQZZKyfRZcESDCQFpJnHJ13kaeHLoF6AVOlqKGijQF+kS4ycCCySXILohgozAPxG0j7DXPCLUWCm1ySNjkXifnKa/fdzS3W6w2+/NUv8ctf/ALb83Pc7/awWUam0SFgks65mzAMVJCURZWK8Mdg5AIgEvBxMSlXs/RERnmvVhV5+jDzhuSIzMjhdZVnGf0sSRdoIhgYDIaiz5Nn2WxVoDUKloPkRQ5tLHVTOTG2OQEN4usj0u/MZiikucdbQCSbWZ4lVkVZVlRMFjR9VH4nNQOUmv32lpitfF+ebwv8CwqgxiqxxAHAJLcqfr5AIAc0YNO+lMJJfmcB4ChCqxxLpJ2bOL4vWKkMlCTTZB/g/GzqPAOgIL8f3o/j5DD/C72vmNavPB8BxmVZY70JKKsa5zxNTbyIyGCcWEMycESKvWEYOR+lfe78CEQwk2OEDxHD+1va83r2YqOGJp3nEQSYACCZRpGjLEqs61WKe0BE03Vprwv4pxU1W8VEves6lsgI84lyHwUFOZSt1rB6ZvRl1mLNPiPbLUnvqqpGVVHevl7T+PGLiyvEGPGjH/8IXd/jq6+/xu/96EeUfx+PUErBOY+b97d48+YN3r17h5ubW4QQknG4sDwO+yMuL3PU1Rr1aoWz7Tm0NsjzgcGJAU5YIgq8dzIGYCiWTM5DTQ7RZrBWQFaSlRZFhe3ZOQ7HBtZSzdC1fWoWaWG3ghretjCoqhLXV9fYbtb4/qevcH15iSK3KIss5fRKK2oIDQMU36/MWnjOoY+HA4zWcNNI8dY7nlaleEqfgtVZkooJm8mw+TrVCyTNoz1Aa9x5h64/Ypwm9MOQLEyMzZAXxNbK8gz1Zo2iLPD9732GzWZNQ5ECcDzu8eHmBm6a0J9ajMOAvKxhbYuuH/D+/Q2apoVMM9tuN0n9UBQ0BXSzXqMuK0Qf4EaHoevRtS0rWx4rAmiAEZn7i91J07XE0h4JWAMDm2VZIS8oT3ny5Anc5LDbHbHf7/E3f/M3+Nu//VuURYkyL5FlGa6urmjvDiRbyvMMNjOJ3e3cxNYrAVku06zxCFBaNjMFjJofMYF+S1matXbBXIqzRJ3jtDT5lzWHqAEeXRu/tAH57uRykXYlMI3VHVLbCZ0v/L4AACAASURBVMjUdd0j2SqZ/5On1VdffQWlFFkbOIf2eMQ49NjWNabVCk3TYnJAVBnWZytkmcX1sxd4+vwpvJvgpoGAaUufb3t5hbqu0LuIQzeg0gaXmkD584trZFmObpwwebLpmNxE7QUvFikKUAZltYIyOcp6hbJekade2yAwG1OARLmWVVUlgHF5rff7Pd6/f49pmrDb7QAAFxcXKMvy0XS+pafe8poviQ9yz/KcGPl1XaEuS+lYwHuXJJRL/+FxHB959Im34PX1NbbbbXrfsq+B2Wy+LMt0H5c+gsu1onnteRfguNaXoTLzZ8B/6PG7AzYBCxo5EkoIrclHBEidEip6FJQiT6c8p2lsyli4AFhtCLm0lPTYLMM50xC32zNU9Qrr9RpnDHg8e/YUeV6gXtMUt84NGNzIdvDSoaHRq3VRI7c5wAbQ+/0eZ+cX6LoOH27v0Hc9dvf3OB6PGIYRbdsgsxnOzs6RZTnOz8/ZFHGDzWZLQMxmswCbIpquxcBgk/cefT/g7sM9YgTOLy5QVTXKiorjqq5wfnGBsqp48cx+AJq7o4E3jXcO3rExM6O28IrlRDOSK7R+aRdaa5N5uOKRniNr5UUSYVgzL5S+maVEAXVaILLC7MrzHGNeIM8HThIc4D2UdgmskSwtfvSlIEyr+X0SQ4cLNMzJmFDfqZszM82+2wXXjC4LyET0WvEGA+ZJDcI2kKKYjNJnhH95bMz0Q/2om+ZDQJbxOFQAju//kmEmBbxcirA8kKRzxc8tjAUkf6VFBzrObV75F0oU+QAUsEmeUGpppahQVMzWSd4XDDTJc8o1XdywGNjonP8OEamgksRmmiZ457Hf7XF7+wFnZ+d4/uIFPnn1Eq8+/RRPnl6n16AOYXh0ryTQJd2z1ghc1M7YnIbSVFDQ+uGuIwCbkeG3gI6e2Ypyj3RcPg9YqiudXv5sWnGRpuRs4LUy36sY2cdL3heoXJqv3zIazn83jmxKO4wYuJMy9AP6tscwDtgf9hinCcf9geSJbYO2bwnobns2n6bkeXe/Q9d281oV2n4IGBwZFbqRCncXSEoXY0Tk6WNipgmtoRQVpNWqhjEE5kssNsagLCvUdSSqf5EjRupOKa2IxREpiTQsS0hdY20gkt8YkQ57orCvmPqbLwxwqeNcFKSPr1YVd0dJgrHb7RBiRNu1aJqW9hyD4OcXF/jkxSdYrVd4/uI5jDF0zbx7BCQpBpfUAhRIjCXFUjNlHt1HC5q8ZzOLopDCnWRT8tzWENhkrEVeEm3bskG3C2TSS1JVOf8YbmLPJB88gVKceIcQMEwjQiTQULrQjrvqYmrrZUFH+fHM1JSll+52ePw73ns0x4am/iXQktZRREwxEMs4Ac8kLHl9zwMZyHw4six5pu7H5LO27NL7RXxcdl3HccSoRl5HKr1uAufjsqs8J/qStEkSPQwjTqcOxphksCleLiSH+YBhnLDanMFmGXyg9346tslnse0aOkNsznFVGK+Yhyqk/f2YkSQsAirSaU9UVc6MZYrNCbjRiib0ao0yJ0Nhk9E5bbRGzuwtKabqskJZFFQwW8qzyjynoSmcSxR5jjIveD0SwJtnBBYpZhTkWYaqKCmu89mRGfKBIVPUHHlewDmaYluFyPKejM3fZ7BNfBVl3cX0vyXgqnT2CXtI67nfhEcxExATfZGy055deJBhZiWBwUslDRTFchhm4kxpxLc0fjgeTy7JwaWrbczMTgFUmibsfcDA49slB5ilB/pRIaKUQpbnj6Ya0esrZtWYdMYtiz2Rg8/7JCRGTuTzcvIeTdfRNRHQMEkoZE8Qy0kuto8AmZbnBDawVHMaBwK8wsKQebEPvfdoGpJSy3tJzaEYEd0SbFKJsZLneZIKOU9Dbnyg86BUBEhJgWSMwfb8DM7T5D/yUGtxc3OTvE/6fsDp1ODhYYeGpSbLbr6bHLq2g9/6VMznWU7DfyI3LDHHGPocArpyXqaooRU0Z6Sa8hI+2Vm+VCLLcpYqUdNaGETpHAHnToamWFVlibqqsF6tsd1skDPYFGNMEwPdNMERLRmWG43yPmXi2HyOSnNUcV2goYxCUAriQSmMCJWeh86MBIxrUo6MEwHrxJibm51yf/K8QF3XqOoa5xcXODs7AyKgoiKPKa3Rdx3u/C0DKZZsLHxA1/UwhqamxRhR11XKzWlCZJZYIiJdc87BTROUAX3xfaazKKac0XsPxxYjjtnaQXoAkruyyqSqKox6RAxkfP/mzRsAwIvnL/DyxUuKuSUBU0IqsFYDMKmxL2AD1bFI//bbmCbpLOBcGZjzTYkNS0BoBgUeM5Y+/h3ZW+qj33v0qh/97cfSOYk1y3NY4tDSrFret8RFmdgnYJN3Dn3Xwo0jMq2RW4thdOwaoJDldHYUVY2iXmFigApK8dljYfMCWVFC85AAbTMUFeWdxKbLMAbyXo5gFiYClCemqnirGWOR5cRmg9LMFiJ/TJG+iTzQWpt83mbrF7q+4u9FpIMh5RTLvEWuX2Lc/ZZrv/wS9p41VCci0oQSY2YPMRk6sWS6yb0TOZ5MpZMJiBLHlutp6Sf1MXM2rQl5bzKURQ7wxfsnoPRfWdaLx+8M2AQARVVivdmm7rUkmNM04XA8oR9GdF2PYRxhbA5lc5Q1jabMsww/+L0fAQCPKLcQUztjNEqWoFHHkqh0eV4gyzKsVzVN6LEZvNLQNkdubEqoIgCbkh/LHTXKespqhecvXsI5h6dPniM4j37oMY0UlMd+hDE0ut3ygiVWTcFFk0FR5PRaYnI7jGQ8uEgiPvuMxkhaW8Joi6ouUFXkQVNVFS8WOiDEwFhrZqcEGb9NXbvIi9doxd4qtNnqqpwpzAosZyFEtSgLCGvIe483377G/f0dddlYKy336+bmBm3bom3bZGT+/v37FIgB4PLyAqvVCufnF7i+vuLOi+GOgKKu4W9BTRM9OIEMegYytPi/eCgfoccxSUWUdIvNbOaaipsAOB+466NRllRA+8CbSAVE56E1HaYxxuTR1A9dCjTBBwbXOInWAALSxrbWoqhKTN5jtVpBG4O6pi6iHXpKlBfBadY8T0liKd1HhMCrcHHYGJPyb624qFfiSfLYPHxmXDGN1xPjBxGQU1gSdfkbGhfPBTAnuYoPM80ABJQiw8eoMA6kKxcPBsSIsihQZDmqosTQD/iXX/wLDvs9nl4/wZ//+Z/jD/7gJ/iLv/gLXFxcYL2WCQ+0pumaLP29FHKWmBRVhiyncdVSKND7AbSRA8Gh6yYqJia6xmVF0jmicVMCkhclssyybJVkLkqBGQgAhU363zabqbExksF50/XUveMpRcMwwHEXSKRbPU+hIC+5wPvdUxLpHHsk0fem7UnexUwM7whMcIH8j0IIxGLyHpObZlnY5DnpmovzoiJGGdnw8Fh7YGYNKO62Gt4rSiWQxFib2GFRCjeA5XMdnPNomoYPugP2+306pKWDLaCyyAoiJ6xUUOuUTJJkoIS1FpvNBkVR4PLyMk35kEIpcDGb5xTfN9tNmroy9APyosD+sIcxFs2qwZiNODs/Q71a4dXLl/jB5z/Ael3j+fMnsJbNVsUTJpGXEvKa9pb8TAD2heU0XUdmBNH6oemJ3lNC0HYdxmmCijLVc56qx9gIJW3BI7MZKgaiZNKbYbyKGBm0rz4GZLznoQmR9w4ArQSywiPkPiphKsz1e4JE5CUEfmLPRGFSBAakYpj/KvIJCf67lGQx6ELMJiCwT5WwJOQ9AGLKjgV4P7MzZ9AIHB9IsimFkcT2GCmuC7MrvQ0GgCYB6BhsIiB3QpZZXF5uYa3FYd+i78mL5tdf/hpnV1f4oz/+Y1xcnOOHv/c9rNcrHA4NmhMN6Tg2J4TgExvQeZeSUL9gn8l5IddIgM2l9xWxEuha++DSZFwvLCzPcl/+fD4ETH0vyHYquGi3ChgSk4xezag3aHkR20Qxo0aKvJmNJ+dYlu5nOmuUgskkr8pR1ytYS8xdYwyPc38sIyiLAkohSdDpfJN7JSAFM7UYxE5+NJri0ey5pOj/C/CjNDNi1sgyi/PtFnlRJIBmnCb0XQ+lVIozZ2fnBGxnNuVBRpJsPgdlhLmAo8s1J+dUEWbm1Dg5IM5dbXkYo7g5MRduT59eYxwnSI8VHFvobKKzAGk/RSglhZ9PP1uCqZMLGEaaADwGkkB3/cAsPJcKqq5raGrb4bAY7gL0/Qg37fneMMvBOZr6yxs8zzJUJd3j7eYMWmtcXASO6x9VIDHCjZQ3Wa1oqAGhsFj6nrRdh34YcP+wgwJdb1IE5Li+vuazoUZe5Li8usKf/umfYpqm1NU/nmhSnTQ+12ti2gBUhN3e3uJ0apBlOX760z/E5DyePHmK6yfPYbOcbDIiMf1kzxGIRWCrNEwVAG0clJlglKZpm7xHaNVcYbtdw3uHh4cdxnFA05yQ5xnWqzVLAGtkNkeIDj5w4e4j3OTx+vU3uH33LZwbMY09N4NGQClUK5IOfvv2Wzg/AapEUeSoqgJ1XfGanid6LqcThhjgQKw8AkVpHKP48AnjSdh50cSUR1H9kjEMp7DerFCvakADp+aEtm+xaw4EOHuH9XqdJJt91+F4OJA3Yks5Ul4U2JxtcXZ+jovLS1RsrCwepVT/eATv4KcRYz+gUcC7d++gtcLu4Q5D35K6wS5iPwDHElIxCJc4n6SAtEgBpRKQCYA9c2ffo4eHB7Rti/MtxQe5poiRVSw9tCY7EwGZyDuX2WGa2Lg5269IvHgMAC3OJ/4fSYa3AAeW8ixhLi0lX0uWipYYafSj51iymJaMqaX5uOQSSyaNAFGSazjnFrkcEgg4DAMOhwPevXsHISaEQINOEIl1dDweMfY9Drs9vTdrERDxsD9AG4P9/gG3N++AGJGx9P3l/QM2mzV+89Vv8PXXX6MoS5ydUePHgRhOD4cjGfL3I5quhzYZinoNKI1uGOF8gLYZFO/VoiqRh4CyIBm8gE2n0wnH4/GRFG61WqX8VCmFpmlSXO95Wr3kEVTP6nTtlv5Ocs3atsXpdEo1H7GNLYQoErzjZuOUzscYY2KKCZipeP0K08k5h6Zp0DQNAKBmfz25f3L+CoNL3tMcpmdShhCAYuruxMV5+L/2+N0Cm4qSDpUsR8mJgUxa8yFimCa0XY+u67Feb6GMRVFVePLsOTabDV6+fIntdguZPEMJLT23dMSAuXEm/yZ5wES4A1Fl1aN8PD2U/BcX7nlR4fopHWSZelRyUFCb6GDOc/vo/nCN8SixkNcaR4fJ+aQdN4Y6nAoKXefhfUSea+S5xnazwZMnz6A1UJaWC2d6bgFZYgRJLyAgA/kUKEWU73Ekam1R2EfI9zTRtCZjDYqcNqPzdPje3N5gf9hRd8HTBpPu7hdffIGHhwe8f0/jJLuux263I9DwcID3Hnd356jrGj/5yU/w+eefc1fMYZpkNCgHYMxI+5J+KkWqdGYS2BRoIliMAXqkKReUkGr2SJHuk6wBeg3PHSeSclpYm8F5MaZXJDXk4B4BWGZvTW4CwCPW0+hVPd9rNR8qxhrkRYHCOVR1DaVJGiSAiYAE0p2TwCYAX5pCESNUpE1vjSGzR0bFZ9YSA0CapBwhRESWHyhhY+i5cxwU9ePiYsHrBahKf8mUe0+m5MREWfheKb043AOGgYoiKdSt4e4hJz+HwwFff/0VXn/zGv/jr/8H/uRP/gR/9Ec/w5/92Z8hZwAWIDAjeNoHWabhHDF+aIFbLgAsAItx8hj7iQPwnBRSh8WR0T/fKwJ6qShqmgHjROsly3NkmSUJSAKYiAUWDUiWJ5RYqSE4pvTDiMPhiL7r8HD/QGv+REnw7mGHtmnQdmQMODkyqXbOoe07uGkiML3v2RR14I4M3yOkbGRmAqg5LimuGmeTZl4N3EHerDfUkTM6+YEUfD+yPINmMD6z9NlLZhStuHuUlzQ9R+LS5KZUGLx//x5t22IYBpxOJ/R9n8wLl502YDbCl0RGOoVLYAlA+pn4clxdXaFiBqcMVZCDUUwTz87PURQFupbYJiFGvH27AaCYfWVwcXGJs7MzvPzkJT7/wQ+wWVV48fwSmX1cEMb58v6rP/ttv5P+IaZhN/Ae6LpAAy3iPe0TTjqUdAwZvCHjXtpHRW5QicFkxlTrTMOQchbi+fydlw4Jc0CIdMZk5vHvfPwB/iOfdfl7AUjxIvJ5s/AS/zef5z9yHf+9108/470n5x3kfQFwniVVC1+rkMAmKjyGkUZ8x3TNMzx9eg6tFX7xiy/x/t0H/PrLL6GzHJuzM/z4xz/Gy5ef4C//6n/H8+dPsdu1OB17tF2Hw/FAY55PDSX+7HM2jSPGgZgfPQPEfuIkngGCZeyGoaS+OR0wjQNGNxCrYBzRNi2cp4TSeY+h6znJnTAyU3QcyfR5+fqOGQlyhg89A948MQ0+zElRusiL4EcdGwp6MdKiXlxsZS0UT0+q65rBppqbfHmSkWpN8rz1apXAZ2JruMTckCJLEnSRN4hvjQDSxGpkOWCZpzPTmtn3r6wqfPLiBVarVZLBDcOA5nSC0hqrukZeFCQFqmuampixJ9FH65gKqshn5+O1OIwezs+ePuJlB8zm3ZJfWQtwwzk9pokuv7VzTiqXdxiQXhegf5ffkbUveWR6Pg8MI+83QwXv/cMebdunYqrtWjw83KPve1ibpbhNvnoTOtfBe4dh6JPnH4CUO1RliTyjc2G1WpP3oTAAzCK/4GJ16HsEH2AUGYTH4BGWbIAY0PU9xmlC13RomxbGWpRVibKq8FnXYb1e4/rJE5zpM1xeXuL58xe0nyeyIvj27TscjkccDgc8PDxgtVqhqEoMw4APHz6g73v86ldfkpF4iHj67Dm0YfNsrZDxZE15SBGXWHx69ppU2gGK11ues18Z/V2enyF4oOs6vHt3m6ZFZ5lBVVeo6zqBN85FTEGsM0gW/f7dHca+xfGwx253R/GkJzbF5fUV8jLH7e0NxDO1KHIeHlSk5voSZEjSKETpS/MwD/col8tsxnm1n4F+RAKbNEkENQNZ9apGURWIALq+hfMe/TTBWAvnHeq6Tk2MaRwxdD3lrdpAxQibZ1it19hsNthstyjynOX3s1dq9AGRG3HTOCJGjw8fCGxt2wPcNHJOM08MDDFi8n6hBKAGNuXQwtIBN2x0aorJFESxTQGA/X6P+/t7/PDzH6Isy1SgRwBd26FpGlR1iSpUqfGRDMIRYJwCYFLes8yFAKR48bGMbm6sPwabZk+32VtoKfESE3v6m9lza8nsk1j0Mdg0s4vxSGL1MZtY1pKAKVLjCLumaZoFCE/rKLMWRmm03iN6h2kc0TenxEhXWmPPXqDv37/DV7/5NREjuBbqhgFnZ1v86te/xq+//BKXl5f4Pts1jAGAUri9f8Dx1KDtBpzaHjbLUa9HKK0x8T0vqhp5oXkCpgXdHYppdV0jyzI452jKpZ7VKOKXJtdPvOIEUFsCc8LuWpqv5zk1DeV6CCFDalqtNcaioGsZI4JzlCPyMB2pOcQgXgAiuY8AgV7yveu69Jofg03yfDJATLyblvX/49gRE5YgwXEGS/EfevxOgU2n4xF3Hz7g/PwCdb2CyG0Me4PYYYC2A6Bp9Oo4OfgA0l6uVnABaPoB3rlEmWzbnpM+Sqg8e3kEBhqkYU1dQCZ16JlW7YJPzBAAMNzFs5zQJFZDiBjaFsEHPH36BOfnFyiLAqtqhRgDDocjgMgFVJao1gAAxV08y6CDk9GII7q+T508coFXacJPBEmvur4n00NrYCxN4wuRDEC1luknUwJeCGxSifWiDRXkzs+BUDp2mlFN6RQZLlRXqxWbA7sUxMeRJopprdG2Lb73ve9RUT2OaLsW4zDiw90dTT/hwHV1dcWHSuCpEbOZY5ZZ2Iw0yj0XjksqoPydc1RtCCSiuOqJoM8u40NF7icdL/IdIbmccx79MELrCSLP9D7CB7AUhTakdDZkfHsCgCAg0wxmeTyWgsgo5GEYeKJKB201tKF7mWUZ6+DpoXlEuhwywKy1RvyuVE9xNBBWAKYArxQQNWLQiEFBQ0ZqGu4OR5IAcbFjuIMFpfj7cqw15sJCKVaZMp3ckz9MKkgiJ5g+0PQ97ohnNsMwDLj78AFd1+HVq1e4vLjEz372M/zBH/wULz55uZDSSiKtklxT2CQia5wmDx8iAW1asTabsm9Z61KQihGk4fVvjIYLQHQ0NXLyjvThWQ4FoO0owe77Fl46wcxQGEea3jZMc+FILKQWp4b8CI7cKW5Z1940DYa+fzSZb+iH5K0TARhrUZQl8giUVU19BDZsMVywJCmN0clbxeiFtwgfPoVMyOACbFXXfLhQvBO/F2IB0HOXBRVsNBk04/tLRaLNMqIe8z4L0SMEGgH+9Mk1uq7HZr3Bhw+3aJom0aiFqivDDSS2LMFjSWbGcYR3jor1yeF4OOB4OMBai1998QVkskqWZbTmmAFpjGFfpxqZtckofb8/4M23b3j0cgcASVZ8OBzwxb/8EtYo/PMvdLoeWmuM04hx4ikqLKWW6yb+SCJJEWaHAOQAJ3GaDvOqKhCCghuJfXJqGmZWdBj6nuOLY9YSj4seR0w8JVSkdiV7Vm3X5G/QdQ36gQqY4DyU1siZOXt5cYW6rnF1dUVSVADjRLLVt+/eoW3JV8U7hzwvUNYl8oykLJJ4xEgeAKfTCcy/gVK0RowmECwriuQpEqOClyONdjDJRrxfmHcjTbUTryZjNIwVKRI9QmQfOT9LisCJjeJ74aUYYrBLYCxZ/4p/2RhFo8wdTwVUMr1LQ1kNZQCTmSQHtBlPao0eDw8P+PbttziejmnNDiOdy/vDCXlR4v7+gOO+SR45wQeOnwZVTj5JgQEepUiOyQuR4/gilkdgcg7HE3lIPH/+lLqc0SNGyhn6foD3AWOKPcSKnBx9xRhSAZ+aVjJt0jkMI8WeaSHVT5NFnRN+DMdgOktI1jnLzAiYIxbgyKOWh2niqZYhjVoPkZpuYZiglUvJudEa/TCmvStxTfO+kTMg8Hk4TA6jp8/XDyPFya7nRJcS4bIqWbJLiZyxBt+8eUMeK5eXKIuSPcyouTRNYyoabJbhzZtvsd1syHsqz2EM+VoZrdkLzsIaYmiJYbUxBlVZcPFJcjPx5VNa0URYzHmXnGkJcOVMPUYkE/GI2cdKclOajEvrWaUckH45cHCiUd7clQYQI+V/Uk3FqFAVBbTSyK3GqsowjmtcbAmEe3J1SfLjaUhDT5z3cBMVXs459HyWTeOIyY3MTlJwo8Pd7V3yg9JaIy8yFCz/osJIIbPk3QWtERNrTENYUCqwnYaN7AGqyc81y6C1Qdt2aSjG6XRC07TouuERkJcXOS6zS/z4xz/Cqi5xv9vh629e43Q6YRwnGGMRo0r+rW1L57U1EblVaTjC5CKcC2zbwX6XfA8oR6e7mDG72flAtQF/rn4YMfQOTdul6dLbs206Y6RYzKwl5qJz7Pl6QvATDg/36Jsj+r5F35G8e+zZC+thB2sthn5I54/iDecnGvJhtEKeWThnGPTjs4wX2CNwg9dZjPM0ZZH9k1UEo1OcR202a2R5jourC1xeXaLrezRNg6zIUW3W5H849OiHPrEarbHYnp3BO4fT4YDgHElHiwLnFxe4vr5GDAzQe8fAnWJmP70H5yZARbhppD0gAAjiY5PuGBKrVIznsdhv3jmSAepZvrharRJrxAtLu6fJc9LoWkqZRmanxxjQNi0i+5Y5J+x0AvacJxBMmIRLsGmWd+PRzwjk0I/YSgRM2mS9orVCWRTsa0lrSs5KeV4BkUSyu5wUPrOq8KiWWbJx0rHE7ynLsgR0LAEoeT6pVSSXCyEk1g/JPWc2I2JgK8eIruv5OT2OpyPu7z7gfreDURqruiKWvbWweY4IhXGifXW/29Eaqskv9XA44Hhq0A0jmnaAyTIElkiaLIfWhr1zK4rBKeGY808B0eRcks8vJAABDU+nU8rjP54EugTa+r7nZneP5UPugzy0VjS4ZhwRvYd3UwLjl2u37/sEAArQJzm2/LzrOux2u8ReApAUOMv3KEO65DPK8y0ZeHODxYBbdclL83/l8TsFNt19uMPXX30NrQ2ePXvB1MYCfT9g9e49hnFC241QZoSPQNsP2IaI9fk5NmdnGEaH9nDC8XTC8XREc2pwc3uLYRiSSayMwRQ6Kbg4pWAlXJoAD1pcIlMJniZ1WN5MVV6gLqskjXPThG9fv8HY9/iv/+W/4g9/+od49vQJtj9YYxg8bm4+wHuPJ0+eYLXSaNsOHevoJx65uF6vsRx3e2pOuL9/IN8pQ7I7bQ2UoZH2koQdDkfWoebIoQlQixHINIyipLkbSEMvTA9BvAmIoYRgZIlblrGhnSL/pmki3xitFbZnTEu/uMDZ+Xk6iOagGfH7v/8TTqzio69hGPD6zWu0bYs3b15jt9ulwBtCQNs2KRgCwHq9wmq1xvF4xGF/JARWJlLxl/cOo3OUEIopqjJQisCIGGnsdFXVfKDOVMQQAkTsPU2OJxEBx0MLmkwxa30DwCN8ybRQcRCaOHHHQiYkwdbjsW5XuiZN02C326Ht2lmmpRWKqmQJ3dxFpUkNFjHOOmJJVPFbNrsAkDEGTIFo99OokVmF3GpEb1ifTN+lKylFM9GoWSbGdMApeh7rPBdFlLRwcaw1pon2lrEWeVESIMRFeWWq1MHLshzN6YQvfvlLxBjxs5/9DNdX1/g//+K/4T//5z9FnlsyeAY1zglIp4RAEuyIwJ8RCANS18BaQ4yQSIHNWOoyei8sQjGoJ78hAJgmhTEGKmamCUVRYbOp0Pcj7u736Pse796+Rdu0FFPaFkNPXfFhGHD38EBARsNrN9B785yYhxjSfvSOOvdLbw7PB1i1qpFlOfKigKmIFZAVbLrNhthVvaIOPCdoeZ5js93SiGoGloTNVlUVzrYbWEudQ2stSk5WNsmn5AAAIABJREFUBgY89aIo13z4lGWOPLNMC1dwLqBtBngfE21ETDszq1CVFG/2xwF9P+If/uEf8Po17e0Pd3cwevY3kISo4PcuXZNxmnB/d8cd51/h7u4OzanByNp00aiLTEKKPDdNGIdh3geRxH0KQLXeoFqvueWvkFmLi/NzVFWNTz/9FEWe4+b9e/zzP/4TmrbBu/fvEWLA2WaLLMuw3+9xbE4w2iC3NBnUsz9R33VwE5nRW/5MmaFGgIBN6/WKxkJvt7i+vpr9OdQMmO53exz2exxPJ7y/eU/ArNCyhwGTm9C1LU7HE/IiJ2++ssQnz1+gqip88/obvH33Dm6aMPQ9rKW4XNc1/uTnP8fLl6/wp3/6czx7fgXvFfohYr/v8H//P3+Ht2/f4Xg4om0anJ+f4+mzZzg7O8OPf/Qj8v4LNMnqN19+id98+RtIQ8tai4uzcxRliU8++QQXlxe4OF+hKjNiYIzMquVg1LQEzFiWUpHXENGxYvRADCjKDKUh010jMYxJNtNEbDBjNEw2e5zQa3FCH5DOcx88jNZYrdb8msQAmSbyYgMAaErsNnWBzBoUIYcLMwKgFElmp2HCm2/f4J9+8Qvc3t4CmiYgtl2Lw+mIt+/u0I8Btze32D3sGKAteD1Qkr/ZbkmOywBxWRY4O99S7LXk57HE8WMEDocGv/rya4QQ8emrT7BZr5FlCtYqeB8xTnSBxVjcgGj3jo2xlQJYUYLRU8y2ioZ/df2IQ9MlgJyAeaSzjIriReHGDNa2azGMtMebrmewi4qO3W6Hfuhx9+EO9w8POB2PuL25xTiONNp5cvB+fNSlD95jZJbG2XabztaaZTTr9RreORwZ5GiGHs75xJIglqulQq8lFtl6vUJZFRj7IYEibd8hAiiynJqDwurU5GulBUgyBnVVo8gyVOsV1psN8izHdk1sncvra5RVibPNBiuOw/WKmClPrq+RZ3kaThA82xgYICtsOpfpvIkIXqzQ5pZwBLMUDa97P7OVlALsRywoeQQwIS2KvIUZjwxuWTv3fwCFs3XNzZkNjGZQMVKe4yZh0gNGc6PNk5zuw909+n7Ah9tbtA2xofb7Hfquw2G3x9CTPE3Wj+Rv27MNgg8YhwHGGjx/9pRsH9gXVFgD0uyC0jBZBLRBZgusVuwhxEDIbr8H9sDt7YeUM2+358hYaldVJX70ox/j8vISn336CYD/gq+/eYP/92//P9zefkDTUBF2dnaBGIF6tcJ+f0DbnZBlEWU5MzaHyaMfybuJWDBIiCCxDCeUVYGqKuFdQN8RmKytgdbA6dRi99Bgtzui7Tpk1uLZ06eUCxlLbCkoZtSMmAaitt3f3SPPLD68e4Pj/gFKRWjOeYZ+4utwhFJAUVhkmWHQD4gsYxq5AV2VBbybMBqNAEAZah46P4NlaS1x/RNFrh89Arjh7kYokHdcnpV48vSapOivXuLqyRPc3N6i6zuUdYlnL17Ah4AvvvgC+/0Bq3qFqqpxdXmJp8+foWtb3Lx/h2Ho8emLT3C22SI4BxUCDoc93nzzNdUVfoLWCuPYw/sJ02QwTQNidDCGWH5SFC9jVQghsTl9iJwvMBONEV8CQiJMlsHAoiwrXFxcJACh7weaQNf1dD4+fYrtdvuIudO2LYFKIeBh94D7h5DiEkmqaO0oRXYfA58/H/sqzY24GYQyRqPgxp+AW+v1OuVOq9UKEgwVn8vCzkpSYZZyybRFaXgup6DJ60uDX/y+hFUqihVhvyxNqgV0AfAdOV+MkWwjxhG73Y5UI1qaCjw4xRJQD0TsDgcAETe3t4gxoDkd8fDwAUWR44V5Cm0tTEYeTUEptMMAH0kmbnNiHGtj8OHuHqfjCf3o0A4jDf2ZCNTcnl8hL4gluT3bYPIOAzOACf8itpHUa/JZAKT7LownMUEXcFJ8kWRSndS8IqmTvw8hPLpXZVmm+w/QtMhpHDEqYtZSkRPSPpXrKubjsl5kUp3UiMfjMX2Gly9fJnAshJDYWxJ7hdm4BJtkPQiQCSjYjEBYz4NRlv5e/5HH7w7YFGd0NfjFlCsxUC0KFAV1rrI+Q0BE2/c4HI94+/49jqcG+8ORCsG2JaPctsP9/T3GacTheOAbIZpUflEI2DR/n4KDCy7R4GO64SAjYK0xFiVJzLRBkZMh7f3dPfqux8P9A3a7PbabdXqNj5HjpI3Fx+PV1YIJ4xgJ12jaFllG8iubUYFH1GEqkq0slkjyN0KJDRBFlgYq2qW7DLVYYI96qynppb+ZKXMAmVUqJX4r5K2wXHSClmrNevAwpSKLfBHOUJYlhqFPgZSAGOr8SGCNMXJAnZ9X/CniI8r4DPJAEf1QmE1zn1xYB0jf6ZbGNOVHmAuyDoGIEJaMBpbcRfFAYTBLrluc+/Kp2/6o0xK/M0VmNvgMSUIhcpoYI4LW0HEeLyvdhigdhfh4+kZaw/z6ieml57UlHyhGupYUXGhalFAiIzPtuG6GeGmQZ5N0YciHZjmZwBjDppnEWMjYfHupJ3eODujVapUC4fNnz3FxccEAhGJDY7Xo7i7He/K0Ic9MIE5QQxBTYQZSzdxJ7ocRbiL/jMl5ZGqW2fYsbdnv92jbFk2T4XjME9g0DANub27QtS2atiWK/ziib1uM04S2aZgtQKy+tG20Rpbn3LLmtcmrL8tJooZIhp9K03TGoiAJW5YRuCT+YllB3lFFWcNmNK2iLHKiCNcrpsNaZndRF68oCqxWa2TWol5VBEZnGTFl0msoBjdm9lSRW+o+G8UyLQ/nQF4qank/dAJ+tdHI8whA4/z8HMMwLHyVlt17ujpivr4EZiVRqes6dc4kVoqBc57nKYFSSiX/GtnVBN6xJ0hezGueY13f0SSgh/t7lFWJ5njCge/7fn9ghlBAZi2OpxOaljT5ueXuPA8DGIcBbnLI8oxMmiHMpvkz0oQa8o6a3ETAvoDRGfkFHA8HnI5HnJoTTk0DxIgiZ2DCGmj2gPjYF+B4OlLiyJ54ck6EENH1PaJS2O0PqKp7vHt3g6+/eUMAsipwOrUYR/It64cBbdvB+YCm73G23SLLKJHdnm2ZJUWToHzwqRlxOByhWd7SDQOGYQPEEVAGIea0/vJ8YQgtrCSORcy4jYFZlzGSh5p0PAEEmBTPtFFpIpaAWNKFDwJgMMMCimKS9zMwIca4MhFI6kbnKU5NnpirzjmMw8TTm6gZ9P7mBg+7HSbniNXK3VNjDL55/Rr7wwGHwwFt07ANAJuJshQkHwdAUd6grMLkJpyahhNuoaZLM4aAudOxwbu37xABrGqSZlRVjrK0UNqmQkHx/rOcmGbpVCKZPADkfJZrRT8zWQ5lM55y6Bdgk5qbGYviPjKLaTXUPIVqRDcQ+Dwy42C9WWMcB2w2G1xeXqBpGlxdXmKaRgaLSFpCxeDs99G3HRBBfkxasxcUsYYFuCd2hYIxzKrk82tZ1FkrU/a4cLMGWU5mz1Hzvdc07RFyFkLRc/uAtm0BpTAOIwH3bYvD8YjMWjyUJN/b7XcoyhLr1Qp1WRODY0VM0cvzC5L4sdE6eV16buZoZlRbjpsWgEaeG1Qlga+G5YXCXAV0OvPFfkEzSJ2SjZRjgM5fCrSIj6buRQarJLfgkeQuYAwOMTIrNDXJcmJTsLWD9hFAQJ4Dm80aZZEj+Al1VSLPNOqqQN/1WFU1xnFEVdGUt77nybCJxTTLCIXZISCXSIFinP3mxE5Aaw3DvotYxNelbGQcWfbkPbPwI/b7PQCgLHOUhU3TwwCF58+fk8y6I5mgFFvT6DCMjiwlrEl5IQEZksupNBhEmLMxNasX7DUwYOj8IxaID+TDqLXGMA6QSc4iPaSpcjRcoywyfPa9z6D8J9T40eB9IZ6CdJ+LwiLPyftzu93g/Pwc1piUl8t1LLgA9p6utctoX4uRfZblyNmzKIQA+PncJtBTp88K0IAhm2U8+Zrlksw+18aQallAa1m2as5Fpe6pKmrI7O7vQDUF+ykFmkQr6hHa8+TZmeU0LITYhFSLyLCMJbMpm3KEGNnP0SYl9TiMUNoi+ADFk7uLheyQfJ2IdSITpMn7LftO/k6Rk5QtPvgUz1PnArJ8l3XUv/2QnF7ABGlU097q0z6gNRAWNZdO70/ADaU0Ts0JRttkcyDWBcvX+G3va+k1m14zPq5Xk50EA35Ls/Dl38j7lfrJRaqxnOP7y8y5yEwxMaI32qR4AG6GG0NrD0rT0BxG9pXWZEMxTSShDPOAFMU2Kdo6NM0JULQ/R5aoWZ4CvPSn8ss4tGBuifn2EqRZWkSISbdcj6RiEG9fruOWrF6p5xyzlHk7UY0XH4M6wrxaymM/XlsEmJJfsryu3JflfV9KK/+1tZn+Lr3Gx7/3769p4HcIbBLjY6FwjcOQnNnzPMfFxRVsVtD4daUxTg6vv32L9x/u8O3NLWIEfvmrX+H+/p67soELUMddWbpIsinTJlLzTZIt0rQN2q5LE2G01jS5hRlNmSXvmSLPhaGMcRzxzVdfoW87PH3yFFlWIM8M/vCnvy/nJIRRIwjyxNrmNFoxz6GVSj5VTdvi2DRA22J/bJBnBV59+hk2mw28J4+G5tRgfzySgW4I0CFitz+gaRoURY6yJK+EvChgteaiVGEaHVGkQ0CYJijwmF/IJgkpSVFGIytyxEATIwDZiEytRZzBBk2Fp9Ya9/cf8LB7SIs7z8ngMbN0+I/jyAX+Cd988w3+5V9+iXF0+PDhDuM4JJ2soMGycSMirJFRzDSlQMVIrRkVYfhmKqYOI5J/AgEpj8E0CpoGWkXeuEh+J5rpNBpgWaJFFABK/jswsJUKWwZCuLPhHU3BSDIEAdfYX2N09KV4jcohIcGB/Cc0irxOiVoIPpn0inwnRJCXkqDTQLofRW6RZwZWR2jNnaAANo/1JENM3TsFxT5N4k0QIj0/majT39Pan0eNqzxHluXMRJmgtcH59owNCimQ3d3d4/37G5RliZ///Oc4Pz/HX/3lX+HVy1fIcpI4TFOA7106QMk0mjXHXItOLqDn7ktZ18hykqUO04QsM6irPCWKznm8e3+Dw6FhGYTFel1jva0wTQ4PD3c4nVp88cUv8Z67bdI5aJoT0WA5mf04YC//v7CVskwkGLPMQjoJq9UKFfsQZew5pEDSuefPn5M3UUndjnGacGqJ+Xa2JTZh4AmJRqvELPORZFd5Rj+TUBeDRojUPc5zzXR0IASFOtfYGHp9kdIOE3v7mDkWBhBoVhQ5AYvMLHOORsRPE/lyUfVORcPnn3+OTz/9NGnG27bF7e0t+r5P3+UhRackKMYYfO9730tAsxgbSsJ1OBySDFUYTkVRkNTNGIQYcdjvMQw97u8f8MAdtWEYMIwjPtzeYpomPDw8oCjJBD7P8kR1jgCa4zG9ntCcJ2abDok2/3gdTD4k+vLS3yDGSFO+OJEt2cScWGzUoHDThGEc0fYdrDHYbrcoyxLPnj/H9uwMh/0eD3d36PoeH+7v4WPA4Uidch8C6vWaigEG9JUh2cnbd2+x2+/w4eED/uc//RPOzi7w+fc+B6DgQkC1qnF/f49u6PHrr77Er379a1Rlhc+//31cXFzg//rrv8YPfu+HePnpK/zghz/EqWlwc3uDw+GAv/+7v8dhv0f2zzlMZnF9eYkXz56iXq3w7MUnqKoKrz55gfW6hs0z5ByLcmthjEJRit8NJXhtN2D30CWZjlIK9UoMpgtUlQWZZ9MadTwoiiRaVHCVRQZBorwPOJ16eOdJWm4MisJgsykQAzA6MnM+HFsy8ueEbL/f4+3bdzgcDvjnf/4FDocjvn3zLXb7PaZpwqtXr2CMwT/+0z/CWIu/+59/zwNGVlQ0nZ3h+vqaWDrrDWxGoGWWZdhsNliv1+h78i8MnqcNxpCS0bdv3+I3X/4GA096zbIMf/DT38fV1RWun1zh4vIcF+cXePXyFUmcJ9qrmYDS1iDLSPY+sUejMSqxO12g6V6bdU1rl9ewlEWBGxARQCBXeKmHIZJHFyLGEObfjxGK5YDiQSaNssBAXggBXe8xTR5926LjouewP6DvB7x9+wbN6YRvv32LDx/u0HQ9HvZ7iv2WYuj27Ix9I+m804YkQjHQkI7gPYxVDOLZNAEsz2ldjAN5WU2cN4VAJszjOOD9zXuM4wDvpIE3YZwGGpnNRsGpqDYWWtPkv6xgCTIzT1erFbI8Q3tq0TQNrKEhEzbLcM5ecldXV1ivaS2cn8uE5A2yLE9js+u6RllWWK1qXF5eQrxXlkk9xScHK36eqYGoKD77CGsZAJEcO0bs90ccTz32ux12+x0ym2FV1yjLAi9eEGPS8RkyjhQ7rVG4vtxCa+D503OEEBG844EUEUPvuOCi9/TNN+/w8LDH+3fveJIXgUrBexwOO9zf3ycbAcpXKDeS2CmFW1mWzOonr0s5S8XbL8syOO+xY5n1OE0wxuD29g5aazx79hTX19eoqgp/9Ed/jK7rcH5+jv1+j9/85ivKMyeaZHc4Nri5OWKcDM4va+QFTUnLc5OKO2nuQtGkqwBgdB4YHAMW1LihZlhE1w84tQ16lpl673D74ZYY2H5EWdKwmfPzC6xWNTabFfLM4vmzK2w3a/z3//Z/4A9/8mMYa2Az4nwGTl5jcAms01rjeDzgw4cbTNOIU3PCOA4YxyH5tqzX63SWAnOOKwbh2lgYmyfmxjRNOJ2aNFpdJkwOI/kQ0YS8nJoG0QMqpolwkEYwN7+0NTDsCSm+hJrzo5evXuJ7n32G3cMdmvaErmtJ3qoUVuxpdTjsAASURYHrq0us1it88vIFN6wILB/GAcM0F/OU2RIwUtcr5DlN4lRGE2vpfgfnPAYmE9C08Cw1HsdhxNl2C0Dhk08+wdnZGaqySs2vvu8xDgPEjkC8otKETcx1pfhjLuVLS/CJ/re0QOTSCSPJJhmW9/6RoTSfdgDmhu4ytxJShXPULBb5lXgJLX3vlpI4eX1hv0ieJkwlyc0lx5WYuWQ7Sd2+BGsETPeOvNW0AyYGexSWNjXUBO6HARFAN4zI8glBkZF4tVrh/OKCpsdKjn5zS5+BUWL6Th6yAzcuTNtgdCPevnuLtu3SdczzHE+unjxiJC1BoVxqf67TJf9M6hggXYfT6YSu69K9XeaEAvrItZdmpFyfGCP8NHL9Frn5RmCTSOUApHzhYxBsyVSjurrBarXCzc1NavCKpYx4TwnDSoaMSS4u6zICPAxK2ljzmn38hX/38TsDNgEzciYbxS8QuzzPEoUwy3OMzrOxp8M4EXDy9t073N8/UPIkQIkgsKJpBRhkUtBUXT+6UBFgXwIPHYnar5g9Q2wDS1Iczf4jMaZunaBVYdk1TM8qrIwZMZV/F+kLdRQZlRx6dH2PtmsBKBg9YcrnQ8979gDirjYFDOokiD8JHZJUlEUlPlPk1yO+MVhcI6sfj5MXoE0WH7SCm8jfwfspMYCUQuow0+enzdGzWbA8qqrC06dPk7mvTJSS9yj3XgK6W1xD8tBYBAIdQdPsF2N1OSEGH0AC4CzvrdwjWh3URZwN9AzISUQSWgul6ICkyVLiOcPdrvTEKmXsyaBw+bV43/QWpCvG2vjFOl8eJCFGqEDdlyWzSQHwhsaJK/4s0uVHeo3HHRL6uwClluR9JERdug7MBUifURLYGFXS6SYmAYNWETFNUQoLQ25r+bBiIEtQf/GSubq6wpMnT3D95BrjSN3vxBxTc3c2Mc0iiaRm00fMrC0I84zBlhjQ98Q4etjt8PBwQFmWBE4YYBjWGKcJx+MJx+MJDw8PKQk+Ho9w3mHou0f7VWSNZhnkuXsrevq8yFEUNAmmLGaD6yzLsNluUfOBleRrLCV4/vwFG2GXqKoiGY1ro3FxvkGWWbgI+MjeEYq6p8PEHc6MppQJaDhN9PlF7gIA0xjhPZDlCnmWEHCEAHRjgA80sUwDgI5QOgJRIQbaLdayL5ZX8H5eq3QQ0h6qqoreD1OE8zxH23VJPucWfgEhUpyU9a61RslGwNvNhoc96CQtPp6OmLiTLeypuq4g8sgQAks7euRFCWPZ763v0HU9Dvs9SWvYmFEKOzlvAMArxVNBv0sR/hhkkjiyBB6X9Gnvya9o8iTzdYWjrrMicDJyB5fA89noM8tzVHWF9WbNhUWAbU7YM6OJ/Cg8e8KQr1ZmWJrGMc8xgHZ3v8MwOTRNj/VqA2uyROemSaKUBO32e3Rdh1VdY3Jkat91HXJL/l3GGC6yiAlyPB1hbAZjCRBYr9aIymCcRmR5RlFUsZGwmQ1JI+YkWCqetu1wODSPjEXHyXHyNyGEPLECQwQmR3u969jcFiVJkBQxzMgnrcU0urnjGwvkmYYPJGVyzuN0osmJXU+m/A+7HT58uMNut8Pr198ya2mPviOJ4mq1QgjECIvDgBO/18uLC/LQMAbr9RohRhRFQUVV15H3FseO5nTC7e3to8RcEvXXr7/Fl7/5Cs5NiRl3frHFMA6Y3MhTbieOIZbvtQyJ0MhyiyK3DMhxEsx7lqTEzAiSqU1hnoYnvcsosTQlM0hMIq2puUBSa5JCKChkIsH+KOeCUhABQNc5TFOgAQmnI4ZhxH5/YIkGyWdOTYtT02EYZjagyTICbYoSRVkw610MujXlNdYiaEXvmg8AGsWekbm+UsjsBO8DGV9P5NEYw2OfFGluhBAQ2V9Nmjqx50lwIG8mpRWUpdzIO7pW9WqFPMvQtR1NqGKQJMuyBCSdTg222y1WqxUO+zPkRYHz83MuPAZUVZWA9q5dA5h9UCTOAPOI8SwzmKaCQUUCpLxX8IG+Iwq7UMOHgGGcMAwj2q7H8dhQwQ4NHwgcUUqnGCbAfp4b1JWBYhmoUjp17LyPGEdAaaAsNGIMcB7I8xLTNGK/30MpwDJLs+/J3F7zGvIxpuawFGWJCcksXccghTTPpMlAHpcRPjz2pqE8Anze0zlQliWMMbi+vkZRlNjt9uj7Accj+T4N/YD94QRoA5MDpcsQIw0dkRxXGE1Y5nKpxxkT2E35Ev2usPOgaCr0yLYL4ziyd6ZCwYNIjAHyzGLDhtkvnr/A97//fdjMwObCLqGYqaTRy9fq/v4OMdKEq37o4KY5y5PCVs5Seh46LKRwVdpCmywV0anZrMiDlJjpMzC4LMj9/0/dm/7Ikp1nfr8Te0TuWeutu/XebEokNZQoQTOSRsAY8nj+VRsYL7Bh2MBYM8ZIljRjkWyy1c1m992Xqsqq3GOPOP7wnhMZdZsayP5EJ1CsZt1aMjNOnPO+z/ssHXBuk7CbrmazZ6Xd++t+X+ccbDyUotsTFXQDJM9zzdBYzhLf9wgDGdxJwywXJi9yvOKQuKdBPMGUYjAYEoZRB3wVeQnaoaqFqdm0jUnMtSxbCVWQ3y9s6yRJcB33jhqh1cKY1J6mbf1unVsWmPSI2vjtHj5+M4PkH+/WbX9nASf7nktdfQCb+r+/f30KUwf2zavv9AXvDE7tNbPvx7vspX4N1N+T+j1Pf8/qm5cLoUF6nz7jy3Zktp4XbzQHK5lvTU+iHBfXgJ9NK6b2umm6+8rzAxyzjyvX2p1Ib1TXJa0WOdl6vcHWymEQEEcxQSmpyfY8sK+9D4C7rtud1+8ap0NvDZv3phu8vNP3WzZU3wcKMP6LrQmAktqPtun+vjL1zbv4QR/EtL+3qqSOsAQXqyZ4l9Vkf77/urvrzd39rtsIe9f/n/r4rQGbHJTxWPCou9SylsFAfDd8PyRJFHE8IM5LmgbSQCLFd6lMQ//Zj3+fQTIQ6rQpPC2Q03lrGLZB33TZllryRsvGVZSlFGbG7NCa7fqmsJM0DdNY65a6qrh8/YayKPiD3/99vvfpJ0ynE7SWQs9OCa10SSNyMK3EI6qtG3bpjqquePHiBTeLGy6vrnj+4iVxnHD//iNGozEPykIApbqWoiHNWG+2RFFFVuRoNJfX11xdXrLf79lut/iBz2g4IIoiHlxckCSxMVbMaNumM6e1fiF1VdG0DcOhxLMOB0NOz05AOcYguZbJtNMzEndsNLocfo1uuV0uefr0OdvtlqvrK2azGclgwNF8znqzMf5FOzabDbfLpchxolAKRNfF9wNhFrliyNla4qiW2ECtxVfKD0KZwDatOe9bM/kWzblSjqgzDGAG4kfjao0XRHhegN+0eJ5IFn0/NMVqgON61I3ECPc317IqjWzLMWyotjMOtnpwMV6lkzz2P2xqhZ2a2fVnUzQAHDu9UNKwuVoYXq0SdlOrzKhfW2bSYWOwdEd7fSxA5CqJuLUiQ+FtyfdqM135rvxQvuJK9yjNrDH8VGaSYA8Z3/OIp4ls9mZisl6vSTPxwbp3fsaDBw/4sz/7UyaTKaPRmLKshLHje7i+S6CtQYUAjKvNtgMXwigCB2azsbwmT/ylPNfDUS51U7Nc77m9XfKzn/2M1WrJL774kpubG87Ozjk9PWMwHHB8fERVljx7Lh5i4sFkWDeOInADBoMExzVJSJ74foVRiO/53WQg7CauMb5/SINxPZcwDOQ9NzGrgaGday0MAscYeEqkcGwKZqHw+77HYDjsmnWzvI23jPx83dRkufiMVWGA5zqdsfTV5TXf/PpbsjxjubyhqivkqjuEUUAUh8ZXSmRYu1Q+F2ZiV5QFabbHdT3xKPED5vM5SZJwfn7B2dk9wjA0PgIB8/kMz/coirLzusvyDK0U5/fOqeuG0WRMnkv8s8S+7rld3gLgmQTAhw8fMp1OuwLv7kEql0d89yqi0GMQh2YPN2B9LUDKfp+z3+dmTctE8Oc//4Ll7ZJff/NrLi+vsIERvu8RjyXqfjyeEAQ+eS6TYdftedoZkKYojLF2GBAGochknLtyD1tUN23TFRSeKX5s8RXHMYmRZrlWSlJVaA1lXbNcLhkOh3xy/imb7RZlpmq22EjMvW7N4LtzrgPCYLff8+r1axaLBW/fXnXTSOXIDhDFEQ8fP2J2PJehjgGbs0ruAAAgAElEQVSIf/X1V7x6/VJks1qTFznr7Zamrily8ck6Pz1nNp/z6OEjPv74I6IoZDyV6fxoEBH4oB0H5SrqqmabZpRFwe3tNUVZsFmvyLKUy6tr3r69Is9zNpsNltkmno2BaUasmbDsWha81lpzcnLMyckJYSgSwLKseP36tWHhyuP4+IiLe2dUdcNmI35rr1696ibFFvSxrOJdmtK0DVEcExpQcjgcdr+vrhuWxgeyamo2uy1REovE23W65MZduqeqKl68fEVRyOt79erVQdqOgECg5Ry8ve0KVMdR/PRnPxc5clNBUxt57OBOkWevpRv4eGEg5qKFRKQHcYzjuSbhyTOJbqFJx1xKcVxV6LYliCKCKO6GIW3bUuYiPR1PJsRxQjIcMpxMieKY07NzwkDAkigMCXwf35OAg+FwhO+7DIciAY5Cl9B3iIMBk1EorJjzOVXVcHFxjzwv+PR7l9wsbtine9arpTTlJrGvLkvapuby8pqrqwVtKxJ92QsbCWgp9pRlYVKAG5JBwv0H94niiPn8mCiMKLZb1uuNSaSTKf3J6RlRFPIn/+JP+fDDD8kysWFom7ZLyEuzlLqWNOQiL8XEdinecs+evSAvzJRbw4cff8zF+T0kdKToNRya1WrN9fVCTJxLSdHyzRki6Z++hHQAQRQxGI1wXfEudRynk2/YIVUYBsymInk9OREWz3Q6ZzQaEwQ+cRKJX8lYjP/3WUllDKGGo1E3gE3TlJ/+9KfUtdwDpWl6mqYhCkNOT+YkccL7H7zHZDIhS61pdUNVCag7nws7ZDafM56MOTs/5rPPPpZ6yxGgersVk26lJE2srGpy46W6NP6H6/XapJruzVmRcXNzY+RuFa3W4q8VBgRhJOeyYY0FQdgBe2ma8vz5c5bLJfu9MHzmsyOO5scUeUEYhHz75CnPX7zgm2+/YfPf/1vCKGJ+PCNKYj795FMePXqPOPaZjiOaVrNLpe5rtRZJpiNgbtW0pKkwUOIo7uRkni/stuFoKEE56b5jCmitSZKE4+Nj0C2KliDwuTg7Jo5Dnj75lpurt4ShTxxZBq6wJqJIpKe1GWhstxuuF1cEQcC9i3OSKKYsSvEqM96CFnRSB/PLgxxMuShHWDTW18fWpEEgUrK63rLZrMnynKvrK9I8A9+lqCtuVytW6zVhUaAMyyMvC2Grm+CE7W6Hw6WRCglo9uLVS9L9jlevX7FP9zS6YTwZmYGenOliui72EXmWEscRgyQ2TEKpn9IsJcylFuhAMk/O2yiS2szzfbzApywrkmQobJ1Ckn/rpu3qdJvMeP/BA5I4MT67A9bLNcvbZefr4xtGuoCgIvUuioIs24v6oCoBLTJh95BqZs+bd8Gdfn/Rti3brYRS7Ha7OyBB/+dbLdfpXYPuw+8SJrpudQfQWuCnP/TsD7xtzWXZOkDH+OrL9u33WtZOXdcdS2YymXB+fg5mb+kDMCBAigDWIiVp6hqtJXnOcRSr1ZIoCvFcl8FQmMNBFBNEIcPRiNnREZO25eT0lKqquLm5pawqgkjCHupWU7etAark+d/cLMjyQ5JbGEYMR0PaRvPq5SvaVjMw0mgLXvcBlYOv0sHioU/YkLO87b63DxD1WYX2e/tDTvu12kg4aVtzrolVhKNU5+/UH35bBpy1nLHqH3sfL5dLXr9+LX6Ipp7u21gAps6KOqlf3xaHtqXWh1ql6wh76/WfCjj91oBNgmY7Bj1uuxu+quqOhuj7YjDse77RC3vdtEb8Xx5y//59tMmstTef0wOb+ouoP9Xqf1R13U2jLdjkW/mdfa6Aag9tel1VzMZTqrLke9/7Hp9+/DFK0aH9dlBoGSR2Am3/fts2pLnQyxc3C95evuX16zc8ffqE0XjKaDTDdT0qQ08XKZb4NWV5Dko8klzXZbvbmSntgsvLS3zfM4tNGtrJeMxmI1K7pqkpy8LIrjxpLMyGMp/Pmc/nNE3LydlJtynJxuF2/hvKTqEcmX5iXneaZtwulywWC7799ltOTk7YbrckScJut5OP/Y7tdiNghLk+fiBaa8dM0w9TLtVN7/tot+t6QmZSupMGoDW1Ga7ItM4OnsyUxDx/z5U15bgtSgl7TXxwPDwvxHE9KpNWZgu8tm2pm5a2FcDFMsoa3ZgbtjQNhKzsd5lNaANOta1peA83c9O2stkoKc6sEbkyhY1jkHrlON00rX9o6d7rt3+/T3UUwOHAAjgwvHQPZOrmDIevmWbPMR4YdjrVTQJa8QBwPctukfVYNw1ZlrHdbBmNRkymU46Pj/nggw8YjcbGQ63tkvcc5xA33TSgzV6w2+1lTXgege8RJ7LxVrUhsykHx9E0pWafFtzcrvjiH77i6uqKn3/+c64XC95773022x2DwYCbm1uqquL58+dkWWbkNk5HMfV8j8TInabTaWdaOxgMTMKY3Ev2s5202Q/Pc7uJXWsJd93rEqBRoqNlL2q67xGegXKEzWmWi5mSijxCt7qTaVr5lwJq1yXLBSi6Wiz49Te/ZrPd8OLlSyOHcMWkOI5JBuKzsdtsTfqVmG/vNsJo2e33IrPwfeZTY0x9cZ/RaMz3vpeiUULNN6bJKG1SFXXnTVFWlWF2jQDxZinLkqsrRWnksJmhEYdRJIX+0RGnxkTVUrztHh7H0riWpaRyxaHHKBFfsMrcQr4r66eqJH3NdcUkd7PZ4XsRV1fXZFkm7AMj9fNczzQvIUfzOWEYst/vybKsAxQtW0mArH3nIWULEzsZdX25nlY2W5qDX/acA+NDKcVoPBafJLOemqZheXvbhSSkdc10NuPk9JQgiri5vTXPPe0ALJQSDy8zuQ9DkQtYSdN2tzMeJorF9S2u6zI0iVuz6ZThYMg0nnJydkLbSDR50zRcL655/ea1YWlkVHUt02PXZT4/IoljBsMBR8dHnN875/Hjx/i+SxjJPewaXN9thQ0jkktJ4Xx7uWC/33F5+ZbNdsPr1695/vw5eZ6zXC4BTGqrYXr1vL86Jmvv8eDBA+7fv28a7SllWfLs2TP2+31XuN+7d088GkppatM05cmTJ4Z58V2PjLIqabXumrThaMRkMun+flVVZHnWsTLqoqCqD5J9KxnIC5Gy3NzcsFwuWa1WvHjxoqPByx5qwibMWpGzQpqJzXZN2zTsVrfs1yt+48NsLE4QoMIQXde0RnoRDIc4vpVKRd3elRcFb9+8kbVWFLR1TTISU33NgYGd7gV0OT45ZTyZMJnNOT49Yzye8P4HW5JkwOnpOUmSiAQ4DEmSASifMAyIY9NouUpS+PwARdA99bbVjCdzqqplMpmxWq3Zbrfc3i4oS5HyVFXFerUkzzI01+z2e+q6pChzwMrmW7bbDXmeUuQ5+T5jNB5JczIcMZnMcD2XxjDTbKpfEAQcHc2ZTCb8wU/+gJ/85A8FbNrvsT6AIuFdU5YF6/WW/X7PYrHg5cvn3N4u2Rh2rK2bjo9P+OTTTymKktVqfQdAWa/XrFYr9tstm+VSBkOmznFs41dVtFWF6/v4hglrGwUrhbH1RBRFzOdz4jjm8ePHjEYj7t+/3+2hiRkynpw20ujqQ9JdYPY13YpHyqvXr7q6rC93juOY3W7PaDhkfnxKFA/Z7XO2m23XVAdBQDIYgDIplb7D0Xzaa0yElZNmAtZEoU8QeMK6zATgvby8Mp8v2W63LBYLrq6uxBi7lAn9ei2G80EQGGn6UCROcUIQhMRxw3w+x/d92SuzjLKsAKdjC0VRxHw2p8gLguA1RVGwTzMuF7I/To+OiJMBg8GY45NTgiAhioaS9LhvTGrzoR61w7YsLyXpz/i19QGnIAxl8JHqLj1QzkRpFB0FnouAh7Mpoe9zc3PLm5cviKOAJI6o64rdbgvAcCRyQmvHsU/3LNdLJpMxDx5cdMOag9eNOpxTysFq3fpgE+rA4ug3kB1I5YjFR9007PY7tILBfocXBMKoyjIarQl3OzT0mOqyRxZFwVbT2T0oYL1aURlmbVGWOAoZ1rm9WrcHwlTG0yYIfMIoIIxE4qSVDO/tPq4ccz85jmGaC2PYDwPpKZVLXTcEuZxt+30mfofmnPc8n+lkwmg0Zjqdyj1g7nHryeO4LqPxmCgM8QMZFO52W5ZLaJqaqpIBkudLbWnrGAs+32WRHAAHZYbJpWFV7vd7s1e23WcBm2SYhZHy9e1hnK5XUGKHhGI0GgloY+6dPhOq/7ffBUcOLD7dDcc7BmLvrKiNr6EFP05OTgA6cM7+HmHXumZAL6+xqsSoW1p32S+yLEMpCELp96V39wnDyKTVO91Z3LQil4viGD8IBcQ2PpZ1I4OF/X7PxtgkOKbXiKPIsGzXZlA6JUnirg+wr/tdokAf8LPsLXs/fYf93qst+l+/o3bp/W55X2pJomvMUKLHQnqXHWUJNEqpOyBSZSTCtsax32/XyLu/QynVgWfd+dzrWQ9anl6faPvKfwLe9FsDNomcqjaR4XKwp/tUJj2eR22arX2672ISZersMB7L5O745IST0zOJtzUUOcta6tPg+jeY3Qy7C60l4i/yvLuR4iho6eQVWmuJaVXiE+AYU1TPccSbwjlQ6Jr6gF6qO82/6gAaYUDVVCba03Fl6jydT0kSaeoaIyUJlmLEWBmn/7dv35IkCffunTMcCgX79OwUFJ23yXg8EllC23ZeKhZsamzstlejm5bLq0vxglqvWS6XFEXBw0cPzERcYmnvTFZ7xYTWTmc4OUgGnUZ+vV7j+z7b7Y7hcNjpfxeLBS9ePBezdaMhtghuURTc3NyYjVs2eNt8HDZEOSA9x+08tLobo4Kq1gbdb0DR+TjZ5+y2VsqmsR5f69VWmrggwvV8k8piVpJhH1kGR1VW8rvRQvtU4Hm+mZRLlGfb6d1UR0Nse+vOrqc+BRh995C1m3ndSIR23dSGYilA5h0AUx18pVptpuTmMHaN85xuFK0S00UBnlz5NyXAjVxY+Wy9kuxvRYHSRs9r2HpW09G2WlJAmob1SibI0qDOefjwIR+8/z4np6fCCLGvT5n7qoE8ryiL3EykxLMnGQzwg8BMMoUtVDdQFDnffPuUzWbL9fU169WGzW7L7XJlfMBekucZvi9eYRa9r4xPiwKZvijFeDwiNj4+gvz7DIcDfN9nMhFvjSgKCUOJYHZd/w7rps+YBDEuTVOJw22au0VFf/3luUtVlXz55VcsFjfc3t6yWt2avS1CoylK8QaIByP8KLLok5hEZykAo4FI9Vwjebq5ueHy6pLtbsebt28py1LS2KKYardluxdfhnS/R6FIhgOGnstkMqFtWlbrFdF1jFISr+u5HnUj8qSvfvUlL16+kCLUDxiORvzej37IbDblwYOHzOdH+J7DIJEpqusFaIRi3rQNceRzdjonyzI+/OCRHJJhhOd7nJ2cdKmcnmclQfL+7XZ7oeJXtfEPC4DIUK3lPllle+qqoqpaqqox6V8jUA7vvfeA09M5w1HCD3/0QzZrYZKEYcjR8ZGYURqQ5vmLF2R51oG5juMwGo8AKdqLouiGII5lc7Yt6XbbgcTKmN2LdNDBD0IjHTETN8Om0SBm4JWYfpfGq0AruLmVBkiMxgXMcD0LULYHJmRR4HseURLjepLoiJaCuDJnZRwLY7PRLbqquLm9ZblcEYRiWK+UTJBBkkmruhJmX5IwMPHjdHtgy/ViQW78K/b7nWmqxHjeNxKrfZaT5pLclKdiWLlYLCiKnO1uS5FnbA27yHGczlvEgmf9PbCrFMx/26LXsj36RaAtim1zYAvwsiy5McmHl4b9a0EYe/9a+nyf+t80IlEBut9vmW62Ybu5uenWipUgvBtTLGziA5PKfr8tFI+Pj83eK0B+HIskV5kJcMc5VSLh7eoIFA3IR1VRGEB0udsJsGvOmiLP2K/XpkmR9JzpyQlRGFJ3khiRafogIIdSjCaS5OgaDxHP99nt95R1zWa7Aw1puidL9yaFcUoYBpwcC1MwMHK4IPDlnDZnt1xPB60VaZZR5CU7wxpq6oYiP3hY+EHAvYsLhqMxSRJxNJ/h+y5x6OIqJTLDqmK1WrO4ujEpcnOSJOajDz9gOp2w2+0Mc0P8Z6QmFInv6ekJngtR6OM4CbqFurEMIjGSns+mVFXFwwfnvP/eA3a7PY8fv8dut+fVq1dsNhs++fgTPv3kE7IsY7G46fxO+r4ndVV1TYQfyP6YG3bAerlku9mw2W65vBYvEgv+9KfOSgnDeLVcsjepfWEY8urVK2EGmgGt5/kMx2Mcz0XLAS/MBk+uxXA4pGlqFotriiLv5PKuJ01JZRh1VV3x5u0bqqo04EKO6zkEgU/dNmz3O/KyIKkigsAjMOeoMoMWjWEiOy3acag1FFUl191cu6ZpOpnh8fExH330Ebvdjk8//ZQsy3nz+m0noxZD+5qyrCiKFdfX1ziOwzfffNMxnWazmbl+cvY/efKk85I5Ojrik48/JowibpcrfvXNEwoDDG62Wz7//HM2mzWz6Zj7FycEQchwLGbwk/GQKAzRuLTakVQ4LzZloMh1lSupt65JPXQdV4beQBTHMqhyXdqmxXFtDSbhAr7ncvnmLZevXwINChlc7AyAHgQBjuuY+r2VoYqvKE5OKfOCOIy6Jteyzw4sCqcbunYNs+OiXA9JFc4Nw1PAusGgpGnlXvED8Snb7/c0WnOhHAaDgTAFqwrluCYRUzGdzUzNLgQB3Yr1h6NgMBqhNOxTGUTe3tyy3W4Jg4BkMsF1HVPztib0Q/ztOtCprCjzgrZpcFxFlucyDDGeNLqFtm5ANUYSKOeXHwa0raYsq24gLPu828kzoygiiWNGozGj0ahrwm1SmwV5HcchMsNF2w7ZHsYOEzSSUKfUwZbk3YcAFoeeVK6bDbHR3wGmDr1CS90czhCgG9B0QxkNtRlHviud6p+rfYCk/zz7AJN9r2ytax99aZ/v+wyHQ2azGaenpwBsNps7r8HzXHzP7ZhNum2pTOq76xwUSXK+S2JtEIZ4ro/C6bx85bMAqqHx0/KCQIJL8oJ9lskQ2vPI8pw3l5fsdls+/eQTPnj/A05OTnj/gw+5vrrmv/3v/i3X19cEgd9J56zHkn3tth7pv8d9Jlif3GLZQ32Jmn0P+kwpK2u192FdlcL6LQrqqqSpK6pCUlttTdRnoSmlOmDPdd2uFrLsLdd1Wa1WXe3TZ1L115R9jrb+6Z8xcCDJ9OWxh/Xb4zb8Fx6/NWCT1sgba4rXZrlkONrjeGL26Pg+KMVuv2efZbSt9blwiJMBURxzcnrG2b17Qous6y5Bpw8o3b3ZtSn6LaooRWAU+WYDMYivNh5MrZZUJuO142iRCbiOaETDIATPJj2JfKoqa+qqOSDuHdpJZ/QrnhKtGEnXMvF3XId4EDE/muP7oQGbxCRXmnq5SVerFa9fv2YwGPD48UO0bkkGCclAGvW6qjuDUtcRX6csy9jtdmy3WwMQHRIN6rrm9evX3CxuGI/H3TS3KH4om5BlG2nrpH3XMwcOet3BUMCmV69esV6vhXW13TAaCdiU5zlXl1d89eWviKKQ45PjLpHKcSQqtP8cbeNvb1CQQrFpWzzHIwgjQcXN6m900xXVdsOwjLeDBroVwMnEFYuXx462kQ3M9wND+rwLUBZFQd1IekldNcbDQWRlfbBJNmILBNkPdVfPT+8A6aHl9nn2m6fKpG3J1Ki12A+9/+hgZvEXgKquQTdoxya/qE5Oh2M9q1xj5O10YJOBlgSIM/eK0i0asfZtERNRax6nML4ERUFZHAyZ713cZzKb8fFHH/GTn/yEMIqIwkj+jmpFSmomNWmaSoy453N07OMHPsORkZMZrK5pNWWp2e4yfv7zz3n1+jW/+MUXPHv2jOVyydurSzzP60xZ7927x2w+Iwyjg1wmyyS+/f59AWrPz5lMp10kaxD4jEbD7t7xfR/PREq32rCueoXAu7RoG/lqQcL+v9mCyN43u92Of/fv/pKvvvqKr776il//+tfC0phNJVZ3vaZpWi4ePmA6n3fpZ1VdmyADxWwyIQwjZrMZo8mYqqwoDEPp1ZvXBnT28D2ffS7Jek1dU2Q5YRhyfHbCaDQSOYznc32zwAsDmrqhNfdOVVfUTc3TZ0+FtlyU7Pcps9mMy8u/4P79+/zFX/wF9y4u8L2QwBPpX1nJOlKDWMDY0zmu0wMP6DDTziCyex+rlu2+pKlbtobl0JkQVzHWc80zRfXV1VKayaqiKivGk4kk+IU+H374GM9VfPb971PVmuura16/ei2T/7NTtNa8ePaczWbDdrfl7eXbjuXh+R7jyaTzkcizvJMbWapl0zRs1huKsiCII8PQbGm0MBEDk5BVmujYRksD0aJRpUtVluz2e4o8xy52yy4BY5+jZP1o16WtStq6pm1E2twaVpPn+xIzrGSyXtYVoZF2OY5IocUcf0+eZURxzGAkEe+TkfhkFWVJ3dSEQUDoB8RJwvxoTt00XF9eURQFl9dXvL2+4ur6mpcvX0pqrPkbgUnYWq3XrLcb8fkzkqgsy8xgR+55a7Tpum7n02XlqX1z3v491geZ3jUntYWvmNyKZLOqDl5fAnYV3SBlPJamopMYKnWnsLR7sJUD2KKtbwpf13XHJLZDElvsKaWYTqcC5LYHX4vCGAfbAtUWjY4j0kPf9zg9PWUwSJhMJwzHQyPbFxAxNO+1Y+T8RVmSl4UM7NYb9mnKl199yXK1YrvZkO5MQu/lWxzXJRpPCKKI+48fMT864vbmhuXNrUyCjdnydDwR0CCMcH2fptGy57gu2/0eJ8tYXC1I9ynPnj3l5csXBH5AnAwMgHMs0r9kSBiEDIcDRqOhFOQGsI9iY1Zq6qh9umO1Woo/U9PiKIf5fEYSxzx4+IA4Tjg/P+NHP/gBSRwxmwT4voR7tK3mzZsrnjx5bqbv0ph/9r0POZpPD0BlY9mPFTc3C5qm4d75EZ4LnusTR74JxbCF9Fj2bgec3t6V5yVvLm/Z7VJ+9rOf8fbtW95/7z0+eP8Ddrsdl5eXHSgKh4hw29jaekdrzfX1NWma8urlS16/eSPnmZGuWHaABUX7sov9dovWEhveNZDmQzXCbMHUz7gie4+ThDgZMBqNuLi4MKwpsVVIjDFzGIYy+Tdyv6zIRO5kgExJlU2Yz2fUbcNmJ6yBskoIg1Bk6J6we5Wh3zqei4M0NFWrhdmUil9bacxx7blt68+iKCTxMU35+le/Zr3eyHBpvebq6ornz1+y2Wx48uQJRVF0ddOPf/xjfvd3f5emEbDJ+jF6nsejR484Pj5mPJnw/ocf8vTZM95cLWhWK65vb0VGnu75+utfcTSf8+DhfWazmQSbTCacHo+ZjEPyEooSPNcjjjzaFjZbqEuN4wpL3/MPoUSB7xsQOTaAoCdMH+UauZjxf3QVb16/5ovPPyfLdqT7rXhM7rNuLfX7u/lszP37x7RGCt8Oh53vUVVVFHmB69o6RNnQz+7huC6OJwy3rAv3kKF0UUqtq5UAvm2rxYTceAkNh0MaLbKlumkpKkkGnM2PCKOoUxvkWcZmvZGQltEYB3j17Bnr5ZLFzQ3r9ZrxaER4cipnUL6nqkpT8wrjA2S4WRqmdlnJ9c6rkqI6RMuLT51NvhQPKgs2Sa3qWDFXt88Hmk4GliQJk8mY4XDUpY9ZDzMLNnmeRxRHBH5A3chztB5PTVPjutKnKeOl2We0dLXPbwB55PtcwOt6szvSpt7PurVzx1/S7i92vUl5InYeffsYe+a8C2C926f2B939c9E+LMPJfp8EHoyZz+fcu3evA0b7dZsEs3jGmkNUEYWRP1tvQM/3hZVUl2RZasBxGxgUdCEKk+kMpRTzo2N5LWbIt99Loqjr+STDIbs05Ze//CWuo/idzz7jX/2r/4r33nuPH//4D/jV11/z1//X35Kme+Of5naSMvu5PwCze+NvqhcsCGZJE5YVaN+r/sP+XJ/oUhUFTVOTp1Kb1VVFmWdY24V3wUqlRGFg5ZwdI9mEcGRZxu3t7R2wqQ942f/uq736f0P1nnOn0PnOSvynPX5rwCaL/LruQZNaVaWwm4IK3xi8NXVzYHK0GuMSDcjBW5hY6qqujYzBxBAadNdz6cyMlZLIWFc54u1jGAe61QaBv5ve0L3LHXJwMFtWKFxz82qj9a/rpqPFWbaPY+iUSitatzV6ao9GNxRFzj6V4jjNUtpWEycxSnkUZUmr4Xa5pCgrolAo60VZSkpTVfL27SVZnjMeSaKRpUvbxayUIoliPNdhtVoJSm+0sxLxOUBrzXgszWpspuSO63TStbubk3zRJsG1upWDtNW4njKbwZThaNgdukLj1sRJItOdJO6YOHbSYBe9bfREtiZ+So4rxp+dMbRZBx3qqqwfkWWROeaCCZVYpsFOZ+QXhBFBENO0LY7b4HkahVAMJWreRyJv726wTavN1RfZidKqWxM2dtZOiVt917OpM0Y2B2inv34HfLIPK01q+7+3kTTAvtite909Q0VDdOqQZ0v6MjihAKhmOctbpbs0EQs2HWpXMb9EGUYehmXRasP2cSnKku122xn2KaU4Pj7m/sMHYs5pDum6llQXre31Vh1rw1JmXdcxkw55DavVmuVqxW63582bK9brNZ9//jmLmxtubm46Ft/R0RFhGHJyckoURV3SWzIYkMQJgfE9scatQRgyP5ozGo862r9n4rM9VzyhtBYJG42Jbq1bYzpYGx+2pkc5FeDaDwLcthX2XW8NuObgtNfZcVzCKCJOEsaTiciUBglHx8doNIPxmFZrjk6OGY7GBkgp8cOAwUi8bY7nR0RRRDyQQ7iqSoowwPVcRqOhGL2GAa7v4jcicWl97+CxMhoyHA2JwojA99GOkghoJdM7Rx2mN9fXCxaLBWmasVquiGLxqtmne7598i1VUxGFPknkCz3f8QTkTvdUdUWR7SnzrJPMup5HFCe4nksUBHhGNjIYDNDIPRqoXwIAACAASURBVO8YAF41DlUhDJnNdsvLV6/wPJdRIpp1eV6pMA7LivV2wz5L8TyHUHIhyIqasmpZLZcsrhdEUcRieQMoFldXpPuU2+VSfCAC8aJRSuSCSiuKsjwkKSHm+J4rRvh+4IMplhzXpalbKkMV32cpjlIUxhOvLApyP5e1lqXia7TdUpYFjtl3QRt2rYPj2XTI1nh+2SmjNO5RFEpqVxh0e8JgOGAwGBCFIgMNgoDJTLxV9rsdWZp1ssc7DFVkv2mamgqFyjPWm40pZExzaACePM/Ym0bT7svioabY7bakaSr7g/VAMHtUbNIbXePHoXtM5G4IBIe9xpV7RjkKK4+2e+F6vRF5hOOaoU0DKHw/IIol/loKKRfX9XC9Bs/zOzlwVVWdkW+30ytwKgFz+jT3wkxhq1Kuoz2jOj0rmrosaZqa0XBOlMR8+MEHvP/BBzK4amUAUVWFSAfM9R2ORkynM2E5OA6u5zKdToiiUHwrEjHfV9pM4wMfhSJNJT2zMIzNthaj1DiG8/N7jCdT8UBxFNlux261BOXghhFeEHBx/z6j8bgDm4pKQM+2bWitFEZrmrKkqhuKUtbKzjTuTS3xgFEUScKaHxoplUnAcV3KQrzg8jxlvV4a1risBxnOmdAJHPI8ZbfdCAPH9c260ZRlQpqmBEGIbhum4zFJHLKdDgh8MbBWjqRNyd4hmK3jKBY3SzabbQdKBmHMYDCmrhuyPKepay4vFyyXqx4zDVotNYQ0Dg5tW6ObuvNi01pk/IPBgIuLewySiNPTM0bjIdp4LMqyknUWJwlRKCEQg0GC5x1kup4nbO4o8pnNJxwdzYjjWJrcUmQmQXA3daptG2qzDtNM5IG3t7ds1mtJwq1K/CBkenyM6wsDSRKaCoqipCwLbhfXKMOCl0Fa3qUX+6ahWi+FAZqmqXiX6YOMbzweds2t47rmugiYMhoPuyRWzzOJfYZ9a9/n0DRlTS0DVNuwWWBNZDkJrutydn7GcDRiOBqS7vecnp5wdnbGbrfj3sU98X1bb43USfH8+QvZ368XUhOcnkpy5Hgsw+rAJwxCJtMpH3/0kQx2vv6a9WYNaLI8Y71Z47112e13nUqgaT7i9PQYz4/x/YEZQqlDI2bWnTSTLXmRU1elAaAPTJe6FglcGMgwqzHSe0dZKVXZq88THjx4BAoB/Dqj4JbZbMyZGRitVivZn8w6FUDgULsqrLT/wKg5MF96Zv/qrqzKNtpi4SF7XjIYiFdWFOGHEmxyu9qgHJfxZEycDMTLtGlQOBR5SRSEnJyc4LkuRZrhOS7Xl29Js4wwkN+vbA2soakbykJYgMPBkMSEkLRNQ9uIk2tZl10Qiq0traV/ZXqx1ihehK5sWPvmxCnLiqoW4H8+F8+zs7MzBoNhFxxjQRhbgwOURWkCRWR4YsMdZChhEqPdu+/jbwKOLNu9/3gXiPruv7c0rUMP+/4Oe0l+s5i/WNl/H5C6o7LpiBAH1lunzmma7nlbcKIvKes/3z4ryv683VvQklpattIr4srZ39TmPdVabHC01D3aEbaf47iHmqBTocjAx1E9wE1r4+drhuOYdFLXSBmNWsk1v9dzXTzHNce27q7Db/qwe5wFmezn/vtt39+DnYbXKXX6PV3/Wt0Bm3zfKI3kvapdF9fch322d7dqDMBl/5a9ZlZGW1USzGGTRb/jydRbX++ysrt+1fao7cEX+P/L47cCbJJGGQLPIwoCmkYMt7M0Y7G4wvN8ktFYPJxMFK2dJDtag++jNaT7PZvlyiS0maSX2kbXSkEjFFVfQB/PQTtCIdVagSOJTE0tbBXHlaQdO020jb3YKgsubpt8FGJipyRuPd3nHSLc6pYgPCSwuZ4LjhTNru8RxgF1W7NaLbm5veHq+pLb5S3D0Zj50RFFUXOzWNO2mu02xfN9Hj14wP2LC3a7HS9evjQFiGI8HvP973/G+fk92Qi0pm6lQMZRzOYzkiTh7dUV2/1ebjKlGHk+J2dn+L5PXhQMh6MO3PBN5LCd5OuucW7RrUI3ukOAHcchSYZ4hExmM7zQ5/L6iuF4RJQknffMyekpo9GQl69eCr1bieQEpVCuJA6QZdTtwbhV4+B5AUEU4wcuruNQZAVFVlDXjUjxHPHZktPVAROvrZShuIaRTHWNgWsQxQRBZNJQxIPJcUQqFYYxnh/ImmgP8omqrmi1g8oz0v2eqqpNIF0Hz9DSUpji4t00gtZsklVZiSzOgEw25aOvhwbZYGvVUNVNNyEoTcOjzH3vexLVqxyRwog0Tpu1q01xqMAmutneyABRdvtQChzdfyUHiqc5+gRYdS2iLwWWTYq8vLri1atXncw1jmI++/5n/Pj3f5/BYMBwNDINa4YG/DA2ciSTdtS21MOhkTaIDt4+vnnyhL/7T3/Pk2+f8H/85V+y3W5Zm4Sx2WzOcDhiOpvy0cnHDIdDHj16TByLAWeSJByfHDOfH4m/RJKYg1+Q/dEkIY4DqqqhKg9THEASc6q688Gpm4aqFE8Xe4jeTZqQSep0OkUp1U0U7Pd4rtDp7R7mBwHzo2POd3tQDsPRmNF4xPm9C2Hu0Qqjxewdq1vxQYuTROKqk5j798Snoayk6KpKYW9ttlvSIiPNUsZjAaEd38WPpMn3zWF4775JwwtlUvfAEwnAYDDg0YOHkupj2CrX1zcsbmxq10uyLOP66prr2xv+1//9f6NtGwOazQiDkPF4Qt3UfPvtt6xWK559+w1vXr4kGQ6ZHR8zGAx5/PgxiYn6HiQJjx8/5oMPPhC2x+kJAS5eGdAozX6ZsVwuef7sGV988QVRGPL4wUN8z2ezEWZRZdh1FhhtmoZ0t6OuKza7HVmeUxUlZV4QxhHHJyd4xkdAt5rF7Q2r9ZrpeMJ4PBLJQttQtw3rzZrNam0KVQEyJsZsdzAWE+mu0E1rkeNpOg+hspKkTTHqlzhm1xM5Rbrf0zQNYRThBz5xJF5OnpHIKaXETLPVEqYQSpLKdDwhTmLO790jCANhETUt692G2/WSKIw4OT5hMpnwx//8n3NycsJuuyVLM16+fslXX/2KPM9YrdZdQESrG/KyIdc5pHC9XNA2rUzc6prNdkOaZRIR34rJZ5lnMgQyoFJbl+i6Jh6OmJ2eEkYRR0dHxHHMxfyC+WwukzfX6zwGWq3FF6W1k9ZDUp/rOALoobq9sChynj17ThTHrNcbMeytajSSRDQ0rCVJcFOEUYxyXAbDGr8USU1m4qBrI2u08oT+IMDew2VRduAxQOAf2Aue51EqaPIUrTXn56ec3rvHv/k3/w3/+l//11LgI+lW7rvJoMqhRRJwXde45rmO2cudbojQ1U1K0dQN3z59zuLmltvVmpubW3xP2JjJcMDZxQW+7/PJxx/x8OED0C1KixlumgvA5hlvk+Vyyer2lu1ux1vjm/MPX3xx8BlKU/Jcksz2+70w2Xwfz/XxHIez02OOjqYEfkCSDOT6a9kzF9c37LY79vsd291WwEKtOvDNsnrbVqPrCl0WeEHAeH5MEMWsL85Nk69pm5bxZMyLF0+Joojj2axjJIRhwMnJKffvP+hYiEVR8LOf/YyrqytJw8tSLi7u87u/+wMcR3VR7+v1iizN8ANroHowyr13fk4Ux2yN12WWZ2y3W8bjMT/4wY+YzSecnEwNY9NF4eL7Hm8vr8x5Kw3/bDY3LLcBx8eTrrmnd87atVZWDWlq16E29aOklt2tn0UW9OTJa1brLX/7N3/DL375S/JcpKrT2Yx/9od/xGA0ZLuVsI0vv/qSL7/8B/L9nsWr59K0K8PMTmLcIKAtClqThiyeii7BIMHxfSMfCoSF4B7aCMdxuLh3xmQ8YTgcMBlPGE/GvPfeewyHQ9577z3G4zHDYSIyMt9nOp2h25bxeCINj5mQhYE1t3aJY2HUzOdHBiDu1aBNQ16ULG7W7Pcpv/j5L7i6uuav/uqv+A//4f/sBnqT8Zg//KM/4uhY/Om2mx3n98558HjG4/gxZ/fus1pvUP/L/8zTZ89Yrm7ZbNesNytevn6OUg5/95/+ljiO+bM//3M+/PBDHj18zOOH76GVi9/6tl8VDybPJQyleVyvl7JvN3U3vPA8lzTdc311SZLEuM4c33dNreoYs/aUMPCZjMfcv3+ff/nnf47v+zx5+q34iFUiyRRDdvHIefr0KQBHJ8cMhoNePanFCwbrLSN9kYC+PeaL5+B65pq7Csc1QFMQMhmPKcqKm+US6prTs1M++d6nZEXJPs24Xa358le/BhT3Hz5iOp2S7TPyvGC32UKrGI+GfP93fkAchYwHQxZX17x88Zybm6UAUmWF9g8D/iIv2W/3ePd9Ls7vEccRjoa6rMirnKoRj92yqU2wggmtURjwVFh4jueaIA5Am2G2FvipMtL8IAj45JNPmM/m/OhHPyJJBnzxxRdcXl4S+AeGimW7KITV5rqOyPmylP1+Z3q/CtB4vnMHqOj7/fzjj4NkqQ/29WVOrTmj2/YAFL0ro1PKwU9CXMfrGIv977HAwrtAVh9ksr5gto+xMjbL6oW7hAYLNtnzOU1TykICtxzlUBUCKnuuSxQFoDVZKv2y77l4rkNbt/iuD1qYpjKQEuVJXTeiJqFiv01NL28GWY6QRprKAJyeJvR92iAk9AIJQHHcLuDLUY707wZYscPmvvzNsn4sSGelln2pnP2wQLlNFLW9xm8C9uw1svu91pqykMHHJgzZ+j5NXVMVeSej60v77TpIkkTA857Z+9HRkWFy12RZzW6Xs15vcF2Xk5OTDnDqPy971sHBoqA1BuWi+jK+xf9/BpvAMn3lQlZNg1/KhFgatRYvKGlNDK/nOKDBdUWe4FvpmpH/KMtC6XXR2kxJrbkuCnRrO2190HFoeoe7onXaA9ikLfFSqH9Ka5TGfI8psLWDbvvNp3T1B3MweV7CujH/XwmQYyfmWS7NYRQnJja66fTLShUGlBEzQYusaq07Q1vLKmlb0w5pu0CEVdFfUED3855nDNh9ibvue03IxuObTck58KJ7iLhdwNZI205C7IQKxJcgM+alYRB2xu0gCU6Oo7qfATFQtLIL10r4MJDHd25gwwDovu5077Nc2MPz7b7Plvt32DstbQt+oO8wb+T6WdmCBW4s0GsWmt2ztTJKwwPz6l2kuPvoNTXvarOFhmsT4/Thepr32AKgutXCvEVATAd5zhZsUlof5HKKDoAT1g7dZoumm/7Y+OsOzFaWvXXg87nuwWyyrmsjNxXpw3AgaYaj0YjRaIjnB/Ia3n2rtDHNblozDRawrChLikJSmvI85/nzF7x8+Yo3b9+yXC47/xO7EQ+HQybTKScnMuE7Oz8jiROm0xlhFDGZTDp2R5Ik5jlLhKxdW4d1dJjU2CmWPXwt4PTu9Toc2P+4Hl6pw7rVZkNwXPFKOj09wXUc4igiGQ44PhHftcJEttqLtgt2GHy7Y2ja595JLs1UU+u204ZrzAQFM8FwnQ78rmuZfLRNQ+5K8l/iSDPbtMJwKY3hYlEV3RQkCEOaVmSkWmmqRnw04lpMG6umkcQXIyu8ub1huVqz2mxoUASDAcp1yYoc5bodCJkVJZVhBtoJq+u5eI3XsUFxVMcaWtwscF2v8wtrzc/KbSNF0Xqzochzblcr9uneNLyasqlwfQE0XGULJWvAbe5DLSl0GmGzNboBk7iIMo0ihi2IFLENMn20+5uj5B89LWlwrpFAuZ5HEIqfnnhVtIfgBSWSW7tHKKW6ibZTyzWsqoqiLFCOIk33xs9NbloB/5Nur/WMj0oQBvhFQF2L2W4YhaBg3IhfTzxIJKjA3KVW8ta2IiFu6oYwjsSLpqrFg6aqyPaeuSdNpHJTQ9OQjEbM5nPCKGQ+n3f3a5wkhPt9l9LzbtFrH/2CTNWHCbPdC2sz2MnNwKOTBHgHFoUFnOz5FwQS416WBXXdHjaljqB42K/fZZr27+u+L6TTSx0CGAwGnQdNFFkZb4HSiHHsnf3AQZvJaxCIp8U+SwU4s2w218UPfCOR8Yz8/hAWIl6CzWH6zN1JvB8EREYK40dyP9v6wPd9GfQYmW8YCkPJNg2e7xNGJUEohbYFSXTb0hrgzOvWtWG4OQHa00zGY/FjSSIGg9gcKlJ/dYWtSXOlaaCu8MOQyZGwYU+OjxgOBxSFvMbArJeqLLm9XcpeZFh+0th4hg0SUxQF19cLLi+v2G42xmRZcXZ2juM4ZJkY7q/XG7IsJwzFn8+eBbZ5qOqam9sl6/WG/X7L7e0ts9mMB/cf0TQNw4FPENjhlpyr8jwODaOdiGutyfMC0MaTRnc+jLaecD1h4EoyrjBe8nxHXRfdEEtet5FAmGY0GYh9QVXXDMcjJtMZZ2dn4ss3HFKUJbv9ljTdku/3bGNJB2yVI3ua76M8jzrPqHahGdrWHcsQkDo1SxHz94PviKMUvqvI05RtkrDbbtlsx7iOw2AgMtDRaGQSpqI7DU63ZmwzZfYDabAcI0WWZFbBExTW8yWKGpQTMBzk3Fzc4HkeF/fOeXV2KvdGXjAYDk1TekhtqgzrwrHyp7ZlNpux3e2oG/GtK8uCLJPh3m4nvnqXl1ckgwFBIGl4cRyhtUn30z7KldrIMhGaHsDQrwe0SbJuW+NjpiS11DahwtaW/x/HMednZ0RRRN1UbLeTTmY2HA05OppRlSWXV1edJUcHiqiePy109QsocMFpve88t0MTbaVXTedF2LYi0bTsWo1COS55WRrriYO/auVVuG5zCHwIQuJIPhzlGJaKNqE7pk5VisbU2HY/tn/Lcz3DcpF1WdUVpQGc7HBPKUVr+qqOmaPtsNx4sGrMUEWULLV5PZ4nQUwiXZX6c71ekxd5977YNXtgvdeoFsMksUmOwvh0HK97/vbxroypf57YU4beuWI/96/lf4mBc4eN4xxkc/bD9mN9NtO7z6lf3/af27tMqN8EmvXld1VVUVYlXuuJlYvpESzghL1GdW3uZ0eYaGYi3v9bGHaTAFvi66Qa1dVMdihTVzVt3dB4h8Rv8Vd2JLBjccNgMOTy7WUnq2+bu+befR+j/v3Qf93v9mu/qb+zX3+3tvnue9+7psZeRzv9NGZ153n8pl6xL/8XqZ9loEn9all37/Yk7zKbDq/HyOfa766D/7eP3xqwyXMd5rMpF/fP2e1Ttrs9u33Km7dXtBqKuiEIQgbDCaPhSBIq6tqYH06IoojJeMpoMJbpfin+IoUxdOuMlOuGRmt07aAroe0JBVKjDY2vbSXJzGkFTEJDW1emQDIXSqguIvmIxPjVRSR6Fg22G4a9+ErJ5lY1NY52BBRzAO1T1xW3ywWXl295/eY1i5sFjutxenZPNkwjDdBa4Xkts+mEjz9+nzTd8eDBfRPVLRKmNE27+No7BwgOgR8ShhFVVbPZbLpG1OpBPc/rikhJAduxWq1YrVbUdc10OhVDyEpkAtbITimhgAPkRW4aeOcOml7XNU+fPmWz2XByfMLFeUQYRIRhKJPyzYYwDPnwww+ZTMadcevLly/5xS9+0d1QcoAK8IKj8AOf0A+JowTXcQk8D8XBnFdu+hqUTHRBde9l05aUlRxaWSZF3HYjh8xsfiQsrSDE96PeBlpRlJUU4bUG7aAccL0DoNjqFp3uzSHWdJI6+5wKo/8uTcGj2/Y7zCa7hpTjG1BHGBMtMg0W+Z7cP0K7ds2GakzqPMewJ8BBE7o+Az9AaY1uDWXVHOit8SCyU3egA5uwRag6JFzoBlCa0MigVuuVNPNFwXgkzdUPf/gj5kdHPH4sDKOqqthtdziOmCiiFC1SPC6XKzbbLcPhgKP5jDzP+fbbpyyXS/6H//F/4pe//ILtTlJ/HMfpEmdmR9K4npycMplMO8neZDzmow/fE88A5QMONurexr6iFDgOrdakacF2tzeFjoM2EiIL3vxjB25/QtT/3DRNx2Sxm/u7Onn7CMOAf/HHfwiINEe8kTRF3ZJmOU+eP5FgBGOiqpQx0y0K8lISlTabDXEUkRovtL5vjWV3brZbrO9H5xmlJBnu66+/pmnEryzLMkajUSdHnM/nALx69ZrtbksYxWLo7flEYSST3MBjEIw4PjslCIRdcHFxYfxrFlRtQ1rmbNOU0XzGYDJmMp1y7+IecZxwenpqAGZTYPnCbnR9F8+RKWsyTAjiCOW7TI7mKNchy6Vw+Onnn1MWJQ8f3JfJ+WDAMBniBz5RHLHf71ktl+RlyfXNNYvFgvl8zqnxh9hnqVxPI/8KwoB4IJ5tRV2RlQXpYiEAXtPiWl1+EtM2kkDZtC1Znsn9bryawlCi4T1XUpr6BUtiTGIHwyEnJyfdHlpXFU+ePuX6+lpAMyMVsBTo7VaSA+067hcaSSIpRUfzuUnVdHnw4IFdtbRty8tXr8RLab1mvxdJXJIkzGYzzs/PBWg0Mig7zfNchzCQeyXPa5pGizTEGGUXeUFR5J2EQ8xvPQOSiMFnMhjguGIqj4Jsn1EWJU0r94r4xsjatVM6WyhaMBQORXfflNMOJ9I07b5mae122GGbHccw3QaDQcdo2Wy2RjrrARrfNF8WCOlLKOzXcpPcZ6+DhAgIEHP+6BGu5/Hhxx/z4OFDyrLi7//+Z9ze3vLNN78GYDa1wQOHBJ+RYR8eHR9TVSV/83d/y9u3bzqPw9lsxoMHD7oUMsdxuLy8Yr3ZcHV1xa1JLLy9ve0GNK7r8sUXX3BxccHp6QnvPX5sUrDEjN2amD998oQnT58KeGQmDGdnZ5yfnzNIEsIoEgZxVbPf74XVmOesVytJYG2armDdbbfExmNpOBzy4Z/8CScnxwySiNHQyAHBgJc1Ta0NqFV34wzf95hMhnieS2S8NC4vb7i8vDFSnortdsf//Z//Mzc3N9xcXrJZrRiOx0zmx4zGIz744H0cx+HJk6fGOPwty8WCe/fv8+rVG5EBNjJ0i6JYWPRJzGg0EBPxosBxxGQ1CAKePn3K69dvub665NnTJ8znR7x8+Vr2ktMjhoMB8/mco/kRRVF2U+3ZbNYBqm3b8uLFa66uLknTPW/fviXPcvFsylKRvzUNH330EX/2Z/+S8XjCo0cPcRyHf//v/yNffvkl19dXvHnzlsEg4eLeBa7rkpsU3CRJ+OyzzxhPxpyenRGEEZP5DM+XNC7XdfmXf/rHNHUm+4sxSy5quhCeoijI05TddsvesOdtCpfWml/88hd89eWXYoUwEfAwy/ZUdcPzb79F27Vngh6iSFL1olhk9F4gYRaj0ahL0zs9Fdn72dkZo9GI05NTTo0UfjqdIAnBVv7joJQmy0v2uxTrmRoEIT/+8e/R1BV/+JPfY7vdsN9nLBZrcuPXVlU1g8EApRTb7Zbnz58TJQnz01O8wOMP/vAP+Ox3PuPJk2959foVV9dXfPPtN6RpyvL2hrZp+Ou//iu++Idfcnp6zvn5Oedn5/zwhz9iPBrz3qMHMsxqxdTYequ1tknt/tey2GpcRzEaJIxHQ8bjEb4nwSGr9QrPm+NPJ8znc370ox8yP5rz++1PjI+m8aJV4KFZrVf8/U//nvVmze1yyXq9lnMqju/sZ3XTGEDIpKkaGbH1JFJKEUYhTdsyGCTGV0yh9a6TtSm3ocgL8rwgjEJG4xFaa0ajEU3T4ihho2gDGHlewGA0YjgcEMcOnithRL/++hsWi1vaBhzHI0kGBL7Hrq5pVN0lkAW+2BrY/VtrzW6XkhcZZV1RNnImZlkmoJjxJ5NyS+hmynFk/9ql4i9VFmZQYYedJhAgCHn5/BWO4/L111+zWCwYDUaMhqPOfB6tyU1Y1W63JcvTzmBdBjONncfjKe/O2XUH/NOWqXQXmPC8u+ecrR3sHvJu3WlBMHvGWWaTvGduF7piGTl9koC9t+393a93+6ysfg1rwdC+J6n9bBM4JbBhJWnIpi9Bm8GE51FX8rOpCTiw/WRdleJdidhMCLtJXkdV1uy2Ka7rUZYSR12YNDu7nqteXVLXxncJSZ/75eef8/TbJ5yenfPRR/+Rm+WS589eGtWQDOXse9Rnb9n32gY9WENu2zfbns1xnM7fKwiCTvHTv472ulpAy17TqiyM71rRWaWI+kIfQNTWyrMP12i5XHaSPVv3TKdTrq+XWBb4YrGgrksePXrUWY70kwv7wH8HmLaH3vWAI2BUMQfQ85/y+K0Bm5RSUpAmiUGthRpcliV12+LnOVrDYKjxPZFJNQh6Lv5FZjPyPEHhPFnQjWt8cSztXWt0o9GqNewls2FbaotlorQarQTBxzaMbWua9BbdmA+vpfFcYxTumihwi7zSfXQR8RwmxEo5ZpIlG1Oe56RZyj4VqnmWyeZVVZX4UFU1bSsXWPTvCQOTPqe1REVKQkd1x5CtQ2LRBjE9mJL1EWylhAnT9jaSPM/JjdZT4r2NDr0VLfoBbHLubKAiowq6Dc5uUNvtFmv8epiYuF3T4rqi65/NZh0TpSxLhsPhHaNY+xwBk+gnN7xrNlWF6qbrQHfD6hZaJWbgjmMnPT0EvhRT2bpuCMMYx/EIjbTOvmd2SiVTYbDSsgP6jNXRCD5pN4V3kO++oe27qLjdVJq2xdOH8sR+7v77HVTdbgLWb8x1xO9EonVlsq8MYm1lkdbbCyN/0TZx0XwoRyZgSv8/zL3Zk2TZfd/3OXe/N/fMWrt6nR0YAAzRlAjScli0xbAtMxQO++9ThF8c4qPpB0nhkAFSDJIQAIIgOJyepTG9116V+93vPX74nXMre0RZfkRG1HRPdVZm1l3O+f2+v+9inWDsBk6X2GjNeJUSZlq/3+fw6Ii9/X0znRUPDImVxfgWOFTG1LWsKtI0M5ugTB7nt3POLy747O8/52c/+3m3UA8NpTzp9Tg6PCTp9dkzEqG9vT2Oj48ZDgccHR8ShiFlpWkbSE3cvWUSYM8XMukry0oSfFwPK8G194E9J/br2wXAtydHNvLenk94d7Jlz5m9B2fTCUkcpU3rMQAAIABJREFUmuOqSbOSm+WGcLvh4joxEzh5HddIC2sDaOV5ju/7pMZTYze5SO/cJ3ZdgDvKvEZkKavViqKQ6Pn1esN4PO6AKWtO+/WzZ8znc0bjCcPx2AAUs67Rdg2gkiRiaDyZTthut8wXc1AYoLUmjELxvhiPGI3HxmsqFglSWUnTCp1JtqyZwjJSxg8pQvxPev1+l5qZZRl7ezPTSIjcKoxCev0+rZaIcfFwMN42rZhXanTn94Bplv0wFC8Rx+kYYVku8rHQeHn5BlyoyqorDuy0vG5bGt10DBHruWFBD8cRQ2jLfLEmvXYdWiyXbDYbSTwzDYBdM+xzbNFRGa9ClJjN22uzqmsB3gZ9U1CKPM6CVUvzHvb6DYKA6XRqzFFHne9AEAT4nkMSyxqY5Y2w1sweY/cJa7rdtm3niWavf+tjsDuVuzy/ZL1ekyQiqdEGnJPf691p3q5RuK0Xdo1Qd1Nd7thYd7WF3SNAEths8eR5PlmW4/u5kYu8a5ra3eeu7O8WTLF7HAocd8cnw3Xw8UkGA/zAZzgadcbgt7e3nJ+f8803z9Fai4ddGBInsUhURiOKsqLX6xFEwsh5/eYNL1++7FLUDg4OaDVGMlvjeR7zxYLtdvuOEfrN7U1XyCslfh32GA6Mp6M2jOs0TSnLkvliwfX1dVesep6AAUEQMJvNGA6Hhk6vmc/nzOdztNaslPjLWPZV04qk0vNcMTwOAg4PD3j48CHT8YC92cisu1IrlYUkdloGwl3j5DIaRHiui42sGPQviKKeSMTWG2k0ioL1esXlxQU3l5cEcUJ0dSMgrycsyOsbkfHNjQTZ8wPOzy9M0S5r8HA4NkM3RRD4VFV1N4BwxFvq4uKSs7Mzzo2B93q94fWr12y3UqtJnaJx1J1/xq6prDXXXi5XvHlzymq14tWrV2y3W05PTztJnxwLzXe/+z0AyvIQ13U5PT3jq6+e8cZcF4PBgPl81TWPjuPw5MkTBoMB+/sHPHnyRPZ8I5WMez380KcX+fRiaworoRd5KeySpUlzzTKRCq5WK7wwpMhzE8fd8PLlCzlXSrzXZI2sqFXJZlNQpOld8btzL0qNolHitM5oNBJvnH6fB/fv0+v1KMuS8XiMldDIuuntTOtdPE/8XfO8YLPNsOl6ris+Z66jOD46wHFgvU45O79ltVrx9OlTttvtOwEE2+0WbQZEjucxm00ZjUek2ZayKiirgiiOO0ZpWVVc31yz2W7IjKS0yEuOju5T1y0n9w5RSpgWti6wbAXd7O7/d1WW3HP+TnKjAPtlded96XmesLdHI7w4RBlWiAZ0U6OrUjwahwOqupLUzUzMhT2zFtsETQs2yb7S4Dgupf8ucGBr6q6Gd3e9eDSKtmvqwzAgNEmTstYI80RbVjyWERQYNYNCIbLx+WJBluXyHBOwY82g5XMYn73OWwfaRtNoGc4VRSmeTc3dsVJKoTwZKErqperqCZsUXBm/NmGBC/vD7q+u45KlBVrDq1evuL295d7xPYaDYTec11pS8YTtXpvAirtjaNcVa6xs9yJ7bP8hxovd56VffBec2AWq7GP39XZr0bvnO++wpDu2k+t27/fturS7T3eug92v3ff/hySBtq61iZE2EbZ2nI61pszPuqYHLgqRgzqu9E+NqXFk77LJb3ehTmVZ4bpttxdnWUrTNoSB9WKUWrNtW3BSSvNanuexWCy4vLhitVpTVjWbbUqapoaA8O61b2vnbzPQLNhpj9/un/Z9LDvxH+oRbA/xThqdYeruWm7oDqOgu7atgfnu9WMZS/Z9XdftBl+SaijDsSzzO8B5lx33DzGb7CL1DoNKrjqU4j+5dv9Lj98YsElr8IyMThpclzTLzYVaoZRHUFb0e0PaniDr2zQlDCOGg5E09k1DW9VCUXc8HM/BVUYTadK7ulSDTnt417qb25sGYTTpDhBoKPNcUiPMz6vWsKUCj8b3ZOF3XJSGupSUJ61bWi3FUxhLoY2A7bIAa01VVzQbafbm8zk3Nze8evmS12/ecHF+yVfPvqFtoEiliI7jHmEY8d6Txzx6/Jjrm7lpbMSbSbUtt4s5XiAGsOvlCj/wjPmpJNaUdUWv3+fw6FgkRXFEHEtxm+c5L168kOjvNCXLMqI4YbVe4/nCzgp8l6a2C5IyRasUtPbCtPIMR7mEQcR4NCEvchZzMSbPM2mI7U1tkWBLFx6NRhzsHzKZTNhutuzv73efzy4Add12zLPOY8l1RQpjAJW6amTaUBZ4RrPtaQ8ndoxsMMQLAoKqxvNC0jTj6vJWFjNPTNPjpE+vP0TMcHPKqnxHmuF5HjiGXaTtht50xfwujdU+/nOLtAYjHZL0QadxDECg3ykEXEcSiLTSZlJwBxp2wIgBwFwLOikXzPlqW+7+FK4qODsU2p3PoxByk7y3BVs8Ax6uJKHq6pqrq2sODw/5zne+w3Q65b3332c0GoHW3F5fd5sFpsBRSqO1fG80HBLFIYvFkp/89BdcXFzwox/92KTOrDg8lGthOp0KC6AvJqG/9Vu/xXQ67TybkiRmMBSPljQtSdOKbSqx8bIQe2igMot5lolBsu97nQ7dMtHKqjYmyXfMJNu4Ksfp6Oi0Lc6OXt1u5ElPTKstS2CX9VQacO758+fUdc3BwR69JCbLMrIs5/LqiqdffkXTtoSJTFsOjw85unfEeCKT7qurK375y1+yWa25vLqQz7JzDdR1QxxH3L9/nzCK2aYbmb7VFXmRE0UhlhqnaXFcl+lsymQ65fDokCePH3fXbFGWLFZLcBRJr08UR1RNzen5qcgaTFF3eHjIcDSUwAVXGFhXN1esNxuqtka5iiAyMkYHbhe3OI7LzUISM3zTMOwd7pMWmbBOkXvq619/w3K9YrM2ninLJTfXN6xXK7zAI1YRaZZycwvX11fotmUwHHJ07xjdasaTEXESEfUiHqwfMh6N2ZvNyLOM86tLafLKCmrNaDJmNBnhuR6h74uBtudQNzVJJLr8MBLtvhQ+Ag5P9oUFttpsyLKU0XjMwcE+oAxTrmGzFVnwzfwG3baMRiNWmxVJHHN0dITne+IbE/qdHFIGFuJHd3h0iOs6HB0dsbe3jw0kqGsxGLdglDWzvrm9FrauKabOL85pW9lzttutsL9MQuSr16/eifW1068g8OklAlBkeWEYorI4hEHYTdSsTGibbQUIub2bro9GI/q9Pu+9954wuh4H6Kbh4f17fPc7n1A3NVWZCwjkyvqVly1V1TKfLzg/P+/YU7teeLaR7ySkpoGs64bFcsVytRFJSzeEkPs0DEPCyCWIQvYP9lmtV1xdnZsCOaNpm3do6b7nU9UV6TY1Aw85Bp7n4foueZmz2qw6Rs9gMODo3hHTvSlVWbHerqmaiqQv6WM4UNYlr79+zWKxYDqdcnh4SBTFTGdTmqbh7Zu3rFYrFkthfm62G65vrrt1VM6BDAAmkzF7+/vM9mbcOzmhbmpWxtPu4cNHHB4eEscxaZaxWq/48uuvaOpapPpKkWU5w/EI37B75JoVlo1d2wR49HEdxYP7J2R5xuHBfheUQNvKZ7wWf6+XL1/gvHY4O31Dr9fDdRw8V46nGMQH7M32iaOY/f19xpMJ/X6f2Wwm+5vuZiA4wGg0QCn3DuQsco6OZuLXuVyRphlF2ZAVjWH6RYA1Ua/ZrJekmw3D8Yij4xPquubt6RuKvOj2pzjp0R+OWK/WrFYXlGXJ+cUFWrdstxkaxWx/n+FoyGAwZGbYN69evyHPMuP5WXW1TRzHvP/++/R6vY45+ubNG549eyag2XJJZa7ZqhKwvW1b3rx6xdOnTxmPx4b55/L118949eoVV5eXLG5u2K5WpAZgRoupLhbgikKaqqYqKxbGy+7y+ppNuuXk6IB7x4eMx2MePXwgU3FX0TqKZVNRZTm9MGJ/MqGuSx6dHJoGULwt18sVV2cXfPzxR/zzf/7fC5CMsL4/+9VnnL49NcMcaRyzLKcoS84vztmmKavVgu1mQ7rZcKEU/mLOcrHE932+/Pwpge/TSwSM9z1hp3q+z2A4JghDxuNRJzF0HM9cmyFB4HP/5B6D/kDSV32PoijZrEWe/el3vysgkCPsj5v5LZfXV5QmaMf1PMOIEbnfycmJsLOfPGa92fDs2TO2241ILvOctmk5Oz9ns9myXK6YzWa0VcXR4SGOE+DgkeUpvV5CXZWUmXg5CXO66tK7JmNhZY+GA2FjI0N13/Nom4btesM3v/41f/zH/1rkgL6sS+vNhjRL8V3xhwoCn/F03K2JYRhSFIWkz5r6VWtJjgM6Q+MgjImTtBtCVEaSu9v4OsohihK0dsQXsGn55pvn+EHEo8eP+eDjjyjrlul0T5hNrktp5JeO6xHFHr1YWEu3tylFnvPZZ1/ws5/+nPVyIfLKXl8AKdcC+i1BEDIYDEGpznfG8WS/nS9vhfHd1tStpH9mWSYgj5IBlWuYPdYMvChKFnOpW8tKvDcHwxHD4dCA2GsJXlqeU5YVFxcXLJdLxqNxN3jabDa0bUtqEsOaZmeo/606XBj170bN28dds/6tPkBjeog7kMiCDV3vwF1NaQcvu0yVDpwywxcLpFnAwr7/twfe9vuWNW0HD/Z62f09bb1rQw601t3xBxlwXl3J/SW7lHgluUYlEfg+utUUnVWKfL9paqqyJAgDptMJjiOp9KEfURYVtze3eK6kAbZak2ZbSRAPQzwvkLAjU6sXBhBMogQmitvbOXlasllveP36NU3bMhoPGQwlRMg3Pky7UrhvH+NdsO7bx9CCP44ZwtvztnvOvw02ybETsKlthNAizdndebG2N1rrjoFkga+yLLvPZ21CBoMB19c3jEYJWrdsNmu0brrhkj2/uwy7XVBMmZpe6sGGutI4aKxL0R1AZbnI/9+P3xiwqcXq28X803E8Aj+gMjpD1/NNk2Zih0sxENda/GoUdGwjlOrc5n1H0MlaGfpoVVIbar9ujAEbpl5zTEqdNlQxbVLDTGFjDf5o7nycXIVE9Ko7bXHb1JRFQds21E2F44ohuOu6eIHXSaK01rR1S1GXXSzrarXi4uKCN69fgzoF5ytcxyfweniuz2AwIo4T3p6ecXF5w2K5pjHAmZ3WrjcbXM8jT8XAOgwD/ODOh6mua6I4ZjqbEYUSR+zuUP/Ozi94+fJV17TM9vbYZilJkXTGh+8urAow2m1z8Xb+Gsg0o98fALBaS9FTlCKJ2F34yrLsZA+9Xp/xeMzebI/r6TWj0YgsywA6FlTb3nkWKWWmsWb6oQ3ryNL+i6KgaX1CM3GxCVJ+EEjyiufjuOJlccfMcglD0eT3+/27RAW4Sxc0N6e2ejZtvX1qmeDtsF92pxLfBpu6TUhbpp3o/J22RTUNlnK9i7zL25nRkXqX/rq7acj7u6idmDl732hDa9LqjhVlf7YzglN6h6VFB2CJ/CztpBTL5ZLj42MePXrEbG+P45MTeknC9dUVm/W6M3FVaLn/HDBQFkkvoe/2uL6+5ekXX/HixQt+9OM/5ebmhqOjIyaTCQ8ePODhw4ddczUYDvnkk+9wcHDIaDQysiExahSZqMQFr0zxMBgM6ff9DiRqmobUbHKj0ZAgCDozxN3JSMdMgrtprTmPNs3KDiwdx8E1TA6bQrF7frXW6LIkLwrWmw3PX7wwRq4ber0ey+WS1WrFixcv+Muf/BWe7/Pd73+HyXTKw8cPODg8YG9/jyftE549e8bf/PJv2KZb3r6VSGpbGNg1azwe8/DRQ8IoEN+hsqCsSpzCoW7ijuKv0TiuotcbEoYh9++f8MGHH3TFQ5pmjCZj8tJ4tgQBZZpyfXtzV4w6kpjW6AbXc/HDgDzPWayWMjlqaklqC3zCOKJpJC7bMnZACvwwDEXKURaS2tbUbDYbfvl3v+Ly8lLMirfbTvvf1I2YmjoBRZlTNxWr5ZL1csVkOqWlFc+u/oDxeER/0KeoSpIopt/rsVytmK+XaG0NGhs836XX7xH4PnEYCWOpES+s/q4HUuDjl6VMMVHEvZ749tzcsFq5jIZDJtNJJxNuWmFIFUXRsVFGoxFN2wgzb3+PMArxfFdMp11Fa17bsjanU0mp+vjjj3ny5Em3thRFwenpKVmW8fbtWxaLBVVdkmYik2mativ+8jzv4sStf5Lnebx+8xorrbJroC0me71edz1YxoZr/Mb29vaIYwEMgiDoAPnXb15zdnZGv99nb2+P2XTGBx98QJLEDJMRoe9SNVDVRm5gsh1c6RPICokWv7i44Pnz52w2G968edPFwVdV1bGvumFAKSbWTVvJ5Np429i12k78kl6fKIoYBMbz8dzh7PwtRVmw3m5omrqTgAsgD0VZsEk3HVvLDpAc16HKKuaLOcpR7O3vMZvNmM6mDEdDYd6tBcCKYvFuErZfzes3r3nx4gV7e3vMF/Mu9h0kfdY2QJbB9+btW6qyZG6kcsPRiDhJ+P73v89777/fnau6rjk7OyPPc+6d3OPg4EDkiKVEyX/xxRfkeU6/3+/YqL1er/t727Ysl0vapjVNm2t8lxIcR7G/v/eO/EI2CLi+uqIsCjabDW/fviXLMr768gt577wgz7KuyU6ShE8+/pjpZMLHH3/Mo0ePUGhm04nsE5YZoWSv6CUJUZSwuxR/+t0PZA3W4m4wn2+4vJxTFCXr9dI0CyL/FuZBRRhG9PsDttstKMV6LX5NVVUTRjFJ0iNNczbblO12y3I5pyxL4jiRQIDxhPFYarHReAwoLr/+iovzc87Pzjg/O+3YjP1+n8vLS4bDIavViizLeP36dSddptmhu9jjCFxeXvLixQtZHwzj682bN7IG3tywWS4BmN/eys+Z5+zt7zPb32c2m3Vyw9vra9abNb/67O84v7jgow8+ZPvhh5yc3OPe0Qmeqwg8qeWUSbgbDQYcHx7gugrfewAa8ryhLGu++PvP+ezwV3z/00/5l3/0RwyHA3qxT1NX/Pt//6d8/vRLbBpuWZQsjcG847nczm8p85RNXVNkKUUjN//NlfwebVF0lha7D88PmOwfEsUxx8fHEibR6zMajbs6JwxDsvRT9vf2u3WhbTVN3ZAkMY/ff49ez6onQD+Hi6tLauPR43oeQRTiGIZ9EMgaHyUR6/Wa0WjIcrnk62e/5vr6mtvbObfzW7kvX79lb7bHowePKcuGJE4Ig0gSBuOQylW0dWVSq0Wi4nleF5wyGo8ZmD1Ht03HstYmlOHs9JQf/ehHpqmUBfLq6pLb+Zw4joTNfXTEH/6Pf8hoNOokVVmeszJs1k5ib46tZd0GQU5ujLS3JqRClBS7Dbdj0uI0vuejdcXZ6RlNC47nc3TygFbDYDiU4YYZeGnETyzwfJIwAq1ZrQrWyxXPn7/iyy+/oheF9OKkk7I6SkBmu87GcYLCYbMRubVyBYxZrzdkRUZDKwMuAwoA1KYh8zy/A5tarSnyQoIw6oaqtXXHsBs2giSb39zekmfC9t5sNhR5AfrO76ttWwpTL+wqSGyR3dXR7bsN/e7jrt624iS7BNyBVd8GK7rXUWI/Yxl0u0DTLpNp9+fsXmhBp11lS6cU2WG77H4eOZbeuwDkDthl+z8r9+9Y2ib53O4PrnJEUqccPANYVGXVeVZaxmFd18RJzGQyQSmR0nleQF01rJZrw+o2MrxsK7ViWeH7wrJ3jZddgfSaYSAeRpvVFt1q0jQjK0sBsUcjw6gTP81d5UnX8+1I8S1QY/vcZmcNt0xsS56w/2b/3AWbbO8rx1jAJt22+J6L77pYj2irsNgden/7vHqe1wUfWdb8aDSk14soy5IsS9FapOGWRfztfnEXqLT/L78rKKdGt13r887v8v+H4PQbAzbtflbXdQmUQxiFhHEEjkMUxwRB2Ek/0mzLxcXFjt9BnyROhFETRpI65/vEZuIqJ4iuQbHGggpwbTSlqXArralbQfC0Uui2FfCoaVG66YzBHeg8m1w7lVcOcRSK4atlNimFGwTyp+8KrU3pLsFMK2gnDT/4/g84Pj5mNtvj/OJMnOTzAt0q2kaooJ4nwIigvarb0O9OtiZNtygFVVlR5oVZUHgHMLD6TNeVFKS6sgaZ0ljWtXha9JKEo8MjpuOp8cpqxduoEUBEGDCGJqMkqruuS9rG+iPRFfgix7MJbULjjaKYyWQKSKR6XddcXl7hOC5FLrKM07NTilykJFaSsF6vyfOCuhQDxziIZcplfp9Wt5RVTVFIw5GmGX5Q4wcRrYa61bQoXM8jDGPaVuP58jtMZnv0ipKj43vcOz6hP+gzGI0oioLbW6H8rjZrM+Uw0j4tSVUSaS0LpcLQKb07uaD7beRYOTv0YJFudqCQ+V5T1bT13QaEFmN8WYoMldMAMJgNWphRLapROEpMweumIa0qYfXV1rNJ3sNx5dgpJZ5NmjvTY2X+I0WSkY2YRXS+WLBerwmCkEePHvPgwUOOj+8RJwm3N1KEZWlGVZZ4fkgQxmggy0V/7EcxyoEXL19ydnHBV199zX/8jz9huVyJf0ksKVq9Xp/JdCqxx/0Bh0dH9I3XzWAg3jRN21DVpQF5W2EvmcVZNkLrwaHM9OQO8LOUXcxE0VJPdXsXExoEhgK+Qzvd9XOyG4FrfM/aRtIV32G1mefYFIssy9hut53Xynq9Flp+WRJHMcpVbNZbAG6ubzpvnb3ZHmVR8jv/1e8Ia8iAr3bqcnNzw6tXr5lMxvz+7/6Q0WjI7e2cNE3lnlWS9jPo92mahovLS2E8GADi9nbON988v5PbtZrDg0OGw5HIZFqRPNVmPbW/YxiGNHXN9dUVi/m8AwCEmi7m501dsV4t3wGZQNbg7XZDUeR8/fVXpNtNN5krysLIibYd29RVDq7v0zoOTiNs1cAAACIZdbAx04HvdYbxRVV0TIzWGEuenNwTkOb1G7abLYVhHHieRxYENHXNdrMWz6a6JjOJprLeNJSmsEj6SZeo4jqKosi5uroUD6+NnMfZdEoUR+SGuStrAdR1ZUC0ljTdUuQZaE0ciydKa67H7WZLWZScnp4apq7u2HKL+VzYTNc3bC0DpxVjV8/10K0Y0pbGEBPL4K3FhFr2YpnG2uJQQQfCwh3QvStrLoqCJEnEXDyOOPaOpfBxZI1Ns4wXr15yaYCuJI6JAh/fdahrLSxVBY4rEuAwNJHCbohyArI0ZblaUpq49qa1YD7CuurLGuB7QhMfDocdoGe9lTq/EmNmnm63VGVJr5fgqIhekvD+e+/L+unIvib7TE5d1ZRVSRiEjIcy4Za12EynFUSziL29fZI4wVEOWZrx9dfPePH8Jda033M9xqOxJKKGIW2ref36DfPbOb4XyJ5W1dRVLWu869HrialzVddIQpoMSx4b5qEycokgCDg7OyMMDRMA3Q1lVqsVWtvpdmWmm1XXONgGqihKYVYZnzYrbV2t1iwXS3om+cY2A0pBEif4ptCNo4jjwwNOjo8oipzr2zlFURiQJSdNt2zXG/HTzMXTYm9vxng8ZjyW5MdeLyGKgs4HQ6oaDONddke1UzSaLBdjy6nxA5/BoE8c18SxT2v2R5lAC7vQ93zCKMJxGrbbNdc319xc37LdCos6L3I26zVVVaK1gNW+7xPFInkMwxDXcwnCgIlJw+v3/glFnvP555/z+d9/LumMVUkvEcPuyXTKg4cPicKQ+XzOP/rt3wYk8EaYi7thJjAaTzg+eQAoslRMzD/6+GMeP35MXeXURU5elCxWG8qi5ObmmrIoiXs95ouFSYsUdvqbt29YLBa8ev5cGIKbDZenpxwdHzGf3zLo97h374jA9/jrX/wtv/71c3pJzGDYJ44iDvZnOI7DYrEiTXN+8YtfcHV1xfnZOW/evGEyHnF4sIfnOhwf30PSajHrWk2aZpRlyeP3HpGmKYv5LevVmrJtyEyS8Gq5oiorNssFRZ4LMFnk8r2trJ2FYZJcKsV2tSKMYuKkL++lJVlxcX1DfzAgNvJcW2eFUcSLl89J4sRISWO2aUrgBzieMXaHruHNm5oiz/F9j14c4yrF/ZMTRsMh89s5ZZ6TbrZdHyCeoYqvvvyCy4sLZtMZw/5QBgWmTpaeQBJJi0I8aUKT7BcEEtZR1TVNLfe7lbu5nkfbapbLFRgAom1b1ps1aZp37B3lOEg8jIl8NzV+Z/NgBrOeGfR18jTlmBtId6oASQW8C9HxPLdrZsNQ/JzOTs+4Msf7vfc/IIpjBsMhGsVmm1FWMghCK6IwoJdEVGXJ1c0ty/WKXr/P8b17+A74rvivbrMUBaL6aJvO57SsRf6uaSnKnKZpKaqcum0wxqSG8Snkhbqqxfy7kjAPqVtac+wLmvau7o2NdFwpxwy1FYHv05g+SCkZiIaRNO4b4zGUZ2ZvaSpaY8pemb20Nl6ZykF84cwNobB7xl0SpbUiuauF6OoCZWS8lvFkAQqptwIc14YjeFj/XCzQZAbLdrG067ytt2wd2xjfWLufWUWGfZ5uNaW2fV3TAWzd0N7zOwVRuk1RJuWzqaXuaZpGrkqlaJWDVlJrlNKAGOWRNvVr21kDKMehqVtDApDLM00z5vOlDEpNQjLmGNV1S9OUsk8Uipa75EVrpROEEQcHh5JAbsJtRPVh7FaQwVxd79amd0b5VtYptavtD+5AQysflc/b0ppk28r4ou32Aa4BRjH9gwWbotAnDHxhYivjq2WANc9vUMraDAihIjdpurv1ZBgGRHHEYNBnm6ZkWUFZ1saWp+qY9rImGTUQNpBH+jwXFx9DAFIlWunu+tqV8cn1Cu235ia7j98YsMmgFoAUOKEnU6Fev4/nl/QHA5OU5tJqiZ9+/uK5pNdVVTeZTbdbRqMxo9GYQb9PP5kSBgHDYf+uUVSqS5ZzHPA8B8cBxzMLg+osd7qvtjHopurWta7ocUzl05FbjCGeuQfkZjYMEmWan0Y3IpMyqPSg1+cP/ts/oKhKVuslaZZye7vg4vyKsqykV3gGAAAgAElEQVRYr0RTus0kne/4+NDo1pUBCORLCssl2+3GfHC7WMjnkptW47qeaWKgaUROdHZ2xmazYbVaU5UV43tjnjx+xHtPnnB8dEySxFRVQ92k3QXXYkE7JSmBrehpq7qmZzdK1ydJ+mRZQbrN0FqeozX0en2Ojo5RyuHFi5eUZc2LFy+5ubnl9PQt/X6f7XbLxujsDw/3d5hhUBYFWZaRRD2hU7seTVNSt5q8qNhsM9I0ZbUW83HXj6hbzbjRtDh4fkSc9AGFjcW+d1JRNw3vf/AhDx48oj+IGY76bLcZ8eklm82W9WbdNV1KOZRVSV7m1HVDWYg3ThjLxNz3/G+Z7d5pd13HxVUChGpHiszabEAi5bxLanhH76tcSZ9zzA1vFm1B2SXRpvYEEHRUi4tLVdRUaSG+ZI1JU+wmExKrLBugFO1Nay3C7zyHHKML9jyfqqq5uLjk+vqa7376PT7+5Du89/57vP/Bh9R1zdMvv2Cz3RL4wg7o9UfEiTROi7UY142jCNeBv/vsM/7sz/+CZ18/4yd/9RPiOObT73+P4XDIeDQhNtKS6WzG/fv3+eEPf0gcxwZMUORFQVWX5HlBmsq02nFEMuf54gEgMazbnU3WFAHQMSLiKKSXxLStGFPvThLspNSi+bbJbtq2M8e1049uU1c7/k7Klm3ycF23M+AvigLP8zqpaJ5lAgS1DYv5nPV6xXQ2AxTDwZCH9x8wnUzpJcJAOD4+fidi9enTp/z4xz9mNpnwL//of2Z/NhN/LjR1o6naFtdRRK5LmmX8/Jd/y9X1Nb/4m19wdXlNnhVcXlwZ8/V94jjm0aNHDIZDSZNbLjv/NaB77+1WzGXPTk85OzvrfCY836ff6zHo91mtlsw3a8zNg6PEr8JxHPJMIuPfvn7FX+Q5rWGxKqUIjbnsaDii3+vhBgFJGMokyBREMjFT5IGP74uxtQNEQcB7Tx4znc5MUSC+M5eXl/QHPYbjIdvtltViQZ6lZOmW67bpaNP2XLdtS2omiDKxvDPqlGO1R+j7+J6H57lk6Zab22vxGShKwjDie9/7rjFprKmrhtv5LS9fPqcqC5bzBVmQslou2WwExB30+sYzSoq25XKBbjV5lnJ2+kY8KLaZgKx1Ratb8qygqu7WDN/3GQwGtE1NkWfkJoELMABUCZWiyGQKGIQhnnvnkVHkOcv1CsdxGI/H4hFm6NjWFDxJElabNf3BgMFoRBjHKNfFC3xubm548eIFdVXxH/7szwQg19LINHUj4De2yHFlvw+kke/3+8RxzGAweEemCgIKRXHIeDyk3x9wcHAIms7v6vb2ls1mw2az6cIzri4uqOqaZV2LD4lu8VyH0XDEk0eP5Dwe7OM4ch+dn59zc3PD1dUVvV6v89fabMVfZ7vZkmUZ09mMk/v3advWvN+Wzz77nOVyych4Nx0eHvKDH/yAOI479tLbt6csFythFWwsQNji+R4PHj6U82Ym2UEQdEzbjz76kDiOWSyWpGnG5eUFz549IwxDJpNZJ390XYerq2uur2+7hle8nXLTFAmDTcyBFdPplHv3TpCAjx5pmvHZ3/0dr1+9ZGxYbCI7FgBmNOzTS3ocHx9zcHCA5zpEgcisi6qhqpuOaWftAua3c7766ksATh6ciGz+8IDpdMJ4PKDfj7qivSsPzfVhLOu67zXaqA608NQl1EBM6JUjzHUhrSscR+M6hkOgFZqK+VLYYs9//Q3X19ec3D9huV4KUF5koBFA0nWJw8gMHTw83yeOI46ODplMxjx+/IDxeMiP/p8fkyQJi8WCN69fEycJB0eHHB4e8umnn/Lw4UOzD0jCZhzLsNLzwSi4ANhsMy6vVlxfX/OjH/2I9XrNP/tn/4yPPvqI0TBmPEqYz1d8+dULlssVn332GTe3t1xcXHB+cc50NmW5WrFarfjyyy+5urzk7//2b7k4PeWpYTvP9vf52V//NbPZjN/74Q8ZDgf8yZ/8X/z0pz+lqSuqqmQynvCDH3wf3w94/fo1K/Oam82Gg/09vnj6lP29PXzPo98f8MEHH/CdTz55p7xvW7l+HUcq61ZrGq1ZbbZc3cxZrdY8++pr1us1b9++7Vh8t7fitfT2zRuKoiRdrWiqmuX1tTTUrodyfSkG67obnCnHoT8c0jOeY3Ecd3tRGIa899777O/tc3R8xP0HDzrpnELjuy6u79I0NWm6pd9PGA0GjPpynadpys3VNWWes1mucIHQ9xmPhuhW89Of/oSmbnj86AmHB4cc7O3z8P59seDQ4rua5ymKFpQm7sXESUyURPiBb4yNM2N5UaNReH5A3TQsr25ELp1KSqUyI98gCKUJdlxJIkaG32EQ4btp9z1h9ZuaxnEIDJtDouXbLrUbDEBrwQvEsD+JI/kzEQ+rZ8+ecXl1TZz0+PiT77B/sM/9B8e4xvy5aVo818N1PHpJxGTcY7VquZ3fcHuzYDIZ8+FHH1IVGVWeEfg+y/UKtCYvyw5kKuqKrCjYGB/b29sbmqbuDO+9wMML3B3Wvuy34rEq15sFrepahvgASV/6yuFgyP7+Pp7nk+cFjvKIoiVaY1jziTBIewlVXTGfC4huvXIsSCyMNWnibcBP09Z4rgG7DPvQ1oR+x0a6C7u46ytsE++Y15fz4DqSzmhZcbLO3yV+i/2FVSPcpfzZwaqVXdn3UygzfLtLwXUdF88AORZUSHUqg5Ad/0T782EQolBCcDCEgtKEc9mBYuAFpt9R1Bj2kKlB7q4x3+xFMpgAAVOaWvrWptWs1ltOzy6Mn2Bs7FGExJEXJVUlgKQ2Sa15IZ9DJLeK2WyPe8cnZEXBarMWxndTS8/fymZS1w021VWZQb7reriuLwwoy/ZRrdlT5fzYRHQJXbIevBLyYodeu5I1YeFZBq+mNsOhfi++2xdcD/F0FnaY64WgpH53HdX55TqOQ78voR/KUcRJxGDQYzIdoxyHy8s5TVuZgV1OUPnUTfDO8QfBLMS/UqEcz/inlThuZgY+JiRK33lWOc67jKd/6PEbAzZ1J1WpTuaiEaTTusmXVY0fRTi+TxgGnNw/IY5iHj96RK/f597xIZPxWIrd/oAkTugnokkOA8+ASgYtNuCWgE0matBF0HEM2KRsUQKtkHYEbDIUfws22YLcsiB3iT6OAZu0kSJhFhArfNQGTQWJYnbMghGFEZ7j4ypx3F/3BWwqSokU39ub0u8lzKYTHj68T1EUZKn4z3ieoK+Yz5HECQeHB0LrjaJOFhHHQod3lcjF2lYzGsnk6OBgn/v3jjk5Oebo6JDAD7oNqW21sMAcASXMb93J+JTjGraY0x0fhTSDuWkgy6KkrmqCIGRvb5+6bpjOZl1jWVUVq/WGoig7090wFKqw7/sm7jiVZqV7X9Houp5EPvt+gB8EjMKA8WRMGEXsHeyb+FWhVxdlRZplkngRxWjlCAOrLLm+vcHzA/rbHmm2Fe3/Zita/Q7RvTPvs95MNinATozE+E0oyphFybGLEtwxYwzd1kISutFCDq5lkqAdjXa0YeYYpp4W03MApRWtogObmkYAyKpq0DXouhHYSAmt2exHcr+1Gl23Bvw0zIWmfWcqrFwlYF6rWRhdv+cHDIYjZnv7HB3fYzgaUzctddPi+QFhKMlUgTGGLKuautWdid/l5TVlVfH69Vvevj0jzXJmsz0i4yMWGElHv9dnOptxcHjAeDwWs82djaw0k5C6rgxD427Ddhx7I5t7H7MwKlBK7jdvh30mALL442js1EkiiT2bCijKko7B0qg7YMqyaSzn1HXEOFiM2pVJLBFQqciF3WLBRGHJmfXA92la19DDHRa3AjJEQUgcxpRlaQx9XZK4h240USzpjr2kz/2T+4yGI6IowfMCqkY83bJsw3K9Fm+QqiTNMs7PL5jPFxSZeJf4vqRjBWFAGEa4nieR32nGdrNla4AG3/Xkesaka3ZAJp0233UcPKWMz12L5zhEftDRv3eltFbj7iqF77o0WtOa689TCs9R9KKQYb9PFAYkUSx0fyN91G1Do03T4ImPSZHnbDcbzk7fst2sDWFHs1qtmc/nNE1NYY0sixxJAGk6ma79e9s0xsMLdLtj8Alox6EsCtarFXVVkqXCmmlMA4RhALVNQ1OJpwtaCkf7GR3HYbtZUwUhtC1B4DMcDJiMp9L4ZOJDlG6l0QgC324gZl22SWnCSnKUsNeiKCKKQsbjiUz2fF/2iyyXFLG2MaDr3R7sG0Nhu0a4rhiuO65EmNt1zjJnGgM2DUcjYR8OBt2gQIIvMoIw6KbraE0UxPiuT5ZuSTfiV5Nut8KkKnIxtTWF8Wg07BrG3cSU0jQeWZbS7w+62Hslb4HjKKIoNBM4CAOf1lDIfc/DcV0O9mdMZ2OSOGY8GnVsFQ30ez0xsI9iklhYPYeHh3iux3ojQ5l1siZLM8bTCdPJRCaiGjxXmoG6qokjYcR4rmnC/Dsj7OFwxP7+AU1jC/mGPM8M+ykyMpKYuqkM60z2CtsQWMuAuqpZr9bkfk7bWvbybnqXMuwvVzzj1hthg5pkGvkKUMBkMkZS2Jbkec7cMC/l/cXjzsqMXMcljUXiXpQlvucSh4GR1QYmMKWVZtjzCMIQPwhwPZ+2bdimKVrDa+8N6/Wa4XDA9e0NIiExbAvTVIu3mDDcrbeG6weyz5pKw1HGx0epbi22NZoMFWR/T7cpp2dnLJYLtum2Y0W1uiXP5feRvVAM4qW+MEbPaJq2IS8KLq8uyLKUOBYZ73K1IjdDCN981sVyIdfTQIYtd1KKO6A9DIW1JvuMS1m15LmYGEvCcslyteL65oayjCnLjNV6yzYTYMIPQ3r9HuNy0rE18kJSiaM4Yjga8vi9J8ymE5EAex7D8ZiTh48YDocMhgPipMfDRw9Isw2XF5e8evmKoiy5urrGdV1Wa2G/a8TLJctzvvn1N9ze3FKYIJfjw0OGwyFxFBEncceokyZY4uCVYeG4jsegP8R1PI6PjxiPhgSBz2a9Yb02oNZ2y9HhAWVZsl1tqEthkIhEsKGoZP2qDMvESmerqmK73VCVgbBvPWGh+r7P2ekpmTF1x9RRRSP3wYPH0k/UVYWjFEWec315aeTmiqaqSKKI8WjEbDpls1rj+T69OKJuGpEGqYaqzEm3azZhwHLZk0FiVeA6Lq1uOyDB9VxzfUnzUTeNsJsM8KNcFz8I0ZWkDbYa423omYZT/KqsVFqClSowzPowkOClqq5No8id/4xhxMj64OLUFWVp0pzbhhbdDcratu2CIGyTOZmM8f2AyXjUDSfKosRtpJYMPM80+SIdzHNhqnm+R9yLOHlwj8Eg5vz0lPPTtyIzN4yvVrfgGHaKbtEKHM8lcEIm0xkaTRgGEpiyy8Ywcq4wjmka2ZvEYtf44tRiCq21xvGETRaGUWcab33qrNUC0A1sQhMcEicxjvGVQinqWtK5ZfuUPsTzxMBdzq/bgaA2rGLXH+fbnq6YGhQFrg1KMaCZ68pr27XfUU4HLNH1oztMG1T3uXZ7jTumm1xDKAdnV4VheoS6rWmbtrPdsAwmC0ph+lndavOZFcpT5jO0tI4MrX3XN4FFqjMGd6y/rukjLWDqeb54sPmBrOWOS101pl7RnTRSmwGDcizTR34PbUgVAhL5ph83Q2Itfr9aSxqjclpqrVF2uG5aWnN0pNZxxdbHgnqO49I2Gt2WtI2mKg3Lu5FavXE1rmePddsds101hZCJmg5kkH5GG4JBS11rGmVSsZuGvBCGlB+Ucq6QFEoB5jIcwyazbPPA9wULMAQCiwU5jrmmkNe2YCfaEBtam8Td0Gor5NPdNfSfe/wXsKbfILDJNQuF64r8qRJT3yRJaLTm9OycLC84LHMm1Yyjo2N+77/+fUbjMR9/+DG9JGE0TIhCv4t+dx1pGO/Q4XcPh9aWwigLlQWX1M6XhVKsB9buK9hG3VrPdLCLYwpd85p2wRAqn/i7tDs0O60F3Q2cgMAJ6IU9UIqjvZbmkSx6qZGRKZPiFYYhoR9w/+SQ7336sQEddh3moW5k2OO4Dr4vG0hrKInT6UySkgKRDwgAJUlgrZEiRaFPFEpsvNJCk8yqnKZtwAXtmsXBExCqMfRMP4wIHaeLo8YwdKqi4vrimqIsub1ZsF5umIym/PZvT7m8vEQ5Hpv1huubK5OoIxKsMAzE06c/4Ml775P0EuaLFZvNFqVcQ7ME5Xp4fiBSrVYzHE8om5ZHjx7xySef0OsnHB2Lb8Vf/uRnnJ6dUcyX3CxWjMZjTu6PqHXO67MzFvMFZ5fXRHHMcDBgbDS9kZGBFXmOvuMb4roQBrJADfpDqrqS86paiqJiuViRbjJ0Cw6Geur60CrqqjENn9A9XcyNX9wZgzeN+LbYBt2PhUnSVILeO0rI06Cpq9Zc/z66VeRVRVu3xuzY0m5DKQzKUhbBuqbOy256hYY0F7NSP/ClAI58oqTPcrXk88+/oK4bHj95zOP3P+B3fveH/ON//LtUdc3NQiZCk9kBM+UwGg2I45i8KLlZrPB8j8F4yHab8n//+M958fIVf/GXf8Uvf/krHj95zB/+D/8TjqPI8hTHdbl3cp+9vX3ee/8JH3zwPk3bsk1TtmnagRTWeNXzjHZdyQRbGRqyuYvvJuWGKeCYtI4wEPaV+LXdJaeAokWeGwYuoa8ojUmqUookFNCkaaQIdCxoraFtQ1MEyXViger1uuDq4oKriwvmt7fc3t6aNIyayWTCeDzGVYrhcGg2KynWn/7qKbfzW/r9PuPxyHihCevju9/7lNlsxoP79zk6OqKfDPjv/uAP8T2PMOyRly3r9Ya8KHj6xRf8/ed/z3K55M3r1xRlKUbpTWOiqgP29w958uSJgEGuS17k/OLnfy0ynSAg8EMG/T4HBwc4StGUUtQ1WUWTV0SOz95oIpP7SBKe2rqmrWoGQcSk1zPhBJLqkhcFTV2zXC3Jm0Ym0EFA09TkWSbny5Hi5tG9Y07uHXdR85vVhmfbDVlZdqamTtvSiyJU23B1fsbV+TnPDJPCGoXq1k4ihVrftpq2rmWdDgN5pjn+4gco07+2aWgtU80U4U3dUKB5tl5JUafkZPu+TxCFNEDRtrR1xXJ+Sxz6RFFCHMUU6Zbb6yuRw5WVAWZd9iYTnjx5j+9+51PatpF0pLLk/OyC7TZls1mxTbe4gjpTlSVltqVtagLPxwkC9vf3JUq8P+DevWOiKGI2k7X/+uqG5XLFxcU5L14+BxRRFKOU0/mVrdZr1ps1g+GQeycndKaXxkOgaaQ4qZqWfq/Pg4cP6PX7vG/CAZIkoT8YECUJaWFAVS2yk4f37jMZjXn96hUvv3nO9dUVZ69eUBYFjhJgdrF/QG885v79+0ynEzzfNf5jmtXFksViydXVJVdX1yRJwmy6R7/X58MPP2A4GDKZThmOxKvLVcacPy8ARZL08AOfxw+PuX+yb+SXwllucSnLivOzc7abFNdxCYOQ4+Njfvh7PyQMQlarlUgqTHJXFEYk/R5VWXF7e0tRFPQTMYW2curAD1guRA44Ho/x44APPviA/f39rgHJMmEpVVUt8h4lSb2TyYTVUjwdHeVQFhW+V8v+17Qs5ktevnhlahoLisskwjfG3oPhgP29GUVRcn5+Lut/K9NZOwCJ4og//w9/DoiZrtaa4VDW8PPzC9J0a5hyfXzfZzIWGVlozIYlNSwgimLunZwQR5HI0DyPoqpAOSjPxQsCsjzjq2e/luQ3wzy7Y33pzjemqkTCcf/BfR7cf0B/0Ddm6hEH+4dEYSQNnePK+jga4XsuQShs9qqGutG8eH3Kq9evubi44OuvvmKxWPD0i6dsNlvCKOCof4DjuMxXC6IwEMmj43TefLgaHE2ja+qyZptueP7iGUopHj96zHg84ptvnvPNi+f4QcBwLH5LP//FL8ST8k9DfM8z/YVpMIzsvZfEHQOx1+txcHDAhx9+RJblLIw5/M/++ud89vRzOb5hSKv13V4Ux0z39rh3/74kgjUNl9fXtG3Lw8ePcJwn/Is/+hfiIzcZMhkP0cpBawm7sFKW7//gEzzX4d/+23/Hv/pX/zvb7ZYvv/qCtm07T51eX/zObudz/o9//ccd8zeKIv6bf/pP+fDDD3j06BEffvgBTdOKQbuRT1d1JcErccJgKIyS0WDIydEBGpvwJdckWtJ/BVzSZGlJVTXio7PdcH15zds3b0izjJurK9I049mvn7FYLFhvNmxWK3zfp6lKlOOwcVag4NWLl7Rty/7hAfdO7pGmW96en5IkPf6X/+1/5fGTJwIyBwE3l5c8/exXhGHIyb37+H7AwWTKuNfncDLl4fExRVEaCXiB0zSSTlpk3Fyckm+WrBfXxsMrJgojDg7GOH6CF7oEUYAXCq2tBbZFTpZllHVDg4MXJvTGU5ztlna+AjT7+wcySDDyu7YVj6UsLVksVmgtoGsv7uO7PoO+SF/zPAdFd78oM3kTfyXxdMQMe62dhmdkQ9ttyvX1nLKqqMuS0PP4/d/9J8z29rn/8CHTyZDAc7m+vMb1PKK4TzyITG+iKYqct7c3tG3LZDZiujfmt//Rx8Shz7/5N/+OP/k/X9GUOcttgaMU/STG9V0q1ZI1NSPPIewn9Ht97p+cCNPcFwDDslc9I3VFyT4P0Bgww/PEf6vIC24MM+nq5oaiKBmPJwyHY+bzFZtNynotrye2Cy6OJxL56d6EKAnBAGeXl1dkWc7NzRVr44+b9EIZ4MfSTwW+j2OsHHzzeUVl4xgwzuksNuCOeCEhQNYqRVE3DW0jZILQANS+K2EeTdVQl7UBRqR/sAEWNgGuNn3mrlF44za4jkM/6QmYEgmY1jYGHKkbiqww4Sk1Td1QFyKBFmZVH1e16EZTl20npe7UA60WWWGrsVblVk5nTFhEolcKa9w1NhBhGNHvDczr9fG8kM0mo6pamkYxHE1NkrCL1i6uFxnlhcLRFW1dUTctrusxSIQl27SyvpWV5ma+IggDkt5QwN2mRXw3tenpxcfUcz0Z+AQ+o8GEyASYAehmw6ZIjcx8Y4I0BAwIfNkLscdB7ybam/mJ0igjJ7RDPfMP5AWdaki3NvREvCLLsiWJS1pdo1upj+e31ygFWZ7R68V89NH7DAcD4jBEqDMtjiPkmsB3iUIPRUNZpBIQE/Zo2pZsLWztLC8kmM1xwHHFtsKoSFoDegqoZfyeOqmmPTr/6eM3BmxCqS5KWjkV2vy/H/h4hUfdGnNwgz5GccTe/h6T8YS9vT2SJCYOXXzP3LDd73xHHdx92BQ1pYSBJD9k5mcdcKQ653XVPcXwTtTd3+1zOmaT+UYLKIsum3Ohd86FPTWm75XFRSkcw0yyaG/TtvhBIBNmM6m0SJfruZIqxQ7qaJDSqhHASSmZzOm2JU/Ff8IPhLEQRRFJkuxEczt4hnruueC6Aoakm1Iu2Ubkf9240BHGRotoYtGgvB1zOY1hhXhdGpjrNNAKAycIA8I4pG+MHkFxeXVp/DZSNpsNfd0jMtp7P/A7vxvMlNXSOuumwW0aPHNCXV98GQbDIfuHh/T7CfsH+1L0hQFaQ1XXVHVFlPQMq05JbH1RoNdr0lwmg1VVEwYhw6H4n7RN27FQOnM15ZhpsgAQdS0ABGayJ4W/Muw2551jdDeZsKCRkmmOZTw1evcixLJJ7vB3GykOaJE12mu8MZ4uSjmS7INCG8NU67tVt5qqFm173bSGiSG0VVfLldi2QkWuKkmXaduWpNdjOttjMpG44G2ass1SQBEYACeIIoIopGxamrbAMRO4oiy5uLzi1eu3LJYrqrrumgWlRKJpqaGj0bCbvlpz4F3NsPUdkWSEO5qhAM3vGiXu/lwnS3RF823WZfNzO15aCGOnVi1N3dJUjUwjlUwXW2HEy4S1rLtzJOuAfBYrwc3SlHTHS8aa/0l07k5cuWFwKBzqWiKns61QmbM0IwxC8nFOkiRcXVxSVzVREOF5Pv2BMDuVcsjzEo1ms0nJ8szIx66M2fDpOxr+wXBgGANSYFqzxLpuJHFnsSSOYuKoJvA8ceR1HGGLGNClbeT6841k1Pc8FFAhLB/LWgo9z/jWCHuvMv/mAJ4jPgSNowTksefMcfBdMZa0z1VKd0xVy/SxTDS7PoiEUgA9EXLcJW+0bUtZV6C1ASqdjoWEuUd1t6nqbiBhj5myN7HWJhiixTGpRo4jhV5rmG66FdaKpNnIOptnGXmW0baadLulDoSJYJlLjlyMhsFikiUd866tpJbY+ZP9HI4pVgPfJwpD4igkiWOSJGFvNiOOhVXUT3po3bBY3CJ+ACFKWYaZSAdzT8zuh0bGluYCTHqeSQWra1TdGENzt7sfSyODEA85Kbpb1yP0PALfZ29vj/3ZTLxP1mt00zAcDCh8H2UKZWvCbT0PHMehMIVpmqZstxuRZc5vhR2mXGoDXCilJMXKc/EcKcLvghMwLBKv8/dS5nja66EoSmrja4S+M8+0E2XbFHiuTxi0nbfZHcPRIwhCokh8EXSrjexuQ9tIOIEtRuM47l5fKUW/P5CGwBR41j9Ot5qbm1tpKMyVZ1lm1uhdmol3zT9dQ9kPfJ8wlIQ2z/OlWDReEq0BnbI0Mx5emtzITXxfXt/KMYQ1kt6l9FUV2Y483LKxoiShlySMler2bJnye3KPKIcsl+b6+uaGxWJBkiRybKCbtOZZJua2nocfhAyyDNfziaMY3wvvwCbXkWvTdQl8D6VClFKUZUvdaG4XCy6vrrm4uOT09KxrKFvdGpBMvGjqpqbVPjYdqcUEd2iN1o1hSrSUZcF8sUC3Lb1ej6IqWK0lmMKyGRoD2qZp2oFx/y91b9YsSXLd+f3cY82M3PPuS62N3gE0QIDQ0DQ0aTQQTWY0Gz3rZb6PbD6IFvKFQ4kzeiOJGZDDJoBeADS6q7q2u2+5Z+wRejjukbcojaRHKM0uCtV1b97MDA/3c/7nvziu7L+/0lwAACAASURBVItFUb5luK/NkKHT6ZBmOf3+oImXL8uSxVIGBpZtgl2DrosejwlbLWHZdDqN7NdVIgP0fY/jB8eMxyN6vQ69XkSWFaaJK1jmS8qyZHtri8Ggy3hrTKvdFnChlPNHPNgcYyrtvyWjBZF5npye0mq38YOA3qAvaWqr2JgFT8iylE6nS6vVJs8LOlEH3/fodkIcR1MFYu+gHRnSalO/VhUkSUFRVNze3bFYLOi0IxytWK3WBL4ve8J6KV42WpFnmVy/qkKbmlApRbxOSNOE+WyK57us1isuLy6IOhF3t7cMBwPKbpe63Wa1WDC5uyMMQob9IWFYybnWapF1u5TGXLw0Z0gY+FBXpjnPSRPNyvrqaGEZCHgmLC/LLLAs36IoyPKcGmGwB2FIrzfAc72GubC9NSIMzd7maNbrNbPZlDwvyFJhNgWBb5LvLMNj0+4FwSYYpAYwzbbruLjaodIVG7cm2WmqUgyxi6I0vlYu4/GYo6MDxiNpxLV2DJsXnEiJ7UlZUemaLFNNH+b5wrro93t0OtKHlJX1PZWaQtQmmlqphuXkmOFNr9+XoAfHaUByrSVUQ8Am+RlbCdZKpOFhGJIkKbXxZlqtY+ramojLGdD42BnGrmWGWu/PwBcvHBSS+GhAEqknbCKcappze4Y1/q3aDkRV4+/ZgE12iIVq+kFLHqhtz2dqgfv9XiPNUhJYQY3J9dmwlbXSG88de10NSNCYX7senutRqpK6rCkpG6aMZdRuTOM31Iza9C+uYePa91vXNZlh/VDXTXo4hmms2AAW1nO0SWhTShLGjcyzqqVndByX0CQCi6m3SJq14+BXtbB+DBNVawffD6S3y4T9bs86p6oNo0+CrKBs3sd9zMSqVlxzplvvrI174NueyOpeKWqvpQwga2rD1KOyYIH5w6YOWuWVcqC2IJV8FUXV1OLiC2YCcoxMUlQsGVkm5A9t7iHbqhtcGUOUk1q2KqF2m++xLHfxcirNOlJmn1IbQOxebSEllTK4x+852CSv1eHxk6f86A9/IjKcquTlqzdcT6Y4gU9/PsfxfXb2djk4PGJ7d5eoE0m6xXTCfDEnS2KZTDdypPoe6PT2h6DMISYbmvFUcc3N7bpoV4o5uf91Y77m6k1B1Zg839O5KmWbAd0UrlopfN+7972GImnofRtoy4BXKOpSCv44S4WJEgZysQ2QMl2KMbNFsZQStFxhJs+FocDV2iS/dI0Hgw+1UMVRBoH1fRRKCsu6Js8kYaEV+oShT1VW5KkAOsvVkrwo8KMQN/CojdyxcbSvaYxYc8clVQVh0OLxo8f0e33SRFDy/f19421TsVyuqaqa8XgbasXp2RmvXr82yTEl+2qXgwMxnby7nbBarlnOVySxpEqcn1+QZyW97pAgCI1+XeO6Hjs7uwxHYzrdHmErkMh6pYQ+6wfczebc3t6hHI/jUpIzXC/AM9IhrbWR12QEQUBW5A29lFoYNUmSmOLWw/c1o+GIqipZrGbkRWrSNRy0chtGU+AFBF6A7/q4jkeJFtUVQjEFg66bA1PMDGWS4bounhMYVo+gzr7nS/yo2bwVNMVLXWViMo8mzQq0rqhK1RQ2lQF+kiRBZylxkggF2vNxHE9M+ByXu+mUV2/eSJph2KYdtfn+Jz/kO995h4PDQzPNajEcjY1Hg2zGaVaRFTGOoxiOesznSz7/8isuLi75m7/+Gb/75hsOD4/46U9/SlXVPP/2W9rtNo8ePaTf7/Hd737Ag+MjPD8kywqSRNIbAXq9nklhaOF5jtCmSxsRWgFOkyi1AaGMtK4ppcRIN89SXO3iKk8wQYNGW9nNzdWE5WLRsH+CIMBzxtTGADnLcl6/fsXLVy+x0dN1LdKNsiqbDT/Lc+IkY7lc0O12G8pykiQmYSNvEqk8z2fQG6K1yJfuHtySFXnTfKRpSryK+exXnzWMR8/32Bpv8eDRQ1phyHA0EqPrWAr+l69e8eb1G/l7Kr5Sg+FAmEKtEN/zWcwX/OLTX1AZ3XtViTRub2ePIsso8pxkHXN3K3KXwjAQ0jQlL3KUAldpPO0SurL3ObWke9ZlSboWhkvoi8SpKgpJU6rBQVHlOUktMjZPOwbslFTGi7NTJrc3WHp4XUGZm+91pVhufLVM6o/IeKQRtcEMm/RT+XtVV2aaW5BkIl3RWrwvlBJPOqVNAaGM3MWeE0oZ8FoKmuVqTRyvQUHUkRS3oszJ8pRnz57x5s0bfF/YINPplNPTU0BJQ+q6jZnlixcv+Id/+IdmPYvBdWHYEGbAYI62t+JrXfF1KMuCOF6h6oorR3x2XKXpRB16/T67OztE7RYaWK6WwvbMhK5dUxMYKZ9NEaqMOWhR5KxXa5I0YbVeM1uImfuzZ88EPGm3RWaXZ+R5hmNAgnarxYPjY3rdLj/8+COO9/dZf/dD1ivxCnz9+lRABcNYFCPZhfF8etF4bhRlwfXlJavlCtf36Xa79PsDjo4OcFyXq+srrq6u+PLLLyXFpazkrDLgvdaaQX9IGIR0u22iyJqwb0IeyrJq5KJ2Gjy5mTCbSHLh6dk5cRKLZL/dEoaXSYXpdDporZrEvMtLeT0i+3IJwoAXr1/TbrcJjFQutf6D7RZ7+/uMoognTx/T7/fxXYXnKF6+PuHTX3zW7H2+79Hr9XEch+9972P+9b/+H1guV5ycXIj83CTYDIdDs58ICJQkCWdnZ40kxpqhz+cL4jhuAgtOTk7IspSu8TQZjYbs7u40PkBFUTAYDsWzzRTLaZqyWgpwcX19zcqAnF3jwxVpYdL0+3201lxdX5viWa5Lt9fj4aNHUtwbv7Tz83OWBkCcTKfi0ZfLWfzti2+x8r6qrul1OgwHQwEwel2UViRxQp4VvHj1kjcnb0jihMVsDsD27vbGyxNI81xkaZ6D54n0pagM6JWsidfCMNeOIwbipkGeL+bkpci4JUFJGVPjpPEEfP+DD3j0+BFPHj3g4w/fYzqd88vPf83t7S1//x/+I+enp0yur/Fch9fPn/Pbzz4jbLXYPToiMICkUoqT1694+ey5Yf+IL+H24SFRt8M7T9/h+OiIg8MDfvDDT/BcF8eV5rXXjQh9n7OLC37z26+4uLjg88+/aBhsjuPwgx98nyePH3NzN2V7d5feYMD2zo5I0UzjXZm9aOT7DAYD2fsTAbe+efYNz54/k4S1fs8A8rIXzScT8jTF9URGeXx8zMcff8RwOOKjjz4giiKst4owQVzarRbjrRGO1sIu9jVaDRh0O+xuj/jOOw8NuyAWSXS6pigyfv7z/8Q//uOvuLu749WrV0RRxB/8wR/Q7XY5Oztr2E+z+ZyqKhkNh/iex+9+8xvOTt7QarUbCa71pItCWcuDwYAwbDEeDhkPh0wmd+RpIoEHgx5ZGrJer0mThKouWSymIo3MYsIw5Oysw3otAyfXc2hFIaPxmKLIubq8ZDKZ4Po+461tvv/JD/jv/uRPBPyNY7TW7GyPCcOA05M3XF1e8vXXX/Pq1UuqqmI6naMd10h/I1KdotAy5MXK4US9kBmLCtfz8PyQupZUcMf6HOWbAIEsT1mtlriux/HRMd1el0++910ePX5C2GoRRpEZUAiLrBMG+EGADZ2JWh5ROxQfxjynKitubu+4vCw4v7hkPp/h+x6jYR/Pc+m2xXB9Np9Q1cKwHwwH9Lo92lEbz/NJDTDe6/XY39tDO05jsn57d0de5MKq9MVKYzQek6Qpvb4MRrOiwJ/NZIiyWjcAbW0HNhbEMmCD53rUQUWn05Gkw1IGTK0wZGtrvPG6UaBM8JSjHZSW4Zc24Jh7zz5AG2DJgseNabipT5Xp4WuZ6AvIYQgNZS79l63j8aXuskMQ7gEYhQHM6qoS5rNSMiDSjqRsehLKoJFEYTsItV9SfzTzPDkn09wM5oTdMuiPODw8wPcDk/pYm7W28ZWN45h4tcKiM3Ulhvl1VdNqtwgCIU/USoZNvZ4kK0adLp7vsXtwQJxnMtx3BQCyASEWNTH4B1maMp3MSLOU1fU1cRLLsMhxyPOCxXJlAlaEcSQDsmIjwwuUvJBaN8N7++W6Hu121PScYnDuNaoIz3pEO1aiJrWFhK0UjdTXAplaSwKy67nCLKvFSzNJYnSe46WiQqkrRZFXwm6NXKJ2m06nLQEJngC81DXJekWZZ7gG+NTKmotIQJqADxrq0nxtzMGFhrChI2iFWbNVYw5fleL/KmDX20Sa/7vH7wXYJA/FYDhi/+BApkZAkhV0ul3iLCOMWhR1RafXpT/oE0WRgCRaEydi4riczsnStJGTCSpnP4FNqpQ10NLaoJZm2iFJcRrH99Cu1zQWdvFI4+E2iWKOMVCzSQJWB+0ZKqOdMEqqjk0gs83K22wL2LCxSumpKAsxuRO0PmQT3wlJkjJbzJCuWMAt3xe6YJpkxklfJAFhWRK2Wni4BIGDo8HzXbxAPCTu6zWrsiJeJxSmSLV0rKqUKHgx/87RoYeDJL1QGYM081lXddUwl8qixHU9BoMhjnZ4cPyAopDrqrVDXuRkhTELb7VZhS3miyXXNzfN5yMFvIdSWujYeUGaZcbbIhUKvN9iNp8TBpnRXruMRmOiqEOr1Zb3amiNNXWjnc7MhhPHKfbtOq7TIOVK64Y5VVYlvjEkVIb+lmXipaB8H+X7knrim5j5PJY0Qi0NqayVTZqBTRBxzMRBq41fEMjlqyqFTReRgkHMFuVnNY6RMsoEvWWaciOntOtKlygtU/GirhCPTtFcV5VMzItSGiUF5KrAtU22Fg00SsDI6+sbA3xEtI25+/GDh3S60lzJhL1lDBllwy4qMQButXyCMKCazbm4uOLNyTmvXr/hzesTHj16wuPHT7i+vublyxemuIsYDIbs7Gyzv79DnJTEiXiabNLjaKYoWivDDsrNpFXApftpdJtJ4kYfX1WSNlkUOcoRFl6zc5pCsyxLlosVNzd3Iv9qtymLgrzfh1qZ5JyUy8srvvn6Ga4nFOOamtVq1TCWgEafn+d5IzWN47j5Nxt16/s+rbDFcDAQQ/Ysp20SdJarZQOC5nnG5GYqiVW5eIPt7u6yWCyIIjHu9Xy/+beb6xsW80Xjj2RZEa2WJHu6rst0OuXq6spIGIRy3et26Xa7rBYLCuNHlKxjrMeaZTwI5dbF8xzDsJHCqtIOyhy6RZFTup6AAA1ro2omXnVVUWSlMf80JobIBGe5WDCbTrF6eNf16HUGDfMHMyBQWsBaXWm0UzWTSpsA6rluw0JUWpnXX5jrXZCVmUzUShPJGwRmimqm7Xrj1ebe8/cqqop6uWokqvfXWVEUTCYTgIblsF6vWSyXzXNao/iiKLi+vn5rnStzXzqOGJLbCXUzDWyYO2aaVsu9kijFcrmgyHOWnQVUNePxmOFgQJrEjEcjtNacnJ6S5xtPGa1lP3ONVLpG2K1VWTXeY6v1mvl8bkynYwNUmS1MK7Sj6PcH7B0c4jgO/X6f0XDA/u4ORwd7DTtsHSc8evIOZVXjevJ+nj17zunpGV+VJb/+zW9IkoSFMeaeTSakccxoa5tur0enE9Ef9KnrmpvrW5I44erqirkxFS4tiGaa6tFgRCtsNWCv+HFt1jHQNBX2GiSxeJbkec7L169ZrVeS1joaGTnqmiAM2d8Xmae95yaTCaenp1J3GAZNUZS02m3xmex0WC6XzGYzRqMRh0fHtNsRBweH7O7u0AocQk/8CM/OrxpQS2tNt9slDEMePTrinXceM53O+frrb0mStDFp3dnZaQAQO0AZj8eNUWxd19ze3nJ7e8vMNF+L+UL2gLIkDEOiKGJvb4/33nuXq6sr3rx5Q5IktAyYZD8j63lS1bL3VZUA1qhNRLYkcAWkSdLcG7YxCsOQwWDQyGQtK7GuK7TjGONdTDqqSDDKsmr2s26nw6DXF2ZNvyd1g0kefH3yhtOzs4YJ6fs+/WEfz/cpstz4stUUpZjHW3DHAnJFnosU1NQIkkYre1iaJcIcqOU9WHNjy7qu6orReMTDR4/43vc/4r/6L/8LLq9vSYqKk5MzfvF3f0+yXtM0YTWc1TW9wYDB9jZh1G78XpbzOW9evTTgfSWSxKIg6vcYDAaMhkM81+Xo6MiYxEsT4WmRryRJyunZuYDZn37aDDp836fX7xGELVbrmCiKTLphVz4D04Bac2TXdWkFIVVVsVrJnnd6espkMmmYozZ9tSpLFgZsUtoBpbm6vKSuKnZ3dxkNh/T7/WZd+754pJS9in6/D64EmWitaLcCqiBE6wjHGVGWNeu1SKDbbRfHgfU64fZ2iuu6nJ6eEoYhx8fHjMdjbEJyeXbG1c01WiuzF2hubq6ZTO6aQBC79uuqYmm8DjtRBEEg7D2TsBp44gfXDkMxhC4koSzLMrI0odBCOSnLgsVi3rBTlQHWWu0WaaLMPpIICNCO2N3b5/0PPjRsRvFb2tkeEQQ+v44iXMfj/PycJEnxvFj2J+N96rmSqJarnFq/HV0vsrpUUjZrcL1A6lQtaZd1xVtgg4R1ZAJa9rqMRiN2d7Y52N8TzxzTwFdlAUokyZ6j0Q5Nr6W1I3X7GnJyZtM1q9WKxWJBmiZ4riZoBQSeR9gKTLMuzE7HkUTBIAxwjbVDbPbqwPclQdOcW2maMpvNKIoC3/MJQ/H+HI1GxgOtwPV9onZbpHJKmYSuewlktma3Z6H1n3TkPlEoonYb35WBVRD6iDF1Cao2ZfOGPd+QFMzzvMWsv8eAUfZ3s3lY8Ku+B0bVNU2vK35ApUmcFU9d+9zWp8txMHIbjaPl+awht2cYQlpv0hfeYjQ1DJb7pbEFGipjrI0woHv9RgpdVTVJnDbMR4DFfCa/oNpYv7jGZyuKIgmuMoCR9Rd2XFeuue8TdToMR2NDIxLAzhqlu77XMFy144hnZGqYu7WVHMs5WlYVdVMTsDm7iqLBYiRR/T57y34JK8p+ftbOI/DDZojpWVzBMKqLojQs3cT0jeKrZp/HdV263R5+EDR9Zaa18a8W7ykrVxPynyM9PzWtUORyVZUZP6baSM/LjWeTsn7R2P8RgMlSsgyw1ABOzSzehmwoajY+w411TyXPZ2vP/9zj9wJsEhp5mywvmC+WIp8LAsbjMX/0R3/EYrXi3fc/ZBXHhMY02HM97ibTDetIKXzHxQ0CPCvZMsAPgI34y7OcoiwMTTKnUso0OIa26NidUUnRURXUBcRpJpwIc1EqI22qaiO3UOAYU0pJQXIaQzWtNa0waCQVwjYpTaMkEwjXdel1Om/RrAPfRek2WZFzcXVJlufczWfEScLLV684OT0xF90uJEFsx+MtQ1OOiKIO85M3vPj2hRzq22Pa7RYPHz5hb/9A5Cy+K9rcPKOqK8J2G21kBmhx1S8qMeiLOpHImzzXNBJiKmdvfJDr4Bj03tGabhTx4PiIJEmaqPWDvT1aoU++kCmo4ziMt7aoFXS7PaJ2h9F4RL/fY2dnh62dHTzX5fWbE1QtqHq/P+D46IHxnYoYDUeGEdI3m4DQA/MiZ7lckKaumKnFMVdX100hPRj0TcSvXKPDw4NN0eNI0T2fzZuiS2ttvK/ESLQ0KVBpaourt+VxRZ5Lk5JIEVDkhZlQWLPcjRjOAlLKyLigboBMMW1um+JN5AFJmhgPlZosz2XaUORvgU1VWZttRNZsWRupF2JwbRkSDVhq7h0LrOX5ZjpbliXdbpfvf/IJ460xe/t7dDoRdVWzWKykyTfX3XGEdlnVstmmacbFfMnX3zzjr/7dv+PubsLuzi6j0ZjhaMhiscB1XR48eMB4PObDDz9kPB6hlMvN7Yw0KyW6s8ib5nq9XkuUertlZKCbWFhr5mcZXvdZT40u3rIajfRD18rIflTzfb6hfIehNEivX7/ms88+o6oqgkCuQ2omIleXl1xeXOCHAd3BYMOmsWBuVW3ScYyHA4j8oK5l6jOdTpnNZkynU4IgYDqZ47meiQ+PiZOY1VpSq8RYNmB7e/serbVmb3ePd548pdVus7WzTRAEjVz2xcsXYt68XnFzfQMKuu0OfmA8VxyHvNWi2+mI5r3XJQgCmWZ2uyznc1aLBWmSsjDx4BZsUIbhI++5Moe1BdhlPeaFSDFJEtR8TlVXxPG6KYJlTmAOL7XZ3xzPx0H2oiIXs2QMGFo1B6KZECKnZV0rMRmva6HmY56bmgpFWcsE0XNcXE9z/KCP1g6zmTBHq7KUGHqlTUGtcU2qiutsYui1FoCyckUC1u32cIMApRWz+QKbiuO4Hjs7OwLWmmjuu7s7XO/bhoUCEHW6zdqxwMdmPZoEHs9HG2lEXmzWGAhLW4BLGR7Y6s11XF69fEWr1eL9mxsePnzIzc0NJycnTCYTXnz7Uu6nSNaKpWxrx+Hi6uqtIUliWGxVXtAKAnxX0v8qk7xSlKUMXjyXdhjS73bpdiLxm0Dx8tUbbq9uxOvFl/fi+iG+59JuhziO4vBg3wQF+ChXk2U5cZJQ17WAYI5Df9CnP+gThi16vQFZlvHyxSvWq/XGmLgsqQt5XTc3N9R1Tacd4bmeYV/l3Fxd8fz5KVprxtvbDUCbLpeyndc1h4eH/OCHP8TzPN67E7+PXq9Lux2RZakJm7DMJs18IWbRRVWa4UbGai2A1MHBgfhZhcJsyowX1mKx4JtvvqHX6zEaDyURrN+l3+3Qbnf4wfc/IssLlisxeH/27BnX19dcXjzk7vZOUmtXwrS8u7tris7SDG2CwCdJUpJYBjedToTn+WSdlCLP6UQddnd2yfOcDz/8kDzPGQzEf2s0GtKJIsrRiO+885Q0y+j3eni+z+3NDZPJREySjWHearkgidd89dVvef1a1p1t8FbLBXmRE7VbwnyI2uR5ztHREY8fPyJqt9ne2cF1Hb7/3Y/JsrSRm4iPiilfzWChLCuqupLm0hdvjaKsDMB+zXq1Nv6GumEqer7PeGuM63os5nPSJOFuIkx5yoo7BGhaLBdkmURGF3lBq92i1+83ctGyKFgsl9g4cI2gOxawOj46IgwC3n/3Pd595zvsbIvXXSeK+OC99zk8OGTUbTG5vSHPK/Ki4urqiq9/9zvCVosPPviAXr9vgF8Xz5GaeblYcH52RlWLubmqxTw6DEMWiwVffPEFRVFwe3sN1Hzn6VPG4yFVDfv7+5RlybvvviuJb6enLJdLvvzyS87Pz5lNZ9xcX+N5nvgIOmKwXZvhS5qmjTQUaBjEo5HUYY29gDlbqWtaQUBZSDCM58rzrtdr7u7ueP78Oa1Wq0mSzMzwpNPpsL+/RxD4DAZ9gsBnOBwRRV2SJGa9Xhpm0wrHcfjww/cYDgcEQYsHDx7gOA7T6ZTQhOPYpCwbbuAYhmq73RZgg02qWFEoVitJpZtOPVarJb7v8/qNrOVuRwYwWZaRFxme7/Lo0UO0o7m8uGQynXB3e8dsNgVEPud6Ljc31yRp3JwDSoEfeJRFTpLGLFdLMpMsGnUiDo9ECWBBgCJLieM1L1++5LMvPuf07AzX8+j2ejx58oStrS1WqyWnZ+es12vW6zVhENAfDggCjyjqgFKkWSqSTy2sm3UcM5lOieOEVRyTxAl1rWStLW06WMF8PqWuK7799lsJ/TFnjgT7rKhqScgTEL80/YFGGTDEppqdnp4wm8148fwZqhZfxCJNoCyo8wxFTZYkUJWoujLJ38KELgHPc3B0QFHkTKd3whqPY0kbXcwpqwo/8PB8lzSJmc9nJEnKYjFntVqLLDDP0ArCwDdy85CqKPA8l6osjLnyBmlQpmawPqnWRNpzXbFRqPKm/m9ID0ptiPXGpuR+jam0bkRZdiD+TxVJWmtw3g4hKgxYk5uBuMi8HRwcHMPatgBaWVdNnQQ0nrO1kn/DSAcVMjxMTaiRNVgXcodjWHB+07dUWcVyvRLQcLVinaTkZUmai5H/ZDI1NZQBAk0wjjClBLCww9gkz2mlqfn4asOiknq8FbVxPY/ZbMZ8PqM0e7vSqrm3fUMqsIQSG+qUZxm+H9LpWDDVEk42PllVpUXFUVVG2YDYSNR1Y1xvhwY2JTwzNZuVrQUtCRPxAwHKXcc1wSgylAQ7EC9YxzHLxcoKWXG0Q38wIAiChtlu67+yyFktF5RFQZbGFEVOq+XTbgc4jsL3HOqqZL2cU9dlExhSV4JLuNrdMJvMcFcCk5TBKcSOwXpdS+iRWcRyoXFcB1XVjTQPrLTcysv/fwI2ha2WMYlcSlxp2GI0HvPP/uiPyIuCm8mUOEm5vrllMpuxXKy4u5uYNyk3+972DmGrbeijLTwzdQFkylCVTTpOmqUUib0JQctYGuU6oB1qJVTCzDSIWSoeFkUuqQNZmpEl8v+TJIFaohUV0pxKEpLoHR1H0zITaIuSloUsoFbYEjp/GML+Hq12i07UwvNcAt/FD1ymi4KLq0vmyyUv3rxmOp/x1Ve/49mz58Y53i5M8Rz57ve+z+HhEePxFjs7uzx79ow/+1//jDRNefr4CaPRiD/90z/lweMn+K4m8BVZBuVcNptet0sQ+GaKJ3TXwvgAtTsR2lEUVUFhTMNc814x1Dvf9XC1g2dAwE4U0et2qaqKw4MD6rqW2GTfZT6fs16uiDodxuMxSmu63R7tdsTR0RHHx0d0u122trdJ4pg3r19RZDlb4y36/QGhH7I13sIx7B7fC9jZ2cH3/eZaF4VIloRRIkyCq6sbrq6uiKKIfr9Ht9shbIV4gc/B4QFJkjSo9dXlFWVREphkNK01uYn3FEZESV7IxmvNUZGPAyooMmGApHEiHiC5aNo1qmGz2QPMHlz3mzrHcSlL45vS6zUTw7quyctCkkvqSpqVsiLJjJm87BFo7ZopMM0kIk8lljUMAlxjQuu6BlQxzax494hRdxzHTcJOO4r43ve+x+7eLnt7ImddzJcsl2s836cVScqh62905TWwXK64uLjh698959//+/+DOEn46U//hMPDIxbLhXgwdDocHx+zt7fH5Ji7kQAAIABJREFUhx9+yGAwYDqdcnM7bxhmWgv9t65r1gZ0abdbje+J9TyyWnn7eVrGwn32h2WGaMeRzbCEqqiaabYy4DHQTONPTk748z//cxaLBcvlUjwKzJQSw9AJ2y0GW1tyMJvXYRkRsub6dHtdnjx9im+MdQF5rzc3zevzPI/J7Qzf85vJfWqkjvejbzudjvFEE9bU3t4eT588IWyFDIYjgjDg4OCArmEnOVoKcI34KDSTIQM4FmGbTpTSbrc5PhaQ6eOPP2Zra4vFbMZiNpdm6OuvWa1WjcG4fciEqEYpKTgsKOY4Dnkp+2pZV40R9Xq9aoA4GysrUkwBm6ypplIQJ6nISrX1IdCNP56jLaNJFp0k2ZjjXKiqMnms6+bfFIje3w84Oj4mijqcnp7gXF2SxAnLuUjElGPAJlNEONpMJJU2/mngKhlSdLoerbpiuVpxN5Vzykry9vYP2NnZod/v0+/3OTs7Y7WOje+GRK63IzF+t0kjdsoovnX+5lo5G9+k6l7RlhtGbbxOmKk5WZoxny0ACM16W61j5vMFs9mM6+trJtMpL1+8JM0yRqMRbePXkhcitUiyFOuhZovdGpmWt41Zse/J5LzIM6pSGJKB69IOA/rdDp0oIvCEKfTq1RuyWAYQ/Z54sj14+BDf9+hEAjo5jstoPGYw7DMYDYR6Xghb9Pj4WHzcukIjryoJxFgtV/x6/BsWiwWDwUCaSFlKzGYzvvnmG7I0bWju8/mcxWJBvFpyc3WFHwQcHB/TjiJubm5YGnZOXdc88n1+8MMf0uv1SNLEpL/KfWdlcPfvgauba5arFZjrtlguuTg/J2y12D84aCRIdV2zWCwaX57ZfE4UtTk8OpDGt9hDa5d2O+KT735EluecnN0wmc74m7/+a375y19yfXXF5G7aMIOKouDiXJpNx9QmlqVh02urqsLt92m3WhRG2tJut9na2trIsOua9XpFmqb4vkcQ+jiO5p13njZSNoC72xum00kzja6qiuVS3tPV1SVlWdLr9ej3+w3bRabZbeOxI8DM0dERjx89pN/v8/TpUwFlAx/PdRopclnVpGVl6g0HGzja1LuG/X19I3LAlh8wm80EXDANmed5+J7PaEuYLteXVywWC1bLFUWWU9Q5WSJn3nQ6EeZoJim6lnlVVRV5lpFnOZfXV6xWK7RycLTbSBY73S7vPHnK1tYW7737Lt955x1Ggw5KaTpRxPvvvUcN/PEf/QhHK9ZJQZyWfPnll/xvf/mXOI7De++/T7fTkXvfceh1u2zt7HJ5eUn9y1/K/muYoZ7xwrNg02Kx4KuvvqKuK/7lv/xveOeddwgCMbtXSnF3d8ft7S1nZ2cN2GTTGj3Pp9vpsLW1JdfUgE2p8Y2yALfd3+15v/EOKxqwqa5rOoYh1Wm1aYctrPdaWZY8f/4cx3E4PT1thi2TyaQxS2+1WhwfH9MxAQT7+/tMJhMuLy8b6aeYlAc8evS4AZssU9fWAla+kmYiJbOvr92WuiVO1+LtUpUUpbDXLWPz/OIMpRTtdhvfSAiHw2Fzz0WRpPkJI1JAjiSJyXLD7khlCHDje6zWK3Z2tgnDAKXB9z2yzCFOY1ZrYW9WdU3UabN/uG8AO3k9r1+8YDqd8uLlSz7/4gtWy4UEr/R6PH7yhO2tLX7xi19wdnbOarViuVxK+MhwRBi0GI1H+EFAmmcNUJHnkkia5wVxIudOnCTUYDxy/OZ6z2YzsizjxYvnTKcTiqIky6X5ni2Whr0sSgnrmej5Pq121LB2iqLg22+fcXNzQ5ZnUEuabJ6mVHlOVglLKEviRuajzTlfljlaI75snktRZEyniQzQbm8FIDEs9k43olWJdNiCTcvFQqwPDNjkaHUPbGpR5jm+61A2g+NKiAaVAE5WYmeZT652qBxXGu9CgKIamb/XxrLEYk2VUUXcr/Hrqja1ialN7+1lDSilFbrWDdjUpM+aa5IZ1lnmuvi2HsWw0wzQVPNPfq/ZN8uqBrUBDXJzLYuiNKnU4Ho+nq/wy5LA9BpZkpGRs1qvmc7nLFZr1kmCShVqJYPgi4sL0jS9Z+tRCavJgCnWjxEgLQoiw8a1/31pQPygJdYmRbGRoCWGGWtrIcvOr82HaG0H6qpqUlDv+7s27ELTHziuiypL8/mLXLpC1BlxkpA5efOareLBPhxc8R/udhrWuVVBOI5Lq9Vu9p+qksCe6XTWAEpaa/r9fgPa23MVhE2exjFFkXFzc81quSAIXMLQxfdconaLqiq4u3bIsxRHuxR5SV3VjWzQUapZWLXxeGoSBst70lEDxjVnKgJMWbBJYAxpbu3Y9v8NaILfE7CprmriJOHs/IJn337LYDhivLXV0KC1oVYr7dDt5dRa47h+YxiW5+LC3+336XW7hL4kdTjawXc9MyEHVYpkzjUbUUUlEZWeiXTutPF8l1o51FpTFDlOKsUzSqjaylE4hYPSDtqRaGbX98QvxBFvniDw8C2FDqM/Nya5SZJS5AVJvDbsgIwyr0zyRUA7ScyNKKiqdjUKAWBwXMLbG7w0pd3p0B9IhG1gqOaSQlGjXZeirAjCkPH2FsvVksdPn7BarUArFssFv/ntbymKgp3tMY8fHeNoB8938YGqlqkV9nPTG1aCoLoSI6oMsu9oLYyZyrASlGxORQ0Yt31lrnOe5QbRLtGxMmkPGyNd19F0ow7DwYCjwyOePn2HdlsiqVerFavFkjzPODg8pN/rU5gCUCunMSHv94XZtF7HpGlGp9dtWC/CEHJ4+PAYz/ea5jwMQmazWcMIslR/yyiyP2vNyS0oFASBsEG0UFHt92utiNrCVAvD1kY2p5xGSqeMp5G4ByvD0ttINq00LM8LMXX3fPNzirywxtIFWVHgOi7KpK1ZdomdDChkiiHPL6BYYSYt8p68RhLkOpspZJomRsIQE8drfN/n6OiIw6NDtne2GRnpTdakx9RYXxkAcpkeoIU99er1G/7Df/g7Xr58JZtxGDafZ5bnrFYrxuMRjx8/ZjweNwdqQ22tranz27Ihi6xb6dFbh+m9Ytj+/H2J0H2ZhJiIbiR2mTEXbbkBjqOJopCy7LO3t8M77zxlsVg2DUx/OJCo51ZI1AokhtoAg1qLxOr6+pr5fE5RyvUE1SRVWUPKwDA6fd8niiJAUeby/hzX+oeUzbq1D7temsQT0/xaMNo1YFan0+H25oaVSW9ZLpcURSHmyo5Dv9ejbSLNh6ahUrVo3198+y3nZ2csFwtWiyXz+VwKRaNBt/Kk+5+vpGekpqiXdeJol3ZLDtLa2HVb+rt9DzJNEr+70jBTdCnG2LVSRobRCMzNeudeQSdglUjnDOPLfL+qN6aGlakfreFvnKTUyHqsDGvUHqNVXYsMsKxASXqPqivEnN8xQJCHo5QxgJXipdvrNoWjxIcvKKuKdRyzjhOWqxWdrjSS2hQjco8XArS5IgFVldHUm/duJczWq0bekvnsHQv0quYskWlkbRhfMF8subq+YblYMJnOWK3WaMfF8wRY9QOfCtnXrXkqdd2YR9fm700BCQ3V33UcKkdAAOqKNEmY3N0Sr1aUaSafw+2EeL2mG0V0O13CVouvnz0zPkQRnueSF/J5zxcLrm9FWh2Yxsf6kN3ciD9VmmbM50vW65hXL16TJAlPnz4VMLbVot+NCEOXskjJiwLPxAIvl2vW65huJ5K4YM/j6NEjXM/l17/+NefnF01TYRmvSkuQRJbntFpiTu16Hm0tazQMpTHzQp84ThgMehwe7EpTPHlEEPg8fvyEKIrE96CqGY0G7O1uNbIV3/fZGo/wXJfZbMZ6taYV+vS6LeI44etvXjCZzri8vGS9XgvwUNfNUKKqqqbQj+OY8/NzhsMhe3t7xHHMixcvKMuS+XxOv99vpFEWPLbyWq3FgFiYRRrXc1iv11xciC+UNo3U3e0ty+VS0tbserD7LSKnLcuS5XIpviWu7AFlZYMw5M/Ly0u01kTtiJvra8IgpNMRg2tHO7hak+Y5i9Uaagh8MV62snQrbU2zjMlE5MW3NzfE65j1Sjw6ai3nYE1NmiSIRF8kPalhvPieT78nnkPdbpeqKhu/iuFoxOHhIXVdsVoKENd502U2m7G1tc3WeBvP92i32oStFo8ePpSh2dYWvueR5yW3d1NW65iTMwl3CHyFoxWu38L1QoqiaJg5Y2PqH5p6w/M9ur2Ivd1t+t02SZoSxxlVXfP40aPGD0s7AgJtbW2RZSkXFxfEcdycE7b+skOFfr/PrbmO2NqhrhuwZWyAFQt251lOYgBWK/+27HzbFN4Hyu83UPZct4xYOwiyEjebbqeUaozcQfYm28TO53Pubm9NKqSkJP78P/6c58+es1ytWK/XDZBmn8d1XSYT2XvqmiYYpyhzKOS9FmXRDK/sWXa/obLvyXpHBkFAWZYkScLd3R1Zlr31evv9fjO8suCWUpCmwg6eTqeNT1pd1eLzojZnjzTDNUWes16vOTs74/LikrPzc25ub1DUtNsRHcO06nRt0Ic2+73xYDIS19owdcOwTagwYFFOlhc4xmO0KEqTsrdmNpdhn6REysltGc2yX2FAj5IsTQSISEWWahlqfhBIb4NhNuW5CTzJGfR69Ps9ucdy+bkkXlEWBcoMRR1HU+Q5eS41vwI5C1yX+WLOcrFguVoJi0xB0GqhlEuaJCwXc1bxisls0nj1ZCYBVysbNCQS2coCjYVNgZZz1Q4FQIZfldaNibr9klTAnNrIkVAb76X7Xr/2y94XrnYolfUR1gYQEAmXZU+rewDV/TrL1q+NPLIs0ea1Y+uIypql12/VvBiQo66tkkIeNmDCvm6a2sqYeSP1Ul4WzcA7Lwr8wKc/GDT9U57ntNpt4/MabnyMlN7U7kaVUdcVnU5XEorNPZbnecNi8gO/8XK8z/qxaxukb3OM76mt331jnyI1dsnV5SU3NzeNMscqAzzPYxWvm9dSVTWOo/HNcEyZgY31spJAnKJ5LRansPVBjcix13GMVqoJdrDS+sV8wWQybd6H0ooklVTbMAyNeqW53TaMpHpj8m77I8teFglt2pzlZVFiJaANGwnbN1mmk/27qG2sf6FWm/q4ocMpqSUdx6HURligNn3I/9Pj9wJsKquSyXTGrz7/nKyq2D845OjBA7a2tvjwow/wfZ9OJ6Jd13itFr0sZ7lc0+0PyLKc5XKFVor9w0PxNzFaYUlONdGyscQ5+1UlVEDfxytlYbQNPW80EkZPVkFeQZqlLFcL8qLAWa1F+5zLNKQqpIlTdS2Iu9K0wxauI5KBIDAUOs83F1No7FfnlyznS27X11ycX6INSNEKQvI4odPpkB3kjIYj3MDDCwNwXPYOjuhnKVfzKWlds7N/QK1cBsMhRw+OSeKEr373NfF6jR+EZEVBbzDg3ffepT8cEKcZt7e3/PIf/pGr62v+4i//LVma8oc//jH//b/6V4xHQ77z5AFB4DO5nZOsU8IwMFMXAdk2Mo0anA0N0Xc8ykomI3VVU6CotaascrJ76QWNnKGqSTIp+K0JnEgPJZZxd0dYTD/8wQ/5gx/9CNd1CDyX2WxOVUGW5Xz/ow/Z291p9KRyB1kmkDYHeUGel9RKqKKOo2m1fGlivX/GciVeI8vlkuVqyZs3b8TY0EgbIhPPPpvOG6DJglZlYPyt4thovrUATp5nWCKasBVQVyWD/lBo416G63i42mvAJ5CUFZAmxXU92q0urufSagWmoUpI4lTM8DyZpiZxaqiY4hXk+6AClxqF0i4aaYYrs4E46Ma8sCwKcjM9CIJAAJKoTacTCctDCQj48uULlssli8WcOF7z9OlTvve973F4eMi7779Ht9slSVLWK7NBY8DfLBOAqZC0IccXtszP//4/8T/+m3+D7/scHB3KwRJFKEc8Na6vr/nggw/44z/+46bJsROb1DARpJCV+HPLTLKb/Ww2a4rgjc9G3RR9FqSyU3Wwci/jSVYUeI4vKWhlyWq9lsax5eC6PltbA0ajHsvlx1xf/7cSvXx7C8DH3/0u+3t7HB7t8eD4wAC0cohnRU2el3z++ee8ePGCV69f8Zvf/payLLm8vDQNdGiAiR77+/sMh0MePnxIkiR8+cVvmM8XDWCEojnc7MMe7u12uznwbCFo2RZnZ6eErRa3t7fc3NwwnU65vLiQCZYp+J88eSKpVu2I/d09IxVNWExnfPGrz5jOZsTxmiROmqLHHrL2c7VT7jAMieOYy8tLikISHbXWDIcD+v2emDaul1IomBQVP5SD1oJNZVmKr4uCyvg+1ErjGOBECh9NaRAmbdCmvKqMRr40KYvC8BOwSRinNQLYqKqmrGvyouJuOsV1VyyXK7KipKgqKlNKFpUMKFCFpDdmKbnxe3C07GGjcIQX+MTLnCSXAmuwNZLXVIjf2MnpKet4zXAwpD8YEkVttnd3oYb1OibLc64uL5jNZzIwCcWcu6ysBFRTIyCc+JMJWAGgDftDOybFTVA3HM8n6phUt6ygqmour66a6bWdHopHibAx2u02Si+bvdtR1iMnawT9thlyHRmquFpSMgPPRdu5WFGwmE1JkkRYEbEkol5dXLCcL2i323TaHfJCJuooaEcRnuuKuavnifl2WUhT/OARnU6Hu7s7BoOB2aOWTCZ3vHz5ijTNiNcxjnb46U9/ShiGjPoRDx/sAvD06QMB2oXoRpZLHHJelCRp3nyOSZLwZ3/2Z/zyl79s/GOOHhzjh5Jus1gtWccxtRpISlLg0zOeItvbfTzXJTUpaJ5T4eq6ScJBCdCv0CR5TV7UOFq+z0o9i7zk7PyaxVLkMicnJwSBGK/OZjN+/vO/YzKZCCsrjrm+vuazzz5rziCgSWC0j8ePH/PJJ58wn8/59NNPSdOUjz76iJ2dnYa5aQtYz/PY3t7G930D5As7vKwK0/CeyF5vJqV30wnT2Uyk7JGAp91eF8d1G0bAar3mejYzHh8ySQ3b4ptlPehO3pzw6aefiiWBK7LewWhIq90i9AMCP2C5XHB+fkFV1VJ3uS7tKCIMwv+L11Nlfs99IMR6plRlxXw2pyxLbm5upB5YLKiKkrATcHx8LHKpbrfx4FBKsbOzw6PHj4T1tRLm75dffsnV1RU//vEf8od/+JOmXpDmzsZGb1hsJ6d3nJ+f89d//TcsFgtpKrXDo0ePODo6otfr8ZOf/ASbkme9SWTApfA8EyBi2H7XNzPiJGvMyH3fa2RpStVMp1M+//xzzs/Pm7Px4OCAH/3oR4zHY37yk59QFAVffPEFr1+/Jk0SSSYsS+7u7oiiiA/ff5+DgwOur6+5vb1lOplycvLG1MZ5A8yFYdgY1GdZJpLkqjLNpklGTpLG5y3P82aqb5tS2+wmScLt7S1FUfDNN99QVVXDYMiShGS9ln3IACs//9nPxFYjDPEMCGQlcxbIH4/HdLtd/NBnPB5KuuJafAwn0ylZnjVsrvvMrPvgmZhxT7k2UsNOp0MUiVFxt9ttWA+dTocHDx7IPmkYodbfyg58XNfl+fPnktxm9mEr4bF7bFkUZp+b8I+/+BXfPn/Orz77jG+eP2Nne5unjx+zvbvL7t4+4/GIqNPBtc8DFGVJkqY4rtSJ2hED/bDV2vhgapcgbKNXCUmaM1+sub65ox2d4Xkeh4eHlGXBdDoliddcnJ9Kjed6uK7xtlMizVmb5Os4jkmTRAJ2OjFlUTKbz5pkzjzLePjB+/z4xz/i5vqaLz7/jGWWMJvckqaG+drv4bnCElOqZr0OqauQ0aBPJ4q4ubni9OxEarKbG1zPY//gEMfRzOZTlssFy/WqCbKwoGdZ11ITlzlJEjeyujzLyEzTbsERYWqVqFrk6FSSnuugTB8IZV40SclSjFiLjLfBJgsW2T89Z7Mnybm9Yc0EZtjtNcmp0mfIIC9r1qKVdSkDjHq+30gly+ptawgLOFnPPsfUCxtgFePFg3g51eLpWhrjahsck+QZcZYSpwlJltLpdTl+cEyn22U8HgM09fd4PBaPqyAwiagGoKtrEy5QmsCMoDmvsizjbjIRUNDUmvYstu+lLEsWi0Uj+avrmtl8zt3dHa1WS8KoHKfxNP3Z3/4t//jpp5Ks6Umi4r/4F/81w+FQPqtSEtlsMI41s4+T1ISjFG8B5RZktsBhAwBSk6QpmWEs26CRJJbwmdlsxu3trfm3HK0Vo6GkTPb7Q3rdvnmPoljqdztGoSIXRs5pM6QpC8pcUnizNBHgdbmUAZHxMhV7CTl3rQWHFHGStF0jICq1JCZqpY2ccwOyK7OHgaKqxKZC7qUNk+4/9/i9AJtApluL1Yq7yQTH99G+T1GV7OzvCoUzkE2zRhnfgcBQWYsGeXY9t5n45iaCu8hkAVqWRlEUjazCmsgqx2nieB3XRcvgGlUW1tmuASxqM8XDUBpBUsO0MR1zzHNYA/EmbrSWDccxlDY7bairiqqoKJzSbPgFZSFO7/ZmB5MooB3Z1D0PrHTE6FRrFFGng9Kasq5ZxXHzVYPxJXDZ3ZfEhpM3b1gul9zemfjzLGN/b6s52BzXMdHuhp3SLFTzDYazbqVasEFHm8VZbzxkKuPFYumT1nBQu4bpYyY3Qu9TzYZZGnNei6YK2itsNMdxm2l7438EDTVSyC9Gc8vGGFopRasVSrNpJrDWt6NGEH7HFRPSoihYraQgKMuSTifCcVwqY8i3Xkuh6WiNq4WhEgQ+ZSn+JdocwPJ+BaAsi7L5yrOczMmNQFg+X1sQVSYRobRRl9ToYhNFb9MNms9487EjHk1m9VgfJaXwlGNSKIS9ZMGZIAhotVuSzGA+hyzLBI3XiiAM6PZ67OzuCgXbsK/AaKoxrClTIKm6NjTMitvbW9ZxzMXFJdPJhMFwKKa43S5lJZ+hF/iMx2PjDdIyMp91U9zdl3TcpwJrLS1tVdWGIUZT8NjD1S7X+w1yWUmspwWbMGwQmyRp0xpB/HB0lnM/MeLgYI91HNOO2qAUe3t7bG1vMxgOibpd6royk92KNF2TJELFF1lnaX6H3Cu1WWdWGw7CgAnNhMcxFGGbZmLf+6ZxVc1kxIJptmFsGq5K5JWe5zc+V5a6rGqh6daIv5g1F1UoirKQab8p+KfTKXkmTYTjOk0T5GiHyq3QWhgMgR80SYFCud94V20ixiUdh6bAURu6uZlWlVVFYVkS5k97/c0WZLz15LmVfR9mwldWpTEnBgc75a1MLLJqtqqiLCVCIklQKiNOBQwvykr2WTsRMmwoZT576wFT1xILbv2h3k62VSZyWAsjyhQXSZrixTGO40iRiJiLV1Vl+V7CxpLjw0yQNmOmyu6vZm3LOfj2Om9aFWVTUaA2/vdFWREnG8Nru+6045h7ZDPJbaS70KTb2PvcTmGreiMJkHtTmSbbXC+zHrPMeNcVRbNOpXATg23M3uW6roQy+CLRK+sKz0iv7H1u5akiu5kxmUwaXzzX9TYTvtKwAZXGcTyZPJv1FGiF5yuqWhFVm89s7Ysk2jH0fCtBDcMA13Pxg4CiEtagMAjE+0J8SxY4WlOU5nlbHn7Ll+hz22gY2cRivWS+jInaPmEQykmmoCxTbm9vubq64fTkhLPTU0nCGg5ZLpZkJjlpNBzibG8zn8n7r6qK1XKJMuwgx3UaUCrP84b5mGcZSRwzubtD1TVR1KHdiZrGpfG99H3y3CbyZWQmIWdhfNpKI5dZr1cUeY5nJN4KudeF7Wc4AFq+hNWwMgxE2cPEeF7WQWKYNKqm2Y+DdUgrkC9hMAholaxjtHZor2Nh5Bm2d2Waa0zj5TgOgS/puxLPXjcTb2t6XZj/bhu6drtNu92m1+028gyR/kV02hEoSW1ttVqMx2Nhufb7jT+ebZwk3VCA89w0BYv5gtlMmDnzxaJhg1kvsvVqBUam6fo+jpZgDj8I8DyN74u/hkhXKwM6piyXAoK22+1m2JCZPduyt2yDasEOK4e09VDT0AYbSblNEbP7RWn8S6zXZHP2ms/IPux9ujmbab7Hsn1gw3RqwG3DsrYglVKqafQwZ7iVCAlz0wOUyLDKktqwqkGey/6MneSbF4ENE1EmaEfpDVvEfk4NE+SfvMem9jL3TJqmEkhg9htrd2AHYBa0SpKkGaYVhQAUNjjCMlHs71ouV5yenlGWJZPJlOlkwuXVJTe3tw3jzLKCHcdpEjvF69PDhsnI4C0zxsmyzzqeh9Li7VeUpfFYtOCofEnCXH6PwWDg8NokH6tKzuZaflak7RLAoVEGoKllWKg1Slc4SiLgfVe8ZKJ2m36vy3q5ACpzVhRynzZsHBNOUQnDoypLsjQl1pokTcgy8ZwrqxJVSfqh/XwBFssl09lMQnxMP+k4RopuBrBiDm3fi3kIhdcMJHOp0Q07Rb5yU8/L2qwN03hz+m/MvuuGRbJRIGgzAKvvgT1VJX2CgmbIo5Vu6sbmebBM7s0gw7Ju7L5altWGnfxP1q5lP0OBeBZZdpNVW5j+D42qtJESmqCQ5vfSsMaDMKTb79Ht9hgOh6CEHKCUYmRSSz3fb1g7ts+xKYChUTvY0j3Pc2qzR2vDGv6nYFNlWE+Nv1Ql/nXacWiFIePxyAwzxJ+s2xX2vud5hO2Qra0ttra2GY6G5EW2YS6ZeiW39iQWbCoFdGzsC0oJqtow3+qmBxGwNZE+ci1BQShQCeLrFMhZZBlnrufieu69wYSogMqyYO0KYLRYLonXa4LAqKhch8ANwAx7FRKAJT/fXMl763nTx9v/3qi/uMdGVlYyYFaZrQXVJhinMkbz/18evzdgU1XXXFxdgefx/M0bHO8zdnZ2eXN5RbfX4/jhQzrdHr3BgHanS7sb0e2auOJSqHhJWrFcryWhyRSZy7mABFUh1Ebf93E8F8cRDSI1FJUUnpkBmTKgUJADaV2TVyVxLpP50nhRyPxW4gSVmbaXyKaRlyUqVxQmGtBRSozKa43n+gRBSBi0CIMWCoWrXXxCLpODAAAgAElEQVTXl4SzTYgWSonHR05NnGUkWYHjtwijLnFecnF9i/IC9vMK7XjsHz0gTVO++up3XFxcoj2fWjuMBn0+/vgDtNZ8+OGHLJdr/u1f/AU/+9ufcXJ2xv/0v/zPHB0eUqua3d0dHuzvsb0zoCxrigqgQjla1lt1H0za0ImbDbqucRS42srD5PvLumpooCC0UVxJIXADH9f1JNI+TojjhHi95s2bE/wgZNDvs7u3S5Zm+L4k6CVJxnS6kNjhUkweAy/Apjlt6IrlW01bWSIFokH9xWxySE3N82+/Zb1e8+rVa/KioNPpEAQBr16+5Juvn9Fqhezs7AiAaICg6VSMhF3HJfA8Sbfp9yX55OiYwaBPVdYs5ksWswXz6Zz5fM7M/JkmOb6/NBe9wg9C0rTE9326WQff85jO58znC6HlG0NpKUgMa89xhOlQiobWmstJwyvAXNgKCVyPdhBSFfL8dVURRTIhHAwH7OzusFouuTi/YLVecX13y3w+5+GDY7a3t/nkB5/wz//4n0ucrZZ0OgsgBIGP6/nkRcE6S3Coha2XF/zVX/3v/N3f/wO/+fWvqfKcQV8mtn4Q8tnnXzCZTPnR/8ncm/xYemV3Yr87fPOb4sUcOXJIkkmyBrXELqhK7ZK7G5DVcnvRCwM2YBjeGbD/BG/sZQNeu92r9tpoCFDLshcC1Kpq1SSqyCoWk2SSyRwjMiNjePHGb7z3enHOve9lteza1iMCmYyM4b333e/ec37nN/zDD/Dee+/h5s1rKIoIddPixekLVHVDvizDYZg0OQHENg5pHwII/lJhkxRiHSXracOWiuOmqdHM6wBaSCGQp+z5BAUtFJQh4NpYi8nVPACNWZZjZ3cP//iffp+mHn7SydGoxlo8PX6B1arE+fk55vM5Pv30Hi45jeri/ByKDRZj5VOwaBLTNDVp661DmufUzEuJKImRZimGoxHyLPO3HpbLJZ6fnKBuGry8OIfpDIqCTKetsaH48cbui8UCdVNjPN7GzvY2jLXoFz10SYe5I8pvuVrh8vwci8WCJrxNE5rK5XKJpm2RJGlo6iKlYDuDcrmCALC1tQVZkFn/u++/h/l8jjRNsVwu8eL0FGVVIu8VGG+PgSuJyWwKB4koZW89B1SceElhDmadmMXsRCklpNYM3HbonEHTrEB+edQ0tR6MdQZt1wKCDMapwPMmj2sj7YpZQ+TNZ3gvI5hJsLRS83qyoC2wNQ5NZyBgIYVDZx1WVU2MI2sBIdF0HbrFnBsZSrazEIBSqJoWdr5AVddYVcQ+a1sTKP2KPTKazkAIBtGFZIAZHM9rWW4dMc5Ee7OxDrYzwWeC/KIo3SfPNQSIvTibk+eYl6J7P56qrFHX5EloLQ1J+v0+gHWzRVJBavyaquSqxhckQBLpwCTxSJgxBo4lbNnRIZxxiJMEaZKiaRpMFzM4hxBOEMfMcgABOb1eH4eHhxgMBrh16xbG43GYEE6nV1guF0S51xGUElgu5zg/P8PB7hht56AVoCSB07N5hbYxKHoJ8jyGsQAY/1ScBApJZ9d4Zxtv3rmDo8N93Li+Bx1pREmMqlqzvKqazKWXqxWePXvCHhrU6N24cR3Xr1+jYnwwQBQp9IsEzlr87MO/xS9/9Rlu3ryBt+7cCcEaV1dX+Df/5v/AvU9+xZ5/JQ6ODvHW3XchlcL2eIyD/X18//t/iLfu3MHnX3yBX33yCZ4+e4q/+Q9/gzRN8Sf/7J/h5s2b+PM//3P86Ec/wtZwhG+89z7Oz87w2aefwhmLh1/cx1dNg52DA+zs79MZYokx/DjSGyCnw3K5wGx+BSFoIOWswdXkCk3dEPMoy+CSiFKl4hjDQR9plqJf9JAmKQ2xtMLF+QU+/eQT1HUDZzsY9msBaEgRaQlKmy1ZZkEy3zzLUTATg6bilqLrjcXlxUVo1iRLUbwU14M/m15nkdYBYA8DDUkAzqDXw3g0wuHBAXpFwdcsQslAfRxFAYjbGo3gLDHSZtMpiqKHFyfPA+DadQaTyQRNXWO1Wq3lzV2HF6enODk+xvTqCpPLS9R1jSePHmG8vY2urlExaJj0elDsxaSjiNj1xiDLM+zt7mKd1EsgdlPX2D88wJt37qDtWpy+PEVZrkJCl39MJhP8/Oc/D0CFEAKr1QpC0PByvDUOZ4exFg8fPgyyzbIsw2DMe/0BCADvJhjjGcgeTIIzACy0llCaEpzKaoW6qUKzBwEMhj1Ym2M4or3H+55aBpqqqsJquULMwyohJC4uzlGVJQUNRSy95ORAev1mzb7qWsxmMyglkecZnEvJ/5LPnNVqFSTqm6AZQLVvxDWf3xOrqsL9+/eZwbsV/O1C6hezk708cDqdYj6f4+TkhEA1rRHpiIezJJ3/5Sef4H/7V/8aZVXixfPnKEv6c7lcYrlcYDCkwV2SpXAAjl88x7JcwQmBwWgLTdthWZZorcPJ6SmU0phM54iTBFtb25QMrTQUm+R31kGoCGneQ6+zcJCYL1aUViw8M8IFlokHtLT0CcnEQNkZJZBSURKoMWH43HYdUq25hqXP3zjcx/72GMvpFbq6QlOtYJoGtm0p0l0JCFiYrobtFIQzMKbB02ePYPj+Wq0WJI+ONKQSWJVLVE2F5WKJqq4xm89xeUXs96LXQxRp9AdD6im0hnUOq+UC1pCMSiuFWKsAMjZVienlJZx15PnbdphezdZm9l2HuqtDj7Rukyz3HgTMURnRhfUkBPk/+eACL0vvOk6HTgy0UugSYrw5IaBjOjvazoSPpjOA7ACpYIWAbloIAFVN7Ke1p6cHWx18gItn4kdRRCChIjY/nffsySsVlHWwVQXTtDB8XFqureI0w8HREd6+exf9QR97e7vUh3EPlrLvnuOUdMHnrHNA0xquMzz7a31Op0URbFvoe0QAj30xPBoPAwvHAaibDlXVQCuFIk8AASyXVNPcfv11XE1n2NrawrUb1zHaGuIb33wfvX7xCkHC3+NrQHlNpvAWJeHfGYBbszGo3qnrGjOWWb88O0VVlkGmPJlMcH5+jrbtmLEnMBgMEUcJ2qYjr19mnRtj8PLFc3RdixfPTzCbTTHe2sLO9hjb4xH2dt5AFCn0igzWGgx6xQY+5AcB9PQ8vCgFM+tY8kdkGEqMVhx+Y7kOdnCAoetGbGNAwkAJHSTBv+nxWwM2OQANG9ORgaxBay3Gx8cYLpZI+3001kGnKeIsR6xJixm0hdah6Vaomw5N26GuG1RljflyyRMzmtxaALEAnNCQTgVE2DiHzjkoh3ATGdDnjaXmwU/ZrbVQgtoQFz42pvHGohMG0hI7yQjB2kgPJ8rQfJBGUgaGBi3cDeaakACI6UT+HRoRT3rLuiZqYNdBRxGyPIfSJDlYrla4ms5wdnaOJI7ItCzJkOcDVFWD3b09FL0eqnKFZ8+eAQBOX55BRxGO9nYQRYqm8a0N6Laz64n5K2sroPg+OlGwd4efEq8BKgGaAHtqqkdIBTf23sDaWodyVQZp1LjtghmrldRwNU0bItOddUQXdGv2kkem/a7mgTGAJlzGGiitEccJ+zPR86j5fVVKbrCXVrDWBMoz+BpVzAywmhs7gJsMSpJTUoX0jZYTOAKzyXDSFZgOzxwKH+3c8mFR12QIbdiQHbzePaNBirWHCzUKG2BTWHPEFtNawwgBpRWsEaFRkoyKl1Ix9b0Nh2iapRhvjzHe3sb2zk5gEwR5JNaJM9Z59okLTfPx8TE+++wznJ+dk2lqSkk+lHZFNOt+r4+bt25iezyEkKR9r6oqgE060pR85Tf6zTXIr01uHECb7CZ/qFNDQ5K7ZoPJ4XiaqZSi9elovSut4UzH6Wktks4gtg46ohQI/wSsdZhMlyjLmiVJ5B1w+vIMs+kUDx89CtK12WyG/mCAMZvhK03pFx648rIDL0HwjYG/dt6HQUoZ1raXCjZNQ2xESd4GdUWeBFVNdPbLy0sqntmYltgVEs7Tu43kSHuagE/Ye8JPar0+Pk1SJHGCOI6QJmmYevv14BN+siyDMUSNts6GhsQbsouwZtkvQKyndOtJqwkUcAJW2CNBSsB4/TlgfeodM5v89/kPGovyz/HpGdZP5ej7ALC81/D+TqEPSvoUOxHuMwkXzg5/ghmmlksGgh3YoLKxDILTWnF+oudceE+ZFATTEQOUvMzFGlCWBHrBnxFuPc2UAcRf3xQetASzsILfg6Rp96ZhvWdSSWzEUxtD72+Y5kveH7HxHAy8R5tnB0BsFC3S+6t5nwUwa0QCUNAqZoAwpv030ugcs9+YLUTeTBFD8QRqx3EUmjzf6Hngixg1vngW7EG0YDZfjUgrRFow46NGXXdIUkotFRLhffJx3ZRKRd5blB6YIk40tI7Q6xXQcYLOs1Y42Wm1WuHs7CL4HnmWYppTrLMBhYgIGDhn8OL0FI8ePYJUCqOtcWg4J5cTPH3yDA8fPoRtO7iuQ5IkWC2XSNKUgJeiwGu3b+Hdd++Sce/VFTEZubk7OjzEm2+8gd2dHeRZhkG/h+3xFmzXYTgYoFqVqGYz1GWJtq7h0zp9LdM0TXgPnLNYLGaYTieIIo3RFtH8SepcI0mTAPjToiHgSAmq1ZIkRpImSNIUTVWtC10/PXXriGVah5YbW4O2cYBooaWElmtvQppsM7DMr9nfBqGE8vv/BtskMPU27kFv+uzlLT5hihhxtO9QOmWLtq5JFuocUh5cxRGFePjr4F9X23U4Pz8nYITBJv+c5rMZKma8LhcLlGUJKSXJyxYLXHICZNrvQ7KUX294khRFgaOjo7VHH+/TNOU36A8GMNbgajJ5heXn36OqqnB5cUHvh9avTKkFy9b9w/t7VWWJmqXtQnAil1hf91B3/dr7v9m4haaHmbBUr3UwZs029sAggHVSLu8LnuHkQSBKIR7wPV8FgMh/xHEcJPnGGPL/UpLks20LIApAUsyveZPh51/HJjPEn3NekuU/52VU/lp5X8/Nh19//v0qyxKTyQRxFGPAoD4EoLXCdDbDVw8ekHT1+TGampIkPQvHAz6e9bJYUCpwx2wQYqJKUng0FUvRBSIdA0KhNRZKR4jjBMtVSR6HIA+0iAc0lPzFKbJY+2QGcFesvYt8Ulscx4iUho0iOENMpJYBFN+7CdAgIokiaCmhBMKgxzMoKAiE2T/Ors8dY7BaLtmTbsVAplmzYroWwhhUdYWyLLHiJF+fMt11EUkGpULTNIg2zkM4F36/9Uw69rbcZEHWLFn1JuvGdgF4CJXBRo3w6wxAKdnzUDhIsZZhWWthOMFNKWb3aw3F7LNXfIM2mEy+XpBmLcPzX7v2iQKEWKedOQDCCghh17VZOPdFQCekk3B0QIaBm6+JBH9fkqYoej2SlPaI+dm0dD9H2v9+Bypd1z9bcAK3E2DGP3tdSWLfKb4faKAW2hYPo1CNIdZMnSh2SBILpQTimNLSraO0ucFgiPGYfKFpcNVHn31913qQjYe/ZuEqbv6F3o//L6ylqhv05gtUVQUhgbJcQSqJNEuJwSTBYBMZnfd7A1IfLFYoVxUcHHviOdS8H1XswVjnGSeRWw4UiykF1llEsd54xmLj75uf4X3bMxVBYJ6XnK+VIS68VlqnlACtJGAVCCTFq2fu3/f47QCbBC2oazdv4s237uDs8hIvz86xXJX48U9/iiiO8flXD9Ab9PHGm3dwdP06hoMB9nZ2kCYJtoYjaKWgkwS5JvPEJE0RJSXHZHeoKwILnCR/D9cZKtSNgRUE4og4Qty26ODQgTybSt6Amm5NybTGQMLShxBQhi5YW3cMHlHhbjsD09DEOOOkjnKxQluTmWHTdOzzQ5GmRDekCVWaLGGlgEpTOC3IHC3W2NnbQ9ofIE7vYVU1uJhM8eDRY/R6Pdy++RqyvI+t8Q7mCzo0nhwfA0Lg9HyKXtGRhEAqfPCd7+Dg6AifffopfvDv/z3miyX+/P/6C4xGQ9T/+Z/g7jvvYDToYzTso1MOxkYQpkPXEUqepUmY7knaLZCwP5XmYs64NeU50pqbDU9H9jcwHyRYp3/1en2MRiMIIbBcLl/R8mtNjBzJTB5Kj4hhDXlcWAYThBDkdVRVSLIUaUQmdefnc5RVhXtffI7LyQRvvPEmbt96DeOtLfwn/+h7lKYxW5LBekKT0Ocnz/Hk8dPAWlJSBcnfYkGNjPaaaq3RKwpIIWny17bU1HYWSir0ih6UVDg6PMJoOGJ6v0ZniMarmbq/noZppnBW1LDzhCxJyZQ2iiMorQhcrWitLpaLoAN2zmKxzMm8Oo6xyHKYrsPsahooykIA8wVF2E8mE3z94EGgZ/d6Bd599z188MHv4ejoEHpj0uMbEmsNNdCSDJIHusBqVeJX9z7H+fkFPvv0Hh49eICbt27hg+98B1pH+OUnn0AphcOjI9x67TXcffct3L55hLZt8eQpGc9CEO3cgx8AeEJN8pZNqmnDyTKbzcSmLp0O1g7GkG+QN//0xatUCp017AFRI4o0Bv0CsUig9ZDYEnEMrRVOT0/x1YMvia7L/k5fPniI84sLnJ6c4MXxMTUGWYbOkoywqWtIrTEaUzKc5PdxWZVwzkLFGpnKIbRCYzqcnL7A9Edz+polTXsn0ymDvi54XlxeXMB7PMRxjO2dHezt7WG1XGF6dYW6rlCfN3ACKHq9MP308e9r2SsVVnmWY2u0hTRJ0GODcs3yqbZt4KzDu++9h7ffuYsk1sjziP29nmE2X+CLL77Aixcv8OWXX2IyvQqHlrEmpDOdX1zg4nKCpm2wqkpIKZBkCSfJsUxQWUCSRC2W1JSqOGY/NgEnJKAEVMRFbkyf9/TpmIEk62yQJgqWL1trGNwldEsqSSEPQiDvDYhN1NRo28YTDmmtgdhEztA9bWgUR9IsnuqWdY2KgQ9rHYwzaE0HKTd8wohOFaTZjelQL9p18edcaHKtI+YuFZ0sBTF0dnlDZakUIrs2JAUItCKZG0FUxjpYgxAbT6mAFp11UEojTTSUVtAxnVNNXcKYLuxDkkEjZy1KTo/yAwYCBzgpTPomkin7DLRjYxIYRxGc0jBtB2fXgJXWKqSzVdwU0z5UMntLwViLRw8fIUlTrFYr9Pt9zOdz7O/vYzQaYTweo2kaXF1eoW1bfPXVV3j8+DGePn6Mxw8fI0kS9PsFDwFomvvO3TeRF7cDo8mDnp2zuJxc4eTkBFIp1G2La0eHLKnrYbwzxmhUMNppobTDbLlA0e/h9uuvsXSKhiRfff0Af/XXf80gNu1PRU5eXPc/vYeTJ89w/9NP8dOf/RRZmmFnexsCwNH1a9gab+Hy7BxXkwkODw9xeHSEoihwcHCAfr+H3d0xkkTi5s1r1EgB+AsAylpsb23h+vVr+K//q/8S//Sf/CMcHhzizTffRPX6DezvbaEsSywXKzRNg16vQNHLeW+nMJOvHz3FdDrDJ7/6BE+ePIaUEsPBEDduXsc//+d/gqIo8OL5CywW5JVyObkMQ6LZbIbpdAatyfA50uRr0+v3Ua5WtMcz6OtlBD6ZM01TWGNRZHmQgwgQ4y2Jk8DqgwOG/QHgyNSWDH3XRbIHqhOOYXecykQ+a7SveSAgZvlayaCQMQYf/u2HzJSke3p+dYUlszULZhtleQEIYDGfsyktpd5aZi9Za1E3zUZDSLKwJI7Rca0yGAwwZPNlL4/pFQXGW1uAENBcP3oWeVVVZDwrJa4mEzrLeBAxHAxIvueA+59/TgOzipgp8/mcWBl1zcEqAlrSAEtqTQgrg3Zaa+iIgDShqGFzzOTVbMQbRzHyjDy3PPDjh12BpRGYATawbPM0Cel1/nu874n//iwjOb33NvLX6JVgFm9U3rZ48uQJ1Zob8kUPJnqZcJ7T+vZAUhg+mo5BGhq8pUphsaAmMcsy5HkeXoMHlIwxyLIsDFU8+OZrCi+XrCqqQzeZLN7b0AeBOEcseaUU6qqCkmTafnTtGgDg7OICnemI3aYkih6lulE6Yosky7CqG5xfTvDRx79AkiTsq1RRomjTkM8OJ+22nYWUCvNlCaXJO1YqhbbrsFgScKN0grwgmw6lY1jrsFis4JxF19ZwzhJ7RGv2Blw3sUoqDPsDep08fO7aDg3L05fM1vCJYM8ePYIwHSbTK/SLAkkUYWc8hnMOnSGGsz/XmqrB1RXVFrPZjAZtbRMi5au6BoRAxZJB8rkrkPV66A0GaNoWizl78eoZg7BNqOVJdtrQgEgpNAyeTmdTPHv2DKYzKEvy8K1KZvfDUZiGs+jAagqPqL7S6q7Bps0PYja9CkTBrsE8Xxc0TcOp0/T//n6ihPXmFYDLg+nLJcm3/N66Cf56Zr5/HkmSIE4TaB0hTSwEJ/jS4Jb2CeMsmq5FZ9kGRSs4KWAFUHUtFlWJ1hmsWgLkLi8naLsWMoDKDl1HqaA+6bnrPFGDGK7kUUV1n1QKm3CON3DXygc2KSRx9ArTjt9tRJGmnkt5iZrC23ffxvbOHpRWbCgucXF5hcnVjIfla7YSDYQVs4AIjO/4TAcP/ZSSSNIkDD7I4N8PhC1a00IoYLyzBWuH2D/cZ3YcgaA0TKHAoCzNoZUm2XND9ZFhw3LD+9jXX3+Ni/NzNFWFuiqpBy4KaCWhZUqgne2YKQx0TKxgsigcSIkleM/eXKNeRrkppaPzSATmmIwkhFBQGiDPJon/aKH/PY/fDrAJgNQa2zvbuHbjBowQuJpT/O/jp8y6Ob9EXhQomxbLqsLu7h4gqLHP8j4SqUgeF4EPvgSARFlWaHXDSRO0FVpwUpHrIJ2FqwFlDKKqQucsOmY0NV2Lmj0JOvMqs4mi6hn04Gl7a0CeRCwpa6sG9ZI8OYqcmtuuamiTYgmSZGTYgbxhhGzZELmBalo6HFjLKQXQHw6hsxw6jtG0HebMoGhbgzfeiJDnBYoepVEY53BxOUFR9DCdLeGgUOQ08Xn9zTt47fXX4azDT3/yU8xnM3z00UfI0hTffP8b2N7ZQxJH2N0eAlBQWsKBIsmdJeAkjmLP6YISkkySHMIk0ACvTD8AwPqB1yugq1jDooLimfM8BwQCg8YXFmmaU3rhYom2aXgzydE0HRbtCp7uCFi0LU3fVKQ3Dn9K0fry/pc4fn6CIu/h2tF19HoFbt48hINAWRtYB0QRTVXOrl/H9es3QrFMmwoVycvlkvT3gqSBinXC1lh8ef8+Ls7PuaAmBNjTp8dbY+RZTtMKrVHzpNQzjLznl2Rgq2Xjv7brCJzlIitjDbTDAmVVoTMGq7JC27XhIGobYrlUcYyuaWHaFleXE072qMOkr1fkuLy8xIvTU/p9AJIkxfXr1/Hee+8hTRNIZnt5dpEv3v211BHJ0MqywtOnx3h2fILjZ8c4f3mKd997D7/7wQe4uLjAzz78Wwgh8fvf/R4FAlw7xO7OCGfnEzw9Pg2TGJ9IR4ancZgW0oHiJ6WCfa2aV1Lq/Ebpp5n+kPIGsn7quDkprZoas8UceZ5ia6sPrSmlMQynAEznM9z7/EsYY4IR7c8//hjHx8d48uABHt6/j2IwwOGtW4GhIYQIZpx+SusZVtbZkGYlJaXNrWZTPD1+BiEk8qyAlCr4LJmug2nXXg9SSjIz1TokHs2TObquDX5rDiDQVQh0TRsMW70WvshyqDhGEsfoFQXSJEGRk6693++TrxCbUX7ve3+A737ve4gjgTyTWC5X+PiXn+Ps7ALPnz/Hw4cPUdU1Ts9eIs9zHBwcBBAwjmNcTiaYzmY03WWNepKlDDR5TyqilniWjGSmmQgyBgEhAaUJqNaSGh3NYBPPbYjh42xgARJzimnB/qt4fyU5SMQgN7EMrLGwHW1alhYWrSXDTB6laMqj6NCu2xauXXsptV2Hum3C1NmDVoKpM06IMHHfBJsMF4abjZthj8BNXxMAUM4FFp9/rFk+xDyQXAwrqRAbkvh5uZ+KIkTsvSX5/jHOoTUm+IV52bnpqEDt2jZQrT0bxcuGNp+Hc2QQvvnQSgGKhjHBd8oR6JWlCYy1HLvcoWFvJ6kUdBzxdP0sNJhFUaDX64W0p62tLVRlhbamyOTT01PM5yxfnsyRZRnG4zH58WQZkjjC/sEeOgMo5eAtKwwIoFsul5hcXUFFEUUgdy1u3LiJ8bjB9t42iiJhUQCwqivyMUtT7O7tEXuqIjPQv/3wQ/zwP/wQbdehaZt1wykElmdnaOZzIEmALEPR6+HG9Rvo93p4584dvPbaa3j65Ani4wQ7e3vY2tpCv9/HjRs3MBj0MRz0EGmBnZ0ximKAk6dPoYSAdA79Xg/j8TZuXj9Alr5a7t158zWA6xZjAa3INN0/5oslfvbhL3F6eobHjx+x35NCnmc4OjzCf/qH/xjb22McHx9jNpvh3r17+PLLL3F6eornz58TS+DyktYo3/+DwQCj0SisdQCh4d800PXNkDcs92tKK0WG445MTam5jyGEZOawCWMs59YeeJFiaX3XoTNdaPDWdQg1llIQk8EHfywXS1hrcHU1Rd3UmJ1fYDmbhbpFKIUozehnN+QVpHREzbkx6JilLJjp501uU/YcTdIU4/EYWZZhOKDm3KeoKaVCqrHf97znkxAiGNgul0tIKdGXEjKOkeU5hoMBrq6ucHJ8wr51HYxjU+6uRbNaoV6tAGsBz/zUJB1H1/HnyK9UxzHywQACwHI2Q9c0yHs9ZEWBPMuCHMM3sv4R5OsbII0HBHJO+vUNjTfb3QSANkM8PFuobdtXfCb9umrbNgxQ9vb2gl/VpiecN1hXSgVAwe+hxlqYmgAhUgioUDt4YGhzyOaZxB748n5N/r72CbPk0dgFsMs5FyR2HjBL05SYbctlaFi10khjAvLm8zkmkwmEoMaW0lxzMj1mZo3kdMzZYoFHj59ASkpX9O8XeUUhyKZaf6bNFxx7z4wtQdwkHzSTJDHL0hSs7dBWFaw1AWzyoR+2I48hH1+lpYLrDMk++Rp1bYuKDee9j6RmtryUe3wAACAASURBVMvF2RlM18BYgzROkKUJDwQFzi8uMJvP1szCrg3rwacUeiC36VqWcAKypXOjYIA7SlOkWY7FYhHklOSnY8L189e16zr291uz1larFS4vL9G1Le0LxsIwawdKQCjuLYVbqzo8A2fjvvh1oEkIAStI6bH5NZ4x6NeurwM2PcQaHsr485KUInTfeZaWN+D390FgOG2wOsPzcFQnRBEBTVISKCGEgOLayHAKnbd5kEoBUsAKh852qNoajWmxrGgPPTk5IZNwBqu6zqJrbagH6TXScI4Yyh0nydNwMYpZys1z0c7Q10Q6Qp4V1AdlKbRWyLKC+yeqTYgxnSLSGkWuobXE0bUj7O0foapqLBZz9lhckGWAt1hwxNZXPNCXkpVUkpKKW/buctZCRxq9XkFsubbjM4CGdwKggaYU6PV7PGTK2f9vw/KkI1ULWcEoWEPsfq0EYiXDMdV1He5/cR8vT1/i9MVznDx7BoKPLKQEUk5mbeoSXevC+RokgBv0sCA390/y19bmqw/+frH241RSwqlXpcX/f4/fGrAJzpGJcRQhKwqMxmOoKMaqbjmqU6Csa3z98CHOLi4xGm3hwYOHGA1HuPvOXfT7fRzs76HX6yECkCYSUsQAhmx+KNE2LTvpO1hHdEQLCycNFICGOLyUZGRpIk5vLN0UlkGUrutCopHkA0BAQBqQ2a41cMaQ1IonCWRGTTHONHWmjV0oBR1Rcp2nvBL4wlH0kYSVAlVjYMDfbxzSNMcWF83eG+TycoLlssR0OsNiuSQ6c2fQ6/Xx8vwcVd1gNBggiiNUZYmmrhAlMX7/u7+P87Nz/OKjn6Ota3z88cd4eXqKP/judzAcFAws0cR03hG6mrYtTaj5tQoAyvFC9X8KGQyXtSLQpO58MsKmPtdP7MmcczQcwhiDotdDmmcYDAaIIzJbF4KZHSl5N0WMYispkaYxb65VoFj3ej0kacJmkySFoEhxKrwePnqIrutw/fo1fPt3vkkNv/KCFdrckiSldECtkGcJPwf6xzyPGZjh6YQUiDmq3L1xC4f723yOEyLu6bezGYMBXIS2TUcmjMwOklIiTujPh48e48mzZ2iaFquqpMlauQQgYJxBnKRoW5JQZUWGwzwl4IfXVL8okKcZijTDqD+AaVtMLi7RNg3KiqJnDw/2cXh4gF6/h4bNYPMsQ5am2D/YR5qRp86SGUZCkCE4xd12bNIJVHWN+WKBk5Pn+MmPfoQnT58hThN883d+B9u7O5jN51iWKwhJwNtrr93E66+/jrwoMJ2tsFhRMSwEb7wbTCUd+aLJYrlaAiCauYCXbCJMsgjed6/I06hh1tA8+bTW4uKSYpOPj48xmUwwuZzi/OUF+r0ebt26gSxLMRyOECcx6ppSSj77/Av83Uc/h3MO/X6fgCNrMBpvwZrbyPIMcZqiv7UFgN4TawwgJVqWvkmlYAGoSEG6dVqR8E2MXJvg94cDRJrWWWc6XmcyeIZopbE1GiFNU9y6dQtHR0doG6KWt02Dqyl5qpydXWDJ+4LtDKVnDQaIowjDfoEkjjilZwCKQqbDNs9TWGtxcvIci8WKvEvKEtZoaJWgqgxmszmm0ynqugH5vZA/gZ/uSimJHWAtsixHXhQE3hs63MmwFCiKHqWVpCniLA3sOSGAiFMNvXG+EGtWpOapk1CaUzIV0315KUBsmG0TVCoEwTBCAELxhJFBqzTPSM5K6FSQ81jr0FR18FPw91kWkY+Z8+wiwbIbbnhJhkbHbV3XdB0lhTAE3ztmMdFrZjDJUdG6+TV0fqylgJv0ce/FoDj1SHiQlKpgOCHQWgvbdWiNoaGK6SCamoolbs7LqqKI6a5FWRGN288FFK9NCAacN16zL178czfWBL8OOGI/ai5eveRaKYk4pnhi30BrpYA45sGBC4w0KWlaqZTCarVEXVeYTC4B0JBiMBjAdP7riCUqBJ3Jpy9fQAqBZ8zQ8Z5888UcX351H1meYTAaoDMdLicTzBYLfH7/PhbLBbIix3K1wvHJCf76Bz9Anmf45N4vURQZiixHmiZ48fIcXz9+SjLVfp+avIQa1SzP8M7du5jP53h++gLOudD4DvIctm2g4gSaU7aGgyGnhBbIixzXr1/H9tYYh4cHuHv3HeR5ht2dHTIr1xFWZQvrPS+UglAKxjmcnZ/j+PgY1452kaVDfPbZ5/jRD/8GDkDRH0DHMQaDEZI0pbPcrk1Rq6rG46cnmM3muJpOA0DUNBbz+QyPHz3EckFJrcPhADduXCcWU5Lg+clJSEVzcOixsbUUEuVqGeoquoXYMJeXkbNetudgTUeNo6I9EgA/R4u2biBAzYsUa+NcKUQwIHa8fgxMaOStIUa6kzThsvzLhQMgCaD1Xj8pm4KrsYKxBsO8QF1W3Ci4sJfD70UCIbyj68gM3xqLpqV9UfPaTdMUeUZeRW1Tw3QtGgY7HN/zSZIg0hkcKBqc4uDLwOJNkzXLhwJqFEuoG0yvrjCdXmE+nyFJEly7cY3YWP1eSHFrqooAAE4r1UlCjESe2td1Q2mLwBr4F55hliCK4yD3McaEs8U/NqViQaLGAw0/tNr8ml+XqcUxnU+e3bSZTOtBKc/GcM4RG25Dcu0ZTX49b8onATBjk8BLY+laCeF7YoFerwjAEf28BtPJJZ/DBsYSs8QnzHnPK8/6ZJyR0/XWrRbtR954fG3GnqYJgHWAgN8LozjGzu4upzOq9bkngOFoBK15kMMA12q54mEjJRUPhwPkecHDQa7ZWmbctTWapgXEuveQivTExMoD6q6BrMiHNY5IStUaw1HrDbMKO3RNS8N2QwbgdV0h0lFIwqJAnCbIZYUAkCaItEbT1Fgtl0izDIcHB4giTTWnAOq2waqk+sBbDCyXS5b5MgO2rpjhROvZgUJwtI4wGI3Qg4BUGnEsIOQq+JsZQ2qBvb09DEcj1DzwJQsLyUEoGi2DjnwFSabtBKRmEFJsyOYQyOJ8dAXRErx0zPuJrmVMG7Rk/h2+D3QOXCvRgMtYP+h1AdyomfHkfw/ZkbhXBlgeeKV158GmtTm1EBIRs1jAIUw05GEVgV87xqLi2kgIudFTA521aI2BZFZQawyE1lA8TBJSQtQdjOPUPF5zKlZQAGRH+6wUElIoCCXZxJ7ebzjAdSSphyTmd2s6dMsFAIHpjNMGJaVvp0mK1aJCmia4drQNrVPqo8oOXz94gJ/89McoqxLLFTHthGc2M4NUKhX8I7M0hZIKJZvRG17zSivkvRxSq8BQc1xn+mGfUgpFL4eONAaDAXJe20KKAKJJCCRxxvsT2XnQ/rzifohDEvgsSPMMR9evwXQt2raCAJDFEaQUmE2BznTBXJ3OU7/EROgxPKhunbfL8YEuWL8XYTTL/CZn4RwPcjeGnr/p8dsBNnE9KZWGimL0+kPsWSDvLWEVucifXV5isVrh+MUplssl8rzAYDDC3u4ezi+usLu7iw9+7/dwpBMMM40810izDEUvRdMaSBXx4blC3TSwrUNnW8AJGHSQziFpW0BJ1G1LyL9EaFySJCVfIKHQqZZlxSQhiLSCBKCchHAUo2mNoZvFek8CH09JPj3GOTrAFUkXtFYQSm9s+rQQolihcQ5l1aF1Fg0sjAPyooe9/QMy0G1b1E2L05dnUFLh/OISV1ezcNjGSYJnxycYDBao6wZpEmNyeYnZbIphv4//7I//GM+ePsXLF8/x4vlz/OAHP0BVllDS4e47b6MocuxsDdEJMtMsyxIZGwSbroNpWmilkMUp6zcF4OiGh6IUrTiKYQz58xjTrac0XAA4rCmd2zs7SPMceeEnf1uUCsQ3AhyghII1QKxpM1ZaouCNxDe9fY7vhpQQmnx5+v0+HfSGqND37n2Ke/c+xT/43d/FnXfeQiEVFW1CgGsumkDGKbQSSGIClPzJ4o3iQKAvTfn5SR7tj5mttbHO+RuDnRz/qLZ1aBouXiUVEjqiCvizz7/Elw8e4eXZGb786ksslyucnpLUrDUt0jSFVBJKS6RZhvHONpIkwfb2NsVo9gfoFQUGRQ+7ozG6tsXlOUm75vMZx8sW6PcKTCYTmhwD2NvZQVEUuHnzBopejtWqxGw2h1IKvV4PAPkAePAOAijLEsfHz3H/yy/x//zF/43Hjx7hu9//Pt7/9rcBITCZ0H0slUJR5Hjv7lv4xjfew+XVEueXc8yXdH9GOkKUxK94HegoYlPeCrP5DABC4pl/hBQ3nko6nqZWVYWiyBHFFFGepCmqihLyJlcT/OQnP8GDBw9w+vwlnj09wXA4xNtvv43BYIA337pDk2I28/ziiy/wwx/+EEJQhHKWZbj12mvY2d/DeHcHr799hzEKFyauvkBuupYkh5anRb/m5UCLwkFqhSih1I6tMV1HzwDJmPnnpTRJkqCXU2F8eHiIvd1dRJqSKqioo/fio48+wbNnJ0z/JRbIm2++iTxLsbfdR5pEoTDqOqBuHU9qCSD58MOP8fz5SyRJjNViCZMkUDLCatXh8uIK5+eXKMsqsB+FIM8cmsqKwIA7vHaE3b09lFWF+WKOVbnC5fEl2q6FjhJESUrShYK8nlpO8IiYfURyGRuKdClkYC44rmK1iqCVhlASOuLpJPMwhfIFH6ULUuNITRI1wIIPVAsJyWkwa6nmckEhFP4+jXWEIiuoYNMMWvG+JjbAdACBieCbHz/d/3XfDy/h8A2Yn5JvFoye6t1xM7UpQfFNW/icdehacoVrrOFADIvWUVPRga6XltQhrcoVyyZNSP7p2gZxFOHw8BBpmvA5t/ankIIZHMKzlkhG1LQ174+cCBoTEwUCgb2YJHEoYr1fi+Imz8uhKHFQIWYwnvauGrPZHLPZHNvb27hz505478nHpY8sS7FaLvHs2VNUqxUuXr6Ecw6D0QhJkuLDv/sQcZpgvL2DG7dvoawqfHH/PqUXsQdSnKXIegVenr3ET3/6U5KuZsSO3Nvbw9bWCKcvz/Do8SNkWYbXX3+d7s/DQ/T6fRS9Hj74hx/g5PlzlA2xdUejEbE1k5gA8DhGxh5opusQaQKae/0+DvcPUWQZrl8/wje+8S75VikC1GeLGvN5FZifSmtAa7TG4PjkhJqtIsbO9hAf/uxD/M//0/8CC+Dw9m3kvR7u3LmD7e3tjcl+jfl8wfcAraGLC2KNeM/ByeQSn312D3u7u3j//fexPR4jT1PcuHYNSRThi88/w2KhQIFqjtJHez1ODbxiEDuHNx+n4SrnPvIa9/cCAGhFSX4OBMi2zVpaHakGPn5dSQLahBIQbi01hWF2oF/PQgQgtmOmrtAAWLKR8AAwS1Ma/GyNqQnfaOBa0/FzJXPwvCgQxRFm0xlmbMRd1gToXE2uuBaja51nGXpsfOuTkpdzSoXr9fvo9XuINQ35aM9YcJO9oBj5NEWeZ8izDLs7u8RkKUu0HUmEpssJprMpJpcX2NndJd+uvT288eab2N7ZDrWh9wqCc0hZDucZSZPLCV6evkBdk28fAOxsb4eQCoAMxp89eUphFWxevXkWe8+yhJlM3hLB8tBy05jcM+A9kJQy64tqRtr/Xr58ibqu0ev14D2T/B7q5Wx+v/Tnvgep/D5MTIgshMQIKQkUtGtJkZQCw+EQmlnnq9UKdVni4vQUdV0jSlPIKFrXaloH1jqloLkNz8Uher3iFbaAT5kiZp7m2Vj+SuPm11e/36fnwmwn5xxKtgXZ2d7B1miESJNny2I2x71797DiJOpytcJgOETR7yOky/H50jQtmq7EoqxYRse+WAn5vVRNC9NZGNPC2BZ5lmA86tPAojNo2wZNWXH6Z4umrul+a2n4HOkoeC0BxHiyhuTSg17BgC6gBVCXJSwPOF+7eRtZniJOYzgBXM2muGSGpPcZnC3mbJtAz/lqNsWM0zZpDYoAiO4eHHC4iIbSMaScY7FYoqwqJGUNHUU4PDzCzs4Oqqqi9M2mDQO+eLHY8GEFgwQMvkpyuLbcsAcGSPhCDzRhY6D4ax94lfm08UsAQQm3wlB/RL5zLQFLPJwiCSoNhhwDF0KQjBC+8hF+n+OfzTVO162N6IUkIMs6en0qJh/FNMsgpERZ1TBNi5bVE0IIJHFM8kE4ZjwZNBwa4AFTFUWAUogisgxxskLr6F1xDHJ5Vr+3xXBsU6KUhEqSMFQUELANQv/cOQfbmuDZRaxmX5sJ5FmO6e4c/V6Bra0ceZGiqmrMZit89Itf4F/97/8as9kMy5LWk471ep+3FkorxGkKrRT6BZn9L1akImmqCtViAakV0h6pVIosRxxFaDq6HlKQx2AURRjvkIXG9niMfq8HqVXwCVbCM14zrl0jKBVhOp3hxYsXEEKg3yuQJineefsO9vf20O/3cHCwT+f1bEK9AbOl246ICQ4iGMgb54KSiuSJMtRYzmwokDwIJggw872qX0u0d/mQhvUZ/Zsevx1gEz8MG9A1Ld1MpNMlpD/LMkit4YSf5lNj1LQtTs9eomlb7Dx6hLKqsDceYH88gNbk3UQsCkqnEQqI2gh1TRNwa5kS2BmsViXJIECDYKkozh48fYBwsExndKSjY3odTdUjQX9aQ75CjazgOo7p7DqSYWwg4P6gk0qRrIL/zVi3IdmjhKaOp9AyktCCpiVF0UNZVaiqGl1L0jzFzVIUJ4E2ay1RQCMdQe0ppEkGax3KskLCUyMpFQ4ODjlyd4GyXOHs/AKf37+P/d1d9IsccKTVTywZpgpOULB+w9AUgR4Mxniy7sEXYy2qugrTAora5eIPdAA7IEyqguZ4scTJyXMyZc1z1vMS2uxNtpWUwU/IFyAATVycABz7amlNzUqWUcPuNdqLxRxXV1foDKXQKaXZc8My+0HAWkkkh6BNZxa6n9rzhZWUN0XXlqdsmxHB1Nyy1EuyJhrkXUJfo8NmICUwGPSxv7cD5yzOzl8iiiJUNU1mxtvbKIoe+a1EEdI8w87uDpIkCd4NvTxHxsymokeeTc6QFCbL6EDN0gQZF0vz+RxCgE1lcwZv8EoT7Y2rQ7PMJsCTyQQf/+JjPH78BJ0xiLMUaZYizTLM5xQ9G8cx3n7rTYzHY+S9HqyTqJsWC9aWp2karr0vHoV41XvJF6j+QWwHEejrm025N85L0wRJTK/3+fMTLBYLfPXgK0wmE5yenmI6nWFVloFtA0HMjPPzc8wXJL9cLheYL+YEfEUaw9EQaZYBghhMjq81Mao4JvXXJ+CK7/VXhlkbxYYAhCOJmVSSNN/NOpIZgiRlcZJgOKI0lZgniE3bYjqfIdIaWROzAatA23YcJtCyWT2B0HVdB5q8jiJ0HbEKLiZXOD5+CesMnGs55fI+zs8vMJ1c4eTpMfb29/D2O++gLFeoWAZaVSVWqxWyPEOWZuEe8LRkANjeHuPOnTdQ1zXmS4p8Pr84R7sk0DJIwATH4voRMbBRkKxpvw4OtS++GPzVugtyRd3RHm75PRZShPdSCMVeFi3Pb2SYNive/wWzJ2niiyCr8OAxMdts2AcAQGm71r3L9bTeWRekPJ6x5OU9gsEXD1D7KbzSmkB9a5ipgfDaPc2+ZiNnzwTyyTberNc5kjALCERMh6+qksMI1t+jmfqdFRlM1xJroSPPAGsMGUMzSFKWSzRNzaAAg3WcOuqlig4e+Fo/b8++8u9N8GaCnwiLIMnxawFdx6yr9aTWezSQn18bpHWe3RBFGuPxEdI0xeTyEmcvXmI2nWLCPmf9/gA9LvqkonVwdTWlNC/+OUWvQJbnIVUqjhMU3OhCroHAum4gBFBwpLKX1CyWSwgpMTo6wvVrh5BS4OmzZyT1gEPTkk8f7a10T5P0uYF1ZFo9Go2wNRhg2O9hazREHGtoJdcgn5KIIpY6KkFSt6JAXdc4Oz9H9vgR8jxGZ1q8eHkOI0ADGJYGXVxcBA8azwIhNptAyr46SZyg3+/D2Q7WNrDG4NHXX+NqMkGe55jP5xgMBhj0+zg8OMD7772Hq6srPHz0KDT8C27a/Jr3e/imdGpzbW8+wjpYL6K1cTP/B8vOKULAijXw6vxgT/iEUv47J+zKMC2itam8ZEKtvf9o/a8ltG3bompqbjip3iiKAkVRsE8ZMWpirmW2Rlu8hyiWW1Dapg6gGzAebRGgZ8hjI0nS4GHWsSdQx/vc9vY29vb3kCYJBv0BMbqPj1nqGGMw0OxREqHo9bBarUJ941l9xBiqMej3iEkVk0ze7x3Dfg+DfoG2ISYJAIwYLOKLgPlsG8N+H8vlCr1ejxPSluE6+3rMy9YHLBUslwvUZRnYS94qoWNfKW9+7hPdiqIIPpKr1YoGbPw6RqMRjDHY29vb2O/Wa6XrurAGfRpfYBbx4FAwExJwwbA8AP3sMdQ2DfqDAXrOYbSzgywnSdZisQjP3+9JftCy+eHX9GYt43+H5gCCTcmhNwFvWrLWsJp8bhxcYGz5EAKtFBIdka1DXdPgRhNQQCxU7jWk4ph6VlDAk07Zk0cqD/1SWiuzaASnoNZ8XghJigzhBIMyJCmEdQCDrzEDQZ4ZDD7/FA8CtFKUbBW8vqiWr9jHclkuYazFfDaj/iWO4Fwc7g8KpzEQhiPehaTwFsn+YswrqesGy2VJYFNEAUpSKVJGxHHwTQXXG11HRuZtt5Z1ekm64hou5bUtmL7kw0wo0NSFodfmOb3J3Nvc336d0/T3PTyTaVNy7ByxyHy9aRn47kQXGCzUh9D/eiahC5eDEojhEKxGdBRBxxG0iZk9jdCjaq031oJl8H7NQv37nrNfd2He7jjcBCCWjLVwEtD8dVp69ioRAuQGIcETGQLrGwCnrdDzA/XFnthAhu0WZVVCKYnOrF/PJsjt4NA1Db0XEtBCv8pI88+NAxPijgK6nDFoWJkSrg97hIb6VAreh/ljwxbE1LSO4Zi4IiTSlMCmOE4RRylmsxmupldwjjwBo0hDSfJcLdIERZYxONchSWK8fvs2ekUBY1pkOX0/PTd67U6AGf7r1yUQLsgrHx4IDeuUP0f3lg2+ib6e+02P3xqwycGhrCrM2KvpcnKFpiMGkNQau/vk+8FtPBbLJa4mU7TW4qNf/gJaKTx6/BhbwyHeeftt3H37bYy3Rnj99i3EkcJoqwfB8dTGOiyWFabTJVZlibOzM7Rti8lsCmst8l6BNKfJR8QpD15/SRtOFzZO0oLmgdmjlQoMl8VsjktxTs1AWaJrOzhREVIoJKTUkDqCSiI+RAhYqk2HVVsjbjtULVBbi7puYYVDXpC3ys72GNeOruPl2TnOzi9QNx2knHJzEmM4GqNcrSDEAs4JvDh9iaZp8Y3338fe3j6ePXuGi/NLNFUN21KCw3e/9wdYrhbB0PDTe/cwmVzi29/6Fvb299ErcvR6A+S5RRpH0ErBCDqsY62RpTQZCxuLjgDehLuuRd00uLi4QFVV6Pf7JJUBIJQmPwxHwNxwQE3AYrnEqipxenqGl6dnyPMcd15/A71eD9eO9jDoF5helZhezZHEEfr9HIBAkqSI4yQYSxpn0VrSj29vb8Ehx/7BPharFR4+fIgXL17gxYsX+PzzzzHa2sKtW68hy1IsFlQ0JXGKLM3QKQWHOBStAiIc+gGhZE6kEEAWJ4iUJoprUwdAzjk6tK3zRpuKp3A1JzqQF4FQCbRQODw8wO7eDo6PT2Ac0dVH4xE601H89/Y2kjRFwgDa7u4uokgjUsTKUHJtQKgVpePtbA35gLae7wE4geVqxRHCAtvjMZIkZhYDGUpmeU5UbZ5gFv2CvLvYvPjTe5/if/2X/xLzxRJZf4jrt29jvLuD/qCPp8fH+Ojjj/Htb38L/91/+99gd28PcVJgWRmcX0xwcvIcg8EAe/u7BDJy0eqLEe9BkCQJtraGr3hCkCSG2ItkumdZdy+wMx4FQ3FIiYePHuFHP/4xzs7O8OMf/xiXl5eBUt12BjqJEGcp8n4fUiv86rN7gWnigY+dvV30+33cffddpGmKk+cnOD17STp+S9r4lW/Y+HpGCZlg+yI8bNGetgrezJnVqGICOabzOSAWSBOi4ydZChVFKPo9XLtxA3GS0FS8aXB69hKPnjymZKSEmoc4imGswbOTE5yfnWM2n2M2m2GfvS22tobY3RkgzRLMVzVWqxo//umH+LM/+3dYLpeYTq/YdHmCqqzg2g7oOvz+976H//5/+B9hncVkcomrqyucnZ3hxYvnuHnrJvb391nyWYaC3zqHb3/zffyLf/FfoDUOZWPw1YOv8fDJE5T1M3h/MsPsg7ppcXFxCeccin7BRYKmwoML467rMJ8tQmFuOWWSJpnk9UOTPDoQfWIfUZ0pZWbFa8Ywu3I4GqHPMqt+0SMwWxHbphhQs2V4ct21HRarJexG4SUVTcfDEezWYPomWCKFDOvF6/mV0jT1VhJxmiDPMjIS5nssY9+vJEkQM3haV1X4XQJU4JBPXUeSAH/eSIk0SSGlQts2zDxqgu9cmsRMA6cpbbUqUZcVFDN4laRIewHg9PQ5rq4mBDDWZGoL+BrbA0peQsP/z8WicAgJSmVZ4vLyElGcoM8plX2WoWmtKUmuroJPRFmSD6I3EM6yHMPhKADlWmsMen1kWYbvf//7ePfdd/Hw66/x+aef4enTpzg7P4fpOty9excHBwcElDY1pvM5nj59Gsxo8zzH/sEBeoP+2u9iIHF4dAhrLeY8SRcsEe0PBtje2UHTNLiYTLAsSzh+Tr/7D76FP/qjf4KvvvoaZd3g4vICn33+OZaLBRfLZAicFTmZP19UyAAcHB7ijdu3cbA7xu6YmBZJpGAtULY0jIpiSnqTHBfd7xO9/vJygp9//BE+ufcpPvnkExzs7+Hrrx+i2N5GHMcYb29DSokv7n+Bq8kV0ozOOX9fRFGE/Z1dpGlKyT1xhLpeoSoXWC4W+Hd/9mdQSuGLzz/H4dER/viP/gh3//APsb+zg9/55jdx8vw5/s9/+2/x7PgYjx49wvn5Vq1fygAAIABJREFUeQj68E05sGYrBLl08Jh51Vh6M1FJKQJ34EBGqmYtMd0sgq0hw3Cp1oOSYBDObELF96PfH7yPjm8OyRulCV4zNacBzedzRFGEra0tFEWBvb1dHB0ekaE8n00eRHjrrbfQ7/dRMWD0xRdf4O/+7u9QZBnefvtt/v49pGmKTz75BPc++wzb4zHu3r0LYwyePHmC5XKJNEmwXC7x7W99C9/5zncAgGX5M/LOupri2rVr2Nvb46TdCPMlyUHdkye4fuM6dnZ2cHBwgBs3bhCzJNjgMeOTm1Q/sMFGk+uTzTxjtussmrpDWVZ4/PgJ5vM5vvzyS7x8+TJ443gm0aZn0smzZzhvTzEajXD79m0C3Jlt9fjxY0ynUxwdHeGdd94J8tjVaoWf/exnOD8/D16Zr732Gj744AOkaRpY648ePcJ0OsX+/j52dnZYElrhxYsX+NM//dO1nxgzF1RE62IwoBS4MCDix3K5xPHTp8iyDG/fvYvhaIRvvP8+9g8O8Fd/9Vf4y7/8ywAwJUmC0WiEKIpwdXWF6XQaGvNNPzLyyYyRZRnSlJi8gwGFU3hvxhdliVW5Yg87YpUSoxxYLpYBwNXah1RItE2Dy8kExhgM+n32BivgKMGFACJr+eyUa7avVFBREuoP52jo3Rl6j7TSMM7gcjKF0grDXs6pmRpKKnRtg7auaV/nRj2JNNU7xjIA5UJ97H0Q04xUHa3pAnPvxfPngBS4mk5Q1RWePHuGl+dnKHoFhqMBHMDAAclLnQWsk4iTHEkSo9frwRiDy8kVOmMwnc3RGgLui16PEpbTDFpH6A8GiNMEUZqgsw5V22K2XDLrf85Mzg7WWERRjChJkEiJaDgkwJxT1EquDYUUnDLhm/r/+LG51wSQfQOwCcxJ9lPyH/5zfuDmv985kpK1xrDMrQuMZwDQSoZgGTjyAjL8/nnZfBTHJB+0ZNfiIIgNx3tmpCNIpZE4B315GdhL4PvWGhPqGycEDWIYyJBaAVYwDmnQOQMTWLNk1ZDkEjLSlEqo9CuvNWG2jk/L1G2EuE1JYlZVEEIizwsIAa6RI8ymU1xcXsJZi4vLS1R1happYByg4wR5T6HX72M4GlE4wOQSojWIexFi7mM1A2xpRnXW7u5u8Fdrmgbz+RyXF+d0hkRs/M9DiphrnziO0e/3EccRtrZGIVCoNQbT6RXOL87QtR3JRB2QpjkiHaHfH6HI+1hupkJPp+jaDn/DKIh0FsI6DId93Lp1A4eHh3jnnbdx+/XXEEVv8kDK4Yc/+Gu0lhRRntkmWFWltGKDSvIChvf6Dmt3DY4Gg3fn4KxBZwy6zq7X8G94/HaATfy6bED13do4FAiTThVFRJVmuVlVU8rCbDZHAwIy6rLCsD/EsDdA27TYGg6RZQkGvQRRRLQ1BSBuDaHabD4qmB7edh2wouQOHWnUVb3WeQuQwTIXMAIU4SlAxpWus2wySTpNryE2XReiMZu2CfratusQbWjPg+SCb2KHdcSktQ5WOD+AoxSQvECSzCGE/H+Ze7MeSa7szvNn++JreOyRe3IrkVmkyCqpVA1NQzOS+gMMMMCgMOiP1vOmwTx0Qz2jBYMWSlJBqlKpFqq4M5lkbrGHe/hm7rbbnYdzr3kkR909j+VAkExGZKa7md17z/mf/9IWWBZ2a+paFgVGv57nhW6Ub0g8LNFRr9MU3/Po97uSJqbBnqIoODs/5+joiMViKVNx7aFjTGLrqqYqShq3xnfc1pzOQooWBx3j2dRtwV5VVTuRNVNvo4lXSDKgA7hFjl3YFEXBeDyh28lI9g5aRhOYjblpGVymuTFoq0wb9CauNwDDXHA1UDgcDIgjncKjtbqtVwjCpCmKXHtG0RoHGsaGQaabevN7bPQ9s8VfRqYK0DR2+55lsqZBxtrQR6128RZ5QVVpr6kopNvtMBwM8HxPDoW6ZjQaMRqN8AMfXxctg0Ff3p/SUxD9JXRNs6EIKOiItx+58YyyLKHT2+IzIokxm+L92xNnR8sOUw1QTsYTzs7PKMqK1/cPGAy3sG1HmzaK/0AUR+zs7LC9PWKRFLqQN7Gvr24N5qA1z7HxORDQwdznDQXf0NoNCm8Kft/zZFpVFCTLJefn51xdXXF9fd0WxI4j0w4/cGTapRmLeVGw0l4ZZVlIMxKErczPcSUxMM/z9n1XjY75tSwU4iFl1rgA1WaDVjf2QKv9OW5MFRp9SjQ0upioBSAo8paJtVwuyfOc+WzGcrnE933iONLad0tLMdZtAWL8PW7qrhslgP98uWIynnD88qUAz3ne7hNlXpAlK/LViqurKy4vL8CyWK/WWorQtBTmmzRx9D6OUpqJ4aFshdvYmoH0ql/Ht+ck5v7enHKBhfFvapSZwOoJLVY7fWqKze+X5pGW+l4r1cosbj7jti0MWs/z24m1kQW097jUUdr63DAMBKUn5sbv82YRefOZNp/L+IuYRttxNpOxqqraqelNQ+W2+dPvx5iPm+tjmARlWVG4pb52nmZpyhuTz+e2vlECRGkzXA022ZaNpyfnofYDkCS3RgNam4bceFfIsFf9q/exfeStG0CULqQdkxKoNvuNSHDEN8eEcxh5imFYGNmLnJPCwFKIKWe/32d/b491knB9NSFNU/r9vpiLd4WJUqumNXG3HRsHsLT3URjJnmoi440kSNZKqqUT0qQbw1OlwYwG2jMPtAzY9/B98RJB8UpCmQHIDfPQmOoaQ2g/8FG1MXxtmC5T6qYhjgICT85lzxWWnRijeiSrFSpJGG1tkWUFnh9wcHiI53ts7+wAiuOTk5YpYOquWns4mGfP3Ms4iun3Yuaex/nJsaaiyf02z6/SzGfbtrWhr9RW3zYCbx+Hb62Lza9f/X9yvpvv34gRb/eWDQNAGUNUJef+K+tOpiyv/NnfXpPffn83/X++zcwqS2F+lkXZegsZMKHb7Yqf6MEBw+GANM1aj8BK39fhcMhgMODg4IA4jnn+/DnejRAJMVJ2W5mksJe8dkpunjHzHg0QG3dihltD5osFJ2dnVHXdylVMMqhjW3iOZmhoCYVpfI0H5eba0Xp/6NwJlLJQjd0m4a6SPuvVCtdxWC6XRNqXKooE4BZWqMVqsSBP15LCNxjQNA2LxZyyNHu4ufZy3nuaFWDOeFkr5cYqQjMclZKEWAMYmqS3Xq+rDb3tV+95u0PdeJ5sG1uJXMQ00rZlEYQBexrAunX7Nvv7++zt7TIcDts9zKx1c9aY/drs7+JT6rTDhbre7Hk3nz0jwTZndKWDYfLC+JTpZOymwi6N64/VDg/MZzPni/hqCiPJ1J6GWW/qnlbKzYZhap5zz3OoKkWlwGoa6kZhNw2h6xJ4vvi3BoHUlI2oGQzYRN20siTxW6tIV2vdr9xgS+jPuV6vUcBisWyZ0kVR4BWiwnBc7eeERbrOKRu5lq5lE0Uxo20BGJNVSpNnVJXUZoa9XWrjcBdahYWRaWbZxiS8XcuVnOlEAuw7tjHD13uPEoBa6XPDcjZMl01NsklpNGv25r7X6L7j23ti+zyy8fa66TvWsjfNZ9HfM1JkMOEdmxtb1xv5nKskHECCazzdUwa6phVAwbCTbGUG6TeK9LbYvvlLC2Mu/iqA1ujEOX3O3PDevDmANc9dyww3fwc3wBJLoMv6xnNsYbfXyDFsOSXsYa/QcjF9PRzHkWAaPbAzn8kwuEx/6LpOO/S6+f/NnuxqGwzH2Ce0jClasMmkAJp1Zs6H9txopZ+y7krXw/UCHEc88YIwlHCWupaeuyxQdS2JonmGu3aYzWZEUcRqtSbNMqJoSK/XEdXFjZAgpYyP6KZ+NNfXPLNynTd9yaaWl3tj7ps5Y/81Vtu/9vrtAJsAA4K4nium0I0kuaRFIUWbUthKGAzdfp/BcIudnV3SNOPi/JwsyxhfjXm5esnzJ1/zj3/zN+wfHvLovffY3tnmhz/8fXZ2tun1OkSRj+OKeagBTvIipx43NOs1Xz1+wsuXL0nTtJ1MtFMv18W15TDvdDoEvk+/15dDRENQgevhaYq3reTh9lwP1TSML69Y6SS1shBfoQYxN93Z2RHAoNejMxjgxxE42iBOyQa/TivsUhHHA+7duY+FzdmpFBK+F76ij6+LinE+BmUxmy6wLZckWZOuczqdLrdu3WIxX/Dy+IRup8PWcEivG/Duu++yt7vLl19+weMvviAKYv72b/+evd1d3nv3u/S6PZ598w0X5+dyWCh9uGgAxnWkINjb3mFnNDK3VxfsArAMhgNG29uUtWGBrDk+PcO2be7df0C32xWT5X6f87MLHn/xBd1Ol2F/QJZl7O3u0Ov2sSwTg+u2C0I2rUaSBZqKII6ItWY+LyrWa0n+SNOUP/iD3+fhw4cEYUin18NxXImmty22hn0c2+bq6prj42OMD4jrugz7fXw/II584sinyCvWq9x8VI3sKyxbgbWhGrraUNCuZHFXVQm1FCJxLPLGohB/n/H1hCzPuH37FgeHh/QHA373vUcST5um1I2i0+0QhAFVLY2u57lCC60r0rXomF1bpl6B6xH54rfQVBIb7SNG38+fv+Crr54QxzF7O7uEUdhSLsuypKnKdjOyLIs4jjfNhVL88z//gp/97Od8/PFH5HlBv9/nhz/8Ibt7+3z15Ak///nPuXf/Pj/60Y+4e/cOThCxykpOTk9JEokw/853viOTrfNzbNvWEwG/XXtmvcZRwNagi21ZFDoy1UwvA89l2OuiFOQ6mcjV5pzHJye8OD7m448/5sc//nHLgOp0OgyGQylMsWiULVG5cUSjFJ1+l8baNCstbdmC04tzLNvi8npMkiT0+j0G/YHotT0PhRLvIFsMaWuDFtsb82p4NWpUtP268LRsfD/EthzMETCdTbk4v8D72uPTTz8FLJJEpAeLxYIkWdHv9djb3aXMci5fvICm4dEH3+Pwzm1ev/UG+/v7kkAYd8RY1fZIi4YvHz/h8eMn/OqXv+TJ558zHA75wR/+IZ1ejzIvqOuKF8+ec/LyJfNVwn/43/8DrufiBxGWJZLP119/Hcd1uby83ABs0MpePvv8Mf/p//orYbIuEibXwooCNoCJvhZRFHF4eIjjOAyGAzxPG7VraUGapliWeLHZjkOsE/SKoqQsC9IsYzqf47oOW9vb2jxerr1hE+ZFriOcLfb394k7MXdu32F/f19YEaZS0wXSYrEgzzJOj0/56vFjMXTWk04B3ITJaQImboKeQNtAbjw9Nk1GkiTt5NJIM3zfx0RrGwDGtm2iSMDgLMtYLBZ4ntf6tN29e5der9fq9QUsE7+zzz77gvliwc72SAy164qyrHC175vVWJSlfI4wCBnEW4ShT7/XxbLEj6kqKy7G5yJbtBDZr+vg6whgSeYSGrs0VobppZsgBZ4uGj1fGl/bsVtAN1mL0ef+/j6HR4c4rovne4wnE376039itV6zu7tLHMdihJvm4k836IMlIE1RlMSRx86oh+c8ZGe0zYMH9ynLglWyIo4imqZmej3l9PyM4WjE++9/QKMU82TRNnjmOUuSpAVxjIdXXhTEcdymUq5WKxSwpSPrTbLo6dkFP/2nX3B6esbxiUh4bcfWiUtyv6+vr5lcT6RRWiR4rss//vSnPP7yS37/974P1nclYez4hOvplF/9+kNW6zWvPXzI3u4Ow+GQ0faIpy+OiTodOnnO1fMJeZ7xx3/yx/zx//g/4bo2nqcHHBWkacatO//As+fPUUIRYLFccnp+hmoUyXpFmqUUlxfUdcWf/vEf8b/+L/8z6/WKL798jGoUb//Od9jeHrG1NWKVZnz6yaf89V//NRcX5/zin/6J5WLB7sEBd27f1fuBAEPpWoy2bdvB9xy9F0oxm6UiM2waOaccW+QDNwveNE2Faa79LgyOBBvGgPm3AexusgS+7Qtl0sGMdNt8ryxLznWNubu72zKQjAfVhx9+KM/Hckmn222TZe/du8ejR4/Y29vld997h+3tLfJC4uefP33K+fExnSji/fff5+hIPGOCIODy8oJnz56RJAk//vGPWy8+3/dbZtDx8TEXOjXWJHKdalN2pRRRFPH6aw/54Q9/n1op/vjf/SllVbeSaZHuCXgxXSVYram9I39emtHtRGwNetR1wzoToG2VrFrgxLYtGXpGHWwbbh3to1TN4eFO61FYCXqErRv66XRBlhW89cYbrJZLut0Oo9EWZ2fn/Of//CvG46uWZfzNN09YrWTNdbtdvXd9KsmAeUZRlLx48Zyf/OTvGY22ePTou4RhwGw2I88LXrx4zmg0Ym9vlzfeeBPHsZGE4lSbanutb2jT1G0aXNQRZsP19TWLxYIwCHjn3UfcuXuXH/3oRxweHtLvDwjDgH6/yzvvvM3nn33Gn//H/0i6mNPvdWiaDlEUsr+/K/Izbf5uwKYg8LBtyDKRjwmokuiaSprfKI5xPFfShPOCus4pclNjCsBUFAI4VVVFmRUtkGHpWm3pJeIB43lylml2gq3NmuNuh26/T6NDCeu6Zp1lGDN71/PodCKiOKTIc9arOWVZcH55iVINr91/wHA4YjQcsrezjaXQnk0Kz3GwLXCRwJ0sS0kWcxbzBZ9ffEaapmyNhkRRSFEWEkyzWGjWfyM1TVmwWiUtCFU3FXt7e/zBD36I7wd8/PEnXF5eid+v4/LwtYf84f/wb1kmS/7iL/6S84tzkVKlOessZ3w9lbUeiXQV26asao5PTnnx8pSyFNZiVQkgVtcbCWa33+fo9lELPldVxXw2oywkFbXT7yCeu5ZOuhNpeBSGOK4rzPgsoyhLZvN5CzgY5ubN5EDDYjOgqQExHFvIBJ4mOZgCUoBJS/w8o1gID3qQXWmJved6OlG21mbiiGew63J0dItut8dqvRIPzemMZ89f4GUFuzt7eL5PUZSoRtQCBvj1daiA7flYboHtCKjieh5BGJDnBdOprNd1mlOWYicjbgBSADcosjzTTJlKCBuGBYjVAiOpZrdKyIPYxizmc1Bqk/DcNETGVgBJA57NFxRVSaFlcpZjY3sWcbfD3sEB2HB2dkKpGjrdLr1Bv63ZBJiXa5/pYJjVavUKG9eyLFzP1j1crAFBawNquUJSWK0SgPZer9cr6lqhlJHwSt+o0P5XquLo7i3eeecR3U6Hw4NDQj/As2Q9HR+/4Nmzp1xcnPObD3/Nydk5//df/AW/+OUv+Hd/+if83u99T9hoUYznr6mVRV0pktWa+WJB3Inwg0BAr1LWXKZtEYqypGxqsC2C0EdhgdKMx7ykKmvqGmjAUg22kNmo/xu4028V2GS0oWaBGW2toKmCanqaehoExnMnZb1aY9sOZ/kZs/mcyXpNk66ZTCbYns/B4QFvvPEmfiAx8X4gsgrPc2mUIowjLMfG83xsO2cxX3D88pj5fM7Z2dlmqqwUURjhae15v9+XYrzfl4Wti5fID/A12h+FErsYxzEomC8WJMtETFmrGttxyTTqjmVhu6Irdn1f6IeW1lkqWaBV2WA1opPu9/t04g6+H2CXld6MxIzb1zrkqqqxrEoK8iynyGUS5Lke3W6PJFmxTBKMPtVzPXZ2dnEdh+fPnrFcSjP48uUxVVlpyrdiNptzdibpPralkXclam/PNX4nTmuwaSQdhp7s+QFRHGPlmcTy1jVJkrSNlEkUM0DB9HpKqSPbw1CMwOtaAZoNcGOSZNhF8l9KJI5RRF3Lpl6UJma35ODggA8+eF8Oh0ISYwz7Iwh8As9jbClWK7lGeZ7haTNXgCiSOM2qlIZUqQ3boEXiUHpCp32GWuaNnmzXjUa+HbBqmlzMF+fzGcskYWs0olEK3w8IQ0lR6xUltZKCwHYcsjwn1UkaSqdD5KU05a7t4No2NjaBK9elbjRbRimsBhbLJSenp4y2ttja2sJvzJRBqK7mmsCrExb5fsPp2Rm/+egjXr54gWoa/CDg4OCQg8NDPvvic87Pz3njzbd4++23GW2PsGyHsqxJkhWLxVJ8Sba29Ca8bv0dpBBs2omlyDA83ZzY1KoG3RBkWYrTiXHjULMCtYxJiefZfD7n9OyMk9NTkctUFTs7O+0EtNvrIbG/NmEUyppsmtaY3AAndSWpgsqySNYrlBJGUF4W9CwLL/DBsfG+5R1xE6yzbGtTLFi6WDDAhG3i5G09DQ5emYhkec5sKoaAp6enGNNpQ+1dr9cMh0PSNCVbrXj2yafQNNx57TVu3bvLcGvIvfv3hFmhI2SxbKpGMZ3NOD095fLigvlkIga0e3uMtrfFN6iuybOcJElYr1d8+tmneJ7P3Xv3WtPVwWBAXkiSUZsOyGZdTK6nfPXkG9Zr8WtaaWmK+RnD7jTASqcj8rleT/w+Vqs1eVa0Ezoz9fc8j+FwSBhGpGnaFnvM56CnnlEUtfR2y7I1K7LG1slw/cGA4XDI/v4+R4dHmymkLnKMP09VVmR5zmRyLfKnKNbNjIBMeZ5J2qR1Q76jiybjA2EmqAaIsiyr9VUwP3NzknbT50P2HgGb0jRlNpsRBMEr1zoIAmynli9bDDrLqmI6n3N1dYXnu/iBf2PS6rSx8EUp8cJBEIhRfRAQxSbivcSyC5m6a/AI/Uy3bA/rBstEadNRjMPFTTafmLK7rvbV0hIWU/QcHOzT6ch96/b71HVDUeSsVgndbgfHERleus503d3X+6oUpOK/4zIc9InCLpZlcf/+fRaLBdlqrQEjkUwMtrbY2dkRMMy15RnWU3XDHLEdu/VkMKwkA7obYMJxHEINxps1vVgmHJ+ccXV1xXK5INXm7+a+KyUF9zpNpRnIMkrb4eTkhGSx4N69e8yXK8aTKc+PT7i8uOTXH/4LC22SPp/fYm9/j7yqmc2XbUNSViVZntPv97lz9y6Dfofd3S2qumY2W7NcJrw8OaZWDUWek2e5SOgmIv8vq4pSKdbrlQ5Z6PDeu98ly3N6vT6qUbzx2kOGwwGrNGOdZpxfXPDrDz/k6vKSF0+fURQFO3v7ramzqafM8+y6rvY1k2HRv+a7Y79yvptJeaWnyc7/53s3/w0b0OnbkhTz30A7uW79UG783Hq9Zr1es78vn6Pf77O3tyeMWc2WPdXgsPm9e3t7dDod+v0+W6MBo9EWZQV1TSuHa+qa3Z0dDg8PGY22tIRUvBZXqxUvtXzLnFNmr1ssFsxms3bPN2D0zevV74u8wvU87lZQ1g0XF+ckq1Xb3FRVzWqdCasxEsP2PC9ZpZkMrpQe5mg/1XWaUeT5Zk8LkfAU16HbiXEci+Ggz7dfCijKipOTC1arlK1BnzLPNYAWkSQJs9mUy8vLNgFurhtyw8LK85yLi4tWvmo8i5bLpQxqfZ84jsnzvGXKr9crHMfmtdc2fm8mLc62rdafSinZl+U4jlpgarVKCMNAZKSHh7z11lvcunVrowyoazqdDnmaouqaPEspi2LDGrXj1mBc/h4bx9m8DzkjoKoszbxyiWPDJnJ1WpRJtG3a92hYtnUt/n9FnksKm67BjT+oAIOOqEEAlAB/cUeADD+ICMKQumooy7rds5tmkx7m+T5hKMOkshTPJJHGi9zdpD7v7u7JQKaQAYpny6DG1V+rZAlN3Z57WZZSlh1832uHK3WhQaemYZ2uqSoZGrQsMyXv8WD/gCiO+eabZ7juDNcTFvJwOOLBgwdMZzMB61xX19gVZS0ye09Lm8R7SEyOk2TFep3qQVHVAoBGOluW4ukYd2LZS1LaoW5RlXRtS5+9hp1etcMhAyCV2oKh0XufOVPM31HoxDvDMpYBi0+o5eIGDDd7wCuDLN0HdDsdup1uW6MrDWQ1dd3+fvP3opk4nufx4MFrDIdDrsZjxpMxdSPSYePZZZJ9lWaF2rpXd1zpoW8y8SSp2sXz/JZFV5aV9i4rtDTP0dfJRllWy6Aye7Xruni2yMAaJQMHA/Ap/ayYZEqlFK4+64ugEHsXvafXTUNe5Diu3GulWchtWm1HajfbdXUyvHcjddDUo5uUSfMcGqWG2Qds2269+6SXszXgZFi8qgUWN8y5UksbN2mdlu5ZjOF8p9vlwcOHjEYj3v7Od+h1uoSuh2fbPP7qS/pbA756/JiPf/Mb0jzn6bNnTKfTtqdVShhvtuuilLDrJFBMbFxsx8Gq65aNXtc62KURpY2F9irF0qobkdCJ13JLY28J7f+t128N2GTpKWAURYx2doi7PYqyZJEk5GXJ5XhCluc4rkhy4ihme7SDahSH+4eUZcm9O/dYzheMz88ZX5xjWTbHJzIFBBhuDXn99YccHOwxGm1zcHCIbcP2oEOjIsLAIy8KhoMu7z16m+Uy4eJyrKmpUpiITM7WiVAyAfE92SDWWkdtNO9xFNHrdsWsV8u0jo6OyLOMupLDxvc88emwHZQFaZ6xWq8lRtG38fwOlb5GBlGnrjX9UJpRx3Yp6pLpdExVNYShbCoXF5csFhI7nqYZeS6yOD/wQSn6gyGz6Yy6bkjXKccnJwR+QF5UuF5I1OnSH27hByHrPCctclzPJerE3Lp7hyCMqcuSMi/Ek0kXT6hGWnbXlcQO3XBVjRgml2XJfDEXo0ytNTYm1bLYxXwZ28Kp5SAbDPt4rujgm6bh2dPnrJOUTiemq6d9vm8Kd0mY8jyXuo51/LRFUVTMZjNmM0m3uL6+ZjqbMV8s2wWudGEFkOdiihjHHe7evctsNuPrr7+mLEtePn+hJwIH7O7uEHghcdRpG/i6ls1RNTV5kZMXGYqGMBIvCD/wqBuHIklI04wst1mnq3YKaLsO/UEfP5RizLEtrqfXPH32lHWacnE1pqwqRtsjzcgRy6goCtnZ3RFqsGSVivwE+QFbiQzG16bH48k1WZaSFyXb29v0+32CIMT1vbbYNtRWWaiANi9vmoaLsyuWyZIvPv+cTz76CNf3eO9736PX6zGZXrPOM7DE4+jW7SNee+0+tuMwvrrS0dCFBvFyFosFVSVTIkMxF9ZKlyDqNuH9AAAgAElEQVTw8VwHz3VYr9d8+fgJWV5wNZ6QphmXlxfMZlPCwCfWoEd/OMS2HeqqpKkrvnz8mK+0IbjEEUuyVhRFWI6jD2Ax61+t15IkVDdcz67J85woioX1puU1N9mj3X6PqCNm6uY5MgBDrbX0+pzTenAd52rbLRsPc50tk9Il98jouc30JgxDAX+amlLLepUFXuETRiFN3dDtdtne3iaNIuaHB5IC40uhGIY+u9sDHd1c6oZcvL2CMCDqdmSPsKCsSq6nUyotcyiynLqpuXPnDtfXE1bJUq+tvG0UjdRRfDpsfF8A0vFkQp7n+Ccn5IVMuUxggG3Z2uRc6OHJYslcm8l3NcgUBhGqgX5vQLgbkiRLbaq6OT/efPNNdnf3WuP/2XzO6OQYgF6/h+N5baR0C3C7LqPtEVEU8ejRIw7294WpMdDgRil7daYLwvlU9qAgCBmOtuh2uuzt7WHbFslqqZtTR2KUdZqp6zqtb4nxKno1mrvQzIxXR0MtyGHZdDtdfY21zEXLlFQjwQK+57G3K8loDx885OjokGWSMF8sNRjk6pjihqzIODs/Yzq91nR5mSh24xjb1vG6TU3gy9DEcWw8V3wM4ijCtixOTk6YzuatPMJuZLIoShxNkbfF6N5Ec4vxrbAvAi8Ahxa8tWxb+2ttALksywQ83driwYMHDLe2WCSSJmS8q549e87zZy+I45jt7W1QMJ3OSFdrPv30czzP52B/n3u3b7O/u8W/+YPvCzi/zsmzQhdpT7m+vubjjz/GcR1s32ubNQP6RVGEZVttCpqhyFvWxvA3DEOZqOp6wUzF0yzl5fFLksWCs5MTeR6HwxYg9LRxrVOI0W7o+6BgMr3mejIh+NnPuLy4YLlMuLq6JFkmzBZzYbScnZFlORdXlzx/+VIa9/mcvCzY2d2laRqmsxm/+vDXDAd99vZ2tMfOS5nWNg2379zhk3/5Fz75zW+IOx0ePnyIUor5TBr+7777Xba3t/nue+/RYON5AbeONBjbKK5nC3794Yd88sknfP311xwfn1DkOXtHRzI8CiPNzhAZzUYW92qJqtRN2Zb8zM0a0QzFBJiSIrisaixq3RRombqOzw5CkVatVmuqUtLgPM9nazTiYH+fuq65vLoizzMW8wXT6ZRer0d/MJCaRssnd3d3sWyL73//+7zzzjv0Bz12d7e5uhqDZTGbTql043p9LfcsTVP+y9/8Db1el08//ViSEeMuvh/y6Ref0xsOcTyPFy9fkuaZgMOWxRdffsHxyQnr1UoaJccROSSK5VLS6Nap+JipRrVJpUEYArBcLvnmm2+wLIXnewy3tnjzd94mjGK2hgN63Rgsu/UhXK1WLWBqmlHHcSjKisn1QstV5J6EOoXYNFGuI4BUVdUskhLbgjgSpnlVNS2r0vcdXMdmOBzInl0PoK40oJtS5DnTyYTr8ZjDo6OWxWz2v+VySdM0rcWD8U3J81wUBkHAxcXFhgniOJyennJycsLZ2Rmnp6fi/ZZl7VBEAG5hFsl5FdKohmWyAe9ME1hVFdPplJ/+9Kdsb28zHA7b/afX67E1GrGzv9+eJ2YfN5Knf82DrKqqFjwwAAJsUqI826SZSnNe15WAwY2OSUZkcY4CzwNiBJDSQ9PVei2Au+O2DbNlOboWb3Bdj0oHVsj3BdyKOx2aRiTmUg+XLFdLyiIXlmNZtDKl1XrN1XisE7EWOJaFZwkzOXA1Q7lpsJqGZLlgMr4kWS6llshzijwj8D2apsLSsj9bM3hUGFA1DmVdCkhbVRRlzSpJuL6eEGmGyE3p4Xw+46PffMRqvdKJch6NlhVGYUh/MMAEMQDCqKkq6bc8l8AJWpC1LMTTcDqbiXS5rrmaTPTATYbkWSFs79l8LmtUbfoIA6AZBqKRPkZR1KYI7+7utj52vu+3g09PM5uMN6Or/Scd29HhQc5GgqifGcuSGsD3/RuSKG3ZoDZgupF7Goab4zgM9VnkeC7KgsvxmPlygW2LHNaytaS60bI77WknfUbzyjNsvBR932+Z26Z3LTQQ6xgvZP1sevq9wUZ2aup/T9eE5iwWmbTYNRhGcVEUlE2D67g09QbQLLVdjQxqFfrt4zjg+3KmR3FM3OnSKGQAvlzRNGLe7XmigJK0yQjPc+l2hXFvPk9ZFiwXi3YfFBmikcxuwKYNiJm1tV9hwm8sbcvviouaDIkyrsZXfPLZpwz6A9L1WhLodnbpd0T5887bjzjcP2BvZ4flcsGzr5+wShJ+8pOf8OknH3M9mdDv9ynyAi+QAX9WZCx1WIdBiYxMWmwNBIzDQkt4awEQDSvSdrBtTVbQgNNNVvF/7fVbAzaB+BAZ2cTtu/dEb1nXrNZrPvrkEybXU0rtr9HvDdje3paUlG4PC4sHd++zSlZ88/UTvn7yhMl4zJPHX6GU4vzijDAM+eCDD3j48CFvvvkGo9E2Ueiz1e9gOxb9QZ+qgdcf3sMBkiRlPJ6JwbeelpgDw5jjtRrcqub6ekKe5VSlmMp1Ox1GW1ttLKqti1LjX1BrOqCANZLCIf4wayzHptsP8TwoGwXaq6CuNA2xUS3zwbGF/XE9mZJmWUvdn06nLJdC3VsslhRFyeXVFXGnw/bWkH6vhx8ENLVIFs/P5bDudYUtFUYdafSCUJuoFjieSxRHHBweMRiMSFdrVosleZZxzZiqLKiLXJoPx20PDsexsSubqqkpKikeDEqOLWlMQRhohoLWvToOrlJ04ph+v0dTN8x1gd2JuyTJmju3b9HrdnVT677CKrIsOVAMz6mpa+bzBdPZjNl0xmw2Y7FYslwmGqWXKVJVV+3CaxSEkRijV1XF2dmZTBKrCguLJElI05zt0Tbdjkz0Kp3eVFWgGmnE8yITKRVy3zzfw1EN9aImyzORZinxVOj2+tiOTbffIapD8T2wLebzGb/55GOmsxlff/OUPM+5d+8uOzvbMtnxfaGAOugmJhIQsxaOtKoVtrJ0TK6HaqQpm06nNHXVGp36ga/lcbwClLxK2bVRTc3F5QUXl5d89dVXfPnF5zx8/XW+/8M/aA0yx5MJCovR9jb7B/vcu3+HZbLi8eNvyPOCRkdu5rmwZaq6fiWVpa4r4jik3+/h2uBYkCwXPPnmOYvFgqdPn7JcLnn69BsuLs7bwq7b7XL//n08z2tTkL755muePX+q5TaD1pQ1jmNmi4Xopm2R+JSVAN3G6LuuxXQ6CANpRm0pHs1h0el0hAkFrX+QKVSLqmwn6+b6GZNqk+LXTvKtzc94vkg61smKupLrEgQBQRi2Ru2G8l01Na5X4msJbxzFDPp9wjDkem9PCiotxwp9j+2tPmXVsHByPSl1sC1FEPqEcYSnY6GrqmK+mFPUFZfn56ySFbcODzk6OsSyFKcnLzGm3jf1244nMc3Gx8bo0heLBVhW68uwYbds4m8BMZddzInjDlgOYVjT6YjJ/v7ePru7uyyWXYkpLktJ1gxCHj54yP0HD1itVsKcmk2JOnHrE6dQOpVPaPlNIz57/b40mG+99Rb37t4lCjwCX3wqskLA8OV8TpZlbVysH/gMhrKPGlN9kYLl6CifV5qNXrfXToGNNM6cLYadYEALwxBar9cUucQzdzRbxhRiJhlLkkxE0rKzvc3u7i5379zhzp07XI2v2n2sRmQzDTLtS5KlZqtVlKUY8XfjjoBYjQwNTFNTVxVlkeN5Hgd7ewRBwHIxJ0tTXEdkUI6RcFgWtdbzW7atzcVdfM/XCTHrFpQE2qQt13UF5IZXrk2WSSN+9+5d9vb2hQ2sm7W6rsnSnJPjU8JQ0ruqquL05Iwsy/jyq6+pGvjgvUe88eAu0faA7e13UVqSnqUFH3/yiQAr8xnj6Qw/CNg/OiQIb3pCCdvWrDnLslrGnfH3MMW2yDZSofDPZmRZxtn5uQxWsox0sRAZlk7mMqy8qjbsZDFxr6uKl5cXJIsFq9WKr7/+ur0mYqYrpvQXl5cstDG672+YapZlMRqNxDB1ueSTTz9lMBiwP95nuVzy8ccfU9c177//PoeHh/zypz/l848+4sEbb/C7v/d72I7DixcvKIqC97/3Ae+8/Ta3Dw9Qlo3ruRzs79HUDZPpnFWS8Otff8hf/dVfakb4BUEQcP/+XWETKigKYRMbRpJtS/lpygDzUmojd9uATcYLzrDFhJmIZqQoBZ4nEv4GkbviWniaKVDN5mIs77qEkcP29ohHjx4JE+2rxywWAjTN53M832fo2KgK8iLH0udX3Il59733+Dc//CG9foednS1tQivn6Gwh+8PTb56CUsznc/7hH/8BC4tf/nKbKIzY3dulPxgwGY/p9vs4nsfJ6QmLZInSLMsnT77m7PxMvOCKksItWa1XNEoA/yzNWu9Px3EkCMI2qbaQrFZSl2QZaV5w+84dbt19QBR3GA66OLbFbJEwnQvYZPxCjJeTaUrLsmKaFRgzdyObMRIdyzJMRdoGr62NPZeqbkizCk9LNx3bluQ7Ba4jkffX1zNWmmE4n82YT6ccHkmCpDkXzSDKcRwODg4Iw1DXXZLI2+l0xHZgPMayLLa3t4miaHM/PY8vvvii3YtNY++6rranqEUSGAQCHMymrWTHnEe1Zkb/6le/otOR4eNwOOT27dvcuXOH/mDAaHcXx/fb88HUojfZqeacNGv45r5h3p9lC1vP11HxMnyUpE0LS3qGstBrXBKLPc/Cce3W0Fo1FWm6psiLFqyyLLuVY1VKyTBLp8x5fkAYSuMfurIHF0Uh0qa6Ii8zyrIQhlVVtSBBmqZcc81yueDq8grfcej6AvaFnodrW9RlSVOWJMs546sL8jQjWS6EZZEXVKGwhixEjm2SNnF83MaRYRsyxM2KnNVqzWw6o8jL1vvKyO6XCxl83vTXNEQBMxwSdYH0TEVVQlO3Xj2h9ka1EHCrrgRgEYlWzUQPZwrdD5q6LU0WNFWN8Y8150XTNMJO1fJ427Y5PDrijbfeYmtri0ePHrV+bUNt5dDr9V5RD5iQqnZ/ZMMOfjUvbPOqG/H1hA0LzrD4xFtSs0KdGz0TUNY1aZHjBT6L5VKu6SoREOrGn98yqB0HR9fGBmASqbnb7iU3mYNFUWC7Lr7eQ8xnc3VyoQHozP5vYdF8y5/KoBqWJdfYME/LspReuH7Vw84w8g3YZNvoNeO05vxR3NEyvloGE1VJVZetbcpGUudrH1taxqJSDYkmmiiFTsZ1cD2n/X0CthU0mtlnajgzmHUck1yssC2R/1EUjK+vefzVY7qdLnme0u/1yB4+ZG9nl4PdPe7fvYd67TXef/89JpMx/+ef/RnfPHnCz//555weH3P71hHf+c5bkjrt29S10szwlTz71oZJpfT6c3DQc5yWcGDb4NiWvnbGjwtJnLf++0AT/BaBTWYKmCwTlotl25QoWxIWGhmt6NpX6RvktFH2tm0z3BrSiWNUU9OJYybjCd24Q57L9KZRDcvFkuOXx2K6HEf0eh2Koz1psP0Q2xFZlOtYRL7DsBdpuYbfUopNMyBTeNXSzwJPIsaVnjaHQaA19joFwoK6CsW0VgkNP89y5rMltapJ84yiyHF9jwbFIO8I6OHYxFGAWzcUtaTpycIRHa5ZEMa3ptBG4GkqzAxjer1OViJ9sx2JlbQdlsmaZSJIbrpO8TyXw4MDet0urucz2BoRdTrUjejD58sVk+mcyeWExSIhX69Za8+AxXQqkxRL4VgmztsW3Wgo188PwvbBrurqBu3SbpF8oRpm5GVJUVY6utLR/im6gdcL/aaxL6BlXao1srMs0QQ3SszfhsOB0Kpff41Or8PB4QFRFJGsEk7PxrL4bZn+GG8G15bnoduJuXv3DvP5gpfPJR1muVwym83oxjGeJ9RJx/Y1C05+XdWycbmeq5OYLGxXZG0ti6epqZoKx3VbuYrtCk3a01JCPwgYbW/h+cLAK8uSO3duM9oe6UhlV0fOC91eak9F6Pti7G67eI4kOxSlGNFOp0Jd7/e7DPo9Yi018lyZpIjXQkWtGhzL2Ri/KgEoP/n0U758/JiLq0uibpe416Xb7WLZNotkTVVX3Lp1i8FwwO7enpj6l5UknDQutWWMR2vSLMPzXXo6FcYwOM4vLjk9O6MqC6oi52o84cvHX7Jer7m6GgvduakJbsgMbMfhejbFtuwWkOkP+rz99tsCLOqv1XpNplkVURyT6TQ7S5sLK6WIcgF2XFemJnAjelZ/mb+3LEsKPW0Lw1A/T1bLEDNyQBPt7mj5kGNvUpIsXXQaFmUYClvJsoRxAmhab6N/bbG7s6O9jjaG4LmWKfzgBz8gCHwODw7p9/vCGq0VRSlAp23ZNLGP7diEUSRFT7+HH8fYvk9eltiFRDd7vkeWZ4wnY7I8oz8QKY3nu5hIXKU/hzGXFVBB0enEmuUgbAPXE5p4oyTAoKrEZyzPbVTTEEexTOkaiYKfTa9ZrXx63S6hLnZGW1taSpGglEz81+sVtg3dboxlK5pGGFSGHWuYPOKhJiCzJO7YhJ5D6DnYtgAmjVIadGlaUGa1Slgs5lRVKVJb/QWS/FJZmxJQiIByLVxXS8SDAD8IqCphld0MO2jaAkT8PUz6mzGdbCfaliUpLY5MzYwkxzSPUvjIz7mOC7aN7XpUVc3tW0dYFq33gWGbADh6f1V1hTHntZCfrUqhqI+2trSU2CPPMlzNejKMHPM5iqZpjX0D36ejpTDz+UJAMr1l27q5snWKj21bco5r6vlkMuHp06fiD2FJQiGWxXAoMexvvvmGeHoNBty5c4eyrPA9nyzN2N3bJQgEAJovknYtAoR+SBi4vPHm6/zRH/0RF5dXPP7mKa4nwRHihSf3wzCt5B47bQNuBk6GyahvZCs16HTEE62sZMJq9fpY2zt4nsSS27bdgp5+4LO7syPgSClN1M7ODv1ej8DzxXdFJxyK2bgv+3sY3fCJsFs7ArO/2I7NOk1R19d0ul22RiM63a7EVtcVW6ORSNFcB1yH/nDAd37nLX3ejCjLkocP7rO/v0Ov1wXLolYNaV6RZxmfff4FF5dXPH32nPliQaNgZ3dXJvVRLHtGmreBCWKqaqHVEbrY3QBO+glvmxvDrDXx7LaedIspvBjOooc4tknX0TWa53mtdGCdpkQdYcz0+j0ePLhLWVas0hWT65inX3/Narls/de4wSJcpWt95qXi01WHYEEYBty9e5vR9haLRUKaZyyXC148f4bne3S6HVlXjrCt0ywFS2qfuBODBS+Pj+n1e9y/e4+t0RYffPC7HB3t8+zZM/75Zz8nXSVt6qNqlAARltgs2Hp9W5aFq9l4i/mCdZLQ7XWptMyqrATYWCUZdV3SYLXXJoqi9j2aZlQGmzV1VeH7HmHgtc+9eAla7RlU5IadWeprlWnG2+b+1TXkVcHTZ89JlitGwz6DXoeyqul0YjrdDmEkoRvi07PSvkquXlvCXN3b26XfH9DpxIRBwHyxYDKZcH095ZNPPtZMF1pzX8exX5EdKSXPigCe2ixXNQJwFk3LEHN0PW0YIGZPNQxaY8h7fHzMy5cvefLkScvSNsPem0EON5toc36bPd8MDgxLJ00zkR/Vhn2kaw5rk6BIuWGuGLaBa7vyLCg04KRw3Vwn5Kr2nsFmD0zTlLpu8APxybJsqfEAct0QCwu5wELYtJbjaKB3I30yz0TTyBqxgMzS4TSqwVLy7Be5gFYSX9+Q5ylJYmlJt1FBiLFzmRby3OY5ZSGMLkcPOeezmch+05Ra7/ciac05Oz0lz3MuLy4kraxNY6tpas3i0uemUo1IglSjB9TWhoXWNDR20w4HGyWpgHJNtKTd7F+N9HNlVWmAbxPEEccdXFfO/SAM2T84YG9vj36/r1lAPlmWM5sJ8DqfL/S60ew4y26vsfn/xhhbjMWVlr0LCCY1TtWaqe/v7hKFEb1er/UXjDux3uOs9v0LCCXPXVVKLWHbG0uHsqpbCbmwDmtJq81zIUyUFa7jtow/1/coi1JaZP0+m7qhqWqaqsZS0NhiT1NXFcq2teyublneErYlr1qb3Kta2NlKkzxuDq4sfQ8NsGuG2ALwinRNgsKsdu1VZUmRpuSrNehnJQwDev0e/X6P27dvtynfURS1w47lcqkDhmZMJtd6Lcl1M0NpMwwACRNrVIPjiA9bVVfi2atflh7oy5C/QWlfp/F4zHq9Jgp8Fp0OZZ5z3D3mcHePi4NDPNchDH0Wc0m/XCYJy+WK5XJFVTfia5lmRKFgD2VRSqBPvpHxmedYZHwK25IEStWAY9f6Wd7YxNi2LVIaGw1i8t99/RaBTTXL5YLJeCyHqNarBnGs9a2aHaApgSYlRwoakcSMBkMc2+Hhg/vUVc1sOuXp198wm8349a9+xXR6zdXlJcfHL7m6uuTq6oqdnW0evftdur0uB3t7dDoRoe0TeC5+7NMNhdZvoWljmOLH/EOSx5SCqtmTqY2lJNHG2rjmtz4hNzcoEMPEoiCvChbJgiRJKOuKVbZiuN2l0Q3RcBhTNZCsK4pKFwJ1QxSGdOK4pQiLnr2SRrTWKUlVRZWlVHnOZ599zvnFJUUhm+7V+JrL8bVQs9eJFBSuh+W4BHGHw1t3JFK1VqyygrPzCWVl8fzpc64uLrVWfCUeJqsEC+h1Y8LA53ZegmVrjXQfz/PodLoYvW5RltLkWZL+Nez19SZWskxK5oulmJnptDDlbCb+yWpFVdXs74lMoFEb5kjTVLpAMb4+jfgbadlbVe3ghT7LVcLe3j6DwYCr8ZgPP/yQqqrodLoE2gB0Z2cH17ZwbYvt7SHf+/4HXF9fc3pywlx7nyilGPQ6BIGtvRDMMyMvMQoXtkqtalCIZMiRCatCokuLqsCyNvKpohIkPPBkytftxNy/d480z9jZ3aFpFLduHbG1NaRWGlCztc+VMlIURbcTM+j0EM0u1JUYfa7XKS+Oj3n58oVEZj64L1Rj7ZVkwIIC8bFyHDHptZAJyHy55C//+q/427/7O3w/ZLS3K18721RVzcvTM8qy4tG73+W9994jimKSZE1eFNJw2DZVJVPoohJK8vb2iL39PZkcZCVplvHzn/+cFy9eMJ1OmV5fk6wSLi7P24IJIPA9uv1eS0XO85zjk5ONCbNSvPveu7zz9u9I4tp8TpIkPH78mCzLuHv/HjujLS4urkRK0e9x6/ZtnV6izSDnc4lW9+Q5NIc9oCOGY5ZJwmq9bk1NwRjjy4SsURvKsZEuyDMrSRnGz0mmPi4oC9/xhRa/FOPWmxO1Rom04bUHD1vPq6qqGF+Nef7sGbduHfHv//3/xv7+PtfXU9brlK3RiHXZkGUFiyTBtW2G/UgijQcDDo+OGO3tEY62cIKAtU7dslyHwA5ZLBdcXp4TBgEHh/sopVivs5aNUtc1tmPAJkVdi7n89rZ4j5k0Tt/3GQwHGiQfkxcFSZJQ1zWD4ZAtPYVU2vBxOhmLPFb7+O3v73P/3j2up1OePn2qfWimTGd9trdHjEZb7DDkwZ1D5osF//iLX7FO15SVJM4oGoJQs680eNINPAahR1Yr8lrpIUejfRZysizlejLm7OwUlKIbR3Q7Md2OsPGWC4/Slgm0QVNs28LV3lWB79PpdojCUBgxhi6OaOFLLV8T0NrDdR0pDNv9RBklK51OLJG/WEyvr6nriuVijuc6FHmGamocy8bXHoBxr0/UiXn3vXe5ffe2pE3pwqzWRchisdBRz6UkzjnSsElhV2JrENWxLNJ0TVkUOHoajS7QzcRezPe7xHFMHEVsDYYkScLJyRllVbd7trDfvFZSasAAMekVMPzFy5f84pe/ZDAY8PY77zDcGvLaaw+EBX37Nj/4gx/o9K8eVVVxeX6p04UyvSZqzi6uWgmL67i8dv82g36PP/q3f8i77/0u//TPv2DyZ/8HICBmEIaSwFgJK880k4H2UOtEcQsaG98lZSaEltVKbMwgqCzLVuqnVMN0LixdE5H+8OFDHj54SFEUXFxcUFcVO689xHUcksWyZTL5gQxpQu2HaBpYI9MwxaB5D7ZtM1vMuZqMOTg65M69uwRBwKN3v0tTN1yNr0T+4/vg++zfPuJP/uSP6PUHjK/nlGXF3vaAQa+jfbfEAHeViOfa//Nf/obPPvucly9fcHZxyc7OLg9fe0MYMq6ljcYz0jSXhNMooqkFYFbqBtCki95G10tSN+n60IQm2A6WBlccM6W3a52A5wgbtDJpix5hFFJqGeNsPqM/7OP6HgcHe/zgB98TCZ7ncn52zi9/9jOm4ytG21sCWhUWZSX7aV7mLD2P2XzGar0ijgMsFL1uhw8+eJemaVisMrK8ZDad8tFHvyGKQ3Z2twU81sjZYrlgvpwThRGj7S3qpuFfPvqQbrfLW2+9yWuvP+SH/+b32N0Z8ef/6c/56d//Pes0BcciiEJ2tnfodbtYdiApko3UgrZtEWkw//LygtPzU6JuRFHmFGVOruVyZ+dnLJOEvb099vf3WxbTTTaB2cOFzVji2Ba9TkQQeDRKmiFHCOms04xkKYOCTLOBqqpi6ToEQahZbRZlBfP5mr/725/w7Pkz3n7rLR7cv8fOzjZ3795lZ2eH3mBA3Om0TVun06Hb7aL0mdnpxLz++uscHR3x/vvv8drDB7x4ccwXXz7m888/5ze/+ReWy6XUA8GGMShncUefU+vW76UsSwmvsC2qqqHWqWZm6JmmafuZZrMZSilOTk5e8fHZ29tjb2+vZTmY4AYjITJDqpu2ADeBp5uAlKWZxJYt3jFRKECE7QoAZGnmmW1b5JkGm/Rz5bkeURSKjUMU0zSShpjnOek6Y7Va66Guo+XxBWVlUZQFFg5+IEoGR8uFLMsiLwuqumG9FpZwFIWMhn0ax8HOUhpUy6yRWsahLksWy0QGM2lKU9fEgU/ou6TrFet1ogchlQz/lzPSLGEw6BMEA0xYgAyeJJxglSxJU/Hx9AOfpqo4Oz3B932SZUMARU8AACAASURBVEpZiookDgOu9WBinaZcTSaUVcnu/j79QZ+mKqmLAlwX17YB8XJqKrG7AIXj2G2qoaxbJTJwz6NqGlY3PPVAUuhsy5K0bSUDvuViKR5ZysJ1PbaGwi7d2tpiOByyu7fL66+/SRRF9PtDPM9lsVhydTVuQceyKlsZpEm6bX3CmoZS+9ya2nKxWJClGdfXE8aTScuAjaOI773/Abu7uzx4IOflwcEBDx8+bAcX0muIh3BRVpj0PhM6gj5HsrzQQJaAoEVZMZvOhUG51l5lnsdgMGiHuXVZg7Jo6g14XZUVVV6gHBebjRG4WSM3h28CamxCHtoaU/v/muHcJmjFbvczE+oxnkxIs4zlcsU6zelYPq7rYXzd8ixjNZuRzGbge1iuyArv3rnLweEBH3zwu/R6G9DJvC4uJMjh/Pycs7Ozlolelmv6SJ3gOh7dbv8VZlqarls2dF5s9sybZBYTypRmKePJmCAISBYL8QrWZIrD/T2ODg4YDgbcu3uHPE05OTlhPB4zvpowHl9z/959hsMRqoFBr4elxMZgqqak61ST1w1LrhWo4zqO1uaKNFdr6jT2YuHaDo1jYetB+f8PrOm3B2zC0vTQqiRLZTrkej6hXnxFXkgMsKY1ZlnKcrkQFo9CphiWg41FHEXEYUQYBuzv7RCFHkdHB4SBz+nZGXmWkaZrJuMrQDGZSAJMHIUo1eA0FU4TCKXMdlrasPFcMQyrRikspUOi1Ub3qGxdLGmamQBLckNdvWEYIChNM2ZzSWiYzmesEqEsWo5N2aKe5jFQ7QKTSyYI7M7OCNuxuP/gDqPFsAWbyqqmKIUVsJrP8Twx2Y00Y8BxvdaoGyDNxFA3y4Squl6npFmOhSLVlLqT01MxAT2/4HpyTVUWQimtK6o8x7ZomWZlZWK7G22mKtdAob2AVAM2OAiabEyyTcS7Sf2y9J+pFO3P1HUlCQerFcvlAugwHMRtIuB/JXS7LajM6ihLkdMslzIhE38OtzWmty2DgMsEKYoiIt1kGOCrBRQNuepbMK/xLVFKDAUb1eBWYqxn2CguDg3eDR027bNnDgXHdUW64YkErlFKJufaJ2ijRxaGifHzMUCGMfKtNSspzdJ2SuHfMCCUSUcjiRHqhpRBewnlRc715Jrz83NmU3lmO/tdtnU6VJpKJLevTRt73S6DQV+KzlIOtbYhc2yUbZg6tWYr2pRFyXgyZrlMONHTw3S9Zp2mrXGjOYCFLSNyQwM2mc29la9ZxhBQ/K2WmiJsnolaU3wlmSyjp6VRQRiyXq0otGylKvVEVINEppAMgoBQU3oLXWyG2uS+9W7Snh62Y+M6Tls8tkaPGImiTPBdPcGnkb2kF3domprFYslsOtWUbZkmG5lSuk5JkiXJcimy3CwnDkP6vS6ZnpjmWcbF+QUW4Dmil1eWRaPA94WNaQpm27ZbqaCrfQLqptZmlm47BbSsDDMpNNPCptkUDehiwrZsykr2Ms8V8++yLFkkS6Ht6mfNsHqaVya/AmAky4TZdEYURnJPqpJ+vy/7saY3p+s1K18DSFFI4PvEYcQ6TFksl6TrtGWBRmFIr9el3+/he672HGqoSpkOiyHlhpptpF1yzT1hhmmgRRr+smUV2ea+3viS80MnGlaVpLbpxkSZCPqm0f53ephhnmWl2uck8H06ccR65bd6esNiNYwq8x5QQuOuylIkx54n8mbD0GsUpeNSaQ8K2wqx9D13HCkCS21A7LnyHCgl4Re+luUaf4ii0B4GTdMCbG38r+2053lTbwYEr26YVgvIGk+GRhdiVV2RrCTJbTqd6vSwTdNmwNt+v0+n02E8HpPnOZPra9K1ND95lglbw7PJshGW7TEc9hmNttjf36OqxavKtiwxGdbGu6YJMXu8YTuZ4rhN0DGNO7RFt+vKxLfX67G7uytT6FdYipsJrWFKOrZJt3Fbs27TsFo3ZKeWHnw5jtNKec2cUkE7cTem/Uae2u/1sGyLLM9YJkts12W0s0O338dyHGEf631xPJ4wn02FlYvVygFmM5nqTqdicWCipI0EpK6rdlKNtWEiyb6s02Mxh+cNapM+cMwebVu2Hths0joxTA39Vbfrr2rlNcbEvZWdaNaonPEuVqMlolpma+t92dwXW+/HpZ6qt9IMvbcJk0P2kZPTC2bzJWPd5CpoDX+VbhAqvb6FgS3MVOOZ5HmuMHw0yCADDc2m07IUU4cayVVDQ6VKGmW1zBff9/QZ6LRr8cmTr+jEHa6uJ6zTlCAIODw8bFmHZj+qm6aVnzVNg6obVqsQ11H8v8y9WZcc6X3m93tjz4jca0cVUGg0eu8mRYoWJUqjzeTInDPjT6AP4Qsff4w5x5/Cd7yQbZnSsSyOZ0SJTfXCBtnd6G40gNorqyrXyNgXX/zfiKrWkXzNPAcEgQaqEpkZ8f6X5/k9jlbXGYZJx3XwXIciL9vz7erqSga5eoDVpOut12uur66YTqe8ePGC09MTer6PoaTxkgHZREOYv/lomv677KbFYkEURaSpAPyX2mb6rw1w7i7Nmvf07teW++k3f++uTfAu5L/5+nd/v2n4q6pqWVGNfeju92uHF82AVN877g6eGqt3k9osFidD0oTR769l6WvdEpVIVeqfxb6lVBN1b7ZqrrKoWrdDowosa7kmKl2Hy4LLEkuUvgbqSvSFjSrXNNTteahVsQJatvTi3yarZGhXauWw1O6iuC+LrDkA5TmiNBMmp8glnbuuK0zLaM9Caahk4VPrpY8wchY4jit1eQ1lnpHGEUkSaftgimUqlGFj6qVXoZUipmlhNUzAWJafSsn15zg2rivLvabeaD8z9W1j/i9tbaZWe7luRelX7fKh0meg53k6SORWzdoMGEzTbPlpzTClKAtJS67rlsdkmk0qWsJqHUrdtFxS5Dkr7S5ZrVYsV6u2GWn+vqkxIeKAMNrn13zmBJWhbq2cWqVelCVZmmkGUio9xZ1zL8/zVl1vmsJUdTQLrTHZFkVBnkntURQFdlHoHlbJ17pzrTXXQ1u3oK2CjUKjRuzGLYqm+EZP3Dpc7lzP7dnaLIPqWwWUWEyNtj/6l9c+taiMGwxEc00rpb7hqmnqleZMuH0ejRr3NohARBBaHYhqzFG3y6oa0IOc5vxqlY9IumBVlNxYJqquidZrHMtqX1/TEN5vmRf0+n3piBXY+jkWeU5c1aIYzHPKoqRpYBtXUN0gFBrVU43U9pVqv54yVDskVFqBVvJvP35Lhk2K2jDJy4I0jbmaXDKbzTBsC6fToazrljmU5jlZURKtI6ZX1yIftaThCZcr8jTnnbff5p133mbUD/jd33mDoii5v3+P+WLJ3//93/PrX/+acLng8vJM1ABFxmDQZzUXIv+o16Pf7eK5Hn295fB1A1uUJaVuTovi9oPewMHk5iFFvDKM9oKpdJPQRCNO5ytm8xnHJ6f88v1fslgsefHyBUmS8OqjR+zs7HI/3JM3HshzyMqKOEpIsxzHcbFth/39HfYPRpRlwQ9/9Icig6wkIShaF6zCguVyyYsXzynLUgZNGoy8sblJkmWs1iGr5ZLjoxdkWcrNfM5iteJqMmFyNREIeBLjOg7HZxf4vk+ZFVRFhanAVKJicHTj2qQ8LcOIRRhRVDWmY4vsVRdrVSWbbT/otEkKQdfXyWoJeSlx2coQqfp4PKKuxfoAsJgtWSUpLy2TNInY399la3OAaTha+nmrBWga+bIsiLTs8+rqmsVywXKx4sL1+PSzT/n4o4+wHYff+Y4kdCgFlilg8XWaCqS32xXlxWDAYDBopamW5ZBmJTUGriOWl6IStRGWhWv6JEnCYjWHuiZKE9ngd3sC3DVMHCVS3abwtUzZYtVKUVLj+T4H+w+k4YqkuBKOj4PCaOW2KAHbLucrojhibbutx95UFlEcc35xQRRFuJ4Unds7W2xtjimrSqdQVHL4V1WrUmluwNObKf/7//l/cHx8wsnRS8o05fDBA773+79PGIZ89vnnWLbDvf0DBv0B+/v32N7cYL5ccT1d3JG9SryvZVrt7wVBB8tUXM2n/PVf/zUnJ6d88M//zOnJCVvb22zv7GAYSqeJNIejwe7uDqPG3uO6zGYzbm5u2ve/sbR0Op1W8dCkf1R1LXHPWcbl5RVXlxN2tnf4wR/8AYP+gJPTE5bLJYvZjK+XS7FMlTWO6zAej3Fcl03N9Oj3+mzotJ5Wuq9L6LJqmknZ3pt6SGaZAuV0bLu1+EmhUqIwcAwpXg8PD9jcGPPL9z/g//3ZfyWKY2aLOVVRYqAwURy/eMkXT59q9dGV3OCLFM9UdByH0it5+vlTPv3sMx4+OOCHf/bH+L5PpUyyAvrDER2/y87uLoPBgCzLmE6nApEcDPBcV5Jk0gjfd+l0hEuwWsngK88zGXZrwGIzWFbK0O+1sKEMoNfr8srDB6JwNM02WShJM+GQ1KLCi9dr4froIebR8xdMzi+YXFywWi4ZDIf8d9/9XVzPIysKpjdT5tMZylDsbG3w7huP8RyHg/19gl6P45MTjl5KSlaapBzcv8+777zDxsYGg14fBaRxzHIdt8VHmqQywFssmU2n3FxfMx6O6PkBhlIk2maxXMxZr0PqssLRthMTMOoaVUrzlicJqiqJ1jFRFBGuQ2LNBytykTYX1NSFsDZMDb3MMtmmdjwfy7bZGI3Y3d1BVRUXp2dy760rKEts05SYXEuarSxNmM1nJGlKGkXUZYFSEkptmSaWY1JaJko30cNBX1uIxV6YJDHz+Uw2pklKVZUEnicclr4Mahq7YJqmOLbDdDrFuQMO9bxOOyicz2b0u10C379t4vQZaRgKz/VwPZfRSLbCcZJoNWvB8dERKMXl5aUw5vRZ6Ps+o9GI0XDE97//ffq9Aev1mouLC375i/f551+8L69vURAEAX/2Z3/O4eFDvvd73+W9b73La6895Mc//gsWyxUvj44kIOTiksnkkv39A+4fPviGKqIZZHmdjgzUPI8g8NvBR12JfausKra2ttja2mI0GvHw4UPSNOXJkydMZzMJqpjNSNOU6+trSeLUfK/BQNSajuvi+Z32cwhipTNMCStxLFurW0VZJrHdklxZlMKdS+OYFy9f8LP/+l8lKv7tdzBNk8+/+ILzi3O8wOdPf/jf8/jxY65mC65mS7768isWiwUvnz/najLBtWw828F2LPrdLmma8tnnTzk7Pac/6PHg8BX8jo9p2jIYX0lTVJU1tu2SFxXZaiXnnSXsi6pRaNTVrZRJL6CalFlD2xsMJUwredTfGDhFUfQNS5Lnedq6Ln/Odp226TNMi3WcsV5HHB2fiGJFQW9jjOsHurkzcTseKlWswlDuc2FIGK0ZpD3qGsJwzcef/IbJ1TV/9Vd/xWeffd4O3F3Xpd+/3Wo3G+tmGLYMVyRJwtXVFXme0+v32T84YL0OeXlyxvV0RlUL5Ht3d5dur3dniCkLjjRNSbTFudcX9fjW9jYdX8IqbmZTzs/P+b9/+jfkWYZyXUzH4S//8i957733sEyFGbhtL5dlGX////wdP//HX+A6Lh3NTkKri3Z2dugGXQ4f3Gf/YJ/ADxiPNlitVvzt3/4tp6en7dD1Bz/4AT/84Q958skn/K//+T9LiMdsSp5lfPHpb9jY3GQ0GrG3t8t0OuXy8pJUJyc2YQrN9dakrP7jP/4j3W6XMFxxenrGF198yYcffsiNDp8wTbO1zjSNfoNmuDsoumXCNAMho7WgtoN9/WiGBY11FoQpmGt1bvPD9/1vKBzvDo/vDpTuKqOSJGnVKUVRgFLEOh1wVNZUAXSUZmUZNq7jtYEMmW0TrQWE3QywTNOg47qYptHaQR1niWGqdm5TVcJtKatKEouLgiyXNGPLsijKXBROruAU7G6XflcWXVmWSrMaR9RViWNvCbS906EXBITLBbOrC4oiw+84OJbF/p4AjC/OTlnOr1GqwsDW98eUPC0IVxVlkWJaFo4nr3FVVZgGmIY0qmWeEWcJeRKTxRGO47CzvUcQdFnNb5hPJyyWS+bTCYZpcm9nR5i0qqamZDmfcnEWy8BZswFjPeDZvXePrY0NeoM+25ublGWBaUhM/bW2XjdKJ8s0cYPgVoFSVXQ6gdjdDRPLsInjiNPTM4qiYDgcMh6PReGrLU0ff/xx+3msa7HBCw/y1sYIsly/d7BP0O3iOQ6e5zJfLnj27BnLxYIXz54RR5HA3EHDriVZeW9vj9FwyOtvvsnO9ja7e3tsjMcM+gPhlZUly3UoIQMdqcNdzyPodVvUQZamXE4uNUi9bAdQeVHoxWbYqtQtq0O349P1HIqyIs1LiixnNV8wn81ZLYSbR1ljGhbKEOWkUnfu8/reYds2tutiang4QKkKqEvSQuyCRSEpjM090VCKwi++ca3DLf+x0oIHhTiPHL287/g+huuAY+N2PAGYmzKon88XfPnlMxzH5vnz522IgmUJNzIMQ1arFY7jyedwFYpKsqxaRpSYSU29JKn1r5slt/zZPJOhr85MxbYcLM1szVWuOZpyjUdrSW+e3lzzNMvoBgFfbu/iOjYd12FjtMGjw4d0Ax/HsvSgryDwA8qiYHpzQxInXE+uWUxn2n4vg6YsT6iqUqNTSuqyhLqkrqAoQQI8TBpetEJSMy1TUVqQF/ybj9+SYRPij6+aqW6F0iCxXKsyZAos6gBJZUioCpmOKqWoyorZzYw0Sdnd2SFar+kHLoHfgRpJDNPDI9dxiGOBKJqmyXw+Ex/wYiESMWndqUpJzKkqcKwK01SUZa1ZB7fcpLKQqenduOq709G7Ww3LLkGZJElGuBbWyGw+Z7lcEGpAeJKmrXy7LCsqVVKW8r1zveFpoH+uZ9HtCT9gVI/bzVANRFFFGAqktKylALP0JLfX7+FqGN5oPMKyTJbLOUkSi6e2KvW/UxRSSSaS2pvplDCKsA0LSwlXxjENzNqkNpstowHK0F598QEXRSn8i1pUS82Gr6yq9jnLdkXHwleq/bVp3aZ5WLYl3t+q1FvniOVywWjUb1URbeV09+OllD5k5fWNNESzyEWl0QAna2QIYFsWpo6nF7mlBuppxUNjUXAcR/tzLZoEploXt3X7NPTmta5vp+GIKsYvbyOelWpUWfJoGl0R+Aps17Eded8drZCybD1Eahhi6Ndd3u8kjgmdNTUKx3bpeD6Zft3iOJaJfCC2HscRaWxZpe3fr6oS13BuN2KlAPtPTk44OTmWdAkN5N4Yj8mLglUY4rqiMvI1s6zSapgojtrthWHI56eJYW4KtCiOWK1WkiJzesrN9TXz2axVwdi2pYuvZktt4jh6o+7Y7Xa98Uy3P6xbJkUro9cHXaZTK9o4btOk3+tLOt+VpIEolMDW62azbLU+fEntcsTea9vcboiUjvXmjpVOQ/e0n9uyNCPGufV5NweLQmEbNrZls7O1xf7+Hi9fHGl7Qc1ypaGPhXjPo/Wa2WxGtI5I4pg0TcQPr1UyDdT+/PSUQS/QzA+TrJLPnWPb2KaF3/FalkeqD/Za38OarVDzntU0YPDbH7VufG/vfU1kaiO7F2h0E+fdJErWNdh2elu031HzNE2mMBxyOp0ON7o5D4KAIAi4mc9Ik/zWtuQ62jIn9q9ATkzSRNI5ZStd0u2JP//udqrMc2qtFCmrst1wZZlWc1ZlWyQ1g6Jcb2hNo9lmcUftJZvZsigoFOS5SKmLXKDJZamVVLXY9xpJszJk21Q1qhYtXXYa/pNWkja8LqXuaGH10DhJU5aLhZwvsRQrlW1jWaUo1mq7/Z6GkmGPpKQamMrQ6S8yxK+14sGw7FYZ0XE7UrSYwtVzbAfb0hHAjcJL5ChtdHHDi7pbGNb6f5QhzX5ToFu2TVUL13G+lIH1QgPbPa+D53Xapq3ZQNt2c+0bJEnC5eWlKLe0ne34+ARlmDx89IBIW8A3NjYwbZvJ1RVJkpKnKeEqpKpKuR7qGtd1yNKMmU65bbbIYmEWpaJr3G6G86Jo75HdbrcFi/u+LCAaTh4gdhXPo9ftyZZdJ8s6rouTZVrxIKqjJqjBtCwZPGnlM0CmB9a6m24OQeIkkQVSWbBYLnFsW6xdyyWe67K5tYXf7RInqdhSF3Nm0xmnZ2ecnpzi2ja+44qiemNMoc+YQkODZZnWNIuygBObqFwPlQbowq1iRGvD5WX8xnPWaZ3652bhcWtQ18Mmw0DVdatsatUBWlndnK1GU5fppeE6iiWtcbHQrKkay3Xb0IaWeaXrumY4sF6vtVJEVFqrcM18vuDk5JSvnz8XlWSv26qfm+VBc79szgJhdhStaqf5b+t1xM3NNXGcEAQBylASaNHtylJEs/iaOrP5e8256rgOXYStlaSppBQ9f04SxwSjEW4QSO1TFJiGhWVbKL0UoK6ZTaecHB/T6XToBl0aS4ppmqSJDINkAOpRjiqGgxFFUXB1dcXZ2Vlbc7355puUZclqteKrr77i8uKCuirkXm6ZWi0ckiTxndf0Fqh9dyjUNPuz2Yw4jjk/v6Db7XF2dsb5+TlhGLYDwubPyzV5q+L4l6qH5tFcJw1AmW+cZ7eWWFNboZvXOtdLkkbN1CR0NQOI5p7QGqC1AuIu3+r2jGgUEVAiy5nWzqh/H61uqVXVLtibM7EZZFGb1I4wqJrXUdKdbalPy1qGPYYgFW4HYUioAzV5kYnqyXGxtLXMtAzyXGDfIAvm2pAQE8/9ZrAPmovl6v/W7/cYj4eEqzm2Y0FdoSpTGtgCKlW39aFZldRKB2tYNoalRNllKqpCswOrijiqKHKHssihriiyhDhNydIY6hLLtBgO+/i+TxhHJFkGtdimUGBUhT5PUqq6wgA8zxG+qW3pRbPZWoTawaRWmFmW1b7mDefJ8zq4tkvH08wia0JViSK20/H14NOmqmNWyxWFtsJVVdUq9YRjabe9o+O6pFmGW8gCr1FXRpEsqta6bzFtu+Vt+Roy3qQmDgYDunop7npee0bVbT8i8HRl3SqbmusGuLXFayFD2SjbtHq9sdvbtqR+15Vcf1mWkadS4+RZRplrFV4pf19VNZWSmqM0jPb6bb6/ltPINXjnro+uCxvFeWMnrZq/A9/oDZoB1u0Fz53ryaSB8rfLa33faazBi/kcy7IIwxWGKYpyy7Yp8pw0y8SOVtcojFah1PSCd5XP1NLHNfdpmR/c9oy3YijV9iWN0rK13yIJcaK4krPXQBGuVhSeRz8I8DsdtjY32RiPxMUVhVAJK9axHcqiJE3SNrHPskxcxxJhjH5db5VNtxOF5pfNgF7p2UtTk94RkP6rj9+SYVMtMKxVyHw2w7IcLNuhE/hS8FoW/b40Q8swZB2Jb7bIivZmKdNBidK8mlzy5RdfsJpv4emCOMtEyjcYDLh/cB/HsUnTBMeyWUxnZFGCa9nMez2izS2S8Zhu0KUuCkmYyXRajlYf2LZBp+Mhi2QZmsRR3BYPaZ62F10ziAJIkhjbtgVqeHNNuFxAJZvorU3x94+HA7q+T5rmvDi6QFk2le1SlDU319es40SGTaaJ49oEQQdJWSqoamEVmFq2H3R9LHeI679OXVU4lh7g2C6mbdMfOtw7GOt0m+9S5AXhKiVNCyaTCZOJxAKHy7k0gpaFZZpsbWwz7PeFt2SaIret5RDruA6OZbJ7bxe/38MyDbIyJyty2b4qxGaoGWNlVZJkKbPFrH2NLcuk2w1wHIflfCFyybLCQOmDWdKS8iwlWksccFvQVdLotlYr/TVLXRAtFgs++vgjzi8u2N8/YG9vD8ex+c53f4d+v88PfvD7bG5ssrW5CQhE8ebmhqurK548ecJ6vWYxW1AUBZtbG7zx+uv0+4O2OMoKkQ8bphD811HKOopYrpacnJ5R13WbSGWaNqbmN9mWCToxpNYNF7T6LKIo4ub6hrwQ4HFd14yGQ62suoVOo6Rg/fKLLzk7O+PmZspiseDx49f4/u/9PlmWcX5+QVEUPHrlkPF4zHg8BuQwbwCDeZ5BXdPtBnS7AbP5nOcvX/D5Z5/x8//237i+vmb33j1eefVVDh8+vAX4pmnbFJRlyT/+4n0++Ohj4iQlihPN6hnS7Xb57u+MGI97PPv6BScnZywWcy4vz1kuVxyfnBClCY9ff53Hb7xOnuWkeSaAVD2k8XVDfH1zw+nZCZ2OT6/Xk/QF26bX7zEcjfQwzeVmNuXs/JynXzyliR4GmE/nxFHE5uY2j//gNXZ3dzl+/pKjuubnP/8H/XrlbG9sMBqPOdg/wNJDr6YRqrKc0XDIcDhsi1F56+QdzPKsbSwS/RpZhompDKxaq1+KUnM4CvI0Jcty5tdzlFI83N/F3t/j8eFD/ocf/XsmlxM++Pgj4jji5OURR89fcHl2TlWUeK7Lvd09Bv0hZ+dXKOWwjkXNdXJ0zLOvnmFbFl8+e8F4NGJrZxuv46JqA1XD/u4Ov/ud73J9fc2nn35KXkjqz3A4IPBdNjeGZFnKi6OXiFxelAedwMe/ozaQIlKK7zCUBMpur8fmxpiO5xKvhW/11huvC5dCb30++/xznvz61ziOQJMdx6E/GGCZJsfHJ1xdXXM9mXB+fsa9/X22tzcZjcc4notrmcxurrmYXDKf3TCfy6Dy4PAhw55saXt+QJFlhOGSNImxDCUsKKW0LbrRbFcYGFCWZElMGkUUmSTyGAoc10FRsV4uJeVjKRv4buDjuC55nhGnMVliUZeiDkhjH8exiWPh2GRZQlXkUNWYCmoUdVmQFzWGC4ZtYxpieVSqsT6aGNRQlZJ6R41tGgz7PUbDgQBZ12tefv01v3ryCYvlkqPTU5I0YT5fkueZDDBsG9dxCTp+a/XyXBfPsbENAdIXec711RWfP/1cPtM6sn5jNBKVwSJkejWVBUAmRczz588lCttswh96bG5ukaUZ9/fvMx6KGvfy8hLf7xAEPnlREq3XWLbNsBhR1zWOYxMEAgtPUgFvjjc3hJkUI3JKwAAAIABJREFUBFpV4OI4LhcXF3zwwQd0vA5FnrO1tcXh4SF//Mf/jtcfP+aP//CPCFcrTk5OWIchz559zVdfP+PJrz7ifxsO2T885J3vfg/Hdfn2t79NHCd88eQJq8tLePiQQa/P9tYG77z9OnUNX379ksVyxfPnzzk/P6eJFw+CgPv37wPw4YcfspjN2NnexjIM1mHI559/jlJKVFijEXv37pGlKU+fPuXDjz5kd3eX9959T+5jWSIg+TuDklo3xBiqXWpUyGAnLzTo1zSwTZfNnoQ1ZKkoEtZRxKefforv+8xmMxzH0THIOd1ul9HGGGUaHJ2ckKUpR8cnLJcL1lHUDoAqQCwjHVzX4/7hQwbDMYZlaPt/yWy+ACTlynFd9MpWhralWK9szSYstBUCVX2j4DaUQZOWpPS/FW6jxRuLmet5d+yptfDJtN3cME2qusbxPDraujidTvn0s88oypJVGPIP//APzKZTsiyTFDSlSPTSIdBD8ApI0pTffPopSZbxh3/wfd5++3UMy6TX75PlBb/7ve+xub3NZHLJZHJBVuSkeYoqbi2XzaOiwrItXFyGoyGe7/GLX/6CyfWEp59+yldffMHu3h7/0//yP4tqwHFIs4z/66//mmfPvuTgwQOG4yG1qukEHcqy5Hp6TV3VjMYjRhsjFoslk4k0vA8ev4ptO7z97rvs7O6ytbXFxx9/zGg05JWHh5RlyYsXL5hNZzz5+Fc8ffKEoNejPxrLgmm9pq5rXr54IWmnnkfH83j77Xf48X/4DyyXy3ZYdHFxwXK55Nvf/narHn746BFBr0e0DimKnEDHia/XEWH4Ugb+ehjbpOI2XBPDEJVOA9+Nooh/+qd/4pNPPiEMQ+bzOaZptgwqVy+isixrUy7vNptNUwsIKzNO9TDY15bJnKrOtMWosVBnFAXE8RpQOK6D69q6VpXBw3I5l69vNEEHsgBwHBtPD5Ob5rOsClA1adaYpPUPVVNXcn3nWUaSJNqSJE2ua1mYyqDXkyGg0t8nTVPidURlFKi60pZ3mWI1y4OqEiZPVUJRGNTU2JXVKrmKqiTPK8Kw0mD2itxx8DsdLNvF9xyGGixt37+HZRrs7e0yGgxI44h4HVKXKbal6Dgeb735GlsbY157/JjDgwOePt0gi5aEqxWX5+dkWUqnYyPJzUW70MrTHMd12dvZo9PxufQnzOdzwvWaxWIBqsZWYKmKIglJjZooWrOOI7xOh7dff8Tm1hY/+ou/YDQa8/6HH/D8+QsKLQxIc0kaTtKMs8sLkiSjG3jsbm/Jkn61lBpbBxCZhsJzHVxH0tYc2ybQyqaldnHs7d1je2ubwA8Y9geEq5Bu0KPIc3Z2dwm6QWu1StJU10YCrZb0OotOx9LWRr3AqwryrODo5TG2/r62LQEttuOwvbvHa6+9juu6HNy/z3A0Iuh26fV64gYZDr9xbri6Pq+RhPM4y7i+mVKVEsbidzpUlVxjSimGQzmDN8ab9Po9onUsnL0spSprDAy6flfSHPXAdbEMefrFM9ZRxGw2Z7laMb25IVqvMU0Dv+NjGYYwm2rhONV1LbbkGs35k5S4Uic1dny/ZUsqBJnjuS6lZWGZ8vqnaUKNVp05wi/b2tpkMV+QZxmOK59jBSRZTlGVRHFjgxM1ONq6Wdcl0TpsMQZHz5/L9UzdXm+GYcjgB7G6NVbaIiuwDIsiK1gtViRRQhRG7VAG0HBwsaEWZantzyJusFwJ9FCWDHMsVYNlQV0TLuaYhsHmeINuEDAcDNkYjXFsm17Hx7Yshv0erm3jOTaObTGbTokWSyzDYm9rl57f5fryhnkeEocx8+sb+v0eG4Mduf9U0veVSnrs3IBa1fJrVVMrOfvbZVDdHMv/+iD/7uO3Y9hUA1VJmgpozHYq3Bo8z8N1XGw9ScQwNJtGLtI8vZWPtuCwomC1XDG5nGCgmGzNcR0H2xa1QMfr6ASjNR23gzIU8TqiyHJmNx5ZEuOaJo5pUlcVHc+lyB1sU4ojT0lkq2OYeK5whORzWrWe4zyvWptds+Vo+AwN7DAMV6xDPSSpJGWhG4h8O/AFsF0UFTezJabjYPuSKBGGa8K1KFVqJYyVOMmoaojilKqqJbrcttnaMhmOejiuSbfrYShwbalR0xLyCvqDDtbeuN2GV1XNzU1MFOVcXV0xmUxIkpjFfNYCIxXw8P4h21vbWMrANkyoKqpCtgcKuSkMhj1sV0CahVZKNfQEUcuLxahhcURRhGVb9KyeqHdciae1HZuGeVOUBVTQpopoKaVQ/W+3h3e9urbRRH6WhKEoyU6OT3h5fIRt21rRYHL//n1GoxGvvvIKGxsb7dfKc1E+XVxc8Mtf/pI4jtkYjTXAMmBndwfHbtJOoCi1V92UrVVRFERxTKg3oM0U23VdBoOUrChwlMJCb1QN884U//YyydKM2XzecmOAVunkOHXb4CtDkWYpl5cTjo+Oefr0C46OjliHEa8+eiyqgOWSuq7p6JQFv6M3dnUtHvo7oL7GEpZmKecXF5ycnvL1V1+xXCx4+OgRBw8etA1gq/IobpkWz1+8YLlayVakrAiCgHv7++1BHvguaZowubri6OiITz75VQsDNE2Tg4MDBoMB5+fnnJ+fy6GiVWWNB35ydcnkakIQBCSp2I0MU4Pn9WDLtEyiKGKxXHA5mVDXtQDgLYs4ipjP5+zvH/Do0SP8TofZzQ1RFPHZbz7l5OSE/f19dnZ22BiOOLh3T2y1Wr3TRLH7rsf25pa851Gkmyh5/5rI09RIRSGFbFON5qZdyZ+tq5K6EAlyGidcX10JUDeKMICt8Rj3zQ6Dbo/j4yOmM4OXz1+wWi5ZrW5ZOUEQ0PE6LBYhjjPVQQsFs+mU66srrsZjrq6m1LViY3OEabjChgCGgx4PHjzANE2ePn3aWgb8jk/HtaH2ub6+5uTkmLquGQ6HWoFht1tXuQYb+W9NmsprJDwdORzzLMN1HHZ3djTTIMC2bbnvxDGWadLrCmR6f38f13VZLaWAWSxWnF+cU+Q5k8tL6rpma2cbx7Y1yFuKnHUUMRqN2L//gE4Q4DkunuugoG3CTSXpb03z3hT/CrF3UYvSqcgzzSwQlZFtmdpaJvbcNEnJkxQ6HpZpkGcVWZpiGHqjb1ooKvLM1soqUdjdKrjkntGmslTCcTNQorTUGy9TqVa5dFf51fE8gk6nHcTf3Fzz/OuvuZlN+errr3WIREieF20EeKOk8VyXzc1NfN8nvbdL0Q1EHRcnTG9uODk6JtcFoGVamJo3kEQx6+WKoihYr0OyLGVycclaF5iWaVLkJX4noCxKRnr4e3Fxzmq1EuaHbUvRmGXt5rTlyTkOdpa13JrxxmZ77Yt838a2Ha6vrzk6OhLlbq/LzvYOjx+/ymuvvcqDg/t8651vMZvN+PTTT7m4uOBXn3zCF1885dMkpUwzfu8P/5BX3ngLz/M4ODigyAtcyyJZraAs6XgeW5ubfOfb78mwqz/kZjonDEMmk0m7DXYch52dHbmXK23v0gyhNE1FUeQ4HB4ettZe13W5vr5mcjmRhkUPrafTa+K6ahsGGbrI2fmN8kkX7EUpm2alC+KgKwqbQnMyopMTzi8usC2LLMv01r2Drflsvq5BZrMZSSLWy9VqJQmb+nvXdQ3GLTNqPBrjuR5xmpBmKVmeycbVMPB7MqxBb2+NysSwKhTCw6xBrJ/aVn174DVnmbaHGzRYCVH56SWjoVmPhlIkdyDKjfJHGQaqqnQdIamE6yji/OKCdRQRhiFPnz5ltVqxsbGhlURGy3xyXPcW2loUwvzMMl45vC/Nj7ZCB90uDw4P6fg+ZVVwfnFGWcnw7y7fo1XaoNl9WHQCqddevHzBfDHnw/ff58lHH/Hj//gf+fN//yM6nU5rtfzpTxVX11dsbG2Kyhuxc2dZxnQm9/jBaEDH77BcrViFIbbtsLt3j36/z7vvvcfh4SFJknB8fEye5+zu7lEUBadnF1xeXnJ6fMLk7IxgMCDTivTVakXLjKtr8jSlyDLW4Zr3vvWt9mwBWC5lyLVcLkU9pVlgtVLM5zZZlmKb8vkU6/QS0zTbBVzDtqmqqk3E8jxPwOOrlVhI9HCwUSZ0u112d3fFFt8oJxt1sG5Um8dd5lJe5FqhZIjCy1CkeXJHaVZT1WVrgU8aMLQzxLJdnTAqAQBxIkyXRtmslAU6sKXT8drvXxSS8JdlmielQAqAulVlopVm8twsMjMTfmgFyhL4sFKqPb9KfX1XpZh0KrPEdV1RjKBwbJuiVLTJjaYhy2HTwKpN8kJSvuoasrREGY3ivMZ1LRQOtmXSCwJs22LQDXAdm82NDXq9LtPrivVyRl0VWKbCc2z2drfZv7fHq48e8srhIWmy5svdbWauxXJ+g6LE1PZYscDmNPxM5VgM+l36/QFpFlOWOWWZE670sNAAE6iKjCIzyNKINF7T63a4t7vFwcEBv/e977C1vc31zYTFfCoOAMsmimOMiXCTJleSUue5Nv1eQJKkLFdiDWsYh805b1nayaE/o8J8yihUyaA/YHt7h363x8Z4TBiuSWJRjnR73fb+Kio5ncZZ0yo/bUd6nWbo1nx2AbKbaXs/N02zXXL2+30JyxgOefvdd9jb26PT6Yi61LLoOA55kXN6ekoUxzrN1GjPi7woWWu7dcPfqtvvq1oYdhAEBH5AkQt/N9dWf4XSvLcaQ6fOJnHKxeUVq9WKyWRCHMesw3V71piWiaoVVV60DoNmMStqZFm812XV2umaFMxmYGwaAqMXpWvDFVRafX2riO52u9iWxc3NRqvwA/l3Z5pn3CoeqyZ8TO5xeZYJCD4V23pVliLDu6uONAywLJQetDXP0TRMyqIkKROyVJRPdx+VVjQ1wyfLsrA62hVhOZiWQa1qKirQzLayLEniGFMpOvf22dzY4MH9Bzx6KAEirlbhBR3BclRFTlUUxOtIEkyVQb/XFyyCYVOXNVmSEYURvmaaKgVJbFKXwoKqDBkwlUqej6H06Ww0PC79a9X03fz/Pn47hk1KoUzxVedZ2v62m3uSgGNIakJV1cynM2aLOVkqIPFGqtbAFqkhjtbcXF9R5hm2Unheh43NkUyk/Q737x9gmoqiyEnThOVqRVHkhKH8POoPxBKRZWRJKh+0SgpfL5GLtuN3yPOObPSVDAkaqa1tW630eLWSdCVTH9SlLgbX2u4ynU6ZTqeUGq7ZbEo6nsBXq6qiyjKiPKcoK9bxmjQTb7NhWRRVQRRHpFnO+cVENkGW8Hnu3dshzmRrI5GNUOuktmYkZJoGjnULFa3rmiyvKZWiP+rR6dpkaU4YbpFnhVYZlQw3NukNhljKaAdzVZ5peGAGlRxYeQO9LVLyLGuh4VVdUVNRlKICS7OUxWrRKk3kZi7PZ7lYcHp6gkKxtbmFbcn76OvXyNKQ3kZhpgyFiXlHyiw3qaIsCcMVy+WSlQYoNyl+tgZLu47Tbqaax/RmyhdfPOXo6Jjz83OZlLcFhdLqGjmMmi2sKM2kcTq7vOTo+IRovebmZoplWgTdHg6KOElZLFeacyF8iTQXyarc8AoKvXWaLxZMJletrLWuZfjYJJ9IkolYAOMkYXI5IYoSdnZ2GY832Nu7J5aQ+hZs3cBcUQaZtoM2G2FsWxRalmyHX7x4yd/8zd8I36Ku8XSM9ubWFmVZcXFxwXq9ptuTJKmr6yvmiwXnlxcslgvyXBKv+v2+RJEvFvz8n37BcDjk2bMXHJ+csljM22upYR5Np1Pm8znb29u8/vrrdLsBu7tb5HnOF0+/lK+tD+ZKbxkacKdhGG26nucN6fV6dPXwQinVxpm++sojbNvm4eErvPH6G4SrkJfPXzKdTgmXS5Io5mB/n+/97vcYjobc29ujKEqubyRFrcxyqiqX+25VUeYFyTrSUbEin23saGkmfIS79sk0SbQEXf5sWRSkaUaR5aiqxqzh80+fspov2d7e5d69+3R9n43RmKoo+XS5YnJxie3Y9P0A23HwXQ+jhpOjY2Y3U05OTlgs5pyfX2AZBlG45tPf/IZ+v8/k8pwg8Dm8f5/trS081+f1x68xHAwIV5KE5ftilarqZkNbiO1WH/KWbaHUSG+NRUFZ11pi2zSFhmxy8zzj5uaai8tLSVdCtRYj27aZXF6yXoWYzWujFKvFgsS2WcznLBcLTKW4t7uHZ9v86oMPCLo93nr3HTa2tjBQPDi4j+06baoR0A63+voz2u/3OXx4KHBXw6Ssa+HeNTPCprktKz1MSkAPQSzNqKvLqi3YTP06WIaA/5UeyNSlFC6mUZBZZgtatQwDw7YwjQ6tmIqaPBe4smPbuLYtiWjrXLP/FHlmk6VjUUsZBt1AIo2phbNw9PIls5spnz15wtMnn1CUFY5hYnodKOXz1fFF2l9XMsgs0pS6kCHUeNAni5MWQhuuVuSZKB0H3R6e5zEajhgM+kTriMV80Q748jwnjVNUhTQ1ysBUJpZh0gk8tjc2KatSgKXnZ9i2LddsJYo8wzSJori1Rd3c3BAlcpY6rktelHiex6ZWnl5cXDKdzpjNZmxtbbV24jRNCMM1i8WSMi/J0xzLsnj06CFbWxv8j//pP/G9736XOJKB2uM33+Tx48cEvR7j0ZAkiXE6HZTrtdvFZgBpmSY7myMBtL/7DoNen9U6ZDafYZkmcRTRFOybm5utevT65obrqyux5DgOvV6XN15/jf29bR4+OODx48fs7OzQwIdRTTiJDEEbSw+gm4fbCOdKQ3+VYWCbZst/M0wD1xQuj/C1xpiWSaB5lDWiuryZTqXg18ogpWB3b4+dnR3d1BZkcUISrul2u9y7t49SsFqGRJqnlue58MQ2u2KDN5ttrjTDlm3hmK1B9NbCVEnMuFhuac9RQ9uX2zg3amrVgO+bWHDVNlCNjbA58zMN+TXM27PO1pbMxro1Go8Jul36vV47gG0ivpuGYDAcYDtaBTufs46Fk5IXgimYL6QusmzZyvd6PRmiOg5wa6fIc4m8ti1bD0qFk2IYipubGxaLBZ7v8863vy1qIK2gOL84ZzK5IklTHNelrCrCtSjSGn5QXct7P5vPyPOc+XzOcrVkd3eXP/qjP2Jzc5MGxn30/Dkvnz9nvLnJs2fPUEoxmUyEQRJFmJ6H6/stJ8r3JW3T1gulNI7lXmgoUb7meWtxC4KAnZ0drq6u+OlPf8rVlSS8RlopUhQFlrJRpsL3O3Q6Xvu5boazDcsoSRKdYhxgGAbD4VCSyuK4tRM2Vuy70O3GBtPgKxrWUlM3tZYdS2yEKLlf0Cgo1G3CZHMt3v3aqWbFNAyXZpAItNcjiF2ySaO8i9Vo/n9T59wOyGrNb1FkWU5ZQZYVxFEikfKGDDskzMKk43rQlWayzIvW1gTNcidvofFmeRua0jBgOrpmzvKcJBMweZKm1DWkSUyep5RFRhJFDHo9ep0OjuWxt7tNNwjY2tyk3+vS6zi4liKNI0bdDo5ts725wbDfQ9Ul63BBXeX0ej6ea7GzMZKE0zJvXzvTvEWOOI7D3r19PM9ld2eTm+lUvyeGHgLbtwNK29Yczphur8fWzjaD0YjRxgDbs9jZ2eDVhwf4QY9uf0BeFCzDNWmW8e75heafwuX5GZW2E1Z1LaBrIE8TVoslJgau7bK1ucX3v//7OLbDcrEkz0t6vZ4MejxfmIqmzePHj/UQeNYOIpt72MbGBk1inLBKA1zPY7lcMpvNCMMVF2cTqrpivLVFx/fZ3dtlc3OLfr/H1vY2QRDw4MF9Al8W3r1+v7XG5ZmkrOV5zjoSnMJtfeVgGjKAHAwGVFWF7ciCcLFYcHR0xNXVhCxLsSxbFliBDOIanEjz+fY8T5ataUqS53z+2WfEawmpub6+loFNLtecBB9ISp/iFq1RVRVpIue/4GEUjivBVZZtEfiBWL1cYc/qU0AP5MTKl6Zi/WwG2J1OhyAIWC6XXF1d4TgOi8VClqKuoxcSNqPRkDxLuX/4gP5wgB/42I6j+3pRR4bNoF0rnRpra1GKSk4WHE471G4wCGIZL27xLrXGIdwRMkJNrpVeyjCw1ybKNKiNCowa0zKwbZOyKIgWSxSwmi/wHIdiZw/XdoSZrKTOjMKIuq5YTG9Yr1YksV50KUUvCLAMA99z8CyDZB1yeX6GqWrygwNMy4BKB9Iohaol8VXVNaZI6mmIVzUK4ffX2lrZhgb+m4/fnmGTrWFYWdreeLPUoywLVI7YDYqCm+srrm5upPBJc/2PRUvOpMBfhyFZErOYzZjfTAl8n8evvaq9w2N2d3fwPAdl1O2FnWUZy+WSaL1mazQmy3OyNJUNXWqQRDFKqRY4GPS65Hm/9XE3iVRygMiNc7FYEsdJe2gJ36kgrypWS0k/u7m+5vrqSixR4zEdPSxoQOICacuYr9dkZUkYx+RFgWd0cJQlqQVpRhiu+fr5M8JwTaE92NP5Q9KiotPxGW9uoJRiHSctsd7Q20nXlYO4riUlpTm8h5tDBn1Hy4chTTLOT89Ik5TN8RaDXh/LkGFVXZaUaSbSuzSiKnOUqmUzlmfkaUSRZ6SaT9JIhvOyQGUC4ptrb+xd0CLAbDbl5YvnOI5DLwgwfWkeXcfVDJQSQycmNQVtU4S3qQJAWRQsF8s2arpJMUl0o+95Hq7rtVD35nF1fc2TJ7/m/Pyc42NRcvS6PWxLmmff98XLLR9lDFnkEsYZcZJxfHrOk998KtGfGly6tb1DXSuiKKYoKqoKvI5sS6K1FAnzuURjZ7lYEJfLJRcXF21CUFPAVnpwM5vN2n9HXdfMtQrq4cNDdnf3MAyT5TIE0HJzp+UbgbxXpd4uyJ+RwtK0LMq64suvvuQnP/kJiR6UBL0eG9tb7O7tcnJyytnZOWVVSRJCVXFxeUmW55ycnjKbz0gTOQBHozEohe8HTCY3chDM56w0d6EpPJv0p/NzUUC88cYb/PjHP2Yw6LF/b1un27xkuVy1xVxTiIrKYt0WqJZlsbUlQNLpdNraI3Z2dhgOh3z7vW9x//59Nscb7G3v8OWXX/GrDz7i/OyMxWxOEkW88uCQP//TP22bifV6Ta2tGEm4JtfqJFXWVJnYgouy0MyFmjTTDVuR64LuFhx6Nz2vqiuqQpQ01GAikvhPPnzCR+9/yB/90b/j1cNX6ftddjY2KdOM1WLB+ekp+/v7bI7Gt01MVfPy+XPquub999/n+PiY0WjExsYG4XLJrz76WOyGutH6kz/5E2zbx/MC3n3nHWaze5jKYLlccH5xJla4smFE5MSJpKrkhWyZPddrYaqGYbbXYFPwNwPgLJPt9PHxKV09bOr1+u12++LsjJUeKKVRjKpq5uYMwzCYXd8wv5kyHo852N8nDEN+8Q8/l8O+rnjwyisc3D/g0SuvSHPrefKZ1oWY67oMB0NRtdk2m3rgKKwsyIuq3dyJeqhuU8yaz34zaHIsW7Z0hdyHLMOktiyd3qMZSnfu/WIfkuF8M7BSlomnblkgdV2TGgZ5bggU1HWoK0kVldhfaSDSOKYsCuGLaQULVU2WpHz97BllUfCrf/4lT375S7qDIQ9eew3D9bB10kwQBHiex2q1YjqdUlc1K53wFnge6+VKmnPLYrVYkqeZSLUHMrTd2tig3+9zFifMplNWqxVnJyeUZUk3CER1icLEELu1YTPoDnjnnbe0undJmibkudhFlGHgdTxAsV6HhOuQK3025kVBkqV0Oh1REOrnbpomz58/59e//k3b5MowRhHHCavVitlsDhWoSsIm3njjMaA4vP+AKIpZrkLCdcRwPGb//n09JDAJQws38DE6HZQeyjR8CNsy2dvdoqpqukHAq48e8+z513z40UeYpkm0jgAI/KCNR9/a2mK5XAq7RqvRhoMB33nvLV65v8drr77CW2+91YYfCDC4SUgTBYQy5cxGNcNdYWQUDduFZrCrmT46gch1hKE1SBI2t7dE/RV0MQyjHVpcXUtimB8EbG1tEnS7PH70qqhCTUlGvb6ccPbymH6vx+HhIVVVcXR0Qq2XPVmW0+/7bO/uApDo+0NVyWLQdhxc19F1t06/UQqz0qm1ZTNsahQoTYkqy7oaBUbD8DDabWtdN8Om5jWQsI3GwmsaJoZriILAEUt9GIaihtzaBKXouHKfyIuCvMgx1G31PBqP6fX73FzfyAIiXFPUkBaFVh3NKaoC27Hx/U4LBnd0E9dssqNYElWDIMC3fVHL+x2qsuLs9JT1es0rjx7x+ttv8fjNN+j1eoTrkJOTU05OT4iTRNRWVcVydVu3lqVOeNVDq8uLS+JEkjcfPHjAj370Iw4ODvjZz37GV199xQfvv8/P/8t/oTcccvDqq9LcdSTyfh6GWL5Pp9tt/x3NcspzXSzTZL1eE63XoBQfffRRy2YqioJer8dwOOTy8pKf/OQn7ZncAKbLsmwXnL4f0O/32ia5KAoWGiTcKNN9328XRg3brKnbfF9s83mes9ADv6ZubFwFTd0uKvW7ww1ZEDqO2ODiOALVJIvd2l6A9rk0CWJxHMtgVVujGgVmcw9v/g7QwoYbhtLdurRR4TW1QFXV1FXWqjyrJINaVDCNGrijYdyma+F3AlzbwTZNndSWk8RrbTmURZCE2HTapVBd11SuC43LAEWSpcRxIosz/e+M44iqKonXoQzwy5J7m5u4tsnB/j02xiN2tjbp93oMex06rkWZZWT3drBMg3u7O3QDH+qS5WJKWWYMB8LMfXR4iOc6kvSbZQyHA0ajkTwf/Z7ZjgMKTk9PubmZsrm5yf69A60UczFMA9sVNmeZ55R5jmGZWK6LMk0M36es4eDeNmaVsbm9w869A1AGlVIUZcVssSSKY/7u737GP/3ifWzXpRP0tFtAGERpnLCcz7BNi47bYTgY8qd/8mf0e33W4VoGrVNRgFqWjWu7mKbJ3u4eWZbxzx9+wHQ2bfta07Ja5WujXhpq6+jZ2ZkWKkS33LnhAAAgAElEQVRcnJ9RlCVdzVy6f/8+b771Fru7u7z++ut0PI/hYKCZa3K/XIYhCz0ckTAC4aIVRYFlWfR6PWEoonAdm/FoJIM1zdmbzqbaFn5BkqT4vlxzvW6XdRiRJGk7bGp6n0qLJ5Ik4ZOPf8UnH/2KaL1mOr2Rhd5AVO++LynoTZhRM3xvgPlNMl5N3V4XDY/Tsizhp94RZDT9T13XlMg11ST0NYrdJiDE8zxmsxmj0Yhur4dlWjiuw+bmBoaCVx6/SrhatX13ozzL87wNG2juK41DoUnCVCjNKVTtQjmrMn3PEDdQo0CXhZUmUDWKKj0D0RJ2+dmswazxOi69fkCZ54SzGVQVi/GGuAKSFNe2MVCga9RwuSJLU45fPOfy4hzPden6PrZl0u328GybrufQcQzicMXJ0TGOZZEliSxTKkl3NFHUSofboM9orcjLK71wLm8H5GUJ/1a4cPP47Rg2afaEbQlw17RsLNvBNIxWzrZeyyR6vV5rWXrDbJKvoJSB2wmwLVuAcobYpqL1mqosuJpMiNYhWZrR63W5vr5mMRcod6InwEpbE25lk1Z78Nw2SZmG+94CzdI0xTQMyiAQcr7roLAwDVOn7ZTtpkykiKXepMsFt1wsWsCs53ns7e4yHAywHVcmo3oI1Hy/Cu0LV9IOmZZ4yAfDIY7r6ekj9AcDmdKahrbxKfJCijqlh01lVRGnWavsKqsSx5Yb+PZmn6ruQ21SViZZUYj8sCgIo4i6Bsc0JS68qgVCXFX655pSvEGt9bGqpQisTROlxGpW1RVJKtDNydVE0hf277U3GtM0dVMbt2DZxjailLwfSRyzmM+5vLyk2w0Yb4xwXOcbRUeeJqzCkFW4Yr0OBQp4BwTXgNfjOOZyMmEdRRpOCheXF1xcXBCGIcPhEKUEcFlVFauVTPAt08TR7CVXp2k0SQOVnmwLTFfgqoZhUlU1k6sbsjSl2+1ydXUt0tw0oSxKwnXYcoryPCfNJGWFWrbapmGSZ6JyWswXnJ2e6a2Pg+J2Q+c6HhvjDeI4ZrFY6ZSjQdtgS6FT6iEg7ebc0JGxYqmIub66ItHxn5ubm/T6fRzbadVE6/Va5L62bKMznUzmBz6mZZIkKUmUEHS7OnUvJ0ni9vW/hU8bbYF7F37aAPtc1yFJM/mhBwAK1Q5778INRf0lTUW3G+B5Lgt9vTVy236vx2DQZzQYEHREpeZ3fPbv3cO1HYpUbJSvHD5g0AuEs6UErN0LuhjKoCpK/E6HoNNpoczrZuOsz5WiyG/tvrlWGNYCHMfQ10N1C1AsdbRDo7CJ12viKObo5Us+/vBDVmHIydERN9MphlJ0/QADRRInmKZBlmZkGmCu9PMNfEmjpK510ltEaho6Dt5hNpvpBn3WKtVOTk7ESrtckKUJg0GXfn+TXq+LH3SI45jJ5FI2akXOfCHWZc/z9GEkiPsmVaTWm6y6qtvmJYoiGbIkCaZl6WsiwHNdqlJUq3EUoZRYxba3t3lw/z5vvv2mqOm6PkVZ0u9Lmlyu/3zQ69LTA6yO5rEMBwPWm5sybO10GAwHwvTSSj5pBmjB1g10u4FaG0pb2YxbaHFzPzJNg7qSYVKR5yhqHaUs7ysIFy3PMmrbAmpR/lha1aZtmc09TmTtubbtCQPOaFQdhihTBbTu6lTHgixFUv2ShCzPJS3Nc1vgaWVZ1FVFVysXVF2T6CSvIi8wlYBgsySBqkLpwsLUloxUy7lXWhW1DtdkqZzTpmlhKAPXkcCBZuOWpRnz2ZyyLJlcTqSwqaEbBITrmiSJRRFYyeDV1grTxiIvqmexcrqui+/7bcqPFKOyES1LsdIv1uv/j7o3e7Lsys77fnvvM9353pxqnlAoAESPaPbAFkXKirAsh+0I2ZYlhx/k0H+mYPjBD7KDipAH8UEKiWRzMIEeCDSGQgE1D5l55+nMe/th7XMy0QwHX+nsyE5UVQ437z1n77XX+r7fh9GG+WzGZrOhEyf0kp6fQHolchgSRbIX19ZhtPFxwAVuL2t75ZUJWhtfpjjSvASVs88yAYAXpdixBwOuX7uGgxYkfPPmTU7KEzmcTUasDiecHB+3h7rdfs9qvWG+XFFVcv0Gxoj6KTASUe4saZa1zLfa1yKqvfbk+tPGoPxrHHhLGTSMI9o13QTNoKnhIelvEBfquhJGk1aeDxJilNj4bG0JQ0kWHI9HOOcYDkes1wKu3u/37RosCg9RTgRBiDFBezhvhoRaN/B8gzEXe2V7zm8SVr1tHj9xbpIPwacBe1urKMCcb/D7Ytg5ea6ct09dYl1JA08aaQ1AHOUjp5XCOVmDtTEEiFIPYLvf8eLlS3a7PS9fvWK5XJJmKWVVsE9TwijCOVGMOJxfG4Q16MAfZC/9LFvLY9GqPSienp3x4UcfkaZ7nr94zmw2YzAYcPfePeI4agNcrLNoYzg6PiKOY+ae0diofcuqZLGYE0cRz5484fGjRyitefvdd1HG+O9Tt4e5+XzObrcjCMJ2n2xqgqIoKPEHLt94aWqNpkZu0tnSVCDGF/8m6lWttVgnnaOuK+Gt+EZQ7Rsi0qQLvNLO20DtRbx5UQg6oSgLr2RuBpgXBtMGWK0U7PY7f23LXlTbGuWHJo3a1i9V0vDhIvK+tcf4hlJj7/1GSIZXPDSf1/ys5pB6ufF0WdHcfP6Fiu7C2uM8b6JVPHl8gla6Td5zVq59EOWwAupS1t3G8t1w95pGNGjCqKmRlD9IigIyKMKW/aZ15kNKnFfMZiwWc3A1p29eU+Yp2Io83bNczEl3W2xdURc5VisWixn73VoSD7VivVzIeawq2axXZGHAfDZlt9ux3Y4lpKGx6vjnxzonzabplDzdE3tlYpLEKA21laAcV9e4ukKHAWGcgNbUQUBtHbOzN6T7LYuZobL+7BOE1Nax2e3J8oIiz2gt875pb+vK7/cCC5eaSdi/6X7fNl1Lry7cbreMRxPG45G/Z8JWmddYabMm8c/WbbPRGNOqh0ajEQcHwkm7efs2AO+//z4nV65w//59bt64wXg89iofI4w+exE43yr8nWvXB+cX1KaBut9L6m9Zlmy2OxloaEUnSaj84F5YiWLxbhrN2ugWht8KLKLYr+9y3m12oziO6fvGVqNYzLNM6jttMDpoB3CSgC1pd84Jr6r212zgm6gmkI9RFIla2t9/WvnJg1/X12vTWv3DUJK3Z7MZvV6XovChLkYRxwH9bofJZILRmnv37pHu961tr+n8yJkjvbROKF+TVH5QJc2mIPDKybygqitKHyZj6wuLII3LwTrfZ7JYv4Y2A2mPAMdpi9O1NMNjQ1WUhLWc0wYDSTAH2G93YB1VUWLrimy3oypLiryQIWkl9YkGHwYkYTyj4VCCU9KULE0p8ry9zzVNf0HjnAR8CWNZqFXi+PWWX3tRq/5tb383mk3W4YqSXqfDZHLgi5IQEwbst1vq2nI+m5NmGafTKYvlUl6wWjpuzQV9OBoz7A9ai0JZFMyWUxSwmElq0Xg8Fnndds1iuWjhz22B7yR9QXzjCYmPgGwmLSKftez3O9arFU3KSWAMk8mEOEkYDYd0e10inyDlrZ2ItNVSVpbFYs6LJKYscp49eSIHKS9t7He7xH6SOjoYY5USiZtRxCrG+AUTfBEUBIRRzIP33pWo3DBCG/H1xonAIze7vZ/8ASiC2KAjSWrab7esN2u+fPiFRFP6Ren+vbvcf+sOURx72F3FarsjSzN228zLSkO6cYzRitgnD8WBJtACNwu0SAorKxOUIIoInBwMtFZst2vWmxXn5+d88snHnjV1CDiGgyHdbk/YEfMZ3W6PqippwKAAm+2Gs9NT0myP0pbxZMwHH3yfycEE5SX2292O6XwmPIKXL/2UoSZJIv+aSLd+Ewq0d73bYkzQch8+/Ojn/OIXv2A4HPDuu+8I42cnk62XL1/y8ccf0+10GA2GxEnC4eExJgjI85KylIaoNiJHPTw4lAUtiimqmr/++GMeeVhzGDUKM/cN1UuTnNbpJG2T6OaNG0RhxG6zY7/d8+zpMz768CNZFI2kQV29dlUS1fpD3nn7HR4/ecKjR1/T7Xa5e/cu49FI1GHWtjLkOIrkwK7k4FZVFZ9/8QVfffWIX3/yCbvVisnBAd/5znfaaUye561ctdPtMj48ABzpXlR4168LLyJLc2+PEVBrmqUCGvSNz4YRAHxDodU0ezebDaenp2RZShAYFosF0+mMxWLOYNBnPB63E8jme9R1zRuvJFivV5yfe9jkdksQBJycnHD9+nVu37jB7evXUQgg+2h8wD/43d+jzAuqf/SPccDt29e4duWIvKjZ7wsSE3L96jWquuL6latidUpTdume/XbH6xcvKcqiTf/ANyUkUVOAiDT8Fa3b39NaUcmUeS5TTSXS+NnZOcvFgtnZOX/5sz+XTcrJ5ydByO3rN9hnGYvprE32TJIOrqqlGd0b0L2ZtM9RmWUsvH1pu92hFLx17x7HR0f82Z/9GX/4h38IiPUmDEO6PbGZPnjwFr/z0x96dkGH6fScf/2v/zdevHjO8+cvmM0WjEcjDg4P2gJHa+3l0CHbzZb1ZonSmuOjQxSK+fQch8AT69oSRTE3b4iqylYVWVWx24gq7+jwkHt37vCjn/yQ/+q//i/J8pyHjx6z2e54/Owpq/WK/W7Hm9M33I5ucfP69XYi5pzjrXt3OTiYSGrLcEAYhfT7PZoEIEllUwTNQMEfbm1VYauKQIviSBIrtWcpSUJPHIYYBXVZsi9ywjBgMhrSxk3Xzb1WEYURURT6Qk2YHq6BJbsasFRlQebktQyMwKHbBMbASHxvN+FwIlD6IkvZ1zUvX7xoD8DH166RdBI6kRSIob8Wr1+5wsnJCefn56haJO27nRzKyjxjt15RJ11ILK6sSAJpms3Opyy1Zrta0+l22a43bNcbUSF0umilGY/GxFFMmu3Js4zVcs18tiRJYtbLJXESoY3i2tVrvHz1ktlsKsWxT9g87ovFL8sKz0PJ2Kd7kk7CgbfuPnjwgGvXrvHmzRsePvzCF9I7sn3K159+RpUXvPP22xyfnHDz+k2uX7nuGx1SRIn12adIaUlCnPsAhtVG9sQsK2Qi6w9yRVExm28xJuXlq5ekWcbx8QmTyYTr129wcHTUMmWcc/zgBz9gMBww6MYMujHdJGSxWLFYLnn06BGbzYavHj8nCDts9xm3btxgsVzyq7/+a8qqZHI4IU5i0iy7CG4oClCK0knjMwqjNtVTkoyE8wBIIEddUTuJ+lZGt9HOTRNa7/dt08UEAUVVcjo9p7vbcXhwKIMqX1zildLjyZh79++ileLps5egJOFtu9thggilA2xdkReSqjscjIiThMY/0DSinK9XHJKg5by1AK9QqusGGi6fG4VRyzfpJDKMm89n5HkmTaPAtLZA5xyl3wvChvsRGGFttKwc3TbfTBhIOEdZUDb2B6+CiTsdwjgSy5VWvH5zyn/6k5+x3Wz5yz//C1Hj5CllVTIaDBkNh6RZymw+A0T9FsYhQx+5rrhoiuRFIelMWhiDeVkwXy45+6u/4o//+I+l7iwKtDF867d+ix//5Mc8f/6cr5888YdNS6/X4Yc//jFXr17l41/9ii+//BKlFIvlgt1ux8cff8LTJ0/59//u3/HJr37FT3//9/mf/uW/5MWLF/z5X/wFWmsePHjAZDJp1T/OOvb+ABZFEbauWzVVs4cEQUASVW3dorWm7yHFDSj8slL55s1b9Ps9pqdvWC7mZFnKPt22X6+UpIZ2uolXfgYylEp93eBTsUrfhC6rgrLM2z1GZrBy7XdCSd7a7/e8efMKrTT9Qd/b2nKqSrWML+UP3NZadum+VZzARfOsYUc1yo7LNsumQdhYu4wx7ZmhUaL/Znrg5eflIrVKtYM1ycVW2FpCNhSwXW8o84JuJ6bIcwIfwACOXrdLXVUYJUmnTXBOM2QIwoCkk2AC40NlArSWpnRRSbJWUUhSZ6MUy/OcPE0psozNeskXmyX9bpc63zMaDrh54zqTyZi6LKgKadgYJffN65dPpNlVpFRFgVGIEyIKKdMt4Hj4xeecn59xeHDA4eGhMCy1rM+Zt+4+f/6c8/Nz3n77bb7//R/4BGixLp6fvWK326C0HKbDMCTpdrEO0kJYtr3BkDjpkJcVaVFigpCk2xN0hOftLmfnxIFcP9gK5zRlbVsXSBInMmjJcjarNa9evqTb7bFZyf2wXK7YbnaMvjXi/v17GBNQ15btdufrnqDlvoZRRLffI45jrly5QhRFjCcTjo6OWtbm9RvXOfTN4//8H/0jbt++zWg0ZNDvUVsnaI26Yr5cefvZxYC1aaQ3yBKU9s+P8EHPzs741ccfy797xdPdu3cZjUakRU7iB3DXr19vhztaa6IgFEaTH2oKskMQHtv1Bls7okCSk93IcXJyQl3Xcg4oSwm32m593SNnHYU0d7M8u2jO+iF5cw7VgThVIj+YbBSscRzT7wtvN/ID/OV8BggLqyxLyqpks90ymUzYbNZUVUkSGSajHppjr14quP/WPTnv+AaRsAKNb09YtNKtkrqpadMsY7vZSY3oFbiNUutyylyzVojF1VE27CsfYFBVFWkma0VRZjIwo8C6gqLI2O82FHnBfDajruuWF6wdvHn1ijIv2a7WgvuppXmV7fYop6iKin25g06CGY8JQs31q9cIlGI6PWM6PWM1HrNdLrHdDkEo9WwYCnw99Gtw7aBwmvrS79Mqs6z7xn72//X2d6PZhEyyet0uk/FYyOyBSMWdMVRaVE9lEPj0nEhUI+5ik2uaS4W3pzjrKLJMlBjOURa5TKWcMC32WdoqmrS/sAPfNBIOwDcnbO2hySic022zpJHDSYPAtuobZx0qUG2Mpglce2Npbel1u6KmGI85Ojxk35FDoGnUXcbgnCXPMqzWlLSBLq3Nq/2ZvqCKwhCnFFEkNjhljDw8LlLxUBeAykZ6XvvHXNXiQ3XOq4bKiqK0KO3/rf0cD+d2cngOtDSXtDPCLNGBl0paai5A3TJplKK1URAI56HyMNIlYRiw3e5I0z2dpNM2Xaq6oq5KUXzYWopTLhQ5Al5dSXd7s/E+fJnEr9er1jaX55l0zH3iQTOxk4mWbC77nSgomrtns5H0poZdEAahdLD9414ulx4yLAV3rzcgCEMvY638tPaisGnib6WBsmU+n7cFXTPpalRsl6drTfNMKd2mz7U8qlKA1OCnpv53174p2do4L3mtO91uG/NsLyUnNmqNqpK/m88b3s+6tY02karOOTKfctYsQkZrrP+5OOeVIAI2jONYnhN/z1z+/ZoJn3P2G8qsyXhMHMl938D6FI71eo21MmlXvohrlU0oDxWtsXbfbj5penHf13WNVprAN7fDIMBZCfgKgoDRcOgPATJBaTg/Rns1ijFy4LEyDWle09RD//M8axkR2k/P24aSB6g3DSgnT0IbK3+hbJJGBl4FNBwMpbjxsesWmbIeHEyIoojlasV6s/UqtpVwgYKAJE7odoV7UVYlVSX8tDQTiOXGrqlqy3q1ZjqdMp/NWC4WLdfLWksch7jQedZdTrfT4crJCUZrxuMRy+UCUDJ1rhtV1sVETc6Qtm2mGiXNdZlqX8SLV1Xdpr6InLnxwQvDZtDvc+XKCcdHRxwcTMiLkmu7jP52y2a3QSmorAAVd7sdq+WSuOGx+ceRxDGx/xmBCbx6zF2s384fJpD1sxlgXJZTX6zBrt0Dmn1DonlrdCwg6+babCb5tq6xuqau9DcOIK0nSHYWmSxV8ufEp8kY7afQniN0uTktCtmqVRUAdLod4kgKNaVEHo2iVRIn/jCFc5SBT8Jsf4cLNWmzT1qvYJVwC+enaHLPRt5abDx7oQVJugvgbbrfC48qCTGB/oYCoFE3Nns4l9aJpqBuvs9uu2tVilEUyWP160flJ4uFV36WvmHfgvutWNmFI1gLp8taf8CoPRNG0rUaHsx2K2m5L5+/QGnNq9evyDJRoRZFgXWyR+Z5znK5xDkB50dhCFVOsVdsVuv2920CRDabDVOvwGoStPa7HUVV0ul2QOHXTNsWsM01Zv36L8V507+++JyLZq8wkIyRhoa+9Pl4dVOz37VpmGXBfr+Xfcjfy9qCtspD8fNLDJoLRWljgZda1D8W1XCUfLPJOlxrdQfnGv+Ar6ewnnXR3G/ytWHo0wdDsas10+9Sa8EBKGGtRKEoUCo/TVb++dDBxUS8ebwNJ6RRVTS/Q6OAEtWT9tN9Ge4VRcn5+ZT9TgJb9mlKlqdUdUW3020tl9YPxhq2aAP6lWtbrtdm343jmDAUFcGFYnslwzVfO2ivjjKN6te/dpctWWEsCYBR3BzqFMvlgsIroxtswHA4JOkkXoGJDz6w9Pt9jo+P2Pp0aBAFklb6Yr1rrrlLqp3LlumLd9pGjvJKNOdcey3WtWsVn5fX1Ob7a6PRVvvLwtcwtvZ7wsVe8ps/F0R9Luomz1Ligu/afv/fzOtWzYrVPBi+scZettZ943lov/xvxse3H1VTw7VTJq9m/eZDaJ9j1ewBztfOdas0y/OitWQHRlS2xmgwDdibFpBfW7HkORxREmFcA1w2F0w9bbwaxwpXB9eue62C0FryUlQSi8WCqizoJLEoq5wFV8ueHihwPuyhLD1MXppehAGBFRWKQrWct61HHmh1wagTi7ClKITdtdvKXh5GIUkSYW3NYj5jt9tIk1EroiimV5Y4FEVVyYA7kEFBmhVs0wwThGL5UYp9VlL69d7WFjFklbLPOdWmhUkQj1z/uUcA7Pcpm/VG3AdZ0apwm9ew4Qm10PskuYBk0whyfLKZ3w+aa9MYsY8lHvh9YfOXGr7wiWZlWXg1oLgwROGjRd3iURuNqr1xamy3W168eNE2lcMwpNftUpVluzaEYST8Iu/WaBSwMqCRc3irZ2lrILzlbuAToyNRGa/W/rwk60yv25MgBr+2ynPqzw++5rh08MY1wSj+cVS1OCEkJCTxgxNhPV6uJazVWGfaWrLh9WmtZZjh33EC9TdaCyTfum/sD4aLYXgz6GtUTrK8i2IIRKUqNa6IK7gkGrD+76uyovaNzObclGUZkhYpH2uXU7uC9XpJ6RtxjWKyQTPkec56tabIclaLJa6uW8VoVeTCu0ZhvCK+roUp2jQ0F8uAqqrbOqSsAowJ/bn5Yn2U6x6UBeUurY6/sW79/6PZpBRht8t3v/c9/t7v/q7Y6KKQLMuZzhcCWTtZkeU5i+WK9XbLdrORGPiiYLMV6djzp4+pCik+Ai0XXhOxKGoYRb/fJY4TwjgSa0FguHZyTGAChsMBsY99zrOUMDBYJwfSTiKbtnyN8FA63iZSeAte0yTSRlHbigCFMSHOWtK9X+zDiCQ2vPfOPW7dOOZHP/guv/PjH5GmGcv1kqqqGA1HdDsdtmnKk8dfY5XGhSEqMPRHY8IoxrqK2kn3Ostk6pX0ZGpDEKJcQJUXFPvUJ4zJDRz4YqYuK9J6h7XOAxj73Lp1WxYv35k9ODgiijuYIKDyLBNpQJXoQKajaJG61g5KW2OdQmuwTgmPyVZUZU6WbkXyW4u1xBgwGna7PWmaMZ3O+PXHH6O14e6de5RVhdYhg8FQUl3Kgjww7NItQRTI5CvQ6ECR9GIqW/D8xXOm03OqWqYzVVVTWcs+Tdls5QC+2W6pbc3J0THHR0dMDg5JPNNFimRLlsqh5Nnz58JjmM8ZDoeMx2Mm4wmBMeRZRkrG+fk5eZ4z6Pc5Ojj0aWgFcZyI7FApnxzXUJ2EbbHZLMmyjJcvX/P8+QtGoxFHR8ckSchkckjcJkN12slaluVsNmvCMGIymhCGIculTN+Nj9vsdLpcu3aDXrfLrZu3GAyG7Hcpn3/2kOVy4RMLOty4do2Dw0MiX4w558jzUjYXPxlpAPd/8ed/wf/1f/4fgOLarTvcvHWT3/qtb9Hpdvn1rz/hfDpls5HUmyRO6PcGlFVFt7MmU4rlfMFyufJQ1JgwDLl6fOI3Rb+4++lbWZZk/jC+XW9IOgn/w3//T3jn7ft88unnfPLxJywWC549fowJDPffeZtvf+tbvHj5gtn5jMlkwpWrV3zhIhDC2XxOmqbSBKsdWZozmy0ATbqXxIiGedEccqMw4MqVA1E7qkabr8kyaaJ0u7EvBhMczjfmHEYrqqIgUIr1ckVe5IyGQ7EFBQHaGFxVUfqmuCx/qlXRWT9tyrKczXojG6GWw9NPf/pT7ty+zSef/JoPP/yQ3W7HdHrOaDzin/2zf8L777/H8xdvOH0z49effsq//w//gcFgwLe/822Oj4945513PUDZoQPL2emMX338GfP5nA8//JDFYs5nn37K8+fP2W423Lh+HRME9AeDNho6igI++/RzPvv8U37027/N//wv/gVHkyMe3H9AJ+rw4vlLnpUlRmsGPVELKc8I2u62YtMycv8GQdgq60D4EoGRZkcSJ4RB6Kf6uTQyIrl+vv+97/LBBx9wcHRIVUlM893b17HWcuf2NfK84C/+6kP+6qOfc/b6NR/+P39JHMfcuHFDoJp37nB0eEi+21LmGWEQ0Ov30L5ZbJ00DCR22xCYkNLDapvUwabhkee5pMoVuVhafTKQqytcXXPUO+LevbcQpZ9Ab4v8EWmaSsFYSnEUX0qzxCmMkn2kKITvNRwMePDOA+I4kmm0UhIEsN+zXq05P5v6dbumrioW8yXL5YqDgwOuXbnmXwdpdNaFTO8iE9BLEvadDv1OlzIIJVnUOeFOKINxoOoaZa3374PxE7/tct1yS8IgJAgveHt1VVFmGdS1hEhEAf1uV65xXyidnb8hzVPSdE9ZloRRxGAkqsr9bsduu6WZmYVhyMnJCUEQ8OTJU54/f84vPvq5DAB6Asqvqoosz1AOxicnVGVJGMfURcn0/JwiK0jTlFevpEm081aC/mBIt9dv4fBBGDKeTKgqUbFVVl4AACAASURBVG50Oh1OT0/50z/7Gaqu+cP/NcfZmszDXfsHB3SGwwuWnhPFodaaK1eu0O/3KYpcBl5aYwIBVDdf/9lnn/H06VPSNBXYc1Wy3W3lMLTfUdvKF/q+2dc0J61tnEPtnl76WG2R9ouSO4qj9tAw6HseVFmy2+395F6R+IZyC5pGYPqPnzwmDEI6sYCzDRqDZr1ek+4kKezNm1O22x15XmD8/XtZ/VJVwk7SOr+A6mtpikkTKvKDETko0R6unSiU7MUa3Ov16PX6dJKYyXhEkWdsNyuwlmsnx3R7XSbjCScnJ15FKr/Tq1ev2G42LNcr1psNJlTeLkF7uHUIQ9IEpuVmBUHQDgOccwLMBnZZykc//7lM7nMBZQdRhLYBtRUFUF1XHh7t2Hn7edNQapoMVS1sHGMC7t+/z2g48jDwU1HrHx3T2r6UZrXe4J69YLFc4RSYIKDT6xPEMadnZ2Se8TiaHKBMgFOicv7k158IRFrBya2bJL0OWZ6yXa84f/US6ywf9sRZ8L3vfY//7B/8Pj/70z/h3/zhvxEFp9+j4jii271IVsvSrOWWCEdHkRd71M6ilGU0Hsj16Z/rV69fgnNiYTkYkWUZ2y3ghyYg106apsRx3Ma1J0nSqoSstRfqTm/Xbg6Dl5EXDY+yafg0nJU8z9tBo6q9chgE+4AkPIdR1IYjAGIPVcrbcKXuttYShaE0IjzoW5ReckawtUMpQyfp0O/15aAehdhalBLOegVGUbaH0Qaz0QzCpJ/nLaH+UCoJe2ITjH3Eea/XZTKZEPrkO1GP55jAsNluWSwWsjZrTRxbOt0egYG6rKkQ21zVIEKUahO/wiAg98+pq2usb7p//vAhQWA4Oz9jMhrTSeS6SKKQsU93TqKYOE6wSYKtK5ytsFVBpz/gnd96nySOqaylPxgym015+vyFP+RCv9/nRz/8oQc6J0RJBx0EfP3kCUFg6HWFObXbLikLWY+tEw5hFETEccLVk6sEQchqu2M5X1FUFVlZSdp5XFGWNV88fMRisaS2itoJHLyovKrSNwyCQGrxqrJUleX8bMof/d9/hNKGdJ/iHNy/f5/r166z3+15+uRZO0iuqoqT4+OWL3l+PiXd75kvJB2vm3SITMDZ6amEoux2rDebdl2qTMnzJ0/ZrtaS4K2kERV6RXTPq+jEfibWzcqKA2e1WmG04crJCd1uhyQSa/fDzz/nf/lX/4oslbCTKI74zvc/4OTqFQ4ODphMDhiPRty5fYeGdyZJaYEHUksye5ZJSm2W52zWa/I85wff/4Af/OAHnJwc8ta925RVzZs3U3a7PV99+YjZdMqdO3d466235P71/EHr6+9W6e8/WmcpSmGY7X2dsF6vWa/X/uyb4qBdOxqlEFwMuJr66d0HD7h54wbgOJ+tOH1zypcPv6SsSrm261qCTtIUE4jg5XKzuGkyCbc58o0/24YyaS1qYcG/BG2KngSWKIwPy0jiBOWH1cafe5q1S3ucRu1E2fTxx3/NF59+yna7YTGbCfc3L+h2upxWr6nLmmy/ZzadYqsa7ffuyDND4yikE8cMhwOGwx6dJGY0HtHtdliullR1TZYXrDdbYT3TaYUqShusUzSDHpmpNh//Rq/pb337O9Jskk3z8PCIWzdvYXzE8Xa3AwdZIUVMXhREkaQLLTxLJcvksIi1pLsdu92OOAhbLomrv+mZ1spRlSU9hN8SmoBBryf2tV7PbxjGcwD8VE1dKBPiJPYR4B26na6fGsjBMTTe2ypjcv/zoFaNHNyhIuF6jEdDJuMhB5MJ49EBWZ4znc3EpuenrEUtU1inFMQRJghx/RqtvETPCkQ4z7J24mWV8kWoKAGqsmwvjqaz3UhzXY2fjElR1e/321Qzay1RHKONKIQaWWBtrQeRuovhjHJeGQRoh7WKGoVyFmVFLVU2qqQyB2cxGrR2bXG036fM5wu0Uj4tbktZymTZOdvGOpd11fqUratRWiZYdVWx3aXkRcbp6SlJkpB7lURe5Ow9GL2sxLveTAoa7/PlJJHm0LBcLDj1QO6m4RN5ZZIwKMp2UXe1JQrE794brImTAuOjRpsCvolrdk7k6c17mmZ0PBy8aTx0OgIZbZLTOp1OO/luFjPtE68uJmb+dez1vZR96F/T2ltqsja6tdfr0e92vX3hm7a9RlkgsZ173rx5w+OvH3N0fMz1mzcZjsbCB4si8rxguVhR1bWfjjVMDiQeXRuyQvgOHZ+41/x+RhsyJRuJ0QLBtXXdTkqstWjEzvnbP/iAV6/fMJvNePXyJX/9q1/R7XV55713GI/HvH792jf1oJPIgtkwg8pSpNBlWXhukkwVmkmuJG97hV9lqYuawGiSOGon3gBFUVOWcogUeLqHqANlKYkMYRDI/e+EtVN5BVVgL1hjzb3ZXG/NBM81H61tYZ84hzIQBiFXfBrfdDoljuP29w0Dw/237vG9732b4XDCaHTKcrUkSRISb708ODjgzp073Lp5kyjWJInm+YvXLJZbkjhmNBqSZSnr1YrZbNZOu1qlZRC0qrzp9JTZ/Jyb1294lo9h0Bu0djvnnC9Owva6rBEeUJ7ndDqaIBDrTzOtau4/5VVpQSDrrcUrbACtZTgwHo+4du2qWE6yAhNo4jhAa0WvL6lJn3zaoSjyFqofRRFFnjMajTicTDiaTKhLUXAQhlReVVj5NJ/aXx9oh0W3B4BvTs5kyljb+hIssfk3uYYFytnHOTA6kHvCNGpCr86smxQu3e7iyjc3nXNUZYVSmvFoRLfb9WpF5ZVz0uTK0uyi2VRXFHlOkRdoJfZFB+017y88OQSivLrPCKvCK0KMFsl9w7BQzqeU4BlWDqpC7C2dJCH2Vq7YF01733TDWlG/+nVHG89TdCKd32w2LXOiUdEB7aFK+3XOBAGh5/BtNxvqquJ8OiVNU95++20m9yc0gNAgCIi7HUwVid3MT87LQqLTnzx5IofczYaqLJkcHDKeHEhjoq5FBZcIqLxpOKRZyna/I9tuWb56jfXwbpQiHg4Jej3ZX4pCCtNILFer1ZJut8tuJ2t9r9fj+PhY1nA/+GlUt1mWtWo0tPCBqqrClKIKNdpgLwa+/u2Cl9BMx/F7vDyn0pQ0XsEQhpJ0myvdJuVqP/murKOWbmerbNtuJLSh6go/zShNoAKqshLoulKk+7RtwDYWpot74aLor6qqTY9T4JUutCo4raVAblVB/ntYZVtVqAzrYjpJR9YnrQh9wT4cSADM8fExN27cAGjRB3maopVq+ZDu8prjn8zKx9trrQm94qC5HhslbBhFJB1BE8xms4sSVmsMAVpLMV742iUwAVZbskwUzkFwMaF2TurCsiwBOWAfHB4ynU3bRncUx6LUrIRJVBQF682mXfuVVm167D5NUVrAx026bt9jJRbe1ukUdHpdtBG2ibwLtHu1XKKUYjgccP/+W3z6ycfkWUrtbWdaK6mZ/T2ulBLbs+ctomJvRZPhIMr6uHHfDLU1m40AlTuJ1FMysZfU0ubQ3DTyG4VQw4lpXqvL6qXLPKXfBHtf/tqmIbXbbb+xhjfDpeZ/KDCeZVZTS8OyrqnqyrPydNtMr63sfS5w33gs7WPShkB7Tplf941nv7UppVbspDSPw17w1X7zzblGmS6Mu7I02DrC1pKs1TSdwzAkcJY4icmLGLZbUn9GKP2w5zI3xrkL2K9YmDzbrVFotW4If83amn26QwFxGFKVFf1el7ruUSWJsBBdSBKFkibpD+p1pbBViTaBNPi7HYajMevNhvliwW6fgrMoHEEQ0vP3w2g0ot8fiLp0tyUwBmdLtKK9/uQ1raii2KfxIcD/KGa92QkOwaNXmve6qtks18xnc4IwwYQRZVWTFSXWQWXlvh6MEuIoRlFhraQEv379Bucgy2W9v379hmcoVazXsj8tVyuck+CnJElQzhGYgLW3J+KfPxME7NI9eSFK0v1uJ0OObheFwPCVUlRWQiCa+jm+xONsrufSK1Kb5NwwkLCSOGruTctivuDRFw/JssyfaROG4wlZnhOakKPDI6Io8sEtF42cRnXW/Ln0ZxtJKpXXYTDoc/PmTW7euMq3v/0eVVUzHr9hu92DcwwHA9577z3ef//9VonZ3K+u2RP8wAFoz9dVVckemWcs5gsWywVZmrFcr9pzk4M2ga+pKZv1v9/riZIzjlsl6nK5Yjqd+hR7ccksFwvSfeq50eGFU+JS00lS9UR84i7dc8ZISlsUOaSHdrG/yaxETt+Xk8DjOG6h/8ZI8pzWitrmWFfy9Mnjtq4QxIS3BwYl2T4l89fLfDaTABpf13XimDgKKeMI52rCKCAvc4JQE0Wi6g+jsHU25WVJUJZUdYwyrk12dSL1/YbiXv7zb+qY/rbm09+NZpN3HxyMR9y4dlVeVKMZD4cMegNhnPiDYebBhNPpjBfPX7LZbHny9An73Z7p4SH7/Z6jw0NRhXQ6HEwmonBogYQyJWgOTyYwEresNcZfBM1EJDCG/W7bWmaMFr9x4GXlkU896/c9gNc3cxrQpDEGQS0pVCfC4QgDjbn02gVByHg0pK5rBv2OZ7nIJnjj5jXu33+L0lr2ZYlFYaIQtERD77Mc4xxFmuJcTbHbUekMXTtsVGCVJvA3RG3B1RW7fe4TW5TwPwIjLBNEQWFCQ6ACP8lw7DbCktJay8TeSwxF0uuIgpg4EjDtbicdeTPoY4KI0WjIsJ9Q5AW7zZbFfMaf/vF/ZD6bsl2vyLM9/X6XwbDHqxevqCpHkkR0e32GwxFJpyOPTSHTQ6OxyuKMo1Y1taqxxkGoKMqSxWopxUUsEG5JeZM44MjzFrQHezfFcZam1JUANiXaWLWWsigMGQ6GomJSKVjHYjYniiMm4zHHh0f0+j26HUmTqaqKxWLB10+eStPOTxsaWftqueDls2dUlSTYFEVOJ4n47R980BbjdVmwWa9I9zu2m3ULUxWrkdjAlFJ87hkim6348qu65J13HzAcjrj/9n36vT43bt6g1+1JfOduw2Qy5t13Jc6+103QGspSChjllEy/PeRvt93yJ3/ypzx79pxXr94Qd3ocn1zl3Xd/i+FwyOnpOQrI0lwOCT7OFCfTTlFOhBB5mXwNodKEShNpQ2xCtFZkVU1dlKhAeBn7zZY3r18xmRzwe7/3e1y5csLJ0RVc7Vgv1rx8+pw03XPlylVJpsortqsNgQ5EEZh0McrQiTucHJ8AkO0zbGVZL9ecn5/R6Xb5+3/v9zk6OuTB2+9yfHTE9HzOcr7k/M0Zr1685OTkmJ/8+If0e922ISmNQFFmVHUl94UzWGc5PT9nvdny8OFDPv/sc6q64v5b99pNsvSS824nlgSlxmbmNzApNkXmaqIQnKXuddDGMBpO6HS66NCwSbcUtkJHAfce3OO//af/DYeHB9y4fYvSQuVVFYfHh/zoJz8izzI++fXH/PqzT/jy0ZeMxxPefe8B77//LtZavvvd90jTu5xcPWaxXPLH/+lP+PjjT3AeVKgr2bC10dRVQRBIrHtVVjz68hF/8Ad/AErx5vVrdrsdURBx5/Ydet0eWZq1zSaAOIoJvf0zNMJcaBhBWok3X3tVRpPI0hxclFJeAVPws5/9KV999QinwCph0uTZnjAK+PYHH3B89SpOw+/8zo94+fIlebYXpdxqiS1yynSPtrVEFXf7BFFAtyeJknuf9lnZHFeWWGNl4lkW5HlGXmRtk9vairzMqeoSHWoMhqAOqWsf4ewsWVEw92Ds1WItTaCqJggjtJLDh1aKNJXiswEkh36fsdbJ+qQ0w6EU3UmcoJXm1auXLDbz9vquq1pYJHVFGEQMegOiIKSuxHbS8KiMVmg052enAp1P92zWG9/klOYQTQO+KrFFgK0q4tZqJa9nN4oIfTPGOEddFKzm89au4qxrP19HAnXt93s8eOdtkk6H9X5DlmdMZ+ecnp+S+1RVseMqlDKEraUeYWbZxp5g6XY6xL6J+OL5Cxrota0t/V6fuq55/PXXzKdTb5O9nPok115VlmRFyWyxYLPecH52ijKGweQAbQyz2UzSjyJh9nB0wM3r18CBDvwhzBic1vR6PSbjiTDABqKSvnXrJqPRkNVqzXq9Yblc8MTvDyj85DjyaYmWLN0ThCGDYR/jeS6BMTjPQdHOESg/MvJfj7XYohRItocFa21Q1pLtdtRF4QstrzirpMGvnSNUPjVSKeJA7O/W+chmJ2u3c1AVBVt/GIlMRE7Kdr0B51qOjrW2bcIXhVzPvV63HeDs9ztMD4JO0r4OgFcl+JhlpDkWhqEwxNYrUUN6rpKrElRdU2Ypi2klCZGbHXWaczgY89atO3Q6HRITsF5v+PLLL9ntdpxPz9tmzNHkQNaVS7HZta2x3lKQdJKWzdNYXBq+SbfbpdfvCzurLLHWUVYlSisOJgd0Ox1WyxWr5YJ+r8fVKyc4ELtDUZLnwi9R2mBCqbMatuPr16fs9znLlVia0yynrsXKHEYespsvZbDnamqPJBCFlGWxXLHb7ymKsg0Oae3Mfo+xtaRZnr5+xa+1sHH+i3/8j+n1unz/Bx9wcHDAcDSirgrAEkY+VMBW2LrA2hLnFHl+YU0NQ4EHJ4ns4XVdUNWSTIyS69EhTYQ4CQhD7RtMF9YweYz45q5prVtZlsoQoLpIyDWmsT7KYXexmIvapdf3A8SoxVCUPlxFFPtVCyuW26b2DZyquT1kTzdaXh+lMUbOJlUtjMXKR79r//oFJkAjASH77V4UXLUMnRpVpq0sVVFRUeHIfd2ZU+YlRS4WLLHrSDNrMpq0WAfrRK1hMrEbFVWGqhUo6yHIBnR0wUszpm08dbq9dmCsTYBzltVqzW63R2vBSCRJ0trky0Luee3E5jbqj7BdRzfuMOwPqSs/xCgKFvOZ3NOlxW1TSge1UkRZSeYVocNeR0JBnEdoVCVVnnG22rPO/iNRGJLvZQ1WYYfx8VWvzC2IBwNKp0lLC0FE3OvRaYNjDL1EmifKinWoGewpFFWpyVzNfL4hCDLq2tCJh0x6PTr9AUVZslzvqErFtau3GI2O2KU5aSaMp25XFE5ZWVLVltn5nKwouHrtBjdv3mYymXDv3lsEYShIEQUnR8eMRyMU8OLZs7YxaIxhPBxigNFAkvgOxmMOJmOU0vQGfUxgKEqxxdV+IC4NusDfVx2CwAh/z4n6O4xC4jjh+PCAKIx8cETtkzTlrHzoU4lPfBjK2ekZD5crXr56TRhLg+m73/0u/X6f3mAg9lwjSarWWnpeTCFnpJrddiu1fTNQqys6idSz6yjE2Zr1asmzJ48psj1BIMrsx4+fsdvtmc1m7Pd7Zss5Z9NzSQqO4tZSKfefqFt3u52kk4chIw9cd0YTJQmHJ8eMDibe8SKNeq3NxdDW2daiJ9MOGRK+fPGCrx99xRcPH/LkyRO26zWzszOpTT2PadCXfbvX79MbhK11XdYl5Rt2vhHj1T613x+UlrN2WEbfaDDHoQytAxN69bzxVumMNDV+2KN9HdyofR1KO6Iw5Kc/+R0ZRG13WGsZeN6Xs1ZENvuU2fm5WCezVEDqgSEIxF4b+vVUR4bCVSQeBWOSEGsgtxXbdI8KNONgTBDHlM5RFYWH6QeSUKccWIeuQDuLqkWI04Z4/C1vfzeaTchjHvb7nBwdAvgN1TEZT1BAGOgLVhFwfj7jyclVFosFnTBgs9lwMBiQ7vfcuXOHu3fvcjCZcO/u3ZbL0xSY4o+88G43b5X/uwbIXNUVmT/ch/7CqXpdnI3aaW0YBXR7iUwCLn2vC1e2/H/j6WzerBMGkwkM/X7XN6kG7ZQSRMZZO8iKivlmI4yVoqCsa5Zao5zDlSU75S94/1gDNFQ1JowwoaSf4CQeOdtuyctKLhAtMcpxJ/GFekSgZaLjnMPVkO7Ti86ztYidVgqw2tVASBAZbFayz6R73e8lOEJ6wy4nVw8pspJtt88+y/jyq695/Phr3rx8wXq54NatG7z11l2WizmVdSgdkHS6dHt94lhghg7IygJdBtJs0g6rHbX/bxVI13+120gSUrdDkifekoKkMXVE+h2EcsjdbmXClWc5RV7KZDIMRN7oYbGBCej56ULlG23r1YpOp8Px4THD4ZDRaCTA+fWas7Mz1us1v/zlL1lvNmRFQVXX3L13j3tvvcV+v+f87Iw8y5hOxfby/e9/n3v37oli59UradptpWnXwuM8Z6iZEMlBPG2nsA248vad24zHY+7evUO/3+f69et0Oh1evnzJ+mzFzZs3eP/99+l0EjpJjAKf9CUFYWCk2YSCLE355S9+yaeffc75+YwoSphMDrl75x5KKRbzpbcRlSi0T8mSZlORFe3zRyjTJ6ctgTIYlNhqGn5MbbFl1RZm2W7P9PScfqfHd97/Fnfu3OFgfICtYbfZcf7mFBMEHHj7Y1VW7Ld7jDL0u/32IB6FEQcTAVSfn52T7lPyLOf8bMpb9+/z/e99wNHREbdv3qbf7/H0yROm5+c8eviQT/76V7zz4AH379+TprDShCHEUUAQaLGFVBUaJaoXa5kt5pyfT3n45UM++sVHnBwf8/3vfQ9nHV988QV5lhIYLYBFa6nKoFVNNK+18/YA8ZSH2K4ATo+OD+l0e6hAs8v2lLZCh4Ybt27wT//5f8fhwYSqxisTLBbLcDziW99+nzdv3vBHf/RHYpH77DPiOOEfbv4ho8mYw4MJD96+hzaau2+9xXa35+uvH/PLX/4SfLNJVZqyqOTQVVcEgSHPcmxV8/z5c/7tbEpggrZhH5iQa1euCVcgl0KgsXA105/L7J1mfW2Uhk26SFlUbWx5cxiQgyH86le/5Be/sORlQVqk5HnGfHpGnCT8k//xn/Put97n7u07fPs73yKOQh598QXpfk+63VBnGVWWYaylE4QcDAYCTu3KAdhVFdo69k7SNa1zKKeoq9IfXAqck8Qk6w8zta1RRqMxmFoAwnVVQaUoyor1RlIlZ9OZj/euZXJmAgIdeKl35g/gsvZrP5Vv1A9KabrdPsPBUICjXnqf7iVJpEkwbCyhoQnQna4oK/wkv0lA1FrhUCzmM2bn57IZ+amV9moe/HDFKU2t5DAU+ddG3FuOJAyJzMWuV5Yl+1RSBZvXubFGKSCOQkbDIe+99x6TyZjCVlSu5uvHX/Pw0UPmsznL5ZrCN0dkyBMQBgG1FW5fk2DjnGsZVmVecrY/I0lExaeUoptI1PfLly959OWXXtYu8ctXrlxpAb5lWbLe7rDOcf7mDV8/fEjtHLrbxYQhV65cYegDP/rDgQ/wEPaZiXzKkFfnXr16lfv379PpdDg4OKDb7fDgwX0ODg6YzxfM50u++OILptOpJOp6dWPsJ5xFnotVJ5DGubBTfC1QV2Knc47AF3eyVCvwE29Rq3nFmgNlLXmaUuaZV0LLPVTbqlVXGKV8wpqs/0EQ+kaM2NeksefY+YjyyoS4UA5SbdKYTxFqFLjgKEsBIje2ytVySZ6ldBMJE3Fe1dHUJrJXa5QTuHk3SVDWSpR6novCyFuQsTVVXlHsd5JwtE+py4JRr8+NK1cvrsc04+lXX7NardhnKVVdc3h0xHg0pPL2XFFyy/1ha7m2mjQleWge8uq5FsOx7PeFVyHUdY3L5X49ORFQPO4Zq+WSTqfLzZu30EpxnszIsozp9EzSgbRwF7Uu2qbVdDZjn2Y+LVeK/TSV1LH+QCyo+31KWVRy2PRoB1kbxbajtfIAWmmkOa8sRIsu0dY1tq6YTadkacrt27f56U9/ypWTE/7B7/99Dg8O+PKrr3j15g1KOcJQhk/OVlircbbCWU2RXzDhTCANojASFUWappcaSKp9jChHFAV+fRAFVPMuv0OjnJD30nNnpOFX++dMoNZNUrGoV1ft3iJJWQ1fx3omiazdTTO04TRdTreTp0jWK0KH0o2KymB1o0im5UtFiQ928DVPXVuKqhQVkHU+Wr0jqYS188nZYtOs6lqUNkVFmUtjUCuNMtKs6w56wmXy6ZMiwLPeBpjRvJzW1thuAkqaYWnaNOak2dbtdQhD3/RSiu12y9mbU9/gTijLCq2Fz2NrUdCCZz0pTafbRWtNJ04oeoM2qCHLMrb7jDrLyCpLleaS3Kg1gSnYFyWB0ezSjCiQph84bFVSl8L3e/zsBUYprl09YdjvQRgzmBxRV9KQjTodKqfIKwsmIExEydNJEgJjfCiRJg40RinKoqAqStI0Y7FYISnf0vyLkh5x3GEyOuL46jVJ/5x/ja3g+PAKTinOzqbMFiu8VUJUa6mEMiyXr5jO5xyfXOPKlStcv3GDH/7oR8RJB29j8TYsy3I+5/T1K3mOvRvC1QJt73e7DPp9rLWcHB3Kc9vvtdZy65skjUqnOaM25wCHMDov1/yT0UhU24VcK437QytRjxtjGPZ7KAVfzB/y8MtHnJ1PCaKYg6NjfvjjnzAej33itCTFZWnWOgOqqmK72UhTP91LirC/X2xdi/pfifCiKjW77YbXr19RVSVRFJDnOV9++ZWslX4tXW/WzJcLzKVmU8v708LFm06nPH/+nG6vy73wrRZ1EoQRveHgb/BtG7VQ4B1ITf6DVhAa2Kw3/O9/+G95+PARP/vTn/Hzjz7CVRW2LAUVMRyRJAlvv/22oCaCkG5PlKCSJnphcWvUunKGv2BlNo8/rKu2/gmDgDpqkvsicX9YPzhpmZQ+TdGrq8ARhKJyCk3Id771HelLePRGp5MQhsLNCoOALE2ZzaaUec52vaIqC2kuNYuWs2RZyunpa7GJxyFxkqCjEKsVlbPsi4ygjCAIMFEkYTZVRRgpOas5qSmcEua08kEMShtvQf/b3/6ONJtkatd6IFUDE1SXYNhSE5c+PjzLcqoily5eKDyI43ffIQhDrpwcc3Jy4n3MQ2kegH+h4tYj3aaayRCFwhcd+zSVDbOuBKzX/HClqKqS/X4H/qARBIak09D6n4QmswAAIABJREFUxcoReDaL8XwCdamgM1q1w2HlLqR27ZZ8sS+3jSdjFJ0kJrIiva+swFjjKBLWgvddLpZryrJiU9ZoHRB3uiTdHtoE0khSsnGEgUz1Kis2N1uWoA1OG1lsnWuVFpf7cXJTVNIgoAIsWbZnuajbm8T42Mw4icnygvPzuRRxhWzsV65eoapKMp+U0esPGI3G1FVFt9en0+0ShtIZLsqK7W5H4a0RURQSRjIFblgudS2RwRLXGeOcZb+TIlQKWugUfnLpG4mX7S7SEdcC+l6v0VrT7w0IApEmH0wmGG2oSgElNoXU+fk5u92Os7MzaUJWVbsp3LlzmzTL+ezzz5nNJAXPGONT9eatjDsIAg4PD7l9+zYHBwecnIgSp5HFLhaSlvj1o0ecvnrVTlodkjKklOLk5IThcMjVq1e5desWURQxGAzQWrNcLlksFtR13TbFAh9NXpY1StmWHRMYzaDfwTrL2dmUl6/e8PLVa16/fkNgAq5evcbR0TGTyQFlWXJ2dkqaZmRZTp7n3jYk968f2csB2DlvLfNSU21w1vkmg9wzJpGGjcSua7EB9vptHP1ivmQxF+WBMYZup8Px0RHGBGw3G3bbHb1+j4ODA4qi4Pmz53Q6HdJ9Suhl3oP+gE7Sae1UL549ZzFfsN/uiKKQVy9fspjPKbKUbq9Lr9+j1+t6Zpbcw8+eP+f8/EymmkYAtXfu3EZrxWw+58XLF2KpdJY4Sbh67RoKxWazYb1et3BCUQHukNRLASU2U95mIpP4VEsThHT7kuJ2Pj1nsVzw9ddf8fTx1wQa/urDn4sFLi+pyoqvHz/hxYsXFEVJuk9ZbzZYJxDIohQo+NOnT/joo48YDgc8e/ZYGhJOU5Ql89kMlPAgGrVPI+tvps3aT92M8gcRdwE/bBobzjbbz4Xt4bJVE2gP2xfri8Mpd2nKJQdi7b3uDdQYhGUROEPoZPoUdYQtd3p2ShBHTAZDgjt3uXpyzN//6U/J04z1cgXOce3khF6nQy+J6UShQFL9WqG9wiIJI2xHGBc6CMiyDt1uhzTtkCRJmzz0m9tYkzQYRRFJFGO0YeOtSP1Bn9pa1FqTFxl1Jbw/Y7SwYJyjyMt2CNI0mZIkoShKPvvsM5JYQOdaaWazKavV2lsjjF/XRL0rAQLyvKWeF9PaZetLsfC+SSGJIqrddJyVGF6lEBv3pTGIs439pLFdyCQ88AWVw3kFgahknJMkvvl8Rl1XPHr0JcPhEB0HKKOZTqes12t2+723udbtNdIUkzK8US07wgGmaVr6xFOchAbgpeEgA6HRaMRkPOH4+IpEx9+9SxgKc6LZPxyKp0+eEEURuzRlulpROeE3BWHIjZs3eefdd0jiiGGvJ/u5L7SaiOzhaMjx8Ykomzw/sShK5vMFdS3g5Vs3b/C7P/0Ju92ON2fnZFl+EVSitahyOsKDDMILVWtda2qrW+sNysONL8nzm9dU7jd5bhpuhArk75yzcqihsZGptg6SaWwo6V/Z3jdhZDBnzAX0uBHMN3+OvCW6AbA2LJ3GXtD8Dg2LZ7PZfKM2ataKuqpRDkqlyLRAsmWoFzDoD0g6CcfHxxwfH4vKIsvY73dMT09JreX8/JwvHz6krsV2v1quRL1WVd6qJ7VN6YdAVVlJA9Nfb3Es6ZBhGF7YnP01H3i2SAPJRl3Y19CSSKw8hDUIBO6rtWa5EGta03wJw4gk6VD4tC9jtKgkPEYiThJevXpJlmdEYUAcJxfKJqSRZGsBbFsr9VaTLtjrSepVlmUCt3fWw5sdymMhmsM6wG639SrVkrzIfa1Q8cXDL3j06BFPnz4R7pmPmo+iSBgqRe7VcaLOE6U71LXE2Fgr0eDGaLT+5hGjCdFpkm5/M9XtMoD8cjBAs3c2h8r/l7Y367HsStPznrXnfeZzYsqMHDkVyeoiKZbYbrWgblhtSwVZENyAAN36woD+gnXtK/0F60aWAMuWbwQbECBI6pbU1dVDiaruqmJxyGSSOcd4IuLMe16++NZaZ0eSrWqr7UMkIpkRcYa91/Ct93sHO/aCllcScK3G286d7XpiD7XX9hytX3mP2kix7M/JnqfZ/pOc46Szr01X062SBru3cvjG801dtF3DpL5siMpSWBFswxSsiqMyNhBSp3puDjp/J8Q/VeaJogpDfDC+g2JRIWljIePxBM/zuby4QjcNWSbJqFEUEwShWBkYyZuY1Pt0O13CYMvu2OQ5s8WccLUmmk7l/OApGgVa+eAFaM8T8WEDqyxno5R4tWqRYist3jj5eo1SkHZXaCT5WJirNXWtKWrIq5qsrCiqmqJqqHVBUTV4wFwt8JXHoJMSGw80pRUaDy+IDFnBEwDbC/D9iMVyzerxMzaZsJjE07USyVyt8f1QzMKztdQ8ysP3t1YA49GYN15/k4MbB9y8eVMMsM1eKIxsYS+Njd+btR2YjMekicikvFeApdCsk41dbdQ2RKYsSxqt6aSpFXm69UhSx0PH3pG12xeZnfF3E2sKz9VmvW6Pg/19PnjvfXQtyd1/6f33iOOYzz77nLIoqKuKzXojqgNzrlnObXBF8Q0/JGENlk4Cbi0eqqpkMOgZ/9ENRVFQmL395OSEBpOkbiS5lnFoPTOn0wtevnxBmqbM5nPSTsp4PCZJUsbjEcPhSOZ+LMSPTSb+U77nOcm1bwEnNMvlUux2NNy9c4coCAg8nzgMCMOI4XhEEscc3r4tyo9ej16/T6OhNvujrB0mtdQPDLPJWsg0pm6OtrI5u3ZZQMycNe37w64zra+NlvU6jALCyFpMSN1tvRQlwdh33tRlWTAc9uXerVbUlY0TM2brumaxWJAXhrTge4aN1ZCXkJcNeVFSVBWYeldVJbpRNCjD4jJAINswBgE97XXhlz7+QmCTUuoxsABqoNJaf6SUmgD/HLgPPAb+ntb68j/7RFqQ4aqsKcpaFlWsTtR6AMhhdrOxyQRL8s2GpizpxDHdJOGjjz7i8PCQJIlIk6hVdJmXMYiknbHtCySO+BVV3XA1n7NYLijMJKpqmYCi/8zYZGvmczm4yISRLks37YgnQqdDFMckcUy3I/p4W3yhPEMXN7RhaNfxLUbU9vth4DPsdWjQlIbCN+z1KIua2XxO6HnMF0suz6dkqzWbLKcsK/rDEcPRhDhJGY4mhH5A2O3SAMvlinWWyXXPavkcniCV9j2JH8l200ZrGcha0+gSTc0iXzOvS8MCEtlb0klIuymL5ZKzkzOiMKCTSAfmzTfeZDwaMZ/NWK03jMcT9vcPJC57NJZi22hisyzn4uKKLMvFuD1JRaucJlR1Sbku3CT3w4CkkwqtejbbelU1mk6n68zlFosFWmv6xvRYvJcCTk5O+PTTT/E8n1uHt+n1erz99tsSTRqEVGVBkRdymAGyLCcIAubzOcvlkl6vx3g8ZjQa88H7H6CBBw8fcnJ8wnq94fzszBlUBkHA/v4+aZpy+/Ztvve977kJbIulPM958uSJyPIePOCrL76QsaEUyveJOx2iJOH+/fvcvn2bDz/8kF//9V8nz3NOTk5YLpd88sknXF1dce/ePW7cuMF4NHboem4OtfP5gizL2NsdszMZMr245OFXT3ny+Amff/YFDx8+5O133ua127e5f/81bt48ZD6f8+TJU+bzBYvFUjwwDHjr+zlZJsmPUSgeLUm8jQwFKcIscNTvDgk6IfPZjOVmje/5EoM7mcgBI054/PhrptMLzs+mRIFIG+/fvUdVVXz66acsV0vee/99bt28xZdffsnPfvYzPOXR7/fpdrt88MEHAsr1B6RJh/Vqwyc//wQr76jrmun5Gcvlku+89Qbvv/crjCZjxuMRo9HAbYI/++Tn/PBHP6LX7bEz2eFgf5+9/V2SJOH58+d8+tlnXEwvhILc7fLWd75jNlGYXYlh83K5pChKrq4uzeEscumEdV0LeGMAt3v376E8j7wUavRXXz/m7PycB59+yk9/8hPOTo5Iuh3STsckLeY8fPiQJ0+ekCQJ/X5fDoGRsBdnVzM22Yaf/uynPH/xXLy7Oh3CKGIyEcr18xfPUAriJGY8HmPlmwJM1OYe+0RBhO+LvxJajE6Vaq75Ybz6uOaTobc+ehaIsn+szEE2sQalhOFjO9KeJ4mgygd8AZqzaoCm4dGjL3l59ILbN24Sff8j3rz/Gn/1w79MkRc8+foJWbZhMp7Q63bp93oMO7FJndHUjSYwbLVempLEsbSQA4+6LhkN+mKsvBY6s/Ub2HoOmPFU1fQHQ3qdrphoXlySpim3bomvg/I8lssly+WSzWpFr99nvLMLWku0tUlNsyBSr9djs9nwe//hh8KYMte23+/T6XSch4N02GqqqqbXS42nmvgi2QMbIGatWmR3tsixzQ1hlll/Do/GFBe6dZ+2YFjtWEy+CvADDz9IwBxYlOeR5bl4UWxWnE3POJ+eU1YFaTdluDMh7XY4n55zfi4molmeU5umT3tseL6kRirPQ4WhA0vk+3JJ1us152dnbgx6nsft27fZ2dnhrTe/w/vvf8Du7i7f+973XNe2aRqC0McPfH76s09IBwNOTk758X/6mOVyRZTExEnMd3/lu/ydv/N36KYx44EACZVhJwcKfDRaeZKcY5pkVVXx5PkRJydnDiTZ2xnz/q98h8ViyR9//KecnU/58ssvOT4+lgTM4dDN3SCQYl/mSrVlYpgawaU2mfllP7d9WCasMBliV9BjfjewhxXzsB43WZYxm289fWoqkyQlzDfp9G7ZazuTCUmcOPBSIql7bj+z1znLMhRQlxVJkjAZT/CVojaApHjmia+YHHxkPYzCkL3dXUajkfiB3L5NkefMZ1fMZzNOnj2nKUqefPU1z588ccb9jWGSYMD7IAig0WzWwgoua5GeCOPPmAtHkaQdlfJ71lcqMk0u3/ccoBfG4ueUqNQdRKy/42g0QjcNL4+OxDet2zUSLzGHPTs/5/T0lP39fT788PsMBgP5mUCkddPplG63x+7urgOr6lpkMhZIbRrpgKfmfe/tClg1n89FnqwbMMa3xVqkxKEniaeXl5dcXl4yGY/J8oz1asXLo5dMpzF/8KMf8eMf/5jTs1PyPCOMAnr9LlEYsVytyIwnTFkZ+ZenQPlGquY5yZrnRbTxeK2hKCpjXl2gtHJ+lt+2T9gxHBg5qaSlBdfW3DiOHXvO7inr9Rrrx9WeC3aM25+V9/TN/Ugay9bDSfY3X3lyuPTAwrsW+NWeeC2Z3RDdKJF41w2NqqlVReVtvQl95YmHjvFCtcyoqhKpXlGUoHBsFZT4vGodEBrpZVVVUOF8d7QWo+daN2hz0C1rYVuMRyMO9m8QhTGnJxJoY/1wA+OrGATCcPJN0zYMAnYmE2nQxbF4Hy2XHJ2eMpvPeXl2JmeRphYwyQ8giNBKUTVQoVmuRQZvwfjQF8PiqiyYXYqpvxeEbIoKTwkogPnqVQ2roiLIS1Z5xTqvaJpCfF/riswYtt/c2aGfCqOykyQ0KsQLE/GiwadpPDwvJghTTs/OeXF0jPJ8okQSI9dZTlXV1BrCIGGTLbm8mOP5Pn0TFW8lWoeHt/joo19ld2+HN996HT8I2OQSthHHIVHg05Q1VS4yOAGoEYlz3eAF4j2IUqjANg4k5AET/mAPhlbRAJgwle1RvaprcsNSBhmDcWwA1/ZcUiIr22QCWk7Gcj/feP0N/sbf+G+Jo4i93Ql5njM9nzK7mgljs1htAc2qYjafi0TxlaahpOLJWjCfz5nNZgBcXl4wn89IU5EiL5dS06yzjUgYF3MePX7szjJtMHm1XrExCd8nxydESczBzRt0u13eeENYwnfv3uWOmfs9hCm2WiyEEKC2+68jqtSNMNuNIfr7773HX/v1v0q/32d3RxQSu7s7xHFEfzAgTuxa41M3mrysXGqo1lrAVa4/lGGL2/ncaEPA0Brq63WvcvJnm4anHbvcsgAj0/jYrn2eY2z6vgF7MH6yWqONVLWuSnTTUFY5dS3S+qaupKG3mjOfzSQhsqrIy4Z1pllnNassI84TlO/jhxFUJbquaBBJqTS3bKBGiVKNabp77t9/2eP/C2bTX9dan7f+/x8Av6O1/odKqX9g/v9/+qXPopS7odLVNpPR3KDKbLI2Eaiua/E0SGKGo5GAPb0uaSeVhK1ga8JopqQhXGwNKg15SgrrRuP5YoIaRSGdNCWMxNOprmsXbV5aM7pWUgVmApaVHMo0ymn8bTFemM5lFAaG4rbt+NvUCWuOaw9b23VjSwtsPEHwQ9/HCxVpHNPv9UBDv9dzXU5PFSKDaGqqUoyePd/HD2Mk2lBQYECSYTwlBrHgutGNG/zysBpRiaY31Ni6ljSIoKFpYulaZBm+53F2fML52SlpkjAaDKjKgtAYz/V6Pen++b4ULmUp79szUfTG08Wm2tgioTBmuHluUznketVVLZPS89is1q7Qtf46WSYx9PP53NyTgDSVyGbft94JOUp5rNdiyFfXNc5kLpMo4vlshta4g+BisXAGfv3+QOQlSYLyxJjXSgskhcaaiwcOCAlMcelopKYjAmIYWtc1BzducP/117fduSAg7fVI0pS7d+9y+/ZtxuOxo9Pmec5ms3Fmkp1Oyu7OhCAQFsGrnb3AGsh6ivV6zddff83Tp89EJqEFrJtMdoiiyJmaWxaXLQbtBuRMOh1Fwk6Rrbmgff2mMZ4MqsDzBRwaDAcceAccHh6KLllrLi+vOD4+5upKEvwyk9oEcgjo0jMgpRzS9nb3sNHO1mi90+0ynky4cePGtU6K9eTo93usVysOb91iMpnQ7XYoqpLlai3JS5s1R8fHnJtEiE7aZZNlrE0aCUpidz1PgKnVasWLFy8Ig5DZTLw0asNmi+KYTrdLGIqsxzPdytLQ8DU4mUUYhXT7IXXTcHJ6xtVsRpKm9Pp9vCBgOp0SmaRFC1JsD0a+K9ABkjQRg2bfd/OqNJ1rK0GQaGXPFevXjHrN3AfLatiOI3sAe1We/Cqgb3/2VUDq1Y729ne362G72LFDK0TWzYHqG18+MYk8Pz3lq0ePGPb7lCvxmDo7PSHPcqg1ZZ4TeB7jYR9P4Xz0MJ13sMCLWYc1xoxf0VQ1ZVGwNDLAqqrYrNfUVcV6LRHKnpZDdWkCHGpzgLTyLbumpZ0OQRA4w9DGdvP91uHE88yhQwpSJ0X0vGsdeydZMxe9XRi2D2hW2mI7qspsksp8z+4hco1lH3AXolU0NaYj134fDvxo7W/KRNxXVYVXFCyWSwEBApGKWIlWbaSpWpDGa6/n3p+MCANyasd4Epmh+Ku1JV4KYXZdXl7w4tkzVsslkTEMtsBfFAt76eLiQrxojNmpeJQUEmJhvEp8BSvDtFtsNlSV+COEvnQEg1DYH6VJKPz6q684n16yWCxYr9d00pidUZ+yrJyxrY0eVth9vxHT5sp30kErNzJ30ICx/rX51TSNkdOZ2aGUYX95RqIbXOu4RnUt3Uozriytv67Fv6g2QIVlv9mx4aHQnk8QKnzPd0antXmfNinJPizrpqoq8RsJArdn2P0HBU21fT0LUJme6pYVtVyYfWDD7OqSlUl8QimiOCaOI1cfVnWNrqQbbM1osWw4s9/bsBPVGq/bNUjCTtoPy1jBHWa28dD2HtiYc7QE1FjGmq0XNpsNeVHQnV0xGAy4efMm/X7f1Yz2wHS9g+y5a+nbWtSwKy3wahNdG2OK6ynwX1lv0zQl8P0tINc0HJmkvqaR9LwTk4rV1DVpmgjobtYCu6Fv35vMb7v2txsHtK6rvTaO3dp6T+1r/20Mp+2adX0Psf/fZpi+yp795rq3fb5XGVWvPserP2/+dm0w6Fd+9xoD9JW9s/1e2qbmMldq8ZNFu33M/Z7xkfK85hqIptka79s15BuBG639MgxDBoMBWZYxn81cEM5mszHeTTHO4F+LgXZVVQQmgU/W8u0eo0TLJ4dsLWm8jdJ4hu1VGYaz5/mEvk8SR/Q7HWFslRW6qYnTlDCOhfVkKWE0KC+g0cokwtkmuHIAX2POhmXdUNQ1HQMgeWGF9gNh5Cw31E2Jv1lTaSjrmiCK8P1QbAk8j7TXR2vI8pKsqFhnGZtsg/I8gjg2RYgiCCI6nQ7j8Yh+r2cksB6K0o0FdCvkon0PfI1WsmY0Zr9UbruUGsMyeqwixtaoMlZszWzWfQ1BsDV4ty9fG79F5WoZCSppjz97/oijCOUp0wjaSPqrYYHatdcC3C5Ip733N1aJVLu63wJG9nV6JikvisRTarFakhcFjVY0WpoWjRmj1sDf89uJbvKco/GENE3odDrOY8wyHJ1FgNmvtF03fd/V1Y227DNhQg4GAw729un3euzsTowapEcYBFILBL6T8qI0AeJ3ppSpz3SDeSWDKSjX+LGNr6ZRNI3ZU1XtrplMbMz999A00ujTWwAKNH6wDTuw996uLWIvISxg2Ze1SG21kEHkvhRGLi/sVhdwY5t4Zt0WmEU7CaZtULla0oCgriY0YWBm8Lp14c/z+P9DRvffA/+1+fs/Af49vwxs8hQqCqmamqzICZrADRB7kRaLBWUhnhB5lqMU9AZ9At/n3uuvEYYhuztj0bErRQXm97eJKLA9JHktdFKWN6iQQdTr9xgO+9IZM6lv4tnTuM5SkecOJFmaSZpnGXVVURmHfJtaZxcg+9VuMO2J7/s+USKyiyDwnXeOuTzSMQG0EtpqFAWoUJOEA3rdjiQ5oFguV0ynVyxXa6PfLdnkOdPpFM/zGY0nRLEgmElkfDUCz0gUC+pKu4OoDMitE7/WmrrKzYIJyoOyyFgu5sRRRBpHKN1wfHSEp+CPfvQH/Ml/+pjJeMTdu3cY9vu8+9ZbDHuH3Ltzh7osUTQ8e/aM9WqFbjS+F5AmHTqdLnm+YbZeUeQFcZTg4TE9n0rC1NExy/lC/IfSlNFwxL27d2nqhiIrWbN2h28LwCyXS548kVjSO3dKhsMBk8kOnU4XrbV4edUNJyendDpL3nzzTTP2lhwdHbGYz3nx7Cl13dDp9QjC0IEuTdOwu7uPwqPX6xHFMXfv3mW5EomXjSi1B3vLSAiCgCuTAgOYiPkecRxz48YNdnZ26KQp3//oI7dghWHIaDQSqdaNGwwGA1eALhYLvv76a7dxxHHCa/fv8qt/+QMePXrMD3/4QwcSRVHEBx98YIAd8bR68uQJ//Sf/FOOT044n06Jooi7d+/ywQcfsFgs+Pzzz1mv11xdiWeTNZl0zJxWQQXXi0abgmc7IlVZ8fz0BUVR8s477/Daa69xeHjIO++8Y5J0euR5zqeffspPf/pTvv76a46Pj4UdVJV0Oh3u3LlDr9fj1q1bjEYj0jTl/v37xHHM3v6+A/iUUnS7XV5//XXXLUiShNu3b5MkCYuFJF1UZUFVZnS7XU7OpxTFET/60R/w8uURjx9/xYuXL7l185DBYMx8seTZi5d0Oimdbo+79+6zXArT68HDh1z+b/+MIAhJYnkP+3sHjEYj9oKArpHG9XsDUHBxMRUD7KKiKsRANgil0/Luu98hTsR7zQ8CMf2LYzabDQ+//NKNCQuw7e/vXwPSrInieDzG8zwH2GdZ5nweiqJwprz2YGTlCNbjznZiwiA0niZbcrelV9sipH1Aahf07SKmnfTR/r79NysZaB8m2geHEE2MHFY7/R6Nbnj69Cnz+Yw//OHv89mffsKwP+D2TTF0Xs3m0Ghee+019vb2+OCD9zg82CfwJZbW09CUFVVeoEzBUddmAy9rPMDTmtV8wfT0jMurGRdXF+iyoskzKYINMyhNU0n9iGNSk171i1/8AgXsHxwIE3I04vDwkMViwfHxMQAdAz4JK1D8B3wl4RU2tW04GBIb4HeTZXhBgB+GxgMwcPNtGz1fXSsiGr8labTghDbsJgvq2IOUSWl0h+zWPXDMoDbQZAoUH6TDbgpIDc4H8fj0BD/wSS8vCKNQkkYbMS8Pw9A1dizoKu9tK1PxDJjSmI5hEIQEoc+twzt8//vfp2kaHn31iPl8wVePHvHk68d89eBLfvdf/WuCMKQ7GBDHMYeHh/R6PdJuhzhNuZrNeXF8wmKxYHl5RbbZcKEUq+WCJ18/5sFnn5uDgHisffXVV8Jq7fZI04ThaMT+wQF5nnP08iXz+Zw/+uM/5sXzF9y9d08aA7du8au/+hF1XXN8fCJm0pdXLGdz4zcTk9cZp3kOBqBzcw+RLLqC3ki3LLDvQAVs0frKQd8cdGzKVJImhvko9Yf1GCmKgvVyKYDEJhOZjwFabTKgUh6JJ3VM34D69vDtKXmNNhD62muvbdceA7aWRtYw6A8Jo1CugwH1XFJSFKE9OD494fT8jOOTEx50H7LZrLmcTmnqGq+RVLBbt29x8/AmV1dXTub+8uVLNMIC7PV65GVBXgjAeXJygud5DEZDSVhz19AeqDR1I+PQ1kG6acTTy4CLnplXylPmcNdw/+49Xrt/nziKGfR614Co58+fM51O2XnxgjgVZvJv/uZv0ul0+Pjjjzk6PnZrowIn57MHzygSUG+xWLBYLGiahsnOBB9ZJzyl3HoShSHdRIxkK5NEe/PePXYmE05PTxkMBsznc/7lv/yXpl4NXQNBa5Hp3Llz17Bq9DUWkj1EGpzS7TWWhWebHm3Q0a5JZVkSqBAPWd+9Vo1pX7stfXt1zWmvPVpr4jh2+0r7d9vPu00AfJWTsH1++xptaV8bHJLf/2aD5fr73DZY2qCXbgER19Zi8xxFURrAoKaoxPbB7pOBFzgAwh7wLShQFIWRJW7HiQXSLRvMypziOObtt99mvV7z2aefugj55XLJ7u6u87uzrzufz1mv1/QHMgfyvHDMDWUSkAVoUpRlwyYrZF02UiDb0B8NB/R7XSbjEbcPb1KVBSfHR1RlSb/XIYkiY/AtpvJ1URDEEZX2KSqF9iP8uIunNb7WqKIgy4W1salqdF6w1+uxf/u2Ab09ZZIyAAAgAElEQVRkfrz46c+ZzecElzN8L2A0nnDr7j3CKKbbGxDFCTcPD0k7HZ4+e8HR8SnrIuf47JSm0SzWa0njRjHoD7l58yZvvvm61FrKp6kbShNYVZc+he8RBRFpJP6PZSEJkoHZn2XtM8nhkSRVh5HIc5fLFevNmiTtGAmuEsAa48VZ13gmtVMpjygMBdTQ0rQtSpEFWuDbwsJaawGV661UOk0TBv0uq9WKhw8fcXFxwRcPHvLVV18Z0/nwWhiRBYJsk9mOQQsqWSa/BZg6nQ43btzgu9/9rgOIUIrz6ZTVekVVNZS1pESvNmtQyjB5AyNR2wItIlMTUkCnKyz88XjMcDgUv1nD/itMgygwcukwSej3eq4BGAQBSZrQ7Xa5d+8e7779Dp00ZjiUFPD1JkOSQTPKKtvWr0qUBk1rLy7riqqRhFQbBhZEwra2UlQLNtEYJpQG1QCmWeMh9hC+75n/51oDLc9zsyZYKbFC2Eua6fTMhZuUhVj5pKmwbCuzHqAaA0IpAk9xcXFhwgGW9NLENF984ljhqYr1Zk0nS926Xpbi3WiDGBwYYWpFkfS1QDa+yfZ69fEXBZs08K+VUhr4X7TW/wg40Fofme8fAwff9otKqb8P/H3zPwIQmY3oVb216D4zx9goioIwCIgjieTudDqOhSR7gUF99RYBd4WPaZG2L45u/1Fi2h0FvqS/6dbm1zSEBmxyBqiGtaSUmNTVqkUzNJuB58lg9TzPxKUKwhqYwtodqDwP3zfFoqRbbztI6tq1E9qpUkRhIFppDYN+D9/zjPGfxybP0SYSuyiEtVPkYjAYRBFmHZUumtZCm2sa6sqY2BqNsQwmMfrTxnTSwufWt0MOLaJRzw1t9mJ6xtHz5+SbNUkc0ZjrFJtY3k6aUuQb51lhH7XxU9isN2yylYCLCGpsDXAX8wWzqyuKokNZViRxShiEaB/nHdEeQ1ZiIhumPfButbi2y+Q6+m6Sb6Ns5V54WAmBnZi+7zuJX5qmpsMaM5mMuXFwQGqkTttCwHPyKWtEajsUtviwxUIQBOzt79PpdrGeSEEQMJlMiOOI0WhMp9NhvV4783s7V3zfly6+eT9lVXJ2dkpV1e69Au5aScdrzsuXLzmfTlHm0Nztdun1eqxWKxfR7Q6apsPQvmavdgvt/7dp8EVRiK9AJr5PYRgyHo/Z29vj9u1beJ7niqQsk7hqG2na6K20azAYMB6PRYbQ6dDtdOQzRSGDwRDleW7NEAAgclHIVsaYJAnL1ZI8z5jPrri8nOIHAUVZsslyFssV88VCIqWNh4v1pMmy3HWx4iQRynkc02jNxcWlSAV7XaIoZDgcm+6lUKwlbcRQU33fxATXhroqfj51LYy9jmHHRVFEr99nb3+fq6srTs/OpODUlqEmsqvrbCTtinIr2bNMGltY2+ew96nNUmp3tNz643muC6Nba+yrxfy3AY/f9nzf1mX+to7Jqx1wT8mhKDHXXLT4HovZnMXlnOVwRIgwMHQlMe/L+YIoCJnP5iyNf4z4rRjz6aaBxrI9GuqmQte186WxfkxhYLqtBhDCB218EtBcY5k1TePYeDtGGhMbJp7d1+wBz31Oz5N9TDVujCgztsMoAnNotwcrB9y9cs2/jUEg107RKNvJkD1ANdvevELS/iyPTLP9XvtxvdCQn7IwZHsPcwfGupLufbahrEQyIlaB2piSbwGSbT/vW15XbxkIgWHP3Lwp5vTn5+fUlRzA8iwjW69ZzZd4QUCyXBKb+a91wybPCSMJzghN88eCJ2hNkYsZ9Hw+d3MsyzKm0wvmsxnzeE4URSxX4vWR5zlHR8euKXJ8fOzSbQPf5+zsHK01y8WS9Xot0dFV5cBVrbXzEbLrHFpYD56S5C+lFNpKimTAfGO+th8WeLTjpA3k2s60+7zGh8MeOpu6cQwWOzY9TwnwHQRbNp1Szrvk1flq1177uttkRDlwRVHkurn23tI6lNv9pmkkCnuzkYYHQC9J8f3ArevXOt/mWni+yAarpsH3a1DKAJpyDax3iB1zvueBbqgsSdOCr7rF8Go3VkwtJMB/YNhNKYPh0Ekqq0rkg3Eck5hOfacjh8s4jinLktVy6dZiG0ttrwPgDoNtZq5L+AwkAckywpXWFAYE002DNvfdMtHSNGWxWDCbzUx6oHy2wWAgjFtP/DfbbKX2OmK9OlSru/3qz7WZOI7x+i37xav7xLfNdfsc7SZ0G1B69X2295T/3HN/22vZpkd7DMuQ/CYT6tX33wZ52ywQ+/7bz7utPbdetS3uwLWfs+t8+x60r4UFA+0eYn/ONpysl5hSyiWPtX132tdYAUUptXaU54SGnaLNPJA62EeZQy0ox0S0ig/fM7YhQUgUp6Rph35/QFkVAjoUJWkai9dtKU2Kpqok8coPHZCF8lFeYBruGq8R+5IGCVAqm4YGJYnGgBeAn+VUjQS5NHh4PvhhyGA0IopiOt0BcZKwu7dPt9djsdqwWGdi+q1s+EeF35haPwhJ4oQ0Tcya2WLQ2TW70W6MuDFoKbmG3SvMGPNzciHlmpvaXlv2S4tZbM8qnmeauabRD0qui7KMGjnv0mzPuM0r41QbEFCZ9U/m/9zVyG0AyTap7Bh059rW3LOfs91It7K4JJE1rm88rIqyQHlKwCbjV9kYBq7dH+IkJowil7hnm51aa7zA1FbgzuN2rtjPhNl/rJ8b2ng7eiL38j1P7G26XZJEwgSsB3SjNLWujSelh9aeQdJ9wyI052Mjv9aeZ26ih8g1PbSuDXRkPJMQdZDMLWnamaJIICeDV8iOsq2xtrUN7j40xnd4Pl8wn11JkJkBm7rdBAWUBgz0fOMA4UsanbDHjYLIBoL5HkEg7CTLsgbLkveFUefWb+XqAzvWrldmv5zd9BcFm/6a1vqFUmof+DdKqc/b39RaawNEfeNhgKl/BKA8T9dZxunxMV9//bUriNpggT1s2qS4JE7omFhy7YmuvyxLYRAFvkMcwyAU81K1lSnBls3kACeFeC9pRINuHnYPUUqJeZYBX2zXIDbMDltAaVvsgaMqt7stZVGQNQLK1Gbj8c3zpmlqkOdtYWbN+sJY/BW0mVCRYUUpBZEPfhpy//YBVV1z984NyqpiejHn7PyK2XxBWT6lKAouzk9oGk2UJITm8BkaU1drRmijM/3ANz4ZynWn69psSr4yqCn0e12TzAG6qZjNZmSbDVenp6zPzyDfQF2yObjB5r33SOOIOArp97pkvsKjQZsJlWcZn/z855wcHTO9OGe+mDE9O2e9XBPFEcvFCs9TXEwvuLi4kLGiPJqq4Xvf/R5xHLK3t+eACnsPsizD9312dnZomobhcEi/3xfz2PHYHcC11nQ7PZIk5fXXXzceYAn7+/sCehomyJ7xXLLjqdfrM5nskKYpu/v7BEHA3/27vy1FnPLRyjd6eN8cSKSTZQs7+37t/bdFSNPUjEYD4jikLCvWa/kc41FfYmVVAMrj9PSUX/ziF27TiKKI27fFe2qTFfzH//SnfPLJL/jpT39Gv9/nN37jN9jb3WVvb8ygn/DVV4/58tEjfvLxT5hdTFF1za+8/z6TnR1u3bpFGIasViuePHkC4Ip6O6esxtwCaG0ddts01nbOpcgp3Hy+c+cOv/7rv06/32HQj6nrxqVSHR4eslqt2NnZ4cbhTeI4dvftN3/zNzk4OGA46tLtpm7enp6d8wd/9DHT6QWff/45l5eX/OAHP+C3fuu3SJOIfi8BFHkpSUuL+Zz1Zs3R8UuePH3MZDJhvDthOB7zt/7WD2iqisVqzXqzMXIqKf43RcE6y1hnEid+//U3uHF4SJEXLOYL8jzn9OSY+XJF/vgxz18eyWZVi6Sk1+2bYka60tZwPTs+5uTsnNFoiBcEDIYDXrw84urqisPDQz766CNevHjhCoY24GTvh5V3WlalXYcCA9BbdhfwDT8XC0CBBQl9c4BzIiahQ9f6G8Xxdu389g2oDT60mU1t6cKrAEX7sT1gWPaW5vJMjM0Pdvc43D/g6VePefb4KYO4w+HBDXYnO3z4/gf0ul0efPEFxy+P+NP/+BO++PmneIGwStO0w7vvvcd4skNRSlJaXpasjNfAjb19dscT3nz9LTTiqZGbiHflCnU5ID558oSTkxN2dna4ffs25+fn/N7v/R6bzYb79+8zmUw4PDzk8OZNPv30U6bTKXmeO/Nke1hWpnQxeyaeUqxXa3zfd13p/f195+1iDxD22olvTY3XSCCE1y5+9PbOWcBCBWYMmHvsNRoV2AJD2DK+of4HFojwPceoqo0fVFlVqFoO9YHx0xvpMSgIjZ/i2qRshlFA6NtCVdZHB7K8cs8BJzOxAMR43GFvb59bt25x7949VqsVP/7xj5lOpw7wGw6HdN/oMRgMeOPNNxkOB3z4l95nb3eHr58849nLI3Z3d3nt9fusNxt+9vPPmF5e8vHHH/P06VNmsxmPHj3i4OCADz74gKauJZo5CPji5z/nyaNHdAYDBjs7TpqmtXZsyigMWSwWPPryS87OzmTtWBv2sTU0Noc8FATKFzPmWtK07CzQXoPWcnd0o019YmqaxsrotlIcV980Iil39xnITNKsMJukARKFwjQri5LGpHlp3VDWNVqLAaqAH4EY0GsxZV8tl+6gIebfwpLx/cDVN55poICYfie3jGzHjMWqqmQcOXak7+Ro04sLNus1RVWxyXNhQWgTSGLMq6/mc2pzr86m56xXay6uLlHKYy/LiDspQRQQpTFVUzNcjIiikDu37xDFESenpyyM/+LucJe8FNm9eKSIX0wQx0ShNDaDUCLj81zCSNCaoK45enlElReG1RpTVeKZYVnQdW0Y/MbM+9NPP6VpGn7nd36Hhw8fOqDPNnPCMHR+Tru7OwRhyHK5ZD6f0+v1XMNkNBLT3BdHL4VFlmesFnMCz2fYScHzxM9xsUApYfqORiNu3Lhh0trksNHv90nTlDzPmM1meJ6EFLTX7Da4A1sgxa5TgGuY2d+rq8ow2OXnLHhhD+3f5rNkX8Mymizb1l4fC/63wa12c+tVOZkDTPSWdffqHtP+HPY5ba0NrcPut4BvFmhqAw7yXNvXsut0+7mbRhNFkQTZ6MaxWKU22H4OW0u1AVttwEUxA7cMuMiBmJvNhsVs7tKTA9/njjFCfvnyJdPp1LHhbP2plDRlmqZhtliY5DUPgpCm0cRJR8yTDRCiLKiiG7QW0CxJU6IwpD8YMhyN6A1GpL0+cVNTN/K7oS+grSS9SsptUeSEfoAKYmrlo8KEIKnl3O8pgrCkMvKuuqnIas3ZbIb34gW+L6zg9WZD7fn4ccpkd49eb8B3f+U9/vJHv2pUI7JnjXb2COOEAg8VxqzznKOTM2HvzyXVLkk7hHHEYDgwII14BzdaExjpahRHLginASMFF8SnrGqoa5Tvk3YFxA1Cc/+NJLvXlzNHEPoEUUBZVkwv55RFycXVFVmRC5OlFLZUg0hi7927R5Kk+CYN0jYfLKahNURBKEl5V1cOdFit11xeXvLkiayXiVFJWDuK9XrNdDoFcMCzZcm1m2N2boUGrBf54pLLy0tOT09ZrVYi6fU8GWfLJdKMkqTezXrtmrU2CCpJbOqtAE1nZ2cSrjS7Istzx1Ld39vn3bffJuhIE79pGuqypKlqkigmCiN85VGXFVVZ4pl9MM9yVssl2UaxXMjVanRtvgqD2O5XmHupm4bMnFtqs8/6vk9jmi21Fim3vubPZP5uwksa09wwZjmmfjXNgFr2wNoFAgSmDpeasqoq5vMZWbbhwYMvOD09oTRJrWEY0O3KPrkx3nxJGhPH0oBI4khsQI6O0U3NxIRFDYZ9diYjPE+xWq9JVyuaRrv7CeLXZAMCxC9Nm/NLbQaZb77+chD/LwQ2aa1fmK+nSql/AfxXwIlS6qbW+kgpdRM4/eVPJHTh5XLJxcXFdVDIbEbr9dp1h+wfFGYxSAX98zyqusYPA8c+8A3VWXlbwzB7YRrzV3uZ3MbkfuKbF7DdrbGHMrvZOZaQef+2G2qBDClMcgea2cOcfc48lwKkLEvn8WM7flppg84a7b7nITwcja/ADzzGw54AQuazRXEinQEkdrquSjbrJXlekBRiYh6EIVGyZddobWUTGpoA/MokMvnmZ+ykVGhz2LNdW88uEJs1q8WSbLmgXC3Z6IbLwCeNY4kOr8UDK44imqqkMibdFm0/OT5hbZLeLq8uyLNckso8n9KYJ242mfFHEbT3YP/AoPKh8zqywIZdCG0iUNM0jt5pGT7DodBkFYpOt0ccxUwmEwaDAWEY0u8P3D0Pw5DDw0Nn+imHw1CkaAYMFOnAHTqdhKLSFJXE/YahMjTfjTFVlrGSZZkbB/b9ytj3GA4HjEZ98rxkPl/hex6jYZcg8MmyiqIS1sSzZ89c5ywMQ3Z2dkzs9gXTiyNevDji+PiYppHrMNmZ0Ot0SGLxFXr48CueP39JZminNubVptsVRcHV1ZVhciXX5E2vdkJsEWUPzm3pqC0U63qr+R6NRGoZBBBHIFNj22nd3993RteR8f0aj8e88cYb5l6ExPH2/RRFzunpCU+fPudP/uRPODk54dd+7dfY2dmh24kZDiT69+XxhYA7uTCo5vMFp2fncuhBCqbX796hkybkZU1R1SyXKy4uJCnw5OTImKVW1I1mPJnQ63VZr9acnZyyWCw5Ozs12viMrYZeCsPVamO8FPrEcURZVZRVTZ6vpeu0mHP/6JjVJnNm7gMTHy/suQkASyN7aUs2LLvNAuP23+1m0i7UX5UetOVXFmSKzKHUFriWImyXyXbx8WcBTe11tP3HFu3f1o3+s37PGhRq45mkgJ3RIb1el+Onz1kvluiqYtjrc7C3x4cffMB4NObi9IwXT55xfD5lOr3AD3ySXpfhcMjtu/cZjyZiUlyV5LkkXmmg3+3hBz47e/v0+n05tF87aOCu209+8hO+/PJLbty4weuvv86LFy/47LPPWCwWTCYTJpMJu7u77O/v8+TJEzabjfMZsmuKUsrp8p0UWylJVQGRey2XTkZrr4/5i9wTU0DZBBy01zoESYGzLU7V9jMZsEmpLZCmtd17fNdJbHwBBTxjnFw3yu0hUky3Op1pgvK2xsrrbGMABlN4m5SmdpPpmywd5ZgRtstqpce2eaCUGA+vVit3YO/3Bxwc3HAG4Ts7E/7Kr33EjQM5bGRFxeuv3+Ov/JVfZZ3lRGmXk9Nzvv76a54/f26YTFM5sA1kL+j3+6xWK2aXl3z94AFht0s8GhFFEWPzdTgcMhgMnOxejJiPQGtXm8Qm1nkL/BkvBC1JcdLBNfe2wSUZvfpoH9yvS3i2169p/ZvtZIbG6yUICvKW/177YUFUz/PxmwbPc/lJArY0+to6r2PDCPC249IesiPDbB6NRiil2CxXruZpS3B9zycxvn1Lc2hpnNdQ7Vhzfijyi02eUdcV88WChfGxy8xBp6qFkR4aVk+cJCSpsIwGQ5FVnk2nzvem1+sRGJmxBii2LDqZnyb9CWME3TTUvjAdF/MFjWGXWz+2Z8+esdlsnH+jleFVVcXp6Sl5nvPo0SMePHjgPC1tLSjXvyEAut0unW7XSR57vR47OzvyOQYDYdgagKeuaparFXEQMEgSaCSVKc8y+v0+/X6fOI7FL6osXSNRuv4JZVW4Jl3bX8gz6ZMyBjVaX08atcPN7h0OoFKGDef7qOZ6YIT9jO1mQ/ur/dnSsH3bIQDtR3t/aINN7TWlDSY5f5JXzhzt93P9vXyTgfUqUNaemlvGS+0Aoldlg3KQN1I/JYEXlnHXBtDsgb99XStdUpl10F4by1CxP7dZr1nM59csPEajEWEYCgPUnE8Wi4VjP3uGEV6VJXlZEmw2hHFC2h/QoAnCkLCO8b3ApQvWTSVjAVnDgjAUln+SECepNLgjkXV2u1KjC+ygUb5JTgtqAYJ8HzyfRnkoP0CFEb5Sji0VxCnKLynzDXVdscpyLk3ib5J0ZI1QCi8I6PT7jCY73Lx1izfe+g4oRVWWoDzS/ggvCBleXLFYrtjd2+f27TvM53MKo0zp9XuyXpi1qGk0pTHo9gMxbI7CkDAM0EJClTmg1LW1VOaQeKMGgdc+aBLHEWGIYy0VRSOBGVnG9GLqEtJtQ7xpGvqDAfv7B8bbU8zjv+3hK5/G166BKMnZBfO5+N8tFgvnI2vPQ57nScgAuGalbVxaUMnW/Paz2fFtG+fL5dKdj60Mb2NSqDFhClatUJqzsLDqlMMEbKjTer3m5csjFsuFWx9FIfQrbsxqrck3GyoloFXg+yhtU1YlzRMjSZSzd4PWIj0MQ8sqNGwkNFpt53fTaLHYqCXpsbEMNJOYrI1KpipKt69i10K7J9cCFKpWC1EItA2NJXoUFbrRJInYMAgrUebndHrOcrnk6dMnvHjxwgV4tMGm1XJJXVX0el0BnKKITiLn7sVige9JbRFFEUkc0+mkVJXI8cpSZLC2tg4CJGCiklqxaQFPtn5Ufw6QyT7+i8EmpVQX8LTWC/P3vwn8z8D/DfwPwD80X/+vP8/z6aZhPptxdnqKNXdsL/5OXif/QJbnbAwT5Go+w7M0Ps8niMRY1xrwWj8C33Zk7Obibc3MlKekG2dQTJrGPGckZnGWsu5J9K/CxHw7NBQsgVwZXW2cJAw9b9uJ0Q39ljGv/Uyu29LIIM8KSfAR8Eo2nzi2TKfQgRvOQM4MjiRNJVUukp/pdRJu7O/Q73VIk5j1ZsOTp89YLpZs8pysKCizNZvVHGWKFEud9n15bk0NTUVdaPdeBMHVNJXGiyJZ5HTDerWkLivWywXr1Qo/Cunv7oohck+i7MtcDAnrUuiydVmRbzKUhp3RhMD36SQdojCim3ak+zEKnPRu/8YBvu9z59ZdA9DI5n5wcMCdO3fcZ1BKGdaMBTZqYxC+AHD+Pv3+gF6v5yRknu8xHAyIoojd3T36/T5FUUpCCFsjXtEYh635YAoBWxD4Erla1ZDlBetN7jYZrbWLnm0f7tt/BxwDaLFYmUWnYrPJTWEiG+/0csZqtXbMCJuEY9OW5vM5n332GV9++SWe5/Hhhx9ycHDAG6/fY3d3hyiOyYuarx59xX/43d/l/PwcPwzp9vvs7u6yu7vLcrlkNpsxm82umf65gsSAEm3wTSl1Tb4DuAQuW9z4vs/3vvc90rTDzZs3TSejYrnMTSdQgJKbh4cmZrZxzBxL0R1PxgRhQFk1VE3DfD5nOp3y1VePefToK05OTs293OX07JQf/v7vI5Gggs4vlhuaRrN/sM9wODDJbDtEccL5VAyDkzihqDUXl1fMF3OyLGe5WAmtFoXnB+S5GL+mnY7o7jtdDm8csNls6HRTrmYzVsu1ue8VVVUazX9p5pmYRKIMGyCQAIQsy/n444/dJm9Bh36/77yy7MG6KAonjwiCgPF47ManpdLbwqd9WG13fL+NUWSLbDn4su3YsAXKX+0Q/1nP8yq49Oqhwr6fV//tz3ooJCmokyQoFE1Rki1WlFkOTYOPIgkikjA20uWAQa/P7mRCL+0w6g/xAp84TSXuttOV1M4oRHsei9VS5IxaxhdNQ+B5hL6EUPihj4ckMmktiaa+5/Hm66+xNxkJKDqZ0Ouk/OAHPyDLMsaTCWmaMhmPGY/H5HnOb//2b5Pl+fZwZQ5FRZ6TbTJ3WGp0Q77JqKuaw1uHBEHIwcEBb731FrPZFV88+IKrqyuGgyFpkhCGETs7O9vDjWVDu+u8paG7byhMYqpyPk5yqDTFl1PDWKmcMGxE1iDAlq5lT/R1g4ewrWot8kRdbtdSkTz52+SYxvpDyXuxI2CbLmMWfK0JjX/Z1eUVm3UmjC9PKONffP45p6en9Pt9bt+6zXA4YmdnhzTtcHlxSVkUPHjwJWen5/zRH/4xf/jjH/OTj4f84e//vhyqhmMqU0B2Ox2KLOPFi+coNJ/8/OfCQqgqet0u9994QzqmdcW6KA2jWvast995mxs3bojcbjbn6uqKp8+eobU2pqShafoE1JUYzmvdyFqgNcrDMFi3crlrD9tFZctecgec1vdiI+e0991KrdoHbjvu2vPVN9LNKpPOuuWxeL7vrs9mJY1AZQqWIAhIYjF5Fc8iX+SCRcFg0Gc0HOF7wsbVCPVfDp7y+/t7+9x/7T5hEJJEsayXdS1NNzMWwzCkmybUdcX52RlFlpPlG3TTkCQJt+7cRmvNnXt38TyP0XhEHMcsFksur644Oz3ly4cPSAz40+l2XfqTW6OQ+qSpapGqBSFdk3zlB7JGlObA1NS1G4/LxYKL83MC3yeKYmyoggWEut0ui8WCy4tLsvUGTN134+CANE25efMm+/v74lvY719r1Bwc7NMfDBw4HScJk8mEMAxJkxiFZjo9Z71ec3ZywuP1Cmv34Pm+dM7rmoXWLmjFSk08L3Tzra5rWVfTjtRYhknX1DVaaTy9lXa5/aCRg4hMYL1tOHkiYayrik6aitwjq6jKradc267A/rl2L1rj+tv2sGt7wp9j32jL2uxa1D5vtAGkNjvplz+1Nt457UNYA2xB/vaf7Xvegk1tlnFtxr2MfX1N/lrXNYVRbNgGttSWmWOFhGHoass8z3n58qXzhovjmN3dXedpOp1OXWqjO2f4vniTmWZGkUuSFWCa0KAbYfGoWo6eIZLaGMcpYRiSFyWXszlZXrBartG6ocgzYXKq1t5jGHIKRHIcZUSFJJQ3iEl3lMSETYofylhP04gw8OWPL+vM8fkFeVGQVQ0qjHjz3e/yzjvf5fDWbYI0BRReaMy/PQkAevDwIX/wB38odgvdDlopBqbWA2nwnJ6e8/DhI7qdDuPJBOv/a0kGzh/YdOD8wMPHcwxi67dkMqqMzE2+SgKr/E7geTx/8YL/43//51xcXLBcryU8wICsUgdobt26xeHtW4RRZEIuArO+yzhEy/guMrFFmc1mXGtQ6OIAACAASURBVFxcuPVks9m4JEfr09RmJXa73WuAbpulaM+tdqxZwMdabNjxZOt820CXIAnx1ZLX6Ehz3heZ2HwxI8s3kkZ3espiseDp06dsNhvmV5cUWc7te3c5vHOHssiJ45A0jR0AEnoeVVQa65CQJvDQOkY3NYNBjzzbEIY+dV2xXq+4vJyidYPyZSwGgW8aASY5EBOQoiWtWIPI/EIJtQhCH2dDAy55UdnGnQWktMEHtBkDjtnkmURLke8pPCSZsjLriA3u8VqWQsIs8wz4F0WhSyPerNfUaJOoKqqppgnZ+hAK006sdkRNtdkISJVlhRlfwmCOIsiLwpBPzJ/G1u12EKttkfZLHn8RZtMB8C/MohgA/0xr/a+UUv8R+D+VUv8j8AT4e3+eJ2sazexqxsnxiSwU+ZbpAbhV3h5m7UYmE9YgkWaihKbrE8WR6xBZ41XfLJztbk1sfHTSRA5pdVlSlxWx0XZarbMFpZR9TYNg1+Z1PbNy2sSGOExIux3z+babmz3cWWTXHtgtO8EWZlUlG4jveUShvNdOp2MmrmcQYoUyA3I8nhBFMT3PI/B9et2UTielaeDOrVusNxlJFDGdXvDy6IhiuiHP1sxmM/lsptvRTSPiOHDvsW5q6qowQIpEtpal0GejwCMKUjFvXy4pi4LVYs5mvRaN9N4uURiSxjFpkkj6xXpDXZZgaI+WSbM73hGAMO2IuWWni0I5qneapuzv719L2woCnyD0DbCYOJM6YdDUzuPILnZ2TNnF0fdEprjtkgdMJiOiMBT9M8qwUa4zLqw+214jWwh5BohRngeeJ2BTVrj4cctAsAu7Lazsot4uqGwXQmttvKZql4Jn6dpHR8dcXl5yfn7uwIbxeOw8IPI855NPPuFHP/oR3//wQ/72f/e3uXGwz5tv3Be/mKIhL2oePXzEv/s3/wYvCOgOh/SGQ3ZNXPfDhw958eIFVVW57qllxFiJovWegOtdRNgWctZXym5u3W6P9957j5s3Dzk8PKSuG7JMAEHf9x2gcnjrkPFkTK/Xc6/vPNNMhyjPC8qs4ujonC8ePODx48d8+eUjrq6uXBf35OSUf/97/4H1es3FxYWbk1EUiUlr923CKGays4vneZyfT1kuV/T6I6pG8eL4hOPjI+qqpsilA94fdPGCgKwomC+WTHZ2SJKU8WjAvTuHVGVFZzDg6mrO9GzKfL4w8kHZME6OTqjKikZjDm+eFClNQxBKQfDjP/5jyqri3Xff5datWw5sshtMYQxvsyxzqU+WVeHCFVoS5HaH1I65tiyh3eltg0G2w9M+UKjWunydgfLNx6vP+c2C+/qu9ctYTvJDclDqJiloqHPx2aqyHF2LqXcaRqTGIy0IAgb9AfuTXccy83yfMI6I05R+p0vkB0SdlCgR4Hq5WlNWJXWdQ6PFuykIJJ42CfGUbIA2tc1vAt5643Wi0LcfjBsH+9y8fVsSssznjiPpPA0GA3b39lzRX9e1SxdczOdcXl66wq4sSy6nU/Is5+bNm+zt7TEyRuPPnz9nuVpxdn7u5ke326HXlzGxsUbvGMaThYtaoI6mFkaNvVdaDLnb96nW9Tfui+E4UJv1q2qMx5Bu8DHMDyPtqsvtumDZck6aWVskqzUu2v+5QgdX9F5eXjCfLTg9OWFq5EqfffoZq9WKDz/8kLsmRGAwGMnPX1ywmM/xPdlPf/SjP+R3/93viiyjKNk7OOBv/fZvM5yMUUCv2yXPM54/m1NkOYNen26vy2Rnh16vy+tvvcl4Z4fpxZTnRtpalxVJHPPdd97l3e++y8nxCacnJzx/8ZyT0xO01oyHEvIQRSF+EDCfzbhYLNy9Vp5iOOwTGqC5PS/azK9XfdXswb/dVbeNt2trs76eIHqNkWaYKEFgvFKaDWVRuoMCnkdm/A+vLi7doaPdDIjCiJ3JBN/zePz4MdPplPv37vOWCd7YbDay19Vb+Van0+HO3bu8/c47xFFMYtjJV7MZdVM76W+/1+PmzQNWqxU/+uEPWS6XEvKwWXP33j3u3LvrpERKKTefphcXHB0f8fL5cx58/jlpp0NvOGQwHLouvVuLzP7e1DWRafZ1jc+SHwSEsbw357llDLovFgtOTk6k7kwEmOp0O27dHo1GrNdrLg2Lf3Z1RRiGYkD81lt85zvfEellHLt7ZhkAt2/fYjwekecFm400W5NOKt15T8DCs7NzVqs1gefx7OkTx5zxPI+6FCZMtsmusdd8z3oGylyuDQDU6XRcQA5aTPmV0qC3adFgmJP19ZRRT4mXmpXWN2G4lWhVK4q8vAY2WZClbRDcHvPtcf5q4+LVx5+1b/xZYI9dj9o/067J5DW/9Snd79iv4u3S3kM9PE9fe972tX+VtRSapDP7Pd8cgNufyTI5lHvNraG4TTtdr9ci0atql/r84sUL0jTlrbfeotftsre3R13XHB0d8ezZM9I0pdfrCdDZ6YgPqpL9wDJjysqa5iuUEnMYT2tqT1g7dqzFsZyn8qJik8241Fe8tNeglvFkPd7CMDANdEmtC4IAL9wQRcJ+8vBQQUSU9vCUotsfEgQ+N2/u0+t1yDZr8s2G/OVLjs6/NMwVRZJ0eOu73+M3/vpvmevXOiQj+01ZlHz+4AH/+t/+W27euMnbb7+NH0YMFgvCaMNiYe0QTnnwxUNu3Dhg/2Cf2DB0QWo3CzYJoABheD0t1AJMbswgnlNW6l7XNaEK8AKPp8+e8Y//13/Ms2fPhf6iWr5kyO+88+47/I0f/E3GkwmdJiVmex7VWjsWz3qzochFlXBxceHOQ2VZuqCiTqdDbdRFq9XKnTXbTQmrtrH7rm2Gt/2bbOM5z3POz8+dMX0cx/jGxynPrSewT2qCb7JCmrDzuXgMf/311/zpT3/KfD7n8ePH5FkGRYFqxDe4PxhQ5BlJEtLpxLYcpQoC6qoiCgPiKKSpfQdm9gd9kWia1OX5fMaTJ0+p65KaEtCkaUJomLJBGGI9yJQCPwjxPJ/+oE+n2zV7ZIyzxzbj2q6dngn5csCTktAHTwlA5Zo8WqNr8QFDKby6YbPOyLPcqG8En7CN5TwXxm2aJKRJQhyLx2RT18w9kd65IAbfo2liw0iSfbsqKwrTFEvTlLIoyHP5U9fb0AUhsyiKsjTX1zSkLUimvVaZ9ssRp/9isElr/RXwwbf8+xT4b/7fPp+wjGwKkbjtW2qPZquRNq/hbpRsdVvaq9YaSvEbKG1HzPdZbzYt/bNBL40MI4wiYQ+FIjfRpvsTRhGdTkrgB6SdVDZk2x1uWlRzs6kIs8pzoJZNfbn2OVubaPt7VS0LeFVVbiGwqR7ayG6U2pr3yiQvnQl6GIT4fkgUSeETxZEBvXw85eP7EVEYsLczIol8oCYMxfdD9NaKKPDxfYVn6HGeEv8qhUKbzc5aaBuuAzSNmWAlRZaJCVlujMt8n163K/RpT4qTIs/IN2L85nui96zrmk6acuvWLTqdDoc3D/h/qHuvHkuyK13s2zt8xPHnpCmXVdVl2pLdZJNNikOOoe7ct3kX9CBAP0kCBEiAcN/0MA8DDDDQFS4wgi4vyRlRNEO2YZvqqi6TptIeGyfsjq2Htdc+kdnVowtID9QBEtldmXlMxDZrf+szURxhnabI8hxJnFg/gsjcDzaF9zwXvu8akMeFIx26V45DnTNTTPsepT5wzLMdPw13rNiEUyDPKAmgUY0BnECftlW8cyoJFw5caHMHSDgOAXINLfZtiROP4atFBxdR/N54cYcZ/9wZ2Nx/AhKm06kFmlhXzUUHG9Tv7u7ar/F4BNeYFh8fH2M6W2A6n0M4DpJuF7f29jAejy2NnyWfDI4xSMvvn8GNXq9nwVIugPg9c8KZEGQGuLVFrLG9vZuYTLYQhoHdvNrdzTYwYe+R2XBVo1Dmpe3ma61RK2UliTeuX8dgMEC326WktbrC0dGRBXg9z8P29jYlaCQJFXRmsRZCwPE8ApKKAjJNkRcFasO6rAxTMS9KAz4D0iXTyrKqUdaKJKyOSz4JRrLWH/TRGB+WPMuRxB2URUlJdLWRCNSNSeWgteliOoUwRunn5+d4/PgxOp0OXrx4YfXwDD4JQWlEnCDSHrPtgv5r6+8rivv2ekv3GkQt3rTPvvHv+e+u/k77d3n8fBPD6epzfI1t1T401OQb4UgCLpgZ6QiJ5WKB5WKBKsvRdGoMhgPc2LtFHaVGQziUJiIdB3VVYT6bYeg5iDsxAt9HksSUYlXTvpKt13SAcMms2XUkQp/2q1JtOlxFSRs1GVwCNVHB7DwgA1Y6ILBPH5lWawsM8uGUmZlKKaxXS9RVhdFwhEG/jzhJMBgMkaYppatFEYosx7SqoHUDP/DIr0eSVA3SgdYSstn4+Ngvs67ZK91oK71qNHeeDT3KMJucBoAkfygtYDqVRgriOnbOcoeQnaI20j++18Sas/cYAEdDt9cBNtpsd2G5CGa/GzYo5bWSgfeqqjCfz+0hlVMVr1+/jizLMJ/NIV0X88UCChrrNaWaxgn5QnU6CcqqhF4S0C6MHICLS8cUjzD3eL1OMZtOMZtOMZ1OyV+tILp6URZmHtC+QZHGGwCcDmLCyOjoAGOvkd6wwEwKCvOqCTAw+20jNky5sihMw7uVRNgY6pqEmQ+Nib+l160No1fVyuyHBFbQPaaazPVcxDK2htdlSYbqUtK1UQLWdyiOY+tzOej3qRny+99jPpthazLB3t4ednd30O1Q6MVv/vB7zOcLPH32DNPZDP1+H/1+H44jUXCAQhggTmJIRyBOIuzs7uDmrVutMQBzwKnhei6GoxG6nQ4uLi6gtcZ8OkWWpoiSBJ7vYz6f2/3z9PQUQgjs7O4Qa9qsWzBNoFoRyCSMrE5KiW6nS6Cb4yI0e7If+HAMCMfvi+XpnF47GU9MEIgmv5Qr6zFfz9lsarrfCmEYYjgewXUdVGYslUbKQew2M2bMvZXm4GrrFbvPbpql7UaR57q21mivxZcBG23XYsDUxnpTE4nW61kgyuxFwMY0u90AboM8rwKG2o3DNuB0dd+6+p7bDew2aNX+nfbPvv76mwbIq4AuramWF2hadQwASHzTg97D5WZMuxHUBqL4tblB6Xnkx9P2a+L1br1e01riefDdjTWDUsrKzh2HEmzTNLVy7CzL6MDuklJEGOljrWjNquoapbEOsB8aXCeYfVlqW0NTXVPbMWLPDgI2hUs1Gq5q4NSOAazJV4lkmzQVorJCWSs6YzkOfM9Ff0jm5UEUo9vrQTgusqqmA3RZwfN8xJ0uGgjrm1IUOaYXcxRFgdOTUyyXKzx/sY9aKdqvTcNHug4cz0VVU1rX/uEBPvzoI6yzNV5/4yGapsHJyQmybI3jk1NMp1NipTs0z3d2tiyb0Q/IYL2qORlW0pgwMuMsz1GVJaI4QpLEqJVCkpA0vFLKEhoA8hb2wwD9wQBJHCMIfFxcTHF6eorFcoWFaWx7LgVQdZOO3WvZ/JsByVf5pfHctw3d1ji8Oid5bWiPWWbdLZdLW9sEQWBCqWifK0qSukUm7TMvCGRSrUY774VBEFCNbfbWwIYbCcznC2o0GwULxfMR69n3yCC8UY1JsN8wuJbLBY6Pj/HFF5+jLAvUmmR8SRKb5g/dewaPIQDPp7W80+0gikl9E0ahAZPM3K9q6EYZdcLGHsAuxDDAvmEycjMHDSxYp5Q2ErkKw+HISl6jKLIJ4AzgMbPJdV00BqhWXt0Cq43Zt1D2frHnFgCEYYRsnUFrVj/UG+9rac5aZomnRDxpz8lKCfait02Kf+3x/9Yg/P+bhyApChem0pEIfNLHKk2b1NoUkQzsWFkbo+7YdD6qPCe3eK2pMMKma8EdAmYfMUonBBmfCpikN2wSwaSUFEUtN1F/lCzj2s6S67okwfBIwucaSZ9n2FAssQpaTvue78MDdd+01uj1umgaDVVv4o7Ze+ViStpqNm5drzOs1xmqivS3juNglaZkShlG8Fzf6KUjRFGI0XCEOPDwxoPb0I3C7s4EJ+cznJ6c4tmzp6SzLUiu4YoGUteQEvCkRNMArmTqsobQDZQwSQCNgioLlHmG1WKGIs+xXi0IlfV97GxtoSor5OsUUAqr+RzamLj5ngdojbIo0NnZwfff/x62tiZ49923MRoNUBQ1yrK2B4uyqjCfTaG1xng8NibHHvyQnqehoWQ9RZh66vJhxAw3fi7VNMizArlZiKSh1J6enZsN2xilOxKOcznFizymNqAIU0c938dwNIKUErP5AnlRWLkJFwNcfHHHsr1YtynMiUHPudvABapSFEubZZntSDETyHEcy5B78uQJlsslkiTB+++/j/fefQ/vvvsuoihEGFDM/YcffYQvvvgST58/hxdF2L1+HT/+8Y+pADbx6vzFHj+u65KMxHTTiqJAkiS4efMmmcPnnIBI3gHdbhfb29vIsgxpmmJ7ewcffPAB+v0+bu/dQKeTYLnMsFqtNqCtWeyBjQSMrrtjgWTypFiirpXt0JRG4+16Hj74wQ8ghLBS2p/9/Of4tZGkJUmC8XiMN998E9vb29ja3oLvB5BORodq6SGMY7ieh9lygflqhcVqhaKuUVW1/WyVIu+QBoAXhKibBsv1Gn4YIlcanu+RpAMNmWnrBlRmaGRZiePjC6zXGZ589QTT2RSZmddc/K/T1BqYM4Pt2bNn+NnPfmY3D9d1cePGDbiui5cvX+Lo6AhxHFsKM6+VzEbjwp/nAhcS3wQ4WQ06jHeE2UC5/LkKFm1YUJelCu1CmQuSq15R31T8899dYkaZ59aqgcoLCA34UQjPddGLEuwMJ/CFg6MX+3AaID2fYRh1cef2Hdy9f482eBOsCZe6cZ9+8hleHr1EmATY3p0AIgEcibWRrWRFgfOzM5yfX6CqK5RVhTAMSBrkuQjCENJxaHwqMpE+Pj4m5uloZH1WfJPuo+oajuPaQp/3G1sEfu1wBLiS8ABXEuVeaQGlyR/p2rVrtC48f475bIbrt27CC6gY8cKAAAsQPZyZCUJsTMgZXbesmVqh0UYubhoirZvTksoZE0wBEx6x8RZhnzYeC7WqAA24vgfXccGG+Qw+at02gZeXPv9VQAoQCPwAsudcovFzd57lI2SyqZCma7x48cIezqSUGE8m+NGPfoST01M8evwE0nFwcHAA99jF2dkZ0jTF7du38e677yLPc/ISzKc4OjpCXuS4c/sOdnd3zSHIsDMk1TInxyeABo6Pj3F8fIzZbGYNmoMgQOEX9rMyM4EZNFIIajiV1Wbca5bbE/intbbtckqMk5YBBiMB0NCoihLFmmTnDGIwm0ybTr82cwmS201AWRVGzlmSj1nToDLmxTCfcdDrIwxDPHjwAHfu3MHR0RE+/vhjlGWJvKS/7xh26db2FoajIfZu7eEv/+ovMZ9O8Ztf/BxffPwRfvSjH+HP//zPsTUZ4truEB9/dIj/4b//7/D06TN0hkP4UYTbe3u4vbeHsirRHfTQKIVOvwfH8+AYw9W33noLP/jhDygpj8E2A7w0DckV/uVf/gUNgJPjY3z0u99hnaa4++ABRtvbODs7w2KxQFVVWK1WNsq71+lSTWlAQd63PdeFdCnhiw93N65ft2svgzsQsPsUsxFZ4h0EAba3txHFEY5PTvDpp59itVrh7OzMNmhc48PY6STwPPKeGgwHuP/gwaV1Y2GYGHVVMzpJa62U8E0TlBnZdn+QAnzeZKDb9z0rx29LbHgublhMl5l1TaPIZN4AvAxqtZlJnudBaGmfl6X57f2q7c3UBnza60KbGc7vq+3ndHUNaX+/2shoA008ZnjetYG5V/2d/XutUVXKfsaNZyX+1UdbRiebjUGy1uSF5vneJWY8r88Cwvqibfx4CntY9zwPW5MJOlvbto6qyhLn5+d2bDNbvCzJ4uLs7AwADNgkEZh6r8oyrFYLU2OtCDjBZt9nNmRj7Eiamq5fUeYm7dAQBaREGPjm8Lq5juyt6xg/MOdiZhMfhRAEKscJPNdBzAfuJIYSAvfuvYa7d++gKku89d53UBYlzs8v0DQao60dlPUGeD09n+K3v/kdzk7P8Mtf/BKHh4c0Z6oK6zzDdDGHFJK8BQWQ5mucnp9h+etf46OPaJ36wQ9+CNd18B9/9p9wcLCPX/ziF/j4448RhCGShNKCf/RnP8J4MsZbb76FyWSC5WqJ1XIFx0isifFINf58PkeWZRgMBxhPJsirGtdv3YLj+5gvFyjMva3rGv1+H9u7O3jttbvY3tlCr9vFP//qV3j69CkeP3mCR48eWYXDYDDAT/7sJ9je3oaGRhiG5DM4n19qdjPIC8CyKLmBw99ZccPzsjaeVuyPywAye+UeHR1RSutqRUlzUUiJoAYo9wOfAEIhLPglTMM3y8iP13Ec22yrTMN7YLxopRR4/nwfUkoslwuoWiHwfJPKaaTH0kHgb7wAoyjCep1iPpvhww8/xD/8wz9gna1R1QUggF6viygKaB91HKMmKTdrsLlngWG9S4dSXBtN5wAirGwSQ9tzltcNkls7Vs4qhYQrGcAxgLwmls2DBw/w2muvwXEcK5ceDoeYzWYIAx9hGMD3XGupEcXUcNagYA9qxPmGQdygaejsyI2qwWCIoiihtUBdNVivc6RphjCM6YwL49GqmehC+37TaBSFQqlqM3eJgIfLVo+XHn8aYBNgKGiN1TtS0QTApD5JsaEQfq3D8g1PSdReZZlRACDUxtxQOJd14XzEcWDMDA1LRBokXRhjRAgBz6HEFddzUSkqXBvV0ED3iNnkOi58zyP5mUmUqAI6DAUqpDQV6QCua+FBIUGsKL3pHAshEIURTUbTmfSLEmVZGcBCGgCDCoCqrNAojs6lfwv8AJ7nohP55MkTR+iXNco8Q6/XRZEXRCdUCrpRULXeGEGi4WAFo001/k3ET6RrzKbBZgMkQ2EPwvOQAyjWGxqu6zhEnedC2RyqqIAKkcQJOp0ufK9GZdhJSjVwyxK5MdHlQ4w0xbUmPrEFpoAW60gIS9Xnn1cmRaMyCzgXIdwVIgneRvKiLTWRqfbkm8Tjh54clnIupUPyQ6UMi+7rqSft7tWlQ7T+ujcBf1b+eWEMZ7kw5O4+ALsJ5IYNMx6Psb29jcFwQIuT70Fr0u6en53hYP8A65T8H6KY4mmjKDLFizIHINcwA4layYe62mjNXc9DHCdQSqHb7dqYZyklxuMxJlsTeo2APCaGwxF6vS7CKDJFWXnpYCCaTVHX7oIqpaxklgDmy9eK0k+65v8vX0+ANlLuLLNBfBiGqJVCuk7NRiuNFCQiHbwpUlTTWBkUmfULq+vWIFYVgb8FqrqyDA464QuUJd0vV1Icaa2U8T1wrXFtXSt4VTtidSNrgSlouTPBchXHcWzHvC0x5WK57Qf2TV3Z9s++iXGn9aVmu51PaHU1qMvz6tfQ2PweP+/Vf2uDVbb4v/I79nXQYrfIDV3aBhAEARzpoMgLZOsMq+UK6XKJjj9E4AcGrTJP7hD7o64q5FlGHarW+LN7j2EDaTTUoauoiF4HOdzagTIHJ8WH/LpGpWpowJp7xvFGWs3Jn9Abti4XMObFr/TESVbhSmnXYggynGRAazyf4+L0FHKx2NDdG0VAkBAwruOWCcN+SNRxFpevtTkACG32y9ZmqzXFOHNbS2MzhtoHPd7PLX0KVEvxz5uGx4m+dPjYHGCIJcUpVu1DJ8BGugT0cMfQNyxjni8EYG1Yn3VdE8NIAJOtCbrd7kbOYOjmfNhrzHiKDeuMikdtwfPVcolVkiDL1qgNq1proK4J+PZMelhRFGiUsuxU1+HEGWINNrbQ1PYecMNpAzaZMW6uB88N8tUy1xotfyuzNjVQZFRq7hVd28t7jl2u+LUbTZ/HvL7nuhBaQzSSZL8NmaRKR8J1qdmxs7ONPM9sOlCakrddHEbGM8p4ymiFbrcD6AbjCe0PnW6HUp2M56QQQFkT00CkKcq6tqEJjuvYtKQ8z1HVFRqzJitzXdprD/tOREGIwPexNZng1t4teJ6LF0+ewHEcTLa2sHNtFxcXU9sIYguG8Xhk/Quz9RrK/Jz3Jmnq1Tbo0gY5FAgkrOuaOt0MIpigBs8jY3xVK9Smu8zgI0DeGbUBr7Mso8NbQPKI5WKB0uwD2qwpLIEMw9DU0a9e7+0a3fA54bJc7epe0H68im3UfrQBOQaA+LmFqa9ZxsmHsq81FFr7wNX3fbUxcfU9tOvAV/386t/+a5+xfV+v7qGXXvPK7179+ro0jz+H/trnsowScRlYa78313XQKNea87ffL1swkBXGZo8RUhppjLY1GhvFt8G1im08PB+NT3Ve+7Ow1xgNfEHsGymhVE3rjGGB8TgWoL1kA1Ry9LsZLwCE4nWIvUuF+R1hWC/k56RqYvCdnV+gbmqMxmNspSQb7PWHUHUNDQe1UbdcTGemPgqIeV5WyPMCZ+fnODo+Nu9NQhnWj3SMV505D5RmHWTWJtcubHWSmjCoqK4BSHTznNZm6Vi/NOm4kO6mjrbjXW481Thu3vd9DIdDem1TP2itTciBZ5spVUWsq5OTE7zY38fhwQFeHh3BNymEeZZjNpshiqINS9U0gttzm+0Trs799h7elmq21RyvAoOZJMFAVFEUKKoSjuuSOqBu4Pu+AeGFbVA75uzMzVzHXAsGuPg9ZFmG2WyOw8NDAMBiPkdd14iNfNuRFDAR+AEG/T5Yrua6Lp2Pzb1crVLkeQYtFIQUtPa6xOiBVMQIrgozLyRct0ZjzrHtyrYBeT61wSa2u3EcDu2hGseVHJriI/B9Apsc1455bXABRzo29Y/vA9c6vPaoukYtYFjRyr4G+z9vlDfaqKCo6caAIsnlPGo2aVxqLAgIc+7le0ssTQfU9BRC2c//n/P40wCbtIaqKmSrFMvZAkHgGx8lk1imG6iKjFdrpWwsKBefvJVIpq3pBo52KD3FLMC2C9MqtuilyB/dMAAAIABJREFUN517vtGukHC4c8+LqyImD0t2PMtAcRFEtGB7zsYYudGanOA5NtJ4RXVNkkjS6SLpdhD4PjrGWNkzXj8+L0jMnApDdJOYrpMBmxaLBVZLSpZL09S8LxocVVkhy3Ka1BUdNDkB5t6919DvddHrdNDvJhj2YnSTGIvFAl88+hzrdYo0XaGqSvh+YBBrs/FBozaJJY7rwvUcaN2gKnKoqoQrBeA66CUxVEjRk77n4eL8HKvZDKosMT2/QBYECDxKsEND9wo1RTHnaYayaFAXQF1y2oGA1BKOoMVDKYWqqLCqVyZpyVAEtTF588hwtjQHCymo6980DeqyviS7orGhLVjTNA2l3DWNZfFoDToMtLyb+FDPUreyrOA6lFyT50TJZAM21+h/gU23jMETlnq05Xjsf8FjttvtYjQaoa5rrNdr211nxhODb51Oh1hwFxe00RhA6LXXXsP777+PrckYYUQMr3VeYzpL8c+/+Gf87//4jwjjBNev38S16zextb0NrTU+/PAjzOczhGGEre1t8Ma/XK7w6MsvDcuLDi29Xh83b+2haRReu3cfApvEs/sP7mB7e4z5bIWL6QKdJMHe3g3jReIgLxs4no9Ol+Su7CHGTEdisAWAABbp6pJsxnYOBBUjN29ew/UbE+gGqGogzwv8y+9/j6OXR1CNsp3kt99+myR2/R6k61C8+WKBwWCA0WSM3mCAW3t7cD0PyyUdFKezGdJ1RhKtThee72Ew6ENrjensc5xPp6ibBqWqqROJBkI3mM6WWOc5Pv7wYzx9+gxJHKHX74JkNz6EILlLp98niZOQmE+nePH8BfI8wzrLoRoYANa1hu0ArPyq1+vZ7jYXKdwtStPUghwMSLYf7fHI8dztYoMfssUCJQBNbw6pvJ6CcXMBYQ4/lwpwAMKs20yZFkLA5QYDAzu2a956n62CWwhhUz4810E36UICSOdzpOsMnuNiMp7Adz2slkucOsf48Pd/wPHREd5+51u4eevm5kAqBCAFqqzAfDYzUdArZFmJStU2zKEsS5R1Bel6EI6EFtTQyMsC5fnZ5kAnBPrDAeJOB47notsn6eR8uSAadr+H2HOhigJ5VSJLU1ycXUAIuseutylEtelI2YOKEEiSGK5L6aJKKcRxguFwCOE4+PFPfoI333oTfhDgiy8+h4bG8SkZMStNBwNpbCsotpkYur7vmeKM6NOu60I6kgzQfZeJUHSHDbPGGgIbsLFdcHLSmpRkokpGmRv/RRojLdaS6bQJTWPHc1xTfFORp5RCrTbgDzSxlKUgX5k4Ssz7EFCNgivpoFFkOdarlCQJvR5UTZLtynEpUrkocO/ePUzGY3z7W+/gzbdex2K5xH/8+T/h5OQU89kUF2c5gAaB7wEIMR724ToCZZFhPr3A51mKr558uWH6YcOmqMrCmmW7rosoDPDm6w83aV5aYzafmyRCBd3UaNCgLOkgRrT8hsY+H0LRYvWBzNxh/t0xvyeNrxXvdcLRcEBSRqWJrZtEZA5bmO60oElu35dSNVbLBeqqxnh7B91+H8Ihw+CsKHBydkoNM5OkdefOLfzwh99Ht5vgxYsXOD09weMvHyFdp7h75w56/R4upuSZJBxAo8J4q4//6r/9b3B6cobxeGLShkjamHQ7eOc776EzHOLJ4y9xdvISqi4xnV0gCAN88sdPjMdLYIxQKTZeuA6GkzE83zPeixrz2QxlWeKNB/dx7+5tvPHGPWxt/dc4Oz3DnTu3sViu8KMf/RCvvXYHL14c4quvnkEZuVAURXj/e+9jNBziN7/5LT797DPUiwVWiwVc40cphUBVUBz6YrHAfLFAHMcYjUZ0jYsCqmngm443MzykkPZg9vz5c9NMIRY0JxnyGl5VFfb39ylVyDARtra2UJYVYk65kxL5OkO308X2ZAt3794lSVGaQpvDGvSmhuEGIDVQaH7zHCYPudzWxsBGWrOZ69rUBS3/P1UBjbL1imukeO39xZUeNSPNmsk1avvAy02zNoDSlvbw3sTPza/Pv9M+BDPodZXh1H5cBrE3j8sSQGE/7zc9D1/DdrNQiPpr4FRbMkh1DIExSiu7LzqOQ7Ipz98oJFrAoSNIdSGEsHYHzHDifStdpZgHBDhweu3SpGTzaydJgocPH+Li4gKz2cwkaS+xTtfoD2h9qJsGnktAu+86ENj4dDXmPSsAtblG0njxad2g0Q3JjsKQ9qKaJN6bJir9jYYxYtYcnGQYGZrNt7FpZAvgwz9+BCE03n3vXXzr2+/g4YOH+Olf/ZfEFNyla/CHDz/C8xe/wt7eHu7fu49VnsOLErhhhNPzCzx//gLbOzsYjccoaoWnL/apgRcEaFSD2WKBxWpFCZCBj0oreFGAMAww3tpCWVW4dXsPi9UScdJBvz/ArVu38MEPfojtrS3cuLGLTqeDslYoqxoOp9FBUKq3phTjqq4RRSE6SYSyuI0/+8lPcHJygl//9rc4OTkmu4yqQpx0cPPmLfQHAzz68jG+evYM/+u//9/w29/9FuvlCuvlkoKiDLtpOBzi1s1b2BpP0O/1rGcpp8YBlHLpeZ710WMfUG0AGiGEbdTkeW5ZTpyyzqA715J1Xdtk+fl8DmFk9o3WFuxzXRdhRAneDHDEnQSBaVQwO4iasDVyc6Z59uwZVquVfU1V15jNZiawo4MoCMEFy2QywXff+w4G/T7u3rmDfr8PaPakc8zn8zDZ2oUfBuiZ5EELbKkaRZlDQ1tArqoqZOuMAMuC2MIsmYNmDzJqmjDLWGuNoiypXjJ1jCMp6IvrBZoXtTnzddBJEkwmE0MmoKYUQE3osiyRZ2s0qgYFTxnGowHStCZGuhQCgeejqkrUlULTKGRZDqFJ/j4cjrGYrwAI1HWD1TLFYr7CaDgGjFk52ZI45qwq4RgQKs+Np7MyYNa/wmoC/lTAJmy6aGVRGGNB13ZZZat4k7qB1uJyt5cPJYwlmWKWfv+KhhvYsIjM4na1iyPoRS8d+OuqoohPAySRJpQ6cHVjNjLzupXpJARBYD1VGNGuqwqB71NcqW4QmkLFcV0EvFFi0/WFEHCEgBsYUAKw6CSlF7hUQCqFqqIFv9DEsijywqQpwFII87xAHCeIIw9RQAyjYlBBQCPwPZQF/VtVlnCEQONIQEs43JE28kQJB44UqA0bTTfKHjI5gSQKA4RBiPVyRQVyQ+lKaCgliv6N5EK2q1crYmWZaFwyjKUDBzQx3LTQJn5do1IValUb0Ml0YBVFtXN3kAsTKuoqSjoyj3Z3r80Oa3ff2DSNi4w2yMHdSd1oVC6BVZVh37BMsy07axc0bcYSFzTtaF9OD2PZDdOgi6KwMaLtIqpNg20bkPe6Xezu7qDTieE4AkppZHmJ1WqNk5NTHLzYx43bt7G1u4skSeD7gdX8z+cLAzoGm05/02CxWCLPc3Q6HXheiDAkY8lN4SRJzul5uHHjOra2RoiiFTw/RsgeG1KiLBsoRdeWZQ/tbijfA8dxiCVSU3eGO8FSyktx3nEUodsdotFAWQJpuobn+3QoM1T9JEmwtTVBt9ezB8G8KKgzFcfENPI8hIY2SykNjR1D/F49z0cYRYZpQF5NFG5QoDSyPxh2S1FUOD27wPPn++h2OxhmGTzXQxx34LgO4jgyKRc+PI9Sn9I0RVHkqGs6VHqGLssFgi1GzUG2nb7JhuFASxL1CgCnPQ/48arfo59vOro0Zy53kV/VNdZXCne6IrgE+Jo/uNTVfcUbvPQzIYR9biEEPM+1Rta1YRxEYQgJgcoYLl9cXMCREuvVCqqsTPOAnltLgcowoAjQJR+AulGbaPOGWC/2Sph9pOH9wRyQNICoEyM0Gj3P81ABNjYXMIcUQde6KCssVksIc11czyOqtengsqyaDyC1UpQyZGTCGgJxQmDL9s42wijEZHsLJ2enSNMV0nQF1ZD0lOYMvXemc7uui8ZQrknG0BgGLyz4B2kFE9BoiGErhHEP52b05fvP6x+u3k8hzF595d/tmDPrWYsdxY0lmPMtd94AWKaiBUgVHaRlLc0emJO83DCBXcdF4xi/OTNPPdfDaDjEm2+8jovpFB9+8ikdlB1qqGjDjJGCuoGhkUxJKWzxbT23oE0BJrBcLLB2UiRJYtZWD50OSSd4nbc+T/oyo4kOV/Q+JQAtme0t7O/buWGuOVut23Q/83zc2UXToNHCdFMdWzwrvmf2PtI9YpaN57pI4hhu4MMPQ6zSNWaLmfFtocNhEATo9/vodjvGaNUjM1PDRpaORFEWmM6mWCzmKIoMfuDh+q2b6A0olTFdp8iLLpSpbcbbW0jzHIcmCbAsCyxXS6yztZVnTMZj+L5H3ht1hdl8htl8Zr0CtdZWWkbpaxqdJEYnidHtdnH3+T5WqxUevv4Q9+/dRRQlkJLknVVZIgpD3N7bQ7/fw+eff07z1BzI7JAG7P3M89zGhnc6HQCwe3Vl9nter5uGxlYDYL1eoygKxEmC0PhO+r5/Kbk4z3PM53O7J/q+T1194+XBbCFqLpLsqJQS1XoN24e+VNsYAAqa2HFtpklDB5tLc7pVL9Hz0Kfnuru9D3BNA2z82ayXlNwk+75KEtcGifi1r76HS6y81u+0wbCrLA3+vfb7vLp3tX+HH9yUlPIys6n9HZdmXJtZtXn9tqSQ7wE/h5QCaGB89TZ/L+XG7uMqQ74xTSKuAdqWDLxnMGjXjoivTY3PNXJgzOj59/jf66pCVJLXnTbvxTFfjRQbGXqjW40lvibGwLx1TdkzqNaX79ur7mebPaOaxp4PGCDXusFyNUVVlRiOxxiMhhhPtiEdF34Qwo2IybrOchy9PEG310dWFKhq8uP1fEo4LiryvpVGycJnNoCaXnwtOIGM2OgEArKh+mBA8rc4SdDvDzGeTDDZmmA8maDT7SKOQvgNUDfkhes6dGAvqhpsDO0qhcBI3sMoxGg8Rt0o40/rE+PZXEMKrPIwM3K4g8NDPH/+Aqhr8pMTAo0Zb2dnZ4ijGEkUo2MCZBiUZOYM70dsV8GWIVrrS//WtK5H2wbhKmuRAXQAVkJfGaZ+UVbW+sUPA/vcADFZIxPmRX6KG59imOdlLzLVGsNzw2zqdToIg9A26VbLFfZu7dmxxem3m/G2SXKPoghxnFhwq6oqOMqxPqWuR+cTBliYHS2EgG/WP1XReq7UZWUKrd3EJlN1Da0a02x2wfXOho3Y2FqAGV+05bfmg/nsZZGDTfkZK6E5RGATM8HqeqPSUXWNqnJM4pxZE0BnX2Y9MalCa4CSA8WmpqPWod0HOSzr/4nf9CcDNgkAs+kURwcH9kMFYYjhcGiTP6QjEQWhpYIyW6Uoia6Xr9fk0eO5ZO4rySMJMBMFMN0vbV9UaMfS9JmGKiHsTeNH0/I7aQwo5BjGEhtH8qTgg5SVRGADALBT/WK5RBCSpC6MIqILmg5dWxITmKI2MQbLPBHpgNGF6/rQIIf51SpFo2twUp10jMmZWajLsiRDcCHgyB6iIEEUBtieDOC5wPZkgsDzURY5GpM+UhYFHCnQKPocHNUZCGJgVeUa6XJJSPhqCd00cB0Cm5KYosXLdUaMpLrGepWikBKqqOB7Hso8J68sDRR5gSLPKZ1LKYqzNoWqpQQr8nCy0hZTIVlg0hw8+RDOix9t9A0cWVgm09UCg7piAkHQv7QBkmlabZlMwhw4eIFmA+AgIECGDepr4w8BCDu2+HNwUQBsTPt4sW4v4sAGeMyyDPv7+8iyDNPpFEVRIAgC263ijhTrsa9duwbf93HjxjVMRgM6kAuBs4tz/If/8H9gf/8ALw4PAc/D9Zs38b3vfx9hGGI2mxnzW4EwDLFarbBer+0CzP/teR4ePHiA7e1tvPXWW7h37x5cVyIIiA1WkyMypPSRZTWkpG4toLFYUDEuzWLLG5jWGoPBwF4rpZRhBdIGHzhUqLG/EzHsvE2Ck9BwPBeq0cgzMrF88PABbtzcpLi9dvc2fvxnPyR/HZfkrJ7vY2dnx5gYesjKCk+fvyCg0NzrTq+HnYZM9NZ5BgWNEYg1l3Q76I+G6CQJkk4HYRSZw7hElCQQroek20GYxBCug6wskVc1UnMQvhFeQ+wF6PUdxEmCdJ1iXeSUwgGWZDi2A8x+XtxZWq1WqOsaSZJgNBpZjxjVku1wYctjisc83YfLkmJef9pzhONPN7+vQTXCZQp1uwjnwhrYgFhXi8l2d/ibAKc2oGqLac1U9hqL+QJCk7EiQJ26btJFXVbI0hRKKewf7GM2m6E/6FujThjwJi1yLJZL/POvfoXDoyOEvQ66I/JhcgIfWZ5jnefIixyRQ1HLYRgijIlx2pi9YZ2toRQ1Jbgo4uhqBi/7/T46nY7tLHY6CXavXTN7hgELzHfP8y6B8Xzttdbo9/uUtmUAVyEEev0+oijCT3/6U7z33nt4+fIIB0cHplO5hmpqFFVJ34uCEsZqOlTXqsZssdiweQGSyV1eJKGMJ4nj0D7juI5JUNqA574xRuaDCXcJ+SBCxZPZT+16B0ALcGw43/P2F00pGi/s8dLpdNDv95GmqR3zvD8wk0/rhrzcDFNYSmmDA1bLJR49eoSiLOD6FCQADZt+2ev1cHZ2hl/+8pcYDod4+PAhRqMR9vb20DQNDg8PcX5+jvF4jBs3bmC9XuPRo0dI0xQnJydI0xSLxQKz2eySlxrPLyGETfJsH+S11mjcGrrZsDWADYvMSnrNrbESJGxYZmwj4Lku3DAkc9+yhOfSQYkAf2JCcKAJM7FLZxMEsXttB6/du4/dazvYu3MbRy+P8Y//8We4uJji4PlzZGmKj+7fw/b2No6OjkAyAc8A6J6dpzzmHz36Ev/j//Q/G6YDFbrnZ+eYz2f4/vfeR6fbRd1I/Pmf/wXSNMX3vvtdzGczzJdLzI3h/+HLQ8RRjO99/330B3188cUXODw8QLpe49GXX2J7awvfff99xFGEnZ0de1j6+LPP4TiuZfa89fabkAC2t8aQAMajIeRDhzphTQPHddDrxpBC4+zsFI8ePaIobsNeGo9GkEJiuViSJAMCw8HAHu5r03lfG6kNh1OwVOatt9++JGd6/fUHePjwAczJFqvVCh9/8gk9h/nbfq+HwXCIXq9nE0p5beTPma6WuDg7Q11VcAUFXriOY33g2ms+NVA284vqntKCTW2QqS2foX3F/L2zMSHW+vK6fmmf0QasU+UGfMJmPeCGG1sF8Fxpr//8fDym2swofl2uudnrBvg6Q+vqftWeg+33Tv/fmENYcwkkuvwQcBz3EihFn4nS0dqAEZ8R+DM5jmlO6g34r7V+pQ2DZUQJAWVAEgYv+Tq03x+zVBiQ9D1i/ZXGv6nX65nDdoyHDx9ivV7jxbNnWMwXxj6ghnQcBJ4HVwrkvgtHArWkurpxBGrFIDb5mbJfLd9j13XhOhJaSsvO9FsA2OaLTatbskAB1BWlAAtJEfVaN1BQqKoCaZbj2YsDxEkPv/nd7zEeDXH/3j0Evo/BcIQbN2/C9QKcnJ4jDALcf3AXO7tb+Iuf/hTXbt7Cy5cv8fLkFJ1OB6OtLRM0AmpceS7gSGztbGNvbw97d27D9cj6YO/ObYwmY+zcuI6frlbEQvMJ5J1sb8HzA6zWGdIsQ1mRQTgrdlSjsFqlRg54htVyiSgig/CLiws8e/4MF9Mp5ou5rbnb9zTLMnzyySc2hKTX62HQ72M0GGA+n+Pps2eoypIY8lkOz9i65HlOzSql7Pxg0IlNp3muKkWphiy943vJIAY/+IzWBqQ4nIhtHXiv0q4HCTqfeiZYhYHKplZYr1IEIZ17YZhx7L0bmvFi1xbz3CyZj3w6O6/mcyxmc2SdLq3hUiKJE/S6XaSLJbRq4AiJThxTI1kLqLoxSiBl15VGazhwIByBMIhac9WxzQzf9zHZMgnWJ6fI1mRJwucGx3FBHkdUq6tKWbCJQU0hGGyihljgkwSPrz9Avo+LBRmbn56eoioLAzaRjN1xHHTjhOYGTPKvAcVorSYZXF0rFChJPSbJQbapYWp5ASEcRFGMXq+PdJ0R+0qwlT+Brcys5rX6P+fxJwM2AUC6SnF+fm43hziOLeo+Go8QhCECY4zIEQWsLW4Ma6YoSwRRiECSft9zCI1mBkStBNBsLg4357U50EGbDg9gtdL2d/Vl1gsj9UyvY2lP+/evbs6MFrd16u2/ZwYSucwT7dT3ffRNYTxsGnKj90NziJRQjUbplEjXOYRomN5FXlGOs4mjNrRmx3HQ70YAQBGRngs0Cv1eD7rRuDgPkDlkxKzqCo0Q0FqZFgbHcAq4jgQahdxEaxZmwXLjGFI6iIIA3U4H8ziG73komgZlTibkUA0q17UsBIAWdvKbIpCmLEpk68x2GyCEpStuADUB6W6ozUIQK871Nmbc/FCqMelzG2ro5mccwetYdshm8dSbqE5ToPPf8u+QFIXon0o3UA0dYpkpx11EBlT4vV6lfLcP5JeYH4CNE80yimOt6xqRQeT5QLNer2106fXr19Hv9zGZjNDrxvZ5Vsslfv3rX+PJV09xdn4O4TgYTyZ4+PAh8jy3kaV8WFutVjZ2nb8rRUk4169fx507d7C3t2fALQdRRODZclmgrmlRLcsGUrqIY9+CnrS5UfHDlNwgCJAk5P20Wq2oeJISwtkcONmPSkiJntl87ObmOPAqEypgxtr169fhmU22aRo8uH8XH3zvu3BcFxeLNfKioufq9ZCVJdKiQFnXOD45gWsS66IoQhQnkNLBfD7HfLEgA0HQvQ2iyHSwIvKh8n2aL1JQYoWR2wZRCIBYUNw1cl0X1/QuJdYxmBmFlIBWlXAhrDyG7wl7ovBGwiwmpk2zwW3TNHY885rUnhev6i7yukaJH7AFIEkargJCl8dpe7y+qvN7FWxq///V93C1A321s8vflWqwNoxJGJA8DEMMBgNk6zVKI2E5Nca/+we7RsJJz1dUJS4Wc8wWC3z62Wc4PDrC/TffwGsPHyCMYySDHsqqRFHSlxc1cEFgRxCG9nMpRTKeyszxoigMGOra6+n7PpJOYtd1x3HseGG2BMvEBDZJa1qTWTePGa014iTBZGuLGCFpCgiBJI6BOMZgMAAAPPnqMR59SYfj2XyOqq6wWq9Q1dQNTNMU63SN0hSdVwtL3RCD1N7fhhLKtAFombXJB2tOxGwAy3DlQlCZQ6XD99Z6CrSSXSFfORb43mvLXpZW5kwFeoI8z+2awemXvK8qpazXDXWFXTsvsizDwcEBlG4QRBRVrwF7+IrjGPP5HKenp7h79y7effddjMdjvP766+h0OvjjH/+Ip0+f4ubNm3jjjTdwcXEBADg7O8NyubRgPbNRtSZKfqfTsdePwQZuPHBhCkn+Xe1DNM+d9r5hr9mVecY/d42hrpSSPKjM69o5hY1xPx/u+XUdx8FoOMLNmzfw4OF9fOc738aTp8/w0aefoa5qfDqd4uTlS3z1+Am+uP0I6/XariH8xfODu+oHh4c4+fen8DwPk8kEvu9jf38fJycn8Hwf/8Wf/Ri9bhff+ta3IKXE/O23kWUZvvrqKzx9+hRHR0eYLWbodDp48Do1PKazKc7Oz5DlOQ4PD628eDgcWoD2yZMneP78wLJAO0mCh/fvIokjm7Tb7SZIOgnNP8GeMUBVlljMZzg8PLQ1CTfyGocSvlarFTrdjpHDkm9YpTVWqxUWiwUODg4wnU5t42p3dxd3796lsSoEXN/HzRs38J33vo2moQPAxfQCL18eQ2uN4ZIYkNvb27h+4waiKMJkMrnk12O7+J5P+6xSGHQ6cNnrrTWvNowfAo/b4EfTfP0Q0R5XNAYpoYhrGa51mubriXL2dSWZR2u1qYt5TDNYxkARsyp4DeAau11Xt83+ucnIc6U9B9pzpV2DXwVyXvXg+UbNlstATvshQPJebvPz3kns7c3n4Prz8t4nIbSRn/HB5BVvq103CghrNsxzlyXxtqHaaFvPpWlqkyFdx7EseQZegyDAjRs3yCj8+ASL+cIwNWpIh6xCpBDwPRcCm9TqxoRYSunAN6nebdkRNwAcc18cSU2AIAhovW2NKb5P0hifE7FAoiorOLKkMebR+SRUFaTrIC8qnJycodc7wqPHj7Fc7eDmzZsIggCdbhfj8QQAMJ8v4I5GuH79GqqqwrffexedXh8///nP8ejxY/hhiF5/AClJFiskNRMhBXqDAfbu3MH2zo6VN27tbGM4HuGNt960TBwAqFWDVZahrhXW6dqk45Uoq9I2PJRSmE6nyPMcz58/x/n5OeKY2JaLxQLHJydYLBaG4V5calALQdLck9NTmzodxzG2d3Zw+/ZtHB0eYn9/H3VdG2CiwrWdXYxHI+vxyo0EDkKoqsomnwEbsIlrfpbA8uu351O7Uc51KQcQtJtFWmt47qZx6robWwetNYqqRF2W1GALIyP/p3nO+5LLgI+UEGasR/7GB9GREul8gTxNUebEZJVCIAwCxFFMbGUDQIUBBSBAk7qKUz75y8434VgWEKfyMqM3jmPcvHETUkrURQWhgTCKEEShmY8bubJSithPqp2MKexEr2vyXhJmAVGKQSoaK7PZzH6vygJVWWwaO66L0Nje8ALU9rSVUqBpCByGpiaWEEStUSYsR2tao30/QBTFpmZwLu0Z7dqcWIdXgmO+4fEnATYJCARegPfefRff+ta3qAs4n9FEqEmSNL2YAgIIjFeOH4aIk4RuGABXUqfZdVxIl6RoMMluEMzIIRo5m5pSwUsPrWHNWqUwqQri8ubUPkgBsBsjs0DYdIsncnthuIre87+3ASj+4o2yDUj5xmV/NB4jiiL0en10O10wyKIUxbAz5ZQZSCRvoMkNIai7rRp4LkVvh0GAThJDaYH+YADH9TCdT6EahXWWUuEIbaVOMEaGpaFIlkWJpq5IRmeohOQZAWTrNaa4QJ5lxldBmHheYkhUFYED3EEeDAYJKTmWAAAgAElEQVTodQnwyrPcSgWldBAEoZWkQQgj3aBunOMZk1VdmwO5NDINpvxdlmdsvJfYkJaLIWkmKqdk0HOxtlYKYSQ1zBmk7jIZ2wNNk5PJbE2+UAxylmWJej63BU678GFAoP1vrFVu/850OrUbQruDwBsAH2TYqymKIty+fQs3b9zAYDBEWdEGUJQlzs5n2H/xAi8PDzEcjTAcj7G9uwvHdVGUJQ6PjowB38weZPM8N0w5D3GS4O69e+gkCe4/eIBr166RH4rWKCsFbTqAdUMJgVophs0BmMKNwQ+Qdw8BiXRvK0ULIW/y/DftgsQ16YK8sXGnQUphN+a6rqkwkYDvCfR6Hezs7kJD4OM/fo4wCjHe2kYcB5iMB+jEIaarFfR8gSzLcWYMaJUigLeuKqhaEQPC8yCkYyVz6yxDul6jqmrkeQHf93E2XSCKInheiEaDOl5JgrqqUVYVhACCgIrDLC8wm88RBiECo42O4wSAQL5aUuLK/W/jtbt38fnnn+MPf/iDLQCY3UEA3xJaU2R7HMeWJdc0zaWuMBf/8srhg4v5q+OPrjuBKOw/p6GtJx6tadreT3rdGq7noZOQlGSxWKBSNcIgIAq7GY9SGPNzIzkEtKHmElDpGQYIBT7UJqJ70w0TQkC4DtBQFwyC6NirNLURzQKA5xLgcXp+DiElyTIrkqKtK5Jbeb6HwWiIvCywf3iAnWu7uLZ3DXEnghLkz7RMjR+aUijryrBbQ5KaOQ6EbmznR3ITQxD4rMsS0+kMaUodTc/3CVwSABSsp47x8CbTUvP/QpIpuOM6tF+Z5MWyIlC+0RsTbT5whWGE69evW7+EplFYFxlqVSNdrZBlGXXxDLtlnaao6hrLxYLmkZXxkYdPXdWYz+eoSrMONQqDwQBb4wmNlboyfg1TFEVuzTDDMETHsHeUqiEaDccPyFOnUahr+kxaGx+sPKf13ng38XsUhv3Be2etaiwWC5QleZNAAK5JbGGfN4DSblardOM5Y5jMPJalY5ijBwdgD7iqrnB6fIzp6Sn6wyGuX7+Oa9euUdjCYEDFpQH8R6ORZRuGYYhbt25hMBhYxtXp6SnOzs6sl5o2AEQbTGs3rlzXJWZxXkAZFin/nBm0XLxynRHHsQXquabYMLu0peRzkZimqV0P2GCYDwRtCTevK0+fPoWUlAp1ePQSq8UCZVmg0+tBNQrL1RJ//OQTJEmC4XiEMAzwwQcfUKra8Uu8fPEcjudjZ2cbYRRhMh4jimLs7d1CFEX4+JNP8OTxE/R6XczmM6zXKV6+PELTaKzXKaqyQlXXGE3GUFrh1mwPnU6C69euYXt7C++88w56gz4OXuzjiy8eYbVa4fr16xiNR9jaooYBx3EvFgt88cUXiKIQ6WqBTqeDbhIj9Onw67o+At/DoJvYIBkIgdFojDu3b+Pk5BRPn34FRzqW5cvr7O7uLl5/4w14voc4jqjBJyXOz8+p+bZYWFZ8kiRkot406PWoofj0q6coy8LUIy7W6zWOXh7Z/V8IGs8nJyeIzL7kmnEsBMk6i6LA2fkZfM+DNuPbgiOaDGTRkBTVc1yS/RvZJsWsU63DckwAZk0ybGVhJBWCn49AaFMiGmkoiI2pNZQ5bPou7S+NB2hFzTqW2/D3NjjBgPJVJhbPGT788phur33tdDtad5RtOLXZNryW8HMDl9PqNt9hmU1tptbVhrSqr/gUtur9yyzNtlm2iRa/cmyz8LEdgpsmUdM0VkrbBs85NMYazNOiirIsMZvNrAzYczeJ3lmW4fj4mBIOBwM40sFgOCTQQCks5nPEEc0PCSD0fHjSQeVsAhcqGGCIemwIfApJ0o1CXZVmPW+lgQMks9bNprkiJbGf9Eb+77hknu05LqIghFINiiqHbug86DgSdVlhenaOk24PBwcHKMsKj588Ra/bw/7+IU5OT6EUjZHziynmixmqssKjLx/j+PgUgMBkaxsdExTRqAZlXaGsazgeqU+yPMf+wQHGkxFeHOwjiiOcHB8jy/JLNbLLTBYT9EJnmcrYQNTwPQ9RHEPVNaazKfK8wMH+Pi4uLggA73agakX1ZFkiCEL0BwNjKJ0BEDg6ekmfxZAzBoMhtiZbuHXrFm7fuYMwCPHV4yfITAOG9p21HUM8R3h8ttPdeU4x85ZrQctOaoEN7UaC9Tkyf8+Np3ZgDa8jwjHBP54DgQ1w5TbkCeZ5rmHowKQa8vwxDU7TxHc55Muybuh46HoOgjhCoxscHOyjqkq8fPAAvu+hqioEgRk3dW3nCRvEOy0QW8qNKqWpFWqtMb+YYjab4vqNa7j/8HUMBn28/vrr9HmkxNHhIaazGU6Oj+H7Abrdnr2u9DywDbxNHU5rVFmW0I1CFIc0Rz3XMEw3LDRONJ7PqJbgRjIzVqmGMGukgG0g5jn5cTWeB8+k5hKW0MXOzgSOlMYvVyJdpWhUA4GNtx9gpNG1sjU+sStf5Vv39cefBNgEAURhiL/6i7/E3/zN3+Dg4ADPnj3D+fk5/vjZp1ilK+wfHGC9XttFejAcYmd3F34QoNfvkf9ELKG0tgkEUA2UNt4pkhLLbGKabEVKg2j2qqptlwTO5WSHV20u7W5dexK2u9Y8ibno23TjN87+XASyCWSe57aQZP1kVdGBemtrC0mSYGdnF1tbW4iiBIP+0EoaBICqbszhAoCQNuEOAOaLBRZL8jw4Ob/AaDjE9WvXACEw2d5Gb1BgvpwTQHemka7XNDEaRnkJic2zDFXJyU0VtFIG6AEcQXtjulpiNV+gLEt0kgiq9pAbhk+WpiiKEr1uH8PBEOPxGDvb2+j3+8RUSOn5tQYcx0UYbthfAJsLazieA9eniEql6ABPg99cDyGsLEQY8EhKfUmmxveFxhbf2023yXE9+GAZ3GX/mw26X1tj8MbUB44rzSEmR5ZnlxI/uHPNhwJ+bECTzUbAwM/MmJzyuLFUz4YkOytzeFyv1wiDAO+89TreefttlHWDrKixXmeYLZbYPzzGo88+x9HhIX7wk59g7+5d3Lp1C57vIysKfPnkCdbrtX1u3kjZqHxrZwc//vGPMRqNcOfOHSsLUk2Dqm6wzilFhOdJm3qrakPHNgdGZk9ACrg+3dvKsFPIYJKTHFrAL7AZB2aDY7ZP2TLGZmM919EIPInJZIRKNTg9PcUv/s//C71eD//23/4VRr0+el3yXjo8vUAJgaKs8PL4GGVZYb5Y2o4Kz+nAHErSdQbdNJgvlpgvlnbT0xA4eHmOTqeDyXgCz3UQhDH6/QHSdI2yWlhfKyklVuka63VOB1THhZAOur0BhBCYnZ9DCuC9997DX/+bf4O///u/x69+9Sus12srDRqPxwjDEBcXFzg/P0fTNOh2u6iqiswTlbKFu/WKaY012w03jEoe2wxkcmdECJCk2XWgBSD1JkGLAZZGN1jnlNTV7Xaxe+0ahBCYLyk2OemQWXNRFJukVEl+dGW1OUDT4cS1bDAGPyw4pk0qhkkFFAZQ0UqhKEtM5zOompivUgj4oNj2/cMDnJydGqP1BSAFpOdCSAkvDLDdSZDmGb54/CX8OMBoNIAX+Ni5voOiLPG7Dz/B+WxGJs9SIowi8h6QJPV0DGimGgVHUwINAPLxKitiIWmNXq9nkxt1QRthoxuTHGRwkkZBKHodzxQVnkNrQ14WKKeVZYs0hpEEDQNyekg6HQxGA4RRiOFoZEA2SqfjNEvPsFzqujYgGMUWL5dLAqEMsFQUBMi9ePECaZpiOp0iTVPs3bqFB/cfoCgKnJ6eYrFY4MX+Po6Pjy3YNJlMMDRy3yqtgKaB65E3BYFNlRlvBCanWWEPg8wyZalIEIbGSLeBqhuk6QXKsgJ7RwVhgO3dHeMnR4XudDrDycnphpmhGjieCw8EngopsVytMGOZuUfyp/1nz/Dy8BDj8Rj3793DbcPiTJLEgjLsVcffkyTBG2+8YeeclBKPHz/GkydP8PLlS3z44YeWncoFZNM0l1IyR6MRpBD2HgRBYFmf/X6fpKOGvcg1SRRFxjC6tFJqBpiZxcZzncEqAFY6wWsA70sAMSWFEJheXGA6nWI+X2C2Iqn2xQU1kobjEZJuBxfTKV7+0y/xxptv4OEbDxGGId58603kWYb/5d/9O3z46R9x94038NrD+5YZ1u/38fbbb9PeMh6h00kwnoxxenqCsixxeHhomwdaa9y7dw+vvfYa4iSCFkC3k+DevbvY2aLxtUxT/N3f/R3+9m//Fk++GqBuFMbjMb7zne9ga2uLZPpK4eDgAP/0T/8E3/dxcHBIcrRr19Dv9dFJEnQ7XfS7CXpxCMeRtE4JgWvXruGdt9/BR81H+PAPf7BjoJ2YdOfOXfz1X/81wjBArxdjPl/AkQ6Ojl5a9jHLbouytI2kjvFh+ejjT/Cz//RzeJ5H7FLBCXsb75/lconZfI7A922gBrOuT09PMZ3NsFosiCmrtWUDwAAbMHWwI4QxUW/QKJOC2qptODnPPhptayxKFqM47QYaZV2YGsYoCgCoqoJWEtLI7OIurUvQVKPlhn3Ma0+7LmszyduH4XaT5GotzuwcrsMZfGGGTTu6vV3Tt1m0/FpXnxut69+uGRnMonmloeoSTbPxSDEVpm1EtwEnnm+bxucrHuLrTE9+HwwFep6HbreLIAgsM5V9bITZS9hLLAxDjMy85q/lcomLiwsMh0Ps7u7C8zzs7OzAc10cHBzg+OSUapNejzyDwpDA8LqipktZIjdzREDDEUAUUC1RloXxdHXhGbkP12+lSZuG4Pj0zfVkGZPne0aC58H3fORFgdOzEg0aRCGxr89OTnB2dgJHuni0/RgX5zOEQYxup4ujly8pIMAYU9d1hTSl5NDZdEaNcyFx69YezXXDpMnLAlVZwvV9JN0OlukKX3z5CGEc4rMvv4Dv+/jy0SPM5nN89umneP7iBXwvQBhG5hxh5JxGrUG+stqya5WidMkiz/Hy5RFm0xmiOEbS6SBJEuzu7pIPYJwg6XSxjlNqKjUNvnry1HoVSSnxwQcf4I7Zm+7evYtep4fPP/sC5+fnODrcN42plSUzcPOCH23pHO8pDBa160Ee5zz2GURiEJ/3M8chhUhbts41vCMl1VxSWom1Mn6S5HULIzOmdalWFRpB+SIMNjVNbRl9wsxRaNObFoAXeEi6CWrd4NGjL3B2doqH9+/DkcSIihMKbqpravz6dW2VUm3GZJuRpeoajQJOXr7EwYvnuHX9Gj743vewu7uL733vu7SGqBpJFOJ3v/sXPPvqKbrdLrC78ayjB51r2DeLgHGqcRkM73YT9Ps9BIFnfFuN7YHx5uv3+1gu5jbtllmDrpGH0/11kGVrLBdzKFUjzzOyfAgC1K5na5bReIg7t29Sg+L0FIv5HN9659vGH03a5hZfmyzLKcXdnCGk8/8nsAkAoZkeojhEv9/D1vYWPM9Fuk6xMrKgNF3bwRzGdDisqwrLxQLSccgnwjXG4trw7e138ypmMxVXOg6NJj1pu3PQ/o7W/9sNhw835msTHw37u209Yxuc4IHW9sBJ0/TSoGqUslKssqzB+s8szyEdF1oLJEmGRumNt4xosbUYPaUPaTd1AMjy3CZELJZLQ6Emwz/f820kvO/7xmyN9bnCXk/Sn1Yo85x03WaREnEMz3XRKGInCMB2plerFaXlrVOURQnP9dHrdsGsH9d14XsuPN9FWW3YYWzSLQyrgQ3YtKDYSa3V/83ce3VLkl1nYt854dPnzWvLdhXaoLvR7FFTA3GJ5o3kI/7ASD8Nz9KaR0lrCRxqOFrDoSiCRgOCcG3KV12bN234OGce9t4nIrOqAXDpBQEmq++9aSIjztnm29/+NhpTEUHAtoGIGApp15DAXh77gQONjix3GCAkWL4rWLnf7kb3VwGKgAYoQBlG3FVLaRaDvUufbsUcu1Uy117IPdXCYpLEq1vVloo5QBT72cEBkqQH3/fQ8L1arVf41a++xNOnT12QlyQJ6ygBt4uFA5WkUmutRb/fR1VVmE6nODo6wmw2c3oxAmDIeYpR6lZP2mtrWsHhvWP/d7Jmu3vJ/Z6fbzs/u40n7HNNWjJaEXAk3+/i4gLL5RJpmiEIQqRpjjTNEYakZ5FmGa4uL7FYrmjNwToUX85DKQJGVCfAbVtPQJVc02CxXKIsSZDe9zysNxsaUWotj77VpC+nqP0AUKibGnlRIGcx26IoiZ3p0feJ45BF0IcAgM1mw/ujrSrJuco17eocyfl3NWC61PX9ymk3MHctn42ApOat+yKfJYLNMuFEDmFnSHIm54S917u9x0lxd+9IkGObxmnSQBGp3/C5NNZAGZq+0VgDKBor7Pk+wihEFMWoDYn5QxHYpH0fw8kEQRwh6vdcpWuTZQhNA8tsKChh4bVrrmZ2kpyL/LfZ8wHuvkh1twPI1k1rmzzp5+dEU1nL+knKsZckcJT7Y9HafFfxh4EFiTOXbJ+N3bVdkvgCcMy24XBIejNVTULkrIlGYtEBiqLAYrnANk1xdnqKu/fuoSwLxEmCzWaN29tbjMdj1/o5nUxx9+5dVGWJ12UbNA0GA3haNKqomNE0hlr+GAzp2muxhRLkGmsBLvBLklXXtZvWKdNCF4slbm9vd/y606CwhlrxLbf6KTg9yCgmodbxZILBcIimafDNN9/saOSInZNgrFuxlM8/PJyhqkrEcUQTJtMM8/kcRVE4297dr/JzFEWkO6la2rqMrZZ9LIdoVglADGBHNFqeL8mDtGN2YxoXWHfWrKxXCypWvWHmq+GhCTLRsETJr1OIwhBJHFPraBBgNB5jOJ4g7LCy1us12eXbW8cQu3fvHg4PD3HA7R7C0tpsNijLkvUqKX45v7jAepXgxcuXtB7XawL/ATx4+BCTyRhnd85cW4qb1FVWWLO4uICBSpE2oysC5QWKPEMUUjyiPWqfEPFgacOLeXCLtda1JEmxMAh8aE2sx8PDQwAK0+mExqdnGdZraq17zfaR9r1GXVVIt1v4fuASHo/1b3y/1dqR5G6xWDiwkeJkaruphQWKNhkjyvtui+V+0a31E5QWfSsGojpDIrpIiXpbc69rb6xtdcb2gaO3Yyq7E1N0/UWX6STXTwpY3TjK2cdOzNU9L/m36/u6vnL3tczw7zyvy4aCFQ+0e52k8Nn9DmLTHEOg+33U/ut3tQzb70DxZTfelc4KeYh4t/P7SrVtoLZtlZX1IK12QUATjqVwoQAURY6m8R2gJ/deM2hJ18pQa11DRQQN1ozjeIxeQoNWYGk9Su6llXKtdtbzSLibn2e5KEFM26aj9We5dR3ESL+4RJkX6PcItJHuA9kjaQrny5RS8Fnrihj31AVC/pRiCmK+ki6QZp/tRsnz3faYcRonPQz7I76m3CLGMSE3SzgQWaQoBNhPkh6iOEav13O2ab9DRuJoxwTiNmXpDhkMBuj1ehiPRjg9OYXnaVxfXhCg1ln/8rr9Lhz5uct4l/Uh/37bvu4WhOUzuu2UsocbKajJ/ttZ60LokIJiG9Tv7wOJGbr72PN8+J7HbWCtJmGRk/5bWRRI4hgBT3CsKooXtOIWXJ4Ab0wDY1pZnH1/qT1NBbzJGOPxkP0AMBwMMBmPGWBr17rtfA9aC13gTu/YPtedZNoJmAL+1XXtisjLxdBJAgjA1N33vk8avdLJQ++/a6qJpUqgn/ja7pAqiQt37jVa+ytSCW9ndG8fvxNgEwXHFfxAIUlC3Ll7gqPjGcqywqff+x6KosT5xbkLpua3t1iv17iZ3yBLUzx7dgULi0ePH1MlrpuFtquR2upYpM05PU1TWcCGLmD6Ooxpk1nbqdyzcVOqHUEsrRwiVCY3u2kaVKwXUlUVGmOQMWNkvV5jvdmgyHOsVytUdY2UGRky9tsBK8aiLEn4ez5fIIwiXFxcYzyeYDgY4PDoiHStpgc8EaeHgEdZ+x4JMEN7gCFtFwpGM2gNbDZbbJkJMzsghlSvP4D2KOgncK+l/rvrYEh8NE0z3N7MXUIe+D4OD2bo9/vUl18bVEWJzXqD7WaD50+fUkAm1NL7Jfq9PqqydJXd8XjAU1yoTU2CZxdcc0BhrQWP7oNFAwMCm0TXqVuxImPYggPd5Ho32GmBLVmbsMpt0P3ArD24fQ8gHTCl0BjFPd/aVcLFscjrZa3st8cppZyRzvMcV9ybLf3ZXUHoMAwdDfrs7Ax//Md/jKPDQ8yYSSDVpG++/go//OEPcXV5hdvVCpr1iB4+fIg3b97gyZMnCILAUULlu0oVRJ7bNWYJix6LJookhFrTSHKgBRCE9r4P6P7/OcSBt/uQ9x8natYa3NxSovFP//QT/Nef/MQlC0opvH59gaKoMTs6xGA4wLMXr/DX/+W/AFAIkwQeV2jF2VT8OT4HViUHRkJhbxNjiy+//JKqFgEJ7G02aycOG/cS+J6PPjtE2fciinp9c0P9+Nst0iylkfTKIgo9zA6nePz4Ma6urrBcLp2TEGakVJaketjr9ZwT67JFnGNrSB9L2E7dgELeGwDieIgoCpFmGW6XC4TcJtINhiQwHY1GAOD0cIwxrs1nOBy6v0vbn7xeqmDCopF/5b2FjRXHMYo8Q7rdwlrAU0S/rsFjmBug4iDbGAN4Gn4cIo4THBwfYTwaUXLJmiDWUwijCI/e/wDD0RjnN1e4Xt6ibAyevHhJ+kRxRECWApJhn9mjBlAa2zRl4Ikm28l6FHCkG7DFPBhCiiMFT4WRBMAYg7BPOkgVB0pyfSjoJju8X50EyPYYa5EVOVBIoGMQxREybrn0Qx9KwV3fboISxzG05+Ho+Nh9plY00S/LMvieh6PxFGEQYJ2lyKsSURghTmI0FbXmFXmOL774AuvVmuyssQjDAEmc4ObmGv/hRz/CcrnE0fERTo9PkOcZsixFGEYYDUYoyxK//PJXxMbZbJClGfmBhtoWt1ti2uUFtZiNxxOMRxOsN2ucX1zAGINvvvmG2kuHQ8RJjHSbYr3ioQIBtxhGMTE+dAumGCqcUpud1ji7dw/f/fRT3L9/H3fv3sXFxQV++MMfOn2LJEnwve99D48fP4bWpPsm9xwgZtBgMMB3v/tdfPrpx0jTDH/0R3+ENM3w/PlzF9Msl0ssl0vc3Ny43yml8OH7H2AymeDm6soNhbi9vd1JGGRfP3v2DK9fv3aBadDRmxN73WM9r6ZpdqrRZVm6NSAFr26SrT0ayvL86TN8/c0T+GGA4Xjk1qBlFpXsz/FwhMFwiOGYrsd3Pvou1mkG7bdgyHq9dmzM0WiER48e4c/+7M8wHA4wm01hLVCWdC6/+MUvcH19jX6/j7Is8eLlS/zoRz+C53lYrhY4Opxhs9kiLwqMx2P8u//5f8JkMsFHH32Euqrxf/zv/xu++fob952SOHGaRwcHB05DZb1eY7vdYr1eIwpDfPklaZgMBwP4no+LC2LH9ft93Lt3zw1zMcZgPp/j4uICr169xIsXLzCbzTAajRCGMT777Pe4fcNHEHh4+vQ5fvbzX+HZs2f427/9W5RVhQ8++IAYhhUPPFAKytPOnpJ25wj9QR/r9QZ1s3RrxRjjfLFmO1NX5IdFV0ri2neBTVaolLZNaoG3J452gVSyD7v+uMu26b5OwEvy/zStVpgs4m9k4m7dic/dJCsBBhjY7YoOy+vl+wjY190frlWmk0BLIiXxVhdw7SZZ+2CX1u8G6Fzxxtq3Pkt0TyTW7AJgVGT04Pv8fH9PuFxTHOl8QPdfZlLLdRTdPPGXWlOLWbUn1rzebFAUBQaDgSsqJwn58mfPnsH3fRzNDnEwPXBaeNYY3FyTztrR0REV15oatq4Q+j6SOKLp1lzIzFPSEfT9AJPRiAssZGfrqnLFEWUJ1FSKpl4HHL8H3KJV1zV1nVgqwJdVhYqT4nW6cVpI8H3cLm7x//3d38PzPPz4b/8OYRzj93//v8ej9x5jPKWJcTc3N3jx4gXKonCF1W26df4tiEKoyoPSKaCpsyGIYkRRiCgK0RsMoH0CoKMkQa+pcffeXQxGQ0zGU5wcn8L3A/YvZHPDICDAyhOtIp/bzangID5AinFpmuLi4sLpk4qukOSVsu4PDg6QJAnu37+P9957D0dHR5hMJnjw8CH+6I/+EG9ev8HrFy+Qdlq2BZyw1jr2kfzNFRQ7cbywXl2hVWIqtJq1+0VOWYeiDyZ+wRiDzXaL9Za0FZUr4lK+3QVMZT9pJVNW6WiBlN1WVIBYur2kh9APkASkD7terrDRa6xXK6zXayQRtfR7SmG9XsJYi5PTU9Jo7PdIEzkKUVXCEiRm7XqzQl1XUNpiNB7i+OQQjx+/h+lkgiSOYK3F3bNTKGPw9ddfIUlChKEHhYYhBAKcKCai6ySAYhSFMMZis1mhqqjQLPedpuf5ODw8xGhEQOZsNkPg0xALsXvE+o5cq30Yhk6OhmIEsVcaSnmwloAorT3EcQJrCA+gwmKBoqhQVw3NyWhs576LrlMAT1Ph+C1H8I7jdwJsAnaZHoSq8wULIpRVBWtp0o9sMs/TPPmHnKj0EtZ1W4mlfkKvZSwp5Zasq+ZZCytoqaYedIt3J8Kq+3tDNWMuK7i/dxNpyxu24UpezQl5yYnhhsfxCnCQcTsdAALMuE3DGIuyIkeY5hmqpmFhNVq4gRMSjxA3DY/IBKwHKOURPq+Uq9zKwlMKO+Mvy7KE53sOWRUGjTzaIENBRjOLoSGHTAr/IlqoNGC4wGT4eXleIM9kI1UomcHVUjRb5y2HgERtxUd1AiW6WBYGVvFuarATPHQDKzLUbWDiGDdKw/Po/aRVrl2cLdjUdfaCOr+1zzq/kM/oti8BLXW7W0GQ993//pIQtNo55q2/yefEUYTD2Qyz2QF8BhuIGm+x3Wzw5vUbLBcL0DQeEqQOAhoBu9lsMR6PMZ0eIAj8HQMuictsNgMAZpvsimsKoLdfnWyvW5f39+5jf9fZX/O37uE0aVi8TxP5WvEAACAASURBVIGEOq1VMJYEG9Msw3K5RBTHGHEfep4XSNMMo7qBsUBRkHi5H4RIBgP4gU8VCg7EHZhkDZQhJpICuOrswZi28lSUBWCBvMihAJQlAc4+4GyY9qjn2bDwqDjtsqQqDLEYuuUI65JGEaTsVkm7jL1u8CzrQO6FBC37rxMnJQ5fWhSVUphMxojjiNZKunX3er+q2tXYcBOBmtrRsver3PIdwPt7p/LMzDLNAbpbz51zV1CQ0gBVG6UmSUmUgL9Kk9C8HwQIogieH8AX1ohWCCKiyw+GAwTrBSyoTWC92cIPK4QNjRQuZR9yha5RpB2kFDOemBHVZYd0WzKsA+zpdXVdOZar6AaKfZLv2r1Otmmr51LokIl1Ow9Yrv4SGyvPc3i+h9AGUJp+FmF58Jqs65o1qEIS2+T7CUWaA4FPwWMURvCiEGVTt2vFp70QhiGODo/Q7/XdufieRxNJmwZ+wPp3NY3vlQptEsc4mB2gqmpMr6/oejI1vG54EEhjaIIeM9pqjwKlHlewpR1QfFhZldC+R22NDekyaL6WUhhqLE/E4/sBZpB4nofxZIKTkxPMONC7vb3FZrtBWZSIYmpBrZt2wqhr0zENFFoWRhRH6PViBidC1sqqXGtbr5c4jakwDLFer6G1xvRgitnBDAW3wEjBQpKALlAIwLUadvfhbjVYuz0o+6xrM8Ru7O9P2mdAUVbIigKxiTEcDel6ylh2BhoaLg4R25x8i7R01g0V+york8dKzG9uUJalm6rWgqg02cvzPAyHQzdAQkZXE8u3wvX1zU5Vdjqd4t7duxiNxzg8nCFNM+R54YTbAUBPFaLo2IFFtMZqVKVBlufM3GqwCSMEfuUmAqYpsdAaBu3lIYm8JA/OfllaZ/1+n0DkUMP3tWOMN8wYFIH+LjtAYshuSwetW88ljAIKdkGaSACcwIeyMUxdo5bBLO689rzpb1H3EbAbsp46rKe3C2+89lsiUGdN8Xfk30sMJtdNijb7XQHd95DPbIuE7XoVe9ld3/uv6/67//v9a7P72m+Pb+SawO6znt6O6Vz+0XnOu8TH9+PB7nsIsKfQBbW0ized7mJjnGaW2IO6qmANaVHKIdc9z3OX7Ethp5cknKukfO4cswsYrRR8j4YR7QMAyifWuAXIT9tOPNMltlhhOZHkBf2favO7Rsa4164g3zKvWWerMcgr8mmbPEcQhiTQXVVUoPF9eMxcMpY0Jz2/FZRXAgxquTe701C1Jr2/oihdzlRVFaB4/0cRoiRG6IdIYurwGI1GTghd2lklNhK7JUzWLtNIACkX3wkj2dBkWu21Nqc7PbhpGnhaYzQcYTva8FS3Nm7qMuh29+3uPtv3C/vHu/bALhCt3npeF2DdyfFgd/aM5NJKuVlg3Q+W/2jfj3W/ZD0RG9SDrhTnsSWqkh6K2WWuyAs4UoCw18hH+mgNI2lWNg3pOAWhTIsPmQFOcXoQ+Oj1YkRhAN/T8ESsm22h7Zy/Ut0BBRqkBbcL6ssh/gUgiQRjDPr9vmvHbBqa1ud7/s4+V872AnDox64dAhQ87bMdFk1Hs+OLJP+h84aLzZSvIEL+v+n4nQGbAIWmtiiLhm48awNFUYAg9OAHNLr26OgIeV7gZj7Hq9evsN5scPzsGY2DXyzw/MULCNEriiI38aU36HMA5iGqCfHMixyAInRdAz7fpLpp0NiGrq+AVOI40bkB/A9R/naDLdM0pGmUZ6iqGustibQt5rfIswyb7RabdEtiwdyS0hjaLW5BGAtjG1jQWFRAoShKlGWFqqqxXK3R6yVYrldI4gRZRsLQ0+kB+r0+oihGHCcUsAdUJaiaGo01NFWCaapZUaBuGihFm+LlqxdYLpd48uQbPHnyDZ0TJ1Kj4RAhTwQMgoCDHTpfT3vU/sE4tGksG0vDbUMeJ+ztPe8GuCTimmK53qI2wHq9da2F0kesvIj1AgBlFYyie+1pDS+IXTAAiHFtJyNQcFvtBB80FcEDCcH5vIla1BwQJFjxvab70BoI2dDKAZrthENqyQijEGEUuc8G4BIFl4yxWKj0OgNwbIcuNV+YQaPRCMYYnJ+TDsRoNMLnn3+OBw/u45OPPyAHFycoKmCxWGO93uDVi9c4f/4c2vPwvc8/x2g8Rm84wnabIstyFGWF8WSC//EP/xBJ0kNR5NQqoduKCFGOLTzfMv0yhB9E7joYZsPR9dJUSIWBMtaJq6sOCIxWteet47flPUkClmWZ2/u+7yP0Isc26PV6SHrUGhWGIcbMSrhdLFBWJcYHU4wnY+f8ozjG2Z1ThCGxS+T3TdOgaiq2HUCzYVFSz3O0Xq2Ieh0EHkxDlZyGteDiOEQYBtxiwS1NsMyuAMq8pMr6Zo31do2yKKC1gh/4KKsGm20BpTxMJhOn+eK0d7jCLmtfEpRuUC4BjQQG0pIj7TYfffQR7t27h/F4jKOjIwBwe+/ggMZ5/9X//Z/wn//6rwEFiIBif0DTbbQno7WZzuvTo24aXM9JSyrLcyzXKwcIACzYbzhJVyxO62l4ykMU03VcbWgC483tnJwvA6ZaKTSsV0f20hKo5PkAA1XK99EooIGBVXBC04MwpPUY0LkXVYn5coGr+Q0urq6QVgUKEONL+T6sAvKCddMsiXlbY7l/XWM8HiMIQmqJa4wLmLWnEQYkSpkXBSW4G9Lb2m62uL68JDvHlXxhLRZFgZwZg03dkJ+oiQVHwCCJSBLwqFwSRwUTkIahMbAVgahKKWiPIoeb+Ryr1QqbzQaLxYLWcRjA9wOcnp1iOBhgPB5jPB6z8D0VJV6/ekWgUhTBC5g5IMwDZncaBilFayiOIgwHQ/ieh0G/j8V8jn/8+79Hsd3i8PQEJ3fP8PjRd/DZZ58hjCI8fv87lPQzC4aAubYQYxqDxZpEzJO4hyQmIearm2uadrkgvRI/CGhaUZphu95CezT9z/No/LSnNS4uL3F9c4PVcoH55RWSXg/vffopJrMD/Mmf/Anef/99TCYTTA+muPfgHipDgwIePXqE4XBI7VRxjKqq8OTZE8de830f6+0aVVPBqAl81gUbjwYYDhIM+wm1zeYfuiEDmy1NE33z6jWUUvjO48cYDYf4x3/4R/zLT/8F5+fn+OUvf+kYikEQ4PHjxzg8PMTh4SG+853voN/v486dO1CKtJqECStFJfGpIhwqvrFk4K8LSgk7Yr3ZIM0y+IGPSTJiwBBQ1iIMAvhaoyhyABbPnjzBv/9f/xfESYLj0xMEQYDlYolhv4dtlqGqSpi6QVOVKPMMX7FMQpZu8fLlCxwcTHF2dgbNY9W19nB8fIS7d8/I52paw6v1AsvlCm9evcJ8foPZbIbBYIA7Z6f4N7/3GbERwwhFTgW9m5sbFxskDFAO+n0kzEo9f36O2/ktBgPSxeolCY4OyQZeXdFI6xfPn+Py4gKL5RKL5QJjNcFoPMZgOMDscAZjDL744gt8/N2PEEcR4sinONL4qOsGr1+fY7G4xT//80/xN3/z/+Dy8hLXV1fuM4RxcHh46BJiYxo3zVCYCP1+HyfHx8iLAqcnJ6hEt80Y19oeBgGSKMR2vcZXv/gFsu2WhE8sxZjGGHAzE/lRKWrww4KAIUmS2gSwZRlI+dZhSqplIjhwwVgY0ITNuqSk3/oK8BWkSBZ0CmOyHh2wYNtio7ByJf7sdhHI9+8yLbqFlm7iLLFXWzRsGU7AXsHDJX8UlWj97sjExX+dxLlbhOm+376flvHi2rPQluJn57vfwWzaAdzQ+nSllGvREt+d+alrZxZgb7Veu9Y6a62bKCosZxF+DoIAJ8fHCP0A5+dvcHn+BtrTGA+HMAkB6r5Ho9eFaSEPOZ/A9xCFPum8FNQaLR0KlpIs1gxr0MCiLiVmoXtXMAOX9HXYRsHC0wpRQFNlJe7zlIavPRhjkeYZoBRWqxXevH4NAOj1+sjSFJ5S8LVHQFxFgy/qmor4IrAcxTT1PMwjKkhYil2urq7wX3/yEyit8OLFM9YSJuAgzytUJYs494ckF2ANtzsFrohr6sZpLol9ltZna4mdZ+oGtuEp60WBMi9QliT0vVwuEYURRoMhoiCEbaj19/zNG+c74ihCv9dz93yxoEmaovvX7ZSQvSP7qbsPJW8RlhXQFs/kX5lG22UQCste/IowdaqmdgUa+r5wzEoBzoyNuMjrIQgDXv8Wpq5RNDWKIqe81vdhLVDxuvC1Rl2VdD/LElmaYrmYoywSLBa3WC4XeHD/Pg4OpjRxlLe55xM2AA2SZVEGSltoDfiBEFUMAINeEiGJA/TiENbU2KwXeP3qmQNBh8MEvV6MJApJJoOmlaFqODdlFXOlNbEZNWDQwMBAe5Tr+57oPbcdJr6vAeVjOBogjAJk2THKIne2TwFI4ohzEdHIknY3r7XbVqFpLKqqcbIeEr9st+Sfi4KL3ErD90Oopia9VIABLQutAijlI4qjHXv5bcfvFNhkDFexrQa0pUTGV/CURhDSqfb7AzSNRZzEgIKbxrNebzC/nWO9WkF51Fdr+SJ20X4yVIT+OpdpLWDJQXpKwygDGr4mlQO07CW7OzFCHLAWT8uBsIVlejpRWPM0Q1kW2LJR2aYp0iyFaai6BcDR+eV9LXt5QmppWk/NyGPdNNB5jqquAKVQJAV6vR6LVcZQIFaH1qQNQ+/b6atVQmltAaE0JecnIsOv37zG8xfPXRU1CALYxjgQr62mAbCt5gZdh93qhqCuUqn0PDIS8rMg8lTlr+D7xHrq9o92L3pb+bDu2vnM6GrFGVvH/m1gk+dR8OBAJEVo9H6PfZeJBOfcd5+jFLfPKLhAzcJSHzGvPTHOUg2V8+oGJTLqXIxIt8XOVcqZkloUBRaLBSZcgT85Psbh7AC9fg9VDdSNRZrlWC7XWC1X2K5WSAYDHJ+cYDo7RBCEKMoSNPnPII4T3Lt3H/1+32mJybWS9gqlKAFQHVBBrk2jCEBw1wIcxEoVorNn2h30dvD2r2U4SWAq67oLskhgKgwdCVZ933cJWF1TO5VQ4LUm8bwoipxeCEph2jTOWUqLWS9JqEefe2uVIlvSKNINquqKJ2zI+mcKsKxfPtfGNCirEkVF1PC6rhBqD5q1bMqyBqBcMtvtrd6vhsje+3UVXVlTwmg6PDzEgwcPcHR0hAcPHkAYBForHBwcIIpCEsmMSdi5sVRhkwRHzkECZFc5rGsUGwLFwjBkbYTOVB5BoDvsKzjQLkCtKGgR4MFay9d8SAUBlwCwwSTUj/aoJftgFUGblswTtO8hSmLS9wppbVRNg6Kusc0zbLMU8DWCxZImUkkLQEOMJgNLgBOzC33fRxCGiDrMK7nO3eq99jw0poGu6Ltvt1usNmsaoc6vSZIEPoP58p3FdjVVK+RLj9BNonIMKvfgql/TTntS3AayXJKO0e3tLc7Pz0m3kKulxhpMJhOnLyatYU3TIE/Jbw2HQwpS+L54WtM0L00taqIPlCQJekmC0WiE5XDo9BIuzt/g6vUbVLZBfzKChcXh8REGgyGG4zEBqXmOsigcK5cALQqG54sFsjxDGIQI/RBZnuNoeYIiL3BzdUXfl31qlmZINykBKAzqh9w+UNY1tlmGbLtBU5QAC3AeHR3hwcMH+M7733Htn9ZaPHz4EMYYfPAhgfoC9pZVieVqSbYmDODBo/YOBddG73saURhAIUCPhe/lXpVVjbyskKUpjo+OoAA8uH8f/V4fV5dXuDi/wIqnBEqrrIB5k8nEic2Px2M8fPgQ1lo8ffoU6/V6pzVO/In41i7rV9ao2CkBoTc8JMBX2jG6ZL95WkGrFmxfLhe4urpEFEW4XdwiSRL0ez0CW4uCRar58xqDFU/JSXh6UJpuW3/CbLV79+4SAAPy6ycnJ/jwww9xdXWFF8+fY7lcYjKZIAxJA/Lk6AhKK6RFxYlP6XQKxZcFgejHUaKf5TkWywW3y0TMmOvRBNKiwHqzwe1igWtudcyLAoOmQRjRdCARaH7w4AEOZzNo7bAdtnWWgOWrG1ycX+Dly5du9LnWGul2S+1KlrQUbce2rNcb8g2cGMr03qquEETE5pPig9jiXpJgPBpiGUV4yr5PqurCiFQdf9Gtqre/6LAd5DXv8L9d8Enst7WtNpM1xD43xlB8rFuG9o5t1K2G3bvYFftxkvg5SW4ljuwCSO332/W1+7/v/rzPAvu2n99mN2EnQNlnJnVf73wlAyuttsvbr+2+R5c9gs71FkBLWBtS0GyqGpVf7nzHsiQtSGELKqWcTqcw5cGf0+v1oKCwWrHgeEPJve+zndBSYFKsycSv5YEiwnxUoCKEUoqmtqJTmOXqCOnDyoAQCwuFpq6ctk5Vkj2lohaBVgFfBgtKhKOQWmLLToy2Xq8x3m5pQEBVtdpQ/JntvWjFnCluN1Qw8zzUNTFf0yzFxeUFAOD8/JxB4D4Ne1E0OZxAY4o9h3lORVprHahWccFKishOp5fXe1mUrV2umxYQqyqUBU2fdXEmM1WFUbrdbpEkCQ4PDhDw9Ee5DjIBNY5jV7yWgqX4lK7EQpeJtM+w7K5LuWbdNS05m/iVNE0pjub4a2cf8D107DGeKqz5vYVFJ7mdMQam85nCXCvKwq2zpm4cQKagOrIBPMSL7QfAa9TTkC6ZLk2K1iKgFIGcBCBRJ4M1DYqqxNXlBaqaWLVRGCIICLzyvY69ZGaagnJ7Qwr5DO3T7xiI6naNgAvS2ir2V0C/13dt+wVrcvke7bNu7i32xfNam2GN3FMqJgiTm3QLS8cWFGKFZR1kZdu97Gkfnhc45txvOn4nwCap/II3BVEtDaxRMKxLba3cDKps9Qd93Ll7iqI8wORggjSlscejN2+QZhnSPINStMCquuY2F9ZfARwKCTB7ybbUPppKV7m/dZNj2/n/zgFKoljXaECGvKorpFtCoAkxpJHS0jpX1xVVBXyPNV2U0xoSZyVtGkpraI+mBZRV3WmFI8OVZxmssaT9VFbw/ZANE4+wDAKqOgBODJbo/hpFQR+mtUYaBTBNg8VihdVqjTwrSOTbNChBQU66TaEUVQajIGrvn1Jk2ECVBNM0CH0fge/j7p27+N6n34O1Ftk244lSBgoGg/4Io+EE0+kEH3zwGHGSoN8fw/cDWGucNo7lSolMdnKte5YEXhUsV765Gte5T1I5I3DJc/cOoE3m++24aa1JXE6/A0hqHX5bdXnXYRhCaCwxEbTXagDI1AcBaCSJTJIEg8HAnVdd17i5uXFaHvJ9xREIy0bW7MnJCb744r/DeDyCVR6KokFWlKiqGj/96U/x03/5GX76s5+hMQZRFOPO3bs4mB3i9vYW19fXiKIIn3zyCe7evQsRq5/P5w4cEKHnzWbj6NUC3ghy7nl+2+7YvR4dZ74PgPz2/KW3j+4rgzCAH/hub4iGldYa9+/fxXA4wGg0wOHhoWu1EQea5zkKdoJRHGI8GaPXb3WOBMiSyqowCrqtC9KSI4dWGgGDQb1ej0Qho9hds+51kvftUrXDMMBgMKBEuyjRGIPrqys8efLEjbsVEKPbSiOBhVzrNpjdDXi7LW9yL5qGRoJfXFw4totU34wx1F4W+Pj5z39BIs2+hzCivSOg3Wq1QpZlmM1mOD09xZ07d/D9738fAPD8+XOs12vHBLm9vcXLly932ke6ulJybvI3aQvoAnYEpgAyiEAwf8MBDUcsMAooqhIWwGqzAbRGlMdIi4JAfq1hYJFXNWrTYLXdQHsehqMRHj56j3yHp2EBVDz6VXsetE+BUFVX0NrDaDRCEPgoipKTHzoHhbdbZyWw9D0PvV7fBVQSDFJ7j4ceV6olGKXhEcZNRxSbIHZD7iWtT9Lck2sLBp+spUqn6AS9efPGtap5fO1l+qsA21L9rJhhVZQlrALKnNhXniZ9EK01aQIqheViCc/zMBoOkR/nuL29RRSFGI5GGE2nxKY8OMBkMkGcJCiKEp6XIS9yVFXNLZgEqJYcDPsxVfzyIsdmu8XJ8QDHx6cALO7bBzDGIM9Sas8GcYU36w2Wt3QuUUJaGsNBgtD3sVgusVqvkaVbLOdz+FGIo7v3SI+j38fl5SWDn8DV1TXOz88BAEmvRzab91R/0Men3/uU9nocExDvt+0oFHNoXqvSZmRRNe0o4ZrXlkwt1Vylv3PnLn7/9y3u3iXQRfZ/EAT49NNPiQnEwXAYRRhPJthstnj69AlWqxWur68xn88RhiF6vZ5jagrQ3NXtkL8J21ha5JIkQWMNNqu1A6KgqCWnYcFeae3N8xywFnEYIYliGirQ5FivV7i5ueEEhfZ3XhAI5GsP/YREtyVhFrv47NkznJ+fUwtsQOOrT09PMRwOURYl0u0Wjx49wvHxMe7fu4vGAnVVY8OTVA8Pj/Do0SPc3t5itVpRAqlpbz1+7yExuGBxOJs5QHibpfjyyy+R5wWePqHruN1sAEWiwkmvB7/jF8fjMWvW8SS2hrQ2SQaA7Njx0QyjYQ++pxFGEa6vr/HTn/7U6eJ89eWXmEyILdUdHlOVJSws0jR1fkYkGnLWFJGYQAC6OAxZmJl0SI3lIQN7YIccYqsA8c/f3j7T+eGdxQxXfNsDaVwrj2eg9gok3dd3faG89l3Ai8R23cKdfM67zl3e+13A07vOpfu6LrDTBcK6bXtN045pfxeg1QXBusVHaynxs2CgDR09Ubx9LvsAWffzZPgG0OY5Iukh06601oDnOSBGipqe57lukMVyyczRGHEUYzqZ4tGjx6iqwrXH93p9LlTRYCGtNPq9gWOiWkuMm7KgIR8Bt8eKPXXpLwMLCnDFd8uMl7IsiK1S0zRj1XlRkpAN2m6peG/DiFq8PY0B66RutxuaKuf7GAyHsMbicHboztEYQ4Ur7SGKIxcfilB0GEakp6mkW8Jis97wuVWUsKNtjbu9XXDXR+WYisIQVUqRpAi3glM7de3iJjB7TjoyrLWIowi+9tw6EH29MAwxGo0wHo1Y01OhyHPMb24wHAww6PVQVaUDg/I8x2KxgFLKad/JGk7TlApGXisOLvGkMAgFjJR1KWtf4uC2pVEK+d7OnhdtwJqLtft7BKqVAwiLEGVR7pzLftz01voHAc62MU4Un7Su7M6e9H3SBibGFLcm74FsdVWiKgu4fNISkKlgyc8qoCwL3N7OUVcVLhlsapoKcRQjS7eO3edyzoY6PGgYl+/skOx9wzFlELWt5ForIgJY4zRZ5V7JzxIHAIBmoFfui9YavaTn8BNrDKq85O/YoCprGAMEfgjPC1CUDdKsgjEM5AYyqVjsawPlmJtEuIB6dwFi//idAJsEqRZ02jLQpJTiSTMcIAMIAqKZ9Qc9DEbUbvTw4X3keY7VekMOfH6DG06Ut9stVFkCvPj9ICBdorql8cFaGDYCYuyaqnYsFaBNFHY2iKCeDDzINCFpe1oul7i6unLIoyS2TpcJjMTz+HFJRGWzUtWadCZ8Bnb8goJvqaaapkaeUbvTarVGWVQI/JBbLiyhr3HshHxJMLcBTWajkZNVVUFpxRTPBsvVCuv1BnlesCEFazhVuL29RVmWiIMIgUcJ8XQ6JWpdpKAsGPQqMR2PEYcRzs7O8Ad/8Afo9/qYTkhcNg6JQpjnNbK0gh946Pep4l3XRHBQWiGIInfNLVqwzE2TMNRnamyNuhH5ZlfAAwBnqGRTdpP7IAgdqttWhGJotTcdBPsBCOk4dQMUMYANb8ba8NQM2xrHLtgkr6mqCv1+37HFxAHN53NccYXegRodyrgkn1prnJwc4/PPfw9KadR1g6KqkbE21s9+/nP8x7/6K1y+eYPaUjJydnYHs8NDvHr1Ci9evMDHH3+Mjz76CAcHB67aIVXX4XCIJEmwXtOUqTAMnXZTlzVIAEx7rbusqC7gtFMZ/FcbC7z1OgJqfefs5Ro+efIESgHHxzPMZhMMhwQ2dat3WZYhDENUzEAIowjD0QgJtzJ26fwAdnQ6hAFlrXWirN1KTxSE7v7WdY0oCN3rpArbBR+6AXYQ0Hhc3/OQMpPl+uYGz58/x+3trXPqXaBp3xl3HXL3/eW+yZrvBs2r1QqXl5fQWuPVq1dO4LuqKoRxCM/3cHNzgzzPEcUR+oOeu45VVeHNmzdOwPjs7Aynp6f4wQ9+gCiK8M///M+4ublx5/r111/j8vJyh7UjbAvZI921IuebJAmLyRIQaLlVg2wxB+OKJwYyw8kooKxrGGux2m5gYBGGOaIipwAfZG+X2y3KqkIQR/DCAMPhCA8ePEAQhlC+Js2mskLd0KSyOIlpAERdOZCItF1SJ2wuszpc1ZLbMh113feR9GiEs+ZAXJhrAT+6YI+8np3lTrIke65tRan40U7aagyxbJaLBVarlRM2LssSm3QLj9t0KJnoYTQa7exhx+qrShhYFHmGjIGpOiDdJmsoQKsraimfTKcERi6XCJkZO5xOkdc1RtMpxgI2lSWgqdVQ9BeNMSjryrUf9nt9wFrkJQVcQRji+OSYGLfDIdHQuXLIcSeWiyVurudQmoTgA9/D4cEYPRZ9txzkG7DAek1CtL/6xS9xeXmJNE2xSbdYrVa44rYnP2wnkkVhiNnhDB9/8jEBN7YtajWG2MtNTW2ilRMypLVdlAW1T1J2Ba01+sMB6x4So/Hs7AxHh4dYLpd4+PChs9Ge5+GDDz7A8fExAl8hCjQXOoDr62sHAM/nc1xeXjrtIGutm/LY7/dbcJPZngJyiJ2Q1sBtSlqTIgqulHKxjef7iMLQyQhIohRHEU3cK2lQyO381rXoAQQCy/7uJQliFjnt2rPnz5+7NrJ+v4/ReIx79+/BWotBf4C6qvD+++/j9PQUAKjoV9WOgTSbHeDBgwcAgDRNXatBHMd49PABJuMxAIXpwQyr1Yq0uVZbvHj6DNvtFs+fPsNms3Fiyp7vI2b2oQx96O5bpWjQSJ5XO3b4aHaAOA4wGg1xcHiEy8tLJEmCm5sb/PjHP8blNJVZAAAAIABJREFU5SUePX6MwXDoJvZJwUPOHYBLOoA23ugmegCYScd6XtY60AH2baCJvcSOZ+2CT992vP0ejpy/Azh1YyS5p+9i+AC7LTq/CWyStSk+upvwyjnsAmrtZ+wDUvuAUPf53e8jz3HAmW5b8uhetz6dnrv73t2HxG/GtIU4AZtalod9C3B6+5rvMky6EzJhyD/mokXGn6kAx26RfKLX6+Hg4AC+72O5XGJ+c4M7Z3cwGo4wnozx3nsPsdls8OTJ1zwVlLoVAJpG5zNjidZ+7gAuYVBJQXVn1TDQBCUj5tvuDWMNqrIkQLtpaCo2IVPQWiOJCfDNswxFXnCRmG1o0IO1NLF3nt8gjmNMJhP0en0cHR1BKdUCaipBGFDbk2gf+Z4P4zWIggAixEz+jPRNd8Em+syyqpBucwZ3CgeMS8FGCAKkmWVd3LPdbp099lS3iwKIwgghx5JN07hiWxAEGA0Gb4FNi9tbmKbBwcEByrLaAZuWS2LeTiaTlinNoJcUlySeF41N6Q4SAf/uITFJt/NC1noXkJJ2urIsUZQFCgbBukUO+s60NqIicgBhEIXu/bpAbxdUFi2suqxQ2ZKJ7a0mE+0ROMCzWywHQDIvPncP8bkWHL/5Pt2HwPfgiT6wbVBVJZYLGtpxfX3J7Coa1JBlKYCWKWcBaE2TWj2PCh0g2AaNsQwo8cAyTbqisoeNaUhzd5uiLAkcLooC23TrJC5kzYIBXkdO0B4SBpsAYobVZYWmbDiGqGGNRRAQ2FSWDbK8AgmHa6cNqJRCVfkwRkFzgReWBmr9dlDT7wrYBHD7SIW8LNAKD9PfLLgSwLQ2ywG8p5X7op7n4eT0BMrTrjVis9k4JL8sSwo0rYFvgx36eJdtIYtZKWE7sZO0UrHQblPQyVjXJiQGschzZGmKPMuQZxmaxqDhAN1nTZNuoqkZlRWExDGptHY0O7md2iNdjKb2iEaoKEAwhkSFAYs03fJnacRh6AA0z/M4eWkTU81jp/3Ax3BIPayzyQRpmuL29hEW8xsanm0pgf/666+xXq1xe32DzWoDkySQCWA+C20CMtFNKk8ha+YkCEMfga85ELcEKinSaNluiR2R5zW1DNUdoXfesE1Dm1IcmYA5UNbdk/bftwHCFin33Wby/Xasp9ak9dLVaYK7Ky2IRUtmN2gwhtDjhumSjamp/9dSVRFogxdJCgG4c/A8allaLmnKzJarsl2BdmvJQa1WK9R1jcPDQ9y5cwenJyedEeKa9H02G5raeHWF64sLwFo8fO89HJ+eOsBOALjxeIw7d+4giiIHiApIIvtEHE/IgvTijCjIsq4VrxvsyTUHdgWqXaBnfz3g5P7Wbo+d37nP6ARaspdfv3mDpqnx3Y8/wmQ6gad9DIdDZFlGdsFSO6AFCYNvtxS8D4cDBGGIsiz43O1b4oG0VhSa2ocIeAtzBACsoZGgYhuUEjCapmrV7CS0F7v9C9AajsIA49EQ9+7epQmOmy3qqsJyscDFxYUDdqRi1hUD3geYuhUquS5dmydsoW4yI2ARABeg1E2NpEkc+3IwGEBr5cAhSU7jOMbR0RHOzs5cOx4At2Zvb2/d+coIe+n1B+AqgRJQyTpVitr4RKh+Op3i+voaL1+9RFVVbi1HEQHHxFZSLrBTFmiYdSMsx17PsKA32VraW9SvXsPAa2qkKbW2BGHgmE15WaGuG/TqygHJoickQp9OM4QnL0k7ivwPoAKLD7Agd0SMCdaPCwNKaLt0f2PtDu1fWmB4hXHCWbOGFAXFxDipd5gsFrQ/J+MxNtutY2QURYF1SoLVjx49wsHBAQ6PDjEUsIn3ddd2AdS2Aa4MJ1wcMGwLcuQoOcmVNTsej0lQ1vfx4MEDHMymmHKL5mK5gL8NsNnS0IyAxWWhFCK2OYPhAABNelOK2zy0RlXXWCyXkovQOO4oJn0hzyMxTcvV7MpgPl9g5WnESYIojlyrXlGVuLy5QZbluLi6wO3tLXr9Hs7unGE6nWLY70MphdlstiMwPZ1OmI3cdAZl8NCRRqEGATzbNHWajgT+EdOMwMWAvnPgAwZYLBZoasNt6LT3hsOhG+ChlELd0BQ1gNjCdV0jzXNcX9/g4vLSaXNtNxvHoHWJj21ZsmEUIQqpHVHEyCuOG3q9HsIo4jZzauuVOCbgvTo7PMR0OsX8dg4YiyiOSBspoVHcnufh/r27qKrvIctzXN/M3eTNsixJu4jXx3w+RxzHmM1mkImgUUTjrGk4Qkh7ipO3pq6xXCx41HPbeiUaYY8fPcZ4NHbtwUeHhzg9PcVkOkFVN8gKkiE4Ojps5RaUwmJM5z2ZThCEIfq9HuIk5naDAr7nESsuz9EwKPby5Qt89eWXTpsQgAMl3v/Oezg7OwGgcDAdQyvgww8/3GEYj0Yjt++lYi1JndjZNE2dHasZnLCWwsF+f4BeL4GnFMaDPrabDSUyFMDu+MjfdHSf867n/zo20K9/411ftA/AvOshdrUFaN49PU5+t3/u+yBS9/GuQli3yEj/rVzC2j3Pbrwj96ALkpF/32d0756D/M1YZotY08booDxAiktvXUi8W5jZAU8MoMgadOCjbQW2tdZO99Gyn6mqEmVBgGfIOkanZ2fYrNd48+Y1y1zQZOswDFGWPGGOB+rUdYOqqlGWJI2htYe6Zk1Gvi6i8ahAJAIHmkKKM40rXAACh1o0dQWjNLXF1TUAiygiTUSJrTzWdyaQSib2bohZokhAOo6JBVVVLXu9a1Ok2CGFAPG/VUWF7aZuUFe0H2kYh0VTU1xZllQMyLPcgU7CtDFNd2CRQZZmjrFEciOk8ag1MeS14ljSSicJyQNUVU1+pCG2bBiSNmIcxQ4w6YKwEtc7/SQGnLpF8G4cDbSTIGWgiKyhd+25LqNmf8/JewdBCGmZ8zsEC3nOfqwqnELZa13w3VpLbCg/YFYU3SPfIzH2WoqwutXY3QEW2A5VZYWyqLjtHm7dEgspgINHlUJd1qgb6vJZrdaw1iCJewhDaj0r8pYcgA5I7ns+jLZURFJa+qOgFHdsQdoEed0728hFPh4ks9lsaMDYao0Vg4f9fp/ui2rxA9oDPkLeaxa07siGSAGUPjsIQ4RB6LThDGvsWgNHvCAgUAPGQCmLuqGW6Kap3d78dcfvBNhEQU2FbZ5iud04cSwwyGJBPZhUsbMIrEUQeFAe9S4q0Cjyjz/5Lj5sPsCXX32NwXCIi4sLLBYL5HlOAR6jjrKxADggylqiKKtOUGuMYaSwBQvEOMIjcAAGsCAApMgIGFgvV1itadTiarEEQEmd0hqhH7gJVN1NRSdjXUWD2BpU2bSQgAIM1Gim6IkeEd3wdLtGkftOV8nUFTwApq4wHY/gRRF6SQKfKZhBECDpkZZGv5/g7t1THsEoyQwJ/dVNg7wscbtY4C//8i/x6uUr/Of/+J9w+eoN+r0+PM9HEISI4x5NnbBE/SOwyUccx5hOD5AkMeKAHHae16gqEteFUqS7NV87fYKqqqBZe8tjdLut2FM1uGtwgsBHrx85AEnQ3m4VgP4WOHCMNhDpKpBBkFWhnHNje+EexvBG7BiDlkpKQZ/oahl0ghCFHSPtqsFc4Y2iAEGgsN0WePnyBVarNW5ubrDZbHYCGmHtvH79GsYY/Omf/im1UZweIfQpsQk8DdNYXF9d4vziEk+++gpf//znePT+B/gf/vAPMRgMHagFAHEc486dO/jss8+wXq/x6tUrJ7jdrVgIbTeKIhZCbnWQxAHIPepWZqRaIt9jt9r5WwS88u9u4XXn0GwzSIQ7xuvXr/GTn/wEWZbh448/wXhM0/lOT09xfX2Ny8tLAieSBNAK6+0WNzdzwFqcnByjbhqk2RYAeH23QBssoPheaA4kSaC17bkP/IB13OgbKAWUZev4STMkQBjRVMm6qYCGRAAH/R56cYyTgxnmNzc4f/ES280GL1++ovZUFvO01mIymRBrilthKAjCznVvKxPVTnCplHLvIwCjtFZJIFLXtdMRGYwGCKMQw+EQx8fHyLIUt8t2HHvTNLhz5w4mkwk+++wzfP/733dMijRN8fr1a7x8+dKtm+Vy6WyxgMpC2RYbJGBXHMf45JNPcHR0hM8//xyPHz/GP/zjP+Av/sNfYLVeO8HxKA5Zf4kqR3VlsOXJUk1VQ3EC3U+3mE6m8IKgtS+wyDLyFcg1lOdhcDPC5cUl/NCHIXOPPC9Q1Q21go1HzgYRCJ5xq2rkmCJBQO3F4o2NtbCKkgCZatLv94nGH4bMaFEOhDd1De15jgEb+wRkarDQL4CaRVbFFjUNB+lMqxY/R75IAwqufXQ+n9OeL0usN2tYAIeHh+j1ehgMB+gPBm1gbKwLwKWYE/g++kkPgR9g0OtRUsitfrfzOaqypHbvNIU1Bnfv3IU5PcV0OkWSJNimW6y3aygovHz1itbhaoWqrnA0m2E8GqM/GGAyHiPp9XB8ckKBrbUYT6eYTg7geR62aYrrOU0mU4aA26OTE4zHY3iBj4PDGfI8x+X1FYqyxKvFAlVZ4vTsDIfHR8Q2qwosVyv85Kc/wWq1xHq5QpEX+L1/8zl+7/PPHNDiaYU4jODrlkZeW8PTBBsoThRIQ0FTRb622Gw3ePL0CYqcKpRNXSOMiF3b7/cxHo2QJAniJEZtGzx/+RKb1RqzKbUa+r6Po5MTAG2rZJZlWJ+fU5Erz7Ddpri8vMB8PsfPf/ELvHzxEov5HJvVCtPpFIfHx1S9ZUbDiqfh9ns99Pp9rNdrXN2QmH/I++P09NQJqwfS8stBqB+TbsvHH36Ejz/5BM+fP4e2lDweTCbo9/t48PAhZgcHuH//Dh6/9wDPXrzE//kX/xeurq/xLz/7GebzOb761Zf4x7/7MYbjMQ5PjnFwcIAvvvgCo/EY48kEg8EAk8nEXQfLTIOqKFDkBV69eIk3r9+gYds1mUzw3Y8/xng4wuEf/zGsJXH0lNdhU5P/zYoKldlgenCA07NTXF/fOFCOpAO2UFojTzOMxiMMBgPXxpBut3j2lAbU/L9/93co8px0tMIQg34fx0fHUEq5RPIHP/gBvv/972M86uO9+2eozk5w//4DEmy2pLElTBDxZUoppxuYccthN/ESLTaP7cJkOqW21TSFp8AFT2LIKw5quqyebwOJ9sEX+Z0c+6ylLuDymw6LXbBjn63Qxnq7gI4DWKV4ykMI5DVyXpLs7jMxuucu/lGKX8KofRfYJAmaJKzy3l3wi5J00Udp3+dd57AfG7kCnFUoUe6AYJ71XBfFzr1yhbr2+nfjLldosiScDcAxSQKWo5BhAfJdXOu6tUjTDOl2i6ZpsFwt8eD+ffzbz/8tVqslvnnyBFlRICsKbLYplKcR96hVzNMBJd0laQGlzLA3FgjCCIpZfwDc9EaJCdy1YoBI4n2Ak2hNAHNVUuGirCo3ZXY07HNsnUEpjTAQWZQKdVVju9ng+ppYqdpTiKIQWo9gTNspUlXEoCVtJNJTMnXDQI+h4RQ1EQqstShZaylnGQHJEajIRLGxFIWynNhXXQaaHJI7yvS/wPfR7/WJhTQaM2O0AQygrIKvfSho5FmBNCRCg4LGsD8ETki3Nt1sqUWyaLWZyrJEmpK8i3TaGGNcZ4XcB9F3Ev9iLTFk0zR1oP8+iwnAzp6VR7eorpRCYBqYJmQZhpjBncoVf13sIyAz/0/sunwPKdgo1TLKpQgSMCPHNA3FeEHgdEJ3thDboDTNYKGgOecu85xBQp/fl8FmKOR5gW26wc38FudvLpAklN9qBSyWS6SbFHmWO2KEgF1R5DEQKw8iHYr2GIxB01COUFc1+/cGxjaOKbjdbnF1dYXFYoH1coXlYsFFkiMEvk+amR6BWb5PAJfiGFu+63qxglIFZMq753no9/rI8wJae65wXpY1T2z04VnrCvOG73tdVSgKynt+mzzudwJsAuhCCFXeYybLjnG1ltvttFOml+BdUEfN7Jowil0FrN/vk26CT+1H7wKb9lHaKIoQdPqeuw7QsZLAKHunwlF3NkPNiLE8t9si42lvx5nsH4JMCoIt49zRqWzQSGgPDQCjrGtdMIr6TZVSboqB6EV4Hgma2Q5DIwwCJElMjzjm5Jcut6fo0RiDvCLV+tFwiOWg3wZ7dStOFnrtdBCqlFQQHQq5NooZQVlWoSwbDn7AInmlS8aNtdBAKzTMwYPne1DWIsDuiGE/aJMx6XWlFjmP2ROtBkTLnBMBQ77uqt2QcABT60DoX2JjdTV/dsAma1FbBpkUAGWd2Fu3KiWItecFFNB7HprGoGLqv1SWuxU6CSylfcL3fQwHA0wmY7rHTcMMHw3TNLi6usKrV6+wXq9hLGlzHMxmCMMIWZ7BWnIAg8HAUWXFyAuTSfafW/977J53MWa6wed+IPuvqn52jnexmbqH3AuZ5KAVmKVSuIe1cELYAQs2RjEJ7FpjkBcFlCZh8LKqYFPioAgAIgCCNRaWAZuuQ62lEsP7WoAftz46gFyX2QgFBz7ahlggGsRglMCExPtKN0EKgAsOgd023+466wazXXvaDZC79/pdCUY3eHX3wxJILGy3O3fuQGuNO3fuYDqd4ujoyI1VvmFB3fl87towgyBwk02657VfbZZz3T8ngOySaCO5v7GtoM460Sei++g+x4E+pq2isp0DO34R/q65CuibVrOJNPkaFEWOLAt29kAu99G2jryq651lK9+lu9/EZpoOEAiAWq/Ydtd1TWy5KCSWiyXf11i4tddN3ChQo2CmaRqURQkoC2N9xwAB0FLlPc/xroSxI4ldd293AS3XkuF5AIhRpcAgmTHwPEqYxR/TWiObNhgOEEUxGmuQlzntK2MBgx3GmNhadNa3gPTWWqpOM+PO+eCCp7P0+9C+hzhM4CUeTRXiIGubpsjTDHGvDz8MUTcVCm7NE90QYZZIjCD+3Fjt1hWsgbFAmmdYbtb0Oj+ApzWSMILv0xooax7BLDFCTf4xRMQitK2PKLnNQthkVc3rsKOxJvdEwAl6T7knVEGezQ7RNAajwQB5muL+gwc4PjpC3gGIxa8EQYCIwezT01MQa4yLUyz43rb1tC1MAHidERvH59jE8zzEnJgMWN8qjkjLKgxDTCYTNMZgdjCDUgorbmnpG+Ou++3tLbW1crKQbrdQICa2xDXr9QYlxznCkhQm5csXL3aKTr0kwXQ64SnA1I664KKLVi1LxvOoxe7g4AC9pEctR0WBwWCAXq+HPM+xXifYJgnW6w2yNIUf+CjywrHQJP601u5os8zncygY9HsxqqZBlmduMlSWZS55ipMEk+nEMRLzPEfJ+ljdCn/XX0t7lDEkMrzZbFBxfKY7Vf23gIt32Kd3A0ktEPOu2PVd7yP//RZQ0vnbu/zOPvto3/90Qbf92ONd57J/vM1c+vbnf9vf32ISQ4G0TPaBuG//3B12E8gG7iTbhgR9odvXu/jSCrfp7UPes2Xw00PWx/71l/Uk7dZaK9c6VRQFSs5poBRrqw4ApCgMJa55nsPzfIQBZWQ0CITi1CRJXBGYyCfNzmfvX9tubC2tn2JjoHbjGFgDTwfwtOJisBTim53raJixZK3pxEWSONfEAmLmT8PtRZaBLioZtHGUpJ++5wOWWesNTQ4nGRvtfIWVBWDbfdBdAxJLubxyL++Ve0trSzk7JTYpz3NUZeWA2DiOURQ5tpsNCpFtseTLpCNBdKn22y67OVW3La6777trez82e9c+kXXVtVfE5Adqj2NksWM+oKHdde/uD5FQcaC0bXXompq0yTztwXYYVsJKoyJZ260hf5crC8j1pzvtflbMItMKyvp8f4klBUPxGSxpGGutsVyuSVuMJ2/LGlLyOUrBMmHBfbZt733N59iYfSZqG3cJM60o2ynUEmvKvaCXtbIS3b22D3ALuScMKBcNggBNTUCk0gral7Xq+nvcvW/9z2+Gm35nwCYDi8VqhfOrC247a6C1cuCAIOCDQd/1+tPFa+nko9EIYRTBD0McHM7gBz4MLE2Dyws0pnHvA7QaGt0EUH7f8E3NuCpeMJJqDFHPRczOGIOKN9GWxzRvmeZmrSWhT4AXaNs21waqb+vXuMXAz4UFiZ7BUlXR8+ApjZADq1KVvPkMbG2QbTco0ozQSKVgmhqTyRhJHAPWEF0+CuD7VEGdTCaIoxChr+EroKwNLXYew0hBc4h+FGE8GmE1GiP0A6CxWC9XKOtn8D0fPQ5IJejzlEYSRZjf3uLNm3NEYQjFzpSmMFQMqHFlyXBPq+8hCnxESUzjtT2PNFOUgvJoAzrATovxVQh8SUZA76PfduaKEWrZHAQctQa1aRpsWcSc7ovdAZq6ieSOQ7SWWwcJbIIi/R/f95D0euj12ukyXQM+GvQwHg9R1QbbbY75fIlnz55js9lgOBxiMpm4amxRFDg/P4fWGqenpxgMBnjvvXt4eP8MZVljvtggDHyMhz1sNhv8xV/8CH//D/+E+fwW/ekUp/fv4bPPPsN2u8Xf/M3fIs0yfPLJJzhllkF3PLbv+zg4OHAGiaY4tM6Wpvjsgrbdh+zP/eu/TwP/DfHqb3VYa6l6awxdz36EOGzbFxaLBS4vL+H7PsbjMeq6du1d4+kUQRjAGIub62vE/R4+/PBDZMyAMMa4QEm+h1TTrbUugZa9Lw5VEouuM5Y2W6kMdat5FxcXWC6XKLIcRZ6jnySYTafI0gy9fgJraOrV5eWlm0DVNI17Dzk/uScuUOXfuXNnR1tyP7xMrJHkbr/33hiDATNbvICqTsYYJ7I7nU4xm83w53/+5zg+PuaEMnJs0svLS/z4xz/GfD7Hz372MxaIjpz20mg0cvuyC3R2ARO5j8vlEkopPH36FGVZ4le//BW++vorNMbQmPPAJ02+wEddVCgKChoNt0EmSQLfIz2iOPpv1L1Zk2RJeh123P3usWZEZuVWe3dVd6O7B4NuAwkIJhujjDRSND7ISOP/owwPMOhFkAhQogEYw5AARgQ4AIjZenqp7sqsyjX25e7urofP3e+NrGoAkulhdNuqqzIzMuIuvnzf+c53TgRwjjTPoRQxNwHAj2OEcYxNusU2y5CmGW4nt/CDAJFpz06LElVdoyhLrNZrCE5sDw2gqikgX9lmORswaO0MKe4mN/b+N03hTTJjHWhsK5MnBJIOsYhI27DZ9N92eGb9risyrAA0sb9cqyF3bjRgDJ1udweEXC6JYdSea9YNz46V0A8QhUApJZbzBbTWxODlHJ0kwXg0wt5wiAenpxQMGkbu7XSKzXbjnhvnHKEfoq4lchNQKU0W1n4UGqFwhVpR++Oh0d0gvTRyfquVRJbnuL68RFGWmC4X6HQ72B/v4/jwmECfqkReFLi8vMRsPsf15AZJJ0FhwFzf9zDeH2MwHFAbHCfg4dWrVztr4XAwQOAHbry+vniNz37xCwrAJLkYPXr4EIPBAJ1OB0mng+1m69rn/CCAD2D/YN8xRe28ns0mkJJa68jxrsRmfbnTQmDnvA34bFW83+9jPB5DKYX33nsPlQFrbFDpBwFubm7cenJzc0MAiElUHj9+jO9973sYDPo4PT6E53H88fd/gB//5Gco8hyqrgEh0EkSCM4JADcMyOlkgvVqBS0l/DDEvYMDDPdGODw8xGhvhPV6i7/80d8AAN595x08evgQh/cOsVqv8Id/+Ie4nUxwdHyMf/zr/wib7QY/+tGPUFUVPvnkExyfnFCQnecI4wiD4RBaa6zmC0gpcXp6itFo5CrfZ2dn+J3f+R1kWeaKjP/23/xr/Mv/8Z9DKaCsJCaTCX74wx9iuVzi448+wunpidnXFQaDAR4/fkxtsJLcjrigyvd6vcV0NkdRlFgtFlBSOr0mJSVULSE4FfPW6zX+9E//FLPZDOfn59hsNjg9PcE77zxFmmY4Oz/HfL7AD/7kT3B2fo7vfve7+JVf+RU8eHAf3/3kO9huU/zwh3+B2WyOxXKB1LEoqAXSshTaBSHGyOXyqy++BIOGD4bA800LbsMWarOJzDLl5rn9fvvrtwEzb0sw3/b7dwGOt8UL9v1sDNw2hbhbALHAp22hvsuMetuf9vm2izPfBqb9XUBX++dNWx9H4Iud11s9prtxaLtwp3XzvlJJx2SSUsLXZP0u0AABzfvvZnlvgHogBq1n1vNer4fKaIHdNeZgjCFNU7x+/RphGOLe/gEO9g9ckWg6neLV5SW01ji5/xDD8T45ZC6XKIsCry+uEQQBBgMqfh6fnjrGTJIkmEwmeGn2btn67PZ9V0o5HSmny+ruMTP7HjmkKqWwyUlSIBIMjHvQUKS/aVsLwVCWBaqK9G2hiXUU+iQnstlQbnh1dYXJ5NYwN31qPzdMaI8JaMEhPQnp1fCFB9/uC8MhiEFdGUF0wMFDpoUW5jptkcHmSO15kG0pvg+DEFFE7cq+bTszxbnaaOEFpkOFMYbJZILNZoOH9x+gGxMT+WC8j8nkFl9eX2MyuUWZFWBKY380xtOnTx1DNM9zXF5e7txjGwtkWYbtlpj91q3QxpFtnTQ792yxkrFGD9fOIZu7OPkHSa39Nn9zz58xhHEM37Rf39VHte6JbtxoAh+1UijSFNDk/M24gK5rQBLgXpUlPC6wWi4xn86wXCyxWa+NiYUZD0GMMOxQns4NuKupYyYMI4oDNLHb6qoGjKi2kgq+F+D05BTC8zC5nSHPSpR5jbqQqHiNIq8ghILwAjAGVGWNqpJgXJj9RBhN5hqbdYbtdoOD/X14ge/wD6ABgjebDZbLJdINkRJcJ4BSJPejjJwKY4BhYbfnWBiGrphWliUCP3C6nAf7YwgGbNMtzs7O0O13sTcampzA5szK5RA0R8t/AK/plwhsAkz1zgiDWuErp0WijSVvQPoL7Y3KThYvCEm1wFSKrRBpVVVkPWk2LS6E071oB+o2EbaLgkvODFIq3ak2t1ZrNAmmYTTZZNP22wJwVPudKoZAuEteAAAgAElEQVRFtO/cCVchuXN/7M8EoySBWEEKUhCir41OklISCkb9vyhosS1Ll3S43lrdrgQRuq+VQlnVqJWG9jjgNRucUgqcmaql2SiVoWJ6QhilfQvkNb3XdmBahFmrRuCbs0Zgvd1qJoxLnwUHPd83KKsNQnxwLlwLnMmbzD1uAGH2lmlAm7qdOKTL5aoptTRVgjYoZMEmtbM5vxmwEdIudbui0rBT7OtbT5qE+AIfUpYoywp5XiBNU2RZZpytfBcM2cXdtt0MhwN0kg6iMEQtiVnFGVDVNfKiwNXVNc7PzuEFAZJuF0mngyRJUJYV0izFdpuaFsc9hGHYCA+bcWarwU7rRTfV0/ZmcrdCdjeAeNvRVEZd7ecffLzt1VIqI1ysIDgBjV5rU7QJovAa6j1jDHESkx4PaOGNux0kcQwwuMTPVsbdpysNZYI3ex2eJyBl8xrVYry1LtoB6BaQpSpC7ejN6YZaM2RVIQ6NSKJpe7WBWPs+twFA4E0jAxvU2r+twLythNhncZfV5u61bth1zDSE2/WNGIfEijk9PcWDBw8QGSDpdjLB1gQZ19fXmE6nRP014oYWFOv1em8ZE7tjx15bWZbIssy11S2XCwqIGIk+E+jQVMFq2RJRN+fpez4JRBsnEinJGSXPc4Ax+MY1xm6qdV1Rgq3J8pa17p8GaQ0KLqAsWGfWVanIVUzb8WoTr9Yza99f0tFA45BqE4+6Ng6jnmO2FAYobCds0rDo7iZSnhDwPUFaQSti3RDYxCF82gttxZBzTtfImFvjiqJAXjQMNGg4cw33jAwbTCujXaU0FG+cbJIkQbfTRb/XJ5axoPu+3m6Q5Rm1MQa+YcJEqGvpNEa0prbHyoy5qq7IMU8IdAz7yt5j6/wGRswg6/BVyxphEGHQz4yYO71XbgJgDYWyNm6rWYY4iXESHBOo13K62ph2M7uW2BZVW4Cazee4vb118YNnhNZpTyCGa1FS0cuylS3Q6Ao0ZnzZtlafG/ty2SRfVsPMnlsbZAjNPLBabsPhEIyRCHgcxy6ZkFK677VbnG1LLrnejfHOkwfwPQ9//dd/u7NGMA3HXmJmvFZFgdSA7s06Yqr7Jh7YbDa4nUycHpPv+wTqmaKMEKSttb+/D8apfSxNU2ddvlqtsFqtECex0brSWC/ILXNoWvbs+rRer0ljcr2min4QkGtQWZqEkMbharXCfDYzxZbcMUnDMMDeHhma+JyqxRqAZsTsYIKsonvdDqDhWsxlVUPVFezAXCwWGO3tuar6YrFAFEXodXvYpikuL8hU4faWHAMty6zb6+Lk5ATbbWoEjYnxH2WpWxttu1276GXbpQuTMArO4RnmMkyxzUxbF2U28dJbjvZcbx2MMbqPb9mQ78YCMLGu+zm+PVZo711t8OTua1wc+w8Eme6e+9uAs7/7eBNwap9XU+jc3T/t1+1r+bbPvwvUMUaJ79vAMno93nj/u9fLGQcTjcFG+3V393oppRMRb4tDS6VQlBU2W9L0i+IYwvOwXq1NjlG6lixbnIuiCN1eD+PRyFi0Vzj3BFjNdoP0O9dvnTnvxilttgmzOWHFIVXTOdBcf7tV1Ao101prHRo9IUjfsK5RFDnSLbWIeYKYv0EQUDFHt0ExBbK098AFd4B/xTk805FBWziZlADMgU12zNr4D4ABCCheBIAwCBAGIRgoz7PkBMt8saOwDbQqRTIFaUrxPBEMJLabLdJtaoyvGMIwQrfbRafTcRo/9jza41i1zhfAjllDu8DcHqd34872s7DrsS0CQEnonTwILnHzggCe0Tltd4PsfBZjEL4PxZUDm9w5m7dqmJPa5dKylqhrytGrqiJWElrAL+MAsyx+o/EE6wZp5yrFvFbgm5jEGsKjcUXXK8nFnbApmr9tUqdhNnHQ95nJgRnjrrsFGo5wYqdJG6+o69oZku3kGK3llq5jd71gaMYgAJPvaUceiKMIURShriqs12v4gWfi1t05qrV27HOrv/b3Hb80YJNmgNQKlSLHlloroFYozKa93m4BBkTrFcKAEEVZ126iagBn5+f0XuZmWDHOuqpcb7JGa3MADEvGoNSGReNof3UjfOUYOMwGT9adoEJqLAi3my2Kgijtsq7BTTVRa5gAU7uNw6K6FjihcUwDi8TjlHOvIWFYYzkJAnw0MzxOzqCFgOYa0iTAsiahOlWXKPMUWephu1mhrkpiNvk+yjLHYjHH9PYW11dXZMUbWAp/bZJsH4FJPjhnyLIc37x8Sa0wcYyjBw9ocjKOMAic05wNup4/e4anj5/g+OgYe3sjCC5QFbQ42iA9DEPERpeAGYFr3yc9LG6AQTAjTAYYKjEzLQfM9I8q1FJBlxYgosm3AwKZRI82DjiAyS0IaL62CwWaUWI2Kyuex8wC0JrE9msbkEKjKEtKRkXDFLBjj9h5lMBqAKv1GmfnF5hMJg78tAt3URQk8GrGWbfbxYcffojDw0MknS6W6xQACeWm2y1+/JOf4+L1a0yur5Fv1vjOJ5/i2fsfoNvt4bPPPkOaUk97t9vFgwcP8Pz5cyilXFuFPcqybLUVUDWm0+k4Ns5dNoVrBVK7978dJN2t7v0deNQ//GCgsaNJxabSQBAneOfdd7FarcE5x2q1glQKCqSpFXcScM6RJJRQFhUBbZv1GkVdkn6N+Z3NZu02GsYoePN4AyJqbZNGEnrXOiAXpsg4SBox+jAMERgxv8FgQJuYCRguLy6wXa+xKKaYTidIt0SBZgbg63Q6kFUFVTcWsraVqH3PbUDZFnFuP1O7ebeTyyYog2vHcVpDrQBDwVROTBCx3Wwwmd5itVri+9//Pg4ODtDv9RDFsQsUZ7MZAKLUHxwcoNvtunMhF8BG+N4Gu20QLQgC7O/vA4DTk5pMJgiCADe3t24N6Q/6ziVKgQCKvCyQRDHG+/uIoxj3j08QR5FxyyJL5izNHFW/lhKXV1cESBghdz8MsFqtSEQ6juBzjjAgunFpgCDJaxc82aDiLthkrw2gTdcGi3YfaTMmG0DKtEz7pPcnlYKua2dH304wrTOYY+CZ+VUzhoozlAU5s0opUc8raK3ghwE8A5LZ4J+JBphkjKEoS5TGLcwGvoEJyEejPXQ75IYzHo1JyyLLXBsoY6RrFAQB+t0uQs+DhmkpkhJRFGM0FhjsDSDVCTwuEPokbMqFwGq9wmw6w3xBbI7likDG6XSGJI7x+PFjB6YAHEEY4cnjR6TJo8meerVeYTqbIctyTKdTugbDPuFCoNfvI4wC0u8wzJ9ut4Pnz56RA+d2jbwscH7+Ci9ffkMggGF/rdZrWueLwukWnNw/hZQKhQHoNAPW2w0qWTv3mO12C+WMAziW6xXAmyC9yAvMplPIWiIQIQQTzpGJ8BsqoRRVaYgNVDkpqwrL1QpB4KPb7bmijRAC94P7GOwNoUGtnmEc4fGTJ+gPB6iVxHh/H/P5DOevXyFOYvz4Jz/B8fER9g/G6HV7yAoCw4s8J0emQDrxdtu2enV1haXR9VgsFpjP57i+uTGM9K5r1RQerWfWOW46nyE1pir37t3Do0eP8J3vfAez2QyXF5dYLBfgnGM6nWI+n2M+n6Pf71NQXEucvTxDnmdYLpYYDAYYDAbkOlrX6HW70FJhPZtiXZT49//r/4YvPv8So/EYDx8+gud5ePLkCZ49e0Zi9aMRQt9DFPqwwuRFWWKZpU3hwfcBJjAek3PrOqR4NAxCeEKgE4cIfQ91WSNLC/hC4F/8i3+KosgxmS6wXm/xxS9+gT/6j/+R5rABVK2G4sXFBX70ox9hMp2Y+AZYrWgPevL4MSLD0orCEFIR6x5oGAhW0+P85Uv85G//m2PkmyyHwCOpdnRooMkFS5uCnWYMWnNoQeYEDjDXTfxqhZ1pnbJZDkxyzUiywe09DMZauln30CS1duzbPewu26hdBGu/pg1ytEHyu4BLG7xqH28DpHTrGtugD33N3vi9NnCjNbVvW4Dh7ue/raW9/bk2SdZoNKu44PCU99bfpba7Zv++ex20cFMngBWfL4oCWZq6GO4usyzLMtNyRDFRHCcY7+9DaY2f/fwzKi7dP0Wn18O9wyN0u32cnZ3h6uYWVU2tZEVZoVak9+IHEeKkAyY85HnRuK4J4ZiCSpP+EslpFCaZbop1Nj/wQBquSUJmJacPH8DzPaR55owN7HiwY3K4N4Tv+3j27jN89NHHGAyGOD09cfMqzzMq6Hk+Dg/u4fnz54jiCIN+zxQRaY9eLOeYz2fIixyr1RLWyVsphdIwm/KicEZHtSJnQqtxZ1noDQmBObApCiIIRgX2MAwdaMLAXHyy2WywNYw0YodRCy5nHD/76U9xe32Nvb0RxuMRrm+u8Td/89ekq1iWCKIQvX4P4/HYOYhbo5w8z7FarXaey2g0wqNHjxBFEen1mcKOEAKLxQKTyQTz+RyfffaZYzdp3TCcLKCxMz+kdPITIjTq7eYZKVAM3+130e/30e12wDm5pW82K1RVDcaAOIpwenqCk+MTKurVElLWyLbbphtFk8yM4AJ5lmEShQiCEOPxHobDAQCN1WqBPE9NDknanmVZo5Lk/FaXOaoyB+cM6Tal/M6snWWZoapKTG7n+PrFGeazJTjoes9fvsZsNkdVKSRxD34QQvAAnAkwCEBzeJ4AWEDPnwGc+/C8EGAe4qgDKRWSpItOp4coiiGE90YMb8dTZMChtuzBzhoAAs7suihN7s3QdH0EfuAIDEdHRwiCAMvlCj//+Wd4592nOLh3zywjBKDaeJZa9X2XE/99xy8N2ATAucFIs6m1F0OblKRZ5qjKstq1Vrd98bbNpI0CZqYqaKn/dsEWhjXQFpHeWYTN4G0DTg1IQcCOs3QsclKit73NmpTnCa23yQT1AnMjHMo5dy4zTBiRNV1DSe2uGzC5AIcRhVXgTIMxqhZpQRaEHGajkgqaKShVo6oKVGWBIs/N+TDUvo+yKiE8Dyvfx2w2tU8AGto5nwSBjyDw3eCuqgqTyQRpmkIEAYbjMQE1mhaBewdkP22FX+/ff4D79x9gPBqhk3TpGrR13qINJDFaDpwTgMQY4Pt0vdoAN0qThbXWZPMLwKD9cG0kFvhrBxvUjrlLGb9bBYNuAA9aGC34twuKvMkS2WX4OBSeMYDTey1WS+NOxd94P9+4e1iXvTynZMhS4u3BGHPtnLZi7HkeTk9Pcf/+fRI4zUvTQhFitVrh/NUFXp2/wmqxRJXnODw4wEcffYTlcomLiwu3qdjqshXNnkwmO59r21NtYBcE5CpoA8H2PLp7r3bu8Z1j9/UNCv//+HCIf1OdAGOQCvD8AIeHR0gSquDkeU5MDk/QgmuAZSesXdeoVIW8yLEtMlR1jSzPdtYe+xmB7yMxPdr2Ojhr7Fft9bfpx54QJMSfdAwrjVpAqpw0YpI4hm/aYjcb0iCRZQXf89BPyN63VBq10i4gs+CfZc3ZwKxdEQLe1JWw39tpYTA30rIygKZNxwYQtap3Chh5UWA6nSJNU/z0pz/FcDjE3t6eY0wkSeKo2J5HToCUIDZrcFvkv31eAJwumWWYTadTJ+RpKztaU2tLEscIwhBK1Y5ZVBl26WAwQK/Xw4MHD+icNhsUWY7VcoU8I0aTZUItl0vkZQnmUSDc1lFRUgE+gYeWFZVLCSYBSJOQWGanHf+w+VfDaqTkXDt2LVrBvgUJieXSVKIYIwFwrRrL+nbLo3222ry/FSXlDKgBN2aqqsI2pYA1jCL4oWmxNIwgRWSUhuVr7rN9f8/z0AOAEM5Kejwa4fjwiIRbc1qjlFmwbUJKLYwEmJVlicq2gIYBPF/ACzx43EMgAgJblguAM8ymM8f0XK5XCIMQeV6gk3Swtz9G1EnAGQmDer6Hg4MDZFmG+WJJ9t3rFbFjtimmkxk5t/S6rmoYxzHCKIAfUODW6/XQ63VxdHSEOIqgbwG51kizFK8vLqiV0QR1Fvy35zcej3F6egrAJGwGDMyLArWk9j7H8jUH5xxpRuwuexR5gcVyCVVLBB6BTZbW325xvOsKaEHoIAhQGT03+6c+oq8rGlTwfR8H9w4QRqET6t9sN5jNZri5vcX5q3MorZBmBeKkawwQSlSV0SZRmgJ6QfceWmOxWGIyJYF2y6C6urlxRQvOSbx6vE8Jz2q1AmMM8+WS7LDL0gFFDx48IGHxhw/RmXawMa6Qq9UKi8WCgNC8QFVWmJpWkizN0Ol0cHp6in6vByUVuTKFBWZphs1igb/6rz/CT3/xOR4+fIhPP/0UBwcH+I3f+A2MRiPSZ0oSJFGAThSglgppSay6jXGLSpIEkQLC0Ee323GVbSkJYOWMIY4i9DoRiryErBSiMMTDh8fwPI7Pv/wGl5c3+Ku//Ev8yR//MRjnGO7vQ3ge6Z0xhvl8blh8Nbq9vmPW+r6P/f19HBwcuLiJ1m5aA3u9HjzPwzfffEMGInWNzz/7OTG5FGmIwMW0eie2pe3UVO5tMZNSlZ0xZgu2Lh6ifq+dPZxMXxq9EvNdMPCdWMuCJO1Y3K4xdxkNbRbu3dfY+fS2WMP+TvvfdxlJ38Z+2mEXab17ja3fabNAYIuWjm1k7qxljrWutx0ruPvS+n2nRSV3xc93gCoGMhG6c03tf7fZDJapZN3RbAG1XZiy7Gmr/+YHAXpCYL3Z4OrigubY/fuIohh6oBFFMW5ub0mbFRJKpwDjsE5Xnu/DD0JQq3OFqpYNW8fEbJY0UEvpmKdWr84yZ7TZnIQQiJMYYRhi/+gASSfB7XSC6WwGKWsIYZIHM347HZorxyfHePr0KTqdDvb29lBVNXyfNKyE6dgY9Pt48vgx+v2ecWcOXC54e3uD65srrFZLvHp17kwCrPYR5ZoEDFEhTxJbpwXA2DEuXDcHA9cayic3NWe6A9gqFRXCtEaRE/uq3dGTbrZQSuH1q9dYL1fY25tjMZ/j9vYGL1++JBauYQ5b04Nut+vWin6/D8/zXKubPc9ut4uHDx+i2+3iyZMnjhEVhiEuLi7w9ddf4+rqCueG4GFBt/ZcbrsMu/miFJjpVKE5ouxMoZwkjkjLMTKutq28ngEIfA+H9+7h+fNnbg+0khW1KcZqpdx+mW63qMoSgWGKJp0EGtTaV1aVmR2McsVaoSgqVHUNWVNxB1rROWptzMIUtJaAVlivU9zcTpFlBZmFeD6mkxm22xSyVgiCCJ4XgDHTCqeJmME5g2d6bkhA3IMQPgCOIAgRVhXCMEIYhEbPdzeet+uAJzzoIHAaqJ7nUaJ8Z22zK7wlWFjdNqtlW1WlWxsGgwGUUuRiPp1if3/f5Vdu3TGAuHUUFnfO7duOXy6wyYADJCht25QMWGDar4wem4FcmKPfUaDvUZWGc2jGUCuFbZ6hNPa6lnVkUVIiE5lWPcaNdaZoNmatXQVSyVZSBpMUmYW5MGh9WZSmFamp4FDCQVQ+wTmEbywmTRBoLS5togDTplNrTdQ6MIBpI/Rlqx/aLGhtHRBaMLUGOK+hJJxrA1FEN1Cydu4m9FGkI6PNOSolm01OKdcjS0LiNFRGwz0MB0P0OwNkzwsz8CjAOtjfJxcuw9g6PjpGrz+AH4TIiwJaK6Tp1lFjOWcGUGpYDYAGF4YpZP5IpVHXJnEzAJvdrKz4uNYaqiZWgFTS0GOJzihV8xrLHHDMptZDtfs0c1RKtrNJ2A2bscY1ywbzdgOH2UDpmiiZqGWN1Gh/VQbAic2mn6U50jTFzc0tLi8vXZucbZtp27rbXut79w4w3Bug042hFAV6jAtoMEynU/znH/wAF68vkJUVOoMhkl4fnU4Xs9kc19c38IMAT54+NVoiXViL2qKs4BnqtNbEzNKaGAhxHJMQr++1qplwzDLLZGjPERcwmm3FhWNatwC1/y+oTc2zqmvpmFtPnjxxrUdMcOcyWVWV6RUn23CpCJywoRlnrBHKU5ICiopco3zfp0R3uGc2Q9O6YFoQ71J/3RhivDEnMJugrCW2m43bEKFJky2JYwQeJb8c5GRUaQK0/CCwNDoSXjbuXxZIoLFHSUFlK1UtvSkbgjU1pbffR/tsrSOM1hppnqI2a0gcxxjvj/HJp7/mWHGXl5e4vb2lpHI4xMHBAdbrNYn8GgDbPnsLZN6tyFrtKAvO2IBDa+30pWwQ49qvPEGChioHbQBoiTLSe1dVhclsCn+1ws3VFZaLJa17UiOMiOXBOMN8tUZRluRe4gnEnQT9vaFpw5bUjuxTVcfaMrfHPaOd2bRR1o4xZNdswIhhMiuiLR0LSQNun6GR2FToYD/hTpLTZhm0CxdVVRGjwWgdhEGA+/fvk3HA5AZ5XiDuJA2NnpHdr3X1Y4Lej/SYQreXCVMB9rlAXRKbNxAeQo+CnSSMqK2Q0b3ZbrbI0hRVr4fIgDS+H0D4msS6NekseMJHXdVYL6fI8hybzZps3g3QpUDBXlEWDiT8+sULcruryH46NuLPVVnh4vVrbLZbbNZr0zpuxJNroMgzSnLMJCirAhpknZ3lGZbLBbIshed5WG83KMoCy/mCkpFeH8/eeRdCCFxdX2Gbpri+vsZms0EQBE7nzlbnZ7MZsixzY1oY0JncirjRiwigpXK0dGiNXoeAhMALIbiAx6l13TPrAgDURksrDHx4nkBRlMjywlUpGSOXV2WS1+VySa0nHul+nd6/j/2iwN7eAOl2i5OTYxwdH0PWFT77yY9x9uIrrJZLdLod/Oi//givXlFiYc1Tzs7OaA83C4lUFLN1Ogn29kYoyxJhFJoYgljKR8dHOD09RVmWmM8XqOsKeUltfZEBz9erFf7TD/4E222Ky4sLbLYbbDYbFKaNloCmHFdXl6Y1ogZnjH4/iXHv3gGevfsu8jzH3t4Qm/Uanx8cYDaZYDKbYr5YYD2fE5t0uyUmWIdcF8MwxMnRIR7cJ+ZDWVEsutmuIWsJ//AQvU6HtNBApgLWOciu20opbDcplNKugAlGLWfD4cCAbgMwYdri4shpztmWzdVqifMzhbKg/UuYZOLs7CVGppiXdDvGUThBYICoIAxxeXmJ6WRCei1GHydwhTBT3Wl3XlhgiVHqZZly7cN9adYyBxQogDHl9ov2LyilnQ4nZ22g6e2gS5sV4ZifrTi6vT/ZNdC2etnku90CZMGau2CTnYv2fdtFsQb8eZO1tHM/Wj9vF9roZ8riBO6WAbvXam+S2S7ce1LSDQc0qFbLrXkXin055QYKFOO270n7/LTW0ILadbi5V8IwOu3YtLIkUkoIA+wwzjGZTrFNt9gbjbE33ENV19CGNbxYLiEVAalJJ0F/0Md4f2ziDirOWV245XKJbreL6+srYh1JSd0krWfePm87BvwwcLkY3VMyoPCUR86LPrGDlNIk4r9PBdGiINB9tdy4onmSJAA01psVlsslXnz1AmVZ4uL1pdO9GY9H2N8f4+Bg3xVHlJSYz2bYbre4urrExeVrLJdLnJ+fm/Fm2pAMS3jYH+Bg/x6kVMjyHBratBX6xqzIMHrMo+Kmm8V+TYzFCNvNBudnZwT82Ulj8t04idFJOgCA4+NjAFTst6zbKI6wNxrj+fP3AACjgzHiJMGDhw+pOJ1leP36Naqqci6Xdh4Ry4XWkmfvPkMcEwAhPA/z+Rx5luPm5prcTqdTpNst8ixzrVTaABFCcEjpGb1AEohP4hgcwP2HD/Do8WNwQbIWAAwLXJNJVRBivVljOpsh3W4xvZ24++B5Ph4+fITf/M3fJEaZ0T+0bDZp2+Naci3z6QyeJ/DB+x8Q8aHTAePCuBiSQxwT5GjoBz511LAInANaSci6ojZ2o02oJIPWEmma4/LyBlN/jtl0btq+t64oU1USVV1BKlvQpGcs/BBcENhblBW48JAVxslbShOr0Fjh3ANnHjiX8IQPz/MRBhGiMEbJKIaxDFyCDihGtNiC4ILID9JKv0gwweExH5vtBqv1Gnt5ZgoWHN1eF7WscX1zjeuba6w3awphOTes96a9kZhUVATh7O/nNv3ygE2aoVYaVS3vgE3W8pT+9pSlqsL1xDKzAXLPoy4rk3iXUmK93SLLUlzeXCM1Ll9FURgc481qAWMMoR8iNNbFFmRogw2W/WQHeZ5lrnLsdG80nE6BTQaINWOAicBH4DfJE9DaAA3AZtsW6BxN5UlTQmL/aN0o3Qtz3TWvIE3CUypy99sY+uVgMHT3SysSQi+LAkorVJI2CdulSloTihJg49p1eHiMOI4x6O8hSbru/odhiPHeCJwxLBYLlGWBOIoRRTEYqDIs6xrrzYbo6KblyArt1nXt2h9s0MI5UStrKQmFZmRZCgaiJTLuWGUMMAGNaatUCnUlYcXmG7CppvGj7jpcmRGhm4pxu9Jm9TSc/bgRsLPODvbfjFH7H2MMmlHFsaprankwhyeM6J/nYTKZYL1e4fXFpQneOYnKM6qcW50arTX6/T4ePXqE8f4Y+/sj9PtdFIVCVZN7jgZwdXWNP/jffx/X19fojfbQG++jNxyi1++jlhLnr15j/+AA73/wKzg6Oka/P0BZ0qKX5QVV943o7TbLKVENIwyHe+AesQegafFyjD1oKMBVOS2Q40AX1jBnoHaDR853K4//bw87d6u6xmq9BZjABx98AKUUVps1yrJy1qdVVTl3yrIsKWGQJCTNTGDs+R7iJKZ5XisUKNBNSPNqb28PJyen0FojM+0VVgeFc+4CKRsw2/EUhSF8z6d+aKN1sJjPXVUJAEI/QC/pkI1pGFHv/WoFKWv0e32EJlgUnHQTrC39YrGgc1CkSSOlRG3akSJmRJTtUmtAVluhbpZg5oB7MEZth0qhzMmOdbFaIC9ynJyeYry/j2fP3sU/+R/+CRaLOX77t38bZ2dnWK1WyLIMp6enDuy7Ne1uNtB1zpSsGSPttjkhhANaAThgqu2iopRCt9fD3miEoixwO7klNodt5ayVW8cIDKxwdX0NLRU+//xzXF1eYtgfYLQ3wrsgzX4AACAASURBVPHJCd774H3EcYzlekPuV2EIL/BRK4nS9MYXZYmilgg0CZTKuga0hAaH1nxns7XOJ9S2ZVpo3fpOe4Ksa8havjXopi5pKlA0WgAGeLnT9mCtfi3YBAC5YaIUObFaD+/dw9MnT8EYscw2mw26vZ5zdFNKYbvdYrVcQ1YSnBEDJvRJzJ5aBoihEno+POGhzAts9AowgFa300Hv6MS5mZBuxAY319coiwJJkjTsSMFRVBVqWVM7FveRVTkub66RZRlZCKcpqroGWANQ11WNPMvBGXc2zJvNFpvNFsPhEA8fPoRSCjc3N8aEonSVZyE8WCthxrjTXciyFHmRwQ98EuPXGp/94ue0F5pxWdc1PC4wGu7hOx9+TG5oUYT5Yu7YqLZV1Lbil2XpnEXtM7NVdc/zKMZgzI11W6X1hIfhYGCAPWJgxiFpDkVRjG63Z5JpKpoN+10kUYhtVmCb5UYrKoFUCtPZjJhVZY3pdIoojpB0EwRRiOFoBM4ZktCHLzh+/LPP8OynP8d/+6u/wu/+z/8O23SLP/r+HwNcuIR4fzTG8eEx8izDF19+Dq0UDg4OkSSJw1X7vR7ef/991HWFTidGluXwggBCeHjy9DGePXuG8/Nz/NEf/jG26ZZAN8Fxr9/HcDTCfD7D7//+v3fsACkV1usVyrKA8Ki9Lc8ynJ+tKSGX9JziOEKv18XpyQk+/vhjMMbwa9WvIk1T/OXJCS4uLvEXf/anuDh7ibkQ+OYbAluvLi9MCzS998cff4RPP/2EnICNO2heEDN8b0DmKAHn8EAukHVZks5Yr4ckiZBtUyw3WypMxDTWwYiTvm/27v2DEZhJtpIkJmH3wQB+4OP169e4vZ3h5voKP/vx30IzBhH4EJ6Hg/E+ut0u4jhG3EmQJAkODw8Nk/w+kiRx2ng319fksKo1gqDlmgkYRoyljlsOSFPItcwctzeY9YbRYu0YKeAMzLaW2STagY8k5s9MXADHYt4Ff2zyYmNjO+dsQapdnNrV5YFrJbd7r2Ww2z23DQjdBTXuvvfbftZmNzFmY8QWUwNv5g9aK8PXoJi//TOrKdicSpOgmw8FN5mJtE6qLc0gq3HKzftCa2j29jZAd/5mv7c6tkFAWmRFHJMJkd2TSwKmlQGTL6+vUFcVPv5OjEePHyMvSyhN7bp2Xbl/eur24cOjI2RZhtlsBqkUXr9+jevra1eYJbYjAe/+nXyqfc+bdsqGuVYZN+yqruErBWFMJQACNbvdHoajPSRJB1Jq2hPWqet0sdqQi8Uc89kcP/nbn5BgdUn5wPPnz3H66ATHx0c4Pj5yOmhVWeLm5hq3tzd49eoVzs7OsFwucXZ2ZloMiRk/PthHfzDA/miMh4+fQiqJ1XptwPeOY55YwXsb01gjDWuaEoUhkijGxcUFbm9uKAYyiCTjDGAcSaeL+6enCILAtXTTtVQIwgBhGCLpdHBw7wBRHOO9D56jPxyYcaSwXC5xc3Ozo3fGOUcSJxiN9jDaG+Ho6Agff/wxaUSavPbrr17g1atXWCwXmE4nmM8XFMeWJYTf6KPauWjvoWXeDAYDJHGM/+63fgvf+9736FyN0LkFim0b5OdffI7/8hd/gdVyhauLSxR5jtG9e+j2enj+/D38s3/2z2G1DWkO0m2qyoo0JaVyhdIsTcE5x73xPqIownw2o5ZlLhxBhXkczCNRdg8MSRwhSWIiXOQZzQ2pUWgSFZca2GxzTKckPUJdENIBzIP+EIP+AIwpZDnd49KY1XS6fYRxjDTNsN5swblAEFERRSsJZmIV0hXzwIUPTyj4foDAD03xPyFGsWoKtI0UjAYXjFh7dt2FhlQVlFQIfA/c5yjrCovVAvvpPjTI6b0/6AOMBMLPX53jg9UH4IKBCwaphQGtObjiCAIB3+emCMx2QNO3Hb80YJPWRB/fbrZuY2u3sNhrsD3Bb7QlWPaEWTy557kHJoTn+oP9gOh7VDGmZMS145gCAgnICVN9JFDDM73FVt/JVoylWaTrqjKBSbNY7gpomr3ZvIcvyGqQc+pBhrbta0ZcuJYuGeGG/SQEp7Y2IcilyAJySroN3aT5plWjqcpYHRZL7WcGJWdo6NDM3YjmuXDGwbkgVFX4bsAHRovDAKku0bfJHUDBRmkWS200TGwizJixHteNIGBZW/0WeiZcMTAOJwQKmDYPDYBrMG2rXdZmtDXgmUkAOdlAW6oxl8KNLWKJoTW+jAsBa5ws7C1xFpuK+rAt2Chb49Am6qw2jAYBg2hLSHuuAJTnOaaH1aDZblOHRnsmOd1uN0ZnhT4jDEMcHR1iOBxAaY28KAFweB7DerPBcrnG9c0taTgwjsOjEwxHIzAucHV9i+02RxiRZe1gMMRgMIAGQ5YXJC7OBVXLVEMDB+OuT9dRzdCwlWiVt6PFBGOsYdC0mTRwAVozn9vVP4YWuw+N0KOzGoWlm9vnBxe8UVIi4QckuE6BLY3JzTbFerOmpNbzHBuSGzcI2OtTpI9g1wp74jZAAJgRaS+wXm+gtUaeZyaxpHvo2CeAY7JYTbnAVLfKvEC6TZFnGW6uKbm+vrzEcrlEXZWkYQaqqhBzxrbGUUXTViMBuPURZu2zDBnOOQLDWqmlBFPKifoLj4A0zqitiYEK3dpUty3w4YJ195n0u412GZyuQxiGSJLEAUR2bDuw3b4H39Uvs8mA/cx2BduxArAbQNvDJgpaku4I14bYpDQ8LsD8AAwMaZqB89wA9FS06HQ68AIfUitkeYabmxsknQ4Bs8M+4iRBFMdIswzz9YpaXDjdk7jTgR/49KcgpiPnnqsAUQWO2mLsmqC0ckUIbnSRiHm0K2pr1yUyYTBuNGb8ues348uC6IXZixzzDcBysUSWZy7oGg4GSGISYO51+zANMCjywjFqqqqivYl7ZPOsCUBmmv5YsdSqqAyLFKiKElVeIkszbOIETGpyDDLna7UdOOfo9/tI4phYnUK4AozZhQzTj8CZxWKBdJuirmr4Rt/Pth8qaV2GSieub9mF69XK/LuAkjU4a/ZhIZoEDVCgbm5aoTgzgqyMQSoCJ6WU8HyiiTOQeGtVVTh/dW500SoEvu+c34IgwMXFhRvHVmzXPVdFOmGrJekq+YMhuKC9IEsz59gTBD5VJ4VAhozGcBAi9H0EAYFrdBm0NqSbFYIgQJrl2GYZPEHzGwCywth5FxXqqkZWZMir3CTOVMzqdxOEgU/AhOAIogD90RAiCqCFD9JlJKBhNB7j/oP7qMoS/V7XtBFm5OIXkMOTFVHXWjmh8qKsUJYFNus1ppNbrFcrMBOHeS3R+LLISXC4KBr2sWnZ8z3PMcKpGMTceACI7bRYzHF1eYmvvvzCtKR4BnTNnQOS59P7+JxDmABfVhrpNoWsJc6++QZJRIUBAvwV5vMpmb+UFdbLFcajPdw/PYSUilhnPie2EwMW8xlenZ0jSRLsj/dbLG6NsihQ1xXmiwXiJDZ7V4WyZCiKHEpL14rnewKCm73JguhKoiwK2gM1sc99nwoTngFetunWFUEFZzBk8AbgsHs2s7GPBSUofiXGoQKDNkxNC0CZGMesP4yB1gWzN1MsrQ14ZUEevvO30taaXrxRCb8LCrXXwzZ7yM6vu9qWLu5uM3nZtzN+2p9r/26DHe33tUATbIxpDuf6BMNoarVvUTuiWUMNs8u+RmuFnTcCdhM1qva6daSuatqvJTFhbfHbnt/fJRXhADOwBnjyPHhhAD8MEFQBNEgDTikyapLStDdxjrwosFwtUdUVBoM+vba0nQopkphcGPf3x1gul5hNp47ZyxmgPQHOPWIKeV4zVrRGbdxb7dGW2LB5oHsW3OwXnLkOmKIoobXRU+XkJBdHMWRNchN1VZMhznaLVRAg8EmD0TLBlWnNK8sCaZZiNpvi7OwlFQzqGmVV4ezsJW4nt5hNZ8iy1Fw7gYBkKMBxKDwM+n3s7e3hYH/faeNIRZqSrgtCGEMO03bve55pnwvgeQJhQE5z9nc45yhNnlka/UTPE9gzLb8HB/vwhIfFcok8zxAEAYIgdOMiDAP0B30kCTlU57nt7GE7Y4iGnBmzSiHPMlxfX4ExArLKosDr169wcXGBzWaN1WqJzWZj4ikFaGMiw2hOAKD4R2sEpmNovD/GoD/AaDxGt2c0BVtsZ2KuUYGBGaBfGXKJBkMYhIjjBL5v9I6URlW1Wsk1jDlCbVqaKRYrK4qNKqXgaw3FGGz7DM1DDj/0ECUh+v0hojhGr9ujsa4UpBEVn02mKPOCzKiYRtHSMZxMp6hrKpxxwdHt9NDt9JDmGebzBeXoHp13nCQIoxhKA5Uk7cg4SQAA62WO2pigSKkhhI9et4+iyCGEBwaKl+yYD4IQQniwxUxFAsQ76zrTgDIO6cwQOBhnEIY8oLXEar2i/dKwAEn/VKCqKyyXK/iBB+E36yKtkaRDxcX/z9rolALmszlev76gfsUodmwXxugBCc9DmZVQKnebY3szoP5BH8IPEcQRFGOIyxyaccSdDjQDwiiEUhJhECCOQoA1AXxV0MLHtYVebBXBCK/ypnpdl+RSlKcZ0s2WBkdVAUo51orn+wiDEGhVT3xBC04cRk7/hgIthaoooaVEVZTI05Tc+cqSKnbdPmkoGXZAWZIoabvNys45Ustv2Du1EZUlQC+nCRGxBkCD2ayYMtUpbQA5sseOgghJ0ifUPaaqWhgS3dG1YBUV8nwKm2xDa1S1AmMFlKEiuuQQQCkrWAYFHdqhffb7LmBAExDYKEdZ8E54CLlnn1bzXmiADGsR3t6AZXtDVrui4VQVa1o4mwSPEhGAQDIoBWY0DFBVgKHNKkUBGvepfUu54I3Onao5Hjhn+PKrr/D1ixeUBJoFOAx9FEWBy8sLYij1B1S5GQ7wj379E/hBgOUmQ5otsLfXRyeJ8PPPzvHDv/grfP7zz5CXNeJOF7/xW/89Hj99B+fnr/Dn/+UvoaTCweEJTu8/wJMnT7F/sI+ry2vMJzNUdQXPD8C4h9KCJkyAC2aumwJLqtBqmC5TWFF7u1210VsNc18NrdyOK2jtWuoNduSqdQ6dh6VOAx73IDxLw6cNqapoPgmzaVRVjizPsRf2sbfXhVJAWkhU2xTfnJ3h9atXzo2v2+vh3r174B5HYEFI0wrhmQWXnj8xWqIwRuCFqGraXMqywnq9BWABYukYjVZwsa4r5KZ9RnBhKpLUxbBZbzCfzbFerfDiiy+RW0tYpXB8dIyjw0MUeY7lauVab0jslxxQtBYQmiqWq83agaV+EJjqFxAEIZI4QlXVmM1nqOvaANYCnW4H494+JWfzBc19M/dCP4Bv9O4qSeCx51OrWlzTGhxFkdOFub6+RlEU2NujtsJut+s0bF6+fOmskK3mSBtssqw9q5tntbXyPEdonETb+nntSpwFFzIjei3AwJgwS4hG5AfwowR1XeP66hpVVWG5aCzSHz15YpL7HDfTKf70h3+OwWCA/+nf/Gs8fecd7I9HGA6HuLq5wWdffkHnmufQAMbjMTqdDtI8xTbNzBpFa480Y5Yo0JbFRQExTNJk9cIs+EpGFlvUtURutH7MQmjYLNQmYplrtXGbqooCWZ5jtVji6uoS0EAYRYDWuLy8xGq1QhIT5b7f6WE8OkASx5CVwnqzwevXr3B7e9M47iiNQPjwuefWQq4YuAJkraFK0hus0mKniibrGnVJbabDwdC49dBeud1ukWWZ09va29vDaDBAHASoGAfn2rF3SSifBKG/fvE1NpsN7t27h+FwSOPA6B0qU2SxSUMQBAh9H1VZ4rVp9bKpYRhF8CPfFXmUKYAQrZzOX3AgCQN4QYDQD1DpCmWeU6U4CuH5vtEgi7Fer/AH/+EPEIYhPvroI+yN9vDRhx/C83189tln+P73v7+jdbe/v08gbFma8ZpiNplQW/Lz5+gkHSwXS8xnMywWC0xvJ0g6CR4+eEgMtPWaWjdt4Ypxw+plBLa4PZQhyzKkGVVKw4Aq5eODMcIoRFU2hSvPE6ilaTcGw/7BCJ0kwWq9QVmVSPo9vP/Jd2kdk1YnjExPPvqVD/Ebv/6PCcBjDKvVCr/7u/8LPv/8CwwHffT6XaTZFre3N4iiAOPxCIwBX331NWaTCfJsi+urC5RFCcGpguz5AkxwlEWG6Q1ZKddFblN2MACdKARjoSkQeE1So6kAKaXEbHqLzcs15tMpvnnxAt1uB/fvn0IIgfl8gTyj/Tnp9dDtddFLEhqrAFRd4/r8FWbzOc6++hL/13/+T+j3B3j08BFkLfHZT/8Wq8UST58/x+mDR/j000/wr/7Vv0Qcx+hECTwhkPgefA58/tnP8B/+j/8TB/sH+PCjD+F7PoqS2iovLy+xWMzx4quvcXB4YDTUNtimQFHmxIDwfRwd3XPghFKa2iHNWlhVBaqqwHazhhAeFrMZhCfw6uwlrdXcJABaG4MXtNocmkKQsiGVaeGs6hJKKtSmdcutaowZdlaj0eQCYc7AGQn/w7TCKChAaTDhkZEGmBuzynQvgDUFQMfa4W9qDbZt2dtFCcugsFqrAHYEie29sq+zzIk248m+1v7etwFQb2uVa7OzbMwpTcuvXb7tHmDBWgAG4AbFo9j9PJvHCMMkVJLmbJnTOJd1jcjzoQPfMWHazEvrYNneL22hmcBZYiaAAX4cwgt9VEqCeQJqtYJMNyhlhW26NXGHB98XmC7nKL/4HP1+H0/feYKyLPHixQvSjQx8aFWj0+ngo48+xOvXr/H1ixcoixyh74FDw+8k6CQxyUiEPpSUBvxVVFAwxWdmCoC+cZ62EiTaBE7c5FRcCGR5gaomWQoiE1BSnoQdHIwOEPkRLsNLyLLGerFEnmZYzOa4vb4xOVNqChgUh6/WK7DXrzCfT/Hy7BtTdFWo6govX36D2WxqgJzAMOMZpAZm8xmUUvjw44/w9OlTPHjwCB988CGkVJgvF+5ZtFmyO8+a7TKig4CYSYvFwumJrtdr5HlOBeXVCk+ePMH7H7yP0XiM9997D2EU4dWrV6S9ZwoSXJBWFrU7EUt5Np/jZjIFtNqRJGCAK3pxRkWcy4sLnL18iVrWZJpTFPjqq69wfXMDKWvIujJzuaYBZfIbYdia5OJbQPgehqMh4jjBhx9/hJPjEzx9513sjcem1bAAA0O314UQHoqiQpoWUIqhKGpUJTHHuQgw3Bvj3r17iMIEZUFFjul0ZggUjUSD1qTVl8QJ0m2Oq+tbionjBFIzlFIDng/FGGpJcgzdQQfj/RF+7ZNP8eDBfdw7OMTx0TEBgL4HJRWmkwXKssKg10GSRNhucywXVBj72U9+hjwvMBwMnREGFwIvvn6BH/zgByjLEr4BcJJOgiAMkKRbhJsYvu+jPxigrivMpldYzGfYbrYoC4kw7ODhwydIt1u8+OobMJZCKwalGHwvRBwmEF7jSKtNW6dS3Ogc2xxXg3EFJgDukz5ylITo9TuQWuLl2TeIkwTHx8ck0r7XR9JJkGYpvnzxFXq9Lk5ODl2rN+WwPjjz4Xs+lG7aBL/t+KUBmwCgriTKoiQU3G+sL21FhGs4JokN3u0i7jYBRtV/Icie0vcDBAElkUS71EBN/YncEwbIaCpoSiowRYs7M6FOm9oLwIEPtt3NPkx7WP0MbiqldwsW7t8tRNlBLvrNDYgW4AB+ECA0jkvtd7MIvQNG7lR17IBr24m6ihFaVStgBwAwtU9ieJkeUsHpj6Pxts7bbm6CMVN51SZYUgak0ab1UdvahruX5tG9cZ/a1/PG/m7ADfoRB8e3Iay7TAqtNUQLbLIsGQtIWVqvqxQZ1Jhx5pzF7o4Jc8scuELfUGDasKAsMGqeSVmVYCZB2G63BsALqQKqG1afFVeNk4Ro850EQnhYbnKnkaG0xma7xdXVDeaLBQFaQYBOt4feYAB1/grrzRZRGKHX66PT7VFQKgSUshbxBFLagBAwFT7z7NsVPDtGtB29O8+FuXuB1r8cTfrNl7ovdmj+2uql2e/YMQWH3JuXuUIt0MwZpSmpzI1bTZrnripeluQ219aUcs5egGN6yLpyVShlQIGiLCFEjbIkQNIGE3Vd7YJNVYU8t5Rx6xBGeiybzQab9Qrr9Qqr1ZJEqu1cVAqeEKgNsM1gmJtt8NXNh2Z+u+qCLVrzpppsn5VtB9DaphzNHHR/ADfXHNBrVgLP99z367omQGy5bFqHAWfj3k4S7upYtde4u4edj7DX3Ro79vk2z94Aw6Zqa9lCWmuqtotmXXIOLrJxu9PQqGQNXSlsU2rvXa6WWG/WiOMIURhStcokMxaQo8qd0eETlplD78dsomH2INonGgFWxphj2tA8ornuCQ9MM9SC2IUWzHGt1IZlCwCVac8mRgwBe0Ve7IDpeU76hIJxeJx0GtJtCmigLInlUuQ5sm3m5oBN5ih2tC53GqomQB6t4MUWUJTSqCrSK5R17dhYnqFV2/Ow65zveViuSBcqrUqUUpIGWBSTJo7nIfADZ8Vr2w/cnmUobO0xYM+b5qFx/DNzxu7B7f3ECojavYczSs7JRlkbcVE3nWCNXxlo3C+XSyd0z0Ctn7EpHG02Gye863mes6G3MUJbryzPcggmUOQ5ipwYPdbKPs9zeLad1KxVdu7ac+MGQZCKwP88J/trzgm89YMAzCNxdllT2z2xE6m4labkYhqEnjFRKVDLmiqz/R6COCLwVgMkiqpxdHSEewcH8H0PvuchjiP4vkcJiGpamErj5EMnS4wcu2YwNPqMrLXOSMP0u8t2AGu3HxGzxrKxNdt9D2ggSzNMbm9RZBmSmHRIoLWzdk6SBL7nQdaVAbx64Jxhb28IBiDLM3JmrSUGvT6tC4sl1sslZpMpgiDC5PYW89kcZafEoM+gAh8qDgAtsFmvcXlxgbqqMBqPyO20aMCm2WxGTFuzrrQFrknDzXdzHRBmThOL2rJktSk2MNSoKgalBHLOIarKtfXTGmT3EdMc5zZKe3N185/e/TcA477cMIq13Rtgd2U0b+g2YtuGZ4uF7XjUjqc3GUbujFpz2+1vnL/xGst2tPuaPdqt2fbnNIzeCCC/9fv/0O81P9s9953zZ29eZ1uHqXVV5v+6lRHA5SVWQJvXjYxHm9H1bcBYO66y7805MdbbEhFtZrSLIQzjMC9yxHXiHLTt9dlit2VDWHdpLaXbI7SUzgTD4wISpkiomzFvDyE0uXXZ+MTObdNRwjkxmyzZoDIC/QQsNvekHXcoU6AphXByB3bfsPqy5GhdIU21WZ/pfOpaYr1euVZo26ppj7ZJh92HfM8HZ7SXMfMerthsr4yxnWdsx+jd/Kz9p/3MPbM/hsaJzEoMWHYK57xpM9SN9mZd1xB818wGgFtbClM8ohbwjSN8lGVJxio5ac9awytD+IeUNKYJZOHu+QhtmPGCAArP9yGlpH2yrrHZEJmklhKe52G1WmO93iDLchePC883sSyH1gxpmmIymZq/JzvPwMYkcRRRQXC7xc3tLRjnGI32IQTtdbINOHNjVNXvYjQeYnwwRn/YR5REiIIAg14PSmkIEaIsSvgeFa56/RBxMkAcdzC5JT2rvb0R4ihynQLD+cJIlZQIYyKKxJ0YQRggTiJ0egk830O31yMTI9t9pCj/IfZbAM8rXX4Go+XMTaxlZTt215c2ucKAtjaFtlPLmHJpUJu48ASsFlMQEOtRKRILF8bcRehWW7LL2b59XWwfvyRgEwOYQGVokUS5JHFeCsgZCT0zokwTbRqUgGlqrWJomCye55kNl9rmsizDer2E73uYT6dIi8K0vxVGGM048phqGQWkcJ/hAmw0yZDVgmi7AbXbRNq95e1N1VZWylYAaQNlu4gFQSMYrkACc8Ph0AzQxCXMlhnAGKeqeF4Ymu2uJb39PMaYsc0W7vvUAsJN0lDDskmgAR9mMWYCvhfA9wKH7gMMVSUdINDe9Kx4t02QhSa6ZANP2NYoOGaRHQbmljf/duOj9bP2i92XxGxgZjYxmM3SBEGs9brWnWmCKL0b5EA3Nr/Q5nV242O7Ypa7IIz9z7QmMaCqK6i6huf76HYSKKVIYycvsFpR1cBuGHVdUQtJSlpAnufhnXfewa9+99dwcnIMcA8KHIEfgnEPeSlR1im++Ool/uzP/pyC2G6PaKphBM0EiqrGJk2xv38P3/3V72K0t4eyrDGfr1FWNRio2s0YJQVFWYAzjsS0C/UHPfQHHdRSkVC71u5JfvtxF276toPeQwgOT3hm06tdIKO1BjN6VPbetyn01I5DG2vEObjno5QM63WKz7/4CqvVyjGEwKg6tt5sMDOtPbHRj7HuJ9ttis1mTUCCZ56xedZFURBIaL7XDCeipDIjKKlqoro7NzrjblgWOeqKnIGgSZshjmIIxo3+D4EU0CSa3ImTBmwF4JkebC4EBOA2BntP7Dy39yYvCyjT4kaU8gpFVUJv1ijKwt0/xjlg7rllfniehyQhhlNZFABjGAyGEIJ00khX5AYvz76BlBIrAyB0DHuMKN4HO6CtDfTah215sL33bZ2O9t+MMSdm7ayRqxqZykjQ3bRuzdZr5BmJ7Ns2ZfsZvX6fnnGWoTRipWmaoipLpMslhOdhW2To7+3h6PAQ4/EYJ6cn+ODDD50OgpQSk8ktNtstPQchXPKn0dC6Az+E5wUOqLYAKhiwtRVONAUB+/x8z4cQhtVnxoisSQOhkySoa4nlfOGYSddX19QebqrztqWs1+sZRg0lA2cvz/B7v/d7CAMCAlUtMZ1PsV6tnBNbGIYYjUbUQlBJ6FohrzMUaQo72BkDAkFMUsVp/fdM6x1jxBCRVY1tVUC2xtRqtcLFBTE1v/7mGwDAfEmtfu+++y7ee/99xFGET7/7a5BK4r3nz5FmGZaLBbabLdIsRZZmBMqadde643gG2NFKQZpCjLNlRyPEriS1nJcltXb7pnAQeB6CKERVVtgsl5BSkUGAZeP9ffiMngAAIABJREFU39S9+ZMkx3Um+HnceWfd1VVdfaBBXARBghQpjq2k1ZiO/WdnbVaysdWsydY4okYycUVRIEEQVwN9d515VJ5xufv88Px5eERlgdRv2IAVsiszKjIO9+fvfe973/OpaQi3ii7zAoXn2/EDj/TNuJsP6/cx2LRcLi1gxWN8vVrj8ZeP4fs+OfPGJ+m02/A9D9PxuJbU4EChyAusDPsty1Lb3a804GOWZbbpSRAEePXqpdXxYBAvTuIaeJ2XGQI/AHch0Z7G0d1jeL6P7a1tJEmChyf3cLCzi363i+3B0FyHwuXlJQaDPsKQ9LDW6zXCMKSWytEKZVnA8yhAoO64tCJIqYjxBxjtqao0neZ24awQAtJNdjDUoat1FgLY3d3F8fExVosFridjLOczLBdzdLtd/PSnP8Xh4SHaSYxup43R1QhfPX6M/f09/B9//Vc4Pj7G1mCAVivB3/3df8d/+S//J6AULi7OIQD0hkN0ej2EYYjlfIavvvgC//d/+2/odanLZa/Xwwc/+AD7+/t4+fwF/u1f/gVJu42Pf/uxlXIQApjP5/YeUYAYot1umWQPXZ9SGlmWVuunTbxooy1FwTjPg9Bkm6n0JkAcRyTCzyX5SqGw7eArZrcrPm3XNE8gkALKqxjddE7KBigEKjWSRy6AZPwfx9uz73laQau638C+NSco+DjcGbWZsHDHCq8XbrBVKznmazOgAycSXYCqaYNv2xhQ+KatDv4AAJcCSVhvVsAEz7DPkYEPcwW0VHjCynDIskQOYLFYIDDMYCrljg0Tu4pBuKOZvRaDAXIiAILRQk0JbK3QKgt0s64RYuYKBNpPC6BUEvPFHM9fPIfv+dje3jL3TWE0uoIQAklC3bN++OEPsFws8Nlnn2E6nQKaGhHFcYxOt4MQgRXS5zHG3Sh934c0oAXZdgLClANa+KbhC4QwSRaFyWQKSj6RHUzT1Gqs8sYMavfZs2ZUqxVTg4j1GldXl2Z9aQMmqG+32zZOc8deafytq8tLPHv2DIEfkkC40phdX1t9SulcqzvCbKzB678J9M/Oziyjiec2g0mllJheXwMAXrx4gTCKcH5+jvl8Xnv2pRF05//mxg8OTZMJ9smKosDo8hLr5QqpKWEuC6rcgRBG742A6+2tLWRZhjRdIy8KrFYLSCORoqFpDMSRGXsKSlNptBAaZ+enKIocz549A+BjnaYYjyfQWttya9IulMZOUifvg4M7lJxakbD53//9/4svvniMLEsxnV7bBA4nf6VUCENKWmVZhtF4hFarhb/+67/G/fv3MegPCNwxpd7tVgvvvf8uTu7fx1vvvI07d+7g7PQM//qv/x/29vbw/e99gDAkYE9rgZ/97H/go3//CB9++AP89V/9FXzfx8m9+8iyAr1ej0raVyssV0scHh3hT/7sz6C1RtKmUucoiRFEAXa2ezg42IJUwDqXuLy6wpOvHuPi8gKs8ScVUBQKZakhRADfpzg8DCOEgWdY5AJRROWpecZa1yXynMrshSegoSBVCUAjUD48D9Cg5F0pSyxXS7LtnkYQBRgMBzg4OIDSCk+efo39/T0cHR8SOMVrglZQZQkWyf9927cDbBIwN7bqRFehu2wXHfaRQfwYpasvEMJMDG5NT0FhkrRsFyruSKa1NOUdRKUkxLl+26jsp/qOZm20m4FzF6/bwCYOvtwM5w3WDWe1jEaLi1wncWKpbFyOslqtICCQixzKWbzsNWin9ts4rVX7cb6um4utNgwIzoRwXTR3R2rub6/foYvye8whAXixZeBA1rOYAGCylf+hzTkmn8ttWZ/bHIZqcWZntvG++3WNrFHtOKBxU5puSyym6fkedfIpS9InMwLgfP0snszsGB4Lw+GQnOGtIQDKDhLgYLSKVInp9BqvX79GqSSCOCbhPY8CYdbKiuII+/v76HV7KEtlwEllAg8yXEVBgQB80syJoxhRHCKKA+hMoiiUBXU5etKWXaSrG/CHP7bGs6nuuas9IIyj6H4GVN/p+R6xKTwfSgNZUWIynWI2m9E91hVrpygKTKYTeMKj+2W6m3EGezwaURDKVGOTKWKhRGHmpTvPo4QostTYhzKxLFbNYEeZVzpU0JWws5ay+jvTYYJLd93x5s4rdr752E37BFTAtku1ZyfeLUEQQhCb09xPpSmwYEYJBxfk7BDrgoSPNSbTsXVshKAMEZfMcXvl5XJZs0HuNfEzZdC+mRl2N1ejAjDZ4VKTnokQ0B7V+ZdFYRktzDDhbivSZOWKNWsgFMizDMslaXB98cUXCJMEp/v72N3dRakk3nv/fXufiAGSYjKZII5j6twIbTNlDJCSZsRm4dnm9TczRb4QUKoa2zab6QemyyYxRBYz6vTHyQghhAWbOJhdqgXSFYmVfvXVV+Sk+JRxnc9nWK1JZFtJxYaLAHoNw8QpSQPBc7ttmsBIeIAgzRr45lwlZdIyo03D15ZlGWk8KIWlKRu9urrCakVadXt7+9jf28XeLmncREmCdZrimdZI1ykBDgZE5fXRrvGChNS1Y4u5OEEApGUgq25VDOwGHgVyrPVRFiXyjIIt26La53IfkGaPYTJWJU2FsQleTUOGwR5moAU+dZTjMV7KEtfXU0DD+hOeR7pEACxwlSRJTVQ2yzOs1ys7r6SUWBvw1T0XP/CNVlJGQtWdju2G2S6JhRXGlNQqzfOtOjwB7U4HURRhd28XnU4Hb33nTdy/e4JAeAgEsV/zguYQifpX85jOgxz59drYPlNG3yyLNROjBiBwgw87bwDSDRN1VqNdAww7oZUk6Pf7KPMceZZRh1CTRGglCXa2t7GzvY3JeBuL2RyL+QzDQR8H+/t4+PABHt6/h52tbXz+2eckci+prFUIYdcCT3goiwKz62u8fP4CvV4PcRTZtuR5XmB2PcPl+Tm8MMRkRiA2Nxbh4G44HFYyCmzPzHrHAVdzowRaXTejKmkwbH7z3OnVM6wzicLMDU6q2Wy3s1gLj9YB4Ql42pRmWLulbTLNLKRVdtexb/b5MEvH+gYWIrT+PBqvbOf4PrCfzDZSNXwA92+a/m5zLeF7xmPI3d8dV9/kG7r7uX/rXkfTx+R7R/ehAkuF0HDFwzeeCyoASpt5UeQ5lGHocAKt6ftWrDgDzFk/tEoCc7DDjBNixJB2UxhFEFJWAIm590WRYz6fI44i7O7uIQpDLOcLw14lBqvnCezt7aHTbuPLL780ouCZZfNyRQTbNLbh7EMorSFKKm21vo7v23JO9r3YUeQxkmUZVqu1Y39ya795nLhEALYd7tzhxg7L5aI2l4RAzc9yWUZsr9L1mhjryyVWqzWUSU6UsrT6fzWb5RzHfWWiBHeJc0uy+UdrTWxhU1oXhiGWyyXp5nEXZXNPtDbMOugq1jDH4/vHa8liNsdiYXRiyxK56UTe7XZJ5D0gDSilJIrChyjJNyjLEnlZErPJsmXsxAE1F/GxWi3NuaZYLNZYLomhpFSla9WMm4WghLBSypTkp3jx4oUtoZ/P57XSUde3ZVLGbDZDt9vF++9/D91uD74fIGm1wF3jgyDA9vYW9vZ2MRwO0O11UbwocHZ+RjGZlAhC2NK416/P8NGvf4uDg0Pbnbzb6yGKSysGX0qJNM/Q7XRxdHwMIYCk1aIxFfrwAx8nJwf4zpsnyEuJ0XSFVqeDVqddm5/QRt5F1W0+3SfPdqYknEM5MZmCUrC4Btkgo+cEBa2rSghiCBa286/nCcQJAcNKEbDZaic2ech/qDWsNucfwm/6doBNZsvTDKvFElDasGMALQQ8T0NJQuXKojTOEWmYaBvcVZ17fOOABmGIKCbBtezoCKtlH6osIDRQ5BmybA1VltS1yaNyIQZXIGDLxzggBqpgzpbdmMHKBhOApf5bA6qqWnGXneFOCn7fDQD9wLctb9n55QWDjQ4vFLwoAJuBlso46tp50PdFGxfTOKYOdK122zqr7XabSgikMmLZ9YUOQO3f/HtFba7vUxn+KgvDANh/ZBOm3I8WcoAzRhaRNA6Pm62jrXKKKNIS8E2nO+HBOR47asYBU6o22eiazNEEZfJyC+gR8yL0A/jCQyEVxqYjgpIS3W7XZlzSNLWdlLrdLvr9Pu7ePcK9kzvQWmA0GsPzfMRJG6EQ+PrLr3F2fo6vv/wC86srdPp9PHz7EXr9PtbpGmdnZ5BSYjAYYH9/Hw8fPDAdJnLLEAFIRJ2MWDWGWKeE6f6AC0jyT+XE3vTTbjqjzY2FgpXSyHVhFz/+fja8WmsqFzJd27hUljQ/AqwzAg6EOZaSFFQWBTEBlsslleu0Wra9KAs+u6BpksS2fXlkNJC49p0DBSEEAcHOfIvi0JZN8Q3RIGZKEIbwAKwBYw+MVkQYUpfAokCeEgspDCvdCQabboxjsxCTY7S0+zCQ5upUuKBZp9OB55HgI3d+dDPH7iLvsqb4u2YzyqZVpWUaMK1QuYscj2NmXjJ46jqWTfvgOmHcuYbtG+vNAbDXwefne8SGU1LiejaD73l45+23bTdHADg/O8MnH3+MKI7xve9/H71+H6s0RV7k6PV6GAwGKPIcs2vq5vf64gJLwxy5uLjA2dk5Xr16ZW2fOw4tgKYUBdeAdajzdWEYt5xFrgI1ZbKAwtgWTo7wv21UBlhHWCmFi/wceZ7jxYsXmM/n1LLZM80mgpCcPQjSjTJ08tAP0O10oaTEkydPEQQBDvf3EUekCzG9ntq1qN/vmzmQWNswm11jPp8hCKh9sRCViCvrhvAaxOdLjvaqNrZsObxSmM3nyPIcL1++xHg8Rq/fx97+PrRSeOc7b1lHWCmF8/NzfP7554adPLcATI1BDNjyZJ47vqiDwbz+Ncd3FIbWLiilKvFp00hA83FRdUkFiGlwfn6O5XKJKIkRRhEuLi5sgoBBV5uYEiykTGNEQiJdrqGkonbVSYIoDBFHEfI8x9Toi3EnJp5PPKdq12Kuk8unAGuWka5TZEYXg+caA5HdbpcAKcM4JGCR2jWv13RuX3/9NYQQeP38Be4eHeM7Dx/ig3ffg5QKSxOYMJjV6/VqnZcAmFI9mtf9ft9egwsGNAOwpu3bZJ/YpxKGneoHPhaLBabTKbTSGAwG9lkJIfDVV19hOp3i7OwMo9EIYRThex98gJ2dHSxXK7x4/gK/+ejXWC0X+OR3n1J7bEFsSk7olWWJVreLTquN+/fv40c/+hGJgO/uwvM8/OM//iOm19f4t3//FbwwRJwkVgiX/Z/ICPjz+NC6YiOyH+h2PG7a502+lstqZfufZZllNhH9ixOs9fIcu74ANdvMn21imm4CXdzn566nm/Zz923+m8eDZbiVZc2P5Vd3DmwCnJrHdZlNfM/czQWibtuaINVt7/Hzao5rPg+2P+6+/G/3+4Xp9OfaLncdDYIAUivE5j0eP82xoiVA/4MNDNlZ47+L4xgdAzArpShYTqm5AAP01GFUVcm0IKBAtSgwm83geR76vT4e3DtB3u9jf3+ffJFSmgoMUetMxr6I1pUmmQYsKNJqtexcYB9IOfdJAVY+wLKdG9pV7nhi4EQpZWMmvt+VJp6wcR3HbPxs3KoW6v6WQxniAsy9llJinaYku1AWkKW099DOO9TJBdrEHRCAMPIuGsRMT/PM6AVTSaPwKanCHboXqyWCIMA6S5GXBfmlBjQr+Pw9uga+P+vVCqXRkFsul5ZByOOTWcIuqFaWJVbrzJY4K0UVKbZkVxJQyIxepblTdQVuZ1lufScGhdx5xMflMczPhIFJfsbsTxaFWacce+MmMjLD0CqzDMowoBmMY7YpBLHmVssU89kCp6fnWK5SvH59hqurCaIwwenZBXWibpH/vLOzgwcP7mN3dwdBYEqDoaCVxHq1RGoAt52dIbIsQxj7Rmc2Q5av8fUXT3BxcYH3338XwtO4ns3xyadf4Pz8HFdn50BRIA4j9Pt98rnoDtl7lOcE4JYeUHjEPIsinvtk733fNBRyYldpEopKaWiPfM0gCKE1rdPMLFNKod/v4/DwEGdnZ3j+/CWggdlsbv0mz/MgSwUpqUz0G8ym3b41YJPW1KljvVoRUGRQxCAKzVppaoANAuf7rCkDE9iZluV+YGsYwzBEr9uFlCWU3MN61cH8+hrZOsVyAaSrJZQmAMvzBERAQAMDDBzQuJsLNrmMFHfBYAPp7ud2jeLrZeeWy20YVOIJHEYhQvOZBZsgar/z3/hG64PP4TYHrelk+Caz0XQOeGHgGmxqz9uy2kKr9doIgNcXN/cYvLn7+H4TkdDQugLq6BIYyPjDN5KyvBnI8jE53+aeX/N5VPfEt6BebdHWGkrRa6mU1fa5wW4zHWTYoHJQE/qB0QWhMrrxeAxfAK0WATpsUEejEfI8x927d2nSH+zjzuE+rq/nePnqHH4Q4KDdAeDh9evX+N2nn+LF02dYTibodTq4d3KCdq+HLM2QptR2vtvtYnt7G8d3jyBLhWfPniFNMxPgwoz3KpPmGUZdq9W22fYKFKjANfc56Vr2brMjWX8swnZIk9J0YDROgu/7FhxJ8xylpEVmNqOuCZ1uF77vIUkiRHEEqZURmjRgkyKGFrNAVqsVOp2O1e1h7YGac6xBrYHDqAa2BEaw0moRcSmBs0VRcIN5VRpdLhZhZNDGMlWCAJ1uF7IskXrU/cSdizWwCbgR8FZdn6pAxbU3aUpt0JMksQ5eq9XCaDSqLdgM7HFmj7PJvMjzea9WS5RlYUFonqtB4FsRcAa6XPYml8hx9sq1E3xsvs5awAzUMnQuyE5gfEWVXizmiMIIDx8+xBtvvEFMD8NquDo7Q7ffx8nJCY7v3sV0Royek5MTPHr0iECVxRzzxQK/+MUvcHp2hrOzM4zHY1xdXeL8/Ny2rBeialXvBr3L5RJCCEu3T9c58rysPz/net05wY4Vjwk3qGJnK8syTCYTpGmKs9NTyxLyPZ+cKANsCIBKy6WCENTkIWwFWMwXePnyNY25VgvoArPZDOPxGMvlErPZDNvb29jdpdbqDGqcn5/h4uIcURTZ9tFZRgHCYDBAu91Gq9WyLZgZGON75AZezNxcGNHw09NTnJ2dYXdvD3dP7qLbbtM6b4yJVgpXVyM8efLEZK6JBdXtdu245rnlzkYBI84rqoxwM+Dje83AS5IktmOr0kY3xDj1UlfrEY89KSVGVyPMZjPSvwsDTKdTG8hwoLRaEeimhQcllH2m1nkuSgyHQ9vOvttuY7lcUiLCBDZ0zzMbFPDcstfreabxab0sk7PrXI7t+VVJHneP5HWH9ZKkpMDw+voaq9UKT549RZpluLy4wNHhHWgp8f7b75A9WJNeGJXctjEcDq2YO9shnvu8xjFww9um9cH1F5qv7hxSSpG4a7dLAtkvX2I0GmHYH2B3ZwdAVZr1/PlznJ6e2mCn3+vh7bffRqfTobF4dob/+Y//iK8ef2WfH4NofE+klIhCajd+fHyMH/zgB0iMZspiucR//Zv/C//6y19iNBrBC0OESYxOu2M77bENrGQeAstIYwCCGXFs35nZwNnspv10GRb8HawZxiwD36NSUQHTaVbfBFrcV56vrk/XBGeaWxPA4vfc1037u7/zd7iVA64ejnuem/yuJuBUA24aAJCbHHavvbn9IeBS871N53HDR3TOyWvEGNZOCQHqqtwAWM3xg6AqfeWYw50vNsGrlRULtn4uKrBJG5CAE1Ru5YPSJAJdFgWkkFDGN/CM7g8zbZfLJbgb1/bWNpRS2NnZQZqmmIzGmJn1MYoiq+/ENlxKCX9lbLSk0s4aEORR911FJSbWDhAJwIPvixooz/aF54oLNrVaLesv8fW6AB4AC3C6YvJAJVjPZXr8t3Q/aZNKITXd6rjztjRdhXm03QCazAEowU0/WgB5UVBpIQNu5j5AUFljIUusTIOVLM9RlCVVPChpP9daM9Zk/bEiV1hr+vdisSBArGBWiwExy6oEnq9xuVhina6sT6IB05GcunwrrSuNRUXXDRis22g7kv0tDSh0E2xyfV8GNfhZcRKKyvhSq8PJ583PiIHCsiyprD/PocvSVgtUYJNvWHvAOk2xWKxwcXGFuXmdTq+RxC1cXY6Q9wqE+xQbDLeGOD4+wvb2EH4gICWzF0nKRmuNwXCAwbBPkiQBjc/xhBo7fPnF5/jkd7+D0hKHR3dwcXGJ//lP/4yriwtMLq+AskQcBjYJJUTVmZH0yQxzD9qQNzSg2zTvhQfhV2CTiRrs39IrTMLbg+8HkCVpslGH3dLGi3t7ezg/v8DpKfl/y+UScRxZG0OVaLrmi3zT9i0BmwgNyIvCtGutFl3hCWjPh/RLaOOslmVB6B1rDwkCAfI8p2Q7SHSuyAsjhAZEQQTRFhgOhiiyHL7nIUtTq5+iub2W0AbrEOZ3MszuxHODqWa2FEDNOPE+zQDDGilnYeDJxZMhCKoMIX9PlpOIJ/9uQSwNG0CzU+IucrwguufETKdNwI4LvlBgXWd2KefzJtjkGo3GUS0gUX1ez67xcLjxHja/V/0uIERQjzp09Q/+OnK0OFvNbAP6XENTx7WyAHji3gCbiJUgS+p6IE0nF3MG9CUGbCqLwgrf+b4PqZRlJKRGELbbaSNJYsMimGG5XNhgf29vD4eHh+h2eygKibIkFoVQyopWn5+f46uvvsL1fI7WoI/e1hDb2zuIkgSvTs+wWq3R7/dxdHSEfr9v0GhGoqv74i4qnH3i8ZwXJUqDYFfPcMPjRdOxvOl4Nt6llvKyDpLymJNKQYEyJLzYENgZod9rW+2KPC/x4sVLvD49w3A4xP7+PpUHJZS9b7XbyPLcdDmh9tSxiGtjl+eZ1po66Wy4QF7shKAskwuUaN10biuwCJpAorIsHDYZMSfjKILyA0BKlIWPwOg78TMRomIzKq3hOc4Wf78QwgJK7GCtVitMJhMIIWzWikvJtra2EEWkTzAej60Ty8AOO5w8j6sAp/o+rQ2jwrSTZ3DCFURmm9d0gKsS3grw4x8XlOf5xt/vMkZde0s09hRaabQ7Hezs7FB5XJ5TIBpF8Fn00DhHRVHQPuZa85y0tI6OjtDt9WwQGYURnj59ilarhZ2dHQoQJQXrbpMEvhZet5QkrTs73u340Nb2wDqyfAwwr9Yy79hml0WJ1XKJ1JRPsP5GCApK0nVaOeAQtiNiGIQ2eH7n3XfQabXxvfffx6A/wJMnezg9O8VoNMLr16+xv7+Pd99915Tk0dD97LPP4HnClkMAqLHYXHCJ55HWdL42YDEAjFsq6fvUqY0ZL1JKLJYrPH/1ClEY4mJ0hcVyifPzM0wmk9qY4LHDwLEyP/y5EIJK5ESVjHE3G3ia4CjNUiSLlmVPaa1t9y3OSguPssplUaDIC2hoLBZzeL6PKCbdlCIvLFjImiE8L6gMxrdMN+1kcG1gaJxkt+SC5xMDTW7wYwNMnxx9BtZcH4WDU8AtccvhBz5WyyX8IMBisbDPlrd2uw0IGB1Biel4giLL8clwC/tb2yRoLzxcX1/bv2WAmzfXBjQTXe7m+gubQAP3ufEzdv82y1J4pW87X8ZxYuf4fD632eh+v4/lYoHR5SWgNXZ3d+09kVJiMZvjejzG/uEhDg8PbTDGwaUL7KdpitPTU7RaLfR6PbK34zGm4wkG/T7u3j1GnMToDwYoigLPnz/Her22QTbPGTdg4qRjc3PtI7Nzmu+5v3Pyhtn+vu+ZVuACrNnk3s/m66btNhDH/d19vQ1g2nRN7ne419O8Ln7erh/rnvs3jZ3mdWwCxW67B5vO8bbjbQKibts23YP6MWyW9AaYZZ+9rAAoBkncz12wxQXbuCWQG4fw2mpZqo0St8D3oX0fSkos5guURYkg8NHv960PsV6TaDMnsHZ2doi5bfSY8jwHa9kx8E7JK2KXSkVdcAHYpCMDMM0EpoYwTGJRY+C5gCIfh/0ZHh/sU/C9c8HayPEReH7WYyZDMvA8y1zc3dvDnTt30Ol0qMRRV2Vr1r4J80y5FNXZqmS8XwO+ABg9JFg/WAhBHc8d0MQPfHhlxQSqx6IEMNsSf0l6xc1r4/NwWV4AbEkidUDPK+mFGgDsQRhZbL6XZVkiFAJJnCBpJdja2ka/30eaFtRprijQ6/WhdcVaZ6kK1y67gCAntrrdrk22AqidL4/XoihQ5DmWsxn6/T529/awvb1tQRUXnB9djSA8H6PxGH4QYDKeYj6bwRcePvv0U3TaHUzujJEkLSRxhPfefQc7O9tYzJeGrAKEkY84oeSXH2jkOemBlmUGKXMAEr4P7O/vYL2+j5O7R9jf34WUJfq9LtLVCkmng3jVQdxqIU5i25QHmjANKmF0wCahEZiO5wKVDlyV+JOmaQ5sB0yrB2rY0AVyFJm2SRVOiFDFTQytBcqCRN2JRWX8PknxLycvfh895FsCNtEASY2zx5MzMnXuPJA830eRZdS6ONTUfUwACmREVosliiBDulraFoNCA1EUot/vouN1kB/eQTtpIQ4j5OvUIOELQv0CezKWXMMAAhsNftDs/DWBlWbWiQe1W0bHx3OdRja6LrPJDwIEUVibcIUsawuePQeQ8dPG2XTvq+ug87nwefm+soHybQ6Aa1R4QdPOImWfjzFwTae4+vdNfSo6tuvw8P9ufnfz3/VXD55PmiLK+V5op+McYFS7GeVtOHJm/7w0wKPn2RJK97lqwHa9UkpVbBNzjVyelRpggctN1us1JuMRFosFZrMZVqsVtrYGGA6HuLq6MmUZC+R5gSSJ8ejRI7z11lsmQ1QiywsDVJBWU1GW+OLzz/HP//zP8LwAw4ND7B4d4+69EwACv/74tzg9PcNPf/pTvPPOOzg4OEBhgkAX7NO6CgzYSXCBizTNahm1b3Lm3HH3+8wPL8jQsPRWgMVIBUolAQW76AdhiEGSoNWKsLvVAYTAYi2xXmf49a9/g3/95S/x4MEDfPd77yMIQ3R6PURJgsFoBCkb3rQbAAAgAElEQVQl4iQhgUlRCUfyXOHrVUpBO21UeWNnzAZ4QcVOcAHdan/TvQ3atqpPU2JnaAZhfA/tqANoDd8TkEVpRa3dYzHwAGMzXKecHbJer4dut2vLXa+urqyN4ixcGIbodrsYDocIggCj0ciKHnMpzWKxsEHRbDZDHMcWZKnKyFam014F0jGd2QbXumJuMtuH712aplYklx07nqNWF8sZY+yIMFuE7zc/q7IsMZ/PUZYltra2cO/+fat79mxvD1G7jbDVQtKhjo7qgjpxrddrpFlqNQsA4N333kMYhnj8+DGePXuG0XiEX/3qVyBdoT2022288cYb5EQbW+qWdJEweYTAV1BlPTNYPc96aRfb98oekpYX6QWUtnPcZDwhB1YqSwlndsRiPgcEEIURfM/DcrHAfLFAu9VCp9PB0Z0j/OTHP8Xu7i7+009+gu3tLfz2t5/gydMnePr0KT7++GPcvXsXf/EXf0G6br0OgiDAz372MwgBXFxcWOBpODxCq5XYdYuBche0lbKA0qqmJcFOTNuUDT948AAA0O31IEuJ8WSMX//2YwgA5xcXWC6X+OKLL/Hq1Su0220b1DCAwfaKu7nVgBivAiittlMjGTQ1LGibjTXsSC5r4O/QWiOIqKW0VBKZKXuaG50vZvvCq0TsF4tFNUa1RikqbSkCIxUos1iVcGhdlULxtcxmM8tC5ICRAS23kYhGZUPdMcUAMoBagCelxCSZwPN9XF9fI01T2/wjiiIMh0PESYJO5wxFWeLVq1dYzhcYnV/i6VdPMBwM8Z1Hj8ClvEIIC8awD8PXo3VVXrEp+HbZnm4CwH1WzWCbP1NSYrEgcdNWq2USKiXKnEoszs8pK/u9730PR0dHePb113j29ddQZYm7d+9a+ygAjC4vcfrqFY6Pj/HWW29hNBrh9PQUy+WS7EtBYzoMQ8znc3z22We2EUKWZXj98hXOXr3Cn/7vf4Y/+89/boLAAOPJGK9evcJisbBlhqx7xzbT8zxb1rgJZHGD6Cb44s6H+hpkkh4+ad5QV9m671Tzaxq+3zeBMLcBTL8PaHIBkE3f5V5H89p53WOQwAVK3J9mqbab1HD/ZhPI803g0KZ74vr07j5Nm79pH/e63H3oVVhMwr22ZgxRliWQV++7CTG2e80yLgCk0dgApRhESBLqmsXaegy8QFMDi6IscXV1hSiKcLC/j92dPq6vrzEajTC7nuHJkyeIIioD6vf70FKhyAtb9gTA2iS2z0VZGNuaYWZsJyfJ7PMD3RaY8QMPSEISEXdZ3jaZ51WJMPaB3MQ4x3M85vjvW61WrRyPE4S8zvPxA5MoabVaePjGG3j77beR5QRQkw6OifkYMGS9KVRJJb4ePyAt3CAMEUQhiaALThKUkErUknStVoLEaPARQSGCVMo2gwBgWVxSFrXro85yS0hZWjmFQHiGEUy2Wxp/nwEIrRVW6zXSdG3HrOd5hvXvwYM23Wo5qUHPw/N99Hpd9Pp9nJzcxc7OLrKswHpdmH2V9e08z6NOnfM5ptMpzs/PrW+mFOk6tVotPHz4EA8fPqyNJ6upZ344ObZer3Fxfo52u40HDx/i+PjY+oZFkQNKIUtTPH36DFfjCRbLBXWcCyNEQYTx1QjPnz5HHMe4d3IP/f4AP/3jn+AnP/4R0vUao6sxlNLwA2rg024zo3mJ1Wpq8IIU1ASjRBACjx7dx+HhPt777nt49MZDxFGIw/09aCkx2NlGVhbo9vvodjvUzINS7iB9rMKyvAU0hCAJISlVzU74fmB8QxOPK20Zg8xw4vm+0sBCzq2+FQDEcYLd3Q7a7Q60BrIsx2g0gtbKMKIjgyVIApz+gEqkbwfYZIJ81ljhH87QQAj4xnhLiy4bNFbAtJUnJomlefoEYqyWS8gyQhJHCAPSXwp83wrW+a4D6oBM2LDYu0GRi3RvWnj5fZ6UbvkHG/Z6/WglANd0ttyfspH5tw6Gc2x3YbJIulNs4IIs7jXYa3GA900ZIz5u87PbnJjqPZi/2+zIVAtynTZd/2xzJk4DhmbbcIS0dh5pfUpotvaaggu+U7WhueF3WvRof+F5EDx2+LzM5y5Qys7/arWy2V/PjAleCNbrNcqiRKdD3bwYQOB2nQA5AgAsKLCYz7FeLjHc2sH27j4Gg4FlrAmT+Wm32xgMBoiiCFmeGaFdolFqLWv3y81s2PFhyiv4s+a22UHTt3xWgVzN+10LLBzHzwbz5rxkKTGZziCVxHi6xHKVYjQaYT6fY7FcYLVaIYpjtIyDyWULLqBVnQ2NGddR1ZqAMMEOo8O0432a1Hfe7D6CS754bkmbSRIaEIoZPzDlhCSyzMd2AwelFYS62WzA/U4Gc1yacNOOLJdLG0j2er1aJp2ZEG2jz8bH8Z0x6l4/2SwutdPIs9zQpmmhU0paO6FNVoVYlBRkV9m3eqbREA3NfDLX5vlWm0FrbRdOon8XkFIhabWQJAlWqxVGIwJ02WmJkgRhFBJ4dnWFq6srjEcjJEmCdqdtQTZmicSmrT0HfqvVCr7nWco/MxKY5chC7+xIKk1t7l3dg+bzsuOdbdQtwRWJVhPbzGrzGICBHeYwDNFut+195HVmMBhYhtb29jZi06EvTshp294eYr3ex3q9wvn5PnZ2dtDtdqmbYKuFMAyws72N4+Nj0ukzTvb29haiqOomxGCImzDwfB9Ci43jka+Vx7pSEut0DW/u4ezsDAAwHo+RmpKn+pir7E9zDXNtiNIaHlDL6Lv7A4AqJTwhbNmRhjYlc6DyFFTC9co4aUpREKG4yxScdVMB3H2qKAhk4XVCeR584UF5xMbUUpL+hVRI12usosiK2mcmMCq5TMMdHxsCdEW/1Nby5vqqlIQudQX4CEreMRjMtpHBJrYP21vb8DwP8+k18izDfDaz2lRsEzgI4KDUDe753rslOjxWeKzyvpv8h+a1NueJHW+eZ20g+5FKkaZIkiTY3d3FnTt30O12ITwPRVna7kys8aahbaLPtZ2e56FtRGq5dDPLMpyfn9t54bK64iTBYDCg+6414shJbHDgiZvriRDCsuhlKS37jS4WJivNzpm2x/GE6fjmNdcGXWOwsAQDX9MmP+r2e3yT2dR8vW3bBNDcduxN222g2G1g0W3nvOk8m8fadH6brtEFftyx+/vu3aZrcYFWd3/+Snc+NecGSzlskvWozmXT3GHCRP3a3VJo3x2X7nmrirVDDP9KZ40YnwvrZ4RhiHaHEgWceGgyUsi2UzJCQ1MjDFRJcsmJUMtwwsb7zefu6gc2n7W7Tm3a2C5tivPsPXfsl03ydTuIkwRSp0Cam3DAee58zhw32JCsYrFVMRJ9xqVz2jww28QJGsInn6gSfedrNL6r8Z14zrtgK4+JGzbXGZ/uuduSN101r7LVLWY/xQ0HNNuVOgOXk02tVguABymppJflcFy2NP/b/X73GSdJgm63azECoAKb+Fo5uer7PpbLpU0IhWGI1WplGPxlNcfYDxVUdpzEMbqdHo2BguQYrq+vUeQFLs7Psb01xHw2w2g0ghBAHNM5d7tthGGA0ejKfFZVQeSmSUYUhUYjrWUYUSG2hkMre1HFXYa1fWNdrxqkCdTjfq353jdtJV9lNRd4zgZBxaRL0wxhuEYYxnY95QZqXL5Ic+H3g0vN7dsBNgHQskS6XmE5n0FLCSiNslWYxT8ENDmwRW6YTdp0bhKwjJRUrQ3jhkCFOI6wXCyQxDHydI3EtJZnIfEkip0yOmXaExvHUtLNlLIql5Gyai/MQpcu2LRpAecMHwtDcnlSywRHXOLgZixdsMgtRZBSYr5cmGwh6J54pn5Wk04Fta93EUwFGHqdEKRrBFCdalkqCCFt9pHo/uwgC2gFowlSBQzWWTFlBrbcsbGIuhPEDc6b4t9s06xxE7DGqrndcIqcVypToEyIFgZeU1XgwTATf71mw66rrImFopy/U9C2Uxh5taQOJXzfgiUMWKA2uXXtfi2XS0ynU7x+/Zq6cxiaYlGUmEwmuLq6wuvXr9HptPH2d97C9vY2Hty7j8ODQ5sFDcMQx8dHWC6X+Oijj3FxfoFXT55ieXWFd7/zNv7kL/4Cnu9hOp0iy3K0Wgn29vasNk2R57i8vLDAZBgGKIo6YOr5HpJWbMr+SuQFiTeWRk+oypw1n07l1Nh3bjh3Zh93QdXUfc1m6YSAb1r5yrI08zg2deB0rqPRFb748nPTYetrzGZzXFxdYnp9jW6vh/Pzc7RaLQyMxg4HT91eF+1Op5YF46DSCwjMggZEwItpRS1m58IGBn7dkWFHoQqsSdOgLEusFkukpvvgbDZD6PuIfFoIo4DayoZhWIHgpjzYtiFWsgIyhagBUW6Q5QLYlq1hQMKyLPHll19CKYUf/ehHeOONN2xWiAEUKSU+/PBDPHr0yD6P2WyGL7/80urlkJ0iJ4ttVlHkmE6ukec5BsMB2q22XZgAoCwkpJCQkrIwYRihlVDwRh0wfLRbkQUuyrLguB1B4COOWxS4Scry5VmOsqTgbrlYIgoDPHzwAEmS4PPPP8erV6/w8uVLvH79Gkor7O3vwfN9/NuvfgUhBF6/eoXxeIzh9hZ29/bsMw2CALt7e0iMfpXneViv1phOJtCa6vqTJMFwOKzo/yb4bLfa9MyKAmmRoswlZKnMWiLdgWKdeDfYsPoQNHEgTSaVWRUMBLZ0VZY4vb7GYj7Hvfv38cMf/hC+52GdpoDWGA6HBACYeVhkORazpRGiV/CEhzce3MODk0PcPT7E1tYWer0+tra2yDELfYSBwPvffRd3jo5qpVyTyRhZltos5OXlJV6/fm33AYAgJM2YVqtl32ObUMhKF8zzPKxM1x6lFD7++GO7H583i0+z6DOPf5dB1wwsmNm0qeSISib1ja5nbN+FEPDDepdHgNYMDU5uCeoKawITBv6KQiLPMozGY0jDavUDH6EfkJ5kECCOKCs4n80gS9o/urgwSQu69lLSWqylgu8HgC6N/bypwVgapzQIAgQm0NKoGENaa2RphsKAhd1uF1EYYmCy8p12x5YYC48SGizmPdzawvV0isV0hlfPX+Di4gLL2Rzpeo2f/uSP0W61cHx8jCiKcHp6iouLC5vt5+fILAHuvsqlGAyQuuB6M6B2n537PCxT3BOIIio3YKBoURSYTCYIggB37tzB7u4u/vzP/xzvv/8+Xr58iV999BHSPMcnv/sdkiTBaDSiACcMcfLwIXqDgS3lYH/t5OQESZKgZwTCT09P8Ytf/AK+79uGEqPxGHGrha2tLRwfHyMvCsznM0RhCC0pMGfAyfd8JFFMTKkgJD0R04ymzAus07W5Nz5PHLNOSusjcTezMAjN8I3q9wyUlBUg0FoKakDh+3WpBR67TXvkbk2g2J3PFvRsgOqbNt7XLaPmREPz2W8CYFwWl8uw2AQGuX70befB19v8228Cmvi9TYATn1szaG+yrZo2qfKPq79Tzve4ZULuxkG/CzS5+9M5bbhuqW542OzbcYVFnCSk2WS6O9rEqZKYXk/hCQ/9bg+RYUgMh0PkWYbnz59bZlO73aZOysMtvHz5EhcXF5CSmm9EUYSdnR2T4GojTmIsVyvkZdUxmzQyTdIwChEFcQ2czfMCBWh94W6bbpMSXmcA1FiELnjnPhvWkWI/yxWy5n97hg3b7Xbx5ptvYm9vD8fHd9Eb9KGFwHKV0jqiRYUL66oboOZ4AhSrCFMNwfpbGtTBOowjhDl1NpOKGjekeQapFIKQOocKk7Cj2a5RqhJ5UXXicyOpCjyrxlQcx9BKQ2hK/vK1MtCligKLxQJlWaLVTtBrJRZYt3PHrJee7yOOKV5n0FwIgcSwq4fDIba3t3F9vUBZzs1c0RZA4le3VM+tHuA4udfrmSoNOjetdW1+uPaMy9lZAJ/BpsvLS8xmM2hN5Xn9Xg/D4RYG/QG01tjb3cPBwSHWqxWuLi6xXq/x8sVzrNcrvHr5FIN+D5PJGGfnp2glMe7dO0arlWAw6CGKQnz8m4/x248/xs7eLt565y1EcYzEAF5/9Ec/wRuP3kSvN0BRpGi3Y/zoRx/i7OwM//Tzn2O9WmG1oG6pq+UAabpClhE7SmtFHSRDKh/1Bey6F/geCi1NYldCyroPwHEFQ04M6mmlESckRH51RUn7JGkZLckWdnb6aCUhxuMRyrLA8fGxbSbTtGvftH1LwCYCi5RT4sVinWS4vZpDpxQp4WslyQFUVArGSvkw4IKAxnrlQxsqICwiVwVqnoP+MhJszwk3M2ruAtHMIjazI5sYEE0E1y3NadadalAW3/3OIi+Ms0z2yq3P5e+u3Vntvu8g57i54FmNFeE7bI7KMXEXMA8g4GVD5sPu490UmrwBLuGmQ8HI7Y1R0ljYoV3WEgxzAlD8Hey8g1hPonqs9gkzriUE5QGFuS46kGIuWP1EnDFjr0lrQFX3UghhO61xkJbnmaXzWn0NKZEaamSe5+h02hgMhzboC4MAKWjhC6MQSRxTOd5kgouLC6xWSygpEccxdnd2kOU5Lq4uDUIdodvx0G610EoSqFKaWl/OBIjGZQnLnriZCfnDtua+td/ts68egPuclSJD6hlHi8sTrSChAV7XaYazs0tMphM8f/4C89kMha3ZN11sOJB0gATfD2oO9uZHW2V43Guo/V5dyoa/FdauWOaGnV+muw4ElDAOJk1LC3gKcZPVqERlV5qO8CaAt6knxxuL4/Li7Wbu2F4Nh0McHR0ZG5xXAKM2rAUAvpfA9yNrF6SsWHC+51t9Hr7XnFmhfUirisu/dGGyX6blultGYrXQzDXyOTNzr+qs6SFOEkRRhPl8jtVqhdPTU7x48YI0nPZ2IYTAbDZDWZa4vr6mMifj3LHzGAQBhE+6VlyOSJpAVbcnIYQtAyTANrSlUVpr6CyDLEpIW8/uBDOaDY229fN8XZpuUC0YY5p/lqbQgNPm1rC8JOkSRmGIg709CCEwnkyglcbBwQG2hkOr83A9nWE2mYPbqkulkCQxwqCF3nSGTrtjdbwADaEihCHNu62tIWDGNd0DbbODUkqbNOH1GeDScK9WUmXHaIMJpU1wy5R5BuqZHZgkCeI4vnEcdy1oroG+Aza5QXL1Q4G4u75SgGCyxdKz5dB2foESC9p8Bydc4O5j5l7htK0OdWgSWSZgNmVspWHmpSBWtg1KGmufJwSUXWMrA2TvhZS1ABcgYIyfBQc4TXvAiSQWeefESZIkVsR3Z3sbURii1+sijiIIgMpuuY02CGDn0huX0e1uDGCwbXLZQ+55u/Pd3ZogR7WvZ8cZB/qyrMpbWfy91WrZYNQ3pbhc+rtYLEzDAw9JqwVhxjkHlkJwZ9Y2woASIVmWYTqd2nHHgFlgGI6cmebyIa3Z/9D2GXueRwGpoxFo54gpL/F8Zg444IeiwJUHQrOZiWXuKVAnKmNLhb4JFjV9L3eO1O9z06+8CTq5r7c9Q/7stu9ojp3bvrcJQDZfb/vu3/febdtta+5t38/rqesLN4/VfL3BltbVdzTniP07xaCiqtnEb7q2m2nBus/ODF9b/cEVF6JiF8tSQqJKvnOCqzSdstzzSZIEgR9YAJoBBJ6vdK98RL6P3MR92vgbluGhiC3cPF9KGOiazhGXEjOLkv3HTeuAey/d5+A+C5cZK8sSMMdiZlN/0EecxOZ5V91km89LCGGZTTZBDVgfEKjWF46BhOdRJ0mYpLmJeTzX1qN+HS6bVwhRJdg3+POe50ELTYl5XbFMPc+zSTGlFKQBrX3fr+lyclMewWshGqQLwOjGNcaS50EpDc+r4uRaMrfpAztrGfsU7H/x+bqbCzByQxu3yoTZ6WCfyvdq44TlJqIwxHq5MucgkWUpRqMrzGcTTKcTnJ2fotNuodMO0W63AORIkhhXozO8fv0ChcywvTcwLHpqAlKUOUgHM8f1bIqykPB9zzLytDQlc0UBt/sfz1w7TwVMnEE/wo4tXmaatp5bwVfjkfEHBp147nJZXhgGaLViBIFv57odQzbp4Rz0G7ZvCdjkOGpFiSLLkHlUQ5qlKXRIpQICBpGXCqosURqkTjFtzLTlFIICGi010lWKMi9wrjXCMEAYeEbTYgmhNQLPR9tk2XlASlOHSA/xZhmJa5SBOq3S3Yepg9aAG+eHWQhM/eOMAg+MCsSiayPhPaqfvp5dGydJQyvYFsa3TdDmgGt+n2uUreEPKv2RTqeDTqeDbrdbY2EVJmBxr5d/XBFfAI7Tb5+28/mGRVHczJDdtoDWwCbNCL/zIX8fH7r2PaICDtj2O+eqoaF40vJR2HC7QJM5DqyGoTAOaoIwCHF+fo6zszMsl5UQa7/fRxD4ePXiBUajK6xWK6v/8P0PPsD29jZ838d0OiWDDmJlaa0xu57hH/7hH/D48WNcTiboDLfQ7vXQSlqYzeb45OPfQmmNDz74AXb39rGzvUOlGVlua7FdJ4aDbSoR8OF5VRcPrbUdp3U3xQVl68/xdkeniexQ3bsQgjLveU7Ch3FsykxMNw0PiGIfWUbZ8RcvXuBn/+NnmIzHuDo/Q1kU+P6P/whvvPUWtoZD7O3tIU4SDLe2AADL1QqpKUXiAAOonB6e+zbA9fyajg5vdlEMCFCxi7+u4CepJJBTNwjfo0ACSpHektS2EQEDewwu0WJdjSVuHcuGX6N6Xu7cZhs0nU6t7pAQAvP53NRYaxvY9ft9aK0xGo3wT//0T7i+vsblJXUr3N7eRqfTwXe/+138+Mc/BosPvnr1GqPRiFrQf/IJRldXuHP3GIdHd2pAOS/+vHCxjasFwA2nOk1TXF5ekvbDwYEtedFaY71e14JBBl601uj3++j1etaGpuka52enkKU0AsERFqsV0jxHGEe1Ied5Hu4cHeHo+JiATSdIBYDr62vMZjMLcKRpiv39fbqvZj2YjifI0gzbO9S9jQNZpRQW8zmyNEMQRAg8WrN8QXNHmdI6om9zNx1hA2YIDZiyhLzIIWWJxfUM15MptIYFPzLjKC0WC6zWa8SBj+9/9x0sFkt8/tlnWCwWePTwIY7vHMH3CRT5+qsn+MXZL+B5Pl68eAEpJQ73t7A17OL8/Bz/8ot/wXKxxNRQv9948w1sbW9hd28fu7u7lp1CosvXtv0zv/L1c0Dh+eQA9Xo9m1FMkgRpluGVYXdaeryggJkzlUCVXY/CCKEDTEgpsVqtamwEWRLNvXLCPNKpcRxQd52z89pxsG0gwML/vHainkxSWqNURnATdAwX4OU1lEsu3eCX5jz5H0IDgecBBqAhIJdFnKtgqpbg8YxDLzavh/zdHKRoXWV8fd9HSyeIo8jawclkgizLMBgMSFMwTZFmqX0uURTh0aNHhuG3wsndE1xdXOL05Sv0+308f/bMartxcpB1h5iNx68M+LBmJANTTbDDvXbXZjQ/swmwIKCupb6P169fYzwew2uUjiwWC/zt3/4tfv7zn+OXv/ylZQlub23ZshtKWJJTPx6PLdu73W5bW5VlGXKzTmVZZrXs+v2+fc7r9RrPnz/H3/zN39jyeA5s2E9zGza43ejYfiqlbAmIW7biBl2bgB73XtaADE1C0gKAUsQ4dINO10+8DQS67Xncdk7ftLn+qQvINPfZBFg2A+YmwLQp8Gzep03nAlTr0u+7DvfcbgOaNgINzv6bfPNmjGEeXe2a+DiWCWtYz+4+TWCMglDHrgAmFV/fz5XwCKRE28wrrv4oyxJ5mkErTX4bgIuLc1xdXuL4+BgPHjwANCwzaD6fQwiBne0d7O7sYjabodfrWcmINE2tvYgTYglzPOOKRCvz3X5YJeXDkKpdFqs18iyvOuQCNUa371MjCs/zsLW1hSRJrN/H89MFlXnzPM8C7nxfx6MR5tMp6SoZbcLt7W3cOSRfiBv/lGYN56Q1J5aEErUxArOG1OZXSb5fUZT0fDiW9QhgNuGFLScsHdY0rw9KE1itCUshqRhdiWYzi5jvlQDIZjpjIQwCSoSbxBqDg/zsOCmkzffGrcSu8e02JS6W6xWEJ2yyNcsqn0HrKmbeBDLxeWwibLhxqwUkHRtkwTLft80X3L/ljoWllIjbHQRRhPVqZYAVeubdThuHB/vI0hTtJEK6XqPXTbBcLjG6PMP1dILtrS76/XtIkhgHd4bodNp49923sLOzhW4vwM5uG6WUKMo5Fos55osreJ6Pn/9DgU8++QjrdY7lKoXnBYiCDtbrFFeX5whDD2WZY7GcI03XhtFkujRCgdwGgcAnPycIqaLJTURyAobWDQKawtAkRgSx4TzPh+8HCMMI7VYbeZ7bBikcp3Y6HRwdHVk/D4DjuxG4Ss/IDPdvMJ3fGrAJgNW5kGWJwnQtKIvSAEeKatJVtXhyeYItnNPKIsqeoIxjWZSERitCD+MoJJQuywBNN55pyGFAlGlirSjH6N/MLrjOjJvd4gnjBvAVs8K3daNu+Rlvbt01wCCHtkY3z3Ok6xSr1dog/bQPO+YuHVmp2xyH6hx50rqOjOu4sNYNG3JXe0MZ3GUTq6ppHKp7Z6/McQ42dampFsJNTtWNV9DiyefUhKo2OU/0LdX3VTXPGsJ3KDgmGGqeoxbaBih8TPupeT8MQ8RR1WkuTdfW0eb7meU5xuMxhDDlXt0ejo+Psb29bWrc12ZckdYHNJCuUzz+8jF+9+mnCMIQUbuNKCZjXxYFTl+fwvOJpXL/3j102m0UeaWX0XxmbPR5jHpeNe4BRzTQCNShxu3ZDBjqDe9xnbp17oRXdTwBOeQsjMiBpdYawiPjqTQ5B9PJBI+/fIzx+Aqr6RSeEGjFCe7du2e7VUSmtTcHXBAEBLni0xpVmaplFZr532T9uPcqkMHGMQGQDZO6hEBQdbhUld2C1mZIVVkua1ec8yKgk4LeUlbNBdjmuM9Pa2KaCFG1AM4yKtvzPM9qMLEt4tbqaZpiPp/bFt9bW1s4PDzEyckJwsBDHOxK5fUAACAASURBVAhEYYDd3R1D7V3g8vwc/UEfUu7XHGB2vtzglu2bC8q7jjiDC+ycuvaFnYKmY6g1lYi12210u11sbW1hMh7j6ZOvqQ17GEBpZbt2SlW3BkIIW2JWliXysqg5ndzinKncTNvm8wdgxcUDE+i6DK4sJWesnXjwQ0d/zzx+aFA7XpPMECBxUC+gEk5FEwSyoLbH6TrFemlaxZsgcT6bIc9ypKY7TOB5OD48wGg8wWI2w2g8ge95GPYHiOIAYeTj/OzM0MaByWRCreoHLQBdzGczPH3yFOfn5/jko49QliU++OEPcXDnDt588xEePXoDWZZZZhgJXta1LOpaaJz1AgaDAXZ2dqzOwmq9xjpNLTOqLEsCmKMQRVFY9hKLwbdMR0Ae025jDgtAOWATj5/Qr6+tbkciDuCNYliVgDGgl9JVho8zzTznpFLwytIEBDk50k7w7DrxbkYcbrAnPAih4XselHC6RTn2xx2vN5xtwHTgrY9tPgchDPMYJgPuzEVhGDisH8iBL58rzzn2ZXZ3d9Fut/HO2+8gjmI8/foJ8jW1SR5PxvA9v/Y8OOBjgIXnE7PfmAFkr/kWYMC9/iaw0FyzoiiCMHbt4uICnXYbg14FAKVpit/85jcAgKurK2hN4qiD4RCesZn0nOg7l8sllsul1TrzPM+WGc+mUyrdNYk4txwwyzJ4nofJZILxZFwDVTihweua6yvyOud2XXLZ7u5x3GfN92fT1vSbuPU6+Vuuns/N/f8jW9MX+4/8nbseNAP9TaCWvZYNnzUBn+Zn33Tu/5FzBm4ysJrf755nE/y6AQSazc5by0jxzHjczPKy9w+Gte/YkSbg1QSbGsUbACo2iv0xCSStNfI4RmkYtqlaA1qb0l6N+XyBLE2xtbVlkj8hlfLqqoRpf3fPahsx2MNgBfsrYVS1uWcb4sYpNSBdVHpvrIPJAJTrI/G/maXM85WZObwmuF38LIhtfHT2iYUQmE2nKPKcAB0Te3Y6HfT6fQijaeOW3TGThBna7jN3x7Gd31rb5jFSySqta0ryUB8O9tjaxCjWz3LshQAgAgNYG5azcu6lTaCaEcK/a6XQMnaNyhIJ7JBS1TrTgn0/UekqkjZsXo07E4+63e/MKdeIGJsAbXf9a84tN4FkwVcnZnFjW3fesX+ntEYQRfCCgFg7aWrYuyHiKES/10URR/CgkOcdBL7Aer1CkS2wmE8III07iOMQvX4L3W4Lx8f7ODq6g3U6Q6lIP/TJkycUu+cllALSLMPzF88xmVzj8mqCMIwxHOxDK4HlYk6xjmFRFWVubHal3ejeNwKVWCaH4/s6FsH3ulmKS36IAW9N6Smvc5wA4Q6vy+UCywU1gSnZf7Xd2m2RwP9fwCZu2wwzOGlSyLKANKwKe0PNfqS3wMaTAzrYoI0fjhakf+IJQEtq4amUpAyjCbSgNYmaCm4VXtWsuwvHbcAFUInducbKBZsYgHIzCM3ju8f1DD3N93zzYD1CIoMQUioooS0Lpbor9FM5tZUTVQeYFHyf2AsMl/seOdwEhERotdpotdqI4wRhaOo7NXUQALDxGvh7msCc+5zd91jQ7PeOjsYCXQeaGI033cxcI47Nz83e5w30P2n0CuzCzdpXGlXwoRSUS2E341CAROYgYNg6BRbzOelzSInAI00eZhnlWYayKLCzs4PDwzs4ObmLXreNOAown0kURW66jLWxWq/x+PFjPPn6ayyur6GyDHfv38fewYHtaLdcLdHtdREnCQ4PD3F0dFQxeLRCGBmGoFaGxiogPB9hRMLBbjt7FzykbOhmp819RrrOLat/jvpaqUEBG4/ZMI4QmIDE7QayWrXt2N/aGuDo6A7e/977xGy6OKdgpt22zn4U0XGSJAEEECcxojSyi4znmXbhbC+crbSGlku7KooqdV6QVMKgqegyNCALi+xppo8DdmH3zQJsf4Iqa10DfjWPM21Zg2w7XEfLDdRYC86dY+y4coDJC67bDW65XML3fRwcHFgAKk1T/P3f/z0+++wzvPHwAT78wQcoSokf/+iHuH9yF5//7nc4u7gAhIc8L+j+GVvT61ENNzFultX8EiT+SdmSFcqywHK5QmrK0Pr9gQnCPGNXJITgrp+sxdCG53m2S+KDBw9wcHBgwKYhXrx4gY9+/e/I8xxXZ2c0hoMAh4eHuHN0hO9//wP4vo/Vitihl5cXmM1mlKVLUxJCNkFlZpyhPM8tpb9lRPk5Q8faM4vFAtPJBLIsKeB07j0PeK0UIDyab6yvIVlLxYPwfKsfRELrKWTJXQGpy5owc0tJE3BqAhGGgwGiKEa/N8BylWGxoCxvkefI0gxZmsL3YiSRj0Gvh/feew+rFTEvXr58iadPdrC11cenn36OoiwRRRGOTk6sowkQ0+v58+fUwWa5NOydwgbs7ORzgMDjL01XkIpENRk84q5Ai/kcK8PUZUCHWVtNcVclFaQna44qzwcLXpSlZWxasFNUHf8YcG4Gfi7YJEQlmM2sJqUU4/vWeVO6Eq1drleQUhL7yrkXDCwwY0kp0uVhhpbvefCFQKfbrQmAckiotYZihpth2PAc51VPa9Lv0dqsOYblzZlyC+h73o3zL4sSAgKLxYIAlNkMURThejbD9ezaAuDtdhtJnKDTaePs9BTj0RhlUaDb66LMS5ydnlmHlO9vHMc1Z5Xt0P7+Pvb29jCZTNDpdCzA6wbIteC4ARA0fSMXWMyNUOzh4SExG6MI7aSFNE1xdXVlEzxsQx48eGAY7CWksVkA0Om04Xu+7RbLTD3Pq8rqyrJKQPDz5W58vu9T6/MiR24E4tketNvtWgDgBswc1PPYdbP5m9g87j1x753LbKl8H2b7U1DAgbt7j5u+Gwfr7vsu0OWOrya4s2nbBARt8hdv29zrvM0Pd49bA002+KDN95qvTdDIfXU//yYgy93cEqDmfXGP3QSKBHwIUa964H/bH+eQbhBuWUEGkOKSF2v/RPVcNs0tIQQiY4vLVquhb2caYgiBLAhQGH9tuVyiLArEZjyvVivSfRsMLEPw7t271u5w59rVihgwvrG9zJLm2InBE5hrc8WjldL2WK6/atmiQmB3d7diJwuB1Wplk/dsgwaDAbrdbtXRUkpMp1Ob3JBSIl2vsVgsasliLpkWPjFLCCQy95OTqzxmwGL+qGLUxsbxDCUZpV2LYABA4XnUpTykjnXgY/HnDbAN2rUd5jOT5ACqxjClJm1atpNSStuplata0myNosgRRZFlMDObJnCIDlTKXNp10k1kuyAh/V6vFLJ/L+td011b4RIrmoxiHrs8DxiI4pL25ndIWcJXHtEbtMJ4PDLfpbFeLZFlGa6nEyilEPjC+HgFer0WgtBDFAkID1ivZxAiB5AhihTu3z9AbxDi6dOnGI9PsU4F4jKE1tyB0UN/0Ibne1BKQJYkjbO9MwS0QK/XhecZzdIkRilLG5dtsgfMNHLX/ab0TRCQdAqJ+hP7jUG6MAggjV/l3u8goPLXwumSS9381vD9CL4X1fb/pu1bBDYBQmizIJKYoixLyILApmqy8jw11GBGnwDDHKgyOfSWYUsVpckYe0Zjw0cUhgiEQGIcZTugwRTWOkW4SX11Fxx3EnCGnqnj/OD5tbm4NhfR5uJHg8yHJ3wEQYggKCGEMtlxH9ZtFowAe+Dsad2meSawYWaYgjIZFHK2A5OdTBDHCVqtNjqdrqEWxmBUk40fa/64iyVPaPfVvc4m5MDIa7XdzLZ9E9Bkr8wYRncBVebZ07+rTjCbHAj3612xUrvfLY6OvU6PwbpKaDFNU0jDarq+vkbg+2gZFlrOtNQ0RZEX6Pf6eO/dd7G/v4der2u6PZFDvr09wNZWD7P5NT7//DM8+foJFpMJZJbh3t27eO+DD1BKjYuLCyzmC6oj7/dxfHyMk5MTnJ+fYzKZwBMCUUQOhJQS0CQqH/geoihEksQ3bgeNa88ALjdvV/NZwT7j2/arO1ks9u/7PiKTSeIgkUtH24s2AA/tdoJ+v4uTk2N8+OGHmEwmePbiBdbpGkm3Y3V0YiPGx3MvMXo+TAf2fR9hHNlAl6+TgWbeh/+eqdT890JQeZznCcuGDA2LpSyp1prvsVIKQeBDRxEiwxAM/KpO2g0QeHGkH6csaEP2n+caB+fumGWbxUKZ7HS5gdNsNrP6TEopPH36FIvFAo8fP0aWZfjLv/xLDLe2sbO9hf/tP/0xZvMZ/u6//z/49MsvoT0PWZaT5kwpEUURdnd3EQQBzs7OMJvNLSOS6LuRWfQl1usMZ69JSHhvfx+P3nzTOJdUw68UBX5ZRmATs66SJMHR0RG63S7eeustnJycoNvtYHt7C51OG0EQIM8yjMdjFFmG+48e4e79+/jOW2/hT/70T/G/qHuzJkuS60zsc4/t7ltulVlLV1Uv6LUANgGCxMKR2ZAcPYgPY8On0fyFkf4Hf4OkF76NcWhjpIEGjRESBwJo5ABgsxtAo5fqWrMqt5t59yU2dz0cPx4ekTerizQ9tKIsLbMy48bi6znf+c53giCgtLPlEj/+8Y/x/OgIy+USi8UC/X4f29vbiKLIGuhnZ2cYjUYIPA+NuhEo1wQCzmYzrFYrzKZTEoFPMzTqDUtbllKyhUnTQRT6WNphzFGiuKmyapzYeGVS1aYzW/KX4XgGJmD2wkGvj63tbXS6PcznK8zmS6zXMZI4QbxaYbVcIgwkJGrodbv4+te/jrOzIX70ox/h6OgIrTZFfBeLBbGKogg3b98mR8OAmKPRiMq+Z6ktgQwDaLTbbavVw+ezsZKkiRURXa/XFmxihtTaMMkY0GFGI1+Hj1wpCAM0rdfrEojK987NnCs5l6BG47UEgAWpqH+0BXdc8CKKIkpf1YpYTMbAYyayBizgpKBNu4V273HXQwJYY2O4U+Vb97ki41TlTr9qdp5WxAxaLGMLerpOlrsPSclVi3Qp0AIYZ8CxTVLDmFN5jtmM1oLJZIIgCIiRc3FhGUm1Wg2eJADl2bNnGJ4Nkae0V00mExw+O0SWZtja2rJMtFqtZnXhGNTwPA/7+/u4ffs2hsMhms0mJpMJHj58aNcm/nJth/K+Ud5TXFuKHc2DgwO0222y76SHk5MTfP7551aTyfd9vPrqq7h16xYWiwUuzs+t0yGFRLPXQqvZtKzQLMusw2s1ShxRev7iPaHT6RDoupgjzVL73FJK67Cxg83rOo85F8ypOl5Vu6PqaLhHGfzRYMEWT3CggrgwboWnKuiwCXDi53NZBlc5GJsAmOr5VXv3y0Abt82vAprc/7vjadNzXAVEXfWsm+7zIsCp2qa8X191T76+29a+J+F5l4PRJV+ELlb6GzNrGCRhTZoCaCrbctX3ckFQISWxeHRRsEUIqqDlSQ8rn0usU1q3AAX3VK4sqNRpt1GLKGBz69Ytaw9z8GKxWFCKukmLrZm52mjQnhrHVNyAfbISGGj2UwaDgYIZx0VtdnZ28Nprr9liGxy44HVKawqG7O7uotfr4fr16yYodVbsVyadbLFc2vsz2JQkiS0wk5uAEgAIik5bsMwCTcUgKf9s/s9s2SzPkbE9YcAkDpQy2FSw/4s0KgIqzbhQCjlrGXPbSNZMchhBORXlYmBIGbZ/EAR2n8eUSCAMjgOw93WZvC5jTCm+TrnqGVfXjqKC2eSueW5VehfM4HWf91sXkOKxy6wmACXQyp2XDDTleQaVewBIA/p8eGaCiBd4+uQx1us1Ls7P4UuJG9evodlsoFbz0O024flAEGqrvaRUACBGGGncvXuAtxt30emE+PjjDxAsNJTianEhNCTCqIlOp4Plco3jowtoJbCzfQ31ehOdbhtCENhUr9dswZhN6wZVv82glARJZ1GKHBXvSW27MYgLlSDPC7YZz3V3j+P1hdn76/UKiakmyxIXQaAR+MKkjV56rEvHVwZsEgJGL6VgL4FBI00ZxoazQyyfCieFIoIcAc6hFTNN+O9moTeCjJyCRrcxG4KJLpNTYGh6eXaJcul+8ecL+mtFo8FxFnmQb4qkuN8tOisAD4A26KIf+IiT2Dg1yjp6TM/m6/FmIUzeUrFAU/U6npBuSUoXLGs2m4iiQiTXFYC1E/+KyAi/xybDG+CNtPi7m3pgr2vSMC6PkfLmzk4Yn6pM6XW7OStV6OpwhIfbevMwLJ5DV0A/XTCa3O+8AHhmckvjmCitsZjPLUChlIJ2WCxszKpc2QV9d3cHvW4XmdF08TwPtagGAYk0zTG6GOOTTz7Fs6eHWCcJpOejaVKJhucjXFycQymF7a1tdLtdm+LABrXwPANIulHA8jh1xxH3i7sAVcHConOKtrVtWOm7jYdw5qb5HDv87CAw20lIiiLU6jXs7e0hCEOcXZwj17mlSbOzmpqKREIIy5CiykUhXcdEeaIosuPFGmfGkGBdoEajAd/3MDUAAAPhPJ+VUvCksGxLa1iaZvF9H0IDge8Tu0EUBrA2wAGDEcoZq9LzwKA6rzHVFAPeZN0U3KJqnG+dITZQmf7MgssMeDWbTbt5x3GM4XCIjz76CPv71zDoU4WOd955mxgdiwUWJrWL22p3dxf1et2mmDHw5j4r3+/a/j6arRZu3LiB9957Dxoa4/HEgmCsC5AkpMWwvb2NVquFu3fvoNPp4tq1a1Z/ajQaQUDgt9//bbxy6xYefvYZJqMRXnvjdbz+5lu4eesWdnd3EccxPvnkEwyHQwJlTYSy2+3a53aFLzmK44J12pkTvN7HcUy08ThGwACioDRu10mgaplcgKFg0fgmfQsg2InLPHPZ216vR0Ce5yE0+lPxmhz5/qCPTqeLQa+Hw8NDzOdzHOzvY2trC4NBH7UaAdtZboTZDauGx1q8ji0YxKkINNZ921cMNCsVGGCzAJM5ugvAOvw0PguheJ6LnucReJxlkMZY5LHsgii8Dth9xrRdNXLJ7c9zyN1jAVgxWZdVwPui53kWDBTOZ9y5ImGMe88jgxq098GMAw2q7qJ9bYV0tVKF1pP58oxhT2NCUjQxJ30mjwVBVcF2U5kRlnYMaBeMqQIAJcdZc6DMAQ6cdYbHn2VVCnquLM1K4JBlh5r0AiEExqMxhsMhid+nKVbLJXzPt2L/rD/ETCzuXy5PzTpRXAiDI83cLy7QtAkkcEEG93O5orRSpZTVZOl1uzZ159GjRxiPxzadj9MHWcvDvddisUBi9mou286MPV4XgsC3EX9XyBiAjdYDBUOAr899Wd1Tuf/c8Vyyh5w54do/VSDDbadiLtF3KcrsIRfQqAI9bnu4be5+d5kTLwM4XXXOVb+vvnvVxqyCRS97HffZNr33v+QZrwKarvr8pnvyO5b7X8CTl8X2q20hDEjhnuOOHyGIMeShYEgxEPFlh2sXsoNfN5qK0MQ6DU3RAN6LwyBAyzCROSiwXscYjUaIjLSBUgrNZhNaa5tKzUyjUACRV4MvCv0y3ouZHZzzXNEF29h9X7cdtdY2hTvLMqtJ4/pvHKhmvajBYGALAHD1TNarYWCY14PZbIbRaIRao44wipArbfd04RV6a8xEL/W/Oz4csKkKLJbARmd9ZFCluie4gDAVEhDGnzGFDEThd+UGSGQRcUuMMDYMB9AIKF9Dqbwc+DDPzVlB3O6Wjcb7qCzbvNyfvC7yfuCmu7tjcNM8cL+7vi/v8/x3yxx2fNyy5EwBbmlznjIgIrRCs1G36WqAgu+FiMIAEDmgUwAKUiholWE0GuL4qIbdvR3UmwGazRpuv3IDk+kMR8dnWK8TAAzaCnhSIAoD9Lpd5Lmm1LkkRa/TgZQU6A8Cn6oPWnuMbLLCZwPNDcW+1Ob9ku2QVNCYUFoDWZHyWegvbS7coXIFLWDbSsCHADPPSu7fxuMrAzZJUYheAQChQUX0SALwBOBJASWJyUPnFdfgQcxUZykFoamCysqSjlORGqVy42zrojxwnmfIFLGGMhOhpVSepaV8MiLOjptr/DAayL/nQV2lQxcAUNGprsYJbyKQAn4Qol5rGge8hjiJkaYZsqyIHAKOgQ6ujqIgRFEqlhdVFuLlND/WHWHnnlJbatjZ2cHOzg7CMLSbBOsbMEDgbpL8zq7hz+fQwk4Tu+wcqNLn6RpXg01XRYaUBpI4KdoWsKym0mLtDhmtL1+PQQJRVGarAjDcnvwe7HCzGHwUkU7T0ydPbInNPM+taG2WZTg+PiYB5JyEQw8O9vHee+9CCIHlYgGlNKIwQi2qQwgfs9kan332Bf7iz/8zRqMRJosFgloNu3t7uHP7Ns7PR/j800+xvbODb/3O76DfHyDwfSzmC6xX5EyKKELNK0cs2ShwBZ3ZiM6yxBjFKdK0cDIF70yXOslEUl8C5eZDCmlTPwBYsENrjW6vByFMNRPfREY8oDfo4b2v38Pw/BxHpyfItcLW1hb29/eRZhmSNMViucSnn38GrTUSE9kJwxD1RqOIRokCZBmNRhaA4KjazZs30Wg0sLU1QBRFODo6wtnZEPPZHOfDoXUYaHxoBNovDAthNlkhEdbqUKFCo1ZHLSzALTaWoLUREmTRT6Ieh7UIWikS5TTrSrVSCzssvEEzONZoNNDtdm2aTJqmGI/HVkeBaePM2trf37dOU5qmuH//Pp4+fYo33ngDOzs72N/fx7//n/89/oMU+Iu/+C/4q7/6gV172u02vvGNb6Df71sGiisiyalPBwcHaDabaHzta6jXanjzrTfxr/7V/4DJZIy/+Zsf4eTkBKenpzg6OrIG6GAwwJtvvond3V387u/+LnZ2tm0647Nnh/j888/QarXwH/+X/xVKKfzlX/4X3L//Ob797W/jm9/6FlqtFra3t/H48WP87d/+LT7++GMLrty8eRN3795FlmU4OzsrWEkoUmvcNBkppTUSOBI0m80AwIqKb29tkQhzkiNPjXC0NZZpYrgVSS0VP00tQ4cd8jRNcffOHfzBH/wBOp02bty4hsD3kWVUuIDWHolPP/sMP/5v/w1RrYbf+da30Ov1cPv2TfT7PeRKY53kSLNiTHKfLJYLLAxVfLFY2PLELHhOY40AZnY2aNksUrwYyJ7P53btgwDCKIQf+FaMMzVRMQBWA7AwoJ31QMrStRkQcQ1GNz00yzJKSzMOiF2fs9yu7zxOL2mIZbmthMdrAqfiUlTdhxcEkJ5EkiaIjV4Hi8qHAaXGRWGEKAgRGw0tN4DSqNcpvdu85lrFWK8MQ8ujik9c+TFLUqRxYh0sZfYxNzjEz8lz/pLDa6hTlmVsnMs8TZGa9b4QXw/geT7W6xWmU8+KfDObUEqJ+XyO2WyGBw8f4OGDh1AZjecwCNBtd+xa6fs+xuMxptMp6vU6+v1+KZ1uNpvh7OwM4/HY6sVxXzIwtSngUdh0hd4g96Hv+8jWaxw+eYLVaoXr16+j1Wrh7bffxve+8108ffoUcRzj6OgIv/nNb3B+fo7FYoHj42MLvPL1lFI4Pj7CcrHEtWvX8Nprr9l54qZ0txpNm1bL6wMDWW5Qo2bOYfuIx4WbpsLrjVspyw3suGxt11Hlse86jJvARyFZisHV78jBVXuZYeUCZDwH+Rm5/V3WyD/3eBEotemoOtvuvK6+Y9W2c+/nBmaq88QF+KqO8KafNz1j1fl1+2fTs7l/rwIPrl/A89rzAstsctvFBSiY1eiypHkf5zWIxbfpmgbYNRWnq9euto8H2OBDo9HE1tYW7YkzYi01m02EvR7m8zkePHiATruD1+7eRWiKCSmlMJ1MMLq4wI0bN/DKK6+g2Wzi5OQEYRji5OTEpNHR3tpEE51eDwDsuhInCRDHyHOFNCPVa2bmK1XWDtzkJHc6HVy7dq20z7MNwKAx20t7e3t49dVXMZ/PTVEfYkNdXFxYEJqFlLMsw9OnTzGZTLB7bQ/9wQB+ECKqkdYRg01sq21a11w7vDpmXADJ7R83GMBjhddadx0NfB/QAkKkdqwQuxV2z0vTFNCapB0c0I0DpVpTkYQ8zyA9gdBkBNg1R1PWyNpqMfFazSAGLJO/eD9ObytkLXj+cEDCZSK5KfBXgcKuD802lVsQhNPcOcjKNhi1gcDCVJzTWiP0fWilEK9WqNUi3DjYJ5BHKAgB1GsB2u0G0nSFdbwEVApPEDPq/me/wcnxE3zjt97DYKuB3Z0u/vW//j7Ozob44Q9/hOViamyqHNIDfD9AGDaw1d9DkmT45Ucf4+JihF6njVs3riMMAzSb5LNEUUBFzsyXb20a8imlkFCS/NbM9+F5HICmrCfP8+FJASkT5CA2fWYCg2wLuGCcuxdTv9K6wrZ9FmlEOZAYW0V9yRL/lQGbdEVbR6D8Mx+EvpGjZtdGFzBwN4HCPy4YTnayE1IHcDU7ZjaQqGyudEm7wd303E34KvDDPR9AZSIWuh5VY4M/C8BUP2LBctokgjAwjBoPvl8WMQdQMsiqf9u02bpophvFKJUmLqW9FaJg/KybNlO3HcqbdqEd4L6r03Kl6111zSpARSk4AOsqwd2Y7d5s3qUS6WOGFB9SFNGiar9KIWxZ6ermzBOUAYN4HRNIaSL7bNSy8bpardBs1BFFDZMqRPTjWcbpVwSyJGmG1Ig5T4xAaS2qoW42YwaEOFpLaXRtMqbynAC+yvOWx0G1nU3sXpc3RWEcGSdebq7Jsf7LBt+m+xX9iEufqUYhLCIvBRaLBcaTNebzJc6H55hOpwC0BVCjKKIUF1NaPTfAJmvlAAUjhe8XhCE8s3mzY8S55kX7lOcHj9/S2OZvzthl433THKH/ENjKqb/mVzb3flPbuU5J9bouDVkIYas/cToTAOvgVDdulzrP4tmsXTIcniMMI9y8eYBWq2nTl9jpSdPUjmcGSbgP85y0DhiwHgwG6Ha7aLdbuHbtGra2+uDKJLy2uiwWfmZ26khbipz6iwtK+2HwzPM8tDsd0huSpL+kZzPkaYqz01ObamUrPRnGBRte7nrNY4Xfwe4b3EeOxoV6ogAAIABJREFU0ZjnpNvgeZ5lj7j7jttvPC4YvGFWFANM3H5aqUK/x6zprSal18ZJjjx35iXIeIw0VepjVgb9vRg/PBfi9ZqYKYEPz/dKbcIgH7Fdeb13BWQB1gZwHVJ3n6N3LY9dOy5NdA2V9eESaMLzBoqqjG4417bNhv2G1zs38OHuka49YEv/al2qXqPBhjFKbX1pT3Pe32WFALAMabuHVt6D5rGy57njkO/HexEfbOfw+KquQ3ZNvbS1XmZZ0NjJC5FspSBkJUqtlE2RoyrAElFILAC2E/h9Nuk3aK1tMQJOja6yHt111r4jir6uOpHFOp2D2dpxHGM2nSJex4CgdOpr165BCIGnT5/aqpZUeSiwhQm4HziF2g3MNRoNs9aYCnUmXbbUR87aS+ORggzU3peBBxqfxfdSnwCORk0lcs+Ljy5sGWL6CyinzXisubOpmLtFn5T39henl23az6s23FX7fXW+VH+uzv1N9mP1Gm6bV8+76thkr1/lvL7ssXFfx+a2qB7Vd662MTM62Y6o+ghaa8CTG+cHH1U7wd5XFPd3/ZHSMzi/E4K0PLkKHNtRl+ZjTvp5udkvPM9DmhQpUbzOMLOJ2ecMogdJWAJBgyBAGARInOICLlOQ77FpPrrFjRhcqPaNTRszgPByucR4PMZ8PsdisbA2DTM83fWCC/8opdDt94p704Z5pQ3s9kN1TF5aJ/RlELM6P9zxUPg82tnjSLu3kJipzhVRau8oimygXZt1Mc9zkp0xbWVtTWuvp+WxIpnx6ltdW+fNnfVo85zd6HvJInV603nuWKz+zb0HX6cEqNgnK1/X93zUa8RsUnkMwOg4GmeTyC8ApeEpxMka/kogjtfI0gRCAK0WpWZ3Om0slyusVjmSVEPlGVKVIAgk/LoHlRdsL9ffyo0Px88lDcuqAMmN/SEBoT2TwcNta08xtqko9g8hADiVeI0tlJtMCq6qyDiBMjbK2hR4kTJAGLw8ueArAjZpaEViyBx59zyKqkpZbJRCkGhdEIbIshypEZCVRpBZQkB7gK8UlMdGHOmyKEkVWizlO02wWlJ1sPVyYYAlOjczrCbf923pbJ5Aypl8vNBxXj8b7EDB0GADh40YjvK6DKO+KdFeBaZqJoVNa40spftFYc0KfQknHYcoogtjMJHAMQ+0woCTyPOi1G4Rxadol9YCvq/QbBapJKvViv6uyYjxpAcZSORcitFxhnjy8hcbzwVwALvAVLULACeKmZOAGUc8ObKidaGBwZEJPsjgDMj8MtRRD8Wiz6krURjS9yiC73mcUAauskDtRG0Xm1LfWV6Ua6aIJVWLgiLxdSGIOdes15FnOaazKZaLJZ4fHuLp4aGtjpOlKSaTCVbLJY6PjrBer/F7v/e7eOtrX8Ord+7AlxKxaXOllC29+uz5EZ4+eYpHX3yB5XQKX3q4d+899AZb0Frjiy++wPmQUujq9Tru3rmDXr8PKanyBm/2zIpx+55Rcs8jK1apDFl2mb1FzliZmgloW0aVWBNuCgR/HhbM4i8aW8bZ0KRj4rHDRxPA9qsQAmHoIQwD/D8/+TH+z//6XzEdj3H85Cn8MMBr776LwdYWtszXySmJPwdBgP7WAEIKnJ+fI16vrXgviy+GBqSIajW0Ox2kWYajoyM8efIESmucnJ2hMZ+bdK4QFxekX8NC01rrosqT2dTI8RUI/QDtVgu5yjE8OzMRm7Wdj2xYcMokUBg+HLFK4tim1HG7caoKp6rxHGHHaTweYzabGUbWljXi+Pk4pYnXG2ZysPO3vb2NXq9nK9bFcYwf/vCH6PV6+Pa3fwf7+9cwn5PO0WKxwMXFBRaLBf76r/8aQRDgyZMnOD8/R6/Xw9bWlumrJ8Q4+Hf/Du/eu4ed7QEGvQ4ajQbqoQ+dJzgzjKbEVCHlCFWWZfjggw8QhiE+/PBDhGFoAZksSxHHa7z66qv4zne+g0ajTmzULMPf/8M/4Cc//SlWsxkujo8RhCGu376Nu6++isWC2DzPnz3DB7/4BeqNBq7fuEFRVLO+sM5XHMe2hHPB7NGkksd7QpZhatgatSBEUk8QeCF8SSmgvtF8qgYBut0uOp0ODg8P8cUXX2Bt1huec9yeP/jBD3Dz5k2KFjfqGA7PzXhKLJPsxo0b6HQ62NvbM+WlM6xWIzSbdbRaDSwlMT/nsxkefvop7n/+OW7cuY2d/WtUUceUpH769CmUUtjf3zcVhJpotZpIkgTj8RiAhu8XFPQq0LRarQzYQV80f4t0TaBg83EE0/d9eIFf2vvsmlMBn9nRcJ0oTgWwDoeZ43CMdcsWMnMIAOpRDYHvo9frodPpUFljo+Njq95hbVNapVdOL7J0/xWQZhmCIECn1aZ93rBdlsslMQ6NQLjWpA8CrR2B6tzulW51HZj7ehAQWgM56XyFRnDfkwSQKX05ACal3BgwUUpBV3SHFnOqKCXMGu55PqI8tJVCPc/Du+++i3fefgep0QOTUiIKQuRZhsePH5tKh9ruMbyHsa306NEjO4eY+XuZ0VwGbVybwE2PYDuAhYVv370DIQSePXmCz379a4yHQ2Jedbv4wz/8Q8tG//jjj/H86VM8ffIE3X4f+zduAIBlrVPRAzKmR6MR3njjDfzJn/wJVqsV/vRP/xTHR0fwpYd6rVbSEKub+c3OtB/48OGCiRpQlKqi8xy2wAoAoTWU0S9hB9EzkWihNVRKTA7tOAQEQJJj5AkB4Qdm73aCbBwIUgpCuoBdOTXODbzwd/fLnbfuee7crwI9m4CcqlPsMsqYkVFlcblBADfliZ0izxmfeV4IzvPBtqX7nu4abAODVwACLhjgft90uH93n3UTeOoeVfaA+0xJQrZ8o9GwVdy4vXktq3kevLCoyujew21L18awwSxRBHI2PQ+0Lsab+SwzXtMkQZqYqrfzObTWVmPpwqTT9ft9RGFoxcUnkwk++ugjq7soBFVwW6/XWCyXGI1HaC7mEFIgqtXQ6/Us+7qbJJjN5xhNxpbZyXZPvVa3eoy8htbrddy6dQv9fh87OztotVqlKnfM7ux0OgjDENPpFJ988gk+/vhj/M3f/E2JqTg3NiC3C4NSSilcXFzA9zx0+z3cuXsX0guM/AEsWcFNo+M1zJ033E8uaLYJPHOzD1z2mhuk4/ezY1hKo/9KKccU/E7sfOBgQb1WQ+AH2N7extbWFnwDPKk8t/bSOl4hTuIS+SLNMmSGZcbrdBQRW97zfZKi8Hlee6X3cMP8LvOI0/MZWOJ3jaII7Xbb+oIMKLr2AEswMNDoBle5L1j0vNEgmRiWD6jXasiTFJlKEfkB2q02Ou02ru3swvME1usFsjyFSqkidq3modmsI15rjNMESmXIswQq97CYTzE8PUUQhmjUGvC2t/C9734Hk8kMH3zwazx6+JRSMMfHaDTa8K/XoZVALQzRblKBKCk04niFs7NTgxsQ2BWFARqNupVayA1IJaVEPaqRzpoizCDPNaAF0izDhQF2a2EEz/MRBM4amOfwPIl+f8ukMuYYDs+xXieo1RoIgghJohDHazx+/BST8QR37ryGVrOLCiZ45fEVAZs46loYllK64r3mJBNhhWlMPuzmZirasDaOyoFc5xz+s5u1lCTgmqVEX2catOEcW2E2pTV8EyHmo0rZdEEWF3Xl83hT4FLAXMmIc3/dqEX1HhzxZ+BI62KzcKOxtCBJSLlygJsyakzfCVThhYkXqTTNzLMXG5OL4Od5hiwtlwdl9NM9qoYKv4vLCJGy7KTQua4ODS1AVePFFX0DCuE3PjwJSOEb0JHaoHheYaOfURTC83wnTYTuQTTEsnGUspOuiREghSBRX2EYUroYm6Q35kEJRWXJV4T+LuZz1KLIbrquMGGSJGg2mtZBZCCOhOvYwZJYLZc4OzvDZDKhah81D1uDLWzt7EBrbXVuePElJ7GN9TpBymJv6mqDsGC5FM6ba6C96KBrKmghK4g59SWn3G2KPvCY5HiCkBKC7+n0hZQSnhQ4Px/i17/+DSbn53j28AHanQ7uvvWWNcZYAC9NUwsoSint5u8+szIgjm+cH97AWCA3MaAfAEqLMuwdBjlKRq0Q7uPa3/m+B2S6FDHng9sh19rmiQMF4MRONjNc4MxHnrdu/7HRwECuUpQ26FZict+fvzPgy5t1FEW20sjaMMSePXuG8XiMW7duwfcDJElqBZ/ZWD08PAQAjMdjLJdLdDod1Ot1rBYLJOs1sjBEv9/H9YMD7Gz3Meh1TGU2AtUWy4UVDGXHg1Otzs/PIYTA2dkZgEL4lCJxHgaDAVarlWXmZFmG09NTnJ6eYnp+jmcPHmCwtYU333sP+9evYzqdYmnm1Pn5ObpZuZIZ9wOXSeZ1ykZydRHBZG0mBr6TJCENn9ADZKGd5V6f25/ZFQAwm82wXq9tH3EAYz6fW8H60XiCOElxenpm9xEGkVutljXMfd+3DnYUMnVaUNBFKayXSyznMysCGkURmk1K057P50jTlByFKIJSNBZ4D6Pn9ksAsuts0rjUJnJe1q5xxx+fm2UZMXi1V7oOj23tjFeXNeS2o0Y5gu/q9FUDGeyUCgChX+jv8Pszw5Hna6aUqeIZwvMNGO4Y2zwXNWBBUiEEPBMVLlIVeJ1wynYbBpub7u06GYDDTjGMJdvm1CDGbjJrcMVxFu7ni8a/ZBe4aVue5zn6VEXbd7s9NOp1JHGMeEnrogdhx2aV2eU6ADx20jRFq9Wy4MBVjnt1nNj3cWwKdgaDIMDWdgt+EOD5kyd49uQJnr3yCo6OjuB5Hg4ODpBlGXZ2dtDr9XB8eIjlfE5BPKXsusr7Iz87i4PfvXvXVu6kCoqJYzelpWCjrf7l9in3pQGSbNjZeR+tjJwDnAChM6+gNRTvq/zl7LUe22yyzG5QKFcipvtdZuC4Y8GdpxZM3zCPNl3jn9ufVTuw2s+brl0F7N30WDeosuk67lEFYa86NgFOL3o/4MXV515kM7ttXawtqtT+7r0ozfYyi+Py+5ezG5whVAI+qu/hXAgABfV57fJ8A4yslJ0Hth/iuAD6JbH8eH4wk4lBAw6ozk01XOmRth9EwU5SSkF6Htbx2j6r1Ris1W2aFh88nlqtltVkdO0joGByc9Cf07c4gCaEsAE8XssA2MAcf81NIIqDZAzkueOW29gFEi/7ZtU+K88Xd4ywLXLVvLvU19KzWn7M2nfnE315NrWf2yty0tGAApiyz8b3AKxtwdf0Ax8RIiPTIJxx5wK9ZUKEyzZy57kbbHKfgfvRfWcGpvk81/bgtmL7kn1o3/fsGJLGr+PUsigMUItq8DwBpRLITGO9XiFNEoRhhMCPkHkeYCsKE1EiSYjMAgDNJlUH39vbQavZwv3PHlHav2H9+x75hgAxlqhqrYDWlLGyWi2xXq/sOKTKjSb4n7FfD5pzcBlyMFsNCcUnKdmooR+Y9iENqMKfENZ+VEpbsNWKv2tiOy0WcwDayp28JLHpqwM2ATBpY86iqUnjRymiS6s8hwblobNx5S6y1YkpzDVgUoLyXCFWKZKYIuKrxQpZlmC9TqB0bkTOgNiUvbalMbWygBTTwHngswPhTgp+LlfTgqNnXNmAnTWeXOx4SCkNe2KJi4sRjk/O4Pk+GvUmUdkbDUROipuricEOCNPVOWrAbeNJD/PZHIEp1czRkFqNNF729/fRbDZt1adms4lGowGtKTfaTXGRvijAPWdBBcq6RpedYwAomE3EToCtyiKEQBAW7DCOMC8WC9u3AEp6JwTa+Qj9GjxPIgwj40SZctMeqGyl5BKdElL6gBAgoXVtBVzzPMNysbT0/FoY0UJtNgtiahEAEYURfN8jtpcnsTZpPs8ODzGbzZAaUJGrEqZpgtiAjru7uxBC4JVbt3Dr1i00GnUkSY40pUlPY4K+nj55jJ/85Cd4/PAhsixDOwxxsL+P3WvX8Oz4CMcnJ2g0mvi93/s93Lh5E/VGA54nKbUuTiBQRA60LpxAXsA3GZK8OZiJCNZu4f+Xv8qLPYNmDF65QFOx2YhiMRSw1VLcTYbYThK+L+B7Aru7O3jrnbfx/PAZhhfnaA0GeP+bv4033nwTcZLg6OQEk+nUlM8NcG1/H1EUolavYWHmSJplWK7XuBiNUKvVsLu7C8/zMBj00Wo1jX7JBFJ6Fhxem/LzcRwjTRKoXNn2o2p0gsTzcoXMMMmoFDvlRa+XKyRm4eZ2IIqyqVDiGEF2PeM24zFrHDtOBWOBbNfx4nkxGAyQ5znu378PrbVhJ5Lz1Ov1ShEynlc8d+v1utVuYwec5+rf/d3fodFo4ODgAN/85jcxm83w/PlzTKdTfPTRR5jP57h9+za2t7fx+uuv47333sOzw0OEZp05uH7ditk/evQYp6enePDgAYbn5/jiiy8wnc6sw1/MmdRGLLn9eEOkseLh6OgY/9v/8b/Dkx7uf/E5LkYXNq0Pnof+tWu4fv06fvfb38adO3dwcnaGyXSK8XiMX/ziFxBSWrCoCrCywQsUc4bPY3Ahz3Is5gskQYKknyAMAizzFeJ1YiNvWjubs5kTvHYtl0urncXRYZ4LnH708OFD/Pmf/zmklDg9PcV6vcbt27dx/fp17O3t4c6dO5BS4smTJxb8G4/HeP/9r2Mw+G00TKS32Wzhf/q3/xbPnz9Hd9BHq9PGyckJHj16ZNlsUkpblWe9XmE0GpUM7jzPoNRm9oL9v1nnq8EZu2roQpBfg9hOPC8AFALtubJgrBvscA9PyrIguyrEsKvPWKxoFGyCJmFoBuh4rrjaSxoauZDIJINfsKxevh8kPasbyClHqE0gDbBgBOkz5TbIxmn9vC5zm7p7a+kdHECKUxOtY2iYTQWnHvba0qwpkZlHYRjaaoCuLaNTjUVOlaKyNMUiJC0PqYnlnJt+YseLDXkLmGttU3mZrclzSUpZlM+uOMoFaFkGxt3DBsvM+icMuAetcT48x69+9SukaYrf/9530Wo28b3vfRd3797Ff85zPHjwABmAxXKJVquFe/fuIQgC/NMHH+Dw6SF2d3dx79493L17F1EU2aADACQJrUcArJZgq9WCEMKC82qDeEUVaKjuiZvO3QROVD//okMwBWpDO34ZMFS914uepXpsAmeu+mzV+X6Z97rqs+7vgSLQ+aJrvwh0epn3dfuRjyqbyX1W/r27Jro+hMuGCgKyfRqNBlqtVgEWmPlEjLCC1eXq3ADOfiWEDdRz8MkLfCsAXaRc60trrASgwxDS7FeZR9puURhBQiAz+j62OIDvE+Mxz21QxzOAE/dJHMc4OzsjjcPtbQRBgMdPHiNJEwRhSEUkTEBWSom1CcwKIdHpdJCmqal8JxB4ARUqcAJUlKbfxu7uLra2tuB5ninXvragt9sPm1J63a9qX9tzYAKkzmc0UFTAVmWGkusfXjVmvwxA2vQs1d+X2GkAMW4c1pPveYBlQ9LzrVZLrFdF8SIAEFpbnzVNU4zGF1guF6U9jphNGWbTKZI0hRBUQQ0C1scEqAoms0EJsGdR6WK/2cTqKgWRNrSrWzmt2kbudVxb2QaIlAK5NabAk/Th+wECPzM6h5lh763hSePPZ2kBRvkB6lEd0Aq1Wh1pKpHFGZZYYDS8wFGjjm6vh1qtDghJnwlD7Gxv49bNNQb9NXa2l/D9CK1WB0maQwqyrxbzGYbDM9TrdRwePsV6vcLp6TEmkylGowtMJhMCt7LcgoTu+HGZcjQOBM9mpFkOIIXnKfi+IQmY0BTv5Ry8Jf+LiwOEUHlqbfLpdIrRaGS1Wb/s+GqBTcJlWcDRTCDASekcUguQTXGZgl11bLUAoGVpoOY5RZ/idWzZRkmSQmsFP9AQsqBDAwDWK+QmMsfRLI6qu0gsUHQ0PwOfzxo9DJqwUZLnORoNEpNj587zPBvhn05nOL+4MGLde4hqNdSbTZvOwffklDL+vlgssFwubWlvt40WyyUxcEx7hGGEZrNlBYPZgWo0GtbxzLMc65icbDbCozqlibjP4S4E7gJSDMQCgCgEY4vFtVarwfOJrSCEsFVjmFXCtFmeXAz+kEgsIfGeVwiWNpt1RFEA3wP8ykjPckApINGAEgrKaB9kqnDOW60WAhNZyTO6gDLMC6bhulon8TrGYr7A2ekZprMZ3GqBURTBk55tPxbi3dvbw+7uLrTWyDKFLGO2F5W+9T2Jk9NjfPjhh5iMR8iVgm/orjs7O3j05AlOT0/xta+9hXfffReDwaBUrpk3Vk63YnSHxq0o5f6WnELNOcPcb5UNT1xeXPgzfJ0XGcplpxSXxNiJhmsWOynge8Cg38PtO3eQK4Wg1US918Ebb34N7917D7/61cc4efIE88UCSiv4QYDB1oDmlO9jtVphNB5jPJlAKaoiwmmitVqERqOOra0BZrMZtrd3bBosA85Zlllnxvc8hEFoN24hBPLMsHySBElMpcWFgDUE06SodGHfXxLADlUYDyVHmo3GICAtj9XSsiJrtZoFw5RSpX6u1WrI8xyHh4cQQljGFwO0fH/eVFxHNggCO1YYEOd15fnz58iyDH/8x3+Mt956C7PZjNgCx8f42c9+hvF4jJ2dHbzzzju4d+8evvOd7+DBgwd48vQpAGBndxftTgdPnj7F/fsP8Nlnn+GnP/2p1WJSStmKggw4AbAbIK+b3W7XstaEEBien+PXv/kYaZZCyvI+IqVEZ2sLOwcHePvtt/HmG2/gyfPnOL+4wK9//WsbjWShd9dR4p85aur2DRu3QRAgVmusVysr8J1lObTKAVVoZLHR5gKOvNau12v7c7fbtcY/A328sd+/fx9pmuL8/BxJkuD73/8+ut0uDg4OcHBwgPV6jV/+8pcYjUb49NNPcXp6ir3dLehvvY+oFmFvdw+tdgff/f3fx2g8tvvrarXC8fGx3S+4Ks/Ozg6Ojp5jOJyV5q2rYVWd0wVQWjh8JaMRBdhkU79QZu0AhaiqNqlBZaC6Iq5rwCZec7TW0HmZfcw/83etOV1bW8NqvV6XqiOVmLQyg0gLMEdBlxhJxIwpa465BrB1Nsz1GJh2z1X6coUwF+Tj62xqdwKXaM2o9g3pAhWOrhQkTh74vmV2en55L88y0q7MEgJIszRF4AeIgoCo+qBLcqqT68wwm8+1CVz2k2sM8zu6976q7VzbytoWBnCSDrg4mUzw8OFDdNptKJWjUYvw9Xv38Nprr+NnP/sZ4PvIjd3Ubrfx2muvodVq4dHDhzh8eoher4dXX30V169ft2sh3zfLyBZhBgCzM/jdS6y0K4CMlwOKrmbSvOznoYUdD64N9s8FmtzvVznDVx2bHOqXPf9lzvuy53nR3OHjKiDty4CyF/XNpr6/tBY4+wxQ1kESQsLzJQSkreLG78PzTUpp9GWVTZfn6/B+73keyRKI8vU9FECX24Z2rJt1AjCBSikpgGaaIggDQGuEYVBicHKAn0ELIQSaRlSf78HFSur1Onq9Hvr9PparJY5PTgBjlzATiitiMmut1WxiuVphaAq0dDsd+84MnLdaLXQ6HfT7ffR6PXieV9JDdDMiLPBQ2WOq/bgRdLoClNJaQeky2/aqr+r4eBEQVR1Xm/bg0s+C0q9zVVQBp6weAhBc/2wdJ1afaTYj1nNqgoxsKyudW9KBFd826/9isUSSktxErcZVpMk/5s2Cbeo0zUCyLfR7pcpgk+tHXrUPVIGpajtsauvqPbQ2QRgt4BkwiPdFAUFVp9MMSZzA86hqq8pNiqzw4HsBojCCVjmiIILQCnmaYZ2nmE2mOB/WAAhs7+zA8wJIQcHpbreHvd0EvW6OQZ8Cd7nysVqtIQSgVY7VaonJZIxWq4nTsxPEcYzReITpdIrZbIb5fM5RrxLpBc7e4wLXBI5SgJ+Kp/B4IyDYl4WkDuMfcRwjikJEUQjf9xBFPtLUQ5YRXrJYLomRv1pDv8Sy/RUBmwoRYLZVyV4tkHw2AKXSEFKZRsksmkzgBi8ahsqoFFRu1PrN5EjWsQF95phOx0iTFMsFRdSlRxM5TRNb9UCY6l2MfrsDnxdvoLxhVQ1crYvyzpw3zI4fo7/MNnDpnqQdMDbOomfTSmr1Our1GqKoZvL/aRAlxtGtRTWEYYR+f2Ar+RSVrmiSW9G3MEK93kCz2UKr2UKz0UQtqiMMI/h+ACk8KGmqhgnSRrq8uNJ7sxPCG1a1vag9CkernOYmixz9nMrcs5GqtbZOMgN8bOjRrDGVW2RgmQhSegh8aVhwQJYaB0fl0EojzYx2T6qQOpoZ0BSN1UpRHnNAmyoBBQSASCFLRqgAgVBJTJWG5vM5lsZpq9Up+rlarbBYLjGdzeBJiRs3bqDX66HdacH3JYmJL1bI8gyhKTE+Hk8wGU9wdnKG8fk5hBS49cor2NndQxCE9B4m5YPFUOtG0BQwTBxTKaBYbFyR4iIFtGpwCRMVdRfrostfpF1gAuqX/m4oTObaBaXZGPF5BrWmD0e1CMqAfirPcfx8giReYTKdY29vD3me4xtf/wb6/R46rSZCKTDod5Gk+5gv5qjVCwaP1toKXU8NYzDLMgsA+gHRSZXSlHKoDUVcK+u8gce0iWJxFQiO1vF78LgWLLgoJDSUodhyFIVb0Lp/djMGDMPDqcLJG4iQlAPvlowHYAUb2WDi6F7sRAZdxhhHg9xKVi5jh0EdfhetNWwVrNWKaL/SQ78/QLvVQrfTws72AEdH38NoNMa9e1/HnTu3sbe7iyjw0Ou28dZbb0FrmOhPisViifF4gtHFCMOTU+R5jroBBev1OoLAh9bAcrmC1hqdThdK5VitClpv7qRcA0DL6GP5vldiyGZphtV6jcl0iv/+85/j+dERzoZDTOdzHD57ZkBNH4FZj1eGRcUbuFKKUqK023fUZ1pR1TNKxyYwcTGfQ0Jgf/86tgbbmEwmOD09JWbXwYEFlxjovH//vu0nBgDdPmIATmttmWaDwQBaa1sZZzwe4/HdHw8vAAAgAElEQVTjx1itVnj48CEmkwnG4zHN/yxnJjV8HwgDiUazgTTLcHZ2ivGEKhT2+330+3288cYbaDWb+Pq9d/HKrZuAzjEej+weTEEed9yXj6oBvDFKWTSlBT827SflebLZ8OfztftzxWAvHLhyACTTGZSgCjhCCMtczDcZsXlugSajsUl7lQMIpGkGL07AJboZKNNK25+V2UtUXugZwUx/y2yCWR8BQ693mBHOu7oAtS1qIUWpLcoG+2XDmwF04bSjrb6mSKNBKYWVqVTjSw+BZ/ZAw3JgEJjXDLZ13IP3bReM4Wfhcc4BJF6T+B3ZQXWBWvfdbHWhIAA8D/VmEzs726jX6zg+PkGaZmg0m2jUa3jllVt4//33MZ/NcHF2hqzTwf61a9ja3ka/37camgcHB9je3kYYBvCkMJpZOelWeuUqU+Px2I4vCobJ0rh1+8od19Yh5L8Vm6fdLat9XXIoK9czJ9i2pb2j+Bu196WueanjZQAu93BtYff/7vfqnK+e86Lrcv+7eyHfb5OzzvdzgZ0XrSdVe37T79x7ut/doMRV7+0+v3udwiYmWQghimrB7noGmDVIGckPx15gm664p0Kel6UnfKWhxWVxe/usSgGODyOlBHwfoab3a9QbSD2f1iwDrFDGh19aXwCgXqsXTCnzfTQaYblcYnd3F41GA51OF9vb24iTBPPlwgbmXW03Lphk7VWlMJvOTBXxAoDj/ZO1Fvl+Z2dnljTA6XlAGdB3fbcqQ6ja5y7Qz1+5MnuedoIRZp3V0hQNqKzlArDrsPs35qMwgOf+XwpR+r/94v0UxfqR5RnyNAUzLqvvqJVCqhVpCDJLLk0Rm7ZiZrnnSUivKAqjHf+cpD8cvUWTqRJFEQJH8qUM+AAwUhtVUOgq0K16DVcPq9pHm5hN5a+ircmqE/ClD+VROp3KCWfI0pQAMS7c5ElIXxgdxgi5nyHwA6icshkENJI4w2yyQBTWsZqvEYYaflBHFAj0uj3kmcRqmWAexUiSHPN5ilRmCP3ACrHTnAfimINgqXnfvBhXTpYFYyFFu0owtgIAnucD0CXmvGf2chsM0tqSSmif0xaYrBmWMvuV69UK8/m8VIDoRcdXBGwCpMegg5MWB1PpJ8uQJDE1qCTKdJ4pJElGP+ui8pHWGlIQWGHp9EohSWLkGdH9VssVxuMRzoanSOIYk/HYIJbF4gxoCE9C+H5pQSlyGgstorxiELqLD+cxM5DUNMwkBpfYUGKtFB44eU7CdMdHR/CDAMvlCmEYYblao95oYGdnB4OBb8EmpTRWS2Ig9Pt9NBoN9Pt9bG9vI8sym2o3Hk8QxwVbIQhC1Gt1dDpd9HoDdHvEcGrUmwiDCFJ6kAoQwoPnFaUrq2wud0PnDc/dvFywCYBlZ4VhYHUyZrMZXdsj4NFN9+Fr8yTsdDrEgvAFAp+prDD3Ewa5pT1T5UCWMYU3QW4mE2sj5YqMSO7nTqsN6UlLz+XqMi6jitMUMhYQTzOsliss5nOMLi6wXK1w4+YNdHs9LJdLzOdzTCYTnA+HaDabuH79Om7cuIHtrT7CUGK5SDEZj+F5HpqtOrTWOD4+xmw2xZNHj3F0eIiDmzfwzr176A8GiOo18z4klNpoNvHqq3eR5woTE4kgZlhqx5sQBbU8CHzKVXZQ8cIQ41kpLvefFIB4kdGqzZ6pS7+joyzeSeOBtsV4nSCOF2g0m+j2ulQBaHSB+XyOX/7yIxwfHeOVO7dx9+5dbO9sozfoo9VsYHerh1ogsL+3i05vgMl0iuH5kMBIIwg+Go0o9SiOEZtoDTP3giCE9D1kSmEd04bsBwE5kVICStnqIlyq3JOeKSurjbFVVI0KghBRaIxOkNaGUuR8gpkLxtsWBdZWtDW01YzL89xGF4UQCIOQACxnrjELhh0fjoJa8BSFDhRvzOs1AaJcYco1qth5rNfrNj0kNHpj6/kc04sLRL6Pg4PriEIPjcjHYrHEYLCD+WKJg4MDAwI2UI8C7O1u43vf/R5ypdFudxDHCSaTKU5Pz3D87DkOHz5CEIV445130Wy1LFOQ2DwzNBp17OzsQghYYXbWIwIIAJWeRL/fp2o5IVVY4zabTqeYLeY4Ox/iL3/wAzQaDVth5vT0FMLzEIQhambtnZk0Z9fAZCFmy94wY1YrhTTPkcQJktUamZSYjMbI0wy/9Y338Y1vvI8PPvgA//iP/4idnR18//vfR6fTwenpKebzOf7pn/4JH374IVqtlk3n5FQ7fkZOfWRtJVfUlNf1k5MTSEn6Th9++CFFJs3am6QJFABPAFEAQEv0uh0IIfHgwRdWmHxvbw/9fh+/9Vu/hUG/j2/cexu7u1tIkjUOnz3Der021R8BF0u42si4grrurAYWsK84Z6VrGov5KsfQfsZ5FgoqGMNJldmE9jmURq4ze04ck33A80gpVQILFF8TBdjknmNBFMchVFo5gJND/U9TqLwoGiINid2+sgO25FlmP181wKUDyJSCPAByXS42Yk4k0ekN0WO33ZgdzekqWZYVzosm1phv9FK01hbAd4Nl7uEGl1ygm+/Pws5s/FrQ3mmHEvhuDtbmqNeoMmsQRYDvo93r4tatV9DudPDFw0cYXozw9XffwWBrgHvvvovFYolf//KX+OHnnyPu9/Haa6/h1iuv4P/+0f+FVouqZL7xxhvodTuo10IEntESzCnNgR0nnqvT6RRCkEZMu9WyzpfdF1AGhtw+K41nB2hC5XPsSF51Pb7mpY1ZSNtvdLw82rQJUAFeNOcvH1VncdPfXWdwE3h0JcBccSCrAbMSeOJ8rvpebqqdCwZdBTi5RxWIcJ+3ahtXgTL32dzP8Pjy/QCe9G1g2vUvAAIoWF+SgST2USywCwa7lWULaa3hh4Et6FLVQ7XAi2bNJZI0gAbgk3SFQJGG7FlWRGbTmZlppZRCu9UqAzJ5juPjY/i+j52dHXQ6Hezu7GC5IpHwyWyKJEkwGo0ofadeRxhF8IRHBTcMCzNXCsPzIbTSVneTwaY0TTEcDrFYLOz+yMxdrbW1kdz0Q3c8uN+v2ne47Vz/UCmF3FTxsqnWDDblOTSPKXfdpYFg13lwAMAAR/wzg0wcXGBQyR0/BC+UQV4qEpQ4YL2E9IqArwIMsFKw+dMkwdJk2HAGSr1RRxSFRcqk2S8YfOKxxXYpy7Cwz6y1rjBhecwXYOcmIKk6b/hv1aCpOwd5DLqf58+4aYDFwiBsWqYIDEvZMNXj9Zq0jfIM0Aqe7yP0PdSCCLWwBq1yhEFk0/I0cqwWMbJsBCkCTPfmaNQ1BlsdBEGIvZ19tJtbmM9XGI8XWC7WyOJzpF6GWhihHtUQhZGZ8wqLxdz2S56nyPMMWpt3yFQJPILmSsC0Y5Mouw8hisB1scd6RgaGfF1tALgsy7E2AK5SOUgmJEe71YYnScaBC+dQGt38/0dgk6hsKgwawFXbpwpSQgNCS1MxLoNQwn7eDipNKQy8yEJrU0VNoNFoIuB8Va2QxGsERrBSqZzo/AAgaKEVflk7wR3ULpK76WCwiR0FADblihcyZisxYniJ8pnnVl2eDN5CO4knTpZlRI0z92w0Guh2u9jZ2cH169dtukyaZuh2p6bKRWwjEWFAArH9fp9Sx4LQvmN5spc7jRlk1WiSi07zhCZjgICg8qJQRaA3t59vRNMKY5YW0STOAJUhz4nuqBQ73hppQqr6WaaQpHlh4CuFJI7tguM6JAUzSlqxvyxLSSDdk1ZXiksW82bM12FHlRYAD1KQYOJkMsFqtQSn33S7bQz6VK49idNSVTLWtzg9PcXJ8QnGkwkgBKKohm1TWWMxX2C1JEH4TruDWhSZCBOlPGRpuSJKsXGSTev+3gUOGfxho5T6yIwBOzWvMrjKv7vayNOVMUXjmsaKgu8J5JLTUBMMT8/w9MljSvkwqV08XnKlkeU0a91NjqsN0nzJCn0YXVTI8n3fVnLiVKZVHCMxVGulKdLMVZkYbLpkeNt1QcI3VFxyynJj6DtOnWNcut/5WpcMU1w2mt15VT04qld1zFzH3+0XN8IBoOQI8vpix2UQIIgiBGGAMPAR+B5tvFGErUEf9XodzUYDnkcCg8vVCmmSITRrXxCQIHOv28HB/jWcPn+OWr0O6bCzinRPfu4izaYagaS5R2CT5xfRXFcUnddeKSWmRoTbTftptVrEZHSACTdtxiHk2Xbga/M6rbWyKX9xHNuxz6LzDPS32230ej2rXcMgu1KqlI6rlCrp3sRxjHq9jna7jSiKsLOzg1qthuPjYwyHQ0hJKY+s2+Uy1ebzOZ4+fYYgIC2NJE0xPD/HdDrHcDjE2RnpArCAMoP46zjGeDTB0rDJivHExSjExjGojYNdNT3s/s5/c9Zb/rlqsPD+4K4rm5xXrxKB1lpDS7P3O+eWvqDBHCBrmDpzk5lFzsMUz27/IErX4OvY/bBaYpodCuOIMLNIsWICOw+V9nD32KqjXDWwS/d2mEwuUAGQbcRzLs9zSLPesfNQNfx5V1C5sgG8WJT3DdufKFdJ2uQsuI5a1THn97nqcO/l+T6aRhy/2Wqh3mhASkqJnEwmePLkCTqdNq7vX6PqSsbRDA1jOY5jHB4eIlcKo/EISRxjNBrh8PAQq9UArVYTi+USEJTO7JlgV9UJsmMAFDC46rk39d3G40XGuzMpih318r1oy9aXPloak/8fH/9SIMr9XbVdrzrnRe/xMtd50VGdb1Xwic950fcXPeem35XHQ3nvtho5jkaaK/R8JTiiaTyWfCnjQ2wC8Ox3QcC0UCSiLyRruzhguIKVYbDV8LRhcTvvVw18CVEwrLl6mJCkx5SkqQ1Es83mpsyzv8WB+WQdI89yKy3AARkhRCm1UAhRAkM2gUhX/f5y35T72gakpQTw5alz1bFZ8p+cQK3dE9x7CWkr4dq+cr+KziwBWC7DxwwKZ/xtSAV03pPBPa9i+25qs2JtpiIZ0mM/imCwy/Phsu/4ornxorn1ZX3H5xZrt5nfQth9mXwjkuph5pNWykjy6II9JqUFa0v/JLERhTAMuzTDarGGhEeBaZ/8u1oksFomjm1Fdgxp97bRbNRRq0UIHdkLykShFEief5BlX25TFILeX0JKE6Qyfqmw+zdsMMvuq15BlOH1gIke7lyk53+59fWrATbxIQWVFTPzRGmNzNBS1vEaudYUqZESWZoRs0lQqV4X0eecQ25336MSjGEQoH5QQxSEJNZsaPOzyRhZTmhtrhSE0VIRZsJkeYbJZEJsC1Pqm50AF9l2f2YgifVF+v1+iQrLSCWLXLOgt1IKZ2dnuLi4sFFF1tchymOh5bFarSxLIU1S60TfuHED169fx+uvv463337bOmAEhiQVY5Kq2TAIwilqHO0gx96lNvKglPCkj1zmZtAWC5qLKFcXBM9hLVGUI7MVXmhQ8+QRdgNhfQTqa1o0xuMpZrM5zs5OcXZ2htl0hqNnxzb1MIljjMcTLBcLrOMYS5OSRYAUKfPnqqIJ4lGMmdkkvJl7HuXzer6HKKpBQ2M5J9R/Z3cXg60Brh9cx9tvvWXZJUEY0kIBgeFwiE8+/RTaCMkNBn187fU7ePXuHSzma5ydXiA1kQLPI7BwNpvhJz/5CX7xi1/g6ZOnCKIa9q5dw7d++5tIsww///k/YjqboT+gaO3u9g7iNTF3FubZhCiqLrBoHy+mYVhQNbmvXUeeVy12zDRyFHETOIs1nM9UN2U3mupW0CiMXl6s0oSMKKEV6qGAzjWyNMF8Nsc//fd/wM///u9xcOcODu7eRbvTxrX9faRbW5gsE9TjHOs0Q5plqNVraLaaCHyJVi1AHFPu+Xy5tM8WBIHV9WK6dp7nGI/HGI1HuBhd0HJk5nGtUYcnKS3OE0SvzW1aKuU/+0ZfiiMTWZZitVwiExJ5xlpv5SogGoAPApHducNf/LzWYNIAtLZRJNcQ4INBZP47RxK11lajjtcUt/9Z14mjVlanyjwThECr30fYaKDX76LVCAAhkeaA9EO8evcVaKUwXyWIkwzj6QzHJysEYYhOp4sg8NFuRAh8iW++/x7ee+cNdNoNfPSrX2G1XhPjzKSv8TrOTh0zaiwThNd634Mf+BBSwA8J4JvNpkjTBI0GFT2Iogi7u7uGyXSCNEktGNloNLC1tWWNeK1I64u12FwHnY0UHj9hGFqHthbVsH9wgDzLcHh4iOFwaHVdkiTB8fExut0ubt68ievXr+PatWtYLpf45JNPbNnvbpeAZ17z2eCeTqekvbS3h9u3b2MwGOD1119Hp9PBX/3VX+HnP/85Wq0WZrOZNcJrpjR7lmW4f/8B/tN/+gs0Gg1sb+8iVzmeHT7HdDbDhx99iC++uI9vf/vb+KM/+iO0Wi30+30IIfDp5w8wn8/x+NEjS6NnQJX2CVla59mZsAAU0/dQRFB5zGsUDkvxu81pKkI4q8gGoxQAfBPV5s9prZHJzEb+efyXDW6AjGwnkg8U88kFl5z7KRRVoNx1UqAAelH5DP8MkFGnMlOyOM0se5Ecicvl2F1g5UWGPp9ffVdl9zCnIqVhfLvzKc+pSpHS2oKorvgqtDapg1SZNgWQxol9Fl5LOFDC1+bAgCsPoLW2jAWllBXgZqfUdSrdQAiDsLxfcWDhzu072NrewvlwiLWxyR4/fow0TTGZTNBsNgEAX3vja5hMZzT/azVASgyHQ/zZn/0ZGs0mPv7lr3BydIR/+Pu/x2QywZ07d/A//pt/Q3pyQqLR6aDZaqHRaJTe0W3rItW0fGwCU/8lh+ucXgVWFX83/qco9ut/KfCyeX9H6XebAJXqOZveoxyQfAEA51yTP8fAhTtfque86P5XgX6bwCX3+l8GNLnX2dTmZae3WA+Z3aU47VYVun2urbJcLpFmKeCso7xOsJPIbcpgkw1oZ+WK1lVml9YOXCrIB1KSbGPPgE5hEEJ5CkEQwvdpvw2CAMk6xmQ0su/BbKrFYlGqGMz25tnZGZIkQavdxt27d1FvNHB6dor5YoHz83OkaYqGyQbRJtPF930cHBxA5ZS2znt6s9m078/BIFd/z9XYZdvC7TfXjwMup9G5Y8CCTOZ8jwEAkdvABTObOP1KOmOVNQW1mZucEuUG3tnmBGgfkoICniUpE0XXsoENpel3DqMtz3KTIpcZVpoGdBl84vdgBnzg+8gdrU/apynjh/UtgYLV5nk+fLPP+L5P1d2cim+eJ62v4M5dF2yq+ozV9nbXmeq5bp/w//kc/hszsApGFFe6lpT+kueQEhC+hzRV1EZGL1oKCk4JoeH7EmHoU1/AWABGaDyKKI1aadJ3Wi1iHD8/QavVQa+7A98n/6AR+ZiM55iOJ0iSDFJq1GsBXrl5A9f2aD40zD5FshIK9XoNALPyyGdKTBEaWzTHCQC5vgYdVADN9+g80uBSUDpHrlPLFCbbuIlaLYLnSdvPtVoNWhcVe7UhfGROVtiLjq8W2ATAoU+AN0ettRWBFBKA+X+uiIrHA1ZpDWkM38ywCiQEtDQlLqMI7XYbDaPJw05gu9lElmdYxzFVIfMEIbLGMef8xdVqheVyaZ22qoFdRX7dxSuKopI4r7tBuAuMOyHgTN4gCC2d1qUk2jLNWW7vVavVbCnsTqdTmnhJUlbvz3OFLL38HgwGMCB1CTiqGOxfZsOw8YNKmhXR9spUSNYScjcH2uQV4phohKPRCPPZHMcnJzg5JpX+Z0+PsF6vcXF+biLzIyzmC6zjtQWb0oQ2njRLKS1CFYuV9Gjp4B7MDNsm8AqnPKpFUFpjMZsjzzLESYI0o83OBQA0CjCFS6oGgY92q4Vmo4Fmo45Go4bFfIV4HZc2Z2gyDC4uLnB8dIT1OrbVuRqNBtbrNRaLBaaTKfb2rllR8MxsKFx+U0gPzD6j8Xh5o6S2dfvoxcYen1easZcMrlLwtXTtywZpeewIQZgzOXo0/pamSlbt4gJBuw2lFHZ2d20pzpRF7dIUkSTH05eCSr4LN2pRNhDYyQIK8cyE2YRCGI2mQlOMKxa6zio/qZtqSYZM7syfSjlzZ1PMHUCD24kNxKoRb1NynPep9kOJjVDZnN0IoxudcBkq7qZedc6DMCTj0/fJudYauZG2iiJy9tdpTixCpREnqS27a+nfnjQgLGwVLE4HsuuL0ZUTZl3n9aFgbEkbUfWMRhO/ixVpZvBUENtNOes9O+S8LrvVx2gdKPLELq17KBiXADHBvIZEr9dFnuV4/vy5ZcpxMQirRec4/oFbUa8KJIhCx0gpRfuSifA2Gg1iIHU7ZNwbYIBLL7ugoRACi8USp6enaDSaUIaufmGoz7PZzAqzuwwvKlE9xmh0gdl8fsloq35VARXTcmADpLQn8m9LY/cygETnUpGP6oq0+X7lsSuFsOXi3XnBn7NR4ytYmhbkcO6plDICuZo+J+yHAGcuufOuCjhp5/e8+DH4xn/bdGxal/kZq+uHe+2rPs/P6mqduPd39wm+jgCtQVKSc+OyFartXwW7qmsMB7fYCayudW5fVR1zfnfPoxQAll7wDQisQWmoKyMkvFwucXp6hn5/gOl0aisLM6B7enICPwxtEHG5WGA4HKLdbmN4fm71q7hc9FXpNbzfmzd5qb785wA1m4CmF93Dnk8nlsbypmf5sutUf/ei890x755fba+r3vmqd6teb5Nz6p67qc2q139RW5basXL+ywBjV7XTVUfJhqKLWBCT7X2es1ppCE9Y28VlCrr9cGkNE0WRh+oa7rZD9XMElsCufTSPC1vG931kXlqcb+ZJbvTpXEYgf4ZlIJqtpg0u1+p1JI4mULEW0PPw2kHrHJCFBdjktuMmsKja15vm8Sa76kX9VfpCxY5BsR5r9nuq+5fp7GLdNr/mNDPTG2y/uxqHRR+799H2elqjuCb/DhqiZNfA9mfpy9i85PsQ6UKpcpVQ2wZy83romAH2/Yu5WzEDvqSNq31x1fy6qo/dfYT+pkv+D2xWEyBssEyDkCRjuYjy2LLta85gHwC5gmb7bRXD98kOVHkO3zfC/Vqb1DjSBUUg0Go1UctriGo1Qwi4XKlSSvKLc5mX/DgpZKk9i+Hl2l9OPynepylFnG1GDrZSNpYZd84+a/1GY5+/BM4E4KsCNmmNXDHgQL9iKpo5gQaK1hAqB4QsRf9zIaCgEagcSgokGYnCelISUBAGaLfbaLfbeOXmTWxvb5FGUo10bxLDKIrjNXKVI6pFCCPKl1SKtJM+++wzjMdj60hMp1NMp1O7gLpRAj6YsQTA5ve71dT4HN5AOFKW5yRg1x8M8P9S92ZNkhzJmeBnZn7GnVdlXTgKqALA7maT3JbdGSFnl9LCp5l+58OKzD/afZpfMfPG55VtcmVJDkkATbDvBtB1o448IzIOP81sH9TU3DwyqoAV2YdeF4nKrEgPDz/M1FQ//fTTJM2QD4a4c+cugUgTqvtcLK6wmC9wdXWFV69fI45i3Lx502enp9MphJBYLK5ch6ocJDYonMPYUf34O1nos2m6NsZSkkiYcd12KieAauGYZ667X7iYh4Fs+OpPhC5rU1VUwpTnOaIowngyQhxHflAvFgt89dVXmM8v8Ytf/AJXiwWePH6M+cUlSida3GiDoqKgrt5sSH+jpnIypg2z2bDWUv00Fdj6czctL6KuFMDRTVtTwzTUDaMuN/Sey2DnWYrp3gwHhwc4vnkTgCUWnMvmzOdzXJxfYLVc4dbNm/jhH/8QN49veNHf1YrKWabTqWNZaJyenODk9AQvnj/Hy2++wc1bd/DBBx/i1q1bBDJdLXF2doarqyXu3LmN/+FHP4KKYqxWK+rE5sAuIRQguhr2OImQxIk3YlEkCcl3ICAb1u1Sx13rwbYh59/ZiNNb0s9dICzJJJBGCOHLEusoQtS0DtAABdyuTCKbzTA6OoKNIuqAtjfDwcEB9mYzlK7s4eLyAlfLpS8dlZECQMaXO5vxHLWWGAqt0b5jCs9NKWSvrMqj92gRKwUrFYjJRJpNkSRNjNjVPjM7UGvtRTA5wCGdrK4ZgDYGLYv9cfBnDFrn2CWZK41siaVR1sTETJLEj59t5217QQ0X5JDVxCDL5eUljWM395RSGI1G/nmyDTPGeNaMsQLz5QbWwndPTOLYLUYxBnkMWGKASSkd4BIhiWNoC3zxr7/Ab37zW3zx+c/w9KvfQ0UR3rv/IbJ8AK2pZTKLnloDtA3NVabBK0lBH+vNaaOxKdcwpoVkQNhorNYrSEnsJ6kUJrMpdNtStiiicj22uQxoKe8gu/dcdpDvo1IKeZZhMp5gubgCjMXNG8f4T//xP3kQ68WLF/j5z3+BJ0+e4ez8HOPJBK3W+Nu/+zvs7e97Vt2mLHHz1i0kSYKz83NACC8IzUBcWdeYLxaYzWaU3VQK+SDDeDzCaDLGaDLBdDrF4Y0bEIAvAd04sKuqa1TuGKdnF/7atCbBT9blWiwWOD8/xzfffIPNZoMXL15guVwiTclehBnfMAjYHmOeSSDJpoRrgbcyQWKF7fJOIyOcPpbdHQzyWssMGnaU/Md3AAFs6wUAqcImFf0W1l7Hzn2+Yz9ZwAhy7rfApvC7QpAlBJvD0joPWQeBCtz9CYXBeZ/t4MkDO0GQYYJ7JIRAJFR3jltbyAzh4DCOIighEElJ2fnxmO6Z+wyvq1VVYX5+0SuxDEVj+by5lJR9I26KkmUZ9vf3/bPbbnTAn2e/qXaaI0IIb2Mz57/9289/jiRJ8PLlS2IzNA1Kp+/GrIp/+Id/wK9//WtcXl5isVjAGoMHn3yCpqUuke1mg8nUdbBympfL5RJ/+7d/i7qucXV15cGpkC0XPmsuoY0dk3gbdPm27bvsuw18hONge/NACUK1xN37bQNa37b1/INr6//163nTMfn+AX0h/zddC38m/B4Pum6dRwiu7GLvhOf4/+UWXk/4/dvXEo6d8PwZPKL1zwQt4xu/FoeJFN8xWeveee02rKIAACAASURBVPDc5FIm9gO11rACPg7hpEdYmREClGxXDAAYx9xkcWUIrx8ohECktlhVlrrSFS5Jby0l/ieTCaSUvhNtlmc4ODxEnme49/49XC2vvO/UOoZikqXIfafpIf18Z0BdMh27lTUn2bdkX8xa67VT27YlX9k9J7Y9/AxCZtObtnCdiKKI5BMklbiRdg/FS6HNhwnAFxOMP4GOkcSd44x1THrSJIYFJIiFQ6V0lCjhZhPEbjLUWVtTUsRK6UrJt8AWo6HbpjcXtksfw43jMNMYb1M5/pFunZCi62zYti2qmhLsFkBVV5BKIYqSrXu4A+AK5nA/If5m8JDtS8iE3XX+HGv7OQCLOCb9VRUBUhF7yVoD0xpotJCiBekdEQDFxVeREhBWo6kqtHUD4Z+PgpIR4iiCVDm0Njg9PcOmKHH7cg4LifFYIc8jlFWB+eIMcZzicP+YZCqSDFIoLJZLrFZrABZaN9CmAbWtth7gDcvqeE0UlhPg3ct6kK9jcFtJlQ5lRV2UddN1sozjGIeHB9jb23NVYiWs6brUcWVBHDDXdjtw/e0PA2wCwKLcFhbCBYnb4EQ3EfoOm7DEaDLuRYGChlUueAB1CRkOh9jb38Px8TGGwyEmrm0m0xyruoQxGvmQur3RccjR2Gw2/hhsnLhUgoGjbdCFMxI8wMNyAjbuvEgwLdsHPa6cLUkzDIcjr9MxHI1JMHy9QVGUWK83WMwXTuw49sLHWZZBCIGyrGAtHNjkmBkSfoHhjAizcgCAOz1JaRGKwfK5GqNJI0VLb6QAXDMU2wt+/3kzs0r7e8OZ+TzLkKSJXyyLosDLly9di/XPcHZ6iodffYWL83MvpgcZQcSkDWPrmt73G7GvIAQg3QUZ7RF/wlqsny+WiqI9ym01s+gANF1QwBOTGUfDEWVWqrqGkBLz+Zw60202aJxDfevmTRzfOHJOOFBVRJEej8eOtUQK/4v5AlfzBZZXV3jv/Xu4deuWE1iuUBQbz7CbTKa4e/culqsNFlcrf150wRIWXW1tZBkQ7coyu2fG86p7Pv37d41f4D4nt4z/1m7oOx4MRhEQJJzWjoKxAnDd/vofF4jSDPFwCDg9M1j4cd62LYqywNXVFS7ncy/8aB3QBXQOgQeCjIFxiy2Pew4gOJjplQgZygRJgBYVIXsLn4Bw9GYSk2YaPGfXO+ZJn63XhZtdxol/QnTtw2GMt2tN03ibw2BtaHO2nf1tx5qBcS53CTtJRFHkNNs6BmbTNO4xCP++scCmqJ1joYmSa+AzIrz4xXHi97EWaLUBhMTzb17j57/4NX7/+0dYXFwQXTihBgnL5RJlWfWuoWN9BrYGdK+jKIZtqdtoa1pX+hw5HbsWUWRdx0Hpg1O/QFr0WEdkRzoasi83brsuWBSQx8icJhisxWg0wscffQRtDD799FMsl0u8fv0KX3/9e8oQZRmMtfj9w4cYnZzg6OgIg8EATdNg5Jh6680GQMeOVVEE6Ry3siwp0wvKMEVxjCRNfLcXXpeMIV1DAJ7xynPIWEBr6s7DJclSSL92sdP/6NEjLJdLnJ6eYrNZ4+joCIeHB72AaTtoux4EOru65RSGlqP3WZfF3xnABgyi7XEeBm2hDqKDsq8F0T1mUwDu+HPb4fjuCsKFMy2C2QcBKLV9L64Bv+jfs+3rpc/CawKGa+suh9task3GhtYkuJfud4PrbMjtZyiE09kIAq7tZ9g2DZq6gRQSCykA3Z0j+zth4BaeN6+XIUvXGONZuVz2wnMvPM9eSZ87NtvHV69eAYBnLLUuWAt1bp4+fYqXL1/i4uIC8/kcx8fH+Pijj1wjikuUZYnRwQFGQ2KEp2mKuq7x8OFDX1bsRdt1X/cuHIN0rQLKXu9IFv5/l73eHj/bz2rX2N8GeLa3bZAG+HYwadfxtgFO/v1N4NCuY+6a3/y3cAx+GwAUXg/7sLvm7Pa+u97/Luf9Xa5p1/7hNQFvBgW3/ef+57t5FXYo5f15zQ3LT0OgW7hASslgTbMWoml77KNrttpa2MBGAuiADWuDioBOMN9a61m6PUBNa+hWu3iEdAUZCNps2Jet3NocY29/DypSXodQu1hLRsozbbgk7/DgEIN84ANfFi7mdY7jEL6uoih8rGWt9UzgcD5913G9DYhIp0tEBjyw8y7OcJltBIsF/3J9fwTzywrHdIdjr4QsKvjPwq0bVhgvRL5r/G6D+tZ2JX9bA7C3JlrT1/NzJ9m7bwB8/O1lYlruoPY2yHu3v/Cm9Xj7c2+aY+Ga2fPpjAPwpAPwfMhEY1tIAyEMBMmnu/vAmk4EOMFaX5rYnQeNgyhSiBOFzabAZlMAkCiKEnleYTBgpn6DoiB5jyxPkGU5RuMZ4jhxifANgEDf0bPbOqCuzzZSPqvQ3QcGnQJQXxrAAE3LVVEN6rKClMLjG4PBENPpFGVZYLOBszGmx35iLVshv93+A39AYBOcIwbAMxu4nqYD65yHJ1z3OnbMFdUiErBSwhjrdH4y7M9mGA2HODw6wnQyQZbngBBomhbr9doNGEKFm7byoNPVFQ2YJCG65mg0Qtu2ODg4wOXlpUfHhejE7rgUgwNKZgUw8p8kCUajkdckCQEZKaUvtcvzHABlsVWUeBCJhS9NUZC+jHOSmBV0eHiIg4MD7O/vY29vj/SFrPWd3gBiCRjTZRp5oIaOojHaB3ahIbGWWUvwHYSkUpBKeOcv/Bk63N0C2XeiR6MhhsOBv0ZrLV6fnKCuKzx+/BivXr3CyatXePj111gul3j06BE2mw2KsqQOYUmCOIqQ5gNMZvtEMRRUPslZGxUpJHHi28fTYmqAbTvs5ow2nZG2sKjLCmVBYtxxEkNJ5WvUb9+9i8MbN7B3cIB1WaBtGpxfXqAsCtKScgvfjRs3cOfObXz44YeYTMZYrStU1QWMoZbmeZ4iTSUuL5b49NNP8fz5c6cdJHB0dAOffPIJqrr23aNuHN3A8Q2J/f09pGmKzaaEaTXp18QUQNY163CY3hgLa/rfFvSE90VgtxO3NYm7YBPY+R08nqSn3UoHBCQAEigpsS4anJxe4tPPPseLly/x+uQ12rbF8fEx7ty9iw8++AAPPvoIWZahcO03KwfmxXGELCVwYdNoFFWDletCkiRJx5wKrhkAmrYFXJtvSjzZTojcdRdJ4wSJq4vmWnW4bnSxA5uMJj2Wwn0nZyKFEJ6aKoTwpb5t08BY620GgtIhKslwQZUDnyPnXLJDGZbUbj/LEEz0waQDuNlu3L17F0CXha2qCqvVyjcZsNZ60W523r788kv81//63ygzGicYDAb4+OOPvQD2YDAAEOjfuPPZbOhePHr0EF988QWqosDde/cwHo9x9513kGYZTl+/xssXL/D+vXv44P59jEYj3Lp1C3Vd49e//rUHcC8vLzHSY8Rp0i2aRiPNkh5g6R0NQesLA3Q83XlcM+iiRJdd9lR90wXTUkrfEW91dYWriwu0ZYm92RRSSty9cwdVVeFqTn+7efs27t27BymlD3SLovCO9Hg89hnr8HxD3a3JZOJtI2nckV6hUsqXDlxcXPh2z2zH0zTFZDLBbDZD07TYFCUA4QVXp7MpIGicff31177sqKoqTCYT1wo+9bacmSvW9kWft0EVAG5N6LKKvK8xBvXWWCWLseVgh4GOxc7v4LHNc47XHim6DHsIOHjwDcSYsrFxjmYAujsXg3Ux+CRYV81Y6zu9dYOoy4zxVXmA1D0LLYiBzYkca7qAkR1eX0qBThTfuu8MA6K3Zdz9aYnOCQUA3TRodOuTOhCiH7iIDpTvfKoOdOL7vlmtsanWaJuaxMKdvxNuu84vbJQyGAyglOppyIU+Ap9jCBCyr8SBrT8ncKISfn2TQiCS1NmRdTD5M+PxGFmWYW82801b2J6Ox2PMpjN8+OGH+Pjjj/HNN9/g7/7u77BarSAlaSlGceS/ezu5mGUZAdBuJIRj9U2AQriFwV/4mV3Pdvtvbw2MKdbY9Z9vDajf9P3h79uB3tvAqu1tG/AME5O7jrN9j8JnGzKctte97c+H/9/1/vb3v+k5bgN/u/bdPqfwvEObFs5DP3et8GxAHv/hsbYrKbbtI/tjPdDNWrRSQFrZiwOuzXn34rO2xkCAyveatvZgjUylr4pIkpiYvG5No7ndrbtcth3q/kgpsVwu8ezZM2R5hslshjimSo0kSag64OICxpKvbAHM53PSbMuHiFTk2evMYAG6hDrbnrIsEcexZ+WEPlFv7XqLfd0eJ6GfdQ20u/bh7dnn3rShQLj1LKfuO1lbNjgug0yeAec+J/rjmQHB/hy4Pu/4WsLr5LFJTCCJJujktj1vlFIeaGR/lH1MC77PLDDN6/+3g3lA5xNt+7Pb5xy+H278OY7RO2aWRRJH7qWQJBJNbaGthpAGKrJQEShhGVlIx2yKlAXhOi1pwrYVlBKA4FIzkpUYDCj+XswBazU26xXiiBi5cRzBmBpRBKSJwnhE5aP5MIFSMeJYQUryo6JIwZjr5dtemiJ4dZff3Sftqni00wmLFBx4JiGFghEM1svescN7rV1swCBt6J8JEFRjrw/u3vaHAzbxRu3mnEg3PDBn3ftwCKSwEkpxhouMBbEIGp/xHY1GOD6+idFoiKMb1MUrzXIAgibOmsokjJs8rW5grNNM0g0Ggxx7ezMYY3zZysHBgessVuD8/LwH0nBJRtiOnPWe1us1lYi5jkIsYMtBDTtKHPhEUYQ0y5EPKJjQmgbNYkltEOfzBS4vL33AmWUZDg4OcOPGDRwcHGA2mwGO1cI0XOt0VIzu2iUy46M3sLTpLYbhAkSGuBPRVpIouuxI8jEZhAspxbT1SyiyLPWLRBzHqKoKJycnOD8/w9///d/jiy++wPnJCZ49euSfE4QAoghQCnGWYTAYYDyZ4vaddzqxNKUwHI2QpRmyLMVgOKQypyS5ZqCAzhng5xY6AcvlEvP53NN3iWZ4iDzPeyyyTUlMlvOLCxSbDU7PSLh8MBjgxo0buH37Dj744AOkaerbR0rAtQjNkKYKm2KFTz/7FE8fP8HFxSUBVUdH+OSTT/Dw0SN88fN/AwDcunkH48kU+/v7lCWSClq3UIioVTsA3VbEKnFzSAiBNElJ50Zcz7yGQWHPmcL1BXJ7wWVmYvi3ty0EDDIxw4pLzJqmxWpT4eTsEp9+9hmePnuG168JbNrb38cnf/QJ7n3wAR48eAAL4Je//CVRrNMUkVs40kTBWGBZtlhXDVYbAqSyPEfmSnsYCOnApoaCSEH15+wcaa3R1iQebRMNmyQd2GRJ/BHWonHXYrSG1QYbxxQJ23pzVt9rL7Qkam6t9WV+BHSxcD8zrRIy/hZInG3heRkCOiEbIBzP7BzwgsQB3nRKrDguVa2qCldXV7i4uMDh4SH29/cBdIEil9r97ndf4h//4Z+QZRkmkwkODw+RJAlu3rzpxbMZpOrGB9HYi6LAw4eP8MUXX+DGjRu4/+GHmO3t4Z1334WUEp9uNnj1/Dk+evAAn3zyCW7fvo0f/ehHnrXw5MkTfP3111T+JwXGk7EHEox1YFMQIPecc+dkMY1aCAHlGGQsLsqMyN6ijs6Bgvu5Xq87sKmqsD+dIslS3Ll7B3XT4Mtf/RaL83O88847+ODePWyKAr/5zW+8fhuzO8bjMTGXHEON5yCPPQA9sKltNZqGACel6Ly5cQWX+2itMRgMes+nqmrgcgFrrbPTAtPpzGfFv/rqK99uWgiBo6Mj7O3toa4rNE3tHTUaT821gGbbCZeWAOUwKORXXdc9AIUFt7fvuxDCdZPtZ2P9d/C9qipUZenZwkoqpGkCJbuW3swu9PMDAlabXmBHTn4HXHiwic/RvfSWNaRmItKznEJ717oSWC0EWuGaC2jtAjc41gGdd1iy6ddfV7IeBqRv2vxfAsecr6+su4YkkdNcE/K6sxqW+YZC+Qza1UWJpq699mE4DkLQIZyDAHqlb8xo4tKgbdYSl/f4+2c7kGl7vIXPg4PLJI6RJSk2m433kfjYzFoaDgZIs8wHzNZajMdj7O/v4+OPP8aPf/xjfP755/ibv/kbXF5e4vDwEFmaId7qThxeP3fDqqsKdV3tBB3Ca+DPbR9vF/DxXbfr44ODgt3g1K7xtP3db/KX+FoYCAwZN9vXye/v8gl2XXN4ftuf6wfSosfQ2XXOu+7l9rPZDp63n9n2ca75SMG1vimQ3xXM9xOx/eBaiAgCXcnK9noWBuB+fQq28G/XxpQAjOyDTeHz5GSyhwSshRUSBs4WOAAkyahNu7VURkolcmPXwKn2vnTIwuZzDW3varlE3dQ4unGEO++8g8Fg4MGmy8tLnJ+fI4ojHLSHaDUJpEdRhP3ZPjIXd3Bjo3AsAiQRkDhNNtY55PMIy7S2n9N3AWK3S73oM+Qxi11gyjbgZOmf3hjbHn/cVT04JwacwnJLbD1n+vnmpLDf9w1zlO/hNvs/tNW8j1Ikls1rvm5JviR2XT85Tu+6ie/etufatj+wDTaFzLU3bfy5a2CT7cCmOFGIYwnt1mcpDVQEqMgicoATg00qooofaxtUNenkSiUgXMWIEEDqiCXEuCZyw2a9hJLAaDxClicwpkGkgCSRGI9T5IMMcZpASIU4kZBK+DI5rXmeet0TP3e6FzHYYfvPkJ9Zx36kESRAbCgptAdb/H0ONLg4hgiTN943AifnnOv0/xuwaWtueqNhSMNASwlpBYSEr4kFpHNcWeci9uLYe7MZbt2+heFwiIODAyq9STM/AawxECpYKISFtcSRFxKI48Szjfb395HnOd51QREbf+p+dukd4ZAGzsaMF0Qe7AB6YA+wFdwwa6hpoBy7oixrNG2Li8s5yrJEVVVeOX40GmF/f590bPb2vNgrI3VhV5jYAlb1sygMDoUDUesuw8ROp3sqEAIQqhOXFrJzEEOjuysw4Pd5wJL2SoyiKPDs2TMsl1f44mc/w8nJazz+/e9xeXaGtmkw3dsjPZnhECqKkA4GUHGMwXBIgVWeYzY78OfBji0v1GmaUgkKi5EK0XPOxda50RpAIRAfJ4pjjIZDRK7mPHGtlKuAKcHgoooitK1GWVWYzWY4PDzEbDZFkihEES03xhgCmRJy6C8vr3B+doHXr17h9PQUAlQuljg2EgfsSZIQg+3gEFIqp81S0ZyQNC9sMJkipSCU9Neg1NsykPSM+46J8F0OujFyfePFa9t56g5D101BIRnOpmnR+jIl0k1JkwhKAuv1Gsvlshu7MZV5RVGE9Wbj5xmNL9FbyCyI8cDit76meWuxEoJKYNrWdaNQ1FnEonPspKNGR8ExePR0Y4hvQucw8DyIogg2cIgZmGYnWUqJ2WxGZWTrFVbrNcqiwGK5JEruUEIo6ughRezbBfMYB7o2wQz2hFTxkOYb6hNkWYajoyNHmyXheWbIMCgSPs+wzJUDxouLCyilvKMbRRJxrNC21mVSRM+OJEmCjz76CD/+8Y9xcLCP9969C2vhS5XrpkGcppjMZrh58yYODw8wHGbQbY2i2GCxWHjG2NCB+xBAPshJO0Apr1sTLsR8/WxzifYufEkkg9+wNHP4cx4IsAAUZRe1E3rka9ZaoyhLWOfwTiYTJGkKSEnaYK50Ic1Sv4hrY9C0LWTdJSjYgQ8dLhno+y0WCwgp8PTZUyyurnDuxIsbB15aWAyGAwACo+EQSUq6T0VZonbdHm0wLoGO1RGWkHoQyDGCmJ3HaxqL34dzPvy/EALKChjZsWbD4KrdXhstgSq7gkWr+8mJ8O9eV8l2IB2PVd1qWNmdU4/67z5PGpCmC8iMhQ3mCgKHKgR89DbY7sAmbAUq7HQbY4hBB9EvYQjORUrq9mPstn2SEC5w8SbmLYGy+2XHs+malfD6mMQJObMqonEu+2znHujn7mHTNCgcSOTn0Q5GSRgAh8+Hu+hy5juUD+BnxONwV5DvgyvbAXKtK3Hn0uokTpAFnZS4TJ+vSzkbUboOwGwTl8sldKvx+PFj/Pa3v8XTp0+9nSZR/xjC9tk0fK58nq0LsmgNcCPHx3wOoLDB0AoXU/41CABpfw75w5+gg7zpb4CPSMNxhm/5fRcYtgswCsGWNx1zF3i0/Xv4vd8FYHsboBOe39uAgm+dPzvOaVcQvAtwetM1vg1oCoEzIGDxSQUpox4gtH0ufIzQPm6DJbvuEfu3/FlOQvkyfzoR5+vwZzqvMlIRMSICUDtJEhiloCDQSCr311o7raJuXGkHFvH5sn7lZrPBek1ldUIInyzJBwMn/A9sXNmRMVQOv1otoaTEcDjsMZpCcCu8z6EPwLZml0/4pnGzPUa2nzlDTWJ7H0s2XPK42Tq2twX+1YFM4U/2T9iGMMPJv+e+I4S8rgONW8AnHCQttsAd2TWHCDfpfSI3DoUjHwTrhoX1zFdKLCtwgrm717vBsP83dmD7ve34I9yP5WpCdpZUBOpIaSGkBawGbAMhNJQC4kggSQjwYbApjiWiCGgbrobSkNLCWkAIV6oPEt6m7uIZ+aWmRd1UqKoCRbmBMa0HuSAMrG3RtiUsJISwSNIYcZwizaiiIEmIlRe5OWqNgdQhWCrQDQlv9T17v3vmIli3LHTsupVbC9ZxZnmXuq4C/195+Q1jqKQ21C/8tu0PB2wS/QlqLQ3WVrSQ1rFNrIWKLKRUMIbYPkICwhpIqTCaTBBFMY6Ojuh1eIiPHjzAYJDj8OAAaZKgqYlRwMCPAFHAAMAYajEYtRFa3WA0Gnohu8PDA2itMRwOcXFxgYcPH+LOnTs4OzvDb37zG6xdBxMWpwOoLplL4niAhx2KuMU1M3v4xYa01dRpizLOxDx4dXKCzaaAlMQkOj4+xoMHD7C3t4cHDx5gNpvh+PjYC4QLQS1AF4sFjDZI4v4CFIJEnI2s67bn2IfnGLnuTwTIsFJ9V3bC1xoCbl1gQKAA70MAApXPvX79Gj/96U/x8sUL/F//5/+BF9889+yP/aMjvH//PsbjMe598AGGrmX5YDjEYDjEcDSCNhZN0wLoSim4ptRnC3iohQZ1y/ByQB4u2KvVCqvVCnFMQvNhCeTp6SkuLi56QX2cJrACqJoaV8sr3L//IT766CO8+84dDAcUzFnX6W4yGeHwYIbz80s8evQcX331CL/+5a/w+tUrTGYz7B8eeh0dFp2ezWa4f/8B7ty9iyhSODk5QVk6JoSkQJYNCjPmkoyyuYNBDsCiaereItQFPFQm05uagiiWPG7Cn262XnN8dt1bKWmw0JiLYQ2wXK7RtC1GozEAiSSWmIwSJLHA+fkZXr165VkeWUalomma4vT0tOdQKEelphIqur8slpwkVOrF44HmOrGYuOSqcuySJE18xjtNSaCbqnlF143OkCAjAoSfg8EwCPJALoNVDliu67prVT8kBsp7772H/f19vD49wenZGU5ev8bFxQUJhUcRRJoiiamEc7Mh0CUE0DiAOzg4wHQ6xXK59CwXflYMvDLwPR6P8dFHHyHPcxRFgbIs8eLFC3z11Vf+/BhgYhswHAxhDRBFCU5PT31ZJwkHCqRpjNEow3pdoCiq3hjg4/zkJz/BX/3VX2E0zHCwP8bDh4/wv/3v/wWPHj/BqiwxmE5x5+5d/OAHP8BkPMTBbISmWuP87BTPnj3D6ckJFvM58jxzbI0Ie46FtamoJbREX6uL2ZzWPQfhnqVyQFNRFN4JFCBnOlIKMkkQJ1R2BOegbtZr0nFxeld10+BivsDYWOzN9mAMMJyMgShCa4HClWdOJlOy+5pepjSo6gqRUkhzGnNlWVJZGLkrxNZz9uTJs6d4fXqCy/kcWZbh6ZOnmF8t/LyL4xiHR6QHNx6PkSYplqslLi4voFtu7oBOyDihkm2eX1J2guEMwFGTg8ueDWcHsQOfrgM5Kup3L/H7WUslq+iYKF1n2esBnm6pRC4sveBjMiNYoAswfMdC27fz28EYv8dBEODA6WarxC8AmwD4Mrow0BVSepbQtshu4+6tjrRn5lJ5LAclQfCjDWA7TRa2Ib3AwBDN/822mPcj++bBeOdcsr6XZyI7sInXds8OU33aPgNNm2KD+XxOSYGgJHgbbOTPcHkNXzeDTE3TYLVa9TLlfAwppWfyMWAe2rkQ/DTWoHTJnlu3buH4+BhJnCBPU1xeXuL169ceUAqZW23bUmmOMV4/5sWLF1iv1ri6usLr1699GTzvMxwOUTlmVxi4MkDLjFVqPNIFjYDl6hbHZoP/v58ztusQxcE53Qz+VABe8XjoYofe33hNchU69P1g3Zc+EOG/PwBPvkvgEB5nO7m0fazw/TcBTUAnEL7NUtq1P9sT/v6QXcL25hoQsAX4vAng2gU6bb+/6/p2AXDb383fyXOBW80zINuBeUAcp1AObCLWd3Pd1rYaCMYegN5xqGzewkJfOw/geumdB5CVQuQABOHABCEBATpfKl02PnnL7EBYC5tpX2ouhEAluriGweWLiwskSeLL7hdXC1zO55BS4vz8HGmaYjqdYjwe4/nz5zg7OwMsPPOW7dSrl69wtbhCnufY39+HlNKzxzebjY+xwjERNhfYLgHm58U/3zY+QnCwB7jDdUEHTUsF6oyqhPDvw/3kxFjX/MzNf2OoiZE2MMz8NMTyFdatHZbsBguP0/fSd0sQaxtWezZtOE+7xk99EfPw3pKuZd+u89+8H+nWMhVzExEaP63mCiENqahyIVxTaM52Zm4bPN6OTd40d/3azUkmrXvxR7gPV/hUVeXY1RpRLBHHElJZSKlhbQVjCkrCxBJZLjEcJQ5sMpACyDKFNJVuLVsBsBQXCwCCNJ6sbWGtRhwr7B/MYGHR6gqbTYurZQYIg1aXGA4TZLkCRANjBcqiBC3dGuPxAEk6wHA4Q1GUmM8XZBeSBFFU0Xgxnc6nEHASHDsSVhYAWOic7k2e5xgOBzRnrYZuW1xdLaA1yTF4QXFhXTyUeZ/QGOrooJhliQAAIABJREFUXrpE5ndYMv6AwCa39YyhoIwnjGPaSGrRZ61wqv00ZY1REJLKNrI0Q5amSF0pGtNB24Yc3Lqs0DoWANMDlaSVWesW3DrbGAKjNkXhhGiVQ0IV0jRzAuNTlFWFPM+hte7qVulK4NFhwGdMyR5bL7YFuMXBZRYJyKFseKQNWm1Ru+4vlXNcjTFIkhRZmmE0GmG2t4fZbIbRaOQFvii+pSy0R/ClAPVLcA4i+hmSjt5oe4OSDUzHSKGBTYwy6xFxumpydLXphM87J6ADLXj/9XqFotjgxcsXePniBV69euW6d5XI8wzD0Qj7Bwe4cXzsrzXPc4zGYxIZHdI1N62GEHXASHGsKzb6oaMAuMXTQQRCuAm326lwJ0zX4Dp7hE4DO73G1cQaoPds0zQlrQinF2ZtdzxqKalQVjXOzy9wOV+grCq0WiMfDDCZThHFSb/0R0XIBzmGgwFaE7RzZ3psULstBCCV7Am6IXju1wy6tc5HfnM2c/v+2KDmfDtY7M1rYYMxpaBdx7DNpsBqtSZxyNkY+e0jz8TizDQHHBwYUAbZuAWNhKHjOIaAQN00aFqNsii9ICVrd0kHOPC9lFK58dtlBzzooJR3HMJslXBOGCRpgMFaKCl8INEBsQ6cEsbXM/N3N01DWgyuk8p4NMJsOnXldxtEKkJd1T6YM5bAd+EzVd1gtugCfnbSwvIUcgAEWIeGr5WDOQbqGGyYuI6X286UtRbaaAjR6SCE48iYTkBRYPf4EkJ45mmexRgOXelJQyK8BwcHBOpOSAx/JSxeixYnJydYLpconJA2dZ8h1qmKpGsz7ARMjaGsLN8rY4KFMwSZ/fCk62NnzN1YdvD8eHC2EDwHpISMIhhrsd5soFwZpHI2gjPD3g5kKSIdeXDHz5PeXOqcqJ52B+CBVS7jLqvSX1Noo32wJrq/GemSNN5OWZcV67JcdD6U3VKKvjNktXYOnwmeeQcw9/YRZBd4nL3JNvBzINvTzS+eP1ZykC1AUkPdfeFyaX5m/hzQD7jCexSOAR8kuAAB1sJsBWM+xkdgE90PH/RZA2ukd8r832zn/EohoT3o5thzwbWHr3BgCqcDYd358Vq2vab1EsSCnfgOtJBKInY2lW0oz/lufe5Ym2wL3dcGz9lAuzWdP7ddBrddmhLef2utT7RtA01+fLwl6PAnxMdEB/YAtO5KIVA7sFTwufArWMtCNpW1rpxuQO+fnZ1huVwhdvqH1lofzLPuXRewkxPv33O3ne2IHzbWgUHMQup26saXtwmuDIefI7pAwgdQ1pKIs7Xd3/h+u6+A8zUguKzn7YLV22v2LgBlO/Dbdbw3fTb82y4/oX8e3w44df+/9i07zzfcf5ct6n//7nML99l1nW/ylXad/5sC69AuhPtfK7vrnWffd+P9hRSA7fvdfggap1HJQbr7HQCxlAL/l20QrYUkqmyMhSaupwf8jbFOH1U5n0teu7ccFwDwcROE8CVyxpCGmnJ6tMPhEK2r0GCwSErp9RqrqvJsy7BSY/sehvdvewzt2rbv/679t8c/A7u9fdDt88bvtMFig+tjBIFtDNcCOn7fPw3PBeiPY3p+bujssLeAHx7by8rO+xr+LTx3D5B17wbfwT5scE+3rq/72y5b0L+HNN92PVP3eWthbcAmdLaa1+DePlYjElTCRqATdayTDqzpEmmEGdDn2S80tF5q0mO1IB0zbvBDMXGDuqlhjUGk3PpuSSvZaAutaV1QSnmNVpovzr8TAYNuy48Nr7kHNkmHgwV/l1Igjl1JPSK0io6tLTGyaT4pSrxGEeIkRtzEbt4SBuPXfuyywf3tDwts4okN18JX00tKDSEjqFZDKQ0hW/dAuRuFRWISzCYTzPb2MXTizbptcXpyAqUUXr58CYDBphpSKtdBilBXwKKsSmjdIlJkKOWZwNPn35DgZBy5gUmRVJxmuHF8E5AKRyenSPMl1psSUsX+csjYOkfdtUwnbQeButUwBbGg5LoAsyPgBrl0IARfX9WQ0F6cJIiTFIcHh9ib7eHuO3fx/R98H9PJBPfu3aMOXS5TX1UNqrLqGX4lIwgBVJVB22pPhePvJa+JRk2cJIhiEl2O4y1hQiFcVx6aoFZbtC6oK4oCjctglq6OO88zKBVBqaxnrD77/Gf4x3/6R5y8eoWff/EFyqJEYwwmR0f44Q9/iPv37+Pg8BDvvvsehBRe48Zai8ZY1LpFVDdo2pYYBEGQQECbU/PXHCS7Z56QGDUvoAwAWHdtEMJ13jDUPrysqEOeNT4bb4zBcr1ymVUynm3bYrNa+UVxOp3i5s2buHfvHsaTEerGCQ2rCFFioK1AURs8ffYC//c//iOePH6MstaIsyE++qPv45133sVwMsE3r15htd5gPJlhtneAg6ND7B0e4PTsDJvlGtpYGBhqx9m6zoKSgowojpAkMdIkJsNnNMqyX9dO048KNozloLNbIHsg8I7NGDKSIbOJgxfGMAW4LIna9dbNBj//+S/x7NlzvHj5AienZ/gP/+HP8Z//8/8KlWS49+GHEFGEr778Gmdn50jzHPsHBxBSom01tXS/Isbf4dEN7O0fwAqJFydUXvTy1YkP7LnUMs2IDbPZrCnITjNwB4k6iT1gJ6VCysEYaG62TeO6qhAQJaVEEsWuPTsF8LpuUDvwTykFEzmBdkNlU0QXJw2p0WiE2WwP+3t7+OTBfbxz9w5GwyHiOMHico7LywsICNzYP0SsYjSGsvxN3SBLsx6orFsD3RrcuXMXf/Znf4pf/OIX+OUvfwUhBG7ePHaUdnIE45gWtuVyic8//xkmkwl++MM/xmQywfe+930Mh2MsFnOcnZ1CCIE0JceuKEqUZe27mA2HQ1ceOuuCMWOgBGBtxzLh8cBBLrcpttbgallhsSxRFKS589d//df4sz/7M5ydneGf//mfURQbnJ+fYT6f4+e/+BVOT09xdHSEO3fvYm9/Dzdv3kRZFnj+4inqpvaOgIxiIJYwrUZZt6S5owkAoE5fFhqAhoYUAkPHQPWlOQ6sI4CZ2EdZnlPWMIog4whxniObTtAAePjoESaTCRrdotGagMgkRpTEntE1mUxgrfUsNGZpMOgXlleykH/oHHOzgfl8DgC+MUQINDHbj/XChCCBca0N6ors5GIxR103qJsKQgDD4QiHhweIIuXZKgRgG+zv72Fvb+bmzKpXks1gQZhV92uf7jOb2I4gAHoYsJRW+qBGOGhXuo6gPnB3DiGNH9LmGAwyzwgyrUFdV1itiYmiW+MdVoDKZCNei10glyYpNRmxgACxqGrZeMfPWu5w6xYU55dYIb3jymA7nR4D9tR5kdqWN5TEYgFX0NwQQiBWMQWCQjoQHBAygrAaFhIQFsppLGmtqTzLGDTa+OPQvdlijLi1j86f9p1OpxgORxgOB5hOZ/7+05jXHiiGEK6Dr4PYjbMvtUZT1GhK0r7iMS2EwGq5RFlVDmwX3jYAXZlmnufI0hRVVaGsKq9Hp2SnQVFXlAisndal0RqbooA1Brnz6UIwlpmdR5MJVEwCwI+fPkGkIsRRTLpSsFBxBKkistkuY0/lgBV0q1FVBYSQ+PjjP8LR0RGePnmC3/72d8jSFO+/9z4gBK6u5ri6usLh/iGmU9IyK4oNmqbBfE7swsEgd74kPMbUgT8dAGCFcH1i6bq58IKXVmI10pjk1CUPQVqhyUdmoEm6zLX16ywFZ5aBJgTAl+gDTm/btsGUNwXa22DN2wLqt31vGHN2u1Eo1AFUYVjt49Pe8TnR2A9Qpf8/A03dz34J73cBmsJ93wQ4bV93CBhx4Nkr6bkG0loYq2G1hjYt6pqSZ1prt85JKMsyHHx5jqUCixYNhHEdcplVorrOW8Jyc4WuLDxSFAsppZBaA6MimjNsw909k0rCClBJbd1Qab1Lum/aFlYAcZoiA7zOoLHE1tVGo6hK8qUjWlfzpsKgrqCNwdOnTzEcDvHxJ59gOBjgzt27UFGEF69e4vcPHyLPcxwfH5P8xrpAsSlweXmJi4sL37iHk7wsK8A2lLs4M+MyXDff9Oze9Nz5mYWfEWTOIQEY041bTvjzvm+fB7vHyDYwH+4bnnuYTLHWjQdtnf2ASybwGtaVRxPg2DomMSnh0XRzH5QCwrrEVhTBeqDBQtnInxeTDOqqpi662gDaoG1aCFFDt6SBKiRgjANbjIaVDNaQoDUxubpEITV1Mq4qRMNa7digxs9nHstCCE/c4Bi1bRrUNcX/bdPAGu19FOPY1Y0mHdU4iRCnMbI8xXg8QBxH3NsbSRIhiiTWG4u6KSnRndB62bbEPlytBLRuqBR0NoUxBvP5nNad9Row1I0uyxLEkUJTlzC6RdNYaANIpMiSFHmWYzwYQkEgjSNUSrpKC9sDmfg5w48LYlhJCSRJ5OJVDTgyDaxFlsYYOK3YLEtRVSXm80tUNfmjsBaT6QST8RjWaOzvHSCJU5RljbY1bl4XqOraxdlvnzN/WGCT26x19EJ/4zhrKcixc/WR1jlCstUwyonwsji11r02mGzQ66pE2zTUwSCOIRXVQgLWidC2DlyJekaC6aV5njukUXth7CiKSc8liojp4DZGAGkT4ESVBRxDa/fTkUp5NXgyGEDr5lsUx45dlWIwHHih8cyJ90ql0FRU1lIWFcqihHIGXbpsvxAC2rJGCWA1GSljnQi4O9fIGr+A8cbOq6BdHOO7Q6o5+KBgjV4sGscOOpdoUAbxFL/77e9wcXGOk5MTGGMw3d9Hluc4Or6Ju+++h739Pdy4eRPGaFy5bku1Z3kRC4xfoTFmAx3WpRsb+0ynDeqO27b12kuM6feCqbaBkMSa4fp2rQ2alhlFdJ+00W4BriGVQpZnGAyGTpg0Q6spsw3/bAW0BlbrDV69eo3zi0sqF41jzPb2cXR8DBXFWC5XqNsWeT7wOk6x03Jp206ylqYNaZlxcEcic9JlmLYX011jsFvIthfFLtNw3RnrHLjuXHwGxTu4HbPJWov5fI7XJyd4+Ogxnj57ivc/eA912wJCYjQeYzKZInLMikhFpIUDKvW0rnSyrumZJEmGVjfYFJVr5b5B09Az5XKqJElhLaAUBdrKda1SUQRliKGmjctguHkogzlsbcByEVSGJ4WEoKgMhtu8BpaXF38PZLTas7UGeY7hcITpZILpdILJeIThYIg4ionZBBGwJIxjX1rfSYpslPUdTIaDAQ4PDykT2GrPaCLNL2JuMjjRNC3Ozs694DQBEwSOCimwWMwBdKBh29ICn8RxB9q6Tjk0x1p/fwD05h5fPzvTxE6zaFoNrakMMk1TvPfee/jjP/4BPvvsc/zqV7/CfD7Hs6dPfVlgXde+8+Z4MiatBqNdEEtd3qQL+ASEB5p9kOoGZm/kio4t09HNuwYHxhgYdiqlcACBgIwUVJJAg5oIwI2H1pXBQYhgjYh8STWN39oza0PnMtSWYAeZ7+W2HiCLHTNwEB6L9+XnIyU5lnzl5EzSmBUCyLKuE6oQgvS6UCNSscsWK7QtASdhSRvPexN09xSChL0NunHvS0pdiUYIQpFNoOelZOTmVcc07GwGzdc8y2lN464umpIdVRVBG2LMNM4+8IrLJeWAY94J6tpJmUIKDlqpAev0FZ0IurAW0l8XJ8EC3SBr3HEDppRbE42AC2SE//4uiwsPpPEYpH3CSNuVgisFTYurc3cDWwtXacXH8M+jYxsCpD9JmkYD39CC73/bCggRBizOT7DddxltvAYH2xtv16z1bAgAMCxAjk6rMez6x/eAWWlRHEOAtNAYZAqBaljrM9FhJp/mo+uwmsRYuzbqSkakKeNKMztWk/L31hiywzyelRKYzWa4des2Xr9+jeXyCsAEeT4ABDCfXxKz0DE4tG69f9c2jXPmUzcfrq+qls9Z8P854LT+79+6BVSD3v4hOiO2jxXyncID8d/4eG8/gx4zQoS6jT1kiHcIF/63HLPbrb+7BYOo2+fLn+sDSV0Qv+u8Q3+EjtvFFdvnsg2UfRfA6W3bNrCw22fqv9fZRYABblhAG/ZnNaSBL5GkL+LHwDcy7EQnAEPgNQOR/rm7fXwZEgS0E0822rV/F8KBn3R8667LCkEBetsgtYnTpWHoFF67lJhLwusVWmw1fBDU/TOKY1jAl9+xv5DnOabTKZWDs/yG8+fWZoXGsaJ99zPbMYP7pYl2S7PH9J739s9tILV7TlszTIitn45puPX58Dx2PfdwPd1+bY+VXb55j9EUfJ8POkPn3AejDMYEawZ/j+jbLPZ7w6lnrfUJ2v65d0nWLo7v1s3gpOj/gY339zg4N4LkbX/c8vvBHPef87bS9gB6Bq+41Fn4ecNfZ6ENzRHpSBqUWKEkEGB9p12amwbSt2ELfTlKwCVpJ13BdrOpGwhROGIDxWS8VrWtq9iSnbSNcmBvx2iy3qaHwHSALvj76hN8cDYWwt0D2osFyFmmRQDku7UarSQ7EEex02rNfekvzU/XTEyb4P6/efuDAZssBHRr0NQaTUsBpBASKopBQsKGHoxSxBICAEuofZK2qMoaX/7uS6TpE3SBdqeOz/XOum088ECd1AQ5PQI+KAkHIIAuKJWC6HRSoWmpNXXputKRLtKVDyID94JO1fYHx3V0uwMs2Pn2jraU3jFmsOn88pK6Im02uFgskCYxRsMRIhW5Nt80kJXTyIkzYhUMshxxFFGJh6TsahInZOyT2OvSkDNO4FkcRcjSDCTCTIFCHNEE8A6hcO2kLdA0BAQpKZGlKQZD6upH4NI5iqLEs+fPcHF5iX/74l/x6MvfwQqJ49t3MBqP8D/9+3+P4+NjzPb2MBqP0DQNvn70EEpFGI1HkFEE6xadoq5ROGS1bbW/7QLCA4FsRCw63ZDWTRCm1hMNsp+laKralzuNRjkix1QzxuDqaoWqrqiN8v6BFz7VRYlXr1+jbRp8/OABbhwe4f0P3sdoMoK1wNXV0i3QGtaSCTUAXr16jc/+5VPqmJFRmeDH3/sBvvf97+Nnn/8Mn37+BQ4ODvDn//P/gtneHqI0x6aq0WgD4yxJFwgDkBZCUeliPkwxmZLWVF2XvvyRuheQcfbB546sZwjacbDL2mQcvHDpI7EjMu88hqAfLfwSmQWisYUSFsvVCueXl7i8vMT8co6L8zlOzuZYrUuMp1PsH5UYjsdI5gvkwyFG44kL6ATWmw2effMc1gJpmmEyGeNyfonLyzllMFoNQGIwyBHFEYyxKIoK1hqq2bdMAyVmEE3b0BGjgJnr2ZuGar2VIKH5VhNALYTA3myKLM9I8NwYlE2NxWoFozWyNEUUxSjKAnVVY7MpUJY10jTDn/7pn7qxPgMAZGmO2WSGLE5RrZ0IeJJhNBy5rInG6mqFdbkGBLymSVM3kELgcG+G+/fexZNHDxGpCLptsVquiOHogvc4jpFPcxRliWfPv8HZ+Tlm+3s4PDzEjRvH+OMf/gmyr77EyekpqrLEfHEFYw3yjO5jUZawpsBisSD9FiFwcXGB0Wjo28vboLSKW4w3TeMBFh5jSikcHR3hJz/5CTabDe7ffx+DPMZicYFf/epXWFxe4psnT4jSKyUODw/xl3/5l/jzP/9zrNYrzBdzPH/6BP9ycorVaon373+I2Xjix25rGpQsUuyun8FAFakeSBM6c6TNYyEtCUILa9AYDWENtHVzThF7qWxqPPnmOYbzIZI0hbEGq+USxok5jsdjDAYDTKdTAMDLly+9w8sZ1lDcFIBnC4UljOxAs0g+O9LMNmK2BzvqQgivUyCEgFASBhraNNCWnAbSi0qRD3OvnycEoS9J0zV8SHOyIa1uPeh3eXkJszJkZ6JOL4XnjrUWm6JAWRR455138Cd/8ifI8xyzvT0YY/Df//s/4fHjx55tMsgH2D+YOs2poXs2lIYn7bAIgIA1cNnDKxTrAgcHhzjYP3Bi5qQBt7xaOceI1qm6aVBVtdMuonbMRVGibTWGgxyDPCN7ZcjebYo1jNaQ0mn9uK41TUtsG8roOkfXsUiYESWE9GWoxhJYEscJ4ijGer3Gyelr8h02JWlSAYCQsMKSvYGA4dK2JIVKEpSbDQpdOzvcARoCAlGSkjPs1vumaVCt1wCAJKHM5XvvfYAP7t1DUZRYrpaUjCtcRtL5PVmaer06cvzh9bJMY2BbWrAUJIymMS7dGp8lCQqnhwHLxyRAyQjSWiqLgppsjEZIkwSz6RTD4RDf+/73MRqN8NOf/hSff/YZqrLE6ckJoijCeDSClIqSU5sNYEEMKad7J6SEAQFW2hqk+QBGG9SNCwwimg+p83uMNVi5RMT8aokkjnDr5m2MxyN8+OAB3n/vfTx5/JjspV3i5atXSJIUs719HB4dwbQGZ+eXUJFEnGaAkEjSzDFe5RbQxGWR8IFC6FySfosFFbbzOLKQVpKGU+CLeI/S9gNA8DH9T8EOEO0iGRjaRqm2AtUwosSufSig6gDTjhmkXfCibTcuLQSscCX7gkM+vogQ6BH+vnGjEEe0h3JAdx9cEhCQUEq4Et8EaZI5qQAWatcwBo614ZhLMP0OS8b520JACOoixaXDdIw+4LRLlyr8Ge57HZjrEgT8kxt7MCDCuoHc9TXUEqqqBmVJnbalIl9Vm5YYEFxGLIBhnjs/hdn/rrMmDzlr0DrWu3KsSilFL7EtBbFDYA3apnb3LoYUvD89K/b5o5jiM6EU6rah4DtWUAKI8wyIFBrdwghQ6ZBy5fjWwrYtXrx+hYv5JfLBAKPxmHRwXGXEyckJ1us1lFI4PDzEarXC8dERpJTYbDaQRenlKhaLOZ4+fUJJqDElYVhvd7NZY71eO/0mAqEJANB+XBmjobXxjVGEIIYmjReAJUDo2tsu6Sdj//cemG67GI/HDoMHzGCmz0v/fpIkXk8o1CfkRFiYbArF3LvmTfDMZk4yhaCb0QZ11XVk5XPinzTOHZioJCJHwhBsnRxzV7eUUG91i7qpAQGoOIIwAsaQRpiARBwlSOIESZwijhKY1qIxDWAsEic5YA0l5uqa5GpgNaKIkuNJpNDU1MUNQiBSAsNBhjQhsW5rNGpXzaJcXJpECjKJSTNKk96zUBJJrDAa5hQjXKSIFXfHixFFEkImgFRotUTdWGirIKMU2WCMw+ObSOIIm9UCbVOjLFao6gJ1UyHNEnD4aBHqWkV0bBVDiQhSWgwHY0RRjZcvX2E+v8RkOsX+/gHygcEw1xDC4uLyClXVYjw+xHCYoq0abFYkNVI5EgOXJkoBKAlEiprySCE7woXQNMc0gcYWFhDGLRGkzat1g6oqiaW7WaOsSqyWKxSbDaw2SOoYejSGkgqDfIg7t+9ivV7harFEU7eoqgZa9xntb9v+YMAmWAGtLdrWoK5alGUFKRXi1JWuNWQYwgwVAwqkDdFgeeUo9NqgdSyAuqn8BOSsgKflAW5w9On+Nthne8LvylSEQXgvYOkhteh957XL34F288KtVOQFjmNLulGr1YoEvVZLnJyfUSYSZDpj1wY+T4naKpWisrFIYTIaI4ljpHmGOElI92kwoq5HLkvuUdSKstBxFKGqKyhJLDClJNI4JkcyCJT4/mnfgUZAqghZlmE8HqIoSqxWS8znCzx+8hgvXr7E44eP8PqbFxhNpzi6ewc3jo/xP/67f4f3338f680GZVXi9PQUL1+/JsH1EYmbwmVWuBNTB+p2Rp/ZZrzxOOgyvhZKMFrPdw/eodLaoGla0sdyzDByfKm1fVEUyPMBRqMxioKcAW0MLudzaN1i/+AAHz64jxvHx8jz3DHtCg++MNJtLDCfL/D1l1/BApgdHWE8meLOO+/i3gf38c//8hl+++VX+JM/HeLj733f1bLHqB2wwZkmSOleLishAakEkjRGPiBBxKZtuqyFq+N1uS3wtAjHeMgS49+9uL6bF2HpDbNdAHIeiQXhKJzgjlfKOUAWRVliuVpjtVpjs6afiysSYM4GQ4wnEwoUkhRJmjkGX0zloI4ebgFEcYIsywHMsV6vHbhMxj9JU6RZis26QFOXUIrKKLUxqOrCZbiD63dZH7IBjtprqD67bRtY75QZFC4LN5tNECcJpJLQ1qDWLTZlCWsMAbVK+e6EVV15EPPevXu4ffs2YgUAFkkcYzQYIolitFUNRFQSkqUZNFPBZeEcSgNTsXdPgdV4NMLNG4eYTSZQUqK1oNLUukEUd10aB4MhyrLG2fk5oijC06fPsNkUuHv3Xbz3/vuYL+ZI0wx13WDtOsdEEQHdbd2gdQKg6/UaSZJguVxiuVyhaZvOLmrq7sfjgZ0oLp9iR2kymeBHP/oRtNa4fesYSSKxXi/x7NkzLC4u8OLxYwgpcXTnDiaTCX7wgx/gxz/+MZ4/f4bf/PY3uLq8QLG4wnJ+iej+fQyzvKOeo/UdzYhRA8fMMBBWIZKsOwWfofPAtHtxXk2bTpPNksGDdM70yfkZ8s0ag8EAAKg8zhgoKZE7Uea9vT1Ya3FxcdGJLAair+zgSil9Ewlm5PGclJLEk9M09do3LLocssbC4EgIYlylWQpjNbTVMFZDqhgqpi5bqWM2pVnqQBLjxfMBII7Jjmunj1ZVFTYF2WchhdflYLCMr6ttW2yKAmmW4f6DB5hOp7h9+zbatsW//dvPcXW19KUOWZJhkFNHsYP9fWRZCmYNJUmCPE9hjOvM2jRYLZeoygpZmuHGjWNo3aKqSHz6PLmkzGJCLDxKBlSuvCKGMfQcyrLCZDrDdDJ2SRblALWFYzmniFSENEuR5ynqusGVE40OM6LG0eLrunIB49CNcSoTiOMEURTj4uICm2JDJZSbyjmHcCAE67vR2gYhIKIYMk5gRIHacEciDtbdmIhiREnqBe8NBIxdAxBQEWk03bhxjHv3PsTp6Sk2m4ISe5XrJMNjJc2RRIlfJ+FAJmOoTNFoAxiyj0ZTubySCmPXwKJ1bHJrmBXRrcWVCwzHkzHyLMPqcEWiAAAgAElEQVR4NMLtW7exv7+Pv/iLv8DR0RF+//Xv8a+f/wx1U6MoS+RZhr3pjBgMrmQtjmIkcYy6bsgpFgJwrIh8MECcJqhtg9Y0EAIObCT/J45iH7QXVYXNpoAYDLC3t4+Dg33cunUbt27fwXA0Qls3KAxwOZ9jMBjgxvERRqMRTk/OsFzMMRjkyPMc1gJxlECgRY+55rER94y4ZbUIgB1aXbpBJAEYarEd8A+6fYP8pUB/B+t9F7G1k/CJnz4loTu/cBPo/z/c57orS6UTzG433nY6zZoAWOPN8HX4E2S2BzoWG7hERELJKNi3+0m+mKCANkk9WESBPmu60ksKCyOsK23qtF2o7JVtZCfyvO2372KgvI2xtMvnD2MEtvO9jl7Woq5rz4ANWTBat758TjrBeO3mpW4btEIgSWJkKdlHa1ibiGG/bpwZbdyYlJCQnaaZj4OYZUG6LQKAJUopANV1KHOAd6jd2GgCfoRSUEIQWCEFkialtVNJtG6ta6sardG4dCXht27dwsHhoWcoaa2xWJBEwtHRESaTCabTKaauyUZdVr37zJ1zoyjyDQGorDXGZrNGVZXECPNMYwWtu+fCsWHbUgBO6+ibO22GYyQcDzyWKdnfByQ98xXwZee+WYmUPVAp1EAMY8/uXDuGOtAlhPnvIaOLj2+0Qdsw253ZLh0jt2PCgEgYsXL+ECXxhRSuG6dG1VAX3UY37n5oWNtpEgLCNVmJXbdTBW2sY81REkIbg9aVcLdNAyM1AINICkSSAGUBi7KkhK6SAlmaeDFuazXapqaEuXAC5UmMJIohGotWW0BYCGcb8izFYJAhSSKvx8RatkJGgFDQRqDVgLUSQsaIkxzT2R7iKILWFSwMmhWLzze+bJoesfW6yLT2R5AyggARO9J0AEBhfrnA48dPcfPWLeTZEFIo6Ia8ytXVGutNiTgaY5BZ6KZFVVYENDlpB/YBBOCfZeTYg8ZqpxdvwEyynja0EHBWGNq01CjKdML9VVGgriqq5tAGutVQUiFLUhzsH7hy2QGu4iWahtnM34HWhD8gsEmAs5eJd96ElIiiBEBH2w3p8JQi6bK4NHEIfFKeHUSlXx1y6yh0PgFEDwtwYIlwDCeH3AsHannq/5ZhCTe/cIAdwqCeNjA8nJnaXtj957o3HNikkHI3OC6jS0gEXSrpARXuVgA4DSJXGialRGu0p+M1cYzWaMTB4FVKIWlq0viRQVeaKEIbKRhLTCVtSOtINw0iRe0XuUZWKhJUNi7rlaQJdVKyBsvVCqvlCi9fvcL5xQUePnqEZ8+f42qzxmh/H4c3buDD+/exf3AAYy0WV1cofNcAYDge00LSNNCW9KEgKaMSgTLSJKCMnmHedgJ20Zj9GAyfkehEc1kbwlrrhQj5uTLYVhQF5vM5ViuXFYkT7O3t4fj42Hews9aiKAsAwGw2QRQpvHz1EvPL3+Hxk6cwFsgHA7zz7vs4ODpCVdV49foEddNgMBxRC9g0QxQnToNGeyARQri2iiwKSYBgHJM4dFgSFN6H7TG86//b94xK1hK/6DKAFzt9kU4EnuYdl21oVxP+/zD3Zl2SJNd54Gfma4THnktlZu3dBaALZJNNEaTmiENIIB8kzeHz/FFyHsgXEhI4EkHhgACBBlG91dJdS+6x+e5m83Dtmpt7RlU3j6Qz7X2qMzPCw8Pd1nu/+93vcgRNmDGvoAFPQvgByrqh3Oa6Qp4VqKoaSUIi8fFwAKUN60NTienDg1sYjyfwfR8r1g4RrHdm0rcMcMjOMAGqnoncO3Ru0FrBeidNTW3RVCZ1yKY0actg5AWcAZntdovCYfZpIeAFPnwTafJ9H+PxBFEYYn9/H3HgwzcB4EYTnTwMjB7SwSG0oupnFwDWqxWyPEccRTjY36e56vsoqwpPP/sMV2mG7WaLRgPxYICjoyMC8bIUqqoxTBLEMWm6XVxcIk1TxFEEz/ex3aaQ8gpPnz4FAFxcXGI0Glsjhpl7Sikc7O1jb7HA+fm5BT+klKiq0jA+AM/3EQ9itACusEAMt1OrG6Oxt5iY9dtHnteoKvpePwgw3d8ntgQIsAIUwlAiDH3EUYQwCCE8D5CSdAfq2qT8kPMiIaAFLLOJ7AJtGH3KMh55mLOr52ohSZP+JaVALGKKQlYltlkKISXSLEWjmnaMAAgHMbQA1psNlG6r4LGhyWlrvNHzeuLOTd/3LTPMpgKrtvhCX+/D1aBwAyFKEwOJ0wdonWiglERRUBDA932UJd0Hl6Pne2EQWanGVvkRQljQi9eAfrlpruCplMLLly9xfn6Op0+foqoqXF1eIw5jYmMqKuKxTbdg0U0Wxmwajgy36U9KKaQpgcpv3rwhsNgYxo0BQmqT0sp9y2uU1gm01thut0jTDIAmA0t6beS5LIzmEq1XRVmgKCOjtZWba7msOEpzpVRTs7Lpdp1oGtJKa5oGQUD6aZwCqSEonbRuqEqhJk0UQCDNc+RVhbKuaa8LJALPb+0JM46EJG1HZXTh/IBYysNhQiwKIVEUBOJstym0oiIjwpkXnidRFtR/BCpJSjtWCpeXl7i+vkZRFFTiXCswzYbH/NCkeNd1jaooLfOB51TTNCgK0hPTStmx8+L5cyMK3GBvbw/rzYbsFgOMh2GI0qypAKUTDQYDPHjwEFVd4fT0DFtTeTNWCTzPx3g8Nt+XQ6maim7UjWVYDeIYjx8/xnQ6we/9/u9jPpvh4OAQcRzj6PgY3//wQ0ovrsluStPMpCVLTKfk8F5cXAIaCIwuG+NJymiKuOCO7vz1jkOgZ7tzP2tbGfHrbXsNhhdaqeIbF/5m9/K/7XDBo/be7BqsYecs0N65gACLnQu0el8U3DD6nGbt4eAjA1oOMmft826jdu0/1x5kR3xXoNg9dgFN1on/ms/1/7kgBIMKbbp3N9WuG6ymf1IKpz3d4AOZipzFYGUCtAIVeyFmr1YNtBJ2v7D7CfcHX0hxNzggqhS2YIYfBPCDGkrTukQ6UY1ljANAWVVYrlaAACJjL7JUBusSBkGA+/fvY71e4/PPP0dZlhiNRjZAozUxzV+/fo3RaGSCakMrfcLvc+VdPnifYo1ElxHkAkv8z00BbPu7G6CllPX2+hykBWgfZ3+gH9R1+5jZza5NwAE6txJx//Pcz+1rwv6j15y5sHs0vuVV85/gKuRuKvzNe2jbzMxl1YJ6nDbmcWqlrZpHdj0EVXgLQh/DQWyfSSlK9fI9yi7wfA9SKXiiTW3T4EINreSLFGTD+J5E4HsIWMc2imw2hu97iGPav8IwNkxJgaIgPauyrChzoa6NbAuzz4U9tx1T2jwPBduFEEbWVUJKH4EfEchUa1RVgzQluyvPChR5AdVokhSQ0vYedsxx/l2bQmq8/rVrFZ/brnOkUdtFH2g1bdPmm6ZGpQlTkEJCesIEVzSGwwTDYQJOoyMpkl3BiO7xrQGbAIpSREawl1LhqNoPQKwnrVlU0Ym0aKdkqjCTz5MQUkFrQhfJsA5t5BoAtOUjt4wcXoibuoaqu2WS26ixtFGQNiLQTSHoLjpd+u3bkPK3HexI+Mw6MguMG1Hg8+qKFnQNGiRlVRpNCQGvbJ2QIAgQGaplFEVthYcotg4sL+5c3aGqK3hSIioDeFKi8HwSDSSPvb03KSBMVb3BMEIcR6ibBldXlN709NkzvDk9xa8//jU+/+ILhFGE+fERbt+7h9/76PfJSFQaZxeXqJraGrLT+QJKa2RlCZgIkCclpB9Qaluj0FSVHfECNxfhtzHN+DzuC+5Pjj7xT0rTyG6ATVVVYbvd4vz8HFmWQUrPRpPv3buHodHTUlpjk6bwfQ/T+QhxHOG//8M/4qc//Sf85jf/AtUoDIcjfOd7j7HY20Oa5Xj+/AXyosJoOsVwNEZsWD6UV6zgBT4iEYMji4Rkl5ACFO0yICXThC346c68dxhRu8A4F0BiSjDQlrbnjZ9/DodDhGFoN3rf822FN2XuG9KHCEIUdY2z83MDSKQoiwrj6QTCkxiNxuRsqsY6tXfu3qV78yQurq6QZrlxGgHPN/oBJk2O0lsCO1aViaaS48yOgjKVHwQ8s14UBUVxGGimCBgBWb7nQUBgtVphqSlyU9c1UXgN+BqYdgnCEGFVmUpsMe6c3MYg8hEY4majAE/6GEQRZpMp7ty5iyxNsV6tsLpe4uXLl7i6usLjx4/x6A8eIQxJh2Wz2eDXP/8nvPzqK1wvV6gbYDAc4f79+7i4vMJnn36KsqK0vel0itPTU7x58wYQAgMDFK1WK0tZPzs7g+/7mJt0p8YwFrgK4OMPPsC/+egPcHp6aseB53koipKYGiADkzakVt9nMiFQ8OzsDNemzDGlT0W4d+cWwijANq2xTSsUBQF8QRRh//gYTdOYVM0MQIMwJIbKYDCge/B9wLAOm9Ix0BplnWlbJ5SdDdUy9hhYEV4bEeQ11v405XvZGC5qApuk52G1WSPIc4RZRswPaAxGIygI66RzBR53voxGI/uedZLMwWvwYDBo2SagMctRLr7/tlpoF2xinSXZeJSmZb9Dm3EM5HmG6+urTqS0ZQJ3wa/+WjkcDq2oeVVV9nc+uGS8UgpffPEFyrLEV199ReLlWmI4GFp2VlUSOznzMwN+Smy3W1NetzR9367RSZIgDEOkaYavvnrZ6kIJYY359XqNLMuIORXHdj3UWmO5XBnAKbVrvC397aREMEgVmFTclpUad9gJtUn/D4LW8CrLyjxf22dhGAEQiAeFdchISNzoKAoSoddaY7PdolbKprSHYYRRknTWbGXA1aqpWuDfiOKOJxMMBwMIIW2ly/V6Dd/zsLdYIPSpIianpmy3W0iTJiw9iTiKoaGRpRlOT8+gNYFESitUNWkYkdiqwmJvgdl8jqurK3z14ktAcHEBcmBZFL9uKFWmrmqsV2v89skTLM7PUdcNTk5OcHp6iqvrK/ieZ1l8aZ6hrCoQ46LBbD7G/QcPsd1u8OUXz3B+do5aAYkGZrMZZvM5se9MEEBrmk/pZoN0m2Lx8CH++I//GPv7+/joo4+oAqeZO/cfPMS//Xd/guX1NZ4/e46iKLBaraG1xv7eHub7c5yenuLVq9cIgwC3T04QBiEaVUOpBlQnwbrkZvNEF1+xwLaz1zr/Op8zv7TuQi9gBou53Lhm+4fY9eL/T4ewTyNAKfHug1uAxJlr9AKPeWmDzgIcDBPWvmk1ecw3CacypdUhY7BJQ6lWH67PUunb7cDb7fVdwcxd773tnH5A0AWbeF2j4I9A07TlztnZdPVwGPxx2TAcEJYQ8AQxRTwhLAOHGY4KgFAC2m+IOag5b9foH8IdVgJCdp+D2plSj4UUCKrQpt1VdY2mkZ1nhdbIihznlxcYGs1JANiuKXuDtQuTJMHjx4/x8uVL/PKXv8Rms7G2Ja/p6/UaT58+xXg8xmQygVIK8/ncFizIsgy+72Oz2XT6gvd4rbspjhwccgM3bDPu6ss20KLb9jQ/3T3e3Tfc8eGCXBUXSnDGAwNNbiVR93s7+4LDhBVa9O5z5xDErlWI5wrJSphKy5xA8Y0AWPrHgUuqrtzaz3SvHOCtoOoKAhpB6COqQ4wSClJKCdRNBSE0At+jKnGBB6Xa7CSY+yQ2lvG9JVVjY6ApDAOEEfm+cUzyKIPBEEHgYTgcQysgigbwvRDQEnlWoPYl8rxEUZQo65qqgNe1YTJLG9S3z6wM0FQ1Rg9VgmKfAr4XIQwHECJAXWuURYPNOoXWwHaTIcsKqFqRnyRbX4mE3hW4GBGc9UQp0pBuKy9z2if3Yws6eZzyKQU0RZVa8MmMw7qqoQWxmaWR4gmjCJ70MRpNMNqmNriW5wW+STDjWwM2CSEorWswgOcHxGgSzNoRsAQhbkRQxwlBKQICBuSAhIayVcksumoTIvgLW7Cp3Vjat9rZyFRbEvJq6YlttR0y0Bmk6DJrbuZ6S+d6LY333W0jKSeWFyLDzJBeK13Mi6AbCfKkQX55k5HSVLEiAIXZFnEUGbZU2HFYKO/UpLv4ATngvm+d7vYGW9Sb5oCC0BR18jzP6iusVius1mtyALYpyixDkiRYLBaYL+aYTiYYDIfIixJNSRO6Ua24bKPaNDDPpE9J05ZSayjWCOhEx1otLG0jXe0CyG3Hh/sZLu9K46+lJDLDgKsb8eZTFFz5LCEdkGGMOA4hBWyUxm1fAY2rqyu8ePEC18slhO8jGsTY29vDbD7Hdptis9mibmpMp1PSajERjbouwboodmzBGJ1mTLXiwNKJMnQXhHcBnrsiJXzwuK5M5TVmOTAAxZU/eAN0qb+SmU+AqU5HkYbICJ4zg4YBq2SY2IgOfx+BehLT6ZhebxrUhgFhjU0ThauNPhZrBvG1eL4ItOsECeE2gJZQksEqEjoUBuBUAKxqsBs0AG1sDEBVJtWQn2M2m2I2mZiUoAEWewsoBRRlhUYBSsEyNIbDIe7fv488yyCcjTqKIty5cxsP33sAz9CT3cplNBaJycEC56yBB8BGSVknJ4wj259aa6RpiuvlEklCIvSCxw5a43cyHuP46BBB4CFNU+tEUwW0EmWlLPvEBStcg4oNyDzPQVXpNojKEBA+Ap90tmazGbIsw8qwFrjflss1Xrz4CqdvznBxfoHVeg3P840BZgACHr92fXbGupSQStnIXAeANZ8VxgiX7rww9++WpOV1sSorSlEw3yk9o71hwCU3Ms5rARusfG8uuOHOR25HZnYwMOaWnOc25jFtjTqOwkKjqlp2LwvhA7Q2pVlm13UN3Ly26yw5zC8hBMqiRFEWqKvaGscQLU1fa42yKrFcLlGWJVarFVUwGiQI/dZo5sgzA3LcVjxvGbTkqO5sNsNoNMLl5SXOz88teOeCYgxWaa0Nc6vEZrOB1hq50RhizStOGYfpd+2sb1FI6Wg8roQA/G1gK5cKYfaBqobnU4qAFMIycoKAAOeqLJHlmWHNUDBFag3Jbe0sJ/z9VDCBWI8EENYdR4OqytIzMJBp9RQN2269WePi4gKr5RJFWUKEIYKAmMehH0BKD7kZpwoKDRcAMvtpbQBOz6ciLI1qUNa6nWuAMwclBbpUu25YluJsivl8TnM/y5Ab9nJVUeWexWKBLCdwUBrbQZuxFkURchOwSEYJgjDAUA9x6/gYYRRDGSacEMKK8UvDdhTmP98UIoAGNpsNhBD45MkTDJME+4s9jJIEURjiwf0HuJ5ekzbVZoNnT58i3W6RDxMMB0NAU8pzaNLzfN9HlRWo6spZT1qb8sbhdrKzBrRLzW4mDb/+LlCD5jAFZlsrlv+/i2XTv0+xE5tyr8d2Fqec29/5HpzfO1d2vujr7F73mfrXcsGgvn3TtXV22zd2nbXivt3n74NNfcC9fz/vApr6x9vW+Zv3jhvPyECEm/a063PuZ12/wH1v1/3wfbg2G2eDUN2ZLivmXX3I65PP9nvT2DTrXYF5rnIpzN7Be1VRFDbAGZp1OI5jCwKxDiSxqyvLmk7T1LKCGaCJoghVVVlWKTNZd4FGu366/fQ2YNKmMOru2HP9QRck2jXG+Hlc+8R9rX8v/THT36t3Pdvb/u6+3gJPGjfvcdd86Hy/7gHhmrXopPWhKOhMwBhpKAUIApJ4UUpjMBgaG4T2Og7eaOVUA+yQUIyvR4acwQxYn4z8D8p8MH6uZBFu2v8Do2UpTKYIkQuEsYmYhEK+N/k0Bqg2/2mtTTZFYwKDNYTJpNBKG2mJ0OznVLm2NBWTy6puZT00A4jqRoEO2Lbu9oWQAkIxGUZAyR1964JLppPYVnP7qVGN9SM8E3xiX42JBb7RsP4mx7cHbJIS4+kE+4cHpsKhhpCecejb6ASBJgTuEKWWGE18Dm2ULZBkJyYzbnmCiLZ0YH/BHMQx4jC6sQB37re32QljDPKgdktLuuczQOVGW7qgk7jxPdbZg+hsNsJQ7Ph//LuNGnH6h3Hu4NwroabSDCDfAFLStqkAyBkT0uS8ElXOM2wNbUo7E+BB7W5LRJsSi5xudXV9hWfPnuH84gIvXjzH+fkFrs7OkF5d4eH9B/jwww9xfHyMu/fuQUqJL754htV6bQNewyGJUFd1hTTdUpqArXJhNgwh4CkAplIOLzhNQ6uO1tyH3L68MLG4K1U6BGBoj7SgBAFH+glMStPcsMMiRBH1V56X2G4zLJcrBIGPO3duYz6f4datPcxnQ6xXKa6v1yiNQR2GPnwpoRuFJ7/9Lf7u7/4OqmngDwaY7R/gd37nd5CMRvjbv/1bPH/+HPsHB3j06BFu376NJEnMRrpFXVfwfWfDVMqOK89EhUejUetgqrYy2Nv+7RrzLiDFoCY7laVJ05xMJhiPxyiKApvNBnmeWwYDiTaOLa3ZN8CpEAJhEGAQRhglI+TTAlIIm54FEPvj+PgInvQwShJs1muURYnr1RJxHOHu3SNMphOs1inSjCLZ7EAy5VsZtsBqtcJ6TRoxicMOkEKiaYgBUlclRSt8D77Ja6dNQyEM6H6V0lCysdELbUE03vIE0vUWq9UKUggc7O0h8Hy8/+ghjo6OLKMwCAJkpUJ1tbEAHOdmHx0d4S/+4i+ILZISm+7LL7/E1dUV/vAH/wY//Pd/gqpqcHF5jVdfvcJoPAK0QlXWSNMCVdUYVic5VQzg+b6PKI6RGJ2VZESsk4uLCxRFgdOzU1wtr3F0dITZfE554IbhxSldDx/cwf/xxx9hvcnwve9+gLPzc/z1X/81Tk9PcXGxxHptqmHmhV3H2BDkqN5wOMRqtTJ9LbBerxFFId5/eBeL+RS3Tw7xwQcf4OXLl3jx4gWapsF8PsdwOMSTJ5/hr/7qr7HZbHB1eYnz8zNEgxhTMSeWIxtfaFM+3YMrxTFr0wVmaAlz0tIkifVCsw6NRGS17lJsk4RYeGtyXPMwgBQScRji1v4BwoB0elzj2mXftIzZthqe22Y8xxiYA3Cjih3vBwxmCyEsWFTXFaqqpL3AMEOquqLKRlqjFgJlXWGTbu3c7uw/dNOWTeUazJEJWDCjiRlwriGe6ASQAvmqwNn5OcqyxOXFBVSjcHJ0B8kgsUZ/Xdc4OzvrAGtUcS6w4BxrmgyHQ/zu7/4ujo+P8Td/8zf45S9/iel0intmD2HdD2aNMauuKAosl0s0TYPNZmPBpMakJHumCm1dUwnl5XKJLMsxGiUYjye0F5pKmkVZQDWKKjMa8DGKIvt5rdhga8W3yUenPao0aae22owBMSHaik3pdossy6HGY+pzE612Wc5lXqCpSUciTVP4BugMg4BS/pTG0y+e4svnL1AxIDWZIBklSEYjhD6xlfM8twZmZRzbIKK5U5Sk0ZWMhoiHCcqqxDbbgsV2hRSI4gij8RiXl5eU0pzntoDCyckJZrMZPnj8GB999BG++uor/Phv/w5FWSJNU4zGYxwcHuDW0S34YYBXb96gaRpcXF7A93xMZlMkoxGeP3uGly9fITQstclkij/9sz9DUZT4+S9/ic+ffgHf83Cwv4/1eo2z16+h64ZSLjwPwWiEUTKCahr89re/RVVV+Ku//EtIIfCj//Af8L3vfg/37t3D//Wf/zOur6/xyZNP8PrVKzz79DO8/vIreCCJBlU32JsvEISU8iykwNX1JTabVoPsbfblv+bYBUB9Y8BJ7waW3v03veZCMML9v+Y1UoKEewCpW7DHsii0c4EbVzb2MN7NinDXmn5QjH/yPGCwwl3L+TxeE93rtv/orvogDQNODOq4n+3f467X++f077vTJh2Qostu4mdkxiWfd6MaqLqZ2uWyXDnQ535nH0zrgxZWBNw4+FzEQAhiXgohIAEbkOozaywIyPaRuZe6qk3V3vb8PM8ts9pllTYNySosl0sMBqSTNplMcHBwgDAkxtR6vbaFLSqjJbnZbHBycgKtNY6PjzEcDjEejzGdThEEgQW4eays12ur+8Rjh9uhzzh226tNc2wDJrRPcqWxtlIsp8W5qfEccHLnM1/TrfTLtpvLwOrb9e7+z++14M5NsBXQ7xy3dJ4bgO+mdwKAbNo2ctus+3t3nAkh4RugaTgcABCUPt4oDAcNBCTCIEIYRBjmtH9xevp2myLd5shS1rQMLQOSAyPG/YTWvMZICHjwZGCILBQkDHzSdwoC30qODOMY0A2iyIfvUUbIer2ClAJFkaOpKwAU8KoLLkJkvkN64EWvqRVUU0HrHJ6Xmr2dJILCIEYymsIPIspoKBrUDWl4bjY5yrJCUdaomgZCaTQNBaTzokSelwaM0tafb20BCe3DjEuaR9AlKt3qqAoYwM1ZS9wCuDx+mrohFhW0ZX1LX0JpRWSKJLFzaLvNvtEe9y0BmwjgCILQUBgFoLlkN4ujkmHl+UZ0S7TgEtNpwf8YbHLAFa7SZRdDAXAJ1H5DDQdDDOLYRnO7G1MX1Qa6AuPuz/5m6b7XmbCOI9K/l/51eOHqbxbv+ts1TPk9N1XA/dn/7v5921QiTcg9V2gwHzC/2FCYWWQb0mzabJBluRXrgxC2akSSJJaBwOlgEKS1wmAbjxM+bkRyQOdzTj+fY3rtxqjj6i8ENPWNhhY0pMW8bh1S3aat8ObCjKfAVNuZGAZLx2FUypaNL8sKStXYbDZYr1aU5jEYIBrEGAwHiKIIWUYVv/YPDmxFK9tGih0kAaGdpxNwFiDfAlGcOsPP6I6z/u+7NiDXeO0bbi7Nl99jXZ48z22J9igM7aasNJcYpXHjm3RFIYRN62THnB1O3/OJPWHoxR6LEvcMFFdrRsBhI2L3pklOXA3tziu0rBYa963GAQTphSkNaEXlQZlxxqxIIQ3lXQgbiYiiCOPx2KT0kKCvUhqVbuBLU83ROXd/f59AhjRFVdIzB2GIg4N9LBZz5EWJLC8RD2JKaQXR1DntyB2vbLhZA9I3rEfHmLZOtjHcWdCb+4jbyw8CqloFiUWtLVtMa200WdKOw8Nrl2tcug5AXTe4vmOiDtUAACAASURBVF4iDAIUJ7egQZulK6LKYJfv+0jTFOfnF0i3W6xWS2RpisAPgMikbjrjsmNQ00O264Fox3573s2Vgg1m/kdYlTCCzKRbV5ln9BrPBDaoogoDSJZFJ1qmGx99QxbOmOW55PYj32sfGOZn5j7tOC1aQanemugY0x0WlNadfYqfgeeVG51lUISfh8EW/jynHrptEEW0t4Ym1Yuj3czMce+LwUIGyTmtMEmGmM1m2NtbEGibZVZYl9vMZUJxVJtZkcyU474H4FQmNeNHa2L01FT4gQM+MHtSZz45/eqC8fwslefB6zkWnf2L29pZxzSIocRVA32PSw53bYpdBr57nUYpNHWNgjUzuK9Nf1cAGiFRN6T3xKABhHGGBOkkNarLANAwEVylIEx7sx7ZYDAgMWFzn+PxGLPZDPP5HIvFAkujy8f7JzGCh0iGQwxNIEBrjcph2PG+UdVUoIBKS0fYPziABvDJF58TaCdN9FqIFvAwXpNn3lNNg7Wpqrg0FTW3261l1o3HYwgAhwcHqEoKglQOyw6A7Rcy2EWndLdoo4A7jrc7eP29uOukiRs/d1+zf97Na+/45ht/v/Vs19hwv9cATBzd33kV3QJNN+5AdNcn/r0/xvtt5LI/+mvbbie7d0tv6Y6+Pd2/Tv+7+qDSu0Aq9/x3AT79e+G1nZ/ZPX/XPrLLp3jb/fTvi/a9VgeLjCkBKr1lPFRnDdrlu9A9d1O8pWy1ttw1jNdTkixoM0ncVHe2R8bjMbTWtjKqm+LG6Wd5nltbiNeYvu3X76M+E3vXM/X7jv3AXit2+kxK2WELu77frr6WUtp9i9uEGSauXbVrnH+Tvv3XHdr+cL+vv/+0W9nNNnPtCfOieY2LcnX737V5KIDeCl2zbaoUpXhp2QLdbj+09+jYMg5O4N4ls5I4wCgNXqDM/iQlFcXQWps0c9+CrO13Oc+jAW3Y43VdQ2pACkUWhME1JOvGKpgiSgqN0lCmkqY2e5YSXOygq7krO+PPTEe0c3LXuLTWbW+t5c9BdNcjoMumE4KkhNwiP33c4G3HtwRsAqT0MZ3OcOvwyDjJRM/ygxBMt5PSMxT6wBgUnmk0ppNTGXOC2/sAEMwAb8EmpyyGOQgFHgyGGEQDaKJYmYnNCzpHTYRdb9uFpU2NA9ggZbSan9NlP7WTgTqV78OdMO21AHRAo/4G7FYtcN9333vbJty/Xn9RajdAes2TJM5NNpW2EXAANoVRSkp1W63X+Oyzz3B5dYWr6ytsswzhaIT50RFu3b2D+w8fIAxCnJ6eGgO/pkoWzvW22xQa2qL9EIIqsbFTaYwcIaiSD6PcrXPJ7W8cCufa2ixsinN8XWaYJ205VKWUSWGUVPnG93F+cYHlcom1Sc0YDof44IPHuHV4gMFgjDStsVpvcXl5iWSU4OjkEHVd4V9++ykuLi7x+qvXQFFgMp/jzoMHODk+gRDSlhZ/8+YNPvy938MHH3yAyYRElMmZocpHSjfgkr0agPQkRbXDwFRi8ls9mh2G7DcxovoOuRACsSmRzYtfURSWwRHHMbIsw/Pnz3F9fW2F/yfjBNPRAEprrLcFVpsMWV6gKkv4RkjY831sNxuEYWjZN8xoCYIAm82GtDg2WyOeXSCKSpR5ibqskGcZaZL4vgV2ZrMZ4jjGbDbD0rCNPKcKCADkeWqMkhJlQRUXB3FEQJIggyfwffjSg5YSWmlUusI6y6ABHB3ewnw+R5amyNIMy/AaMIZaWXSrSYxHQxzuTQlkudqgURrBgJxurjgXRREWi4VhSxHIcXRyhPV6i9snh/A9Shi2TrwZ92fn53jyySd49vw5Li4vsdluKVVOCqw2a6hXNAcGwyExJ0yqo+f7iMy80ZoqdbHBBhCIQNUuFFabDK/OrhCFAfYXYwhd4969O4jjGGdnZ/jZz36G27dv47333kNZlri+vrYGFos+13WNKIpw69YtXF5e4h/+4R9QFAUGgxjSC3FxucT19bUVAVVKWYbjarXCs2fPkGWkP6NUjdliDiGAKI4AQaBbZVJwCBygzV9rWLaJEDdZRuzkc1ChaRoqtyQINPc8YjYJkFaOLyW0MOwnmEokwkOtm46BwNFpd86xUcwGMs8xN5LN7/UBhv78dY3nTmRfSgjPNxXjiDEjtWc1HHi+82fYoOP0W6ZLK6XsnHeNZqUURqMRptMp4jjGfD7vROGvr68pbc6wn+I4xv17DxBGEZYX18jSzIIQWZbh9PSU0vqM1s7BwQFms5ltK9/3MZlMMBol+L3f/T7u3rmN//cn/9UKkd+5cwdCCLx8+RJlWeLkhCqejUYjzGYzSol69gxN02A2m1mRatKRUKgNAMNA6+UlCekvFgvs7e3ZvlFK2eeKosiCWcPhEHme4+XLl6YaXmiNMgbdXKaaUmrnOanRp7pz9y6CIIQX+JRWVhRYr9etwyQEBsMBJITVpfJ9H0OTwhkEvgGLqLIMs5yrqsIXT5/S72XpUPS7zNfcsK82WYZaKRRVhTTLjBYYtdVyuYRSCkVZ4vTsDIvFAv/xP/0nqnpr7mc6nWIwGGA+n2Nvbw+vX7/G5dUV6qqiim9JgocPH+I73/kOzs7PsdlsUJYloiiC53mWhcZVPNMsw28/+QTHJ8f4v//9D3FweIjLy0tcXlxgEEVYLZfYbjaoqxpNXaM0TkscR/BDH9vVCq+/+gpRFOE7jx5hMp3iYP/A9m2WZYjiCB9++H0sFlOMphNAUpBou91a0LNpGrx584aYBwGJh9O+6YJOX3e057Y2Jdv+fUCpBZDe4VN2rqv11wFN3eNf74z+64+3ATG8Frv2yi4HmT8jpbRFFpgN2V8T3+mIG3u9axsB2MFs6v/cdT8ukPC2z+wCy3gtdRkqDLC7IBKfy9dwWTf8vS6Y4jqE7rX6qXW77o/PrarKDEYJwb6Xsf13gQ7ovR4Evg3cUwEobcFi3hP5u8qyxPn5Oc2vKEIckS1ZFAWur6/x5MkTRFGEP/qjP0JZlvjJT36CFy9e2PWXA0xN0+Di4sKuIVwBlsEptue5HTil2pWF6D+LyyLpA4Iu2OcZGYUoGtzYyznNma/JgRbXefcMM/Xk5AR5nmO9XncANWbucr9yxVq+j47d7gIwur3X9tzeeH7L3O+uaQ4TW7oAaWtXcftJKYwvEtrn1JqCFEIIyzymyrA5rq6u7NrPQSHeJ7kPeL+lKufjzvhz5zv/ze3TZ8xVprAJtELTVCBSsSbRcoBer0psVmt4noDvk6B5PIjh+0PousZKeBDCg2eq7iGQ8KRCabSalK4hkEN6PlRM7CPfDzFIRgAENCgYXRnsolECSkg0mthRQgoIj/yIDghn+sqd230AyfYdvdj2u3ndFpkSROaBEJQiHwQoDdDl+a1eXFmVnYrjnM7KY+/rjm8J2CQA6SGKBkiSkc3ZlNKDb9ghQRBSTmUQmWoBpiyqQe80WlFTCFN9qMPe6TnYbwObBDCIh4ijmIAmQytnsKlpKG/T9EXncy3Til7j0qvt+y1Di8uMWqFD4c5zRhHpOkC7gfSRbduCjuNk70rrzufc192fblTobZsiH1w6FnYjv2kUEdNGGwEySje4vLrC9XKJ3JSm9sIQ8WiExFBblVLYbLfG6Ke8VnsPmlIO3MW5MSyDhhcZSHg7ogsWH2MDDm3/u5NQWSezhfr4ORvVivMyABWYBYwcAwIqNMhJ29/fw/7BAXw/RFUrlEWFPM8xTGIkyQB5LnB2foGXX73CZr0BlEIUhpjPZpQOZUAETkMIwgCLxcKKMWtTMa1pGsga0LpdbBh19v2gsxDtQrn7x7sicXbzEAIwCzgv2m5EiRcgAWC1WllnrTIpPGHoUZtUDfKSqo41DVVui6KIdE5Mah6znZIkwWg0spFzjlT5pU/aJ1Vt0tmoohM77kxFHo1GthIai9W64CO0hjZVLgQ0oKlkfcBjzRh/HDXXWgMebFUKaBKVnE4mkKDqdSR8qE2qXWMBlsYs7oNBhLIgQXvSFDHrg/mOMAwJfJMSYUD6Xl4QYDTOMJkmrainu4kIgTRNcWEA0CwjUV3P8+H55AxiS6Kaw2hoq6AxGCKksMBkURT2PTvvBK2zRVlivckgxwLxfIwkoWfPczIQ3rx5g/l8bkEKntP9NAHP8zAajbBer3F6eor1eo2Lyyus1lts0xR5TlRp3sw4R5xTtvI8w3qzge9LjJKBYbppy7ap65rwZtE1Bvs/eRy4bdkoZdeGBlzVUEEpibqqUBunVIpWeJznhzCLi41COd/hGkKu8dAxVB1HoZ8escsIhmijdDfnMI0pZvoKaLsWuPuA2y/u9dmwcM9h54BBsDAMrabcycmJNez4eXjscyXG9x89wnAwxOeffoaLswvM53McHx9ja9Z/1u5omgb7+/vY29uzrCcGkZMkwf7+Avt7C8uKZZYsOzVKKSwWC5t+zKm8Z2dnqOsa+/v7SJLEzstaNSiNs8FGsBCk/7O/v4+DgwNrvDIgXJYl4jgm5qYBm9I0tQ7CwBSH4L7nFEi335nhxX1emnRFIQi8SJKRHceb9dqK2/J6EQYBPNmOG06j69gC4Kq8lPKnNLECNIDMVBeMee127IWK26apoQUBtVVdddItGZjTmjS3FosF3n//fSRJYtNWWFfOFWF3hd8ZiNzf38dgMLDRa3sfVZsK4Pk+6qbG5dUlxpMxDg8P8ODBfRwc7GMyGsP3fBR5jrIoyVZTGo1uIISCVqHth/X1NcRkgv092q85RZ2ZyGGYYH9/D2WRI4xCQJItwExOKVuNGKUaTGdTA15SSrbrnLW9YGcXuoe2r2rssKkccIl+F7TWvQVxetdO/y4wyQVq+se7GBO7vv+tZztr4tvu65sAXq4zyZ9x77/v+Lqfs+fv/H66+11gV98+/te0ya6D56zLWOjvk132xM3ncdfk/rX7n2mBgXczotxzVWPS9qRnA/zf5KldkKZTwEK0up4u2MbrIoMMowGJf5dG+5IDmovFAsfHx1BKWbaqy4ThNknTFABweXlpASUOYjCDlj/jinfv6tN+W+4KxnP2gF2HnfWOX9vVNkBrG/BPlnpgH4MLFPGe5KbfuSBYP5XyBrFQ95mCu5+1a0d0z2z7jOxpYuJ07Qb34CqvLrAo2LYytjGngK9WKwsIsvSDOzcA2KIe/Nzu/HHb0R1zHVDG6a+madB4puKgUiYTwvjwZuyzCLgnfeP7BIgj3+IQlAXBsgsUchSVAjWJIkkLBdS+yUSRPoIgomCNMgFQDvbQCLKYgxTaZq68bT3ogNvor9MtUNFZx0zHaupEK8XGQLKUEqoHrjK72W1fGuMS4uuX628L2EQgQGy0RDwvMKV7SchLSInAb8WrqcYslQwmAkube92iCLAUUAhAKQIY7AbjgE3t5GBVzBx11ZhwuCn7qTjqz2VA+SKEhtJf2hr09J2m5Lo5lQwI3gBpUBM41YJLNMgZGNDOPcIuxjxhXZDIBaL4cJ0DnpQ84bvo9m5gAbgp5MdvceoIPweVf6TvDwzFEILEibdpitOzM2IArdeoqpq0egYDqsw1GCBNU6ulEQ+TDnDGJSY9J9WqMYuFkQSHgmr7neeXFX+k9qTyl2S8WpxeM1VYGwKDQBBGxvmmZ6jrBmmWww98jMZj43hLNI3Car3G6zen0FqTjstojL39fezt7wMggVoN2Ko6UgpkWYaf//znePLkU7x+/RqQEovFAh88fozBYIhnz56hLEnf6c6dOzg8OMRsNgMAG33h/uYFm+9XSmlZQGw0t4sTLPXSCh/3gMddxgfPGbsZam3Ft6Xf6gJtt1vI6RhJPMcm9FAVBdLtFhfn5wiDALPxkBghDYmHb9ZrXJyf4/TNKZLxCPFwCCE0Nps1GlWT8a4VBoMYk8kYabrFdltDegJ+QHnyRVnYUuwAsbx9KSk6oTUENOIoxGg0xCDycTAboaxrbPNW1LpuGvimmoSgG7TPrDXMZmL0y3ixVgq+52E+ncLzPBzfOsDx8SFeQyNdU0UnBhyKokDqefjs009x+uYUv/P9D3BydAhAUuS/bmykTwph8/lXqxU8T2I4iCGFQGEqW+VFhU1aoqwVBsMhktEI8WiEaDjEar3Gs2fPcHZ2RmCl2cCrurJlgoWgHPnaVHsUgsan57cVUoqiIKDTMMuElCgL0qh5/fo1fvazn+HBvds4WHyEMIpw/+FDTOd7NoJYNw3ysoCGxnQ2A6XGcZn3GnlZIBkOMJ9PUTcFTu7cxvnZOf7Lf/0v+PGP/w6nZ2d4/eYNgYpGEwZGP6puGiiTwhMEZrMj6qrJ7Sc6suZN0YzRflSXBBq1MTZpXW/Xx9oyoFowj4ID280WVUlAXVVSRCrwKN3b94iB0tQKADnpeZ5DepI2aqdiCbNJWi4VoJsGaBpTeQttCgODV6D1SkNbPT0ycgzY4DmVlUB7o6JBbNOgCBhwUwyFYdy2KdEsoMksYz63rmvkeWGYacRaWSz2cHBwaBgoWwghbNU3gCqSBYFCFJFmm1JUKbUsSgtqFkYomoEpNgxdmratWldV2Gw2+Pg3v8Xp6TnWmy2Ojo4wmUys08CGOe+NbNByVUXeQ2sT3ayqivoXwkZCtab9fJgkmIzHpLlk5r4QgqqzGP2NICCtsNV6jaZpsLe3Bw3Sf2RnGCBgZrPdErhjjGnWvpIGPOLAhu8HePToEfb2D+zzXC+vSThVKyNiKjGMBy1jsKpssQ9uM35O1SgEvk+6c41Clme2PRU0kvEY8/nc2lnCbJ/KjNu9/T0sr69wcX6KwSDGe4/eh5TCVmHlPSCIQjx87z1MphPMJxMAwK8+/hivXr3G2Zs3eP3yJc4vLkicPIpweX0FLYCP/+U3aLTCZ59+ivX1FQBKvwvjCNEgRhRG2JMSw1GCqqpwcX4Oz/Pwi3/6Z1xdrTCfLfDDH/4QX3zxFB9//DHquoI21SiJuaxt2XXP8zGeznB0cowf/dmPcOfOHayWa+RZjrPTM5yfnuHW0S0MfvCHyLMSnvAQBiGGxmZxAQ5r95iUUCrj7e6gmi1FOKa++dsE5sz/6VXYny1Opds3yHCBhrJXdN5wPu0Gzr7eG/i6cyywvSMw5/7uvtd3ZTt32wPQXVvz60Av1+FiuQIOgLHTzee6P/vXFLLNSHDvpW8Du+whF6Rwr/k24Kkf9O2Dam6gw/3Hz+CmIO8Cilw2Tx9Y4u9gW5EdbPee3fS2/ueVoqI8jVaQng9fsIwDVwAXdpC+HXjrgk6eYboDbdEWAPa15XKJKAwxHVPxF2ZP5HlO9jLaggEHBwdYr9f2nhhwAGALQ5yentqiEG7b2kCY+RwDOy4Lx+1/17Hnv/l97tKmacHoflCL253tche8YkYVA2IcaHPTyphpzlqXXI2YA0Ke51mQvgvimXHoEBeor1pm09v7Tjv/2jHLfc++LF2j+z7/7mqUak32Gz8T60Aya5qDE2x/8ufd/mW2s61E7IxvHsduGj1nWzD4x/YBsa1zAAGUagDtQQgNKQCPzE2opsZ2k1MQ30sgZWAKkVAVaJYBoEBoAN/jQKNAZSpgUwq+RFU3oJpDEp4XQumaqu8poDYFglj/WHo+vCCA5xEwVVYNAj+E7wXWVuN/GkbWplEd3ToppQ24mo6/uYawbQkKrlIfERgoTRE0N9ADwModsb0WhmFvH9p9fHvAJmO8DYaJYWX44PxKIQRpN5lGZvDAYrPKNERvvvBEoi/Q3Z0OzNDh76fXAKCpC5SCmBgC2uA95mQrLC7aBm7X29aYMGCTMgLVFmwC56DCKRnaCn27YJNmnFMw2tpOYhft5WfsA0luOgVPwjjulmveBTS5m87Nf3SepZtKQGoBDxQxFZI0XTzDhKgN8+f84hyr1RqbDdFXF8ZJTpLEpl1x1aloMOwY6LWzKJFD5UE4pUcV0BpA2q6s3OxtwxrwEgAarewCqTUs2OQJaVlB7NDWjUKWFxgYIMo3FRIbpbFab3F2foHhYIDZZIphkmCx2MNiPsd6eU3lurVGPBiQUSSAIs/wq1/9Cv/0T7/E8uIakBLT+RyPHj1CURT44ukzZFmOKIpwfHyMvf09TCYTu9EQsGIiYrqxJVals7AGRsiaaY+8ObC2T8fo6zHb+G8eDwy8cHUuC985xlNT19is10gGIYaRhzj0UJUFsjTF5cUFPClx9+QW9VNDlYi22y2uLi8JjIojTI0YbZpuAVAZVK0VBnGE8ShB01RIsxRSCiPKK1CWBfKcBeoM6GlK+sIsmlEUYjgcIPaHiD1gm5c4X6bI8hxpuoVmx833AaWgyhIGxQa0NgZVq/vEw8vzPEzHpM11sL+Ho8N9pOstTiXphbCxVhYFBID1ksb3ZJSg/sEPIKWHKIzQeA22Jk1kYMYJV81ih50iW7VhI1XYpuSQDgakcRIPhwgHA6y3W3z55ZdYrVbIsoxo2Ju1FR0PwxAQNKfqpkGjKGrGOmE8VtbrNfKiQBhFuHV0BM/zcH52hjRNKd21URC6wR/+wYcIwhB3793DYj9D+S8kNl2rBkVZUnrTlBxONqCqpkZRlhiPh5jNx2hUhaPjIzRK4f/5y7/Ebz7+GKPxGGNjeLBWmZCkEVSrBsKA/n4QELAopAVU2MGGEW2kUvPt+G5TFVqwqTXUOUKoALMB64YZThpAgxQZysIpVQ8gkL51eKSUKC1Q3kAVuWWTuFEoXsNdI7Z29CnYYOD32OGwegVOZI+ibO187OfSa6VRq8oBm1pxU8CkPGsNaaqX9MGm9tkqKCPYOR5Hhr0yw/7+AYqiwPn5uRn32hiJAmEY2XXEpuJVNQFOZfefm8bgOkB83wwOSSnx5JMAL1+9wWab4uDgAKPRqMMidLXbeExwKh47acyU5Gp0fhiY+TC0ew2zbjhNoygKwIDC7KT4vo88z60BOl8srN6cTR0wn/UNMMTXY9YPtxEz96IowsOHD3H79h07ly8vLyk9V7VFCZLRCJFhcvGY4e9klgB/fxAEiMMIRVHg7OyMHJiigFQNhqMEi/09eNKjIg4gs0lrjXgQI8tSfPrpEzx/8RSDZID7D+4Tk3UwoGj0ixc4v7hAEIa49+A+5rMZ5tMJ6qrCT/7bf8Ovf/Mxfv2LX+Dn//iPiIcJbt25jSAMcb1cIs0yjMZjFGWJL774HNvlkljtvocgDBGZ9h8kQyyEwNnZGV58+SWaRuHXv/4N1usUh4eHuH/vPtarNb768ksIITCbTGg+m/5vakqr8zwPyWSCW8fH+D//5E/w3nvv4ec/+zmeP3+BL7/8Ek+fPsX7772Hx9/5Hoq8hBTSBsi4jLo7d2lPMgUHmhq14DiOCzT1Is68xxo3kH/ye4LlCXjDdhgGDARquxv3DvG/Fmjq34a7D/Y/6YJM/d/56ID4uqsR565b/H7/4NeYBUw+gt9ZF4F2jX3b87o2bftE3XP4e9xAXB+c6jNd3na4tjT/zWAGAxjuPuXuBf22c0Ev9/N9AIv3Azd1zmXG8OFmP/ChtIauKQDi+RrSaOjae+0xgvn+us8MuOu57/kIQgIemN3IqVFVVWG1WhFDsKqBAaxdkqYpzs7OrA8Tx1S5mRkxDChx3zM7lVm1rXB/+8y8l/LcdVPS2r1RdvYiwNjMnb5s7T3ad0hXFehWk+W2Y0DI9dmY7cmZAH3mM4NN6zVVFh0OifnFzFigBbTcMYAd45LBpptw8O6jP4VcNpoFszTJy3Cb8PtcvYzbrq5NJVazP2utbYAVgLV/uZ+Zccrn7+/vYzqd2iwK7isXOO2DqpyOzfdNQBcVA5KiFRgXADwJo9EKNE2NIt/C8ySSJEQQeAgN64zvzx03UvgAJMpKwSsq61tqpQhskgAE2VV1AyjdGO1EQGkBDbJjhfQI3A1CRFGMsqzawF8PbAJg9G9b/UOXGQ+7V3TXDqtBChi/UMMPfDpZtazQujYFaQxzLwiDDtgUBOGuIXbj+HaATSaE4/sBwjAC0+6IAcaDl+hqDCARQ4gamNqLWUUeDRqz2dsYjIO8MoBjbAETreE/QINPm4pkfArczYkjx6IHNDF6RSiHFBqC128jWm0/K2Cj3C5o5TYKqbLoGx25K/KzK2rSR+Tdnzu7QXSf0f3XjTo5G5NhXrFQKOFywuq7lGVJVHxlxNI4QmP6iycARyrcaI77/YEfEDugRxMlAIA3ANuhtjk1tzV3JqN61nCjvtbOs3ExFU6T4nLGnGcMAJlxnIuSHIMgCDFfLDCdTuEHHoSERe7DwCd2iidwdnaJ09MLrJdL5EabKFxEmM3nmE6nuLq6xsXFBdKU0hGGw6FN9eAotGUyCR+NQcQ5YsSLHi00VLXAVrBw+tgejsHnMuW4bd9m6PWjZklCVc2SZAQq0OBh/+AAZUXsofV6jYf370Br2LLwcRxTCe2SwJg4ilDXjXU6i6KwDpmlCnN0THqmihw5l6PhAIM4xGYV2Y2Xc72vr66glMIwCjAIfaR5gfV6i8JxcH2f0yKIvkuaTTGEhE1z8z0WO65RKQ3f9zAdTRDHEeIwhARQFgVWqxWxezgFparhSWmiCLqzFhENuWVZuOl2PMe4DLy7OSul4HkSYeAhGUY42N/H8fExjo6PcevoCJPpFOPJBMvlEqvtBkVZ4t69ezg+OUGeZ8hMtS4GI0dGHyuOYwQmhW9kIouz2cw6wZ7vYz5fYP9gH+PJ2ESGOXqlsL+/bzUH1us1YlM1ygXLh8MBgsBDkgzRphPTGjOZTimlZTTC2FQQ45SgfmSSUhRrakMDPlWm1Dy3s7tu7aKxu4Ye0AKqLDCsjIsoBFWh0iBDszYpZKrhsWnWXkOF9nwPkYhoXdQteOs6CC6Lx6Xa81oIkBAql4pn43m5XN7QcOjrQfXXeSEAXwYAM8wMSOJSzV0gytWDcPcVHis8PpkdeH5+TtUMT0+tYRxFUUd0mSOvbPhR9TOFLM+xXC47mhm8FjFdnoEcNrw9AwJxyl6S6nbU+AAAIABJREFUJAjD0IJKzJjVWlsnxP0szXVj0Jt9S2llBfK9orAsI54jHDF1RcyBdi9k58FlVvCz8+ECYH2nmscHO9BBECA3QRhmfrnpH7y3F0Vh03X5NTf9zE3JEQAqAyyGxolrlEIYRQjNmGu0gjLs2cBUoaX0udoC3mEU4f1HjzAeUzGM9XqNoijw5vQUWZbh2bNn2G63pMHmzLXhaIQDU+nyu9//Pnzfx2q9Rl1XWC6X+Pzzz7FarzHd24Pw2pQ2AvgolTbw20h3UZZ4/eoVpJA4PjrE0a0DjIcD1HmOMIowNcxTnjO+R8yu6WSC7373O7h75y48z0OW5VaM/PrqCk8//xyqqvGLX/zCprO7WmRuHzKA2hgwsbGOfKdn0bH6d/J+dvmFvD+3v7uvv93IN1ar8/7X2X3vOud/5th5xZ4N4c4nd11+G1DUt0FcQIDTZuhrukHVmzaue0s2fN35rv539+9j1zPw9dx/u9qW79cFk/izLjPGZZv304p2AT3unG9BgZuFCVw72z3PXsvY6spUBycZDXJSlXFA9VvGzK5AtucRkJ0ME4RBaMEmt221JgZiatZOtk2YIaOUwsuXL222wNHREYA2mMVAmgvecVu7QWy3T/je+oH2/rPY10Vr95BeFLE9BoPYYRu1KbsAscc5zdu9R63bIkObzQbX19eGQZzb4ArbhGz78N7njiEeR8zOsrazuLnPtM/V/XtXT1p/7cZcdPxd87cQ7b5G44/IFRwQ432Xq4jznspgkst4Yl2qwYC0r1jWYT6fYzab2Wtyv2jd+joMNnEf9+0YvreG55axH6UEtEfB7DD0UZZ8HROoaGqypXyfdIvtWHErD7ap4loLurQQpkqyggBlZiltCClam9+perrSpPWszT7h+z4VRjMBV5gxQFle1qnduR7c6Mt+v/ZAa09KwPehfOOHK4XNdgPP+pU+IiNxwDZJYKqLy91bmj2+HWATCMkLowiDwdAACIxAMlpKDUupB4ZxJMxCqLVhGlD6loBpcOEu9jdLM/JaoiUAZjEBgFA2DUYbMEM4ztKu6MTOw++CVN2fwFu24Rv32SLQb6ccu2BTf8PoL5z8uf4G6AJL7s/29/b+rVGtGtSKDOiyqkigWhCgUBmgKS8K1OY81qNQWluwrVEK0vMwHo9NGoy2eg2c4x3FkV2U3c4ToOoybOzxW0J044iC256NRcOGI2fQqSxh2BNKa+RmMuVFQQwFxyldrigaaxkpwwHu3r+H45MjRHEA4WnUNUUiJqMFDg/2cHl1jSeffo5nT5/h7OVrrC4ucHTnPmb7hzi5cwfHx8fIiwJffPEUWZbh8ePHeP/997G3t4eiKKzRCwBh6EMIH3UjoJTRaTKbcRSRc7/ZrNv0MnamHWPZNTp2MeX646RvPAGwyP7e3h729/chhEBeaWgR4P33H2EymeLHP/4xnjx5gvcf3oPWCkHgYzabmnSSCtvtGp4UGCcjbLdbbNdrSMCWwmUH0fd8+J4PrTSlLHge6qpCWRQY789wuD/HdrtGGAYoS4qQ8UY8vLzEKEkwHCbIi5wcnKYVH4yjAIHvo8gyLK+uMYhjjAcDWtA9BSUUwihEEFDURdUNBmGM27dvYzQcYpIk8AGkmzVevXpF4pSOtpBWCr6pyqIV79sMaiirn+TOa6Z1bzabTqokg7a+LzFOIqh6hPfff4iqrvH93/k+vvPd79rN9vz8HHlVIs1S/OEf/QDvv/c+3py+wevXrzvznwGVxWKB8XhswS++DlOS0zTF3fv3cO/uXRwd37KgXxzH8PwADx8+xN27d7FarXB2dobxeIzFYg4pKU1RSon5fIYoCuB7Er4QkIAVLj4+OaGopSlvz1o8SilcXV1Zx5MNkrIkwU0iLLYpYr6kMvLSbMiUit0COn1DXJp9w5OS2I3SCH9LdKI/GkBdtZo1QgPC9+FxxLdRQKMQhRHkwEdZVciKvDN/XMo8G1QcnUySxAJsYRjiwYMHePz4MaqqwtXVFfI8x4sXL7Ber63WjQukuUxW9zul9BAGXaMzjmP7vaxxxAxSNtT6DKkgCHB4eAiA0jxZI4w1F169egWt23LTDDbxMwZBgDRNycFPc1RNjdV6hcqIZrtpvwDpbSyXS1RVZYEbZhKxJofnedjb27PMISklDg8PrSHLouOuLpCUEtvtlgSnI4oON0qhqmsIY/gKQSnP7Ai4/cZ7IK8vbEhzpNUNDjBYzoBe2yfdFHXXoSEdKh/L5RJ1zdFP0jNx5yVADqNnnpWdxz5LwY2u8945TIbQWmOQUGpjGIbQaPX3pJSQJqpcmvbPixxFWWI0GuNPf/inuHV4C69evcRqucJ6s8FvP3mCq+U1fvrTn+Lk5AS3jm4hGY0Aw/zZPzyElgJ37tzFn/3oRwCAf/wf/wOnZ6f46ssvcXZ6hjAMcfLwAeqaGJ9FVUF4EmVdYZQkCPxWQyxNt/jNxx/j9M0p/t2//QG+/9338ZP5BMVmg8j3cXx0hNARgQ9NVPZ73/0e/vzP/xyTyQSeF2B5vbTO3VcvXuC///3f4/PDT5CmKYQQWK1WNjW0DzSOx2MAGtt0iyxL4XsSntc6Aa0FvpvZ9K6jZSC863M3mSTdv9/CfsL/HnDpmxwcZOzfi8sgeRsryV7DARFcoIkZTq4Txeuiq4knJYswtA4XA1Curcv38nXg0tvasg849e1q1oBzzwVam8xl0PLruwAn93chuml1LqDEe7t7z+647rPClFJotIKQDbiAQNMYnq+zz7ytf/gtG7yQEuFeiLqqsF6v7Rxz18GqrnF9dYU8y6x+JQtCK6Xwq1/9CoPBAA8ePMCdO3egtcZyuQRAAD+3m3tvbEsAbdaH+/ytBk0bPHCd8X66oTTsqiRJkCQjjEYjVFWNNKX9wZNBp//29vZwcHCA3ARX6rq26zkHKM/Pz/Hq1atOH3NgyWXnsm3Maz1rA3I7RlFkdE4bXPvLncCZO/a7h9sXZmwpl6zROdUZX9qZV20b8/7I8h5lWaLoyHu085HtEbYF3D2V92tmc/FerDWnf2kn0N7uj8zodYMF1q6tatS+BNBAQMHzjQh5HGAQR9C6RlWXENAoyxy+R/fL98lVX3n8UCAtQJ5T0SPCsTS0Jr0/KA3p+RTI1FSFrlEajQGayooKy9DrlIYXhiGl2hvASWlOA+V1vdu3ff/txrx0f+f1AA2E7lbVZp2ws/Nz0q28dQjf9zBMEnimj7TWTjAZ79zWvjVgEwBwCgNHfixLBsIp5Qu4ehNuriCX2LSLtdZMd2knDf8hHJILLziW2SSs0KvsoLX9KnL83W/byOk9F1hyoyk7B4KJYHUWB4I/YKErYa/WmezdC6F9z7nLLgDjhr16fzvXcO+Nv0Yax0sbxhY0R0JgUX+lu5FyWqyFRW2JLdQ6fFxlrnHSBIgG2FJC3U2y20Y3b7jF23c/A//Nr3GKplIaWjQ2qqC1NlooLZU6NznFGjDCsAlmszlG4zEAekZO0aENgRD98/NzAiKqChrAIEms+HdZllQZyBhGHAnh6kEtUt/ePwt2S25fB3Ck53MMHWo4MKWPx4M1aPvGk21Fx5BRCtr2mdPy5vpZnmOzWSNNMwTGaW6qCtvVClmaoigrykf2JHzfQ+Bs8HYjN+OaNjkTRWu6lS44WtMYnRINAi89Sfo1ntcaElVVocgLeNIDIFAwYOFEP+qa2DC8oQtBwsCelNYRzrMcRVaQTtQ2RVPXyNIUgWHcUfu0jJWmaSjdDDR+B0Z3JDbAqWtMs8Pv0pP5dwsUmv71fI+AWmHgcSFsqgkLIbdrjMbR0S2kWUb6J1ErRsyGiga6xqyZEH4QQBlDSaM1yIbDAeazKZJkaO4BVjuIAAXfgigARRx9n6jlrVFHQGG6ybBcri1DcDgcYu4w+rTTJ6zJs9lszDXpOtSWtV1LlDZpdWZ+t/OGnrkxjCQS2mdnzngYul0tu45lu9/Y+aV5q29fU5py4Ku6gjBsSGYbTkxKDz/PZrPpiD27oBNHJhmgAdARC3WjmS6Q0QebeG5KKeAFvv0bHJ0zGlPCAGuuca5N5A1Qdp3wuGyvR5HbIKhhNZ2k0ccyhgr1c4AgaOD5no2MaU3Cm0Ru7QZF2GjcpVHC57XMTmEFw9nB5Pc49YKF8vtguusERFIiCENKKy1LWm9MO3Lksw9OchtLXr8Mq5Q+06AsaM1gw9AGP5x9VkgBKTwLIkO7+4Vno73sbLDIPjsZ/XZxjz6jmfdkdpx5zPFPXmNqs9a6KTxSSqRZhuV6TZXomgYaZlxHIcajMSQoXaJuGmw3W7x6/Rq+72Oz3RrDVDm7Scsi4/Zy+2eYDHF0coKyKPDyS0q3bBpKy42iyAYXSaOQGb0tM0+prkivb5yPuqK2LLIC0LCFIwTIVhkOSEMuDANUpiLixcWF3VdZsLcPHrgHtTWM3dq1QN4FL3Uv07FY2v93nETzIbffXRtO9Kw5948bdqc1KFsLytoJLmTmPo++8UBsk5It4FQEvnFS9/t3taP7nntO/zxe81zmD93+Ljv95vsa2t5v+z1sE3YZP+5Pvkb/Pt91//3P9O/z644+sPR138nt0g887LqOO55vvO90IvtRSmsr8vwu0M19bmvTCGGElGFTkFxwkc9lrVa2p4QQVqOHASWgtZ2YYch2B+8HHdCs6aa29fcF1ybbtf/0+6nd5zy7fydJYgrVkA3IWoF7e3udPZzBEQZUKDMgsewnvge3aEtZlqZoRGIDUgywuPaABcR660B/ru0aQv1lxZ6Lfnu0PoTbx13fo91r2E5hFrh7rgsCc/9RBfr2bze9kWw5KnihterYylaXt7NG31w3oFvfhsZJDZj5T8WJApSlb/Rtdbs/O89Kr7kt5Pxmvpa/n/AIek+BihwbFU7w7ZBPoozdQddiwW447cr2gNNrziOS/UvBNmXfdn925qzWVoOX7Tgm19R1he1mAwjcAFzd8fZNjm8P2KQBz3ONZtoA2HkOjfJ7XTeQUllDQwhpKpexg0FaR9zt2g6otjIQDwQXsAGoBpzjP0MAFmxqK8YZ96KzaXZnptb8mkvVFe/4/M3GaK9hKtnZ7+DB41zXPBMJxyrrrLMT5LhTHQOzCzA5ixJPCqFgVHHpfgTllUIAQRjC8z3UjQfRSBsVhxEKZ6cqTVNorTGZTAANimZXjoirWZCFECYyUGG53nR0RfzAR+BHnfzlMAyJaWBAK20q/7mgUQuEtI6TlNr+zmAQtYcpEw2YVByF9XpjoucaSTIyOeW0Ab55c4rlcgnP83H79m08evQIH330EZJkiKaR2KwLVJXJkRdEz7y8PMff/+Tv8fLlS6zSFDKO8eC99/Dhh7+P0WiEzz//HG/evEEYEkPp5OQE9+/fR5pTKoUbiWkaZZkiniREPYpjxKaiG9BG/Oj8hhxOIQFT4QAAhClXyguvAOUq0xg1na6JZqoh0AheqBsaG6oBlEBelqjKCs+ePcNPf/oP8P0A3/ve93CwN0edbnH+5QucvnyJV6/PCBCZzhBHIWazKfYWe0gGQ/ieh8CkOYR+AA8CQgNlTuBOXZQQmuakZ5go6TY17LMDNBoQ0kMcO/nZijSTqrLEdrMxbDxiMAAmV1kIVHkGrRXyNIMwjseDe/chhMA///M/Y3W9xMXFBVVUNCk949EIZVZgMZ9jksQYjxNTYpwAsCKjCBcbIO89eIijW7dw+/YdW0FPGeNnOp1iOp1ag8I6SsaRBUB6MsaZBzQgPeS1Rl4LBFGMZDzC4dEtPHjvIaXXRT7W2y1G4zG2aWaFLxkE9n0fgXkty3M0qsFqs8Y2zxAbALWqK6y2pux40wAepat89OFj+IEPLTzSOpMeRMAR5nYzq+sKz5+/gOd5OD4+Ng6bBymBN6en+OdffozVaoXX/x9zb9okyXFdiR73WHPPrK1r6b0bBEiAGyg+jMDRPM0H/Vr9gLEZG4oy2XuPJlGURBIU0CAavdealfsSq/v7cP16eGRlAZhvCLPq6solwsPDl3vPPffc8wskSYq7d+/i0aNH6Pf7GAwGGI1GePbsGQDgvffeQxzHePv2LS4vL03EzEeWpRhPxshzw0I0/V8UBQqlMF+uAOPACxAg6FpTnpSIwhAskF2WGqxZBGTIMzJ0Ay8kkE8DEqU1PohxFxDIlBNotpjOsM5S9AZ93Dk8xO7uLn7xi19YkXYpJd6+fYvT01OsViuMTaonj9tWq2U1CVyxa9fodcsmuyKa/Nom+9XzCVhUivZHz4C+dM9kiCdpRtWHDHW8Es8lIygKQ+zs7CKKY3jSR6vdMaxDD81WjiiKAQjs7AwQRbEFXcmQFNBKI8+I7eMHRmg7CGsgm9baFJLIa9R3vj+m08dxjH6/j8ePH9eErbXWVgD0d7/7HZ4/f25A0qZNv6N1PkdRlmg0mtjb28NyucT1aER7U1FAQ1shfemb9HxPotFsUBW4MITveWh3OlThsdlEr9fDer3GmzdvTDXIDAraaBk65pbWkCWdMzARS4q05iC2Lq3tSUL7pXXUALRYZN0JTLCT6FYJ5Qi3LbYhKBU3N5VT3bZYwDlN7fogDTCrtcbzF1/j1auXmE0nWCVrrJI1FsaJGvR76Hc78D0Po/GYdN2uLvHw4UP86Mcf4ejoCIvlAgoaq/Uaw9EIGsAf/vRHCCFwfnmJ5WKBIAyxf7CPH334If7v//7fMbq+xq//9/+mAM1ohNVkYh1OrUlHKo5i3L9/Dwf7d5BlJV68fIvJdImg0UQYNyj9XkislytMxmMs53P4no/79+4hjmI0opicFS3xwftPEUY+/vNPf4AQAvPFAl98+YzKkJ+coNU8wXq1RmbWaGbWSWOccwqNVsZxEZUNUjs2fITbDseHqezZ7QiP+b+o/7a2bR1Er1/jRoiRXqtdhi1lYe0ELr4itIAwugOCX+NvaXGzvVoYIf5vP1zw3AV7XCeV58GmPimnFG2C2TyPqs9oW2Gpuk4dVNj8Pzu2fL2bDrze+tv9vutk+75vwRT33jbPeRuwvAlWcbuYVWm1xLYA7i4I4zJRNq/pnlsIYcFoX0oop083223bt/GeBJ2j0+nYlBwGkKIoAjSQJCnyLMfEzPswDHF4eEjpuhcXWC6Xlpne6XRwfHyMqbHPmJ3Jewjfj6sHyPuEy4ByBcs3gxKb449ZthQUomqkg4GPdruDxWKJly9eYT6f4/nz5xiNRmQDPn5cc9K5SnK/37d7Gwtju3uf1tqmdLss4X6/X9e3LQoLPlnge+OonmkFtmw7Kt8ZtXFiQTnFPm7FjHPBocpuqWySKIpovmV1gCLLctP+ElKm1t7ggAvfG43hwoIotN9L20bPo8BDWRqAR3FAke9B29cUj/+yxDpZQYgCcSjhewLNRoTdnR58T2M8iqDKguBzU7Xal2RL0rkqv7Q0636pSwp+CgrAKQ3kGbGRpFKQKFHoEjn7rhooNZAkmWHs55aFHAaUUSGFB4AwkDTN4PmBuQ+Y4IIwWk+AF1CRNeQ5BfZQBVs3cW2tNQVHhbAV9mThQWoqeHI1HGJndxd7BweW3ctprWEYmmcAC47ddnw/wCY71jmSYMAT1F+nBY0GDFXi4U2DRdbMxASLa7sLPm2EppbcjQ5nYKlqkwG7gK0bQH1Bvbld2w1647u3bSa1b2uXNcKAk4kVaVn97X5fw05qzSZEHdK2yKXTq1vv6ab5YdoEUTGZBAgB1RJSy60LsTVgATs4CSCsco/dSAJHivl61WZeAWW1jRvbozU3+3J7qdKbmzZTLEtLWyU9H/8GPZOF/Hq9HprNFtrtNgb9PsIohFJ0DntNsxAmSYLLq0sMr6+RlyWER6XfOQVkOp1iuVyZ64XWgUnNJrN5X0ppi3ozOEFpQ04POZsVHGOQTVfu4LrN6hpXsCCtsXorcIptW1Bq0Xq9wmQyxps3b9BoNPD06RMEQQxVFsizFMk6wXK5guf76IrKyY+NhguMkbcZnaGoNBlOwlyPhcqLnJzwoihRlBoQpP0GVJRxNij43mhTMGOL2QhFDqVKpFlqUomUjaIpA1jN53OMrq8t2FRkGcajEaQQyI3ugDbAtmLHUVSMlW63g93dXVuRC84YZwCCjSQbYQDgG0cxMML72jACSRfNGMeS03mIEdOIAnRaEbzAx53DO1itiHHGlcQ4XYgXQgJRqFJcZq4fmWibjThKKgRAgusxqCKoGUVmnHsmhcTVV0iSpGaMaK1QFBqr1RpXQ0rBUooikqR70ECn07HgGxtO7TZR1SeTCVW9Cggsy9LEPDfaB/KisALdvM4wuCSEETpUNwMEPNaBihkkIO24pEihSduVNAe02YukkDaSz5t3aqr3cVrcjtF0Y2FJt+IfpwZyG3m9FEJYo20zrcQFJG8Dm+ya7hiBhSrts7AphZqNLzjadFV6Cu07JaRhwmlNaw9HZn1TEILT4MMwstR112HklEwoAijhVdFhptu70XjXUWKGJ6cS8zmjKLIMUB5zLKjNazZX7uH5aFNmQOuQmz4Ba5CJah6a9UaKKgDmecSq4fUqMALSbvsrAKCewgwhTLVMYVmp9nVUDinT5T3pQXuVMc97rHu4DjiPJbuOuufb2Pvs9zadUFSpEKv1GrP53NF6K7BarbFer9Ho9UzFSBpL6yRBkefodDqYTKdotlp2fDNbYb1eYzweQ0qJNElQGMPa8310ul2cnJzYNYSfV+E4xFrAjpcoIvHwJElxfT3GOkmsxgX3dwV+l6acdWYBaTNh0Gg00O020TBpG8qkLQrzbONGgwC+dZ0VYZ83qE0llN1rtWuHsY3ibLb2rW22IH9+A2jStY8K518Y2QdnDzfrMkQNBqp9W2957buhYHVwid9ju4w+IW5+TZt3Nuy5G5fRdbbNps3Lr7t25KYdepuNvfneN7WDP7/ttf8ToGnzuq6tvA2gue2633Qfm9feTLfbPDaBp83va2PnVdcwn1Wk1bR5brc91RgAsLFeSTNG2GHdLAwBTexXrSphbNem4GfOeyMHE1jLiIEjFyxilibvV5vjyz0vUO2l256h+383LZL2qwBZmllphNlshsl4bFPe3T7ifZr3b8qSaNpzuZ9n7SZuD9uVbFvxnl75ylVl2m3P/bscmgOb5o/aeNnyeffeqjUSNSCKP+P2/eb4c/0/N8WUf7vMXfeZ8P1umzfcDv5d3RYVIyoKCR2QwLfnkW8SBiT3UILHrq5d7yZwq61/q9iPF7wXsH+g63stLOxnJTKszQThZKwY3WoHMKseowH2jc1xc/0T9X+d/YHbw3fo2i1c+TduNFAWZc2Wc8e90523Ht8PsAkADCOAFh1Tutq0XghJkWMQLYxSqyQ843paCnhRIZ7agDXVmKs26jodmN7j7byK3lTf2rbRUbu2bwg1o/I7HNvOS98VALjEqGmPLqE1apPW3XTtAi/q0YYbTtTGYPymjbf2WUMaYvFsDoFZ49ssgNZ51grSkzZ/2PM9IAfSlJgUaVYJnvJiCq2pmphpiypLcElzT1I0WAppkeUiL0xfiVuBMnsuZwNxFzg3Ks7v8ybFEWsCNWgDmU6nmEwm2N/fx/HxMQ7v7GJvpwloYHg9I1FoIYwItsZstsLlxTW+/OIZroyYru/7ODg4wJMnT/Ds2TP8/ve/ByBwdHSMXq+Hvb09dDodzOZzq2HFm22WUUSnKWPLCAyCgDSNzD1wWfjqeVYpj9i4f3cMbF+ob0bDPE+iGYeIoxCvXr7A58++xBdffIHf/fM/o93p4OjoCP1eD0pKdPb2sMoy/OXLL3F4eAcHezuIAol+v4+9vT34vm8rJ5HuVIRWs4lmo4EiL7BaLmvPip3SdbKGToDJaIo4aqDMNQ72D0jE2RgYw+EQq3WlC0ApcZQOsloujSGSoywLjIZDXJ6f4/33f4Bf/uIXCIIAs+kU18NrvH3zBm/fvLWA0GwygdDA7u4Ofv6TH0LiAXSpyBFbLDE8PUUYRRj88pe4e+8enjx5iiePHxkwjCqPJcZxZoAhikJEUYCioPkAIRBENJeUMaDC0CNBckGV95IAKBWJ1c9mU1xdXaHX7SCKQkgvwOHhAdbrNf75X17j9es3OL+4wNn5GdqtNo6OjxFFpIkgPQ9v377FcDhEr9dDqUhocu9gH1IIrFekL7BOMnz+5dfotDvY3z8AIJAkFI0K/BiB56MRB9C6Y1OZADhO5jWm0ylOT09xcXGBZrOJTz/9FFEU4c9//jPOz8+tUGaSJBb0WywWyLIMzWYT9+/fh9JsHLbR7fegSoUkpTYm67V1etdJYseDVgrJeo0sy6kaSZrBM06yJyXiKCatJ8cwKlVpAhTCPifP84hJ6kSOGZCDonkvDfjBhu98PrcGtpQSs9nMRmYZpOCxwNHKyWRi+4/nHRvNHFViYXetK30Hd38AYJk1HADYBK4YzGFDt9PpWN2Hdrtt1/flcok//OEPmE6nlsbfMPpaQggbqXUFTd31xeosKI12u404igjsNh/jlDd2FB4/fowHDx7Y+7+8vMRvfvMbKyZ9eXmJ169fo9PpoN/v07hQChcXF7Z6UZZl+OEPf4hPP/0UaZri9PQU6/Ual5eXWK1WKMoSV1dXFWPW89DqtOF5nmEW5faHDWh3LeHKQo1Gw4q7shaH6xhwCgWnZvN7DJJZ0XdjTEIDyjh6BQoCM3wfYRTavch91i6jmEV3ub250R3kgx2umnOIyhhmx4+1vFjoP0/XUEWB4eUF/tf//J84OTnGf/tv/w1Hd+6g2W7j6OiIxF3Xa6R5jj/+4Q94/fo1Xr54geH1NWamTPl6vcaLly9tv0gpMVutMJ/NUCqF4+NjpEmC09NTvHn9Go1WC7u7xKgrTNtaLRIZXiwWgAZ+/Q//ACkETk9P7fgdjUYIggB3T+7i6PAQWZpZJsw//uM/otPp4OHDh2i32/A8gbwosVoT8y0MQ+zt7SFuNOz8nc/nVi/s10CxAAAgAElEQVSl1WlTH5cUBNFCEPvTAbIZGKosTYv92L+x8Rn3D2KruzZrdegb3zFBQOtskdNgtvvaYbDUOsnqm3GNb/cm/g8OIUiiQosqrdNeZsPp3AR0XHvUZfi569o22/Y2IIrnM12XArq39YV7zm1A020A2m2gzKbT5rbLBQ7ca27tSydwwNfifYLfd9f8bX3jMsE2P1NzKtmOFqJ2vW3MJrsn6srGhiYgV0ppq4pdXFxgOp2CU6ABQAkKErE+odYa/X4fQRBgMBhAa231AtvtNvb39+F5HhaLBdbrNYbDofUpXFCDmeauf5QkiQXE3QyCbYdWCrosoUBBVtIDTKz2FCAxX8ytLfX1V1/h6vISP//5z2+MhxpTyBnr7rPmYAYXSmEfhNu92VZOv2cdJ+ndlubkrFPfwVdVG+20QKTjg7spm5T+WNYAPCFoLPBYc0E/N0jjsro2789tq/td/j4ACy66tkSe5whMJVhlArYApXEvlwuURQpftuBJkoLodFooywytVgt5kSEIqqAYr68cuC5VgaKU0FkCISWSLEFWZJDSRyBNgA7KiOFw2RkbqqV0EqVtMEYD8D0qmBbHTaRpDqqS7kOBZFqKskReFhCltMFzpVhcfLtfx/IbsCCYmfuqrAU82A5YLpe4uLgABLBYUjodP09X6uC7HN8bsIknXlEUKI1AFh/SVkGoBpaQDEbVN42iKGwnOvstHbyB223aeSC8ndcWY/7kzWoZty3a3zQx3OPbvics5iVBlfe4vdXfdWSxDh7w+y6FFMBNJ8T5v9vm2wAn7sPSRMOFFJBenZ7MkXYhhPmMNAACOc0Qwlaoc6sy2NxsEMConfZwupGQwjGmQGWgjYi8lC6rx365dp7aPToLILd/G7rOURMuk81CrcSuICprr9tBpxUiz0vkWYo0zdGKadFSClivM8xmc5yfn2M0GsHzfcSNBrrdLg4ODvDFF1/g5cuXaLc7+OijH2Nvf9+KIgopalEZAM6CWdenkCYtRojqWdtIt67o8ZvR7c0xuGnYuP1RjTUgCDzEUYD5fIZXr17h1cuXePHiBXq9nnXglBBotNtI8xznFxcIoxDQCr4n0Ww00G63KcJtxH2tZk0YIQxCkwqXkW6Ww3igdClyapeLFebTBaTvodvp2DFFpXSnWCd1YJaf5WQyMQYJgU3nZ6d4/fIlup2OFclNjBD8ZDTG1eWl7Zf1akUpGqsV1qs1RQYMAJKlKebTCVrNFlrNJnZ2dnBwsI+jo0NkWY4kSa3jCcCWSA8C+klTSgkTZs5Kz4NidpfwEIUMtVOpVqVKAs9Madwg8FEoohX3+l2EkY/VaomzszNcDq9wNRwiLwoMdncgPYnYAAd5TrR1CIFGqwkhJTqmKl0YhqZkfYGz8yvkuxqDwZ6lOitVAjqEJ4DA9xBH0tK+eQzmeY7RaIKzszNcXV1Z4d2nprLVl19+aStHsRAzp/9ximG320Wj0UCWZ0iM+Lbv+9DQyNLEpu+ygDYLrLNge1mS4HKekbGozJzypKS0G7NG8XpHufb1dZWAdw2tqqoqmieeAPwggDTPk/c2tyqbEJX4tFLKRjY3599qtcJyuawZ4WyoBUGAKI4RGrCJjWTaH6VNp4UQtTQuu3Y4Pzz3OZ1tZ2cHLePgDwYDOycvLy/xT//0T3j79i12d3eNODJqaXD8rFymFh/KsGKgNaIwpCBEnqPM69U2+bv7+/t47733bJ9zhbn1em3Hz/X1NaIowp07d2xVzHfv3mG5XGI2m6EsS+zt7eHjj3+O+XwBIYQF+gAgyVIsFsSCCkygxB3zeZ5bcVJrfxij342u83hznQjtrM8czHCDHu7azXpTCgplwZpWALSjowIqT+w+O94X+BqbARWlFDKz3nHaDhv0LqtC2y1VW/ZWYIRYLTOZynNiPpvisz9/huvRNT768Y+xu7eHMIrQ7/cJwDN7+Zu3b3E9GmE4HGI+n1vnKMtzDK+vSTR8bw9hGCJNU8xNxcF+v4+40cBkPMb19TXuGdCT06AZCPM90ofTpcLZ2Tkm47FlSLIYfRiG2NvdRSNuWMF6pRS++OILdLtdu7cPBgOEYYw0Nca+0QMLTZXcJEmQpCmSNEWj0UBkGFBlXqWKlGUJAReE2A4SATdNlWry0z/WctG6Blq5lmvNkhU811zDt7LZ3Ou6li+NQ1hb95YGbb2XW2/hFmCETyf4PxuADR+b9iyf0/2/69S682GzHXy+bYCOe7t0rdtBhm3t3Dz/ps3k/v6m+9i0wzdf/yagafP1zTXGZeHd1nZ3XbvhH5ixZD+PCnBydeTcdts+4REl6kAEX4sDFuPxuMZsEoKcb62UTYvrdrsAyB5qtVqUrr5YYD6fWzZ0nudot9u1vnE1/oBKJ8rVyeT12wWbvsmJZmYX+6xsT3JVsiRJMJ7Q2nV1eYnLiwuslssbz8llR9YYsea5uWAhs285nY59Jgb63PvjvQtAZQegGqdOK74zWODOSbb/eS3Z5k/SPRFJoDYvUNcedP0v1490tbf4Hr9prLvjygVEeFy5qaLu2qKVMuBdgbIMoTUF6aOYGLNhFEJIwPNuAsBKKUgDOHlaQZU5UArkxp8AKBtIg4VwGNDmKkHMqKH/UQXxEuzPeh6x932jdymlAWs1sai4yjt3C0vDOCarPeze4O4HQpjrKkBKZ8+hvs2yDFOHncwyBzd8we8wfr43YJPSGmdnZ3j27JnRkggMS4aEPmfeAkJU6Lzn+fB8ikJGJo+wKIhyXinECyN05YAsLIJqN2bNex5oELiTc4OS7BzbNombgFE9+rFtQ9n2PaBqjzsYhcPcYQFzNi0AI5rsJNtbFgt45Inq9xbAzR2FG3dSGSHma9LzIAEoKBNpNACRAFYJsUaEJ9HtdtHr9Yy4b4kwipBmGTFLsgyL2Qzz2QywC2oArQFfGWaRVvBE5TgR2U9DlyVK01GeJLqV3RjNTNPmt2voc7qTEAI+G//mzsuisKLPRZ4j9H10Ox0Evo8soSo8c1OBqRFFGPR6eHj/Pj768Ec42N/FOlHIMpNvWxRoNtvotBq4OLvAX84u8Or1a5Ql9cHR8TE5zYb6y45Rp9PBjz78EQ4O7tgI/XK5MmOCJ3i1CYWGWszRYSmEWdzr1UQAk16B+obB53XH6uZ4dM/jGgRUAUkjzUsjDL4AhMCBcfqyLLNsFM7Lp6jTCqVWxqAn3R1P0ghTJRmOURSi3SKB9DsH++j1elitSStElQqlIqO+1W5CK43xeITR+BpxHKPZaqHVbODu8SGyDPjqy2f48qvn9p53dnbw4OEDqLLEm9evMZtN0Wg2EIUhVssVpSxqhWYUoNNp4cnjx2g1mri6usLLly+pnZrSvpqNBlqtJmmuaODo+ASffPIJuq0Wvvz8cwRBgFangziKEIYefA9IQSW7hQC63TY0NFarJaazGfKcgK9Ws4ldAwRpSc8mDDyIkMqxn83nKMuiAlMUVYWYz+d49fo1tFY4OTlm7AO+9HBwcICHj1cQvodVkuDgzh386MMfod1u42B3B77vYTadIM1SSM/Dak1aR9PZjKqImLLes+kURZbj8aNHePToIXzPQ9wIoZVGVpQo5mtcXg3x9vQCQeCj2+1CConFcoHpbIbReITZfIZGs4mf/PSnGAx6aLdixFGADz/8AIOdHt6+fYdXr14jCCj9UAhpxbdX65XZzCktRwgSE4UJCkhPotlqGkZChkazSXOiVBaoyPIc69UKi/kcZWHYJoZVUpQF8mUOGJCb95O8LMzGrqwhTc43U59LJCkxYaJGA3EUotVqWwHr4XCIyXRq5xMD7QwAMAiqnHkYhCEaiqp1xlEEiIptYoWpvUpA0k1b00DNcAvCgNhxZWFF4KXvIfJ9xCb6rLRC4PvY29/HYGeAncEOBoM+qORtgGazgU9/9Smurq5oDxAVhb/b7eLp0yeAEPjqq68wnUzhB1RBUmnj8JSK2iw9vP/B+zg+OsR4NMZoOMJsNsPbt29rejgMGrZbTQx6XWSHd/BXv/gFZvM5BoMBGoZ1wunOs9kMWmtb+YZZY0IIvHv3DkVR2jRWZqhKvyobnRjH5TAgfbE7BwcIQ9JsKIscaZphMpshM1oiWZYZNin1eWYizry3emZNFhAUMNFAGAQolUKaJPQ8spxErMvSpAfzXsff9yqDW3DVRA+NODZbnXYcOwHfo9LiELDAUmDGhSflDZDJGo32mh6iMIL1xzXQaDTQ6/UgdAlVZIibTUynU2it8Zvf/AZ/+tOf8Je//MUCNK1Wy47TJEmoyqhhBDFTjvdhgEAaTjVdLBb47W9/i3dv3yIIQ/T6fes4WSAPBoTWwOj6GlJQ2sPx0bED8pF9UOQ55rM5EqOhx85lkiYIowj7BwfY39/H2fkZnn/9HOdXl2j3aG8WJi29VIZR7vtotprEgPOJ3VjQZQwDUsGTAp4QJlJsnqXRN6k49I4JZq0tB+oRAtBGVNahPlkbx7XbLJPKME+c7ZtZJWQDorr2xkHLwUY72AF0WyYEJKdxaAokWVtVGHtV11kMbLsCpm2mPwGjZbYBULgBSD6PC1S4jg6XiOfP3wyIVWxQDkoAsMG7sijB+pe05rKd9e3ZDG57NgFkd27x59zAL6/LDGJyewDU2Dgu6OE64jyvGXTg97XWNQ0fPly9U7ePXLvPDWbWQCMzdpRSgCIWX1lS9SoODvPhggQ82tjptSmrmgPEVQp1s9lEv9+vwARNtiG0Z5/fYrHAu3fvEJoghed5mEwm1n5mhmm3270RaOc+Yj+AQejBYGD3A24fA+IusOACm6UJ5ggnfa0oSptZU5gxdffkBP1eH61GA4vFAscnJ5jNZvaZ8VrmPmP3mbhMMxfMA2D3eQZg6gDPZgDCt0EIDv5RqmElQl09rTrZQIhqLPD5KpCGSCHu+HSBMWZY8fXdIIw73wlYkQ44QmsKZyltA0rd8QYQHgBwNTofABV6oqqgJDZO6dYx6R9J1s3yaL32K8YSB3SazSbmixlW6zWyLEEcBdA6sHaW53tkn0MjTYg5LD3P6JNphFEAKQm4EhrwfYnS6IUqXUBIIIxClKVCmhXQuuTbN1gFy1wIsG3L+wEJgHvwJAFQNazBWbNIC8oUKYKzJgPQukq3D8MQUkj4nm/7VKkSvu+h022j2WzUwDx3XpHt8e3H9wZsKpXCq9evkRknvdVsWy0GEgZXUNopcyo8eB5pQsStph04rMJOfwt4QaWnQK/XK7RsAk28yQphKtHhm0EhPm4Dmtw85W3A1Ded0x6ahxsBOoC21bgYUCIDtLpWtWi7yLXewJi0NU54W7lhcNzSRul5VI44z5CXheljKjO+XK2wEiRIvLOzg+l0isFggLIsEccRRYDXayzmc0zHE0wmE2KyxDF8nxBddrxsCWbH2NHQKIuCmElCWrDJgYdrLDUJwDcbO6cwsG6KXVi1RmEiBsv5HEVRoN1uo2vS1lKj0TQ1udeNOEYUhnjv6VP81ccfQymF1bpAkpBWi1YK7VaM3d0unn3+OX7/+9/jq6++QmHApkePHmF//wDtVgvr9RqLxQLj8Rh3797Dxz//GIdHR3j79i3evXuHlPWAzGJNiyttPqEREeb0DyG4gtQWo0trFErfunBvBz3rNFXeyJhtk5caOiuxXJGIOQAcn5zYSDU7G2xUTadTLJYraodZtMPAtws0VXJKoZsN9Lod7OwMcHJ8hN3dXZxfXiC9SEz6Eml8dDsdQABfffUV3r17h263i93dXRwe7OOjHzxEmgL/+dkf8Zt/+n9sZONnP/sZfvjB+yiyDC++fo6zszMcHx+j3+9jMV8gz3IIrdBphNjttfHD99/H0eERAeGGji5BFStarRba7Q6k76MEcO/BAxzfvY9Ou43f/evvrRNOzCEfvg9Al0iyFFEYoD8gA+vqaojRaILxeIzpdIqHD+7iwf1D+H6A+bowYJKPMJA4W8zx5t05kiSxguVFqdAwDuB8PkcUBdD4sAKbPA9Hx0eQQYhClRhPJzi5e4Kff/wxet0OBp0mPAGMJxOs0pSEAa+HyMsSrckYQRhCFQVUqXB+eobLs3MIAfzqV5/C8yMEQQwNjel0gdUqwZfPX+Df/u3fcHR0hL/9279FGIZ48eIFZrMZhsMhxpMJ7t+/j5/97GdoNmL0uk0EvoePf/FT/FT9GP/jf/wv/Ovv/w3tdhu9fs9E9IxOg0mpZIF8CEDm0og2k2HTaDYRx7GlnAuQwy1ExUhZLBaYz2ZYr9a4Hg6RGfAhTVOsVysk68Rq/UAQG1NobUWTfc9HYATbGfxar9eU6tcmHbdOt4Nerw8NjfOLCyilbAS13++j1+vVtIZKRRR9Brh4XjNbw52jrsMgpYTQZGxVpXGrFD/P9xCaa6ySNUqtrF6EreSjCAQNggCHx0eUBstt9IjBmCT7kL6P+WKByXiC5WqJyWSC4XCIg8M7+OUnn0AYgDJJUsQNig4yq01rjZYiEdif/OTH+OEH7+PF1y/x/C/PcXp6iq+++sqyuQBgsVhguVyi025id9BDHAb4r3/zX5FlOe7cuYN2u43r62v78/XXXwOATbcIw9AKrr58+QpxHGMwGNgUufF4jE6vi3anY5mOSpEQeq/bxePHj7G7t4s48NEIA8zmC7x88w6z+Ryff/45JpOJtUl4HQdgmb2eU3mnLIxodxhRJL0kBlCWpjaYYqEETXs1GZQVQ5Wcf678SOMhTUlnjisPBb6PKI5qY4R1TLitbnR2Uw/MCyUaUQQIUFU9rS3LLfCpaiG0xng8xmQywenpaQVoGt0qZiFkpvInMxB4PLlgV2pE/bkC5Ww2w69//WssFgsEUYSdvT1Ejn4e79fMtLw8v0SZl3j/Bz/AyfEJpfGZ9MfZbIa8yDHJSGSYK9ClWYbxZIx2p4Pjk2McHR3hj3/6Iz777DO8PT1Fd2fHAkoArI5GEAaIGxTclJ4HBdKPUtAoFPUjAt/aZ1TjmAEmDauYaE2yyq4RHHW2Tr6wOBKvBww2CZgakRrQQllAAIJ0/CQDPAygsFOp65ffYgSAI+DsUFO6trTtUEpBKAWUJSCUqR+iCGzSZJNxARLrOPFGJKgflDZiubLSq6kc96oirOvAuuOZfzg12wVKXFuFbSYGItxr1Ri54IAkDHAsao4V/2Zn2wWRNgNxm1o77vX4//weMzmZ6aG1tuXcXWCB/Re3WqeUsgZc8DVsVsFGH3AbXfDFdf43mSYWwHDAbChFVegACKUIHFcVo2wrWGXmK1/fDAvak819dTqkZ5kabUxAUzUyIazNPpvNkKYper0e+v0+PM8jm3w6xcHBgWXG8/rOoJsLnnAfLxYLy4ba3d2lisXGXnVTufieOA2R08PBYBNYI6+w51itEmgNPHz4CADw4Ycf2vNMJpOqT1DpEW0ClAwMuWOH5wEDiu59ubaA22aqHutZcCrLMitzYr0+Zz5tBqIrYIP8S+Ws22WpoPN6qrwLhlI2S3xD77aaC5QORq64ZzESuv7NYLk7D+k7FcmApSmCIDR9AyO9QsLYZOM00Gg0EYaRTUnzfQqY+aaiKZ1SIwhDtDpt+OMAy9USSbIGdIsXNPghYQ8MOK7WK8jMgx+Y6r6mUJEQHlUL16bwjNLICwVVakhPIIqo6FSSmhR6YdJOpaB1VFS+reblVTCQSMwntg9MpxjAjNOnyV4l+8KAr6j8ubIs4UmJMIrgCapALcxnSlUgCH30ufK0WUcsKOeATd/l+N6ATdDaLlp5lmEt1vbGaKJTZ3vGQJbSg1dqlGUBLcgoi+IYvudbZosy9TWVZDExAa09eLaanaxQHJi9EqhFdBjk2AYSuRPbfY+PGtq48Z3bwCYXJYah23HExWnqjfN90+G2Qwhx4xyb7XBpl5vva1kh8NoZaNsWBV6wXcFnMwNoUkhJuk3GGQzDEDCMGa2BQhS1BRhgW8ksiEoDggwDmmQmjU5XUVpoY0wb2qI1sMsCpSoRmSoSZKCujRYVl64vUJYEoPFiOZvPUOS5jdw2mw14nqwi99qg7LKE0kBRKMwXS1xdXWE6mUAVBYlFdzoYDPrI8xzD4RB5nqPb7VK5d6BK99lC+6T+JV0Bm0NsNwEaMxydA7PaLPaoa783x8m217b9bB4UOYhsOojWxC6IHDCMUzFogTcgoM9aJsRWkhCIowiBHyDPyJC8vr5GURS4uLjAxcU5Lc4m+hQ3Y0AInJ2e4vz8HKl5vRGHWCUZVX1T9OzZaGu1Wuj3+wBQscKcce5LiTwvcH5xibKkdL9up4VGHNU2+Varhfv37+Pg4ADNZstsnAK+T2XAoygyEXRyttI0B2XHOKJ/UkCXGlmeYZ2sbXpmkqY0DjTpUhVFiTBoIQhCLJZLuleHOeZWpmJqOwHnXGIVCIz45MHBHTxNU9w9OUG72UAchtAQKLRGf9DHg/v3MJlOERhtmCzPURQl4ihCFAUknGhSWDSD9JKMRzbyiqLAbDZDGIZ4+/YtoijCcrm01VK4vO/Z2RkajRhlPkAUhfCCkNaFsqrMxv29ffxVBjFUJfyeFwUEixJzRBW0tvFG63ke4kYDUkjkeWardKVpiiiKkDZSeJ5hWypl0/DyLENRlmiaFADfONhlWWC+XBBjz4i5B0GIuEHpNq74NesHVIZbfZ67Bq5rbLoG/KZhqTWlP2GLAaBUxZri9cwtO+2miJVlaSsAcSGEIPDRMGCV51dirEorzA04z+ANA3rSMFsHg4F1CvMsw2Q0RpalENDwPYl2q4W9vV0oVeLevXtYr9dWBPzOwQH6vS7imKrYJAYQSpLUprixAR3HsY1Ss9PKYNpyucSLFy9syq5SCjs7O1BKoT8YoNPrUnVRo1vFwtSh7yM2IqEQAklGlZCmJn1vPp9XWkkmnc7dM/m5lWWJgsevuX5pNMRYY4mE/7UNkkBQmmcpytozZr2OpQFd2Tm36SGBb9lcDIwy4CxEVdaYr+PaBTxqKB2smjNyY+6xPSUMEOE6+gz2CJh0ewPetVsthMZZ1ppYW9q5Pj+3LMtspSkphGl3nUki2RnUtIaXsrTfdVMxea7zkWUZpOfZdXY8HhMLb0pad4sFVcJl4XetKSjiOqDshDLLUUgBCQmUwtomFIHWFdBk/3bife4c1QRECVHZoFopwwACuQ7mOXBxDD4vl62uVkRhtL4UhJbW5LKX4ypx3BDzHWmMTC2oPL0wgSklAKVItLlUytrpNgilnTQKti9lBaq563X1SYYbbrc5XGDUffauk7PNnrnNZnHPdZv9XbVtu63v7kMuq+QGuII6I8MN2G2CVPzZTdaRC8i653bPWQXWbxYOcEExd359F+fQ3V9u+YB1ZjdBAdeHETymNvwPBs3d/ZmZkKSHqOzYAn/ecXB5H2XR8DzPMR6Prc5gWZZGJ7YCgVzwiYMfnO7LPy7A6D6rbffP7aJ0vMikeFNFMa1hAOe6vXKb/b1tnLoA3ubz3yaarTf6yvM8lB6lZDHgd3OeoNbGm0+cVyzU1hzeP1zbbPO4zW8QPPe/ZR66Y8Y9p3vuzdQ6tx827SP3fW18IsqEMqQLCEhJlYWp0JKAsIAPaaZSCrdhi5n9lgMRGib93BSPEUIDgormaA14Hr1WlgpKgPYMT6IsWSPOWRPYX0O1dmumhTIyYftVVr0q3M9UP/wUN9d9CPKdtaaCIDTmzedEVdyI7Fy/VnjGJdJ8l+P7AzY5jIv1eoXVYgnfDyz1OvAjSOnZ/EVhKgABAGZk8A12dtFoNAyQQR1f+D6V8C1yqiriU6RQepJ+nA0NPIBFVSZ7G9i0+f9tE2Zz8tz2fff35gJEERZTjr6a6vTaxrU3j81F7daJ/w0TeVsbIQEtNNKiQJFTeUc2GNjQdsElplLW0W0FIT14YYgsLzAdT1C0WoiMMx/4VIa8LAqUKOx3an3laGJoDUhPwvPN5DKoIQNSeZEjz1MEfoButw8hBGbzKfI8w9HRCfb39zGdTjCbT5CkKVEii4L0VqAQRw3EjQZGoxHevHkFAPi/fvlfcHR0hN29XQhT6p3zp+M4BqBRFsBymePd2zP86U9/wvVwiHy1QisMce/uXdx78ACTyRwXF59htVrhyZMnOD4+tulnSZJQCpqqc10J0PAhpbALgccbKUgXhfpFVUOGBsM3gk2bG5H7/02GnrvJSEklXPf29pCmqa0ccnBwgG63i+fPn2M4HKLb7VKKRaOJQEhASjTjBtrNFuaLJZJ0jbgRo9vpmpSwGZI0sVWLLi8vcXFxQc6ISbMJoxBaCLx5/RpXV1c4uHMHDx7OkGUpLoYTABpKUeoKix3fv3cPT58+xWg0wv7+PpbLJaIoggQQeB7iKMZyscJv/+XfcHhwgE9++XPc2dvHzqBnBZAB4Pj4GH/3d3+Hk5MT7O3tIs8VfF8iCASiyEen08Z6nVihyidPnmCdKihIoylCG1qpFWaLBa7HY4xG1xhfj7B/sItCa+iiwNVwiCRN4QXHCOIQp+cX+Nff/75WZc9uAJ4HSAGlSnhSQwogU0ABgWarDS0kdvf38PEvPkYzjrA36EIIgXmSoSgVnjx5gh88fYzhaII35xcYDq/x7//+70jTFA/vP0Cv20W2TlDmxPxTJVHiPY+iX404gucFyPMcp6enGI1GVLGq0cD+/j4ajQb6/T6azabV/4miCI8fP0K71cLu3h6azSaSJLO6K2701d3smMGjoVEoU6wgJ8ZTmmV2vLPRaDVnzIYb+D4GgwGUUuj1eyiKgvSiDNOiKEsUGYkdr9drnJ2dIVkTgy9NUhzsH6Dd7aLZbuHo8AhlWSDJMiyWS8TNJsI4QqvdsppHHJWez+cWMOD2sY4M36srKL3pKG2u6Wzwuk6OM1mhoKGKHKt0DY0q1YFBFY4Oc/+WZYnPP/8cUko7Z0lUtYlGo4kHDx5YsJb1NliM+7PPPoOUEsvlEr7v48GDB/jggw+wWlMPCb4AACAASURBVK0wmUwwGo1wdnqGIstQZBl8AIcHe9jd6WM6vYf9/YOqUASAp48f4OToEEWpsEoKDEdT/PnP/4nZbIajoyN0Oh3s7+9jb28PSpGwNINeDEK1Wi28fPkSn3/+Ofb39/E3f/M36Ha7+PDDDxFFEXZ3d9Hv93F+cY7Pnz0DABKYDkM04hCtOEReKqzzEueXQ/x/v/0txuMxhqbQQ2jKDEdhSKlXxhAXQtiS367zVJp0OdYL4cp5pEFHIGS704GAMPpH5Di1jG7CcrlEmqa4urqy6YOuUdhsNq1YLsMQvucjCn0w+dd1Dj0T4LHOqCIRfZ4zdj834IAwAAK/12424fs+FsslVgZQTFYrcgYjkkHo9XrY3dkh7ShO5TA2FttaWZoiMzp1UkoU5nNRGNrKctAEKkvfRyOKoQINMRCUWl0qjEajmkPGDiTPtVIRs282m+Hi4gKz2Qx///d/j06nYwICKZI0QRSbKngGJPLDwM4bT0pkeW4DG57RZRNFBq1MOl3JgOEt+60D0GimL2n6h1+vMUFucdoY3LLncx0JQq3ImTC/q9d5feDgIqX+kcPCzo+x7DS5K1qTbaEMeHkDMBOwbCp7664jCNfZZebUTft1G7Dnrm3uz6bWnW2KqGu/MKjuphfRHsIOpdu/t9vvbhtdx9V93wWQXHtr05Z227EJ2mwLMAAVE8ndJxgYdyuSMihtK9s6AMrmfW0CZdva7H6WnVNuD691rkNfO7cENCpQQAppQWfWcVNKWdHuxBT2SNZrlEWV5sPndrUum7z2LBZ49uwZTk5OcP/+fbRaLRwdHSGOY7x58waz2Qy+Tyn9zLJndjMHwlarlT2v248uuMVgmTbsJg5y9Pt97O/v20AIAfzejef3XcAmHg8MdruvM7uKg0PbzlEBYKFzvQq4489qBwi+FVRz2u0y2Nj+2hz/7rN351pt3lnwZ3sAm9uyCWZsmz/cR+6zYrYft6FKG6wX0eICM9AUmNcKCIIIcdxCEBArSUjPSPrkKA0rSUoPURjTTxRDZBmSLKGl1wSQ+W58STIhtIJKKEWsTo0SEB4A2jtYt5uLYdl5qk2w2IBhGgJaSBDA4VEbhYSQPFY8SOnMW2H/IekSJQj0ooXfiMdTUEoJARS52VdAmQJRhLZgRnDLamYClTQR7S/ffnx/wCZo+GxgixKlLm0EjjYeM2hMaUkChUw0TZuBZ2iDBp0BA0fUIdVeywcPiW1AjBDO+6gjwNX/nXPZibD53ubr24Cc+me5P+x3a+/qW89jv6nrudi1e77le98JaNpop11YthgM7gbEkz0IAnp+JsVRCCoZP5/PoaHR7nagtUbghzUjgSLANxfW6v/8rPTGa3XbCwL2+WljyFljV3CJ8RzKCto5AJ+mHNY0TeFJD61WE4N+31ZTUsoYtqbUuRAaRamQJOQczGczJOs1iRAbdk2r1cLV1cimbgwGA3RMhZuauG791gAISGmMFVGx8LjfLaMJ1a/ayNLOfTnndDeKOvAEG6F0jTFumhBAGAY2NZF0hwpbJYsBAt4EPY91INwoAxsiNNchgCRNUZQF1mt6ezqZYDab1apxFGVBbBQDzGmbHuRZkK7VpGfVNloinXbbgnVQJm0J1eblG/2W6+uR1ToJDFug0+lY44OrFPZ6PXieb9g45JD5vo9Wq2UN2cpAphFJ+d5eNVDNQ2JDKkkSLJZLQAgkaUrV04oCRamQGpZIURZmjhOoS2XpGWAtkKYZMZaER0UXDGMvjmPEDWLkMXV8Ml8iK0rs9TtotZpotlro9XpIkrRmDBOzhdgfYRRZoyMvCkgAWVYgy6uoYZ7nVn+HwVh2ApMkwWw2QxRFmE5nRtONdGiKorDjZitgLiWEjTzaoc9QPLQuocuKDQmYdAAoG9hgRqAEbACD9f+o6mmJLMhsxKjdbsPzfRRFSRoxsQHSwxBhGKAopAUXnGll28yRVTacGXxQqip+wAc7WrUI9xaHgP9mPSs72Z3rVpOY5mxl+HHqORuelaPHTDk2+IIgNNHgwgiuK5v+VKVqKJvSkhs2XEXvJ4ZYEAQIgwDCvKZB7EbP91DkNJ9cEJUYpAF0XkLlVXGG1WqF4XBog1GNRgOr1Qqr1cqkMqxqbC0+pxv97XTaaLcIgI7jGK1WGzumylHUaCA0jEelSiRJisU6wXQ6o3XIiNiXZYlMa5QFAUgxPxulbXSQB6dtS1HUmDlQVNmJNANLuy8KQaBpkVdzIcsyZGmKnCvXmfHhex4EqmIQVkDWgLFREEL7vl2wtTalxbGR6s87qaZU/TAMIYRAq9lEp93Ger200c+ylHZuWB0osN1Vj85jY7y6ILAAKlDOcSZ5f2bwDjCgXVlCGXAMmhiDWhpWVJ7TOBY3I960BijosnKQyrLEeDy2zqcy7EhmCmvBmI0z/3jOmedmnWzzqBU11E7FG4c5l132a4BM9beQle4Mz3+7/vF5tLZOpL1fB9DhQLYW9XVJm8+5a8SmbIQNq9M2SddCFR3nc/Bvi3Y55oVw/wYFKrlpzHDYfEZ8v9sc9W0/bGdus1u/6cd9HHx+6tIbBletXZvA0TZ7ehNU2Pabx9AmcLUNkHDv1QUgeJ9w08ZcgNU9toETm+3e1lb60PYAJb7hmbhfrrYhQX6dpFRLXq+EIPCawXNa2+oi2W77WF6D10UGi9gu5D0hTdMaILH5wyxMt882n4cLGm72VeXf+KZIBoHSWtH+xp/Z7NvbQD8XfNzW35vjx93PNs9lgStsH1Psk9421qtrmt+o+5bYNh62XOPG3NuY9267tx23+qO3fM7tE7dPeaxt/gAGbLK+NWXgkNg2wMymolQQorA2PM8/SqVzwwRuP7hrhX0H3OfSE7UKcfRMHZAat8xbu+7wvlTHHCp7cWNuw4D+Do7gtlVphpqqfT0wbGnPk7W5UduLvsPxPQGbiBa9t7eHh/cfkKGa5pCejyhuwPM8tNodBH6AMIop31I6oqpFCQig1exQ9SrBXYnqCUsy/HwhCeiQEtKvl1mULCYuSfzaGgPCHTD8kKpT0+9v+4y7OQH1weGep5rDdjBBW0OA/97cMOvn2e6UVNf/5uGx+R37t2mONs8r8IzxuulfmfvzpYdAemg3Wzg6uANPSBzeuUMVZNZrrJYrnL47RbpOsbe3hx99lKHT7eLBg4doNSMb/ciy7Ebk317LAC5lWSIzOc6UHkmorfaAMPDQbEYGkDROnhF8VaoAdIk0WWN8fY28yAEt4PsSURSiGUfQmth2yXqFLEnQbDbx3ntP8NGHH6Hb61KKyHKJ0fU1gsDH/t4uPE9iPLzCcrHA65cv8frrryE9D4M7d3Dn8BD3HjzAvXv38Mc//hmfffYZnj59ik8++cTkm8taCogoCqAsahuKjdoZKic/J+qjwjjTZrHlBV4DqmThVHbErStuHi4b9jxGKiNSwCDwUhBD0PcQBB4C38Ng0Mf9eycYDi9xPbyCViUacYRetwPPEyiKDFJoRGGAIPDt4j+fz03qjUQUUbqKUqXR9JpBaWWc1hKz2dyCE71+j9KfSgL4Ou0WJID3Hj/GX/+XT0izxehtfPrXf40njx/beX9w5w4W8ylGV1cYvn2N67ev0Ws30WrtQWgFZQyQ//iP/8Cdg318+snHODk6xKNHj/CrX/0Kq9UK4/HY6jy1Wi0LnvgyhBdG2On38NOf/RTL5ZpShqSEH5IwsPAkGkEMTwr4UkBLiW63gySllMrZYo7Xb9/h//3t7wwrMILn+5jNlxCej3WSAlLAE0Tl9aSHdrsF3/cxnc2wXCwwvB7h2fNXJLy5swMN4OXLV7i6ukKn20W310NR5FgvF0jSFK/evEGSpPj445/j6ZMn8AMfR8eHEFJgMBhAeh6m8xkWyyV6nQ4ePn6Egzt3SLerKHE9HCPNUozHUyxXK1xcXhKbx2ixhUbcuihLvHnzBovFAovlEvPFAqv1GvrFCwKdZjO0221MZyQgznnxNJ89k+pBa6EUAvA8CK1QGk+PcvE9SoFFCelRhTnAifhmCfI8I80BBs6NcdtoEHtHmzGvSoXSMDZ/9OGPoaExuh5ZAA0AgsCHDCMolWCZpJgtV/AbMWTgY7lcYTKbWjDQ8z3ETWJKCklOOQGEBESmWVozRIVXj/4rEFOT05O0okib53smKFLtMyx8zethGFHKKe937Mh6XoBGg3QPCSCFidAmSNMMSi0gpbR6RM+fky5Sq9VGHEdYLBYIQwKV05QAnvF4guVyhWfP/oLFYokwjNBqNaGUxtOn70EIgVa3h7TQCKSAL4EoDLGzMzAiq8RsiuLYOLggcBiwZej/+Mc/YjKZ4IMPPsD7779vBcaZ8eCCIJ1OB7/85S+xu7uLhw8fotNp4/jwAM1mA5PpHO/evUMcBfjZRz8EhEShyeQqlcLl1QgvXr7CX56TrtSbV6+R5zl2dncQRBFmkwmWi6UBfIwzlGUEUqUZirJAs9FEs9GA0iUKs0/BUPK5yiYMSJWs15hOpiaKTePi7OwMhUnBbjeaCMIAx4dHCIMAvX4fDSNCO5vNAK0xn0xRqBKz+Rx5nqPZaCCOaB0JDNhZKkq1ZW2i0DdAoJDwBOk2Pbx7D41mE0cHB1itlvjd7/4FL7760oB35BjGYYTQp0BSs9lEI4rR7XZQFAWG19dI0hTrxRLQGkEYIIgi6LLEarGEkAJRHCMwIH8hJcqcihAYswqekLbqTmrYT570kCUpfM9Hr92H7xG7YblaEtsgigmsCXxbLUhrbdk0rXYLfhgAGpibtUh60s5HzzDiIarqpRDCvpZnGdYJlbkujdSBAqClhNIl8rysHGtnHLqsb5fBw3PW/c0pQfb1yriqfY73/pojq6s0J61htBoBLh6izdrB3+U1ENYpp+IIpI1p5CqUhjTfU6UyaX7KOur8WQ7WkWlonGhrYxsnxvcgScDQtsHVc+F+YXYGrwfu5xiIYEDU7T8XHODUrE1Qyu07/k06UjdZH9v63K6zTkCE23fzvNv1nzaBDfdZ8k9V6az6Plf/ZBkAfq8sS5teW9sLbmGJ1FheG6CKBT5AZqEfCOswEqBa6RcKIWwwyZXOcHWg7PWEMFIZ1f2GYUh7pAHU0yTFermy53ZFxykQSBVIDw8P0Ww28erVK4xGI3S7XcxmM3ieh31T0fn6+hqz2QxKKcvg5fsdDoe2CAVQgVQc1HCrzblBU4DmIxfoaTZJo3G9XhO4JTWk8MAO/W1z1e1vF3DieeB+btOvu82/u8HeK1WdLQN3bPOd2DdutNMCbqr6u5pj7n1UgT93bG1KqXwTGMyvb7vvze+564J7cN8x04+vywzi6XSK2WyG2WyO6XSGIJDodxsIAx9FaUgCWYHFKkWalhAiBJBhPptCQ2M2X2OV5Ci1RNRoQkNglawBpS0uURo/THoetKbiEnlO8gt5QT9BKBGEHkrlwfMlZC7IPig4kCSgFYFeZakdXECaICEX+qj2LTtmhAAHlti2uDnmyH+m9P0CUFSgiUdAEARAECBuNNBstax4OI+BzSDotx3fE7CJBlCz0USv20WeFyiyHNLzEIYxPN9Hp9O1jpcfBPCkj8A3YESRAxoERLGOCJzFnl8RgCcMI0pytTo31xnWiTHTmltnfrMTXr1eB5rcz1cO+02g6Zufj2B/v7qKGTt1NNI9Nx91VLmO9H4byLT5/a3vwxmobEzdkrrJrDI2QtutFglir9YWKFwuFiiyHForTKd3iVVgqLOeV1U7ciPTLqrqLv4wRrxduAxYR6w4gg/J4DKIM92wBWjSNCF2RRgREOBR5CTPC8t6okpwAoMe0Wal5HLepPkkECMMA/geCdBOTBR8Pp2i0W5j0Gqh1e3atIgsTXF9fY0nT54YwdsOhAHPahuH3jSSNqMXMAsKaFMAo/L0WSkFlDLjbwNLAiyOSE9YO284T54vT2wqUf2WpLPU6XQQBoFxUlP4vocoCokdUPIzNYLuBsVnFk8URQh9MhqhNYqSytoWZVUOfbVaIUnW8DxJYs+SNL+0MKK4UYhOt4ODgwO0Wi0ranp8dIhup202gBKNZsOAnQskyyWy1QoSxM4qwsAauKPra/hSGoaQRq/Xw4mpKCIEVT1ho68S+iRwLgoj7O8foNlaYTqdWA0iBmqlJ808p7HoB4ER9aWy4PP5Aqen52g0Gtjb30dDSmIrZTmKUtnIho1qGuYgQJHN1TrBaDxBmucIjX7LdDrFaDRCYfqMx+dqtcKLl6+wXq9x99493Dk8QqfTQieKEcdU+tX3fct26Xe76HS7VouoKArMl8QquR6NMJ/PsVwuCVwxEVc3ujhfLGwKEPfbzFS8YzHpLMvs9+yIdzY2bRYhE9Ox7/N8UUoCgoAYn3ViioIcKFUiLwp4XoHAjEuY6kNUqUSyZwcYUCcMQis82m53bAl1Fp8WnkelkA2bhDUgeHwDJCKuQdph0quMMD6UUpCevKHV5qZlQFeaXAy+S017m+sgWJCZX5MSkHWQiQw2WMOMnReANBABYdKXKRWD2Wrj8RhFUWB/f99UGS3MHiptu9M0s4ad7/u2epAUAu12xzxbH3lRQvoSgaQ1Oo5iO0+11oatVzmCfN9ZluH8/BxnZ2fEVux0MJ1O8fr1awCVQDivmd1uF4eHh4Y9ath7jQaajZgA0uUScdTH7mAASIFVRgbhbDJFsl7j6uoKr1+9xtAEELSZs404xoJTvs29QxtHvSyRZSnyokAUhHa/Yep+AWLgKE3Ph53zsiiwXC0No5ee0WKxwGq1QrvVRuhRgKFjxK53dnbQarUIrDFzar1eo8hzrJZLAgyLAnmaIYhCxO54MoevfHhCQns+2RmCmE2tRsus6z6yrItup0Pgg9GiC/zCBjdYXykMQ7SaVI1UgNZ+VVSC9Z6UUCY4JIRAFBnBbWM0K6VQpKboiEl/YjYigb+l1Y5EAFNkIrRrkW8YXMIUEFBAxRbi+WBSH9k5LxVVYWQtPQZHeK2xc9C8VpQlCkVzTypOJ6BrKkWgsAABZWzwCyntmuimdm0KM7Nd2Ww20ev3bwAFtfXQOVjvy9XmsYBFWWdpaMPchK6cSk6/t2LSRYHCOOW0FCqIkoIjQEmAg2Fnut/jHyGEBZt8214SmPec9afSmKyAC9e+c4GaTSd7s//c912nfZP5YQ/HzKkcZl07F//fdYLdc7lAyjadn00QafM+tr1ee64O+4ev44JxcRzXgKlN/2Ab2OS+t+knuP1NFxR2nGzSGLTWtf3IdUb5fSlFbY/eBBb4njjVPAxDqgK7AS64/cEi6gwOCSFsMQK2JxuNRg2Q01pbEfEoiqC1tkFsl9Xk9ge/t+l3sHHtZmBwJTQaB8Rs2rzfzWe/rR82n8m2z23z0zavY16tzS33s/Sn67fedp7Kj67dw40WGN5MrW11xhb4kt/Q9s172Dae2UfaBOvcNcTtSyGqwjBWqysvDEvdPA/uKw0UpSIcoqSAECCR5VRMIDPf09oEN/0cwhSCsHsOjxlFun5KA6UqDGOeWXTK+k9sq9FnuQgGzPpofirv244tsn7NHuMCmwZoqhgzjCnwvDR2s+D3tPUf7VdFBVr6fuDoAm88t5uPc+vxvQGbPM/D/Xt38eOPPoTvkUiX5/uUmuNL0gLxJaA9AB48T8D3Kac+y8jAH4/nWK8pX1aZJ2U3YJARKMxDsf2sNYSpPqGZ3AHAfgAaqAlz8YIrLeODXq7c9fprLCLI61NlTLBDI9zvwQWatF3UIL7rI62OzQXpm/7+Lv8HQKwxUVWj4+i6u6HZak/zOUqT8sRifYd3DuF7AV6/fg1dlsiRQyuNyXiCF189x0WrheVsgVaLDOnIpGGxbgP/tor4oEkYGkFeARhHXpCejNZoNhvotKnq2+npOfIiR6fdRr/XhRTAeHSN5XIBIYDAjDU/8I0gcojpZIJ3p2dI0wSPHz3EYDDA/l4XvXaA5SrFOkmRpmvkWYow8BAHgECJv3z5Bb744hlev34FaI1up4MPPvgAe/v7SNMUl5dXmM5mtgzryckJPOvUVxpQQgp4qCoAAIBSJY0pXtTss9LWCedqXbSQAQRw8+pCY/nbwMXbxg2nadCiKdDtdnB8fIxBv29HMwvWsnNoKdFmnJSlwmw6weh6iAFX/zEaBKVJk0nTxJQxD9FsNNBoENMxTSm9iwsGzKZTXFxcUAnrd++ws7OL/d09xHGERw/uQesSqyRDkuZ4d/oO//DrX2MynmD/6Bjtfh8PHj7C7sEB9B6l1aVpislkgk67havhGF+/eINut4NP/upnmM4WuLi6RhTHWK/XGA6H6HRaaLcbKFWJ6+kCWki8994jFEWJVZJCK42jwwM0Iw+zxRJn46lx0CgF52p4jdl8gSRNjIbTHF9//TUGOwM8evoEe3t7aLZa1nDiPuBIXWaqiE1nUyyWC7w7fYdClYiiCP3BANKTFMVbrnA9GcN/9846GLkBRrTW+PrrrzGfz42Ieo9SQOcLAlPTFGVRYGXEdYdC4C+CIpGvXr2ygrtMZ+92u1ZPAqgqi7FQuO/72NnZsWsGAGv8MdjEY941ZtmpsQaGVuCIPUeV3eo7fG9WOFiRkk1u7oWYRRRdvf/wAbq9HpL1GkmaYrVcYnQ9gvQV4iYJgheqRBhH0KMRlusVsR0kVSjZ3d9DGEcoVYH5glhj4+mkFuXl3w0znrmsvO9TquamAdtoNGrzj9dXN4XNdRRcgIpf42iyayxwGlwYhuj3+zVDluZcUDPEtaaqZlyiut1u25RATlnjykHtdttUoyFR8dlshrlh2UyuRzQeZjPcPTnG3eMjPLh7l8oCO06jUgrL5dqkWy4wHF7j8vISSZLA8zz84Ac/wIMHD6w23Hq9RpqmiOMYH3zwAXZ2duwYOT4+xsOHD+F5nhWRXi4W8KSA8CjlVSmNi6trLJZL/PnzL6hy4tUQi/kCs/kME1OpsNVsmvRLAVWYVGzpYbVc4s0rSiOMDduiLEtAUWnkmdJI0wQTE3nf29mBDHys1wmyPGOzEVJ66LTaZr+LIaSH8/NzU0Sig5O7Jxj0B/jJT36CTqeDhhGqXy6XWCwWtu+yLMO703dYzBd4/vy5qdbZwe7eHoRNM9NYZCRoG/o+wiCwLM04jpGnGTodAxRKAaE0njx6hCzLsEpWZByXikqQm0IFRT+nPhICOzs7kFLgBz94H3cODjCbzTCZTnA9vMaf//M/UZp0a62pv1j0PU8yaE8iDEJTLYdKM7eaLZRmrRAaNkVfeqTnyRqRvu9T0Q6tIJTRpNAKvqyX5uaUOWYSCzOXhWHAS4/EihcrqhwoBbOVpGVrcqGHRtQ0e56kKsjW4ZFU6UhIC6BTAMyHkATQQVSph2R6CttGIZwKsxtghHD+5fQ2pV0WAu3PtOcK68how1SogkuwhqcqjYNUlijzwrFFFFRuACUrbl9almhmqs6mRnNNGYfOOrvQyMsCoqS2+gagokIsVbVKNzjx/zP3Zk2SJMeZ4Gfmt8edd1XW1V2NblzkABAAxApFhstH/lPOrOzDiKzIzHJI2QfuDkiKEAfRbKCrutB1Z+URmXH7aWb7oKbmFlFZDQifEC3ZkRUZ4eFuZq6m+umnn3IA6QNZvr0LbYzgg0PcMcwHnRwbZTfox/u+rvF8Iz732z7v5sALdHlt7Z6rD2YAnXSDf278/V3pcuTs1a52Fzde6fVIR6Wua2w2GxdMcyczn+Vy2/nvghd+8O6eDVz8ISUnbd8HyPwyJQaCeHW6tY3OfzTGON06nnPe76SU6Pf7CINgaw8C4LQV4zh2922/38fh4SGEEHjy5AnyPMeDBw8QxzGOjo5gjMHV1RXOz8+RJAklI4MAy+USy+XSdankseImBf618d7NTGF/fN8r1TYE2Hcx3zc/bgMzd/1utk9dmeE2eLQLUvn31i5rTdiYQGs/bu2+t5tb/rktTuCs9fvxgf9dHaPJ1gvtHOpDwJkPsvFr/vmznwTAPfvdGXcf/PpwOMTdu3cp4ZQnEDDo90KEkUQU54CI0DTAel2hbYG8N4JGgOubGZpWoSwbrNYlmtYgilIoDWQZ+a1Z1kOSxCjKEq0qqKlJWUEpjfVqjaZRaBtiKgUygsiM3fMpTjOmi+n883ZsU+3gJtgMo433uFtoYENA1sTq2JOA7qaLp050M0ljS79z4kcy+94YV2ru2yt/Lf2hVf4nAzZJKXHn+BjfevwYvbyHXm9AXVVyKjeJIgqWmwZoWyAIgDCkWvKqIa2Qp09fQLU3VptjO5NDCUf/5rTPFtDxJa6sye+2cGFgTKeLQ8CRxlb9mDDuM/4taIzuXhOwxzEdTiUA43+XOwEBGC4gAATlgv7o8fwmEOFDWRd+vu01PjtmiIVCQAZWi8Z0LBx/syfdDPo9z3MopXCwfwABQRoSSkPpBrpVWC4WeP3qFeI4wXK2dC2qB4MB+v0+Dg4OiK5q2WsciGpjNRYCgcRlCmmc2lZB2RKr/f09zGZzlGWBpqkxGY/Q7/ew2RRYLOYoNhtbIhYgSSJEUYwkiRBHIYpig7O3b5BlKU5PT3F0uI+9cR+9PMKm2FgNjQpNU8OoCHEoYHSLly+e41e/+hXOzt7BGOpe9tFHH2E0HttA79qJkkZRhMPDQyil8e78HE3TusXGm5w/Z5Q5YR0a+AilXdts5L2yTQiIwJZrWKjbn+/b1s1t64g3Mj4PAMjzHg4PJQa25TWss8EbI2/EfoZDa431aoX5bIa81wPQsSyEEJjPZqTJchQgjmLESYokTVwwJIRALyLEfbVc4uLdO1ycn+Pi/ILagQJIkwST0R7SJMJ8VWC5qfDy5Uv8yz//C+q6xtHREU7SFMfHxwSORDESG7i9fv0aURjierZA9PYc3/r4AR7cu4P5coODS2J3FGWJqq4xHNLGtViuMV9ukKUx7j84hZQSLREZEEkglEBTl7bTXZdJns/nKMsSZVVB8WC+JAAAIABJREFUG4PVeo2r6RSNatHr9XBgHSl2Nhh0mc/nbo7iOCYGhA26r29uCMDo9zoxPxDIwrRwBjLYmX39+jXevn2LPM9dxzgGNeq6JuHOsiSKeduiKuj3J0+eOMetLEsMh0Ps7e05h9kYQwwCS09nkGM0GkEpheVy6YQ7/UYDt9kmdmidzUGnW+KzgPh3Hme2Sw5sUi0Ji9v3i0Di4PgId+7cwWw2w3KxgIFBe3GByESIU8qWKqMRxhFWmzUxGMibRhCFGE3GiNMEV1eXWK1XaJetCxb8ltZCCIxGIwwGA4zHY5yenjoRdS4n8OnnPpjPe5ovgOzPke/0++PGJUD8GmeC4zh2WmSlDRjTNEWSJA6Y8cdzMBi47DBr6rFzyJn13IINvE6Z5bRZb/DqxQsopRAIYDGfIZASd07uWtu1DTbx9VxeXuHVq1e4ublxQPPDhw8d+Mo/dU3C8o8ePcL9+/fd8Y6OjnB6emoTDm9dMKGUwp07d3B4eEhlX9czXF5e4p9+/k+4uLjAu7dnVLqbpkizFFEYIc8yKgMS1DFMgIC8TbHBfLFAFEbYm0yIaehpE6qmoffMZoiiCHvjCbX2LiusN2uwlc6yFOPJmMQ5ByPXKGU2m6HX6+H46BhHR0f47ne/i7HHfGE2HduIqqrw9e9/j9lshtevXuHq8hIwBqPhyN1bPOdt2yKUtN7KosDNzQ0Bidq4xgpZlgLG4N7de2jaGuvNGnVT4+LiwrJOLaM1CFDvkzj7aDhEnuf43372M3zve9/D119/jadPnyIMQvzqV79CacvS2dmWlm3Uti1CUPIoCAJkaeb2fABUruVdqxDEgvKbkQhDDAMIBYiO9cylV9y1qrVAh7M11nPmIEkBqOoaVV2511iI3e25UiLv9ZBmGbIsRZan7rv8IJVt922lRh8CBLb3Wy/w5nO9ZX/eZWNEFvx0gdguaCVE54WyX6C1Y6Qp1ttrGldCR6Lsyu3t5YbsOgst11WFytoTTqApZb/fnnbbNs4+VlXlAAh/nHx7vhs0c3LKv7bd/eI2sMW971Y3mT3420EA/+HbK7/siQEIPqddZpVv0z/E6GAAZrcRCIP+aZoiyzK3Dhls4rIvoAO1dsGI3fXiP/vMJiklhLEAqKDgFUJAKLXld/KeA3S+hEsIQVCHLr5G0yWXuKkBP4IgQJqmkEIgzzNIIVyjHH60bYv1eu3AJk7c7O3toaoqvHjxAoPBAKenp2Rn9/YgpXSJLv6eIAicBqifxGP/8721wuOxw5hhRooPtBl88Pb8xscfWmc8/+xTuTG95Tja3qNakwyFf2w6Ds+zty4+CCp9+OX3ANwtUItBMum4G9ixM7cBSvz7+wDZNpOQ/87r3C+39T/rr/Fer4ejoyMM+j0MBz0o1aBtNoDRtmlPgLY1KIoGrQLSrA+lYV8HqkqhKGq0yiCMEkQaSJIM2mjqvJ3EaNoWAJUwVraL8WZToKlbELFZIEkb2NYNtsuoLXfTnV3iGMuxB23s5jOb+N90sZLuNdehzlvH3s/WQ3TzbnisA2Ya0zHIt6ud7fHtKd3jf/jxJwM2CdgsRRLbLBCVJxUbqqUVgiK2omhQVQ1lhkJiI9UtAQtFUThUkJlNBCTRZBqbMWJAELZdN2ti0NwZd5NsnZ9F7hxIJbrX4L3mP/O0OvDJAAKa2spuXbnx3knvppuDfniy3fdtwZC3GAKGo3HLRsI3q7e4dt+LWwAMHkfWTtRaAy11XlFGudJDA7iSgpY3GgFEYYQsSbE3IQf7/r37KIsS6/UKi8USgaTuMzAGq9XSdYRaLZeIogjvzs4QBgEyK+DrsvSS2kcGQYAoIYdKBl2mSWuDwWCAyd6YMrxf/R5CAPt7E4SjAaqyxM31tRVOpo6HMWeULJNjuZhjPrtBEh/h0cMHODo6RJJkUC3Q1C0q26J5Mh4hS1PUtUJVlbi6uMC7169RlQWyfh+D8RjHx8dIs8x1MgqDgBhBHJyAhHWdQLIQthPBLt2apsVnltG1BwiFvwkJ2xpZE4sPTqXGzafhNbiThRG84E0HltLahM3mCwLo+BYwGhKwWlFAXZUoiwJakXh0GEinzcE3obSA1P7ePh4+eEjdllYrbDzh38lkgvF4jKIosFourUOlIKVAZZ3SBw8e4PDwEJ9+9hlOT0/R7/dxc3ODYrNBVQ6RpjHKqkFRtY4FxMwabpe+WCzQy3tOFNwYEr4+OztDURQ4OhgDuIM4CjEa5Kib1lFbg4CEpheLBV6+eoMoDHB+bll5aQ4ZhJBQEDB49eYMXz175jRTjHW+lKJOP1kvR9S0kGGANM1gQGUbTkMEZCt7/R7uJ/ep69f9e+j3elgVBTZlZQO2Bq1SKIqS7tOd0ix2uIQQ6A8GAIwFh1too7HebLwgyLgSmKoscXl1hTxNgdEYSimMx2MnEL9er0lA3GYtOYhg4ID1GThry86473z7jh5nL/3Awwc4hJSI48RzRmhMibKsrTYTMciMMY4x1LYKTUvBU93UgBCYTqf2vEgXqW4arIsCjdaYzm6QloV1GmoUdQUN6uYVJQkCo9EfDhHb0sP9w300NXWtaprGtVXn4L5pGmKEWOp/HMc4Pz93Ti8HUiyy7zP/fA0Evtc5CN4FkIXbrGygYB2Tpmkcs0NZtgIFfl2QRMEh0cXjhErBGGCmcwgQBHRufD8LEDUcEGiZtWCDgiiOMNnbg9YUpE6nU7x48YL0gmznOB9wPjs7w3Q6xZs3b/Dl736HzWaDi8tLGGNcoMUljdPp1DFyGPg4PjrEcDhAkqRbZRZtS90UOaDbbDY4Pz/Hky+fYDaf4d3ZOywWC9xcX2MxmyHJUiRZTiV7vR6kIDalUqT/FwSdQDffK2EQWEBTu3Iio41lbgdQtsyy2GywWq4c23Y4GuGjR4+Q5z0cHB4gTVPcOTnG5dWnGI9GuHN8gtFohDzPEIUBZnNqPsHBbZql2NubQGsqqys2G6yXKyzmc/TynPYDtvPaQDUtmrqGjGNEQQgJgUBICAPUZYlSSuQZBX79vI/whO7p69k1lGpxsL8PAFgsllitVm7fapvGAQ6vX71CEid4+vQJvvj3LzC9ngKGmsLUVe3tYZL0ETcFdcoxJCCvWoU4jtx6NsYANtPbNEt6toyasioRhhHgMYHqpnGd1Fj/idf/erOB0soFkYEVRIX9XQQB+oM+0jZ1YFaapuj1bTMPTbZ5MCAmZxRHiOKwc/SFbYMuCJSkgJUbe3QBg0GXGOLr5Gsll64rjTfGWEFy4XxQnyEvpXCsfiEEKzKC+SFu/u0RiPAs3dkYAxhhNcW0gbTdjgIZONYULCCllIJWGkmSQrcKaZahqRvUNXX21VqhtlIJyjGiSJYA1p74pSd+YsRPHuzuE2wn/KTEbcGrbyd3y6QgDPlGWwDQdnC/CwTugk8fStj6e+2uPd49/ta6tr+zj+J3X/OBS34/g7P8w4DH7nfcBjbddh1bQBN/Ptju2g0/hrnlugGvyQ3/eGAJr00GFbdKL6WkEuUsRyCDLUCTkyo8Nuv1GtfX19BaU3dcrZ0o+HK5dGtkMplgOByiZ9nhPluXv9tPhjIwzPvDVnkkx0dCOF+iY4r+4YfzW3bm23/efT8/8/j54OXufPr3ACfitN4FgRik4HDxQyCX9zu21yi8e6G7L7aBHgaytq5r6xxtfGE4EvbGwJjOpnEA4r5awlirRuNiWeMyhLZ2q4uRjDs2AKRphvGIkijj8Rhat6irNahRiwKgkWYDACHCMMNwuIcoSnFweAe93gZZPoBBCKMlsZRaIqPAkP5lFCUIwwphGBHArjvtT6VaaC1BekydMLkU1A00kAFpRntMMGMBqPfH1htS7//bE+ivqZ17H1s4E4Dte15yDN1qyCAgORGzDWD7hAYp0W0wtzz+ZMAmwCCNI/SyjOpeQUHGclk5A9K2CvP5AqvV2gpxRRSoKU3tnZVXUuQdmfxsvmGlA4qImNQBS1tzInY+7254/7XbAKbt3xk0ck6Cyx911w3PSaD/u2UAjvSdofC/4ANA04c2P/cN3gnuLtwtkOm94xsIQwCFbltoJaC0QqspkGCtJXbsoA1MqxDFMfJehkBK3Ds9xd54gvnNDOPhEM+fP8fTp19BG00dxSDQVA2EDFwdK1OEjdbQVbV1XlGWIUpTRHGErEf0WxZ+5/YweZ5jMBygritMr66RZRk+/eQxort3sF4t8fb1a+S9HHt7tkW51Q5ab9ao6wqXFxd4d3aGw/19/PAHP8Dx8RHyfIS6MSiLCuv1CnmWYe/4GIGUKMoGs5slXjx7jqf//u/I+gMM9vZwdHKCT771LSil8Pd///c2sEzxne98B6enp0jT1DrPlO1zTpe3iXMwAxho3ZUUdfovBibo1hMHjEq1CAQJUkN0nDzh/W+rCttzJpxAsX3NGEBLcpwDQdXKVI5KAuJREEBCYLNaY7WYQzUNpBSIgoAEwi2YLMBaSwke3LuHH/z5n+P58+f41399iU1RILF6BHfu3MHx8TGePXuGly9fOkdMSOoaFsUR/uzP/xwPHz7EwcEB7p6eoqoqJxa8t7dHWXl7ReVm4+r57927h16vh5cvX+Ly8hIH+/voWYFIzhJ++eSJBXTu4Pvf/QxpSqy3sm6hhUCrrd6HAC4vLvDr3/zGrn+NKIpx5/QusiyjWnHV4uWLl/jit7+leZOk40Gt1hNAAKPxmMDPqqIOjYL0fnwHImJ9quNjDAZ9/Pg/fR+H+/vYtAplSy19p1dTLJYLfPnll++19mXAin/6gwGCkDJ9/L71fIbQ6q35GeTVcoWL83OMh2MEtmPVyckJABK1nc1mTkuibbl7WZe5Pj4+xv7+viu7gz0XdqR9h4Ydbd7YgiDYYnCwY5qnGWQQoG4bB9q1NtPIWV7eIIfDIdI0xWazRmnbQ6/XG1RVjZevXmO5WrvyhE1Z4nq5QLAJENiuc+z4FkWBVlAwHPdyF6hqrZEm9N6qKLG27MXpdIqqqnB+fo7VaoXZbOY6USoHxsRbAchoNMKeLTEdjUaI4xgHBwfIssxR//1srE+190somrZFUVY075Et8dKkLBMEoQO4i3K7wxyXDcVJgn0LKmw2my3HPLJAE+8nbh4BVKsam/WG2qVLiSTNcPfeKSWOVgSALGZzvHz+AqPRCI8ePUKe5zg5OUEURfjyyy/x+eef4+mTJ/iXf/5nAEDPdpU8OjrC/v4+bm5u8OLFCywWC6xWK0RR5DSOjg728Mnjj3AzX+Ly6saVmgHA3bt3naDsfD7H57/5HP/Hf/2vjmlqjMHZq1eY39wgzjLEeY7Dw0PcPz2FEAIX5xdYr9eYjMcY9PvknLUKCA0Sy7SqVsTw4GSMNgaJBQ2bqoJqGsznc9zc3GDQ7+Pk+BjHx8f40Q9/hPF4jI8e3cNoOEDRaFQNrZO6pL1hPO4DBphOL3H+7oL0J6XE3t4Ed04OIaFRFhss5gtcT6e4OL9AP+9Bt8o2HKFERFNWqKoSkQgQxGTXQ0k2vFiuoesW4+EQgZDYm0zQH5ySEPcbumc//exTTMYTXFxc4OrqCtPpFM+fP0dZlriZzQBj8Jtf/xuuLi7x+eef419/8QsEUiLLMkRBiHKzQWE6Bspms3G6eOWGBHerfukATT9wbdsWl5c3LoHg65EJaxs48WSMQWj1xbY69ll2YxiT5kqaZ8ht950wofsxsfp0XLaY93IMRyNKSFj7wqWnu+ya7tn39XYeHHiB04sABDUAIZ+20xNx9HeWf4AFmnwf1VB5hrZ7uqKTuCUc8YJBC345QMHAJS59cIn17YQ9T2b4tVYgnMtzm7pxXRO5bMroFkZrTKdXmM9naFvqHuiDSrtAiu+j8vz6Atms/+kzcnx735XxbOs7AYDU3BioA5Q4jr8NFLoNDODHLnBwWxnd7rn5x9w99zRNHeuHS8E5WcLnw+uYgXRmiSmlXHLiQ0ATn/PuufH3u/3Dds5lzT0jSGNGe8fwr9NnEmsqKQGC7vqMFZ/n7/GTSOzbSSkxsnqA3CCI91xpbUcYhq6T5P7+Pg4ODlxShxMZSikcHByg3+/j+vralYszcOWfK3e4Y6CJEze8dh0otgMIclLtQ0CAP6b88Fk5f8xjdy3ymvePuR0jeOCfuqWxkmdv3GfN+6Co8eRhfA0qmqv3wTEfXN0+Z7JTXHVE72UTZmM1L2azZ7D9u2XYAczakQzRIwwiCCnQhsolw6hBb6c1y9c06A8xGo4pZkxjaK1RFCvLmFvajuNkh+M4weFRH01TAyAd3tHoEEAMpQLUlUHTGJAeboAoTJEmGeq6QV03pAvV1FCttvdpA4JdutgN2iAQEoEMEAUUfwaSOmoLSGhFjZ2ojM4fazvHMM7Ow415d73MYjNGeuCTcSQC3245P1wQkaBplKu22BTk9/n2p0t6buMetz3+hMAmQLEYcKsgZIOmUdgUhc08N1QXXtlypSAChblw6KBDV/mAgjdhQPhsD54MYfxom7ZthyAJb63vTqCPDmNrYt0nhA/kvA9Udc87yBZ/ll/dwqIMsaL8bMQHxnIXaNp1fnbft/tgUIsDDvouWqRCEIC5hZT7/zZmyyF06DeEEwHe39+nLGRRYjajNtIbK9RJ4mstsZesgQ+DEJDWiGoD1mihOldtj1VQxjDkzJiAMKSw3zaV0ygIbIcnIeA5SdptNIHNqNY1AUlaKQt8JBj0e+jlGZRqndaGbknBP01iKNXi+voa06srFJuNzchSoMh14ixKulwucffOCHt7B1YzZLs2nYNrZXUxtjczj+quuzpacsal+zvPcfce4WUH3Ey7edxaAztO0NZmabazck1Tu5JAeh2oqtJRu7n7SNM0qKsaxaYgxo0idk+WZU7Ul9uW93p9N3ZcurPZbJBYMXIZ2C5lQro6fNYvKa2WEjtg7JxQeUlNwaHNmjHNdTfzw9fGGbrFcoWLq6nt7tGgbhVmqwJaG4RGocgSLFcrNHWNpm1RlxS09pZL1G2Luq7QNi1l0i0NPbD2xhgDZTSkoICRSxCNMU5Mm408B8vCy75BegLV1kHbFF0r+LquwaVPbCMZcIBlQRlsa0v4dFljiBHAtoCcWHji0O93+vGzbF3mq3NIb6ut/5Dd+tBr/HrTthBaW1aWcdfgPzhLORgSWCFkJ/6urcM5m88IzFIKECTW7hIYAjDWydawttizb0DnKwnPaeUxHwwGpIPTNI4FxuLyVVl2pl50wTF3XuOggwMILi1g/SKeK35mNlQQUKe6Vml3TYEtAffZYhzMEOC9rT/BjjZ3vfQp/N80TxBdl1Dt2anEMlQ2mwLr5dIxa7iTD2uQxHGM+Xzu1m6/34cxXQkBl5ZxJptLo3ic4zimZiJBAK00NrZ8c9DvOWCGSzivLi9RlgV6vR7yPMfBwQHtB0pRF7cogoxj7E0mONjfhzEGb9++xUZwowQq48qyDJGdU600WnvttLcERMQNArevcTAmpUSWptjb28N4PMHAlq3VdYPFcoXWSCgjUBYFFrOFbbXN7YgDJ6zPzBF2Y1Sr0NYNlUGpTsDcWMaf1nSObd2gjcn30qp7T13VgDEoixJVWaJtG5TlBkVJIFYQkkZEFEUYWzA0zzIIAaxXpHlSWy2n2WwGYwwm4zGCIHDlP1y66YOjAO3tMWs1ekzIuq4RWnZREITIstQxDHiNMtjEnfeMZxNkINHUllVjDCJyVpCk1Hwmz3P0rE5VHDFbmgLtXr+HLM2QpKQNxX4n21O2PVtOnPESiO422UqH0nFg/VV7TMnvcj4pXDBBQYJw/q3HI6Dv4j0bHFDo976Vv627bwEt7HkY98Hu7969Lflc3KFoHRqhEdpus7yXGWMQJ7E9gLI+i0IUhWjbxu2/rAlymz3xA1g3v+yXejZo97O7YJEPPO0OLfstvj9/288f++B9YRcU4L/tXsdtQBn/7jfY4GCfGb9AVyruA2ps/7/pvHeBidv2760f+sPW9d02F74vq7WGFtqBNbvf74LunfHhe5l9HAbSmMHLpcJKKVcSyyBdFEWoqsqV7AOUCBuNRi5ZxWPJY8sJXj4fn920xbCzvwtBySUGubfXlvkPrZ1ves/u3Nz29921Trbi/ZJRH2xyx9oBH97/gu05N87MbFmRrXvQj5UpnjX+4XZiaeH95YOjsPWvLZsAYXWGbgfyfF9GCJtUiWJorRA0MQwEZBAhCBS0UmhbRU2ioggRJIbDCbK8Rp73qYlUEMEYAW0EFHf5BrFzAxkSGUYDQjTdubFulU0OMGOJ54RtZscihLvvPOzfTaVvk7eXzu4YWtxjlwNlun+70XfrlY7dtg3dF62CClR3RLfGJL55zujxJwM2GaOwXq0wu5la0cEWTdNiXZQw2rashUBV1dSpLgZEFFF2JeCMRGidf3TzCdgNmsuHeHM2YAE3A7M16O4u4LfbA/qbkA9Abf+928S0BUW6z+CW47xvYPybHzuGQHR3+C1j+H4AsAsy+UKD/PgQqPCegbROjbFZNWWME/4zhjQUGJySAZWjcVtaboubpRmSOMGPfvhDaK3x9OlXuHPnLq6nUzx58gSr9Rrvzt6hKEpqmR7H6Oc5JicTKxhPgVtTWR2UmnRu6oY0JAwMgogEO5mivprdoFov0RsM8fCTb2Gyt4csSWxGTqFtaiqFEEBogwatNW6mU7w7fwfVNrh3eor7905x9y6J0V6cT1HYMsC6KhGNB9if9HB5eYWf//x/4fWr1zg/PwcAHB0d4dvf+x7uP3gAgJzrN2/e4PXr1/jBf/oRfvrTn+Hg4MCVfnDQyHXkjWrdhuk7MEDX+UpI6Tq+cNmTsh1oGIBAIBEIbunMa/Gbs2v+OuiOvd0RBQCurq7w+9//HhcXF45lcXFx4YKDJElcJysZBHjx4hVWayqXgAGVwH36KV6+fIm3b98iSRL8+Cc/xt5kDw8/eoTxZIIvvvgCb968wd27d/HgwQOEYYjZbAalNfo9CjLzXg9pkuDdZoOf//znuLm5IXHtPHf6XzKQ+NbjT9C2LabX1647BZdIdCKuHX1aCIEvv/o9VpbJdn1zAyGonXwQBBiPRsjSBDfzOQlPW4FzKQTKpkaSJg4gqKsacZq4gEtK6o6pQaLuIpAIpEAaSJR1hX/4h3+A1toxcnxtAHI8DabzBSqlcTObY7Fc4urqCi9evHBlR1pr3Lt3D+PxGJvNBuv1GnVdY7kmQeGyKrfmmdtua2NQ1TUapaBbAmzTKEIv30coAxQ2UMzz3FH+/bp5PpZvf8qyxNXVlXPqfAfGb2W76xwYs5PpFgIiCNBqhenNNWCAMOrmztc+CsPQdQ+8c3oX48kEb9+8xfMoJGbJbIZNWeI3n38OpTUeP/4E9x/cx3K5JIAmDMgeJTEBTTUQRgqRjoBAorIdUblUUEjW84HT1mAx9I8++ghaayeYXpYl5rOZ7UK4tJ0tSwc0nZ+f01qzQFO/39+yD3x9fI1cNsANFtIshTakbygk0ct5jTPjbrlcIssy3L9/fytjzO2CWYiXnXKgExjnrLAf6LDt2Gw2mM/nbs1GUYjxeAwYg1evXuHs9RtkaYosS8n5s877/v6+A4ziOMbd01McHh1hvV7jxYsXqOsaz549w9dff43xeGxBGipTnkwmuH//Po6Pj5FbTbLVakkC2YM+/uz730EYhri4vMbNzQ1+99vf4osvfos0jvG//+f/jMlkgp/89CfIsgz/6//9//D1s9+jrCsUZYmjoyP86Ic/QmXXcNs0SJMEURhiZMs06rrG9PIKrWoRhhFkIBFlmWNhJFkKrRTmszmaukYgJQb9Ph7cu0+MptEId05OAAj89ndfYTafI0oSRHGM6+k1Xr14iX6/j5/85McYDUfo9wcYDoaYTqe4vLyEtuXMBBIVWK9WaKoaUBpQGkZptMpgs9mgbRos5nNUZQWhDQIDJ+6stcFsXUBaEeu6LHF9c413l2doVYuyKdHr9fDwwQOMRiM8fPQIJycnMFrBKIXLq0v89//773B+foHp1RWmV1c4PDrC3/zN3wCAC5iZ8ccBida0r/E+CGOwtmzLt2/fYjqdYjAYYDQaIYpiHB2dEJBnQTxmi7rPw2PO2Ox9URSY2eYKaZ4hCKljYpKmGAxJR621TAohhLNvURQhCkMow23fNQUsRpMobEX3ShREW4GbA/m817b2WWFFlK1dA4Aw9HSUbGtr2C6RlOIWW0GCtj6a2GXPG8tauJXXZI9i32O9AnrmXKx9NoZKFbXStoReuuCIAiVACCppNrHZYj4FNmMeBqwDQuNB4GXptJ6YCcuaasxSKYpiCxBhP8RnTTFTzderY/vPfijvCWyftKHuUP4xOTHt5uaW5/fmb2u4zXvPHwzgP/DgYzK4wqVfDKjw/sAgB++LPijPiYfbQIquTLorr/c1/vz3aGMgaPNAqNTW8XwdQH7wOfKeYLSBCbuEhe838n7ZMfPtcaVEmqUw2jibykkzlj8IwxBv3rzBcrl0cwsA9+7dg9Ya8/kcq9WK9sEkwXA4xHe/+13c3Nzgyy+/RNM07r5umgY3NzcusQHAgVY8lm3bunMwmmxsbhnGvV6OLMuQJLRHG1t66gOcPK8fSpr5c/9Na+dDgCr/GGO2WOsUA2wnU7tjwc01A2nbYBGXxL/ficw/Vne+eO/cdgHe7nMEzHwIZL3tGnfHwQdLgY75yHuL/xmfsQ3AlntLKyUS2ERBBECjKMn25FmGLB8iTUIcHB4jCiWSOEQUBVitNtAI0bY1iqKFEMRwkjJEkmSAkCjLwpYQG9uRVgCCmE2BkC65IwwpPpPEhOpYukJCGVApHjd9AMXhGjYB7IHQXVaUx4jZaQBLG0B4kJOPFYiueoD3hLZtsNmsoZVGmZdurH2/Ogg+0I5+5/EnAjbR8CnVWEHS1v3UVQUYIAijLigB2TcpeKvsBlN6IjLdBnHLhmDng0EheMeGv7A94Gl4ML5GAAAgAElEQVQ7+L4dlNkyxJIWH9whPgzqfHhcxBYa/MERvAVo2v3bbe/fRqrfz8DwoxsPL0NnAEhYXaHue28zfsYFx6RxktsM8OzgAMdHR5BCuKDqJknQNMRsknZjisIQYRQhtiCRAAWmrVYIbJmWEHCOkXDnLKC1Ql1VyHOFXi93bbhhS9K2zte7ZtbTiMIIo9EA/X4PSRxRi+mW2AjKA4HCQEJrhaurS5yfn5MDLSWSNMVoNCKgwLJOqqpCVVVIbDbblVm17Xtri+fLX8++Q6CUQshG1KGlW5P9/t9uAZJ25373b7ugk/8Z6hi1cEwLKaVjXvDmpzWJ0W7WVCax3hRWSM84cIA3xyAIMBwMMR6PiS1gASx2iPi9LuNniNXCemHcbWppNb9YG8gY6rTV7/WIdts0ljZrqdNRjNiyBPI8d46sEIDSGvPlErPZDO/evXOOXRRFaC0DouIyNXbkQEG5NtqBTdqYLYBASon2FgqzCAI0bYurqysH2vV6Pad5BEFi33VdY7Fco1Eas/kcy+US8/ncsT58cc2tjV909sIX5ZZWAy1JEyil0SjSpuJyysBSzGG4hKTTY+INXWkNqUgHhUuqnF6DFyD4a0jfYrvcPbDjgIGXsgDMTufGXWCUfw/DEHFCukDD4ZC60AwGNHdZBm0MlqsljXVTbwmzCginswLQRu8KWm3gCUN0ZmaIKRuUMcuJnX92irnzDjN62NHlkiAW5/YDK4MO5GmaxgpVdxs/a2I5YX4rgk4aB50wsQ+i8nywPlQcx1tdAf1MNf/uZ7BvS2r4GXgOaGjOiZ1sDHVoK8vKig13ACWPRZIkODo6QmTZJnmeY7lc4vr62jFD67p2AQOPqQOposh2q22wstoeYSCRWaFvAvkoICmLAr0sw8nJMQ4ODvDg/n3keY6X917QeVYEvO0fHGBvMqEysii2pSWUCJMyQGQDP6UUVKuQJCniOEIYhJYBRRlV65Vbn4No66RZSXpfYRiiVQqz2QLnF5cWbIowvbrC27dvMRwOMZ8vEIYhxiOykRx0OTtuuvIQZivBGMfwVZzhV9SBUysF3SoYpV2iS7Ut2bCyQrEpsFwuMJ1OKUgXNMfL5RLL+Rzt0RHZjSxFL00hAAz6fSwWS1uqUCAMvA6UTWP9PAIcuj3buhaSutEBlGzkEhq2HWmaIk0zjEYTRFFM2iSebfWZey641tQggEtuhZDI+z0H1CZpiuFoiNF47MrjACqRY5ZcICVa1UI3DWAkZGAAW7KhtILUAXSALXDJ3Rdsu3z/zNoX4/hN3XvdfeX9WKPmWO5+lttHn7ay39ixq9aH9cEq9372g70Xfc+oO084P1tYoMn3INhPY9snhEBkhfXDQCIMaC5Z6DkMQ2fH+Xe/xf0u69vtG55d8u2Rvw/cxmwSgpjvQuwKtN8Cyn2Dr74L5uz60n8M2HTrnue97u8Bu9fsMzmE2GYE7bJ7d/3+rbW5E7h3zxpCd98JoNP82vGZ/c91iSTt/W7jN9ldHwNqW9cP6vAJ2TGb/BJZ3ksZAOIfAC4hx11v2XcKrFwBA9s+cMlJMvbB/XXCSTQfmIOhmJH3007/0usoeYtvvQus3LYuPhwP3h7L8WduA226vcD9z/vu7WM6IGNnjXzzeXT2ir9oF9TqzmObwcTjtHu+3xSLfihW+dA4+Nfh/9A8WgBHA9o4qW4IEcAYoG01lCb7EIQx+r0BkiSCFAZCGARBBOo2DzRNSxbcGAjrj0VhhDZo3Jrgvd8Iab+HmXI8XtjqYCqs/XS239zyg23fy7wX/xnPxndEFxtEdmPCc8pz5s0zNdEgvandChDfDv8BE/enAjYBMBSwlEVBJ22AMAgsJVsisQyCpmmhWoUgCBHa7BF3F3ILnwfcGUbACHdn0RMMtM2uuE5GdloDQfWSjKkAHXjvA03CAkie3d16BkhskH/fff9tr3nz7bwLY9Ap1H+DIfqPPPyFettNvnXjCrgyEapdJuFTBDTWXOpFSKeAalrU2thSihrGiqUJCOxNJkjiGHdO7qCX9zCfL3B69xTr1QrPX7zEYrHE9XSK+WKOsijx5vVrC5h4Rk7YzBQ0ojjGZDKGDCTiOLQbMA1Z1ctQ9HOc3LmLn/3FX5CYcRJhsZhbYe8hdRgSAIxCXRVomxab9RLr1QKffvoZvv/9P8PdO3fQ1i3WZkWiv3WFKAqQpuSsbooaV5fX+NUvfoGvv36OZbFB2u9jsr+Pu3fvIowifP38uesgluc97E0mOD4+RlmWmE6J1cfGx6+/92vJjdGoazISVVVRWYAt/QkC2yba0x1wwEYQILTOXiDJSfDFOHedplvXgP0bgxO8MZ+dneE3v/kNzs/PMRqNkCSJy0imFlBrmgZff/01Li8vsVwuUVUNZrMbyipdT/Hq5QsEgcRP/+Kn6OU5vv2dz9Dr9bBarfHu7VsEUuDhg/vY398Hl06yXsFXT5/i3bszHB8f49GjR5jNZrh37x729iYOrIiiEAYam2KDqiqhDQmp5mmKvEfZr48++hjf/vZ3ANA1whhEAUHaN4sVFivqunR9fQ1jDMqqQhiFWK6WpH1ky3ioxI8ChjCienLRSECSSHpkSw1EIKENgUZKKUqs2DmLoghV02A2n2OzXmMwGCCKIvQHfYzGE1RVhWe/f0Zr5t9+7eZKCIGiKLCwApkshMwldUVRYF1sEEURBoMBGMQz1hZqY5BkGQ4OD9EqhXixhDYaWZIgDEIIbSANMJ/N8PbtGxhjcHk1hZRdJieOIyfa7TIqnFs3BkaTDU9iElFsmtpu/uQESNkFBuxkNkqBwWHI7UBjl3HHjCHeLOM4xtHJMfr9Ph48euT0j46ODrFer/Hx48coiwLnFxcoNhtkeY40S6G0IiDTaGgAyhisNtTVhltMh1FEQuEBsSK5s4g2JL5ctI11DoiN0HW9IX2YOE2Q9/vQWuFgc2TLyVtorVBVNaqKMv+sW8GlA0VRoq4JTFzZbmarzQZBIHE9u0EcEyAbRiHCKEae9x2oy6ymOI6do83sJS7pzbLM6Wrx2gHwjS3KGdjkDHYYhhgMBlgul7i5uUHbNnj18iW0UhDG4O7duzZdtB1U+YwpgLLVP/7xj7FcLnF8fIzpdIp//Md/xPn5OYl2DwZubDhIreoaz37/HF8/f4F/+ud/wd/93f/EZ599hsePHyOOY/z3//E/8OTJU3zy+BP85V/+JQ739/D4owdI4gSBkCiLEidHx0jCGL1+hsEgh1IGddWiYA3B1gYgLbV83xQbAMD+3j7iOMbjTx5jsjfBq5ev8PrVK6c/KASVzWVpiqvpFMWmwNnbt/i3X/8aBweHpKOlFD7/98/x/PkLLFZLrDcbFGvqZre/t4d+v487d+7gL37yQ5ze2UdTD1GWJfq9AbSWaGqNzbogdkhVAkpBN61rxNFUFVSrkCUJ0ph+AssgRwRoregz2tjrVdS1FUCcJBjvjSGlwP/zP/8e/6AUHn38Me49fIBHDx/ipz/5CRaLBa6vb7CynSZDGcAYTWyuIEAaJ0jiGGF4TEL1NlEURiHiJEEUxRiPhjAGePnqJWazGW6mU6i2xWg4xA9/8ANM9vbw+PGnyPMe3p6dYXp97UBTbTTqunH3kVIt6rZF05J2xmR/H0JQ+VxgmWlpliHNUmR57jrsMcirjUZTNQ5MbxV3wyP2WhhFgBCQFrzggFw43wqQng102Wcvd8d/giB7p0u658zW5wzYHdQAWMiJO9MKYAtF0tBoldWdCTotTK4W2M1LC++Ztb1Yc4yZZgS6BcR6s51f+Zq4lJM7YbVaoa0UBIDKxpdaKxitoNrW6TptdT319HR8gN4XA2cAw2c2sb33s+/GmA7s8nS9aOgESG/F7/i7Bev9QaBoa+xuCdB3A+A/lAjm15nl64NofBy/QsEH0RwzYScQ3P0+Bpb4un3Qyi+fNjRI1HHa0zUSH9CC2gWwhBBoBQvhW/u+AxSyf7ur2xgG1HSh1+u58VitVojj2LGmeM/abDbEXLVt7fm9TdPg+voa3MRkf38fWmvnE3FpH/vZzKhjX47XHoPcvDYBa6u8xh1b43GLyLzvZ+8CkLcBNPx8m9wAP7aAUw+o2Uoq+nO59fCAbW+Nbb1DMPvo/eRSB27cvo752hmIk248OkAlkMF7Y/RNIJw/jn+MHhnf8/xvf56VJr8OkKBcjEAYZZBBgro1SCqNJM0QxznSNMNkfIRenqKuN2jbClGYIpARmtbg/PwSxig8eHgKKSLEkUQYRvY+5ZJDLqUPIUQIYYS1fV18HwQh4pAIDcyM84H03USf/7MFqqFL4CqtIASDPcImGrbBRq0USUQo5fg1At392dQ1Vus1SRnZRGBnjwSUttyNb3j86YBNoG5BTdPa0iwrPhpGkJK6kAVBiChs0baUqRW8dSvefDp07r3FaroNhCaD4KZucjqRLWlMh7i6/9kJ2FnTHwaa3g/SP4Ruv3880aGMAhA8iXYBfGjj2v2uP2qTZMTbe/8HkW0bM7LjRV1tpKvvZwompIfa2k2iLDjws0J7ilpGDwdUArA32SBLU6zXa6RphsViia+//to6xTUW84XVlqCseBBFJCIeSsruBxJZnloti8huInQtURggjALsH+7j4cMHGI2I1VCVBaQgKizRrGksWhtE1lWFuqow6Pfx8UcfYTwedcLRTQOlWsRxSpoeMkBdt1itadN7/eoVICSiNEVumRS1FS1cLBYA4NonDwYDNE3j9I2MzQC4TIrRW44EOUfWeLaW/YcuqxWEEsbwZtM5FNJ2FHFgk+ek7M73h7Jxu1krnuPFYoGzszOs1+utIJZpz3meQymF6+trbDYF2lbbAHoDrRU2mw1ubm4QSImHDx8gz3McHR0hSRLM53PM53MIgARqrfNhDLV0bdsGl1eXuJpeoW1bx0gaj6ljE9ftszPVtjXWVnQ6SRIEIYHaWZZhf38Pp/dOXZlSICWSEJDQ+OrrV3j19h2iiFqRG2Mgw8BpB0hJGiETG3T07Ti1WjmBZCGAIAwQW+dZ21IMzZmzQCFECNj3CQEqhVmvHd08ThL0+j20bYOr6dQJ6jLzKUtTGwwpJEniOh0WRUEAYFmisPo03BaYWTyNaqGVQhRH6PX7Lug3xmBkRczbqkZb1VgIiaXtsLZcrbazHNam+M4AM96MDYwCQc6a0hpltd06WBqJwBrEkBlRxgsiPGfVd8L5ua5r1/2trmvESYwkz5zDxaVt+/t7KMsKg+EIZVliOBqRQHpDulth1JXD8H+1HUPOgkbGIE4SGHSdLIUmBknLjo3qhMpZT0kGPaQ2Q5v36BpzC/SwM8HXVFUV5vM5GisoXZYlZLCAXpKeodNFsmU/hS1943s8SVIMRxNXCsRZ3syWmXGwFtmucFmWObvA64bLI/jBneN82+CEgE1X/sgCqiT0usH5u3dQbYvT4zsYDofQqoVquzI8LjH018NoNMKnn36K1WqF1WqFXo8Afi49rqzQO2u68dzMZiuUZYknT57il7/8JQDSXovjGL/73Zf45S9/iYf3H+DRo0c4PtjD44/uQxtgNlujaVoM+gPEUYyjoz2cnBxiPl/i2bMXW84e73tNQ7qDURxjPCSNvgcPHuDk5ASrxRIvvn7u7rEwDNEbU2k4r9fFfI63b95CKY0HHz1EqxTenb3Dy5cv8e7iHFfTKe1NVY3lYoHXr19DCEC130eexcizxNleY3UkmEWrWtuwQ5OtMcZQW3vVCQlzcCcFJfoUQEk3oywYrJzWURSGGA4HaNsW//7rX+Py3Tnenr3FnZf3MZ/P8fDBQxRFgaIoqDGA7TgG6w9IYYNLSSKsHPcIAHESI7ddow72DwikqEoqrUmptCZNUpyenuL4+ATf//730R8MESeJ03LqW9u12qyhlHIlWlVdo2rofsytqH9kr5/Zx9RNLnb21oAAIW1IG86BGnZfJpBJuvcK6yS5UM465IJZ4XSzON/L8LN93dg8qTBdaRs7oj5sz9luDiY1Z7m3vhuW9UucSyEllUvAZ3N7PqjpWE2OmSRsd0IIiJDeHTKbQ5KYvO//ibqmnk5aO3aWs9PWD2/qCm1LjWQY/PRZB7sZdB+85iQXBVFdosQHSfhzQkonbs32xQesBLvZW2CTx+Ax2wwl//k/+vim4+3+vuuH+cHn7vF4f+Ux2v27f1w+DjNgGbzaDWbh1pUXlBpD+6+Ubo/3Hz77ir6n0+tz69Mbg1vZaByY2/0jyzLLZEydrhLQaUuyJlySJC6ZAsDd+wCJ++d57o7lrxe25cyU4nHztTN5rTH4DG89+T40B/K7ANNtgMjufHzocRuo4r/mSw10AJE9F2zHdN05wc3rbWuN38P3B5/r7nv9j7x/DA9cwjbTXOD98+e//zFj8CGgcxfM47XAwDMnsQis5052kQWDQoSBQBgmCKMEYZhAhjHCMEGW9dDr5SDgTSMIIggRQCuD5XINpVu0rbZEFYFQUKdeOjfeA4Rd1/Q6+dZc6mZcJc9u9cHu2PO/OX64De9w96xxassOSNp+a8eQ1MZAGgPujMp/a5VCXdWQwhM2h78ufHj+9sefCNjklb9Z2IdGWdtMd4uiJMenaVobOFJmxXIyAQDchcgzzd3A+kCRS/0AQvjCXsK9ZozHljLbrJ/dBe7/7bbNaetKP/CeWz+zs8mwo9FdHazFQOesiW3xbntl7Mp09Lid89ra+DwnyI0mj6swDmzSMJBKQAZ8TZ2BDgJpnQ/SLWEGg5I0t1VVdnMAAaU0+v0esixFbkvKHty/Zzs23eDd2zMKIK2mydKKUS9WSyxXSwhjcPWOyvCCJLR6THRjZnmO/qBvNxnaiKbTKwI3ggBJ0mn1EP12iaIobQcCYDwa4vHHDyFl4IJ+IYAkia0OUA9N0+Dy8gLTq0sUqxWaskTWHyBKUuS9PgbDEeaLBZbLFYqywuHhEQ4ODPb295DlCcJlQAK+6JD40jIYwihEZLVooiiissCatHoIoSeaY6saohcH1CGLhInJGQ7DAIHtCCdsAO/AJt6QQM6gVtoZOeNZEWO9WClsNldKFywtlyu8fv2G3iglhKT28UJIRHGC/kBavaIKEJKE/7VBr9dHFCVIUwpuj44OcXJygDCKMBhOqNvQxSW+evYM6/WKAgLLdqTs1RpVVeJ73/seHjx8iOPjQzx6eB/X1ze4ub7Gqqpd96/Dw0PsHxxAgFqMktPboDY1lgvKvgdBiNFojNFoiEcP7iEKSGBW2WHg4Hk4HAJCYG9vzxOIpHvx8uJy60ZtLWCompaRWhjr/LfWaYrjGLEQiG0XKwFA2RKX0AJfeZ6h3+9BCur0V1UV4igC0hTCAK1twR5IEtCMrAYVZeZIN60qS8RRiDzfw97+Hj771mcQQuDy6hJlVTrR4Hund/HZJ4+xXm/wu5LYUIv5gsDfskJT1RDG4NuffWp1U44QRxEKWyq4sp3GmqbBptjAGLgyFGNti2obrFfKlnERs4kFjw0oeNGAC0bIOdSQUQwBkEi7a6lNOklxGBJzLAgoCJIGWkpICKiaAvWqKFCs167FOTEdKhitcPfOMYQxOLu4xNX1FEKSiLqGQRxFSJLYja0MAgTa6vKEVF/fKAqCAgMEsBl809lQtrF0X9GPVh1o0daN58zCOt0CURgizzKohNggSikcHhygtmWg69WKSh5b7vrUCYzXTUMOFaxgdENMq9p2XZPSBmAGePr0iRPml1JiuVhgMZ+7skmf4m20QRgGds0QA0ZZ9lmxIY0VAhtKrFYrFBtiZo1HI8DAsRX4EYYh8iyHMdqxxopNgenVFK9fvcIXX3yBoijw6tUrzG5u0O/3cf/+fQyHQ9r+bDkla+JVZUUMt6pEUze4f+8+JuMJbm5uEMcxDg8O8em3PsW9e/dwcHCA6fUUv/7VLxEGIY5P7iJNM+yNhxiP9yGlxPR6jmdfPcN/+2//Fy6vrvDi+QvSukozGwBprNZrHOU5fvzjH+Pg4ACn907R6/fxq1/+EmdnZwjCEFmeIQxCDIYE3r59+4bYhrY08OBgH0cHexBS4vj4EDezGZarFa6vrzHoDzA4ob3s7Zs32KzX+NbjjxDFMVRr9RIJYYBSGktb9qsBZP0+cttEQWuNclM4ACeOIrRNxyRjrcnECjszMzxJEkyiPchQoiqJNXR4eII87yPLc1RljevpDb56+gxBEOD46ATj0QTPnj1DXTe4uZmjLJ9iOBzi4cOHSFJq9hBGESV3mgbKAJuygoZAYwHOulW2yUKDpqoQhiGOTk5wcHSMMI6gtML5xQWefvUU/cEQk8kErVJYb1Yk1G4Dy9aWApC2EwUfHIy2SiGKYgQhMYCrypZ52nVvAtLYYFsTBhb4aKxoqqEgmbfMLr1pHS/jeV/CQkZGdGlO+8Ft342DKtZFEmB4yMCQfdM2ULXgjnAoFM0bl7IZAyc+GwTSA1folJiRxD8MWjHgxDZM+IG0BcWM1mhqAo9qyy70AXY+Hxs/oaqIGa4tq5IBLHgBfW0BZCGlKxdmhhIncRxYYP1TBgEoLCAxeADQgdXxtE1FfFvMgRbPVmeu30+8fRPgtBvk7v7Nf9wetG9/lhOBvlaTsLEOTZ3PLvGAEAfmdMH3Vizkgnz6vSsxpPuhEyPvxlZboFJp0iqSdr15pRtb1+b/rrWBkd51omOlsU/rM2Sd2HZAybY4SWAE0B+QllrTNK7ZAHdlXS6XWC6Xrusu0LGOONnDgHMQBJhMJojjGJeXlyjLsksuWiCLwSyeBwYrGZTCzjpomtaynpouWWQUBCSE6YCkLfbJLQDPbb/vxog+2/s2AXgfBLplKXrn4a+hzifx41NeL3zc7Z8OrPrQd/gMdQabun9T7OiDTj6Q9D7wtQ20fQh09b+DwUKgS5rd3NzQnmhIC0nIAHHcgwwCZGnm9qKypBglz0mzaLFcWxY+NfoxRiBNc4RhjKKsodoaWgtIEUJIQEgDgQBNrdDULdrG+qkwkKHtMGcUYAS0CaC12RoHjvlpjpxAgwWX6Ae2DK8bK2aJd/baaGVtntweKxf3bWu4CQDC2lu6EPL1ipJ8ul3m6R8Lvf+JgE20MVBCiE+dBpODMWpPK2zGUiGQ1GVHygCR7RjSqs5R56PQJu2jog6b6ha3FVOXtrsdDT59H6NUuzeg/+8OzX4feLr1Wj9wPP956/2wVSOG/93lorZ8GMA5CMbhmPZF+/v2W033Z9NlxojSR1k1pxugu8w+AGihXbdKbh3bZVZsi/KGMiFSAEEUwRjYTnMGZVmgLAs3HnEcYzAcIQpDDD7qO02Num6wWi0xnU5RlqXbHF68eIHZbIaXr1/h5atXWK+WuHz7DsooIAppwBS1n7977x6Ojo/Q6/WQpgnCMMDl5SXevHmD42PS6OC6cO5OxALKADCZjPDpJx9huVrjyVdfO32TJIkxHA4wmVDb54uLc1xeXqBYLdGUBfqjMdIsQ68/wHA0wbqoMF8QWHZ0fELMigMLNkUB6T3IwHWeWtnW7P2ohygK3ebpCzBXdQ3RAE1bo2lrK3IdQOuuJSsh6dT5LPTmSgjSChEQpEFj517otnPgvPVg7FoLg4CAAxlQq3ejMV8u8OrVa+S9HvYPDyCktEAAEMUJ0jzHYjbHcrGENsB6XUBIiV5vgMFAIs8py3xyfIBPPnkIrYHZssBsNsf5+QV+99vfYTwZY29vgjDsHM71mpgLDx8+wl/91V9hf2+IuycHeP7iFX7xi1+jrmqcnZ3h6uoKURRhb2/fObZaa1QV6eKcnZ1hNp8jDCNMxhPcvXuCj+6dIJIxWtLVBQSzRKiriZQShwcHWzTq6+trXF5cIAgDC4p5JWqsieCxC5RqAdEJ0HJpkmoVmoqc8YjLm/IeBv0+mrbFyurVJFGEUEokcWLBBbqeLMswsl2f4jiyDisF4pN8gr39PZyenuJ73/0uAODJVwGWyyU5IAb46P59/Nmnn+Lq+hovX75GVZS4md2gLArUZYm6rHByfIzvfee7GI/H+O63v4Ner4er6RWWqxVePH+OJ18+wXqzxma9hjbaie8TOKqhmgabqrIxlqU8BymiILDvUa5kBYATuYyCEDIIqERts3bOeBAEGPb7DmiKZABIDSXIzVFNg6asUGw2xEBJEiRICXC0Og4PTk/R7+VoVIvZggSEW60QA4isVlaSUCcqDY3QdPcBANQW7EnsRqM1B6Kd/d5y7qxd5Y6TXFIC1noKLKsgjJDZ7l1xGDkRZBFIYjeWFQkalwU9rzdo6hrL1QqL1RKq1baUiJxupRSWdh9gR7uuKvzut9TV8c6dO+j1eljMF5jP5gRYCo8SLyWqkgQj/WCIs9fcYWy5XBJTzOrfBUGAyWhMzC5vTISg4J1Zi4U9drHZoCwKvHz5Ep9//jnqqsLLFy9RFAUGgwEePnzonC1jiB1dbAq8fvkKi9kca2tDm6bGwwcPsLe3h+vra8RxjOOjI2RpigcPHuDo6AhfPX2K//Jf/k9kWYa//uu/xvHxMU6O93Dn5ABX13NcXt3gi99+ib/927/F9c0N+oM+dVa1YrVa0/XevXsXP/vZz3D//n0EEXdHk3j79i3yXo7j6ARZmmE4HCLPyO4VRYHVao35fI62bXBydIAoiXHn+BjX1zNcXFwgEBJDe81aKbx6/Rpv377Fxx9/jCBMMB6NsD/ZsyAAsV65fNEAyAcD5P0+sUzbFusostp0JF6+WixRbBp7vlakN0mJldbUaNoGaZohSiK0qkVRFtBG48iKmfO+Ob2c4ssvn2A8HuPTb3+GOI4xnV5TAuBmhufPX9C+e3SEIIqQ5QSALVZLNMag1Zq6MwqB2q6rqm1R2YCuqSpEYYjjO3dxcHiIMI7RKo2z83f48skTjCd7ODo+ocTRZgWXhbaAghBAHCfI8xjaC0LXRWHLHDirCwoOOIGmO7ApFKQjaYxB3fiMywAK1DzlvYfY/vOkjN0AACAASURBVIUTPBywbWnmGC/wABDa36VX9s7vFcwot/4OjAH09vdKQYlZKn0joI0SLva7LVOdmUbMhOtAIk9707vftFJQVtqCuu/SHtPYAJ99FWZS8diWXMpu9yUpJNIkpvEPqAuxUXROYRQiDhMHTEghyc62VjtPaw7D7Hd17AkZkKB6GIZu//Yysnb8KZiDKyi8HQS6DRy47bEFFu4EyB863m3HZl+AywvhWBidPIdSlrVmjANIuDMWfYZ8/904KAhC6xtygC8QBAxQWVFp1YFNysYCrWapjMCWYf7hcWDmhf/jg027ek2OkRtYZmyaQIYBWqvhu1wucXZ2BqUUPvnkE0wmE5QlJTT6/b7TduPjsJg6dzmWUmJ/fx9JkuD8/Bzr9dqxGv2SOo7RbtN+271OZkRR+bvPtraAstm+Z/1x+NDYfRNo6YNN/utbulp8+37Dcv3Q+tuNT+lSbgebbjsmnxODmAE3NsC2biivP9Zf/hCryb9GP972babPkOpID4ETeedKi+vra7x58wZlVWO1LiBkgLw3QhjGGI8nSNMMDMNopZFlKdpWYz5f2nXRAKaFgUCS5gijGGVRo65LGA1IGUEGwhL/QtS1Rl0rNI2yfirNidEGqrXEGiHeGzfh2CUWaDLaNnrwACePWQ3AMUf5vmebDUlr0HjHNjym3v3oGINBAGPPSwgJrSiBqFVX5uzW5x+JNv2JgE20VQShRBSTvgmLTkvbWpccBQEhDU1kEJDoppQIbat7IbnrBj92KXfgeYVD+r1/G/sCDTLsHzu6H3zQyr3n/ayFuypDqD52gR83R9uT9R5GaAhYouNs/4kzTu8dxwAGncCnLyDpxgGsTyWcAQHghEPZigjLOBMQkJY+DessyEhCBAze2ZvbZr3DiOZFNa1DSmHZVVpZwMoLMJkpk+UpwiC0gqoBhEgQxyHCUCAMBeqmRq+Xoq5r9PsZ1usV7p6e4OPHj2xL6Gu0qsWmIVHcpqzQNg329vdxdOcE4/EEN7MZpJRolUIYRgitIDQMUFU1irLEZlOgKEuMRmP0+gOMxxPPmJMYMG0qxm68EuvNGl8/f443b97aUgMqD8iyHGlOP8YQ60UIgYcPH1mQK8ZiuUZR1nbKKPsK0LiGITmJLIDdNBR0C8n6Jtp9jpy7BmVZoG0bclJDbo9NrI/U6ugwiq4EsT4sy5PWgpCEvgeAMZKy2pZlQs66bXcpBJTV4UqSDJPJHmQYolUaslVQtrtRGEaIkhi9voIxlvocJxBSIk1pQ6gbKglrWypPVPr/p+7NfiTJsvS+37XVd/fYM3LPrLWre5pDEeyebuqBEEmQEgQQoABJ0JPeqP9A/BP0KkCU3gSJhEAIIkAIAiEQM6JIDWeGLc5Mk13VVdW15VaVGXv4brtdPZx7r5l7Rlb1DPkwMiAyMtzNzc2uXTv3nO985zs188WahWHw2M4gdpEp8oKyKAn8gDAIubq84ssvvuRyMmR6fcXLl684PTnl+uqa0A8Zj8bcPr7DO++8IwazEO2UL774gtVqRRRJ0BhHsRjTvHDPQllWFGXFfCYt0tcrEY23pSdSFmquTSknXt6NO6BsFwxtsrmF078QJybG8312jLMTRQJkLBcLTk9OqMvKZCdqFos5F6azXGnZMOb5CoMABfjmPkdRRKCkbCVPUmpdEwUhw36f0Pcp8px0nbCczwXUAOIwpN/rS0emwYC8KEizjCxJyNIUT2sBgpTsn6cpF+dn5GnCeDCg3+szX87lGVot0VWJhyYKRWcMXVGXGFBJQW3K4VRj330FymVspFzadmnyzf33fZmf1BWVYR8GSkrY7ty6xf7+nmQ4V2uyPGdlQY6dHbq9Lod7e/Q6MWmWcTGfM5/PefL0CRpNkSUMBn3Ozs6k02SeGa0B4zSj6fV74Husk5WU6egKVRpGSF0LO1B51ErKcOJQSnJKS8c316rrpvSjrI2+iWGzeYGH0pqiFmfBOvwAVLWwEVWzsihZcFyg2ut2odNxgVtd11SlOBVWzN1mwv1AnqEwFIC/rmriOG46meWF06JSIAFmWZn1U5GlKeskIQojJhMBkkZGC+zL5YrpxaV0ZLNgqmdEtY1j5AmyAWgjSC4Bs+95BL5ozdVVzXw+p2h1JSpMZ0db0hMGAd2udAwsjDaSMJsyFNDv9aCuefbsGV2jI3d0eMhiPuf3f+/3+PAXH3J6ekK32+PZs2ekaco7bz9EgyljnFPVNce3b9Mf9AnjCN8PUMpjuVqRZbl0BQ18ev0u3V7HMP0KxpMx773/ngSHdUVRiSi2ZRbt7u0x2ZkwHIlG0Weff4nne1xdX0sjCVNSFoYhs6mAoL2OlIPs7uyyv7dvSkzEpbOdBG03wSxLKbKUOI65c/cuvudxfHxMWZRcXV+SrNem3LeWNd8wQbRJAFrH1AZWtem25OGZABjiqCOZ37zg+dNnzCYzJju79Ad9RuMJj996m8urS+JOl95wwGK1pkYx2knQnkeS56RFIR37ej38KCIpCrF964T5ek3U73P88CE7t27hRRGVUixNmXS33+fW7dvufiglbEqZXj4g4G+tK7OGF0ZQPDD3LTSsSo1EDYrAF3/UaY4Y1piuNXVpvCjjp9nOvNIVzq6WLYfN+GxKWV9r26FTmyDTTT8tH84dX5nQSAlArWsNStiYTYLSmI5CBN8LtPNPq0o6BZe2m5vVD2wlmew/2gjNi51pEid1JUykuqpN52ETcJvr9WiDHbSCwJqq8mSMTTZdedKdVaFEpsGUXmstz06thHkttk2Jf6Il6WnTqpbNLwkKCdLQUJRN4Iy2TRcsIGASqfUmOOL85laQexMY0Bbq3ri16vXyJ/v7u0Cs2s2T5hibQb4BkqipXccwz/gXNvBvp6fNvGnHJjbWoWF3gXJrjHyZZ2KJ2vjsXqPBozw3wdrBvzaJ/8rzNlrSa210ZFAm1rPZf9y9dsdSqumk6CnRHzSMZBQkaYo/n1PXtUtY2qYwNnlnWRh5nnNtugjbJkHWV7PJSwta1HXtEia2S3G326XX68kab8A2W5buOTZAG91p30+99a928WQr49KiBGh377fnICaCa55qO49wv6Epq2wzySwY02j9NEwm3/dA+WLfdFPeKKxlC3Z6redEJAUAl3C139kWU/d9YSZWZUUDhjVjpE0siJlrSqnXRstNfGMj7TW3QbZmjFolhLrRmJSPG0mB0YhepRmORLYEL0KEwMMWyKKptCZJBBQ/v7xktV7SiQOiSGRTyrICPAaDEWXRoa4VaZoThqLJWRY1eZaTZwVVWVPXkGc5ZVHRlNZ5eIHoGZZVYVj+hbnHdrzq1t/iG3tKKlgC4w8baNPE7ji5FN8wBNuD6cYHDHM0wDJg7TNYadGbHQxEVH92NXPPUWm0Sq1/9m2gs93+jIBNwiSKOxH9Ua81ELKom0cNNJSlZOOkY5IRY/WtkFbYACetq39tINTN72hzy5Shj1lBL9gUYnNGwcKDxjzqjUUKEzxIWYG2+2ntJoT95R4qt4IYIMxMRl1rdNlQN+2ZK03TVY9mSalbE8sFIuZDjVQfLhOkDTDlHARnrDwD6vnEUWxAAhHD7A1iok7Y+gIrBOyGRKjYbkzsOy3QDpt9MoCeoVY29fWxcT7A8245BBZwhsxq01ghtCwrePHylOU6YXp97bR1NJAka7766qnoNuQF3f6A/mDIYDBivV5zdX3Narnk/OKSvMj54HsfcHz7Ng8ePRLxNA1lXVOUNUWRmiCuIgo9zk5P+L//2T/n5OUrVqsET/n0+0MmO/vs7B6ws3dI/flXfPyLXzIYDPjP/vP/gve/9wF1XfP8xSvW6zUajxpI89SMg4fnxXgKyjKnBPJCG8BGAL+6tlnJijKvqMqCshCWxsKUyASBLAL9Xp+d8Q6NYHNLl8G37aKN4KdSBBaAqiyqrl0nH+WJ3kZeVJRFyWi8y1vvvMdiueT8/Jyy1AwGNX4AUdxlMBwwHIw5PBTwZZ2sQSmGg5HRQFrzySefurlSVaXrJrJardnbOyAMAzwlgWeWSja6E3cIPJ9ffforXjx7QX/QYzwZcz2d8ouf/4Isy9g/2ufg4IAf/+jH/Ad/5a+QZRmL+YxvvvmGf/3H/5qXr17x9ltvcXh0yGAwYLVckiRrt+imSUaSZnz94ms++eXH1HXNoNeTrmyBZFqTXCj/geeza5gbnU4HwOndnCcp6WqNh8LrSDfGfn9AHEfcv/9AWqcPBgz6fZ4+fcqr519TpBm6lM5HL1+84Or8DM8PDCgrzLogCOh2rNNknnMlpYxlUXA9vaKuasaTCQc7u6zWK1bTKdeex4snT4UB58Og2+WtRw85Pj6mKArmiyXT6xnTqysW8zndOCLudFBFTp3CcnbNx5cXxHHMxatXdLsdB9Qn6zVlnuLpmlGva1hkKXmV0ekKqOZrDYHp+GLLI6oaXZdQlVAUKD+Q+Rv49MyY2/KKusgokjW+H9DrDRj1+vzWv/ebvPfeu87WrtYJZxfX+IHP4cGuZM/DCC/w+eLLJ3z8y094dXLC//tH/4qyLHj46DHD0VjYrwqWyxWBZ9rU1iW1rtg/3McPQ77+5mtmy5k4NFpKQXwlmje18qmVR6/TZceUjZWmK9hqvRKNpaoiM93YSuPQZcaxCaKwofQXZQuQw60dWS5lR91ul8l4LIF+JqD1wd4+g36fxXIpZcbKIwzjJlECrjui3dI05eT0lLIsmM9mhEHAxcUF6XpNFNoEgHLlcNaxnF5POT05YWdnh+OjIymReviQfq/Hy6+e8PxXv2Kyv8+9x49NSa8pc9YN+ByYIHkxm5m1VBP4UjrYiWPqquLl199QWVZfUbCcL1gnCcPBgG6n4xiAnqdE3NmI5Cdpyt7uLgeHhyRpyu/+s3/OYDjkv/rbf5vvf/ABf//v/33+0T/6R9Jl8ptv6HS7FGXB4eEh3//B+7zzzttMZ3OevXhOVVf85Kc/IU1TVolkys9Pz3h18oosz7BdHCc7IyY7Q66eXHN1PeXhw4f8rb/1n/DsxXP+4F/+AUmacnV9TZpljHd2eG/QZ39vnzu3b1PVmv/9//g/KYqSi6srSXyMxoxHE05PTvnss8/o9br88Dd+yOHhAe+/+z7f/973HcCk65rpdMrV1RXT6ZTZdMp8OmUxmzIZDfmtn/yWMHLHE7Is4x/+w/+Njz76kDwvqHSNUj5hJPZdnE6zXHgeZVlR54VpxBFLosk4F4NBSK8/4Pz0jF/88b9hNB6hlc/BrSM++P73Ob59zIuvv+bp06es1mtenp4ThFPC/oBRUbJOEpIsZWdnh/2DQ7TWXK9EpPvrywtOLy7o37rFXzi+xVvvvY/X75MpxezykjzL2D++xV8cj3n69Bkff/wJnU6HO3duE0ahYeNAmiZkeSUNNcq1MFU7wt6KglCE2cvCtZXvdLooZSUaahSldJ4ra8ra6IwZjQ4LlGitXKdKl/q0uUnrRxr9LGmaIs+B8iQ4EtaR5/w8538ifpNnfT0DBhjoXX5rTU1FrQW0r7D+nELXNblJRCVJSmpAujQTG1SVlQlkWgDIFvDiaZx/2PidFuyWf1TLt2iCGJugFae00+3Q6UTiV5jgWzlszICb1ltVovtT1jW6rB1IEceRixGkK7Lnvheg1pUJ6gTIR0NdZpv+svPpG7CnKJpSKMviaevfWQZAe5+29uV3sVK2/3/TJsnDRktJ2QVJ2+C6DQqJ6LZn55otl7FirxqsJozJ8lJXMjsrZQEnE7AqTOWMEk1UlNFnwpS5y/n4Box2c9XERJU2kgO1pixKV9apTXLTannaJHTc6Yg2pVzkBgBXsdllUHkeUadDbIDlLM24vLzk8kJ8kL29PQBevXpFp9Ph4cOHrmRYa81yueTJkyfCuHz3Xcqy5MmTJ6Zhg3LdYK2O1dXVFb7vc+/ePSaTibvnQRBweXWFHwR0jNanLdWyfkcT8ylzH9oBqYtoUSJMuQFmemYtrKomLhRgpeli5mJErIRM3QJcMBU/obAvTVJLKeUSthaAs2X+rnRRi95rYcrzJSlVGOCPjecgzwtWSxm70WhkEsICOtkOgGUpYF2n02G5XJIXOVVdmnO3jEJjJ3WLyPHaA8EGeG5GwGk8Nk0BfMP68wwupVmtEges+X7Azs4u3W6PKO7Q7Y0oyorL6ZK8KMlyYXWaR4qy1lxPZ3gKptcXBL7H7eND9vYmLJZrknUG2uPO7ftUVUldeVxdLhgMuvR7Pum6ZD4VZrfABZr1WrREwzAyZdshseejdUWWrlitE/IiodYFWvtA2fzoCl2X1HWJ70G3E4qcg2fnnMz1wAsIAx9VB9SG2YVhRdl1xKD/+EFArES7MwhMkklriqokNmWqV1fXPHvyHKU1q8WSYa9PHMUMej06rkP8t29/ZsAm5Sn80Bdmk33gNiaXLKhBKQ641ZloFoAGi9Fu5du+/O3XNv+2YJMATbYWdrMm9qZFwlEiwRlHMeAt1Lr9lOjGiLR/2//ba3FJBYNKad2IN+rtQ2LxcLO72nQKWjjyxm8LSIFdfC0QZJDxwAS2RshWwCZBbcMgkMXeOFIOZdbWI1Foky2xGRb7bXZfy2qWWyYosyQ0BFnGQ8otDFrtu5p1b/PajKOXFwVZBYNEsrhLo+1k63WtwKcYJcNKMSCKtHi0jmjFYDjk4OCAXq9HaXUf6sa5sFRiDaRpxtXFJbPpjEoLI6/T7dEfDAiCkLKqDAVZgsZur09/MBADnGSUhq5vgTgZG28DvW/PFQEVxPmw7DettWh1lE0LeM8zAtSG0WCz6XazrBHP911msbJUfXM+urI16Gac/EpqsU3HrVprwjCi1+uTG1aXnL8I5EVRRBx3HCMCoCjF2bBd7aScLceypqTcZ2XYXO2MiAFgzTgEvg9ai05EUZJmqYApq7UTBd+ZSNnY7s4Ow8GAKAioy5Jet0ccxa0W5uLU5nlOlmYsVyvKqmY2W5GkmQGhElOGYJgnhpZtNWZsRs2Kv4PpKliWBEaXQLSTJAvsKWFFrZbLpiV6XbNcLlguF6xNmRhmrLIMfK+kCgJAU5Vdca7bQLQGTY2uBPBWFui2lNuq6aCl6wp0TehH+KEpCzH3woouK0TrIwhkAaviGF2WFHlBYrIc9l5JUCWC1mWeY5k2YMo06sqxf2w2RuEqmcWe6CY7oxqrbLq8qY3P+Cb4smC5LYmLTclbnsv5iymROeub+1cawGK5WLBeLSnKktVyJY5aFOKHPlafTSlaTq+l/7++llj7aZ8P35SsoEF7RgfFLswG5Lf20K5l7b/bttk69VbvywY4gR8QRzG2q4/NYtrjOZ0lGhapaNrVG04+IOLyVchoOCCOoo2yTFmGGrq6m+vmt3VYfd9nOBgwHo2I47gpx9XNvdXaapJVTkfGJhPcvjRrq9VisjowVVm6LrLasDFQDR2/yAV0Kw3LwgrFWzaLnV8Ay+WSs9NT6qqSjGe/z3A0MiL8FfPlknWSSBe1IOD4+JgsSzk5OzNJAukKWlYVyhNG9tp0LATtOkju7u1yPb1296ispDOa53kG8PWcEOfF5RVFUbBKpCxyPJ4wHIwo8oLBYEDPAIyT8cQJzjsavN5ixxjWmNVQNJNQNMuqCt+AuSovnf9iz0tEUGVN32R8mLWoNt2AtXZMO98XYDgMI+aLBX4UiWZXkuJ5PqPxWDo71jW1EdsP4ojClBR7gXSjK6uKoqrIy0J8KyUlNVEc44UBs8WCjik5D0MD3EcxceeUsqqo6qpZTz3ltIYc1NB6RnzPlAW1x809f+b/WvyPwAXXyi7KjQkwQLALmlt+lt3X2jljld13WKZ328W0Pl9tn9VaN23nzfEsO6GqxT+pLRBS1yIroG2JfC3ztCjI0pQsTSnLyujVSRkv2jKZNp9Zq+Fk/VK31tCAO23wpmGttNgv4MAmLACGZ1JsNLaBxs6o9hdZe2B9a4nerPPZ+Enmc3IdtXutAQDMsZT1o+Rn2w+/yT+/6e+bXvsuMOlPuillgabWnHOgw9Z3KfuPvK7NmmxnXDtusOPXsE2UA/3cYexB1aZdabOb2vGR2pqfLj6y66falBrRWrt7Zk9JPrrFLvOUIRkI+FcGJUUmTQ4AJ4ORm26X1l6JlECE1qIhaJtieJ7nNJ9saVBbXH27G6CAzx2nqdm+N5v34PX54ea9+8zGzdoYV7uDas3J7e/49vm1+UU3gZ9tQGzjO1q2sdm3ddSWzbT7uGdVteZn6zqV2gRibxoemQK69f/t6+DGz7nzbl2ntYf2WNuNA+x8iGPpOhqUFZ20RPklGo/SKwkCj8CXp0bVpguyLtEYDTPLbtUCAsZxRyoyqoo0TYUooDyyNKM0pdeRqdoqy0aMvyhFqDzScWu9kB9l54xyT8TWj712Wu9vDllzX4zt2xrDBl5pEWjMWqTRhnEa4HnKMWCdQPiWjf4ui/dnAmxSnhIEbThkPBnhB0GLtdSI1yklIreVKa+wNefK3YyGTNZahWjfnNdfa4ZKKxfWIPKu5vXWA9kW0mp3MGg7Yna7iY77pgXspvc0JitVS/AoLzaLTRtw0kBlvYGtq22DdiI9s7koW+PRbj3qggkTSHRM+08/kiCrxir6azSVC0R0ezbrbRvRUHfb7C/RRQAngumyYOZBsce1Dq+5fjmi3LMwiugNhniez87uLhOtGY2kFfSrV69cJyfr2LfLsubzuavrLorCtTt+/PgxP/3pT/F9j8urOcvVisKAI5OJOPlxp0tZwdXlFZ9+9BHL5Yra94l7fe49fsyjx28Tdjo8//obFquEw7t3mexMGO/s0B8MWayWTphZNMg8olgWs9wwIXzfssY0WntmHGvzt7TutfNGG0CIulkE7P3M05zZ1dw54I42afcxBlKAPOUMWe3o9Brblt4Gmjs7u8Sx6LwcHd0CpTg9O3MtzweDAQcHR07X6vz8Jev1mnNTDtbt9vA8n9lsxmKxYG9vj3v37gGi7yUdpWYkScLu7o5rQ2vb1nY6PWPgE5Ik5dXLl5yfn9Ppdjg+vs3Ozg5/7a/+Nd566y3u3DmmEwVQhURhxHAw5L1332NnskNW5JyfX9Lv98izHAX87F/9a4Ig4OrqmsSwPtbrtZR5mPa7c0PhtmM/nkwYDgaMxmPRbPE8aRtvRLOn06mw58z12yB50O+bBVA0gS4vL/nyqy9BawaDAVEQorQIPFe6pE4SyjwXHaQoEiCrNh3tTBYXLba12xWG1WqxYHp1JQsyGh/FsN+n1xNQ1Pc9Xj57wacf/pJ+v894MiZZr9mbTBh2u8Is8xT7kx18pVguFpyfnsh15DnrFkBVFIWUDBo7gkLEr3VNFfhUvkddVigtmeq6lGyXNouYhybwrKaY6JJURQ51BXWFjzQdGA8HVGVNkaTMipLf/93f45OPPubhw4c8ePCA84sLPv3VZ3i+x63bx/T7PR49fsTB0T7L+ZwXz58xm83wtcLzQ8kO17UEKVrox74n51CkGZmxlVVZUpcloR84Z9lDBPh95dELIuIgIA5jpAq1bmUTJXBrdx6xAqm5KblzwagfUIe16+hoAYX2mjIYDNjf3ydNUwfKZGlKXVVSRrVOKMuKNMvxPZ+d3R0HToFoNnU7HcajEXfv3CGKIt5//2329nZ4+uQFT59/zdXlJV89eUJdVXQNuLG7t8dgMGBi5nwYRbJme4p7d+9wfHzM7fv3GB8cEJrMZhiG0OvhKcViNiVLpCvicDCQ6zXPks2qUouOlQ0waq1F10prAt93zSQuLi4E4O330XXNaiVdyLrdLt1Oh+ViweXFBcPhkLcfP2Y0GnFyckKapjz5/HMuT054/4MP+Kt//a+zu7vLu+++S8/Ygt/7/Z+5ksy9vV1+8pMfk6Upv/07/5Svv/6avCi4nk4Jo9AkOFb87u/9S46Pb/H973/Au+8+Zjjs0+l2WayW9Ht9x0pDKQfUzU1JZ7JOOD09F7A8CPCDgO997wN+9Bd/xNnpGY8fPSIMQx4+eOBsbJqmzOdzLi/Fht05PgZgb2+PnZ0dLk9PAJhOp3z6q18xGPQZj8cCNnuKw6MjLs7OWa2XpElBcpkQBAEHhwdEUUxeZKRZRhiETh8uTTPTUGMla2vg4/k+R4eH/OQv/fus1yv+8Oc/51effcbzF18z2d3h/e99jx/+uR9ycnrKs6+/JstzXp2ecjWbsbu/y3A8ZjAeM9nbY71e8/WrlyzXCXGvx+7hgSmhCZktl/zOP/2n7E7G/I2//Jc5OjggyQryouLs4pJa1xRVRZrnaExHxMBHZUbDxw9aa4nv1kPrl4j/psmy3PmhHlLyGMcd8VvKpjOtmA2N8hW1J0CLXafbYI3VyXFOmgFdmgKwJtLXVSUlaSa4QYsmmXaJMSm5rYqSWtfCJKmb8lin6YFGGwZDaVi20mVUNBW1KVcKnP/lbfldZh9w4uMW7HFd7cAFlL632WmqAYEbP1xTo1XdvNYGuWgBT1ugc9sPx/iujlmzDXpo7RJ2dVWhMcLW1jduf0abcsI2uKE2S+vaf9/k12+XKn0bWLV9nO335Xcjqiwn1N7LZ3N7PdC3rBcbt8v8VlvA2ubn5DoEWNIIG0ZjgTlTwm7WLeU1Gn7tcbeC63Y8ADfnMqONaH/sumeTIta327gycwwBCWLKTiVJ3DBgzcqtD57nbXSTsz5/v99nZ2eHq6srzs7OqA3zM4oiHj58yK1bt/j000958uQJg8GAvtENtM+RPU4cxxweHlKVpWmkU5kE2qaOUxtMU1vz/vV7trk1yeU3ICvfuTXoqTzbeiNR0NzjpoTu9bFu7o08Gj7S3bTeuK7289Ycs6KqmvvVLq1r4s72d9n/t+zfG8am/UyZF9zrtmOg1rppSkCjJ9kGO+W6BCDqdrtEtaaoPdERrSXS7nc7DPrCkg49sX/r1ZyqLOh3o+aakPLr8XhCWebM5yvm8wVRGBCFqycOFQAAIABJREFUPvPFjPVawKfxZEIURywW0oBqnayYzqSDYhiHoMH3lWsGJeLqVhMZMzYtmykRmRktC6pboosdgU1w6qat/a5N8TbfYiL8uibLc5ewsH6+0za78Y5tbn8mwCZQeIFo/YRRiB+EhEYEOAgkK+v7NnMnYJPndGNoQa8WmW0Pn7f1980AVMNqUmhDJbQPLLwOMtmtvTC1X2uj+e392v//rgxJ+9KauaJbWYqND5p3tfNX3Me2AShr0LQWWrcdqZaxt7/DUJhN9jU/8MCTKpeqqsRp0PZh3pzUr6HvWrSHdMv4SaZaAs2mVNGj/dH2/ttG0963uNNBBRGBERy13YHsddhAzzoDURQ5Sm/7wWkLF45GIw4PD1it1iwWCyN4LWMXx9JmWimPvCilW9f0miTNiAZjwrjDcDRiZ3cXz/dZLJbkZUFvIKV7USRlT2icCL4y9bJOPK8lUtiMpRhlMbxmlth7uX2/txyzqpBSO3tv2syH7R87H9w4t36scQ9NPW9gwOFOt0sci25IEIRGfyh2AApIR4j1es16vTYLgd4ItGxA3Z7W0jI9oSiGLfp4M2ft3LOBz8X5OePxmEePJKi8fXybB/cf0OlElIWwdoo8p65q+r0eo+GQ88sLw1oSY7+YL3h1corneVxdXTkByiLPQYueTFVVLJdL6qpyWfG+oeB7StHrdjeEHEXcVJocLBcLylLmjdaaqenIEoYi7D6fz7m8uJASuW7XiRxiMtdVVeEpYRBpLVo3Cgwrr3RzwA8CBtHAAfVpkhhgUajrgSmTtSVSs9mMl998w87OjjC28hxfSTc03wRKnSgSHaJStHxs4FLXNYkRg7btZX2rhoht8yrMLqsPYnUd2nPW/dS1lK8atkZZeC7Qsguc73loJUBOWZS8ennC9HpGJ+owHk24vLji9OTEPVv9wYCDo0N2iglZmrJaLkmTplGBZPiFDu1Eao3dKYpc9AcycWzs9dhzaYP/xmVzNs4625Vh9zn2gbluO4/bXW8ExGq6z4SGXWqTG/ZZtVoSbWC5DW45O5vn1L6/2b1EN+12bZfFXq/LvXt3uXV0QF1DWUng99WXX6K1tMuO49g9O1VZUuR5Y0+UCP4LS2hAp9dz560wgJLnieBrntPtdFyGXLeu3TqKtqylvWZobTWdfNZFYWjqygWodg7aEockSVgsFsRxzGg0YjQaOZBksVhQZBn9Xo+333mH/f193nrrLaIo4pNPPuHk5NQ4fDLWt2/fJk0TZ9OqqiIvctM1VJ7T09MzAD744Hv0+z263Y4TlrcJNDsn7P21pQtJkrJeC6sy7nRAKYaDIcfHt4lC0aMKgoCjoyPDIAql66DRs+p2pHlFpxO7dc7aoTzPXfBUWW1Apej2eoRR5OZekiaERkC8rgXArqrS+QFVa35ZxphfB3h+TbfX56233+bq+oo/+NnPuL6eUivF1fSa23fuEHdEV0ubtWmdJBRlyWhnIsmtMBTgMs8oypK8LPCCwJTciC+SJgmX5xdURUEY+AyHfYKoIisqKV9WqlkXDJiilDJlf01yTdiS3tYaa55gkwzDZOZt2ZBSirJUrnGGLbdGK6ibkiJnz2z3UQOg2DIn54VqyxoyNlCJTRT9o2pj7pd5GywSZqDtYOmek0o0qeRZsMzmytle271zU+dEgW9YzkptrP3ohn+FDSwMgqFagJMtz/fVJkPMfodsjZZVU4Hwuj+87XNs+9EbfvcbvmsjmDXMSes3ubi3BQi0GZhtwGD73G76+6bX2sd40/7bYFNjl3FJwX9X203X9ab3HeCpDWNR21JOtQEktuVF7GftWratYWXteftzdm63x2x7ax/XM/o/oelA6fmNv2yvwa59luE0Go2Mr65coJymKUopBy61u9Ztx3I2AR3HsdHVjOybN4zy63Nva5TdPt92n/60WJPamjNtoNYRE7aCypvmbfvH80xCW6mN87LJaHgdhIVNIfDt8dgEmuyYsfG7/d5Ncfbrx1MbPlV72wQDPXxfqmMENJUuq35VS5GZgsGgz2jYJ/AVceijq4rAh7LICH1lCAAGeDVNnZSC9TIlzzNyX+H7sE5WjnEeRTJ/ZJ7VrJM1WZ4JG7quaD9TNiEhz9rmmLSuim+bKJsx43dv20eT+LqZQ1Vdo6tGQL+dZP//DdgkzqHUjq/TDM8r8TypcfRtOVAbbLIGSxkxR7OAeUoQy2bY2kNgDdpNYJOtdpb3Kkmosg02ARvOux1wK0Bmg4C2AW0b0u3tuxYSE2vIGRpHAI2rwUc3PCKFNVKSldieX3rr//aTqq6ojdGotFC1i0rYO36R46WeQVgF5bal41VdUOvKOTPaZPE2vqjldGG+02boBHTCOUeopr2udQgdcNba32bq3JGViEiWVUWWPSUIQw6PbhF3YhYL6VT24sULXjx/7qh/gQlSAt9nvVwKkFQUJElCFEX8pZ/+lNFoxMP7d4kDxaqWIL0sCjpRhB8E7I6lq8+TZ895+fIVn33+BdrziXo99g8OGI0n3L17l3v37nF6ds5XT78iTRLu3rvHzs6EWmvpNmccapu517pm5Vq3+iIcZxZPEEdUhsWMjWX12cUBuUmKpkug+/E8PK8x2u1FHzN/2m1ftx27tiNmF/Pz83OiKGJtRJgHgwH379+XrPjBAZ1Oh/l8znQ65fPPPuOXH31EFEXs7e8TxR3TFaTDu+++SxiG7O/vc//+fdbrNZ988gnz+ZyzszMXJNnFf7lcumcPhN3R7XYZjkbs7u1xcHDAO++8w8HBAVprLi8v+eUvP+LTTz8hWa+ZX8/I85zpcikt1rOUvCjo9XoMh33qquLnf/ivqKuKtCyptGY4HNLr9VxQWOQ58+mUqqro9HoEYYinNb7WHB4fc3F+Tq/fp9/v43keqemwZam2loVir8kGQLYDzdCILCfrhDzNCCPRL6orAUTyLGO1XuMpxdnJCZ7nsVqtJVAMpLRqMBzy3vvvSQYnDMEEbFZs+/L8nAvg7Pyc9XrNi+fPOT87ZzAcMNndNTofmQgHG0em1+3S63ZZLhacnbxyiyk0+lR2vlhgF3BlUJYV17aTbwLg2w5LO4Pq5qMp/8jWwgJ88ew5WmtePHvOhx9+yNXlJV988QVKKSYH+/T6PZ4/e8rDRw/56qsnzK+nIuJsrvHli2+k9XkU4ochWZ6xXK/wfZ+LszOCMCTudgjCUOb1fNYyd0p0X5SHX2u8WoTbO6Fcv2Vl2hKwMAzdWHTi2IHGEmhWBmwSS+cHol+EEkHuqq5d+dpoPKY2oExuOhgOd3bo93oO9AuCkG63h29KBEFxenrK1dUVyXrNcrFAKcWJJxo2nSjk6lK6h+VG08VqkO3t7tLpdJiMRvT7ffb39vhzP/why+WSp09FAwwt1zkaDrl7547TT1JKMRoOpZNnv09dlRwdHnL7+Ng9z3kuHSQTAwKKLRQgZ2OsDYhigepOpyNsHa2J45iyLN0+VlNid3eX8XjsOhFlWUYN3HnwgLsPHnD//n3CMOSzzz4jTVOeP3/O9fU13//+9/jNH/4GYRSxWAgz8ec//zkff/yx64x3584d3n//fTzP4/T0lNlsxq1bt1guVzx9+oynT5/x7NkzLi8vHYAeBIGzXZ2O2MMwjPiNH/xQgOZ+nyiO+eFv/JD9/X2GgwH7e3v4vs94LGzENM05OztzTC7RRFMEgbRpTpMELwjpj0ZoJR0zkyShLHMnkru3J106O3HMfD5HKQHFT09PN+yrZIN7pGnC6moJKN5++21GoyHz5ZLVasXjtx7yF/7Cb7JcLpnNZ5ycnPDZl19yfnHOLz/+iKIUezufzQTEqiuCMKQuC9HuKktWiwWL2Yyry0tWqxVBFNKLYzrdLp1ul2UQkBoR8Kv5gu7FNb4R+I7DkJ3JGN8XBqokzCTD3okiPA1+IF06PeU5oN3altqAbFbHSAGhYR0HphNmroSNiQu4BLj3fJ9KGQZ5rdFFSV1XFFnu/CNhGmnn19Rl41PWdW3AGxOcmwYR9rMWpK6rBnTXrcz96wBGA4ihpW29VqJzim8SuYGUkIemvNbaXFt6Z+0stQXYrZ+n0TWUNwR3yvokNliiXe5hATXLaBe/u+2v2KNYIMjzLEjUlNPb343QdbN/G+BpEqHtdaYpU1JKOyDK+kTftX0bsLX5PW/+/SYAywXW33kWf7rtTeBX+7uhJfaN6OU4XR8zN7yta7BjZwHpbTYYsAHm2H3a+90E8LWBhrZEge/75OtUGNIGuGp3kpvNxMezibN2N+dvvvmGfr/Pe++9x2g04ssvv3R+2nK5dAkA64tprZ2ouHSBld9xR9gx9lraINs2yNJc268BOG3di193a/v7DqS2zzCb91aYTfXGmG8fR54FYdlUdZOckKSSMvF2c0wQ/TmblAqC0GnGvglI3P5t7UF7jG6cs8Z+tuMYsaONzIk9r3aSSsrarOakfF+3F1PV0t27qCq0Fl0kL4zo97t4Cvq9kLqu8JXGUxpd51xfn+IHkOUhyqtZr2pqXbJOc6oyNwzmHD/w6HRjhsMBQeAxGPQpypyzi2bOCnAucZvnm4YJxkZvA7r2ft5kR15Lmrz23ndbFrd6bIGLWkFZV+RlSVHJT6Vr0bqRflVv3P5MgE0AZVWSF6VRty+xC41F9aTLioBN0k66mehaW9G6oLVQtGGY7b+3wSaFE+PW0jq0qhs6tX142lmWNl3ZGqObyum+M+PyhsXKodAYrRF7XWKFLH7uZkMzKawh09uHah1z6z2HeptMl0FZadiIrc9Zw2VZTfXGuNy0bWcdth2i7QVre7vpM25czc9ytebs/JwgCKmqml6/z3w+Z71ec3pywsX5OZ7nMRqZMk1P9FTyPJfMtgGb9vb2+MH3v8+tW0ccHe4TeEBdSRBX14Z5EjLo9+j3Olyen/HhLz7k66+/QZuSofFkzM7OLvv7Ikx9cnbGyckrwiji4PCAyWSCRrvSPRusy8KmSTMBIPr9PqHnGYe8RZ80Q7Q9bqrlJAkYi9Nu2hiz1v9vWtjb9/PGrBu4jPxsNsP3fVOnLFodBwdS7mA7U7169YrpdMqL58/58vPP2d3b49bt2678ZzAYcnR0xO7uLpPJhKOjI66vr3n16pUTMC6KwpXGpGnK1dWVM9IW0BiPx3S7XUbjMTu7u9y5c8eJRs7nc/7wD/+If/yP/zHpasXi+hrf95kcHBDEMTZd2+12SJI+y/mcr598JWBWGKKCgPsPHnB8fCztvY0o7fTigqqqGE4mRJ0O69mM9XTK7Xv3CDsdxpMJd+7codvtOvZFXTftQ3Oja2SduKIojFMlY1nXNelaBA67ukNdB+jKtKiuKrJCgpjalFdM5zOWyyWdOGbQH7C3v8+jx4+E4eEHqAj8UEpRFDCbzkizjH/z4S+4urri5NUrplfXdLod+sOhsF5aTEOlYGAAtPVqxeW50NLbWgdu/rUYOXVdO8H3bYDzprm2nV276dhWO0vXmjIVxpBlob16+ZLJZMJsOuXF82doBYPxhE7PlF2dXzCdzVgtluRFQZkXlFXJYr4QqnUU4ocBeVGwTtYoz+Py8krmWhzjBz5JkrBK1hvnFZnW3HWaUxei0xWHkRuL9nVYYNF2urnJQbLX7vs+qxY7sCxLl2Uty5LIjLFNfPS6XQe81HVNr9fn1tExnrF5ll13fXVFlqYsFgv3+TAM2d3ZIU3zBnzWmjiS6xgZ0LXf79PtdLh9+zaPHj3i7OyMq8tLk/SQtsG9bpeD/X2m06mAGEhXuF6vhz+WEph7d+/y8MED92xbfb35fO7YM5bx1773vV7PBTZaazqdDsPhEJDSwPZ6HIYh/X6fyWTCYDDA8zy+/vprptMpNbB/6xYHR0ccHR2RZRm/+MUvXNnFcrnkz//mb/Dee2+TJBkvX51zeXnFF198waeffsru7q5hwR7ywQcfsFwu+fnPf05VVTx79py61nz++ed88cUXnJ2dueuyNtNu3W6X4VC6n77z9rt0ez0GwyFhFHHr6FjWrskE//ZtfF8RxwFaV3zxhZSC2sx7HIUEgcL3NWVZkOU5nu/T6ffRSrn1TikZl9FoJGOrIQ4jx6xcrVacn5+T5zlxHDuQLu7E5EUDlt25c5s7d+7w6uSEs4tzbh8f8867b5GmGeeXl7x6dcLL01c8eSZg5HQ2IwiFCev5HrWuCcqCuqzwlTAZ0/WaZLViOZ+zWq9N6WdEz2is6Koy5TaKxWrN9XzBsD+gE8eEYcBwMDDPo+leZTqyWnZpOygON/zGxiZVZUmupSTHd7ZMnlldV2SN+wEot49CUyK6dNpo45V5LiXQ1Saw5J7Z1m/np7V9SceeaoAq+7d8+5s36dxZOz68Z4IayfA3jMnQjEc7qJFgtQ1oVUguQXzGtm/2JlaBUg37yZ6spqatAdS2j212dbMWWP9RvlvYFjaha33CNgNg02+xPnyztd+XMZJkHRvrU3s+vMmv396+C0R6HRB8c7Ll3+XWDtjfBDi9do407AY3J1pA0/Z4tO/j9lpm570DrLbmzk1x0fb5W12mTqfj/rZzZbv6ZL1eOxagPR/ri1xcXAgLtNsVEH84pNvtorV2dtmCT21moSuf8jyUOZ4tx3WM6zf42HZc3zRvNu6Bbv3/W+5jex8LJGz7Vtu2onnt5ud18x5Iglrr130w5SkHAm/aANx4W6Bpu7T0TTHwt43NTXPW/m3nnAAz2tn39n5NclMCW7mPAu7EfkitNWVdiLYuwgZVHnS7MUHg4auu0RatQFesllPiTozWJWEUoHUJSlPXJVmWkqZryrKgrAo0EXEc0e12CAIBMC+vr7Cs07quzBhpd06bPzcA4DfcOjtGzZhu389v39z4unFuP+OyztS16E2WJgapdb2NDd64/dkAm7SGGiNWaOrITebEgie244cFm2Ri+QbdNGCTJ22Ipd7YADJW40hpcyQDLL22j3lAUZSl0IxvGkE78NsGtP2e3b7rwdneZ2N/gxfZVwRgowU5tr/PLAg2e2OyWbq1v71WaXPuuYXkNSSq/eWta7bZo9oIjCrPilA3VNlvywi1jcKbxml7odt+bfszFmzSSrpZdbrSrWo4HOIHAVmWMZ1OybLMlYkMh0PHJrDHaRtCz/PY2dlhd3cPXcN8uSZJM/cAi9ZTQFVpkqzg6dNn/NEf/REvX75EKdW0SO13ieKIIBRB+3WSMPB9uv0enV5XtEeMOJznixh+VkiJlqPp0nTdc9cvU5eGYm0yhuahaRsZ66Rhx6qu0V5zr9rX3h7jdqD7psXOLvJ2PG1L2SRJePnypSubsQvxZDLh1vExj956i8lkwvHxMePxmA8+eJ/JZMfQ+qX8ZT6fUxQFd+7cYTgcslwuJdherVgYdsTu7q4DtDqdDvfv3+fw8JA0TVmv1wwGAw4PD+l0OhRFQVmWHB4e8qMf/YiyKCiNdkDY6eAFAd1ejyiOjHHWLOZzJqOhBPKGtXTv/n1u3brl2FZlUZAaFtrewQG9fp+zV684fflSdMN2dlwQ2u9LaedwOCSKIpIkcbo0TR15azE2T75nAAyttYA+2oj1VlbsW9iI3bjjgqnJaCyB92DI7t4ux0e3GI1G5FlGVZZ4fiCCwEo5oegqF8Cl3+0R7IlgcGC+V1eV0VkVm5HnomOSGW0zO1e2AwQ7p9qBlXUq/ySO+va+FrDzPA9tOuZEYYQONJPJxLVlLcsSPwjY2d1DowniWDofLpacnZ6hPMV4NCLNMvfsrYtSyuWqCq+UzlSVEb2vSxGALnPRp8nyjMLoQ2itxbaalvC6rKR0plVK4JtnrTTjkWdZU0ZlwLrAt22YpcNmQ6OWMnOttRGXr4jimDAKOT8/5/zsjLrWrNYrlBKB7L29PaMNsKbf63N66wzf81yp5bOnTzk9PZVSJQN+WoZTnucCblgG6HrN5eUlILo/liniex6PHj9mNp1ydX3NkydPUMDt42OWyyVlUXBwcEAURdQm0NBaNJnyLBX9C4Sx4fSmsozT01NWq9UGq80ym+ycsPpplh2YJIlrgNAxHcbsaxasWq1WvHjxwmWwLTPS931OT0/5nd/5HbTWnJ+fk2UZnucxGAw4PT3nd//F77NYrHj2/GsuLy/xPI+jI9GjGw6H7O/vM5lMiOOY+/fvU1UVk8nEld5FUcTt27fZ3d0lTVOm06kDly0AvVwuKUt53jrdLnfu3mU4GnGwv0evG5Dn0p1TzlkaGhRF6Z69qqpI0ozLyylXVwuU8p0Irtb1RrlIkqydXtFoNGJvf4+HDx6QJAlvv/02i8WCjz76iMViwYMHDzg4OJAufKu1KxuM45jHbz3gvXffpT/sEXYiptNr/sH/8g8oypKTs3NWa+kIu7uzS9yJCXyfMAjodjqyLsfSnKCuK5aLhdGfmrFcruTvLMP3PQFFZzM8PyDLUtaLBXmS8Hu/+y/odbsc7u8zGo14/kzYaApFkqwNKN3SlUFK1MqqMrZDhFutT+UCE1MiCNDpxK4DaBhGZHlGYoLZPM3RusYPA5TvUSvJABeVsPXrum7Khi1gZL/LJC01ptQO0yxBCTRU1do0UzCrglLgbyZLlWu93GQodetvrTW+ZxOTNmFlwAEjeK6Uh1MIMn6nrgWkwnbO09p0PrM+gintayVbt0EnB+C47DwGbNIObHKJg5Z+XRu8eNO27UPftKa0/Zg3BbtNgla2tk9kn832tdl9trd2WaL97l93e+0a2mLg37L924BTbzrPG8Ex4aEJcGP0yFRrnNqgeTtBYsfvplK518CLrZ/2+bT9BgFGQ5EvUK/r8ljf3pb4zudzJxC+v78vbdxnM+pa9Jj6/T7dbpe7d+8ym804PT3dAJvsfCiKgul06tZGC1BFJgnTxEHKgTO/ToDfvk53T77l/Y39boiL2vGMrmun2fRd3yuf2Yy/zFEd0NC+V018vBm3KVW79VriBP+Nz/Gbnl1lAPw3jY8doybOaUr+tN4srbTzzyaurq+vmE5nRHFMp9cnjGJGO3t4QUCeCQEg9xSpJ8DSPPYJfA/fA6U0vvlZr1ckyZokWbNei3ZYFEf4/pAwCojjgCRNyAtZA9ZJYuLUDoNuh16vK+V7vkde5KAhSROKokmi2w7t22P07xKUbu7b5ti2QU/leaLz6Tfi5k3TlRJTNPSt23eCTUqp/xH4j4EzrfUPzGu7wP8KPASeAv+p1vpaydn+t8B/BKyB/1Jr/ce/1hVXmqIoSbOcqjRtWGkBSUqEHavagk2NeF6N7OMhi6ZdyGTRbHVhUOC6d7X2kb2UW77LsqIqBWzaprB918L2a4znxv+/7XjK+RTa6SvI2Vq/QTm2EQ1w7XIRdh/rYGilCE2poW1lD61J0jIojbNiupA57RJR5A8j3+lmtR/49jhsg0bb12sNowWg2lm/m7Im8LojIJeoiOMOo/EEpRRZUVAYHaWzszOyLHPU293dXcIwdOyA9mKitVA/Dw8PGwbLlYhT2+y6zaYXlSZbZXz40cf8k3/yT1wZXBzFDEcDUyfeIYxCyqpkvlgQdzoMx2OGoxE1NVmRo9F4JluTpakRve24gK8oCgGR3CRTBmjanE/O9G/Nr43fvjLzv3EObmKZ2IWzDSS0j2NLL2zZW7fb5ezszAVwn3/+uQsGB4MB9+7d4+DgAIW0uh0Ohzx69IidnQk//emPOTo64le/+oJnz7525WVBEPDOO+84tkO32+Wzzz7j+fPnjMdj7t69y2g04gc/+AE7OzsObLL3oa1Ncn19TZZlPGiVycRxTF3XTjPp8NYRo/GY5XLBbDZlNp/x5OkjqqpiPBbw5u7duxwdHXF1dcU333zjQKIgCLh79y7j8ZjPPvuMTz/9lMD36Rr2x/379xmPx+zt7bFcLoUVtF5LJ0IT5FtH2wJjSinTPckjjmMDipust2E21VUFlbQEHvT7ThMmDEPH8tjZ2eGth48YDoeORaeM55AmKdfX1+hKSuWKNGM0GNLZP3DlTBKUJljND4B0nZKnKWWxqYN2E3Bpg5A2E/QmUKq93bT4tY9pP+cpj9rTBH5Arxfje74Tml4ulyxXK8Iw5NbxsQAcpqHB1MyHo1u3uP/gPqv1WjqHVTVlnpOs13hBIKyLuqYoxeZVNtAw71UmINWIFp3neXilAQ5r0/K5qtGBnHdogCTr9Mznc+bTGVVdS+kyOGZUZe2z1hLs4aw4lQlcw1CCdNvxThsA2/d95tMZhwcHXF5dcX55Qb/X5/at28KeNPfi7PSU6fU1ni/AYpamDkT9N7/4BUophoMBg34fPwgIjcbdYj6nyHOS1Yo8y/jgBz/g5TffsF6vefLsGb4Be44ODynKkvv377NYLOgZ4He1Wgl4dXHOerVien3N6cmJm2tlWTrAWQSZ4411wgJEtkTOliOu12suLi4Iw5BHjx7R6XRYrVbMZjNTHjt0AYP9vLV1QRDw5MkTPv74YzqdDnfu3KHX67G3t0ev1+Pps+d8/MknXF1d89lnnzkg6dGjR4zHYwaDAbdv3+bo6MjZr7quOTo6YjAYMB6Peeedd8iyjPl8zmKx4MMPP+T6+tqxnWzZYF1f8tWXT4jjmN8sS27dusXjh3cZ9EOmRcb19XQjCWG10ez/q6okTyWg8jwpbda1dMPpdDrOxs5m0hnPBkzvvfsuf+43fujKTabTKb/927/NxcUFjx494vDwkGfPnvHpp5+SFzlhFNAbdPnNP/8DfvSjv8h4b0Lc6/LHf/TH/N2/+98DmvuPHtDp9vCCQEoltZTNxVFEv9cnDAO6vS5BGFCVJdeXV2R5xjpdk+cF0+nMADoJfuCzXiesVwlB4AvDKsv4g3/+u6RJyuNHDzk6PCTPC9I0c34JiP9Sa00njomjkDRJmc0WsibFwnaqKgs0iTxAVVkgT9Hv9gjDgE6nSxTFppRaGKdlJgLdtZETUEGA5wdUdSVZ7ZZvZjPVyjLzNViRV1/xmqoTAAAgAElEQVSJ3pkyujR1LUkFeQ9QVjNKWFq+CciciLS2TUNs7kljWf81vnnPRg/K+Qsu8WSSGc7W1hoqYUDY8xCxdJ9Sayo2Gx80rdI3dU09d96YBCUOcGqDTJYdaxNZ28DTt/k237W1S5te99Pbx8UExzcDBRvX5W2WEP26khlvAluaczFr6FYA923xxZ8m+Lw55miV6biAQiZUrSsKwwCrtwCPbV/d3s92sgkaofVt9tibzqt9Lm0QK4oi6aZqztf6TBZssq9VVcXl5SVZlnFwcMDdu3e5urri2bNnLBYLJwMxHA557733+Oqrr/jyyy+lAcburgBbRk/TJkLyPGd/f9/ZfZvYaMAmf2M8/iTbTX7Pr/OZ9ti1QZaqxcrSrfebcX3tYFv3v3U+rwFCN7GopOqoWZcjU073OvP9pv+3jv76K1vProKNDqJgn8kG6HSJg1Y1watXJzx//hzfD/DDiP5wyDvvv0+33zddZUvpPFfllHmI0oXxsWqU0kShR+h7zBdTFosZSbJiNp9RVSWj0YA4GlLkKXnWYzabMp9fU1Uli+UCrTSD0YDxzoTRaES/36WqK2FBVTXL1ZKiKF1M4HveRnXKxq26YXz+bbYNkNn+nyYm7Pa6UtatGhmVNE3J81zWqm8poYNfj9n0PwH/HfD3Wq/9HeD/0lr/N0qpv2P+/q+B/xB4x/z8GPgfzO8/waYaJga4hdQifFr5WAqwZ7SWLJxiMzwOYHKLcXNjmuM2+6iWgVeIYKr2bEeuTbHkXwet3kafvwtgetPx3LVZZHoLbRZHpclwNeCS7Wakms+oGrQyxh60NvS3liMkmSZabC+hOlujY6Ye4rxV1NoGmu0H/ebMiN3eNI5tcOPb6Njt17XWTjXf0mUB0iSR2ltTUuJ7HpFZMCrTCjsxHcLSNHUtuBXCIFsZHScR04TAD4zQbKPzkOcZRS4thMs8wzdBUbfbYTQUAdq4I9outa6lNA7NcDRkMBqiPCkfqHTjpHi+GBbdvj5TPme71bi5LpqnMs9ac8VmIW6eUCZDxOvzr32v2vehPfbt+2Y/M5/PWS6XnJ6e8s0333B+fu4YCYvFgqqqiOOYJEm4vr5mNpu1Au6aNM1JktSg45vlkhYcCYLA6a3cvXuXyWTCgwcPGAwG7O7uCpPN9zda3lrQxs4BG1BacMjSqW0ZW/uZ9X2fTizfV9e1lDOagBYasM0e04JXURS5zie2Ta4V8LV0bDtPXce2NrjUctRec4oN6AyNMLZzvjyPbqcjZVVxLICF0RpIkoSTkxNmU9EmKk0HLIV0O1ytViRGrN1mBG27ePd8tpxOsZlie+RcfbcYigirPVkcmG0PIefr4Xk+vnEInQ1rOQbOUWuj3zdsyr1p2KUaaXhgziXw5XuiKHLPmhU2TtPUaRWt1wnJei2aWrXYCytYjZIyG3Gu5Ts8ywTwEBaD1tQmmxaaOUaloa7xTVbPV03gZMfZNl5QhtmglNFN8Tw83WJBWMaqMee1YZOGRlfKdohyGhsaSgMWWqafrmquokt8zxebqTXr1Yo0TYii2M3ROIrwPcu+0o5xBFL2Jzo2Yi+jKBJWiILlUsYxTdYo5XF68oo8TQkNKO17iqOjI2oTlJZlybDfY7VaGeF5Ya7kRUGR58K+MjRtz7B/bJBTlY12hNYCAtprLSsR60+ShFoL20mE/6VrY11VZAbUiYx+mVLCWA3CUEA10/UuLwpms5kTF1/MZiyWS5IkQRlAzemxGdHZ9Xpt9AMzyqri7OyM6+lUQI5YQIp1kpAYBlYUx/T6feq6dt0o0zRjmszl+6fSreb8/IJXJ6csFwmz+Yy61k7j0AZz1qmvyoqF6U43vb5mei3OrgOFfQ9VKxH8bAWKdiw9eVhlPpjzLstS5pHW0vEPzcPHj+j1epRVzdX11JWtS7mw+Gy2yYjnByjPoyw1FZIwtPpiylMEpU9ZVqwNayrJJAngKSUd+TwPDyiynOViQRhKCWGe5U70d7VcMu/EVFXt2kvLEGmKQuYzdY3StqNOakAWcaaLvKCsTLmZajK7uoaiyKnrirKs8L2Esiop8syaZGN7Gjsp/pF2OicWRNAY9gAKZcAprc066/nmdSnFs9pMCqgNcFZrUEqLa+ZEZK3dtaLgdrloH7tlOLX15eTTujY5LNcRyu5nfQ8BjKyNgoa94fsyn0ALW7YSm+3VbZ/XM+uVfK7lbm8kKdolfNuB7E0g0Xf54W9Ker5pPxmTBvQxj4ELypvgvGG/2U2CrTazaRPAsseyx7Wv2++yv9tLrr2HN5/rm67h19veNJ7boNGbvl/XNdgSs6qmVhV16z6aq5G5YBo5abT7/9ZBX4uc1dbv9jl6rR97H9r+mwWbrO9nGaougDc+oFLKJSMAer2edC81YuIWSG1rN1lbu91gyFa3KPXrzEvcvvaabhrjmz+r33hv5PXXASULIFlweeuIG5/f/n5t7M3N56Sb4JvN5wRsY5PXS1JfQ0m2vv+m1278fqWcD9i8/3r8s2lPFFkma6PyPPwgJC9yzs/P6K56lLXc304c04ljoiigKjPj2wlDtN+L0XFEWZU3+KdiW8MwJAw80kzWeQ2skzUoKEvxZ/zAJ44j8qIgzVIzv0wc9C3iRxtAcOv6/jTbTc+3Uuo12yNxUSAJVG0bexUGwKtueoRf274TbNJa/z9KqYdbL/9N4C+b///PwD9DwKa/Cfw9LWf5L5VSE6XUsdb61Xd9DyZAUL6P70Ae7VpuBp50DqmMILUsYJKtqQ1iUpaVZGCMgyEXYJ/o1mTU9uWtfeyg+G1cpwFHvm3bBkHsZ36dSfDGBcU8vFb81SHNDkiyT3rjOMhPe6I2ARk0mQWbvdOta1fKGgkpR5S/W86L/VfXJIlBgG8Am75tu8mxsFmBbYegjVZvA3MOEEGC2izLSY0I53Q2I88y1qslvoKwE9Pv90BrZtMpZVVyYQSRBUUujGMLRZbxxeefMb2+4tbxMePRiN5wQBx3nCEvy1IC+NmM1WwKeU5nMOBwf4/9g0Peeedt9g4OOTg4YDAYUNYVl9dX3L57h8dvv8VgMHBBXF4UpHkmgEVHGCxWmDM3xkdo9Vt3VOlNO2ftvnUkbxpP2p1jNkFUu99NoN820GS1U6qq4qOPPuLq6oqf/exn/OEf/iF5nksAacCfIAj48MMPXaecqqq4d+8ex8fH+H7A06fPub6eM53ONrt7KWUYNbUrwzs4OODHP/4xOzs7PH782NXv13XNYrFgOp26a9umvtssqXUyLNvG/p7P5qRZRlWVrovV+++/7/a16L5lXFiHxGa9LIBgzy2KIico2e12sZpFV1dXXF9fc319zXK5ZDqdUpal00MBnLPknFkbAJl763senThugjnDxrMMhTAMXdbu4uyMz3/1K8qy5OLykvVqJbZWSYc52+lud3eX0WAgrJPl0oFoph+AtPq188ELTBcPZURmhe2jlBLHU2skrtsEqZQf4PsQGkDMLWjmnmv7XNd1kxwAk71qnNbalHXUVU1txNvX68SI3JqsuFL0+32hLXc6RvDXdJZJUlbLFWVesFwsybKUi8tLqrqm0+3Q63SN19gAZI7ZpDXK90zwpQwA1Mr+dLsEvi8txksRoQwNCNCJbKt1YT3oyui61JrKMKO6cQfP9w1LAifMi1KodpMIIIykc1dZiFh8UZYsV0uZO1VFsl6zWiyYT2csmHFxdm4ADmH0pElClklJwHgyIo4C+t0OdVWxXK1E2NL3CTyF74kGnFamaUcQcOfuHXb3dtG15uzkhCRJmE2vRY/g/BSFx917dzm6dcSjR4/5Sz/5LTpGUFUpxWw+J00Snj17xpMnT7i8uODV6akDneqqIjXAlLWVNmrzPA88j1gp/j/m3qTXtuU4E/syczV77eb0t38dycdGpKAyB6yyVSgDtmGg7IEn5TJgAYJhWKiJ/R88KRj+DfUHbHhmCSjZgAeyBoYASUUSpEgWH19D3vtuc/qzu9VmpgcRkSvXOvuce/mkAdfDeeeevVeTK5vIiC8ivlhdX2O1WpHHm9MnX5+eQiuFS15ns7IkQKgscf7yJay1yGYzJFmGr3/jG/jwgw8wKQrs7+2haVu8evUK6/Uan3/xBTbrNdY3N1hfXcGkKfLFAvP5HI+ePMHR0RFevHiB169eIc9zHB4fwzmHq8tLVHWN169fY7Ne4/DwEIeHh0GQK5a9s/kc+YT6PGFA++zsDL/69DM0bYvJJwVOz85Qbkv85vkrWRGhGIMxJvDp7O3tYX9/H5uyxMuXL3D65g1+8qMf4YvPP8PDJ09weHJM3E1Fwc47hHlrjEFZVTi/OKcoYOZkkyjJ09NTfPnllyimU7z3wfuYTHL8J//5fwqtNS6ulviLv/z/8Pz5b/Dy5Uss10s8fvYUaZrgydMnmEwmKKuaxtRb2MbCWgLclFLIJhm0VqjqBk3TUpSQs5jOpvjwg69hMsmDsfpqu8HrL18gzVIs5jNY52DbFso73Nxco20q1l1Eb6N3rCoyCBfzORazKaq6wXa94QihKbTSWK3WqKsaaZYiz1MiGM8LKABtU6O2VO20LKsA5CRJgvlsQSl2eQKdGNimCxVmvaZUWNKpet3TW4paoj2RUzkV6bhU1TAZABiSWifvphWgGbwI+us4sgkUjaK1RppnLMdsBEiRDmHZaHOBoFs4+iT6CdBJpCeAnm3ZmNSGI0pSKnBCUfBSkjvSN5TwRfUpL0GniXTlMdj02xpSd4FMd4FOAdRUArj0+r/3nEnoKM2/L/8elxcHpBquUsIdK20HejLy2BAewym333FsVN71juPP7jvGjm/5Hevcoo+P9XICT9kJZUHRuwBzSFLhEkkJ10oRpw/IrgvAkNgmXjrXc8HwYGRw5/Na8b1Vo0H8kT5Uh9QMLPfOOpFXEs0SIoiXS+zv7wf9dX9/H9ZavHz5EldXV/j617+O9957D+v1Gs+ePUPTNOFHAFGJRi+KAsfHx5jP51iv17i4uMDDhw+5//Stfvsqx32X3jVuNC97p1ZMXeCcC/vmEPzpAQYZlvga+o6+2bmWRu0kIILGWHRRY4YcbP+Qh7RbwD6KSjS3zomdfFdX1/j0008D5pDmGV6dv0HGfIRJkmI2LSii22jkmYHRCsUkRZoYPHn8EMdHh2iauuelSpjNyVm0Ftjf28P+3gLQCs9fPEfTkC5AVWQf4uHDh8gnGQ4OD7DeUCENipqr4Wwf0Tru2+Gc8rfW823g8i2A3R33HQKIrNtOJgSIsbNW7Kyy3L7TXP+qnE2PIgDpNYBH/O9nAJ5H573gz26BTUqpfwXgX40+lS/DnwGpZX4gLfJJ9RNYkFdtPac60zYa1Dr22PjwBEXXyDkKA8BJaVnsKlzBbd7ZqWPPy3jTHJ+76++dmwYvZjLEBJ2W6KJwNv8MQaXhZ3233kZ9PQNOu+45PleuH05eH03M+P1vX3+/0iB9OI5+GvfjoA8jgIQWgmUjivhpxBNiAgDRBIABAFJW7OQZs9kMAAIprmw0xG1Bm4lsYOfn51RCFQhluFPmscjznLmYWAA78uDmE/puu1kH7hZwl8orOhtHdqkheMr/Uh6DeaCwu3/i+XWXEhd7hXZ5S+4aO0lDW6/XWHMlIu/7CCK5RkrNSl8CPTly03QoyyoAOnG7ZZwSBkVms1lISRE+me12GzxOUs423uzj947fIwbTvPcUQdGRx50UZ4pWkmvjFE+gJySUd5LvtNbB6yXpPwK0lWWJ7XYbCJBjT9kt2QH0aVRB+xWgOcyM4K0aK9PicZN0wqZpcHFxge22J7QW0t/JZIKTk5PAJRXfa5e8IkVEhfkXN5H4AWLFpL+uj8EbSxfVT3PqhB44jWVAkAsOnvvJeUB5rqzCho2J1u1O+cGVnJqmwXazCSXjvfeYTPIQMcKMSaTgSrSDIu8sbRkqbBsOCN5WxcZbHHHkozQLKpnOyrM2cGyBitFvjIF1Iulp/1KKK0jJdgYyaowhz4jtDBG3KkUAvHXoOFoQXkrAd6T4G3bUeJJbaZpwRBOnoTuKAtO1DntQ6BFFaxfGY7GY4/DwkCJKbpYh7bLrKI2LANYDVOU+urYJ60XSZorJhDjJmKNOuCXEoAmcIIr5a4L3mMfe9VwMTdMEXiYoFbiQvB+RukZrRfo0yzJMigJTJuQWjieJeuyYJN1aCyXcJEqFsQpyTakgByRqdrlcUjSn7nm5pA8ELJIUOGm/RFlZR4Y7AfhbXF3dDEBz+S3zTvq+KktcXlzi4uICqxURfQPAZDLBpJgEcl2pLhhXhyy50iGUokhIlsFlVaLclkiylIhOp1Ps7x/Ae4fXr9/g6uoKl5dXHP3kMF/M+6gmTdxS1kkFX5GlRFXgQbQIW963WdtBYgzAFXIFlHbWomtbKIWouIJCYkwg2VZQUJy2Rc+maLjOWnQdRZNaTjeE1xQ9pBEcDcYoOGdgdB895p2l9MSmQVWWPXACTrvTCs5RxJhzlivVAewtBZQDoOEd65eOU3AdFXcAiBjWc4qc0wre0bpVoFh1xXorlCPAKqh8DEKjj2wE6wfsiiXQWgE+AFKeOeF6eQuv2SCNdAX+fiStA1jk0a9nWZNa33ZS3dbpdusUu8CQu74fH28DZnbpN/3fngbmzmOsIw8BgX6vHLdvCCYNjb/b+vi74BP32Qx39cG76N7x9bFOOHiT2LwAOUocxIHNwKhzcEoR9ckte+PuqnO9ItHrtmEvxdAW6NvVOxPl81g3E8BJIjFEnkm0JqUA9YCVOAnLshx8lyRJcHrEz5OqoqLjjfts95jsmifj827f413GMF5Xt/Q4v9smja/H+Jo74lXo+9vXx6TjAlzH7yL3vKuf3t53u49+TvXFbOJr4zR850g35i/QWYvVaom0zlC0BdIsA7yFAu0tdUIRnF2XIUsTVNUe2pbtSI6Wtzw3rDUgP5gOBVxMYqA6jboqeQ618FxFL81SmIpAesd5s9xD9A7v9Pa31/e7gJ13YRki6+LvFSjzRjvKyJG1QGvKvlM7/94E4d57r5R61z6Jr/s3AP4NACilWZMH0Msb+jdZEwCX3naeuUNMFDIonSOmmMiu8LDYyFGDL3lZDNqmOHd+1N5bf+9EeqPvY0P0bdfs2jjImCQBkCSk5Kpw3q50qfgDWbhq8Ldh3pC4ilwvOG7f+3Z7qS+zfBE9bmQo8+8YXLgLtJBNId4kxnn6cTvHlf+CcQumGGiJ5HYTwvkpMkWMSdkoPv7441Aqe29vD3meYzabIc8zHB8dUPSONlCKwmcvLy+R5xmODvexXpX48z//t/jJT36KX33yCbLZDDpN0UloYVWjKre4ur6CVUDnOuxxpTTvPZquxfXyBnVdUcTDlDwxZV3R5t2Rh6yYFGQE2A6OObt6QT4Mi9VhHYwVh77vEpMgT7OdG048zrvS6OLxir0m0+k0pLU1TRNSyQR0AYg/p6qqUMHq8ePH+MEPfoCimLJ+0VePiImAxbicMw+PpLI55/D8+fPBu8ozxkTC8RGiSnicAnG1eGGjfus6SjEThUL4mUSxnkwmwbAk/hOqAifAmhi71lqKbths8OLFC5ydnYXUHKmq4j2VapeIJrlv07RQABG4Ru9hO6pwZB1FfgDA6ZvTwBM1KSakBG23fVUvazGbzrA3X6BualR1jdlshocPHmI6LfDo0aPAR5alGdq2IXJbjgiS8FnvPaU98nykYCMy2nv+NsBoA2MShDRcD16znsqJa5mvEade5JWXVBalFIxO2Aji97d96W/LxmVmqLqecJwZnkuGU2yccyHc3cMHEHC9XhOIACFLp/XnuS1KKXgtvCdsvnFfOO+itUIFE2zVwBgi4bZc0tx5ika7yq/Z40v91NRN4B9SSsEphS17tGrmF0gEUNDE4wKP8B5JknDZcpKz1loCmLzDhlMjjTZ4ePKA90V670kxoRLuLJ+lAqRJDNKUUs1ev3lDIPJqhfWaoqW6toXRBo8fPUKe5/j442/i6dOn+Pyzz/Dq5Su0bYtEG+hMYTqh6KUszdA2DT791ad4/eo1vO85lxaLBfI8x/n5Od68eYO6rtG2LbSmwgPSPkmBEPnZpwv6QOAsAK8AKdKnH374YUiPmM/nVEHyo4+glMLjZ88C54YAyyJnnj59CmstPvzwQ3jvseW+WK5W+M2LF9Ba4/LyEi0ToH/00Ud4+vQpvv3tb+P6+hqvX7/GdruFUipUiROPu3jLi6IIqXVd1wX5mKYp/sk/+cdo2w6z2Zy4AotZUO4EuF+v10Q6/vgxFnt7oUrnrz//HP/P//3nuLq6wvnVFcxkgq9/82N8//vfD6l/tuvwtQ8/AAA8ePCAPmNPP0CgQVVW+PTTTynVtKS0c5MlePz0Mcpqi19+8ktsNhv85f/7l/jyyy9xfHKMw8NDzOdz/KN/9Ado2wavX7/G1dUVrpdLbMsSQY0WYxVAWSKAidZaBpiBpqpwfXGBkkF7KMC1LYoJjZVtWmijcXiwD6MNLFe062yHti2RpmmYR8qD0i8dpdCTYdACnlLrocmRmWgCiV1nCfhhhdR2BHI5S8BQlmYoioL2G2OgQO0VWSAR5IFvIyFAjUBPKjbg2VhxLXHCQXPEPjhi2xF3KU92iI4LDB0NcbQyyV/m0tRAwgZkW1U0rixgY85OsX211izLCZjtQVTcqnQrhzEaJsl3frfLyRNknbODdSxzLv47PmKdcngfN7hufO0YYIqpHuIfioo1A5kTgyIxoLbLFoj11TE/zX3HvSDRb21V/f2Pu8YMAKXd8kcxuAP03F27HMXxIX065nCKf4/pG2JAX+5nmbOyr0R4m2hexkGeuVwu8dlnnyHLMjx58gTOuZChcHFxEcD/7373u7i5ucGPf/zj4Eitqio4E+X5ZVni+fPnIbLp6OgogFbjd/6tj2Br3b0edn/e91OgbWC5KnrucM7FwNAQpArgoVQN4MfJfZ2V7Jjb18s6IFvu1qsNztsNpN0G5O4CR0RfFrApvi5ej5JhkGV5b5/zXLFtC4oMdWjbGrat0dRbfm8HoxWm0wnyLEExyZClBldXV7i4uMRms8LzF1+i61ocHu2jKCY4PDzEZFpgNp9jf/8QJlljW27Rtg022xKr9QbOe8xmc7St5cjXDiZJoT05S6z30K7nnBpjBjEAu+u4DyzcdW58Hx99Ls8jGgUqUNPUTbCjyqp8pzn+VcGmN4rT45RSTwCc8udfAng/Ou89/uwdDhX90BEjsk75CCBxEM4MQLwDvbfg3Z+3Y7FCRYZQ3454cY+BobuAo1hojs+7D2wa9ggpXoZTKATWe1evz3iTj0tF7xL88eFZwAzbSf1G/BYmjMf4mfEmcd+mE2/uwagaXReHdYoHwRgTVaCg8N62I3OwZm9DPA5i4AC0aI6Pj8nIevgQJw8eoCgK4trRCoTreWy2NeqmC94LyhpSsF2LTz75BD/84Q/Rti0y9kTLe3W2Rde2VAkny2DZkyLe6q7rUFYl6qrCfD5HmqUUhcKlj11Hm9qcve5dC9gx0hyBTUpJDvswNa4fM1o3WZJikk9ubQzxeNw3H+JDhJ8Qrx8eHuLx48ehH2OFbbPZoK5rLBYL7O/v48GDB6E609XVNeq6CeMu/EcAAleMADFxOPPl5WUAaZRSA+6j+J1i2RB7uwbrzyMA13KuVMYDEOacEArLT5yGJ8CY8DABCGHYAjC9fv06lNyVuRvzQAnflBXSaUdefXDUhJL1CAqzbdsW2+02AEIAMJvPUUwLAk0YCKsZLJsVUyKzLDWT5U4wn80w5YixoihQbkt0TctVkrahDV71ErG1lgh4teKmKWibUBRQQp55pTQSSYX25DDwTlJHZBNUCOS2ShQhFcYDHEXE7Lhw1A3oOgabug5da2G0gtMJFBA42RJRQlTPTROISlWvrEl6spQDx1g2q75whHibXHS/uAqOUgraAx2DI9b1HF1KKaRcAVHmsrRHZGUM9FbsLY1LK/dgXzngkpBzBuXUuWJgkiSYTqdh3QrIIbxjUtFRqjsKcX5d1zBKoWtbbDcbOJCCbbQJoMjhwQGOj47w6uXLwfpLNEdKsbJprSUQ5Isv0LQtVqsVvPd4/JiqJK5WK6xWq5A+LEC1KInxXhLWh++jWUWmS+qnjJFSCgcHBzg+Pg6RkW3bYs4cbx999BH29vYCyCVOCakaqZSmKmRJgrIssdlscHp6ijdnZ8HYUErh8ePHePr0KR4/foyTkxN6D8+ktbyvSdv6dHiE6Ec5pJKpMQbPnr1H/c0gLnw/X9frdZgPeZ7B+UdI0xTL5RJXl5d49eolfvGzn2G1WkHnOdI8x/HxCT744IPQDu8cDg72Ae+ZjzCJquFRP1RlicvLS2zWa5R1jbZrA/dg27a4uLzEzfU1fvWrT/DrX/8a3/zWtzBfzDGbz/Do0UNst1u8ePGCq4gS2BSnHMsh/EZyKEasHUcpWwZdldbw1iGN0owlQi5NUpTbDZqOjKAw/yVSMEkoW8f1hNaUrqvgnXhmyZMN+FB9TZx7krYLT/tuYgwKBjY1h8Lbruc3YwusN/ygoJWDNwZwiit8uhDhBHDEvvZwVsNpzdVG7VAeYagrakWRl0NnHTsBvFRn8nBdF+bleJ8X/Vb0BpOYADYZQ1WglRk6FGP9TEeRJPHv+wwha3kMPIL+uMugio2guI1vM+i97CH3nCu6Jb0PvYeOnhHPx3FqWXyvseEft/MuA/muI3znAeCeiH7cDTiMj/E43AeE3XeeB5gl9/Y97wKQYoAobusYWBzPy3jMx/+W93aRMR2DTTJGsqfKZ3Vd4/LyEvv7+3jCRUNevXqFuq6DfC+KAg8ePBjoY2NeTWm/OBmrqgqORuf8vWO269g5R/j/912+a96N+0j6UyKc4/l6372Ha3DYKnl/95Z7xMEG43UdP2cX4OR7j8St88P7AuwUjB3klOIa94m0Q5zfEg0c1nIAACAASURBVLjRy2eEtDWlWzhnAW/hHUUgOUtFIpxt0WQpthvKTtiWJbblFuvNBsvlCm3XIJ9kYe6naYo0y5BPJmi48ri1Fi3r5N4DaUqphkoR5kDk8tH4YSiz75pPd9nX7zL/xtfIAIhtJHowpSiSQ1PWl1IKXcuBEG+5/1cFm/4UwH8H4H/l3/9n9Pn/pJT630HE4Df+HfmaoA0RQaYplPUA531bR54kx6W3raMwbOMAx5W5REHoLHmd6Rgjo3FXCNDko7/7yQtL5RuB28DSrt/0CrsNeDFCx0J113W3Nmv2tqdJgtms4PK1b+3N2+8f/bpvo7l7gcf3BLdVhd3cs9CX84ISojWPzTDsNe4Hrc0g7FXAAaWGRt3YezVeQ9ZaqlSz3ZIwiNKFjDYoJuRFPjo6wnRa4Bvf+BoODw4wm80wnU5hDKG2rbVYLbdwjkqLF5MMQhqfJAnqukVZ1qhKIlv+j//ZP8P3v/99bLcllssbOA9s1htsywqXmy2SyQTL5Q1OHhyjsx3+9od/izRJOBWAvN4HBwc4OzvFJ598gjzL8PjRI0zyCaA8jNFIzARaTUZKJpvqEhWmdaRsCkEjAjhB11Cq33Bs310YxQcJQ4ejo31Y2+Lp08f4zne+gzynMOS+mosnj7O1QfBmWc7GHBmDNHbbUHWOvgMTz/VRbBLZVBQTFMVkMCcODw8Ghnvfxn4jEhCEIrKK6GVACrPWod2b7RavXpMiIgaY5KDHglzWtwAIEl4qlQvbtsXl5WW4h5CdP3jwIMzb+PoAGNheqMPaYOAYo0O5ausd8aA4h5b5ykxi6F147K3tsGZi35PjY8ymM2y2G6w3G8ymMzx6+BBZliLLJ4DS2Nvfx3Q6w2q9RsIk6IZBTMfe8LZt0XAqC1lwCHn6irl9kjRDluYg2U1etbpqojQaB6UNRS2hrzqqmCWKlP8At/NGTYa6s316iRh/ws3rOjYSeVyN7o1bx144zyuCZI7iqlMtAM8ARwSSDYUn3ceRR1XSbrzvgc0QlckRDBKNIvMxBk5k7sbKYZB13nOKWw82ifLctW2U3uMGKTncGDScRixRNbQOqI8bJkae5DnSLCM+mqoMz3DO4fz8HNvtFiuObBJnQNs4fPniObXFWZydUmGAcrvp15lS8GkCsKLWtQ2aqsR6TSCTAMSXl5TqJYaDPMN5oKxqaN0M5I3w8IDHp+2InNIYg2KaYT6f4cGDB3DO4+rqEl1HZOFQCvsHB/jggw/hvUNVVXCOnte0HU7PznB+fo7DwyO8//57AFSIPOysRdtVSNIUxycPkGQZ6qYNKXLrzRavT0/RdhZ10yLLJ1iv18gnExwcHuHR48cwXGBiMplwNbob4gNiQv+co8DyPMd0WiBtWlhHHJTCESOVqbaXl/ji118AoMiwLMtQbkssFgu8evECv/niC6zWK+wdH+PB06f4x//Rf4hHjx7jww8+ICDMOSJRB4IMbJoGTduSrqUA6yzKqsRytcQXv/4CV5dXqEqKFN5uN6gaiuCpGooanO/N8f4H7yPLU9zcXBPPoFYc5VkSOTnIUVPkGYpiirZrsVnTnJFyJoY9zWB9omsbXF9eMKBKlQcNPE4ODggAUZRqaq1DU5dR1FGCJJlR5PLegjyyi/lAbm83W1xdXZHssRZwDmlC/Btt26KuCOTSoPS1rmuh4PHgwQnfdw8PHlDVzvPTM1RVhTdv3gSeqzRNAwCllIJjfsuQXi77EvPPkQykf5Nck+ItPpxLsmcIyASHE4Zgj9aaK8dxtS52YEgkAl3vBvpB0NFiIIkjm4KuF69HlnHayHPj1HIV5HgQoCPVk7H9SH/sI+z9CCySqFmtezqDXpUlfTG+Jv48/i2HPJNSvl0vT/2wGvJYPxobz/ER6x2hBTsAoftAoqF+PnS+x0b5b6O3xeDX3c+6H2iitdaDTfeBfve9Wwz0ye9dwNVd7RGQR4oCeN+DGgIyxfttSDVm3ez6+jr8W/YbKWDz5s0bHB9TdKbwMiVJEoCk2OEhUfSyv79+/Rp7e3uYz+c4PDwajNVvO179ubf7Nu633YBs31ei+/YpXr3sEP19bLMhAqn4qTvbEYNYsawYA8MEdo/eL3Kc3zWnx+t12C/Dlsk4y5qObe4YJJY5Kw7hBFTUgDKiHDt4LQAHZxS8N+FdrfVc/ELj6vqK9rrra6w3G5RVRc5YbSi7xnmUVYPlco2qaqB1giTJkOcFtDYoqwaXV9dBB1baUEST6eBdA8vccH2QxR1gk7oN+u7qp69y9KMvtiNRwCilsG07tF0H3TSAAtquDefdd7wVbFJK/W8gMvATpdQLAP8zCGT6P5RS/wOAXwP4b/j0fwvgvwTwKwBbAP/9O7+dNtBJCpOkhEwq2ysinsAmMjw5918D1vGkZvuZ9mxZPdG/33rQtBXR7uBCZTvg3bwTuwRjCAu/5z5xeOg4skdrqmI0yXMcHR0wUNCDZPdNqru+68MN1UBI3H/0aXWxIBuDbr2XqI+wuWsjketjT2d8HwEZxJgDxKjrFRT6nNpmbcSJs92i3Jbh2UVRoJhMsLe3h6999BEWizm++fHXcHi4H/WLR904tE2L6+sluq7Do0cnmOQZgzRE2FnXHcqyQV3V6NoO//QP/yn+5E/+BM+fP8dPf/pTnF1c4K//3b/Dcr1G9+YUVikUszmOjinE9kc/+iG01jg8OEBRFHjy+DGyLMNyucTPfvZ3gViOeKQAbRTylKo+SR8JCBkrln26jSJ+KYiZPpwTd4Wqj70i982L/nuFokiQphrbbYOy7JAkBpOJpOrRppFoQDNHmgNQ1y2urzew1kVpZBm22y0WiwWOjmizlvWzWq1QVVVIRQGAo6PDEIEhQFRMrC3t996HSCKZTzG4O5lMoLRG01IFLIk2OD09xS9ubrBarXB5eYmqqkLFubjKnczxyWSClMmJBVSaTqfoug5XV1fBeE2SJER3xX0cR6UIX5gYIk1VwXN0XJqmyNIUkywng0tTha5ysyGi6K5DZ7vg8SbDsQKUwuOHj7C3WGC92WC1WaOYTHB0eAgFhU1F7dvb20eapJgUy8BxI6mXXpHB0IO/Hl55XhcN9zvNqzTNkOc9yEFGfs0GNBHfG5OEkGYBkjSX9jaGeNK8RzAI6rqKvOHgFBaqkNY1DXMheQa/bOhvIbQPCit62SORNzKPBKQbyyOlFJQZjlUMJI3XRzbJkKbJgBdC1t6Y7yten9IOMGgjPD4xENSmlDIo0VOOAafeUCWwCSAlIePUU6moJZF6ksa1Wa9wc30V2uEcEe7HJKlpmsJMp2i7DhcXF0y0vsXLLw+o4tt2E9aUAFHEh9PBdhp1XWG7WUNrg31Wxl++fInr62sU0ymKKaWPmYTkXMVpz6IQC/GrigzftqN3mWXEIbS3f4BHj59Q5bSyhC9LAqaUxv4BEfcrNjTatsWXX36J5XKJ07NzfPbZZ/jWtxL8Bye0Li8vLlA3DVarFeq6xuHhFMfHxxQ5WEyxWq3wwx/+EOubG5yenmG93qCzFtMZpbvlkwJZPsHTp0+xWCzCnNlut2FdZfkEKUeGSiRXkiTI8g5QivmX6pB+6pxHWZX49W9+A+cc9vf3kaYpzs+I1PuLTz7BJz/7Geb7e3jvG1/H02dP8S/+5b/Et7/9bSyvr7HhdJD1ek2cUTMCm87PzyliyZMeZB1xNy1XK/z6+W/w5vUbVJsN2qrCcnWD5WYFnWiOgFGYzWfY399DWZLDpWlqdF3LqcA1p6l6JJp0mb3FHNvtFsvrayLS5jFNDFVCpDXvCGwqSygQ35RE4R0cHBAHVpqgbVucnZ+HFDYoIOXoraIosLe3IPDHJANA4erqCtvNmiOcLCwo0owq1raoa3ImeWdDtIvWGifHR3j8+DGOj4/x3nvvY7NZ4+fO4eb6Gq9edthu1lSBNBlGKsoRgGYvKqqATYBn7pvOO3hHe/gAVI6AkHG60WBfVhRtFe+BNuJqkj7YpcORfESPsfeK3/AarcI8Fi65sVwb6H461kS4EqdJdj5//D6xIWuM6K5u9IwecOLm3jJ8x3oo7QE+kvvDwijjdC6Rb0Cv68bG8m9zvA2AkHcaG9y7jPNdz4+N+V37zO7n3f4d/1trfQts2vXM+wCxXc8Zt+0uQKo3/G0Am+AjTj7ZF9iRK+0U6oW6rrFarYKeJqCwcFU2TRPkjIBNaUpZB5ISLXtwzVHKbduirmu8efMGeZ7jyZOnODw8CuvutzX8w/lfGS+4HdUk+12goBn08+3+vtWWHZ/Fep2k+42v78dkBJb44f3Gc5p+UyfE9uZ9h4BN1orO0M8VSX8UMJiKQnVc+Vsyc7gvXAfnFbwToKkH5suGHJJX1zcwSYL1aok1Z214KK4wDnSWwabVhsAmI2AT2Rp13eDq6oa4D4sJtE4C/6b3gOXI/T597u1pdOP19vcBnLwo2DQENCaaKucCihzntoPuNINNHd7lce9Sje6/veOr/2zHuR7A//j2x+4+yIjW7KZW0FpIDT2ccqxwWTjXC2HarKUB3Ec0v8NnfPPob3/3Z/wvNeq9tw3eLoF/n8Eee6EEZIorWxljOFqFgIR+Mt0NNr1tssUbady2u67bJfjl3/cJonE47a4jvl7uJwq5GENxafiYrC/OYZV7bbcbqgDE5K6BiyPLsNjbw9HREWbTKR4+OOEFbrgcMkcGeAIvAY+imHA6h4G1DooV2NPTN/jrv/4bnJ9f4OGDB/jBD36AZ0+fIEk05rMpHj58iCRN8cEHH+BmtcLleoNt0zC5eD/WJtoYfTSeWtNWXouBl1F0jMZQ4HrvB2kHAFeUsTYS/ERA3GOuu5XLeHzfBWwang8AHZpGo647tC1tPiHSkPm1EqNgFFeD9+Sxl6glGUcZM0nniDdM2fzjsGgBlpTiSjhScn7U1hh8MpyWKJ/LZwL0gt9beH2EA2Y+nyPP8xCdEAv9eD3JnJf2TKfT8H1fJrTDbDbD/v4+YnBB5rW8H5HaG65GRtWZpDS7SRIK+U8MbwBEpivExE3bwGiqzOW9x8KSd/2AAU6TpcinE+RZjgOu0DKpp7Qxc4rJpJjg8OiI5iUrvuK98CGKkSwm8vTVAYACPNI0C0CSEAInSRYim5yzSJI0nBMqQmoZDxPGmAAqy5FfXZjjKYNuFNlVh9RBH8JbKYf/VlrpSJPzECPQIDF9VCmUANs8fyJQ3Etkk5UqKMNnGK5QInntIt/k3LuMAJkzAlDE603mt3APCLApe0YsQ+W6PrLJcd/163KxWITKcGMnwsHBAaX7luUt4v3ZbAbvfah+KIqcYnAsdpwoBk0EKFBaI8tSAArHxyeYzxccjZcM+kPWv9b9/SSqUPpFzpfU3fmc+I3iVMH9/X0cHFDU46vXr1HXNU5PT1HXNS4uLoKDYm9vL3ixm7rGv//5z7FZr1EzsbSkXcQp2cJzJP0g6YICMAMI942BO0m1Wi6XMIYiaQREByjS6OrqCl3boa5bNq7o2svLy/BukvpYbrbkZKlreK2RZBn29mhsX79+DaM1Xjx/jrM3b0Lhg8lkgkcPTyBVQ9u2HXCdzGYzeOfwne98B08eP8F6eYNqW2K2v8D+0SGstViXayhPJKd5llOUZVWhYzmklcIRyxB5b3k2RRObkDIseh4A3h9IB3Bd7xxz1gYuOoqqIXLXrqHIWQFe4QmorcoKF+cX9D7TKTKONp3NZig5pY/WcgTaeJp7iUmIjyjyhntPEVHr1Qp5lmGzXlF1Oo7KBaJ0ziQlYFd0IkvxWwoqPCP+kUPA4qBD8d/ek9Ry0b/Hh5drARATuYr0hN5A4QYEGSffxefGl/nIcRvkleLiCCz/4/HbpUsI2CTvajuLVvUppdT0ux1gw+j323rKWLeROTOWs2PgQgxJBUC0B5KPwyiQcdTSTuPvDsMvvm7XZ7t1ZHEVvpuxfdcx1uVio/5drw+/o/4Yt3usz8fPjvvkLod0PK7jNsZ7U0z23bZtiFAe61/xnInHUfZJAZ1EvxQdraoqSumOwPyrq6tQWCVO2xZ5aYzBZrPB2dkZFovFzv6L+2kXkHdbN3+73bR7vEb2GdsKlPYmldzjZw7bqjD8+212pPf9M8eyrD9/ZFfeE9kU/x6/7+629I5lkgMW1g6LAo3Bb9ElhOcx2Nhaor1cKOIigJf3fZGgqqqx3VIxi66lKPckSeF9AueAtrVYrTc4O79Eud1ivd6y/QoAGnXdYrMpoZRGUWhobZAmGdLEQqktIEUdRvLl7WN/e659VbkRns9/a62RpRngMVhXY2fKfcffmyD8H+zwnolOE2gtk9AhsWlQkOO8TLqEfkfBQywUd93/7Z8Fs9/53wpsihfGeMDHm1SIWGKvunBnGGMCqt6XjFRIEg3bWZTbCp1zoOz/22ABsJtgcXyeLJjYGyBtjMGioUC5Wwm4S3DK7/GCia8HEAibxVthLZUX7ri8YlzhaLyxx78vLy7w+WefwXuPo+NjHDLp7cH+Pk4ePMCz995DliaYTlIoBZR1h822Rtu0sF3LoYykYB4fHkBrjdZa1HWHPDUoigS/+eIz/C//+l+jrhv88R//Mb79ne/gD/7ge8hShaOjA2TpN7Fcb5BNp7hZrfDTX/4Sb87P4ZSGBaVBJUUxMM7AyLpSXOXJe2zWaySGuFFOTk6w3WxQbfsqYQi/MdhYXUijY69ohKaOebXGYztW3nZtHLvGc72W7/r53jSU97xardB1FgkTb1omdZY5D2Bg+M5ms7DZy9yQ6KMkSYKCoZQKqThFUQzmQZxuJCTgci9REMRgHChOxiDxfWUr73wwiMS4ljbG3DbCn7NcLoO3S4zu6XQKrTWePXs2aI+AA3Vd4/z8PHCCNU0T2phlGWbTKbx1XGmqG1ag4qqHBwcHRI5riZNju9mirErkWY7pjNqfpRmUjtK3eBNJ05TI3BVFMwgx9PXVFRb7+zh59BDOOTTMRUDpcD4A4VA9B9Z2ux0AHbKZC9jknB+sYe89sizFZEKkzwK6xaCFRJEJp87Nzc3AazktCswXCwK7tiXxWDUNpWwKmTznyMcgtsxvAQBVZGxO8kmYrxKB4HzPI6S1DmaAVCKRdDcAlK7iqZqb3+EpH8vBsRE0BqIklS0GcCQCQ7hnZG2KwyJWsOMj8NHw5ycnJzg4OAj9EBsDMg6SRidpY0mS4OHDh0jTFGdnZ4F/SZR2WY9SoacsS5RlGbgwnPPYbEs4Dzx58hRFMUVZldgwmf16vR5EFAivlPSPrLnYmDg6OsL777+PLCPSZmstDg8JEHn27BkeP36M5XKJH//4xzg9PcVf/dVfYbPZBNn5ve99D9/61rdQFAVOT09xfnqK/+tP/xRnZ2dIZzMkeY6PP/4Y2+02FEDw3uP4+DikAwMEqHzxxReBlF/kk7U2EM3KGFlrcXZ2BuccDg4OMJ/Pg7d+s9ni1ctXlNrW0dq5vr7GarXCfD7HyckJiqLAs2fPYIzBj3/0I7x48QLr9RoqzzFZLPD4yRPMZjP85Cc/wU9/+lP87V//NX7x85/j/ffew3e/9z0cHh4C3/s9TCaTMFbS1wKqnxwf48MPPoRzDheX5xTl1dTYViWVE/9sCessiukUi8UCVV3BrhyatoFfe8xnM3zrW98KFV5F3oscjOecGIDbcoumJnko6cRxpN12s6GII+/JaHEenaXIr6brYJ2liJnOYms3OH39GlprPHz4ELPZDB9++CGOj49DtB68h2NDWqpHJtpgwqmrMlbL5RJt0+A8zynFuWmRJSnKsgxVPr2nFNEJ/3S2Iw81ywnnHKA9vOz/DF4HJ0m0J8t734peImEhAqTfm+PfLhSYD7IluRUF1O/vSqk+xQ5R6XNO7YtBhpQdHtaRjJNIXO+J4kKMlFimKUVRobG8c1zkYayfjvXJXXJxrHuO5V18r1jHjZ8v58mPURoZZw40HAEavuM9N9aV471OZO+4jfH77AJgdv096APfpyDF7zYGKMbfje2QGGwb6+bxZ+PjbaDS+Dt5Vrx/xf2xywYQvWz8rF22VBylI7QLMj4x2CRFJgrWteVzrXXQ216/fh2iH4uiwGazQVVVgVuzKAo8ffoU3nvirePvKQXbhTaLnnF+fo6LiwvMZvPB+42BM3q3wdK947gbcLrrGNtlMsaSRkcw9O3UvsH8u2N+yncyNiSbHdsVt1MqY1lzywaMptBdc7Y/6W6wldrQ6z2ki1IK2hhgjm0uKQaV5Rmm8xk9V3vW0Zuez8+RXaZYZ5aIqNVqDaUUmrpGXVG0U5YRL2ZnLTpb482bc1xd3aDrWlRVyVQHHoDGZl2iKhtoZXCwf4jEZCiKObw30HoF77tQiVR+77TFRyDf2O4XMPDvd7Dz1BhMZ1OkaYrrJEEVrTcau7ff6XcHbAICoWrceTHAFJfUBuJFKyG08n3vEbh9+HD++BwZHM3G2LuOVLxox4tiYNCONsvxJiAbtxgQzlE5XVHMHINNYEVrsGilHTLJuP1hQ0EPTngAhiMFpB3x9bFxFAAsfo4oO5TGFXObjI/dBg9fDsUlfsUzT7wpTXjXtpWyil0AKRA4APpqetJGysFWUIpAmul0ij0mpF4s5phOifNKGxXe0XY2hKdrkDFmBAzUGtZRRF1dVyi3DW6ub7BcLuGcx97eHh49eogkTZikmVKHionF/v4elGZyWWPQ+n4ehPuzwe6cC4CanCPIuxB+7wT+RoCrdx5eDz0jUi55jKrGwj+OprlL8RmfHz/39tiqKCVMriGw65Y3MFp+Es4al059m3ClH3mn8fsNo9+Gx0goh2eT0NRaI83SENEk7zyfz0PFNvlcIhqMMajrGsL5RNxMxUCWxSG9WhNhZdM0oVJiXddBecmzDPPZHNZ2AHxQoIiHg6viMXkreZg1FByVtTcmpHx59GtfPIF0Hw2TcD/zWlaauKu0SdjLQ2PX2T6c10MCT29Hw/QRRfTg8YY38EB7IHDw8OCOldowX+KcdeeDeA8ySSkuK29hO87RNwQeQylolnl8MpI0RcpKbsLGpKSdZVkaSJmFXFc5+ndQoCU9lUUwESeasNK811DeUjh2JP/H/H2x4yEGVARUEfBNACQBuyaTSQCbBMATZVpSBgfjIrLHiIJA8zxNM2577+2U/UiibCUCkSJwJD10hixLsV5vqGIiD5s4TORdldKBJyLPcyIxdw4Nh11LlIvSGtok6LqWvcwSaaZCepnMESlbbK3FZr1B07aYz+dcAVM4NahamDU2yKOQSuAcpsWU5z+tIwF7qO+IN2g6m2NRVUinM5gsw4Qrg8qP9x7TYhq84/DEdRSD2zKOliPzxLhWULDOhr2taRpUVYW6blBVZQDoCBAn2eZkDBODnNOJ4/kgwHaapthjj7zWGpvNJqQib9ZrVNx31nZo2hbaGJRlGYCu8TxMDHGqdQzkdJb4Gjrbsafco2WAvuH56Fg577r8lgwOYP4OPSmWIYp1DIwiILxzREiq+uv6xS336PUo2VcFUJVqod45FJNJSE+HJ7DQdj23ksxn7yhtpk0oFa+pa5RbAtxqrjwqwC/NM9Zd+PmDPlDhcZFuBoSBBga79fC64Wa3SwcEfLSt9pEK9+mzojL7wSlyLc3XWNbyRsxpHBqaDTWvhmBG0LNv7dkKzkpUBN3Hi0BFr4eLgKXIKo6ecp6dHOP9gsCy+CB+Rh+qjIL1TrIVhj3tlYPmtseO7ViHpvVMstPaPgLCccGihPdjrR1HjfV2hlIIaS9Bj4lBv0ifCfLb3dZrxv8eR/i/7XjbubuM/xjICX1CZWjhuVCNzOeQzeARiO/hKQ2n3/tl3ka8P9xHokIogEBg9P0S5Aw7puJxGY77bftxbKOJDBJASj6XaN7YNpIIdwHJYz1mnGWx3W5xfX0dIuFjkDPmAnOuA9BHAo/bT1N/bMMO9/W73nUwntHYyNwbj/9ddtpbD5EFo/uM2xa/3vg543fv51/8BndfP3zu7XuOdUqxDQZ6qJbMBilcQGA4UW5QGwibIMCo66hSNFUbBoCeJ7ezFs5RERulhHNRkRRVQoOjaU8PvIweShn+oUqiUENi/XHfjt9/vB76tTvss1syZnTPcK0jFisVtUOq0YkjOMYxWNyNh2tw/M6ATd4D202J6+tl2OjjTpTQVhHySgnwoIMySjwBbrQRed6IGEjSMvkpRa3/jnhDnPMwitJ+fvt3GPa0gEcSmg4gKDIx4i5Vr8qyHN3HgwKpVSg9Tm3kxQIfjM8wzqz0hvQw2WT5joONbSQoLHtznLV96CUb2jx1w+apFRm+bTtMcQMQFF0ZB62lHL1EpVHYYQhjD8YQKQcSLRKPn4zznJFo4vGpsdlssNmQN/zRo4fI8hwfffgh5osFnj5+jMPDQ6RpgiyjiJZyQ7wvVd2gY5AgSxJKWZsVLOhJOUk4jP6Tzz/F3/30p/j5L36BNKNokG9+/A189/d+DxcX5/jZ3/0CBwcHePzoCRbzGb7xtY+w3pb4/MVzXF5dwdY1uoqiVvKMDN35dIosS1FXFc7OzrC8uUHXNEjmczx59BgHBxRdVZYllZrkzZGMFR4LRF4rDyhQhUbW79CTuLMw8B6ScypzSJTh2AMYR+PFhm8MhMbepPiIydyFR2ks8MPfXqItFOqalHbvHNGscNqW8w5t18A6ruiVJdBaikML4CmbBGlnjjcUMpQ5/9l7uNYCLQGV9P5RPzgbqgYuFgtMZzMcHB4OBHgcOn37vYhYsN9cFbyn+SzGcSyclaLImqurqxABIuXdKf0zx3wxR1VV+PzTT7FZb1CzMdRZSjOBJ26bAOyAyAnJcLe4Wa6CkeG8R7ndouEIhklOkU/dg4d9mi4IOJnO5yi3W1ydX5Dytd3CeYfEJNBGI89y5CFqiebFlo1aMvgVat0EziUyAhSSNIFWOpLpFnXVRPLdR3JtWPGPDOY12q4NiqntHOAZBEoMvNZoPAgq7AAAIABJREFUvENrO2ifIlXEM+X5PjV7rI4fPAjrS2uNpmlwc31Nc5t5n2IuJMvz2XJ0VwykWe+glQ3jS0TzZNQYqAHAFG/wsoYkAu7o6CgopNZavHr1KpCZSqSrlGYWwnBJf5K0Apmjw8jJ/tnD55MBfn19zTK8DgaY1hqLhYHWlE41n89RVTUmk4K/W8CYBMfHFkUx7RUO9MCypExyFlXYZ8krnMF5YDqdIs9z7O8foOAoQomu2d/fD9VjpM3xWuy6Dr/5zW9wc3ODg0Pi8amrGsvVElp7zOcLeO+x3ZR41bxC15Gz4smTp/i93/su8izD4dERJvmkT8lg/WI2neK/+hf/Ne1rPB9n8zlFMUXm+8H+IV0TvKAa2mg0dYPzi3PYziJNslClyCTE4bXarvuIEFA0YlMTT9C2LFGVFUcKOmR5Dp0keMDRZEUxwcHefgCltdb4+je+gafPnvUAjQIUSLZfXV2hqipK353PsZjPsbe3R5UnqxJ1U+PLFy9ws1xivVpjE5HBk3OE+HjKilIBvCI507Ic8t7jzekbnBtDhOmrFV1vEjRdh1enbzBdrQJhvYA9EmUA9MZ9VVVoGHh33kNDhSp0WdITbtdVBZMYpBJpqDWM7D2egDQpwCGAXFWWaJsGzwHcXF+jKAp8/aOvIUlTzDlS7d//8pc4ffMm7IGz6RSPHz0ioLUh8Oj87AzXV9eotiXOz85oj2LDZHmzxHq9wjpbIctyVuqJRDtLUwKkNaVNeE8RNLIHAR4mIthWhkFtr4JeB1ABHInocr6vMMULg+QKy2CtFHnl0afIeSsIxm3jTKKP6A+QbFUGUBz1xU4NuUZBI0kUtE4JZDFE3i2ZB0FfCCCPCnO2qRu0TYckpcqVHgh6Z1MTt58XRybLY4ZXKOUtSWC0gWOAtwfTSI8kvaB3jEkfOzEwBSBnUngFoGMZ1XUd9y0Gh+hHMVjVWQvbWRijkaYkr+RZ8s69rSIdi6CTy/ygNRNHX6mBLhUDP7HhuSviYew4iHXsu37i6+46RMdQoDTIwdkRqGa1VKlqB3xn8TkB9HMeLdsKwbnKz7JcQVHsuhAV2XWwbQflejBQ3l9rjel0GnTbUHnSD50+Gybyl1Q50e3qusbr16+xWCxwfHwcosflXufn54M5Vdd1IBs3xuDFi+f4i7/4Czx69Ah/+Id/iPl8HtomKel13WC1WgdHh0RFe+/DfShNv38nxbZWTBwdO5e2HBmcJCPwitcPwKl/SVxFWeZFb6vuAjQJBEHQe6RNWvdRZXFfx9kzYz3kLoBwPM/e6RCZ5j3rP0M+4vgQO1v2GYmcTbhQx+HJCUya4Oz0FF3Toa4alNsy6K9kI3Tw8NhsKjinuDo5y3RjSP9uLdrOkTyA2AsZpKqd9y440poWuLhaoW07OJ9A6Qw6yWESB2NSGJMSD9QO5wnQuwPknYC+qrX8SISm9DnNpR5cjTkAxVlljGF+L4raN8yjmjLH6uHxMSbTaZBPq80GWitYDcDizuN3A2xi+FWU5liAjo3i4WJAQOmCx4UP6UzeNcPGKr/7KmnyOYNSznPy9tBA/kqvNXqHXQssjhSJSYJ7BJYM2IRZ0NuuHvTPLsMivk/wNCBGmocbV3zdeALu2uwAQDMjkBDkxWCTpHnIs8QLD/Te/TTtBmCTTHTZ7GPjPG57L0z7xdI0bfCCT9ijMC0KTIsppkXBFbKIv4CipPpIDQXJu9ZIDKUG2Y43VUUCZb1e4/nzF7i8vMRkMgkK+95igYuLc2w2W0yLKeCpusE0nQKauEkkEsL7nktCM7AmnBVN3fN4iKe6iCIEbgsZBM9ZjOrT73hMue80iyXRGKMxj6PYYo/NLo+DnPcuSom8y/1H7225lTLAHgWgB4R6r/vwWb1nZzhvY0+S9FH8LvE1Ic0BHNqtgHySD+ZeDBTJ/O49V+SEJ5AP7N0gD6ikio5Dy0XWdV2HyWQSwCaJApnNZsizDLPZnCIb+BrFaSRy7fAdSSg65yh9zPcpGVtO1RP5oAxFV9kIOLMsb6x489sWVV3DeY8s9TDOUJqK6/vZ8ZqiinQEboqXeQgmG3g9lIlyThyhEysMssblJ5SoVX2lN20MUs0V6xgcst6hZ5BCb10ohZQJpZMkQcYEoNZadG2Lrm3hrIOSKA0QSNsDYQCcD4aQ9wR7WutonRkqU0/GxG5FXt5L5oFEymndVzMUBSpWhOPIGgGmxv0VP0/Wc/x3vD6loh5FYnThOwH5SGEU/hlPBJdKSuCScTWZ9HtQr8QSkCsRfxIhRQTlfYqPrOeMuemyLAsV1k5OTkL04Hgvk/1ks9lAa83rJIftbBhwAcylP+WY5BM8e/oM0+kUDx48QFEUuLi4wNXVVdA/jDF4/PQprSEG8+JKlLGcEkVbotCSJEGd1YGjSNZ7YhKA/C1oVBOAQbqHyElyAIW0AENgU8KApHAQSmSbjPdsNkNRFAGAapoaq+VNeJ+G03snXP2uT8O0AIhMfbPZ4ObmBjcMcI7Thpq2Rmc7UqwTQ9EcmtorfdyxvAFHBEtqvNYadVmibdqgL8QOjcDRGPFZKaUA3c9ZYwwSl4T1D8RVexHOCWsCfZSwrAOJWhDQQ8DOvb09eO9DlJPcN01TTqtNMMmp+unN1TVxR1k7AM2UUiGiquuI4F36UXvaGBQ735RWfZqEZ9CI5YwGiw+lRLkVDRaiy0IAJ5ZHA6CBz/XsrPHwwVFJ69sNIkVj2aQZhQmyV2QnP0OB2u1V7xQAXynceHTtEAyJ10r/IxHkBsbQOrBQUAzaKhVV48NQT/UANLfjdsaDRGnHcu62LjB4b83O3MjWGBvd8fPjQ8bbud6Ii8GNWGfYdcj3Wmv4ZMgPJbJ0l84e9+842nz83Fh2jiPY74poj+83fuf73gUAvGa9zlOK6jiliZ4ryhjCObENI7JXfotNIPQHfjSv4jESu0L6b1cbRTbHbZKxq6oqRKyTc4RSiyWiNf4Re0basN1ucXp6GtJvRQYppUJQAV3X77dx28I4aBXS++MxGqwD7wf9No5uCfJB7q+HOsHOcd6h+yuFwdj0bcWgXfE+LeeInX1rrsiN7zx8fOZbD7GX7zs/Bm2GNoKDYZ49AXpp/vT2BCBMShS11DQtRTMlCTTLWyD4KuEcZSaRvAeU1xy128sJ54CmYTAUioF8DShxSmgoKfeMoRyKx0jmYWyPxOt5bI+N7ad4PgQbxZNjQ0fOBa0NkChkeR7Wl7U2RIW97fjdAJsA8l4EwT1MuaGvhyhv/O87F2x0jM8T4TvYgPjHO8CP7OTxAn23Vxo+T/6Old/YwIpBHjqXDGSlqCywAvETSGSGvFcsjORZ4+eLkAmG5mDjv91XsXEin8W/HTPmxyF1otjJb0kTElRZDCgyYkxQ1ISkVu4/n88HYyMh8PG4iaBI0xR7e3to6hrr9QpN3eDN6zdYLVfwjrhkJsUEs+k0KJBpmiKfZPw8odEGqpJKOQYPI6fSfPrpr/Bnf/Zn2Nvbw3/xz/85Hj16hCdPHiFJFE6Oj+n9oXB9fU2Gwf4+eRUl+giAUaTMeRFyXYdOKcA5aADTSYGT42McHRyiyKmyGZyHbTvUdRUMK2MMtNJIo0g56ruhl0sEj9YKGkR+B2jASzWv2yGZMvfiaCfp8/jn7SDSux6KAbDb61PaE//u00t7BULaMgZIx++3S0GKhbGP1oGsTylIedfaH66JPm+Z9CzaZGXuD8BC1XMdCdAh5XXfvHkTeAFE2arKKoBi5FD1wZiv6yqABs75YAD2myQr50bj+MEJEkNcUVVdoaprnJ6dASDSQ+ssc8SQHG7aNqQfaC1pRwmKaYHFfAGjDdIkISBrWwZlkKLMiASe5lPHsodAiKapgxdOAIUYUCWZN/QGG5NgsdiDyETvKRptKaRhWsau7ZUD35PJJ4nBHkdW7R0cYL5H/FuLxQLOOjx99hRt0+L09BTltsS23KIqK7Rtg7bseqPQ94qW793TXKlPoYfbqD1GJ9DZUD7HSrBEtV1fXw8MA1GGd8lMka8SkRMD/bGBIdcKQbeAFAI2JEnKFaGo5C/NOYr+qiqKAE2TFEmSDtM9K5KTomwSv9icDWCKppV2AT6MfceAlkrImNpuKzRti+VqhdV6w6lw9M7CjSTV4KjS2TLsGd73PF/L5ZIjtNrAnbPLqBIwT/jVaA4muL6+xs3NDfI8D3uPgCfCpSZkouJNNsypF0csB6+093j06FGQwyKzRK7GgIrsm3IdQJHJTduyEU2qZkh1q2ps1+uBrBOQqygKzGYzNE2NhIFkSc3d39sDvA9RTcZQip14WqmCWorDg4PwLrEu0llKozNpgiRl5TKS3Uqp0EbwV5KGZrRGmuUwSYLH+09wfHSEqqpwcXHRg1QRsEcghFRZpf6dVSVFU7UUtSSRTUqpQJotkX5yCGgHgEBk50JF0cQkA4A71ickjV0phdPT0zDn5PfDhw/D/mKMwXxOPC15nmO1WSNL09A2pckUEaLzpm2pH3mu0CLiBsfbjAJ0YpBkaZBlQA+sxPK9T1fnsXIOnp8nnH+ZSQIAAB/xgYTCAQTUe/HkC7jF7ROZJ+kdDj6c01elY8OS9ymR/VAUBQWluMouRfEYbQYcjbsOWUPJSN+JAaQxGBPzkco9xjp2ry94dC1Xfw3kz31mRTw/3qajiMEn7YifPTb8Yh1F3iF2RMUyfBcoFN8nfk78jNhOkuvvcuKOjVf5PbCP4ul5h80wlrm77JP4/Xc9exxgEAMYsd0T67nAbf0wlvtxm+I+F5tTnLyxDrxer0N/yd5weHg4mIPyLDHypfBEmqZ48eIFyrLEBx98gP39/SgKSmFvb/+WvjmcLxpamcE4jYFF+Sy2lcbAhNi1XjaSwZjh9rHzw692jEHWr2JDv8sxnIsCyt99iP4YdKSmxfn5ObTWKEuKEJpMCiwWewPdaFNumUu4QVnWIJ2f9oBiMgkgt1J9wSSlFVeRB+AtAA/jGODWHklHnNNd69G1Hs4C3ikYnSLPJjzXhhzP8U+8T48BpliXln66zw6K166kszrvQjqvVbS+ZrMpiskk9N/19Q28J/DsvuN3BmwaG4q7EOldIEh8vZwXXzO+B58NMQTlWlmU4YwdC+O+xfI2g3QMNMWbRbwBxqBUfEhan3M9V4Lc/z7gaNyGwP10z6Yw3hx23bu1pNSJ8SLVt2Kv6JoNQTG2xdMZb6DiqZe+0LqvJBSHEQvYJO8RK9p0boemrtFySkxdVZjkOeCBeTunUrtJgskk5ecKUEkLSSpRKKWgMk4BBNmwp29e42/+5m/w+7//+/ijP/ojvPfeezg83IfWwGIxR55PsF6vcXl5SaWs9/YC0ARP9zCKoqTgOb3R2sBtoQCqmjcnAzhNU4pk8xSV0nGqomyqXnskSJg3S8AFwMFR2P1gE9egcvSaN5vdnoZYoRgrVnF/75pXX/1gryXitXvbmzZWrCSqY6x07Vo7u9ZSrLDFCpko1BL676N3j/tnrIDdtfZjsGAcnREDedbaEGJ9cXGBS66qeHNzEyI34ogW2WSsFaN0SH4dCGcHbTGUHjid4vr6GhWnLYqBt1wuA6ghbY+juLTWHC5MhmPB1Z2KSQHvPCYTAie22zWDzC2cI8PTWgFDCYyQ1FvJT1cqloO0HvvIU5rDZOSn0FoFI3yz3aCq1mQwRXwdZPgYQBO4nGRpAMaSJMF0NsWEycWPjo/BphCB2hwp5eBDhJQHwt8AOIWYU1N5LUllJpkJntuuFYIxFo9LHK3VNA02m02YizGoK/sCgBAlIilz4lnatTbjKp51XYeooTj9k1KZEzgGHADAc6h423D0nPXoOoeu6/nzupaIWYtigiwnMKoopuijET1V+rRURdE6S0TtCQEJeTHhVKxzVHWNum7DHnFwcBD2E3FiCIgkaYVCQt4yWLDdblGWZR9VAgzWSrx3OecCH1LTNNBa4+bmBqvVCovFIoBNci8BbGSsYtAp5k2Kf4wxA3LaXQabzIcYbApkuVpBsbFb1w26jsjEr66ucH11jVccARSDkBIdN51OkaYJvLOhHQCwv1hgWvS8U847BqpdMKamRQEdcTQIUO6cC+mESZogzVPykpuhXiBgj3MO3g6N6SRN4L3ByckJvv61rwXATyr0OUf8d85R6H48fgCQZlSu3HHaktZ6AMSIbhNHGgjYRABpNYi0M6aPDIzlswBNeZ6ja1vcLJdQABaLBTuqEmTpXnivNE2pyqIiAGa6mQUHHFkeBOJUGzJUfLmFazzrFmRICL/e2FGitEbCYJlj0FaPAICB0cRp6M75wB9m247GNFMwos+BohrJSWGZEJsIcJ11sN5ytBW3T/dAEtms/X9Bn1AKIUCP9QxJxaCDwCbZS6ZFQdGI7KAAeoNdwNz40CMZGhf/kPGOx30c7R9HdIz3dGtZJ2O5mqZ9NNwYKBrrJfHf471dzol/y793ASlyjCkKYj39Lkdf/D5jPSgGT+NjDIyN32sMiI1trF2/d9kVY/vBe45kdhGXIoZ6Ztj3vB8AIHKfODJSHHdx28fnxvtADAwK+E/jnoZxEVtF2pymKSaTCWazWfh+/DxA7Igay+USFxcX0Frjo48+GlTf1NqgKMjZHe9Z8rcA7mmaB9oBaesuPVT+vfPwPurj4f5z1yV32ZG/7bHrPoNH3gs+7ULgb5/ytnbuwgXEASbfd7bDarmKzCKFNM1CCqTMEXEASWVYqapMUcIOSUKFJRJj0DpK6aZx9CwlySFNDh4Naz2cA6z14d/OkaNaaxOyeGSPj3Vy0sf7ub9rnYkz4r4jtoN2yQH6DcA5WGehFUfyRjZknk/g/d3zSY7fDbBJATqVkrHk7VGq95AojEtkDompvZOcbeZO0PpWH5Mdyx96AMEHzZ+zTJMyr+N+uw98ug+EGoNNuza8gYIxGnQCE0Rv8dAmjRqA3uskHclf+Pic6F5ZmvNzEPqZwvUIkYXC0JC6Yy2naYo0YUWIF6OElUv7xQhQikL4tdY4OjoKglOUO+kPEfRSljgec9ksBXSKKzHJkeU5jFahGswkz1FM6CfPM+IyCKAP9x33rdGK5h6IxNvD4+WXL7Fa3eD87BxZmmAxn+H9957i2bPHyNKMDLG2JT6HtkHXEYmz7To4Z6E88X9JMKT2/APK1DQAXNehaxrYrgW8g+s6VGWJRGtMiylURikYeT4J+e9KUTi7ZYXQKR/yasG8IaQkmhC6H08GpfpNepcRFM/TGNC5D9D8ykcw2G97z+SzHoDQ6EPme1BE2hsrSfH79u89bjdFz3goSv3wfqDQuegZ8f2lT3YBYoO7c1/F6TcxQCpKsbRXAKfVahUUcLqOOStaUoqUtqGCnIT6JmkGzUZjmmUhpUOMKSigbTuUlQBBtIFleU6ku5bP4/cyrKAi6s8+JYXKk2ttCIDx4EmloU2KJKMQ3MQ6WEvADTxgTErprPBQzP2UZjmcs0iaDErT+qOxjuciKYyL/T1kWYpiMkWW5ajqEpstVa7clttQct0Kd4Cz8PyuBPzQ2FrncXFxifl8jr29N6SQag1nHa6uryh6ZLtByZFNlsvgas0EsKK0UuMCuKVjQ8VxpRalOKqQ5yjI+OxsX7657bpQ1S7jlJzpdIos740xrYQEvZ/DJknouREAKXJSokUELCGlmyNP0xTaEPeZ0homSZECUJ2F6chY7ayDdQ1a42B0x8YrpSi2lqqlmLaFV4ApKxhDjgUyMDkEnSMnPFfzMzpBmmU4Pj6BSYjjIMtybLZbrDcb6CRBWVXwUPjNixcoJgXOzs5wc3ONzXaL5c0NR5IsoLTCdkME5VCg+W8ctKFUB6kAJqmkisG/ZLtFVdfQhtJBlVIoS6pstN5ssdlumd+shLUc2dS2yLKM52uK+WyONE1R1TVS5pVS0VolkGfC/UvOAAJsyMkQiL85+J54EhKK1klSkom6r/LYtpRybjg67aOvfw3eUSi/dRar5YoqJdUVmosWXdeiLkvidVOKx9twlA2BM46NOKU18skE8D6kb4sTiBTrCtZShbm26wBFIIPzHp0jg9FG0eiOOTOTNGNFniLlpJLPpixxzcTa+aSANgmgdSBRt87CMEm7AhMGM/BiTEJzKPWkjKdUAED0pyRJ2VBjkCQySrXSxNEYAEFKDQV68nMyMBbIswz5ZIKu7ZCyviUlso2mirWyLyWJobmnFY6PT4gDJqPoKessauaYKdMcXddhulhQG1keSV+G/QUSWUP8eELQbl0cYcapy1zlU1JBbEcgUTDYHUVSa1Bkk1bkZdcSNaGFD4RSh6uawLq6qdExfymJfg+vZH8Ts8mF9krKHjgiSjzh3js4T6mtfe0I+keWZgMnY+zUEN6QsQMM6KvXxmmqMb8rgL6YxshhAvQpVrFj15GFF/ZrmhcOUkUV8KwT9LpPIAhnYM17TqVWfQEG3h6CvkXXI+gUlEo4ToPrU49ideVtOtcucCrWV2I96V3uER+7nGsDZ5385n8D7HJwLkSM9zYKwr45eEYMbO1wGooNKPusRAUOgKmovbveaww2iaPCOddXr2W9qWmaAIjHdkie5wMeqHE0GT2HgPeXL1+irmt8+OGHmDLHDemCCI6CXnYlQ3AOnGqret7fGJgc66Djdx4Ad65fq3cd980L+qrXuePzx4Bj3CfjyJtws38o+2GHjX835hZzZg7ntDhtAaAoKKtkNp2xE4F1RutQTGdo2gbr9YY4VtsWdVPDGI3ZbEpzk5/XNhS8QLyltKaFQtc6C8UckkYnrOM5tK2DUqbXzaI+jcczvC+G83r8vvHvXWv7PrAYcR85DygPpwyUURztnoQ1MZnk72QT/o6ATQo6S5FmCbJ02CSZJD03yjAPOY4MkjKt4F8CwCh4zqvsBSEBSr0AFNQx5Ju7YRvGx31Ak3w2DiOMPQ7vEsU18GR4NwDd7ppgY9R7LAzzPBtcF99n/Hv8nvH9KRTdBM95HIUk7yXGc1EU2N/fR57nOD4+Rso8KcLfEMocRx46AagkfF28nuK9HKcmAUDBaSLTgqr1zKYFZlPibZpOJsFAVPITFAEARsGz8pMYSrf4/LPP8fnnn+Plly+RpSkO9vfw8Te+hidPnhAKbSkCoK5KIrVsGmilOJXHQsHDKIpKS0CgkwFgvA9gk+86tHUF27ZQjsCm7XoD5YGD/QNSFNMMfiJjIMTWJPy9F8ClR7qNSfqc3zF4hH5ujRW5sRKxa9P+hwWceoWqf9b4N4WxihJIz7XwfphvL8d4ng7bv+tvHd5Xeaks1rto4/vdtbnftVHHa2UMsMapOAABOSVzpwhpuNzDOgdYhc5L9Yv+/hIBMylyZFmK+ZyilyQqo+u6UE6+blq0nUXdtLDOI0lNKNXroQaRTeLJc86iLCkCQkOUNQGbLDorlXdo/iVpCmgF7xWsA7S1wVBJkoy87JwCkyYpsnxChl7b4v+n7s2WY0mSK8Fji2+xAbjAXXKtKjaL5FBY1d0i3W/8Bf4Ev7DnC2ZGWHycfugeVrGEUqzKzMq7Y4vNVzObB1U1N3cEcJOLtGR7ChK4QISHu7mZmurRo0e1G5g6zskEcFmHD8gyEnReLpd4/vwFzs8uMAw9up7AlI/X12jbFnfbezRNQyyQuzt4P8Ada7ovjng+fryGYmBOGCjWTIXfu45AOWEKpHuQGictjRyvOc1gkTEavQDIUaSf0hueAZBhGNAkYskNdwI7MyQavtpsop2U0rC4Xh0lVwyDBVJyJuxSATAlKCNbO/B5RidQWwtlDKw48WZAP3Cnso5tmOohmkISSHU9lwFqDRcIWByYtSbBIO0H41ouyxLr9QZ5WeLVZ59RdkwbVNUdbu/uKfWjNPbHGsemxf54hFIK7969i+uhaZoo6iq6Td57rNdrrNfriUNW1zUxSpqxlDt1gsV2ANOSDrGL89IuASDyLMOKWS73u13MhkuGuus6GK1RyrziIMI7akBALLY9RPA2hBCDa2EgyOG9x/39Pbquw8/+5E/w1Vdf4dmzZ/j6q6+gtY6soH/6p3/C+/fvcTgcsNtR+Xjg0lWxP9oS0y8o0mUL7PQrRckZYwzOz85wfnYWS/JkHIdhwP5wQNO26Hqas/3Qo6sHDINDc6wxMCBGPgut6xACQtvCgexE2/XY7Q+4vrkFAJSLBXJPgKysCS1ADKZBITnhVD5uea2ZzMY5OX1tAjJxkGa4bI4eOf3dse5cXTfMWitRlYvYJdE7h3axnCQDi6IYOxDyHJJnfHZ+Qba9KJAXBdq2xf1uS2B4xQ0UjI57s9XEdGi6NgIuALBYLlEtqtH/C4G7HHm0fTcBqiXRN71/ukcFKudVkuTiZ53ZDFmWI88LSiYE1vQ71uj7AYfjAW3XEAO1JeH8gUFkEgxXAINNPgQ4Hv9hoNcKawqgcwdP7Eh6TRcTLjFxxs9MxMMLno/i28s6FN9QQHTRtBOQQKQaTjEGJdkpf5P9VT5DA7B6LI9KbYCcY+pnDAwuTQEMmhMPdS0fqx44BajJ8dBfOd0lLv3b3F8/5a89BSzMz/vA95Hzy+vUuL+B1zLNvrGDZpidc3LM44skDojXw++X55A+R1kXqa/7WDyV3pPEGIfDAV3X4fz8PPpNsp5ub28JeFguYxxSVVVscjCJPZNrVkqhaRp88803uLu7w89//nOs12sMw4CiKHgvqyd7Uhrv0Xmo86pEsfPPmD+bU4fjPcc/+bqZT5uOu5KsvLzywVufjEHH+HX2+TE4fyqGSMHtJw41xjTz6xjvYXptaWwcAjV4EB+rKkrkljpBX10+Z8ZwhRAC9sdDbKqy3+85QbWH0YabS4GacfQDus5huzsyw5WYtAT0gxtxeXivABh459G2ju2JhTEEQsnelfo1D9bGCVuQ3n848Ywmw5f8bRIv8jPzzhFLWesIgOV5Hhu5iK/wvw/YBExo1+mRbsKaDao8hPlClwxFCETdybpRAAAgAElEQVQ3FiNFybFpkDhO5WRwJUs/Ox4LvB8Lyk/e3wkjceqYb0gxI+HH+5EsCZ2Lr/6Rc6agQvr69N+yX4z3M+4f081r/Lf3Hn62+aWfCVC3IemudX62oRKzRQWtDQ6Hw9gRgCetOA2iFzLX8BINDXHqIxMDpGm12WyQcScjorwuUJZFLL+RcfTJeFBLcxV/pnEnQe83b97gt7/9Lbz3+PM//3N89dXXnPH1aBoqb2i49XHqQAXeABdVhfOzcxh7ACBGl4afunlQx47BGKgQkNkMRmsMQ4++61BzwAVmdtAcT/V4pvMpGqUQWGiT75n3DJH8TDf/NOuVzsH0u/wsa+/fB2iaf55sbI+vq3QDSefdaWBJXnPqs6bnpEySzPmHgoCn1lZ6fY8Bv6ezXtOsozjR4sCk2jvSjYtE+uSZyD790FElEeY+Zn2plfcoiJhqGkjZzXK5BPjzgbGboFaJnQkE4CtD2Xgq+2u4O4oDghrFFMPYanxg/SfnCChXGVParQZQwBqLLMujppCCCCtyhlyEcyH2kDL+eU7BIFDAhwpdRwLmbduiZ+HNoiiQC6OMn7HRJjJQ5LnHUjZm/xRFAW1MZGJMmKFax25fNC5Uzx4fiiIWk9LUoh6KbIrR49zwnhg32kw7cQpQLHNEG2JuSKbfB9I88sGj7/pY6nlyTs/o8toYmABkWRHHFGznJSgk4IGdXW8A9NHmU5fF0RkhzSSwnaQylFH81PP+oWE01fxTRyGH47EGoHB9fYOiLCjI9567KzqEMMQgQNgJUcOHQbixSYCK60OA2zS4ksAVQGR7yVd6DlmfYtuEbTEvsZK/TTWvRodwcj6MGnKRJZn4KWIOZG+WexPGo9gOpVQE0aS8GkDsPCN7YAiUGR9fE6K4rFzHYlGhZNYc2R/P4MB0rswbtIhNGj8LpEdkNHJHzBLfE70+3YMoYEuDKLq3rutwf38PYyyKgthPvZNORmP3XKgRaA9+TBT6IGwatrEBsWtVGiiJrZv6iLPsLX+QPCNjDLGaw8icls+fO4ZTGz7Ecxpj0A8D2q5D23XY7/fkt7CmXZZlkcFmcmEWWmgR7ub7GtwA5fXIfnIuMtJCQAQKFa9bKEpgBZ5X0i3YMKi1KEpYY1CVFfIsQ1FUKMuK1zXNh6ahBN6xPqLtGgw9NV+Juk6gdT3amxCZclOwibcMZjXSOnIMCCX6gwHo+451Usa9bN4AQZKLDzL7iZ9yCmxKfeh0zYcQImAYXw8g09O9GUD06x6WYRl4PzKh50H2Yz5Samvm9zE/z6lAWX5O3/sY0CQ/p7HSKT9mDkhNfPw0wJ197vw49bvHfLn0M2U85j7d3L+aX18I85jotC926hzpueb3KV/ii6X6ibIXSRwwnROi2UXzUXRWb25ucH5+Hsuc67rB4VA/uMb03v4lv39s3NPYOLAP99CnfjBQpz5l8ro4RvEtp31qYe+F8PA9mMWhDw+VvvDR16TlXPPPl5/jq1O7NVtLkpyQOJQqd4iJXVUlAGos47xHkRdYrzeo6yO22x20Vigqkmy5v79DUzcoihJlWaEoCyyXK04akGF0HbGFnfPwTuQl5Fkwqw0yN6cNctLy23Sunjro95/GJqZjE988mUMKKp5K2LOPfe5jx48DbAoBvuvgWGdCphBlTThbIJkazgwJRTiEgEE2Ly+GnDK+CmMrYFprQbwUyNhNhjhxAue007nhf/xWwpOvfSwwlu/isKQ1miEE+OFh8EyBmZts3nT9oxOitbggkv2TySmTJTXAiO9DZJ3IolR8jpGqPCS19um9iKN/cXGBzWaDssiwXi/YKJMz9u233+L169e4uLiIbCfJLHz33XdT/YfE8X337t1Uv4nl/589u8Cf/OxnqMoSFxcXKIoc6/USVVVAACTPGTZxhlNBUGMU8tzGcXCux9///a/w3/7b/4m//uu/xt/+7d/i888/hzE5DgfS1mmaZuI8VFVFgWpHGgifv3yFqlri480NPl7foG4a3N3eE5J9PKJTGiYAYfBQLuBsuYKxFu2hhmspEMiLApcXlzg/v6CA040is1NAg77SgDVu4gyoccEY/520nNIM23w+nnJu/l2OGCTPga3p5z4G5Ka/SwPMBx8z+91Tr1FqFHCnLCwSLuTpczzm5AiIIc/oMYdOxKGdc/j48SMOhwMOB8qAW2txcXEB7zy6bmSSQCG2I3Xeow0i2tyiVx2Gvo/n6LuOssoscNi1VGK2XC2xXK1wdnaGLz77PDqjhyOLYnfdeJ9h1LTIea00TYu75p7sjZ86ZmnmPw08aX0sIwunqspor1JwTFr4ks6Pj8G9UgrWUEZ+tVyy85ahWlIXv5e7AxpuiX59c0N6QaztYjKLzFps1hu+/iYyvu7v79G2Lbb39whAZAjJtYt+jNHUhSsNErxXCHDEXtKaOshoDWUMckuUamI9MZjJ5SbVUNGza1piRLJuilaKS2CpHK8oqbHBerVGPwzYH/bo+x67+y3Zx4FK8KAVg08K3dDDeJO4agpKG2S5QZ6RGHsdwXwP73poQ+LvSmtkNodWxLZwssf6QB3/cg1rMmw2KxhtsDvs0DQ1XNuhqTvW86JAscgLGG3Qdi380OF4rHF9fcuC3PfI8hzlgjqoHY5HHA6HyF6SeST7YKqTIeCb1hrr9Tp2ApN9UoIqeYZi30VvQ0Sr5T3pWpY9KF3jwmySckQpF08/S/aq1GdIHf30M1IQWf5dVVWc42I7pGPbl19+iRVrbUmA8/3330d2h9iZxWKBzWZDrC+tkVvDbJUjnHNY8ZqTYIkAYypBvb29pXLBtmU24Bh8xXLMjsroVus1zi+oFbjNidVVZwWV6NZHNE3Nmmwiupsna1hjvz/gw4cPqKoKz5+/hNbELiBgV0B/0ggKPsSSXxU7p2soQ2Cac+TzETPJI7M6gkWiDyfi11IGpTW3o1byb3oeIQRYTeLVBIAcISLaUMR21or14saGeBgGR0CS93yBIbqYXd/jcNzz8yQgZlFVyAvSAznbnENxF90AutfgPOq2wbElYDZIZ8u4PZIn7LyLwBsU/U5lVLaZ2zyWOhRZhkW1wNdffolFWWG1WnGwtMZ6tUGWZzQvFH1WADVwII02h57BpmHoec5KhQEn6RR5FTTfhU0nFysMIUcNKBxp+g1Dj8OB5srxeMR2S+y9u7u7iWC8rPlhIFYmMALLl5eX2Gw2qOs6CjmLXxhZL8PYil3WsTDiBeCN61ABGdsQSWimnSjFZsx9oxR4kPWfdkCkfWIEe2SfFKBCbFxqN8Rv0FyyOWc3nPLVUpuVJrnEz0g/Nz3SSonUjxf7ltoCrWl9Pe1HPfzbKabRvEIjvaf0fh/zS+M51VjW/higlLLoTo252DkZJ7n3pmniXJJ5I8kI2ZNSvTfqZEqs9WEYIiv317/+NbbbLf7qr/4KP/nJT3B7e4e7u7von8t1zgHBKbD7OJB26pB5JDp3ksA78crpGD/4nOTZzACnh0jV9NmkjS/mc+AH3AFm0fnJ4ylQ9xQIln7Jc1NKxeYpy+WSvrgipqwqnJ0/I4bbivZhSbLu9nvc3t3Q/mJIPuX3v/89bm/vYLMcRVmhWlS4vLxACAHHw54qYW57tF0NrS2yzEf2PDGdRL8PUSuz6ygRLRqHYyLETdb6Kft0aowE/Ev/Pv8aQWoqk4dBxFj6fohsMmKg/jBQ60cCNmGMlif0uSn1joE/3tNPoXpjMC2AUkSVHhmMAEB9epyePFJjeWqCn/r3fOLP3zu5t8lr+Z4StDn9iBA3ej5faqwAutl4juT9Kv0HvS3EMUzPQJ+d3rfjjiekHzIa8/hlbRQ7Gxxd9263w4cPH2CMwWazmVCVDdesTjPBgZ0Gpttr7rTGbAPqiERMqsWiiq2qjTYRJU6R3hTpp6+xpItKHHrsdjtcX1/DaI0vvvgCl4nelDBIrDFRN8WKLgYH4GVRYrOSUpYOWmnUexIKHdyYyZd70FpDc1bEeY+h64n9JM6XiCEAkFKj8Wu8l7TGW14b54gKPEtOZ43+1xzzeYV4LfOsxGPXdcq5mb//X3KMs3oEpk9uzT/w+tJrmxv2dKOTDUSAJmHKyblTJyl1Ceh3yf0HLmlg0MENLnb/kjsJcXPVyFnEVrrBGQZUjNZwMTOu4ZWKY5OC386NFOTgx1a+WZYnc22apVSKwBgqIywmjFNi7yQZ3zA+X8k2WS6hUUrHIEuuyfA6BMZGA5m1MNYiLwkAW61XXEKSxUBC2JVs8E49xEef7/weAdb9CsS4gAJ08PBBjfkqyV4xsGSMQUCAcuxoBO4Awi+V8QpALC1REuSF0blzXFrX9z2cdjE541jvixIvD1muZOMDlJ9l2BL/MqSLVbETLPPAe8Ajsk+0F2cpfZdk6lh0uu/hEWBYc0ec7jQIEEdV6NopMw94vERd7k+CgrIsYbMMVVnGxhMi6j0/8qKI5RKiGSS2V0TLpfxGAliZa/KlNLUNpqkxrvX02uTaU42atHxOXiOaatIlKYQAx2CXcw5N246BRJh1pFFq1OsbXYI4Z+e2RcYwLc3ygWn0yfoFMz8DAs0nRUCk8WFmq0gfqCjL2N5+GByUIjbLuL+PTTqM2B2jYSzvoyDQSZG+NPK8QJ4XUIzvUuaX7F6eWVheI4Pzk2unoHGcY2MXWvI3AGKQSqZc1pOAO2NJVgZjs3FlKA1XcMDqBvhAAI3oadE4G1jr4T3dhDjxvXMwQUt8QetDAiFyTqJJUkbsvRn92rgH8gn0uCcopeL9Ka2RZTmVLmfJV0Gsbyn51Nqwv0Hl086R1hbZe2K1xSQuMzjl2Y1d7Tyk85yMEQXuFKyXZYG+75BnBY51AWsz3gcb1HUDrSnRERm2DBLK+hB7IJ1EhREoQJIAzUopLjUcMAx9XDOAAnVLHcW8hdlkMAahEiQDiOszBahFVDoNqFNdKFn/sq5SmYkUZBC/dx4P0PmmzT5S/yaNGVJfSM79VLB56njKzxrnEx7sh6fAnfSY7jcPf57fy2M+1dQGJdecBMfp13ys5p89f8/8GaWvHRlLdES2cbInpX536of3fY/9fo+7u7uxU6cSlvZ07B+CPvMxPnH/s/el1z3fd57CAx4DH+bxdfr6gAfT4cE+FytK5PccbJ72rtMj9cgfecWJeSc+zfzaPwVKpQQPYNQhHmK8KckJg6Iw0ffpuo72Qq3RDwOKgpqGOFfBh4DlcoHVaoMQSGdPqZb3m9F/C8l1x0tO/p0+xwkAG8Z7SL9P5/YnRvnEfJJTy/MiK578x/HpHPz+1BP9cYBNCKCef2OXDqM0fMDI2ol0fzDgNArpmXS3FuBEJqJ8RBKU0TcppwqTUZIFdGoBy/vS708dcwd5fp50AqXHvIxODBeAmFlQmrNzDPLQPZIjII4Z3b2Ub1FAZSw5FMRQCnHI6KJ8PE9c7DzWShgz/Ooiz5AZi+1uh9vbWxR5zgylHGVJbY73uyNub+6ovfirlyCwyeFwOOD//r/+H/zdr36FX/7iF/gv/+W/4urqEn/xF38BYy1WyzUym+Hm9ha77T1fnGIBboMsI/Fvay1WqxXWqyUuLs7x6tUr5HmOqsxZxBPMChkdcaMNtAZggaC5XGqgmn14w5neO9zc3uKwP2Doe1xePsN//OVfIc8LWG3QDz2aukFzrPHy1UtcXl6i6zpqUR9IXwEAXl5dAtrg8tklXr3c4f5+i+/KCsfjEd+/fo26adA1DQAVM9M6GwXF4amF8X67g+sHEm0ucmhNQUgaMBFA5rhtNmlT5FkObQzyzCLLLMC0dqUAmzilwPTndI6e+v5vP9SjCO9jxi/99/xaP5X9eer649+iA5+unSmIN38PMG2zO78GyZgLsCFZMsm21nWNN2/e4Hg84ptvvsF2u40siSzLYi20BEnC+IEJND9CgOEyC7lW7zxCIMFX7xwJADNrAgwKr1crXF1eERNis8EwDMhthkaPJUJZRoBQ1xvUx5qccTN2vRK/IZa4sOEUfQPnHNwwoB96uP2BOxpZaGORFSWqxTKWN5CAObVqp2y9ilTdRbXA8+fPUZQlLi4vUZUV+sHh5vYO1mrk9/T+7XaLuq7x3bffEUDMelhlWWJzfoaiKPHi+XMUTIUO3uPm5iZq3ZRlCTcMyPj+0yyngFGDc1B+LDFM59Ug+gj+CK1AQr7OcfAnlph+0FaC3WSW8fnavoN2GrY+YgijltAwDNgd9qypckTXdmj7Fl3fS0hJc4WZUVFfC/SloKC5HFGJ/qHS0NCUqesaBBeoVM8HuABAGxgWuFbM3nIB2O33CCFgz50HjTaw2sIFh56ZyHVN4LrNLWxmUS1yrNdnMMZiuVpAaY3jkTSGjLV48fLlCE4w+ygtnRN9P2kt3XUd7rfbWIIpoL8AjJv1msu2SYMHPM5d3+NYk4aXAEmyHvOMAu8sy7BaLmG5K5mcs+RubgBoLjBDLtXFiIGrvG4YmOlKnyMi8IYZTcbaeH65jgCQqLfWUcA2ZXm0TcPMuCYyEjvuOChML6NpXnbcoawsChQMspEdQizvlHHouo6uNRDIpNSo55QXBWyW4Vgf8fbtW/I7rOGxCPBQsHmOSmvkeYHVcoWyKvHZZ68YIKAGHffbO9zd3eJwOOLd23fohwFZUSIrAlbLFaqyQsHl9mRfyaZqBluyLEdmc5D766MdAoAyz5Ex8/J4rNF1Le639/COmhlQ0sUjgAW2e7rHLGedtobKjhXbKfGz8izDq5cvsagqIFm1dD0Zzs+fQWuNu3tiiH3zzbf4wx++wfn5Gf7sp38Ga8eueR8/fsBut4VzHjc3t2QDMxPtvIKCzTNkeQbvqPxMfDBAfEMDbQICLAcj7EcGYju1/YC2GysEDnWDsqR21VVxB2ssSxwsUDDLylqLRUWsziy3UcOOxoG6AQIijM2lHQzm1HUDNzjUDbHo5Fop0cgMEheSvZDsKTGAJHlH7CVJvggwNAJPo8QDtdkmlvpiscLl5RW8D+i6FiEgnpe6RrVo247ZTyNQ65lNsFhUWK2WGPoex912Etjt93vUdR33qZSVKHu6rKfUn5fPECBM9ghZY6m/n4JNssbbtk38iinT5zG2T+qbyHtPldrMfaAUWJhXc6QlqN6PEiXp5/5rkpVpXDQBs04AQJPPT64tfj7HQym7dF4mLcDgpFIkOZ8k/eTf8jp5fsJ6EnapaCNKTCHaeWNXRXqekrh4+/Ytttstrq6u8OLFC3gfsNmsY/n5HBQSWyAaOdPn8/DZT8d+BHcILOmpq66TDpNz0O/pZ6ViDm6Ehx4CU1Nt2IfMpjkoIUH6v/EIlChL74E+/3SZ6sO3j8BkVVKZsTRo+vjhA/b7PazNUJQVsrzAi5cvUVULrFYrLBYL9MMAm2VRN3PwDpvzC3gAZ4HYTOv1Gp999hLOObx7+wbHI2mEdW2PzFoEaG7mE+Bd4CYPLgJYsv7FZp0CmeVeTt/nwwes1OPA8PzLB2a3Kx0BsK7vYjWZ86Qj+EN4az8SsAkMNAnYxHXknpxmLzyDMOZZFURrRY2ZHogbkExnQY9kbAOtnqBAGdnk89P5/1Rg/UOCV/k53Vjmk+OxjUAmjmR2Tp1HQ0OSXCqirmP522gk0paEKhqwsSwuMSbJ6+J4Jlk0Gm8afyppyaCg0LVd7IZG6DABYdJZC1DYbM6gNQlvH/ZHfPvtd/jH3/wjNusNvv76J6zn0KNQOmaxgg9omrH9qPc+Zj4pO0dBwcXFBc42ayyWSwJWLAmx9b1j3ZiUBmzYGdcI7Mikz4BKD2rsd4fIDFksKjx/fgUFhcOhId2nJEBZr5Y4Hg2h4M4hMGW5KisWDCZqrdUG27t7BlMVwFn+YXCwxpBmmICqEsh7j76jUqksz5npgAebkQ89AkaNA9qcHHW8S6iOwXtoBXit8DC3Pz3m2aF5Fupff/DqVOm/aZ49ZjRPbaxPZdTSzW8ODJy6GvlJRbQpxOuR8/3QdS+OgTihknGdf/U9sef2+30iaE0bStpW3ehRs8k7j6BGxt/cpiAErgNnoCKMGhaGndoiz6OWmpTvpJlWWt9j2Y4AGTq5L3KQp86K1iTuKh1bBq0jO4cCt5GFZBlEIA0Ti4o7hOV5gTbros0ryhKr9RplSTXweVFEfaauU2hbhb7vIti02+2w2+2wWq1QLqlsb1HSva4YCJOxEsBPax1LeUziqKrEPgCJfqDW43YyDj5ESBeQ0sCeTafsWWSbrWj+aEPrXk6hwMCFRz/0UL1G13EzBdaBGfoeXd9TCV0/oB+oM5xE5YETLRpSQq5j8kAHGv+8KuNzDmoULfeeAvAQQnxuGjp2JxVArGP2S8/2TkFTgwWMSRE30LyprEamNazNsCgXMNagWiwABRzY8Vowdb0oCpyxQLWATeKwdl2Huqaymz2DXfLMhXkQgwytYzdFAWAEqJHyiDTwE2AxyzK0XRdZDKmOksxvzaCWwcNACcnPqRBxCmhF28B6EHJ/aVIpdSSlNCjVMJRgVMroDklQPA1IxlK/IicNisggYxBamMhyrSnAGpuyMMOsKEsc+RkorZCXJZTSUUdIaQObKV6zGywWC1xeXaGqKlTlAlmWY32/xnK1xPX1Dd6//whgoASYUijLCsvlClVVYrVa8hiInhKNiWVxawpgCJAQbZCyyJFnGZdm7amTnneRCa2UZlbLADc4BE+AqNhAN4zNAFS0hxaW22CvViuI1oZi57KqKrx89ZKeozU4HPZ48+Yt2RJjcXV5RZ1kjYEPo2B/1/VRJ8556bBFrE2bZcwaA4A0WclWRKnIYqI9gAMDR4CA91JiOArB79m+dQwON22Lsm6Q5znNeZuhX5M/Uy1KZvJlyDPuwKk5ocmlhdIJtWs71Mca/dCT8P3g4rVaTnKJv4oAZnSLDhYiWCbJMirBHIGckaUjQa00CKL7pIQj6Zq1LQFBAgxlWYOuy2FtE5kKSumJL73ZrHF2tkHXtrBawSelUkVR4HA4RPsv+5uA/7IfpCxL+Z2IQaelegIkpf58WoaX+qlkR08DL4+BTek+NQenTiXLUjuT/jz3edLzOPZtT4FNj/lhp3yo6J/MwJRTYFMaaM99Lz1L4AlYlF5f6gM+FnMJMy4yVNXIPJV9I/2dMMItJwlGsHAszZL96HA4ULOA+3tst1tkWY6qWsRxlbk0HbeHQB6N0eM++HwueEmCyJwJp3zXh2MxBf/oNY8fp0GLdF2E5HNlLX+a2fQDjhPXN3++PyROkUSq+OtD3+PoqXScfImckrDWYrGgMn/Nvi1ASTtjM8Br6kRalPF8m80GF88u4YYBx+OB504Ja1lTMmH2kibf+KzS9fgQ4Pv0fT2FYXz6zfJ+AQgZVwmsowhKqKpBjYSaMT9/8vjxgE2KWuoVeQHLBljYALIgAxtilTj7QBqq8r/D2A1D/qgYJZQ3BFmECLHsSc4V8GnE94c8yNSACNI6p++fMnxzQ67ZWU+NtThY9DcTHaN0RKaXKEY+nbjT14m463Ryk3GI16+kPIOEvNfrNc7Pz9G2LW5ubtA0Db799lvsdrtYyrZYLPDP//zPDOQccTwe8eHDBxRFgbdv3+Lv//7v8cUXX0BrjbOzM7x8+RJlSVosIrInm/KzZ88mmaSyLDl7XdJcZ6crKHDN8mlEOAXx0md5PB7xP/7H/8Tbt29RLSr84he/wGevPuNYS0VH5PLyEuv1GsvlEkqJ0LimTnOskxUGhwEdDBQWRQl1dgb/1deoj0dk2mB/OODm5ha7/T628jam5VbXFmFD5Rtt2wFKIc+LGBQpbWIwpSVo54zKPGsUg8DgEYKDZ6BVBN5TJl06/06BoHL828AmhR/CbDr1+1Ng01PnSNdMesx/F4TVpBU0OBspnKFHHJSnjnR+pYFmGoxmzJwQzRXJwAFU/rPZbMYgyFFZJTy1uEYY167MTZn/5BT2aBtu2wtywM/XG+RFTgL6eQ54j7ubW+ridn2D7XYLm1Gpmlca3nD2um0xcJmcaVt03YC+HyZ2SQLTSD8WgXJ23qUeXhh8m80mjqW1Fq9evUIIIepwpFo0V1dXkemltY516xRMUzept2/e4Xg4YHt3j7ausVosUGQ53DDg/bt3AIA/fvtdBE0ACuRFv0l0eIZhAPg+ZP6k2Wlgbh+nc8qDGKNFQewMYl947shE16xlLmtiIlG3ShYzd9RxsOv7CKrd3t0ilp95z6VT9OCzLGOgi2asCCVrKXcxNpYwtXULbSw2RUkBsKbEwPF4QN00pB3VEtCX5ZZEyjW9P4AcIQUgsxRwnV2cQxuN5WKJ9WoD56iTVT8M2G136LseeZHF7lcmy6OmjuzRnm345eUlVqsVXr16NWEEyFxarVbx2V9cXMRuP7e3t/E1aZCRdnOUrqiixZJq7QEjkJMKdd/d3U3+nWrJTEWnx4BJzinZb631tKukE5HkbsKKSDVm5G8SlN7f38/8gLGT5cXFBQAgszZqndH7aM6JHSHbMJZ2kC4m0LXNZP6miQoZx/pwoHUdeG4p4jYbZWG0Zfsk4ABpIqVA9bu370mHjIESeg4EGNI6djCW2MYCqBL3iPwOHx1vAIpAcPJzAs971joKAYuKWFFt26I+1mTX7u74nnQcY+eoPKJrpG31csJcESH0lNFSNy18ALb399jvD9GXXCwW6Htisdzc3KCujxgGh4uLC7x8+RI//enPsFqtsOEOij/5yde4u7vD4XCMYOn7j+/RtR12uz36voXJLHIUkV0ha49AmR4Agdgk50QgDK1+ADEdSHuX9x5N2+Ldu/cwRkfGowi2U6lqDmMsFtUCmbUoygJZZmFNxsCXovcqhSyjBEjXtuj6Dm3TYrffY+gpmHJugDDss8wiywk4s8aCGPWcEQ/EtCAQ+RiZI2VZxrmT53n0IauqGm0sA63v37/Hfr+Pem/39/cRAJB7E39NnqWABNLNTrSgMmvx4gWxK2k+GCRJ7EoAACAASURBVNze3mK326Gua9zd3QEYy3Nlr5sm9+g5VFUV7UDqq4q0QWo75DWpTyrv9/50WdccgEj3pBS0mtunTx2PAVsp6NMneqkyrnIdj33G3G8SgP9UAJ0CcXM7mx4R3OPfp2VQ8ozSe3oqYI/xZQixzDodV2EupRpgMo8e7gE0p/M8x3q9htY6zrVvvvkGSil89tnn+MUvfok8z2MiUq5jvK7Hn9fcp53e1/g7sfV0jac1m8bYL4wnCKdeM/OXGYgQUCy9rjB7JvNn+O/GbHpwL48/61M/85toT24aOJOAlJolUUD5f20t6rZFURQ4/3iO5WpNSSdLydLlmro67/d7YpuzL5/lGZqmA+BRcIfW5WqN1YqSIXVTwzuHvm2ZCGAonsuz2IE9TbrJl/c+6num9//YmJy89yfGbpwrnHxnICl9TUwsJgnZp44fDdgkgXyeZCll8RGjRY2Z5eQI7FxPf4mI5saJTx8SP2s+aBOwKTxYb/+q45Rxm+sknHpt+h4AlBVeLKDU2KFj/JuNgqlpwJca+NSQS6b11MSbb1jy73n2AQCGtoXre1xdXeGLL77Ax48f8fvf/x4fPnzAr371K3z//ff47LPP8OLFi7jJD8MQa5evr6+RZRk+fPiAt2/f4v3797i4uMDz589xfn6O5XIZnYHU6T87O0Oe59G5lg4PeZEDSDsskXinbCLpeD5lfOq6xm9/+4/47rs/oior/MWf/wWeP38+AQmUUjg/P2fHQPQjVCzdM9rFwBEBVGaSF8hNhiIr0XUdMmNxOBzwXfY9rPmIuq6x3e+glEbf9aQ1k1kgBAyONCiKokBA4NbKFUKgcgurNKwhp3PuJAjgSr9zQHAEFqqpo5JmgB4zYD/EoPygQ8n/Pn2+fwnI9Km/yfEALFAjk0kpxWDhFM0/tYk9NR6pjZFNPw0sZQOR4EbAJnGYyrLE2dkZQghojiRMXKsj4FmI1c0zXpxF8tzxoqcsttYUJITMY/1yFbui5DZD8AHb+3vUdY37uzvsdjssVyvoUsFr7qo4kIMZ7YY26AeHYfAR4EztgzjfaQvhtEVqFGBcLqOmgbWWSki1xvn5eWRYdF1HnSzPzycg/W63i+cOgYS2P3z4iP1uh/1uj7ZpAB+QZxnqusbNzQ2BNre3FPxrDaXVxHamDiqQsLESsGnOgjw1r6ihRcCCBSYpSBwZNRN7yokTrRQyHruO16w4iU3TxIBIDrGFMq7jBSCCghGcMBmszRBCh945WBBovVgsofUIiDjnMfQObddFu2K0hbHyftKxU0oycxZnZxssFhXOzy9weXmFrutwe0uNE16rNzgcjqw7QqDkmDABxs5aIT7ji4sLfP3111EPIwQqZTkej7FzovceL1++jCBhlmWRHSj3DSAK4grYI2LwKZCTdpOT5zIvJZHARwKOOfAja1VKJuR36fcIYmIMtNJMuZwv7SQpgKvcpwTdy+USz56RYOlms4nZ8zzPsd/veZ2S/ICAJ9Za9F0XQSFaOx5hFsyl+6QxhvYeXve7/R510+Ds/AJXz5/D2JQl3TEjw0I6Rsp9f/x4HddyKvwcG4AEDxUow0tC+VT2MSQBZ/o8xM8BCGjxzmG/38M7R40HypI0k7gca7vdTTRXxC4NfY+2btjPDBQcrlbIcgE6KeATe9wwu/D9hw+4/ngdx0n8sjzPcX9/H1lzZ2dnuLq6wpdffoWzszN8/vlnKIoCt/f3OBwOuL+/x/X1NW5ubjD8g8NuR2X2TdMQ8w/C5KI9vePOgbFpCl1A9JuVIrZTDOLUCOi6ocfH40fW1nPx98TikoYyo6h/UWSwGYGJtGYBq2kdr1YbSoA1JCjfNC12O+64Vx8SYE9zKXYGrQ2KTDohsu3UDLZHBscYnAobqKoq1uCkhANAycCu6/Dtt9/i+vp6onX4/v37WFZrjMF6vSaGa1nGUkHZo2Rd1XWDYXA422xweXmFRUUNZvKc1tf9/X3cP+bJYwEi5omkVEw8BVCktE7WADCKV6cgh8xvshPD5FxPJQZTpkz6b/mMp8Cg9PXz8rnoxzCr8lQg/ym/K41HBOybA2lypOBW6nel45CuZ8ckhNS3Ss+TxgCpjUtBm1SvKR1TYExKCdAkn5u+Zrz2EGUQpCGF2PXXr1/j/v4eXdfjl7/8jw/AyBBSVtYI+tBnnGYxPQaqyPilJaN44rXzc0/HJzwaZ8t1nTpfqoE0ghjpm5+aMwnY8dgrJqDI08SN6c/JOUNA8A5912JIP0opQBkMzqFlmYfdfgdrM9ysz7BYLmGzHHlZIstzbDZnkYE94glUSkmMOepmpxQlKBaLJWnJtS28G9A3HRQC8oLYoNLgIWU+p2ATzRUTn5Gsj8fGKf3+5Hg+iI1A+8oMM0nX52NSQfPjRwM20UUPcNI+lTUvxCiJYKVQwCFlOAHE2MAIMDnnSDeHHVrFwSSVgRje4GgMA4CgKU0UuJRMGRM1ip46fkhgK68TI5LWE39qwY/vpfISBKB2NaheXTYiLrPhLFcA+G9jRl2pscsR0fdEWFvH0pYx9E+dTyRr/mEmRTRJ8tzAWhWpqLvtFrc3N6iqahRcZWqwOMTiDOx3Oxz3e+y2W7x+/Rp93+P29hZZlkVWhDBAJFiVTkXDMKCqFgROsg4FPUC6ZMvldHILRFscM0ZiELRWkW3Q9z3evHmD77//I54/f46rq0ucnZ3Few6eAKSMW5t751DXDm6g9s8U+0k3Ls3GbGSMUYlfjudXFzjfLGEMsbnu7+/x4fojUdO7DgGKOgR1Pc9H0oqq6xr9MEBzGWM/EOCW5TkLpya0bqUYjaasBs25qfaWbP4phXnOvpvPzx/qYDx+hOT/dDWY/+aJc3/KsH7qvU9eWWI8U2aT/O2x958Cj2Vs06BSXitZ6/V6zYKCDmdnZ3GtFHmO5WqFvuvxvnsP1w+kvRQCbJYhz/J4jfEZ83cfAoqcytkoU7tCUeR48eIFzs/OMbghaslstzsqTdrtcNgfyIawU+yGseU0QAK6Wmv0fph0olRKxaA+bUMv80rW72Kx4E50FETMGR5iGwWEkkBZ5mPqpNNrKVCqqgqrxYLGRisMfY/nV89x+ewS2+0W+92emX1gdiyVXxc5lcdImWsIHtvtDn3fUYkT7wOyNoRd61JwQp67gLWenooABlBkj0IK8J9wgFLmq9DfPc9Dm4hHK6WQM0AmSZkYGIQAuHG+khM+ZizFJvQDtTTXhjJp3gfWCKJMnQKwWC64+yAnfgKBnNZYnJ2dsx5SFcdwsVgg4zHs+g5KGdJzsiaOo9E2JspC8FgsFmi7dpJgkOcsTrKAbW3boq7ruG8Kk0k6RY1O9QgOSfZcgvR0DwYQgcY0qDoFvMhrJYicr+WUnQBQILLdbuN1TjPMo2MotlacyXmmXICsNNDy3kcgarfbwRhDwXZdx255NH4UpMoa827sSuQZkBYWnNyHzCfpGKm1BnhebbdbHI5HZFzaq9UIxOS5lIpnca3TvTvsdnt0HWmLOediKa6UbRL7JgDwaNuO9XwErBeh7jH7JzpARhNbRmwtmLkUeL1kNkNRkqaG9z76N26QAMzB9QODpmex1bXh59C2LcZuviqWjAIq6mkZTYLhTTOyZNqmhTb0vu12h9/+429RLSr88Y9/HEWFQ0DfdWhYFNuzfwC+xrbrcDgcIxATAmnCkQi3i8m0oAAqCxMfj4JUSZDQ7wzJLbCo+TjPqdxadjnF5woghtngHbTqoVQX4w1iFg6wNsPQU5nw0FPpG4EaDDZq8leMke5lco2yrgIGP8D5AdaSPuAERFRqsgZSAEoAGWE9iV8oa1QpFUXEz87OcHFxgcViEVmAksjQWmO/308+o+971AC8v4bWCvf3WxwOe+z3h0RbB/G5AGryO/ouejtqIuEwAhmaAfiEjeoDiPFFQekIij1kDMxtU2pL5GfZf1WyRp+qrEhtburfy9ik4MFEsPxTeMHkc2R202fl3LF2+vfRHw3sp58CmwBFGoJA3ItJDL6f3L98iQ0+BbjNfTpJ5Ig9lnFOQZO4t2NMRsj7aBzpmtJudlmWQTrgbrdb3HB8JAmJ1PbLgIjUiVyDJNPj+Cv1YH6kx3Qv+9cXrqW2KR23068Nk7kjCfB4HYEmzTwCeHg8jAkevEKNSeIpmHm6y/b4nvkn0XwysaRcoyhLlNWC4unAcQAnILSx5D87hyM/47puiP3JjatiWaf3qMoSxmgAVPrdMxPXJ7Go3Ic00xjX6cOYI/oeyXg//jxOx0SPgZVz+xK/8DDxLvf4vx3YhOAw9B3aZupQNk0T604B2mwQO0NQuRKPKImhxaw6ZZhp4imookDQGjoDFCyMIpApsI4GOV+02WZ5zh1H6DiFjp4KuE89UPlKjY4Y/3kWdX6kxhUgcUbJyBz2BxyPx/jQxeCKMyrZUzGyBNpYXF5eoSyLGESIc5le66mMA20s48STzckYoKosskxaBtd4/+4dvv/uuyikm+pMyIawXq/x/PlzdE2D/XYLBeDX//APuHr+HD/72c9iACtZ48WChNmePXuGsixjpnS5pBK6zI6CuwjkPOWZhSpywd5B2fmBxEHZ8RZxWcMCpHVd4x9/82v87ne/w9/8zd/gl7/4K3z26hUQhLUxAAqsKaKx2+1xPBzjOAKaN1KgaXvqijMM8C7AWEOCq2WBV8/PoLXCV19+iWPd483bN/j9H/6A/eGA12/eom07bO/u0Q8DlusNFqsVXEN1xFprHA41tLXYbNYoqwrL1QqbzVkUL1SKdFsCFPzQw3sBJnk0ks526QafzscUEP3Uxva/+vjUtZzaVJ5G+On13o2OoT9JHZ6e/7H1n67LNDMhm7DU/b98+RLee1xdXU10KqwxKPKCGBk3d2jrBotqgWW1iJ145DMkOJowNHlDyLIMl5eXKMsSn3/+Oc7OzvDhwwe8e/cO9bHGm9evcTgc8OH9B2ILdh2aqkKWZyiLkpyggdhwlu1I7Ru0TRudaeCh05Xq6Eh2+eLiApvNBufn51iv19FOydqRbKDYjLStsNgOAe8kOCyLHCoAz549w6KqoNUVtFJ4/vw5Li8v8eHDB9zd3sJ7ugfvPOnuKIXVYomXz18gyzMsF8SkrA9HHA89ctaEk2tLxzg6r5z4UEol3dk4WO1a7A97WGuQ59nEvspcUZobPEiW2nto5zgoHnUiyrIc36NGLaHMWlgG5Ye+J2YIMAERjPFxHittAaXRdj2Amh0jjcF75EXJICcB+dVigSyjkiXDCRoo0jH58ouvKMBj4CjPCPAh4dMNfPD48ktKdNiMtGwcA1zkZDl2gOj9ZVlQ+3Uteiw+jvF+v8fNzU38nbDgAAqcRERfRMSPRxIpPhwOE9AqBTQl4yyaaPK6vu9jd0JZRymQlILEAB6Iu6asnfv7e4QQJmApgDh/AKBpqIxNQFW5pxSEksRKKpwsIJMEzcfDIYJrUkYn3SEjmKvJ9k/YCuwkyrjLHkuipp9RmTZf183tLfaHA7a7PW7v7kiMnZmNxHwLca8W38y5Fh8/fiS7MgzwwUdwQECXEALgHXzQaLsjPI+PlIw6ThpKXGvZrkhplTEGVUHirqJNVlYlltViwp1Nn1MMxNmenZ+fwxiD5lij7zoobdD1SXMAgDLQ3iNAoaoWbBdon9/t9/DeY7/boWs7Ft+u8P7de7z+/jWvQwNtNK6urrDebGLijEo7JaimC66PNRphpQrQPtu7AifR0uRSqrGlDSUSM8t7TVbEwA8A6/pRsDM4EpEfOlorfdtzEMSSBESNpvWgLelJcbmwVhpG2bifaaORsRg8hBscqGMg3SOBZofjHnVzRFkWWC4XsYQuZf6nazZNWvZ9j+Vyif1+j9VqFcHCu7s79H2P1WqFPM/x6tUrfP7559hsNnj58iUAcAKPypyur6/jHLPWomkaNHUdE6Ky5pqmweFQT+bDWF5LYJP31B0xBMRgsWk6NE0dAQhjqGlFCqxRiZVoFLbQWrFdmgINafCcfp/7HTLX0t+ne086vmJrxY9IdajmQewkjkHMoYzzkSbnZI6e8sHk7xNgRX4PxI65tJeOzaFk/SudgE2ygfA4CvN0zqZJxdzTIDuNmeQzU2Az9adSdrP4AWkcV3HzCGpOcJzYabF5h8MBd3d3ePfuLb755htsNht88cUXsepj6rth7NcUx3FMFsvrPjXGzjkGNR4HJKZP4PTvp8Dg+MxH4BUP/k7g5EO5kh9WRief93TiWLp2yr/nXyfBJcn58T9oL6DKlKoqkWU5Lq+ucPXiBckQcFOZ7f0ebdfhfrvD4XDEsW6wFUY1r+mLiwuUZUUJlo60RI/HI7LMYrEoobVC3bAtEUDKkXi00oDN2NYloO5JAGjW5e8p0Onh704/r3miLf08KOoKG/RDsEnkIT51/HjAJowARnozKW1THG0xeqdqc+cBnzHj+8TBnJdMSIYtBEIvbWZhTNKKmFlDUv4zTlL+dzTq/OLxbeNkZkdAnE9i0+jkEUmmY/KxkGxdCApKORLItC7q9aSOrrCHIkXdiyji2Eo2zYxNPitFMWebTby/oOC1St/E7dZnQoRsgBwHiP3Qx04h8lnGaBhrUJQFVus1qsWCsnBaTRyAqqoog8XBqDxXcjgtijyHtYZRZRXBphBCFPJV/KwooTuCk3It002IAsW2bWPwKx1IJnPLe5LuDPMaemFCUKAXAqCh4VWI7LIRQOTS0VxhsViSOG6WoW07cjY5yLDWRH0x77jdsg+cRdQs0qtgRYjcGHY4Le8Gcl2AoTZmgAegHm4i9OxHgzzet4q/SwHQf91BjpR6kL1Izjnbj34o0DXPzD34XDkPn19N7kOxwHIg4x/x/PSqZ9cXxgsNck9xM6Of585f4HUJcLttQ12fhIWpOfspGnar5RJBWjWDOr6tNxsC2BOwyTsXH1wKNp1tNlG4+wErw1C3JWFYbXgtCqPQex/nf7VYcPcNC5txYMF/846Cj5xFUbOM9fcyG9mIZSKYKnbeWgIzJDsiHfRSwU/vfUw2ALPW8ewcrpYr5JaaAxitcXa2xma9RNc2uLi4IIeup3KeLKc6+4uLczx//hzUmtySWPVigb7vWUC9gjaceXSjzoRWCoED+KjhEZmBnjWNBeKm5zlxEPxos8W5J3Yp7wka0Jpth56WdSqVtGhXKk7IkHweIOLgowCtVgaA5b3QRuau5w6FRU66LWVZRSBLa+qU0ke2Cc2Zw2HPgQkFjpnNiHkL0pYZF4liFq1ixiax33QUexbBeA1rCHiT/V6Alf1+j/p4pNKqvqfyPp7DTdNENo+s96j3FMLYhYf3xpSKPs/wa6Um60K+hCWRvi/jrLzstwKMAQ+7U85BZglS0sA1hBCBo3SOS5LIcCZV3ief1Xc9NDvz473bEWxKbCCxTMamI3TPORQU8pzet1otsVyusFwuUZYVrCURe4BARum46Lyn7nxFCaWlDBEoywpVNXYRzLIMV1dX1FGPAaMss8izHP3Qx2SZiPJTIoiYMqZrmd3HrFweFzpvjjzPsFguqLNaWcEai7Ik+1IWJVaLZZyP3pP2mQC4AzOsHPsvwkComwZ919F+qrmMWFgWfP3GGIDZm1qbyH5VARAdJG0MP4c+0ewCTGAWl7gfDEysV+uoAdM0LV0z0rJO/q5oLSk1amilQXkM6GTP56BcJX5mnJecXFNaIShmX3tAOUrKBQTodBPWnhMOI9gUgofiBgJay2dNd9QxeBl3UbHdWbKWCbARhhe9VsovRTNJKcXi4UMEFmRs6baFVTSWcqZrV/ytEAKWy2UUDNdczmcCVQUIm7LvWd9rEO3YEfgIEJ+EfSE1Cv06vg/nfPTTioxYWFeXlxEw1UpjfyDNKblPHqLI+KPuwQrKj3o+Ma6Yf+efRTRb8/NO/XiJJ7RS0U9+6is95PzzZ5wGLonpT944OQtdo57Mrvi+oBXPQYojgg/w7KfKfSL5noJo8xLDdP6lwJCAWjHO9B6GfzbGwGbc/GQYAO8jQSAdj3kiUeIxYGRgtwwYpxqEAAFjHz9+wDAMUZ82vW4CAceu1lNfVvwgmrNTgOpEcjSJdeLvpiOevB/JGD/m39PfwskHLR83BUbmf4+f+whQduq8jx7i/8zG4YfGC3QKmgNQPBc8dQC1nMwrFhW8D+i7AdpoNA0BSbYXMC2NMUfB9xTDoOQPNWcSDS8fQrTvcf0qtr/+tP5avLfwEGiaj3VqH1MwSPy4OVYyeX8yfKndSD9vxBPcA+zi1PGjAZsCMMkmCGBSc5tiCZTE+ZM67DRLMIpODpFBI4t4wQGUgBfp+8aJyteiUvRVT4ycBJCp4RfkT14x3lPgMrYxQJKsurxeHBlxjsGLfoxhJZDlzct5lGUZNY3EIQ0hRMdbhBNJB+A+aj8IOJU63XNmE4DoPMfMIh9KKfSDTDzKWg/O4357wH5fRzZZWZVYblZQWnHmrkfT1jDG4mxzjizPUJQFrDV4+eoVLi+vKChdLbFZr2GMhncO5+dnKFmLSSm6z7atEbzD8+eXxIIABeDGKOQZd0tqWgrOoaANAKMo7QQgOB9LWqQUwGYmgg7eUUvppmmwWCzw4sULrNYraKPgPSJVtq5FfwVJi3qaa3nBHb6MhXOBZw05iANvUrsdzWvFDurl5TOs1qtI0W27Dt+/foPdbo+P19e4vr2l+uGuJcM3EAOirErYLMN6vcHZ+TmqqsLl1XMqhVitmJ0hAnMKmSHIRCjKBBRG90meND9vzXPXJIZIXqOTfydO14N/P/aadOXPD35fCgzxekJcq9NzKyVGO/BXsiYF5GQwmb4HfpmKz0c2cG0SWi4S484gVLyW9JDXJL8X1ovQ4qMWUd/F4FGyGIsFlVTKORQ75cvlEj//059TYMn3s1gusV6tEEKgbmRBhKVHwVFhamhjiPHDga4nrx7BexRZhhcvXiB4j598/TWUUthsNrGt78A0YBHNrqoFTJahHxx6R79TSZciKGIsllXJYFMe5xgwdsUbhgG3t7fIsxxn6w2cd9je31MwO9Bn2szGchUJeMEBWGYzYmoY0gUx6zX+9D/8B4TgsShpf1ivCqxXBV69uMCzZ8+ofIafqewheZGhKKkM5uPHGxyPlIXe7/fIGNwW1lDX9xgc7ysBMN5x55FRTJSCRWBwCpnJSDeKy7wiCBkk8PXo/QDXszB1ToF/luXIAuBsxiV/VDYUfCA9pjhngeAAx23cveNgkdmLeUYBcVUtYgOFzZra8d5vd9QVq+nQDT2qssR6vSLtgTWJ0m93W3Rty9399hEsUwC+/cO3AIC6PqLrO0jpjDY67q2ZpZbAfdfGzHLfk8bS1fMr5HmGssyRZYYElDcbdH1PLcqHsUV50zSRQUSlOiaWzZAgc00lxBzASSmq5b29Hwa4R4S9h1SkVk07D0o56Pn5OY9fMSl7cM5F/cHj8YimaeJ9GkP3lIJfAr6kTpp0QJR7TDUZpBtfkZcw2lDreAfW/+jhlAdCDcONIqqywGpFjEeEgOAdnHc4Ho6staWgNCKr11qL9XqFnJmPi0WFPC9iwEQmzWPoCADK8woBBmfnz/CzouSOiQOcH9kBFxcXOD8/Q1VVODs7h/cef/mXfwnnHHXosRZt26Bpauz3B3z/+g39LRftsCGympq2YTtIEgGanfksy5Fx+dRms4Y1FstyAaupxTYQkOcFqmoB50i0ums7fP/6NY5Ni+1ui/1+R878QCW1eZZBaYWhJ9YzlTkZeOdw4H2eADmNarVCZjM4N6AfOgAKObeF1sw2K7mEuWs79D2Bi2dnZyiKghqLbNYcyFgsV2v85Cc/JfYOA3W73Q77wz7uboZLoW1mUZQlsszGeVA3NT5eX6PtWnz8eI2mITH8thO2DO31TTPVKTPaQGcETFrPXZiM4zLhgZmgLLWgEJOjBZdMDh0zclxgvy+6WBE0InaUg/hvAEkbKEW2F2oD6SoYQsDxKJ2eCFTrup71oBx+85vfxPshG55HNqMEb+KPUeBP1ylgS9cNkM6LWmt89dXX+OILj8vLS7x48Ry77Rb//Lvf4fbmFv/w//0Gb9++jcyMqqqw3mzgHTW4IV0+DXLtNLSl4HvwHvCkrwmAgbGA9WaNFy9e4vLyEv/5P/0nrNbEHsyyHN9//0e8fvMG19fX+P3vf8/2hMD8tusx9AMBewkoADBYghEcMJo6XJrEp5g3N9BKkRi/0twBUsex9wPtc+SjDgRIsWlMy9hjdMMBrACeJ8EpvrYYF6nkdwlIBqVYuB4IQUNpAtmCIw1K7xyCkzbsLu59ACJQLaB/CtjMNZyMtTCsg0r7SYBuGjhHXWhjUkApOOeJgeKp3FvGUcCD3W4XGU0iBk4Apotdhn/3u99FHc71eh3t+t3dPf7u736FFy9e4KuvvsJ6vY5JK7H/fd9j1x1iQoLuSZLViPco4O00hpXnQZ1tg0DiKdDDXw9BAo55E/DDewaXAvvvgb9odvB1jB2TBYSluGEE2cb3nDp+ILj04JB4eRrDx78+goKkeJoLHkfWTBo8deQ868+hDJCXOS4uzgGQ5lLb9iTgXeQoqxomo/JkOZkP4BJsAquC99jttgACvCOtxL5pMAykVyjSAZov3rmWWVEtdy7tJgL1qe7h/CsFi1ICDO2Lj3f6lnES30RF/AMxpo2J9zA2VJHrkiTip44fDdiUHmnWVyZLSqkVxy1tTUwOQR5fO6fjSunYpKX4DGySw7HuiZqBTRPQSU0X+9SwYkTlk+ufs2j4w6PBjqF6OLFoGFbJswyUERs3EwGbxCCWZRk3YQmYUhR+/j01LPHyVWo45BoC4OUeRxYMZXBYIyqAdE5SpXweKyMZgCynEhBLrAqlqM41y8gBE8eyLEgPhOYDP1ceJSlPgadxJmcI0agKqk/fR8YTQsxFMlDI9xoCB22jqJ5Q9WP72uR5yPyU4D4dt5F5IeOkTL1MUgAAIABJREFUeUOkeeW8i2wwYzW0AQnCMZNEnl/NAqZ1U2N/2EP1wDBoIDjS3wgeXUvBO3VwNPDeoaoquJ7AvBA8VMigLTEiYEbxUzGSin+M48Ljn87xKUh0ymCpMaCe/X7ycxjB0wS5OfnqyZ+S+vVJdiT5nUovcfL+IGQlKCj+PoJfavJdLkSlJ5jegtiGmDE4saFFcBrTNS/B5jAgsN1SIcAoYrCE2eKXbkmucBFsqqoKi+UyAkGpo0flsSRs2HcdSNCZANu2bRDYIbOcoV9GAKaEteQUVVXFThMFLMScA4pqAWszuOAZuFFj7QCPyYrLOomVxeVnfTfeM3dlozlLgY/zvHH1PTm8jjsRMQsjWMsOKncUNVM2oZQnKABVSbalKg3yjJISm/UGIRBFWelRNFlrQBthJNxH5qswsqy1UCC2lYw92QyaK6I/Q3OKSkoAQAUV7Z1RGkaZET9N87k+wCvW9eVfG2VIPFcR40AbCgy98sncGOdWxF/5S0pnJwkFQ2ySxaJC8MBhf0RPE5mBd240wV9KESArgKU4T0ZTm/ueW5Mf62NSukCBWVEUxPjirlUNCwlLq/QiJ1ZKURTouwxZZuLe13YdgY7DgIZLFeYMN2EtBVBJTFPXAK8fy6w2w2w90dtyDL46FpOVwFRsuGYGrKw7seGn/A3JVIvYb/ABfdbHaxy45FRrEqEX0CrPcmR5Bsl2krPWQ0GhN6NguNhfrTnQj+ZkZMiNASd1P5SAKs8IZKGzUGIKQUTSaYII0JVlGZYL0nLbbDZcWmgjkNZ1HWdXRUiaxqMsSqzWa+pG27Zw3kFrSsAURcFacdTtUNZmCB5FWcHaDIfjgZJJgbpuOedQljm0NhhYT6kfeuRdTgEvByvCPsmyHBmzRNabFTGb8ormpiOQhMCmijSFYnmKIq2knpgr3lFXTwWF1lKZqJSWlWWBKrMICmMwDSBwstBk1CEOjkZaMxhuec4ZmxGYo0dNTGLZZCiKElW5gLEEDhRFEcu+Vus1snwsP5ZlLaWjWZaRbc0ytF2Htm1wOB7RdB1sk+GwP472AComDJxTUIrBp+ABBqUV+2vit2qtEdjuQHFjEz1q4ykl89lCcRmdUw5EZgy0p4ov8QCAGG221gTQaKOYpTQVhCa2gALTr6kkebcdGflK4Uxtori7zBtZJzFIDgE9s1mbpuHnAQb1ic23Xq/x7Nkz9qktAIWup9fLcyiKwB1aPbPZkh1fsU+RdHJmzntkw5Hmao6yqrA5O6N26BcXKMoSbd+hGwZ4AB+vr5E1DVxw0BzEudDHz4nuUpB5iZgA8AB0oOJGHwCVjH+MpZSC8vR8lddQykeJEmm5HtL5Drm3EOeI/Cw72VNMqKAUXQcS34x9bdrfkphDnHGAIu+gofiayRFNYqPEVocT3+fXEVmBJtEF8x7Ke0rkIMRnHQ/l4nqwXLKvtY7BfhrPyT4hsUCWZei4a5+AWhLoS4xW17ex0ZFIjMi8lWRhel80zwQ0SGO1EWwJIZ2ZyRjEX48xW/r6lIk0ju00FhQbmnhB4+nTxTA5xtfFa+NTh8kbnwKaToNF8q7wxHtlzAWEPn32wDE4AaneezhmbItfkkrghAAUeY6yLOCDx2Lmf3fdKFhPwCcBpCF4DOwHd30HNxD4TZ1axQcMcINoOT3OanqKtfXU31Kg8qkjhNHPje+FggrjsyQQUq5NNKeePn40YJPWitvev3gg9ibIcM4PucgzOD+Wb4nzuFwusF6vJiCVLOCY0Uko9CExsPRv+i6iXWJMxHkHEMWep/WNY5AOTOurvZ/SPyVQwWgrIoo4Bq9JK1tFjoE2JOy92az4PPSAvQeGQU3qrc+F4XJ5GX+X3r+Ma5oFoPtOUXQ1AVJGOrmUcznKMqiAoipgcwsfPAbXo21r1PURr169whdffBajImqBm0EbjfV6hbIsgEDGr+1a3N/dIrMGZZ5js1rh81cv8OLFFZwH3MDG2jJbRFu0dctaFBrBKTi2YhrkVAQPOO9o02ItFenWFZSUTtLYH+sjbq+v8e7dGzT1EcE7XF09w09/+hNUi4qdlzE7bizpfmk1sn5ok1boe8evp41SEgIwChoGKmhQcwiiWfeujwEUBX4axuT48ssvMAwOX3zxOY51jbppsN3eo2lbfPxwTRmWw45onfUe7/dbGGPw8c3r6KDmrHclTMCLZ88QhTu1hoh6ajNS9GM2QtqlBjB9nMuEaMXS/5XMUbBDkmRe4jxO67VH0CV6DzL/TxhCNfk/GW9eUOMC4r+mG/AIBo2v1bLuFBACAxdjOBdP7fllYnQDgwkq+T46Ww+vWTz+AMBBIfiWgxkK/qzWUBnrMnhqA93UzeT60xEgICCLNP5+8Nhu9zSywkrj92rO4EqmLwTSFIFSKIsSNstx8ewK1WIJ0ZIACNQS9iCx9yTIH+2C5tdoY6AtzxHWAXFDz8FvQNvUcKbD0DX0emtgtYKJYtaUUe+7Fu/f7dEPPbbbLTEles6qKw1lRIeNbGpRUrZ6uVygKkoSn7YETguTZbvdc7bWA6BAaPAEtJZlCW00DocjnPPY73e4u78llsX336NtWmqjzdpA1nCZjCfWadNxBx2eu33XxwBInPqeWTiZtigKstkYpg0stFOwMAyqExhlYaChR1FydrKFiWJALK7RCVDRISIgLMCDSmUDgAwGOmhg8OibFr53GBraI+7u7rlMjRhRbQg4KoXWWLT7IwICdtst2rZB1/UwAbDGoCwLhBDQKrKli4KZstxogsaBxmcYqJOhclSiYLRGkZN+U9808H2H3V0P5weoWGo3RAaG7Nt5TiLlxDaxCG7Agff7oeuA4AkU9eTMuX5kMKSBp4rj6TDwMxJbnnGJqYZiv4PEzLUyGLoBNWrc3dyhaRtkNptoPuV5gaokxlM/UAfIVNw9Y7BJjtj0xDmYjYEPARfhWQy2B2ZiNW2L3g047I4InlmBWsEog6qg/Uh0bKI4rfOoDzW1Z95soI3Gs4tLAOAW7kf2ASjRs1wuSWQ7GDR1j76n5hND36Ouj+zf0HWL8+y9AmBQ5Dk26zNAIbJj27bB7c0tPn68xj/3f2Cwo+PSAkpI7XZb3G/v2XTQ+r26eoaiKEl7MC9B4brjvYSfo073ApovIQB9P+C2vmMABdAIyPIeXUcBAwl7e2hjkWU5oDScow6vfT/Q3GW2h9e0xylrYbIcuTZYwfD1dxi8R9116Lj5imPfzge61qysUGiFMAT0zoOqTw28B3a7I9p2wJ/9+f+Bn//pn2KxzLHZVDgcG/zxu3fYbg94/eYdnHO4vbvD9v4exlpkXHp8fn5OSS/e1uq6xvFwQNO2xF7nxiUAsCxXOF9foOs7HBsSky/yAoMbcHtHbMCBwTatR7ZLkRXsEzJDLCuwXm0IWD7uyWb2A29vZGODC3AcqBlpQmOo1I78UvYbWbA+BB33rRCIedhxgqHre4QAWD8tec3zAufnzyL4AcXi/sag63t0d/dUzpsXAIDBedRNiz9+90e8fv16nPPGYrVeko7hsyssVyvs93vc3d3jw4f3+O//73/H7n6LrhuwWKxoXIyByXIaEaWRl6Rj2Lth4i8jAIMfUncE2lpom6HuOnz35g3uDwcoSwDXT3/6U5ydnUFpjc+//hqXL1/i6/+fujdrkiRJzsQ+O9w9rryqquuYmR7MsZgR7C4eKAREKEL+dPKBD4RQsA8UAoNZEmA3MOjuqeqqrMojwsMvO/igqmbmnpFd1dOzIr3ekh1ZkRF+2Kn66aef/vKXGIYBHz68x/F4xO/+4R/xzTffsGbpmpkx9IzCJmyaJlW0FS2hYegQPFV0nLywN9kWlXWIMy5mdhkHjhRMCmQgRnqfwaGUIcCgkfxbLQyhpc+zfE+uK3kT8v3kU8WIoChdXRYhFbKKZslIFX/GcvCuBGrIZ7DQpgQJybBTmsX+LbFlV5zKSsGAAGU06Q5yNgqxj8keEt1AsaOD92gPB1xeXuH58+f47LPPsF5vWO+rRdcNPA4rACRl0nUd/u7v/g6Xl5f49a9/jefPn89S8erawgdNjMss4ERi/cyCF79smkZO+WyITagirFUwVsHHCZMfELBhdqvHOA0MrFCKvGZZE8dsVQIzFQAmbujI7xMpwNga3jv0XQ9AwVYBXGKSwHZLfgUUME4O4zjBBWZZLRlOnwQ6PTzIX8p+PgBYK75shPcTQpD1RsEYYTWL70wBVWsNtmdnJCnRkI0SlcL94YDJB5iagyG8z+12G6zXqzSeSPi9nWWJRPblKchKRc88Fz178/qPuO0ONB74/tKY92y/Rw/HoJc8X5mqKZV466pmpmWeF6UUkZBMShJEWUxF0kPLvyvF2oiq0K2GAkMO6Rkt+yTzzJfHjx8N2KSUwnq9wvn5eY58s9ix0OObpk4Mlr4fsD8ck/h0jDF9tjxn+SrHEgV/8CPOimLnUhZWIAnYLWn5dJ25AHAMp2iKxTPTlx60AznORZ69jgQ2KYW6qRmMoHV+miK6LsxSDqUdyp/1eo0YI/b7fdIRkDZYoqdyH6XQHhkKAZEnVAg+UVpJ48ogitr+NGGaRtR1hYvLC0b7DW3IkwOgcHF+xvdEg3e/B947B+cmWBbSvrg4w7NnVwgeYImbhAL0w0iRSROZ0aQQvYBnugBIQBBB2b8z0ISedxpH3N3dYn9/R5W2YsBuu8WzZ0+kpwhk43ayFYFm7AoXoCModU6ADO7ewH2tOQ3PWIMQFFyYUFYdkUVFKYWrNVUE8vEpQoxo2xY3NzckOGcMa2FQBcex7bDf7/mRqO/aiwuOmO6w3mwwXT3JKURSVaixXInBJMBBKO+k+yERO8zGh0QdI0cKy/GbHWJdNHHONY8JaEpNludD+oLMg+Vf1WJLUrmty/fi4jPLTywXx9JIjPmfAjg9+BwDTvSZh5O8jOj6EsQFg8dW2oba1JWGa3FIWialwQV4kIEwTnPqqjjUMeYS67KpiD5UxQ7UZrvFhum7y/t/dE0s+r6qiYUHduBjjJiYvXI8Hik9yXt4NvRWlpxjbWgdNYYYKJOniPU4TWgPB06jo7SdiCx0HRmsoHKzFRlbAIwzCMJu1ZQ733FKElGQhzTWLRuc2uuUtvTu3Tu8fv0a+/0e33zzDbE5+BklWlkyqJLQNmgUepf171KO/iQAhkXN4Bojy5TqFollR9ASMyCVpn8rTZooRVBkwpT0ukoABch0ZjDQpFQEhAkCDR0V4CP86ODhMXYjpYLs95h4HQaASWuMFYGdA6cNtS1VESOIV8EqjUYivz4yq9NwyoukZARMEzOSJo/oCejXAOuQ0bMF5xBcxKGVSmVjMn5FY1AYQVLO3lYVdEPOkvdjcmARIoKjSmHBu5QiXQaZypTxwJ+TwIOAddZYOJNFZIVZ5H3AOE64v9/jw4cPqOsaF7yuPnv2DHVtE5gvjKAQQhpLss7KXBxH2reC0rBchETucRiGpEN1PJJ4/tAN8M5jtVoRWKooRVFrjbqqZ2MlhohxGElDq1mh5n2fmFsawcdULU5SOghA8pgmj+ORqqON44DjsWVD1UIpzXpIFrRMKRhTcSVHk9hP19fvcGyPOHYdPtzcMYOXwOP22FHRi/s73N7eYLVa4cnTZ1it16kipDEW682GlnTW9dIl2KQA7wIb9T6le3XHHsF7WA6i+IDk0MToIdWJ5FlEMNf5AK2BGhLYU1J2DYrXlEYRy8AdHbxj5nMKCtL67WMgsIZZcFMcMU4eIQLgedEPI3yI2Gy2+Oz5C1xcrPHs2RbX1zf4t3/9Iw6HI25ub9D3PW5ubnB/f4+qrrHeblDXNZwjNtrEhQDatk1C1m3bQinFqVkV6l1DBRj6LjGpbUWpOdcfPLqe+mIYRhijCdA1FnpL1YoVCIgw1mC9WWEaJxyPLCY+Oma6gQN6sdiuKcgnbMyIAB8UpUClNI8I0ooUhzCkQhNSxUvx9q20IcaiqWBYeH6+G2fmkthNBEJGTmXqUjoupfDaVGDG+4grtjfHccS3336Lf//Dv5NN5QnEUVoDWjFQQXaG5VRYP5aVrkGp6bHcSxUXnjEYnUPb9+jHETUH/VabDVwIePrsGS6urhL7bZomvHv3DofDAd988xpvr99jwyLodV1ht6MCGgIsSXXXrutwf3+PcRwQbknfzvFnxB4TVnfe56UV8/inbswAT9rj+RyxsJvSnOF/zS2wh75X+XsiBJS2U2mHLO4LBdB1yqkqGUEC9Mv72iyZxfm+jaWgTF3XaNYreCfyAwTCCLtFgQsK6Pke7Bj0o7TWEcYaXD15gt3koLVF13X48ssvcTx2M+0mYQ1/+eWXWK1WuLi4wOXlZdqzKKBtoAKx/+AloBiZLcmpbUkOw6U0PwFTKIBMYHiIBEApTT6t4z2QGD0KikEzsefIT0IC8xRETiNQcIi7wbOuWAgRQQsD1kIpw/erkk4eXa/s7+8HLj08ss9U9gkNESGMENAkIIqATeTSEwAkjGxilbJsgeICHkrheDxyuib5RqJvWdUV6qbBOE74UH1I6cRAYQ96lzIEIu+H1+8MvHcJzEsYQqS1EVEndlMZeBMbpsxUymMkA6zL6nDz7KXs85fnnh+sqWx08Q7ZkogSXAoz2+NTjh8P2KQ1Rba22zTYZQEWY42injSRpsklRtMpAWfgoRM4o6CfcqZ4eZPT0CuxEQIzALyXdLEIcESHCiPIpFQpDSxqEnrDw7WRz62KV5UX+6KMr+zqQn8chgnDQKgtUZAdum6Ec2SAlGkHpVq8DC6pZrcE4sqBt6TqyUAHeCLGiGkEvJuYAUA6ISTA6RKQQxpZpDEgJZyngfpMHMKmocjwbrvB5z/7KXa7HV6+fIHPnj9L2hz0LBw9s5Se0FQGwWbmAzFZxBlURaSdKeCG8r+jCbw40sajeMPzzqXy0aQzUCIhJfhRDo5F6hXmfwtCU6cwCoNcPNlPtPHDV0aQjeIFvoHVFxjPN9isiKr78uVzHI8d2sMB9/s9pnFK40D6vWupcuGxPeJ+v4cxpP1A4qQ71PUK680Kmw2lP63XXDHFagZQc6qQjH03cSSVKffSEjFEouHzN4RzMUtdhEJUmja/mQn0+JGb6sRn4yPv/wlHxsFigsfk4pF/L18fAE0x/pnuJJ9PWJ5Cxy4vmYfj3AinMS6gOIFNw9DPPjMbz8VdxyjnKNfK/J4PHmoYcjsFrtTmPI5dh3Ec0rwQ5gVko2ex3oG1fPqu57SpPlPJoVIp2hAoEjcFj/2eyskfD4cszC3PH2ndGoaeNftcAtloac1i3qSt49C2RxwOBwzDgLY9IMbIwsiWiw6IYSkVoTiowP8nRs68tK/XJKpthGIUkI0xH5glxQZhFCNeDAIk4EZYhhS4MPy30tlSEE0UzywF6QuA9iulNNzkYYyia3FFTRJBdmAJWUzTgL4XViIZOuPQY3JTOWMxGPAeRX3j3MSBGSq+oBTpnWmlcZWCDJZBKSoTT8YrzZFxGuC8wzD06IaeGDUsBl4aVAo0Boa+pyZNKWsOIUbUtmItDqoQJ8AeGdzEFCMGLAH9AzOhBPT2EzGSJkeaeCKUrlnfjowzaWtmL3mP29sbVHWFcTzDZs0giSqqlkZgmkYeIzSxjNZoVqTPJWmkhsfaNGbNSsvpFmNPDDSpvugdlU6GEqYh91sEog/wiv7etUc4W8FNxBw7tkdMw4hxGHE4HGbLpdg9MUROiQp5beBCEqQ/NKE9HvH69WtUFbFEclRTYc96SNPkcOxYc4lzREmInjR/drsdmtUKm80Wq1WTqtg1/EopZqKfInMQaQ2hymZ5Xbs8o+VLK7AOI7GYxEcNIWC73WEYRlxeXuCzz57heOxwe3vHawVXmit83zItkuYU6zHWDZ+bdCJDiKSrE0mzxw8DELLt2jRNAiGd83j9+jXW6zWaxmC1svjw4Rb/9z/8Hm3bYWTNr451l2xl0YkUQqCU/WN7xDCOOB4JbKLrVKyDucJms8HTp0/x5MkTaseKGIN3+z2GccDZ5Rn2+z2Ns2FMbJkYwazMCCn01dQr2IoY61ZYVRHEVuSCLDFk5yYgIAYFLbo6iMwqydFvW7E+l594HZTqbSGts7L2LWUeaJ0p5n4hTFsGeeXzWTsqoKp80nptmlXB2CdfIvgAy5UVXYhZQNrT3/t+oHUI4nB5ti05W0CyGaDS2BV7fuo8uq5P7EfPFVFtVcF5j0Pb8vpITMeqbrDdKfzFL34BW1VYr9bYbDbYbNZ48fIZA9MEcqxXDVZNhfbY4/buHnd3d/inf/wHHPwB2ljEtILHdE959z8Zk1tYZBJtU2ICz78QSzt5uabIFUouuGIbSewksTGKb0axk7n/+PMiio/Cdg5hnqGgNEsElAAEO9g+eHAsLoEpNLcJyCGglex25TMDBMLqL9KWhYBQBomV0lTh9/XrRJSgdF6Hp0+fPtDcKe2GN2/eIATSEHvx4gVEn1jAp9J3zUEmsA0RmW1E7GetyTZo2e43rKVI1WUfVkJ/wAAu+7Gw/WQ+ARlkLckR5c9SpmUxOBYD6YeBTqf81dwn+adsb0nJV4bGxziNrENIgY1xcui6HlVVs89kUFUriH7eekVV6xoOMnnnuOIuFTZpmpp14zRJBQRinzmnUsplvv9AthQiGi58Vdc1+b8x4tjS58Snk8yvaZYmTkeZVSV9J3a1FEnI9qZ60G4y1oxejAWe5nlezoG+Tzl+HGCTApQhKuPZ2VlmBhUI3FQgyCWjiAyAejagHju+M4IvngHEOeGFkhs2hPl3ilvPjgEDQ1LZRhyJU+7nfELoBxNDKQEo6BXsBPQdGehte0xlXI/HY2qbZKDzwJHqN/I3ifRIGy836JPdozLFjnJMI3oVMSKiqgwqa6A14P2UUFwAVDFms0bTNAlEHHsSMf/w4QPatsWTqyuc73ZYrxo8/+xZKgf68uULbDYN9xVREbVWsKihFWAb0hLwLsK7kCaCQrkAisOruOqKGCDiRIAnEYFNXUdG3hxskk1zPmATwLWI4NCTZ+eUkPy84ZVjLxQTVo754ixgk0ZVKaybFS7OV4gR+OmrzxAC0PcTxtHhcDjg7u4O7fGIb9+8Qdd1eP3mDY5ti7v9Hof2CA47whiTKos9uXyCzXqDi6sLXF5R+qVRhimba9Ku0VQxLCqaJ957DJEM9MBAkko2R65IJW0UEyDF74khpiJOYeLLeUpnLQEfzN5DPAH6/IlHhpwfztqy/5b3eereP3UR/s77YYf14eacIxVlxJc2gsy8LMGmruuTiL+A3GR0UF/QofPaJ3ME+d8A4AbP5boDPEeQ5Nxdd6ToatJ6yYDQNEnlvB7TNKbPEJhMTK26Jm09qw2s0fDwmPgZuq6DVAeiYgmO6eMBQ8fjkYEcKaZAEUS6HykxLvNbKhfJ5mutwW53htVqlSpcZqZfBlpTCqnOzDuyWSO8IbApelDpYjEqQ0BwgRkVXNbdSTQ/UOQRoLUpAjKhNpstdtszdrZjcS2KWObKJTIfcpqrgiJAV7aySOxUYREp0LNNJHzHn6N9dxx7pmcrKGhuMxK/bmpiywwDAYvOeUyj48qDG9imxtMnV1Rh8/IcZ2c7aG1QWdI8cJ5o5QJUH7sOh2OLoe9xd3OLcRpxxwzcaSBhzOA8xsARQnb0PNPyK2NgNVXlHMeRwMmBGEaRnQ2tiEEWYsTkuXod7xfD0KOqa94KOF1CUYoEELkqGTFplAP6voPWBuM0QBtNIM52IId/TamGQcZa9ARKKg3N2oTrmhhFm4aEZ21loS2lS0wDGZJrNmKn0XGREZrv4zCiOxwppVvSnKWsfKB9bBoHHA8tsYV6sgWObYuxHzGMA9r+SMGVlgBepp5h3aywbmjNbzYrsmdYE7GfSJ/p9vYG19fvoI3Gat3MGEPOTRxsymtLtaoSYKqVxorBpKZpcLbbom4arJm1tV6tqIR4RSmoCqKHxOuTIpKgVOkK3sFog+16y1peFB3O0XWqeJjXHo8PH17g7u4WNze3+Prrb9B1Hb799jWGYYQS3xmAVO11LqfKaq1ZKH7D6V2WU8yoOErfdXCTQ60tKmPTc3vnUhW1r7/+JpVGnyaHu/s7/PO//DOGgQJv1ljaURWXYbctbGUxTgQM3dzcUgrd8Yi2PWC9piIm1lqsNyRk/dnz53j18iUuLs/w4uUTKjby5i2OfYfnr17g2B0x9D3GfkhFc5xz+OMf/5i0jbTiUtfMfrB1BpuCDuy4cophYZtHdtTFIbUVuxg2a9YopTD6KVXbkkDmokj0wlmlc4qjLYL8ZYGbUos0237Zj6Bn3STWpFKUpjyNlMZHlZ4doiP2WkozGieIMV9aBUopKKupQmYkoEppjaqZsxmPfY9j10EbQ0GQEKAtlVQfnYPbH1LVU20M1qs1mtUKv/4Pf4nnz18k3biLizP8+j/8BTPcaC9pKo2m0ti3Hd7fHPD6j3/El198gfbYFWBT5PU9Byporyntl7xRq+KtKE4MH3H5d37ztPU1B5zkPQGOTtp5S7+sBAhmYtf04+XM/H2tFNSCkQz2C4OPrC2bbUphp1FKnQUUYKgsI7QTYXReyxEolQiFvc/3ppSGVqCUub7H+fkFfvOb36ZiTs453N7e4v7+Pn1f3nPO4ZtvvsHbt2/xi1/8Auv1mqvhrtIcU0qlsS8/JThQ1flVtND2+z3aljTyqBiH5WJBD1PMy/aS+RZjTpmiOZQBjLxWZvCi/JG5WLJesu8snsAPPwQsK8EPOZbPJQSMBPSxJmZUMQlwk7xKhFJHto9U2uO2WxL1f/LkSZb16YkQkeZ6S8HLy8tLbDc5aE82MqBUZGkAm2x1sslo/1lz4YMVBw68c+n5BKyU4mnTmKudyvPmdPeQgiTl3Cp9eTlv2e/Ub4ori+Y2RiSgXcZBzubKgYCPHT8OsIkd/hJ1BDADm8o8w1KTCcCDAVUepwCoUwub3EYykPijAAAgAElEQVSCC+R7MbldM/gB4OmiQM6IQooipPMwOEPXovfK0qn5cvSelCOlKAkBTEppBCDl0hKimSmTZd54qrqwEAA/RXNbAhzla4qOn6DaKX7epm5QWdo8//j6Nd58+y3u7u7QdR3Oz8/x6tWrVIEFAEdTMzggehMvX77AL3/xF6wjQXoY2+2GF9GsXSWLGz2zlM1W2alNbamSaKL8L215s71VWGQ5QiEOat4YP7YcyuasUp/LmMjovVy0fGXwRStOpZn3i4CX8lCUXoK0KZanM0ajqivKIY5U2QfRszi8Rdf1uD8ccOw6TC5glHxETc6ocxOObQsfHNrjAU3d4P7mjsrJn1M1u816g6amUveWGQQxyOKeASTFBguNY0rlASjiSV8qNhiJWqllKxfMnVhATMmgKX+fdedjFs8nHQ+6axHfSxeRzQ0PR8fyvU+ll3703sL8SgJE01hBane55xBJZDUEzbdMKax0O0J3j8UoLyjwi/5QYlAWxqJoc1AEEJQupw2iiZBKTooBDAF3UjTaBxbunRADGTOBIzsyf4IPCMEgBsvRnIlT0MiZ1FpBwcBoWgdCIHYLojBrGMwEiY8nYcZxSoBUiIF1PCgdtq4oV//y4ooj30wjVopLfQMx+mKgMNDHMmKB9zDKz+exHoGy2pJzgavKTZmR5KWNqAKQaC1GEBjT1Cus1xtueXp+YVzH6EF6aACCOELykx00IDvgAIM9gZgEChraUDQeEH+dNSCCT4A6VcyTakdraKVx7FoM4wDHmgzWUNpNXVMFl/V6i/PzXWLAWEMpKI51RKSAZNM0WK1XmMYRmxUJO1+0R4rcTRNXk6N0JXEyaGumJ66rCjWzP0YR/2awhxd5+g6PNangKDVWbF3D1hXatsX7DzfQSmHDxr5iwT3nKJBitEGTtGEobW8cB3Raw/kqg4aeZ40XsEszSwdQjsZomEhcWxtKMQ2eKqRJKkgMIc3V9MxiAzFAKeyLSKrAiDx/+66HNhp6pLkQHLFRrLVo6hpea4SJxuAUJmaODfATVU/qR0qrlJIcPlJggdIDA4KPKX3JaM92VkBEgIiJa2YZ0GsFrQ0CLOpIQtmbzYbTDOm70zii7zpYZxBDnVIvCfClvnTeJxDZTSTCe7jfS1gDQKR2ZoPa8H5J6wzQHvZojy26jtJ9CSDzCMExYyryusVg01SAhiBWXQieIr/IBr4xop2W57yCSqmmqzVp/Rir2ZlRyal49uwZJuewXpEuj2cQXyti49mqwuXVJdl3SqFpa1hrAEVMzNV6hbppePxTxT1rLXx0WO8avq5F06yw3ZEW0Wa9hpsohaSyFfphgNJcrIFToqkSGIH6zhOL0FoLWHCBF5tZTUkjMKbUPa1NDiaxkROY0amQ98fHgjelfb50KIUZUIJJpVYJgOScybmS8H2Mif1d2QptVaVUREm5BYTUl52xyMHD0iY+pfsa2C6XwHiIMQVcX7x4gaurK1xcXmK32yWGv47EaI2R2JmKzyVgwzAMGIYGwzDC+4iuo6CtGwd4N6DrR9ztj3j37m0Snc5td8IWKZp66Sgug2QlaDNnO5Qe00d8r4V9doocsOznx45sXmfbneaiyGjQpzTP/Si+GW+JqdCIfHjRPimULDYtZCxS9ddZE0iKfCDwz4eAOE2oqgpte6AxVtmUAiv7vozLnGZNWSH39/d49+4t6elZKf5ErSzjXnMaXX5WCYTNRZtz0PFh5bKl71u+t/Svy/4pwQnpx2WfCphxitkkfVXc/A8+yrkn68HynpbPKJ/RqiC2cMBNKcWFYlbFZ6Va7Yiu63Laezdk27aY86kCpNaAMrN5mBmvju1epFdp37IA2CmZm8eOh6SRh20hzPllf86AqOK7aVz4+fgpP/8px48DbAJI44M7qASO5OGE2SQ/y0EukYRTC97sOic2Nvo9w0llBCAkhDdgduYEBqnZpBG0HBGwxibRwkz9p/KoGdkvwByZrMxAIUOUAJ2uPxJzgJlBojsim33J8Cpzg5fPvxQEKzfXcvOXn7KcKC1wtIDsLs6xamr88fU3+Md//Ad8++23+OLLf8WxbfGLX/wCv/71r/HixQtcXl7i5uYGX331FZRSuLq4RF3XKXf+b/7H/wH/y//8PwHQmCbqVyk1qjmNBlHxRhyLCCTlzcrCrZVKxrxJQA0SMJGrysRk/AvgAyBpc0xMiZf+xUnuTQlH8URNKuD8V8WAZQFE5ZJoMW0WFJE1sxOne+PTTc5hGIUKSR6a4fxqyttVWK8MnjzZslH1E4QQ0fcTnKPIWj+M2B9avH9/g2EY8P7mA4ZhwNtv3+Hm0OLQHnA4HpKIe1VZPH1GffT8sxe4vLjEZrvB2fkOdd3g4ozSZLTV6b5IVFdBW3bGOSfbBRI4jD6nQAQv7LGyPU+Dwp9yzIC4P+VgUCVGcCXKfFeLC538+oN7FdDtBx3cKlKDWAAOpaG0YYNdxjq1edAkTB90gGFAKHBp5rypZKBQMrO0yufP1y5BCzHaWPRYW/jgkkZP9AHOGyB4GA24yXM032NgI2voR9ZEGEm41OciD+NEm/ZoBgImKsMaMcRcjGxQKRWxqmoYW8Ey+KkVFQzQxhBbginIq9WGDS5KXTgeO9aFovuq65qq8FUWW15zCGiyWTAfCiSYHxncyW0t2iaMf2TQKEYYZgOSMTwHiQLPh5Dmg2dGSEwOrxiLwqyKMcIHR4CWpzRgYP4ZHolpPMYEdgXUdYXt9oyNA+l/WktSieSC/eW9S3oOMi4kcEH0fk1l5ccBwzhh6AdIZNUai8vLK3awSExTwK4YIxy3kTbEoAh8/RACV9lkJnOMCXQpITQr6Y1s6BBowGBdLIzyYk8dx5GcaO+pLDyIuaSVgjY0dr744gv8H3/3d6isxvPPnuFst4MUsDjbbXB+voViXS3nHN5dv0U/9Gj3e3QHYqDUqzrpKiWGoAKkjHwERVQReVwzaBgQCVgwFUzay3XCDoOnNprGMaV9OR4z0efIf4geo7GYetonJfXz8uIC282O2cYNnPNYVQ1F1+9v0U8j7vcH9Jz+Row4hdo2KdVPGxIuBYhVR4Y2r0cgZgDNW83sEWYyGY26XpHQe5WrsF1cXEIbYs15N+Fwf4fj4YCqslwMwKBhFpjQ0ERraBxHHNsDpmnE7Yc7TNNEKSJG85zVaR4B4OCVSWOfypcfMIwDxqFjjTdaFwRoprlarJVaxHENp5rVMFqhriy8Vhi1glc0ZsfgUFdUgUwpkogAQHNB0xpaVTXOLs7w/NVzKK2w2WxhbYV+6DGMfQLjq6rC02dXMMbi+vo9DvsDPtx8wPWHa9RVjYvLK0rDdCPu9pTq+Id//3e8fPkC/TRitW5wfnWJZrNCtargvEPFgtk+FKXav/wC/TDg5sMN2sMhAThG68Sy2G22qFkH1FYV3DRh6IhlNIwjovdw3sF7wFYo+oOGspe0D3boToFEcuTofLEjKqkuvYKwQwRYkb+XYFOu8ogU8ddap9L1YFtda42aq1XHGKGcA9gXkXNSUIRAtzJAq4sCAADQc3ChY1kGYwyurq7w05/+FH/7t3+Lp0+f4vnLl9hsN3jz5g3u7u4YPKNgy9D3M9u76zocDgc4N+H84hxaa3z4QELvX331Fb799k2yg49tizdv3qDv+6TPKVXYZm18wg+S9ivb8bEg/qccD32sfA1hlpW+RunEPnZvMnYkyCOaYeI3KaWgzKLwEXt2Suc9g9g9GRSvbU1FBmLOWkjMfN7fffApyBrTps+eI7N+pmlCPw4YhoFZTTv86le/xOXlJVarGrsdiYbf3d3BOQNgR0UObj5wHzvc39/i4uIS4zhgzZp2VVUV2oAEAIsGYGaxRzhXUTEDZpmGkHXJJP2qTOWT+ZWKUxSkjlPgb5I6WIyPUuuwrM4n4NhjAMgPOU6NryV4sgSbSmaYBVccFuAlRFRWgo6XePLkKTNXyfc+HI5wjvZeYqcGuMklEBsAzs/PKSWchfuNMahDlUAsay222y0uLi4wDD2OxxbTNKJtjwAizjmzS2zYYyGNU/ZXOUeWYFGJhUgTzfvGPADlHoJHOT01cNBhmrgIEI+NEhD7FFfnRwI2FVGBYnN5DGWdM21Og0mPXumRASr3IWDEA0dTvAqA9YAepp0tEf45OMX3qxUADb3YXPPgEWYRg1yRwIZpnDAVC0KJSs5ETR9Jiys341Of+S50Mm8ITJeLGSBzzuHQtuj7AZbzjM/Pz1HXdQEa5Y1ZhE4vLy+x221xdXWJs7MzAArTJH2tUhtQO8iEkv4q74177YTYXN5Yy2dA6geluF9OPnuO5jx2lIBTTP8uYBNeYGRDos/FZHydBDOA7+wT3mvT9SJYM0yTaLwCUFUUDTG2RvARtq6xYsp5CAF9P8BH0kAZup5BsZAcXkFdJMLWHgiEmqYRzk9U1Yw1WAwzzKyp2EnXsEH0NrIzKywXFcU4yG0H7tsyivSx47vWhO97ZCgnUjneP+ksf+5jDqaXvwuWSm9HZKFFBq8hw5qYCdB6NmdkLuWhL+OtvP539QF7wIWhyPgqpBJYjIANFClynkFgY3guWBKXJfuaUhwq2vy0pkpG1hLgFCOVJJe1WSmgrppUqljo4waU9nZ2tuO1Z4v1epNAG8qjX0GENEPwXEKdNOWo2o+GteTka11WZ9QJuEEx08v2ENtTwCZrLIy2vEAJU5faPdHygxRbCOl7c7CpGJkFQ4rYUPP7mUVrIalGSM9fVRlsYpwasocltleImITJEXLJ+Aw20XVyUMNwZH7CsCJwQ/SZNps1CdIzZVwMe1oDsnGjwOB6YQMAWTNHdL4kFERslbzfoQCbZGRqRVXstKhKK4WRxbcJ2BxpfBqTKukprbHZbGAtGVC7zQZnZ2fkXARZY8FAEoFN4zSg6euEwmawSUEry+u0zMmsexe4TxCEsQWoSCnFhh2xuibQSrJbJaqoIYLLPoF2pAVG6R7CiKmYqcYEq5RuRPp5FtZ6gPVqVmMDgCqLidaVaJNUXFXIVoZSDhgsI7BrTHYBAAYgDKqqxqqpoY1BXVf8PDQOjLWwNVV6FAbX6MbsxHDVxYnTxqZmKmwVYODxNk3EgpqmEX3fkQC0NczQIycxiK5TJF0g0nMhICmwlIA1xFTTzCanCm0axih2MAXmpP1Ja82VsziMpLgKG2jfRQiIhgDAqq7QNLSeCGhlk54Pz2ytktB7s1oRSKmJoRkjlcK2VXbahDla11XSH9qd7WC0gY+klzn0A6ZxQlVX2H27w2qzwhRJYJwYkwBqAoImN+HQHrA/HNAeSdy9H/oZMyYWqTyUvhlhoozjPDcBzMrdp11EIcXZJOgnUhPLvS0ykLO0XZd+QBLFjzGlEi1Tdkpns7yWADkAEnurqipUJrtDp76rQOuJQrEnL+1sZPdBnNsytUjsX0lDlLWOgC/6nrS71hqqcNpj5AwBAB8+fMDxeMT19TXevbtOzyUyGSWIg/J+izV29vog2ITZ5z9mW50CC//U4xTI8bHzLwP2/GYRKmNQPPk/i6rcERmE4bVWAKTZ9Zf3UoBPMeY9SsBGpdRM+kU+K+CBjIHcxwFd16GuaxwOhzQ2BDisWKB++eyR16RlW2U74zQ7Rvr2wXNiDmic6p9TY6ucL58i0fJDj4+NieX9zfsSKUAdQihcPgLCz87OEuBL1R6pWmZen+ZA6RLoHgaqQOj8xPakTrbo8h4lKCJAXek3i1i4fD5lLRmdiAmPtc0p5uWpMSKv6X54z0sa0D4+mBNzcOrj/fsjAZvoQcdxTAbhMidQGDhSqWvZwUuk9vtemy5Gr0GqmCnMJo4cdE357sMOzJ0n4EDulKpiIxiY3btsgLTYkA4JCaVyZY32yBoVeQItqyXJPZaLxHJAZWHdh5vwrC2KZy3PR4CERt/18I7EqNu2RVVZ/PVf/zWUUmy026SBtNls8OrVK6zXa/z2N7/Fxfk5fvnLn+PZs6c4251B2EOWc1vv7w+YJkcVAqoK1mo0jS2cH7DRBXifXF8IuShI3zAVPLKJjUjonVKA1YYj21TWTxyO71oYs5ER+Z4zzVZlLDJ92BpNfkjGb2btm4CDxeXSPsYPQqJ+8r6MmbzIeU9R+hDoc5YLQVSVBmyErRrEUOFs1+DJkzNmCv4clEc8wk0O7bFH23boux63t7cYxxG3d7cYhhGH+3tcv3vH4nQjNpstPv/Zz1Bz/1DkumERQkrpI5HdVTKMafEU0WVqfzK0q5N0+u+zQJ4at3/qoYFUceW7zvjf3vhaDKZ0XnlWN/scXSqmV7pHWXsq5I2xAPoeGetKlfeeGZiRB/E09RgCVTQZHTFOqTwvVVCRIgJxTbTyzbRO65vorQBAU1NqAVQGF5bAuTybUmBgQFEKb3JsK3jn0bVUqp30lmyKLMlz0piXQgm0T9CmbmGMovRTkLaL9zEBTfJ9uo+yrcu2z20bA01Uay2szoKMQKb1P5zvMZ1L5rz8W+tchCdXvsug+dIRKPelfG9IeyjtG1LNmu6NIqLyOmcZCNiWwSl65TtKBk25HsWYtR4AxewCYWFJVUKVUvCESaI16Z8oEFsEAKe+gSq5hCyKmh4yRjR1jfVqldpNK426aahCIbfjMHMmI689TaoOGmLE06tLXF1c4Oz8HL/9y7/E06dPU5ojgWoD6srgbEfj+eb2gGGcUnsQoFPBe4+2PbKh5h6s15IWeuy6JPjpvYO1FRpmvGx3WxhtMmOW+8T7QDpOs/RMjmp7SguTrS5GmqOIkcW419Qniqux8Xzo+2csNuqp8IOiNUBBJe0jCG6nNbSlPu2GXOmLHCcxgg3bOaXWIwF7wrJo2xb/+sX/l2w+0pXLoNVq1UBrk9JMjJWUDBY2Ddlob6oK67pme8Emu8u5KekjedaS1E0Dq2usmwbnux2d69VL/rzIEsi8DknrifTi8tywikAnow1WawJft5wqp5kdQXvhhtcfGsvD2KX+7oeB2FKyPxqDUHtmOa1m8/Hu7hYheHy4uWVBaYUnT69wdXmFv/zNb2Gswf39HYahx+9+93t88cUX+Jcv/xn/59//HWxlcXZxhnrV4NVPXuH8/BznZ+c4vzjH++tr/L///M9U/eyrr1OKiOaqS2uuWOgD2aM3t7eAUil1VcY2AZ0MWrAOnqDaEYDnfcTx+lvprC0i7CNZ87fbbXKqhb1xYKaV2PeSjrLZbHB5eVnYz1nfdekUyXqW96IA54nZ5RPYiTQvZCzK2in7m1xfKUUlwusqr+MKMJb0raS6pPc+Cf+L8zYMI6BUspHFNygd1mZHVQLlO/f39/j973+Pw+GAr776Cvv9Hre3tzgcDrOK05YDMeX+UKYbAshAoazz5bLOR3kvy+O77K7H/nY6eJrXxSUosnydnZNfjdYpYKGUSkU7ACS9PsORMM02vowdLT6UpmBE27bJNhDh+xIYijGDTcnJAHi5oJ2mbqj6s3MOb968SQDjoWAKtm2L6+traK2Z8bQi9uLTp+j7Hm3bYr/f48svv0Rd17i8vETTNHj69CkuLy95fVyd9N3KPk0VbScqPCFEBeChryhz8DEGzWN9vLy2HOKrl8ymfK4/H/B0Cvhazne57pLZFHn9DjEwuB5gK9JQfPL0CX7zm9+kvX8YBvzrv36Ftm1TdeNQVNKU9Fx5VpmbIXhMjgIm6/UKWtPf+r5HGVCUvrq6vMSzZ8+wYb2nIMGDQp9O5vZms0GzaiCZX/KMsr7JzzQNM0mdEExae6Wfl+BRRA7SOkcBGxTJKPLZqlhrPnb8aMAmxJgMiFIArYwKlMydxwb7n+7gRbGNIUwUIDts9Ht+FYNaqdOLqxjhZWQDYNqtyohvXszIgSQDQ6opeYyTw5SqNXF1HZXT3+bo4rwtyns6temWr8vPyjFfbCLfZ8DkJsToU9UnYwwuzy+SoyeI/TiOqKoKZ2dn2G63+Oyzz3B1eYmf/vSneP78GbU144NSzlNE0FKKX5TKL/kzS6BmFl2T7hTKXwk2xQwaKYl8c0fPIlYoT7Y8+LM8XtSJj6m0wSlIQULql2UUIDuTue+ygw1EGE7pkfeJYeaTQwFwmfjA7Cktzjk9l2Y2XQWL1apBudgH1mg5Hkd0xxHtscXbt+/QdR1CCGh1i/awR98d0XU9DocDNpsjtpsNO/SkxVFSR52wqDxVgIlhxYtSTKkt2jCrgec2IvdfzMLpp0Bc2fAFUi7bPv4JQPOJrqU5nVrpceDx4Z/mb/y5ADC1uNgShHvsWhmEpv4vjbZT83/53RJw4osAADvMjvSQkk5HjsyUwDyBOiatcyU4stlscHFxkcAguS4NET1PQyz2ggxCG2ZBTNhXFTyXrC4NnWRsxAi3SNfI+4lCVcnzjlCqqDgjbRSL9eXE2poMUQbOjS7Sk2XMJyBtDjrlx3zYF1rHJJyb5z+QS7sX/ZO7aPZ7fqVfqkolEIvaXsAmJI0aGf8lAC9zTZ6VqqGV1yONmxAChsKxKg0aADCicciMLqUMr4G8N8r6oKQCIxCCgvIypjLwGUEV3qpKCthz+heD2GLQBWPguCENn5uqxRg47+C8zwEtS1U6L87PU5qnMOJWjcXV5RYAsN1dYJqSRG0Cm6ZpSpXOvHNUepq1BUWDzDnHJe0di6w7LsrQoK4q7M7O0t6X9qxI67xznJYZM9jkCy00KSkfOe0nxoDVap3AVzBwLJ9Zr1eJ2bYU9ReBbnBxCBIypjZr+y450suiI6VI8zIgprXGEcBhv8fA4snCNKHxWSVNRwGtbEXphaao5EO4hkHN70l6l4w1rYCBozTeuaSBpRUxtkTAVdaJWeQ/ElAuDtrhcEjlzadpQsVRZaN1GmtNXfN1NTR00mRSyNqSITrWQCIgUEeVBLXpfY3aWAb5QhozUmWz7ztO0WmwahpstmtcPbmkSo+IOB4NQvBcZbNH27XQRmN7tuX0V7LJnKfqle+ur/GHP/wBbdvi9sMNpmkiJ6ZpEJF1QKXoR1rvCxtd2juCjBaVNCdz0CaBCjEHAOV7EjSWvUOc6VPpPEt2hjjziXkV5jIb4gAuJSLKUuF0D54rdOZxUI5nrTXzEudg04yBEKgsvCkEmKntIsmEzNJh5qkxS1BI1qe6AN0OhwOur69xd3eHN2/eYL/fJ32mmscerYUEpJySFUlrdbEeC0j2XfZOuW+X75Wvp957zC5Z7p0lqHTq36V9sPRPSpZcukeVMxfKv+nyR/Y2DoiMBZtP7NASCJv5l2JHLZ5NqsjFmJlNh8MhadfGSOyzrusSECNMFvl727ZwjgS+5f3VapWABgniluP6VL/IM5fPULZb+XcAD+bbx8DGU2OiPMr7+5i9+UOOx7CAU8+4xAmUVlDhIcjW1JShAyDJ1ux2HxBCyGBTiPAMNlVVlcCsGKni8vFIupNUUETDOcr0EQmcvERmgKyu6xQwlfuVlElZb2RMVDbL5ZTPNn/O/Ez5NQOMpxijZO7SGi2AlYoqpZjKcQp7+K7jRwI2KcAYGMkF53QfYL6ol4tJOSFkQJf0NDmWA/E7G6YELsI8up1L/Mp5w6JjxTArJ5bOiLvQ6ENEUPMBINEziYL0jGQ65zE5zxUTiMmjU5WT0xtoubAsjbzy9WNtRBFwe6K96Fr39/cYhx5912G32xHHhze49+/fJ2P68vIS2+0Wz549w2q1wqsXL7FeU4UGgDQYumOPqrLYbqnKEU22jIpHKDgXU6SP7kEDKLWOaLdMxZyK3+UnReYVEJUiMdXSWQJSedVHgYIoldd4g44xoxNcJlogEC0bHigQopBrRSVjXj3csMSRSgLLUCwADMinjSLWlAig0ncCvItwE0Vn5QkkVS1p/agUdEyaPeuVRWUV1muN7YbSRF69fIJpmnBsO/QcGaGKM9nZFQaDpAQBEWPfY1RAfzzSOKo4FcMYKoWss5G2Wq3IOJM24c1fKXZ0saCyi46OiMCn1vvhwA6NGyUt9p0BmJN/Wrz559hXaR6y/ovYOQyMyzoFFHNYbC2Iwc9gB5vKxaBInztlaM6uEeX3/FeAnNXJTbNTVlVFfcxjLMYIx2lfgiprlkPT2sIacoBY+3YO+Ka1HsUVhGnDBr7z0FA4O9vS3FTiHFNa0cP2lCgoeD5QX3tPD2iMhVbztlz8OgNvIrJhWg5BUwA0Apop/mwMp6N8DzGniOgjRi+l6OfgjlwvVQeJGahN/apyUCM5ZF4DUSEGQCthDkFUzoGi76kp2GDUKjnuIQaYwO3HaYfUfiJeWiEEk9aFbFSxA6uA5mIHMMtIwP8koi2DQZo1csggIhfZ4HXaWlpbPLPXYozouyNiiBgn0q8Y+gHHY58idjFGTCNped3v77E/HPD//Nff43//X/83PHv2DD//2U/x6tVP0nokqW/bzQbT8BmMMRgn2putsVT5KXhEr2G1wtOrXRr7IcRUMRAqQkFAoikZqNRGmoE3TRXxAEwDl0rXcyCOex4xojh/SOXkY+pLSg+wbKSGQKlhMQDOB9k4IFULuYvpvJH2khBCKlUvYIIPHsNIQtIiKE19NLfJZMKEGFM5+RACcH6OX/3FX2AcR7Rtm8WUg7DfKAAxAypDALzP63TaXFkH0zkEvjYxCzVqa2frkwREqKT8KoNN4vSJAyp2pxatyAHOe3Ts3KepqgpGCs/J0oGVqpsEwkZEbFDXlpjb4wRJc4VCGg9aUTXMYRhwd0d6VG17wOQcjseONPCiA1TAfr/Hu7dvUVUVVQH1Dp999gy//e1vWHieALrNboO6qfGTn/0U5xcXaS4e2harzRrQCtvtFgpIwGTgNMfgi8h9SgPUiQ0k61vJ8KHxE9BzNUUfRMyemYLTBMXg1cjpJuv1OjltQHZWS+BS2EExEuNAKvNJdH8JRMl3lxqmkpIkIA2AlLLqWe9L2JbSryXbRewREUNP11UKmoFTrSk1dxgGtMcj9vs93r59ixgjrp5c4NESRAoAACAASURBVGy7xvnZDl1LAZd2f0hzR2uNs80W6/Uaf/jDH/Av//IvePPmDf7+v/w9nJvws5/9DC9fvky6UG3b4ubmBsYYrNcrWGMSe2uZXihgSppXspeoOah0ygZ+DEQ65eg+9l0B3WjqPgSUlq+P+XBKKRies2mOF8770vdRStFOFiLcOM3OSSDuCGDOGgZ47Vo8S7qOLmwJpaCMTmuY+Dh93+PDhw/pOUtgfZqm5GvJeLHW8pxvU8U6rTXatsXbt2+xXq+TVIkwnUQfSMZ1qdFVgqIJdFv4g+X7y36UcbQEbsr+WAJa5Tj+bwU0nRpnj4Gdco9L8LD8XghUmVJphf1hjw8fPqT2kH4SMIjWDST7O4HyfO77+3vsuaJu1x/5MyQX4LjyOQnHWwgzXCnJZipSLkMWHV+m2NVcua6cO2UAoOzTZdGwZTC1HCe0vtPYT/0XwUGRfORz/HcFNoE1Z8wM0QMwa5RHv/vI3x9b8B4/H1m3GRWU93KJ8Hze/Hu+V82Gd0bMy4WvHPAlQDSOLoFMZVlXAZuU0jBVldqonMTlBJJFYbkhlgvKMs3w1IQtr7FETgVlPRwOOOzv4YPHZrPh0t7EdJCqdFJ54+XLl/irv/orNHXDgqEG1orxMOFwaLFaNdhsVgndtba8JwXvc8URYJ5KkjZH6ZUCZELxmuZE9mrzswFpU5kDVGVjgfVGZFQUd5g2qHwnen4JRMzlxtNtPLhOnP3EQDR0es45Q02+LU6dZ1r4PPoj49JwOoIIQmd2g6k1mloDqHB5wdWv4ovseIR8a13X4/Xrt0moVZB/QewFNJX7+K5FTzZXAsDy58qIc67AMf/+Mpr1QzYzmepsL36vc536qKzBJ5ag73VQFN4kcGW5QT5m2M0Aukee5VPa7cE1iv4p56OsR6ItYAwBSOXY4a8TaK4pBXakbAI0zUPgVZ4qFGMwRgKGRNso+ACtFbabFZRCSgcrqdKpLQtm0bJdhF1ptE6TdD6H5m20NMh0+dniAaTi2exv6bOMpmTkb/59EDDgnES1ZH7IPci9U4StNDpy1ClXaBGh7aAUqOgCAM39E5GdkMIZoVepXCdrjU/glo6c4ovCgFEKio2g8p7kvuRnvW7SPhAZVGICxYN2KG0aKUonwJrR1CbOeQTv4FzEyHvpsSMR867rcWyJrek8pTHd3+0xDCPevn2L9+/f47/+/vf4v/7L3+PFy5f4m7/9G/RdR+CjFjYDcHZ2hqZeMcDAa0VNa2z0CtF4WKux3ayhtYJzgGA6MdI5qiqv/TxM0viWMU7tHNEdejjnM+vDGjSNnbdHzOM3jUL+xVieV/xZ76mSuwjvA5S+ro2CMZSCHSPds/cR3XGEcx792GPk6m+0VwaMbkxOvwBFpbGbboUdlrJKj2VGkOcIvojXloCBsKZK2wYhJIFmAYSk4Uh/hwStLa9RFbOXKmYfVUVAU9hT0rYCdghIIZ+RIJrYPZKaJ6kLcxspP3cWAnZQih02vSKwyXnYkcbhMPbcHxM8HJraArHCNA0U1BtH7Pf3cI50O32IUIoYz8dji9vbD6gqEmRXCri6JIb5ekN6TraqsNptUFUVnj3/DJvtFm3b4nA4YL3doG4aKK2x22xR8TNXVYVje8T93R0iHDwDtEaTsyNVERVt3LM9WdqK0jKn1H95khNgTRUFHRyz2GWdKh3bvI7Ny39T2mZm9pdOvOxP0teyV5XOVBa2Venv0zgihqxhU2ZReGaCPQY2yTgHADiV9snVaoWR05iOxyNubm5o7QCwWTfYbdY47nYJMJLxJDZP0zS4vb3F7373O7x+8xr/9E+/g7UWv/nNb/D555+j70lf6/Xr1/j222+TMyoMP3ruh3Z+LO9Xlgu2fU7ZGFh8vvzbY59/7JDxsPz+d12rXFNKEElbSj998D1VCIaLncPPKBk0JfAwDMOsjPysndKX+dS6CPyw6Hjy+YqxJmmNcu65r5iD85IZIuNls9kkENV7n7IM7u/vZ6mjkmq1Xq9TilUJSMgxY+cV9pv8bWnnlCSGMpWxbPtTY2HJiiqvuQyu/Xlhp9PHEmiS95b3mu4/UvAUI3A8HnF/f5/6RfY12ROEqYZIJJP1ep386xhjWlumaURVW2YyumSXiqC4sP5TNcFktwrgmvdO8Ylk7ZLXciyXayU9+5ydSX8XgDRjEuVaq5OecdHfy6A2Sv/h0/rjRwM2IYRHF5ryWKKTpwCUjx3lIMyHsBkYcMJyMuWFeLlI5o6aO9L0xTnqmzdix4Moa4lIZQFZiGVwK03RqVJXKN21eohKLgdQeY/LNjjlDJzaQGRAT26cbbghsEHoQ6Kqn52d4ezsDD/5yU/w8uVLXF5ekGNhbDKIymckIXGNYSDjVTSbBEGurEXdiP5Jbk9iOdGElT4qD6XIcTSqZPkkNIFZG4RMSf8sqfQPYxp5PCTgMsbkMBDQRWMoRECLExFj+k55pIldnHOufzKngZd9suzP5WIvf7dJ74LTVVS+llTziPwf84YyapfaLS8sVWVwebGDd5Ti6TkiMI0THC+kIUYqPw5mNSgqQy1V9NLGZyqUjI3SuFwam6ciMz8EYJq1Jz+uzLE/x274MaPrUw6lNDu282pjxVUWv2fnffkQatanMn5U2njKzy3nf3klETukjVD6gfqQKkLlMQ1k1o/cXQRgYnbCFc+ZCNHCk5QT+Ub2rFVRyZG+S9f1XooqzI2d8v7nhpLMx3k7VhUx7+Z/mwOQEmyQz0Re40v8WgxbCTmcGgplfyglfYLUJ6c+z74dxMeOMQPGue/mwC1V1ooMUgloNT8ftSWhTzHmiPN8/tHn6togBF2MnyzgLIcxqugPtXh+lQ3/KMws3lO9rER0SDl5ulnuKV6zyAEGvCJAhcq1E6N0VVcI0cJaBe9XONtuMZ3TuuQjsS26pz3cNOHJ1QU+3HyGcejxT797iRcvX+Dzz3+Gn//856gr2rMCr8vr9RpPLncwhU4BAVKW07zIWPMuIqgI5+XZeJxoHhNK9EZUYuAKEQkFm7CqDKzJRrs1GpajGIG/xPUXqG1kgsXcZEoRi00ARRE7N5Y+YCwBsFoRzhrS2BURdQWlG9SNzcxfRKxiQw44a7GF4IntgrmDR5+hqK2bSNyb+pYA0OORALVpEk0R6n1aX6bilasj8phI4q4x5jGvSWdKnPWkHcU6RLS10T133tO98vwZhwHWViDmrYa1FTbrDQmxihEfAu1hMSIKW4asCrIfYqCgjibx8Yq1YZTSBNDUFMn2gQBzHzzGsWenktrBuQltS4wxwxXwdrst2WmK1kmZ895NeP3HP9L+UFSZpPm6wdluB1NVqFdNYhB7ZhP1XYfKWvz8888RQ8TF+TlqrjJnjcF+f8DtzU2yLQEk8GgcRkzjmPdjpRJ4R8MyVzGiccvReE6HnMYJbpow9gPawyHZL0qppEdDp4nJoRZNSErNJoda2E0CPgGYpSclIKkAEgRsKoXFae2ZawSVrIFS3kOuRWzDBYsPFBiU65QOqpXCAuOInpmWgJqlRZX33/c9rq+vMU0TdpzWe3V1xU7slASkpd1E38xNUwIDQwiwhpnAM79lsSHFmOzC+duPg0ePgUWfavecApROgUpLW3DZtsaQLRJ5foghroBUeCGFfAo7PAbqcx0jKqWhjElrpDC6Y+RqdiEWUoGKgs5aISoFKWUEbnsXFiyRRTuWwKwEaEWTR8CEEEIa8yWbD8AsrbdmrTpJf5X5I+BEyWQp/c6yih2AxIT6rn6Wdi/7+dTzlc+5/HuMAQqG2amfNEy+1/Gxsbi8f3mG7ZbW16ho7t/d3uHf/u3fCgIMV0aHSml0Mo2szcyx4/GYWFDr9Rrr9Qpn52cIwaNtD0keJnCET2yoGCI8PBUDm2jPS/228O0yQz3M1qTyefK6Fh6ZR3PpCumvJDzOfmne9yKiijOBcCCn4n3K8SMBm2KOThWD4xSKWiKtiXK9cCq+z1F2RH6TIkf5vfhggJYNnAzBwsCh6I+IJ+bc/67rkuAYaR1k6n95vsTuMAI2cTgUarlNzAbRKaCoPJbU1FMIb9meAjTJ/fdDlwa41lS9pW1bBO8xjROsMXj16hV2ux1++ctf4uc//zmqymC9qpNRFgNwPE4YxwmrpsbFxTmmyaFtW4zjiG+//RZ93+Pp06e4uLiAXjcwpkkOTYxgnYqIqjJomgokpL4ok5uADdFJEc0p3lhBhqoOYLE3l0Cw1EapbWQs5soP8hkCnKT9AHGrA0fpPUdjTy1+Icw32BLYWy4e5XGqX0/n3yo0jUXFlb3kx3ueci4ieNL/8DFAKwWjKKdJW0klyOl2UMCqqbB9fkXXBQNVAYieHQu+Bb3ACozK54nsLA+DlH/HCYB3vnmdeu7y+f8s4I6hUsYnsJrvff4/BxCWAOcZMDQHF8rLyC1mlkREjAIOZ3amrG8CYpXgw8duW7Gz6gPgHANJbIkZ+1CDLHhK7ZGpp4OC1yUAwXMLGUBxLmBynvXtLLSmcyslTA12uiKBDySki1n7SDlpiRLl8S9zJc/XGIkhtVqRJg3dxxyAy4yiDHZJ/rscws7iSu3FNeYMLwFhHrSryr+Xr/Q7OZmScqiFlYRsWMSoir4lYEmAnwxYltcTdIKeS2tTrA+ZYUAOOF1LWD3e5+cTO788bzmeUjtEFOCjQvBgvSFPEWdHJxVVFyPaXdLxfKIYqRR1KBY1pTTNX02l5o3WUEZBGTJvZe3h0ZCq4t3cHnC/b1FZg3/63T/ixauX+M//6T/il7/8BdarCpWllLlhJNbSZkVpU14uHYqxrOicbuRUucBRygggKgStEBmoi4ZTkGRNZEBI8ZhWANZNlcBVGV8Vs48mz6w/H2ntlbW2BJsqBjsDIFmlBDYpWP6btjSfUWTVCdjUVBaIwMbWgI5wEXA+UhDHMsDIzy4FTZRi0QCVgVFhHE6F0Pr5+RoaCuNIexCV9KZ5qI2GANSIkmLmczoiIiICJufw/uaGNMJYR04Y5WSLicNHY38Ye0zs3PXDwKlRBERUVc2amAS8VVWNs7Nz2Mpit90kB8NqAw1iLpfBIedJxF5XBPBWFYEMIXjUnEqsGBCTYhkhUHVEN014++4djscOx+6I+32HGCODXgbbHUkMNHUDayscuyPa9oBje8TX//4VscICMXtevnyJp0+fwRqDJ0+eUKBS0t8i4MYJ/bHD4X6Ppqrxn//jfyKB4idP0XClSaUU7u7ucH19jdVqhRcvXkAphffv3uHYHnE4HFhQOSbwZbvdplREAmIozbaua5yfn6OqKlyeX6CuKoz9gGkccdjv8f7dNbquw9u3b5Ootoh8y7lFP0VsGnH43r9/j9evX6eoPoCZZqjYU23bzmwkAX9KMN3q/J3yucT+lYDwEoRfMqyimxL7jvqsxna7TaBA3/fY71tsty1iVNjtdgghkByFUsnxv76+xuFwSLZwjBGvXr1KjL/3798nAE5Y4sLSkf2C+lyTg1/aoDNT5qGdVf77sfeBh/7Ep9pIy8CoHKeCi2WQsUyHzD9gViPtD5Gp0LIc6sizv7hHxcxoeLLNG6XR2Jodew6sM5vN8WeAiEDoPUIMUKEAViOxm6dxwjiQTu3l5WUCRMVfkmcQAXwRDhefsWmapNlzcXEBAEkTT4Ap5xyOx2MCN+q6Rtu2ODs7S8CJcy6BVyU7hwpdjLNqk+UYLvvkFJB06t/y3rJPS32h2dhTcWla/+Bjea9LIGVpiydygQ+wlcXVFfkz94c79EOPN9++wbt316ACR1S047PPXmC93szAJmFCyhwcxxHH4xHWWmJBrxqcsWD827ff4nhs8fr16+Tj0ZigvVNF6msCz32SGwgLQCf75JRSX1aol5Tu3B4ZI8k/D7MeynFpjMlBM177Yojwo0+pxNLXpej8x44fCdjE9k2cgzjAQ7R79p0YZxPk+xzLhi5fkRY4fm95/WJjAR52nBjpRCN2HL2aqMwvl2lOgmRF+VigQOD5X/KcZVTrU57tUxz02TMvjnLxkEVKXiVtahz6hJBDEaJeWcuILtEKaXO2nOpABgg5hRkNJpSVDAKhnnddl/UVTG5rYkbR7ynyEB5ShAsbWLqMeDtJUykk5zTyB0otmJjaQcYAHrxfjr/Eyki4EztUCQkO6TsnWhtlXz/WHw/7LX+P2BjCtuAIrspixMknS6yp/AyyCdNjsmMqXwI4tYUjO0nPhv8mcwcqRZrpReWUQf5e9oXkekI3LZhhRZsIMJgBgaJdy96NBCw+xkL7PodQouOJaRGT9zO79OnzAB9HbT7lftIpxFAq/qnyOM9stNLwo/9JFIVEygAlLRUBKJq7s/nyyEPJuCZRRR4Xci35TBpTSGDunB+oZmcL6R41tMosFx+42pYClAoIUUEHUNqXF6MCCWxIYyO1m0I5Q/KfZSKkVkO5hlMJeQJPQyzvWj1YWEIUzbJ8plikuAmYIafJKWLcOLPxEXmtofUtRu4nyRljxCBGhRAUtI65/RNCIA8Zi3PG+Xgo2n4GWso3U/M8PF+U1Lu0ZMTZ5dI9z/o5X3d2StBaFJCddXEQIq9DCsyig0qVhVCE31VxFVnLRfxVFe2co9KyzwMkRk5vrZoa3gds1is0q4YqwknJcWNRWY0QAKdj2r9mTbN03orfNe876U5Vnh8BHhEhraup8pw8W9E/MpejliCGsP9kTQfPbTUbowJ6PjBjeOwqAPAg7UGmWMWoirtAXvPBn+NLiCZhwjB57KriP/LfI6wBggYQDBAtKmtSmktlFYIGrOEUOVVqS3L6lFVcXRZJjyoqEtmepi3GqaY0hZBRN6UlBZn+HQE0o8E4VXDOYzWIc0nVdkhP0KQBRdUBK1DFSkOsTWanxRhgTQ6eRdBe5kMWmkeM2G7WBSCKtK+oZAtFqmDIEe11s8J6vUI3dNRHkdpTW83MoAbGWmyHDXa7LbrjEUYbEqIdyYG8vLjAdrNBxdov3nv4gbqT9BM1aVBNEzG5GmZOx8wOiTyHjDFFxS9F84FZQUbrtEaeSpmR/TIyAJBtIboPawyC9xh2O1hrU8U2qZw1c1AxtxnLVMhSnBdAcpjKFKn7+/sU9AWyVET6ntyjTA5FKVFanGVEwDOjN85LhC8zLCSwSOmTUo2TxnHfdThUFa6vr4FIBX8Mswc1vwqjShxPScMKkcSJc0W7IaVzjuOYfBbDbN8SCFqCQssj5kX9wedOfefU308BTo/5F4/5Xh8Dm2RfT36ZjJFs0EKJDxkCL8+ZMZ36mYMaiplNcmgyKhJ4FCNJwqsIlHElVdoSfB2xdUSDUNp9Vv2MwUsZe6UeEkAaThI4IgBDfB6FpqkToCHVO2Wu7Pd7BM4qOR6P6Ps+nbusYvYYKUH6bflT9tdjgNPH+rj8Tk71OvmVP/n4rmudAtDSZyJ9ZrfbETDoBjhPGUd936e5GCOYlURV1pONG5HAbAEWnXOZgQcBj0MCeeTay/sFStbbQ1ZYmX2jFDFyjZ8X/lke5dyXlFogM91kbVpiF1SMRWV9tTj3McoxlCsPf/fxowGbEGMqQyoNVCLZJSVx/rX4QBRL3v8UIOok6GQNFPSs+SJARhZTZ1WKFBeDlxksfpqAicru3t/tEWKOqHhHnwmce48IKKOzi6/ETc/U7AhgdL64nznA9TAvlo4ykiNttBRaPzUBAczYTNM0pdK/fd/BuQl3tzdo2z1HIRU26w1+8vIlmqbB1dUV5aqPI77++musViucn59RvvF6A6MNrK0YSKKIed8f8Yc//Bvu7/f4+uuvcTweEwvMP3uGy4sLGKOxXje8EU9wTkpPiqVdMLJmnQwowxtGaldeLLUmMV+tYVk4NJ0nuyzJfg8MUpmYDSeFHNkuh1vwAVGxQxVPb/bJiUURJU50ePp7iB7RkRGok0A2k4O1bNA2lZxfArYhANNEKSaBw/GlFrBSCkYRo0mBct3pXrn8ZYhwAVRVSUTLHQEY2hoy6k3FKQgcKUfWhSKnHBy9JgfacZjdclWx8hDDQNqXKiPQH2SPRwk+nRjH3/co57da0OLT/eR/zL9X/p2PZBB9Ajj8sTuT9KA4e35aK7L2lsnGFwK3t8x9EnXXmpS5KZVU1hs9d0Z5bZsbn9mwjmKIKwL3MmuIvpcZLqVRkwVfgez0SrVOYveZBNATw4GqNmnN4vExzzHvPINRBEhppVHZmpxXafvyrhnliQmUpp+UAqGQruNd5PNT0QY5E62dAoHkjTmIaDLIgNK8lkef+4woKyWTS+5BDAr5twDe+b3AzhqCgvcBKijEwFFIMZ6TMxu55yIi35ePIWkc5XlF80kzUiAgDf1VAAcW0lYaCgGICgIfp7UujZH8bLLO5XFDz6HUfKxJPyIIFEnfkzZOrFQl7B8RYI4IntMWNad0eeJBaaNQVSwQHz2CR6qOpxSzbVhjQymqGCjpP6tVg6urc1yc7YjFYjTS7h7BOh+OdJmcz85OekRevyVVUe6Z+1JBQUWKiLvgeA+TAhCctmMMrMnaQkop0emkMekphSvyOj8KI5pBIknjgwClxdJjNGCZjTg5crjEppCirFoZTnMuGKiFQR184MqqkXMv6UPCXlJQrAfG3amQ6mUYlkIztUVlaByNPY3RyhiyAyqNpH0+A8YUnLe0tsiMVIAyNHIuzteQgJ3cb6BligpoFOdK6ZrJSBZLK190csw2h0rPIWkFknavdNZ+M8ZCQdE6zSBB3/cwXJqa+pPG3Dg6TC5wCgRVL5Oqjp9//jlCiKQplqp8gtcBidRz0QxOV3beY+jJwbnf3xFzbHJwk8PkPa7fvSMmRN8jxIj1lrSb5B4FrEGIuLu5IWdHGyh2auED3Djh/vaOHGTvU2qlLAYxBASlkozCWKR0hBBQWUtsD2sxdj0aZjrttluo3Q6VsfDe4+nTpzPHe6kzo1TOHpDXMr1N9L3EFpD0pLZt8eHDhxlAI8FTKVE+DAOXKs9aUHVTMzMtAwZgEEfWpBJIELtLV+RWCUNLnmNkbaX379/jw/v3aJoGZ+fnONvtsNls8OTJkwQMAMD19XW6v/fv36Mfeux2Z/CemC3CiikzPIypsG6IndZ1XWKIuTR+1MPpFXkJK2zUx/ympbN8CmD62CH9OLufE/7MMmWu/LxYaN5REB+xKNwj+y7n6UsKLxmivE/yQ2uwX1AUfNJRUuJpfTGQJY2CkLPCQ44CYmyhQhuLFaeTjiMxzGTMCdOI3ush6Z3U3ivEGDBNI7rumITrpTJj01hst1sYQ2ym21sCNm5ubuG9w93dLay16PseQORMkQPGccBut5v1T8lEKVPdAKSxXpINpC9KwPIxAEfeK5k0cs6k12c19Nzk/8GH3IfMB3kWAZvKsSXPENj+rKoKv/rVr7Bar2C+0Hh3/Q63N3c4HO5I+269hnOeSRB9EmxXitbKuq6x3+9nBbXE1y4Z9GWbzoOAxKbTWmPVNNjtdqiZYVr2iYDKAsQ3qxpltbllP8YYE5NSAiCmSAkXjUT5nqx71loqLqFVKgpllEFt69n8zzqNbukWnTx+PGDTAsUrO0Kclk9xJsvPfuw75d9mi5niwYsT4IAMWiWChkj3GZA7IcaIcZzQ9d3seXJqy0NkOG8Ecyc1srHLZjuAnOom114+/7It5We5uCwXC5mwMjFkQCZm00SDfZw4z7iyVBHCUAUd2SjLUpIU3dlCcxU+iWiKOr9MpLY9om3bVNJ1v9/j7u4O69UqocwNpxXQfefnn9n90mjSPgVolD4079TZAplAAl4kcvOwMYvMxClPx36XfJKN38zreCxClJ3L/BDisKd+lJ7nj8XFxZUSR3gu+pcBm3l0sXj4wthG2VLJMQ/F96h0ceTqQwBUICdK8nnT16O4zxD/Pvz/zL1ZsyVJch72RURmnvXutXZVczDohkgsgweYUTS9SfoXkv4r9QYJDyRlkgBiOAJnepmarv2ePZeIcD24e0Rk3lPVjUWyzrbqe+85ucXm4f65++filVZvfNH9RX/ktuu4JqvHmNTpNOmjfy7YpON2/j6p08cvm144z4WHx09Xwj73ahmnyONpTOltU29RTOCDAj15/SuMRMgzLqb1oa8roy/KZyGHNLnJWMBItFTRvuzJVjlkP9F+ylekeSpPKADy9K+4L8CGtJZtDyFojHxqV5qEhlJ/lc9SiVDatSp5db3EoJs4f2sSoETps1K+EXTu8ESIst7yi3P/5/Zzqra+W9kno7/zwOf2p+puNPockOk5ukbTjsRQRvZERYlEgcyjwn7MfUVZ1pV72PRd9d4ZzBtJY5kTfC8r04JlSszyxyiQYMb7sPYvkKOA+AePmxh+5dpVz2MMXKFNgTWQFm4wCXStnEVVW9RVjtpIMpl07lHqC40IMqowE9iIsfyC/Lbq2eT/mzSH0gbBazMKOExssFMRaZhmS6GoGpgMHkZdowJAQCKpDK8GBaoS8HNGdGXHDDHZrQzCBG/Xbkh7WRIU6Z68H2tqme7B5SkGkOqPzLHCPGsAubRTTN5RAB4UUVRpjvC9YJgnrpAovH4F9E7p36WMM2lJQqePzhkiBZvYiRVDuR55nhMhOdmY6qAu9CZOe/DC18QpXRZNowa0RzUEeEkdNdag0uirucoVX+hg3KZIEn0jAJ+rHKqm4hTiEOB9wGIxR993OB5PXF69beH3HgHMtRRihKvkGo0cikKsDmCgsdGfaAVixFGNOdHrNAop6bGUveKlFz6EAAMI+XZE17WgGDGfzzE0TZoD1tpEulsWAVFnc5mCVIJN+k8pKkrdRsEm5gR1iatGz1VDv23bpBuXz9fKU9oWjRQpnXnlfhUFDU0yCblPVCfTiBOtLtX3PXqh1FCQWfthu92mdEW9jh1zmXRawS4FqYzJfTU1Psf2xfQQOac66xlddeq8/xzgdE4XmwYClJ+V8+6cXTay6YAkX7RioskCSgUbSCPWvGdnrXo9iWBUKpxAvwAAIABJREFUhqvGG7MTJkcfqj4t+48FV7FG1rtC2W/yTlYiAaeUL+XcKcHY8pyyrbq+NEVLwSr9x/MxBwUAwOHA80WBVa4KXmOxWGTe3RQ9le3BxM1DDwGRqU1Zjv85W3I6jlMbdKSw/Asd5+bb5+Yxn5DbMJ/PsVquUgSYdblf6sIhrnKA+86hEqB8Stqtcsk5h2HooeTgJTCU9ZzsrCuLA5TvWM4fvU8VcvTmdD2V7R//y7r2dIzHcszIPpp17GlflnPlpxw/E7BJIktE0H5qkkxBFB0sVQ5LJHa6SB48sRicEkEHxKPi8sIrr9GJkKpyiOGj+dyaYjYMA3Y7Lp+o1/KzxpukbqD6XO4N8akaTpszAEwK8R23YSq0gHE+9LT9Jd/SFGDR56uQ04imQaK0QghSOYVDMxmBrTGbN8lb1rUtvvnmG7Rti6urK1xcXOD582e4vr5A5Sr4gSdv0/CC3O0O2N5v8O7de7x//x7b7RZv3rxJQNOvf/1rPHv6FN9/9z1ubq7x53/+Z1LBzAkPkaSOgdPIQBIJQsihtWCvLaCpMdkA43YzCedyucR8sXgQ2ZLmn/5PnhlVsQCQzCECyOQN6BMIxCcBv08JjWnObsktBYwVDB3HJDyk/LY1lqOXBLRRI2NsuOTUIDUt1FCCYb4KOKBppoTVBO97bu9QKB3cmATgmVS+uwZBco8/k/N7TsD9lPP+sUfCAWJM4/85ZepzSte/5GGMEn8aieLLG448XcY8y8OEyYmRpZ+rV0PvO37dwogcbUQxnacRGFZIBM8dpWxWKzdP5Qyw6D2ryhbvWJ6nIcUWVTWusMF94FOUQowKKMTEB1Q+N8t1tTxzhA4RG5Xek5yrKQjhgezX6Ctd1CWQl8eBn12GTGtu3VQhyv1/bt6YyTnldcpPlaVPJuSeEmBmDx/39UOeqfEYIc0fVUpUXo6By3xu+b7T++R3VmWawBzQ2XusKn+SM0CunEe50pOCjrnXSDASAyP7shG5O6rOFwnGseJHEFkHAiIhgKOpLLjS22KxYB0kSKUsiSClSKm6KBOsWyZcNoZJYSkAgUBeZcF4KK3Ja88ZAzgDa2rpWwHddO0iIgT2OFrhz9Nqr3Dc3gQUgOA0utUZOAN4RAQ/yNg/XPvWcCpYVbGzLAgXko8enny6l4HuJUa4yDQqUipcqaFF47lKUH0EaU/RCDVrDROT+8yJ0ncSyp+AR5kPlnmPyghyCiSpXgA4+01Kz0t0AkqgV3FIMaasVKjSlDHdo2VOBwFeWPfiiOdmXhXGLeAlwksaKqmgnJrFtAiEqnIctWMtHAxMBEIvFeSMhWss6kiI9diwVyecrRoYSzI2Mn8sr0OtbmhsQUxt+B7LWS1t8FAgvvce++MR//C773FqW/QCOhlXoRJjKHqO4vKxB1HEdrvD6XSC6gbeezFguWS3gjbDMGA+m+Pi8hJz4UCazRqOXK8rhOAVZk3nh54N3Xdv3yapYcE6sFamvbi4QNM0o4iikivJGJMispbLJS4vL9MY5zSdHD2zXq9xfX0NQOc8YbdjAOfVq1eoqmrEP6VVCW9vb3F1dZXuHUJIenAZTaVGfdtKtErgoima8lbuW7vdbmSkawU51cNVr7bW4q1ENikJdF3XWK2ZM4bHByNAznuPGAwOMcIgR7BE9vIVuqHyNxZHATRNDchPgT/nfv6UYwpeTP/W3/X9H3xHEpkUCb5vEYNHZQwqiZx1YgfEYQCFiOHUIfQD4uAR+oGvDzHvHUBa+8YyUbh1FpVEJVZKrm8cbF2BDBAMu+0G4Q30kgFgQKAYOKJ1wsWgfasAho6f9ol+p6lyr169Sileynu2Xq8RQkhVMhcL5nI7HA6Jx2u5XMJ7XqvGGNze3uHJk2pkl2aS6vFR8tZO7Qug4DqKOYJQvz8HNpUAVqq8Z+ufPFd+yvFjAFd53jRIQ+d6WcXPWovr62uslmus12t88cUXsNbhdOrgfcD9/T32+z2sZWdR3/fY7/cAkO6h77JcLnF7x6T+fd/Bewa4Vc+opRiDbp6LxQLr9TqlBnO/xVH/Kc7gnEWQKMZpEIlGJBERZrM5qsoVhQjGEYRp/ylxCe6hDIISMGCAwRiUynMh642fOn4mYBMAw5WqpoRi5e/nJs+00/T7zwFOn0PdjXjMzhn9+qxUGtdVYpiH0YLS8u+nUzvaFHgDzBN7ukh4kNWYyWCT2E6fFOhlqty0n6btKAXMNEx1GhGjk7uMbGIy8whnHerKoWlqzOczWGNZUA0DXr9+jd1ul3JX/TBgMZ/BWgfv26SsGcPA1ma7w27HiLyGB+92O2y3WxARk+EZi+PxKb766mvMZgtUlYNznLajmBKbMgIEicJJIsBjIhUt51D2bTjr0GipXBVYci7bQyX4UwBPpvwladsMOEHHLPk9zs6p8vep0NQxY+VgPDYjRXUCYOp5qkQHH6QaoNOHwVDh1S4UjekmlAyOApTU+5SCJxClii5lr5SgaiIvtuyNDp6V33+J458M9sjQ8TobS8zPAU0PfvIf6edPeuczr1Iemt/OP2O6iuihR0HHKd+FkrHFTRvPrYSFEI/Up+RtArQx/n4sRx9eq89UMEmNl9TW0XzP99Eh+JQSkcGwzHenqRySd5LmtZnM23Ev5wIOZVWW6V6iz83Xk3h+ynO0D0vQV1GbM9FyxTw796zytPI4N8ftZL8aGwwPFcbyPkmE5W/ST1PsOZGQQpqmIFz581NjfW4Pd2lunnmLT8zBc899oGzROOKgvEYNC27TeP0m77Eo4sF7hKpipfLBfJRqcsaw4UHxk+8KAGQtiFRGKzWAKuo0AQA5gtQIOK+E4QowlR7w3DYlzmfHR/ZOZ6Cf57BGCBnAaql52QEKI0LnsfaLkf4jdX+NgETpdP2dir1HQXGr6ckMOkWD1GeBJFpBgEEdK2utRJDnCpQpyrbYubwq4yILzo17NuhLov+xcV1WGnNOHKDOFXISaQzKxpdpG2y4SEo78nNiUCJe5qgki8QLp5XSFIzj6kZcbTAQd3UlxRG6gTB4SnMwA9zArK4B4gICUlgLRMBmt8f7j1zGe7ffI/Y969qSxktCgBw9AyjbzQbb7Tbt823b4v3798moGqTaLBElUusYAqfR1TUT8lsLihZW9izlSgo9t/V0OqFrW1TWpYjCKACNkneXOujxeBytK+994vQsjdpy38mVpCAAjsF8PoMxwGazw+nUom3b5BBeLpepTU3T4O7uDre3t0kuhBhxErBJ9eHj8ZgqUGlEybFrU7RR6RxScuaS0Ff/ee/RdR2cc4lY+s3bt9jtdri+vsbd3R2WywXWF+s07lODPgQu8kJ9SH2Qp2kh6yabCl+PB+eWf5+zo/4xxzmb69zxObsvfUeCwsYI33eg4JN8sQKJgwgkYFNsW/iuR+gH+K5nGeNDAjoB2S9CgKkcc7dVFZwBqKrg6orTqsVGJcMccyKFJVU9y8QcEZ7329L+KvVntblUDum5muKpn2vETRnlFGMc8ZUpOfVms0nRe3Vd4/HjJ1itVonLKcaYfpbPnsqxtE8XNnn589zYfgqYPLc3/nPm0/SY2kw/pjOU5wFlyi7LRI50qnB9fY0XL17AGIt37z7gdGoTPxZgEE1MnE0s+1l/1P5crpbwYUgpbOp8mZK3q9NDA260grDquSWwkyrZxwxkT/VknRNWImfHz+NzFMco9XljzNiEKPoyIj74LD9fVNrPjNHPB2yaTPAHSuJEWJXoaknAVx5ThfRT95ouBEc2VyVx1ej8fvCIXZ/Iv2OMKS+6kw3IS3irrRyurm+K9mTFL+VQWsvVQnSCioZA4DA9K5MuTsAFbcu5BXuurXpeCXIBSKF/Mca0WWrIriKjZT48gVHMZtagqSsYywrg4DvcHw8AAS9fvsRsNsPjx4+Td8gHAmRD5TDqGkwc7jBrZinMWXNIq6pKSP6zZ8/w1Vdf4fr6OikXnEZjEBIPkKZjc1h5JEq8pqzwshYcid8/567yOfP5HI8fP8Xbd+/hqhpEXBGrHzxXV3Fcoco6x20mgtabVoO2srxwfWSPLUlCeFSwiTAGnURpfwA6ShljNo6U9Lu4B42NMyq846P0BLmGpDwcRUJUwIJIlFEWciR/85zPSHupMGsEkhoe2nkFzKYTcHS9zr0g0QrGSCUfcCWqEHPqSLo+NS6DNyMQR85P83v0Xfrf+Ji0qdSwSC6h8vlyn7xeSpAmj4UxWQlKQd4T49uM3kkNccqpVvrAch6IFdFKdZlSNhprFYYG5Lco/DxFi0aGYOJySW0o5cPY4CrbrcYmxSKX/xPbyjm5PZVHCcAoZHgpl8oNm4hTD/RzAMkzqF4e48SYNMxhQmo9a5fLuGbetKJPwDxLLIMzYBeCh/cBCmzp2KAYSyrWQNGpI4V+ZHAjt8+abAyGmLkbokRpsPIzNgJKA1NlgzHMFZP3KBJ5ISCwKCvBc+UubqMbjQ0VwJC2zbrS6aOps2HUd9Zqtc+xLNWxPQu8GAb2+VdV188c2s/ipTYJYByfxquHMglz0f8aCg8FHKU/NT0ilYh3LId3ux1++9vf4vXrH/A3f/O/4/nz5/jVr36FFy+epxLrGTBgxdFaN4oyVKVNOZe47eOXHldvocl8fLhGAANjDVwlBSyUQN4qqMdedRoCfDCIkSSKJ6doMReQZzLwkWg0TDRqhfya7IPvYDgyzFgmp2dQCAgIsheryJe2EKFMk5Zhl7FRzDITIZdjXpKRa6SKyhxjlCS8kOOmiO4IHl6itnUcphXHSnBpmtKQX6OsAArRBfzIy1zKKQV7NdLSGiX/liqLaV0TQhkBkCLdZOrGgBiBXvgQSSKsCIRT9AxsgR2QdV2jbmpZz6yDHU8thsFju93gcNjhcDzifrvF8dTi1Q9v0fVD2t92ux12u13qZ9UxY4w4Ho/oug7Pnj3Hl798gaapsVr9CiDg4/0Wbdtjv99hvz+kvrXOYr/b4Xg4jMCUFMlRSTSDyBKtCBg868uatqYRThr5wf1Po30ip7ZUbBSuVmMdvaj+NU27axr9OU9A1MuXL9H1HW7v7gADXF1dYdbMsFqtMF/M0XUdG5MBqJoaLlZYrJaw1qJrmfuqH3oc9gfeY0Qv2O05Qux4YADAGoPlfAECoa7qDDSAIzH7oec2iux4+fLlaI4CwH6/hzEYRZ/oXqlE5544sklBOz9QMkxzRMp4f56mfpWH9qGOxXRcRnpJsdbK66bjOAUwSlBO21by95Zr04ANVwNgXtewdYXY94hdx3tfJFTW4XKxRFNVuHv5C6wXC9S2wsw6hMGj3XMFbd8PGWC2DrvDHu8+fsDgPU59hzB4oOsRY4DvO8Sj4cinWQ3jHObzBsY1OPUdusHDx4DBD4C1sFUtrmyhPIhZFoToi35X/kXAhyGN62q1FPnGsuRw2MP7AU3TMDAKwuXlBbxfCD8UoR86vH79g6yNBQDgw4cP2O12aQ5VFYMoOg5ElKLzdMwUuIoxpsp12v+1OOXjSG/JJPlElNaznjcdx596fA6QKvWLaRRcafdq0IM+fzab4erqim1YoX25v79H27bY7/foug6Vi6gqSjQyaicDBi9evMDTp0+hW7v2g/cer1+/xn6/T8AyQJjPOS2279sEUDPZuMV8zpxwav0MEqgyDDmVWnUs3ed0H7PWJTlZAoU6rpoRUfI0cV+NQcXyULmtPI46lrqnlXJ2nGHx48fPBGwSQ+1M4/WY5iErwjdVGqbHSJhOjB+dqHqftEGSgyVelHVVj84/tV3afPa7PfwkxFefyRtcjeubdVJW+Fm5nKtOoOTFiYOQibPSVkkot6FxyFr5jFEvFgttqmApIKebrrZdc721TapU6wLV8GEVOFXN7z2bzbBczOH9gH7o0HUt3r19h6qq8Kd/+qd48eIFbm9vcX19nfrYe4+uZdBqtVqCiDeytCnKOfqejx49wrNnz/DF8y/w9ddfYz6fF5xQDDIpoTARQOK9zTm1/P6cfiRgnSjI1irZGY/ZfD7HkydP8PrNG1RVDQKnLfX9AOcqVJI652SshkFLWvM9KhgYCdEO3ud0HiuAD7JgPDc/R8ZfIv02yZCKxbUKDCUzhoSg8Mz9dXkZcBpU6RV/AF7yC2XyT4wVinPRAufSMKVhyfjjijrgKiFERZraBGxK62c8p6f/pnO8nPvT60fdUBqjOL+RJRjFQIiEjZDmTnkQKKEFySCX6/S243XIxu2DvqdQ2JkmVcNL3tQQcDicEIJPm03phUnvHWMizf7UHIshIEdHYaT0lfn8uvZzyrAYrAnAiCld6HPHNHJSf9c5qFxtqsCoXNGKLQASoATkktYqN3U+OutS30TiSIlsxHP3GiCtoVJJ13tNS8ZiyEBpkrl2vH8I3JP72+RnKRAaiDCIV1/7xDqeT/p2IQZ0fTfa09QLVc73qRKfpRdJ+hhG8wvIxKfa1w/60diRbGEAK0d4cR8DoHG6qxE5oQTHarjp80OUaIkCUORrrJCoM/dQRkepWAYlUIukiJXtGreRYDB2VvHz7AODh+835mbRKMvdfo/f/va/wjkutf78+TO8ePEcv/jFCxB5tO0ptaMk0+T5oc8mmcfNA7Ck/HdO9qgRyO3jn0EinGAANyqkwAohkYLMBC/lvPPaNWhm/PN06pMhU87FUicYjZ+OtUwy6xiUCx6cysYvl/a1ckxMmkfj9aLnxEgAZbCpXI8l2DQdZ2m2mG/iHEEGhgLFVImqVLjLd1Cem3Jdl3NX+yUr9RC5OObcKCvpukn0k5F/IQCIDH57cUiW7+aqilPtLJOy6/0VrDHWwlZuFIlQ1RWsc6gsULta9hWeJ93phNOpxXfffodXf3iFt+/e45tvv+MUr47X/vryEvVshj+8eoVXr16l9wHyHgAx6B/d3uGLZ8/x6NEt/vzPvkbd1Hj7doPDocUPP/yAN2/eMPn2x48YhgH73R7DMGC73SZgVueXVidWp2n0zLVzOp2w2WyS4UI0jg7QvxWIWiwWD7ICFHzSUvGbzQZd1xV6OINS2u9VVeHly5e4ubnB7e0tgzpEGPwA6xxubm4SbxIR4ePHj2i7DgSgFv3z4uICs9ksRf2XqTSLhlOc3rx5w+TeeI/N/T2csVhK2pNGT5VgS3JaDz0IwMXlJRaLBTabDT5+/IhIEfv9DueOJFdihPcDDJDSASkGBD+M16jBSI5xwY8x0K1zQ4G90kbSIxGnI+tTJedVKVcUSNJ9XuWjznldmzr/p9E3qvc42UOdMZg3NWpr0fY9O+UiO1Zs0+Dy5hYXqzV+9a//FC+fPcfVao2b9SX6tsP92/cY+h7H/R5+8JgvFpjPZvj9H17hb//+P2N32OPV6x/QDgHoOgRv0UePLga4psZsvUTVNFjIT4oBMXj4IaDvOsA61Kqf6hr1IUX4mYH7etpHCm7UdY2LiwsYk0vbH4577PZbrFYrKYZR4+JyDQA4ng4IkSMAP3x4j/X6Al88XwIw+PjxIxi8WmE+Z5BVeczUnlKARGXB8cj8uRpVGELgauPCSVRJpUsNQiiLdOm8KStFlvPjU8e57z/3Wbk3aL9O567Ou3Lf5YJVl3B13h8+fvyIuq6x3+/Qti3qiu1wTf8FNEWuwpMnTyRVMWCQSE2AQW6lf1Gwjogwm88QY8DHjx8xDH16t7quEMKS+0e6rhdCb10LDERlB0jpBHGyxmKMSUcuwSbVAaZV8LgfHkZIl7aeiVlFdS4Xjprq8rmvPzu03H8/fsr/f4cq9+nvye9TAAWYNtg8OH90/zOflYd+Z519sOGpUNVQxNOpRdf3o0l8NoUpjAdUhbx+Vm6y47DGDBCVbS+VsynIpt+XwFqJ6JZHqYTr5J4a9YkUXMqqpmgre6YcaQGcLRYLLJdLURAsYsjGhqscbLQJaLDOYbGc4/r6El9++SWOxyNubm4wDAOePn2KuztWCNbrFZpmDPxp21O/sxbKIeREIyRWfaGR1Jiy0JQCvl8O0df732/u8YcffsD19RVub29BEexBTn2diYSDMRgEZAqSx22M4SpaQE7fNoVFKr9MxamCM6TeAqKRoQwoKg2kdCoqzbVs8maDlIGUkASMcPHIddmAViNa7lc8W98jz7nCkDDn2pF7HtIf0VgYirCk43GOH0DHjBJ4Q4rtpG9NimpI58uvJPfOsVLTNzPp3ooZPTxP28OE5kZImY3VC1IPZWBK+xLlORkQLMc7GUsaqVA8l9uSFbuqynnWMGMAZNquMQAt89vId2nM+DNrlKSfU3rUUFQgywo3DUxBFiiealuG+Rbdx/dWYEEeVOJzcnIUo8a5ItLSqMHDPCxqmJjk/ZPrYlaWlcwxskBJ82n0bjrRJZU2Ri2xztEIGqlljKbNmNTWnLakJOA8ZgYmVRnNK0fWCZCqPcbiPQyxUegDVwHLpcApAY2s/BlJE7ZSuZRyv0LWSJq3MumTnMvGIhESP02GKcTASPsoy70QNWrRpM/LyKryXuUcjUQwkdN003okjbTM6za9t645QynV2ega0jt/Yu8+Bxan/a48L4050vzJI5Tvb5XDSa5l5f0yPdN7raATJFrISpSGhKPLXGGZTkJ+zX8nBZdUhsbReOszp9rIVJ5SHKfwyVfFhfxsbYeuEY4iNRg8h9JDAEQFAHWu8FqL6X24e2KaD5HYERANwZJJkT0AcilMFO8FiGI6AZgAUMgE0qWnJIt/bWOe2SrLx/2lHcCfamQfQeSw9KMRQ09BYF3AqR/VUaH3tjbJrKDrWsc26Rk2yQoGVGVtqFwwAEUIYTFlQNNwvypwaIyFkQqY5dhba1O1N1K9zhjUYuzXTQ1X2URYezpxGtjxeMQ//MPvsN1s8cPr13j34QO6rkfXtuzQ8VxZMwyeo8nrBtdXV2iaBhcXFwzYSxScVuN88vgxDAGn4wnffPMdDAx++OEd9ocjV1T78FGqZ7VcZVFAh4UYpVzlcZ4iCZzNADtHx0VxbnIERVS5KI49BXJKMLL07Md0/QkxRmw2GwBsOKsTQ3XDw+HAfSl6KhFhs9ng9evX+Oabb2TdMGfPer0eAVoKiJWAx36/R9M0yUGqnE3WWuCC+UnVabBYLHBzczO6XsEzBRLKyASSPR7EEWAAUgQDTVJZ1P5QpzCslXTaMZk6xTpdo6qPzjkVwMqXVjo5pkfpQNKf6hya2iMjELk4t7SrSptH76/gd3meXs96BRuuzqj+TnB1hdl8xnqa5wqIMQT0fYfN5h5zV6E/HOGPLUc2HfaInrnqrDGI3qMngrMWt9fXWK9WWF2s4WNAcLwWPx52+LjfIoAwECEEdoRFcLQSzzcBv52TqNIxiD8F+89FfynAquOq55bjfDweEwCo8+n6+hqz2UyAPIfDYZ/tDeS+L0nly36tpKCBAsMKfCmwpHNczy/HV/mAdC0ASNeoI0/TABOVxz/i+BTopODKdF4m0KR4z7IiHoP5OSKwF1uebfsTfMVFF6qqwocPH+BclXg9NeXVSLSPzlkFZjV4YrlcYrVa4u7RHWIMcM7mDCEirNcrLBYclaZjg4mdd+74FIYx1Y94zvBepfNEznxwvyk2opF22sfWWJApbapz7/XJrwD8zMAmPT4HqJR5hiWgoteV95jec4ra6zFC6mTCNFLyVCenbmC73U5Is31CgqfAiz4jhIABQ7q3PrpcAGUoWga28uLgygEc/QOTo5T0pwpwIHsqy2iT8lnlM+fzOebzOQ6HA+7v7x94KGKMiTdp5BmqCu9CGYXh3EixuLm5wXxWo3KAB2CCSSlz/B5cBripa6yXM1ysV7i5uRuF5S2XM8znjPxXViOKxuAEA1zMxVBVBUiiYwvD6d1i+EUhQahrLWWu8yN7FLVvf/fNN/hP/8d/wr/5N/8aj5/cIUaAhJTUVRxS2ccOPnoEikx4SpxGB8Nk2hY2v48xAFQBLqATKoATIphEKMyIdy5dzlVpiAjBU/E3R1ip0gsRCkpobGWDRowImkqUDIwMQKgBn8teZ24T0v4TosnKCsKeaHAMNOQ/p/CAWyV/s6L9MEIxATYiyh6KxIxWjOAgEqPeZAWKxJAFcj5+NlSm9xkL1/SZMQwOqhGXjAQGLPg9xWNlxbgSQEQ/o8jE7KzbSRtjgiTSc5W/hQEnbkeMolQGjvKbzRYwBhj8ICBMRBhCfmvDXm4GgbgypDHyjgBXuAKEHJ7LzhrLtmJVgBQEYOg1QiIKITiAyMAAVz0aMJsv0DQiHyVlVAjTYJxJRLzOOBDE0AZxRITMiwiJAKkkUhEM0Hb9ANAAzhBnwLiScHQC8yNwNTAGwhYLDhX3Anbw+lUSGgNIpa8EdBEQopeUOpP42EzH8nMxW8C5Cv0wYPBDGkdA2ibP1fnA4KJ4fWBgDM8VHw0sMTgdxHDQIJ6owIS8I0lfGGuxaBZwzqJqWD55Txh62ReiT+OhMyhBP2mS614ms19rTUC4LGB4fRggek27DeiFuNJIipOtOG3KGU4vIEDSa+X5AlIRcWSpgexh4L42sqgpRaoYGLBxzZifRD8FIYVWsGkElo6PEmgv/64UOIrC21PskVNnVNofjYGtKsFLWP4u12t8+a9+wYaqc+j9gLbrcTy2GEKErZzsVyt2NoihFiU9idPeHYg4pR5Eo0RBjT5Tx0OCwNTgK4AmvWrwPgO8+k/HtjAUeVwUbCPE4GGigCaiDDfzmtfw4FPZZzWyS02RSGRXKYEHkyLASJ6do5eU5F9vw04WIKeF+qjODUkEMwbOcjKMLa6Dgk2yWDUbj+Rva0o5y+OmqWrGcZQdGwAujasqzXp/WzneKxV8FhJ6V1WwxiJS5JQm2Y2MAHWurrIMEd2M78pE2HXNspdCBIXAPJBVzevINSNlPEbAhxyhD0AqJjKwpEZhPwyAMajmC1hjMFvWXBhFxvzj+3v8b3/9N3jz5g3+/b//X/Hq1SuWXcHj0d0jfPnlL9hAJTZ8y74wAAAgAElEQVQ6hq6HAXC5vsDt1TVu727x9dd/gsVigdubG9R1nXRc5nr0eP/6Hf7v//P/wvF4xHfffY/tdou2bdF1HeqmwXKxQN00uL65QTNjrqPZfI6721s8efIE6/UaL168EL26ZuoIoxxjnIYOkBYPRdtFDJ6w3W5xf3+Pruuw2WwS6bEae33f482bN+m7t2/fJn1aDXNjTAKkpsZxVVWJI9QYA1tXI/1d04W0/LxGT2kaU0lirrKlaRq8eP4FFlLFrmka3Nzc4PLyMhmlQI6wOx6PCSyr6xpEhJm8f9tzih6M4WgWazIgKOcoIKAyDxCHkbwLp4fNMGsytw8RR5YlG0r2MgVGpvaUgj6lUX0uEnKaaVJyoJXR2jrnp1H2AFL0Wimv9V/K7CACBpavJg4gipjPG1SzGpYAGzjNdxh6hKHHN7/9Ld69+gMu5ktcrdaojMXcMoXHarlEXVXoTkcc+h51VeFPfvlLVLMGl7c3sHWFHhGeIv6fb3+H3/zuv2Kz3+G7H15h6AccDha2q0BcpYHBxaoGrEPVNCO5qn2QZKrJkU26T2n0Stl/pezXufP27VvWVyTS7+nTp1iv1wmg/fjxI37zm9/A+4D5bIGqqkdzVcdivV6nCKemaVLEnfceV1dXKVKxbVt8++23+PDhQ7IVFahWfrPFYoHtdovDgdNrj8djekdrbVpzFDViFP+sY2oDl3av2pH6OxElMv+2Za62OtawFacMHg4HWGtxf7/Bx/uPnM3iauz3e2kH06gABldXV1itVlit1ri+ukZd14nUXwm+9d/FxRrPnj+D9x7ff/8dTqdj4m2bzRrM52wP69rnvTcUWV7FHlzYTRkkPo+XJJDIMp/k6LrifuVaL+9f3oNBbJQUZP+k42cJNp07Pgck6fEpMEm/+7FDkcUopWFVoSirb/T9MAIlpgIxzwAUg2+gVXfK1zv/rkz4qFWF+L0wElp6bYlklqBXKbymbS9/14lUhuxNEWD1EI1BtbwElG/Eh5DSeM69A5FGD/BnOWS6hjFWqsEtpC2s4M1mrFipi5NT0knQ2gwcsKcM4r3TlLL0YMQofILFYgRx5IaVzXYoPEzqtd7tdnj95jVevvwiPYcr9wBGvBasrLOiZBQwMLx5s+deQyQpAxTpvTUCgnTCQOEIoxabAaSWtXbDGSFdGB3lRzpv0rxUQIPSvXIfiuFKAGzRf8hecwWmkhKfLsqP1fejT/ydtP/R6JUgTJ5capTpe9LkHEoPEEOOMgAwesdivhoIkJRuUM4jbV4BCVH5buW7Fy+pWrKs89xeuTJZPEWPFkOW3wlJbjBIwxEtFRESaiADq7KGjAJhvBuMPJXGFO8BqF9Cp1sEMum39CWDhRqxJZE0lkEULjHOPHIaHm5NlkMGyGAT2KDXb1KVtEgAV29mo0OVr6LNHF1oYY1UUBQwXcEvtlmF7NjmtkHBBWNlTkj/67QV41Kj0JKTOMlqKtZXAQLouhXZZxXIU7DJcHuz3AMSsGk0IjXPyFyAwiTbWr1kulYVXKZCJpAYBSMBjKINaZ4yYG1kfmYxXCgoo4vlXYrPOWJJ+ioSyNC0uI7IkLw4WUzpOlLwDRKhUUi9NM/04/xe+X2mh7ab0rzO72sm19KD/bJ8fvqnwCdxxOt8Psfz58zPtFovsVqtUFU1j6EAGEZAQZOA9WIPTo8vHDzFK6WW0OQjXa/TvgVGfZ6VynGTSdYpsZVZtNZAQQn+k+c06TsW80rHKr2SNakdKqGnz9W26K2zvMyyc9T/2kGkzovi3NwY2aNiBjQB/hskAJ+MOo3TzC0hyRyWEyTl3Io1DU15LORG2nNFdmi0BQAgwpCBTc74vK7zWuF2RIoMYBVzgogFrQK82UDQERJZMOrbDORp5CkbBQZ+8Ah+QNcPaNsOb9++w8eP99hsdohRaBFmM1hn8ejuDk+fPIKxjt/RGCyWK9TCpVLXNW5ubvDo7haLxRzX19eoqxpNXaFtF6nQjTFc0SiEiPVqCSBiPpuhHwY0dY3Fcom6qXF1fYVa/m6aBguhPVAqCmOMAOUEU1mJLucISiVHBwGuzjxgzhl0bYeqcgI2HeF9QNdpNH5E33epcnII2UjTSJO+H3A6HQtieYOqqgteE5a7Cl5qlAPA+q0V49oYg67rkrGtET1K/WCtRVM3aBw7Z1MajOiY1tlURUyzBtTwBeUIctWNUwSGEaBX5QrGpPbTSIipjm3SeqIE1ujsLvduXprTjQWj+3+KLLo0eD91fWnwnnMcTO2pKd9aArRigCduk5Xr2CFtYYngHC/K2LGzqB96mBjTv8pY9K5GZR1iDKirmiuF9T2qpsEcC0QL+BjgyIrbS6Nhbcp8IeI5w6qXODEguoCCQ9JmfcfSJppmoJji3LIvpzZmmQmjc1XBFSdOf+VL0j5WG1azT7Rv+77PdAlFangZ3DEIp5pmrChgw05vj2DtqIqdtqekfRgVXuHWj/abc8Egn5pL544pUKKflYeClWn9xkzFUKZHM0jLYJMxRmSgFZmdAUIrwROaGqrzU8eW+7pOGT7L5RLWcnohyw8rVdUrqDO11E+4vZ9fW5/qm7I/k4o2uf5cn/Hn2QYZPfvs/l++7eePnxXY9KnGl51Upo9MhdO51JIyDPFc9NE5VPBw2Cey7+yBOEm4HZc/VDQ1832IsQAN/YyIgSRXWjbS4mduVxbAmlJSpgrqZqVGa7lgFPXWhZxDtvP9y8iwMmxTvUNa+a3sD00VPBwOI3Je5xyUuJoEkDseDvh4/4FR/v0efrFIueeachVDRN8PWSEHJDpswMV6hdpdALBYLGbyruOxCyFi6NWTk/mYeCzZahyGAccDh2MPPuT0F+LIhlBszgBQN0zOXjesdOluO3iP9cUFLi4u8Pe//jVev3uL1XqFf/ff/Tv4EHA4HEEELBYWrgKGEDAEz+NvwemEIuR73yEMQaJIjGxAlTyKsoIRwfMlEY7nksYGgHMVrOOlmnrQit9VCHQzoFT0n5TNVuOXJFQdgERZlMY196MxlvN1YTKtjCi/sAbOaDoTxPBDao8xE0Um8TSXYIfRJ0GfSiAGBrIdIZ8qKMaWSURBBKwywWZjV+8BiTaK2heWf8kRU2JUZNsj/53e10DjEpJ3XSx6/TYhNwawxK1ig4hY6TDsXddUC4iCxIgFJPpHQ09krVCQ1C6dV7zWjLHcVmNgXY3KWSQwUkdIjK8Q9e2zgUNgxSBtIpDcbumVQBLl4Jmjp6odk6E6YFYJ+DuvJCqHOYeIABtVdZCut+qxNql7g/RbDNIPGnlmgFqrTIH7h739SGPtrOG2gtAPDGgPvUfwAdYZVHBSNapKQJuuBN3AFXwmMQQDsXymSKDAMVRBwuB5HkiEmBqBToZMon0q6+BsfpDa+Nx+brcPBjEAFpnEMa1Q7awIUOR0PC+dM3iPHgB1gccIDlYixHQ+WolY5FeVVMDAxu6gEUryn6scnGHCf4rCF6FTzlgYSSduUiEK3QuDVJcMPH4F2GTIoFSOyv6GcQLIuRR6rchKiODoysDv4Rz3s0GeLwpwnjtIVyGVP/kIAhRCIgyVhFyjRdIdKKtGPkbEwSOShY8WX/7ij/A//S//M7q25ZQcY/D8i2dYLOccsaTgqGHZooUoYkqnIpF/2sljRWyqTOoZ+nZR/5CfBCp0Af6eIkfiaDRlkvsGsK6ApJNg1mdzMY0Y2PnCzxCdxLnEpVV6Onm/LCo+pkmcQR4CQKHQuzTUnnKkU/KgGi5qYCA0AV7oB4zIU4lEZD6JUDwfUGTYWV4PzBXGDfTyHg5W/CQBRKwDDH5I4BYgZKnOwFrHkVVqZRsDMgwiBhgMQaMhRbc0Ob3YGIMIAyMFQVS09wOHPTfOobYOFAndqYemJRIopepZ61JhmMqxsZH0pcgpaa4yWM1nottywZJvv/sOHz58xHfffYff/va3OJ1afNzcwxiLf/tv/1ssFgu8ePECT548wWq9wO3NZQJR+HDSXp47TP49l0rQbFw9urtI+gjrXAF/tv9z1jmpA1FA10X0fUigGIGSw/FwYJJdENCdWgxth/12CwKh73pEiri4uMBquRSDqxIjeQbnKiyXK9R1g4v1ArfXCyi5PUXCEMr0K+bCYp084tTy3lnXRvYhcdwWxQ10SfjIZPcMqDFYtTsyZ+nbd+9wOp1wOBySntq1LbxEInVdh3fv3qHtOrSnU4qaSmvNj3mN5rM5VgLAXV1dpRQp1UeVzFzTogbvQSA08xmquk4yxnuP4+kwitoqK1oZY1JqvAES5441OeM1ATmTIhHGICs62o5iPqoTVo9pGlx5PKDYKGy6KfBUGvvaLjXmNWpHwZC2bbnyXx9wPJ0Qg8e8Mqgt9/F8PufsCedAPqLdHRC9x6nrcGyP2O63eEsMeBofYAFUjqMZSUA4V1eoZw1cXWN5fQlbV7BNDVNZ3B/22HdHeBOxvL4AGYKbNTDOwcMgwCQnFvOt1ckuLW1MbXuZMjj9d66vdKw1s8d7n9JDF4sFQghYrVZYr9e4ubnBV199hdPphFevXuN0PKVMnIuLC9zd3aWoOCDzOC6Xy1SVcTbjqJvVaoUYI9brNY7HI968eYPvv/8eQ99jt9nAGOaVaqQ6ZNM0mM/nuLm5wXq9TgT+m80Gh8MBdTVDXc9Gc0bt3XMBI1Ng81NzbTrHSnygDKJQrikCoZJoRuXJevbsKZ4+ewJnK1jrsN/v8erVKwGHGliR+W3bYr/bY7vZpv2NiFIGlPKcNbMmgVGPHt0hxpjGsetanE5HTiOWzBoq1lXmmqLP9sG5o8QAFK/Q/tJqdOV505/siMvAHAggN56P/9jjZwU2AXgwafSzcxPwx1DQsgOngm8KOJX3GXr1kijYxN6TEKLwN4xDQ1O+JYRbhNhzxpOGDfIoNiaJEpafmZXmEuXWySvfnH3PqTfjYTTRQ4+Cvmvf9ykUuUSkiSiFYpZ52NN76/2VPHzoBwx9D1/XI28LAxPZo6L8K5kIkI1b9nBltNuYjOryRhtGYcD6TjEyF8EweLRtz8DUMAiXEqfUkKTSqIA2AIaBydNmYZbSFBhM4xK4i+US290Ox/aEzXaT2uODRySgocjE7crbYgEQJ80ZAS5YSQpc5ccawTzUU8smBwMLhJKwLUE02t0mIqfdKZSTvhQDQNIL5BmqQJuiQwnqzc7AiSLf/DcBJgpvBQMmxpQvkn8n5a6C2kal8Ufp/+Wy1IgEMS3G5xg1NgqwSv8qFPr8CDkrUjLc01sSg5BWDRg1TjMyUyjfZbu0JeXv0u9UAGOYRJSSyQTtAm6QsTCOn5sImAXs4LnykOMq9wcl3hUDA28irBUAoSxdLqAVwO0v1xrH3oiRaOQ9PAMsUdYDn8NnKc8YV3sCmsgRHXAG5FS+GDGKkJR3nbJj41b7b9rH/D8FSiyQgSeAIzQUH1PDwGgkZYY0iMCpaZFLEFuAQQYFfAWwsGl6yNgYnUQGBJuAJpAYeiY/LxnIVMjlShR8KYOcU9RKI1/eNCrwZRKOmYFZmYMGKcrEIY85G0dsoDpnUNnM62XKfpTILgNWSHQ9xxhlXBUE1c/zfpoAHmOLtFkCg/P8U9dYBlkzNELpRfIelfELA+X64nmhMkaiVWQ9WJfP+TGgKTW7RGNQtG20/5viPbIMJBnjtC9F4hRTydxeLlf4oz/6I7QtEyCHEDBfLASgyKT8mh4c45hzTrCmLPSkj9I+nX6ofJM2pFcXmVCSZOs6D6UCreKKHvSbyoXU5iTnBcBNT0+7DMq9wkqqnCn3BkqJwBlwQqnUm+KONDLq8/4j/adPlX05jYu+rTwvSGXNkKp1qhzmtcCgkknfoDyLGFBLCnsq5AHAODAgOnrJ9HPcN7r/lPpWXgM6EEYiZmIAQBFkNepZosUjp9ir3sgggYFzfC9rCk4xHavIkYXcFgYKh8Fju9nh/bsP+MMfXuOb333L+ge4wAlzXN7ij//4K7x48QLzeY31elaMlwD5MfeVMax7AUjywdoc2WAME52vmIcYTcPnM9hEI6PkcDxiGAa8txYHe0g6ZiBKXCWqV2t6sjprOUqIJBqgkaiBCrOZcg1JurXoHcl4MgwqhUg4tfw+TWPhnBmBLDp7lTet6zlVT3X6ru+x2W3RdR2WUiZ+s9mk6lT6Ux2pWhhIOV50DocQcNwfEIqiEMvFAqfVuohocMXa4eu0Hwic/kWAVIC0o+cdDoeR/aEkzMlmsFrFlFI0i/ZDqf9bBat1nhON5U6xLhUIKh36Zcrc1OlfHlMjVn9XDqJP2XsKpKnRrg5yjfCLsj/GaBF1HVZOuMdqkA2wlQVFC08RIQwMIPvI3I4dVwDRlccRSYCtHFzDFe5mvoOtHKrFDLau0PoeQ/AIRHBNBTKAqyvWPcgkvcWKPm4nsjjpFEU/lPZeCVpof5Q2XhktpIBlmSLWtm2KnGuaBpeXlwzWuXcAKEVBzefzbM8U87SkSynfVVO8AKTIpg8fPuAEYC/y7XQ6pUqgmr6p0VUpMl2yYDh9Os+Jqe1+zjY/Z6t/Csws++6czVqCmzyHYlqXy+USzayGFadGyclmTAVjbMHxNKn8Tbmas9rQQ595rzQ9Uon7eU5zAaq0x+QXHe0507lw7piuMe3HaZ8Q4UG/TK+n0flqg33++T/yej8vsOkcIDTtsHMTqwREzi3m8vwSYS6rf5R/32/usdluR0qkHhpiWIYIVpWEwdF4sJlLaBx2qt/l98gCOwtTjN6T2+FGRtCUp6k8pgvqXPTTZrPBu3fvRh4KRTH3+z1OpxOstbi8vMyVOUApLWw2n2G9WmK337EHZWCwqa7rpGToItHwbmOAWa39ZzEMHvPZLG2OfT+uCpjHJ2DohrP9yNxZA4xwxDjLJNTWMieHkWoxrrZSsccjeU7B6H0za1A3NZbLOQb/Bf77//F/wB9//TX+w3/8D/jm22+x3x+SchbBFab6YYAPEW3fo+t7WOfgKoIlBzgJeQ8BPkRYktBaEuNWejMZLAo2UUDK+THZOO3bDjG2ADJRsE3GnBqyWp2sFAoFqkIk3E1C7Jw8a+pJ5nfIayynBGWPrs7dUjHg53CVs3IePgSfEgimF5KUlBZiTjV+nRKnaoBXaRAhW+786FJAI9lOemVp0CUaXDF8ASQeHRKjhtNkKgFuihSM0iZEzsDSGxrpa54jJFFkgwA5MRl9DF6Aw66NQfBCbispWRRYCdeqlGxYRVC0XJoaTEBGIje8RgAM6vmVlNYQEAYvXEvcxxTYkumHAf3QIwauphFjRNd3wqETQIEwW8yxElL+q/WayS5Fhuz2e668Y9i7z/n4s8Tb1jR1IpxNw2KMbOBStrquMPQ9uvYEQMPzNZ2VwS9VAOazBtZZ1LVWUctVxFzlUsg6yxU2hkqwyeuaimwYW1k0MRAoMGk3PJ9TN8IBFw0c5TEDsuUSxBgMXiIWYkxRYwqq11WDytWTJVGaxpBQbSZ/V8JfNYYiqkRi7rSKIRRwEhXZskFFZECNBUWgjkLuGnk/0ipiFLmCJz/XyLrmviAyiCQFDxwJMFGzzLAm9WfCtQvAmkEbIAQjUaWDcMP1aZ2n/VzXYkGKHwQoYlg3yyuWRQpSFWuWdD/OipiRecWvpbKmJOwfK08xhrye9XUMUFcO64sVmlmNw+nICqZz6APh2HXYHw4F4Ct7qYAotuLos1SxTzosRatotTyUqdzF3BDZqpEiKu+c44plQ/QYBp/6RNeMgryph01+txIw0O9i5KqCpaE4hCznbSGH9bqyPQClSE0FOLNxUupbeY7lPYTnYYwcJbisa9kT8tDpTCCqZbmM4R+DnMqvzovUjUauJwXBI+ZU8xzRq00evzxn+CZD4LQpV1msmll+bEL3TAJrrLNonBpLfGoUHsXacEoPOa5kSkRwsQFAcJWBVghyLvNPEQF96zGEgL7j6mZv3r7Gf/kvf8/6lDg9d9sdTm0HY4AvXr7Aar3GF198geVyiS//1Re4WK+wXF2imc1AAPaHfjSntCeqyqCqDbyP2O97+BASd1DTNKjqKqXcwJgUWX08alEcloPa+V7fe+gTNwqRRIrUDS4u1ul+yjtmTZEaRZRSczTdx1nAOoNewB59RiTCbMaGrKbr8VpTfi3W/4L3CEHkstz3zevXHO3xh9e4v99guVxhtV5jvlzg0aNHHHVQVbi8vMSTJ0+Soa2O581mk1L2lCsJlMnLY4zYb7fC58OZATEEJl0XI9V7n7iodA2qoR9F7ilPZiijJ2NItkpJtK39RyRg3Wo5SqeiGEAxc/Www6RK/R+Ei7EfuiyOzMMqlQpelXaV2kHafr22/KnjXlaHLMmqtX9L7toSkNJzNNqpqWvUlUXwA077Dfqhw3EYYNoTKmPRuAqIkSPEKMBIBUdHgCMDChGx67lyXz9wIR7H55ABRxZL5T8yAB0syBpEy84tMgbBsUygYQAMMJA4wOBgNGLSjIGIaRRY0hfkd7ULz2XoaL9oFJzyHykQst1uE9da3/dYLpd49uwZhsFjGAJ22x3ev/+A7XabbLxzHEcKnFprE7G3AiMXFxe4vLzEfD7H3d0ddtstvvnmG7Rti+1ulyKlNHqoTNEjypWOY/1Pj44pD323af+UNq1WW89pbZmXTf/puq7rGrePbnH36BZVVaNyDJR9//33CCHi2bMvMJ8v0hru2g7bEU6Q23U6nfD69WusVku8e/cWVV1hueQxu729xWq1ksimEw6HPfOLle9e2vBT0EfxEMr9MMVOcgbTkCLJS7Dp3HEOnNPPP3ceET55z/L4eYFNGINJ08oT6bwJ8pkBmYfIcXmUIIxucopClqDTYX/AdpvD4xhQqhOwVKLLo7BH4a7Lhg97aUoAhY3sctJkAVQKoxEaCQl+Nhn5LjeOKag2DU0Fcnlf7dPj8Yh3795xjv1iAc3/1YoDp9MJ6/Uay+Uy5/CScHkA6ToNbw3eIwyZ50m5nlTJ5cVu0TS1KKAWTcPVH3jTJAxDGI2HpjAG7+GHnAub+oUIbduhbTs0dYOL9WVKTSJLCU2umxrNvBFAb0AkzvkPMTB3QVVjPpthvV4ixDv85V/+JR49foy//c9/h/v7e5xObBAzkMAG7BA8TIzoPZNxWhCiMXAArBAOcNSWGGQmSkh3FCU+A3HjjUgQk8S1Quj7AcPgk86rJb2NgmrM/o1c+SJmAaC/kHjPlHxQAc7gR8K5PJIXbGSETISRouSF4Cvn72QB5nOI08MGWXNGWGKddey8Njn6wiZrKnvGkd5D/tYQq/R9NjEKjAmKHqjHmu1XNZuZI2iUAFMCTbom1egumpgNYpknEiHEwEEYgxY8XDzvEzgmbyEpLspDYmBSBIYPnkEYH0SRZgLZGBk0CoE9tIMfMPQc+h8ESIpRQCoiDv/vWo7gPB7hg8dRiFdjYE/VYrnE5RUDzbc3t6irClXDMvDdu3d4//69gD1VIppUokQNf1dlBUBSXkolWKv8AEjnakSlymet5qOlgJumYYWzaTiVNAFPYtQ6wCVQRKaGrgUjMI0Y6NaCo7aCTZFNrmavuCGDMqiixJ0oEIJELQ6eU/r6vuP5LAbIegnMZ5P9p1Q2jUHTsDOiskBd54pqOp8icsRUMRVR3GIC/gBVdJJupW2WLSfmFcAGb055JMqpntFm450NN8bOzaRPy/fxHhgGMUaGITlQ1AiDyhBdsyZHyFnKcT6qCPHPMFJiSFMfdSx08QJwjiQFfdIvEmWW1q1EG4ck78poFcDZORaLGVxlsVguOcXAOgwhoh88Tm2b2m5MJhmunXYkUhW30T6lxiOy/vEpT2WWsQLw2woWBj5GDIWsBoCKqgfyWOV1hYfRBmqcBso6EADOby2ePXVOZRAs9yERElCv1WnLfSLrKBmrMUbSp4mvmY35c0dHmoPnvz576N6c542DBCv/pPv4lhX7qjKYz+rRd4LTYxjYkWCsRd2M12xw3CcOGm2pzp1ciKGqaNQnAN83RIIXQLHtmHz7979/hb/+67/B8XTESYAJ1T+fP3+OL7/8Eo+fPMGvfvUrrFZLPHp0idmslrUIDINH10nKqqTeIgGlgLMGQ4w4nXr0/YDtdgfvPRbLJWYyt5sGqCqH+YLlY98HBj1lkencCiHwvjPkf9Y52MphNp/h5vY2RVvUdc3pdeKUPEpE1PF4TCTgpa5+OBzw9u3bgpcpYL1eYz6fY7FYjMi3Sxug7/sUzaH3+c1vfoPNZoNf//rXeP36NW7v7vDk2VPcPXqEv/iLv8B6vU6lzZ88eYLb29uk62uhILUTiAhNXY8iOUII2G226LsO79+/x3a7xfFwwOZ+g9PphDdv3iRydXUuK9ikZeJ9CDCii5XG5jSyv7SNFAyr6xq05GpiWtY++AHBj6vzqUNP91rtWz00aqqsDKdZDCUQNc3w4Pk8lmv6ne7dzrkUgaPnlzbZlIeojJ5qmgZoasxmDLT03QFd36IPHqYHKmPhjWcbi0leUVcOTuyCxjhQiPBSrc4DfF5dw1QVtKqijwHHtkOgAA/iNNqUUudgTA1YMNE6OJU3EGAtcWq/IcQJ2HTWtivG9nOBFWU/lamGCt5tt9sE8Or4aAXE/W6P+WyO06lNkXFaOVHvo89XTjIFcTJNjMFyuURd11itVnj8+DHu7+/RS9Gs4+nEdmAY8/3qeAJI60aduP/cowQ4S56zMlqrtFtKYDT1fyQEhFRdsmlqXF9fo6pq1FWTosWICHd3d7i4uMRms8HxeETf9Tgej6P5rvc/HA44Ho9oZg3uN/eo6xrX11eYzZpk23o/YBg4OjLJlKQbqJ4QJ3jBeVSn1LPLoBJNR0/tJXa45h0WmMqTs8fk43Pv8mOA088KbGJFetzw6cI7h+JNO3gKRCnYo4BSKWBLcCMRrxHJIubweV68tXijXIoqiQRGyUWrT8HsRj1oBUGc/Gc0QsNoidIIJbcV26C4hohPSFkAACAASURBVA+uyJRLsZbtKMGA6aGflYju8XhMwkbzddUjo8JCBVbpiUrjIPdu2xZ7Z3E4cBSUK5Dv9XqF1YqrOjkpAav/NH90GLikdPADvHjt9H30yOPrJA9/3A8A52r3iwFVVWMxW8DAIMyYxLsSEkpXO9RNJco+l4N0jsMhNT2CFckAaxxevnyJ2XyO9XKJ6Fm5OnXMvVXXDVyVK3e4ukYN5r1wGs6swF5dp7BmrmSl48RoA2MPLPCMFcFSqMaJ3ssonwKER4mjRFKKjhgDCciUCIBsLHPfs/InIaySLmGdS+lTyoeUjU19j8JakL6vnBtZCuW8Tcadfllax+UVRCCZz9nQcUkxZsojIeeFKSpblQa2gLEm9xdJBJWVSMOo15FJ0Q7JxE1BBrL+LJek5ogknhdaRY1Awsdkk1fcFHxQRr3yGoEhYBNptR2N3DAKWOX/+N6AISresUaIEe2pQ/ABp67lqKSuQyfVgnoBN5hzAPDBw8cAPwxoT7yej63wzbWs4CpIAooCLhGDHpVBMIGjmwTI9Z6r31ljheuIsNlusNluea6LzFUlUoGhUlap0qhyummaB+SfCkR4zVMX/g9VUquqwuXFBVc/Wi5ZEXYOleNKacxFJoqlAk8SWRJkMmoVL1s5IUDmOcEROZJuEyXysQQ+Asl8kNGVdMQheK4Q6AMGUZCHgUlJl4uFlCBmnh8FToGcRlZXNeqqgnOGDVcFWJEjfhjEHxKwY4xBXdWwjivpzBdzzJoGy8WS2ySRtH4oQsWJ01bCwCA4h4lb1JVD5RhoCyontBiokFA5Y+BssX+RSicDV1ecCkcOBo6j52SdcwoiwagxUhiBuvacYzAircARuFTIIl0Pgvgp8JvWcAEGFomvAAkgPIqoZC4NgEEBJfg3AKqm5lVqLOqmSeWrnbMcyRsvkhgzxqARec+RFI5D6o2C5lbEcanoiVwuvNmjw6T/QWFG5pSwiJjBWDZijCmcTcXlmlaW5XMG7dPuTQQi5vCKMcV6SrsEujQYr0vVt2Q96dqwUQAU3ePE+RGiVNQNEb4bhI9ikFLkA9puEOGokVrjfjCiO9kEduV5obobiVFOskaS9xdgQ6HmyJf1xUr4iDiKqG1bdH3H8rFtMzAKwFUzWFthMW+wXLKhPSs4kxioH9D3HpUzaOpx2esY2FlQGYPasnFbuVrmPkclDyJPT+0J+8MeQz9gt9tj8AN2uyO6nqNOh37A4XjAL7/6CgBQN40QTFeoKpcq/q7XF7i6XqOR6E8RaZks3uZoOR1fnWxESHOdI7MZ1K1F3kZJRRw8IRy4j/eHA/rew1UMJKks6PseH+4/4nQ84Ztvv8GH9+9xajscT0dUdY31agVXVVguFsxVpWtZ9q5Sz1+vOeVMuV+cc1iv18n5EELAQuTrYrFI56jhrHJXjV21A07Cr6RVti4uLnBzd4vHT56MHK79MKD2AwbP8t0H1VkHbLbbBJKFEFALSKTzAACGrk/cmMqB8/jRYwzDgBcvXqDrOjx/9hz7/R4h+BStwqmEEfvDnp2Aqi7IGvTB43g8whhgtVolcErbdn9/z5LD2ZHzmNdaoWMZmyoennPia3+VoFr5ua5DdQ6VKWBZ1uXoh5IkWh1OOkZT0Orcs6ayAer9ATBbLGGcRe0sp7cDMJJFgIpgiFAZCwdej0YKAFjngBhgrQF5D3IOUey1CoChiPmCI8366OEpgqwBWQuySFyrQfQ2EuU8QhwOJkoiu0He21THF3ktGRZA7qvSZtU1Ya1GgflRPxCxHWNMjcViniL62vaE7XaDV69eoXJcMODmpkLfD5jP54mPrARhVKcqI+XKMbXWJqBxPp+nef38+XNcXV1xRN9+n9atVmfLbaVRgMb/V8c0+ET7qvyZA0iYUwlAchK2bYv9fg8lCOf1ZpIMury8TLb3YrGQIiJVArx1zWy3W5ZHLkeIcaTjCcYYiSzj6Nau6xL4ulguJzp0QTVQtCnZI58AoUrdenpt0pQm1xHRg2Cd9M/m55YgaNZvfnxsflZgU3lMO6L0upWesxFan9C87D1UIElDVjXvWpHXZCAUixzGYD5fCAnlxMOXBhvZMyoKevYG5hLFurcnngqjE0Hybl2EcTlvVLW/kjfGFAi0kgiW7P/lBJiCcxrdo2VaN5tNEjYpDBisVByPxwTKKdCk3hGd3HowUV+H7WaL/X6P1XKF65sb3N7c4ObmCtdXF5BgigQkUWTPGBGlCIbddovN/X0aM2NMIqvTCAjnuIxoqUjoJhUl7cgai0oMLZHfnFLjGJCxOtMNj1vT1pyvH9j4pkjo2gHW1viTr/8bPHv2HFcXlwjDgK4bcDz2qOoazXwGokwOW5sGTow/V9eCDfGCrQCugKE8O2LI6AgTCDYql0qCOxKQYsXgq2qkeaGXp1Qa1R/T/ks5/UtJc2X8nESiTNdZud7KTf6cNwYAbFWhmc9HIOS5exYfTIHxZDjCVUKArcAWp0PCQAA6iJJgCpAGKapIt+5ZA9QV31I/s8U5pfFZnmOKjBaldyJI+hXraAgScccwEs81J7wWtuKx1eAGfUcQCsOdP7fgcyIpIXZ+EX22MykLE8YCfddjt93jdGpxv93i1J5w2O+x3+4QYkAvXpym4pLSeh/fD2hPJwzeY384YPADtvcbtKcTA2rOonIOixnn6FtXwVaAGTyi4VLZB/Ewf3j/gZWJ4wH9MKDtWrSieKhBWsnmyGA8p8OpnNX0DJWves7V9TWePXsG9ZrqPCnnosr3qqpSZNNqtWJuAYCVcO9x3LPHjpVZCwsLZ0wiGjeGSVGttUx8XlVC4s4E3YMYsZuP9+i7jo1qCAgrhK9DYIMrSgSYDx6995yO2PVJwScizGczNHXNMqNpYI1B7Ti8Pgiw6ySVxFVMxm7ABPyAYW6IGNGdTjgeDrzfGK7gd7G+wKxp8OTpE9w+eoSry0s8ffwEVV0xSGIM+q5H8B790KPt+5TqZ43FfMXRqnOpFBVRAA+RAW/lU1ImOCKCJ96fBJLAYrlAPZth1jRYzOasFDkFKRgIcZLCYCW1iNcjp2Izb00Jl5Rg01Rg4IEM0aNrOZU5gVKgJAv1Qp2nxjIQY6wA9ik9GKiEOxnWYjZfoIoRdVPDOYPlcoHZfM7rWGWQSe4lAIAPBHgmTXZVme5VuhCAcYtzu1T2lKCbXmgqh6rhd2xqk3Cp0fMjk7CbUobIdxrxYw3LmHNHAumKY2oWlO+ogVGVy9w4/CJAP3DU6uHAUSvKeXM4HLCTlAt1fKls1cO5Kq1jdfqpPOi7Dl3fw3uuxhZCQHs6iQeX33C1WuHy8gqr5RLPv/gicYdYY/Dhwwfc399jfzjg/fv3yeloDHB39ygR7F5cXGCxmHNki3VJf9PUKDWQnXNYSoS3VsRorEPtKsyaBhdLBisrSV09ngacTgPevnuH73//e+x2e3z/3Xc4tS12ux1zg0YuaPLll1/ir/7qr7Ber/Hs2VOO5FnVaJqxEYGU8ijRXchgk1GgW1PTZRRZfwVgLGbzOYwBZs1SsGo+83jssd1yH3dDDx84sqcfBtSzBrXohgA7H1+/eYPdboe//bu/w/fffY/Xb17j90Kuq9EGqqMvl0ssZpxyvZxzpOrNzQ1msxm+/PJLXF1d4e7uLo2dGrTz+Rwp1U+iXtfrdfpdjUKNMioN97ZtUVUV9vs9lsslPnz4gJvbWzx68hh93+N+s8GpbdH1PaqmRqeyU67vJFqpk7Hquo510wlFhe7FWv78+uoKjx89Tvuc9x4//OEHHPb7VOW6jE76uLlH3/c49R16P6AW0mWWa6ybX11x5T/lXX3//j2+/fZbdF2H7eaeyZt3O26zY8dCWtPWYtY0HN2kE6ewbbTPNCJFI9VSWiXyHn0uSrO0KfTv8ndNA1OQo65rng8yfhqto9eUkU0qU9kotlheXGBJS5YfFNkZEqWwjuxflVTGderaixGYcWaCqyuQRsWAna91U6MCUIvucBo6DD5giB69cDapLuDFwcLVDSUVPVUnPMdJNe4n5ZXVo+RvLcm7rXXwfkjrSPWoxWIB5hICvGdOsMNhL/ZhwHK5xB/94o+xWq2wWCxxPB7x+9//Hh8+fEj3UVLv1WqVInIY+Awpos8YBur7vsezZ89wdXXFYPxshr7vMZvNsN/vU3uvr69H4KXOu7quU2px2Tf/EofOsxJsmj6nBNjquk78VUrncTwecX9/zwVOLFckB5BkkBKrM5k3pT7+5S9/iaZpsN1u0bYtPn78KLKKIz451XGTUh6rqsJyucTl5RrH0wnLxRJVzTou67mzkcPnIWA01pPPYSVTwKm8jufaQ3L/6ZiU2Mfn+v2nHD8vsOmMcVuCJ1MgRVE47Uz1epWpcgpqqCdC0f4SrEkCExAjT8miTYps0kHT58VQelbHLPrpZ9Gm8lpjxsTiGaVmvg31b5eLdIr06zuVRlk5qXTB5a7l6K7j8ZiUPAWSUrpayBXutG81HS71tc0RC8OQOaF0s18uF+xVhYZWByHv5nx8Eq1X0eEYY/Iq6TsrwKQoOSDU68UGlEjIFawxQBRL2w9Cmhc5Z5sJkQMr/eymh5cUNx9DqkRlnEVV1wmlVg2u73tsdzvMFwss10v28Cq5ObGHQ5U8yBwCtEISJce6+IZ11vB/MW9COp8SkCSBTrbkY4o6rxTJkOtIjZQisiZZMXznYC1CVIJZ9UkKiKPvQJJegv+XuTftkiw5rsSuL2+LLbdaegMaOORwdIaHEkVRo2/6u3P0W0biSCSH4IgA0QvQ3dVVmRn7W3zTBzPz5xGdBfCMviD6ZFdVZmREPH++mF27dq8chGW7CR9yfNBeI+XzQ/6teAjLzAk5KRSEJ+eFArYlOlBF3yoDSymyoDNyS5i0p1iTYHTBauA5A2DWhs1AHgm2q+J7IutDv694brBrEoNNortSAmLa0osbLSLXdG1KaRhwDwdPJRFcjwlZyyWFea9IAKxWxMzRBLYFT6Cm5vUg88EyY9BHCgQqqQxyFuq9x8TJ2Hkg0GmzWmMcRkpCDOk2dE1DCTdrEERPzKYMmkVmDsSI07nH5BzpQnk/zyOlcuAqBgAE5nv44DkZZJF/FiZXClxBr4rDPuW5Ksk8INV1n3UyvA/o+yEHZSEE9OceKcafaIKkK7BJKUUAgmjvQSNi1ojab3cEGIFVvWJkIXFxNJpZZCHOjk1ZBF4x0kgR8QUwLhbguR0qRoRAiaWAhiLMTM5OwjJj0IydmPphgHcez9stfIw4n86YhmkGrZSC57ZK5x2x3yJ9bq01FssFbFUxIEbtxZHXvjgSKU3oqTAQYozZHbGtG1hjEVJCG8lXsrZUxZO2aNmvyyJIZqKwXp4PJbNJzkf5uwAqwqqRH6qL/QtI5KiX9UJkn5Ifp7wexUkMmrRraL4xzTwlOBUxgZLB7f7IccMZtbX0/Dwv+XXTZdU/hATnaX/PQvFZH2gOGkUzbGZnypWIHtLMqnPes5YaEKJCXRl0HbOsNbF+Ip9D1NoZeeoplANBABGx1IR1pVTBuON/y3hrfo7h9VyuRR8j6x9yS70l3TFpp/MhYZwkrqK5VFXUM0cFngA9jpTIB3HKmdFEYpfyfpQAhZQrxv045n2A2q4cDvsDF7PofiyWS5zOPZaLJcCFOqkUPz09Ybfb4nQ64/n5OYPGBAQNmU3TdR26rsXD/SsCcauKWQMjpnHi8VK5KKY1sylSQm0sam1RVxWWiw5Ga26ZJQBnHD22ux22uz3GcYAyhtgHFe3pisfyzZu3WK1X6BYLVHVNe5Y2gNIcd8jc83OsCSAmjZhIH0vWjMwBac2IKcB5Ot+cB7+nhYXKWnBKkzU3MSYjbNAIsYV11FJtxWVTEUvx7u4GTVPh5z//Am1b4/b+Fnf39wgxwHuqAEqhoa4JjCf216x9aq2Fc6R3JOLQAkAAyO09AjaVAsQCAsrzylxAGBsCcLx9+xrr9RKrzRo3t3dwbiI3ZKVwc7tB07RFK9Esbr9ZL+GaClVl4JjVMzN7TD5TlFKZdUVxrGgsaVirsF4R4y4E0lTJDrTeo24rOu9GEqTWDPJQvEMsKGlbL0XLyUW6hwYwcet8VVUQaxjJIbSis79kGrWhQdc1F0Uh+bMcV9kHrnVV5WdlcirjUt4DYTlLwg4gs9UE0BKWh8ScZeugPIxhxo1hWQrWH1BgV0qt0FgyOZG4PMYIxUzGwCZC/URFGdIIY11Vad8D9R/4RHyCCMW994kgrMR6muCuAWM4L2RNwKvP/G8qzCJdfG8GbC5BvRJYKdsYJReMkXK9FBNOp2O+N4vFggDQ29vsyiYuf5JDy1y7Zq1JjiiC+fIIIeQWSXmfugCiZc7kDpuCAffSOLx0/S8BR3JPy995CWgpx+zaYEo02cpcuO97vn/ERpL2xOPxiKqqsy4W/V6FpmlIWLyuM6mlbVssl8ucj4XgYS0BhjNAy+xD53I+YAqW3x995Fjhcl5c//sloOgaq7ge63Isy3v4/+fxJwU2lWh5OYnKDawEPq7BGJkEpebHS2BT6ZYmvz8DS7qoJCDnx9foIDBTIkuE8BIEEn2eGWSixMNctLZdX48wUsrWPtmYy8VUVhkugLDi88jPZGN59+4dttstFosF7u/vcTgcLoTCZUOqa7JsPBwOF/pM0k449mc4N8KHgKZpsFotqcedq1MAcDqfcTgQK0OE6TwLEss1vHn9Gl988QUAZAT92g7UO09sA2amXdwPBiw0NCpYxMhtR87jefdMlcixx/l8gtIqU8bbroGx0vpB7jc+Ekr953/xFxBnFmiF590Wv/7Nr/Hw+hX+4ubfQRuD/emMcZhmNkycbaIDz4uqqnISlIHJqJCBJiSopPLPZwAGxe8kNE2Lpm5BFsosos6tPD6y+HNMiEFAKz78hZfAgI/CXAU1HNBbQ/ORguf5OiLbCgtIIELIJKyOGcHJH1gSwVkoVmcAQjarmbWlEiWATU224rJmgw/wE2kTkdYQtV4ET8HI5EXYmpIPHwp9Lx/4Y4j1Ox+UhgJooy1ZZ2tqrdTS5iCuXnp27KPkmq9/4mAwBQIts3dJyu8nLXri9FbZCsvFEtSKS/dA8+eJHDSmlLKobEICVILV1HqqDTFemrrGmzev0S6WWKxXgCL7b6ttZuwpRVU8hbwcmDmf8nxMMWHoJzgXIL1Q1hjUVc1jRK8T+fe0BoycDrxXnnsPHyKLy14fhpKM0iFNLj8C+A+8dsktkoLrgB9+eIdf//rXJDDJVZ/Em641JP4dQ8Q4UZvt0/MWMQYGP0GiphxUB0fMBm0KFiHmtQUluiUatjLUPqsowKTnEPjcn0l/LoslpRn8hRI9BBJAt9bQPLKkzQcADYPAi3aBpm7QdS1WqyUBe20HQGGcBjjvcDqecT6d2GWIwA03sllFpDWwWW9wd3tH+xqP4/lMbZEfnp+Rrpl2fP2yPiNbmCulyEDBGKw2KxbWXaCtGwZaGbAWyh2DppHvofMew9ijrmp89unnWCwWePX6AevNGrc3t6irFpWq0IgVN7tjyr7mfcA0OoQYMAzERMn4NOfDUoSRMyDvT0bzeDNAaLkdkkFcU1vUxkC6CHN6rQR8pzmZ+PrE8W/kIot3Lluon08HZjB8wOQcgzVUjVfaZJApxkS6fxxnBGa/BQ5ox75n/R+6DmmZ1MagEpMM/rACLkXZXxOJufsQ8PT0hGEYeU8wWC6XuLu7Q1VRZVRrncEXxwCvgFzAnKjlcWXWkDYEfmZpgJzsV7DWoGlbmJJJbCyM0hjGkayaAwHACkDbdLnlrG5qPptprdW1RW1rdN0CWhuM04hhGnA6nqC//4HaUMU1lg9TMvfgNSfafhMxOHbHI7b7Pcahx363Rd8P+O7336E/9yyGSg6Cy+UKi67D20/eEKhhK2ilsdttsT/sMY7k7AXeM1JKeH7aErs7BrJV7zq8enhNTm+fUKuVzK7ILbQ0V2sW8qdto9IGlSZnrIZBKmNNjlcSCMjRRqNuGtzf36NrW3zxs59hs15jtWqxWjYIScF5OpiVNfBI8P0E9MjafT9h5gOwDMTUFYlnK7AZQky52DqNI8ZxoIQ6RhhrcXt7w8mTpTYrbdEtDJROsLYDAIz+Bl66RRmUMprm8Oefv0aMEX/7v/5PJKA7BfSjz8UlhXl9uikgOGKlHfcHHI9HfP3111lL9PHxER8+fEDXdViv1/j0009JP5C1nwRsEsBkHEe8f/8+A0rS0iJxxTRNqOsan332GTabDf79v/8lVqsFoDSSMqCSF4P5LiFIC3xKaJoKqxWN46evbwAGdnPBqEgUYozoj+RcLSBn21i0jRTeFGKsoF8/wPsEaxOqamagx5TgXERICcMU4AIb9wjzyVOSK+CpXOObN2/w+vVr0oV69wPGYcDj4yMBUD19OW4dVUph0dKavbm5wXK5JPZdZS7yL9HS2u/32O/3GeAtQTyZT8Lyq+sa6/Ua1trcYiTPF/e+aZrw9PSUWR5SaJc9SBzRZM8qi+HUvid5lkLXtagqm+PXylq0dYOqsrhZb1BZTXpLCXCTy1ICQ0/nvHR4bNZrLBcLYi0PfF8ZhJeCJk32ChoKFYd/mrUFrSUmjIfD5APEAVelmQhw/SiBEHmU/y41sEpQ77pzR0CTuq6zgPs0Oex2P1IxDwqr5QpffPEzvH79GjVLETw9PeHv//7vyUnO+yz8fX9/j9PphA8fPkBrjbu7uwwCe+/x9PSE8/mc2TkioyB/N8Zgs9nk65A8ju6rpj39BeDt+vqvx+l6DOX6ZawEJyh/ryRkiIabnIkyR5UiofGYIk6nM/qhp0KpI9OEx8dHWFvhX/7lX7BarTNRpa4brNcbbDabzMIUHTYBteumxmq1RIwhM1ffv3/P+bDH4XDENI3w3sFaQ0VAZv19bIzy9ePSCAxAniclieVjgFGJgbw05uUYXhNXPnav/tDjTwpsun780cEuEE+ZeCXYJGh5DgiL75e/D8yVdHI2KjaHAiySb+S0+YXNQl53/v58kChFB5Ns6NL3LI9cBcblc0qw6SVa3McmVYlyluMzTVOmrAK42MhKlFzGTFoTS6BLNkBwICvaJIKAy3uN7KziuJLgAwUfxkjr44wuy+Ma2S3HouwnngdLQSWFELn6ee7hncdhf8DheMD5fMbxSBozddtAW4PlRLRFcQELiSr3tCmNdM+UguFNdn/Yo110CDECWmMaJ/TDAIF3QojwztPfmWklVSN5zpzMCWtHwKYrrR/Gb+Q5zehQVxNiCjPY5ETg2+XkKcU0vw4ATbLykGo/lMrzVsaf6L/CCpCDTWi8U64ICgAl2jgzye7jYBOJ9sq/ee0oLRMcSik0tVCEZ7BJxK6HiZI5x2DT5KbCRc1fAEJuciQiX4JN7OBojABrs0uarSxT3mtul+VqOgNy9Np8/RO3uUYBm1QGIJK6umdcNa5shaGfZnv6DDbp/JzE2iZIKd9rayyM5gTbGnLdqSt0bYuqtjCWASIWpxWwMkggIoGRoKBy3zW4hVLc/AhsqqqaQCsGKVjegYS2LThoAjMnDLQPqGqDSsCmch1CwCZKlkNIzKC0XGWd4APptwTvMz08V7rkZZKwTFXGNGW/8cGzs0/KYFNKwpgEFCdCSCqDHUIt1IrunQ+GXNoU2dsS+JZYsJ6ALcXq3GRpnGRaQBUCycgHMTPdQKAGkPia8uFB90Bsz4r9OyZ2tivOphhZxDklFiJuCGQDsULc5AEeR+enPP8UiLFGMTIBosxZonXIxgLQClU9IfgIV7tijGYwXADq4COtSe8IbKprnE7kztmdO56PDU6LHpV3SIrPEAaXYwwMXHuMw8RMu9NlwYf70sqikhQcLAM0Ym4wt8Eha3NFcQjTJHysFDJ7SJiTKc1f3tPYTlKAGknDZxwHHE9HTOOIp+dtdogRQegcuEZiow3DQAw0BpvASy6GgIGZd0ZYbVUJNnHLqZ7B5wwWMEtOwKbHRwKbxCVrGEeAg+PReWhFOowlYxuYC3ByXsrDWAIStCYWb9ZFKj6jFJeEZUCtQhZGawwsMiv7slIENhlboesa1jjSrNeoWUvEoGFAShIWLwm0JE6CwkBRkgf+ez4bpYwijNa5Pfrya9abmZwjFqAPMJZaSAdmgoQQcuGFinbEkINSGZxQ2lC7sFZZSy5XyzGDhCEE+syavq+TgopA0ly6UAomXLI9rNGwlUXDychiscDd3S02NxtsVh2WqwbD6LE/8P5WxLk0x5h5GyJcEJZkyGMTmFUmzLTZiXRC8IFAw2EgkJNbs2xVoZoshtFQe2ui8TcaqBsaq6jsPGd9hFYJUVh8SvRfOiQodCFh4Tnu4TmoNe0tYQoILmLoB7R1g7ZtcTgcUNd1BjREC0mMZZqmRte1PCdno56qsigdlyQRL8WKBxb3l9iHQKwVRucxTiR4XhlyAIUjANQ7z7lCRNOQFmBtDDRIlyup+dyXuD74iNH4/G/vPSYVcEoTx00EVE8jtaE2jS7iJrpX1hoYKEBb2CgdAqQlWAUx+plFuyl2p/i+riqM/RkDy2a0bYvzqUZfV5mpAoCYWwwWEEvKMlAs5/gMNpVARtu2uXgvAFLwPneDlCLw0t4oybCwRkj7B2x843I+Rtc1izhfJ7gXhXYz6y7GIOcXxX1OewCK9GGhMyN1mhy34AYqNHiSIfAhwIUAF+duBwCsuTvHOEpARTWz4TXvTaTBKx0I+UPn3/1YnvixHLLcw69/Xo6N5GXXDBX6WYD3QH8+Awlwbsogy3q9zm2gADIZQ7o6ZO5KPldKZoRAIIwwD0vTLF2ckwJ85TwokbutFDT/2KO8ro+xc/7Q2FzPn3JvkN+TuUb6ZwEuODgf4F1gJz8B8pkplubX0kojNW3ea8qYRmKYms/SxBvFNNU4Ho8Muia+J/Hi98r8PWb90BcAnvKvxc9LTOSnY3r5/OvxfGksPwaW6IweSwAAIABJREFUfux1Pvb4EwGbVA7CAfzkAstDugQ6yopO4CqgOFkAPz145EaUm1muoirFwrG0WXjv53upWKQN7PylNCVoCRc3VoJZuhRpPwoAFNM+E8axz5s0tahpZluo3KdZVgKEwldOYAnCy2pAeR1yfcLsEt0UccEoqxflOF4LipUgl9hYth19RgnqEmhsQozY7nYIIeDrb36H3f6QtTSUYlFgY7Fkd7umoeqDVjoLk5caUsCM4FOiMrwYPEcfET2xT8bjQIFUT+r+79+/x+6ww+l0wv6wY0ZTC2Mt1jerLOCmjMoQzXK9wnKzIeZDVeHV27fopxH/9Ve/wv54xGc/+wLGWPz6X3+D7W6fbeZHdiYAFExFGU8UYekkQTLmtik5HAVsYgaCBCwEJFGA4VlMnV6HKikxUO9eSMJsQuGsNjOb6EHvRYw6mSMlIGTyc0qwKXiid0qbBl0Lgy1akuvC9goEaog2itHVTMlXs+2yfKQYI8ae2HEiCJ1iyho50m6TdY3kvzyOwiJLfP2JxRoTw0EMaFpNyZStUBkCbKqGWjVbBruMNdRaZivYqp5FbVMiEDFEFsiWsWWLbbkfnhg3IfocPAksLUwiBQJFIwpHKgZJIoMCWonWGzOtYsQ0UeK6Wq/Qdg2WixXWqzUxAHjuTpzIT47c6HQR/Nh6BtYMM6JyG11LjEUaI5UZUUoB0PT5CNyJpP3EgXimb1vpKy8E4xX4/em9hPLuHY2RcyP3sYtdtsfoArfe0WtbS8wh2gd4imkNDQsoA23BYuEdtDaoaxHyZe2nVKwHAQTzPGIABgoqSUBJ96jrlnkeU1AJILMPWUhY25wEGdHCEKczT4LIh+MJ0R9Q1xXa/Z7nWgsFhclPpLc1TnTfUoAPEVAaTdfR2FkqfNzd3uHh4RUSUgZW+zO10Z3PR5wH1sNypINkuO2FmCiGd4OYGXqSzIdILUmT8xn8FIAOYC0yTfOVcAAFbStEKDw+P2N/OOJwOrJAecOsLcAzGO4mx+wXl12qxjNVlY89CeDSXPIX57zShf6imlk3utRGsZK4c3uapqoysXUstFYZ0CFGEq+FXMBQORgmYGGEmyaeNzTXBxbVH4cBngXaxUhBGJ/jNJGIPQN5VV2h6VpmTM5tpWBgSXMbnzLMzOKkJSsWcQBB+0pilgNrKHoCqiKQWzaq/R5QRPWfxsK2XFoqYsxV6+ORjDwSkNvNnGg+8r8leajrGovlEtbMDCf57EM/oD+Ra9jpdEZKkdmhBnVTsdusybpLm9sNsx02aNuOGDmRNM8mdphVRuIwam8lLY0aZAzCTCljUbUaa2hU7QLeTbi9v0MMAT//8pd0RjFjUlomtVZZCBkMfr5+8wZAQlXVaNsOlbVYr1cw1kCYVcfjAfvDjhxuNzdo2waff/4Gy2XHrZDANEUMI60nac+03P6mYoRm3Rgp7ojQOgnOK1irUVX6AtBbMBNEa4PJAy4kOGGpczFB1ofiREaArhACRgZWDuczG0dEJNazbKp6doMEtZwN/UDnHLfrns5neOew3W1xOp9hK4u6blBZi+WKdJXefvIpFssVTucTzn2PEDymaYQCGQbQ+qT9cXIe00TgooATiRP5+5s73Kw3WLQdbjYbdF2Ht29fIcaE/f6AcZxynLdYtHh4uEFlCZzTWuPcO4yjR9fVWC1bDCPpxngfLhgxMvc/fPiQC6jDMODpaY9hcPj9d9/hq2++pbarrkGCwjAJ43EWAr65WaNpGjzc3BIoW88JNBhwnKYJMURmzYSs7zUOPc6nA6aRdKGC9/CeztbNZoXVaomua3GzoWtseR60qxWqpsnnatPUuLndEKhjFes/Uly2Xi2wXK4wjSNWyyWcmzg+Y1bgSMLH33//PcXQgeYTOWytsVwusLlZZ5DIGJOh3n4YMYyzAYYCg12Y3fIm5y7umbBdBIzIbYAMqHtmqG93B/QDAdji9FfuWfJvYaaJtMbd7R2QEr799hscdjtMzHykuJXAuW0gR3EqVnpifk4TtREKldtWMKbCFBPiiRyqqV2cdK0oNrIEREfaOzmYm/dbRaCu1RoxkV6kIAEfA0Tk8TEwRQr+wCxzIjmePF/yWgHXy9yN7uMaMUY8PT0DeIYxBqfTGXd3d/jkk0/Qti1++OEHbLdbfPP111nU+ubmJjukCUNQ1pSI0peC2tkgoWDZCCDZti3u7u4ym4q0g6Uo9/HHx9g418+5JlnImS//Llk5ZceTECkk7xUtuGE/oB96iJmTaMnFGPH4+ISUHmemVtNiuTzi+fkZfd/nYsoloLXGvb6HsQaLRZvvd9d12O22eHoqcwEJdAE3UT7Z9z0m1mXLbn5yJrwwl0rMo2Q8/VseFwQWcNG0HP+EXLj873n8iYBNuKj4vsTSKSdRCTDJQpNNSXpP5TW5TptvYrkgdRHYEthEi0aS7VR8Nqpuc/KIOYiYN5LLm07zJiKES1X/UjS37/sCbNLoOp+F2WSxUoCY8vtJtUcoujNifKktJWwkHzy3aZxycF2OYTl5tdYX44TiObKZAchBy3yw0DiM4whrDPb7AwMiBCCIAGBdEcW2rip0iw51XWHoB5xP53xYXwOEcuhLG11eaDzxgwsIk8c0TDhujwiOEgTnPB4fH7Hb73A6HbETsGnBFVY/UeBiDVH2FZC0QkgR+/2OAiajsVgu4X3Ah/fvsVyt0Pc9tLV43m7x+PgEx5WRvu9xOFBvdN00UFphmnzW3IlJEt7cUMf3VfO1RAZbImtOidU16dH05+ECSEpBkO/A2iPIYyIMqVxq5x8aQ20Sl+wjandIDNrEsh2Qwa5Y6kqlCKlc0xyQHmgOrZXi9hYFctCbmU1JKtf8mUgj53BhT4yUMiAXGTTKuiHMPpobpGZwP39PUaKm1KydIO5jta1QcUJTtwQ2dU1LbCd21qIWWrI6dYEOVO/mNjqZe4oTVgGgArsMkeA8t0Kxdpi46Kmr1iaZD/K9vM4lmFEE8n54/w7OOdzcbrBYLrBerXF7c8eMLNKXEjbfMA6Y3Jj3FaN1vtZFt0Rd1bmtsLIVunYBzRR6pVShIQZA0Vp0Ix3MhxPRgKniQ9VMW5v8XiK2DJVgTZVFM+um4n2VWzncCOcm1HWDRbec2wSuWXQ81+aWRQL6ZZsyrG9FenFLBur5sM/VMxr/lFJuJQmJRTkTMpCkmIhE7lFUTCgd6xJEeD8xI4raI7Xh6mPg/V7Rh3MTBd+TJ40row3GaoKCyq2v3nmaI0hcJSWhdaMNAYRGo+06tF0HKKBmkM8oy8UQsmQOPsBr2p9NJSK1JAArIKZ3HohcuABVF30KCNz26SMzYrj11iRuNYS0wyE7WPbDgFFNcDGg6s+5rTOEgPN45jYyclAc3ZjdtaQIcDwfuc1mIKbr1TmvlGJRcZUDu1Lj8FoTpKyuludjWWmVyiu4YJRSykE8zWnH4MQl27c/neGmCSExCyfMYvAj6y/UtoLlQsZitSLGAIO40oqhQPc3cTxBYz3vYTGvffpONjDgdZUQoDmp68cRWimMXEEWXYlyrIRRcGLW0/PzMw6HwwWDToT75VpLsEkSTgFC5DH1I/oTJX/kphUh7dJ1XVEBScCmusbdwy2apsHt7T0W3YL3OVrXlKTw3qOppcxWNeqmRkSEMaSVpTPDQMPWNVptEGpK+AGg0hXvXdLqLYW+yGdYDmtQVeTmtlgscHtLSRC1jxH4ZG2F3W6L5+cntvkmZ7TPP3+F5bLN92eaIvqB9NRk3zOGHYZDnNXTI+1botdFAJOGNcCVVwezl0jkPQQSnA/XlXheh4YB2ARAGRL/JvZp5FZHaq2cxhFGayyb7oI1MgwDu/ERW3JyE3788Uf0fY/vfvgez9tt1mGp6xrrzYYSMhjc3k7Y7nfYF0LvUKSFJyw+YwwVS7moKjqhgVsvx88+R/QB6g64v7tD2za4u7uBtQZ9P8K5eZ42jcXN7YJBTwApQakeKY3o2garVYe6thjH8CLYBAD7/T4nxM559P2IGIEff3zEb3/7FcWGywX9npf9mdgvXdfhdLohQD2QYDMVS5mRz0VQGc9pGBG8x/PzM47HI/b7PZ4+PKLve7x//55Z/qTrc3t7i5ubG6xWK7x+9QpNXWNzc4OqqXHjA7rlIgPp2pCMRV1Z1JbbF3n/0MYCMJjqmpiWwedWw+AdgnfYshHPNI4YBzoLNpsNixKvcH9/h6alVkVrLZqK2InOk/ZqZnRoha6uaR/l9+/7AUcGoUvXMtE0k31ZgFeridH74ekJxxOJMj89PWMcB+x2u9xqJzmQABer1YqAyTdvkSIZaKiY0J/PMMoQe8r1iCliDFMGREpTqIpdEWlcKy6yJUwhEHjKRhrGWBIVT4BBwWguKCUCZCvurpD/EsfiF/STjz4kSy07AKiIcv1eqjgTJS+7ZuoIISFLoexPpEO43cEYah1bLpfw3uPm5iYX+g+HA/qCJXvRthdi1i8uu3KCp31O/i0gjvye6G+1LRX5CXQsdVqRU2dV/D/l0rTEBdfj9ZGRfAE3kD+vc954NW5aa2K3O8fxq8m6cCQp84xxnPI+KtcueWtJAJF75RzFbsZIGyE5STpmUlvOM2U4ZEgCA3pENJj1jUug6Q89PsZsKkcwFeNTfl9gjo895+Pv+Yd//qcDNmGubBo1zz6pGmlOMkWUdRKBSAZlvPfohwHTRCJzpMkxs32kwqh4lpdAEuOgBARwy4XoM0hSSKBRzGKziYXmiAHhORfS83tB0aKScjpn27IZHw4HbHe7LPZrqwpQICHNJAyTkDfJYSRmT1VsJFVdk+5Kze5thZuDtRbjOKDvBwxDj+1uC9EzaNs2b+bD0MNaESansfFuwsRVja6hzxOmESoFwFOPqwVQaY3OVlg1Hdqqho4SKZEQH/VOVxlsys4dAE6HI45ceaVAJOXAUJZcYHHU4DzcSDRkWpEzIDX2dHAiJJhIi7pZLoEELJoa05vXCMHDBccBLbVNKdbRCSEQbZZtgrU1eHr/gVhFPmKzWiOGgPfvP7CQZEAF0pFyzlEAbCs0DQmUV1WFm7s7WGOZsUNzJLAweipAzATkuUfP4dZPSWa4jeN8OuF86nk90Oc23CKGnMwwsMosGSTMoFwqNbzm6Tj/mxghKYUCbAKEUjRThJEFb62h+SpuGkKNLQ/Y3GrG35MkYAYxE/Sd9PQzso+EUomX3otaOLSdg2UjTo98OFP1NzEjgK5fugelTceyjoa25DhitOY2Pp2rsYqD+JgiDINrKQJaR6REyXZp404DOYs3i7YCVe8YSEiREx6eAygAHZ4IicEmGYeYpAWNgroQAuqGDkClNPqhz3tkCYhRsM8VOW0vXLey602MzABQ0GpLW5NAoKzzJG0VwhwBEoZx4IOPWjWI0WF5TrAAKutD0VwCH6QqBykxJkwTiVbHqKBgGMA0JLKuaS7FkDAFBrTYxQ2J0vXcdsRabTHOem+e2w3ACabShTCzAdFRw2wmIOeOBFKZ2WMKcINZfDQfZ8F+0SIjVxKuOiFBBUVujWa2fJa2MihicEABddXkdSoOknRLqQUAPuB87rGr9kgAtdBGCp6lrTRFOjOWixWzIwg8FLSCnAMHKJ247Yj26KRUBnPLtZrPMEbfUvmpcosAsXFCCFCeXieomEE+gNzcFIC1IZaotPmW7bGTG5m9WTBAi6ocjUua181L0YxSaLjiXSwneDamyBoGzM4prYgliEogcGu1XOLh4QENV3ettblNpEyc+9MZMRIbLSGhqWvUVYWGkyFrK2LcKZ1ZgN4HFtoPmVFE4PocYBJTS+e4p4z8Zr0Sii9ijBj6Phc6xnHMWpNK9nogF+IENECx91wH2iSK3eXzWqkZ1CeGSsD5eMJ+u89aLtLGAcwuvMTwpKR/mhzv+VucjicWrBcdTWJfSAuzsXben6sqr3265qJwCAmmI4w2WC9JLHm1XKJjB9u27QDMdurCDKbfBZwjZtYwjLm9SKYXsSwOMMZmdsYPP/we1hocj5SQDaPD6TRwLEZnSFNTsrFsWyy6lph5DMRZblW0VgBBak8rwdOKWWFaE2DXjyP2+wN8CBnIkERS7MfLdSOMEIAAka4jcfKqqnCzIqYatTaT2O3hcOTzKWGcJhxPZ45hGr72BW5vbwl8XK+htca3v/s9vv7mWzzvttjv9zmWBcAC5hpNU2dtTzlbZRw3mxs0dYPbm1us1mtUdY3JOfjI15gifvzxPY6nE/rzGefTGU1TY3NLIG7HTLvDsUc/TNhslni4u0UCMHHLHoF+OtfbYioEgL3LrZvGGOz3e5zPZ9L5WixQNw02NxtUAtqwVmTPLK7vf/gBWpFWkK0qtDUBT1Kc854clh3LVWhNGqjmDUkvNE1Dr8caY9ZYTNOI4zEBfN4P04S6rrA97GFZSybEiPVmjfPpiK7rcHezRtPUeT0cT2c8PW1Z++orjMOAipPftm3QtQ0eHx/xq1/9CqfTCY8fPmAap7wvtC2JHFd1xW1wBMhU1rI+FYHKAuxv1ivWnqOz8HCkfMZNDqfjEQnIY7RerbDolsyUq3L8FmPE83aLc0+mRacj6aU5N8GHgOPhCO88TucTxnGgOd0u0HUt+tMZdVXj7du3+OyTT3E8HLKT2vN2C+8cMfVYBzIBaLsOla2wXq/xiy+/RNd1uH/9Ck3T4Pff/g4/vnuHfiAGWELKhiKi5Ru4ZVrOpflMmjsuypZA2WvKc+tlIgVP1HykKY6TaH+UeDyEmH+m2EbZsFFM+ZC9TorG6/UKKQGHwx677Q7euQyW/uVf/iXpfP34I3oGoL/99ltipa431PYWIsYo7sN8VrEcBrmyRYx6gGetRunOOZ/PWcDeWovj6YjFYon1aoPN5qYoGSOfV5eYErNrBPkof8RFiLIQAsw6x7ndWUgUQI6DU6Ix8s7DTQ5Ic8ui88TG7DZL3N7eYbVa4c2btwgh4re//QqHwxFDP/C9URhHB+9Jb1DOPqRE+INW6PsBMZLouq3INfB4PDDY3+cWdWspx3HTRESU85m+io4kAr99ZiIDXMBSc+yqM9w5xzdS8JjHjsa2HFKFGX+hpzIzl/Ptl+5Bvm9FMecPPf60wCbRN4HYtWqmnM8NQYHFOZ136HtCrI/9GYErC6SbQ1VvspXmvu/KMm0dnM8WLlsXga0gyDofxJIM0skFQFF7iwBOjjcYwy1EYrkuSaUEthL8SVXw6ekJRhtUlnqim7aZk1lVah+N2DFYVKLWNbs5tU1LFYwYYC0dTnWqMYwjhnHA6XzGbr8HUsLDPQmZvXv3Ds/PzwBw4R6HlOCnCSoGGGvR1hUL6vVQKQLeUYUFQKUV2srCNy05LTHYpGIisKkiO02pkJUbwPlIFOO+70kDpJitYqST9UucR5hYCI5nvLRe9ScKSCpdYVF3sNrSIWcszP0t6X1YYgpQQEv39XQ+w3mH89CjHwaI0qXzPgsrIkasF0skH/D0+Ij9mzfwzoM0hiiIzy4xSkMbi6Zt8fbtp0wXLQAIZu1k9o5Ut3lOhkiCq5FbN0IgXQU6dA9o22MGQrTWqLOegeFESrH7FjIrTyxdS2prWQmhtp+Iuf1LxMfpABXhbBJEttw2RIGcsWTVHgK1DYUQuf1PRMQTorCvWOsohpSBpcCVva5d0FqRsaF/QNgNSikSeGXwI7eRis4UHyRRkH858F9IWGfQoaj+8DjKeyUGM1SUShbb2cZ58y4rxOVhd50wC003XN2HlyjC8rsyr8qq1WKxBJBYk4yucyjaYfP+ySBYVYAcZVLtmEouLbwyH0patHzJmhURSGImcXUzgxAaWoSphXUaBCwKCIo1TjBXxFJKmCaPafKIAUBSeb+l1k4PgOcTBw26EetV+ZJq/wwaiVhx2WarFIFR8hkzwAqAu5vpKjghA2Z3E2FnCFumTArLL9mnFLPzfKAXrpuZ8j4f1gI22Xx/JMiRuVG2AlDA1kNrczGPpCWFrpHApvVmkynwApJ476GOmkAXVYyZtEki/eR6pE1nhq/LIGWuwCFxYOcjAmbdCHpthbqpswCn6P9IK4XYDBPowAWFOIsdyzgI27VcD7KPlZU7AUnk90MIOE8zg1hEROUelhbbM9vJYLlc4dNPP8N6vcaXnIzIe4mL6zSO2O/2FxXGOWFrs06JiKXKdQiTRD5TeT0f21dkP0oABZ0cuEulfmJdxF7a44FcXJPT1PMal89Ysp+EbbBcLnP7jIj7dl0HpIRppM8vwMxhd0Bbd2x33f4kuQJA7Ctu2XMTCa1OIwnZ9kOPM4Nj2y3FNKKNcgEAqsvItmShl2NUVRVePTyga1t8+vYT3N3dcVvQivccnecl3TOa/875zII/Ho/5HouRiuiZzM5YdE7+8MMPeHx8xDAMOBwOMMZkFtiiowTu4f4Orx8eMtAj8Vo59iVLQezAO7aBF+bMue+x3W7hnMNuRwYKwhpar9e4ubnJLDYAee+QdiNxRGqaGg+3N7DGYBgcnAswLBzMg0ui+E/PcD6gqqjdum07bG5uM9PNe4//9i//gsenRzw/P2O326HvewId08yuF8BSRIOXyyU+/fwz1gfaYL1aYcPC1NZaTN4hjhTLTdOE3/z2t3h6fsL2+Rnbp2cCgJh9dsutZv04YJwm3N3c4s3r17CVRctrruLilKlsBmvqhpzWnA9IYPYNgMOBND1tVaFj/aIvf/kl1us17cE+4PHxA7755hsMw4Dt0zOxnRZtTshvNjf5fPHe43g48Pyh8Vh0HdbLFbx36BYt3c/nHcaB4vNxpPU8sA6OCx62rpgRzy1qbsTd3R0UgNVqhRg+w3K5zPva8/MW3333HbbbZ/zjP/wDjscjufwphYeHB7x6dY93797hn/7pn7Df7/H1V1/jVDiKyXlUVRaL5QKVtVitN2jqGpI0SetpXdd49eqB9ngGRre7LR6fPmAcRmyfdxS3LDvYyuL+7h6b9Q3qpsZi2bF5BGlX7vY7DEPPib8nELYySAm09/iA0/mIYRxQ2ZpbtlsM/YDVaon/5a//Z3z69hPstlvsd8S2+/6HHzAMAz58+IBxHAnMDAHL5RKbzQavX7/GX//N3+Dm5ga//PM/w2q1wv/1n/9P/Nd//Eccj0c8Pj5enDPy8M7lcy8FNsrhWDuwjEJZNJIkXMyG5tea4xOZN0qJg6jKvyvn1vx6RSGXCxIUQ8x7Zan7KO1vq+UaRht88803+PHH90gpYrla4e3bt/irv/orpJTwd3/3d3j37h2GccR3332H+/t7vH54BaWoTdsXYyHsVwUiBETJZTQZStTGIISYJVu22y201jgPPRbLJT77JGG9XmcApIQ9hN0vD6Uyv4afi4uflULaZRwln2f+UxhhJhfUxYxIQcFWlu8xzcOqova516/f4C//8q8oFlUWT09PeHx8wm63x8Stbkp5OE/4wDRSe6jkStRK2+cCAxWHRdIHvH+brE0pwDYBTjPQJEUvubdCDtGKZBHoT455i3NUyWSSaVdgRgI6AeyHI/OxuBtI4qaeUN6H/57Hnw7YpBRZ98YIq4nCGFOEmybEmEg3gRNyHwNt1MPI2g8iZG1Q1ZoFRUmLhrEkIFDLQU5XEodxXP4QIUoASOLiBQDQxHaS+8VIn1RqSXKFFgQltgyEMGhlrC2q2kBdNwAUbu/uoBnNrCy1nGxuNrBVle2m5SNMrmEWSSxo6hriaketMYb6irVoOlBlx/mAyRHrSylk+24CvcY8HgpcWdVEca0MVd6sBqASdArQISFOIwIS4jQBLmA69Tg+b1FVNWqlkSaP8XjGZCo4Y+G0RXIB8OLMR+yH/kzUfxFnleq13A0AGdBDJJaJAjm+KCgSaDQGpq5RRXLxag3pPNSKuqZ1SlAxkH6CTxnIBBIst8TUSiHyWIVEuic3iwVqreGHEbunJ9TdAs1iARUTurZF07YUkBkLY6jnm7S5SNj1eDzB2JEAEN4AA2sbZWE8pfLCV6ADybPeTJReYmNRGYOuW6BkzSlF2g9aFYw9fp2UAKiY5yJSnO9vApSaHRKB2Ukmpmpm1HBFJBXMJoAqKskFQAUox/RZcRKKM3hL+i9zVSfKtdOHy5ss3ev5cFVay78o1dWX1wwGghAjgoxhuhQnFfePlBJUDgjm9jeAbdy9Y7AszMC2Eqe4S7DomqpcJueZ4QTZHy5ZGvK9y62uqDpg/kwvgU1ymfKcmGScZS/KL5rHG2DmJSKzcS7BLaGIUxWKDmtrq/kaUyKxWEtuivPHV/P7gSpe0zgV18L29jHyfab9JHjP8yfkip24qAz9kAMnIDETIuTk0BiNGOLFmAlTTGuFoGkdRFuAjsV4yz0qD1bRjcjrRhMgU96rUvCydA2lfZLno5oZW1Lhm/icykFhcb+FPUXuajrvt4k3AqUVqmQ5cVMI0eRqGJTK+knG6LzYE2gNEuuMxL5FZ0FADgE8BNi6CCeYjShjG1Wcr/Vq3uT5wwmziNBLVS0zUJTKlU8R/E+2YFEpas6bGWOB702A1iG/R0oi3kzr2fBclPsvt7TrFhlskmCsbTuIkyWx3uhulIm/gH4CvC1Xa97LFfp+BInQM7jLYBGBWSV4kZDSgHF0GEaHkUEVY7bFXJvXtbCUpTUBiaugwsQAr23Me2lMiVlVUwbqBbQX5meqSJOPXhOYQPPQaIoP2qalNigx6Ygpi0YjJCgD+MnhfDxTRfZ4hrSpp0j6VI73o+Vyga5bYL3e5LUihQ6klAsn1wAtAIzThFFE/ZnNKVvzDNJHTm5mwD3Gi80u74nGGKxXK9Q1xU9d12Kx6LBYzIAHxV/kfEDnpWg6GV7/NO7jOFHLvvNZ3FaKCZLErFZLvH37hgxC+h5Ks8kF64UZo7FaLrFmByLR/Xnebi80NAGOBWQPUgpN02SgslssssV4CTYJQLper7OYr5xBYqEt7ZCVrXIbZNeQZpP3ZGDS92f0557Y3Kxl9Ph+v77AAAAgAElEQVThEcM4wEkRzczMFWmdXy4WlMQqYgU753B/dw8AxITVhag/Axht16FrOrR1g7qqUdkK0zhht9vnWCDFCD85hOCJXXNzg0XX4fWr16jqGsvVktm63DIIKtBpS9o7UshVSmVQIHDcNZzP2D5viTXDc3i1XKJtGlR1hZ/97GfoFgssFgsyrWBw0TC7dbVe483bN3CTw2a9QYoRbdtQO2a3wHIhBTNiei/bBsETcCKFFCkeDyNpwVF7roNzot1KJXZjLbrlkvY6zkgct3Ytug6vHu5R1TVi8OjP1B7lmUWClNA2DX7x5Zdw3mHRNKiswXK1wmq1xs3NLayxOJ1O+PJnX1JniBedMyn4aNZdU7AVt2LHiJQCxaMsQ7BcLUg7jzVHm7bFYrkivctI60W0IhMUnPPUsa6JjdM1HWb2rIIPdHYCABzvI35ud4LSpGHnPTAMeHp+xrk/4zf/+q94fn5m9j85iW23W+p8YRBLmK0hBvTDgN1+j6+/+Qar1RLncUC36PD1N9/gibV3zkV7sQA8KSEz3WIq2pkYbFJeAVpBzERyLMGAYZ4g8uAYVSswSEDnmuwFUhiaD+qUZTbk95Wic1DxeyVwkS/IGUpMoxQjIhSWiyVePVAB8N27d0gx4ccff0Rd1fjy5z9HVVX46re/xddffYWJtQqztEqaFVdTCHDjmLUBpdANreE5RsodDkp0JHVuNd3tt7xHzW3aDXfnZFBmvnAeB46lASCbKslpcOkIL064Eq8m6RYIfOaC8w4GAmO8zO9Fp3QaHQCFm5tbGG3wy1/+GV69eoPn5y2OxxNOpxN2uz2ztGmfPx4OmdFI12Fw7kcmvlCskWJAQkRliek3vzFrzSoiswTvEf2sqxiYYFFVFWxVUaFcwCaO7WS+qRjYlbq4bynRMVjknXk6SubFcTHljfO4IAmz7qcFytkA6g8//jTAJgYOfAwkKN00qK2FnyYcWJR2zxRNaaOLYXaJGlkMT+w8IcE5VK58B8+TrJyhGf0zuByruRd5HsWZJRElUODkOvHEDaIREh0Aoip2C6o+BL5xi9USi7TE7f0doKiiWlsrUDUADhpCwMI5rNYrBO9xd7dBSikvztwbq6iFJQHc4scVnbpGwhnDOOHc99gfD9BK4f7+AVUdMY4DzqcTBbtIMEZj2TWw2qC1Ck3FwYIGjI/wcSLHt/MB02gpCPUBp8dnvPvqW6Ip9xMWiwUOyw2sizA+QjtKXk7CQGF1/dGxe07wcBL8RpZKjZGPIIKGjNIkvqmAiuX3tCVXEBgLdEvopGAgOkLCWKO2ExUV4BUFlYaWVZUSTErM3OG5FwJqo3H36oGC4uMB3/7rb3H/+jVevf0EOibcbTZoug6LboGm7mDqhquEDnBkW/vuxw8c/DhIq6XoKuXkU/P9FnYd5/HS2mUMtaKQI1mLNW+S80ahZFbyZiTtVyT4IAl/jBEK/JUCjOFx1dKeKskAf5w4B9biRkdgrgdZ2c9MmJ8mADPoOi8yFM+R5U5BDVAkspJwF9cmgJxWMndoo44AQpDn0PPapkFV1RdgUQzk+KYCO8BJWyO3TqY0i5HnBsArsEhAp7LXu3zO5XWpi7+XgFSpG1OCVBJYSFJVgk0SNNDvzEDI/GcxxgKkBUCpxLpVJegCblPRGSD96WeWwxz5XgigRQeZ3Ct+Lx/QsyioDz634JVsTvm89BxpL/T57zND5xIUKwGPnLCKXpeAkOVzjez3Ebn6+JH7JA86JJlVkRPYy89wWX3UxZ+XP0Oev7SWK2u5/U+x8x2Jiec/C4YDABjWbhP7afmi1k7F5xazbWFhUqFp5x12exKITk8f6N7ES5dEAqhtDr7ovApAsd7p1gtIVrKdZjBJqpeqAL901uy6AlEj2U2nQHoGqaHrsY3ofSToZKBjgAok7BwCOR0YQ60ClLxegrzX+oTCbJKFMMf2P73v8xyTv8+ft6pqWNshRoPHxz20JgtpYhhPmCbHi4FeW1hY3p+yVoy0EFCrnRSHZO2Ta9Y4kYOgVBPrihI40vmiAlo/cquhHxGj57gnZWvwuYVAs7MUMWm9I+ZG6qntobI12rrFzXqD5WKJ/nwmu3EkxOgBbZDqiKQT+v0Z53SC87MhhzBvFa/Btutwf/+Atm3x6uE1sx1aEtguWnCF0SOswMxSZkHq1XKJzz77BMYaeEesIQFGpWLsPbXQeM9C7d6TsYCI2gefAS6A1o42Gpv1Bvf3d1ivVvjiiy/QNg0WnUZlFAKIDRkj4MmEDBJ+SXtw8BHez1qVmY3Hrf4lU7g8J/KeE0lw/3Q84cf3P+J4POKb3/8Ou91utr32nhjb3mNgpqLsc6LjI8z2EmwSQGq1WmGzXl/MbVnDcs5ELoh6H5lNly5YlSI3YYt7pbUmsKtboKqbDDQJ0/PVw2uslmtMD9ImRvuZMcSIEda3AN3n84nbSgnIWXQLtE2H43GP9+f3JHHgJgZNqc399u4WD69e4fbmBnd3d5BWPALEPqDve3b+IwautlSKFLavuEzumOmy2+7w3Xe/z2Cf0hq/+PJLvHr1Cp9//jn+h//wHwBFxUY5a0PwzOJp0C1avHp9T+diovVQs56RdFAIW0IpoLVUqOUdBzHlKcpncpoLyrxfyU6UAAROprmOiJASfAJbsRO78fHxEcfDHofDEefzKRso3Nxs8Bf/7s/Rtg0e7jZYdg18VAiBReT/d/r952fSRyLG4pA/B8U7BECdzwPPv4lds+izxESAdUwRbnQIzkMZMl3x3mOzvuW9i4wwAIV+HKHchNPQo6kbcrA0FsoYAilCwLmf9zyAjTgYSNTWIoQIN4w4xTM+PD5CKeC733+Huq6yPuxL+36MEdAKo3MYpgnH8wmPz08Ewi46cvnse4zDeME4lT+v44iyKBfL+wjqEqmvxdheOH8kYBPZlp8+T/6HXKB2bnYbTUgMYNhcNC0/p+WWU6UUgXYq4tXDAz55+xYfHh/xz//0K7x/9SPu7+5wf3+P//i//UdsNhv8H//pP+Ef/5//G01dYejPFDPEkDuLCAT0GBmIsszKVCkhGcNO0SO0NbBS1KkrKKUxuBH9RALc7z+8R9d1eHh1h6Zp8fr+FVrd8nk/s1HpT9GAmoG/lACtqAVNgOYYI3+voruRElJEBi2ldQ4RXOgifWbtU2a6p0DanuM44XQ8Q0Hj88++wHK5xuef/YLaZNls4+lpix9++AHnvse79z9i6Af88P0POB2POfYepxHPz3sACW1D5iXS6bFaLtDUFVSOyVLuaoo+YOwHjp8CjyudfavVCk3bcEsxXYdlUDhwHI6UGFgrBL0ZGE0ytySulYwriXYsGPiSWJA+nw8TpGBXsoulYEc5yken/p8I2MQTQ9o6Jqa7TeNI1UQWF50ml8V2Rcg2oaisajU7znACkHG9VCzqVLxvWeXl3xMWROJfyxMXyBVHeX5SIDvs6/2iSLTKKnTWvjE62ykbbQDFyTTmRM2YuapehRpAuhTaM4YmiLwlJwSSIDvvMrW6aRoo0CEqNpfIG2bMwovzhFfQcigybVQplemj0RE9PgXaiCpjseo6LJdLrJdLqhzVDSpeBH6iqjvZx/MGEqmyq1LKY6zyvUr5ANYqwQjwxN+zKIAbThw0J1azc1oCW1IxC3BOLoTLplmbJ4JANw3Aao2gNaw2qIyhpPp8Rn864cSiqMN5wDiMUD5Cm9lmOSYRjZbgM84sOlCPLRQze5TKG4PMvZxgBwNtLRIStVqyplcB7eT5lXAJNilGubX2s7ZYZJCFEyyx3RaBcBnDmYrK7IpAYq7ea2gdIOK61lZX031O4vInLJL3+Wfq4vnXbWDltUEVaxugylHxHCW3FEBTk7uhAMIpFTpKwTNji5ymSLcoZA0ZCRpyol2MQ8lwKsGma9bSNfuj/HsJMJWJchm8CB1YkgB5X6kcyOOjgc+/4ZG1hq5AnevPXV7X/PoUCs9JPmkuZLaMkuuhYCADOZhfJyecBTNDAglJ/C/Wc0F/lu+VX+U4C3j5ElhYzrHyd0rQ76UxKL83A2dyqF4Cf/PzUj5DZDxiVHRuBWIOlXv8Hxp34NLaWK6jbM98aT5ezgkChWQsS3xFK52ZTPlzvDSVyqPz6n110Ag6/EQ7QR4y56W1TxuDaiI9Hh8cu5OJXt0McEtyL3pzL4GPml1cp8nN8yffuMv7DPmpwvy8DBTKw0FhgNKaX5NawsjdyLETE+2dCYk1mCKzpxwBiyBdyWkkS2PRUbOWALQQAtzk+ZxlQWlF1X/vSeCYWt8CYpzbVpXWMBB9pUvGneK9WNZVOW/qqia2QlUzm25uZSdW29xuUbr1DMMApJTPCc3t2sZWJFpqArOXZi04+SKgI+bXlM8mhZeQSA/lfD6DhFbTzHjkcRZGmFYaVickEc63FqGSNmk20nAut68QmE0tSUZrHA9HuGmEnzSsUQgJrEEDxEAxY11Ji4MGoLndO2U9znyWcIKnmLVjeZ/O7Xk8V52bkHzM8WgGd+yseSNOhEopGO8v5mm5xmQOly14JUid94okxToJNxNfByVZE3cIpISidXTWqVJKZee51WqNBQO4Xdexbhbtk5WtkJrZsEZzF4K1Bl3bMaDKRgbMXCyTEz95jGrAMIzZhTgEWr/JWkQ7g+hZ/5A33bI9pqprckpkIfyUiPUSQsDArbP7wwG73Q6H4yGDl8K4OxwOlJAvFliuVlCadOi01hjGnpwlm5Y7EeY93jCTtqmrrD+qeL0556EV0NYGpjyz4yybIiwAk+//fHaIgYCPcs6wyl6xP5wZbOrPZ/TDgP5MOkUkLcAmDaczYghoKoPoHZxPmNwMnjrnsmGQOL3J9c1gE62jWSiaoTDOjcpWLR8Cx/VFmiVnYC5AASoCKmloTYC7MbR3Okd286F4nRKSkSMpcWxfGu6M0wSRFohxZnIrSIyNnCOK6YjzHolZiZMn0EQKkYEZJWXcN2d7RbxdxlxKUqfiWsu0szhUr//9sYecc1ffzeecnBtZ006pi1hAumkUWDc4zbGo7B/BB+z3+9yGK45xq/UadV2TtEKMc+GJPhjvNXR2yJ6TYkTSFBMm8HoNJKehooFSc+6neFFooygmUIpFuU1mAwJz+6HMBKWu2F7Z5fmnsWGKl8+VnP56PGVei/RHzseEQeyJHV3XE8S8xrD78WKxwGZzg6puMDmPoRvhXWAjjMBusOe8ngzr68Tks0xC/vKBGZU0PtLmX7PmcWUrVNYixZh1kEWTDUB2OyWaRsIcC9Ee87EZ99OIFxk8LWZdjlnnGF1d/8IfffxpgE0JSN7hfDrl/k6jqY98u9uxSFyP4D1Zk3Mlpa4qWLYcBnhxKl28cBFZ8yPP37yLJWRP7PyjOfnM9V5Gni6GNW9sc2KdFyT/OUzjHKwBACP5wBxUiMB4ElRRXl6TQ0sMnm53iiwQrFDVFlA6C8WSxTlVnMeRdBy22y0+PL5HXVf48ssvkWLE8+Mjnh8fMfRnVNYgsk4QkBC9Q0SCBdAYOqhicAjTgDD25JZSWSRjMRzO6PsRygfcrTd4eHiFv/kf/xq3t7f4xZ/9GTa3t3DjCD+OOJ5O+LB/T64nXI0UGqVKChqGHKO03BhCyin0I4CpAgXyojRgIx3OKkUo6VqJZEOvA236gRFkOnloKiQJAhRtXjoGGAa9EOl71geEkPB6s8HPP/kUz4cDvv7X32C1XOK//Of/gnaxxG/+39/gcbuFjwkeRDEkPQAg0u6HhgWd5bBSDOKhOEhyoMiHqNYaZwYUmzNVMe/v77G6vc3z6sVElQ85qlhfVVr5y02OADIQW6xM3MrXK1u6Sh0UAQqqqsLNzU2+hjz3iwS+fM3rf8s1pJRywPmxxwWoUK6tFx7XAMmLX9w29DHmi2zk5etcV7DL58vfS6aSfF+u6/ozlFXx61a9MpGfAYfwk9+/rq6XlS0Jyq8BsfJzX4McLwEtL10nQBo1bdthrj7JexHoJPPqov1Mybyi65Eq8GVYKWOV3zUHcS9fB+2JJSBXgjQfAwbLa75eRx8D814Cr8r7lL+X6LpCiCAexQyYlJ/tY4+fglsvg2Xl9ZSf/3oeKnAvP1S+N9KwVYKeHx/jy88UY8ThcMhgRvk5yzG61rsoE05dEfvYsZaG7H052BPYNyEzuwRo0FpMP0SvTgLLuXVTcSBOyR0HsBxTCEiV54wqvvg9KRGnvY20EkI2byh1fBQ/X9zsBPAXXShqZ4yASvAhQWtKaNxELAHRVghJwYbE7yNgLYt2twsYq9npZmaZaK2y1k9TN9wGGzN4SwkPOcRppTAOI9zoGBiwxAx3xFb1/kBz1oXMGgqBwLPszkhq1uiHCcfjGdZWeH7eXgAfEsvkgL9YO1ngXABDTXFbXoMCKmvZO+ja6qaha2xJl7KuKrQ8tmTC4bHdPpGA+zjA+QnH/QHvvvse2hj8t1/9c26jS4nYldJSagwBBoslCSEvVys0dSOrI/8/n5MM8FlhBJlCr07NIeU4TRjGHpObiJnctXjz9g3WNxvc3d1jGIfM5CYAgRwc/eS4RavNgvey5k6nE2KMWb8wC4RHYfByEl3sSdSaRALJm9tbAEBTtxd29NZaFgsmHR6yKr/HarXKa9d5h+PxiBgCum6Jtu3Q2wFm6PP+LIwCay1WixWMZTe6cYR3Huf+jBgifnz3DgQQTvDeIYuIUz8/QiTR6MPxiN1uh++//z4nXrpYw+SgtsYwkCapACjOOTw9PaFnoej9fj875jEKoJTC1998g29/9zv8/T/8A6AS6rrB+mYDY0m3SOZhWYgzhgA1aw2W3QJ1VQnKwFpsAxSAiiUOMlCRZC9T2eCjER1KY5nxyqYnUIgMXozTCB8cSVTwOqgqEgUX9pbYo1MrDzHE/lniRzYQGieX2zcl3joejxf6hlmH54U4gPRhK94aaT6ObqJ2WWZ+EvOdBNLHkSQkxmnkc0DOABrDaXTwjuQLjqcTpmnMoJNSKq8rKsIrhOAzIC0GTfJZjaE8iKEPjuP5bBf9X82AvgcSiP0hhkvykOSdgNkxx+haqcz8y3tYSohMejCS5HP7vlYlECxnKYozUnRNfxqb5jyT78di0aEsDorbmTBHZR+QtnkqfBDjUPatlOhcQUo5XpecwhiDr776Cu/fv8frt69hrcXdwwP+5m//FkPfY7fd0VpbkLZaZSwMAxqKxxk+Imkg+YAEhcgt8T4ETJ5MmQzf1yh7sDVw1iAlj2Nl4ZoGta0wjm3WBNOa1gadxZeFSGE4kacTjT8VmsFsTuTzaC6CXucjVLQxmhjl53MPant2QCTDnWEYsd3u8PXXX6FtO5yOA7yPWCyXaJoOVd3g85/9HCFGfP7Fl+QE2lPrZj+cMQw9drtn/P7bbzCMA7bbR4zjiN12ojZsTczI8/mMw36Pmk0JFID1eo1PPvkEwXu8e/cDurbFxNpNpMNHLcBNXeX8LKiQ2wTFrRSJWLblqp5jw58+LrOtj8RvV2c+FY3nef6xx58G2ATkDbsU8xyZ2eSdz0KVMmm05oOjGATguuJTDNc1ypkf6iejlFtxQGHv/BrXo3mZ/Mvfyz8FyVUxAlrPlSd+vTIBLpMHSaw1APBhTIr30tpgsu228orbwWiT7gdy55vcxPaKZPUbQ8B779GfSVB9RkNlo6MvwWZiYiG84OlP7v9NKiA4BzeOQExo6gbLboGHuzvc3t1lK9dTTIjDCIQAPzr44IlRooDKGKhkxNScvy6nOoFNpKCVNZjk+4nwVp2QKcnSHkIzH1AxkKi5KpIorRgRZ1Q8RmjRgAG9looJOiV0TYvNaoX96Ygzs5r22x2cCyQE5wNcCJgCsZc8I5lRS7BNG+DVSqe5Ife4nJofSXCVYrpsMbeuk8pyXotTxjWgYjQx4X4CNhVgEIrnk5AvUXJLsKlpGmw2mzzfyjVQAqsX7S5aRP/nim5KKTtKzo/04l+vr/X6UVaCr4ECeakS2JNAMF0l8iKuWv7+NXhXvkf52a6T72uQqhzDsj3j+rkluEBJw5xECENLnifta/8W9pX87KVx/GNgU/lo2xZd1/H4XY6zJIzisDG3+1yOZxSQqCgOzPeF1vGLLXGyTzI4L5OkBJv+2Dhc3zP5O+HVgefK7CAoY1+2/l2Afon0wTJIgpnRU+oLlYl3OWYvfaayWlmCsR87Zy5A2au5KMCKZrMNpQCkWdsMmPeMcpzkPly/fjmmL4EKMTHrp3jNOSlX0I6BHO8uqsfzSp33xiyibvh1MkNrZjz54LMNsewz8l7C5tEcfGklRSnMiQGDTvT5pZI7g01eWqdCZJFzvr+8h09sUSwtutaSUYSGYr0OCsxTUpldCQBJwKYQobKb35xwKKWzi03FX4nBMNm7pf2pquqcyMiwK0UMDK0V3OSR0pTHTMIeYbEmJITJk8FKSogIXBcXzcrEiSa1ZRnjMvOyPC8Crx+8NB+Y7STMzbxnMIgmQI6IZIt+kWX2ijiKaa0BAySd8j2T2HFibSnHbkE0b+e9V9qUJWGzDDJV1mKz2aBt22K+qwxUVraCYSdDSvoss8xlPqkMOA1jj37ocwtcCGS2UlUVt+2YDFSGEGArOl/dOCIEApRmJ1B9AW5LNVtExFNMWddDnpv3JBVycdXyXCewqcrFAGOpSk+GEAu0HYmKr1arC5aHtInJvKSPT6wJmQdUnWdRXmZdpCrlAC+GiH4gVzcyI4k8fw1S4jXK80JzsVnmi2hVtW2b/225te5cgE3TNGWHuf1+j8PhcAGCylkkAM0w9Dj3ZwLZHh64xZni6fIhv7vk+bhisCmlRMkpC/8D1EpVrgu516VOHAFBM+BHDD59MY/OA7GO2pb01kqzDjmDxK1KhO3LdSX7Qwb9CrDpfD7n+ybgTQbRea8v25TbtuV8i/a0aSKwqbRlFzBGmImipSsPYdfGmPJYUefKdAECS2wr54eYheT4BYAxwtqZz+GyuKe1horUiqjzfJ3Pt7JgJ883xmTJCzlDSmBH5lBKlB/IGMv9iDHCKH0hynINKNFa1hA3uTIGKOMEnnUvnuuydgUoljEr40zkGGnWqJRiidzvlBKD2MSGG4YBTV3j9evXeH56wof3H6ASENvu/6PuzZYk2ZEssQPANnePiMzI5a51qy57pth8GMpQZET40OR/UMivI4VfQgr/gJSeXqprvUvuERnhmy0A+KCqgBrcPCKqW0Z4iZRI38xgWBQK1QNd5m3QC0M2G5GTDFtx88ONDXTYZSXZBR3oGxMxTZT8yhig74/MN4hfV5yAiGiBM28nfTttkJDhESt6w/Ms4F2pRAhfl36wNpISlMTIClKMKdbiYX9A8BH32z2m0cNaitVbc0b4GgZtQ4evF5sLxBiw2+/YhdjhsNtyptCBkjQcdhj7fmYx6icPb7PbZuVobtuuRds0GOoGNfMbORCv3Dwcg54Z6Z8cNJYl0VXM52xMcYCZH/LK9dpoQOj0nBy7VH4xYFOMlGVnt9ulzmThJaY4F3mzz+aA2hXiofrPvi/GKp2yPqj48mv6VxCyWhyy0cIHhMnTb6IQKKsoqwiA2kYm5zHmzEOG9yPZl8BWGs5arDpChO/u7nA8HHBk16+mqigGFoD7z3f49PEj1l2DrmkQTIQzDSVjMwToTOOAwRqM/ZGsk8YB0ROCLYtwt9vh5uYzri6v8MXr1/jqqy/x7TeUyed4d4fd7Q1+/MuPePPzzxzEnfz7V5s1+d8jIo5DOnEmBuFnzEvc2iwIAJLxprHhMQoQ/0MKQh4BeHHPCzAx8JmHBNaLFDjN8PQYBraMQW1YeDoeEbzH999+i8pa2P/b4aef3qK1FdZNh+ur5/i7//4rwFps+wGHYSSFhU9ixHpq9BTs2FgDFGmO6XQdycxYMrrR3BJdkzDr0umfpq0lJVPomf6ywgxW2gGkzCmO65OMKXMmwnTls5JNTJAUE2PkhK5kbjSYJ+sgCVAmkbfEtmlXK7Ss1GZlE/z5FNjJb+cLcg7SmJPfyzrPlbqiwHv6uaWlUcmEl5X7LDTNFPHCIqkElkrwLsaY4kuJhUwSkkJMAf8zABKhgRI9VonXKZKRuT5f8oaer6fvExCjxkS7OgkYWYJN8lfXNTqOK1AChHq8H7bUKgGc+ThIIGe5Tu+LuV9sahwlzhoLT9BgY7YwC57jsM2CRLOgwgCYgLmkjOm4L3PBWfelpCECIrwKFD+ntdItsxQIZjwiGobsFcit5l7e51c9H2n2Z3SRxjAt2dNrl9pqJAYZX0XghhZwFKB47pnIvI9umdNwEtf1HC/8Pq86HwSIZVM6NWSQItMzHXYAgKsd/CRJCMjVivgjjx9AFrasnEvgyMiLcQoTogTDDQp8ixHH4wAzjGi7hhKo8IlrCBSrK0ayyqg4HpR85ycCc7uu4Xha4jpBiUFEESGrAOZBrqLYYSxfwAgYbFJw2n4YMEyH2R5UHmrQPpBdcmQ9khJBQYYnT4rvOcBVaCVlH2WwR4AeAnn4taJrx5S50CeLisgdzVkOR04OwbRpOWC8cvlN9GIEvMwWKWRVn7N90hglYTCFeSCBPbt0a7ANQBoHGaMQYoqH048D+nFkkILul3AI2jK6cmw1HQTQpjUk8iTVLfRH/Q3RwE1icZmtbK11ePPuLZq6wYuXZNlEa9ZhYssm731K4CAZ+wRcEAXWWjrYJHCIE/0Er7IyEtgk8Y5oPc1lGFlzYqUhz9C0IvQhAKLui2SglCxOGqySV02z4zjSSmSvCkknPU0UU2ucOHtdjKhALkxieQcBiENO6GHNvD8asM8JXupsKZcy7FaJ5gBgt9+jH/qUWbCua2w4eLjQoI4vJGNUWoqXa6y0Vpe9R7vv6/1KW9O0qy6NTczElqzOkizAcqMAOdQ/Du4eQrJ+kgzM3vt0vVeWeoEBT886jrSlbQmMGMeB3d8maJd8a22KbyvApAaPBLiW/UnmQdLX/+IAACAASURBVMaqrmtcX1+jrineWF3XKXu20JpkokzKf1Vhv93h7ub2rPwyk9+U/FfKAkLHuh6Rk2SuNBAmYJMAdsHnTMPHwwEhWXM6PgAguaTve4zTgD/96Y84HA+4urrC3/3d3+Ef/+Ef8M//+E/stvWKQF5j4IxBDA7Bu6Q32eSREhGDh0dE9BRPFsbATKwrWNqDQ2URKocwUgDsimNm1TVlvVytVlivNri8vFI0T7wIhhLTEKBmlGzEwbejxMj17FodmeeKJX0GoUTXqmqHrqHDmr4/AIhYrTp0q5ZfyZ3W7Y6YINkRDzC2guVs95JMZ70mEHqzXqHralxdbvD61Qv4acLhuMM0jbj99BH73T3tU2HC2zc/4/bmI4L32O/Iokz4Fs05Fos+uJb9TesVcoAqReMSJYual7n+RDSXsyVq4PT/n2ATKDC2+A8DcyFGTJVlwZTCNSAYRSmcZgF4SVlMQu0MV1oScU8bzDr0DCHVQj6QGYRmJvL9XAifAwda6KbJzgynjP5OAh4FpXVVBbCZ8jCwQDBNtBEYi+PhgO39PZrqGWzXkgsbxGKInhk8mROOw4hxGOCnkTOnSHtCAgYvL65wdXmF51fP8OL6GuvVCj///BO29/f4+ccf8Ic//BGS4aJpGgqYCsCbCLDgZqoK4iYoG5W40UmgcKRX6TPJ7JElKcMmnYhxBjbZSKm5wZlvAAabLAiF57EU65vAdBhDxKvra1RVjT//5UdUxqIyFPzvYrXGN7/5HuuLS9ztD9gej7Cugq1rIoqKMmdsd/fox57BptPAajJ3+pRF04co62IqrelG3i+SZqmwM43XrkJTN4tKaUm3uh7dNtkIhbmda0fZxggkBTMLxSa5UmSax+x9CTycA42tYrBL7XiobbrUbC68NJblM88BTTJ3YupdWjY9xg/0+wiQIFXMaVlPqfAtjdG5cq5v58aIlIDxbD+Ep+XsIqfxlGKMKVV8yfeWxvyheQgh06Meh8fGpuyrKB5aWD9X31LdtM58Vi4gLoM6qH4OPFoCTtIW/Vda++rxXTJtXnKLJRqMCNNpn8/Rwbn1J0plGU+i3PP0/nzStpSVj4XkKGDTebpeGvNyzB6jl3NCUu4bWT9p/pxP6cdZKmqZ7xgpm1yoCdC3WFhPkeWJGAnY0Xs3JG6ZtGuudMgzxTLr2PfYbUlo3e3pVLpyNZyrKJDvRMrXOJLVwoqzZpH7U0eWnOxyKAceSYJxyg22SkdoiJHiTAREjJPH4XiYjaMIuCXt6t+k1DWldB/HEdvd7sT9d2lNlPMs/IQOHyu8eEFKYQni6jYKaCGZMLWip61dynTj8ky9zpbWWFJiDMgSjTNxSTbiZNHStkk5FaBdilhViOUqD/wMoD7Hzw2wIBObJNv6hL66FAtJ9vH9fg8AuP18i6qqcLe9T0p00zQMEh2TAiw8Sf76vk9jZa1NwcAFJBFaJpCBLIqaukLNgKwxWa4IIWC/32MYBux2O2y325SVT4NOMg5yqKEtaDVNxRiTC55W0pPlqVzP808yCo1z35N77PF4xG63Q/Qe6IesLBhDsqbM1bky1/hIAXdV8srIgOr8cGa726EfejQNBeFvmgabzSZZtOQwBibNZ0krojvJMyREgLb002uUAFkCNssQB03bUHwrY2ZrR+qXcdb7vVzjnAMYkJmmCfvdbubGJ+2fphxTVqzPpK1Cj2TpSHR12O854xyHzEC2Kl6tVnAug5/aUEESF2ha0PTRdR2++OILdB1Z+jVNg92OMpAJLVdVhZcvX1IiqNUKbdvi5uNH/FzVM3n5IZmk/E3ukWQJ2poqk1DmQ9Ifmbvs5YNkmTiOYzosyXtMSHM9TRM+fPiAEAJev3qF3/72t7i9uUlj75xDU9eki8XIILJN+x3vEqRjRbaiijFl90ZwOUuttaR8hYBgJ/hpIEB7INBpGkcMfY8YOM4w8wc6XCALWM+slmhd6FD0DDmw4QNGBpVO5Z3ItEL1ti3FRG7aBuM0om44LlJNGeMo0QfpoX1/BFkDG0TQvrxarTh5RwtjGzRVA2MaVM6iqV7zEykO493tJxz2OxyOB+z3O3ITbzv0POf7/QHT5NX+cspbiGZwsuY1XdE6ZMDPaLBpXo+mq/MlQg7jSvmK9n7h4+dr+MWATQASKq4VrrZtqQMRAObCq96g6Hoh/VxjjKeKrP6c685FCxHn7jutZ/lk+pwCXzLkpWtilMUUUkPjlGMysIiMtm0Y4aYQg8fjAbv7e/hxRFNTULHPt7cUxDRShhxnLQerpmNMEwmVDiFQWkvv4SfKvkOCDI3sNIwIljKHrLoVTIy4v7/Dh/c1/ukf/wF1XeMvf/oz7u4+4+2bt3j//j2uri7x1ZdfYlXXuGhp0wzRI/qQnktCEbvF8EISyE8CBkp/TSRwQVzoLB8WWx+FiBLYFGOEZGJjMYL+GUYKnaXO2Uim+TFg3w+YQkDjKlxfXWHVtTSuhz1+/MtfMPmAL3/1K8qCsd3ieDiA/JXJ396z4tSPlFnIuFOwSf5KZUoXuVYEZGAek+Ux4CkrwQAQOfjqlATTpfrO0Xb5tyT4Psysln+fuWLkB+fnSju0cqivKa4/82B6ecL3o7UJbFpSvpf6dA5wKstjgMfSX4wRY5jyvcV4pFGL/H16rNFv6ZKgxozMRuZ9LMfIaIvNPF4x5oDmssNoMELvaCHkOHTisii0M1Pu5J4H2vMQrwxhbim2JOCdpQ/VR+Hj8p5c4eLJe/3sXG+EBAyQAwgSvuZxtZZONs+1LRZjWyrbT1nHVJFBjJYNeE7pvlx74v4l/CMqgDi5iSCqG6lCUXJzYGnZr22KUQTmvVVDp7J6Cy6BmqU1WL6WYOVT7p995v+NoQMHGMPWQCSwy9xp66U0d4q+JLEGuY2RwCsuagLdpLUi+5saPxEaEXOsyIktg1ZrcmWZpgn9scc0jbjfkouQNeLKQcCmWEAZY7BadTRfPAcpw0zqowLp2EpDxIIYkaxbBYRd+TUu/dVsXWllVfPAGLObsPwuFgTee3LtV/tICcaX85bITD3DsmVScrc8sxecA/x1SRl+z5Syb2XdcphVtzWatiHRirNd6oQc0te+72frWTKjiqufuNHBGji4bJVQHE4Jjz6VBwxg2H2dQcS6IWBS2j+O44lboyj5Fbv+aZ6lebbwRLESkfZogHYYhpnSRPQQMA7H5J4s8bTkfqGnqqpweXmJi4sLPH/+/EQGAYDNZpPiR0rynBKA1+CMuB3J80Z25aGhkgNtk+hBwI/dbkcWOMc+WfMCJDYK9xHe6iyNuU5UosEdeu5pbEa99wDAyIcUem5LLw5NC6VrvtR/cXFBGaxU+IMSrJI2iFviNE24u7tLsicF4Sd+pOdat6u0YC7DCOg2C928ePECq9UKl5eXuLq6SsDV0jOqag7IhRAoO+F+j4FjgAn4qQ93NH+S9khSBPlOwGj5zTmHm5sbCiLPQILULXNUVRU+fPiQQLC6rnHcH7C/3876e27vWvpe3mtLPj2emmdJO4UvxBiTNR9ZNo0wxuLVq1eo2QWzbVscjge47X26P8aIz58/Y7/f49XLV3j96hXu7+7J8jIEfPz4Adu7O6y7Dm1TU8IMtryUPT0CsI4yL8qxPgV14lAwkYPj08RSiBZjEL2BtRMsDCbn4Fx2G66qGh3TKblWd0wbhg7wAyW8kiKgq1i4ibUdWSlr/i+YAbWZ5piA/81mjRgDurZBzdajVeXQ1BU2F2Th1g8U0H4YRhyOPcT7xPsK2+2W6Y724rqqsOLsu1Ule0CF9ZriLl1cXGC33eLq4goHVyWXVQM+1O2H5AarLTXJgo0MT7RVo4xDdq30aYyyjHhKl3oM6bd88EVjZeE9SeRyn7Y8XQLEyvKLApt0sbPNOZtzawWijH1RVeR2NB/AZTO0dE3M16V3xiaf7ZIJlN+V3+vNQqPMut1AZrgPKVDkqzyBAB8CYoJyyZi8R9d1uLx8lk4uYgw47ve4u73BOPTsV+7x6eMH+GkCQkBb16h4QySBxiEGyoATY8SAA4KVTDls+cPCwsiWZ5VzuNhsAETc3d5g6vsE7vz+d7/D55tbCtg59MDX3+D7b7/Fpm1xtaIAcIcj+dljEjc3JEUHMkZRYkcxeMSXGAA2EFBlI9KfpKVNJeSMc4ie3SM5JgtJYBSwvSJhHDEiTB67uzuMPmDz7BmuuhU2XQdjIg67Lf7wL/+CY9/jP/6n/4SuaxEmj/12hzEE9J4yqAyeT98Y+yzBJqIxk+hAC3OanpbcQ7VyqQWqs0qmKuM4YjgOSTGSdpT3ngNaH2vbuXJOkQbyGiFhPd2QQRV5lc1ZXQOIUpwFbn2NPnPGue+Ktjlj2cXw/HrX5Rz4J6fowhPOAdHnACo9B8PE2ZYMMgAjb/g6yW4kGfuMkYCjck12i0wQVYwJgEriswjPXHdSVKQegxRrIsYII4KkFpz4WpkbsAI9UyqZhw19fzJfuc28cRZglzHFOs9PTc9YsmZ6aB5lvLWl7GNzs3S/5AYV4IH41vn9Ykn41N/P3M8W2qWfXwr0+lkUWLqe3xsViC/MlfGPDGIqsAnI9AGkrJtyDYEUpLBVEoTbOY4VleHPAFoTddeiquuzfTsHpp8Dch/6/NA1OZOsSXGUSr6a5iWEBArMQBZACXghKTyimFqYGc+VtaeVCO0yKZZeJESGlBlM2j2OI+7u7mbWAZn2PR0qGIP1eg3nXDopT4KokbTZeSxKEFQrbONImamcpey5WoksrZekPt03+Swynb5fy0YPnfwvr2X57tQFWSvnAkZp+inBDU1vmo/Ia9lGPW8xUnDriIi2a9B2LbdtDmiFYq4FDMnAdEwKfuUcmraluarncyU0IPxRyxaJmjkjqDGWXVfFtSiHoZimKYGYAjLsdjvc39/PrG50jJdhGJKFiSiConxoyxhtgZmTRRDH2e/ucdjvIW7Guki8rtVqlcARCbiv3ecA4NWrV/j2228pHpayZNGuTUv7rLgf1XWFuqkpS5knEE2sXmS++76nGEfTxC5Jmbc6DjKsaa7hMUsubuOIoR8wjSN2Msb325kSqa22krJd1ynQutCEzFEKCp5cR8+DTV988QW+/PJLXF5e4uuvv0bXdXj16lWylhJwR2jq82dy43n37h32+z12O8p4t91t8e79+xPwplwvKZtksf61y6W4t3333Xf44osv8P333+Nv/uZvsFqtcH19nYBBeiWPCGPoXDiESHFThwF//tMfcHt7m2JX7fd7fPr0CcfjEe/fv8fhcMDt7W2iW7HW0rqagKgSI1gSYMg8CK1IEQsxa22KISa0WTuHxhX7bFGW9rLyuiVeKDxDLI7EC0iDxcLnZazbtsXXX3+Ny4uLBMrfb+9hHNFn27aYpinN9Yvra7y8vsbnmxuyahxHvHvzFogBr1++xNXFZXIbBfMeYw2qSG56dIhvKVaQAcDn+CKzkSgaOCkV4LnvYaLkEbTeiKYtgLbr2NW5xeVlZHqtUVU1PCjuE48kg01Tcgt2zsE6ygJqvCnokcMdOIoZt+FYesfjHkBEU3eoGWRqqgpN2+Dq6gLT5LHbH3E8DhQM/3CAeCZNFWEVVVWh74/o+yOausbFmsDKzaYj0G/VoVlRooGqctjvdnj+/Bp1VWOz3tA+b0D02B9xZB4hfzFG5lEE4MmaA5D4tfx5tvoXus30dhoeRPNHbW1N68Cg7/MhA5DBeJFZHiu/HLCpWGwnzEwpEyVwkxkdnZLId+l0B8vCp3r4SVPkJEbfzzLiDBmc33cq8M/ReUACjy4KsqXiwZI9tyApxul7Q4zw4mJDC20aMYwDtvf3lNLSOaw6Elb8SFl1KA0yZRVAMtmPDDZNQAzwBrAuwlaUwtUH8IkrKFU2MrJvICeSnPHAWDy7vEJtHYInn9xXr17iouvQ1TUpp9ME6wOqQKaWMUzkEjdTcKKEtkifxWopAjlF5ewnM5vNPG4Uu4nMQCWdrMlKlo9AdATnBQ8T2I3P0ClVU1dYtS0MgE+fPqLtOhwPB/hxZBcZPm1kJTrGyAAZU1Dg5zCD1tQWWIGZ0bN021NmB2iaijGdmomCY4iwFpXwTMGi5HPQZSZkozbdsm26LWkecErnZVm659z1sk6DPuWX9ZwuClkJVkpGVow5xm80s2s0sJRBmphAm/J5ABCNOvF+pO3AHKTQ3yUrBSyDS7rvup4TpQ1ZiZEmG2l8NJBA9wS0Mr8ToMMIAkB1Bc7BHMGWEzHy5wwmGOTbItODlSosDdwEnxVlmRteiFH6gxy7Igor5bUb5GQrRrK4KO7TAEiiyESjMi5zrm307xHZCglRWXTJ2CphL1cwX09LRdaHmd1ZfEyzkC0OlDWJfl0CnbRyK9dqgPoc6FLWVR5kpOxtum8KbIoKbOJEt+kaKNrLPQQMu/0gKOsrPqSZJR1Ij1NtBO8pRsZ1Pr+G6dbocdffqYsjAw5z7p8vMQsfEo2lW1gYTaAZtUkSGqThYEFbB+VP8xtydj8YJOE7gpJcGGRzdlq+MbdCbVoxZpd24rWBDtKMBDqnuRyHMVsOITKgaJIiYoxJylDFmZbS8w1ld6X5CHldFqBKzSCDxE0R0Iz2uCVX0jwfYAAGMccuknGl+yQYP9NFCOlgKfLenq4Jgff6mNqb+ckp2JWnlubOOcfjZ1JMHKFFslArSGfWD8z7GiTuXuDYJ8qCAxENWzbRGM0zknpxWwqUZj2BQcbARANYwHEKdlhLMq0FBR02tI6tczA+JGAXLMvkOHVBiDi9GkPxTsYxW0NQQOQ818YgJZ3JtBgQIsiihWVfV4lbTFp9TH9azp2vzRA58D5FrE0Ke4ieEkhHjusl64xBqIFT2xvpu5XYLEQfd3d3aJo6gV7WOnRdSwHZqxpVAunmPLeuK1h2D2rahvdZmquK+yc0PI5TjjHE2apg5BDW0qFO2qYMas6mlmIGesry6H0O0H04HlLYkOwCPj88n6YRPkwYR4rFlkESbr+lGGI5RbzoRcQ75PXy8iKBbhSU2aTMfQLISZmmEYfDPrXJGKBt2Q3RGgzjMLOuiXH+XA02UfxDsbySPZDuIcs5l67b7Xb49OkTmqbGdrtlEIDifpFFTsMuTRXfL/wXKVyBtjAaxxHr9ToFjBcQRlw+Za5kv9e/S1B5AU3P7bNlCSHAA5ji4we/ug1L5YSvIvMQDSxqt38BGuU+0QckUyBl7rUJ3Dw9kDLYbXd49+4dQoj47b//99htt/j97/6ZgOEQGWjltQ4SCYHMuyMMouGDUUt7IhgIMsGwDEmu3HIYJaCJS2ubANoDZ+msmxZN3cMag6nr0LUdDEjGlv1ZZ6zTc6sTx/jgOcYptc9w0hQYyvxoJwJZLCeRitFjHAfs9jvKvDhJzFqgaWq0bY1u1cJah9WqY57KVo0MMhtEDL2D9xOcjZiqClZMvWINZykG1TCMlMX02ONwOCQQ2XufYpppV1Me9QQaaV1D5D8B37QsqXGMhwwctKtl4L2XTD+g+NOkwLvHaf2XATaJwKmEcHGvkQuiyUqcLDi9yKiSUuiQDbF43GOMwMh9M5EUrJ+rgS0Uw2LECYHPGVhE4M/uGLKpzs1NNfooclFSnKSJ1sDC4uJig1/96huMw4Df/+GP+Hx7ix9/+Av++Iff47tvv8XX33+Poe9xe/MJ0zhh1VTo3BqIAXEkNzmyMhjRH/aUurlryb/aWUpJOU0Yjn0KEhqjQduusFq1GAeylgk+oHYVVl2HV//N36J2DjUj/ZWjVK8mArHv4Y9HVDGiAlvbDP1M1jPiihITwgCw0BkCgVAhMhglv4swD0pHahRNRQacgAgbJdsOgw7eIjqHaC2Co6w3lttWW4u6crhYrfH6+iU8gH/8z3+PTzc3+PDuPb76+ltOtzxi4mwtzIoBA3g23TSRGG002dpDBJkkXC/Qj/5ebwjla6nUnZCzIldOgpGtTh64vrxCP7NaAE50m/V3SxuzfJesE00GUqTWkDThmFaiqL0JEOFrxbJHFGdDnaR6pDcRDGyovvF36mN6nkldOt+PcmzKcZLXJWuJpboTc4cAglm4j5H7JuuCx8gASXGUL4wokyIVABmgBTK4J+AG8xabGIxJmSxcIhr6Lg4DomfQKuaxFQYZDVQqZ6SA+RLkXxIwzFwwePRl3IPMkZqfqL7Tu5sIDScgqNCiosnZvGjwQc8fFooCw5YAjfyWaZWVbEnPq0Gj0npq6QCldCEo25i7mOmmrEcLEtZSemAkaCSP4Yz3JEXzzHiY7CLnhVb1s/iymcscwEA+793cxtFPMFbUVbBST6s8rwtd63zQpYmi6CRlV4ROkzPOGbYsTQBSMa7GULrmnrOxeQYg5FrH2V8BpIMRsRSE8HBus7MO3arLzxMoLdL4kRUtYKzsAYHaaQ1cdLxf0eVta/J4wqCpG6zXa/jgUdkqZQyNiCmLm1ipAEgn8G1LJ8KBhe4QIzzHXZv4EGLp4EOAPsfWUCEJu3rfWo6rJWOtCwXz9RmsQ5ytw9ncRiX3qEQams5jiBjGKSs7SjYkOZJAEonFJRnvjFjJQJ4xD9JrWNDL/EPALwU2qYQBNA7s/lU7yjAXAkbOujZNBDANfZ9BwnEk2bAiSwixBjTGwVhWxP0EGy3qmlw8LQAEiltiQpjtUxMr32KFJnI07SWJ0QGGvABqznQo6dMrR/EKrTNz4CoE+IEUHFc7VI2KaYjI/WY+bIFoXLJyR4wI8GRlrkDOrmux6hqE4FO2R23Z4wMBMsf+SHuZAnSE0URE/PzmJ5h/MoiBwgQkJZvBB8keKSClPENcXyS2FO3PoqQqvcHkAzihH2tU8hYg0ZCsGVLYcvIVyy7EgByIM80wCJOt3zJQFyMwjD1Gdsf1XpJcgAGglmPNtAlgaZoWkh1R7xXH45GD8Xt8/nwLYww+ffrEe9I8yYRYpuV91GDNLrzD+AzPr58RHRTPyMpwSNaYeQ1mIM17qv/Tp4/sSnrE7e0tjscDfv75R86Y1yel2FqL6+tr5U4pLpMEgG3WK9RMw+KiWytrWQ3AnAukLOtEACZR9m9ubjCOY3IdFcV6GAbc399zPz4lixO6JiCMBGgtyY0lcHTuN21VKLSn+asACmJBqOchBarn7/f7PfNtMgoYpwn9MHCSE86ix2Dtm7dvcH93h//6t7/F//I//0+4vb3F//6//m/4y5//DAOKZ1s5yxk1s7WuH0eV5INkNTheP3ZguTBm2ZSB0lVNAE3XktUV7Y0Bx8MO/X4PV1HCq7pu8OrlK6zXG1w9e4ary2ecgZ31al5zkq2dkklQ3REBPlKSqn7o4SO7oDmDqq4QEXHz6VMOKO6ACI9xGrDb3eOnn34kF76aEyBsLnBxuWbLpArOOmw2FzDG4nA4YpwmxGlCfzhiGiz8MMJag/2OYl0N/RVWqw7r9QoGaxwPB9zd3uHu7jPev3vP1oV3M9c5bQUpLqASm0oDRSGE5KYu10x+VEBTxjRKq2NZ10SDfrYuaO+b06nQTnaVx4PllwE2AVmYLwRqYTrCaPX38zIXUqXK8rpSIZkpHrO6HgGk/oqiN8A5MCCLc65o5MZJu2L6TIsqxw6hwNs1vJ/QHw/Y7XY4Hg7oOdNL1zZAkCxvJJwQ9EpCgpH+RjqBEUFK3scQss+5F2cbVgp58zUtCw+rFdZdh3XXoqkqVAxKIJIrWwwBgYNvSyYSEwLggxptdVIcBSBQQRgDuC8yLFGaLwOWrSSsKDt0seExyLSSqyHAg4QWIwpPoHgrlXNYr1Y4DCPuDnvsdlscjwf0/TGbLEc6jSSnQCAaFtZMhAlZAdIgw9KGU9INkIVgTbulovRQySAe6GQxDd0j3KGsRz3zhFZVe89toLNred5OwCaIMofk3mIYXJhdw52gaacfDPgaWS48wSEttzzhqe4wByK00ijAy1PAJj0+UjSooOdNC0J6nLTwI0GT5cTbCNDD7Tei6InCLZyClQkDkyyTBOzBEtiUFAKqJVuTZYBfTqMjo3shBMpOKfWosQaDYgmwN0DkCUjzAZp/UwynzG1e1lFxv7xepd1JHJbxWJifh+YsKbon3y9dzOtv6Yq48EHWNoxAKYtr+BxtnQBnD5SngqCRB7gElqIaywd5gilGK+bROHuX8NU0HornxchGixlU1wDZY+uu5KXyneaJCeANZvb+HNjkGbyRWE0pPqSLsDGd/AAgl6jIBGl4H0eMQIUEtiSgl2lWQAyqIJ60P61dxOTibnhf0rwp2XqpOZFsTTHG5OaaTepJMPaBT3VDoAOWGGCiTXEQZa60PGYAFqotPLt+qZ0zyTClElcC7EBWSvW1S3tZeZCR/7KVhPBKN0wzoTlbU+Rn6Pg9S0k6pG2lJYNug35mCazRNQTZO0fgd4gBzldJaBfFsHIEEuqgzdbaBDaJwiyKo7UWa3Yjy8GSx2RZLmCmtEMHQc9gk2x/tNa0dVNV5SDPxhjYYGdjqOlTlLsUj0zPjaIJKWJJnWRg2JQJ2Joc4mJJjtHP9dAHy/NXmQOxRJGigyfLNRlsInpomgZt2/Dz6T4BnXS7hJZrNWfOOVrT3D9tXQBk101xPZ31L5zyt9LNsx96UlzP8jdXzI/soPMi8cHEtU+XMhyDgDPS/qy4VzlmHfKcle8JIKL4gLpvxuS1o61NxnHA8WgxjgP2e7Ko2u12M5n3cDjg4uICm82GrZ7IIs05h6srikXVqODhAp5KtkhxZda8p3Q11Iq33Cs8VPNSDc5owC3NyQJ9LtGr5idL12l6WAq3sqQzlrKFgLvjRGCDWKdO05SAWalLrh+GAYHH5osvvkBT1+i6NsVplLotA9/W2CQ/kgyWtzfKQyGyhYFkAjeWxiko60G6Qk4YmLeEgBDIFS54j2N/hLMOQ9dhaAe4yqFumgTQZiDLpFfqH1vpxIDIlqbGmpl1pljhWUffRwZy+qHHdnuPYRxRkvl5zAAAIABJREFUOco4JwcVI1uLweSkAw0nPBKgW+Iqkc5EEnOiQwlrEVjeDxE+yN5yuubLkAoCSi/xKk0jmj6W1uxyUbjDI+WJYuovB2wypYBzsvGkn0+uKQWT+T1xdo0Wbs6VGCICwgkDWBJ6l9patqt8XSICeZ0J2erUw5gA6yyuri7RMgrsnMPF5gKVtRiPPf7w+9/jzc9v8PHDO/THHerK4uWLa2zva9x+/Ehoa99jGkcwZEXtd44BHY/oPaZhADxZ+MRpwvFwxH67AwCs15skJBlj8OrlS3zx+jWeXV7h3/3mezR1jX67xTSMONzf47DbUWa7wwGIlDrWGKBrGlSVA6YJTrIt8R9MTGCCAEQxUIwmsL88BQen3wWgCAKmcSA6ceWQqFByChdA1wYAwRgSuo2BdxZTBMXFAnDY7zBME7q2wW9+8x3effqEH3/3z8Anix/f/ITnP77GbhgxBUpXfH84EtMQIKOymamVJ7yFUnUKRJ7+9hiI8xi9kqgnij9O7ntKeXTtPNCG9B3mAAKSOi7zX6yn/PCz3+k7YnmNXBfVL0U3JCm8nFwbJF1wcXzK/i2Ny7n1X77XPCmPEQM/BpjClOg4gwJylfTI5G6xgpieodsmfVKgiPr6tA9L9URAfONOxlr0aADJXDldMX+WuKAK0KCfWX6nxyYjTrMfH+jFOcH4YVp+qI7F3+WP+0zWKMkh7UnPXQKdHqOf8r5yfwE4LsXxgIwx5vmPRR16DS49U2e/KYXnE5BngZ95doNyEhuRGjRrg7YyOScwLe3lZd/nFtILxSg6ZpemrDzzM8AZSpHN4+V7E+dKrQHFnzjuD9RWsZ7hQ5vZmBdzVLGCI+sXAFpWqvrjEf0wkvsVn9Tv9/vk+gOQUpWUOk/cQlzcJRZPBr9iUmRDMWY0R14tJ4OGFSw5rGE9BkzppMxw0NIYxdLMKHefCtY6jqkxwXuKzaGVT7H+1gqDkbhzM2BrPtdkrSAAQlbYS9pcWlu6Hn1qrPfjJfltkYxEcWFrHTCwCqOCgIfArpikbJDVGVnWVOzqJyfZUnRg66CU5XEcKdOdncdqkjgaIbIlGGSekNLJ0/1Too0Y82GuTrZAVimBY6OQRRBg0Pc5NswwkNKVrTIjt2PENI08ZwKosOI1jQh+mlnilPEotUJdApTCHyTYtYB0+pqlgO+JBynLN8ou5cnCPsrhtlA+Ta7QgSvBmWShNAcwZN6cc3DWoU4xq8Rlct6mJXrzIbC1RaZXuT8BlGzNU8YD1XR/PB4T2KTjM+kiiqxuvzxLMq354DFwzCWJ/yPtXep/ub5kbqZpSnGRKANgzqYnYJN2Y0ugKP8RxwGvGcsKPSeg0Ao5oYawVc78twQw67Fo2xbr9XpRp5Sx1vHNttttCrRd1zXrKKd7mbxqnqSfWx4oC1+TudZZ/wQQn9GT0TxUrHuor5/v7lguobHq+wGHI8Ua2mw2MzrY73bojwfE6PE3/+5vcHtzg5fX1/hwsUFTUazftqmxaluy2ga1tx/YCkbt78yxWcaL6XM0hsM4eIzOILK1aag8WxxmUM8atrZzFSpX4chWZ/v9AZvNBq9evyIrekd7RahzAHlrLSIigbYDZWqdmOc0TYPKOYhl0Mj8yEy06Ckm2IRjf8ToJ1jr0B+Jl7189RpXz56jqho0TYf1eoP1eo2uXuHVq5eo6xqXlxe4vLwA+LgxhMB8JsDAIkwBlJjWwbkKXdthXA0cIHyFpm7gTIW6okyU3ns8e/YsJXRwzrFrbY7ZKOtSxo/oyKJCPsTIdJ1jgMnalHGj9SwWldlSjkIAZfoU/koHEI/L0r8MsEnxvXMbvC5Livm5ivUCXry+VL4A0Gl8EsGzTHgirMzb9JTXJeW77FuMIlhJ+7OLAKXZ7HL63KaBQYSfRny+vcUNB8cLnuIzdV2Lse/hDGUFiN4jTFMSOq1zWSGKjCZ7Dx+Bie+ZxjFlt6E4RjnY5mq9wutXr/Ds8govX75E7RxuJ48+RBwDZbYb+wH9bk/It3NwhjK3RURgmmAmit1hkYU2DTbFGGC8WDbRqxGwSeYwCjAXETl2j402TVJMYFPInyIzvhAQrEGIlhR63hymaYAH+ATlCveHA53E9Adst/e4395jgkU0lkzm2ZQ0MHE448gqhf90KZWph5QzbSa7RDvnhOpyQ7PGQiJupXErrn+ozNomWuvCfUu/yXd5VVEjzikAS9+d/KaUsqe2O30+6SrbE7DQfG6MdHlo3B7qx1PaCIMENs0AnKLhpZL/EMC1VJ4CNJ6Onz2xCFoC+GTOjVGdKO6RtfbQ+Jb1nf4Wk9vaubY/FWxaAgHK+85+hvQ/wlnLlmXxbH1PfcZTQUtdTsAmVqy04qf7em4dnjyL+aUoGA+BrroOeVZUCrBNccaWedgSaKb54RKgcK7/+rtTuiILPbH+AZTlppF4ONlSZhgo/bnFXEFMrjKqPSmg8eTZEuq0vUuKNn9IoKUoxpRdhuoahp7BNM6gxwGPtQtlAO2tcloqckSMEWOavywnga2qaG6R1pvnwG2U7LlUVOk+eY2R4tWQApwDRDuXT3qtyeb52X3JJfemfDpNAq6oLlR/nk8BHEgprZIlWI49MQcvtTJc7qHGAOM4z2Q2B54AWeGatmldZNllGAf0Yz+7Zi7og9aCDylQMlk8kWuKZP/SSmNSIhToMrIbXu2q2aGAJI+JMaVeSXJQTmvfo+8HjOOAw2GfgCXiDxKvI7tAjaPjMbK8Pjzzk7kLmNBDOUc+KeBMT+MAP+VMePrUXt4vgdkzi6sQZkDVDNArFH29B2neJUl4yH1rn6/PvUofNF3JWAfvaW0rsEVn00vuiSqLmjEGpthBSz5vWD6Oxe/aQk8AplJ2LMENoacSbCrlTz1+NI826RwCNo0Mxkrwbrkvu9vkenXyF6lXFFTtliZtFIs8AZskvlWaTyX/Q0DE5KlwWiTZg2saWLYWlPhOUsrkAJvNJgUolzWXrVaa5KYscY8kEUQavxDJPRqn/EVoWpdSNy0Bp1JvFBrQv5Wveh3FGNH3tOblUGQYKVB6Xdep7VLGidwGQwy4vLyAn0Z0XYu2rpNLurMUXoSPGYjmreWYtBGU+ZY9PIDEI/QBZwTrop5sFv3kARhyvZM17z08W0YJWBNjhHN0IFNVZPHkGFQ0vG/InsMPo/UtB5tRgSrJYiykTOwA6dsUp22gQ7HbGwDA9v4A78kluu97dN0am4tnAAy7ano0TYPVasW0PEBk0yQ/cJbRzJbJzZaSNuQ/zWdELtGxycQNcWILNaEHcSFN64ZqKfagU91RaCcD1uB9XOQtA2urxDs1Tea2Pizq/jLAJoCEN7VpnCjYbHu7pIznksX9+XcPPFZrwFIkoPMjikKyJmAhTAsdJJeoU1g+weda8ztVvbO8wTA/FXDEWoumJXBps1ljs1mjdhUqV2OcRnz4+BFv373DTz/+iDc//4y2rfHN11/hcrNGGEdM44CxP2LsewpqzQQaEAHnYGNNiwAGMBbTOGGKFNx7HCxiCClDyNXVFZmttitUNWU6+M1vfoO2buCMxTSM+PD2HT7f3KDf3mPY7WEBVCAm1TkKTh4OBxx3gWO70NYrXm+GUSeJ8RJDoGDZxHWIVmSxRiSFLnqKoO/ZkT6wgCjKREDEFEmg8gwKeWMQDL1O1sKD7gsAxsMBk+nRtA2+/dW3GGJE03aAsbj5/Blv37/DxfVLrK+eofcTxsCxL1hBMXHi/uRAdbKRlJuOFraklC4AM7p9gnIu38m9Pvgs4qRLnwA2pDUU04uYxz9USmBEL8VSUcxCVXFh8d2Jbp2EPskwsdSBEhoxJ/WYKNZAgEAppZvXrG+FIPHQ708pZ8EmAMEIVPrI/aIU0Rf0ncw/C8EPxep6aqF4PHNl7lw59/tZ8L8sRtMfsuCvv9NasbpQgB8D3gUTGau75+hYiidTPk/TjCjlRrdF3kcC7r3cGiMLxKcC/klXzXx/02skP3d+ffn+3DUhAJMXSwvI8cL53fGBqZH4KdQ2sPA434etMZhPUV7rQoNNS9mWkgVGzCCHxA6SQ4FcsxojI4b3fyVNx/Kj4j+R6pU+SnwfP5Fy7UPAOIyAAdqKAtjG4BBDwMQHNWQlMSTB2FpyP/Mct2fy5NYu8alEmamrGi3HMIsxUhwaBgdCUrpAljHQFghs2u9sjhPDoIurKAArbZsU16npGlZmBRwT9y8HayvAxJRggOVv3ovI8jmKNUCkBBaVI+FXLJJ9CJhGUgaHHqwYcKZg3iOZkmj+JElBpFNwvQVw4mwI2KQD1xNtACPH2aJxIN5Ee2amfyIhDVxkAInAughXORHc1G8iU0obQ6or0aRRzzI5cKre00p+F7wnBcsA9nhItGeQ3eAkFokoRwAd/KVAsd7DGoOmqmcxyVJsTX5cCAGDuI85kUUIFIQB6qbOaxlsfSTjaCzLyAJEUV/IamlKY0tttGqvNhjHIYFbMkdy2BemUdFRBjyF9qnd+fBnGifux5AAIm3lBABNXTEeQTJiiimXnovUXg2yyu+b9QpATNaIaS9NN2Z9IXGMIDJ8TPVKzCKxtBNXOs3fY9DPz/cz0fPzLesTy7xdQEcZs7NgegFUAEhxjAT00aB5CXAcj8cElEzTBMOxrlLGL2uhLdvAPFRcLoUkKIC4B8WyHdUckAtw2zTkttV2RCM8RqImxcgWmzEiSMB6Cxho/lFkcQNl9bNurrBL0QCZBq4F7NLyt4BuMg4EgPRpHJ1zsDAUzL8oDx2GJHCxkClLq5NzdZV1yO/Jwo9BHW39NpO9eR7Slh0j7m4/4+//n7/Hcb9HXdV4/vw57m9vsd/tgWlEBbI6qiRLX4xk0GAcKplw1r08mLExKOT9hJGTVYSR+MAxkg7kqpr3LAFWOWmEpSzr00BZHQ+7PYb+SPGA2xbPnr9A1dS03pzE4iMr0pETDRDQBLjKomooVtPhsIe1YoVoEQKN+WrVolt1aLsVnl+/gPcBhz3FT7q7/4x+HIi2LVklvX37M7puhdevv8Bms8E0UYysrm3x/NkzWGuxWq1gAHRtg6aqsNmscXl5ifVmg6ZpUVU1xmHCYX/Exw+f8MMPP+Dt25/x5s0b9P0Rd3d3CIEy0zZNg5AAsjkdzLOS0j6ugW7ZuwRoLPkDAUrEJzVwKQdx+lnZHZxi3vkzKhjwCwSbkp9zuSjSMT8VGaT8N/+dyhOUmSQ4KIV6pog/LMiKKJKFE705ZOXYKwZYlgQmsGIVTEybsBACBf9ssF6vsNmsUdkKzjiM9yNubm/x4eNHvHv3Fh/ev8evv/sOL168wHq9gp9G+HGgRTr0BDRNE2eRikAIcCATfMsNHscRwQeEyWC0lhZ006BpGmw2G3Rdh9X6Ek3b4fXr1/jmm29gYsS4P2IYR9x8+oQPb94gDAPiMKCra3TrNSpr0TkKqrjfEQBW1zVtBkbAJoNkFS5DH/ImAx8SCJBD3VI/4D0BaOwrLMCfuB+FmE08PcBgEwFNHsBo2OLKVQgA+nHCECPqtsMXV1f4vN+jblpEY3C3vcfHT5/QXj1D0zWwvYOPE3yI8NJ0cfljsGkmbCo6kMWsfcD1CVmphD6llJuTMRL344F76MaFXwSwyPVp8/Sltp0ovchMDml9sFVZTBOqLtGaqvp8pv2y+Z/t20NtVI+vLMfOEMDpbI0PCxB/LdhUtlE4TzQRHgEP8PATQVGDTFqImVhJeei5ZTkn2CQlpLi2FHhPDwSWBa2l9pQnvUu/pXtOvtNwypx+Z0Sk30YtBJ/2WbclfdZAE4gnmRhzksAQgBmQcl4pOKnb5KCg50oJOC0pDVRPxDjxjNFgLd5flqW2LgHfD4GKwLLLXetbssSJ7Oasxqgcq3P9fgrvSd+ruVoqYqUggpm1Ft7lFPFaQbPGoF5ZWFMhBg9ECz+NGDmLzHa7RQghnUL6yadMZCcpziWFvAKbPMeP+vTpE/rjkQ6XqiqdrBpW5ugkl5QpH+h01boKbUspo+talEEagbZrcRE37FZCwqOP7OYQa1SVSZZFosYJsBVCpMOqkQT34MnnoGnEysEkK4dhkD5K/BeyOsoppx2apstZvwBETgWYLZSFhoAMvQtQkhXMaeLYWUZAkvmh5ZKiptdIRdpRyky0vA5YmY2ndFyut2TloThkjJEATC7iBqf3eXHJSpYohqzIddt1liIJAtvwabZOPpNo3tAp93a3IyVq3aFuatR1g6ZpAQPK2GYAcYeUwLpVRddR3YbbLfwo8jxWKVgzZS2TgwgCm8aRU4T3RDPeUzB3eLYm8B4TZzgTYEpbs8irVu5lDYmFyW6343bP1RntJrK07+l5FCU00Q7vcaa4tgQnJHC/dkMT98Kl/UvqOgFFCpoC5i5RZZulXzojVNlHuVfrU5o+ZL8Tl83y2rKvCWwyJrl1ikvP0l4mvE/aca6fIk+4ymV3NJMtMbTFlfylINiOD5TVmJZBwGUcz1k2aatVefXeU2Bttfe2bYuu62ZzKM8ahoHGwlhUZp4ARM/Fuf26pJPSavivlSc1iCrZzEr5tKR/zfbu7+/xL//8OwTvUbsKV5dXuL+5wXG/h4sRLWdENXVNsrLImzaHDgHrtOLpYSs6FBmGARYDQmR3Yw+Ekfe0hvRBiZlF4BED5vGAyToM/QDr9pimEW3bkNtZ26GLHeq2I17F/NoHn/gQQC7b1tkUGPx4PKKqLLq2hrUGkydAtKob1HWD1WqN6+fPMYwT3r55hxA8ttt77PY7DOOEvh/hXIUffvwBTdPg66++wcXFJZqmRdO0eHb1DGsGh9brNaqqSjGNN5s11us1VqsV6qaBc5Qx9njscXt7i7dv3+Ldu3f48OE9hmGYgZ8C8IoAq9e6vMYYBT3EPHFALOrJdJHXKx006X1UW1xpGiY55IzqqMovB2xiai8XXDq98HGGtJ0yLAAoGTN9V5aThZtzczMo/7h7zpLArRU7Ya7lMzWYIK9LGyEMnSBbGDRNzWhmDYAElWgigvXY7bf4+OEDbm4+oj8e4f2Ei4sNXr98iaaqsL2/w/b+ntKZ9gPqyqF2Dv3hQKemdkIcJwK2+FQ/cpAyZykoaF232FxcoKlr1E2Lqm7w4uVLPH9+jRcvX8K1LXw/4LDf47DfwfNGUDsH27SojMHUD4jGYPAezgAOEbaqKGGBzymwCYidK8kinOiYTVpxFBQbHL8iio8dYnI9Ss5zothwFcGIJRMFVBZ/4gAKlnfwnjLrmTWd2voJ3gOfPn3CanOJq9ev8YLjHowjgXgxmfBzAFNnQfahmNG2fNa0o+lCNsElhfyv2XxmoMqZ2x4CtB4Duh4DFB4CYUI6KcZZRfApQJuM4bnnLI3XjH8wDjeFSKlboTKzPdCOx+rV9z0GmMzmP9EsEEw4mbpzQEVZv36GCOylwPMYLZWAgzEGwSwDIEtgk7yWvK/8rOsoeal+Ld/zTSdteSrd6KKFvHPlPJjBAHiM5BIcAZZ60sHBOaDpXN1L1z/UvpO5NwSyhEjpoqMg8OaUZpbWj27zOdBrqT0P1SXzO/Q9uYbF7O5TKiMP1a3pp1z/S+07R29AkskIpAUQ2Qp0YnnDM9iUptRanteA4XhEfzhit9/h7vaW3SvI1a5pKTYhgU30N4w9ZWMLZB3qKgrgXVekuMfAacN9wGG/h58mXF1eouk6BEsumpJJyxrDxhURh/0Rd/efYYyFq+mUV6xNBs6A1q1WuLi8YNqg45qe3fGqmsCFyjk0bc3jpceMgVTZRzlG02q1Jpf+ruUTV86+FsV1M8I5z9ZWZDkjbls8Q2q+DQBRSmX+0uRwm7LAG9Pv7L6IuRJ3TmHXgnmOU/H4flsqgVoZzrFiSLEVoA7ImeaIDpGAOdnnEWMKGk0AwgRxtkpKY8wZukgh5tAGjiyaqP0+xVmSOfOeLIJiDAj7ANcLSFCluqlvNOaieJKSQUCUc1Zdk60hAO3aJWM9d7ULQVlpMD1YECDv/YRpyGCTBl/KNVuCLCXAUvInvdeV7m8liEKp113SIxCBEH1OViLXi3WhsrgRsEP+lizRtXynFUNtXSDtLfnl3JUz11seWJbvNe0vKZYaENIgk9xfBsyX8db3lQek5brQbdYGAjJvZd9iJAAMQAK2BETV4JxcYz1m2UWlbXosdft0gHRpxzlZsa7r2fhL0Gc9DpqHWGuzazVO50PXXc6zbmPZbj3f0n9tjabbKECZfp60T8bNGIPNxUWyojQGaOoGbd3gsN1iHAfc3tzgn/75n1Cxhehms0bl2I1XLKUiENmFO4rxgrNAtKSvM/cTG09Xs5szItq6QogW1gudg3lgoADl3lMMJRhA4vhVQnM1XFXBWODTxxqr9QoXl5eIMcAq8JPErpzsSubLOUteRMHj2B9Qe4emJitEiYMkczRNI8aRwWPOfvfs+TU2FxcgNzPBLcRicMTN7Q25w9kK+90OwU9kLNK0cJXD5XqNrm1xfX0N719jt9unDJfr1QrrzRpXV89wfX2Nfjji8vISfd+nuW7blhNITKmtmjb0Z8rSOrdcFN6tszOWtBhjdg0ehgHkzj532dUZKGULe6j8csAmqHTJyIyg70kwmzyZxOng1HNmll+l0KDl+hcF9iTICNQEGJMDTZb3LZWSQcj1MhlaoCn9yjWgppmcmPVVlUPXtXj27IpTVwuDIHZ2c/MJf/zTH/DuzVvstvfw04hXL67xX33/G2w/3+HD27e4v7vD/e0tYgh48fwaTV3j0/GI7fEIxIADn5B1TTsTugA6NV2t1nj56hWqqkbXtqibBr/+9a/xm998j3a1QrPZYD95fL69xf7+HtM4wBqga1p01mHqe/T3dxSUvKKYTeu2RdO2FChyHFjAYfHKSRBFYlcmUKpY8OKBYElgkNGAUu0GDsopbkciACBbNyXLJhPZtY6Cgwdj2KXOYIoBHsB+v8O273FRN1g9I7R3nEYcxxF/+eHPOAwDrr/6El999x36ccChP1Lsj4qzYCQzb5c2v3N+8UumsrLZCy1rWvxrlVCAT/bTuJ0HJpaU+7KUCHcpvD30WbfTPjG43GNFp4nVbX9snDQfIDDRo59I0bRFXU9tZykoa35VCr3lPYkvxKyAB3ELXZj7p4IW535fGrNzz3gMVFjqT/nd0jOeev8DF9PYPIFPl+9L4fsxRVN/dzL+kRRxUodNSoudLTAfb1vZRqEb/axzJ8Tl+ArYBN4HKSugYXP2uaBf0qV+Rvm8c9ZxS+vkITocxih6Xc6quNSH4v2SEL4EhD209mfzzmufXNkqUjBDDpocoyheFCi0aVoYCZYdDXbbLfa7A95/eI8//+mPiCHCGhLMVuuOrLd8QJgCW2McyEooxSwigMJZh6qiLGTD8YAYYwrKetF1WK+6FP/BOYfNZgNrbUrN/e7+Dj/86U/slqj6DODu7g67/Q6r1RpXz64AACMH6r7f3qPve9TsxtK2LS6uLmenywDtv21Dbi4iyFtLqcm7rsOzZ89wdXU1oxWx3pEA4ZIuWhSfkr6WaDtGOUw8VU4JbCFgbJz8zIJcTP+1/KV5s/zJNXqvPQnjUNCOvl9n7bLWoGLFIsZIMbPA8RuN4RNgsjTMwI3ECBRwiWMmeY6jFCImT65Zx6qiQy0/8XcyNTEFuj4eB1YiJLgrB4FHhN9l6xAZa5EzRPEQqyENjpQAir63DNq9tN/JuEW2iqqdQ+3I4m8swCYpOvi1Tmev6xPXKACJLy25lojV0wl/C3SI6axFw9eQuzmtV8pklteTdq1PMkbBT8og3Hoc5bklADOrT+kP0hedQVFeZawFiCnd4WTszu0TybWHFd26rtNzY8yAnlhe6meU+kwp7+l+lGOhac/NwIEIiYmn702Z/7gkWkEkbwib26+DgGsLp+R6quhanid0JHxJxqfrOhiTg6FL+/W8yFwnvTTGFCD8oVLqiqW8syQrldn0NMgt8yEWuJrmKta5xBJwvV7j2fPnGIYeHz98QIwBX33xJTbrNW4/fUR/POCnH3/A//V//h+4vLjA9999h5fXz/GXqiJ9baoQhhHeMXczBoi0jqIn8MUHT5a2MWKKBDfVTQPrHLrVCuv1GiF4DFMOLh8CgdF+mpKlc4ycqMcYBpgsqrpBVTc4HPbYbu+xXm+w2Vxgmp4l6zVE0QElIQUFBq8qCTRv4f2E+/sdG3PUMLZi198+8zJj0R9pv3bOoO0a/PrX3+FX332HpumwWm0wTRM+393jcDjg7//+P+P9+w/E2wPQNi1+/OEv2VrSWrx4fo3Neo3vvvsO0zTh5uYGzpGe//z5Mzy7usJXX32JX/3qVzAW+PjxHQ6HA1s2++RG1/c9xH1VeJ8Eq5f5n6YJA8cPzDom0ZokopA1Od8LKb6VBpvE0qmktWny8D5iQSyclV8U2KSZtmbAkWMIxALBPhU+Ty2bSsS4fE/HmHIPIX66Pvl8Tmg26v9UhQErHoJyg4l/3lmt6AI5FoYwvrqu0LYNxbZIQhYLXixQDsOA3ZYslxwLy5YX/ziStVF/7IkJgjKteSa4yjnEkEEy78NMqJMUvFVVw7kKVV2jW63Rdi26jjJUuKoGLKWz9VE2EWHY5IsduL2IkRQea2FCoJhMQQQQGrdo2APbGFYeydIq5e7NOXxp6Ixc6pNgIFZNURgOfaLq5LyR5yOagBizVVM0BrAi+kngdAkabbDqyI3usD/g9vNtCmIYYyRmGAMxx5QFRmhxrrCWdK43afm8pOgvbeDl+3MlIuZA5UynMfJJvl5P7G5Sugild4ZcTugjrymOrxBjVvwVjiuNpLnUy+uvaP9DpQTldJ2LwIA04awyLAv5ry8PgXYzvvaE+YuP/H6ulMLKU65bEngW3wsoj/P4jpz8zsrCDRI35N9UhK7mDVhq0ZwPFzxZhAutUUT934ymNR/KdUNOvE0U7nHSmKW5fAhskvdLPOQcf0j0xWATBe3RM/VXAAAgAElEQVSUiukg4ZwVh657SYko27lEy4t7ra4/jWcGnPJvUHzHzN+r36QEvYfo+iHkFpHJ8fS9QQacJItbCubNrsfp5JZPSg04npK3OOz32G13QAh4dnVFCSUuLlC5Ct2q5UCmAd6TMD0OPQnhkyhcDFpYSfMcMPQ9ECPqqkJlHb7++it88cXrNA/WOnQdKYrD0LMVQIR1SDw4dz1iu91ifzyg6zpccAaikYONf74jsIlikrC7/MWGs7nKYYgHIj2X5AaKBWJAh4SSYep4PKJyOSW1DPPQ9wgxsGtWzQqGgE0xyTOJ3kJQa0rmXMt+dCgIQzGjYCy5CSewKsBwTBENliS+lOowcBxgW/YtY9gNZGafMKfRBHRpxZvBJleTrAQ++AIAZyjTnLF5veQwQnywx4kXksQSI6KXtZctMKylMO1OosNEWX8Ux8MYkgMDu63RE+heiUkXJL14jElmm8YJgV998CyyiTUVK9sCvgQJIC4KfKCYZMJzoOYoKX5gl9OIyllUrIAZLPC0GGHFWkQIKdFCTpkeI69VdW9StPlaA1BmMqZVfb/MJfUt5j7yWhcZUq7V5EjfG5adgOBjkodmtJa4De8PMzaWF4lk5hTRN8n68pfoItdlGGyxILd2YvdZV5BH5K03zr6juc1tyNfkZAKa+pUkw+MhKWfKPU19zhtPqsMoGoH6rC3+yv1ZCrWZLUstZu0s5Twtg52ToZbkn1LHXNpry3uF5p4id5X1PPTbkvxaypQCrpe/myTHK9fjpBWB6CBqXugSgNb3PZqqwjSO5JcRWaeV54YIP038maxeIz2QdAE+oJDrw0QutKGuETzxGknsQiQeYSN5ltgIeOkvLW7ad0OAF8tDZxH4wGO/26FyDqtuRYBjVXF4FgpmLnsCuR4DdV3BOcBY0oMl2QFZNnF8Rl9hmkYCn7gpZFVKGSyNseSKDGC9WsFai7ZpUVcVpilQRlfEBNwIe9hu7zEOAy4uLnBzc4O7z59x2B/IRZiTDci+QuFzunTANAdJ5wcz5+hO/3buIE/LeGl/UjSXeJGizfz7PIPnufLLAZti3rhkkZMgRqlDUZ1mazldrPMem8SpTy0xZvdINUY2G95cjABAFNx61lxuswAX6XaTX60xMK5iQSoAYX7iKPdIwN2qqmCdxeXlFVZdh/VmjcurC0QEjNMREsTSOYNpIHO/7f1n/PjnP+P+/h7rdYd11yDGgO32HjcfPuDnH35ADAGVs0AEdtstECMcDJ5dXiD4kNDJ/XaHGAP5wDYVNpsLXFxeous6VE2LbrXCN99+i4vLSzx/8QJttwKqKgV+CyEQou1ZIK9qOEvWQhXo1N+FABsj4jhRUGc/Io4DAJPj0hgzE7rIK04LHLIpgoR/En8QZHEbyX4gc5XfyQmfMN0AChBOr/Qnu2HtLLqmhkHE8XiAswa//uZbfN7t8O7dG/z09g3+9j/8tzgeDzAWePbsEsM44X63hQ+B3R3mJz9z2syncUtKn1YuHwICnlpmojMH+JYN6IRXyGYrbRXhHLQuxaVEAuiKCX+MWQARlNywbUfgOTUwHIzVpHnQ/Vra1PWYLb1PZtULp6lyQqdPXssT79RXa2H4EC0FoV/gpA8x73PMXbdp0XV2Vj/Sxi5myCLSPSZAPSRUnWvPU+vIpQRTgbmAOZ9XvuVEePy34kzpqUqOF9eH0/bM3syVWS7eqGxEphSii/0llr+YXF/MQp0p6PkpAPI5wbL87VzJ9UhDDcSVd0nReqweXR46fJHykKVR+owImJheZzSTJtXoq2fKW673oTEpn3la0jwGDyuKtwQUBe2b5GZjAB8wTUdMAIb9DiFEvH/3Hrc3t/jVr77Ff/c//g94+eIa//E//C026zUpcoYsWXxggdrQ/iUZuqxFilcISOY55oPBwESD1brGqq3T+MQIjCMBiFUdYS3QDyMO/cCdSjI6CebRJ8G8cjb95kPAp9t7HPoBl5sVLi9WBIo4ixAiDscRE8dgmqYR+/0B93f3nL2LUqr/4Y9/xOfbW/zuj3/Azz//jGfPn+Obb75B13a4vr6GtRY//fQTPn++RdO0aLs2T5ya0gxAYuF1PnssGRAPrzjgOV8jyrgGG9KdC/td2otDSIchxUpnpd8k6/schFwCYyuLbGc4dgnSb5WpODU7/8FAAosnNzRXJZmBlG6HKmWak3bQvXXl0NYVBellFz1yJ+LJT2gCd7tYrmlPh4FOXlL+loE9osvD4TDbTymGWI5bI5ZRJMtTTJYYcqY2cmkhnmgRk6WexKoKer9W4KEASrOMjvz5MFDWKHFHDCdA5SkwKNmoknVOjBj6nuX5IASp9of5ZwJG8zALeRrDGZ7tjMJOlDGjpojWvOJDnE3ZWIcQJOg68clJrGZkXRjQenYRLk2yUf+rbG0J2KFgzuCDnogIH0aEfprtkZLAYPIBnq3nIru+Bs7Co0EjY8xs3PV6zPybXp3NbTQIiX6jrTJ/CuSyeLrVWFSuSX3SMpG2ci0tFZdkS22xpL0N5LsYY/IkOVWyc0kyusnZIaU8dCj0UJ3SJ+36J9+X1nO637pPNK428S8AbD12hJ84bT2LA957tG2LF9cv0DUtxn7AwVjcfrpBW9eYhhF15VAZSy50YcLxMEAAaQMJixHhKou6qXnN0Xgejj3HaPIq5AnPqOFs6UxPwQAu0pxNrGP7cYCPwNj3xPuthakcjvsdfmw73Kw32N7f4fLqCi9fvcKXX32N2tVYdR36vsebn3/CfncPZy2ePbtMvG+aRtxvb1kPJotQcQ0jl+aYFmxVVXj/4T0+33/GxeYKz5+/wMXFBX796+8BAO/evoNBxOHQczyoCqu2Q4wRfd9jmjzevPkZ4zDg/u4z7u8+4+OHD/jzn/4E7yc8f3ZJWea8p/hOqxVevHiB7bbG3d1dsk6j+E2kcwlNaLCwjPcrvxH/Q6ID51yK+6ZpRixwswUjWV0bkz2ftKu2tYBzgJ+T6qz8csAm5AVXDhIx5dPU8PN7z9db3jP/LPXT+3TSGuco9clzk9By+j1MBrCsMOAwZ2glEQgDcc6h5RSbEpDOhwlTIOFXTPEiYgqUeDgcMPQ9Cypk3u/HCeM4EAIbDSprAURMbFrqajYNjeBAiJmA5LSvqmvUTZOsm+q6wWq9xnq9IZNbDfypvxBDEhJEiU9jI8w1cABNHygAOAMStHFnBSOJjZItLG1eMgcROf1pSALrcioxbqFSCJNmaiJiNCT58+8WdNqISCfS1hCCPUwew8cb7PsRfX+En0YgMjDKgk4MARoOfkxBfAyZPhcv5V9TjLQnqjVXXsNtj1CnSLwWNaOJ0j8W1NOmeUYXlT1PThpJGT9VAs8BIEuAzikKb2b3lMxRBAe9tjO5MI9RgmRZJ4rvlvjLQ3P5pCJC7CNozEMndk9t07m2PaTAPxWgeuz07omj8Uih+ZI5TMu7fLYotA+1L2ZLP72pmBPgKV9/0hrhcUxXImzL80rB8iHwST4/9bR0dt/JG2TNSJTQp9Jj0dan/LZ8bVJnICeffLECmmbw86yufx0w+nARdhVZ+Y184hpiYFdI+cdt42xw3nv44DEcjzgeDqgrhy+/eI0vXr/Cb379K2zWK+z3e4zDCB/Iu8IaoHKkXLJujKoiIEusmWEsrHEADKIHYohwNsDawCAHZYvpB9oLm8agcgajDxgkwDmf5g7DSLGheCsi0MymPT7EiOe39zgce2zWLTarFsJ8vA+43x8xjR49Z0jbd3s0dY1xnHA4HHA8HnGx2WDoe0zTiNvbWxhjcHV5ieA9Li42qKqKXR62aFsVE+OEKpDXqKKBk7mPWdaAsXDV9ARANipSW6YXyZRVFtoK54edAgbRmGawh76gzllrUmal2lTpvhxjJqcSF/nPcpwtOWStWcCXBCMpy6C1iM6S1T+oTgfOfsZhIIw1bKWd9xEZJwnkLfLnvG929l7uE5cqHedDDohnYNMwYPISx3JMGRgjg1OIJPMZ4YNcl7hVSv1l8OsQAgKf7os8NBkV65LlFcO8O9OU4jmKlkyUE3mS+7PypALvKsLU9aVnFrJLjACsgQmZHvWh97ky28cFJzQGJiNQs31E+pCvf1jeKPc9AobmdeuD86IW+j3k30s9hob/tA3n9rZ8bZzdq9daWLhPP1P6Ph//8/vEucPAc207BwSd2+dipPisD8300vOWgCbdznMg1FJ7ysNPAYv1tbJuAx8KJzAzBo7RW3OW1cAB/EdY1t2Et1jDGct4vxTdIHqxzKlS0PBkmSgA8jTCjyOgeaYxuS3GEJjFbWYnboj+GKNYoVpYA0zjhP1+hxACHWQYYLPZIHoPWxnUziFUFcB7trUGDfexchWG0WG7VS7WyPMv8e4k8xyMRd8f0Q89YjSoqobdWD0fDlj2TJoSuCNgG9AgeJIXIhtmTNOIkROLeB5r4X/Cf+u6miU/yMDiKd2e0PUJPcz1Fn3PHBTVVodm8dqS9h4rvyiw6d9elBT9r7yHBDXKMiNKld7cnjK4GiEXX2fJUCGbpvgYz6LU86sEAHOVTb76lXOAcWg43fK2v8ft7S3u78lXtGeze2MNAU19Dz9SetAQPIZxBELENNDm3/sAz/7/Qz+mAGr0/A7daoUV+8JuNhd4/eWXWK/XuH75GuvNBtE67A+UTa6BgQ0RNbvbHfYHfP78GStjYRjVHccRNkSMloJxGzMiGMOZmyIMgpoGNYdGlLe8qxiZNpoQNY9qbalpsvwxqPfiNpFeQSIHYoTxhNSaSNf7ccK42wOTx/OrK8Ba1D+/QZxGHLZb3N58QrQOsaoQpwlBkOJHlMSHQdD/AiVGyKkZkJXic9fKr9q0MjGxGJ+00rSKnoCbiJkVIL1lq6cCwHlsoy2vXwJVyvgC2u84nWJxnxMdPaFv/yULTxWiYk+LYuCTFPzHAYunA01nGvL/VSENIllNydrWoAa9ibNbzn0nVnhzOlAuaci08f+y92bPtyXZfdcnc09n+A13qLpVrZ6qW91uWW7Uko1sQeAAGwcPNjgIRxABb/AH8BcRDt6AFyLANhB4wMYobFloRh4kdbfU6prrjr/hDHvI5GHlysy9zz6/+7tDl0rlyhvnnt/ZO3fuHFZmrvXNNfjRwz5+j+dXoqlXBUU+P2k8x/x0zo2443QpCZLpRlw7MsErf24W0cjyiKyp0QM9eNG/rMoCfBGcBpvIeBtraSpxrNyGg4WykGtvP3iDv/C9P8fp6Zpl03B1ecXf/u/+e379134zUIGcxpZFcKAc1tDT0xNWyyXf+ta3+N73vsedO+d886e/RqOmaA4++eQRj588ZrVac+/uPYnmFpx4D4Nj33o+/Pgj3vvgfVarFW996Uu0bctv/fZv8ejxY3FOPgycn5/x5ptvcHJyyjvf+AZVVbO9vmKz3fLjP3rIw4cPBS8pRFt1s5HT2LZrGfqeu/fu8+Ctt6nLEt/ULJuav/ZX/jJFYfk7f7fhyePHgOHDDz5guVzSBB9QfddhgMKYqGXtnB4WTdb4IPia/JYfH7YkzNSBH4BJdEyfaCut7foVb45ATTe4AzoS2gJvZazU1cAwCA+DMUTxMgA73SAChDXBebcxQUPJkFyBRrRXhDU/JlaDDxEK6yQwBkHcYLLovZbc8bpUI3iMC8yN0l5kdDSPalYVcsOaBKSJ9lXKE6urEW2VeUow7KjPTPY+A5S2gKKgqsIhrvfB24EGePFHP3ma/p5GnJsDq/I8Bz7BogDrSYeWoR1x6c7p6vgaHgWwwUVzIpjnSeaevamtN+3rL5Ln00w3HaIcA3aOPZ/nH+Wd4QePgTTTPPnvnBe8qe7PE7K9P2IpcEM9Xgfff3O97OjeoD6SBgE8DOrsuccYqEoBcYahY+gtfhjAitlrU5Y0lXx8YSnD6lIVKZDG4By2sBFoJ/D2VQC/Td/Tbq4DyCRWMRr9VE23I3hlxETUGtEY9EbWMof4cKobORx59vgJz3jC06dPqOqazfU1dSOy9f37b2BwVGXBoqk5Xa8Y+o5FI4Gv+r5jvVrQdXvaECxD1grpq7aVNrW9HEaIT0R49uQZjz55xGKx5NGjR1hb8OjRYzabbTisEjkS4zlZn/Czf/ZnOD05ZXN9zX6358FbD/jqV77CD77/Az56/30uLp7R9R0XFxfsggZpFwB79aOnWm7ar8YkfEK/la6ma6jcD3WaoUWdA+lwY0xbZAc24wN9OTh7nj7E5wxsYrKIQBQUmF/YIoqZ7ZdR1TwbxKljuTkhV8vOy88jTSRHaG6kzqsOv05OTqKTO1tIaEM3DHJ6ZW1yImoluo2eLHaBERTm2eAH0WxStWLvPK7ro40t3tMjIELf9bT7cehT1WLS8I0SweZMwjSuT1iuVgDsuw5jLbUTZkmYHgltud1u6U9OY5+oqvTgZBEJrrwpjRHPAzkqkaSA8bX4d+SgktyQFTH6zvJkPJOATt6PrgmI5aPwar1oN/XDwOAlutBquaDte1FDHga6/Y7t9TVFXVOYVdDwcXGxyWp/IEyNtpi5a+H6SDtsJt12c5N+G3HYN2QNefXbixbTTYzLMTlvFnAKGeM9k4TGGwE6pZWD6s7PR/17as9+GDHG375vJunwtO41MHg5EY9fdlDFg3fN5DH5eB557iaGb3QtA1Zm01zbdcObzf5yfTXqGj/XD/nXWMCMZjZHSsxBvnlwKfyp4zR5tdKp96S2axUCwSfBV+fV9DuUZcxsl75wCkCNzyfkixdyw3hN783lzV5usnwKG00WitT36TldKaO7r8k6O34u/XF0ffIEoCnRhTUiwGuUob7rguNvKGwR9g4xcRNtFPHT9JWfepumETOx/W7PP/vlf8Hf+7v/OwEpwBSWIjOBMMZw/949Tk9O+aVfuuLe3Qd07cA7X/8ythb8whvP9fU1H3/0kDvnPavFKXUNi4WEa+5aT9cOPHtywXs/fo/z8zucntxhu9vyB7//fd59713atqfvet588CZf//rXuH//Pm8++BLLpaHd7Wl3Oz788CO+//0fxHZ779hu98HsQjSSvvFNz4MHbwceqaSuKr79rZ/m/OyU3/zN3+ZkfcJms+XZswu6tme7EUfnEuBDtGkKWwQNomTKnRa7MM6juaKDlufJRjKM22heh1suy6PrYly/dF6G4pz3SSMZ5Q3H64bBq8uzREcZQXkkut9uvwtgkzLxZaZl4COb4b3HBd9V0XQyOAgvipKqrJV0sjoFoAm1ANAoYlK2wF9h/Qn+oFRzXOROHwEpYwymkHJtiCJnCj0Bt1gsCiwJaFYF31MCnFkTTP2MoahEq6osKwpbUJQicNrM5FBD1VvP6KBvLsXTdEw0S1PwS9s3DOKXSnyI9SMzvjZo46mT21z7SvlwMePrs8U5DuWIRvKbz9tvIz0rzdwCbNLnflKA022fvznv+D1TTaHnAUYvWl+9n8tc0++5dBPgdOzZpKE1ru/03XNtm6n0c7fX27blpnSbsZ62SUg6aQqq2bDzoskL4izfeDFRVV99JljViHNt+WAN1pXo4Yw1hsFKpExsprUkXUIBIkM4h+uCBUgEmzSSZ7DOMfq8lfWIwMPb4FsXCcSwqBv6YeDq6oqu67i6vsIUltPTUy4vLsB77t69K+0qxH9T09SslgtWqxV37pwLgOPkQGW/30aNzLbtaduOnRNfSvvdXmTBwTE4z9ZsubRXAm5ttxRFEYI3uBRBsRS/ek1T88477/DmG2+w2+7o2pa33nqLr371q1hjQj06hsEFmV5NiV08KMotM8Zyzryv3wimMz/nchrR8lIADhX98nkwEh8m75xn+/P0uQKbntfYuUkdZQoPmLGqqoAkw+g7DZpOkEPB1gWTuWEQQEgJvSgsy6VEOFgsFiwWC4n8cnISNIpS1ANhwhy964PTSd2wLd7D9fWGh5884uLZBX034Bws6lpUBgdHu9vTt10g1j46HC1tkbQ5gnpyP0iUnUXTUJYVzXIpUeYWS6rlkma1Yn16ynK5pGoabFClHoJdqfeCOjfLJe1uz27fcnF5SXvnrphLGUGIxblb6Cdd3GywnZeLAFn40LBYokxWNtBBYItspl5SYWo6yOSMjegvWITpUY0nG4o2zkeGqPBAN9D5HuMc5yenYCx1UWC85/rykocffcz67Iw79SJEo3D4fsAF3wyyqE4AFmncmHXWBWQiDSlzlzXlQHDyM9cOcYrDzokQl5lc0wIzehfASa6Z7Gm8P4jSYqKkzaT/1UxtvHIlbOWQCZhPeYvzuptRGcpEi9aUXFETiFFpSlOvINXPgU4vXxYZKJBG2U8zzT14pG5eQcsZZvm25RCrM/fMzPWj10JrXqm/s/L0gy7lfnQLxjQqz48Ndtu24o9+7xtcPjnLDh9uOZYToSTSgJ9UjGwUff7EkTwvUofnJZNp8b1CuvH5KUN+YwmHdH0AEjGCp2Zvxrl7pABvGI/9KI/SQHJ+mq8gMVpoCPdsjAjQeKKvms1my26/4x8N3+DiUYFqvF9fr/j+H/xN8N+JL/WDwfmxT43ryyX9vuF3f+er7Lff4vR0zS//05Kq0rXY8PjJOc+eGhaLJWdnjZjbNyLw951lGAyPn7zBw4eeZrHg/v1Tun7B7//BX+DZxbdxIVLbycma3/uXd1itVvzqPxdz+O32Ll235uGjgkeP7ksfBNPpLoaYF8H8D3//Hr/7m29hkIhDRVHw4M0Fi8by67/xc7z3h5auE39Om6qC9h5VWbHZbmnbjroqqeoKfKbZNB08n0wqEzllY6zACT4IJRr3cUxH6dGM0Z6UNZq1aiY0AjrN5PfNyUOIFKeh3eVJNVnL36i8ZjwU9LqHyLqowJwwmWFviRSa7zWBXmfXrKQ36PM8ukdHeXBsxpJfy7tBzfj0uWS2R/QNY20ReZZo/qeAmM1K9Tf3aaxDrAuRZ0qkMj7V916jqWkUMvUtlWk/BQfpeVATvMf5gaLYcP+NX2Gx+DhjKHVkSbSUr3PZXqN10j7ThkTebtLgxCLNmFL58R/zW+VUZpnLczwdAhZ+pgxtXz5X07tm2LmZOvnRt753fAg4fl7GJs2J/CBG55Lx9qBTn6d9dFO6DfiTa45M3zn33LF63BaAfJE0B4ipGXWMbhyCO4gTb72WIppZa0Vhoe8ZCitO/SmpioJFXbGoKhZ1JfMIIfOmkmh8Q9+LXyaDKlTF8SmLEKCAnGVLc4PwO6DJusCE9cakcTYGbyzWe4ZerHJKa6EsGZzD9T3Xlxd8+P77XJ2egBEZarfd4N1AU9fYM/FFvFougo/hPoBMa/pBfBh3Xcd+31EvFnT9wGK7E+2iADYN/UDXD4Dj8uJpqJ+sbk2zoKgb+rbjWf8U7wZ+8P3v8+jhJ+y3OwGz9ntO1iu22w3r9Yq2PY0mc0Vho7ZZFzSaVEsz+sI1RJP63OdSviZOafTY76lliDFT2ta18hCQvW36XIFN80kWqPjrYCHJ1B7DH7rAqQOu5Pw4DY616iAvOVjU8q0lOBfrQthAK062g6lcXdcsl0uWyyVlWbJYLEamPYJi+hBNRFTE66KKYBPA1dU1H3/8MU+fPqNr5WSmqWvqshIzud0uRMsZ6DtxKmaAarkS074+2cJ3fU9VGaq6oakbFsuVRJ1bLamXSxbrNeuzMxaLBdViQVGW7NqWfddRh3Cp1loWqxX73Z7tfs/TZxfs32ojSOKcAzcEsMnjewFvKApsWeqhe8ZghL6N7E6+E4VPxkDFCXA45COmRk8rdR0U7SXJ44wsxMbkYJPB96L9ZeuKe2fnFEVJXVYCNj274JMPPsA7x9033sB6hzjocCEydgKbRsyVMnUIuHZjHpNqfMgacCCNzclVemO0QJgxW6ocZZTFRmWGf+Gasve5xK/jZAnjmDEcgTUIJ7JzIqU292awKQd7D7Q/IEa3yVMRtAvTQnoYshc/w+y9ZJrW6+ULQqIZjcaMQ47ytmDR8567VTl+Pt8LPZ/uvZY+9zCywiWs836caYR9Gn1/urbfVPyrX/8ZfvzDr756nY7V84v0OUwysD/414a//7/lVLjCuf+CMeFF36jx0tUzuAIePzT8zm8FhvVg2biL93dnTxYTV/8m3r8xet77X5rMsXQvrU2LsFQ/OCTRyQXdnw+vgfe/gPM/P9qEH743LuoVVsOj1TIz1ydb4p+ONFfh19Vht0yv73WvseLPK+roQN+OAvJci+Zj1qs/ZNF8lM3bI9/Tv+EANFK+hExGmNOAjrBr/ixj4PA2GkgvAmzcVqPJz7Vba+11Vh/KWdO/p9pCqUhpaXKGThSYD+uUz3AR1mb78xUBp+nvqXbTVHDXawID+zhut3n/i/CIzxuzY/e9T2LT4F3QNE15VRYU+dWK3Nh39NbEiHFVWbCoaxZNzaKuxQeTkd2naWoKa4N2ToHHM3gXAJHgg8tUkc41Wqpa5cZAAJ5oESKkYcafoO2ECX7WQlABjWy5a/e4vufy2TPef/fHrE9OGIaesqroBwEvl4uG9WoZ5XDvJTqmC77lnHcBbBK5uV4s6Pue682WfhCAqR8c2+02alRdXFyIe5yyCf72LE1d03UtV5sd++2W3//932MVZGQ1K3/w5htsrzecrNe44E9KfEkVKchCn0zo+r7PXICMsQcdx5wO5sClBPoeyiljLcy8DDXRswfl3jZ9rsEm7Y8XlfcEZBpHAZua5xya4aTBzNXd1Dv8YrGgqirW6zVNIw7A67qO5eipSwKbEtCl9qyE00TvPZvNhmdPL9htd0J0SNjFuqrwXsIyD/0QbOzVoDKdi0nUjyGYBojqYlXVVHVDVdfUTUMVzOjKqsYWJaYocIDEfEt1woimSN0sqOsG5+VEdHBOFg8QtUqfNqUYXI5EuI4gIJpgnmANouVpkqP12Nk5Gs5oMSX7zn/I/cn5jA+Qlckq5FzQArEEk9vgV0qir1XhU9qCdr/n8tkzTs7PsQS/B01ydC4AACAASURBVCqQK81kdchYjvD/c/LEvXxyM/vpQx0nRR/yWrHhJgODsvmhQgjjvh0BBKgGgMkrGuo/ZvGnwn7+mjxi2GgWKRiVl21GBg2hOJ8YuVDFCYY8SiOV/NERWureXNPlNszy8xbcY6rlt0me1J1+Otj5ZpwqM0Pzc+r90xfNa0vdpuyDfHN5596rbVKQ77BWz01TEDXRX3zBjc+oNsyUrpwzeGfTA/knZmK82LxUpV/i+S/SZzodTi+DRgC87fPzy8WLMDDTvHNC5m2fPUwT3Irxop7vofI9M/Vfe5or83MztV6lIUp+ZnLNIEzcTOSgT6XfDCJ5FIxoZa4+n16lwqt8Eeg2EW/Oox79hriZzO+z8jXlCaZgU37tsG6H128LNt2UblPGMcDpJh7nZoH38J6JliUczTPzEgFDbtGeFwWg5vLlwNOc/Kd+vnKu5mU1m3LFiFwOnf49d21UzuilCFATeF1j1YF3GJdM7tSojILzBBjNe5GPgpMe75xM3yEEfBKv4WH+DEE21EAEouEZnM3hPQxeKL8fxO3I4FzUeBVAKmk+Sfk+nK0Y3ODpg1xbVVUEoBTc2u12GGO4uLgIPpAr0bpUywY/do8DGgzJUJZJG/VkGCQ6XFUHEzrH4D273Y7FYkHbdpRlJXL7kMzNnBuCVphnGHqeXTxlt9/S7VuGrufDD97nBz/4Po8fPeL6+oq23bNYNOLnLyrsTcziMtqZ0uDt1oLDPDntHMM0QIOHpfe/aPpcg00vlbx4oB968Sqkg5NH5ZgCTzkxKNikjrrqEFnu7t27NE3DnTtn0ZTOWnHu2bbJsWEOVjk/MPghajQZY2i7lr7r+OThQ370oz9mv91S2oK6qjk/O6epavbX11xvr9nvdrihx/VhcQgwgjWGoRebdu8NRVFRVw2rk1MWyyXrszNW6zUnZ2esz85ZnpxSNAtMVdF7meQDFkwJwUN/UdecnJ3Tdz29d2x2W/ZdRx8WIzVbMmEB80YAp8E7eqdroCyARcAanFeAwAZ/AikZn5mohQ3eKZw0F94s5AtvjyObzFcSWuGD41dTBkeceIx3lMawrCr6umFZ1yzrmuuLC9794x+xOjmhssF5p5f8hpJZBl4BldGl45N3ZKI2J0RPgZVje6nP5IPQ3Nx0JAFgo6pGoSHFL9FN0GThehk9m8zoxmrvsX7+EGTSL6t/qcNTrYMhRAkD9ffhsvpEegAi+qiFRi2yaV9NmB9mR+yl0qto7eT0GVWdtXJZ25LPoCnTO8mjBZj8uSzPsedm8iTH8pnZyg3lxDuTPLKH+VEdc9qdavql90/GyROA7MOU5zm4NvltsndF1b0CqEkTxwMdIqyJBvXzkz6brH0YCVlfpC/Sn7akc8MCFQk48Mi86BD6fn1BVL9IL5oqYMkYMNcxuwY25Czup5PUX8EaWJFopUfU+z4D9DLVdJ4DlmaBCx/+yw5QvA+bihvLDKN3kXjS8T0wRwbnRQCiqT+i25Q3e+05eZ5Xp7zP8ujKx4Tcm4IyqS9c4S3n+3TuvTfVf5qm7lHm6ntQ72HAdQPT9DLC+bExm4JLx67ltKXXbYhKrtpXqhGkyg79ECJIDr2ATl6UHSSCqsP1Ha6w+KHHDwND2wKeHocPUdnUCggvATWKQvw51VUtJmJVRVGLUkTvBKBqg7m2aA2JyXc/9DgPfZiLg9NI3+LOo+t6NrsdZVly7+SByNpdK2W4gWePH7Opa9FOamru3LvPYrmgLCVqnPMDm81mNKbWWPFZVVlsYRmcY31yIkoTLlhBhUie+7Zls92y37c8evSI/X7P48dP2O12eO9pux3eeYx1dP2Od9/9Y/Ae14tM/uzpI370ox/StR1PnzwLeMEblGUjCiYBuRxF/54AThIJLynFzEUtPza/pnkO7/uo8Sb0Je3OFWReJH0BNt0i6YImMqs5srj5+B2yU5YCAtVNQ11XYo9ZFHHCx43JBzTXJxvypO6Wvwf6vmfftmx3OzabDS446dYwjmVRsnM+OkBUYU0jjejJi/phMLbAFgVFWVKGCHlVVVNWFWVVUwWtJkGNjSDRupmajIsxBluW2FLAJ0eIejAMohYZ0PFMLhaBE1GbNDEiUA44aHISwW7UGQGNjz3px+qXM5u0MgnpGb0eEPT4d9bh2bjH1hooi5KqLBl6CQHddW2kFVm0MvRk/Ef2awZwmsemXgsAkkCl/DsBTUofUxAoB5ryuigQBT4DG6bj5CNAkD2lmUmjOG67mfw1mnLGgzd4o26DM8AsX5AzQhu9QxviDxm8vI/GzfiUUQGtp74/ddYIXMpzpHbdkAfGCmiaZ/rcDXk8EkFyNM+yOX3w/hzxyeuIn+9XP63jTJ/4/PJ0NqWMfnSd7Nqkg6f5SgRkWgJniJBWhXsbREC6BC4OihknLacCTpGFTcGq6/D5In2R/rSlAjhB6PscoXGQSbRDgAOdI8c0Vj6NpODGEpmDCvB2wJZPF2j5tFKDjMcJcJ8Ecudg07Pw2SNj9JMEvpWhK4E7oX5nCODUA22ox8Pw946Xoxlt2xky1vtQ1hDKfYE05SGOaelMr0HiM4HIUwmzMw1HfsipjoTJ9Prj9bvFtan517F02zKnUYyPljjDX40aFEA9KTRp28y+P38uF3RvUecXAcTm0m38OKXy5gX5KUig776pzNsCYc8rKx0SqwzmAzmaAJyk+qhFDc5HXtgqWOlc9BvkhkH8Og0DBs8wWIz3CWzCR/M70XoijpUuB+Ir10efuUGMHMtajOUNYf1D/ZV+vIfM91qSqxNY0nc9Q9/R96UoYChAM2Ff9ZfJ+sgWhUQmD0KpDQG81AF6UZQCaNU1bdtRBBM46SeH610IXNAmc0Xn2O93XF5dij/FoRcAVWtiFGu43fjr+E0BqcM8h/n17ymdj8tTP2Xu4P5t0+cKbDLm+OJ8w1NHyzLGSNSxbAL4sHFI5JKgdxBeqiFwi8KCsZydnvHGm29I1JZgMof3tLs9gxtSiMVBhDtrNMSjAW8YnKdzChaJ6dvTp0+5vLzkow8+5MP3P2DZ1JyfnLBoFiwXC+qy4knXc325oQ8ASFEUrJYSQc45z37fsW9bdvsdi+WaVYgwd3p+znK55OT8nMXqhPX5OavzO9RNQ+8NfvDQD1gjzitNVeGtpfeiumiXC8xqha1rbFmx6zqeXl5A12HKAuPAdwNDAJfAMwTB1XiiZpP3ydxJut+mxSjqvUh0G93YPZ5e4aKDiRiukxZwdZY3hDoMxuO8icoKQ5bXWktVVZgQlcj1AycnEsngqm159MnHXF9cgBuwxlCVBR6HC9oWU5F2BmI6oEkz+XWT5tOtU5SvEximGwkmcxgaske53ujvtBjZbMHJGzi74Xky0C7xXlKVMYNhMl4sRFY+BNviemzE9JLkVN55DzovXcbwAd56nO5oTpGTsKmQypyJDPrpp9hGBVH9eGAi4KvXMiDnSB5vfezTmNwEEArl+JvyaL+Z8PGkQc3rP2U2ff6dGIWxynkGYk4JcZoHEysqIcHzpDCk0tnc5jAGnIzJLj8A3gK+CfwiIri9hQg07wFPgF8G/gkiGB0Tju4CXwfeBv4ycpr/PgJS/Srw62T990X6Iv0pSWfALyBgxr+LzA0FOT4E/hXwEfCPgUf8ydB3gcy3NfAXkTm4Q0CId4HfQkAIVWL/054UWPsWsub8DLLmVKT2KSDzY+CPge8D/xABvXf8ZDSLSoRe7gF/C1lT7yDg+w5ZCx8ja+Fj4P9DaOhFNOOq8I4z4G8A3wB+F/jXCP39EDhUOJlJwj/InpcLo2OwJv+eks6LGIYnU/mZe/7wxm0AoelvccVhb8xz7Nr0es4ChJt5xvFzxxqGF7ceygcYEKeLE87L5eBBdt14vPoBGobJSeTt2zbXb3PaTM/7zv/2Gvhohid+Hsg0NYm6LRA2V5cxwBb+U1lWohNhraEK/n+MB+88Xdux3WyobMGyrKhLUWAorKXbt2yurjB9T+k8DAP9fidgVlcF36iD+HIi+PixhiH4GfLeUVUVfVlS7MV/k/OqtTREhQucyIQ2aOlYp7JbBjgB3hgWZYmxlt21WPLsu57eDRRVRV3XlFVJZS2FMew2G7q2lfoNA2UlwbDw0PUukO+A9yZGf8eMHZgL+CSKG03T0CyXODdwerZmGBxvv/2WaFxtNqKE0HbsNuJY/Pr6mr7v6HZinVSUBV27l8isRgMYqfkiSdsqRog7HOsEEOZKKmO551CzKVu7/KEzcaEfqUey0gpy+Ywm3W0xl88V2ARHhN0j99Kpw+giJggpqsQ0HiwfJ68SRURs7dgBcdPUnKzXAsTo4hgGT5195cmqnSiACWZk6LuFAPb7PZvNRoh5s6EMyGsRPuLczQVVSBfaIVpHePHTNAREWqMUlFUlfprqmir4aso/RVnFPd86j7deXAFYizcGNdAzZSmgUiER5gbn2LcthRsojQGjyG3qdIc4QjeGkWaTAE82haWObwl9jYnCrPc+lCMmdEe2zPS/Pkd4DtVs8vFNsYww/taKEa0bZGJWZcWiabjc7dhtt3RtK/RgxCa4sBacF4fjodYH9DcV/LVdByR5qAb5oikBpYfl5u8002fitfDrCKI+LYcwPkLLJm52xqRxGzERk+Kj3D/dmLOTMCnfpN+jSqW82gYNWT0qJ/tbAWV5fwamzbT3001jM79QidhnEeeZ5kmccuwvP76Tfs2Uc1CW177MNiap3Wg8Z99/UGDGSE7y+Mkf09+xSbGeuSlo/qBJUSBH6FX4bUIechoPaYEILg+AbyPC0dcRoeYucgr/B2Se8o+kJjz7FvCziIC1RgSgP2CKd32Rvkh/OlKFgAdvIfPjawhdL4EfISBCboL6J0HjauK3AL4MvINoJW5D/UpEw+nzkAzSngoBAL+CgE4/H64p0JJr/6hm0SnC9Kjp4+uuVx3ecR/4DvDnwvtPEJDrGfBJ+CwQ+nkS6nNbjaQylHcXocefRUCsD5GxfiH2ycc90Ge8SsJXxvdm+QGT5TXT3WW8T89xrBFoeglwaXrtmMnLiwJOB7yp5p0AcLcpL27Rykdklgqj8mfLTgdHR/v/ee+/ob5TUOjGPpkDuvzN7801SMYC/u3675gJ37F7JvJBmRkYYj5nbDjID33t3CBOqEuRYdQEzmJwTiK09UXJUPV4Jxo5Bs9gDXgr0S98CG7lHcYZBmtFK6qr5JA6sH0ezxD6y0WLHu1DH2U/E+o31WC3iBmgNwJooQ61h0FkYmsobDoY70ME9a6p6WoJuKW+gAV08fhAh857rLMBwB/7Z9YRsYWlrCq8L0NUdk9TNwzDILJ0VdG1LYWxwdJooOskirkNcqVYLASgSRoqcmTG286Na+qrMZ0oaDRnVnkTXU21/6Zgp8949em7bps+Z2DTtFPjCM6i0DFLPB2X3xaLDVGgFN2booBajrU2ai0tFguKohBEtSxZLpfRc7w+r86/NZShljNnE1wagylkwjvn6buep0+f8cknD7m8uGK33bNsFlRFRVGU9P0AA7Ttnv1+T4GhNGJ7WocydrtL2rZjGEQ7qaoa1usTVicnrE5OWa5WLE9OWa7WLFZrFqsVpiigLMXPUpjcivb2zrHb74MtbokpLKuTE87u3KEbBj559JBVXXFvtQQ87TDg+4HCD1g8eBecbyeX4xgTfDIFZBtwAXiCIW5M6ujcIxpKnQ/6SqoGFZMayaWFQrVFBkSN0xlPT9BqMqL4Em2draVA+LV9t6frO05OVnTe8eT6irZt2W63XF5cUNQ1RSHhit2+A60Th4zHVPydyxMuvhawSUjdpD4mnyFZ3iSrp3sm/ochafENcWEMTscx4mtJmSVtvTHxOW/ExDK8Rb4CEJT3lQl0poCTD30xm7J+01U4B0TIn89AlxHQ9Ip9fFil1yNh5dqT4UJiRrMmM5cHEig1HexpnrmyA1OQ3uWzPxVm8nHg4iwbVWV0c/T+l00JFExzezaPtptE15HO/CGt6zNcIcLP+8ip+APgq4jgdD983wnfnuPaEQUiQOWfJaJx8Tnbfb9I/xalPTI3WkTTr0Tmxz0ESHgLAXYaZD9OvOqnl9TU7z7wZxGQYxs+DvgVklbip123151WwL8PfAn4C4hWk2qZ7cN3RzInvAv8O8AbiBnkB8D/iozlbX3RPS+dhvd8A/hPkTX0e+HaDxHtsj7Ur0Q05RxCRx8BvwP8JsnUbi41oU3fBP7L0H49HGiQdXzHi42vI/IIad+dAiv5vjbmLaOvweyAGjITlWxPOhToZt45yZenF9XYeRnNqOxO8o04I3Devpx07zb1ygVofXcUske1O56ex4sdkw/nxudYecYY0dhy8/0/B17dBBy9CP84pzUlS64HQxaQ5zB/zhf3/cB+39KUFScnJ6wXCwprRI4ZBtwgi2VZWGH1ixLjvWgPWRvo2uOcgaDs4PoObwzd3uKGHmMtxuaBM8QlBsrJ5WPBWJxT3tMhShZlVeK8Zz/0DINEPDdeotMt6kaUHoLMudvvxAH5MOA9FLZg2TQ4D23rgjNvgqwi3KAAXjJnhwCIDV6UOcqqivPcFqJMUlZi5XPnzhln56e0+z1X60vc4HjrwZsMbuDRxw+5vLhgsViwWq3Y7fY8evgoOGeXslUZxWWha6cyigJkiinE8czoxgX8Qn2caS/mGlFq2jemjSmNjs0tx+9RJ/LHxTP4HLG7NzX0pgktMzHJ0sYQkVyPqPbpYOTqago0WWspS0E21+s1VVWxWCyoA+iQazQp2JSXBYeR7aLaHGApwMoC1fcDV1fXPHt6wfX1hrbtcIOnsAXWFKLRhKfrxMmbKUpMUIGsqipqNLVtG6LQFaKhs1yyXC5ZLJc02XezWFA3jWgvBc0eAZpsnPyD9+y7aMCGsYZmuWS1PqHvO55cXMB6xb31Cm+NRB0YetT5mSEzpQvjiA++oX0ygzEkZ9QmotxJ56n3jk45JMdowdKJE7d+r5EOfNRiciZobev3hH6stQze0/Ud/dCzWC44QUwU+75j3+643mxovMeGRa5re/oJ4JIzJlMb2VTdcZ5XSWbyy2RljnSRYj2zJ3z+VGaSpMCSz/OM8CihFZ/1Yi7MT1+gf4cNMe8TM8l1Uxufi7RnINNNJ0avI702oCkCOozBoZhhcs2n58bXfAbGzee5uWw/WmCFKWB87RaM7FyajvHcbzhOB4axeaBGhInPTh/0YzqMefJ8O+AposH0PklgVnMN9YlScbN/EdWuqMOnyT6fm933i/RvXeoQ7TyHgLIniJlajWjM3EO0UzRGxm0W8ted1IzuFNFK/A4CNO0RUKUJv1/vGcOfTGqAn0NANQWb3gd+DxmH30Paehry/iICAr2FaH39IfDPEJDndWk3rYA3Q13+8/C3mvT9GvDbJJp4APx5ZG19G1l794g5pkHobY5+KoT2vh7e8dWQtwv3NqGc26YAIvk5XiEX1hjvbSN4KOxFObik+288TPRayvgdo3fN7cl5VV9gv31VzSa0XfnB0oHQOdOOLN0GWJrmmQWzopZ2AlXSS16gPUfqN5durE9ehmccaGSmnClgMCcHvGi9DwBF1dh5znPKE6tsNQyivYSH5WLJYrEI2kjig8k7UQ4oNGCWLSK4Y41BTSEHPN4FJYtBDtz7dh/Ak7AhmGDJI0J3srSwoi6u7j1smELCgiW5wBQFtiwZgoNxH7SqDJ7CGOqywgNdkHuvrkQxoKrFkudkfUJd1WJ94rcqcGGwqeNM8u7pnJhIKijlvRcfzIWlLEWppCgs1hrqekld1+x3e6pCgLW6FKfoDHJAf3Jywt27d7m6uuL66oq+6/DeMQw9/dCPQCQdr6mF1VQB5uDbHSrJQJq3Oeik77B2zHHPae9N57w5GpUqpc8Vuxs1K9KV+Ps44GQiYSWhVQyrFDVUkChfEKvoTLtivV5TliWr1YqqqmjqiqoWcGe/H+90uSf3IhChlpsThNiMilaS8579fs9ut+P6asPV1RVuGML7Beiy1tJ2HWTOwb1NBCfmc2JC55ynKEsqW9AsGnFg3jTUzYKmWcTfZV1TlBXeBidpiGplHvfLDY5u6KVNzmON5WR9wvmdO1w9+oTLy0uWpUxIjKDDwzBgxa1VptXkZTHRvVgBJSN5bHhfApwMeBOBoQEvUQsggnP5BIjaD+FLNZvkeR/9NIlmk+pZyf+DF0fnPaIB5Y2hXjQsjaWsKzCwa/c8fvKYVX/C3TceUJZlUFfVt8/BPjPCsJn86WdvvVia0HcqUxYsQ+bnymc1ndt8FTSK2mW68CTGKmryhfKI17N2R55lHmbwCh5Ex01x9R+BWgqYaVkKNBhIfqkCzerb1Al/vGAgMYVZVZ6TnscQvC7ASRnP7MLMn9Nrk9+GUTS6gwKOlpP/kROjAqf5HDtss5kw1QevntIm87+P5TF5HXOQNmtW1FDM6X70Wy9nF/bhBU8Roa1BQCWDCLEauvsQQc0qh4BWKsD9P4hm04eIU973uL1jXn2vgle5o3FdvF40aXnaHk8S6m6j7WFIZoTqbkN5o4FEd5BMfDSPvut1CLYF4xDv+ZhopKuXSYYUaU1/q7Ph1zS1f2Ipj6YIaa55Eq1oP9Uhn8s+zzMv65C54RHQ6YwE3ChNPc/EdJr0GX1e65p/37bfte0K8KqTfqW3HPRVFu1FnGSrw+u8j/MIfJ8WfRRIG84R07l3EEDJIyDgryNg0w+Qdq5D/i8hmk0OAWvU1Pdh+Fy+Qp3WSH//LPBLCKhVI1pGvxvK/zUESNL0NmKKqVqj94CfRvyBfRzy5jSp6++3gL8UvhckOoExHd4yRZ7FZztHtoclEGoi1GXPx+AWukcqwxJ5DpOJHRm/Mykzq9G4jtP9feba+LfNlL7nypuWNU+8URfe+Kz8vJ9yEC7jWQLfl/dV6sXgHkNVIyJDkMbgQC1HC83+8uNL6d4NAFd+f95MaTLGR67l3xY0UPLoHQdg0ORe/u65PHNp7rlYJmR+NyWfC75Mg6KKAChetI8qW0RrBe+hCMoTy1oiP/RB88UakQFLtd4o5KnCir/hyJcbomwwDLIgGmMmQ5m00jVCtbcWnAvyiMh4WBN9uY7GOcgqEumuoigLhlD+omkoi0K0kfqeYeiDY/CBoe/pu479fsf19RXeGwlk5TxlZbG2iCCYMWAKGSPnHcYb0RbKgBoM4gTdiBN170WhYugMeEdT11hrWK/WGGO4vrwC71ktV5ysV3jnWC0X9GXJYhkUVaylbfd0wfRvGmVOlqgQW31Cl+OPY3BDjFoXoxFm9Y/tgJAP7MQlkMxR2ehUCyp/h8/H50j6XIFNU2BpKgnMq0qaySLl4+ai9qs52KTATtM0LJdLmqbh7OyMqqoi2FSVlrK0XF1t2GyuAQGn1NG0gkzGmIgk5+9QIKqwhrIocL04bbu6uuLZ06c8ffKEvu9ZNA2NAkPGst/tGfqeLtQ5B7H2+za8SwCnxbJmuVyyWq9Zrlfhs2a5XLFaiwlds1hS1LUgzaVEpNMFyQ4Dxgkh7/ctGIN34uT8zt07PHjrLa4fP+TR48esm5qiLMENdE7Ca1pjR4BFHu0MBZrwEdjyuoJnHzW0E80mz95nG5lR8yvSAz4NtRq3qYbT4D194AcGO+bQOzeImqaB3hq8NSzXa4qlo17UYA2b3Yb3PnyPO+097j54k6ouR04ZcxKbdwl+nKJzTY1XS6FfR6i03kmdEyP/Zd66o98pdCMJtfOjbHHGKbYh93U8co2oZDoZ+ZbRTuTDZpl2L2OyueqJm4E2xAcm0YT6ki2WuSmr8yaeCqSy8na9Qg+/LoApL88dKXPuXdNrOahmX6GcWUnv8PcBX+hzjbhxmka1edEUwaKw4eXzKl9LprXNmd5R3XJQT/26qDBnEZBBhUzHzWCTCs1XiKD3Y5KPp+tQ1vMi2U3LU20o1ahS/zMKOr1o0kh5C1IY8isS0PQ8kEZBHi0nR+zb8Lf2j0agIrun/fCqSUO8wyHIcknqmxchNwVNVkjddYy17rlQ+1lLSqOWBCSpjXgOImobT0hgqposPQ9sbBEQ9Roxh6oQrRql+xyMvW3KIzc2ob55NDGlref1u7arJJmsqgmrXl+Hj0ZC0/l923lUhnJ1fQCZO3uk715mPr5MqhCg6E2k/78X6jYgvo/+D8Tp9o+R9ik9fw0xu1siwE6HgEK7kO9lwSYb6nMHcU7+35DG9GPgf0Ics3+IgE6afgoBzL6MgEdfQjSdThCH4T9gDDY1yHj+ReC/RcZyFfLkgKXS4Quk6MkzF+AY7xvRgHwKNil7NQKcYDoRYp74ewxaaKFHYIYXvObw/khJtwSapLS80mpA77Lfh5pOsRpHtXbsJGP+NjdzXdMUYLl5WbjJv9FN6Rg4d0yjy/lDNivXXrpt3fLrL6P1lINNqqmimjkmYDjeCShigaJZUBQlym6WVcWdO3doyhK32zF0HXhPYSxVWVBXpTjadg7jXdBsSjy595YhHPp3dAJyqdTgs8M+o9HNAgPuHF5VmYKWlPHiuiXyEgrgBvnRWsOiaeT5osBbG3wQl7SdAE0SiU4+Xbun3W/ZXF/x9PETjC0YfAHGUtiCsqoD2CLvFz/AsioY7/ADhP9wrgcsLvSxD+BN7z1+GLDGslw2VGXN/fv3xLfT4FgtV1RVSV1VlEXBk7NT+r7n5OQkuOGxbDbX7HbbFFkexnKMAlsTzabcAsv5EB0wA5QUbMpN6IZhwBiTAVKHzsmNKUc4RQxwdkw+maTPFtik8kwOvWq6JdNys8mcLJYj0Gk2l49Eo0mBg6qqKMsygk11cKytIBTAMCQiMNMIC4wXDx3IKTrpnMOGaAxucHRtS9u2dG1L18oRu9SlorBFIBQhmnwn8wii7XqxaTXGUJYSHU/N5LScsiwpylK0mKxoIrkACqhmXe6/RW07vfcS+ctIu+qmYbFciClZ3zE4hymsM8S3wwAAIABJREFUPh1RYcW11fW3VQBIa2+SX6HR3hwuGO8j2DRouQa8F3hKTfFG4xyZA90sw8Qz+vzUA0w2MYOKpzGG0hY4a2IIzH4Y2Gw3LHarSC/JPDKTSAOAkuMo8UrcxxXKSTW5jWB+LMcctcdTET8PI6T8GeeklZ5hlLKaRphQ6uQZtdfkgVj1vekEcfb9UYtG95gJXGcyBiCvSaaWqyrDODea/7F13kdQLK8Zo5xzv5P/gPze68OcFCya0LHe8UkTbQqmHJT0vEo9l/HM6CACuTP5bgVepRJfR4rr0sx1fXW+BozZ2pBzcj1OjGNRkY4BTSBC0hoBWN5ABK5VuPcQEdI1NPxNSQXvE8REpAnlVIhwu0Uc7H6ICLnqj+ZYMoiQViIC3v3wW50FXyHC5rsIGLZnHhAyiO+VU5JmhCdpEn2CCK4q6K9CfoMs1j3iJ+YCAc2ueDHwRkES9aF1j7Emg2pRqZaGRry6KcKVjmeNjNkCMe85IY3zJmubfn+amiy3SQ0CPiyQflEgaUD64hHJn5H671mQ+uaS5I/pguMmTDo38m94sUmd0+OXkH5Xs1NPAoCeIX39OHxuSjrX7iLgxZdIwJByvPeAP4No/XyAzJuPuXk+GpIT9DuhXAXIyOr4EKGNgZ+8A3KN9KamvQXSZ1tkTl2S5nSHzGcf6vpxaMcJMmfuInTzR69QH4P0j64L63BNTduURnKQTtuxR+bXdfjovN0ypi0Tyj4P198j+WhSh/SvkGZBpAkYpLxj/lTkYUwmDx97iZlsiT7tYVETN/t/tp437ueHQMht/TbFFk6yxcM+P815HHzR5253CJfxX8r26B9mkk8vhf+i2PiCaeQHKq93OLjU183xFyMztKxjDrS7nwM0Pa9vbspz07POKOush60pshgBbBqGIWt34iULW9DUNVVRsN9tZ6OdyftVM0aiAlpDsiwJeawxYT4k+vMZry3lWfTU2vtQcSOSoLfhvSGae+xqm94Rez/w8aqBVZVF0CyyNHUjAIqxweqo5fLyiqKsqJqVRIFXudZnsiE5uOKiuZ7XaIl62KkyhifmNwUUtsIa2O92dMF3UlWVEWxqFg0npyf0XU/T1BSFbFLq11nHLTGkyZokl3uSxB/AMe/wwQ1QwhgS8zPVgprS1BhLEfM6jUg31aQKXX9j+uyATV6PJCfC+Y1pnOdmoEnzHC/CCJUIsBBQOxVYFUxar9c0TcN6veb09JSyLFkshIjVVG3bSmhDjIRHBGJZOmkVjMjfofnyPK4f6NqWi8tLLi8uuLq8YnN9jTWG09NT1qs1Tb3AO8emu6Tb70UNzgjXPTjou57N1XUg8ppmUXJ+9z7nd845OTtjfXLGar1iuVrRLBaUdYWtSjmg7josRbBJlQUKD4WxFIWRw9C+Z6hKmf+l5fzOOe2bb2Crkqvthv3QUVQ13vbRv9Ig3qhQ31SgVj4+gkzyHQAnXWQgyrug/LGh98HBtydGlxtp3ITVKKnvjjcX5z2D0QWLVAdEhbTd7/Flia1KsVOuagp8VN/c73d89NGH8UVlWVIE5+45PUdnxTectKgTRvVjlaNBRw6oMlrOMs9msGFRSO3Wn5HJUZAvRkbUXYu4UU2ZgtErFITUEjWrkWnunTgJdz4bh1hUrh3jw54S6mMNGHEUX5hxf/qwwMdywmZjrKEoRS3WB/Vcr3WRDhizjN7PjM20kX7m+rE8r5ZUWyuVGbjZA241y/+y73luOc/rlz+ZpKd0eTJxgH1EVF2cPHLNKyEAGIf3r0ldxSImID+NOKv9RcaAzm8iAu4/QwTTm6asnvZ/G3GAexcRxg0iiF0jJib/EBGcf4gIZ8dSFcq7C/xniHaDAlgDIuxdAP8zEjb8XQR4mKYS0aL42VC3nwtt2CPC7T8Nz2kY9lNEkFXhvAP+b0Tb698g2guqMfS8pFpefxYxv/le+KiGU4n0N6H8D4FfRfpIBfG5/lYB+AESPv2ngO+Gb02PQn0/Qhwq/zECMHyWopo9AP5a+P5FpN8VbPg94J8j4/1dZFweILRZhc8PgX+CgBH/AmnzT0qTq0To8Ryhx/8AGQelcTUX1T7/x+FzU13uIjT3NeCvI+ZhX0HGVk3pfh4BKJ4g8/Eh8A/Ce+bKViDz24gz6u8Cf5WkbehJIPLfB/7P8LcCnD+ptA51+jJC+wMCdD1GNJs+DPXQebVH+vP7iFnvO0g/FIgD9XsITf+Alxtvi9DTOyTAs0XArSsEFPsSSaNK0wkyLx8jYNc14iD8t0nOzbX8CtHC+iYCSP3t8Pu/Cu9UzaaXTbOHEWlP9KOr00eDEAo4Y1D1WzNiRNPjCWAi7udR2LP2cMv9CaRDoOlIPr1/A4o2p9k0z1O9Wko+GhNAcJzrnbMlGCfn/QEPMccDmVBevJOr9CN8yOTI6kae7HnaTlPBfvrcUeDQpLEqqxKDYQiWOib0lxsG+nYvCrxNAxRxya3LkrOzM8GAnz2lb1v6ro+uWIZhwA+DyLkuRJ4DysJSFGK2aYMcUBiBsVRhYfAe1weQy4jc740LAWxM/Hj1E2ydfDuHx0QtJxsCN4HMuTiHnKM0hkUt/oYXyzX9MFCWNfu2xRvo2p6n7VMeP75gsVzy1a++w3IZ2m8kgJHrBwY30HZtdLTtfHDPYsDicVWoQQDbdOiHoI1kFwsWdY1zjg8/eJ+u61g0C5aLmqZuWC4WNE1NVVi6ruP6ehOsqQZ2uw37/S6Y0vVRk0nN1px3iMfjAbwLihbhnuuDyxwXNZvKsojAIzByEJ5rS4mSBCPNJhAzunwu576sbyN2fHbAJgACchZ+RWdgk5XCBKT0dulwocvAbJLwpkJdjvQlR+ACHhQ0wXStaepoEpfMpZIz8X4YxI61zLt4RsUUrcO4fqr66MMiqOZxXd9HszsFrNSvk7xbNbKSgzjnfbS5rUM4y6qqqJqGqk6aTbYosMEWN9QWUcFNWklR+I2qdXnFZWyquqJZLLBFIZM2CvQmPGfDgmITIIEukErYqTMiaORHr5L+RiLS5e4mQjARjMkcB2fPJg2G9O0I1kp5ezyKYsR2R5TXiLqs2i9779htt7T7nSxYNnN+l2HOedEm/zsDHE3cKSLqEsKXqs+qyWamHZIzMJOmpLxZyz3Rv4Ci+KmjDfjcnj7km9Jv3rcH8yzRoCdoDvkMhCKZMSbtowAcRFrI3hnXBi/ApPeoqu1og88BMS+ahhgX7cLzuroQTS+fw7JgmzCGjNVEM9qZdsHh3M4YyVdISbHLZ+9P9Xl+PRLz8iKMzwypyRT2JLBm1Bszz0/fMf31qp0zKjTfO5LPN1A6z8dO18g4aQ6YxJdOhqRdob5QVohA3SFAUx+uHWPc1fzjHAFUfgoRnu+SzIkaRNh8FN5RIgJvgQAguRlcblb0JqJB8hVEKFdzOEjaL19BfPJcIwK5mjLlaYGAFW8gWleGpK31w5Dny+GjfaEOffvwjm2o/3mo8zU3C+eqkaPOh78U2q7Oh1WDRft2G/rpXUQDSk335kwEG5J2x1fC56dC+XkeLfMBCVD4LEU0KxC6OEfq/zZJs2mLgBDrcE8jhi2zT4u0vQz3OqSdL+Jo+XnJIOO1QMZF+/zr5NNT5lEf3q+aZqehTseijKn5oNKnanCpJGVCO++H30p71UxZWp6an72J0LPShz7jQ55duP4AmT+XvD7fZHNJaX1FCmLQkaLuTU0ifajLFpnXb5DMXVVbKDcbfRmaXiCg0iIrR8HKExJgvp48o++9Ct+PwueS1H+6t6uW2jMEXFvz2vpZye8gZRrWMzcZyRJakoY5nfBmo/eNNAOy/cjfjDWpg4kRb3tQdvK/Mm3HlHPwuq9PC8hzRR41b/O4VgfyzEwrlNWMwFrYq49r8KTWxX098quHyWg7SQDRrVNeh1i/7BLHx8Vnf7341MlK9fOmd4cadoc8VDp0TRG7jQngRIiOHX1oebHmiDJO4LoLa0UjyHsG5+j6XnjlUL5zbiQX+eAzw9s0R4yOEcJpKejnfPK9m7VC5ooNPLOuZbmQMuLuEIDJudE4O+dizlJdv3gwwYWNysKDG+h6x77bAeLOxuUHu17kALEW6uXvOYbYk/UdCiEEx9zSRyb0WdeJdVJTNwKUFSo7+hjJvm334dCToNUkzF70LuwzfGIEEqus4ZMsN/OMjnGa84mexqaa42Yq+JR+H8oTz8NkPjNgk6fAO4PQzhjEEC/voiGi3tLHfT3uzKmJmvx9+EYIQIgOQvh76Dvc0FHXNevVkqqqODs/p64qlsslVV1jjdiouqFnc93GCaidXwWQyTt14hVea9VorKAsLL33dIHQrZXpuFotqYOD8a4PdpXBqdlmc83V1SW73Y6+Fy6irmo637LZ7thuNrSdaBB5Y8EWYAuJJgdQlpi6omga6mbJcr3m7M4d6kVDWVeYspAJ2fcU1lDYAoxj8L0oCDgXFm9pf1VaVsuapimlvwvRbDKuZ7la4Y2hHRyX263462wWFMZSW0NhDX7o6QbhRKJD7wBu+LgBhcveB2ZibMLjgcEb+gCwDX7GFG4iDmc6MBk1IIuD9+AdZhgIsQlYVBXeiqGf8479bkc7DCybmgdv3Gffdjx8910WRUHhPYuqoi4sndIqMDhP2wcpJ4y1C4tEVYpTeQDxcufp2l4cwRclhS3DRu9H2k1JWcOTObHJPqCLtIsnMmJ/jIHCllhjQ6jNAYOltAUez9AP4IlO67quo923omEUGJiiLIV/F4NtMCY69yvLBd57tvsdbdsF/Cc9h4dd2+LcwMnpKav1mna/Z3O9kc2iqkR+7TqGfpAoEkVB3/fsthvwkscG32bWFjKHgrrtMIhPsWfPnrFvW9arFavlkqIsWSyX9H3Pk8vH9H3P+fkZTd2w227ZbK6pgoNE0Ubs0wlABjypxmNUn8WP1FYjgJVvRgqCjGhzRIpxyGwAK4tCzGT7ocOFSBbOjTUiY5nexRO6GLPxKNB0eBo4oq28MtkV1QCFRHPPZaxmuDNZcsenIukA2DB9r6zTc2+TKCDxOSO+5WTmBtVxPMIf5RtuXpILGpEvziIeNgwRkv4QEYK+jpziq/PbByHPOekEPtfoscA7Id9fAv4TkkneDtHE+IQkoJ0B/zUilP0WAjj9MgL4KPp+hmhAPECiNr0T6mMQ8OFfhzw/jwiEfxP4j0M5v4IAZL9L0jBwiOaSRuf7DiLwnoW6/kckYKdDtBN+I9T5WyHPd8P7votoRv2ApBFybBhU6+gBotn0Rujr3yCBCQq21KHv/3xo63cQTaf/AQGIVABWsO3ngL8Vyv4uAkj8GNECUXI8RzRAvhPe/QnwvyCaXD2fDQ2nK+D3w/efQ/riBAFefhbpCw053yE0owDjlxGu8G+E57+OjN3/hYz/a5gegNDJN5G+/lsIPd5D6Oo9RFuvCHVdhrp9Gxnf+8jc+qcIaDLVhlOTuArRVHpK8gmkQO2HiPPsx4hW3WOSw/NpWiNz8GvALyBj70jmd++H534e6b+/jjjf/h3gfwzlPub1+Cebptz/lDqzH0jadmM2R5IP958hmoyQQCv136V+n17U91SB9IHOTfUnVyMg03+IzO/cgbz6FLsM9fkVRLvqQ5I5p9ZD5+y/QQBkTUrTryMZGw+xFDuR6e8jAORUiMzAIT26cMq05uyY/jndB3PQZyrgqTnRJH++mY7dXB7Zi43FFkUUQkdBO+LhXwKulMWZc91g4oFf4i3iQc70/TPP+3B9CCY+gsV5vHFi9/WcvpHWe5Qg1BJCfiSLCELdFGiK3MQxDSuTG8KF9+j7Va4MN5QOQgXic6Nn8n44wlWMYDtzcAOHgjtZKYH/SZhIJtHk10zIbwyuF3mp7VuR6wpLVZTYwlCGaHOeYKESwJrFYsGDBw/o93t+9+lTHn78Ma5tKesa5x2bzUbM1YYhBHCSVBhDZSW6gwn8sutFOcIE/rw2BXUtwM/ggzKEV95M+bcCY0TxQTX8Bi+wy+DERMwFixNjLdVigSkM+/2etu85Ozvl/vk5/eB4utlgggsZY8TawZqCod1xfb3FecN2t6EoLItFDZUF78APeNfRd3sw0DQNRZCNQCLyWe8wzkAf5NDeRVm+tAbjBtr9Du89TVVRFZa6LLAWka8LUbApLHhrKEuL9wXGekRrKZg94gSs6vZ4kpKLtYZhIJrZSbS/Oe1CR9vuozxhrQ3aUkljKqfkIThTV0UbkWdcAK9FYaXrukwzaobAJ+kzAjbpUh6+vV4b50maImlyRiDCJLWwMcg0RdpTh6oNY1QjC5NDPNfLYlZVFU3TcLJeU9c1i8WCsixHKmTa6Zp0MHL1tJiy1TM5UxPhzSCqh1VVsmhq9m1H1yfnXm4Qk7r9fk/fd3GQVdWt73ratosLhqyEIvzHE4nCxpCRRVVRBt9NVVOLryaT23aKMOmN/kaE2dgQmVRVWVAWRcCIDM1ywWq9pqwrPOK9v+06KmuxRYmtlc8Qodnlx1ZhV8jNnXSxNtpv2WgmWMUHMMUkt4LhIe8JZlP5ZjiZjKO/fdSCEXDNUFqLs1be4cEFx3NVUXCyWtF3z9hcPGN3fSVASQgFWpjgxDyMsQs20ipl+rDYFmUZQBKtgcMPLqibFrFrRnXOOY0I/qceIWxOcTsyEGCm6CC9EKITszZC1L9Qltr86gIlm9GAJTP/1FOzqA0XqmMMtiykfTvo+sQJFkWBKWRDkigQA8Za6rpm6Ps42hJFTuaH0xOZQJ+q3YdBNPIyB4XWismcC5EPrzcbNptNmFuiwVeWJd45ur6TshDtqsE79vsdeFFNMZjgSHEYhQgF9eOWOZP3qhWlC7eCPJPQpBOGZ04l2hiDt2CMFXNAY3ADEZyMDFBUc82Yx2zj8ExONfP3jognFptfOvLc5MfhUj2TDi/KuE43xTTGebXnbMtjyUZo2wRaFiZT4CZRG/bhcGIOYs767oY2v1DyJI2gp4hQp07GNTT8aXZt2iSLCN5fQYS2X0KEW9U0ehcBiO4hAvRPI4KuCo4fIcL6H2VlLxAtoK8iodG/TTLD09DobyJgxCkiUNck3y4eAaQUTPHh+Y9DvXakyF8l8A1E+Hs31OcSAZNUw2sI7/oSyXzLICZSm5k+0bRGAJSvIWDFXeD/RQRTBdYsybfOT5PMdtQ/1Sq0S90gqNnW28C/F/K9Hd73b0I/qmD8dUSIVq2yZwhooX57joFNr4u2NN3E3LUIAKd+vXYIuLMk+Wi6QgCbLQKafBCeXSJt/zOhnB3St7+TteEWjOVzk2qGfRUBcP4MQiPXCD19H6GjLUIv3wl5H5Oi3v0KAphNfWZ1oX2q9VKSfGupk/QrhDYfI/SpNHysrt9C6PV7oa7vk4CsH4R8apaopnYWManrQ11+EsmQ5o9a7OeO+nN2IE852AjJPK0mRdl7GZo1CK29icyPHNBdIPPHhXsLkobSBgGYHpLWo2cc9pviDKr1pCbAN60ZL9OGfPOJDkt95NfjHjWaFLKXGG9mt8UDLZQcTBm9PP+VfqvFgpn5rX8z2dPj30Yhl+xA5WA/JGFkfsodRNZ0ciVzeaF9k712ul9HgE55lMjOSE1uMrdLoEv2v/NTXDDVhzHQdFPZSa89tV9f6vUAOmbI2pgNdHy/yet6yNulzjCxzdomM+Gjb2NCdyxPbEcw+xrcQO96jC3Du0SzRqM258oSRVlycnLCzhi2ux2XV1c0RmQ95b9z14jSHIMNnyh+eI8ZVMNH+DJbSHRz58FrpLpgIpfmTpL31e+xI7NOcAJY9n2PLawcTBtL33UCQHnPatGw73rsVmG9MA+M+h0SNzFlJzJA13c4JyZseCeSpHc4J9HWiwgGCU1YQ3J1oqazQ49zHlvK4bfxniHIPmVh8VYORnWJsVmfGStaiLbQuZRkcPAMTmTOorCo+yoosrxk8knilU2QocUJePo9xicixYV7cl2xDhmLtPblB9g3WUvk6TMCNoX5YKyc5lv5zgXsSHCqrueZdNShMJJAk3glPif3x9EODGAsnJysaeqauq5Yr1bRhM4YE8P+5faOUr8EbuUe3KfqaVPfTPmAq9DunaC3fT+w3+3YbTZcPrvg4ukzHj96xKOHD1kvlqyWS7z3PHz4kK7t2O13DMPAcrWiLiv2ux2bzVYAgqKgKAqWqzXNYsFitaJeLKjqhqIKjsGtCO0mc5+VJkRoQDAjd36gHxw+TE6JFieLWrNocCdrmuWCsq7BFrT9gI9hGixu6MGpM3NLvu05FX5VpdfopmTAhLtmGsnMYiiiRkSgCAFkjG5kSD2NjjZx44hUo4ubvtMJal+YILwO8n7rwWKoi5Jl3XAdVDbd4NgGcAPvKKwV0EjHWqsbqiAqnY6iL+n6AYuJ0SyKQmytrbXZadTcphXoOoSL9ZmOaq674pxESTDGUlQy9fftnmEYqKua1WqJc46+6+VZY7EFEUz13lPXdQCfZNG9uLig7VrarqPrelarFXfu3qWqSpqqwhjD1UboZdEsWK6WwTnfDufFUR6UXF9fcX11FedNtBtG/Jz1QY23a0Wzar1e470PTvR69s7Rtq0AvWFDdIPMzS+9/baAYgF46fqOTz75GICzs7Oo0tq2LW4YMEY02PpOOPHNRuyo67qKKL8x0v7dThzklGH+GJNMYIdBI1Yk01aYUWuHDJAyo2vOebpeNuphGKLPNGWebNg4lEkUwDw4VmRi5jolG8Kcyn6DmfELZkZfr4+rv5kBPGBUM0Zh6p9vugEODJHZUf97PnSSyUBJ1YYrrGXoljFS6CsljwjOPSJ0fUAKLZ9HSZr6FbEkMOQXEH873w73PgL+ESI8/1r4rYDKFSKMK8jzRvh9hQBCTxFw5q8gwIua8/0OAiD9EaLdoeDJfUSr6Rvhub8anvltksNehwjqewRwukIEVfWXsgv5fg3xTfUUEdDr8H0XERRPw3u/Fcr4ZijvY+aF/yI8oxpUCiJ9NdRNNSE+DHnfQcz3dqRIWzlZKYD0DgJiqWPwjxEB9rdCuwnP/YhkXvZ1BPD7OZKvmd8maWEUJAfjb4RPwas5Md4ifanCuUZNzEGuHaIdNJAAShfqrSZx7wF/D6Gj9xB6fQ+hB/VTVSOA5ykC2v0xQh+PePUlwJBADXVa/gHJJ9a/ROhjj/TxE2Qu3UFAny58P0LGZJOVrY7NKwRQUz9i6rC7C+3+DWTc3kP68XpSRzU5fRuZTz+D0Nw1AjD9g/CeD0iS5q8jdPRdpO/+BgJq/Z3wnte3dEpS8EVZ2SlodCzpGqTrkH60Ha9STzUhXiJzSc36rhF/YR+TnHmfIXNkiaxNp6S151dD/puc+v8E0ohHm7l3cG1G2J9LwoFMF5/jz1hS9Gcg+Zl8wZTOovzRuh4exPxk0/N8OM1pY88+Y8b3jEl9pub+8TBtIouRlR3NkkI/mSgnCtAUs2Z58gqkkfRZX95MFyPQ0hzW8bZ0NZ9CjQKqkTfbIGCPxUSgqW1bGAaGrpcWBZBk6AcBhJzDBL/F8XAXBVsmfFoAhBSkU7pPopgPh8GBX1UAySM+XTGiuT+Mg/k4H7TPVXtfwRgftKecZeg6AXe8pyxKHIamlg23qkqGAE4O3lBWNU29oLAFu90OY6BpKrwfJBp8UWDw0T+s63t6n+R1vW+MwfigPKCH0kYU9QZjcaXIU4Mqjtgei8G74HA8RAgU2cFGiwjvxvhG/tHr6XB7ioVMTxrG9KpJ26JKOopnjLEUEw5sD0HJOOZmDLLOpc8M2ERYWE0IP3jI9Ad1z6xzxh7a59LYvG5q6hZei/ghM8E0znBysubO+bn4NgoTTMGmGFJworV0TBCaWyD12jDRllAicx6cg67r2e/3bLdbLi8uuHj2jCePHvP44SOat95mdWcJzvHo0SP6rmO32+OdY7lccnJywuNPHvF4+xhrRBWuqioWqxXL5SqATQ1VU1OUlWgcFSmCWnSrpB+bTlRkIR4YHHgnMZVF88QLALNYYLyjDs7GTWFpQ5S8Igj8Q9DasQHMwhj0zMUFoCsu3gF1FOBJVAFMQJV1DMEEp+hCR94I+OIUZDIKwphsA0oaTAnUFEdooL6ffOCLDQOGISDY1ge5oShZVDV1IUfzzjm2my2b6w3eecqioB9yR2raKkmDc/TDEPxxDaKGGrbLohATt0Kb6Wco3aRtzadmMZ4XPtCVox88toAq0PPV1RX73Y67d+6wWi1p245214bFusBg6LqO/X4fNfuUrvth4OLiGVfX11xfb9hst9y7f4/VyRpbWKpKQVpwbqBqKs7Oz9jtdlxdX+KcY7VaUVjLo0ePePbsKev1mrt378VTEkiO6LquxQX6Pj87D2DXM4aupwu+wZJTdumPsiz58pe/zNnZGRcXz7i8vGK32/Hwk0+o65p33vkGy+WSy8sLdjsBa22wO+86MY/dbje0bUdRnNA0dQAoRNNrv9+FOq2oKhvBJufy0KBqJmoxxsrJRwSccsZC1xMZRDUpdm6I/q7ISD7BqmHN0HXJ6UySxe2AyUrEM2F3U31msv5E0pxfgpvy5mB+cl443hzz9VlpR/tO5pXQR/H/U/dmwZZd533fb+3hzHfu2xO6GwBBgARIkCAtypLoSIosWTI1xEOVreTBD07FyUMqL8lL8pQqlx9SlaEqZVuJkigpJU5ZTpySGUeyZA2RTA2WSIIiIRIEMRDd6PnO94x7Wnn41rfX2vuee3tAk0JW1+lz7h7XvNf33//v/yWiXRc7f/4i64vb8JNIx+5zFwE+VIDb4N22loFNqrXzCvBj+Khc9xAXs/cQA/oouE7XHbuBGGkFYhwrgFAiYMwPIcZz3x3zNXfNXXddgwBQWwj4chExmD+ETIb/zH0v3DU1MpiCTcMgT2rgfxH4P/CGfoywrtZdGdWlbtvl9xlX5iOWg00JYpCu0QSbriBAk9bNe3j21AX8dHga2PR97thzrm5uICyLryAMGusVdfUtAAAgAElEQVTK/q5rp8uIu9BFBFgwiGH8Gk2w6RIerFC2WBjd7lHTHp4BssCLd7fBpls0waYSqbsKDzb9iiuPat2oZtMxAjCec+U8j/SBd1y97D5m3sOkYFOEB5tuIO32OtJH+u441cWaIO1+DmnHF10573ISbFKXtW+731oH6up4DwGbDpD+sswFq4+Mm6tI272A1xV7GwGbxu7exuVlHRHy/yTepe4d4PcQUKrNwnoSSd3dDF6bLWQoLUsKSqk2XBifR9Pj2rgdfF9S3aYIAZy+gACJeu9LCKCudaxi5Z9G6vWPkbb5LoJNmtqAk219N459SGAgohmN17T+DrdHpulwL7ILHsRYBlDASQhLNEBbwAqtZ2bwOT09uUXAac/99jrldAkAauOkXXb5GLeuV9AlqKvWZRpAk758rrfZ8MD6mGAjjZdxNtz+4P5wGuDUyNtjJHPi/2CfkZdrkYOBsJYsy0QEvBDGkgebijoye1S/oHM2oru28ZiW15StgSVd5gR9uXKeG+AjkztdX1uBjYRwYWwl8hxyGUondaA6qyjQZSvKIhe7Ms+pigJjRRAbY+h1Ohgi0iSlKCpFtEiTlE6nSxxHzOczrC1qsKnX69Hv9zFG3N3kpWXhpH7cZFRVgtFHUd3slXshbI2pg1dVRSHn63cciyRL5YEiUH3owKOjEpAvBJQ8kBShYuB+P/W2k6DT6f0pnAfaUQfl+ioJ4u2x0Jb1bKmz0wcIbKKeONQ9B6gN58qeBI489bJ9GePYBZ7aqX6JEq3QOey5wZN2BFDqJOILORgMXEeTQampbdA8ykRwkslwkolVuwBZMVSLoiDLMuaLBdPphOl04vwojRjca2ssFgvGR8cUeV67+kjEgFJchLLcRcwT3Z1+r89gMKDX69Htdul0OsRx7DRvpN7VEDZRYNhp/o17OxOi/QKFy+CJIqI0Ia66xJ2UOE2wBhZZBnFM34gPbgWUbtDopf2bm4CZVBvjLMFPfB+pq7c17wtByfUTa4MdweHGNCdJfVBUUkYTe/BT101RFBFbQyft0Ov2SB2LpywrxuNjev0B3U6fJE4BYVfUzk3aP41nv1lrqWyJsZGELNV8OBDOKWI7wFUuJM8+/UftO+/V94JJJuyH1gp7CUjjBNPrE5mYPC8c5dNBFUYXPDI5GoTtU5QFM8eYw1r6vS6rq6ukaYeyLNndESAnTRI6nQ5FnmOrknyxYDoZU5Yl3U6HqirJXFjVJIlYX1+j1+3R63ax1jKdTsTn24ntJ7H4KCdJQp45nTTHHkodsygvchbzGUmSsrKySpIkTCdjssWcg8NDjg6PqKqSQb9PkiRkiwVVKQzCPBMLpdPpEitDqrJ0Ol1MFIOJKIqSKBLATphZHeejLUCnRKwotSvVY6b+2+pcoL3MjytrXUfWaIR1pw4HmqexNsBs494gub8FwBX/9ESB8tZ85a/qH+gnHABac6tfSynqFRb00ZNqYBkHGNdzgevb4bXrN7Q63kNgzgF7PtvyOzbizqlAU1iwqizJrLjJZouM6dRQlk9K+CMsZOO2pycVIg51UyrEwJ0ihu0EL/irE4qKbKtRViAMqB33W9lDauDpKvEKYhQfISCVGoqriEGvxyp4ohpRbZAsNFItHoi6jzfkdc1T4d2zDlweVaC6gwBHZ4k1zxEAQcGRxB17zuWrcHWlotgrrt52EVDibTwzS+t86O6rIeAjd+1VhKWSBnk/hwBkqr9V4cWOtW5Co0PrRkE4ZZM8rt0WB58zsOE6tY+ZIODnfTxoqG2jrlUTpL5CFtYIAQT3W+V73KTueXMEUDiHtIsymX4Q6W/XEIBpkyYwoiLX6h63LLVtwmX7z7KwUwT8UGF7v94WAO573f1VOH0L6QeXgmsqk1HZRqH+0JNIp+X9/eIC76d9E5ouwjMERLyNd5NToFHnsALf5xRQVjH2MdJfv1uAk9oIxj1FHsPgP9V1vQZAcGu4tobj6dfR53P9vPYLiua1T7mcMG7siT7ffG66bW3Qh/Cy9tTzl/192raz2E1t4OVBTKgHpfA6S8Gclm237Dt82dfIlw3hQhv0lwC4OjUtmUyNGkLBorF9hm1+1+c1Sw3G152CPx6Qc+WuxB4ospw4ihj0+6RJQp7lZFnmZGWcnIhzu1OwiRoks3rHevycGDf68hi1dxTMUNuFGoAythKR8MrZPyZgNikeEAB6VVlijantZgXH4igmSVIqKzrKRSoaS8ZC7ggYxlDrHyvDKXGay2qTh6QQbU+11ZdhAcsILuF3+yOAmwI4wbmhnR20XIiFht3T33/5dt9FTGOffsuLcFygMQWuFAxV77Im2KTXrbvtKekDBTaFyGkjGpulppR55M1za7USdFAlSezCL3pjXlyBDKaU1ZW4CAm1bjQakSSJ6DKlHVZHI4aDQd2JazeeE4jecpcOn29f9dES0ErZLnqulr1yLkGz2YzxeMzR0SH3d+5zcLBPWRWkacLm5gZXr15l5/59du7eI1tkZHkGVoCdZD5nNpsxmUxq8ExcnNYZjVZYXVtjNBoxGAzodjvESUySRBjHDFGARfOkoJtVoKkqa5FEY4RJVFQFEJP0esTdDp3hgLTXpTJwPBmTpym9wQgTx1RY8qoUXZo6gKVpUIVFg8k2gKa2JFFtRAY2shqakVODMiiObgNDVY/13/Xka8VVSSmRcbdH3E0pLBSuvVLH9Br2hxTAwfExmIgsy7l75y55XnL50hW6Kz2sdZpFxoC67biof/6hWlKUhXs8CcU1VhF6K2WwAZCkC41KAahgW/3RhyVuMkc0pKy1zKdCGxgOBhKloSqZzeZ1f5esCtgaO9/pPM+ZzSZMJhPeffddqspy7dpVNtfXef75F/jQh57ja699jV/+/C8TRTGxgdFoxGI+h7JgOj5iPpvQ7XZZ31inKkuuX7/OZDLh8uXLbG8/5QCumNlsyr27t8myjJWVVQGhel16/S55XgjwWlaUpaigDvoj+r0+e/t77Bzss7KyyvlnP0SSJLzzzlvsHxywv7/PwcEh29vbPP/8hzHGcHx46B5OEvGh3x8wGq26iVPG+ihKKMuKLF8wW8yJTEwcS4jQ3mAgY7aUfprnOYtsLiB24vyKauH2qIERNJZwRmFM2Sbzik4YJQrEtBk9uiA2jt5rGnOofNJUXP/yQlw2H5ROyuufttBrLjofNRmlcEItAqkUeGv8Q1aHticmutWJtRDJXFQ48FEZmFEUCdAUR3VUEi2FhJItRfDeCdQXWcHkeCp08j+rlCBG9zZi3KtmjTI77iMGWZhFiwA633LnjNz+ryO6J6o/pHpF+sSPEDe9F2kyI4w7Rl1bFi4PFgFfFnhWjSbtumpcLhDNnXdohi0HDxJECJPlDbz2kmosdRGG1bJ0gIRsv4AHmwaufCCC6oWrkwXC3LmLABq/hRiu++4YBQK28GLVygzZdHX5N2jWtwJL+p25et3At1mBZ8povSjgoIBfG7B72LSMjXJW0vuD1P0O4ur3DtKvwrZRMfcdpP0meKBS2VmHD3HPh0lHCGssQQTvuwiz7FkE4Pvbblsfz94LgdICr4n2HcCHwd37aYR1o9ENtT4/7rbr49bgAal1ToJNA6QeLU8WbPqgJYOMBx0jqq/0Rwib7lsIM0/70HXEdfMjCHiX4d0ln3fb3kPa+UlGQzwj1VCBPY0RfHY6i63b3ncWw+cEywcawJTITCzPn1vuNcqiAIAzZ+vtjXOC33XXrp+dKiLuVy+PAzSFbJ73lR6WUhHctw2C1IBSZRvHLCUVOLCpDVbVoCS+XrFeQL5+H7esvMbXZ8MYeUDdqM3Tfq8RJoGHnFuhgYiIyJr6Y0BYRmVJNpuxmM5YGQwYrawy7PVFDmQyIVtklHlO5ORZEmXgQO1KR1BfGqlOyy+Zc21lIioLZVU4aTkRyNa+VinAgu8fahPawNaRvm3r7zwvqBCGlqzpKhJnaw16PZI4od9bABF5BYU1br1eUFYF89kMjBBXFos5SZKwuroqhBP3slaAt7Kx9q5Z8i1PrJBVXzjNpvDbGOOCMhU1OaSsVO5BQB8PRlm3TG4DTQFY59A6a5tAlGuKRs/xx5jW316rqShK5+VREUUlURTXQYlCEE3rQewOUcY5LX1wwKbGpHFysJ9ED9Uo08LqtvZlfccwzvjAxLVPZqfTcSwMEQLvpJ26c7UnnbOz3wSalp0T0iWXlUmNwxCM8h1SwK40TWtWUrfTJYmTujriKHZAUCVMpyAqVpIkzpWuQ+pYJ6pFVVP3nBthyGgyrQldJzf/BkWYSuBch4wljsSHNXJC5NYYsjwXoMO441UYKnwgUl9c53W/rWV4tgEnP0GHde7/DmTDG9/OtPVMIndDaxEKo9PIiYiIjHV+zqLhZI0Am2mS1oi/tU6zqTepBdnC3OhjWqMiNAW2/STriJICTOjMYYK+BfXfNdhUN1BQB9bWdnn4kaYLAAsLVamABa4s8tYjSiOSOBGXzumUIs8ZDYdEUcTW1iYb6+uc29pgc2ONQb/ntI5yxsfHYC1xEtPrduoHjsGymM8oi1I0koDRcMD2uQ0m4yl7+4fMZ3PKIsc63as0STCGWrfI6Nh3ZazcWDFYOqm0R5HnlGXBeDLm+PiINEk4v32Oc+e22NzcIHfA4Gw6o9fvkXaSerxYbFAfLoJDKWMkQIE8EB70upq5ZMGEi4m6x7n3k62HQPitIKsJdqvYZfM+J9Oy7eECs3X0kl/N805c+32uETUpW7Weo5fc48RyWiq1Dnlry5KGf3rlFieOZdleYFoLZVGQK2t0PqcsSrIsYzqNa02+P5OkxmwbSKhXYjTdcHT7FGENqE5Kjhc8LmnqsYRWhBq+7fas3DVLBBiaIiCDghHt49v5CdlLy4AAPSb8Jii7snaWpRwxXg1iqHYQYGgTrwEV49lhI1cGdb2z+Ihdeg9lUwRa/7W2Txub1bIpW8sgoIdG9gofQRbvdrWPgF4pHrh4nHTgyq/tG4a1f1DS9l64MizDnbVNFIDUaytY9rggWTspAw+82Po6Hmjo413sDALmtdlcoVbRdyIp8Br2x7Bu2knrSwXMFSQ+wNf3E5o7G6m9FgrH1YPu9zjnPEx+quCj0fFmnGR26f4JMn4U2A7Zhe9nvLzPFD6fHpaxA6c8g4OX1Muu/+iZo1EvbRYU1PBQM5/1GvLktuBi7vwl98Q/S2lfe8nfp207Kz3K8afV9TJAqwEcNe5zOrOp/m1Pnlffw5ysQnfZU+7n8u5aqOFK95A2Z3iNZbdd1quM/gvypYGxbFWRxDH9Xt95D4hnjBIs1LVTmU11gQ0SOZEg36EB12aTubq2jQWOqdcmtj4mnJ48k6muawWcANU8rdlBAWPeGE+YiOOIyhiocJIbEZZI1qKOVJLnUS2B0e4DJ9r9jHSi/7S+T7CfKg/2iBdWABAv6ccCEoX99rTtJ+eds/NsTuRPXfX02u06URzmrIfHBwps0kmxLEsXEns52CMsIakUNQ7dJRrfei09J4oiOl0Jld7pdOh2u6RpysrKCkmSMOj3SJOEMi9ZLET/SAda2XbTaNy3+TBqd8o2EwG8Dk2Yt8TpQ2WZhKicz+dMJhNm05nTNzKc3z7P+uoa57a2GPT79HrOhQtDP+2CteRZzmI2pypKhsNh/RkMBqysjFhZWQlc6TqiW5JIhK4ojkSYOo5FO6thXFNPEJELeU9VYSqhMM6LjLiKiLsCYiW9Dr3hAFuW7B0eMOr1uLCx6dzrUuKi8NON9Y++SgNV1Ntk1jEW58OKp4TWH7UCfNIIVTKZ60Tl0Fh0km4J3FnrdefyAltWxGlFNzLE1lBETpQ5iUmMYdQbQJwy6A9I44QyL7j53k2OxxMuXrjM1uaW5KGemCUvSRJLyM40obIVsYkFyLCi4yRFdj7B1jE+rK3Fv1U8vUEnbQFuNcDmwI6yrChKYfV1u6K9VFUV8/mcqpSIa1Fk6KQpWCgWGTkw7PdZGY7Y27nPO2+9ydbWFn/x3/xhNjY2uHbtCmtrqwxHfYbDHu9+e0RiLNPplDffeJ1ur8unPvUprl6T18CVtRwcHPD6N1+nKHJWRqusrYz42Ec/zGe+5xX+4A+/yG/8y9+gqio2Nzfo9rqsDIesjFY4Oj7k/t4OnbTLysoq1lqms5KiKDk62KcsKgbDPk9fu0pZlNy4/i7z+Zy3336To6NDPve5v8yP/diPEscJSdLhxns3+PVf/Rdcv3GDlz/xMleuXhFf9kjeeIyPp1gs/V6POE7opALuhm8AZtM5YGuB8CiK6XX78oam9KLfCijqP2nfkL1UT1r1Q6OyAhaniQN+reu37fmm/q/5EGwHH2i/BW3LlS5L6plvddA8YWspjB56wjUQ6j4Kvrz6hkgf0gZqJqutSgmwYB15xRiKSOgbqj8wnk6ZO+B0PB5TFAWz2YzFbJPZbPZEy/dISY00NcaUZdN2fwvXaCXiGnaAB6ksAkhMabpKhUZ6jrBX3gr+Bg94reGj0R0hDKS3EaOwzTDQfISGuOrmnIbdGTwYFDKu9LzTQIQJovnSQdzpVhB21kcR9s3L7noaee3DCGvpKqIR9Q3gf3L1E75/CA3uBQLeqfhzGBErBF00At0bCPvi7VaZC4RBdNMdM6AJ/D1OyvFg0SFNFtWyZFsfbeuzQCrV8wkjnGndPKnhr/fYBP4qwmh7EWE2zRBg7h7wOy6vfxVhPGnEQ/jOAxAWX79a7hleiP4NmnpCoQumRjxU7a+bCKvuO8HC0nGXI/1igReN98uBk+do2TKkncMxe9p5ZyUt/wwp+6CVp8WSa1Z4AfF77pxtBGRaRcbtGA8Ef0DS47BylhmoZxmty4CoE8eehio0T2raJjSBplMBM5Z3AV1vmCXnPizQdNZ5y+po2W9ZKJlTy7/cQLf+3PCYyp6sp/ZvRT+W3EM3nwyuchJoeFAe36/LIITLBFNnKjYRttYeduXNc6qipHK2zspwxFOXLjHq9znc32dyfEyeZRIx20SkcUJs5EV4hJNrwIhd5TCesrbN1A4xDnCSfldWVoS2MVTOvgwfv4IVSbQ52aZsJgU15EW9f9FuKSsBZ0oncq4R5a1GBY9iOmkq5agiSiuyEotuhsk8VjCbzcjzjJWVFbIsOwEMV1XlJVVatv2Z7RGsa0OASZlNIdu+qCTCXpTEdQCp0KOqravU0AK2JwOPtTWhz0rhPbzmbOWCH0UnmE2PMg9+cMAmaCDwIa0xnFAbbmsODfVAjl5l+YQlhltMnMR0u13RMUqF0ZQkSc1qqhyFzFrVhDl9Alz2MAgNvGXntJOnoXklei+KLOwMRZZ73S5JLANH6a1yriF1wtb5Iqs1bZKAwZQkibBwGqym2LOaTmg1nfJmwwJRoOPk6lxddCyyP44T0k5KORe3wEwHqXOTlChrzm1NUe2Gm5j/0Qw9igeaUBu4+RCpgXKLY5dYvwE972QkBbAyb1qdOSuMdYwmfBTcGJkkkyghTUT7SJhlEr0sThJKB6bVdVgDXw5xj5wovZsQ6zpwDzaLcS503tgX7MK/rRJ3I7vkzYoNvv0kJ5Ol72vqHqrAamR8KNQieMgaxFifTaewucmlixc5f36by5cuMhoNSTuGJDV00hgcs25c5GRZhzgyrI6GFDX7CMbHR5RFwcb6BsPhgNWVIRtrK8QG9nZ2ITJsbKyTxDFpEpMkMbaqyBaLWsgfY2q7rSwLsixnMOjR7/XEBfX4mOl0SpYtqKqKc1sbvPD8c2RZzvF4SidJOT4+5mB/nyLPSeKkFuW0zpXVWkuaSFhVwH1bjGmC0MYx9XQsUVWUtnTnSOOFmkp1mwQQkAd/QjaO5QSdQDp13abN9m7OM/5ho4zCNuB0sscsS22GXnM+fDwLtP3mqHk/vwg/TWdB58jISEha2SfZqR+2xgd1KDLRtZtNZ8wXMyYTAZvEPXRGtuj+2TKb4CR7ScGfNtAUpglirBEcGwIpbZBA73GIuLmpwRneT6PLKdi0g9fUOa25w674MOBEyCjSsul5pyVlQcxcvtXVSl2ULrvfuPyrlhLue4qAUaoXo/mtgr+V2XWM177SpCBJCDbdQcCRo1bercvrBKnHJ8kKgod3xwqBg9P6UJgMy9l1TxJsipF2GCGuas8jQNMVBJi5joAPbyJgxBFNptXD2GNa1mUsQbvkOP2E5QzHo8UDqccIEJkH+7UfK9ikYOU+HvR9UvWnSfOkYG+7jZa1t9aJunNq2yowtKyd23NQWI/aH/U+Op8oENeuw2VlCO8fCuz3OF2/7TuYwvX7acDIWSDCWWyb9nWWbTvtb1kbBH+1EKGl1SsP7HptoQedZDoHhpb73XzsyBltSdBHBZMedMzDrAnchhrwarK67PKKaF+7cT8Lp+TRg00sPcbfF2rD44z7ngU4LnOzfFA66xgb/KjBEfeykwps2QQN0iQVzaY4IZsvRNNU3eIMtc3mlrTSBu5vvW7VtqtaAKHFCvHI+DxafF+uPTFwbnW1wSfbI7OkLrWdarkdH2FN2yRywcesMWCjhkyMXqt0THmVuDkBEqH9LVhLmxNKp2FxHTh7et9q6DdZZTg1AaP2eeH5ywDS9vXDfvUggKh9Tfmugvps3rudj9PSBwdsEgvPT4q2uUtd5QRdc43oDLKqcEZd5AzPKohUZyQ6VK/bI05iRsMhXeeG1u/3akaRMS78I5ZsLmCN3hc8KthmM8HyySP8Pm2/TpIa7U47f1VVtZ7IfD5nsch8NLOywpYl+/v75FnG7s4OR0eHGGB9ZU0Gk5WQ8JExJGlCnMSKyBDHEZ0kEQM+NiQONBJ9oMhp7YhWkOAf6iokK4paiR8c8iIrl8oKM6Zm2hgYjIZsbm9zvLvH3fs7YAWtdrOWiMBXOokDJgw5qp1AR6tMZLpeD1/06zZjmyLgbeqlnxFsfW5jLebuY40i7NK/4qoiLkTgO66sTLCmxFgjgV+iiF7aYTQYUFQV48Mjyrwkmy/AWpIootftUNqKRVlQYsnLgsiKi1vk3jagNEQHjtVGtQMqrEXAuLps7lv1beqCKOink77zLdKHhTG137AyQaRvlVRYykIm5mF/AMCd27d56/hbVFXJ09eu8vTTV/nQM5dYX1tjf3+Pe3fusr29xblzG0yPZ9y5dZPZbM75C9sMe13ObW5w+eIFrl9/l2+/9SbH4zEJltXVET/02e/l6tWrHB+P+bVf+22+9KVXuXfnNsPRkNXhgLXVVco84/jwgKrI6Xc6xAZmk7GMHSzdJGG0uUkcJ2TZgnu3bzMej3nv+nXiOOYnf/xHeeaZK7zwwgt0E3jtK6/xv/6jX2Jvdw9b5Fy5fIkrly9z5fIlsjxnvsgYj8fcvHmDvCjoOzHxQb9Pt9ej1+sxGo0E7KjcGxRbUpYWayOiWNzwotjpB7n2NY7Z1KSvu+7pOrGt3IO48r7XZVHW4KjOj80pRZlT9fOf2g/e+jcbsUlbC5NlD4f2I9MGX+1F2WnWw8OndmS59sOszlWL8aRzp0HermnkxKKS6H9lVYropQMhiyJnfHRMlmUcHBwwmU6ZzWdMp1Oq0r1hKiqy7LskDLIsqZ7RhCbDQNlNIcMpTGo49hFB3Q7eCE7w4IwyWpTV8DYSaW2GgEs6h6jBnCIMp1W37xoCwryHB7e+22mERAVbQZhMKgD+DqLP9Ed4xswA0XB6DjFatxB3rB5SRwXexWeMlFON3n0E7PgSAnho0gdO7I7XyFsX3HVUx0lBOe3CTxKoeZzrhHm+huSvbcRr2RSkUyaWxbuETXky6TzwbyBi2p9EGCwTRKvrVeBX8fpaQ6Qfa7TDh00dd59td56ywhQ0VVBDheHXkLZUfbTK5WmMH08KiNwAfpemK6OOnZ77DJD+1nHfBgGgnuTYmSL9XplNHaQvDhF9JI3udoyPSBgDzwDfj9T/0F3nHQTkU9af9rMBAuJq5Mc+wqQ8dB+NsqcMK51PdCpN8HpybYsj7HNrSD0pODxBQNwDvnvi4NAAIU4z5JcZbo/ylv+hslFVJ+b6E8yZJbc8ya4JVov1ozt4hocGlwoj2uB3eC9r6sMV6DlxtwcATcuM2fD3afZS+Lt24zJel7c+rpWlpcZ4+17Wv/Q73Xg+vX1tq6oeJS0DNp8Eu0kzVhWVswUMaZQQm4iYiMqWVEUp3hsmxsYJw36f9dVV8vmC/b19ppMxNi+JidwLd1lzOwSzJQVhnTkndody6UMMH4T5VE8vinsZXARx2WGNFwHX3musW9sG9VZZPzGE7VeV8sKbsqKshMllkIAxxkgd5HFCEkWUUVx7LJS2oiwqpvMFx+NJ7emDteSlAEGqC2qt09N10fXAUlSViKm7NrXGELuXvRWmtn0xEdZEEq0O4xhhHmQqq7Kh6bQMeGoLj4f9py1GHuIYDwsO1fVa9011o5M2KitLVernbL0m+CCBTXWyJ8e0cb6iUWCMoJofHgCpX9I4wS1d7dk4wvQgiWN6vR7D4VAis/X7ci3nspflAurkWUaRSyjFOEA+2waRnNt8MIWT4VlvPMJrtAV9FSzK81xodUUedBDp8JPJmPlsyuHBAdPphCROMKumBpuqqiKK49ovVZ8O6rcaR1qnAjIZY2rGSGRosJZqHDAsr0EQYgWcKiNAUuU7cbfXY2V1jfl4wjxbkMaxRMRSi9h9ZJ5WIb3wYdBEyEMmU0OGxLh9VkNhysE2AJ7kAq4algFOwRNawCZDjqDqcVVhKnFpM5XLqyt3BKTG0Iljep0u8yxjPJm6CA+5aB5FEZ00JSsKbJGDrYTm6abRKHKuVUYxIYWRtAVw6D4OcKKekHWa052+qM1raCVoCMswfKf0KRetsYKqFPH8bqdDFEW8u7/PezdusL19jitXnuLC9jYXzm8wGg65+d5tdnb2GfS6bK5vsJgtONjbI8szLl7YppskrI6GbK6vcf3bJfed6HdsYNjv8dJHnucjH0jioQQAACAASURBVHmB3/it3+VP/uQ13nrzbQ4PDoijiF63y3AwYDabs5jNsVR00gRrIV/MMcbQ6aREcczKaMSgP+D+zj3u7O9xdHTM7v37jEYj/tynXuazP/Dn65q49d51/tn/9U9ZLHKef+GjbG1s1J+DoyMm0xnzxZzdvV2yLKPb7RLHMRsbG6xUKyRJTKeTOgE9FTi0WFvWTyBlG0qdt+m2gU/1CeDAEFlHHa6k3fRtDdb1mBDvwb+xatzD+GPq+dGBsac/YkyrzzT7Tv37Ca2p225zp70NDo+F4IFZ+Qh8USSMvKoopOdXMsbyLKtFLnd3d1nMpV2Px2MWiwXz+dzP01UP8u+U2vBDJIsHKnKab/jbLKAwGTwLQI1HvYYay6E7nRqFdxFXoDFi0IXt2nXXfA5hnICIl2s0sz+r1EcMZRX1XkfAibcRw/cWUh/nECBK3XHOu48KF7f1mUK3I2VPHSBuhl9bkg8Vcx8g4sbn8TpRIO3YGjZPDGx61BQ+6PoI+LLDSeBGH6oJPvKgPj8VkDuL2fYoaRVxa3wKac9ziKD9uwjg9BvuuG18v9e6fdj7J+4+a3idLgWLQj0uFZpX9y0VtdZyh2OnRMClHUSEf8pJHbMufixqJLshHoh5kmBThgBjPTyYtIb0fY2OlyNtB759txHQds2dO0XmgxsIMBWWRwGsNYSFtoqwz+4i9XqXpgabjqdQJL+PZxSGSRdzWkcKLILU+wEyFr+LY6cxbJcAAeG+Zb+X/f2gfcsZTC2D8AEARANs0Z/1834JwGPbE5RuUu2g1stY96LscZhN7W0PCzgtY/2E3yGnpMlaOvveWgB9oVybCUvO02NOLVuj3h8PdWoDm2cBncvOPXO/Ax7iOJbgNsZgrHxsZbEaaS5K6Ha6DPsDjrOcyXjMbDLBVpUjuprG8K2VSRrV7rx6AvsqMmo7yrr2BAFTgSbct7X14/K0x2a9zx1r1BAMylwWJURQilkqciRGPA9iE5M421dJFlFUUZYVZVWR5TmzxYI4jklTyUEZ4AwhYdMAGuimrAQkM27tbiL38tgbnvJmOTrpPug8G2v7PQSZlgFK2kfa+0JGU/h3eOyD+swySYuq0nHj8lkp/qJ5PvOSHyCwKSh82wCp6XvG7w99ChVYUt2OGriJI9JU3MeGwyFp4DKnDCI931ofcQ4CHSXHSogDdoJkd/lkGeY/ZBWEYt1tpL69LQSasiyjLEpHAYxEj0Tds1xPTWNxibOVpTJlgymlIuirq6sMBsM6MpVnWmg+OFE+4ww6a6yLDEft3lhVEglNJ5QaGNF2wzAajTh/4QLz8TFFWZLlOUVZUJQltiodglU5Ixo/QdkqMHtdOFfr1yXGQoJ3oYqsFdFuB6rpderIdi6TBv+tJY+C364mwCHNNimJ9F6OXRJZQeEprMyibpLrxAmrwxFxPGM8m1PmOdliIZHYIkO32xFwaFFJ5LI8x1SlTDzBw8oARLWyj2tj/0bKT8C2/luAp3BStvUj2PhNQZ8T0NGzqSIBWIuSKDVOjNswmYypHPgaGbh04Tx//jOfxhj4jV//LayFbncgUdeqkiTCfQwmSdhcX2VrY53Z+JhbN65z5+ZN7t29w9bWFj/8F36Ajc0NIhNz9+59vvXNb/HlL34Ra+ETH/846xvrnD+3xWAwYHx0xPjomMGgz2DYpyhKFvMFkTH0ez2SJOZgb5fb05vkeUYEXNg+x0sffYG1tTXOb18gzyq+9OUv89U/+SqvvvoVFpMp/cGAlz7yAucvXCSODLdv3WQynXHkHrDPPP00cRxz6fIlBv0+t2/f5v79HSoHYiRJwmA4oNtJyTLxue6kCd1ul7KsyPPMTcriT143RWOy129TDySrQKuRvpnEkXuTIszPsiEk2Hy41KCTA2HkQewWZ81usCSFTn3L9z/JpPMqeCA/fDOjkT9CkEmPkQUgNeNSo9HNZzOKPGc6nTKdTpnP5xwdHZFlGfv7+2SLjMlUwKc4jlldWSVJE/r9AVV5kd33eizGeCaIuvooq8IE+1RzCMSADAWLFdBQF69ecH6CZ8QoMKSuMIfuGtcRZsImYuhdAH4AYRF8BTF2u+462/gobn13/jcRZo7qt9xBGDoaTnyIRP/ad/f6U5dvBRmex4tudxGD9l08ywN3b2VUdVyZtX40ItUAbwjnNJkzveAaCphpnahxGoJuuLxcQVhNmsdjvKuf1qXmJcOLD4fud6Fbz3U8w+tFlye99mt4cfTM5e2yK5dGKdtDjPT7NEGrD0JqrGaRer2I1McrSL/acX9vuM+LSB9ZRcoyxUcOvOeupwCBMniGSL1p+6u2ku6b0pZUbLouQjNy25Y7/0WXx3X8QkMfbp3go5HPwuvNERZeifSR3B236q5/2eVLx9GLrm46SFtaRBdMIzBuu/JeQADYTyB94y7Sp1TY/LL7KGtO3Si1Hz3JlLvrjlwed/CBAjYRQGnPlTtz27sIOLqOH2MTpK6+jdQVyLjsunK/gvQNnRPWEYbcGwjwFLLFvuXOj939h4im2jrwZZq6YSN33eeQcX0eqfdjBDj+pitT+625zhsjBARTUC90yR24/BbuGA1a0O5338X0sMDMcgvbdfxTHtHy8ur053cbrDnrlvVxbqvRt1dWo98+WnlOA+aWGdDt/aE91fimCQTJvpPVcxqzqX2vdpkelvlxItXr+eVukw9/mUcHrdqpATpEsTNXTB1MSsucRBHWOjJCFGNLCXS0mM0lqlunU0ckx1pZ04J7eWlrEMoq+mC8eeQsOEppMcrgBXltx1ixHcVtzts4p4FNRs+uwaaTLp/ORQBbOne8qoKqwsSAI1fEkRIyYkpbYirpa0VRiByKs59DdzvFHaIoqmUXtF+q9lK4bk2ShLZtHX43ymUkeBSWhnvdaUCT/g7XzSGoFDKb1D44DZAKr+u3Cf5iFS3U9rCtvvUQXfuBYJMx5heAnwLuWWs/7rb958C/hzySAf4za+2vuH3/KfDvIo+H/8ha+2sPzoYviLtGg0UkYNPJhlLkryxztz11ob5T0jSl00kZDPs12JQkCZ1OR0Jho40pukgq1lVVFbERtwzvYueNonYebCvfYd7P8rtslzX0G83znPl87lzoFuRFXtP9NJ/GgkkQsClJiJxOjEXYWGmaCtgURXS7XTY3NxkMBvXAUbEvPwhOIpnWDVZ5NmvYU9lXlRUlAQvKmBpo0rS2vs7Va1c52tuTkPAmIs89NdBaN/jdA0Nx3sjxeCJ3Lxe7q7ZHjDVONsM4oTpLbAxpFLm1bimDITIo9zIEmiCUIFCoKZiqjISoN2VFasWtzhZF/eJXhNFlu4kFpe4lCVtrayRxzL2dXcosYz6bMp2M6Y6G9IdDSiqsFcG3PJN8pZ0OcZy6aVUmmTjUy7KAE5r28ESA/Lv1h1sHsHRqbj2A9WGjfQ9Ez6YsCtI4oZt2qKqKvf195vMZWTYnjgzPPH2Fv/SjP8Trr7/B3/t7/wWHh0d87id+guee+xDWgU1pZEgNdDoJ589tsb29xfjwgLe/9QbvvvMWN6+/y8XtLf7Kz3yO9fUNvn3jNjeu3+Irr36F3/nt3+aTn/gkP/ETf5mV1RUuXLgABt5959sc7O3S615kZThksViQzeZEwGgwIO2kvPPmW7z99jusrq1y7twWVy5f4m/+jb/O5tYm1sYsFhW/9qu/yT/8hz9HvpiTzaacW9/gez79aa49/TR/+vU/5dtvvUVeVSzKkpWVFV786EdYW1vjU5/6FOvr63z+85/n7bfe4ujQYu0dRqMRL730Ev1+n7Edk9mKbqfDymhElmUcF7nzwXZCh66fL58PvFh46B4WORH5yJj6DVVUVhRlSVXZWiy7DWYb97ZGuo9/INS3XbKO8Y+SZYucdu97/+ks9zkNBxsC/e150oCLpCLgY1WWjI/FVe7w8JCjoyOm0yl7e3tkWcbR0RF5ntdjaXV1lc3NTfqDAdsXzlPm55ntDQVsUtc1dYVZxYMioVGsRvBRUE0WMYYUqFp132oI6b4hYgSN8SDIHmL4fdOd9zJi2F4DPoeARlOXh3WEwfAy8BPIE/ctdw11/woBla8iIMJFxNj+DGI4/xE+wtuWy9NPIeLaNxGjb4aATRqlziCGawimdfAT5MDlTYG6hStf5Lat4IEo1UBK3fYVPFCl99PUQxhNTyOC0dt4I/IWnn2j91oghmsfMcoVLFPXpwp43Z1rgR939/+kK/OfunMU0LqEgH6biAE9AP4R8EW3f8KfmSG7NLXBpiHCJOoCP4j0p68igMlz7vMSUsep27+HAAhfxtebAoPalqt4JpSCFP1gnzKKwnyFr4eh2QeUFfRZpL9u0wSbFNAMQck5zbqfImPgGB8RboS02UVkXM3wTKTvc+UvkPE3QwTl95D+cREBQzZdHX0WWQF/FelnH0YYWp9yn28Cv4z0i12k/z1pEDLDg0m3XP6u4tl8n8Kv0md4V8ErSJ1WLu9HyNzxDTzY1HHXeQr4C+560HxEDBHw+xA/rv7EXWsL+BGkPb8HAY1eRdpOgd+LSJ0/jQd477rrvYP0OY0MGSYFOdddvs65/IZaYyM8eLXn7lcF13rMcfq4IMRDA02nnS8n1H8/LBjROGop0LQ8D97wdMfoerx2pXt0oCnc1t5uT10bNZN/eWYaYJMWpWabnJJssA4Lzwvz+viAk7cmltf1dzd5wMGSxJKzyDgSRVXVL7QTE0MkbnZJHFOVFeOjY/LFglQDRsVx3e5WzwVnGTovCxe1zDjwSEAdqQOxf2zTngxWneIY4/bb2vHTv451L/a1ca0DZORvWVwZxNXPWOpI4lXhXPI0unQkR2o9lKWULbEJRVlQWZGxOT4+JkkSer0ecRzXHg4qQQJNbydrLYvFol63KrATYghtoPckhhBhnCxKWXp2UyhfEzKVzmI2tT+algFSp4HBAuiZE9vbQNUTAZuA/wX4+8Avtrb/N9ba/zLcYIx5CfhZZBl4GfgNY8wL1tqHkrJU1DUEmUA7let6daVW7p5eR0lFrzvdDt1Op3aVU3QybGz/qWqWQG3QGOebusRt7nHTMuRw2THWehc60REp5VNKmHjrxJxtJECZwUU2Q9DYyjgXQmeMxQ4w63a6vg4i1b/yA1d+usFvNb8WW6kjW1AHDuoUo80BTdohoRZn63Q6rKys0Ot13URUUlXKavIAk3E+egb9VmaO3llAJYNBSmqJra4rBGxKgI5RW1B+WHXydQwRybpcU4WgPYdIy6haN9AxBhuJX21ZVVgjGleSD5kUZcK2JAb6nZRFmhBhKauSxXzGdDIm6XYcyyzybLIAPNJFtEbWss6/wSiqbAJTP8yq+1FPyCdwAn+if0hYMJG4n5mI+Xwqvs1QC+aDpSwLppMJs/mMjfUNLp2/wPr6BtPpnPHxhMODQ8bjMYNBj3PnNhkOeuJRaaVfJnHCxtoqGxvrHB8dcf/+PdIk5pVPfoLnnn2Wqig5PjrmrTff5Pade+RZxuXLl9nY2JA+aiFbzOt8x3EkAuWzWT3ZGwN5tqAqBcC0tmI0HHLt6lUuXbrIYNAnAr7xzde5d2+H69evk2cZg+GQp688xcVLl4hjif4YJ4mwqGYzivmcJI44v73NxsY6qytDBn1hb82m05o5aLCkiYj1x7HMGyqiXpZlDRhpCNNIIcUT0SltPb/VixVjatDROhahH37iNgbypsLP9OGDpcJavWO4qPIP99PS6fsanemBRz8wGdPsru5y/u0jS1/kapjYonABFIqCbD6jLAqOj8csFnOOjo45OjpivljUmnexixjY6XZIkpSNzQ3Onz/PcDjkwqVLZPMt3vpaT26ihvQ5xDC7gGfLxC5v64jhfg8xjmaIgVshRtoGnpWkodsjfKj3c4hheB+vS2LxLm5vu+s8jRhIqin0EcTQUsN5GzEYpwg4tIMAJCFXfYKwFjKEbYAryzkEyHrZbVtz10xdeXbwYs1h5C2DGIbnEINuBR+uPnbX2XZlv+TKN0UMQgW7Nl0ZlBHTcdsyd8wCATvmQeNnbluCZxj1XT0q6KAspMjlr4/XpLlJU68HPHvnHmJsb7k6ATG0X3L1eeT2XXT32nH1ocygtuvcByWFQ1XFrTO8i9oc3w+uud/qNqdspl28xhV4Rp328fP4EPWJ+72KtJFGG5sEeZohbKkSYRQp828dqfOPI31jGxkrylpTAFNBxxEy9lKXxxCUqFw5xwigmOKBjT4yDhb4MZ0hgI0KeqvI9RQZi133twLRTyP9XAWxr7r8J/hoentI3/9Ost0UMHoXX4/6fRWpswppU627LaTujxBG03X3Oxwb6nJXuXLENDWbjt1H3Xx1olY24W3E1XDd5SNG6swi7a/9ToGvwl3vHWSMqwB723qIkHliG+l3VxDgMGSPRnhX21FQVtXhUuDplNRmDpyVHgWYeBTAqfnc82x9v5q1jaNNsDYMDXRr/Xd9HcJtdUZOZMBanLyFu0cLeFqW/4ct42l20LIUGtd6bnufvoBqZa9x3NL7nZGFR8lj4xy5oeRTG0DzevYt5Ro8BJioNsSy+m7kJyIyshioy+KAIL2XvGN3dpMDk9TejCLR9DVufa9AQ2SoCQa6crUIUGT0om6PcdsVRHLWux87krvanUwlRsJHlw3u1Oj/bs0YnmGc/W5NhDGVt7mU3IDHDuLIC4XHSaKoVg0alWVVb8MYp6taETsQT65Tm7T1Nmsr55on3kbKpqoqiZ4XO5e7E/1SAV6rL4hDMMegsj9BN2j81i4X4hztl7m6P/SQAJ933a71JH0ibGlf3odNDwSbrLW/a4x55iGv928B/9hauwDeMca8CXwv8AcPPDOYTKLIEMcqkKuubm26V1V3FnUNGwwGpGlKf9Cj3+/T6aQMh0NvHBpDnmdOeKukKGRlomBV6iK8qavWMqBp2YOlyRBaWocNMOu0YxTFnM/nTKdTZtMp89mMxXzGfD6XEJR5Dk7vh0rqoN/rUZUl8/lUmF6FTBKpiz7X7/ZYXV2VOqmBj9hpyRjVK8MYAX+EcWS82DcGVQw3LuKdTjgmimqgSSewvCiILKysrJBeu8qNt9+ishVlUVAUokGFLV09V0QOfIocwKVAmXFPjqgGmSAhci9ADbHx9ltqDL1Ishk18uMn+noTiiCDccJ3QTeUsJhAHMdkxpBZmFclSRwRJR2JGFxVRNaS25K8tPSTiHPrKxhbkmApipy9+/fodTsk3Q7nL10kS4R5Z3QiBwjQ8qIsnFi7Gwea70om7dAtUCffpvvc2UlE80riXszq6hpxHHP47j4H+/tsrG9w7tw5ecgUOdlizu1bt5hOJ/y1v/JX+IHv+z7KsuDtN9/lrW+9zc0bN6jKkqevXeZ7P/NJiXIYA7ZkMZ/S7azwwvPPcfnyZX7pn/wSf/xHf8zP/tt/k//g3/9PKKuK/d197t3f4X/7xV/km298i+eff4Gf/snP0ev1MVjm8xk79xcOPa8Y9AcsFnPu3LpJmnYYDIYYY9jf26uBvSSOee5Dz/JTP/k5VlZGrK4MODw45L/7h/+A3/l/f5fpbE6SJnzkhRf46Z/5Kfr9PlVVcffObQa9HteuXuG9W7fY2b3PoNflez71CltbG4yGXbAV+XzC/bt3GAwGbKyvkxjDsN9nNOiTzaZUec5sMmZ/5z5pp8NoOMIYKKy40UVOFD9NU7qdrhsuAghl7o2ItfLQFZA4xdqKxXxOVVU1mB7HhiQx/oGv0TOspaoK95CL/ANEwcwQd7LUQPGS2ejsjhSAW+8nNSHe4NpugQtu+OriwgkxFpkA8YvFQqjeiwWHe/tkiwW7u7vMpjOOjo84Oj6qs5ok0uc7nS4XLl1kbX2dS5cuce3aNVZWVrhy9SrHh0O+/sfnuH0DzxD4GPBjiHGj2i9qUL/kfn8LMUj3EWM1Q4ycFxGj+fvwwFCCGEGrwKeRyes1xNhT1kiBMGW+gYAjpcvPKwi49RRiLGnF3UeM4ZvAP0cM3bbuyh3g/0GMuwgxzl5CDO5LLi/W7csRRsjrwBeA38cbh3rNBHEjegVhAV1DjHEVMX8BMQIXbvsbLl8riDD0VQTguur2K1PrE+68Pbfv991vTfuIns85PFCyAfxFvDaNAgTKwIoQ3aU/xEcHC6NeTd11XgX+e8Qg/ndcvfwQwupQNzw1wPeB/9PV+1t4QekPItgE/oGxj+Q3QvpmjDC11A1sDWmz2+7zi0gZb9AETLT/XkT69zPIGFFW20WkL/wI3s1qJzj/HvAvEKDqIlL/FxAg9Roi7K7uVnNkBXkTYeN9BhlDf8Nds4+Mnz/BaxOB196aA/8jMgb/FvDXkPH0t9wxY3fcbyKi328i7amurXtIW68DP4P03xHCJiwQkKvE9+Mvu7K96/K0zIXwSSWdLw6B/xv4V8BP413UfhQPsFR4VzMNHPBNV7Y7CBitgQLAg1Yz4F8jY+5HkXb6OjJH3cO7FIdi8lNk7O4jDMCfRfrMX8ZrX5V4d+ICAYNuAP8EGYu3WQ7gxsjc8Wlknn0ZASS3abrSfQLplztIn78N/Ir7vsNJtpRWaOvF8MOkJw00LUvBu+HWjuZjXH82XlJa96LVArrOlz2uvOHigMb7JGub/H9d75sl+X8UoOms/UuLGQBN3niWjDbbaslLrGaGzrzHowCNp15HLta0/v1NHmilh+v/ZYCS/nUqcBUcH8cxxBIpuygKp1VkqEJiR6SyHVYCBRUFRbagKgo6wx5pLJqYZVnK/rLEhuepqYKloBJNKCPfsWuN3NmMYrdI57QOmLPOm0QEswkAKV/QukTWgVKVl6lRsErbSyR0UiyGsirBAWdlUWJMiTEVMYZOkmKtJU0SLBYTi19NWVYssoKygiguJJaGEbHwrMydR0FEFItua2JES7YoK3InuaJ5jrPEYRDWyfsUtS0dF6oTZSkr358rMUSpqjIAhHzTKlhUA0G+clAQzx+n/dgSRQooVQFzqqRwQdbimJr1VJbuZbYy0kphOXnd35a3xAPS+9Fs+g+NMX8LeeT8x9bafWQZ/IfBMe+5bSeSMebvAH/H/RVsD486zbcwRCZNHcWt00lJHaOp00lrV7KQSeCv5X0ZQ9TcM16a6bS3F2c9jE6jpi2jaoa0ttKFiFc2k35X6noWAFOKPFtr6ohw4IEtNVATx6zxbK1g0g4fYjp5S8Ykj25GkwHUUnVR9COotaqqKE1FEsf0+z3SNHXX8mLU6iIXWRzS7BhOUCPPEYHIHPrSvBLwyVCzm2TtZEmNsJ/0vPYYCB/W+lsZ13Vx3IkRwlayxgFPDgBLXZ0ltqJERZfF9bLrovzJC4CKbDEXlkueO+S8yaMSXpif8GWyBKtR+Yytjw4jjNTlMpzY19p1ogJC6qUxAkBVVUUci7tlni2YTRYsFgswkMQJa2urXLiwzZ07d3jv9m12dncxRsS5+/0eg35fjP/5wukUVbVAswCLIoK+Mhpx6dJFDg4OeeONt7h9+zbjo2MW8zmj0YgrV54izwpm87l7e+B8ozEM+r3g5YJx97HkeUZVlsRxzGg0Ym11lc3NDXq9DkUuTKijw0P29/fpdnusr66yurYqQGiacnh4RFGUpE5ovMgzZpMJ+WJRs5XGx0fk2Zzj4yPmsxm9bodOmpLEMXmWsUgSyqLAViX5YsF0MqGT57UuVlGIUHycxESRZ0RJWzg2o2MyVo5pGceRi+4o4LOtKmynQ1UDTupaZqicn7mp55iTb0vqxaMN/nZ9/c/KPm68kQznUX2j0jjYzZcV9fxYOE27xWLB1IFO0+mM2XTGfL4gzwvHau063bp1+v0eW1vnWN/cYGtri42NTUajIaPRCmXel8idenOdHEKDTgEX6343IhUE+dXzLWIwzRDDK8YzRAo8Wt4qKxPE6L+HPEUrd/8B3oVJNWoWiHF8HzF8D/DivJpyt90ggJiK/m65Y3vuvmrgH7p77yDG9rKw7Qq8FEF+p+64qfu7CsqodaST9gLvQpjggYUsOK49keUuPxYxGtfcMUN3L3Wl0frVfOy645X9Eq5ktdxjBNBI3LExXvQ7jF6n0bbuueOOl9T3BzFZpOxHeBHwEHxQ5dMpYozfcp/bLBdp1r5f4N0V1S1O+wSc3o77eBbQGl7nSUERi9T1scvPdYQpdRXvqucXBifHEUF+lD14011riIBjBg9+HOBduBRY07G/4/Jyy13jPD5KYwcPNCpoctudo5Elv9NJQa+5u/dNBBwaIWXU+tR2nrry6LGqN7ZsXOj4URbf0B1/Dz/XhECrXuMQmbtWkDrP3G91m9V5QFlXd/Eui7c4CZiHSece/Vik3mudAzxQZYLjls3VrSI3/n4A4HQaGHEWSPEwAI3eUpnPfnsrL4GlvzSfwfkN3MNQ6+00QKbTyoM+ClWU2xuZjwOihfZYmz20rBzLGE1aNimXXsMEQNpDpoYBwIn8nJaX4JRGlsySfcuYWI+Uvfb5LO+rJ/6uQSuxD9WmO1E6E7LWrLf9sLVesF5TCSAiqxI5UEWBsYCP5DpNrc9knZSEq18bYG51ACT9hCBGUKdhEQO4VPIbLGZrZhMO9NJ7qsuY2phRVAcBk+MjR7hQqRcP9Kg8BUBTM1UnlOZ62zptVfVaiCKvoaRAmf/t26UeV2oPttbydR/QMp0ynyzfR5BvxVZs45zw3CYTavk1HzY9Ltj0c8DfRer07wL/FfC3H+UC1tqfB34ewJg46J1+8rPW1jpKoqukwluQJKm4hSUxg36fJE3YWF+n1+/X0Z8A515jAyDHdyJNAjJFngTj6G2t/NbH1ue0WEp6TPv64b6wAcO/FaEty5Isy0SvaT4ny+Zk2YI8W5BnOZVjeE3GE2bTKd1ul5XhCGOEoWONIYkFSR2Nhmysb7KysiL5tjTFw2uXQTeY3eRirRMEtxKNTQhCETZyg81ARERkHDvKCNhlMFBZskVGZXK6aUq/cZAUrAAAIABJREFUs0Z30K9Fkq0zymNjhb1WWrCVYzhVdUQ5g4jORcZHQYgxpEZcHFPkWwPVpNbSr+RYg/oM49/6aPn1IV7VRE7ndqcTsiUrKhdBwNCJDJELE2AjA50ORWQocogrQbFzSogiTNpl2klJogpTZRzs7VBVlktXrxAZ67TAIqyNyV0fj52IvYKHYChtIfRPa8FEMrm3x0/ru5nM0r2dNCXtD6mqivfeuyEujWXFaDhifW2N7a1Nbt26xTe+8Q2oKp5/7kOsra7x3IeusbU14ve+8Do/93M/D5Xlox95gXNbm6ytrpNlJbdu3uLu7dtc//a7RNYyHY/5zX/5L9na2uIjLzzP93/fn+fll19mNp3x+je+wT/4+/8tx+MJH3v5Fb7/B36AVz71Ch/9yEf40pdf5fP/7J8znkw4OjoiSRI++9nP8swzz7C9vc357W2++cYbfP7zn2cymQjwl8S8/PInePbZZ3nh+efYXB8ync74+mtvsn9wwIsvfozVlXX6gwH9fp+yLHntq19rjOeyqihtxTtvv8U3vv518tmUP/3qZ+j1e/zrP/wDbt++zde+9hr3795mY23Eh559GoBv/OlXKcvK6aGl7Nzf4d79+0sCGODYlqLptL6xUbvsVrbi4OCQxUJAvizLhNmUutjkVsCk1bU1+oMBg8GgHtM6liGI0rbkwaHXaSyFdNVJc/Ppqbkwfb9J5/dwcRfOs203Zq3H2WzGbDZjMplINM7JlNs3bzGfL5hNpgIyJQmj4VqtGzdaWeHDzz3HysoKm+e2GI5GpGlCmnYwxnB4eMzefkaWXZAi3keMLGUr9fAuMpr23UcFolUcukJcQVQH5auIgaVuZmqYqavNPU6+wVdg4+tu/zrCWugjRm4HMcbGeGaTsqsKTjaTuhTtAb+OGIy/h7BKVFunQIzHGcLu2HOfZQyAAmFkqQ7Lv8Ibehavm/Qe3ohUN5nfd2V4DWEl6QNIDdt5UH+3W/dVN7pd4B+7fF9BXmkpwKflLV3dHbk6uoV3j1rWjbW97rrrjxBwYw3PxNBw7BOE0XZE083vg56OEdDmAOkzGT6qnvbLfaT+x3idrnYfOEbafYj0fY1q1sFPE+oqd4wAGmGdl/gIaP/UnR+6m6Z4sFX1wg6Rfqn995w75htuX8iAaycFRH7TXWMFAYwqfBsq+64NulSuDFOEGfOvERbNMzTBjn13zHX3CSOyfaeTgtEThMH4h0EeQzc3HR+7yNhVptuCk1HyFHRMkfHTQeq6785TwXNlEbbLuo/UwX2k/Yf44AShQD8u328jfU7752l1VyJaansIYPgFPPgUPsd0Dpi6Y4+RtleA+32kxzW4HgZoUpNddVXDtAxsMmqNtwCZGvvTKLYYt543Llx720Q+NdfuEzU3vY8Uat60wZdlL/Tb3iO1WHN7jePKGd7jtOs+qdR8x2QcXCF50TZp25sPk5f3w66q11Ega5woYj6bkeei/1sFkc7khW7wbs3ZgQYLBuLISTpYK7rAVUlVCTtH3Tp1aRla8OFLdYwIhJd4AkMdxRkjL5ZRIRf/bVD4kLo8J4AQXB93QBgIs6njmE15hTCpKktVlJRxiYnFta7jGE1JnMo7jkRkZubzeb02rYOFJQlJkrBYLE4Id7cj1ofr2fA4eflc1H05juP65anoMTtCiauztpvbsjZetu2sfaFmk350ba15VM1UW1mscxGso9HVLfFo6bHAJmvt3SBj/wNC3gd5pFwNDr3itj3sletJLARhQvFudf0CCeWYJAmdrjCZ+oM+/X6/BS41I821G/4Eu8cqshqglEsa7kEuc6c19jKwSb+10cXNT9yqQlZTVWsdISG9p1MBV4YIMu3+KaDU6XREh6fTOQGSNSZwTB3ZTvFiRa4VHSeScI4mVjYO9f3qunTXKJ2LWC/pkva6TpBdABsVTDbIJFYZh9JaS2RDsAlirAtX6cAmY0isgFuJjYiMJbFOQsEi21AdKDfduWekcRN/ZF1duXLpvbTfVRZKpyGVmojKRBTYeq1t4ojYGDpxRIl1rnyV0EDjmE4UExt5rC9mMybJMdli4epINLTKKCJylElxX3TaTIpsI+5CVt9G1K1CCyuwfrVgdNrWnfg3eO4wFblbLBaMx8cURcHKYEi3Ixpn3W4HW1Xs7e6SJAkbGxtcvnSRtbURaRqxu3efV7/8ZdbX1/iRH/5hLl++RLfTFTHB4wn37+9wfHSMAfI848b16xwfH/HKK5/k05/+NJubmyzmc3bu3+crX3mVLCv4wR/6ET720sd4/sMf5plnrvHGG2+wu7vLoWMjdTod0iRh+9w5rjz1FFevXmVnZ4eD/X0ODw/rCJOrKys8+8wznD9/jm4nZTqZcP/+LoeHR5zbOsdwMGQ4HDIYDLh9+zavvfaaRI/rdDCREeH6qmRvZ4d999nduU+cJHzlK3/C22+/zd7uLvPZFAOsra6wWCx4Z2eH+XzOhQsXiFZGzOczJmMRqZ7NZg1xv+FwSL/XoyxyAVEd69JWFUeHB8xm4i47n82I3NxmTOTA45gojmt3PBUtDMWzmw+2JXNQOL7rzuT70MMvOpdtD7rmEpbS0rOCuTCcT9tsU01aNo3Sqe7Gk8mEo6NjFvMFmQPkh0lKt9tjZWWV8xcusr6+ztPPPMva2hqra6v0B4OGNt5sPmc2wwsxTvGMjSleLFzjRFiaEc6O8ACRRQwxFd5VvRPVJtLzj9ynLYIdVvWu+2jUM40mFhp8+3j201kp1HYxeGNtDTG8NYy6ggRHyy9T50/ZHjuIURo+ElVrRbVdlBGW4XWlDhDDM8yfigwrSyPU+dFjpu73ofu+jQBJClLovFe5e+3h2/GspIwuFZTuIC51m0GZFaxZuLz9/4HRZIJvZTbdRYSdp/jIcwv32UPApmV6OZoyBAhSbS9lSSWtY7Tux63zLZ799C13nvZFBWZDzS4dT+oSpSLiFR6QOgv0s64s7yL9ZRUBt7RNM6TPtfubnqvspHfcZxsPwIzcMcpyO8D3ze9W0jxmQR7PuTym+LlH+8JdPNtoGWsNpH20f2v7XcfjDrr2OG3e0f50jNRtD3gWaTs9T9tljLTrLNh+Vll1frjvymJoli98VGn/y/BC8Q85bs8CLJYZdmcBAw8HGjSfzg8Em/yeE/vDYa9LxQa49IDsnMyvbVQvwTP6LCO3fc3TmEtn7Vv23c7nMrbUMmDnRKms9yA4Nd8sN6/DPNc2EFrPvraX8a3kvu7o8OKtmzXK8DB9qHGMcetMQZvbQatCUEoJCcr+0WqOHDvKqGeKtcG6zraGnGc2aTHU86JqrD2pjwynAjFvfQX46Oa4NeqSsRbYqro3MmIDVxiiqCQylbdr63K7l7VVKevrqpL1dMMDyH/qSM9n9FH93bbroyiqQR7VcArBnma7+Aq1S5bcUv3L8YXw94OAJ4+veLKLCpTXdktknP6G71bW2RGPmh4LbDLGXLLW6jvHv4q8owT4PPC/G2P+a+Sd4PNIrJsHp8jUva3IcvGzVOMJcTuBmG63Q5qmDAYDVldXSdOEft8ZXkZCuOtgsFCHxpbITrHzDXUDxLQBp6CVH5AeFm3UTqjsAwXAtDGTRMpUFCUHB/vMZnPG4zFZllHkRd0JOp2OsJ+LIxbzGbExDJ1GVVkU0mGsWDqdjrC+BoM+w+HA1Y+4cdkA0JL8uHxGEXGZC+JZD3SZMBWBNY4WZKKIqgRjSpI0EZDCOjpeVbJYzLFlSTeJGcZDkm6XldEI8pzp8TFJWdIZDkg7XSoj4E5kLZ0IjBVAyMish6mqmsEUGUM3jmuGU2wMsRWtp7SydEqZ1GNtX9WZsvogsBgXsU7au4WcGyhLaR9TWaJuF1RUvgQbOf9fY0ixlBF0jBV/XluS5xUpFefXN+ilHabZnN3dBft7Oxzs7VJYS7/XJS5jFuNc2DRFQZ5nYCs6aSK2f+kmKVvKQ9BKYxjttHgkv6gkuh1YrLECxMWiYZY41pniCdoXu90uly5dAmB9ZZVet8vOzn2+8IUvMD4+pt/vs762xosvvshTly/x6qtf5Vd/5V/wlVe/wnAooA1Qg79JGrOxsUaRX2FjY4PKVnS7XT728Y9x+fJlXnzxRZ599lm++KUv8gv/8y9wdHTESy+9xGhlhT/36U/y4eef597du7z++ut86Ytf4tatmwwHA378L/0Y2+e3+f7v/wxPP32NN998m9/93d/hrTff5L33bmAMvPLJV9je3ub55z/MM09fI4oMt27e4f7OLtfffZcsy3jhhefY3NwgTTukacJ770kYnt2dXb70xS9yfHzMpStPsbG5wQ/+4F/gZ//mX2d9Y4PnPvwcR8fHZLMph3u7XLpwno+/+FH6gwFvvfFNkiThqUsX6XW7vPzyy1y8eJG79+5x584dqf84Joojet0uceydQt98801effVVet0u156+xnA44rPf/72sr68xHk8dYyvCRAImDYd9DIZv37jJzu4+WZZx7+5d+v0+F86fJ4ljbBxjrWUymdQhWxOnEZY4LbqyDKi69QwV1X+cOuvVD9LAqrBgwpXVw6YAfLJVRVlV9elGFzWRRAlxCCyVmzMn4zFZnrNz/z6Hh4f/H3tv/mzZdd33ffbeZ7jTm6cegZ4AEAQgggIpWoNF2nTk0mjSGuy4UpWUf4mq8kc4VYl+SyRXYperUpWfHMeW48SiHFs2bYk2KZERKZAACRIAgW50o+d+833vTmfYOz+svc859/ZrdAOESEB+q+v2fXc6Z59z9ll7r+/+ru/i4OCA3e0dsknGaChL1SdOnqTT7XHy5ElOnDjB/MI8J0+dIklTWu021jn2Dw7pDwZ1urJnzh4MWlXu+lS1spy6UtYsoBLAkcBoagY4ISUt6CsFdkHzOxmPJh6cI4F2hARvQa8oMIHe7dgfguwAsITy4gFkexhbx1FX0AtgG0wHoI46LS6czxBYBnCgeU7D59Z/Hs7fwywI/zZTaEI7AtD1bkChELiX1ILRwULgGphOH0RrVooLpe4D6yNUe9unBh9vMJ162GToPchCXwlpoYFiHM5/6AMPu47hXBfUzKDAUglMsiboEdhvzT42+513stAP9xvfD9f63aS7HVKft7jxXubb90GwAdLGkLKmZj4LIPej+I4qF6bx+lH9fuhnpW9PYL+F7QUfG9JuH9aeo3zPg9oSfEoATkM7HrAPYQk9WH/1vs3PLCDPLpA8zB74XZmwVX9CnZUAzQqzjYDbSWQTKgzneUFp68pY1lrysgRVMzCKoq76Ghbdg4XgdzbAds7hSukQQaajyY4IbQoLYUdVuwrfna3cHaqJB9bzFCCi6qrgYZuFjw9NtXDnqgyYZswVAv3qOPw267apqTlydZwz+58tHR++VzFawEuZyMJ0iC9QHiSwHhgJLBHdLE9UA1LKx8LhPRWAFhfAwwBl+c8CKtEAAio4yDostcZx85wPRodgLWfX1pnvdjFGsbO1xeCgL+GT0URaHtZ6WQvlqiJTzkm1cr8mLovjARlSEkNaWwrgpCGQImrGl+/qzTno1N81gBQyXpqdNMRzIWOlLH3lvTgSWZCiJM9ysjxHK+lbOgoaShoVRygjus8l0ofLIq/6Z1mWDH0GUZIk9Ho9lFIVgSP0lxBPz/bR8FkVQzc+D/eNUopWq1UtpFovQRLOd+n1k2wpukkBIKoYjdSX3lohSlTxYVGQZxLXR1EkMbzXXZpMcrIsrwAu1fgnfVVOtdLT6XrN+zzs41HsoWCTUuqfAp8BVpVSN4C/B3xGKfW87w9Xgf/W7/y7Sql/jpD/C+C/c49YiY6GEyi9+CuA0qLLFMcSOHXabVqtFnNzc6ysrPjShAkAg8GAPLt/5q6UL4eo1fTuwk3RMId9RPD44V+apXwC96GYSqnKufb7BxwcHDAcDsmyjLwovLK/IoljlHPYohA9GW3otNpopShy75R9547jiHYrpd1q0em0abXSCmyyzuLK6VUAh4AwuiwqEKb5EMQ7QnlhMKV9lSslTp3EI+JeqHg0HFJkGfNzPTCGKE7odDqUoxHD4SGqyFhJY+JWS+brzsqcTQWBb6rSlc6VGOfnskqTGKmMkChXV6NzlsjVgJTx11c5BUpPCb5raoAxgE3+agFQKEdmBWyKlUJHBqc8BVRBZgucFrDJKmlz7B0q1hLhWJ1fIIlirty9y95gwP7uDv29PaI0odXpYEpDfzjAFV7XKBeRksiL+Mm2JMiuBitxqaiAPZWSlpjnOUVZ+uvhKp0gozTKRAI2+cBL+c+iKGJxcZE4jlleWKSVply7+hZf//rXabVarCwts7y8zKVLlzh96hS//4Xf5/f+5b/E2ZJOp0On3fHttGijiCLNwsI8RhsWFhcFHE5innzySS5dusSlJ57g7GOP8X/9i3/BP/pH/4iTp07xC7/wC5w9e5Znn32axx57nO+9+hpf+tKXuXLlCnfv3Ob8+fP87M/+ZS5evMC5c2dZWprna1/9E77we/8POzu73Ll9i4WFBU6fPsX58+c5f+5xTp8+xfb2Njdv3uTevXvcvHkDpRQ/93Of4aMf/Uh1pRcW5hkMhrwVv8WtG9e5desW84vznDixwac+9Ul+7Vc/R5YV3Nvc5saNG+TjEf3dHZ776NM8//zz3L17lzfffJP5+Xk+9alPsb6+zk9+6ie4ePEi9+7d4+7du6RpysLCAkkcs7QkoPhgOGYyyfm93/s9/vCL/45er0f3qSfZWF3hr/2VT/PEpYvs9w/p9w8FmFIyCC4tzeGc4w/+3R/y8re/x927d9ne3GR+fp6NtTW55h6c2d/fZzgcer8ok7A4idFa1TnoU15vevC+z8+BzBjqpaXqbgnMuurX7zTJPmKVxVpbTczw96WOIr8woOvVnzzHliWHh4eMRiM2NzfZ3t7mYL/P7tZONVlMkpS19Q3WNjaqvpe2Uubm53HOMfRVAocDAa0qqrAHtA4HliK0J4AJYeX/3VoAoka8PyyHoHEDdSnzH9QGvLdjCzbm3aeQBbFieGfm1LuxUBXr/TJHff0+TClywQzChOsibJIANoEAI+F9R63H8251hYLODvxgfQimQZ+HWfO+nGVLPYr9oL8PNuIHTsX6c7f3s41HTXcfFeBu3k/vV3vei+95RHsYWDQLMM0+HsR+eMSdV0/1JpQPqBWxr5bl8nwq9aUOBp18juhZ5kVRpf/IokoGjWDZliVlUTSArHpADyAN+BjGs+fxATDOVbq4UAM3IYAOY3jzs7Dd0PZmwB4+l0wIGtIStTUZ3NYvVjXBJuv8AlYjuA9AWBOsax5fmD/o6tw3YqPGfGWWQR6Oq/m5LKCVfrFXT02tAoBEI1bTysi1rjhOqiJDBA2laXAJD0I13vPb9I2eOl8oySbRPs+teV2cs4xGQxSO3lyP9dVV7GTC3u4Ow8FA4iutibTC+Ng5CHpo49EzptPZpjMwmlkyfhpZxZW6OifS/kbbq2mmnInQr6ssFGo2mdb1MQEYU2CsCH4nSYJ1GXmek+d5hSMoY8BXnovSVKRnohhjLdkkJy/zCoC11pJlMjAFkkuI2ctSqiGH/hzi+VlAsikVobWuwJnQv0MWUuhDcm9Yn8lEA2QKhA4BglzjPIRLH8CosO88KxiNxmitSVN/H3tZjjzLybMaJBN8xD9cKNBWdSSaVfCm7kF/rh5mj1KN7r884u3//R2+/1vAbz10z/f/cOrmV0ryLlNfPa3VavkAStLC0jSt0ummEfX7R8DQCSpq4APPy9Gj53sZOI6ifB7lvPA302z+ZOnV88MDV9+YwckYLY5T7uu640XGEMcxUSyDTNNBGm2mB5MwOHiHoBSeuijIT7UqoiTPW1VaQjIo2bL0bLJmimIFvwsAYzSdTpvMlhR5zqS0Van6piPR3tVq5xFsf6wGLwauHAaHcVJJIFKSNifV6CDWyleuC4O1rsAy7ct6BvClWsRRwcHL1Q/yBuA8kOUwTvbr/GttEQ0mINaa1BisUsTKkUSGdpqQl1L1QTlHmeeMR0MSHFGrVTlNTX3+tPZUVzfTjxsrgE6V3slMrzpFyrOewtjmoLQlQy/WXeZep8wiQtXG0Om0BYjwgNT1G9fRRrO0tMTHnv8YiwsL3Llzh93dHW7dusnBQZ+NtTXOnj1DmiRoo+triOPGrZu8+f3LXL12FWMiut0eJ06eZG19nddee41XvvsKb7zxfTrdLuvr6zzzzDOsr6+ztbXNweGQN954k6vXruJwfPzjH+fs2bOsra3R7nS4des2169f58qVq2xubjIYDKtUsrOPneHSExdZWlrAGMWtWzf40pe+xO7OLt9/4w2SJOHKW1fpdLvM9Xp0uz3u3rvHN7/1Te7du8fi0hJpu82PPfccTz/zUc6eOQsotra2+I9f+o/cuHGD3d1dtFbsbG9z+fJl0iTh6Y98hMWlJZ566kmWl1dYmJ/DaEW302ZleakxiXKV0zbaEEWOtbU1nn32GTqdLucef5zeXI/XX3udt69dw0QxkYmZm5/nxKlTJIlM5vI849bNW7z6ve9RlOXUAOucYzIaU1pLmiSsrKxMTfpEL83Pc961J5u1ehoQfI/zQG61Ajj7ixmg6Sj25+xENEzisizj4OCAyWTC3bt3GQwG7O7uMhgMKK2l1enQarXY2Dgp5/PCBRaXl1laXiZJU7SJyD1DNMtzX4W0rFbAQk58ne74g5+hYzu2H6n1gEsIt3wd0fsKYto9JG3OAucRUOotfjgi1sd2bB8Ge5TV5odu4j1uI6z9NAJ4Xc3XVQ1yhPjgiE3MAjSVDIkHVXBQFgVlFRM1sztqqoRWGjR1kSXn9Yg0lfZO7kGv5nzjKPBptk2zcVHzvSYQ1QSHQiDejKOEMS77mkwmFWgxm9YUXksFX1UBWlW7mU6Xas5HpphNM8BisMDIyoscVxbVvt6JKTVrU+lyTMet1XeoZyiqcf1mPwtvNIEzpWqwriiLupgUIu8RGcPEWvJsQlnk1WeBUaQQlCNInVRgk+xhdu/ya+eqoku+61UtDfPi+vfTB+mar6sfTx9vOLZg2hiMdZ4QEbrD/ee8jr39Zn3X11qjXYNB6OeiSinyPGfsK0M30+Ka22zOy2ct9LUsy6aYUFEUVdcx7C9Uims+KnmdSlJouvBZs71NwCncv802NNmEzXsjAEdBqiJoSsnvXDXXnz3vj+LvfpBqdO+vOVdVXnPOorSg7wsLC76S0LwIggdxa19dDSDLhPNt7YNJVNWNG5BiajT5h2HB2c46VqARAN3/CEJuVaUpj4qryDNhQIJJVdNA0zSl0+nQbokgcRRFNW01ir2gdx1kVc49gHbKkxV9qfagK6P9DayURkegdESeSTUwGaesCMg5B1hwUnIyMYalxUWpQry9TV5asuUlbK8LtkA5KRWprTCPKu0m/wiseuMssSurNLrA3BdWlKKlTSUkrsCDZfVxePwMQfjD2Q9YOdXAnuAocBhXolyJccJYUs5RWin5GRs5R22jsTpG2ZKyBOtKFrsdjFa0oogIyMZj+ru7dIqCdq8rzt0/yiwjB6I4JkoSYWMF9+sb5Tx2V5aWohQWWziAKElIIuOrMmrKsqzE7Q72pBz8cDhkPBoxGAzZ2933fSTG4djb2WU0HLK2usr62iqPnXuMX/2bn8day7//4he5cf1tXnnl22zdu8NHP/IUP//zP89oNOS1V7/HOJtUdO6XX36ZL3zhX3H37h3iJGF5ZYWnn36Gxx4/y+/8zm/zxS9+Eeccq6urPPnkk/z8L/wCnU6XL/6HP+Latet8+Stf4c9e/CafeOEFfu3Xfo2NjQ0uXLpIHMf80R/+IW++8SZf/er/x+XLlz343GZxcYFPfOLH+fEXPk4cRUQGvvPtl/j7v/3bDEcjSmuZn1/gwsULHA7GXDh/nnOPP85rr77B7/7zf44tLc9/7GOsr6/zK7/yN/iJn/gkUWSwpeLNNy7z93/nd7h56yZlWWK05urVt7h+/W1+6qd+is99/nOsr63xzDPP0O12SZMIY2BpcY6F+R7jyYS9vX41cISyp2kS88Sli/zyL/0SaZpy6tQpJpMJv/u7v8trr73GpUuXuHDhgmfmXKDVaqGMYjQq+PbLL/Nv/82/4bFz57j0xBNTK3f9/X2yLOPEKQH4Dg8P2d7ebtzfZTV1qHt9be9ualxPLGq3dLTewsMGpNmJXRjswqB6eHjI7du3GQwGXLt2jcPDw6pyX6fTZWFpiRMnTvDpT/9VFpeWmF9YJEnTivZclCWj8YSiLBkOx3WVT2ul8p9zAsgWJUVpH2nQPLZj+0DbKvBpBFR6CtE2Cpo9q8DHEBBqG0kT7CNaNsd2bP/Z2/2pU9Un7zA2zH7vPTObGouswmywOM/IaTKZSh9wytz2fnCkWpR2UBYluctrIAWYeLmREIg2WUi+FZjIYAiFhGQpWDkpeZ47iWkCWzjEZIEQoJQiy7L7GEyzgE7znIYAP8uyKWZSMxjO83zqWkSxVBEeDoeMx2MiY0jj5L5r2BRiDjqfYe5UFIVf6K7TzO7X0fEpbUofmTIYRZK2JYv342kAz1tzW0076rvNbb+T3Qc4hW0on+mqFNAgcHhGU55NyItM4iulSCJDEseMbcF4dEiejVFYtNJoLJpSUvGQYk6hgngApALsWeFCFbik/EK5B5YUFYgagJ4KdJpZY3fVBqliW9U8Rtx9xy7kCumLFdAZ5nny4yp2ckDpFxwVUiQsikwFsDa1okEyp0BkSAJA1CwGFu6ncK2bAE8AZgPTKYCjk8mEOI7p9XpTwOoswJTnOZPJpNIYDdufumcb7WmmpQbWVHPbQDUXDvdj6EvOOUajEZPJZAbwlfhBtGTVFNj1KPaBApuaN2IInuM4Jo5FgyhJYkKFBqVCfqKbzl8+6gadugMgQE3uoSHW+wtGza7sz6KN94u31WJsU6i4d3yiwVTf5NrfSJExEnx5aJf/AAAgAElEQVRHAsgpBc5ZbFVrstGOBtJZtS+cIec8+FGDZaq0woC0Dk0I1sSRRQaaVLvgSaIootvrYicTxmVJmecCKCpVicdNn3U386CuFOgqol/10CpUrZNzEGTL5bI3c6Lr7c+sEdRX2tXfddaBDWi+uFNbllithAbq2VF1JQcPjBlZJQiaSbYoGI9GRF6AG6WkvVqRl572qzWmCfW7wGRrNJPGKlRIlzPB4dRgbQApIxOhEmHUdNpt2u0OaSKDbKuV4nBE2jAcDDh56iRnz5xmfX0NlAz4m/fucvv2bZIk4cyZMywuLVYTm6IsMWVZVW3s9rqsr68RxeKkT548gcVxOBiyt99ne2eHkydPcvbsWR57/HG6vR5GG7a2JFWtKEqWlpZZXV3lxIkNlpeXqwnL5uYW169fZ293lyIv6LQ7nD17ltNnztCb6xHHMXfv3GFvd5e3r1/n4HCAc46FxUWWlpbp9uZotzuAYjSqRaWTOObEiROcfewxVlaW6XTabG1tcfv2bS5fvsz+/h6TyUQYVu02kYkwRnPyxAnWV1dZXlqi3WoRRxF7u3uMxyLwPRqNGE8m7O8fYIxhbW2NVrvN0uIi3V6XxNNxbWm5fes2h4NDSY3b3ub8+fP0er1Khy7Pc25dv8329g7bO9t+IgadTodWK62rsoSKFmXNhjx6RXH6TpNe5e5778Hm/eYRE6ajVuLgwYDTLDur+VkY6DNfCCEMfrlfbWm1WnR7PZaXl1lcWmZuYZ7eXE8mAr6KX1EU5EXBxE96Qz58U4jROUc2jtnbmaO/1yGbxBzbsX2oLQhv7yNgUk6tqRSEzTepK6x9ULWnju3YfsjWZEM8bCyDo1f5j3r9bqyap3r2hWpsL7Bvq0V56lE8PIX2V3NZ5efFDZAn7MP4dCIJ3MOCeIjJJZ5wTlKxpNKa9kF1rfvzIHCtGfA+6Nw0mRbNYDcE7rMpbVOxU+OzkCKnVA1iNbcb2hq+f18VXH/iZkkB1TWZYa00r0fYVwABHrbo1pwrNYGSo/rbUfaowKYK4EoId/AxYug/nuVltBZmk1ZgLYWXLQisJnBTi/9VAaa6qpRnOlGHVUpYQ4qa2VQBTuFXdRedbXkdszeOV2JBRZWNMhNPg8Jog9b3L2I61zgJDQvAF424qim1In1LJCoC4BPFMUnQvtJSqs3ZIKju26qnajcKEGQtthQhpPC6KEqU0r7v1KLsszpn09f10XCJo4Dy2Xtv9hzN3oNNQElujXpB2DnPLHxEX/cBAZsczpXysIVHJmNaSUrXV8vq+dLi1cp0WTLJMqx3HDhHFJsZx+bu/7uCS13d4yuv7EtsvPdx4uijc+6+ztMUasuyTDSaPGoZjjFQ6VxZ4ooSmxe40uJsEII2WGRFXjlLpDXaaHqdNgvzc3Q6beJExIHzIkNbQ5wkGHQFCjkbQK3pDulA2EDeEbk4FuFe69BGY5zCGgFfirLAGEO7HXuQpoTSVkDNXK/HxUsX2ey0ufPGG4z6fYrSEkURhTYVYNF0XAq58QTM8aU5HRXDKwA8kZYKdUZpz2hSNbOpeenDo+oePmXGqWqPHpWrHKwtJU0saNZaCrJctJuKOMJqDV5AT1uLynOMLWnHEWUZ04piWjpifHjI7Vu3WClyVk9soKOIyGisixhOBozGE9JWi8iIiqsqpV1NcXCcUERbrUQou0lSrcA45xiNhwwGh5RlSZZlaK1ZWVmlnaasra2xuLiENqpafer1ROT7zq3bHPT7nD/3OOfPP85kPOHt69e5fesWX/nyf+Ltq1f57Gc/y2/8xm+QZRl37t7h4PCA/YMDOmWbvChxaH7yp3+KZ559hsFwxO7OHpMsY2tnlytXr/H2zZv0Dwf84ic/yW/+5m+ytLTE3Pw8m5tb/MnXvsbX//QbfOz5j/O5z/9Nnnv2o3zqL30CpTTbu322t3f56p98lT/+8pcZDoc46zh//gL/zd/9u5w+fZoTJ08yyTP+8T/+p3zh9/4VWzvbWG3Y2Njgr/3Vz3Lq1Ek+/Zm/wvkL59nb2eXmLQFuinHGyuISv/iLv8Qzzz7D6uoiJoI//KP/wD/4X/8h/X6fw/4BSwsL/PzP/XXOnT/H4uISc3NznD17mmef/agIjkcx49GIP/wPf8Rrr73GG298n9defY3SlpRFSbvd5ulnnmFtdZXPff5v8FM/9ZOkSUw7Sbly5Qr/7Hf/GZv3Ntnv9ymKgvXVVT7zs59mYWGeNI64fuMG//P/9Du89vr3ufLWVaI4Ynl5mYsXzvtCABFFWVIUGePJmMODPnEcMR6PmUwmUwOGMfWdUcPKDWCWKW/o78Wj/dnsym9zoHrQavDsgBfHcVU9NABBYdtFUfgqc302NzcZDYeMh0NsUbC6usrS8jInTpzkwsVLzM8vsL6+Tpq2KJ2UQx6NRuJTs4zhTFVAHZmpldXNuwt85Q+ep7/bpb/bO+KIj+3YPkS2BXwJ0Wb6pn8ON3lBXa7+un/e+tE089iO7YNoYaFmNkUGHgwiPSoD6hH2XmVfRMagdeQXj0qsdRRFLfxrrfOLjV73xy+AOr8VKSdfYkyEiaLqO6LRKu1styX7YTQec+iZG2G+EMcisZDnhQTFKIwSuYd2u41SeoppUQeh0+lCqWcaNxlBwUIaXhRFU8Lgsv9Q2KSsfhtYVIE9Nc5kASqOY1qtFmVRkI0nU6yNVqtF7BegwqLc7q4IIAbNqbIofYZGDQAFlkgAvRJftblJDgjsrfF4zHg8luwJH4POggLNbYfvNKueHfWbh9mDUrZA4jcHVYynFWA0Ns+Z5GNsnpOYiDSOaCXysEXOYb+PsZJFEjmNtpK5ossSyqKKz5ohdaBuuApUctSRVFN0IYAZ8r2qGJUL81Ll/6/BxIow4ANC5SpIZ2rNUykkvjURSVxfJ2clG8gpMzWhbZI3BHQ1xE4KTIXtiu6ZkFr29vscHg6Jkxbz8ylKGawTLSORFKmbrL0YSwXwWoc2AuI5pMCbtY5JJoWiBOwSXTSFB0+1mtpGSP0M7zWfw7y72a+gTo07CoMI9+5R/Sj4v8BUtNYyHmeekZVhrSOOI4yJyPPSX78mgeN++4CATQ2WileJD6J2cRQRx4GlY6boixUbqHrvATdeOMHvMGAI4FsjpO+3zQZozY7RZDVNCenRYDTZWrsptDcU8Avt1lpQ6iiKSOKYyKdXhX0EapB0zHBD2eq8NRFN5xzKaQ+++M6HAElSYcCila9slwvYZ20k27UNlpmTTjk/P89wv09pRTvFcYSQYgX+vdOJpHF5/MpP01lTOyIaX6t+5sAFytAMIuVm9h/YYAGflOtQCkxlwqCtKsQfz7QzSlUVHCKtKYuC0XDIZDyRAc0ft9YCbgl4KmVFlRdmk/+kUlg4HkXteKrqG41VnDDoO2tR2tButZnrdlldXWVjfYM4iUhbCVEktE2AdqvFYf+A06eletfmvU2uvHmZzc1N9vf2ODw8ZG5ujscef5x79+5xfX+fyWRCUcpgXpQlhbUsLCyyvLzEcDRmaanP7t4eb9+8wZ27d5lkGVEcs7K6xhNPPSV6a5GAJP1+n53dXZJWi9NnzrC+scHi0gJFUbK1s09e5IxHY4aDIQ5h9CwvL3PhwgU2TmyQtlpY67hz9y6vvf59lNa0Ox0WFxc5+9hZTp06VaXgTiYTtrd3GI8ndHtdFhcXOXnyJKdOnSL48X5/n2vXrmFtSafbZXlpidOnT3Pu8XOsrK6wtLjIysoyC/PzCFNqwmg44tatW1y+fJnXX3udV777XS9uD71el8WlJXCO8WiEwlGWBePxmIODA27euMnm5iatVos0TZmfm2dtdZUojphMxuzv7/Pmm5d59dXXKcqStJXSbrfodjtoU5d+Cn6g9BpgTfrvtL+rh3133+DwIL/3wCWod1xZm/4e5FmMtcLCkz6eEEcdAZuyrOH/LJNxxngUV4/JOMUWHZwtifQSSbxKq7VOp71BmvQoyw5ZlpAXpR8YFeMJZBmMRuCsAmSyEcUR2tOsnXMM+m22bi9xsN996HEc27F94G2CMJf6/u+U+tYOFecmwA4CPB3rNR3bsYk5TWnblEV3KsitRsqZ2CG8V83Yq0Xb9w44+RknOvDlrZfTcL4qlS/EI2OlqebRIUUuBPhS0cqidIxxcb205ACb+/l5G0WKszFl4Y9CGy+fEYMzlGVOkecCVKmQotTz8UuOUiW4AmcLSbgqY1mkLfBpa22sTX2s5qsB+IXdosg8KBRjTOIFyzOUVljbRmFqtn4FaMn+QVGWI8qiwJgErRJKcqwdVXpWCrDJNGgY5spAlQ41y6xufr+ZMnRUuhs0WFwmMMXq3x+1EDfLaGq+945944jvHMmkonb5tsFE10phkSrYzlpMiBk9qQAnzCZwJMpnbLjAaLJhWb7qo/j92JmdBwAq3Dj+clcfugbpw009h/cbx1Wdnwpv8rFciM3q4zder7ieGzfBLhe4UY22Bq1iAXsC8ytYWZpqUT/LcgpderaeQRvn0+0USgl5YRagDou8TjuMDcL5Bq1rUW0BkUu0tgGyIzIGxTRr6EH95CjW0lHpm7NgU7PPHwWuB4ArSRJPfHEVCaaOl5v2YQGbjGF+fp6VlZUqdS5NU3q9ngdNapHrgNRVTtYEJPmoLT/M6XvX7JqvfdW19wlzmgJwGsh2HAtTK+RuNqsjQc05sNYKWp9nsuKhDSYMgB5VDch7UMzvdruYKK72XwkLNjqeKNMjAFGjnVWQaj34AThPF7Q65G+WOKerfFJpR4RWkOUFtiykSpq19Ho9Llx8gkhpSg2DbIzTmrjVwk4mZEpjcRXDqfTOzVg5C9aJg1RO/lZOUXoHFlLntNI4E8k4indIWryT0wRyEFKuveEeVY2OOwXWo/9KKWisUGitUKXQIC0IwwwNIQWxLCiyXCo/IIyrVhzTbqVk4zGbd+4QxxGT4Yik7UgiAVUNQFniPHijHHi/JZUqUCgtecgORzaRNKpQISGw0IqirMrQpgsLtNIWF86dY3FhgccfP8XJE6tCETVaEHQdUzqHtQVzcz0uX7nCv//iF9m8d49Xv/td8ixj4/Rpzjz+OL2FBXb2dhmMhsLwUgqUpnRwb2uHt6/fZH5hnvn5OTa393j1tVe5desWX/jCF7h37x7rJzb43K/+Gs89/zxJkuCA/mDIMMs5eeYMTz39NBcvXeLx8+dYWlklL4WeunFijbn5Lr/2t3+dj3/yE+R5RpblXLx4nqeefoK5uR5JmlBay6Unn+Jn/8pnxIesrrCxscHP/MxPkyYJ33jxG9z9g02uvnWV62+/zWOPneG//x/+Hmtrazx2/gw6gsI6bOH4Sz/5M/yPv/VbGK3otFPiJGZ1ZZ12u83yyhKLC/OkUtaB/b19vvGNb3Ln7l2+8pU/5pXvfAcTRTzx5JMURclkMmF9fY3f+Fu/zpNPPsnp06fZ7w/41re+zT/5J/8npS35xE/8BO12m+eefY71jXU++vRHmFvocfXqVf74T77K9es3uX37NmVZ8OSTT7Fx4gQnT56USVMped+lFfZgp90RkUqfG57GMc7V+fRHeCamAaZ3D7Y/6kRpMm7zyosfY/veWrUfY4xMzBoDYfB9oYLIZDLh4OCAsigpc9GZ2LnVZbjTYuvtDle/O08URbTbHZTWVVrv1AS1KKvpBtSriSFQGBy0GQ+T+xt9bMf2YbQcSaHTSKqcaXwWBshQjt5SV4M7tmP7z9zKco7Nu3+Lve3/YmYYDC9mxlI3+657p7WZh1rgd4CvtMV0FSgbUt2sZ0CpUEqe6jns2/rF6aC7KjtQfrz1Qa0vIFSUJXme1YE3NcBSs4K9RIWqdVvqeELYMzJflQWlwL4a9I1Pt5F4pT5SJ/NpF5gcEuNJNTnom8iDNHYmhtLsRxEofIwh2RYBFCiLsroOqAnj8b8gSb9RBc5KqUq3ttJx8ppLhONvgEDh3Je2FHb97KK8BxQq7SvTdLhU25gFmI4Cr94ts+lBVm3FL1w75zBaNHFdWZKPx1K0NElppymJMRjA5gXZaIKONHErJjaKiKBfO81RapptPFtk6CnxoJKq4+tqHd05nFO+GJXfYpMfEJAleVGDTDWbYOqF9dk5cRLT7nSIk6SK+Zp3lcNhcZXQe9iojiKMhiCAHqyqcmgtg8Gg6jNxHFf3R3OuOSvGHQCbwNRzTu65MEev5Gl8fyzyAmtLRuUIW4qMxGg0rHCCSi5jRnJnVi4j9MUgRRHa0wROq/N8xO/SNMV4TGZpaYWQNlcUJVtbmwyHo6l9B42r2XY07QMCNomDSlst5ubmKrApAE5N8aomXRN84OD96PSBHuXum6jeUZ8FhzAbhL13OyonMlzwcFzN1Lmj0HVnHUWRewaR5FnXKVa1GFlAdUO1PpS6rzNWrCMCmqmr8zKL8KvwngraUIFl5bDKoigrnSDl2U5OQekdfmAppGnK2vo6B/t7WCArclAKE8VVyXZCUOwESdfOidNyGuel6QJEJOwf5efNgrdbJeJ9TQ0oF+hf3ic5VSPczVFZfqOqv4V5VH8TFXLeA7gTUg9l4FY4sA7rg9ogUh570b1JkTPs7zMcLFHkGVESYeKWn0wgouqBuQY4WzNPlNIVo8lZJysSzuHI64r0SuGw1fXvdXt0Oh1WVlZYWV7ixPoqJzdWqlUv62BSQlFainm53+5tbvLHf/InbN67x+uvfo92q8XP/uyn2djYIG23GQyHkrYaTpp3PgcHh2zv7mHihHanR/9wwI1bt7l69SovvfQSm1tbfP6Jv8nzL7zAmTNnMVFEUZSMJxlZUbCwuMTGyZOsra+xsrJCp9ulsBBFmrn5Ht1uixc++QnOXbxU6SFtrK+ycXLNlzaFMstZP7HBkx95SgAkr8H0kac/QpZl/P7/+6958cUXeeutt7h27Rqf//zf4Jc/98ssLi5Wd3leOIrCcf7CRR4/e5Y4juj1hDW1ubnNeJyxvLzIwkKdZjUaj3nz8mXefvs6b7zxBleuXOHxc+c4deYMeZ4zGAzYOHGCT3zyE/zYjz1Hvz9gNJrw9vUbfPVrX2N1dZVf+ZVf4dSpU3z2s5/l3LlzRJHCGMV+v8+ffv3PuHPnLvv9Ps45NjY2eMozw8Igl2UZzkErbaG09oOelEyNjME6wJaV55v2L2FFqX7d6PVHWgVHHTFBeqdVtyKPuXH1HDfeOvfAbT+qDfck+wfg5g+8tWM7tr9gZqlLzA9+lA05tmP7cJm1bQ77n/xRN+PY3jc7xPKfyIsBnU5H4kklbB5hQI8py5LEL9Q2AaDZimRFnpNn+VSMVFXqC3MgPQ0ezbJNjgKcZu2hgJOb/uNBjKxALGpO5ySZQo5Fay3FVOJYmE1IBk2R5zgVYVRMpCStTDuZHR4FNoVoOcReCokxArjjXPjMYR019OMCsQMBlOrGTwNKs2BT+IiGeLyPGXUUkaSpLGIqRZXdpeqK4xKuVa8E5zLa65GpRttqhg/IAn/RAJWOupYhDg/XpAk2NS0U7QoATTPVLSxU59nEL7iOp9JIm79pvm62pdl3m6mrR7H0mv0n4BKtVssXZltgZWUFYyKiqJYxMqZf4Rbj8diTgXhH+4CATXISWq0WnU6HOI4q5NC56RLVFSCj8BoknsHCNC3snayi89XvND5zPOxef7d2lMMJnTLLMiaTCZlPI5lFHxXCMMomE8o8RymIIsnRdrakLAvKIkdFAjKF/GRjjIA+MwCWnM/Sbz8ATeHG8ve49uJuoa1qWtclbAdnG+dLaLsAkzyjzHNGkzHD8RiUoru0SGdhARsZMmBiSyZlQeEc1hgRpit9yp5TFbNJO6TcKoKCZ05hFFJlwwoTSSoeKAql0ShhJzHtmIIjdE0gcWaxKoBXpWdIWLzTNAa83o2OStGQMhFGK6wxWH+DGi3Mq1gL86qdtui2MrLxiPF4xGg4ZDgYyPlotTDaiJC4MRilwZeWdLZeIXL4qiRWeR2gwh+PXCztV6acVVhXkmcFW1vbGLVLf2eXOI6Z77XodlKKIiefjEFrVKuNQzE4HDCZTHjryhW2d7bRRvPMc8/S6/Y4f/ECS4tLDA4OuPb2daJIwKy03WFpWdDuN996i82dbXIv3nwwOOTe9ib7+/sknQ4r6+uYJGWSF7z40kt8+7uvYK0jL2SV6I3Ll9ne3ublb3+bvb0+vV6PldUV4iii004Bx73NHQ4PBxwcHNDv91lYmOd73/se7U6bjY0TJElKaeGxxx4nLwquXnuba2+/zcvf/g7j8YhvvfQSt+/cxTlYW1tH64i3rt4gTTfZ2toiz3LStEUUJ0xGQ0aDAcPhgM17d4RZ0z/EliWf/syneeETL3BwcMDm5j1u3LjJ1776Ne5tbnL67FnOnD1L2mrTarfIspxW+4DFpaUq1zpJRYPgo888za//xm+gtaHb7QmXUgvIFAal5eUVXvjEJ+n3+1y49ATjSUa3K2leQQuhCSLnRV4NHEHsUlaVFEkcgwen7Ix/fKdXR9msawxTBHXfJ/f/TjVfAB6VnX4vCKQ15gKP1KjZ2c97XVo+tr+4FvqJYbrPvF99rvl8bMf2YbOQeWL8380+7ckix/37R2gaiGkE4o1H0GL7YV4fhVS5jAiT5/p959vzYKLDO29XI+m/hrrfWWpf/YhsTKWglaa0u10Sr3MaYhqo0+giLVX3AnNkNo5UnkUTx/F9wX141n6+3lyYh6PAoDrwkDhL3puOO2fnUw9ZBjwSgApL1jIZ1CGmsxZXFKg4ptNK6bZSVFlSTCbyPmCUIjWGWAvYZFy9LNnsfsGsqi+R9a+V8wvm/pcl3q04+czDReEE+8V1VQFMbgaQCwSA+rzXgvdNfa0kSTCRqYgCYXvNs+hwlfaTUiIs7sDHWtYzsJyPszSSyeEkncwKaIbWxIlkOWgTgbJEceJjb5FGQekq00ZrIQ6YKAalMVHN6A+gEQiuERlNmSaUZUGet7HWTrGhmuz98HdNllFVdchQGKdpASgL2QNhmwGkUkoq2sdxzPz8PPPz80SRZEwVRcnh4QCjI8nIyiaMxxMaNLIH2gcGbApoWq/X82BTVAmwWeumTqq11gvV3V8hYFaA7n770c4Km6ymcKM00+iaYFNwiNZassmYIs8xSkqSSuGAElsWlGWBMZo0vR9sCrnJdX5oibPeKSoan4X89ADuTCO21YOADlucE88vILrknTos4yyjyCYMxiMGoyGtJGZ+dYXO5iI2igRsKkvGRU7hHM5EWEqyUnShtANlwTj/8EBT6R2T9oF05OQ9ny1LokKJVhoMyxredwGYagJOUDlD/20BkJyTNDPncEajAthUlhIjRwa0lu+aoKFkMM4RRxFOaTppi167YH88YjgcMBwecnhwiFKa3tIicVU1UAAjSp/q6J81GqcDVdmLxheFD5hEQC9WXiheKShhPB6xs73DZDxm6949xqMho9GQyWRMNhow7O9h4ojO6go6ihgOh+R5TrvVot1qc/LECT7+/PMsLixw8cJF2u02L37jz7h85Qprq6ucOXMGbSKUFnHIV19/ncFgwJuvv87Vy2/S6nZYWF0hiiNanS5zy8tEacokz/n6iy/yp3/6p4SUT0k/lPO+u9fnW998mSRN6Xa7laMzxlT3xtbWFltbW6Jt5J3gCy+8wMqKpM1duHiJK1eu8Oqrr7G5uclLL73EYDConPjy8jIbJ06iTcT337hKWRa88sp3GQwGrG+sMTfX42C/z97OLrdu3uArX/kyg4MDiiwTQDCKOX/xCa5fv853vvMdrl29yh/90Zc4PDzkb/+dv8PHnn+e7e1ttra2mEwmdA66LK+sEsWSopWmCWma8PzHn2dt/SS7u7u88sorOJSIt0f1gLi6vs5P/8xf9ispjizPefnll7l27RpZljEej6uBVSmF9dTxkCrpRD5MKLH+O6PJpNK383dEdQfQePehPqx6ngWaHgw56eYn4d6MqEuyh48zZCIZJpaP0pgAIITmh1nPcWB0bMFCAGOo+1wIrnP/eLd9ztcTqfrccTB+bB9mC1VXYmoAIfjSABwc+9UfnWmgRX2dQPyZQZiMYdz8YVyf4P/a/lH4R/CNTWDovWw3AnqIrw79LgBqBTX4+bDNKUW73WZ+fn4qGyZqiH5rrSnynDIvqqA+gE5Qi4hHxhBFtYj5UQwnay1FOf3ZTIMq/ngYPJqAU2jz/bo81V/3vzdFJpgmUYhKUV21ULIwSlyRoyNDt5XSa6coW1KOx7iikNOvFC2tJY3OgcKiayLQfSwji+ANJfWlMUoW67WPsEK3aD4gLJzLQ4UiXUr717PnYiYdURtPoKiBmqSVYuKIKqD1C/P1EC0BpHLO30bKkwc0RSGfOYT95FD48naU1lFYqR5eOkdkJC2TTKOjCKwlShJZXM5znMtxSvlzQHVMUSxpe+F6BbDHWjlzUVGgkIX2Zrpcnbklfaap8xz6ajgvAjZpT9SZlqhoMrWyhlZqs+/FcUwURSwuLrKwsECatlhYWKQsLYcHAyITMxqNGI1GDAcj6VkfFrDJeXFlYCpd7igl9dl82ubJvJ+VdBRC/DAvNQtIvfOq/QO3cgQ6PutEgnObrcYUNEVCelVVzj4yGGWmjjuAU6GiQ31uqD6fPWd153uX4JtDcneV307zWDzTqbQlhZVqgYPREKW6OGNQpqYTTvKcw+EIXRSSP11VAnRY61FxV6PLYU5fBDTa+vOr/MNZxqpEKV91AfwXXf2MpP81j7WqqhCQewel33fhASeHpO3l3slYRNTN4hl3Hv0KtE551lVKY+QZeLYomYxGxElMWRRV9Ysw8FGxUgQMk5RF61cCZgevoym42hgBF4D5uR5p0I3KM2wxR7G8KJTRThuUotPpUJYlc7055ufnWFpYJPEpmAeHB4zHY4qyIIol5bEMTj2KcAjDSxtDb36OlfUNuvM9Vk9sEEUxaUvK0Js4YQDRXBYAACAASURBVDTJcErR7nQxxtDricCkxldKU7KyFKC/ICSvrWfjKKk00fErVGmrhTaGvf09Cl+Zcmdnh7v37jIcjSi9VlicJLTbbaI4Yq7Xo9vtEcWJCJdPJty4eYPDwwGD0YBet8tkNGY0HDIYjVhYWKTVaqOc5Fnv7ff51ksvc/v2bV7//hvs7OywuLzC3PwCaavtqcN+hUZrTBSTFyUvffs73L5zt7oH+/0Dtrb3ODjoc+Wtq2it+f4bl8nynNFozGg8JstyDgdjrLNYJxpGt2/fZnNzc4r5GCY5AYSv+xFel4GpKjGzfegh62XvbL77VXoE9axpyu6bdIUJ6gKwjgQ3bb+9PjAG7gK3eWd33UIqbXWADWQ0GyDAwRbHVbaOrbZmXzmJBDFtJFA7RPIyd4AbSDDzoD4XA3PIqvuG3+4I0T/aR/rte1nNP7Zj+1FaBKwi/XkNkPoXEiVNEF86Bu7wo03NjHyblhEwIoAaQfBetI3/4phC/NYcck0eZ5rdFMCmPlIUYAjcQs7HIwIy76otGvGdwfet+bY1TXTD4W1EM24f8bG8Q3sMcm0XgLOIb16iBpsc9aLAAfAW4neH/r2HNLwpVxKaqLXGdjrCbmoUU5nOBJkGd2YZJU3plmbBnuZvpyQHGq06CgA4GmhqnDQ3/d6DnptfDpsTPVhbhURGK9I4JolibFGQOQdlQQzECiKjiZSS9DS8IknIcvHatyEuC8WqAlMopMuF+CpM45RSlIFVFI41AE3+F0pJ+ltFgqjOxzRJQD7zwEs411pVi/cVy98jY6pqbzgh9UVRjf27I65NkyRSWtFKbWYohf1Npac1dnH/VaG63tU+gCiOK5FyBThXZyfN9qcapLo/g6kJfs721aMqGM62vZlqJ8CrFGoqGml5QXfaGNETflhW2QcEbHK4Ru5hUbjqJI/HY4LQVvPiSvAkvw00MWE6+S0+8Lgrbs5D21R//we3ZknCZo5vURQcHh4yHo8rRB2ogreAsGdZhi0K2nFMEkeijJ/nuNLrNUUR7VabTrvdEOuqS4U2b4ipfWgP9DUcnJy7I47b+Q+dkvKwntEUdJEKv88sz5lkGXsHfWHkACsnNiBJMNqgUez1D7i1ucVckjCfpChXUvrqa9Y6XGmJ8WOpglILo6nQCu0UhXUYLJFyxDiMcoxzARt1uFG1b7QHm4TZ5EcuVSFMtSBcODZ/7IXzdEkTQRSR45hYR6kUOYpSyThXOAGdBDwBrTRGKTrtDjmaVn8Pg6PIJuxub1EUOcvra2hjiJSinSaU1pGXBU06oitFA0sAx8qVC8Mq0DtnnEiaJESLS+As60tLiGijHH/abtFZ6JIXBXv9fRl4/bGvrq6yurpKkecMDgcUZcmVt94SGuYkY35xgThNyMpCgM0kRkeGdrcLWnPhqY/w+KUnWFxa4sxjj1XMOmtL9vb32dnrE6VtHvNsqY31deIoJjYGrRRFIX21v99n8949YfwVOdoqkjghMjHLqyssrCwRmYhWmuKs5er16+RFTp5llHlB5PXKjNFceupJkjjm1JnT9ObmsL687eFgwDe+9SL9fp9Xvv0dDg8PfQngmFaSSvpjp8Mzz32MJE3odrtEJuLqjVu8+A/+Ifv7+9y9e5f5uXl+/Md/nIXFBeaXVzgcTRhnBYUFpyLSdpf9wxH/yz/83zg8PKwE3Is8l5KnZcFoNCZNErZ2djl56hQ3rl/n5q1b9Lo91tfXJZXSiQ+4efMmu7u7Ul1wY4OQehzYX9baSihRAOoCa3WVU11YOzPoOeol0ndnAbxqDnyz74X3m88oBGA6BTwF/GVkEn3a3+zXgG3g3wP/Ggn8HzSZXAIuAWeAv45Myq8Be8CXgT/m0dYWju0vvi0B55C+8lf961NIn7mBBNF/BvwuEsA8CHDqIf12DelzJxHhsHvAS8AX+eGnsxzbsf2g1gZ+DAERPgU8SQ3IbgMvIkDqHwBX+NH078Ckafk2Po0AYEPftj9GgIjA8PmwW2BOngGeAy4Av4iAO67xHYMszHwfAXj+b8QfBbbT+2UGAdlXgZ9DfN9FZDxvIUB+YF0dIGP428C3gNd4Z+Zo2x/Xc8B/Baz4/QjBQx4lMhe4CvxT5JgvA7sPabefjoxGI/b29rBlSZFlGGNYXl2VSsBxQuIFnGdlT4JZa2XB2WtlNlknAeCY1eyZasYDFvzDoxnbNr8T7ChgKfx9f+XhsOyJiKcr0M6CdShrheCrDfPdLp1WSj4ciP7neExPQ1drOlFCpIA8E1kTpaoYWzViEfBpdApKpSr5kbAwX1ip6q3wn+EotJ8nap/TrhuMpoqNpKcYSUdZiGmLohA2lYlkThxFIoXiara/9qk8NiyyqtntTF/vcM2MMRWRA2AymbC/v49SioWFBYBK9me2wvrsNQrtnT2Giq2lRRBfOYljrZ/Hh201F5hD+5pMuyYBpQaKigp0Cr8BKm3npq5U+CxgEVprL/OTc3gwoiwto5HonIVzkiSJ73EfCrApWIV/yur8zE3fRBc96FmDSi4grZ6yN0O9o/G1qc8qds4sajr7+v2xWeQ6MJtmFealac7fMNOMJ+1BhibyagLC6oXBrGfEPGi/YfvKNRxU8ymwFLQX43aOKmfWI8bhX/3TIJ7tqhtgMpmQF4Wwk4wm8vS8orSMJhNa2kAqaXI+u1jYRM41zr4ATE4JRuTdqsBGHnAslXekyo/RCg/QgL9zfetsDTQpULY+prqbiOcsPdgU3g4U0VIpSqUplaUsoVQeIKt+K983WhN7gCFcs6DRVeS511+SQca6stEXA2I6cwMrKmZodR08+yl8qBCmFE4quinnRLRQQ9Jp0ep0iIqCSZFRlAXKyXARBOFwtQML/VKp2pk2Uz2ttegoIkoSYi1sno5nE2mt0dZSWsmFzssSrQWcarfatDtd4igiNhFaSf5wkRek6UQq1jnn9agUSZISGdmOU1KNMYljcZ7DgbCgsozJOKNrDFEcEUcxbX9MnW6XTqdLnmXkeY4aDUX3KC+qCiUyyEvudRzHJGmL7twcrTSl2+1hjOHO3XsMBiMmExHl1sbQ7c0xNzeP1kbE86wl6Is5paQay3BEv3+IMXXqbM3etBRlSf9wQGt3j+2dXba2tplMchE6NAal6hWMpiBluAZTrKUACDf8V3NVY5bZNOUbeTQL+zvqvaM+m/UvsqyGBDNdBGxa968nyMrtPPVk+0EWIZPcHjIxnUNWUJV//9iOrWkhPaOD9JU1ZCU9BECL1MyJB5mhZkmtIMH5GAnqOvx5TBmO7dh+OBbYJV3kvuj45xi5V3LqFFT44QNOyrclRZhNp5B7b4DcfzHvde3kg2cKGddawAmE7XMSOe4udVpjhFy3JWTBxiLnRSEA3CE/+HUK43AXGWfXfJvWqVmebaS/BEAq9u2wCCi0hYBf+zPtCdte8Md3xh/Hoj/2pmZTANZG/nsaAUIz/zhiUcrBVFGpOI5xxlTMpmrxPWYKVHDOVSLLAQAqizpwD3OaoMfZTO1qyrqE95qfz7Kfjvq7+fujWEvv9L1w4AFQCbBQ0FaoQCit/BzcMCoKiskEbEmktbCatMaEgMP5018xm6AJNikPNgnbqDGzdCIHgnKVlILyl84qXxXQtzAwnJp/z85OjwICQ/dogjFT89DQYKU8q6smFNQbq/6773o1SS6B1TaZTKoq8OHzKrOgudkmq22mDxz1vQr0crUrc27aqc3GAFN4QQNsCvawdmmtKzmOo4DOUOjLlmpq+6EdJrq/+uJR9oEBm0I/C4k0IGUaQwpSnMQYbWq1fw94WOtQ2uemqqq7NHCDGSDF3wXTIdef/6g5y2wCKoT88PCw6rzBMYY8zGwyIc9ysHKz6kaHCEhpK4kFnU89Ou8BLAlORXg4ioIg+Gzw6X2Qf1GJC+MrsGmN0VbybrWUHVVaU2IrvSTrb2ajNBbROMJohpMJ4/GIdq+HwxHFMQurqyytrzMqCu5sbWFW11ieX8Q5Rc4EC+SlMJsMikgpIo+YKyf70ICxwkgyODSlUD1LcaR1Gp2rqxFULKeGEqxyKEtF9awBSyqwyTlw2mBNhFOK3OsjZabAKk1mFIXRZNaJSDdQKEm3S+KEro7otjp00jbKKvZ2dsnzgv5+XwAJExEFFpBz4ByaqKJQOidofRRH0sQgXucBpqKBYlcUV+fZWv4ww28ODw7Y6e+ijCZpJ8RJjC3Eeezt77G3t4fRmsh40URPkTTGYLShLAsGIyn9akvZb9oSAEtpjdKKLM/5/uXLKKiqpo0mY7I8J2m3WJvreZHxtjhMD3Y6ZF7S7nY5ffoMykh1ygCkaqWxTs6r9n2ztJa00yEvcsbDEdkkY35hgdW1VdE5G49xDsaTjKLcF7ApyynKksWlZZaWV3jiiSfQSlcewGhD5FdbfEIc2sh9c+r0GRYXl6UdZUmapKyurRHHMVlWMJ7k5FmJNpGUkM0maBPx7LM/JkwtDzJ2ul3m5+bJi5z9/X2stXQ6HbK8JE5aLCwukyQxWZYTxY65Xpc4jthYX/MToZo2vLe3NzXAQhggRcPNucYgNDPgHL1mFG6YB9tsedNZIPsoZpO1tvItHCBMkh7wOjLJPI9MUteQSe0y9armg1IjDHVKXqfxGCOT3WM7tmCB/aARBsAeEtQkSF8LAXWKAJ4P6nNBNyWs5Df7XvrnegTHdmx/fpYjDL0R8Bjim08jYOo84qOhZq/8KLSbtG/XIvBR4KcRXz8CvocwmwLw9GFnNsXAzyDH+TTw48gx7SBpcm8jx9pG/M4JhJl2CblW94D/A/gmtcbRe7UOMiY/B3weAYZWkPH3TYTR2aJmJ53xr/8SEmE+jfjcbwP/lpr5GQCsFsKU+hwCmj2OXNevI2BS6GuP+fOxDvzXyDzi95E5xJsI427WnGM4GFBaYYRfunSpmlMWec7NW7cYDAakacrCwkIVdxljaLfbiOxBn/F4zNbWFpv37pHECb1ejzRNWV9fJ01T+v0+o9FoigEju3f3BfC2EZ81haGbVdebGSjht+/099EpTHKSjZKHZIzkKGuJtSaNInrtDu0kZm8w5GB3h7gsWei06bVSukmMco4yy3CIPqwJOBABw/HkBr/GXiolC/LOVxR3YJTzukVOZLxcEBGXok4CMMlzIB2gakBoquBN85ihIigEQoaJIuI0RWsPDNmy0pPS2ghbyimclX2Uzk7p2jdjqTCnDkBMy8cjo9GIe/fuVYviSqn7mEGzUhfN74Q4v9k/5FHP3ZULqYZ6qv8cleoWgNFmX2j+JoCms6maATiLoqiK1ZpAaQCWsizDWSgKW2XwpGnqMYeUzc1NIVM8xD4wYFPF2vABXuhZAVyJjkDzrBV9HqsaErVTcVItBy2bDN23XtF398VVaua5ubX3eGgPQBUrx+MZF03NpsBqajqj0K4moqtVTfOrUuUQIMvBTOecDgKb5y+8N+W8AjMGofbhGU6BgWOdxSqfn6tr56AUXkA6w+UZee5FyrUhbbdJ2x0KaxmMxmRFidNaBMCVB2uc6DZVulAatAvX3c91nLCSSsSpKedQRSlgU7h8U2CT8sBjo6yKkm3IV/0qRLjITnlWGTgdtJl07SSdo9SOImg5oaoMOOdBKkmTE/AmNjEKmIzHRHFcgYgmFTaNnGPXWCugYqoEJ+Cck2sV+ghyIiS/OVQvVNViUKXzpBzOOvIiZzAZYuKIuC3aXkorKB2TSUY2mRDHMb1Ot3Y83kmGCgvBURZ5idKadrdTaTyhYDyZ0O/3Aeh0OmhjROTaOWIT0Wq3BUA2ujrm0JdBVoqSSECuVqeN9qtQCuWF+azHCb0zBIqyJNIReZKJcPjCAmVRcGBFP0wGHbnPiiwHpaTka5JwYmODNEnrnGfvLIq8YHh4WLMNgU6nS6vVnsrTDhTSLC8o/D2MB6/EMRsWFhaI45jBQCr/zc/Ps7KyIsLs7U6l2SYpr1G1D+sH2CgSIfDFxUV63S6j8ZjBcFSVHXXONdhZygOUMrg2Jy1Vn3mgNQb3h9jRk5sHfza1zQwJ/g+QyXMXOe8BPDpKCPVBzZ0VaVaNx7EdW7AC6XOHSNpFSl0ep4X0nTY1s+lB/Sf0uWrZsfH+sR3bh9UsAl4E/Z8+Ar6GIg5d/4j40fV15duSIqDECQQYHiHgSkJdafLDbgZhBn0ESdt9EvFb30HYQTcRwLyL+K15BDRfQoCqLSTlMeLRCx88yFIE5DsJfMzvs0TG8QMkDTlF/OgitR7jRd+esPiz458D+KX87zoIc+sF/3n4zj0EVAtje9vvs4sAWiN/Pg6RhYQjzDkk/tDCmF9fXycyUlV5MpmwubXF4eEhJjKkaVrNl6IoqkTFm7HZeDyWObYvzjI/P++rdBXkeV4x5WXf0/OgZhWxwIqp2+mm0qyaj+njOWJuVb13/2eqiilk8dR6bWTtyQFJFBObiDLPRU82jkjiiCSKiLRBO1udfhPAJgQ4QgU5j1ogvKG8hK2gIL9v3yatwvAZfl+zmWyI78NNPHNIUywwFcAmTwpA4tAms0m+72M7rSSmLSXuseE7UycsEF8800gpnJ/vR1FUgZHDoWRHABWgNHt9jgKGmo8mQ05+60+FCzGgq9oyy1Zq7uOo5+b+Q59qEl6a32vK7ATQqlnATGIgR1m6qe3EcUyaphW772H2gQGbnHMUZUnub0LtT3BppdpZUZYY/9oGKk64UL7D6+a1UNV/KCcdv4ExyT6r6KT5Xvidel/HrNlOh5P0pzKXVLNsktWMJY/S2qIgzyTdSmm5xVV1D8ptrI0hTVskSUvEmhuiYNp3ogAWhEC0OlYnKXrV3zMieXWH84ws49BGyJCVULbzgI8xmFiOLY5icI5RNmE8yciKAociiiMWl5dZWl1jtLPLYDBkYh2FNlhtRQcJJQxhv30D3mn5KnTh6thS2F4eaNIuUDyVaDZ5ttV9wacyBBASJay4CmgK/zlxnCE1rgRKK6BNU6vQWkuBEkFxrWtgxKfzRcrgtCJNElppKjqWwxFKa0aDIUmS0vr/yXuzJ8mS68zv536XiMiMrKwV1SsaTTTRAxAkMQA4EqkZzFAcUSMzbSZR64PMZNKL/hq9jJle9aLRmEwbzCSNthE5HC4aEiSHEAgM0N1Ao6v3qq7KyiWWe6+76+Gcc90jMjKrqruaaLNx6+jIirjh91734379fP6d71QVVSOC3qaqJ5foCCkIg2ko2STODIqxNRKkFEZ2mrFeTLtKBMuhqjyz2RScXEfnHG0zodJQNofQTE243B5My8VypGI2VQ01TCaa0WC9lkx3fU/X99R1w40bNzZA4a7rVI8qCbOInvVyJf9ed6QYmU4myspL9CHSDz1d3wnY5ZXGHCMhBsUO/ThWSImq8tA0DEPP0YMHxBhZLwWIcZXuABQhZ0PXkULgo3sfjelvDWxKcXMXarlcEoaBvb09ZrPZ2P4xJRZLaZvFcknfdeNYq5uGw6tXFdATUcHJdEo7mRBT4sO7d2mahhs3b+Kc4+joiPV6Td00HFy5Ql3XTCcCCEriQcfp2YLFYoE9Eb33zPZm1sN5XKu9xq7bfBDGuAVcb5ekVnN5KRdB2w/CXQ/EvEuiHyyRQfUBorkAMqAszCmQ02/vmoTt81NEKPQB4nS0yCL7DHiNvEh9VLEMTGW6ZWO3RB5DgHRHsfCGhixyui7qe9TOuy9eZWrpxKaekNNzWNigZQAygdhPWmzxb+eCnPlvxccX5HXINZcMtEHr/DRYCSbg7ZEd8KW+HLmfzJHeBXDa52tEF+w+ct9X9O9j/fwycfHt+szmWv27R5wp0yZ50mJhUDWZFWh28DjshtLmrI/N5srMUtZmJupv+zcXhLJ8rPvYzlJpY37Nx9fEMue2LT6LiB181rOsGYhiYGiZGa7U5bFxZXOOxf6vufz+BvLc+S4CEtwk270JUT/Jotjs0eZX2Mz6WJDMH1lsHjRG4RTpS7ORktlq7fEk2dBs7i/buHwG/GUxpSqyIPgXEbbSDaSN7gK/jYAwP0GAHmuLAfir+veh3sfntY4PuBCMubTYM+xriEbWi0gbLRA200fAH+u1mH3s6XcmHP7ziC19GXlOfw2ZL3+MtOlXECbTz+tvF8AdJPTuD5H1gdnHXaRPngP+pl7LLyAA1wPgB2R7H0ui79bEsOCZ27f51re+JT5SCJycnnL//n2Zxq9cYX8+Z7VesTpdy/raO3xV0UxaJiGwP9/n8OpVnnnmGX7lm9/k8PCQl19+mel0yh/8wR/y/e//BdPplP39uZxZgQ6LWDAmSdf3spYNA3TOlvCjPxZTICYYLKWwESP0jlz5j6JsROg4BZpcjoZJUXxOl6B2XjZ/m4ZpXWvG44Gqbpg3Dft1zcxJNIlLoqk8wVOrZlNeJcp7+ZgYEBFwSEQHLsWR+QRQJ8VAHUpS0OgYve7kyvtV/8yJjjNb57U/pf2c6jNV4M1fyEBU5SUqJ4FmwU4MBl5pRqrxEegdJEfyjiqKT9k2knFutV7Rdx3LxS2IoSByZD2mGD0pebx3VJVEFdk6fBtwyraSV/IpSWKwmOKY6MeK/ETaI0aTrJGHcJlVDsTfl+9yOKhhEFKvrMutTq9MDecq3ayWz5um4srBFHAMYSDGxKRtJQFWXT/Wc+EzBTaFEBiCOZNGj1N9mCADrx8Ghij6NiRl9jQ1FiJ2/qZHnkj+ewN0SuMHn+ZaYzvUCSDFpGJ1InC8jcjGIRD6XtKVO6faaaVT6XC+om0nNG07DqaRllllBkZ2/vW31q4pQQqkxDnVe/tbDNOMWUK8jAoZUhyzhTkacMLEgIZFkpTtZuy+qplfOeTg6lUWD09Y9YMIbhvY5ISC2WvdxuRJKfueMvkgo0MnTmKiwtGqllfC4cYsdBRAk/zPtKd0OArotDVRp5SIXgak0UJNAyo6+XdwMER5xwtaLtF60seV9yQ8Td0waVvWw8DZeoWrPOvlkvVsRru3pw+PpA8WNwL9KSmwGoRN5PCZwVQZ/TSNIJMBmClqe+uDxqNaZ5VnWk0YYmC5knC45qDB16ID5g3sjFEnPOn/9XpF3/VMJhNmsxm+kiwEMSVOTk5Yr9ecLhYsFkuuXb/G7Wduj8JyQQGOmBLEJKL2MQoLKERWiwVhCNy4do2J1jkMg4SqDQOJRF03EkYXg4JNDq8htXVdKSDjcbVQQ09PjkkxEUIeB97LPTqn6WkHAXGPQhiBK5lnpJ+NtZRS4vT0lK7rREOpAKZCjKw0/HWxWND3/UgvbZuGvb09AFarFTHGMZ3o6ekpR0dHHBwc8PmXXqJpGpn3vGemv2mbmtl0SkqRxeKMoe85PT1hvV6N/VBVFa3SX0NftPMI7qRR/M8Ewi8r+RF/8ZNje8fN5oft9/J4QMeOjjHTWPgI2RWdk9Mmm4Nijs2uSzEHaIk4Rh8iO70OWax2iNP0uBO6Of6WbrnR36/4+A50TQaB7P4gO/2Pcl5s8W71mFNZ5g22tmn1HJDBik8aOlHeR+nUmTMGGRTZ2sR5ZLH+Kx1GyHbxuA7okxTLZOQQWwFxXOxazOYuAjjtuA4JAb2H2J1piBjD4nEFec3mKqTvJoi9QU4j/qRtYCBNaQ8nbDr4j7omszkDZMp06mZzdu37erzZ3McFZnfdx5TzNmd2Zud4UptzyH2V2lqWTv2zHHZl/WLApOzAZcfa+sfu0QAZG5/2uqz/IwLGniFO/V3EduCTgU0tGSSCrG/Ws2lblxW7L7t/mzcaNu/ZXraZYTb7OKXcaJiwyZh9EtDqkxZP1sx6AQmLM3DxAQLuvKOv7TC6E73+Q31/BgmFXPLxwCYD4b8E/CtkoPYY+AuEdfTnCDhkxZ6hzwJ/CwGGDpDQtw+0rnfJWT9fRgCoz2v9x3pvbyJhdz8q6l5q/SfAr2o7mUD5d8iA5padh34gDGtu3rjB17/+dZxzLJdLHjx4wPe+9z2OT07Ym8+Z7s0YohIelNXvdeOwmQRmsz3m8znPPvssX//GN7hx4wavvPIKk8mEn771Fj967UdMplP25/sbzBV7H7PhOSehSYiealJHHxg1emNKwuLf9TAsXBtgY6OxPGiTNOTUP5AN6Np5GueZVDVtXckmbx+oZrBX18yqiokTXyRFAczalGhwypayk8vEU+LensSg4FJUoMj8xYSwowxsEnBJaksKYqn3oe6a3v8IupVrTzIzSZvImYaQM83drCvsVQKmSokxMVbJviDhESF0bVi5N227pqqIlWfoOs5OT0WmI0aVmskPq6Sb3ynlpGYZkDqvnSz3kjI2oLcbk0bUlK7piA9YVIhpv25mozMh96h+kGw6S4ie181756LiJmWdJVaRyS1tO1Gmn2fVrYX9p/IqBqI9qnxGwCZptG2amQELzjl1GD3EANFEsav86xg1Lbuoz49MIjXckFQzJPP9JEwUfaYkJyjo+FRJQrdU0WSbMHp1/EvtJafAWNpSggc1omJaqBUAWq/WrJdruq6jcp6mamhaYTIslaLXrUXEOAQJx3GIsj8hSOiW6rDUTUtdS2p6dEDhHEnDecxwFbwVo3SKWBeflULkFn4l9x6UQWJkSGf/FUCJgAPOiYBz1XgqV5FUfykNkdrX3Lr9DN1qzQdvv8PR4oRFvx79ogEV2/Z+DFlzKclk5AWZ74YBZ+CTd6QQIclgCk7AntJdzrsAci8yb9hkksY0oOWUnXDgBVAbQ+NAwv2Mfll+bsBQkMx7pCR1JKl30k44mF/BLZc8PFswdIHVYkU7WXLlumM6mdIPQXSQfGaA+BFQGmExseGUcCEpsGYGXOxseJ2jScLoS5BiGNFqEfrzJBKhH+gTpDDI+ipFUhjUnpXhhqRB9V7osElD0hLyXVNX7E2m1K5i0rT0qzU46BRQiv0ABpgmEUqvnbQl7YRURbxzxGEghqgPAR3LKUGIJG+7MvoQTTKWU4jgIAZF9Z32K466jFEuBn3suQAAIABJREFU7NQyawBU2u/2QAgpKigTCXEYHxxt2xDiwGq1xETwY4wMoSemKDsYtUzOMQWG0NP3QrMNUWO0+0QIAyEM+MoR4sCDB/ep6orlckE/dAL6eUc/JHyHLgJUTN45fFWD8ypEDqkfpPtjUu21zGyzh/0QAm6Lsmtz03Y5RytOI5wphmYPeNs1834cV+hvU0yj2ZYhvE+FK+qQXVPbeX+B7PgmZKF6jCxWjYJ/UZmRhZ5/gazBUyGsqQXidL2BOEnHXA4meITpMkFCH0y7why/U63nB1rvKbvTiHv97U0kNOI22cnuEAbNibbBFa3/OpsO9BsImHcfAUYeF8Axx/am1vs84jiU7C8DIt5HQjneR9raJvHL6t1HHAzThLlafH+KOCKnev3HfLqO3pOAFdfIguIvIX28j7TH+0g7v4doh1zm1LeI83UAfFXrMyaKhfkdIcy8BdIG3SX1ObKQ8BcQ59SuDa2v0/reJoev7rr324hzeEXfPRkUeBuxpwNtiylZtwWt7y3y+PuQx0+9bo+463rum4jzaSytEmS5i9izsSPs+nadx2yuRWzuEHHAbxXfr8iO+0+07k8advS0yxTJRGZOvInaWxr4nyLXfBOZv66ymbHsFOl/Czcy0einDejCpj2+hDBWDLCGDJB9hIBbxm69bIxb2NwVZJ42ceoSbPocktn0A8QOjxEQ5F0uvk+HtJWFn32JPBad1nGGjOsfIuPo02JeWqnJmdgsvHeh5/1Ir+mUzc0LhwBRbyC2/Yp+dwux+/tkwOpJioW63dO6LanCA70mY+puF7MtG0fF8mEDzK7Iz7eZ3stDZA69g4BLZbG+OETs3gTEbb67or/ZYtu6yuN8TTf0PDx+yNnZgtdff50H9+/z0zff5O6HH9L3HWdnZ/SaSbvrO9ZvraiqisNr1zi8do2zxQJXVzSTCVeuHtJOp/zojddZr9a8+dZPeXD8kFXfsR56SGiGMEv6BPP9ffb290gOJkOP7z1ni7O8vnIQnWnhJqKs3scAjeygKGjkZI1r61tj78cYqZwX6RnnNMOZZHdeLZfs1TXXrl1jb2/GycMHQvDtOpHmqmuutBMm3tEMAy5EPOKDzZzoNkmkRFIf0ynIJACZBezZqjE68amDg0r9TZ+cRqmoD4qARObneedGaRxZa1oWZcMJtLlcXps2bQvOKfFignOeruvph2G0hRiEpBKCgDAkJRk40bQSXFnaPTd1UlJDoKkdKVbE2LNeLejWS4ZhTVXX1LWjSqITFRM4l3BEvKtGZpOxjUpwpmQ0YfiEkSGcw3tLAFXYsxFHtE2c9/itOc7p5rr3UbSqxGwk4iEJoWcIgRCiZFxnGKNHHE61sP24Zk8psVytAEdvIvlNIlUo7vLo8hkBmxDHxIOrMu3P4SAK+utrjSvUNIBeY2NjSmPa777rBHFTBoExHgCGqKydYHo6nsrlgQrS+IIkKjNkOmMykS0Z01QZdCJqmobGBroXBzqoA1pV1Wi8Y0Y01Rxqm5q2aVicnPLw6CGrxYq6qvF4ZlMRpFscn7I4OWWlma9cSlS1aP70MdHHnm4Y6EUsiWY6pZlOcVWtE6uKBTtPijLgg4ETmdqkbxlcMm2XkdqHp1IYvU5BxkISsfDRiVRtJWIkrNeSkWw2o65rjn1FGgRoSn1gUrX83Bd/nv29ff7sz/6U944+4rnlgrUTlHttUJ8i01FmBaFuasa2dbcmxche2+KriqiDJykzJxYurU/FILZBvTFrg4WYbRiiCkLHEbRjROAHpX2GIqQuIQyvoR+IhoQ7gb2cg73pPjevO9zRA9798B5p1XF8JNtQzzzvme/NWa96wiCpJpPgCfiqwlWGkSQFDZXVF+wBlcYHzQh+KskvaSq9IUk2gZqaqnL4lGgMbFqvGVYrEQZX9Cr2vTwoyvjuppZJU5H0rpMneuUlw+CsneCUXLs6OxsZSmPolgKceC8pVKsK52FWSYyQA/q1CHpbmkGvFM8UBlJwcq/O5uIo4bEpgIMwRGKIyuYT0KeqVQtLeypGm7gFbJL5QSZlYwB29Ao6J4ZBvLymrWioCKHn5PRhMXzyDO8raCuZTkPodQ5JurugQHW/1vklUteeEHrefe9ttUu9Zl/hK88QHP3QyY7YutMx6WgaESscBgHE0pDDCh1mqwafyhV2g86ZfrcAUgk6RWUgbbMb5R9552asz1VGsJPfGeDuc5rcqqqoK781zj5m8YhT/SpCzf81cnawnrzz+zvkHdeLnI0rSGjAV4D/FFnkG4PCFvV/DvwvyIL9R1wONjXkjEG/hezsGpMiIAv0I+DvIbu2P2U32FQhQMQvIZod39B7WJNTSt/R+/85vY9b5ExNPfB/Iummv4ss4C8Dgspijv2XEMDhV/T8dh8WPgXigL0L/GOkfVZcDDAYW+VzwL+GtPvXEMDJyj1kx/xd4O8jYIKxy37W5VkkTOUlpF/nZLDpnyIO0p8iIOdlbI19reMF4D9DnEFjrZwhffUm8D8hjvNrXH7/HmnTG8DfQQR8S7DJGHr/I/CPEGBsV4Yqh7AE/gYC9Pwq0ucrxO5+BxFh/gIyXvYRp980dBwi0PxHiGP6kBzC9yhQwyHj7iXEUf4yIo5sQG1N1tP6sb6+Rw5fvAgcMrbKIdJnr+q1/3xxzCmi+/KhtpE50Z8lsGmO9McLSDjTy2wCz/83cr1fQ0CKmwiIYvPB+8D/hoyr32eT+fO0i20G3AD+VeDfJbNGjSGVkLnpTeD/RcCh9SV1GkD9DPAbiH2+TA4/TYjt/ifI/PgnCCjx/+g7nL9Xi5d5HtEhegX4txBbsWfAfcSOfw8R236IgJ2fJtg0QcbBs2TA8CFZFPxDvS5j9xlr7R1k7L2AzAdz5Nlg/f8d8oLgcYvtAr8J/BOkX7+EtPExMlZ2PVNsUWwMzVGsh8yWMqbb88h4PERs4H3EJt4jM+usPEDsxjSpLAx7joCFn9NjTtgYv76ucU3Lcr3m/Q8/5M6dO3z729/m/kcf8eF777FaLNg7OGC6v89kMmF/f59uveaDd97BOce3fv3Xeea5Zzk5O8V/8D7T+R63nn2WmCL/8Hd/hzt37vD6a6/xzvvv07YN0+mMqOFWKcq61KXEK6+8wo3P3aJuG5wXxvvRwyMiUTZinSMQC/kO6azKuxFxko1FkRbxDlyjSZOc+M2hT7pB6phOJ3J8kDX4YrXk4ckx85s3ef75Z6lT5MP33oO+wy8WXHWOG03DzdmMahioV0tcjNRJ1pdT72mdF9/EZTwxAssYGYgj0bUG9ccSuKjC4EL4qKOjjwqWBPFdVCsC5yrwftRySimRYmDkJ6n/NpI5kLXmZDalqmr29ufs7c3p+oHFcjnqDJFg6IXaHG1j1jEmHKt8JdIpRFJhPDFF0jBAirSNx7uKOKw5O33IcnnMenXGZDphMp3inGPdRfFFXCK4hKh71FhUUUoS+WP6SHVdSxRGL9EcUftKAKK8Bjf/xQZYSkaSMQZbBqjKItI3QSMxLPRui1QSIn0/ZBYWKGHHGFBCxDk+Od3YjA6xpW1kM3vHvvW58pkBm+wGR8qZGZrCB/ZdVdfUKY2C4SjLCMQ5RwEmvwUEeVeRnA5qhClV1dqwuLEzII478RaiM3YMeTffDMWOLXWORqHuJAPNmBMWxmOgTwiBGMLIIDGHPMUooFhMoI6vtxCxqB1rgJydb8xGVcC+43tGJ3dptmyHxZx/z0DNiLLLl4jhSx+lCI6oD5uUH2wxEYagoUQtk8lUdGxSUgQfIiLEhq/kpTCRxeB6Ta849rHpUMEYm2xso1Hk25HZPmMrlIPRKVmjYDUZNuU2N2jUtRc6qFOKo0sb3wkCr4wysxnHGMpUVdUICoRhoOs6BdTUeVdK4xgy5wsE26EXZoNF/umKW0FReuv6NP5muw10UrJdhfG7om2MCYcBcgU/b+z3NNZpx2A2piwiRvvRXY9kdNGUgT5BKzdthly3/Ttf52jR420XFD2KmXijLkY7T5uf6b+Vj3ZuTbYrLGy77KbGxvFdLiueG2uSkhe8T4Bk3JO1h3WiPWR30G/HB67e6viTlO2muN6LmE2Pen+8or+x+SA5SF4H0HlW1ScqFvpijAZPBnSuIItNc4B3ndYyh72AgDkvkxlJp8ji3cI99hFH5L6e85i8s2t1N1rnnEzr/xziIAeyVtBEz/MSOVxspa9ttoldQ2RTT6pGFugV4tAZ8HNCDllxen4Dpx6QWQ2XAU5TZJf5AAEVntX7L0EkWwNZuMczej+v6nl+wqY+jA2oq4iT+CwCND1DDoWkOPZz+vmX9H7f0usuhuzPpJggroWkOaTtG6RPD8kaRrvszrI1PUMG8q7pZ2XIZkD68Qta74AwGo7YtBFjiU302Be0zj39/livw2zmBQTEmWk9ZnMlqGKaWQOZfdDob55DbP42GQA6JYcCNno/L+s1vk/OOnkZkFBrmxig8BJiK6Uuk4WNGXjyDDKmvkRmOG2HzTqt8wvIODEHfsKmzQX9vkHG+Uqv+Q754f+zLgY0W9hn2S/GAhvINjgg/b9HBgNf0Pd3kfH1kb6eVrH5wOzxecRmZnr9p3qcsVGM2fgC0jfHej27WGqRPOev2ZyPSmBjidio6bFdFNLpkHY7QGzui3qtJqZ9pu81snFgY+eent+eEZ+GbTiynZe6acbgK8Mmy2IJEOyZYfXYHGWU/48zh54g4M8aaZMFMu5OyePS5jdjPN5G7LHVaz9G5jAD8BI5RNxYTjbeTJdtu32tHUodLZtvra4dHm1KCZciXd9xenbKarXKvmTTUDWNbG5H0QpdrVbEEJjt79M2DTdv3eL2M8/w3vuCXK77jo/uf6RsjyW9bs76WgATS0oz9P2YGKeqPHvzOdeuX2O9WgtQpEwekYqR1WflK6pGpRqC+FLOu3EDudjXKxbuqfgmjetzW/uVYVbmi9ZVRRUkaiWFIFGy3lHhxojZKkldVZK/G5TZ5Ewf2UkkSkoM3qk2snaLQ5I+AUE9i0q/F4Fw8z3cuGZ3eTFfmGpiDMkxn6dg9thyX1g8Pn+u4EwsWFHJfqCb2eCKhFBxfHcpaxQ4vV5SIUvivYbJJbq+o6orifoefaTszxs0k8buKHwxW9OPsi5u/Hyrg4GkPoKt7xnr3a4zl+z3y0uOzfqp236/+Y7b7wJmjfI+WrslkNo+30XlMwM2gWjc1HUtYFFVicK/UrYspK1SRXgrplOSUhKBYXJIDDA6a7WuwhtL5+4dvnJFPQl3JhmeZtOJpA1HpYFSpA8DIUTqupLMBdMJ09mkcJhhCKqTUikym8Apu8QYTia4HUKQULmuZ+g6idFtGvl+CDDIJBBDpPJOwuSco+/XpBRwvqJuhD7Yqrjy2PkFs6EM5wPGbGKb4YpsAFHbjqEBbOOrcoRgAmYlzU/iVNMwyNwQkkwwfWBxekYYBibTKbP9Oa6ux9D9HoQ+2bakWmJgCYE6JZnk6lr6IwQRMIuR2WRKW1WEMGj4VaDvuo2HqUA3OoR1Itgc0MU96v8SEqqYklBak1NwScPqgh3jZCIJzp7/SUXNXQFAidhf5StmkynTdsa0nRASLBdLEo7l2RndagUhMmkaQkp0Q86YVlUeHzWOWVllo7OnoAIud7tzhViz35zoxDx04sfgH7v/zSAnh1NxvwwwunF2t/mxmKxtBaQPKLTvDMCRqSwJKy4lfBwrYbzI4n20YFdkkHRs9OX4bwxUjOOOhWQTNI55MaEaeKNAYCKAMf+SJ6VI5T+5b+tU0HATZCq5cLn2lGSecS5iY0hAbrXYyuFG1eKtCb0EkzY+Tuf+ftzP8j1sjhWnGRhSdMUuS9Tr1Ed8FJsnes0YKP0dh+HpAE4RWfQbwPR5ZMf1GWSxextpItOtgE2HukJ2fJ8HvgX862SQZkHeVT3Q+m8B/zmysP5TZGf5f0dYHjbQDxEm0nPAf4w4MAb6vInsKl9H2BoHCPskIGKvv4sAKn9MZrBEJGwpad3GJLmBABC/gSzIDYCw8K2ZHnsF2a3/6wgb55tI6N5/x8UhVGjb/Ud6H1/Sa34DYQpsgxxThHll4YLfRBgi/5W2kTmNFjbxywiT5ybi3DUI6+q7ZIfhNpLi22kb3gf+a23vgctBi0+7HCGgRkLYJLeQe9nXv9dkZtyu1OvPI/f9i8B/gDjbduw/RRhMJgx8iPRD0u/eR5hF/4TM4pkhNncLYdF9ncyQeg+x4wqxgdvA3wZ+HbHhf1AcY+yBhPTb9/TvX0ZAn5tIX/1LiC1ZmN8RwjJIiCN+AwEZvo4ANb+g7fT39VwX2dwB8G8iQI+Ny3cQRqGNWxvrFp76DT32ryBj5+8i9m/tbuDXF4H/Quv8OW3XHyBjzuq9gtjuHJlLPgK+Dfw3ZHDjKUxbn6iskPs7RlggBghfRdrlJlkDb4n0yztkYHMf0dwBab87wD9EGFGXsfCepMwQO7gJ/PtIH5nG0weIrfUImLyv1/ELZNDnLaTd73GedbVGbLPXeztB7P5ZMhB1H5mn7iFz8z0uZiG1yNz/Nb3mryFtfBd5Bryp7/8COdT1F5E++LuIXZuY+tMuBtrN2dTnKgGYXf3VISCOsRZtzByQWYEG5jxJSUh7vEcGwaKex+YhA3NfQfrllxDg+ZeRZ8ibiD3+CcKsW5E1+wykspBIu9ddIXqRDPgb6GZ6e8bmPOPcEikOAzGuOXrwgLfeeovFcsmzzz/H4dVDqrri5ORkZJyvu46joyPm8zlf/sWvcvPmTf7mr/86X/7Klzk+PuaPv/MdPrx7l9/53X9E5StOTk+p24a9+T6Hq6uEGMRXHCJdt8Y5x80bN5jP53zp1S/x9W98g5OTY959520e3H/AT++8xRAG2Zxz0E5bDg7mox5oEiRFN3JlQ9bFQEqm7arAjIqKpxggBlKAMEj0wXrVMQwBlxLTumZSVTSVx6dIHwIuBJpKohcmDvwQqENgksCnRB0jPkWRB/MSDVCp0HZ04vs0SbKIr1xiDQwOei9gU5WisLSqRB0TCdNmlu+jg+SEeJCwTHQZQHPIWn3c/FZ/NGq2aRB5iaquSUiUyagVGwsmT7n3LbFu2u5OiShAFMkPZ+AVCBDpdV1eVcwmLfO9GS4ljh8+JA4D8/m+tEmKIjujgKNzXt9zRECMTtf8BcOoAH7klP6cj5r9GDvGFcdvAkRGPCk/L4/dqHX0/UXfycDJUnPMhh/JmEyaQMy5guhyefnsgE3qLTt9H1FK66CCEbDBNio6yBdq76CI3li9sp9Ma8mRHU9gU+leP4ui8i6ZA0SseRugyYhpcY0xjjxDA5tiEIZTGCB5J/WGIGDJFq1tvCVz7imy2JFFvAxhNWYT29dmIMEWoGSaU/kk2VDKe9rlHLrx6FTAtcUFp6QDOeZpI0m6yBgCVV3TNM2YFSAmzTiYEsn5jG4oI80lzSZWbTKbvH7mBcmTtnduRJJtmhptq7gDwSI2wRX7d0ImvkQaMyjIhIrSLDPqnl82+vMZnLOUnMaGq7SvalIMhGGg7zqGYSAMefDGGInBgJg09lBxpVvv29+VkwrlzKSAUtroMrf9q03EYsdn2S6k+q2rM5soJ86N99JWOP/b4rybfajQmMv17NYA2kbrN8EUA5o27s9+U8wBj546H6fk63g00CK9IMdF/dsedn4E3LZryTCP1vGYjsM5sKmcKwGlXxbAnl1BHmPn7zP/XS4Wxvt/GmAT5N1le831VKbPYvT6PFnlG6sQJ83EUz+PLF4/QJy59xGg5xriZJimxBXEmbNsPxOy0O0McaKMtfMi4owcI07QO+RsaBWZ9fSCXsMZ8iQ2rYlEDrkzzZ0pWcPmGlmv5RRhFL1LdjwHMgh3XBxj4rkXady0xT08q+10p/iNCWwvtK5I1osysMJ20c0wrT9uIACStWvS63qv6CcT5p1q21hoxAE5vKksBq7YViycH7jG1PmkpSPb2xlZI2yXzZXF7u0KmzbXIjZ3gji57yD3aVkVb+r7faRdrpNtLunfN5F+ekHrNObAEWIPFdLvZheHSB89T2ZQZSxe2socVmMOWljlod6ztYNpdRkzKCF9dUt/9xKZGWipzHc5urX+7kUE5Lyt12xMLwNgz7Sel8nsLdupKgXsrc49xH5f0vax9luxaXM25lrtn6vkECZLNlCOFbM5c3Lhkz0sbLpPbApml+c0vTdjZVmbGKvMROq37QlkDCXynPUCmRVp/fI0xkcpbP05Pc8J2Z4+QGzbF9dv+lylrRjrrtwgiPrZUuvbI4OAsfjehM1tDKw4X4yx9zkEHH0BsbmPEDDpIWIfp/p3h8zVX0Bs5RY5jOzTAJsceU6zeRTO28R2SWxmYrN6LHxx+1n4JMXYt1avnc+Rs+EdIuPmGaStDpEx1CD9ZvqBR0hf2zN7171an+66x+128DteO4oD+q7j5PSUEAKTyYSUErO9PUIU/8SyxUVdi185POTa9etcObzCfD6naRtSSqxWK+7du0dd1wzDMEYutJOWIQykHohJErM4x3Q2ZW9/n/35nPnBASEMksWrqfW2sl/rNANewogJCSyMLgHKGh8DVi7rU113hUH8DQcq6uw1+zSq2yuyEpX3qtuqjKayWZN2lRP2U60MouglKqXWzeMaCR/DSSY3h2Sfg0SdEtEnvIt5AxvzyEpfRI1re704+rPm0+Z1tbGO5Geba87Sr07mU2+4UQmSUP+Sgo7OyCLaL744R61RTSDZuPu21f6zZk/nXvY5dvpUHsvlY7tsgOI85WbwuY1h50aMoNSWxmWZomwm+TolOVMi6HgwvMCaKukF7CKsPKp8JsAm5zx12xJCYLWSbEtt246NFELg6OgI57LCv3NFSm/9t7GW+r6n7/tz31mGrBgjq9WKxeJswxjadoL3nrt9zzD0ChBIJqd60m4wpk5OT0QAOQY5V2K0AlOdTyEQOnmSuySf781mNHXNg/sPuP/RfRZnZ3R9P84ZhhZuto8b4z77TsTO69rjfc10MmE2m9DUjeqibFiy6GApICPpFIMKpeUwLa/6PUkUhlUMHKITemeMTsL3HFqHw0WhplZpE0zI55L7bZuaFCOnJ8dUvuLKwQE+JWaTGR5P3/U8PDmmdp46miB0wAWBdSIJHxyrQRDnXkXeqhBkkzcIiJVIpLbIo12guUnRXpnCstM8vheD16dEpdfvnABMgTT+bY8G+7d3icqeA04mXu9qAo71OsnOga+ZTBqm0wl7e1PWXc9isWCxXvPw4UMePnxIdI7JZAJ9T79cCP22bfGVDPxBhe4sNMtFe0ApNqcPqjHu1hXNYHebEkMv7beNWu8CQ0pw1/69/dqe5Mrf2TnKz8cQL6vbF78r/rd5NW7jr7H9KXBEaQQyICMU2gKdKqrLk7YRXV2KuOh2tsPHKc5AZ/u7vH5XgEZb35XHJtVpsvlEDWDjPJeFvm3fSzl/XRYqJ+3qRqAp04PHp+loO2MIs33rhIVVPoTG3aWdLfWEJSHO6BniSN3Rkwfy4toW2Bs3jyxw5wjb46+T9YLeBv4HxHn+LhlUavW4V/XffwVxin9I3k2/S9b7uI04tT3CQvkTrfuH+vsfIU7ev4cwkL6ox/+BnteYSgEBBR5q3Q8571ieIWyX/wtxjD7S6/2etosJUV9BduUHvf4Ptc12OUo14mxf09/u6z19Ues3DaUjpLOfI2tlmbZP6SQ4hFlhulPP6vWbiPTvI0wbM4wX9bpuIiyaWwi7AISR8ntkx7hGAJar5JAdy3pl471HGBzf23GvT1osdKZGWBgGvpmztMvmHDm06BuIjdzU4z8C/meEJfF9pE8mev1fRmzOBH5fROzoHllU+XlE+8q+D3qfv4308feRdv0J0kb/BqJv9oz+/UOEiWZhQx1Zd+sa0scG/lkGqDOEpfffa3vc1fv8AWIvv4U48S1i33tI37dInx/taFePOKbG2jOm2Bf1+Df0vKbrYyLfgewEbzumn0fs5+cRMOEqmbXyR4hN2Mr5utZxG2FkPI8wXf5t7ZvfJo8Vh9jwLX29RA4husDJfWRZIf11hvSJheiWoX6d3v8ReV4wR96Ad9Oc+iFZy+oK0l9fRNrsWWSc3ETmou9rnXf45BpVjjz3Grj0Pjmz2HfI4VTXEUDiJaS/v4b00V/otbyG2Hp5/0f6+9f0779GBso6pH//UM93F2nP7TlugoyV6wjr5utI350ic9u39bcfaZ0fIHPULwK/idjIbyFA7t8D/oxHg0BPWgx0tHnOk23MwOFdxUBhY0PtAnCexnWWdThkPN5CxtqvIOP4FTL43iNj+PcQmyszY1q0UqnlZDa0K8GVK4638NDy2J0ZWB3tbErdHnC2XPLGG28wmUyYz+fs7+/z/PPPb/iKi8VizBT8wgsvcPXqVe7du0cIgXfffZfFYkGMkTt37jCZTLh+/Tpt23L16lUBsJA1egyRvlvjfcUzzzzDwfyAa1evEofAarHk3t17HB09GH3HpikSRC2XGOECkEQ61vaJcWPagJpx/S8IVdY8IpFCYLk4o+869puW+cEB+9MZjatIDHQhQoy0dcPEi45xHAbQc1QogwWoXUWN6BHXTgS9o3cklwjea2icaEkNSFheQNjuta7HXYTeQa231Cuu5JMS1ZJyFTAHLI1db2SKch07DJLFeVo3tJMJXv3uGAZCEP3VqJE2pnvrrC29kzW/k0RTkUQKPSkEUgVU0oamT+U91Mkxm064cjCHFLl79y79MPDcC8+Pfo2td0MI4DxVGEayC4hbkJJkzjaCQdhgOTFGh2wPue3hMK7RzR5s3a4OrE8JPxIe9BiV+bFX6YuYzzYCTSkRFYC1qCi75hHoOxdOt7t8JsAmnGjwhBjp+16YL1tsnK7rNmhxVVXRNAIumPGZVtKgejils2wocdd19H3P6ekpDx482HCarly5Qtu2nJycslgsqOuayWRC3dTM3ZURzQRcENzyAAAgAElEQVQ4Wyw4PTsdAbLyOuzawzAwrDqZH5WWdzCf0zYNx8cnLBaLMT5447db/Wb3NqLZiGhzU9c0Kjgu+lHmkmbY1uAWQ3ljDFh4j0s6mdlqzYzdAIiojnFUoEozidnL6i609QXW0Fgm79DY1sh6taZtGmaTCXFvT9LZ4wkhCgDoKxE2TzLbOKX1JRJD1AxhMTKoE99HEYa2gTqKzGl7peLu7d85ojb/nYGH7E47o6vqIV5BCZzGGivQlCAvMp1T8MmBq4Xy2fWEJCi+aXy1TcMQI/3pkkDHarVitVpRtS110+CL3RXLDhijZPqz8WCTpaNIl+ndKNxOcS/lu/U/bFE4C9CoLNtg0/Z3JVC7i5p5GaMng047v96oN5Gs06AEDq0P9CbHOcP2R6wPtzdI8tbAWO3jsY+eoLgt4CptkoNHwK1ot7Kf0GvC+XOA1EUA065dlLLYrkQ+ze77Ne2t8t/bFiCgpz9nO2NY8caxT5nZZE7mEeKcXSdT6h2bi2wrpnlkOi6/TBaXPUIch7cR59xSSHsyAGK74VcRh+1Z/a2BIxYSMkUWvG8hQIoxm5y+30BCOF7R459DnJe53tMZmclwijhnKzKw4fXvJbKI/0NyZqpK67qGABFLZFf+GjmDU0CcwF3FRLwtZMkAqxtk0eQlOdPYPW1/c7i2NVIc4oi8qu14QHY47yLO/OvknewFmRXxS0hffZ4snF069F7v6zbi6LzKZoY4tN2+e8G9Pmmx0I6HiL3MyZmgHNleyuLIwup2T8b8WiDg0A8QW7HQUMuudEx25CZkmzPg5yoC5Jhjl5B+/TMygDDoZ1PE3r9JzigVtP57ZNaCad0cscmgqcjgzh0kJMrCepyeY4YAg0uyELyBOCdsggfbbTQhp3C3zJLGlrKwmntaz4eIzUG2ue1p5SpiE18gZ/s7Q0AEAzPM5q5rux4hwOie/vurZAClvFZjqL2E9OdE2/Txsj+fLyfInHOEjIldgvim+9Yjc4KNRTvnGrGX/w8BuM3pbvV+ba40QK8hzwcJmZeeBthk865l7vwIYQm9q+cY9PyRzGBqEdseyIy7O1t1G3MpkTNrLsigxYD070/1tyfsFtU3DabbZODNNKDuI2DXh1q3zXV3ENv8TaSffwlpu/9D7/dpgThWbC41ANXa9SIAhuK4bZDp0f7fJysOGVtzcmZYy+5nQJOFd75JDpGEzXvcZiY5Lr7+EpwqqTewmxHloKobmumUbhi4d+8eBwcHHBwcUNc1h4eHo//nnGOxWNA0Dfv7+xweHrK/v8/Z2Rld13F8fCz6TClxdHTEdDrl6tWrVFXFTJMibfh/IVBVFbdu3WK+P2c6nZI0uc7i7IzF2WLcKDd/NpEY+h6niXcEYDET20pNPzaT6hDLwhLMl1Rgaug6+vUa305EfqRpqJxTaQ7xt2rvaRSkSkEaURgwWXxczqlZzhCAwXmRDamc+H21OifO/CGgV8mP2jmiiypo7oWAob6V3UvecM5/jGag59/eyPRIpEutPnKKcUxMZH+LH4WuQdU/Sm48s0k2iW5OAA2JG/eqHQJkOWhqIXmklDg7OxOQUXQwNjZizZcWFlA2SHFh0wZoE7fW7ttTys4oIz2fcw5nTCM5OK/hvZcs3s6JPI22I/rv7RA4W6tXRfihAU/W3tv+RulPXTYXfibAppQS6+WSN15/ne985zscHBxweHi4ARKt1+uR6mg37pygg8vlEucct2/fZj6fZzFm70dAKoTAMAysViv6vt8Ar4ZBlNjPzs5Yr9ejMntVVQo2NSMz6uTkhNVqxd179/jgww82wKqrV68KPbKuR2Dhyv5cBohOEpO2pfYVq3ZJrSFlVrc5oH3fs16v6bo1fd+LoJqXlOgkNsA2e5XpFK1Nt/99mXN5EQNlA6VFADQqiaP1oGwSGAewfuQQEfdJ2+CdY7Va4khcv36Nqq6ZzmY0jbDZTk5PmDQtfjoTkkLfiWhdSlRolrwYSCHSLRcQE/3QU3svqeSHARQA0hsqJuHsAMtzKjMx7N6zjhN5R8E5DZ3LIuASWicTgSD6Gm9sbeA9CcfgIyGJhpdkSJMpraoqptOpIOgngSEMLBZnHB8/ZO/ggHZvJpOv7owMnTDe1qs167XEkJjMkXFjxkwUqkHmvKeOJkrvRiG/3Jdbk+ElAMA2kOS9H+3gIurkkwI2zijCF32/BQbuuq7LruMi9tWu+uzvp8ZuKh6Kj3Ps7rL7IVMyxMp34Nzfl9d/+XWU7Dcb4yFIaLH3SQBowBQs83PHFTs98tB9mmvyJy4WPneDnFXNdIBMvPQheUfZLvYUcTgeksMqfkxON34DcWhtV9ZWTb+g57D09ZAd6S8gTmoih4bNyY5+CdqUTpw513cQB/8em+FJ5pgvyCnAP4c4BLar7xGAZ1c5QcCKu8gu9fP62xcRYOcGOVylRxyM+whI97q+H7O5K2/g3HWy835F//7bCEhkDtZVhIVRCh2bqLr1mTl4ZdsYs8jezYSr4u+fRTFw4irS76a/YiCiaR+V4YEJsYN39Vhjtf2YnOnumr5sZ99s4+fIIOORfmbCuV8hp583BpqJ2m9nfYJNmwsIaPAWYnclgyCRHft7esw1ctjns3q+ty5oozUCuq0RhouBcc8jNmPpzI2ZdBMBm+4h+j132dT58Qgo8BwCqhnjbK7f/xoZyEraBq8gNndIZq8Zs89+f5HNmd19XLCpLl6PAxJszwdniG0YyFLOBwaYnCD21CJj+Qo5UYFpXF0kpv24Za3XcVf//g7Slyag/x+SQS5LumAi2Na+Fnb3Sa/lotIg86EJ6ZegxrMI87AU/zYbeLW4Rmv/FpmjDHT957GYfmKHtMl9NufwryFj+Ct6/J8gz00Lx/5LKM459vb3mB9exXs/AkYW+mbEhvVa1tghhNE//OEPf0jTNGMm8rfeegvnHHVdM51OadtWyAJKhhiGQfy+th19V+8ci9MFw7pnebbgnTtv89G9e7z++uusViu6rsM7T9s0TCcTur5n1a2FkaKSIZlFoIuSgu1Trs29+jKVyi5UeNGd1TXYpGmYz2ZMmkZBpkgcAoSAryrJ+o0jhighcN6L7+ksUZZu7sOoHZtQv2tcZ6Y8N9laUOWQJLsSBWCFbsKOMNPoxEl1WsHo86g354ztnwhhwDlhhk0mLc4hmkkhiFZXSppUK2l2bnlIOOdkflRQLCXV3Q2DHB/KxEwmRi5RIW3TsDeb0fU9xw+PaJuavu+ZqG/ki7VvQtreuYjTDOWWP6kUbt+OAtnln1y2kbwrjA5yVIHZSCauuHPkmLJctHE9htoVutmP6y99JsAmUmS9XPL6a69RKdp8/fp1ZrMZ165dw6iFg4YTWWxtCIH1es29e/dwzvHqq69y48YNDg8POTw83GA/2URik4r928AmQ/BEB6kemSjT6VSBoxYcnJ2dcXR0xJ07d/jxT34MME4wAPv7+0ynktdzf7bHjRs38KigbkojyNG2LU3TEEMYJ6cSbFqtVgJ8dR115TXDXnYgvfe0bTvWY0DAdpjT2MQbTmMuF8VulscbUCd/i2jEOLntMFaPhMM1dcVk0uI9LFdL2QHY32cymzGb7dEq2HR8csJsOmXSNHgc/dATh4EqRnxK9N4Th0p2BZZLiJF1V1F7zzD0EkpHGlOF2uX4EfO3+VrjenHFuq4Am7wMyEbDKYVYWcooSDxyQgCm5JyE+lqYk4JNwVdEHGHIaLpke6iYzaaS3jRJ5ovF2SnHxw+p2obDygmRJUZiGBh0F8XYT6QNIpU8UJT66r2T7IrOkXSHpa6E6moTizxIL7aRjSG59Xn5UCtDWC86fpd97TrWVeeF8HaBQm6HrV00we5iXe0CnMrrsWPLyfmTlpLue9n5LwfNdn/+KMDp4vouflBddPzGPAKEaIB/IiavOz42tsAWBBu04qfFavq4xULELIOb5eg1B+cB5x2dhDgfbyFOx4f6mzcQx990mq6SRcZBBukvIuwKm0DMqTEAxvRjTHtkjjjT207rRWDTj8lgU3m9a8QBfR9Z2JuDZaCRI6ed3i6WNvxtvS8LO7yp1/A1ZIFmrIQfISDEnyM7/QtyGKA55FfJmjl2HwYe/SabO9Em9GoMq0Hb9TKwydqndNpdUd/HDW96GsUj136LLAhumkeW1fAB2Vk1AGSF9MGSDFK9jtjcNTY1iEwnKpHDpbZZA9bmEz2XaeKYgLCFw1mxNrW2G5B+/mf6blnzrNi/ja02kFlYz+n1/PkFbbRGGDl39RpLPTOPMIwSYldrhAX0JhIu9m0yaGf6UgYsvYDYrdnAATks9teK83tyhrQpGWyykD4LX7Xp6yKb+yRg066wp4vKNpPjFLENA5vKfjENn2PEnirEbkyE/gvsnnM+Tlkh86JD7KRGmHe/RA4zvkIO89oG1gxsOubTBZtuI0DmPpt2/hzw77A5H1m/WJhk0N8Y+3BGFq3+57EY0+wjhLn2x8j89CrSnhay+VXEBhwS9r3gLw9swrG/t8fVq1c5PT3l+PiYxWJB13XUdT0ynB48eMDx8fEYzQKM4XP37t3j9PR09LVKv3C5XI4EBtOCsvWxAVlnZ6ecxcTpqUTMHB8/5N133iGlSDudjP7lbDLdACC8+qNjHFeyLe/za2TnXc527jXrXESYU7oGa5uGg709pnUtkSNBklARIlXT0FQSWRJCIOJxda2Z8Co8kGIiEHFJM8x5N24yjg+vERtLoyPmomySO90QcEkAMRlO8rvibvK7PQ+Lz9yY0V0eejEMxMrTtjWTqYJNYRDQaLx39XmCRax4cNVYdUKyjCck7DDFsHXqLM1hYBMgbLejB0wmrWQeHM5vxO8CbWJMG+v6lBg38cvflySQXT7bo0Ae59xIXNn+fNe5dr3b34Y3GMHHfA2JPHm88tkAm7TYTU2nU6Uw7nHr1k2893RdV4BMUdkfgb4fuH79GjFGmkYGv00Ixl4yVgcIMDQKuqlOlOk4WQNPJtNRM6rve4ZhYNkJOHV8fMzp6SkxBqbT6Ui5tPjd/f19yXan6OHibIFRGiGvEwwJN5YSZOMZhjDeL9hQE6hYiH9JM/eJ6LT3gvRKhFQaX/YsTxsDOuv953+7cZKQfsDmjRGoMbaSK34/gk3eUO4CcdfvGwU+goJCklnBUzU1TduCc3RDTxuaccK0ecZkySKJkCSsLFgbpQRJwupCShtgk60MN8AmbT11jTc+G+GmKPcYhx7nDGwSkucuZhMl2OR04nWO4CMxOUJ0xOSElhkDiSi7KXUtfTdIyOdquaTr1oRBnHgb5mEEQQdiDLi06UMk1K5cIiVHIsoDR8eSS57oLHPDJkPtcUOvyrFpxzwKQNr+za4yAkHkcEXUDu23QgXd/Pe2xlb+pXxegqQpagy56Qp5P9rXNvNnpImGOIYafpIic45pZ7mNd6eAZ3nf9v2uepKv2NmUDn14khcgBjzB+LcdkDQNrJyqCI1z588sOzlR3+UhO3ZxKuaPpLOL7nhp1WN/bVOZf2alPLUrXhc5eDYBWdYty5zTk1Ngl1mTSqcpkcWaE9lJsfOdIM7KGbLwfpssBr5temnrVYaOXIaJlmwfu8dM0dxdOnLWpz9DnAgLt9lHHAe7D0t1DwKq3dPffpfdwrx2L0Hv20IGS0fNxLbt3SHgwrsIGFG2t/WNgQUDuzWbLgrf+ssq46qVTef2IhDMAM7XEHaa6SZZ6vFSRL60ORC7+oDNfra+N2Hlldb/UwToMjbMrusoxaofx+Y8meFX2tx2drGyBMTOIgI6BQQQeR5x5i0bXtJ6TYh4iWju3EOArIdFneV4tvtYkMdbaZ/GUjGbqxHg5idIm5cp7g30+pAMppo4/McFNU3Y20T8TYz/olLaE2zq31w2vW7PdZ+Gs28A3EtIv32JnDGxR8arMWFeQOYVA3Tsej7tR0QJxIK03RppdwPv7Rps7pwgAOYaAfFN6HobdH3a12gvG3s2ji5qo12/K23j47bthMyi3M5GZ3OChRSfIfbskXFi7MIGGbufR8bqfa3bQsDr4lofVRJZM8/a5FL7l7VIUzfMplOJlokCqiwXC7yvRqFvYfaY1IQAFXVVj77eGEmi+jd91xNTZOh7hiFn8Kqqiq4TCZXQ9cQQR2BqvV5T1xWJSgS7Kz+SHYBzMjKC2+gASSlnZdu8Q10fS0QDURk9UcAhDzS+khA6vccY9PuY9PcekqzV1MGQup18l0iEKDq+Xq+LKLIimgdLoz0S0RkbyES3lVkUk2Jm6mQm82rNB+H8BmvSu3Wb/oqZggNlqdUKNoUxI1xKSWVRdD0bpTHsnHYbupjVY0UGBvvdCImpX+kYQ/aGQUgBXac60WmLiHHBRLsBHqkoeSr7md3+03YU0qOKRWddxFJ6klJiKWXoaTKq1iPq+0yBTQYA3bhxg5dffpnDK1d48cXnRbVfnZ2YssiXpBcXI1qt1vzxd/6Ed999j/V6PYJOBv5YTK0xjzKwM3B2djbSJ1NKzOcHY6zuvXv3WK/XfPTgAetuzcnJCev1mkTi5o2bzA/mPP/888xmM27dusV0Oh1D/hanZ3zwwQc452hrmUAsC8DpyakIwaU0sq9AOnS9XrFYLOi7vmBlCORhYE9Te6Zty6SpRRgcFWNLeWg4g0kSMohIeCTLmncl6KS/Md/eO3XSwXvRSfPFy5X/9jK5icMp9+AQZlNbV7jJRAXZlzRtS6wEKZ/MZuzN98F7FquVaDgpEEjlIegElqS+tU6CvcwaMsFHJ2kuFRYaFBpKaiB+hJtkgnY4KgXX8r07Da3Tp3EAFKHOYJO1piD7CUgmiuadLuIceFk1JV+TnKOnITpPDD10jpQC00lLTIHpZEKIkW695uGDI6Z7e3TrtWSNSOASdOuVPFeHQUT7sPZVEb0k12EPGOfBO08YBOgMlU56yooTkbccggpbk97WhLQL5TawKWcz5Nx343U+AmxyDlwwoE7m920m067rKAEn+7ezOqJSUs0OErI7g9JG/fmY7/KBGGOU3Z6nUHaxsna9NoGnzWJZDL3bRXlhBIo2ALutYwy0G0IcRcfH347XmH+VdDBbG4agLKYg8+2Y8hQgRpJzDCmDmMa89M4hmSgl4UJKj7OS/BRLma3HnMVt57h0ehLConif7KwlxDHpyYBT0aTj4vkNhPlji2L0mIq8w29hVMaUsuxXZTFHv3xZlq6LzNSRtTQsnInidxetCc4QDaEKYY7MEGbCVxHn8OtkNkyDhG1VwMuIAPZ3kR1u03Qq78GcgTXixD9EnPpSNNrACnsHacM7+irveSBrtPwAaU+79/K8pxfc619WMacPMsi0HTZlxWzuA+B/ZdMmjQW3zybo48h2cQcBCU00meL3B0jfnSCO3nsII8Yyv5XFbK50WE1/5TIgxDSzLNW6L67lIltdI8Bape8WYvVNBIz4JjmzVYvY4UsIwPkVxAb+S7LOzjY4a47phwiY8J7+bcWAU7O5Sut8jSw0XV77u0j//AARjy7njI9T7PpMl+iiTJHl8duggmXlu+h3do/bmSI/KQix6xx7SHjsX0PmhVeRNryDgIr/AOmD3wJ+gwzwfRrg13Yp51K7Z9Nhu4uAlmUmPBuvZtdLZJ4+0vcTnk7bbZeyX23OtnC9i/pr11gtnxOfpJ9NO26OjEkLmbSMfabvZokijpGx9l095xfIWTO/hTxPf7+4xxX5+fooO7ZnsGUntE2VS+YlWatIcqa92UzIA8sl/brj7ORUWD9ty6RpiTHS94P6GOJrzPf3OZjPR0Hltm2pq5qUkiR4Uh3gYRio6opawSJxxBOrxYLQD4XesGc2m8kxyuy3UDznPPv7++IbKFlC9JHYcOa3YQw7X+UcPkFKYZTxqJLoJc2aloPpHnQdw3JJWPcwRIhR1sdOmE1JPmLUvPUVznlC6DckbEy4Njl0wx8GB8FpSJpDBaZtba0hZNbFKZMwsNu7aD61xFdbvkjSzfm96YT5bEblHMPQEYaOMKxHBMwST8lJKlyVRl9BzqkZnxVs0oi5EWSSauTctfdUdY1DJE6WiyVnp6cCeE0mNE1DZ767z2v8jeve2hQXttD5yJHtiIVd0Qy7ih1vsj6QfZ1S+/pRiaLK8+boppw9fdSd2nkVm+UzBTZJCJs0cgiBfuhZrVc0oR47zAzA/HxgdFaNubFer0f2UghhbOy2bZnNZuO5rCFN86iqKkiJqWbDs9C9rutEzHu9GhlHddPQTlr29vaYz0X8bTqdbqCIphs1OrqKAkonC0tL/I/coZtK9nptdZ2BIIqJpfKjwny5utpoFgOqCgO1jFeucFRLVNU7R1JDsnYp1esFtS1/L+BNzD6soN9erhEiw2DZweT4PCkLmBJUYG007rFyffamVNxdwTZybszuldI4/40otAFKxqBxnH9tP91MkNqgJqk/jeuz3Np6DoPGU9L4X5ucDPDIzA7nxRYkfaaEBvZ9z9D3Y7pJu+6hmBDc1lWOk7QBRFFuPvo49ntEJmeFDs/tCpjNbf992YR2WehdWcfjIPBic0l7R+56+9y7rqNkPI3tUTBptvWoJFWstIL9fQ5ssleI487W0yjluUqG1SbYtAnMbYJ7jA+i7Xov+vf2d+dYbG5z7SKHu41jN45X0CmNFl+eo9ydsR2aRIwS+puS9Uf8dBbmj1tKR2Nbf+UyrRQTny3ZNiVjqHReSkfQWCYGSpXnO9a6luTMUwZ+Pa7T9ai2tHOVE92jHI6SmWL3Zzv+NeKEW0r5CcJAmSPgwi2E6WQObbnjXLa5OdVnZDZUeX4DKSyd/QmZXeKLOiGDeCaYvl2sz3+WxXb9zbEvba60vbIExC6MdWO2YcBhyRYqbe6MzEwzQWXre+sna/szsi1bfz2qPInNlb+57HcGUpQA3BoBJhIZkLyK3P9VxPmdIOyZU3LoZQnAbDNBTMvsPgIYlecvba4m66YZI7EM3ezJAPKSxx+vF5WyfZ7EVq1f7brNTnYVs58yrNQc/cvAwycpFqZ8iISqPYOA6haubFniPkT61gCGJ2k/6yubh7dBN2vL7fs1AAbOM/RsLFniAwMXrR5HBpss7Hqp3z8C5PhYxebHJdn+jLFZZl8r7caRkzlY2C1kFuOazTFox5fs15I9ZaCW2dcVpE8P9N001GzOsWL9YSCXZdUr+8TuwdrdgLTy2brPZqIHK/b77Sx0Nt7tnBvzTSKor2W+jDnKF22upq31Y/m70kczNtK2aHIJyCT15UyqJSXRsjX2UnYdpC5XeTz1I4fF9veZGSQdl5SVlWLEO8keV3l5RRiZTSTzj8xLKh4rqfSismcp/tjGycfPyiFpm5VJgTvJu5SK+jOgU1RVgDx2s/KB3tnWjctV1Sp746z/4oiYjbDcBgkjGRFD+yqJdtOoRax156vSKadYtxtxJCWRvun7nsYkcbb0kGy5vL2OH9fVuz7fss/HCZvb9e+SGLCrjm3/6iLAaVd5EnbUZwZscs7RtC3T6ZSTkxNee+016rrmtddew/uKtm200ayzS9ClIsbIw4fHOOc4OTnh3r174wBu25bbt2+zt7c3onImDgcwnU7x3jGbTWnqmjSq1MPp6Smnp6d8ePdD1uv1GKJ3cHDArc/dYj6fc/v2bUHGJ5PxWlJKHBwcMFFGU6NI+PHDh6xXq1GsvPYVvm1BkUMTp+v7nrZt2d/bo6rcyBIwsKJpGtq2HSfBsh1LI7NJtXTG7bvzDItcB+RJ1uKYvffj+wieOGO5ZC/A+qduKqra061htVrn63SO6d6Mg6tXWJ6dcXp6ymQ2FaHtqiJ4v5HoB/JzJ1mcsInnRQdJxdiSBNJFr25xyiF08nuXI1rG71zB3NWJQTWYUjnIRiAtI864DIqlEX1zI2hmznfsB8IQxV9yUNcV8/09fO0JMXJ2dsLp6Qknx8c64UW8g77r6IdBwu4qGaoGhI0WmuzBiKI3EAc9v4GRQSmyTtuu6ONdYJK97/qu1PEqy2UT0s7jtN1EOF9AQoprgjxJPk7dJWBUovTlroCNB/t7m9UV7eH0BBPoZdezsQsEG2OtvI7te9z+u++Hc0yyXXWW/95VV7mo2tXG5S4GcMGuR8J5GdfyXVA2pux6Dbr7JQubHP7Xdd0INv9MioXSmPaLLUqN4t+SgZKymDO8jzB5LJTOHJZTrdc+s0X7j4DfJQuEl46/gQa3kZ1igJfJYr+Lp3jfT1IOkKxlh2Qh4XcQBswPEFaCZXSaA/8yIoRuukTXEUCjJQNEJlBsWah6xNl8H8lq9oPi/NY+5rhOtV4TmbZQFkt3XzrpF5nWzxrgXCI2UrJWDFgp2SZlMdCvRezChKtt199CwkqHLiLaYv9Yv39IdlYhAxKWfa1H+nhJzob2syhThD13U6/rJgJC/gQZQ7+jx11HgM5fBf5FcljnqX7eksffGrG5fTKAc4SACX8K/BGbjrotEA61Lsty6MmZ5pZFXQZiflKgycrHsVGn1zVHmF4eGXu7jmnJ+mvmoC+QcXjC44UuPaocAn8HsalfRRhN9xGm3T8D/lvEJiObou1P0oY1WSfP5mHTqLPww0QGKq7pdT1AxkbSY+0ZEIo63gN+W6/Z5i67NssoackdWmR+ssyaZQjnJy0dAuov9NUgdr6v57qhx1iyCgNdXgD+Bhn0d1rP98nZBq2fW+RZdkDOsGrj4xgZex3Sxi3wV4G/RR4blnzgPWRe204wYONphvSxAUmDHntCFmK/i4C/n0fG3G2EQfs2wh4r2/YKMh++hICZN8nZG4+0niUb9pwSImVSPeDg4IArV66Mfo1p9PZ9P5IcjGFUrpVMq2mxWHB2djbq8xrbQyRcmpFoEJE1Z+WFvMAkEap6BKmm0wmHh1cAWK1WBNUN7vtOklEp+OQVjCoZ8Cll2RNQdo5ToMrAmwSh71kvV8RhYFq3ON8yayc0Vc06RJaLJakTpXbnZGfJ0j5FKldMM1MAACAASURBVELydEHC4RxeI2GMFuEx1duUPMnJxngg0ac8DfcOQoI+yvuQhEhVkrRFMzxlrFj7Tjb59V1D9Ubx8aCDM2riJefYm06Zz2aSDa/vSX1H6jscpb6s0AdqjJUfcGEQf60Sw21IKpEVx740YM1VlcTKVA5XVTRNzWTS4B08PDoixshkOmW2t0dddSKl4yu8RbykUjJk09faXpuX2l27SunX2O/Ksr2hXn5egqfb578M5Cq/K2WHHrd8ZsAmnBvD6FJKLBaidXR2djaCHCW1zN5LypnF3YYQWCmg03UdTdOwt7en4VyrcTIpf+80I0DbNvR9oB9izkzQd3QqKm5aTE3TMJvNxqwEJVXNnDTn3Siq1VT1iDKbAxdC0EAvuf+S1RRCoBlBHgALH3Sj02yMo93NeZ41sQtg2nWcfWZZ/Up2k70HndXEcc4pOfVWNuv1sv1jqLYDqlo0m1bLJX0YGEIQ+EQnWHvW22tEu80hVlAneUeKHlyUiU8nKQGLUGBmCz1PaNa3TUBrbIMCEJFzbq0HnRt/5LztTuj59JX0RHLdmgXOOwULHXVT08aG5TAw9FGR8fUIBuFQ9tug8cHOPh6/z42iyL+m6oza/hJLnXDJg0uCtvtNMCK3yeYks4sds2tS2sXM2f5d2ba5fTMDLyUkdLMAuEpg9KLrvej6LgKb7Luy7vI3KUm45bltho9RyusANQsDmJxXBtr5e9y9O6Fg4bnPz4NFF7Glts+xC3zeaNOir+1+xh2ecYgkQhKx+xAG3cHrRUDcV6Qqbp5nu13LAb79+fb3u7rEcb6OXZ+hv7fdT3PcYVN7xRgS5W8bZNG9T3Z4LdztDFk0W51lJrszsiaOsTSs3pnWOyPrHu3pMWW05EXt86i22W6PXZ/vKi3ifNxAnCpzQs6QRf/bSHtZlrAvI07CHhnMMEaUtUNPbi8zIdvRvo+ATnasOSkN8gDY03O1Rd0XiRk/yZDdZTNs/X1RO11kc7u+K23OgCH7bnuXvqzDtFHMPq4hTpW9jjlvx+h3DxCbNI0rq9ccR4c4aUnrt/PtusfL7n3Xd7t+f9lvQNrhBgIgmBM5FPd5R+/xOjIGX9TPDawrM5rZOQbE6TRQ0pHZSA8RmzNbNJsrs1Puk8Fnc+Z3Xf/PEsgEuaYGAQ0O2GSN2FxigGbJfjL2yYLNTIhW56PGxa7+bBFB6M8jgMcVZHzbGH8NmQs/hwBAxmKE88DfZWPPQFjHpjaR9bMxvSxc+aZ+b31oAvkl2zDp5x+Rk0CUOnvGbLqK2N+27T3NEshsPcvaZokALBR2hszJA7mP5whQc13/bcCOhYKWtmraZzfIIt72/CkZtlVx7HPaBtfI89KC3BdWSpuzZ6rtRQdyOLDNXQb+9fpbY8kud9Q9IbPnZvpvC2lfsTsMnTT6gRYGlH0+d26zfnvdZsfbGsYy2Vld47pR64qqJexwVN5Dkk17R96grSshOpQMqxAiIUpWOGOJl+cur2WcuNS3kLV/3iwlMQJYKQQqX1F5Ab/E/4ShDxAClcv+5+h/OdmAD7rxKhErmf0UUS1ackSJAUcCIiV5T5nxJC9hOEX7nb1G3w69F8bnpxyTzKHS4y1iRBlKzglbTH3wFIOwmixaRhckHtMsVTkZkqJbObbCoqUMBHN2cTBujHvEj6u8nNcBXSf4QIkrOGfBjnndncqbyyZ6zt62ExXtWuIlcbrPL59HP0t/W9jSrvfymO0N+F3flUDTkwBOnxGwyVHVNS+++CJf/epXmU6n7O3t5W//f/berNmWZDkT+jwicw17OlNVnap7q+6oO0mtlkCARIOgESZhGGCYAS+88eN44YEHejBaTXdLQghDMpm66aur8c5TzWfaw1orMyOcB3eP8MyVa+99TtWVjowTx/ZZa2VGRsbo4f6FDwp8hBAkQpt6WN9sNiMk2vwz7XY7dF2HzWaDJ4o42nMxRjx79qxEcgMMpUOJ6rbd7tB1EhHu2bNnGIYBp2dnOM4ZS7XJJKLiLPzDDz8sKLcXXAMEC26bFmenpwhEOH/2bFT3sBAbXXveNJsuLy8RY0CMJyBi5NwLWBUjGm6qozrVpJpqTXiwaNTTTpi331PB1QixB5vMYbr0kQJMWVRTGyWcZrtpgEIgAaYYhO1uh6aNIM4gzjg6WuPO3bvYXF5is9lie9whccYARp8T+jSALFICKTTBLITEQIkQLJqm/o1N3TzPT4Vg6MJjW4s8shuWeqs0rde50gtwLVF+Zy4E0UCuHPRTehXMYgbFWQg1OGO1XCAEwu7iAsPQYbe5xPmzp2iaFu1qJW/JuTrxs7cU6uyBpmrKJI0WIpRhIUIhQIc5oqMp8RtvsnatmH46NHuq7TIHcljyBGsvbwjavXo/w6Kejp7383VOA8u/5zoi6cuzuvh7hbCzUzT4BMJEGY+yvQHEFn/DNkFbK6WHysbvU19OoFw+nWtlfCkUkNfuT8dDxtMDzigboqj9wt2v7xJFv7oIzA+TqYfnlLHbbjAo2JSVLmTV6owxqs8m7VBjYu2k9AxV4DZzGLvXoGoVmGaBCVUWVclMBwjVYe+x3jPNmgGiMbGFnLQ/gDgh/iIEWPlvICe1f6CfR6gR3H4JNTy4hfU2H0I95AT530AE5a/qe39N6/lXEE0K0jodQU6KTahOEBDnz1EdZwNVQ+gY1YTCBIFj7bMT/W71Clq+RW8zUMsLpf450/CytIb4y/kMJJLUfVRNrQ/cdxMCdhDBf6VlG/BmGgZZ29UD+FWIj52Vtv8LkBN0ExQ2qGGzT/X+kT7/l6hC000+bQ4lA6rMDPCO6xtvpnYX1ZTF2sCowtOJ9uEp6pw1QPJIy43aLxkC/lxBhO0/gQhSX4GM/29pP/+R3rcyXoec7q9RNZe+CdEwM0Ck0WvnkDF7HaIh9D9A5uYfoAInS4jfrS+hjuHHWp45pgcq+GW+vjyQs3btNpMiP1dtzfk5ZyYx07nqBcIWMtY/p3/mGPxC62gmTqYBZqZMDQQ4MuDNa258H8A/0779OoSO/AIECDFTLgOLj/S9Z3r/PkS78C+1b3z5L0OyOWkgyxIC0h1BIu09hNCvjyDtNhpncy5DAKDvQiJPmskgoY650dU1xuZPa3fPnK3P1cvWpwHHx/ru+5CIlg8hfR1cfgNVbC6Z039PnzoIzXgKiSho6+CBlvlFVOC7gYDhX4HQkA+1LHO8/6ua3xyaXwH4j/TeD7V9r0HowVsQTa0dhNY/g8zND3E4GMKLpgFCMxJEU+fHkD6/C+m/X9K2fkfrYfvD51EDOQyQ9fM9AN+CzHdG3XNfg/TfO+75LaS/fqh98Ah1jXwPEmnuC5C94T5kn7urdTUQPWh5b2kdv6HPJFTtsj/Rss0U8ZtaV4KM1QlknzhDpVc2R74BGaN3UGnjdyDz/UeofMJEjjew6eLiYgQMARUAskjnzDwCoIhoZALnI9J5vtQrEKRhAEcJ4GQyE8coB+t9j10gbC5bgMxFQgaFIHIOM3a7XeGRQSqzHBLq7aAZWYw89IB76HvsdlsQA2eLNZZNiyY0QAaGfsBmu0XMjJPYoqEADhGZCDlEIIr/383AaABwFHuOwALcDBwwQIA0zqqwrNpLPcR3bgIpnsvY6b1tBnpmPZejAkjZEGdWQxUTb2gMRlFIICY5TIfIgkRADITVcoH1comu2wmvmXogDdKvUL9YJBYvkcSHV+YEyj1AAZEDQEF5XVGmSFqfkLX/YwDcgf2yXeDk+BhNu8Czp88wDAmfefvt6j7H8dkykPJJWdx56AQDAhB4LHvnObcTIznVlwnDHos8wXor5YwhpyprKFBGoAmfL/0s7xX/WowqWxKJ6xfJN1ZGMHPCm9JLAjYBIUa89vrr+PznP4+TkxPcuXMHQBUCjThcXIhj7cvLSzx58qQ4UWNmnJ2dYbVaFTvaiwvhorquw9OnT8VbPIDLy0u0bVschfd9PxK0JWrAbgSyHB0dVbAlysTYXG3Q9ULEhmHA1dVVUc2MMaIJEYvYYLVconvtdTQxYnN1hb7rSlj7EAJW6xVYQ2MCKGBaGo6KiZqhwkFNzZqmKQCc1duDRl4baYqMTwEA+/TOyUobFHAyDa2miWWSMpPmqYSbAVhUthgbxBAxpITYaIQ+pSTLxRLHx8cIscFu16HreyQwIudiY40kCLXVlsDQkHtISuW8L6UMjLSQmB3IBIxR6snvknRMRotHmSH2pwow/0wVoReir/bJVf2jZJC88tBCo/QRATkN6LodNleXWCyXaJYizRXbY4uQUN8sjvyMKpsndQOeFHAytVhS/Vq23SEQ2CE7c0CNv27f58CmQ+ZdHnT192wTDQbbFdzONs35NAc03QaNnyvjOlCMoIek2j+3x+33XqaNA6xVrJNkWrO50wHfj3Pr1b4fAvvmrnlNyOlztvZNa3J8f0xDMmckdWpooFPXd0hDBZuy+r8r9Cs7lWADm8yJ9RHG/oVMuDlBjTLmBX97do0Kqpj/Gzt1NuGXIcxshgipHYQx/Q4qo/0GxKHt+xBBdQMR1E4B/CKA/xIikH0bIsRtIKYJ0PLfhwhvHYRhPoIIJxY6/dvaLhNefh3CrP8IIkyY7yI7gTbQzNpmWhbG0C/dvZXWo9N71i9e08j6dD15zoAHS0uIoPA5CKP/GkSo+kjf/wEqQEX6TvM7ZaYsXjhgiIDxSMvqtE+/rHm/BNF6OIcIkJ8F8O9DhJlvaF2tj85RAaAXSd40zYAPA4u8dtuxvse0A6wdc3PO960HOU2rgFGFcjNHZIgwdQ8CKL0DEVo/0r65BxHQfkvf8W3tv38DET6tPiuIEMiQ8VpDhGcD+P5K3/tA6/Rr2rcfoIJ8JjBbn5qDZz9/bE3OzTnTijGQzLSn/FydzjnGGGwyc9LPa/0/h7pG15C1ZWAx6+cVajRH02zwQuYHEECY9f4DLRcQ4fZzqJqHd3UcXoes2TcA/G8Qkyrzz/OyAE0+GT1cQOq+gABqppWVIevp5yF9+1nIunoPQg/fg8wt6zvzD2ZjaSCljaOtHbu3p0GCfd9JBjiuIPPaAIN3tM6+LQbamhajRSD09KnXepum5YAKot+DAFre99ZXIcB2AvB/6zPvomownUPmxhv6/ef1dw9Zc1+AgCtfhQB570PWsWnjfJrmc5Zsn2Ktg/nLe6Dt/BKEftkasIMF0xhboGpA+v0MqGDTXVQgzo+VHYj8LqpmYKflWMAIc+j+Wci4vqn1NBp6DwLwPoSM80N9/hmkz7+NakIXUMHDX9C2ryHrs9Gyn6AeNL2j+R5o2w2Q+w5qhNiZZIdi5oPXy3XG6xgg5bWeAOGTzNKEmUcH8HMaUT7iMxSjaJoIcBSTuWFAT4TddlsPXIkLn5WZkYYECoQmtChi/Aw/6w+cObtgRgwMKaHrekQitEctVssVmhDBiZGGjG7XoaWAsFqLBhZF0TiiAI6ElDK6lIQ0ENCQGc/F6rOJgJzFN2yXxUn4ANYzNC6sQGdAVGZ0XJUKC8jk/ooZHdWpqdyzKiGxAlwiywSIGd2iabBcNBj6LXIaxESOE4jZ+cASgTBAjAUDsuQLEoVOdATEPQupU/HMIs4yCAgKACoP3TYN1qs1GISrqysZu5TGvHcBhahgQxQIxcEx9Ii5YE/Ki6u1zmjcvZjgZQYyc0vNQ6W1anWQStlEhMDzLnS8zDZVPpBmy+HxnObfbdJLAzaxgkMff/wxnj59ig8++KCoLRIRVqvVRNOmxeuvv4aUEi4vT8HMODk5UTM89Zl0cqye4TvcuXMHwzCUEJbWoYZ4D8MgAE9KWCgQsl6vce/ePcSmwXK1QohV6AoxgNRkz5yGGzErgwpCVPO8e3fuIoSAjz/6CFeXl7i8uMQu75BTxqCRCrbbLTabDXa7qpIn7UmGsUho+1gBJe+TCcAILJoKjkBFTueEcQ82mWaTAVpTATTGCIag903TyGSPQcEDWVxN06KJDYacsFgu0CwaW3PirP1ojdg2SFxVUUk1oTKgQIqaGxl0y6KJlIlBoUbMYrAhMZIUwCitVCCogk1stMc9pA+yRfSzPq3XmcgjJI7AO8d3JCqpFMX+N8M0iXVTYIjzZKgzOs7IaUCvJxqc5aTDogRyltOSulhQvPFZ2EmZz+oc3DgHA3GU1jEzEiuqPiEQtqFC2zKnUeTtiKd5bO6N1vQM8FPylv+fT3qcAkwHyz8wx6f1LPMOcHNj/PkiyTaNab2n3+d+H6r7tJ/ntMmmyQNsBsL7Zz1APaUdZho8BaR23Q5916mqtoBNNdysRVyJozqM2nMGYUq/CAFz3kYFnAwA+Cwkwpn5hTDfRwnCWL+Jqg3xBqqJiPkB+SLkFPgnqGGqoc9/V79nVE2U+xAG9j+BCBcmHN+BCOTPIP5HPoQIK0Cduk8gYMB7EOb6s3rvLYhGiTHB3n/FTyEaVn8GAVN8FJ4AYbg/CwFmXtNnbbd+S79/BdXXxne0ziYwv4MKNJD27+e0jV/Vz++hmrEBIgR8CyKEn2r/HGsbPosawnynZX5Z++eptuevsK99ZOY63wfwr7SMX9T3f0P72IS3OxABL2i/XEHG6hn2ndw+bzIfP29qex5C5qEJSdC6/TsQ4cj8gJh/l3uQ/vsCqiaRzdkj7at3INpFBpCYxhBD5uEfQ/rqDchYGTDwa1qeATrHmu9jCDjyU4yBJkCEwW+harDY/HmodflNVM0m0y55D9KffwKZx1On6m9CxvSrWp+7qBHaXtc+eQwBgh5BxhsQAfih9s0DVN9AS4iwvoTM1V774QcYz4+/1LqadlmEzI23tW0W7SrpO+5q/n+tbXqK6mcHqOY5P4X4TfsMZMzvQ4CX39Ayn+r7vqyf34cAdX+h9z7pnPtZJ4bU0cbyDUg7ziBz9DVIe++gmsz9IQQAtkiZ1mcLyPy9p89+GTLmBjSdQfr/q6iApvmig77/zyDz4w1UsywDgH5Tn/siqi+491G1rxoI6Pe2vu9HELr2/qS9HWRd/aF+/zoERG0hBwZ2sGBg3L/Wtj5F9XPGkEhppM//svaFAWH3IevX/B9FyFp7DzJHPsDPzq+e1bvTdwYIwGKO1r8G6aPXta22T30ZFeT+ptbxJ6gmg0AF9BiyBrOWZX7Sfozq28o0CQ30+q4+fw9Va/g1CL18CxUoPIastxPIfHkf1W/Xv0X1lWW07EI/vw0Z0zuQ+XAG8f31BVQk4suoe59pn30TMr5+H3OJAKzXaxydnu7xT54nafTwtwTkUflnmrzc6PkaL6Qb3zd0PVIQFyqBxKxusVigNYsTgmiQMErUaOSkB8F62Dyqs3aa51ON94c6uGZ3LWdwCIixQdu0ABFyBlLKGIaMEAkIEdRE0WzSiNUiew3Y8SAKwUxIkCh3xKIZFCHmeBJxDugyq2YTMHBGJsJAUp7cEw2nnhm93hPNJjOrq0GYxh2u7QFg0efNYThYzxgJaAOhDUE1sDJIwabAUGDJTOUMaBKFhQJIad7iakQP8e0MlEnAJgnHDpFvY8RyscSQEjZdJ/2bcpW/6ijV/1U+m5NTCISg/HdLKEotfu5N5+2U/79ORrjumn33vmz9OhH/YW7u+eeC+QOma/fLlwZsyjnjyePHePfdd7HdbnF1dYW+77HZbBBCwP3797FarfDWW2/hwYMHuHPnFK+//hqYge1WFr6ZlYUgi3fXdXj9jTfQ9wPOz8+LTyciwmazwfn5Oc7Pz1WTaVs0pd5++x3cuXMHDx48wOc//3mJOndyouYgQ4lG1y7EwbiF/9tsNiNhnFMGD2JScnx0XMI0Pg4Bfdfh/Fka2RNfqrPsq6srbLdbZM6qqdVjt60gF3gMBHmB0iaMAXNeY8EIqFf99BPLA0lTsMmuBQsdH0Udr2nEURqzqOwx6kRs2yWadoEMxmq7xnK5LERzuV7h+PQU7WKBlLOAIArgGTpv2iGZRS2TGAKRA0hkx3EF9wYzgan+LhNfiZWhxKIVVO9NIBLFZ6Se0lcGUI8BJ7b3QuyRK+CkY0VRo0tQyZPTIHt5jAihQSQAnJH6DtsrUW3IOamihhC7PAzoFeAigdkr4l3stJXDsk0LAqgZkEJkKLe2icaEzp/eWJqa0XlAyubbTU68R1pDHmi6JRo+LcuXOS37EOH1z04T6ViOnj2Q93nSHNg0BekO1WlOG6zU9ZrPuXLmTi2m9QTmTWc9oO1pwHa7xW67Q1Zz15xNoykXDaa9KH+2BgnCpH4BAjr8Q1QtIhNs7FQ6QARRU+s355+fhwiPvwgRUExDqcFYIwkQEOjPUIXxAcL0/jkETGghzO1/iGo2ZwIJIAz4v4UIP/8HqnaP78YPAfxLjE+ffwUiYH9G62jM9U7r9B2Ig+zfRzWNshQhp+y/ggr0eP8xX4Iw3ReowMz39d2/qv3zdX23OeO9AxGm3tQ2PIQITJ5Jf6r1eaD9mFFNSMzxskXnMx84AwRE+V3IOBmwZ0KsnbL/qV7/IkSYexsCsvzHqM5wTaj4EMA/hQgRphn1SZfkHUi/fRHVke5rqBp1EQIm/SZkrE2by8C1tyDj+CX9vIM6Z82U82uQ+fwdiHDlfaX8tbbl5/W5NyGmLPch42TAD0NAJgNSfkfL83MSEEH/91HBpCeQ8f1lyBz+OsZC97e0nD+BmJiZ7xQr0wDa39BP05YycPQd7S9AxuoH+gd959cha+6zGJssflX74WOIAPlHqAIttN1/BBlr06x6AFmPQBVOvUP0Xvvzn2NsFmdzznxkfQfA/wIZu/8JIrT/PYiAvEMFJrK26X/Wuryn9R0f4L5cyeiJmTkZXTTg00yRDZj7KaRN/whiPmdmUpYM/H0bQnd+ARXgDqh+ff4DSH9eQQACq8s5xHTzFBVseBOyXr4AAWHNvGuref9fvf6b+v7f0nLN3xKwDzaZxs0/BvDbAP47yFw9gZhCE4SObfX+v4IcWFiUxqyfvwOhW7+J6ovoH2hbvfPtoPX8Z1rOn6I6Ov9ZJTPj/QMImPKfQ2jMXQh9b1DXhQUbsHXxE8gY/xCyRny0ONP6MnrwU1Rg8jsQsOcxpJ99dMN3IWvihxDQ6W3IenobMucMJD5C1fIc9LnvQ9bpP0fVFLS+M5POJ5A5GSE01PxI/bcYA1MLCE16BDHrew8CJv85DoJ/RISTkxPce/CgWIzMyT7m4Nsij5sMZbKd983EzNhuxX7SrhXXKconcWbsNE9Yr0EqS61WKzQxSoRxZnAeBDShUFwimASTk3ZUVG0YVAfT5ZhWZSQRjjTistYrZQFZ2rbFYrkCKGLIjH7I6HrxK0VNi9A04KDgTxAztZSBzB0iGJTFgsxcjwQGIkN9wsrfjgU46nPGwOq0nERpoEuMBMYuc1GkTDCwiaqDcIdVsP1n7YPIbERQh+Fi3WFaV4smYNkEbJARckLICZQHEDEit6r4YfKpwFsBg4BSyIjcSLsogoKYzhGJlUhg8Q1MakaXtY8WTYOj9Rqb3Q6Pn12I0sgwKNREGDsSrF+nB72kQE457I0BDTV7oOjUz6y/Nzfv7f5UE+m6NHfQzVytUNgF+SntCAEUo2h8XaMF/NKATaa9dHp6Wmxih2EYmbGZI25ShLbvvUdW17EM9QANxChH5WZeN6fpY9pER0dH6Pseb7zxBu7fvy/R5JZLNOrLaSzccdFAsWtea4iZgcCgqGZobSOCOnMR2nMW57pTwdPaQSC1DU7FtEyI0ljAnAJK86Yw82Y2Pl2n2VTBpiBWcjEU300gMQcLFGUxQ/9z/oKatkXTtoocB/HZdOcOlqulmgiOQ6Szq6P3qURq4jZnJUo6FQzh9wDTVGsF/p67Py12pN0zAZpAxs/PLHx7JiUQBURVUw06d8zBeihO5ghpGCQcqTq2A6uDOvj5kRUMG9fZ+qMCjno6oo2z5ws4NGljrfZh30hzc2luHh0CNEZ5y0SpoCCTnT6UrVTXRilZv+8DNRV0Km+d1AGT/OObBsiZDy6n2Xog+ROLvcvSrIpout3TXs6ulQdK1zpYdMSyrjRH/a19VlDR+pVrR5dybU6M8umcM/914vQ/I2f5lOkqG2jx1cTiwJ6zs50w2kVqtkcaIpbcirUIQo8gDOxjCHO9rMUUfxUfoGo22D53pc+8C2GS7TQ/oKrc/wAV/JjutSZ0fISq1m/mCKbbbUDKj1E1gMwB6bS87Nr0Qy3j2OUt+uTazu+hmnPMlccQMOFDLe8OqlBhAqYJkI9QQY1Bf69QzfrMZLHXdp6jgndTswM7GSftl6z991TLt77durxbiEBhfT3xmVHSVtu7ggg6H6P6hTFAypyJf6zlPcanp11i2i6mmWMhwc3UklFP999HHWtjnjb6rJlMmu8mM7fLGPs7mYZEt99PIHP2HNX5t80PExg/1nd8hGr6OTdHzHTyp6gRuFq97+fcoOV9X+tnfT3t10vInFtAwB/vvNw0Y36k9TOfVIyqXfcDVD9PFk7dTN1svpuvFksZVSD+AWROvK7vI9cOm3OX+mdteXygLdDrj7Vf/kKfP4WMnZmAmlnepdbxMfYiWr3UydbhDlJvMyNuIONoWk8/gMxLM2marv2s1x9Bxtj8J52grv0t6vq4nDxvQHqErIN7kL58BhlHm9/mw+z7EGDkGFUj6wgyZjbvD5hFlbmfIGP2Tci4miaWgU0/1vYbOOQlWfO19BMIgHQf1TeYzTWjd99DBevm1uLPIhmw5utoWn4tKp01n2rmUP+nqGtt6k8qu2tmdvaXkPH5K33uAnV/sXYafdxBxm8JAbIuUA96vDNw82/4Qwht+Akq0DRdpwaGWwCKFnK4YyC6MSzGxhCqVuWHqLzDNUIum2yhh/2YcF5T7STjVYQXzMV6QHhEx2ABs+UV3m3moI/0Wd47jNMARwVcgePlMjirfx07dFZ+z/KHENCEiDQMVY7Q+jZNi6ZpkZNYzwwpiUZTiBArEkJiEdd6ZoQCYAk33kMcWMzWswAAIABJREFUghNYo3gzSDWyBghv2OUkZnQspnSF7WEpMzHQ6f0cgETmTygL2BQUTBJbNomyB7Nc0e7QbubMyCwb6rJtsWhb4TtVdgospnK2DTWkh+25ylzmI6tt5AA/BlJeVSE7QvEVXIJRQfjplBISi6+ttmnQD0Phe/2BvGj3k5u+MzKryUbqM9XPSXb8/EQsKuw+3G0/92qHuU93ay4VeXly8C4H8tNZ7uRBe+6G9NKATSEEvPXWW/ja175WtIfMRM1rL5hj7GEY8OjRk4JAE1HxyTQFk2KMxam3/RkByDnj537u58p3C2MZFSQSEzEuApaFuuyHARS6AspY8sJ62zZYNgvEGLBsG/R9h123K9pUXddh0bZFo8SrsZkW1nq9BpCx24rjs7OTYywWbXmnR+DntBOmpjBe+2kKLs19+nIoBDUfJATVbBIQTJysNSFWkEUpRwIjtA2Ozk6wXCwRmogYIt76zGfQ9T2++73vYkASp+B9J/KiakdECogNCfiSBNVfxFbRdeMeZAkEVDVM06IoS8ZWO1CAqzlsiWHoPSlY5crjqsFUnicoIapjD1BZnLnvwQCadoFmEUFZQoUmzrhKErVr2TQ4OzpCJsJuu0GMAanvKwAA2WgKoqzz2pyYkwJ9Ep50AgbpyZRFAqMgjuWl/rVtVnfv/+vQGp0Cm1P0faoZ5ddF+SRTyTTQiIFga8f8gU1VlLXWI1pYHWR79edDAKvUz0avtpsgKs6BCGnw2lsTwEr/1yaU75jkIt1IU99PQK1xiXXq0OgaJnmqD4EKEI2/A2rFrgyi9huPywkhIkSjfZKPWZ5LKWs1MjhHgOX0J8aIFABW30sUCF2/xWZ7qZurbPoW6WRgMfkMqyXWK1OLYPR9KOuiOHt+HwJqmFNaH8vAfGKcQ5hQc8adIYLzh5ATzT9Cjd5lio4MYbbt1HQKWJgg8acQQeIUwL+ACFevaVlmQvUxRFAzMGkKIlifm5+P34Yw3r8LEX5OIIKMRTsysOkJROjq94tDgghQP4YIGG+gHpKZoDWgmvSd6zPPIKfhRxANllNUBj2hanz8VNvy0eS9HQRU+xAyNkvI6fVnsB8JLmleEygNYJlq4Fg6h4AsBt6tUc12TBPjAiKYbFDBvbn+fpFkjmzNJM2cmrcuj4GYV1pP06KAq9cJRBjy0QttzplfkgtU8xBLBpp8D9K/a4h2hc2PE0gfmVPq7+n7LjDfByIFyL3/E6KV8CZkrGwe2zrYQgQ/08qbA/AYshafab/8PsZR8mzOGeB25frmjyFC6x9DtJJsznmwy8zdTHPCkjmfD5D5+NuQdfMFVIDV1/FDVPrxEarD8bk5t4H0449RAbm3IOvJhNwtZGyvUIGYl9FH06G0gYBDH0LmpZmx3UMFLy8ga8/mt0Xpm5ZjTui/jWpCudT7Bmabz6R3J2VkLWMH4H8H8H9pHR6g+m2ysb7S+j6BaA0Z7TWTOwMprvOJZOvpjyDAlTkhj6hA1buQMbV+sMTaJ1cAfg+iVXMHYqa11LoGyNp5CqFtP0UNZvA3kRjSjkvIXvLHkzqa1pWtNTt8MW1Vi/jmk/lxCvoZIRqULepBiO0TBg76ZL7nbH9YQzQZzR+Xr3sH2afNib83b5y2kyFj+C6E9tge9pa+w54zeniOMX08tP6tKrsOm8urEUBUBH8N4pIc+NNG8fGThwHZyzPadeCx/EAAmJQ/ApXySWUvUyxgVYTIKaEzvyjK8KUkCgVFrkDd7s0XrrH0xrMyZ3AS58/LdoH1coWLZ+e4utpg6HqACTG0ODo6xsnJCS4eP8Xj80uk3Q7NcoXQRAwQ87gd6/adB2xyQmRG20QEri7dxI9pRtZI7ZkzujQgQzSXMoAcgvQZifZSBtDnrJ8CNokPWhLzs74Hg0FNAAIhUlQTN8bA1h/a20F469z3SHnAarHA2d07OD05AQ0Dhu0GGAbELEhs0IhxKwKIGLs8IOWESI1YjjTSP0BAVF/ENi0iEXIU875IAUzi/DynhN12h6uuQ2gXODleA8SiEDJkbHfiCgcgrNdrpJSx60QODCNmDCM5KoTqfNtbR6kWhwM6a5R1hULLd+kiyaM6IGU+jYSPfaGlChI8vUYKOMk9j1GM5D+xz9wv16WXBmwiIiyXS6zX65GjNQN3bABM4AVQrpl/kDl/JFNAZU4AXS6X5TtbB/vfrCZQ3jmyjqSpWU7LtXLIhHJbKNqmkbmd5ven//aMN2USnzxi1zmnpeTbi0lbRwI4xiZz0jehOP8OIYgGVYwaES8WQI8aXRwKNjEYicOoXhUcqO8W9cCoDtYIy9Wq+tgCyunDSOWvyNckBKoAK1Q3qRFaxO7Rye4zAZvqC+w11ZyO6hori9iPk2g4aZmqdaIIiRbpCtDyzbY4kO1vAgAFBRNs47DocxaBjjBu4rT2FbyeACxUM426ifa66lZpOt+mjsGtj/zn3HPTvJ66MVc14dl8pXwrazoBxs9NtbRKMRjbJI8b6qs1eXbvnXPvr2M/1VikyawUBqKCSOMKjF9LdTqNvo+edX211+zSnlEDXV5TlQ2jUza/Jkm1Lf1pXHEUT6FsiDGS0g3hhpkZgUJ9tWmwWDLHpX5KbVCjsxkT7JlO1msWMrniWpLO9e8Ke8NYmr9BdXBNECFjo58m9D+BCLU3nWZbfZ6gcqCXEO0X05IxzQ5zTntdWcacm8ZC4WpRwbJnqIKVf79pZqy1PBP8DZwwjaGp5oABGF6osmumIeWBhHdRwbyp/59pMi0BAw1bVG0K32YDFi/x6Qr9psGSUMNzrzHmgMy0yrRevBbDDtWPT0bVHKmW3FK+5ZmrO6P2uz17hKpZdw4ZmwuIQDcHRE7LM6H0HBXcOUYdD5tzpnF1XdqgmquaA1+/Zg0QNDMj6xvTvjIzKaDOVbObMHB1Tlg3odZ8QplPMNPS8Zugmc0ZDbluH7P1Y1owpuHn57ZpwBgduKnP/7ZSYSIw7g8DBbaQfjGTQmvLFnVdGcg012c2tmZaZxH/DIz19MWiR86VkSFjaD7LLlDBpoyqqWqaLgYYrFBN1x7hQBj7SbK530HWsmlWWTue4rBvJavrM1Q6aocWFt3UALFLjP1T/U2lQ3U0J+oe/H+CCohdYn6/svUI1AiEprVq84sPPGv18eCx+X+6dM8ZTTIn/+c4POd82rm/ATXanAebzG+jAcO3WasM0VBycsWI73N8fdH+p8rjYIanBUbHg1V2sHILn1YZNa8dBYg8OeLJp/0z4pUxfgebWxDlc+F5ct6TleUvImdG3w/gzCqXhjJsCSjBmywSGSloARaXHkQCOCVANJSYsdN+SuSHX0CmTOKzaXCfyfVeJirPGBDD7n7pcqofxkOblloTo0RJY3FbQzmrU3Dpq0jOzZJGQifOwo8CaEJwpepLSfjcADGXEyOpKptzVpCvEefvMUTlncX0cRgGUGykzz2IU9jvMY8/PbTfcxHCKL673OSq8paXoeamk5/v/tDfnjFQy39aWU5ePCSHlgw3pJcDbCIgKKDhnXfnnEvYSUOHvTmbX1BENUTlqGjNO43C5NO+CRuPACSG+LthOA2KST2AqoZZkOwkf02MCCD0PWO73eHq6grDkGrdtV4GaCwWi2I2KHUQJ2/MjGimbbEBUQQ0ggFYbGvB4jleMJqAQI1qIomaXgzirC7EAIoBMQQ0UUOUK9jUhFi0mAQdjmg0jDk1akanjE8MQFZQbLFY6jikAjjl7KLkxQjEAIoNzu7cQd91OD45lsWhhDAg6HwgICmwlzOQBoAISZFvYi7O8MpyY1WTpf2JXzAgdr9H9/3iyy6vI0L63lHKAGlITQMjbHpF7aiGzAKGETgjcEZUYt2AIMpb4s8pDT2GTqTHpkS9qGvZotnZvCtzlxhMTusIde6bA7cMFkfjDnDx5cxpNM0CMsAYFCz9dj3BKfcNVCKoGSbAxGUTqW3lUodAwY51AK7bkg1TsXknGzZVq2UUB/S6azvwV+a2dGlG5sNOxX0/HeqTaf+ka5D+uTKm16ZA3T6Itw8qXZe8OrdpymWn/iR7jVxPaZBDlVAB6JyTqB/HgJOTY+x2uxINNA8SheP4+BjL5bJooFq5bdvoqQuqAGoCo6ne+5Tcn5nJWFW9yZWBO17zB6hhsw2kui7tUE96P0R1xmon4s9rNsGoQsoHqD5qDKi4CZgxBt5MIz7U69Y++zPwyDi2QfMH/YyT5yzfoZPruWSCH7k/q6ONw/P0jwEAZmZhPqOs/gaUfdqmKua0vEMFMyyanK+b9aedlls9rM+uUEN1T+eczVXj3q9LZi5kc87M8WzevYhGlwneDUTwBCrwdcgkyScDmSIqMOVBDRsj6yMPNpmT98Y95+eqAT63ARBNc2EKrFh7bB3dlvbZ2jOfNt7Bv63HaWTGlylFCAByqp/mSyvo5ykqyLeDAEs/Rh0jA6Ou6zOb2wYk+UiNwJjmGHB9KPk5bGvFNABtPlpfJ1Rgt9O89vxtaMDcurZnnwc4NFND0+Ak1DnjAx78bSZfx+m6MGDxtrQzY0y7/P5wm2cNxP0Rql+taVnmh+95+q5H1So+R93DGJW+vsxrdS4p33moH4q4QuMs5RHyX6xI4WcDiVxnwbT6XqxvAghH6yOsFkswE/o+IWV1/k0EhAgOAYPJZgAEYhFJqAdhUICrISjwFETriAgDiUzcBTk8ZwVkOAZwFHcqHIRLT6rZVJQQTAbPGY3mCZHkup7IUyYdepYAcSheWWDcf2BGyBmUEjAMoDQgcEIjhnlgZEQQGk4AAQ0nEA9oiBAh2koctB2dWCFQ04hwG8XM0OSOTFofIiyagMwtmkWLRbtA1/ZiwsiMoeuw22zRLFdol43KWpPxprFlEVDlqSrPaX8QxmDRpBz/eejai6SRbAiTn/flzkNy41x6OcAmUPHl4015/HcTtqaI3FTL4lDj57SPfPKdl9LYJMeIALvyfbQye85rPqWUQAwMCogIgCXmcX3fj4GzCappoTnF35QJx0HNYBQIIkGmC9JbZWk3uakI6hZJL+oCoiiAUwyKzIaA2FieZpQnkOQT0ywjCAwKYrwTIEJp0zYFnEMOyCkjQAgcsZjggGScF8ulAGrtQp9RkC4KN2q+jVgQK7ACScza8wWAqUiM2NryHNY0e22cwcbRiqzgUoU1jO7rOxQF9t/ls86dQKSREFCiOZjGkmk7RZJRFNtsiUyXUxRAUTXnmL1ZVAWcLMlJiSD2Rh4EeKPKmLCFoK9zdu7T5tx16bYEZh7AQkXKlaDa2iqT2aAmonrA7gmwMlRVfRTwEBSDdN5wiZIGfacATVH5aLOjr6Z9o5In1Z+jL3NtvAnAm+vr6TWjb2Ngz2jhoQ2ofJv81jaxtIzdLlhNKRV0yxi9NyULQsCgnBGIiikzM4MzS2QPvb5er114YKPlsVbGC0G3EYKnyQutNwE3ty1v6oPkk6Y5zaHnSaZh9DzJhDng0+kXoGqWfZrJg4h/U8mAEuBmjYm5ZAAU8On0B+PTj2j1InPGJw9yPc96+DT7xcp7kTG6LnlTzYsb8r5siVB9KC1QIwQaE7HS+7Yvmp+s502fZH34NAW5rksGIpjW4/OmT7quLRlQ/zKnT7uOU9bkeUAh23+v09B9kWRAFvAzjPjnBPpD9ybJ43LPdcIHOJ72QF3cAU6RnyYoBZGz6oADAPSa10IX2VJcx7RNK9hfzhLEyFpD4osoUz0bMbmKQOK3CQQikd9MjgkQJ+IDgvhNZg3oBPVtFCNYI+2xynU5iEIEh1Caa36QiixkB8nlUEvkW4CLSViw2hMhsJqWMeufKCWYVlPRUmOJPgcGAlSOVFmJyEzSGJwHUYwAiv8kk/3JGcAFMKL62W1ikE91wZEZJbp8aHMBaqZpD7OweVB+c52b14BHh+SI26TbyG88rZPW08uLXnvvpvRygE3MEnGr67DdbqtGEfMI8atCUb1HREWDwMy1psjb+FWHNROu1WpweUz7iVDN9gCMwKZsYSupEQKhk9oiIgQKJXqeaUPtdju5FwJWqxViDOj7HoNqo4DEVK1pW0R1uB2biNi0GlpTwJ4QGwGJFJ0V0KjR/mkFfGoCQpRn2tiCAiG26quJKiBFwcAq9Y4fVdiXmJKKhCeE2KBVzabMJOEMkJAkaKZkp1iIy8nJsQSsOTqSvlPnddAF38SINKQa5U2dDnPKgkjbfmEoGynUYBRzkuzSTctR9oVsFKB+umf9wivEoABNLCSZgEYth8wChaHEj/WgjwhNCGhjRJ8GcBqQhx677RbMjPXxCdq2QdcnDCmNtHnmZqfNSwHctKcZIA6KT4lj/ek0PwR83KR98zyaUPvPqFZOYgVzKwAyxkdYVXwlT9Zr5mDRNtCooCpZ1AjHT4iGjvUFdJPTsofkTl3EzttUbF3Xlvru05VqhsajvKxaQ7PbzR6fs99vlqc67S7zUBagnnqYgq/9+Wv1WLqCeSKR1HZgksdA3qyBDjMoEXImZK6naDlnBALW65XMeRJK0PU79E863L17F/fu3sFu1+HRo0e4PG9Fq+5VepVepVfpVbp9OoZE0HsIiXD5Jqo/tlO9dg+i9XIP4j/rh38rNX2VXqW/O+k5QaMR4HSr4sdyw7Ss2WdgPFq94kElFSPlIBViPUEEpCGhyyJfpmHAYtni5OQYi2YBzhld38thPiTKGgUBhxJgzHU5fAWLk/AIp9nELD5hIRYSAwsvPig4lgujLbIuBwI0svigQXdMw6mcfTtFC7vI6nhbeHsF2WDym/LTajUUEbBernC0XGLVtFipq5aUIxJnpNSDMiN3Ul63vcIwDIjDDqGJqjQhB6KURC6Tiplf4mhcsUq5kqEJATkSmtgU6xPSE/Cu22GzuUJYLLA0gLD0kY67Wp64iYI9+cFa+xxz9Lq8N8l1t0nlwH9a7i3LeznAJojJS9d12O12BTQqd2+hOVDMh2gcVnwu3Pe1NeFDAuIE6eMMZIGbpmBTiTSnfkwK+gwUsGm1XBVH3lCAytofQsByuUQIAf0wYCgO4gQ0ik3r/iSMpmjRGNgUNWqchGpEUOCJAkLTiHZTFLCpiQ2aZiHmcroABRRSU6NgJkoGNgG2+plEu4mgZpCqpTQkBmMQbRvtz8CK5iqYcHR0jNViifXRWg7kcsJuuwUxYx1bxBBFA9eAhZzV8VxWxNzwO7WF9ocV/rQAM0DTNYuDwMUsETDsahw5rIBOhfKjgBdm3kQKKBGJ+mVgA5oYkbloB7chIKmZJVJCGnp0OzkOPDk5xaJpkDJLBAn/7tnaGzAnwFfO5qxc/F1JVzlQYtp2h5TfpJr5PGtq+kxdY4yUFKPbQ5nIWiTtYXHiaFEL85B0Q5JNt4lR53VEA10HWkbQDdLva9aDWe3bzY9a27RYLhazdT5kdjgHbt/cP7cBnHzfa53Jng26Ru1AKJRNzeZq9RDlgCU2yM6A1PGMEp0wRuakJ0UBYNXSyxAmhas54dF6BQAFNH/27Bk2mw3Ozk5wdnqCc5xjc3mFy8sGafi75Hn3VXqVXqVX6SVIRwB+EcAXAXwJ4gDcHESfQJxGvwYxabqDGuXzVXqVXqWbD5gdv3+bsm7M6TVa5g5kr+Pief+6HTp6zt18PlFU07YkgVmGvkcaEmhFOD46Fs0mBaEGBagAAIHAgZDIXisR3LzlTkAuB+OB6vuTAk0ZwKBmcFwYUbVUoAo2ZVUOSE6+KMCO+jsqtUh60MkovCyVHmORZRIDiRFBOFossV4ssWoaLGODECOGJOaBPVR27LJEvttsRJ4eCKFRa6rYiFyssjMnABRAsSpGANWCBxA/TyZzNLFRn01ymN11PbbbLVbHQ1Gagetj2DVrkckOIy0inZMTLGMuzckMU+WBObdBLwQ46eS/zt3HdeklAZvGaa4xtxFu5zr2NpoW+0Lk5N1yd18Yp3kn3OatvThnc5NmSAl932O5WBRE1MzudrsddlsB25bLZY1yxwXTVVO6RsJZtgvEJog/JfXkTySgkYBJTXEEB5ijcvPHZICUaj8Fqp8FbIL+roTEdQxIbdnGY0Pl0xaVW1vIKSGRakw1TakHM6vGF7BeNwocoqC+pSOKkGwdIwTIwDhFh0bKTX4GCFGowAZhZrHCwEHeu8uHfpCVXcGBoGCbfRJXVD+GADCLKiaAaAbJmTH0vQJzOudywqCRFusYuE4lB1zo6UJBoQ3ttN8Hza9o73Nubo+aP6MRNZfGIG0Fmmz82E2tYjWuAJRMMUeQWcAjilEeJx49F4jUV5aBTaIZBTamAkAAgo2T9jPrpjc1yZ2r/03A01y79/sb+3TmmvxOAVov1CAFzIRATrW6JMdc2MnJDDMDquMX3GnMeLP0ZoVGA+Vx0cQUrcaUkgQDCAGbzQbn52t89OGv4PzZHXTdnYPte5VepVfpVXqVZtIOAiT1EDM6iygWIaZVlxDTwL9Gjaj3Kr1KrxIA5Vwmwvx8RsfPlku3AKHGjNws0DTmjyvPWupn+e15dtcPAArkZIGUE5CrJZD40F2giQ3ydkAesrrQqLwbU+UQ5QhS/9dI3wHqhJtIZRc9oGU99GVxn8AAOAgfKjJbEO0jci5eynPmaxeqIIGR5lLKWQ+AMzgncCA0ptFgsl6WaMqEgEXTYNk0aENAE0QuiE2DBhkNFjA5I3MGIWNIPeKiQWxF8aJZLJAzY7ftxc0NG7DEiHYIXsbLxqnKh3KCn4uolVIqTthjiKqdVXTGdNzCLL8/Eift4PgaueCQEsBs2TNKBNN70++Tt1VZwB02a6Gzc3SaXiqwaSrgTu8BY0fflqbaTV4AtN8+37Rzq9NcExongBUc+FAGOJRocb5O/p0xRgF+SLzSG6C02WxwtF6jbVuEEDCkAV3X4eLiAs/OnyGGgJOTEyyXyzLpZMESQmzRtksslius1mvEJqJVjSIBr6BAjfMHFQKgzsSDor8WHS7GiNiag3DTkBoDaaUcQrXMKViHmRfB9ZvdDAJIgYEgRLDvO3DOaJdLxLZB0y7QxgjkjPOLcwx9j7PVGk1coCegeBgspkHyzkLIc4I5OwY5gIqgoTpVp6ysB0L9f/+TNY+3tiUH0nDxvujLsTlT5w2pBlNgBmX1dZMzohEqPVUYAgExY7MTH0I5DdhurnRjSIhBnDVvd1sFAM0JuEYHNJVMnYtSjQML/xow9hDYNHdv+ux16TBQY9o1Mj9CsLZp9QsWxeqBkG0ajH2QKWBrmklNiGjU6bfZshMPgEYkMV9poaHR8zHEUf3mCPD0/nUaTc+r+XXotIE5w9ScfZ8bsBpM+ZnyeL26PF6F1idywJJFi6tliMN1UlDZUVt91gAzQts2ODs7Rdu2WC5X6LoOgQiPHz/Ge+/+HP76L/5HXF7cR0qr5+qTV+lVepVepf/fpwsA/w/EZ9OfQLSZjN0w32c9BGjaQKLBvUqv0qt06/QimvoHChqfJN62WJVZRhotBdyYaMEbjwmUg9lhGJD6obiUaWLE0dERYgh4cvkE3W6HlAb1vySyZCZ1Aq5yClhAmYwEsPhBIkDcqpiWEMTSIKv2UcqO3yUA0MhwRDAlgPJn/LK68ghEaKLIL/Z+aUcPgkSNi6EGhUIeQJwFOBuAiICT1QqnqxXWTYNVjOB2IU7KUwS34ieUoshzZydL5JzRrpdoly2a5QKrozV2ux7vv/chtrsO235AnzIaAloV+xJYvX3kosEkg2UAXi5+pbquw2azRc6Mtl2AMSCGhMSisSUYQo1ivzfvCn5TXQl5TGOUdQYvOWRx8byy2jRZnQGILOXkleAsqK4LTvDSgE0iI1dTuEMCkkfu5u5dp2lw7ftv0CwYARVkJmZhNOAlRLi7VpyAczUHm06AnAWI6roOXddh1S7QNu0IKAOp5kaMCEE1gmIUTScFl2rkqDFIROZMnGoozKLhVJ4dt8fe5wXSsTINjTQiytgUaK62H9m0V0gIFWWlyXK/UX9QQ99jUHMcixY27n/7UV7o0GJDKAwD41FWR5pdMZqHtS3+eSLQiNhTeZ+vRDVcGoNNUi4EaAqKfoNLdNmg/ReJEFX7LZAobuaUkC2inwIttIeBuguTMUEZv1pVBilmYcQSk/69HlB6XqDpELI+qr5V1ebZXiFWfe0rQRA1IlqsYBEIOckmWWefzjcFUpgYeQrGXFd3f7Lk5lk5pvHNcd9tFhrQNboxfgn8+F3bm+zyeGZGaRa5bHvvKHldBqoq0dbvZP7XnHPEEOo6Lu8nX7z5pspIwwACMAw9hkGic4RI4BzR98cYhpPrWvgqvUqv0qv0Ks0lc/pt4eq942RGdex+jho6/lV6oUQ0YL1+jNjsNKqyBlQpfLh8jLZ23Vs/JbjCFWxfbgYuPDtGNzIUN7xukmZfO63SiDe+7kFMGIlbgDJzvOZoPDxzM310gxDOby0HHsp3Iz9r133dsD+Ee9fdD8vC1pcsYEeVZwiOfUc9kUU5SAVQLWrMrUzRFpL8XN4pLkMCmYaTaTcZ0MXKS5tzhfova45cclp1MmqwHRrdy0Uml/PjCB/Q1dw3cDERDMpuF1HHrUOCHDq3MYoLDSJEIjEPVLVPRiuB5dR5bpvlPYv1Eov1Eu1ygdXxMbbtDo/axxLFr8coiFN5l36SybgqC5i4Zf3NKsszUORt47GrUoabLw44LG/TQgsGgvFqsSlfcAh7hmsRyNanY1pg16arlf3nIcwFB1baLdfWSwI2EaACZDEdwzx4BEgnp5T2QosbCjgq+RaI3lRrSsrOI+AraPh4S8UBt90DRhpSANA0DZaLJZjFEfFgvpyyuEkzU6m+67DZbPD48WM8efIEb73xEOv1Gk3TisNnBqKayi2WayxXayyWa7SLlUSUayR6XNM0xaF3NX9BAXRCCGgWyxIpKoSAGJsSRc4Edz+By6cJ6LrqBAySNgcEcUg9MHLIoCzPNdQI0B1qnwxDRsqMZiG/F4sWpyd0n97gAAAgAElEQVQnGLoelxcXSH0Pfvimc7qmpj0xatQ7bVauZK/GcQ02m2xGYHyhogQG3hDX30FXkvqSBqGashXH0qTelpgmZc7MsyR+b6wSREAkjewQo0SDCBmRGaumxTK2GDij2+7AidFtd+iWOyAz2kbd9QXSubM/HlCAzuYlxTF4mAdGGmpUtrk1cNv1Moeo2+chVc65chZNg+D8ABkoaykAMvZUoyd6sKlErExiaiibkJrTNTJWxECOsqazpxkMIOk2yxPtxpmqW2RCP2f22AqyDZbL5npdj9YN7VCu6TzDyBl9xUOVLbDdD7Vunr4VcKnMR1nvUU1oLU+gCZgOX670UT8M6PsOfd9h6CSEzOXlFXa7Dvfu3cPrr72Gpom3mlOv0qv0Kr1Kr9JMSgCeQjbDJ6jh4IG6LbDmM3boVXqhtFhe4Kvf+Ee4e++7ePLkCc7Pz5FzwjDUIERA5fW9NcU4auzzH8jJM/BMgfMLaodcY4nV8ps2MpG4aKj8mYiW5N+lQMPeuw+gRabtbxViQIOHaD9AtV20/blou8y3W/oslj6Qv/3+IHfgLVKu42uKNYPxTqxAzJR3y2jad+crcst0W6BJb04u7M+Bg7OCebScrS1UDiYNhKoAHWeTqyTAVgCwXC6xWLQIUeSWvt9h121rBDdSP0pEIHbRwgFkJGR1hQ3V5MkGvJC0PVMFmxJZnXNpAxJrHBoat4cr0JSYEUNAZnVfkUWTKmX5C2B1TI7S1sAMZCDKB5ZNxOnRGqfrNZZNg0VQWZgJhIhAC4QYsFxpXzQS9Gp9coTl0QrL9QpHZ6c4P7/Ak48fASmh73okZEQwmgLMUaljBmlQKulbYnHSvlosAArFeokzo20lEmCIEZyStj8jZ4aHKewdgEZsBxCjKI8w1PIKNtZc6mPWVR5QKutJ+9O+70NL+7OQyYNfI/hJy8l1/rEDocoh/PXy3ksCNkm6TqPJrnmtpmkevwFcJzx7QXiq3eGfL3/Fb9FYcCuCmZs5ZqZjkfJKeyxCXXlXfd/UZ5OZ4JW2AgVAiGqTWjWbVGtJHYL7elkKzkeTaEJVjSjTcgpls5oxxRl9AoZ5WL+Q4d/Maro2Bqm8AM85KzMkPRFDRLtYgFNC1+0w6CZkG0xRO3TieEVXuVAjQ8ar0H+IqDuTIB6XVrApR+QMaCrjXiZLzY9y3OA2Q/LARdbNkVz/ETgExAxkEsIbQ0BO4iyfQhL/VkkIfgxRiIEfj8JouOY5cGmqeYeYkROVvjkMcNyc5jSdbg0yuc9AATHQKDTrWCNIgI8QBGiqZm8yEsG9j50mmBBFewcBqt0Ery3o35Xnge295AAkmW37E41QHTjWa4f72u7t5zlcj73SmOupxQSYL5p//nqojId9BtfXnq5N6UHmLBECSUG6nLEbBvncbrHbianscrlEu2ivYboHEHXXtvOTJA/TzWnxWWIOyLmFW90u7wAK/SdYKZ9+mu8tvu6mpBcC/W5mnv/201TACMh5gbnxBBJC+NnNub/J9LNswc2j/Om8nRHAeYExgmIpgagDjaTgfUb5NjX5pLN2Rm/jQNk/o/VRPPJqfbgBczvzPgZRDwp/x9SbDDBx/JsHMEb5MJFrZvbfm8ZB6MO++BPCgNPTd3Hv/vcwpA8xpCdIKUlE6NHzFr02FH5/Dmya2/uus7ooYJNhO5KzaKUUlwKlvvZZeb3GDhvJ8czs6jZmgOulWbCJhXcquSTIz5CrYOujcMvnTW2UQ27ABXDiClL5vhv3ocmGgEdUfRfvidWlHnvV2EuHZM5D9w49N3aJUCS+mytQC6jfqV4bi//j99laCSEWoMLumXxp8oCvkfhokp1SsByDjfRg1UZeGV5WmYyheamCSaXulFGiGmPitwkVbCIWf6rm0Yi4Rpf2olX5UHGv6C5RwKJpsWgaxCCaTU0gBA7QYHhomoDVopWD6kVEaALWR2usjtcCNp0ci/sNLUNkPy7gm8mLxVrC/dUqqlyuMsSQBjB45M6mWMYYmzaVNag2djTvhXmVO0G713jxMObLR3PCuZ1hcuZ0YynZjfTcbycnwc1zHVCPT/wdApukop6oT7WapsKCj1bnASoPFk39Kc0lyzfSktBJQVS1ndTDzAjQKpokDmyaAln90CMPGZurK1xdXQHM6qtJnYOzaAh4n005ZbTqR6kbemSw+GeKEeujI6yOjrBYLhFVC8wWpwFO0aLcaT/EENC0LaI6jQsxiumWglCN0xLZ2yALilrBI8kr/dPEjBRbMVXKJA7RUE9YQiFuQhDF0XWdlEdHR3j9tdfw7MkTvHd+XsCDCphJxLsAEi0X23TLiAAIboECYylzfra5LLy30QYHxVSB3IFN7AnOCHUqY8FKUBkMpCTqsCGgaRswBWQKYBJn1pkzFjFitViC+h6XXYc09NhuN4iLBY6OjnF29y4yMwYFZYaUxA9YzkjKSCTVpEosQGdARjWdJH8YdCug6dCJjieG0814ThtxCn7IF/E2ZIAlcyqAbNIQdeY7zDiqbJqB6mQ/a0jXnBL6YUAahqIdGXTOew2dMGVeXD3zTL0/SbqtNs+1+ayraHLhmnSI8ZmC8Pbu6Z8Hq43GVhqqZSYFUMEF2LSxISI0TcTnPvc5/Pqv/zr+7FsP8Qe/t8TF+X5dV6tv4uzOPwbRdg8r8QB1NgDRb2zw+Z3Ksy7YtmmKlixDgLR2ISddq9UKbdsWAeHy4h385Cf/Bfr+bK+Op2d/hYdv/QsFKPZTYd4mQxMw0fxzjds/fb0p8ej5+tuYl0OfNW8gEgZ/zGVgWhH/3Pi3a1tRL/2U01x99i+NLtR+qNe67gE+ePe/xm731t4rVuuf4PWH/wRN+3TvXtnncINw4St0IFvhJXSsy+cMXZzSHHbvINVk5XJn5tXGyfv67UskszLM7DDS3P7gGFCeXnuBpO9I6S4effzfo9t9YS9Lu3gX9x/8r2jajw4Ww+7Pfpd92dpB9ZrnDzywAaAeVpTCa1tL//sm2+N2rQgBoZjJV6I5kicmdfF1nLye/Wyo5Tx7+g/w5PFvYB+kS7hz91/i5OwPx71U6jiqxLgdM020561fyyHo/uP1kGv8Zp33ebQOTDPerrVNg9Ozs2INEGPEBx98gPfffx82qhQIrWr4d7sO/dCjiQ3ati28KYDCN0zH3lLmJR5//F/h6vKX9lp6KHktpinvU9r+KSU3ZXwNRgKdvTtbnBAnI+0fpE9GlIGpGhPz/vyrewCPKnUb9uj6Q0dbsZP9cVSfcXv2D4imbfxk6dPg+Xw5he/CXlfPPDT+MflZ+Cops+5TBJVHc0bKwn+1yxVO1kdYLBfodjvklNENOwypQ6AWgWIRXhiMQeld1PLkQBYFpKprR60piAAOYgkC05phMNN0GxrTCHI0Ogj7mAMhm+isrko4BCBEBJKob02QzwAGtO5NCGhiwul6gdfv3cfJ0Qqn6yXaGBBTAHFCJEYgRtNErFsBm8IigiJhEQMaqsFwAAgYyxmULQpzRiDR4jKfpTEEAeYCIbIdgItMd3R0hND16IYe3WVC3435RYYcQE/9Q9d5PJ5DQ0og02ia8Aw2521ejN4zw1N8KnObGcnoTx6vvZzSrYjCSwI21cntTeOmTJgXiEyDyK4D+5pNhwAUP2AhqPkZVWfBIy0eyERJmYuT76IuirEA56PQWb3TICEpd90OXdeBgWLCVtqtINt2u8Vms0HmjKZpikohg9EuFmiaBovlEovFQpx5e10822AVQDJn39auxWJRBXAHNJlJl+8rLXBStBdKURyiBZKQ84bCSrMVWTabVS0nU0YehtHGtlgscHp6Kg7sckI/WN87DsgIAwCymJhgoVjK0BVQyO+vxj3VlsDAJX/bvku9qBL00gsVeAqY3oOYELq5ZVtpAZtyhqmCFACFxCo4kDwfQ8RCxxyqatl1PdrdDmdnd3B6eoKUGV1KSDlj13UyN/petKEcYAKdl4Lum7mh2dsBhyLS+TQnEF2X5xDYNMcUlPVVehZFEPMnhOQAZVi/5oy+73F1dYVhGHB1dVVoxhQwMQf8C4382CgIW/l9cidrVU10DnB6EabGwNL9G/YxFnZm81i0vZk8U2DgUJK2XF//OdBp/L2+i5xmogkY1mchEGIMeO21B/j617+Oy/MzEQZmUrv4EU5P/ylCuHD1rEJWObFL4xNUa/L0BKYuLVJV8kV5VwgBq/UaTdvg5OQEq9WqmGI/+vjv4733/tNZsGm1fhdvvPk7aJrNdZ03Fiyh4DhdH9nwNunQOrzNmvP5bT0cKv+6d06TN3H+JOlQ+YdA7kPXpm3eXH0Ojz769VmwqW0f4f6D38Ny9f7su29q1m3qBqAAtXPA+xzDOW1PBoRch2DKBIffL0Rrr06jvPYOvVT3sH3goWpa+uu6q41ozidjYokIffdZPHv6D2fBpqZ5jLM7v4PF8nszD9daJNBsTUY0DQf2IM8XpoScXLu0v65bD+R7UGlAOeQkD3ZoBpo8V/K431YfjbxkmgSe3A3DPTx58p/tDQFRxtHxt3Dv/j9xL3bjRq7zUNmB2ooxsDW91qrLBs9ClHkUal97LIEZxVdppUdV0GNmLJdLvP7661gulzg6OkLbtojtd3Bx9dflPRL1dIUQAq6urrDb7dC2LVar1bU8//QzpWNcXvzyc4FNvg5W1pxM8ckFuyL97t2pwzHe9/x+eYh8jTkAHl/gA3km75xcOVh/A7/26sCjSfhc6bmfnb6e5y7OZL3N+B3iu6Y/uWqX3KrWnoZ7Qu14HZMvTR7KKRWQnFksYlarFdqmQT8MyMMgjsFzAvPYFYzxukBlYWBgk7hekrcSK8YkgC+xyXoMIs2YgWplMu6LOS6YA4lWVCB5NIt/VSZxNC1yq/my1UN+CgAk8hsisGobnJ2c4Hi9wqohMbsjRshAIEZUsGlh0dmbAIoStU69jmj9GOCsgJNpNakcBbdXkik9mAWAyNsxiHydQdhsd+hSv+fix8b3OvloenjPo0fHe9Dc/nUo71y+m3gqzIwZjP+egE23pXkvDdhkzMBc6HGgqokaUFNUA90gJXWCNnKOxhXEYmb0fV++2wZhZRroJPcAoGo9dMOArIJuURdFfd7X1wCpNjZYtQuklHB1cYntdos0DCMfT57xtN9N02C5XKIbeqSuAyEgxoCmadE0LWLTqildUycsVY2mRu+TMhHF5E7N7WCfws2WJcUQdHrCj8AttxH/As0b1JSOE6A2ZzVPro8TmxPs+oLVaoUHDx6g6zpQUHVdsiKkT6IRORjR5fIvQIGvMVcHKKH0e/YUaCptddfqj3qltJ4rUxhsL1CGVKpb1UsBsTFmOKKSszi9I4g9LUiN38VJX9s26HNCIEJiYOh7dDsxq2zbFpSzOLnOGX1xQqfzvwCTdc8i03AyBhgBgWNpwyGB8ToBF+6d03tz3y3/CAS2MiAMteBrCZwTSihR6xsiuS4FST/FiKP1CjlnLNoGzMCbDx/i7r172O12CkT1CkSZU/4swoSOdAGCzA5aite67zu9KO15Ll6H967UNN2CZ7dkmaMH3/k8jK20S8oL7jcBCOUeawTHes9ooTsF0k03hoCmiWibJd743OewWq1w5+4dHK2P8LWvfR0P7t/H6elqz4+eb7GBQx5EKp+TOVTnnGZwXA1NXjGdj2RCnRMGbc+4DmEgEiB4erDhBRshCOP7nCoDaNevE0jmBOFpO+z39Pscc3FdvtumOfowFbI+SZqO0dz96377Ovk5NjUjH+dVf4sH5mQV4A6/a46Jm/Iqnv8AsAcwEVFhSOcYUPOaEdumRpzEeMXXd9bPyrdMmzVzDXVPrMgAyt5nO+AeK/B80+jaxNcVxofHgbVyft/2fIU/NJO8NTM5PofLNUAOyRTa0X6Q/vFcg9ETANPNwOaClet7l7VHSfzqBXvcyJ5dM7JGQqfVGqbGwDW+i8LBoRCfho3WX8s3jS3fZ3ZzxCuZhoPSZlcfabtpcqrGMAjRtO8sj/I0dgAGQA4JfR+5dTDl1ae8uecdLI+NsQeW/J/dnwplBgBcR8Gm/I29c8rHPA89Hb1/8mzZnw6kQifdnjimQS6vu3dTuS+UeH7OPW8he3zNNfR/vw2u7ZM7ZU37+3wNnbmhMTTJMzfk9R379WZHN/aeGRVdOcap5qyNaTEnZtboycrzp4Ss/nnatsXx0TGIGbvtFmnokdIAi4SGKqyIrKIa6gHjAyTyysuGRFWSWj6MhxOsSfw7VQFr3F4mURooLHcIyCQWK1kLKnyV+kSuO5/z46rrvm0iVosFlm2LlsTPk9XJTOqaIE7EQyPyMUUS/02kZbJE/Tb5w8znQpBIeRlUTAWDtiGyxqULYuETIslBdsrif3nXYbfblQjZpn1WaAkzApwzdAKKMaHxC3x4Z/T08RCPdJ1s91w0wWiO7qG27c3JgjellwZsAuoksuQ3CttUzETGa0FZvkEBId8Blm+73WIYBmw2G3RdV0z2bEMjoqIJkVIuwE9WIX6722JQv0rDIDaZmVmdbMdRPWzDXC9XODs+QU4Jm6sNut0Ofd+X/DYRTSPF3te2LY6OjoDNBruuAwVC0yywaBdo2iXaxQKxWRSwKeesGk0CMsV2MXK0HmNEiO3IP5NQE/m0JZq58mQ200UAV9VkS4zCrBEHNEHrkXQCRlmIyJVImTBoQh4ph3N8fIyHDx9iu90K8YHmJ4bYE2ewmuWB9RoMEGAlULZxzRN2X/HCZGL8WTcL42LHuQhCFAPEL1UwgmmLbsL4C5upMRxY/FRRCCXCQlKGyRxTBxJn6X1KCGpa13c7AeBY5kTIGUwBISV0am5KgYAk70talpnVZXUzEHRuNqHBIi4V6KkM1yF0fE6YnRKr6b0p8RsJ5e53LIypbIRZ1VdFhVW3XJ2QnEj3JjlFaNoGq+WivDfGiH/vV/5dfOUrX8GjR4/w7rvv4uLiAj/84Q+x3W5xdXWl5nYDOCtNcRp3WrHRHDuYbslpsZ9oo/dcV/BNRPvF2by6PiroJIIY6TVVg2a7Ri6PVdzEUtXQCwGLJuL09AS/+Pf/Hh48eA3f+MbX8ZnPfAaLdolVu8LdO9W/1oGazTezMNeVBvknigh4iOmezMciZLj5OKeGvN9vNApc4QUaO6SgQEULz/apbrtD3/UAMBKO5piEQ4KS1XvPb8kLpOK4cmZ9Tr8fAr58XT+N5A9bpum2QBOAorFoKcQ5/z+aFDyMM3kMaD7EkM0xcnPXPE9heYho1FYvvBaAyfEDZgpNjWhi2gzwAo0IoPp+V5e9vuKiG1MvwVb02ETP//baLnavCCs8vvciqa7P+TJ4lGf/HhguIAKVuu+PnQFOWm9tht/7DYQyhppLm33fTT8PMPUsp/XMELMUmEZ0FT7loGxeCC2yGBEa9W1TgpboTfPJMpdCEM12kBPRkgo7Jig6Jq/8XxkCrUvlreq8k/MZObgUdwyt1jFB53Hui4n/oKY4ZlZsGk05ZXBOhYb68N5TsMn3taeFh4CmKdg0XZtsfOmBNIrKjEqnPP0uZT0H4OSfmeOtbqarB9Y3HG/2XLV5kWSLbj/ZAd7tuuS2+W5+jsa3x2wXj++NHnW0s3zh/cdKnunFSd6xHHF4TKd01VVl5iUqI+inCPvq3zUzetXONjB52S5wdnqK3XaLJ48eYeg6DEOPzBo9QAmIHYJnFRKy+d81WWpCDuywzgNNICCwuT1RObGybepwunZOIAVpiKQaMYBDUGBFqGMMBGLl82MU87mcnKzF4hIhBCybFkerJY6WS4Shk8N8rWQDoA2ENkYs2gaxiYitgE0c1MKFk5SdBGjKOUn5QUzmmhiRQBgYGt9OKFmjMrMFZYpRtMb7lLHb7XB+foHNdoO+7zWiZR7J+cwZmUXGs/3ApknhBRyNOEQXruML53jJOp9upjX7B1m2LVTaefjAbj69PGCTzfIJI1cYAiX2Q0oICgClYRgt7M1mUwCkQtQ172azQRoGXCnYlJNEhwtExbRssVgghoCUuSCRBWzqOuSc0PW9+pXiIgBbHadR6fqhx2a7QU4Z290OvZrRebMU1kXkmccKrlm0N2VarXvM6ZiucAKLAzTVYLJP8JhRY/dn/1voy8J8FQKq9sGszAFPHKUxFxVvFCFViKJEDSBk0yMJhOgYLXIMYtO0WK3XWCwWsgBUSGfSqBdcNStKrf1GXeaMLAJPqmm6L7qNqEQWKw/VXcL0n8h9WgQwsvez1/LyO0x9EZU+1P5jJ/QbUXbCZFHNVMKec8aQErqux3a3Q8oZfdK5nwbR2nHUvGwOsG4sZxkwECVTgkFNh4hRbda+wC4biwnq5tTRM4nWCVV7SHwy2Ymg27y0n6SuokZbNjVXB1vPi8Wi+Ns5Pj5GjFGcULct3nnnHTx8+BBEhIuLi6IhWJhY05IyQjtFL9xLn5eBfK7n2DFlk2vTEy2gksM5ZuRFhP49gdTWWxG0nYmyrpEqEKpAZ+rGAJrYYLVc4sGDB3j4xhs4Oz0VnxvXCEOTGrk/jNfSpL3WZmOqyx3ys7/ORb8Z215iZdTNuFC02drlnPVwYucEUJmj1TcLgWJQhkojmvYD0pD21o//9G06JCxJOxhzQ30dOFQvVYHppuen5dxEHz5pappm1D8+3fYaUDWJyu9rADGC0Ng5Rok5IyWa7eu5dB3TNu3vOUEaQNnrR24BbA0Y8GHzphY2qYijJjxzzX6752y9uFWhoMIEZLKqADUMt1QS07U5Tp6Iz9332hqHSzGhaP/6XKXcXLb/CwNZ31MusfE5puk0GXvjEWgMEs8BsJML45/2P9V7duADIteE2hZSulLBqdof/nMuFXisDJy8t+y5VqeyDXLtK71rgkVpit+ICqkW2jRADn1No7tkIXfIVCsnfJ0KYF6rqet65CyHR8MwYBhSAdXs9WaV4MF+FPrt6dckIlupPh8i9dZy4U/UxqauvQrk+DKM1yqN0wvGmtZcLo8vp1ybzhkDsrh26GRNTw8sxqVPXlmGzRiLcWbHlu4nNzXqupvLeLvkl/OY/vtCJ4uW/Pyc7J+1NEfNpjSzXh+Tk/qEz1zHelx3T4/rNTcmI4JWO6qM8JRWTOSzcedSyWLz7/+j7l13ZEmS9LDP3D0iM6vOpW+znJ7Z0WrJGQjUUpBEElgREEBJ/yjqNfggegJBLyC9gqD/JAEJIEGJEAiQP8gltdpZ7szu7Mzp7nNOVWVGhLubfpiZu0VkZPWZ7R6y6d11sioyLh5+sctnN7uPyfDM0KI48qWlSlnmGSVncYxo8lsPD/M/jQaoRysR1oDsii/08bvm3Zt5ZFqNTZe10Hhbo7Hs5oVWDwbYAhBYq5D3Ubdk47VUoBZQkR8kAlUClYpcGEziAUYIqCTPqkTAZcYyL5qqARAnjAAiKaLFIFAxfakXwwqWlkR1dutoyVIVu+SseUxLi6yw89jx4sZX0NdW07V3vOn7suHV57Z9K0bBjY4UEPpacHpZDxn3e+i6fUfAJpIqUdppUwwYWJcqJwKWBWBJoGXgjXkv/fmf/zkeHx9bTKtNXC1FgCj9tNCkyhrjepCEhMfTSULp7Fm6yWtlLLmAuWJRt0Qb5BACBqxjuW0TXi4XPD0+SZ6ZedF8Rdw8qJpSBAVVNPa259cg5GVBSK4MY5BkzyFFxCQuxoEFaBoO4tGUhgEpJpQqqDeClq/kqvmFdCMSQTyI9gTvTe4rVqFAmThKBYoADqKYVgE/lGNRy4AvYEONoTFx27QA4Xi8wyeffIZf/eoNQoiopVf9aISEO6mt6qLtKBMscVynjt3rqXkoKfdvspUxFEd3O3CmW78jbzDx3LAQqujE8kpoVk+GIBbJquPJSuxlzUolhlIlBxNIQM+UMygGEMuaK5jw7uE9Dl+8AQMo+qiigGaupRGnSKG/Axw6ruE8JQBUjGjt5zXYrgH79L97C715AngrtQlalgTfA0xEMiZBXZuaThalHG6tBModLDBQLISAV69e4dNPP8XHH3+M3/3d38Xd3R1+8IMf4O7uDp999ilevXqFn/70j1FrxfF4xM9+9jMsyyLjpOGrAtKqZcUYnrBtmeFnAKPnCPzesVseIrtC4s4xOW7HgF9HwnsOQPSfNsaBMqoBqBwhoYwyXs1epJavqta0lBKOxxM+/uhj/LW/+nv40W//SHJtpKhWtwWlBDDG/b7ITkADKXnPi6D/bhjh1SfoWjngDjaxntjBUKNBEYEkif6tNs8z3n71FhQeULK4qxcVHkTGq01hbGMPIFJEdLxAxnot3HVFyNHZjbXeSJ3tIZvb7bm9yMW+dX+tiNHVp/Ev/3l9D2mm8H2TRiR5tbYeRtv7Pvccv4Y9uLPnteSfG2Naef72+5iC981yr4jiPLd73KKtXmYwecAq1kZmTda6r5yQLgx2x57ZOm7td5nQqzSmNG/3Fvx37Zrql9MHt5XKzYRaRbZ6Zob3K5LZt34dPydY8+YP5aFXtHcroBM1BrUFnPZf8HpfsduzQPcQtz4Trvej9yIvDXDAqq8Vt8eNuXs3ixgkYSleNrXzpHy3LyPfx6EDd5oc2D2fVa4uKJg36zwok49wNFDXdSkiv+VcUIoU9LBQuXfv3gEgPD09IaWIy+XSjJAhEEqpmOdH5FwwDAmHw6A8qXtkSL99Fagu70BHrsufe3OoCYCjB6jU8zp0o9kVLybAYg77dmQnltrz2G04/duOmTRia2YtVGpf+hxv5/w58Puq8bN/tpfy4Mx1b/Yb6bs8T0O/5k7kxoTcsS7Au/vYYG7vufe3p3rba7bHaHOdH9u6c872Gf4buZ6w32ODt5wU6G7gFhVkGILx9MpSsKUCgQOGNOLudIdlmjFdLljmSXQqtnKW3H5kXW98ZgmSMwm10xytbFZVf1x3q/NgOeZ5UZevAdmBFT3vLQBwlTevlSUhdntN0d2YGaUyqLKkJigVkRg1iAq6FGQIgPsAACAASURBVEbMFWWagbIAeQbVjFQIYwkYmIFpQSwBgQsoEAoVZGLEYcFwKXj/8IB5qSglADSAYkRMB6ThqOOq6SeQWi5OkYiDpA2ujMACds2XC86PT5jOZyzLhFwqSlmazNiBv40srvy2sKXSGVpan60R0q7ZGlQBR4NVfturpPlcew68ikFSsHCoja8Ib4ni2R8CsJOqytp3BGwCABmYWZXDq8GkbuVjSMjcMs8qsIinx9P5jKenJ7V4RMiGEnfeWXM15Zx14pUZaOJvYm7CD6l0ZYKc3wBesG/CyUYotwmvrIJw0TL2TnAxYszwyrter09jaMy7j3cnOMGqM8SVQqFCjjFeYKtkrgnkhwjWpiB1CypbD5R26fO3TEyvs3FtVVq0mcI6jqP0W+fLEqN3C1+fA13pHRRsx/1bkfXOHfNn0vod2lnuOnZDbuc4mtyAO8eImgWA/LU2F3vjqoAo+tqW5O0aMKhr18IMEaKCTUWvdXOhGkLnzdyUEvvZtyJhV1BZrxm/DyyHgcZ8u/26ngP7tzO4PnhogA+IhInZVgqkSaj7WtkbO3/scplA9B6Pjw84n8+4XC4NGF5bJ6m/B7Pmz3LvjH1LenubNibrb65kICdV0NX5/py1EOOVPBNCV9e77ePv+aEyZruzrRMWQYVDn2tJTEs9CpYNeFZlq/ZQo5QSxmHA6XjE6XjsdHpXINzrB7Aube6v3d7DNRU8G9lTDflqDbd3st+BRmedYnKrxRAxDiMoHJBJLe+sLtHqu6m31LeUfxOp1xMDzQ2+uv1gF7X3IZXz9sEmPaV/do1Ex3EtRHc672ia4wW2lo2G2vVFw148fxM6Ru12K7DJKUnrgd/OV6eyNwFu3q6bNW9qdJtWJ1yBTb6E9nW3NkUItG+3nun71vux7v+et0EDmvzeRvde3AOi25xDK/3AclmwEwGcRdjmEUrbDUVa6SmsNC24l1hzRbM39370szoftGuqi6DzVH7bfDoErMi/HGO3924Rr74GTY5YfWc/66Xf+XX7iu1/d/V6/9wkn44ge8Bp27ZjYB7v/f5+HWze0X2/vfPVWrT3eEZk4/U/u/dtYtx2v7lz18BK75/dmjcyBRvttyIcDqxiouZNDvvOy6zoYLzk0ZNjIcQuS7nzxWgUJJyPLFLAM0m/R9d7bXPoZmvP1Ht7wxrpQms8xRFqe2YgaPoI22HcRrKPjzu2pbXtqv6zWntXdIqu1kWTBr9u0ey9v7u+r+U1BLaS+XboZt8+nS6u58q613ULA6vkDxkdorVHUvc0cx5g7Rlr+uaDC220t/KJ5299RmwQvBHsWrrx9zHeu5qmNhiAe8zVHrzidG3wHA3Sf41eWDaRGCJAsh+YISCU/qwpi47TZq48WNl4hhubLjtfv/lNgKKNY/+0Y8rW2mfroeuek1wAeSXpY4xIQ0BIA1irekulN3R9p2qqk1ox54zAAhBRIGSqKKiIhVGYME2L8McgicQjASEOoJAg0SnW3zW/MRAdLCHRsZ2nQJ5WaYua1zPUKuCUA4Rsno3OdKOhMyRqAi3pBzVwqt1jRfbkHMlxTFJNz9a7jXPo9/H36hOKNZ9hI9W6kporLvUHf0D7boBNIQAp4ZdvvsAf/dEft9A1sUJarqYBUr5dlPO8LJjmSUKNNBHXV199hctlwuFwwOFwUHf5CKKIw/EEMHD/4qUSli7QS9b7gGEcEENEVo8gr0BT856RzZtLVsRQJzYQxmQ5nyROs4SMBeKuV7KE/0lSMWoEt5SMab5gXmbJnD8OYGYsy4y8LMh5QSI0LIfUxU/EUQAIwtAoqGcRAMqo6iGVtMR3zsLASctKMvfVRIVvLPSwsrIxA7kKqhkpiCDQaHwv92vJK4nEOiueXRkgIKWIECU/VCTg/uULfP+HP8Cf/fLPgRiwzBXvHh+l38w4nE4IDGSuIAZiSCBmxGAJNaUD1RG8tve4hwR0QuY3hm5MU6S1/GZCQGByCecIQb0+gr+SzLUwqIVQQL5KrPNVUYgRUkRKEdJptcKpI2bJGXMumLniXBlLrTjdv0CqFQ/zhDnP+PL9W0yoOJ3u8Oqjj8Fc8fD4gFIKDocjhjRoPimggponE2kVL0tUTJ4JKvN+Dmjsgk0XAkjXTimL8sEKT+0InZi1tGBNumKIJws1bywZPhLAg+WZkSQEFJqvhCLAqHj/8BbTfMYvf/kL/Ns//iliDBjHA0IImvhfqtO9f/8e87Lg4eFBq/uxJAU0l30wcpVQWOt6jBJyZ3km7H1W7esEfD92uhZM+elf+HPQrPP+utU5kFwY7ZAxaPveZEmvlJtStO0TyZywVjsECDAPR0SdBxb3YuugXQdN2ujCE8aU8NGr13j54qWEmy2zrEVVAlLoxQNuj5pZ3DbC0Oocdr+bcMY9IS0qchGQZNDKg0LDAriyWNNRkTODAoMRARoRUkWiETEddhVIAPjk40/xX/7nfwMpXZCLGELSmBBSEKCJrDfdOwDMKHlBzZIDgGoTQ/ubMaFUmYdaKubZjCw6x+qhVLX/rAYVbkqPXGvWyarh4ynJpsvLjKK5DljXhwHUyyKWtmrJK1XAZuWlYnTpHpP2YrRZyCaAkPvOFIsuyBiQEZSXS2JPwjqHEdp1+ocXoNCNPCDNAUa9sqcPm2MAl/Pr/WowEHr7/t07TNPbFd8fhgElFyzz0gTrlYAHtxdMbkhRhXuZ2VIKcskgEA7DofXdL20ZZ159xtBzPnrvSyagKKApOR8qgubrIKdwlKWgFisGYTxc7pkVbKcQNf+frFWh/WUl0FMbU6XbcGRb57SiolJWHiBQa7Vw7q6RgtTlvhuj0DQIUxSJAiKdbhcQIMI4jBjHwybBeq86woB6zVCr3EeQikFtXQOas6jfu8uGpIoa1IvKFFZPg2x9k9YB6ItdXks2uACYjGEYtRKmeW45g6JnLappbQ1ZRuRF1vWW696P53jRKsLRJtiSqWgfq6WKADeQp4+7eQpR/90qENnjKwOtqER1fQPEHaAJrDLe1n+d6xgDGAekGFBYjJDDKHQ4JMmDl4YRxxNURhZZP8YEIlEKAUKICcMwgpmFPssL9GcHEZ5tOkMMCEi4aWCw9VWrlE0/HsCccS4ZTCRyTw0KltqIBMn5UsRz4ng4KUhmWpt51JtxUPa1TK2AwKTyNJGsTdk70QQumBGsisbdaLkHCcgWVVOKXaSIo6cf2jaO/bDy9ISeKsTrSVtZsq8H+64bQZi9YYjdj1Kj1fjK8ZY/jdA85fru8Wt4LbcyNs8hRpfkvUwBlYvtXmqcIcaKeJDRIGzuY+anAmbLs6ZGHhLDtHzKWDbSqK/dQTLlLxTkWYUl11HT1wjIADLAC4Mq4fWrj3A6HnFII959+Q5PD08gqDcKqexfGXVZ0HRfAIMar1Elf1N166PrvrqHw74st54nk+O7LNAOeppUJVH3QdMPQCtcSnoW8dwsRTxohyEBNWC6PCHngs8++QQ/+N5n+PT7n2O8f4EQA5bLhFwBLiJzRSbMlUBzwbv5PQCgSFY5zbWEZrxfckEJd0jHoxZWCEjjASEdECsjIYMqY1kKUITf5VpRA1CjSH534xEBES+PR5yPB0RmzJdHjMcTPv3kNQoz3r5/xJIzQhok310MCEl0aJFXCKfTHYgIeZEw4gY2+aEsVROLkwJooeWIbHKQ0rFIAAelHbpmB83fPM8z5nlayTTt+io0g2yCmdRY6ugMBODj5l33DFPCdwVsAgAKOJ8vePvuXQObAvWk3T70zKrCTdMabLpcZszzLCFlwwAgQORSQgjikjYMQ5uYLbJoOV4oL41IiwdHUCbXgaJlWQCaYWSKtBpcUEsdUQ+Ja0h3E7xlooxA51JQalHga508fA14mRRILfla3+jUvKDEg8oEBREWSl2wtZRz+9eAljYZMIJnB41ZmnW+uXE2ItmBDHLEnaCEo+X4CZ4SYRhG3N2/wPF0ApMIHtMiOYoSgBCTVGErtZW/JKMVEKZTtVqZMMX+cp59+V4Jv7It4wg8LAm4AUK0AqywOtNu3udUp7grCgRUSPJ2ilGS4bV10IlCZUYuUmGuAEjDIGM9S56maZ7BT0+gGPESWh1RPfWGYdRxlhcOej8wK7Lv8165xo7BPtPanG54jAnWnSKhrXEdJLjlaoPentksF334AROaNLlVs3zoOAlxnAFmvCm19aPWioeHB1wul7ZnRGiNPRebVmeELr3u0qqP1zGrJtC0rz5EOrs+x/iseSqsv3CD62WYJoj4W/Lqb0K/nw7Z6nbQsWoimps4cooNVwVKNBEcMwE1gMmgrbXVg4gQOYJJBPwYRNE+jCOGlCQH3rII80vJ9euZNWaSFgNdnecb13hJRQVGGxfmlpMrUFciV3RWjRTyOAHsRcCvoBBxa56PhyM+++R7GMYLcl7AxBhPB6Qhyfjpmq6oqz4u04S8zHLXamvfzhA6XEpFLRLieblMKrzrPm5u0LUlmcx5VtBIkuoXDWespSDr+w6DGUUKkA1Q1h8NWSoadm4FNVp11VpXPPU5F237+0pI0Yn3+9CuSSlJktA0gIhaZdcGQjCv7tGUKOoh68YjPTDTc7eggWl8I/Sq6vdEM6peF2MER1ZArxcdMWvjik4SAI3SC7RObFwhPN+Awm1ovdAeRjX0UTepH6P2bkmE8CxqqcoDIngmPUdAeULGgkIFgWLrk8kRS44CUsUBIUatgGNyRVnPkRqXhIfpOzZdwSrwFmStXomgHm5UdB7JvY8BYjbwkH3KABxoVjVUYK8ZaBZ0fzavy9Yn6nzMZCT7T/e+6PsKNnhi2RTnvo4Krw2Mm96s1roBqfJOW0WrV1FrYcJbpfZK+2f3L9p+YCfAd1nv69uaNxg/6zKnr450tVeoKuP2v9fGn6gxUTglklsnG6hG173ta90KKui8Ktgihgp5gxCksnLrJ6DGUidP6xphrqBicISuPGP4blT68Weagg2BBLw3QBks8iZvcCqypMtcJblxtP1nx7vMgarJ4YmaN7GtrdDoBq7XGjrtWNFYsFtT/T3be4tQvHPO17U+Rl4m8XLr3s/zw7rm7f18f916X2zlR72wnddllOdkBlwvxBvnrz09nPHDPcPAofV9tE++b5CRb3sJtv+p0f7ViHTRWeiSKvmEIHlw3bfCz6HhM8BhPOD+7h4hRMyXCXnRAkIwA4TjqXYnHVyTr4U0r8elGS5NVt2Mo6lyTqXT3zfeXZq/iblKCpfKIGIYfCUaTAdlTS8SfiRGhMqMXCvSOOL+5Ssc714gpBEUCJUCCqR6HHNQdiNe+DUvYK5YqhhJpNKdPK+SVP5mGhASIYwjKEbxagoDCFINnZuOJSAxF8vnnMGKT9TEGFLCECVDcV0WhOMRx+MBtTKezhcZlyD5VWJKGMahGfwANZaqUagUo2RNsO8kV+UM0yW7kUlzhpaiY06t4JQtNOG9UekZN12NVXdti7eyyPttDvuaMCyhrfnGB2637wbYxDIxy5IxL7kTrxAQquTGoKBl403oEc4jyaeTKEAvXxFKuW+eTYBsbq4i0HMtEv+5EpJNsA8YxooYAqZ5xrwsrXsiPGh1mCBTn/OigBPEnVdKfoFiaD5HMQYUFTpYGVWF5tKBUwRN4WrJoZXZBWo5mIZxRBoGsU6SbbyC5oEEBuUsG48ZIRSJ/7T313MHR2yuSHwrOa+W1eoWXx+MpshaxRX7u4Fi/t30PHWeajRbeSDSOOB4f4/xdFJBOwjwop5YSRAqIIsVNjr0gwB1n6xN8OgSPPpD0IU8YnMDbmTf8QlBqTNrEm3mXn0OpPqt3CdwaO8jU6bWVBjhZpRQUYmBKpVXxDqlBFXfwzzdIssPiFBImEuMEVGTaPrQzf6u6DG5GtdsG7/FdQfxymJAcqL11/0LNyLNubSJQTNhuC9rkThLkT1XdQ3audI9Od+S6HF1wq+up2CMV5udYwqyffqqNgY2yZ5dS4fybLmfJTWtGqMuQuWHCfS/0daEnm+xL8YcxBwB5u5mW6uBfAHNhsgu7FenmykAQcZ3ulzw57/4Bc5PT/gn/+Sf4PWrV20PHw4HHI93+IN/9Rrz/BMAh6/r2Accvy1Q0mr/Q/dIQEwRlAbEmHA83mEctVInEXJZcDlPu1XarP3qV7/CP/2n/xQxPgnDDsDx/ohhHFC4ILMlx+2euCFItcUYIAJCtQqp6kGh+zGEhEAGjMnaPahVPMYk1ntGA4+tAqcG3aKWDrQbzR2S5VrqXgelaJ4SimAGZgWSvBHD9o1ZqrdV4raA0hYA8qALcJ3Dwe4JQJItAM0jxiu//vlbY8veHNm5/rqnx9f4s7Qv2gzDgI8//hiHw9z6s1cB1x+zfjWP5bIGaew6H57n773yWPJ0bPNe7TtdxkQEGiMoApfLBdM0aZUeqb53f7wXoVGtkLks6vkgN2EI3xcFSs0zyhPk/l7xU8VIlSUJH+ieiUG9tzmw/KC2e7dCFWzWd1LVwZRT6k4eNp+BMYTY1v9eI1glyAFXSh1kHzVJGd2DwAw/XdvhBhb4+doCpTa/fk626+Laetx/fHjpNE27192a/9veIbTz7K35C1fX2H60+xuIun2GV1D23tX3lZlXeUS2+3PvvW7NbT9H8oGCqwC+zABFzZsUm0IzFvFuC2R7z+Ryn5+NuiwHBleTx6wvjFolz8rX4CINGDGAsxudg9vL/bniKZV2v+sLz8+lBw+6PGTvtZ33Pdp36/geaL8aow9sO0+8ut+tPnx4u97X2+/NC2q9R+xn730+XG749c557jqlm+SiH7zCc3UbzzuMlvWdTUCLSLDFmmJECuL1v1wmDdMSGfowjDgdjijLormaZjScy+te7Zk3aK6bzz068BdvNlc6FhVAUDkUgCTSLmhxgapXM4BFq8Vlljy3iBFxPKBSwOO0IBDwtBTkpbTLB4jXEjQ+hcGSm07BphhIPfjlJ0XJTRrSAMSk8lgC14pIUil7KAESrZIBKihEyBTAgVAoopBgFMTc5iGNo1TBhuWCC6KXl4pcMs6Xs9DnXISGGI2FePVaGh52ckcHBkWuLIDMN3Uvb9MVzevdUgnZfCYtIGYONknpaKuYp56DXpeXPkI8sxx9Cim1vE38nc/ZxIy6SFja4pJZMYBQGURVQScnzDI3wSIqgR80meAwiFu893oST5AKs+YBnaibZVQWRMBlmlcTQ0RIyYNUkjMqa6LwCLTJhSq3gUW5DzG0xKNtIm8oV826AYAhIXcpJUFLkyQ1JQ0hEG+YosyNwQhAkdhUAZtCyydiQjiRJAr3ooUTN80AD3BF4CB9qI7poQs7+3ZjfQ/AMGoAAjSZ47s9w2htTAmHuxNGTRZLRFp1rSgQE0Q5VgUFMbTcAGjvpsJH3HeN3gYUGckjNNla1qCCNLWyEmhuJYsNbAps3lqdgAcFm6pjxkxq6Q4QImqGXyMU2qVAEtsfggTWMdTCzKxKZ+1gCdHVyqm1IGcSsImFsVgWjGCCuMlg1Oftm4gHUOVD9pEXrNwZdEvYsacbAw3t3EbkfJU99z7tfg5s8p4IK6UxaOI6R3h9R7cMlGEW/7/omPz7bDsCJ3bEMFO42vArIEGSHDmEoKE660SyJq0wkXjm646a5xmXywXv378HEeF4PLZrXr58hY8/+gQ//aMfYln+YzwPNu003/nV63mhdC30+ovEgm1eHgkpDTgcjxjHg5YFJ+RScb5MmKZ5Z41K+/Krr/DP/8W/QKBHFYAIdy9PGI8j5rJgKRJ2ZeDAOArzvj8dcDyMGtOvXqthaHuYQRgH6U9KA47HE4ZhxP0LCQtJaVy5RneLt72m7oFamyevlEoXsGsYYgvpLkWqOg3pAIaG7ymPMP4nnsB9X9j831KyAXRPYLf3vLK+VcStCux8Ee8pq7LaSgM7jyr79CCP/WwBsWmatGKgnBvDyyY8bVtKCa9fvcbxJCCjv/cWPPLvYf3POeN8Pl+BTt6LyTzEmLnJFgKapHbu9v7bMTPwcrw/IKSIh4f3eHp6lHmMA8ZhRHilnt8KCOUlI8+5h14yq8FJZHiGCPAhRTXS+XyO3MrRCxEUT+IYxRstakESRIAGEd7NE0hCsqA6goEh3SpL5vEEcusKIArK224oM0QdeO0sUMm4AUyknonrhPbbNft1zQOKfUy23bm+n1+HMca2dud5bnvLy5jbed96Fvr1YN6Ae2ATqBv99vvZvRlaGoVn5M7nxmkPnLJ1vw5v5Ktrttdef28Wcrc2VOKS7BpyzZBknxLyFV3Su2O7jmRM+++qMoCfE16v+t7BphhJDcDXtIXZ59pbf2fHBDfYB5DsHA82be/xISDP14Hz36gpiLfXtrxhrz/P3Xj9ultwbAtIbWWAbwMM2Xv2Xh9uXWM6pXmPG8KzI8iw/bMGnNAAJ/m6jZ3x2xAxpkFTyMwqWwidGNKAwzjivEguY6uYjkaF9/ehP3Zl9HC/f6uAU5Pt1RAHBZtK0UgSD3IwFuVLmasEwoWIkAZUCjgvGQHAeSkolragyX4REooala4oGBhc6L3S0xij6HhxAIIYTOUejEAWVksCMiGAkZvvbg2i85egEk1lSY8yTTgsszgakFXBJSmOUMWhYtGiYVxEHotKW1McMKQkOIN6gJece7oYJSgydj31RwxB+XVC1IgDA6wWLa4WiQCVga1Aw5iSAHsqd5nBpoubwh+JCBzXDjtRgSYK4T8AsElb2Ahi3hrYwBLHmL2i6T+9tcOEQB8+Z+dun2NgTrpK5o0rISTnBbks7ToTJlNKmpzNrJxKhJuwfIsxc3OBhyrfpO8SdEFINvg1eGT9N88Ob1m9tvxAc9usV4S/j33uWWSJeslHcS2uzsbmCK7+azIhq6Jqv1dypFsFSopBfjRvzlIyxqChk0QNOLP3ssqFXsRoTNZYYiPe3DYmae4lagwZrbKchczFYBCTXddDAuy6dsxZqIgt/ri2XhQuKmyL0NIIuvYnQAhEBJAUvAkERAZSIJQgwJOAMIKwswICXsHzeRpaUkdydhICzE31eda//XaPyTCY98/Z8qRr4adbpkQBF6WjC6zra+Vze6zf05ikX6Oka81yNFmnmpDapoxa0lIDgS0049sQYIRX9vVxNUa8PddfbOsWq0Flm11evcbNth4n41HmDdh7ZscCxOKzVnrkrO0cmVJdSsGbN28k740q4NM0I4aEx8ePr8Kxvu0mdIYUyLF3CwoMy36OMTT6bPk6cimY5glLXm4KxB9//BH+07/6nyHERyzLDAbjcHdAGiKWkjEXcdGuLOOpTiNIEVqJqTYLVNRSukvOKFU8Vy3XVc4ZIUZMy6wh20KDoguJ4o2wnXNGyRkpRskRwyxgAVhy46lgk3NGjAnjcABAWEqBT6LdLFvUeUHP42JK0LUHhHmxWZM1VHSdyXW9WIe+ATNqLk6p7Nf6z23z32+V8xgjDodDO5bzyT1z3WKMePHiBe7uL1eh6uYlusc3Td4wMGELCnRAUGiZnfMc8OEBhy3YUFg8e8MYgUC4XM6Y50nmg4X/jkEsjKy5+YY4gI72DOnHUnJLnmoGOqtwx7QBBtXjsf/InYw+5JJ1jXXexizVgriihayJoKrgm/Fg7nSXWY1huWCZn27m16q14Hy5oPIj+tLr67KBFK2X14rRLcV9/3n1Jq3azrHdx6+D7Tzuzbf/3dPm7X3t09bhWsa93ovbvqYU2/07mPzrgQ97wAGA1Xxt+3HrGj9G9h5XPNtds/3x3/k5amGwO+fvAbqW++wmAKLyfEoJwzA0QN3L3Lfm1b5j7l7Be+Ow905bOcnLNM+N6/Z3DxrYPT4M8Pn69k3xhr2+fWj71oGzD2zWRf94UsWm96kLbwTq33uvf/Yw3VoWFPpKKo/2uzV9QX+CyhAFC4ry0BgDUkzi9ZSSk8k0n3B7AWokkjd7bndtUQezmwxtMtZ2LuyY329XA6ljqEqPOtGLw63K3pVYknOzGIpDikAVEKlWy0cs6WrSYURIUZwSCM3ryaC1SgGs+ahcIJh0JZigJqB8gKaIAAFxaLKXzbGluyMtfBAqSwEn0yX1BRlizBrHEaUUPDw8ADHg+NVXAAU8zQtKkX5WiPxZLEdmrm3M52mSasYhIitIJOGApY1tWx+avylrFXdzvEnD0AxFIRBqqVjmWfUHRs5qxElSeXpRuniZJkndsCyoJauxJ3b5AMD5/ATjQSEQHh7ei/fW18j53x2wiQje+rdlQsbgzPpkwqEHRDxz9WCLD68x5uGPbYl7Vcsv0JmbWVotz8SSZ+S8wPJJ2XMMbAKbG7q8XqlmoXUbx93fBLAYExohI+fZNAySKI16Lim7vglv5la3EQa80HK5XDbD7i3nYXWNHydTLMztPQRJati9nbrHlm1Ao081AGyl7o3gAc3SSikipARKSZKEl4JpWXAaBsQhSTJEBTiKzQsZsRCUmqEugOihUQ00YJ/TSI4b2FNY81XpOYHQcm/ZMVIgSXiIJTeNMIsBkYZ6acUfDip0LllCWKp6jAJA7CF/AaKQDiFo+J7EMFcdu1Hj/iuAumTUnFHzAlFC40p4Z/bj7iE4rJJQfz3YhBtnbAWDD7jLldBYmzLKXMWtNBzWAtGWkT0DPnkhz6/VJgDr5vMk0Ih1extBX7qCwMExp2/Y2D+nHybG1XBeHdsAT/4g8/VsfFBn9NoWIqU3Yka3WoCwFVCZO+Agf8v1y7Lg8fERzIy3b98C6GD2Dz7/IbgCX3756qYy+a01Mks+tfeTHCOajFZDkcfxgHEcEaIIIcuy4PHpEefLeZOIt7cf/ei38Xf/h7+DmM54+/4tSsmabF5AoznPqFw1hKlimUXQm85PWOZL88AD0PjNw+MZy7IgF0lUP88LHp/O3RABYJ4XLfE9YBw1Aa4CGLKHKqbLBdN0wZASDuMBtRY8PTyg1qw0HFiWjGURsOl4OOkc5Za3qeq8m6BjC2udK8ZZsGhtNR7t8QAAIABJREFUEAKRVFpVIGZRj2DLsXh3d4fj6SQVC0+nlSHDwCbjLz434/F4FIubhj16HrZV7sdxdCXSAwivd70PAGAcR3z62ad4/Tqt3mMLUHgvJOuf91Ly4+DpTtLwPS+3mKxiP95ry396b6lSJTX4VBYxWCjCnHPBMs1Y5oy3X3yFZV4waY6O0+GEu9OdggviSXieJrlXFc9lM+SYDFOt/LXRUjAkL4UCa7Ou6zKjLLmFjjJXBZug6xbKV4X3CKi/BprMs0knUehOPiK7lAW+5Vzw7u1bpOFLGOey5PiyD2QtLNnA031QaQ988rLlc0qvnWfrwXvzbQFJL4t5AMS+2yrbW7DS7t087XeAE/u8tb4BDy6h3f9wGNs9fX+3n3vH/PkPDw9YlmXlqWVrfkUXsAbftt6IewbNPZBp++M9HE2evwWo+DH3AJVf79tGJLTLUnEcDgeklK5zuW3G0M+Pf952zreeYJ6Wbfu91Wu27dY7PwdsfZP27QBWt0GOX/c+/74AqL1m0EygnvKB0eVZ1n+EStmacVcrvSTqJxexEEjUAiTiYYgRMzMW9Zwcj8Jbh3EUY18VkCOQegUSqdLFHdkiMgsirCPs+2nH4IAmdD2Cia72jx1rQEgDuey+1AvmBHUsidCCLZKLrFJF0lygYYiIY0ItjGXKqDVLknQKSIcRx5f3CIcRl5JBYMxcUckyBUZEiihBwBbLbSQjDdELXF5FRsBAUfuooXcsBpTA6oFNFSFVKYzFpu9p6hIyVVPSR9zd3SEvC968eYOnywULS56mzOI4EYcBZF6wJjfNGczA+fGxrSbJS+9SGrAsoKpGu5IzsspyOUvxmEg9yisNSXN53aHUisskOaNyTIghYDwccDgeUBhYILLK+4f3EmE2iQG0OdDoWqi14unpSWVKoeFvfvVLlGUGl30+bu07AjapsOsF0Q1zvVaAbjNG7/Vk5/l4RxMcre3ll7DmrU1e4GYkALwSDqyxxmS2PAcsruYtEdgOA/UMuPVhK2wYqOOuuyUobYUc/w7+ns8JXtdMscKcHCWqzSw9EmvKxRiszCmREBYRsGUhRg4IlTAvCSESslNErR+mCBGpl1qMKEaFreIea4UF7gANWu+8ru4S4rXnKALO3PqpojAM6JNwQxNw0YA0uHNAaE/y57TfTQJH9+aBXcdC/IXuSdnMqMqyhcLZd7VKYlYugmSLco218Ggv7ZlD67Hh2fttj2l3XtEFNnL3vXWNvNbzUIiNt83IVihaXW1/+PsGwCzoW2Fv/bsyOAfuXt3XNeY+Sn20fn1YZ7f58SLjTpu+r86BLbXVV244ruE/dz2ZsIDbF7R95IUNfa7NhwHJN+dqQ599/79mGXyrza9No5u1Vk2sKfvOll2jn1xUEb9tkTmdTvj+9/8S0nDG/YsTcsmSYDKQVCRV4KfU3MCmWgum8xPyMrWKUoTOCx6fzgr4SHTwtMx4eDwL31ASYUKEWdg92MSae+ByOWOaJgwp4Xg4oJaCx8cH1FLUcCeAWM5FBNXhAGY0g4mBHFs+4HmS99KwMd4qQWUHbDKeeDgcGmDkASFA87Whrx+vYNmcLMvSnr/1LvZ9lKTfcv35fG6eydu2LAu+/OJLLPObtazhnm/99+8aHZ+Pm3C44GSXFvqoa7FWrSRYr8MAt/zfK9HmNTTzgsJSGSvGIGDTUjDPC87nM+ZpxnSZUXJGDBHHwxGWaFn6T6isYXAgqYgbxSs5Dg7QYG66iHk2WXVCrpJfonJGbmCT8CSwesGJtK3VNAlijAHIgiXZ5rp7RoIZy/QJnt4PmOfruUop4fXr1zgcP0EvO2+pEGSfSML3vAKbngNRtrKQzbGtJ3+dtT1gcY/Hbedzu0e8kr3Xp+fAJt8XgLAsGbfassjasBZjQK3lJth06+/1M2+DJf7d/Pl+7LzsbbLuVvbcPmMLLPm/b4UervnWjcY7nhfWX3Sjt6Xj2HpOPde8XL4HLm7XiH3n1+X2+r11/Ou2bwOYuTWme8DP162lD33Oc3P5Iff6ddv2ns+N21ZuM4l2ddzGZq0uNFBp/Thq37HqNkpW1WvUrxsxgg8pYtDiNxYuVUpRMEVy/0BphgFN8pcRe7Qqd4x1p7rfMbYddTJsfyknfbq/aHWEm25ofFd5h4VmEFp19xAJlt+yQhNiQxwT0jAgpAQE9XCVBJldxg0RTFHSmDh6zQA4kIBhQRVUCoBWfiQI+NQUsZbjV0ataZiqq1XlZwYAWWU4Zk21o4AQxailPlRWIFJPYtZIKFY+a5ErQYuNcR9K1mfVIgZOvX+TCW2toK+VnJdWOGmetQhNyAqyufDVKgauZZ4VAOth13Yua/XjUrIUy2FN1aDOIH4F7LXvBtgUCDSOGMaxJ/beYYorhXeHCHsC3nI1zXMTRpkZx+OxWYu3zzJho6w8jeKVcE1E6oq7BkpM0JzmGcs0I8UATrGFO5Qii8SEUFssYuUuzaJCRHKNY6q2OSUfgwj2JiRtvcH24ui3ApI/f88l24/tykqjeUOWXJA12bpV6/AIrA/YKlUWJ9jOJ0zLBYfDiKenRxSuYBIPBIoB8zKDuII+eo27uzssAHC+gNWzh3XTIcZWlc5Kdq50agfAkBJRC6OzQiCEoMdYBWIoit7zMxHEa6nRJ7sOJJVRdGwkGM5Io2zMlnSVJW8T1QJCQNSxF+d2IX5Z+7nUCmLGKIgSyrygzBlLGrBcLuLaGCJihOZf0XDGoCBa0MTC1ZJe67wYYSUDxvasQ+t954Em5toY4TZUQNZSX1vbZqCkXe+f4fetP78pTI6H2LRaRSgvzK+EMdWcCC6JvF0fFCB1rYVQECFuknd+2+1rhWE5qUsnzJtFvXvB87dzvz8nUO0raqYkeqVfAAsp8d1pkNGmFy9e4Hg8NYDhN9lWQAk0fbaFc4WMUrJ4u7IkWqwa+laWBWWZxeX8hlD5ve99ht///b+Ju7uMh6cn1FIwmHdsDIiROrDGUj6Ydb/LZ21eQgY2zUrbKQygkDDnjMfLGQxJGm7gRlAQBCTU1OLyE+TwRQtZjDHhNI7qQi/hYbC9oLKK8ELLh1RWe86ML14xtPxE09RzG80OETAl08ATE3q2Hgzm6WZ5bFoYWrVKM1KVblkWrcp3WfFtE5TsmX6P2zOmacLlcmlr4HJ+xMUp27598eYN/uHf//sI8U8UfOxrM8aIpOu5yRSanLMpEQosKSETg4UDLUJKcq0Kkm1VOV5roIJ5cW1zc3H7D0ASuv7y5Uvc3d2hlIJlypguF/zpn/wMl/OEmiU8/3uffQb+LZFxUpL8YCZbHI8nKS2vZZ+JegGFljeQNC8YgBhI+Zv1S16zoCBDBFGfdxAg8XoOIiSHmCQ8Ichnr4yrvwMgCnj71Wv87//bp3h8vJ6rV69e4vd///fx8Sd/2VVHrFf0alawyeQCD6TaOrLPrTxF1D1zbM2vQL/Nevaylf1ua9+a3ccf2wMUtyC3lzV96JZvBjY9PXy5qwgzM7744kucp5+2Y5KYNrWl7q/bA5E9LdhWbvbPuUXX7Rqzitta983kc9989IKNmc1liyjYAOUGzNwaq10w6zkAIRDu7u7w8uVLGDj2+PjYdQPNk2r398/dgod7fPYWSLaSd1aG6/Va/xDQa++9v432TUGvtSy5v35ugbh7gNZ3qVmvSatsgkUOAfcquA1oWsM4Kqeu35vaedxk1VIypkmq0hIBaYh4+eIeh3EEuOJyObefwzjg7u6AQJDwq8ZvTVeRZgCQ6UAMMkjEAqEd+NTfcyshr+TLG+eYOmbGGYoEjrquNFl4SEBMAXGMiMcBda7IYBQwhsOAGAKOL1/g7vVrjCmBNH1ARAVV07cAHhLqMDRQaTW+gcAKNJEBTrCKpwZuSWEVKW4V5G9EVAIKBRRUFBZdrYIxV8ZcCmIcMB5OAEhSSQwjliWD1LPYInIi3JqoDFQJkzPP0ePhgMM4rr1UlcfNi2AGJReUZZHUP8OAEAhjkjGyMMHpcsHbL75oBcWga5IYON7d4XR30kUgNGleFlRmqTIdEw5H8dQqtUiuSlbnkbKgchVDxgdGLnw3wCY4QW5DiLxg0M4DbhJTzwC8y7qBTcb89iqPNIUVoqDuPbMx5LZA13HocsPO1KQv+nvteRC8wCLWT3bM3b7fq/axFrbjDlDk7+/P931sG/6GILF6n/W3gBIkATlCe0bhjtQC/UcWp5XilPsuWjmvqIJPqryFEFrmfRF6JfFaIEIls6JKwjYBkaAgklQbuUKbCGjeKtwwCEfMdS3ZdaxiflMUGNBk6Q1kJoKlCK8MBJJzKmp7nlWOang6Q/9WpR2WhBwNMJNE4wqeCb4uJJBZlOdSUHMBkuS5ggE8/p39p60jsDIQW3z2sQYW2qsp8GbXkypWHaRaA72euewJBdvv2x63Xrg98Zx4tAJLd75bC5sKpsmN133iLWv3zdbtHhv98La9aitKrGicrc8Pum/P2WRCQH81J8DZ/NgTbwjAH9ZWm2olYHtPED+3aaVA/wUe+Ws2b7myX9jW6UpIr2CWogOd9u54vmkbhgGvXkXc3wuwVpkxJnFDjikiJaOh9lzNlGw/ov1aJ8EKJldmxDgipEHBpgsYQIySh2cYJA9DVT5SGZqTABhCQFSwaVoWjCnhpN5PTakuLjSKxIP0cjHDy1oR3oavG4Bj4I8BQL5qnynZPjTMK1E9d5ck77Zk8gYkMXPzbFqWBdM0tbDMUjLO54veO2uy6wrLI2X5pmxORQFUim6oyI3dJO8/I5TZrRX5LcSIuPWIzlly5fm1Zd7Hpaz2WQgBZFVdDPCz9ekUeQOZRhUmvad1syIqvcUgQrnlhZTcCxnTNGOaZszzhFoYXMUbrllTcwaItJCJ5KBMLHyIsPYiSxpyGQOZjNpzP4TY8j4QAZWqgE2NiZrZBVKW3srXBwlFT0Gs6yH0qosGNgUKKMv9zWTuIUScTicJS2hgU9faZK1aUtPOR0z2szVrYJPP0bV6f137tua994wPg/Tymv8xzxfvKdiXVgfp90B93z6ENsu9Vqtx55x17inmfYV9K1s3r33mlReUl8m3RstbAMSeXLk1du69m//cFgbYA2q+DoDZA5uea1vPJtuj/hlm6PXP3BuHW+/o72PHPH+2NfRc5MKHNpu7bwOo+ZA1fOs6O/+593lufezpML+Jduudnl1DTt8w/QKqUzT6b6pJ0zOa+Ha9ldv60ZvrubVWZA0jNoOUpFhJSn9yS9XCbJWYe3+0h0atN93nJp84f+PVWdTeY9NhNUa2szey5+qPrnzBXk+ZUv9RY4gxIzO8kBpzYkqIwyDGEt2bUkFOdS5m8WxSHQlhHdXBIaAaXQhWpdXAJqWXAJhYiuLAfuB+7+4UEukoPBha9IJFebraL8xiwLI1wJB8SlJZWHIlLfOMQY1WMnXU9EdmBpfq5rkqf+3e1zH04mDVyW0W/cNVxigOCWlJTWc3byl5VLKha97RfW79+tS5tLl7hiR8N8AmZnARlM5AISO03t3WKzYmCFjbMs2kmdxHtfiaMHw8HluOB8uFsbV6zWoxNsHQBAkAajW0hOBx9Z28igvT03staj03jykAKDljYjTL8bIsGMdB9lqITSmYpkniO1nKQnIR0EEhakFozeWtCmWpWSrvZd14MQbxFFLi1HNMdOtVE9TlLVbT04VEqDBNiMMo3j8hSA4UL5A1IVx+SslYFhlHA3zGwwHDkBADYRwiXr9+iY9ev0KeLlgeH1DmC+qyaOJsWaiVAaoVKAWo8zpvUyAMMUgycp9MlEInD4QuGJNaDTzpVUJTSlWiq0oIcfdsakRVLb92rWzt9lwCIxKv9R5VPIkYXDR8Tq8auGLR8IWpFMTKGLWfExiRK1AWzJcz4jDgmKRsdGm37nNWyYi9EPHKCjaxCw3cMAabc9NxmFhDImwcqS0LYmjFMrdWVkKXMp9GjOQ+AWvBDxBrjbmAGujXLyMYTncFLq0Y4bpsNTVEkfp3XlgB1CV3h3Gu2jcX0G7fl9wsPCM87b18G3K+2rNNqdi9axdoZf2vwSg7ZiPbFZv+PAPPraqnPc8EcKPTpVQ8nZ8wTRf4ZNS/iWYrGm1HAs2Lop0ggK14qkif8zJjWSYU9brca5fLBb/8xVtMrwiHQcNcCIgcEWoGzwq+sUBBcUgCos9T98I0JQmQKYhRhJxUwKkgLwvms5TArZLQAKfTHYbDiMfHR7x7/15ot1bsfHG6Q0oRT5cLzuczIgWcG7gn+9PCn0xpiiHi7u5OQaKyohceZDJeZjzueDy2c3y4ETPjcrk03mkW/623zjbHomxo3af6r/dUyJYws9r60mILjtb0rsvxZcntnZiBP/m39/if/6fP8W/+zfV8/vgnP8Hf+3v/Iz797PFKSZ2mCY9PT+39iSQflQcZZK5lTietrmfeWxZiJ30UZpLde/lcTTaO9rkCN6DABSrmamF0HWwquSDngtcvXoh1M1fUwiJshohpnvGzP/05aq14Op9RSsEwjFqFES45qo6iGom4lZ9mkSm40wKi2sCmQsUWjgiarYy3ckPqXDUgoBfq8BqGnDNP38cvf/lfAPjh1Vx99eWX+If/4B/gcPijlgMkpajJ781DLOJwtNDBDnDfMqD5/FrjOK7W7MuXL69yLfn9YWCh3X/PA2UPSNhrfs/56zyYYs/b3pcZ+Of/7Pfwf/9f4aqyWggBP/7xj/FXfvK3V/fMeVn1a+uh5dfjcyDC1gvZ713zOrJ7eO8u+7Rjo+aY2RuzW15gHvCyMfT33AJqft4+GKBQ8HEcR5xOJxBRS/jr6Zzdfw98eW78tjTnOfDmyoj9Ac/4OkDvm7SvA4vsmR/Stw85bs/8dc7/ttuu8fTqWJfBBCtpSEJTgyo64ATuuXz9tSuAggWMb0IaM+Z5Ql5mxBBwOp1wPBzw4uVLjMOAh4f3eHiYcLmcQSQhZzFquBaRFHAgg5qUPq/EenEakJQkG88mNjq/7jFwfcwPC23OscYKhVQI36lVwsYrF1RiqeRNFVVDtmcuKCg4He8lh9rdCeFwkDy/4wBiiGFO5VJUBseArIYSxKi8R+VaowlN95U3B6ChYpC0JZBojhoYtRIqaToTcbVABaMwtXQIpfbcjJL3N2IcD3j58hVAhPePj1hyxtO7ty1vZi6S4iDFQWSKpyfJBX064jAMMj+aY3FWD/OnpzPmZdZQOwLFiDEJ5jBE8daquWglugxAZPPjOIpsmgWkOh5GnA4jSi5SfERzNTIz8rLAnCZKEZlM6GzF6SheV+K5GvHVF3cKeFbkZ8K7vxtgEyBgU61XjAOQTeKThMYYr+LEgS5I+MpwIYQV2HQ6nVY5JLyQ5wVuEyAbOKTfe4t+cuij/7Q+FGf5bYxTt7ag1D2MrpQirs4jtedIWXsJwQOra71VijEUtmp8KXM/XitqyaiBUGgBOIp3UAgSekYuV1AIzYr5HDNo38cImKsoCdAUYliDTbqYjYzlHJVocqNGNj8cgCERTqcj7k5HHA8HTO/focwzai0KkJirvlbUYQZy1mprKtzqJgMcwSOAmmIjinNEk5E3P3KQq4QHmAcPAQqQVXcuQ1gKd1S3Q1a2otvzOuOROWIQqMqFQc8JqIgQRSbUgspoQXnRQKJaejJVBwRsmWFbi4AS9aamrcCgrsBtrtfxcJCU/O4Bpz0Ym+3MFv29st5QWAt+pkx6ocrPB7v14h/lPdL8O3uLYNO63XfWwlZI3AOVvqk8s52T6xN0jL24cXXK1Zd2jXVxrRTZo/cBJ7+9t9/vgU23ei/PrLqd18pSy7nDFcu8aG6R3yzYZD2UbaiilFc0pIMqSKhAAgE6rTTsrZaXBQ/vH5EiYXh5j0gJVFUQ07w24ApWT5KIIxADeJpR52mlMBUT61RQqixCYFkWoXfMyAxwIKQkSSTP5wu++uotYoq4u79HGqTEMYXuERRAWLSS6WEQZTjnBbXUxjtFqZYQsRj3PTB8X00IM6UwpYTDYdRxk3MeHx9XHiMxCqBlib294t7nQyr1+Ynz21ynsK3VD9ErmMV5TD4Z//JfAv/r/7J/4fe+9z38nb/73+NHP7r2kHh8fMSbN28AoIWzeyV562nx9PTUwgOXZVmBbDamxtvNqORDBU05tzE0WUASzosw+rScJV9Sey6jLAIIvbp7IYDWIpbR6XzB+fyEZZrx7v17LIvka8hF8jlZ+J9hQ1VlipqttPKCkqXyDRtQUM3LSkPYiFHJjF02AWZ4oDaPbUtZFTq+IomQ8NzfAZeH3bk6n5/wr//gDwD8K1EsQsA4DhjHYZU8/uWrjzS3TloVarFPDw75AjH+3Bgj7u/vW1iwrL2195MBU3b+MAw3AY2tLGV/e7DLe8eY/OS9skyOtbXkz/nlL76/x4FBRPjss+/hxz/+8WpPXy7nXfDGy8a3PInWoNW6EqNfx57/7r0TczfsElEz5Nr7PQcy2Tl+Xoxu7xWg2JuP50Cgdh56wQLrn8n5vm+3ZOUtePSsR8yN6/yxD33W6h1uyPIf8v7PtVtj+Nw7PgdQ+fl87vuvu8+32fY8qr72mL2H/ttkKvd5FXThfr82/OrREHrVbKCFtR8PI1I6tVQwQ0ooJUviZs2Na+u48VG9CfW/dt5LPgN26Fgr9rB9C7lwrS/QNWFqB3Qg1MO8sqU+qArhXP9klu9CikiHA8IwgIYEigmUBu1nQKha2EKQNVQiIARJV+CwhKoCRgwBrM4T8hrKD6tNmrEvM9GT/k4ASbQLs0VSqQd6lZ/I0qcYE47HAxiQNAy14nK+4OlJqrAuSufvDncAgKyVicEsaXiM9hbNp5Qz5lmcU1KMIM3XlZwDiehpPQUAIODmoMbSTIIRDEm857uO5QyjtaBkKBi4pq+D460pJRzUaLOXjse37wbYpMitJTfbCqjGlD0R3XNjNa8oyxPiLSHbezwHrqSUcKSeXwHoiUpbVRrqVl4LC7C+rF2YVan3e42l0kDh3EIMcs5SbS4lxKj3LlVKI5bSCMVen7eWKRNW7JiFDRKJq7gXdnyVnW3SRv8TVFAlA5mGQYAmrkhIijNwBxU4NkArhYAhhQYeEBGOhwFpiOJxhYrXr17js08/Q55mPLx5g3nJKNOCPE2o8wzK4u2TKIACMJSKaCF1XEE1iEBM6tlDBkp019YVst+IsEEXLfUbDvrL6riOv20nIoNkTCHyDEcuMAXI4KlGAHRtshI8EKFURlJBJtSCwGjfjTFi1BwYZZ4BsFaRknjZWopuIU1QZ3CRR9Ns7Rmxd+vzJhiwJ8229zfL7J41lA13WjXvft4FlzXj23os6bA1gsjc82j56/weoD7hcmxHADJAylx0v6kg9k3avwtByujQ9XN0f+yATVthr9NlYaSsbrcAWsl4U8Smy4Sn4d+NZ1NTZgmaC617WLWkziEgUkBUEJMhuQyWaUZW2r7XUoi4P444DUAoFVxmPEwTWMPXxiFJSN6SQQTwZWpCXqQokLSuRys9L7maolSKu0woLOUmqgpszCx0T/f24SDVZl6Z50WV8sZgxpCG5l0TQkAiAgWSvExqNRNelTFNEo9voUVbJRzo+8iUdEuSa0okgRAV1D8eD0jJLIrczgeEX87z3Lx2Pd8+jJJfoFbLKWfA9xY83ZuTDlrZ33KdreGA6RJQ6wEtsduNZp5GtvYNLCMiHI/HxjdNaTYeakCcKNkF09TBJhvTlCQcPmultAYk1R7Sv5cPyDybahXxe6lSAa6UKsnsS0VeJMQ8aRJu47vzvGC+LMgl43yeUDVxvQD6QNGxrixhnMW8x8ybycLTmdWzSVz2wea5V1o1OoAbaMWaHaBqolPJK2lgg/eGROMJIjdlPD19D//s//kEX7y5np8XL17iJ//JX8fp9BmKoz0mUAsvgSZV5ebZ5AXfLSAxTZOurevqu3vJoD1t9uCTv741Nv/K/ndftkpbQ2jJ5LfXN1C69JycttbWdJvwR3/0Csx/82rMmKUy6M9//vPVcX/5Vrbb5lPavr+XsW3P+P57YGkrY9t7Tc0q/9R4xvZ5du52HG7xIft7r/lztsdhPzeu8wZgvy/9/n4OzNp6JK2Na+u+b3UdAFfr4teVD/z9rV/fhnyzlts+7PnbtpXX9r7bA6z+g2srGftakN4DsACseKnlyzMCK/LWAhxGjIeEYRwQU0SIpIaFM2otSIOWtFeDZqsG2mTsDj6Bupjv1ISrcwBceSj5Y3banjrRvJ9Ifq/QSnvc04rUWrUyakGpQar0lkUqp0J0pXQ44HB3QhxHVAooRDBKwqorVQK4UguTY4oIMXXdVTvS6PCQAFbZhgEqFRT6CBCC2FmoAJEBFKBE4ZN6D3nHKHmQTneoQZ4vYXFZ8ioy4+H9A87TBY8PDzifL21ch5BwdzohhojDOKLWguM4opaed7qUjIumFuBaEIKAR4fxoLKaGFEvZ5Htns5PuEwTXr54gd/50W9rPkoBz7/68itczhegFiyzGMEe3r0T8Ms8YE93zWCYWpimeXbL3A3jiCENeDo/IpcFpd72agK+K2ATWAT2DdjkrRdbFNyDUACaEGfVcLbAyVaweA75H7SUpAnhXpE1ZcoLMya8t/455aoxFPeujZEuPQEr16rhDuIKb/fOmggM8ODJ2pLgXYyBngV/yyB9f7ZeYKYomjDtASk7RiQeRCDCUI+Iw4DIupEdZm4hdylGVUwSGF2gEbBJXPAiAZGAjz/6CH/pt34LeZrw8//3/0OZM/I0IZ8v4GlGyBlUK0b1zIqFESqLB1dZpF/I3YxAnVxsFWly/SD5pX0GkiRroY0xNaLrcRu6Yh5bvF88ilSfavJN0BKdzAWVCBERFKLk1NCKhYELIjOYpB9jDDikhApgmScwCwhJFNR7rjYrNQUCw5IMx3WnAUlW3IFsNE39qhmHUEUO6zxDBogy9z3YhQK//veFlL6PsdqPfn7YF76GAAAgAElEQVRW990Iah4UsXPsu+b1SDb2ff9ZPzrY1KCx9vx/H+1ZgXKlwdw64cOfY430n0YjiVbvv52zTjv6dyuvTeZWKjqEM4gCzufLvxNhkdlo49pzoOXECbEBTqVqovAsYI+ATfv3HVLEi+MR92MFLwtqznj/5g3ODw94eX+PV/f3QKmo6nZcNe/c4cULpOMJknxSfQsNAI0DECLm84TL0yMoRgyHg1jRVDFfLpfmkXg8HHA6HvHxy5egEPD2/XvMywICMA4D5sq4LAsCEQbNmVOy5DsiFmFTvIbFe/jxLAqf0XkLGfGeOd57wyz8AswwRkssHQ6obEU2+hoppTSvp4eHBzw9PTm60b2fSu6WNwO9t/mY7Pct3wcEdPAbw7xdzueEWgc8BzaZUmnjYD8vXrxo4YMhhJVHk4SjDW2s9E7q2dQFrRgDTqeDAmqdBvp3s3exT/nd0Vz9tJ9FKx+WUpHnjECE03hEDAEpCgCYM0OMomLoIALGkUABuEwF02J5LMV7ygRLo4IpaOEKCE8mZlT1oiplRuWCpWTMRRLFV8sCoUBSzuqVUwUQq7ViWmzsjH7Lay6LWOL//Bcn/Mkff28XbHr1+hX+q7/1t/DJpz9pXmE5L6uQsHme8We/+CUul2l3jo0umUeOJaL3eca2+cZ8aJgHG7eePlvvG3ae8Nh+Gm1XpcjvNS+bAVjJc15+9fvy/Pjjm2DKl19+iZ/+9I8hicGj7rm+v71V2ntobRPV+z55QKmqrOq9vbZ9tN8BtFxsOWe8e/cO8zzj3bt3eNSs8Cu+TrTylPLRBdv33F4rwxt2z19di9sck9GBcgMom7yANeBof1vb8u+9czy45NfTNS1Yv+fe+38IiPRt894Pvd8toOlDQDMvd2zlj9+0Ue4v2mjzCThMc7vgugJiZ+r5nUYSjL/peQwJKysLQIzDYcThMIrBnghznvB0fhR+MIoh39AfhTBX+aJaP4w88e090T2iNu/I62PWb75xjn3BtaJY3j9NyC3pNMQAUmrAUgghBzW2yLyPxwOO93eI49jyLi0GorW0GCSal/KxECNqkjDpBjaZ40RKCMMgukXWQi4kicaBiIAMpgpUSdJOUV8gFkmHwgwEMfygilx8d3ePNI54nC54mi4CAp7PyKXi3bt3OJ/PeHx8xDRNPfpqBF7c3SvoL3Qm54yqXkxP50eU3IGkOIgsOw4Rp+NBI0bEA+np6RHLvODdwzs8PT3i9cuX+Mu/+7uICj4uOaPMM8oiRXLm+Yzz0xPevv1KwvNrj5xBrZoqaFB8RQwN03xBqQXjeMAwjHh8fEDOWmjnmfYdAZvQGLD3WNp62+wpPv3yNQMH0AQKDwiZMmQuiCaAeIVp3a11uduWj4m6C7K5xTcLqcZSMncLkCS47lu2VonXbF5IzAhqWVtZNrQ7QZXBrUVsy5h2iYJ8CUaPb/dCzKKKShN+LNTOVUdp46pW+zDNoBiR0oA0jlfeJgY2paDBYNQpLhEhzwI2HYaE45hADJyOR9wfTxhjFAt91fCUUkC1IjLjGBNiYAwcEGJFWUTo5UZs7MfyMVkibtYeGlghZFGwKSPq6olVXRLMLv9fAU7rhWLH+3UBUklNkqlLnyqxJgKXMdK6PAhc5QdSrp2ZNeSPEEmUCWaW6gNEvWyme2sBZRyjRm0gkXxn77r1JLgGzlaM4woo2gBBfsGt7rs+3wQsMpSjfe+FkB3Ppg0nbAAi+vrfWsrk+T1kZHNHfX91/G083SGG34aQdusepG+5Grvt3+2fbc/9yH3ts7cgm7d0erlN3r0Dfltl3z4NcBBLym1hV5L8W8Wh3zzYZG1rte/HrdoWAawJiln6KX7T+32kEDCMIwCp6nF5fMIf/+Ef4stf/Qofv3qNT1+/BmoFL1kFOwm3He/ukY4HnYfagSYKoOMBSAnvHt7j/eMD7l++xGeff440Dhju78XAoRXrDAAHMxYNjfvTn/8c794/4OOPPsKrl6/AXEXgQBDvKacYiSCnAXwNVBRPLx8edzoegDbvwHSZhF4VsTbOy4KnpyfhUwo2piShS+M44nA8IsYo4WcQr8xxHHE6nkCQsMrqQtG5cgthXIHN7nOriFnr6xgAuBlMDGwahnh1jb9WeG7n9yEQhiGilO6paeeal4MpoJYLsssEUACju5qLR1RWZWGTQ2xnbfbnyftAeYWsHK1eS93a3UJVzTrMARwIpXiPIlnTlWXZzVm+q7UXrohBkpGDLeUp2ndmjU5qVEhxBKMi1YhY9DpTkhQdK1VyR4lcJAaQJRcNL3DKF4CSC168eIFSDxjHtWeNtePxiN/5nd/B9z//WPNeakoCVUwqiwD8gx+8xWzh5esRbWNUatXS0j2tgeX5aoAGWxhFbetjD2y6CTqVXgXSG0gAtGIxxX2/R1/9p/99u3b+7Oef4PzQwxZbI8JhHPHixb2T8dbg0fa9zCt1K2fzpq/M3EAYb3T13lceELO/G9i0LA1sWnf59l7dk8m3Y7R3fPv9asyfYUemD1hSXb8+VvL/zjO2tOvWsVvvfQu4ugVaeRrpn+FBy+2xb7Pt6WUfco2fo78oePSbAp1uzdGz70gdYvESOdzvIo6KfElOifB5l9noDzMkO6znc9AiSutw6FIdT1VjcxpSy6NrlfCYlRFY/iWzaBB1Kr7xwKIuGLcX6RqUrjkRLJq+xYAUNHLKgJ1DxN07ih0k5dcBKe9rfWf1BCUMhwMOxyOSVpmrIGTz0CYbEwJb1Ws1PkqycGreT2jnBrBGKDGpnkGQhOIMcIjSTfWgZbs/1HPJzDQmOzcaGrDMCx4eHgAKeP/uvfBCpZ0G0McY1SGjp8IxvpGXBdM8NeOKpETQyqKBEKJ5vYk3cVFDzzLPkr5imjDPE6bpgsvlLKBWlEIxUthL8h/GNIJrxd3xhJwXXBZAcAuvh9UWhldrxVJC824S+lw/yET/3QCbFMSICgJ5IdMIuzXv+bQ9x1d3MYDpveYu+Oqrr7AsSxOwT6cTXrx40aw8K+KlC8cDXdYvy2GxZHGdP5/P+OKLL1YC6Olw1DhGEcjBLJXWCqGoQF9yxjxN8jPPYpW+eyHlDq0yEDoY0LyQYmyZ6pm5KSIAGqAk+2VtgTHGbUnGWM/119i5HmDyvwuhlM2ZqwhOSSt22PUEtMo7Y0oYYmoEto0wAeOQkGLAR69e4tOPXyEw8NlHnyA/POHF4YBzlMpA9TIhLAvivOAQIz4+3WEMAWMpSKUizxcsk6DZGRkgE9MB+M8NrzDwaIvagwixWt2nzUXuXN75ro2kelmEmMRriRmlWjUAUR6iEvwwQhmMJAivtSKVYjQPNRCGQDhEQpkz5vNZwykymJMoCRpBKHpDRS2k9NQAHrGqExPCtttXTLSPn3nSrYWCDlStr6qra6+fsXfdeo/J+nFlWU0oac/VPQ9qnmcGvG4the1KZRarOWYIsQRaiFN/fn/iN2m0EvBotciahWlz/gr9YT3RhJQPIuebyzdHmLvSAwjZ2MpsW6hPxrMr4DJOFUT7wLz9lFJxuUxYlnl3vXzbjWj9/K2lmIiQYsCQIioRuJKWBV5amPJeS2nA6T6C5wl/+C//AL/60z/F//H3/yH+8A/+NT7/rd/Cb3//c6mEuWRwLZgvZ1SXkJmVHjERkERQTHdHhCHhzdt3+OL9W/zuj/8K/uv/7r/F608+we/85Cc4ncauBMYICglcKh4fHvH4+Ih//I/+MX72Jz/DX/8bfx2/93t/DQRg0NwFtRStk0kIIQGsIY7OEGMetC/uX+B0OuFwHHF/f0TJFY+PZ8xLxpdffoHz0xlv3rzBF198gXfv3uFnP/sZlrxoEkjGJ598gvsXL/DZp5/h888/x/39PT7//HOM44h7Bc3uT1I2d55nyVOQixhnNCSM2YWmuz56vuWVet+MLh0Oh1WuqPsXATHu7xfzhpnn2gxRw3DE/f0R0ySgkVfQnp6ecLlc8PDwgPfv3zdAzVeV83lcvKELAMZxQAixFSQxQ5c34GzBXAEltJpfWVBqxXgYMIyDJrcXkPTpouAfoqPzAqLMmi9M7oOmpEgeCaOZytAciILaeU8gwkFLKVsxj6UmDEVkgWC0M4i80rAyFuduZqA0Gh5V+LcxkvNfvZZcSXvto48+wt/+b/42fvITDwY7NUYVqXmpLVTayf3yt16jpzf+xIzmaWbLKgQxBBXFn30+o1tA0953HszhKn2zXEXn87mlTjhr8vZtGgYbI/98u595Zf2j//Ov4k//5BpsIhBef/QaP/zhD9s9c854enpcAWYWyrlac+4Z9g4+HUOttZXmNkPldiwAXAFRiwLVy7Lg/VdfIeeMH/1H/xH+0ueft/f17217wfJB2d/+XDu2F6ng30t4UX8PWQ23GRJXycX2/v37dsyAJyIJrz0cDldhdrafPU/cA9C3323bLeB9D5jagpK3+PF3pX2X+vLtN6VKCpLA74krAUjpX8dwZB0Z0F0LECIqomQL0vvEFDEcRsRxAGkxpHmRtBr/P3tv0ixZcp2Jfe5+x5jenFMNWUOiMBEgm0BjozYaW21qA62t1RuKxoW04EL/RFppIZP+hWDWWojNoUBKTdJINsDGQFQVwKwsZKIqxze/F3Pcwd21OH78etyIeJk1oUtmcuBVZETcuINfv+7nfOc736mNhoGFihXSTgYJAqLAUiNw9p4/vntd0tZjq9GubiPYH2jOeamYDwNOq+5EsE0QyPCLBX3Hzw6vI8ZScQ3trjuKIvT6fWzt7CLpdGCjCLVjpwsIxFECIQELCQgmUxDQZFRMa58iCRgyqQWMUrAqpnXKCB/egQUMJIyV9KpJGFyLCloYaCGgaUsY4WRBpOsfqSCkwXgyxdOnh+j2J6iMhpASJRdHiGPkWeaLVSVRBGE0rBYuTc5gMhphMh0725F8HiUVhHCBtYgK1VjrUusNMXZn0zHKosRkMsZ0PsVoeIGzk2PESYw0S2HhCAsw6HS66A96mM9yKCGJcToeoqprEhyXXGndQKoInSynedlUgKUeMHUFazRBOMFwWte+GGATQKhga+G4KgrY/Kz5fl2qHC8G7b91izs3NmTCthwxaVhN4R/nvqtIBQAMATTCQ9rN/vz5WFfFwFWH87m6IniUuS/k8rlucq7Wpc+t9OUGI55/y4t5qLPjElhRG0P0RgD1kqPORqhjJimHerZmIatr1EqiSGIUixS6qhFz2oZSJHgGQXRFYyEcTTFRCqlSSIVEJA1qoxGZ2lUucKCG2DzkV8AVsXJqTXzCts2SQDCbJ8v2e8vAgIC0llhKLLLqwBiuTCFgHR1T+m0l6M/A1fZxD7FwB9FaQ2jW2HAaFn7haoT6QoYTjTMLCY5kX9EnDuDgYRJG0BjXZEMYCLZj5G6ljxloWmfg0aLG+ww/29TCCMgyk26V+h/uap0xysEdWCylkIXS2Z/UPGqPG/5ANB27ek1L90Esd8VagK9xsOjny/tc6kl/CiFQj3CLFaDJH8U2vwM4YrpcXrs9R9Mc21QJ+7yax+JCQK81x3G/CjdmpHuoJAjka6fELjXhmCoAqrLEYr7AeDjExdkZekmKWbdHz3JNufTFfEZgU0R6CmQsuINHVIVOVSVkFOHy4hxnlxfY299HXVawWkNJAaUi/6xHLsAAsC7DAqcnJ3j69CneeustWNNUGbUAbL2sm0IMSHjHHCBGixTCVaqLIIVwIFCBs7NzLBYLHB0eYjKZ4Oz8HOfn5xiPx3j27NlSqvp0OkOv18N8NkdVVej1erCWinDs7e35yq1RFCFSEeIodiCYc1LF6hocgsd0+9Y8J641aTtNKniTstUIf4atKAo8ffIUxpTeWZzPtzCf98jo1E0123XgZbhecpCL1/Fw3WyeFWIBhmlBzCQJmQfhvn1kF9anpRmj3DMFWk/cvghJEpBByiDN0xTA0DVpYVARCkBIWksBUIanhddpEqYpPhIMf/cXsEkBt0ZY8KzB2wS+CT07lv7hLByyC7wtoxDFcuW+hvc7iWMkCWc+EEtHcmVcB1rVAcl3WefLrUm2sdtssPz5ZcJ5fc4XgQnAprauVnhv20AL/4UVGHk7Zs9zBceiKLxILINN4biWkgD7NtjEIMdga7C234QA+v0+rl+/7hxf2sd0Ol0K1K4DxjYJhXPAwRiDPM892MTjzGt5mEbvLUxlrqoKURTRvGEMKscQ5GwABmw39Sf3YTguws/XaRy1f8+fPw/wsGgyIvhY7RQ6pZT/vllLV/e7bDutzmdrj9/a1zofaB3wFn6+6RifFuzZdNzPooX+2qZj/zrAqhe5Tyvn0d62ZWKzZezNLeHchMC4Y8CJ5362p5d47FJCukqcXMRIcyVyh+oQ+4mExU1tvMC4PwN+GwBdSycZnivW/sO9C9/bpZdVwCrca9gzzk/kdwwQCe6k4Lql8sQGpTi4IbzvbGAhXUoe2Hd2f9b5zNbv252REI1+LhgoEb7fQyZTk2zeBFI4BLLyZ5vCCaHGHacbc9DJaA3tqgYXBZEqaqfRXLh1QkoBGSkI6dYFt/aB5+66clXtauigkAj7qjQva7IfLC+U9KekCOwzBaOUwyCaDCqlnBRFFCGJY1hYZGlKmVvutkYqwos8ml8YsIkjA2H+d9jCPPYwosGaE0KIFfFCXujiOPaAUJqmiOMYnU4H/X5/6Vh+QecUBjSLSSgmSlUBFpgvZpjNZj7yMRgMkGUZbly7jt2dHcxmUwwvL0DIoILU2j9/YeRIuwi2cqwlGUR329ojkYp8dYzwWrn/wqgY/y40MPg6wyp57Dy0Qaf2/WFDESBKXSwApeJGYNI9hcZSmkRtKhhBpSK5lDXfx0hJSAnUizmK6QQX5+eIpUInSdDLMszyHJmKEAOQ1iLSBqkCtpIEeZygJyQSCOhijrpIYWwNYwuPThOoEhiF9I/A0GxYOOxM0/9DWj0DN61JGfCpXSEc1SwQkm8yYABpLGpjXUlR0zj9ArAKgKTvUgvAaESuWpaQFlYCESjibOoK5WJBRzEaAqSzIYWE0AYWujlFa2E0HamuKW0kkgpCMWOuZajwdGvZiGzffywBTRwp5HXBY0BLhtHqgt02iHjM+edZOGei+UEzu/O5IHB+gueEz80Ys7SsSUFAtj82rNeussE0c3Uthc+mfWyjycIzoVpmw+qGzz32skEvpIB09zvcCy9Szd8yi6muDawtl+51yEAlY71EVZIuS8iM+lyagENkpTMOiEnITrCuaxipICylpIpIQUAhdppxq7WM2o2uXQn6valr1GUJKYBOlkNBIHLiyKWjJScJMWgh3BgTAjZSsEJAu2NWixIXp6eYT2fI4gR5miPNu0jyHPX5GWbjMbZ2d7A96GNRlDg5O8PJ0RF+9MN/wLvvvofXb7+Gb33rW8izDLvb29DGYDIeo64JpCLtphq6qj2NWwjhmTm9XgedTo7hcITHj5/g2bNn+I//8a9wenqK+x98gPPzc1R1jarlWPG6wfeeWTu9Xg+vvPIKBoMBfvM3fxPXr1/HG2+8gVdeeQVRFGEw6HsaOa/H7TWM92mC9TdkDTETmY03KUkfKc8TTKczHB2d4+hIoSoPAKQrd/L+/fv4n/7n/wV5fuJT6m/duolr167h5s2b+NrXvo5er4dbt24hyzJ0u130esQAy/N8BRwLwSW2X/ywXAPAaq0xn89XAAze3veDkn5cWwFfUpgEwmuaqrVL2cxTJEnqf1/VNSAFdF1j4ZjM0tkP1lW6o+Ny4REKcPD4VhJIHCCphJsXDSk06bJEUcwBACQtSaARR4wJu7KoHTCmDQM8Et7Tcvc7jhMs5hG0Wb1PAFAWJZ4+O0KW1y7twJX8zjLEUYQ0S1yQLgSO6PicKlmVBbRpKv4ts9CcJIAXFmfbaT3gASwHMts2ajguANL+TJz2ZxyTg0Tn0KRqhWsps4HiSCGKKCVW6/Z6SSzlB7/srV1HpFT459/+Fv6H//6O/10IVvH9CO2/EIQKryNMFWX9GNPSUNLGoKo4LbF5nkPgoCgKXF5eoixLnJ2eYjab4ec//znuP3jgn+fweQh1tdYFQvn8wvsR9lHb3m0cMCxtt65Zaz0QyPvltD8pJdI09cwm3ndVVSs6ruE6v25eC5/9cC7lcyAQPVrJ7OD9hSBX+3rbxw776LNo62yYq4Ci9nbP+769n3Xvfx3A0ydpZOEDcGYryI0gAF6E8TA3Zv2fs8CD8WDATCECD6IkQq5yxGkECyr+UJSkiWmFRRQrxHGEJIkpc6YsAWMcpzTow8CWbM678V74PVvRHIYN7U+s+Xf42cZthJMqgSJ/UsolY9Zn08CxcKVAksAxlvvoDbaQdTqQcQxtK5TO1heWyAi8xrDNL6SClQrGp9AJ7wdaYyEc/lKbhpHWXIOEhkENKq5RG0F/1qJyPh3/TlsLbQ0qrVHWNaq68qB8v99HlucYbFPVVE6dOzs9w+HhIYr5Ahen507rkjKx0ixBnCbI8gz9fIBIKaRpBiEEypJ0Rhf1oqlOzj6bNYgiiTwjPcdunntbNJKS2Ly2WQNjFaGS0gVzGEWziCOFLEu8DaSiCEmWQUiBvf3dpXl6sVgAkDDPMfO/MGATsBzdDBfy9mTTdjLbLJ4QoOGFjBd9BpvSNPUgVTgxa2MgjfFgE7eQagxgidHEN44p8pyiZ3SNEZ9r61oZyebJxQTX4B13CPd8iJU/vs7m3Ff7pb0AMiDFfdpesNr9vdLvYf9L4VIz3L2yttHHMSD6uODqSlwVJ6jAo8mAWQiSDy8XBVjQkqP5SggIS9FRYclcTSQxm3JJ7KbaamhXRlO7B8l69zGIGLiJhK/IWLMMQAUTUG289CnArCHLUQbeHm7SFs21W1C6jL+/WDq+6w2Q/FwzuVtYKHd9zGySPGacsc90Wq01gZaBg6IkGabSNhX/+CStpSi4NcadW3MdYWRlaSmxNKCaRX35s9CwEX6toCWpzbbh/S4tVi2j0I8vQYCBEAbNp3Tv0d6u9e+2YReCgAi+o+M198ghaM3Ybr7Ac9snMHhexEh6kb0u3T3bfOr3zx8G43Flv9aNQHbUeGTY9marAKExTYBgXeSVIzsk/PgC17PGoHyu8cqXyqwmgaWL9HNcAFYKZ+yw3RH+bO3R3IMs2OhiY8W6ymxKIYJALAQxKiMSU0ziBHEc0bwghUujI4e8JI/YRbAK6Kom8XKlKCihIjJgahIBT12whMUmT45P8OzpU9IEQOMEaa0xk4rSgZiRKkhIE24egGzKeisXySpLYjQdHh7h3r17ODw8xL27d3F2ekrPvBBeGBtogjJcRZVbr9fDcDjE1tYWBoMByrLE9vY2Dg4OkOcZ4qjjHW9uYRGLTVHlNsATgk28xpHYZYHh8BKjUYxa72Ad2DQej/DOz34GqZ6g2yVRztPTU9y8eRPz+QLXr99AXdfY3t6GEAKdTgdxHC8BFetEi621jikW+3sSnjunTjGTJXTOuYVBMhVFxFiKJCAFjK5R18oLhPMcLyGRJBkiY5YkBKSkss6NTRAOZ9JZYD01GRxfSAb8G2acgRNPBQGWFVd0c/iRVHETRYYIwCanIQXAWioZbd0cLxUBVCxovq5pw2WiSx8NlpJ0IoUQiLVu1iS4LrGc/kbXV1YEWhRF6QGMkFHD46kNHoaOO489AL6Pebv23MeN988gWZalwZiAK2HNQueUtt+Ma+Wq91JKX7tZKzDor+0yCAHs7+/hzTf3gu35zoN0u9aATWELx2FTNIbtWL5XNKZq3YBNPK7D55jlLC4uLlCWJU5PTzGZTPDk6VMP0jTnuZnZFO5z0xp61dra3s/G5d02Ola8fQh2h+Nm07m2z3vT2tb+zabtP27bBM58kv1+HFDnkxxj0/OzrrXv/Se9pk/bv+v2s86Sbqx72sD7RwHoFBoe3lfwr5xNQHsVUiCSEaRq1pZa125uDuZv6aqyuXmeMyQAu2QPeruej+0D6O60XPoWX0n49G/qw+X92GV7zF2wgIAEOQ6CDTH3TVM9tzHmpFRQKkLEhbuUAjOgOH2aAL5mfBhBzHUb9Puyb+YKOLk1Q4fXxPcAgHHgoWcxBe7V8h+DhcZXe+XxypqW/V4PiWMFCQCjeEiVhMsS0/EEdV1hPB6hqir0t/q09ltLvrBSrsKtQFFY6Jp+VxTFCqAsHdNdIGSZCn8B1tmv7BeGLFa+ZTKwE9M0pRTOOCKfP4ogJFW2L8uS0vtf4JH6QoFN3BGhsHfDoGg6MuxYXuS01jg5OcFsNkOWZciybMlA2N/f984RL/pEU5NLxkbkjDXtjDcuCc0MIQadWB8iFEhMU4ouXl5eYD6bYT6fYTwaoq4qlI7+rByquZBzioqUJcbjsduXQpKmqGuNuqpQ1RVYY4HpbmQk1p7q5jrOReNKACHFWIM1lngbFu01poYxzHCqvfFpbQNiGaNgbeSdEiEcRdOBTRCAMRpVZZ0zY4PBbB1w4CJRkqidBAQAEk7wTEkHMlFOqnIV1qqiQFUWqOMYoqoQGw1lNEStIaWGUgKRBCILF1UV0Oxf+9nco3YeQOBnwnjQaPVVR2pl+80PU7C0+ImbnMq6FtDGVYJyzKYaBPrYJIJVApUS0BKYaQ3rymeXSYwawMJq6MoiSyJEWQYNAXE+JEDMMRZkIt30LYJQilt8HOVIKIFIWJrIwz5ZapuTx5rMBLdcWOvLn4vW7kTQEe1D0ALmfuQOpm0b6DQwLdaV5FneNWMBKzQElinu9HvnADBI6Pe7bBgoxSlOYnUb2zr3dc7Eyiet78VqcpbYsK91+/4EJhT9d4OhyftdAudE894XOLDN75iOy2fU7LtxXsNUoPCVARB2DNc147R8hAgrSbXZAoIxseaTJdDQXbexsKwj5VgZUggkcYKeAxUESMRXKumfF2vIILObetxooCyBqiJtTSWR93sY7OxARAqjyYQA8dqB6lVJzKaCnAua+LkAACAASURBVGNIev4MAC3oKDUstAWKqoKKY0AKlHXlq4MBQOwCF0mSIIpjRFWFSNFaIASlO3XyFLvbW0jTzBlBjfNbFHQekYoQJymk1rDGQiqFfjdHnMQ4PDzC+fk53n33Pfz1X/81RqMxnj59imKxwNbWFjqdDgljO6eQgZTaUb9NnhOA5e5vkiSAtZjPZvjpT36Cu//0T3jy+DHuvf8+Xrt9G9/69rcpTTqKoaTCxXyO2WyGNE2RZZnXdeJoIAeKQiZumibodrcQRbFnebz77nt4//27ODo6xi9+8Qucnh7g6Oh/BPDGyu2M4wS7e3uIosIbYuPxGIvFAsfHx7h37x7yPMfNmzfR7/fxO7/zO7hz5w7yPMNg0ENRlLi8HMI4+4D6ukBVVUiSZIVdsLXVR5LE+P73/w5/+Zf/dyM+7MBGWr7CghSOcaiUA3BoMorTFHESO2aTdlFLAsL2dvbQ7fZwcHCA69evEzDY6UAq6Vls5JiE4MZqy7IEvTyH1RqmLDGfz/CrD36J8XiM8WiI+XxKjOYkciDCHFIq7F+7hk6ni+5ggG6vhyRJkXcpLbGoKhhjIVUCIRWMdVoXhrRxZrMIRm+vPZ8kiXHt2jXcuqVJr0IKzwoaDoe4OD9DVVWYTKeoak1rhwG2t7ewv3/g9bWklBgMelBSYr5YYLFoNJPCwGSb+d1uDEzFcYyiKHw1NR5HHMjM89QxmRpgivW0+DZLKZBlzkh39lJVEUA/nYyd5pZFrV0EOo7AlTYBgeksB9BZ229lWWM6q2msOIBtsZi7dEw6FleZZP1SIYQHUWOnp1k7fTUeM8a46sjG0NwUO5DRrcPM1GLGYVEUvo93d3cBAHt7OygWBf7ub/8WFxcXSNOUIufOnub+D1sIyLD9zfeNfYR24KMNSrT1lDY1AtHpvENwcm9vD1EUec0tTovk+x8CH+0AWPsa2t9tOo91jKfw3+G+2myy8BgheNr+bl17ETDvqm1CLa/wvNtMtXX72ATA8Wsb8Au3W7evq77f9N3zQMu1+3OYibXWmeHW64E2Jjmt/8I5+3B2KgP14MCUJjuDngeLoWMF9vtddDs5kjhGmpKu43A0hK5r1LqCikivqNY1aSJaZ79JCVj4ALr1qo7BdXkwyr0Hs5ksP+I+O2U5Esw7CF823A/B94N/KhGrmGwiTYUkOE26qjTKYgEpFdIshVIRrKXU4rKqMF8siOzh0PhFWfr5cakisSWGlpTSF76Ck7Wx0LAgTVFOUeeTM5ZsQ200KgZj4MTHoxhKAKam5HVhDGpr3fWR3Z+kKXqDPra2t7G7t+dtg/l8jrPTE0zGYwwvhzg7PSW95ihCFmXo90lHur/VR7ff9QQWbQxm0ymqusbw8pL0/pwNETtWeaSU18rkZ63f7/s0veFwiKqqSCJhOsWzZ88Aa6n4y3RKxx0MkCQJOnmOwdYWrLWYz+eo6hrTOenuDUcjFGXhmU2njpX1vPaFAps84hikmDFdNSzTHLKeGGyqqgonJye4vLxEv99Hr9fzQqVJkmBra8uXcLa2ocqGUZyQGRWWiA0XLzYsOWoVRRGyLAMAD5CNxxNc1peoqhJlsYDRVG7YGkofE84RspZS9mazGYxu8joX8xKVixrTeSkf9eaFXwgF7ga+Jq2XJ3JmH4TAHBkNTVSL33Oklbbj3zS4LUWjaTLgEpIWDcvFWrsShmPtBn8OItB8cI87LRyOiSVZq6BGXVF5Rl2ViLSGtFSSUhoDqQ2UMIjgWD9Swmrp+UyyNZGyY90+NxtOjbwwXTFdelf7SkOBkxKAojSoa6JYMt2yhgWUgOxkgJKYQ6O0GlYAha6pKp+MUMGiNAY1DNI0Q553MFkwmEh0dq1rSOu0wTwq1pwoXbYDJRl8W4tk0Ier/LvVDuCfS9HsaLU/AqHAAOigV9HsyE3M4aixFi7dsDmmxfLto/HOv+bDtPRegktdd7kSnI8dfLhhHaWDidXPN7wPz+kTNSHW36aNbXXLBhYKDCoGBr3x1rz3DKDWb/jSg6CP/y0DHO0If8MYaMD6dY0dRykbdowIAGo6F54xNgF+wq8bS985o4UZOZFSEHAGk4AzwFx671X8X2OAqgLq2qGUEmneQbc/AKTCZD4n9LNyzm5VAdYidunbkAJQxLSrjHagE435UteQUQQrBCrdlGIXaIIZnEpB8z/Nj44/gjSJnXGimmfCGbB1RUyoPJfIXGq6rmsopZwzHOPi/Bwf3Psl/uGH/4A//r/+GNZSKngcxxg4o2M+n2M+ny85EWFF03A8KdfHxWKBD+7dQ+0Mo2dPn2I2neLLX/4yut0uut0uhKvqxs5olmXQWmMymZDR0+/79He6DcalxEfIMmIlF0WFsqzx4MGv8Jd/+f/g0aNH+NGPfoSieB1W//7a20npfAPE8dSP3el0irOzMywWC0ynU0RRhN3dXWxvb+PatWvY29tDHO+j291150IpWjzfsJaWZxQ5gIyCVdvI8xTvv38X3/ve91AUBTnwhqsgAtKlznN1PgoQuDXWaXIkeY4kz2C0ga5JE2x3ZwdZmuLGtRsYDLbw+uuv46233kKv38fNmzeQZpm3UWoXXGqcpdU5I45jdLsd1GWJhbNd7t+/j+OjQxw+e4rh5QV6/S52drZJ7Hk8hFIR3vzSl7C9vYNrN26Qv9SXSCJ2IiguTPIAEbQl0fCyrFAsFlgs4hUWuT+fKMLuzjb2HUnHApg4kfzRaIT7D36F2WyG07NzD3RYa/HKK68AEMjzHDs7O2QHdnKkKUXFAekZZjz2gMb2ZMa6n0vWjHMeq0BTmIbBWLI7cz99WAunXdcERpSi+dH7atairOi44wldHwdd+RwbVpVEsRDYBDZVtcZiQVWM2F4djYZLTLpOp4Nut+uZe6HjTml8CrXrIx28MgjT6XSQ57kPyIbMJp7/y7LEdDpFnufY39+nFJ84Ql1XSLMUk8kExhgfpGWwiIG/kP0TRt9DECZ8HzIkw/VoHQCyqRHoR/3GkXtjDLac40UpI8vjog30bFr314EffJ7rvmuDROsCSeHxNu1n0/t15xkGjNa1jwtShecTnkNYNXzdbzeBQCHY9KLH3cSAugqMugoIW7E1QkAQcDpClk3KlYA1ATZOxY6fOx9YEJ4NHSURrDFYlARsd3s0hyWxKxZRGEynE1RlSQBxRIUbtJvrHTzitYqsJd/Btqxib/cHl+ztT9H4RNoup6PyBb+QnStab6yFhICSZB/WNQXDmPdkdIXFvEAUx8jynHQs4VK0a43CPZe8dpiKdBC5grq0/Oc4WUIELB+aQ/leeds/uD8EGtL+a34v6D4JpSAFVQtXxsAKDegaoUcSxzE63S66vS4GgwGUUpjN5yirEsfHRzg+OsJiPsdsOkOaJNjd3kGaJtjd3UWWZehv9dHpdfwcsFgscHF+jvl8juFw6AMdAM3lPQfYd7tdpGnqryHLMprTyhKj4ZD2c3GB8XiM4XCI4XDo59Asy3Dnzh1kLlW42+lQcZTpFLP5HEcnx5jP53j4+BHG47HHEJhF/Lz2hQGbrIua8KIW6gkRcNIsYkAwIEwTvel2u35hZj0GAEsLIbewczxY4loURa7cdaDj5JhJTRUKA4tlzYUmVxvu2BbWaBghYWQNgyYK7BcSa5ecCY4wkfHk9I985N06ELxJHwydvXZbh/xvWmzDRa+9CLT3TTiB0zewFr6+smXFUfL0pVBgXQTRQrUdjAyhnOhdpBAlkS/bKXyUCg1bxhpYXTclLGEhtIasqRKUZDqpB0Hc2Qq7siBYG2Qne1Q+AJqCS17pMeuAGbGK5FswCAekkIglianXwsIqwDrnUyYxoBQUahRWUWUJU2OhDaZ1RdGPuoaxQKYksk4HvfkCvU4KKyWMY38JFUE5z18JEgDXLqJhPdPJ3RUhPX11zQjYdLXhhbstl8GLENpo83mWIZpl48gSYrQEcvGae9VpBThX8NnymPVfX3mtVzex4d+bPvvE4NKa9uJA08drL3KOL3Zs4SN5/yUa3eMGHINYvbaltcL9j+cdBjyFFPCiCmsPBGghEKUJrr/8Ejr9HhaLAi/ffhW9bg+Dbp+qeZU1pcbVFWCogoqSZPxZSXNCpbWvOlkbg/PhJc5Gl3j9zTdxcOMGBjs7ZDACrnoKsTmAsIpas441QD9gBRlhxhhP5dbG0DwsJaTTCrDW4OTkFEVR4ic/+Ql+/OOf4vHjx9jZ2VliFBcuVYrTwlmTKVyD5/O5B1rm8/nKOiul9NVaHz9+jPfeew+7u7v4jd/4GmnvpAnKPPfsmyRJvI5iG6RM0wS9XgdRFKEoSsxmC9y9+z6Oj0/wzjvv4NEjMoC2t7dRltsYXUaoq9XbWdc1xuMxomjk1+soitDv9336ewhC/exnP8N8Psdv/dZvotvtumhhz/VRCa2NZ9AwsMNgU9u5YvCQq695d4mZ1kWB+WIBIQiAIuOZAlNxliJKEmKrlJR2aS3ZR2dnZxiPJ77/B1tbmE4n6PX7UJFCf9AnJkqa+GegrjXmsymsNciSBLEDCuuqwnQywcnhIS7Oz3F2eoKL83OKqhYF0MlJJzCKUGcZRaGLAtPJGMMLSlusqhpZ1vHpDpGS5PxYl8JlCYPtdDvodqna3caHTwB1XeH9e/dwenKGo6MjHB0fYTwe4/DwEGVZYjye+IqLQgg8evgQH9y7hyxNsb27i263i2984+s4ONhHluXI89TZBhSgY8Fuvl/M9gnFu8MgJ1dy4zTOwaBHEeg4hVQKp6enePBgiPl8gfNzqoLMAt38LKVpgixLkaYJtre3kcQJBltbjunT8WOV9YL4mSO7VW8E6CyAxWKO0WjiQRMGb5kJxE5IlqUeIOOoe13XKJMYcaQcW4xYRJ1ODliLJImJee+eI06zYCDGGLNUjY4DvKPRCHEUYXt74E50fcrcOtDhecwV7p91tuqGUXWlCcDsrzbgdRXQsM5ubp/jptYGPTYBNOv2d5U9/6LHf5FzC/f5WbWwz160nzb1d3u7Te+vApg+bWvK87RC1ku+h23+ZTmY4Nj6ACCowJSUcokJppQkeRG3LpZViaoq3RglprM1FKivYKjSK9sJMDBCYklcwp9aYEzbwGda+cxlgwjQs4vGDwyvqYloBgdpeQFAU5CHWF6AsJyfwZqtAoBwxF6y0Qijozmbte+Md0VcjxvjoTQPqRliukMLIixIS4DTEmjtrsA4T1tTlTejjWOJEVnAotFoqh3YpQ2lzRlYJ9BOrGSWyKnq2gNb1pKgNjOdKHDU2Aw8h+bd3Pv3bA+laepBoVBnj0G0EBcIQVlmfnLAotfrAWjWFwabQmbpYrHwFUSJxS1JkzrPoY3GzNl+tLbNcHZ2AWsNdL35ufpigE3WAlqTseXKwfKCzqAQU3PDRSAEpKy12Nraws7OzhJwwh3JEdSG1tykf/Ax+Ob1HR28KApf6nU4HC6JFpI6/HJ+Px83TzOkaUJ6RoIEanVZeY0EuIHLEeIoIpCFczOrqm5Fk5uKA+GACqnBz1sUwoVr3YLJg7odEVr3h+BVCgEjjJ94YOGZT8xSEMHEIxhZdyl3UimoJEaUxIizFHGWIIojqIgcLZpyrGM2adi68n6hsAqiqiDqCspqKOdISrvshK4SI9xEH/SFBdDK3loBndZ8i9UEnMAFFpTjWgsLLRywlkpAScgshVUSKWoUMFBKQFsNVVcYlXNyTIsS2hhkkcLu1gBFVWF30EFlLHRFwq+QCjEAISPEKg7Krja0V/6TUkFG8VUXdUWzrderttnU2ihRo0sVbtEGedZ99jGpP/9/+5zaZ2mAfrp9rc5Z9N6Che/hDUFnDgpXsvYqYhOIiZR3O3jzq1+B0Rp3vvxllIsCnf4Avf6ALJWCKi0ZV3GJmzNPXEoMCXXPiwVKXWM4HmE4GWOws4OXX3sVSZYhTok6LyMJlUQQioDo2hCrYD6beQZrs3bR9YVBmlprV6mGq6sp5GmK+XyODz74AIeHR/jTP/kzfP8v/gLXDg7w6u3bWCwWePjwoa8eZYzBtWvXcHBwgMFggJs3b/riGlJKHB0dYTgc4uyMQIDZbOYZGbw+jUYjFEXh17pXX30FX/rS69jeHhDoIqRPTWKDqs1SAIBut4uDgx3UtcbFxQgXF5f48z9/G++88w4ePnyIR48eodvt4ubNmyjLm1jMkrVgE4MzQhz7df/WrVvY29vzTGbuh+FwiO9///v4m7/5G/zBH/wB3njjTXS7HRwc7MIYg2fPTlCWlD7HhhyzsRi8sG4uJtYQUdwZtGPWtHYFSUajES4uLgABRM7eyTq5Ww9pTdS1Rr0oPbC0qBY4Pz1HWVZ4/OQJ7v3yA+zu7uIrX/kK9vb20Bv0IJTEfidHf8s5+saiWMwxGV2grmv0shRZSmmmVbHA8OLcC8Q/evgQF+fnqBZz1FUB0+8ijSIKlEgag4vZDKWrnjMajbA3nSFLc9Kp2N6GiiIsyhpVXYJl+6M4wfbWFmaToMDImkdaCKAsF/jrv/ob/OQnP8Xdu/+Eu+/f9ex3ay1s7WzELEMUkzhuXRRIHNi0s7uLP/zDP8RXv/pVfPmtOzh44zV0Ox30+wPMZjN8+OGH3j4UQmB7exv9ft+zWwB4MJHZeJTSmSLLUly/foAkjlFWGnVt8N57j/DjH/8Ix8cnuHv3LqbTKY6Pj1GWJa5du4atrS10uxTx3tnZxpe//BXs7OzgO9/5FnZ2thHHETqdLqqq8sfiV7JBSUph7fJnLSaTCU5OTjwQ3Ov18NJLb3mBe7I5KSWXTG+yRYfDIYqiWGFUJkmMrUEfSknUmlJXnzx5grOzM6RpSqkaDpxlYC6svFTXNU5OThBFETqdDEkSrwVzeE7bBOxsah9n3WC7dVNjmzB05l70nEIb+nntKoAp3Gbd8f5LBXj42J/Fms/7+bj72+TvrAOY2v33eQJNbH+QB+JhjuWvnX/EY2y58IoDC5SEiki3qGI9YOnApjhyz1OFYjFHVZYwmhmrErDEaK5LOghV2iX9Ij5w09NEDODiM97KtjZ4PNw/uN/4bQA4Na0dIW56go7dcNRJ4kCRNpPTPpFWUFVuOHFwSO+UCZerwnOG1jWqqnbv+XIoj4b8HvIXJRRV5XPMJuXGmhQGQpDen5D8GwraGR08644MYg1p5Lo6saiNQaUNKmNQGif349Z5qSQikKaRsWSHFWXpUpiJBBAnibehiMxG11bXNSaTCZRSpNkUBGGspSq/UkrPyGU8gpm1bHMx25TxAQab+v2+J+dwgCDU7eNAGQdH6FY2rLBrBwewAPb29lBrWgeLosDh4SEmkzGdT72Z4fTFAJsAd+Mbtk5IpWVqbZjeFk4k4W/amk7cwjLF/MrG5lL6DShVzoI0nRaLhc9NZIOZt113HkIIPykIAZoMtAkYGq3Fi/cV5JnyIPBUU8dcgWVnyj2wLlLFjzZvxsCPR6ltGNVv9tH8WzjgjB68EBXlCi3CMQd4zhROw4n2y2l1PKdyiWNOiaHyz9Yh03S+LuQvhdM1kcQGiCIIJd3+m/tnPYjiyjNbA1hC64W1XkgccBNXiLKvclB83/uKc2gvD8IL3YVt3TLV/ozXD55cHQYGAUB5/J7uSQzACCAWQCwFIgFC3LWmOtzu/kaKhHXzLIOsNWbaQBsSYJZaIxIuH9nS2DCuTyyPm1ZvfLzlds3CGexptXfDbeg+hIBjez9L6Xt21RYU7c9s+xgbmrjiWttDg4eLbaIkzXmHG2Dls+X3n3X77MCcz6KFhshnGfVsfi+WP3vBLl13dN6l9X/8nAfRR55fNwwUYy0KrZEaS1XslELc7UAkCZJOB6qTA1rDSglrLFQSA0483B/LMVOVi4DZMkGkNUwSQ3Zz5N0uZJIASqKsa9IAaEfonDFSrxGnhjeWlhkCgtdURdRxKSVqXePhw4f48MOPPNtASumjoOwo3rhxA1tbW7h58yZu3LiBbreLa9cOEMex10PM8wyTyQTb29vo9XoYj8deqyVkKE+nUwyHQzx9+hRxHOHw8MhVhxROe4Jo4m3dlgYklz7VuiwXePLkKU5PT/Hs6VMcHx+jKAqvzbOYz1GWi1W6v2t5luHl27cRRaS7w2wTTpti0fMsyzzgNpvNcHR0hPfffx/Xrx9ge7vvgKUIdb0MlHDfh1V1/drZckRDPUpfgjiKAGfvEKvNBcyqElUtYGoNXS7bISqKEFtakxnoGg6HkEri7PwMcRITi6jXJSF6yUKyBDjEcYQ0TWCqCvNygelkguFwiMl4BFiXVpVnQBojiSKqxCgpVQ4CFOGtDebTmQMqY4yGQ3R0jf7WFqXHu0g2PxNsB5lWpcuwzWYzfHDvCS4vz/Hw4UMcHh5i6qQP6CdkRMcOoBSBPWbds8vVch4/fuyMcBpLeaeD7e1dxA7orOvaBzQp4EcR3RAIC9mFLJ8QRQqz6QxTa/Hk6SGGwxHu3r2LX/3qQ1ycn+P4+JhSESYTD+horTGbzTCdTp1zEWFra4Dt7T5GoxEGgy30egMvG8H31KeLCVrNN824JKLuxMajCJ0uMQKlELgcjRwTkTRFdU3i6VVV4fz83F8bOyxRHCPLUmKFpSn29g+QZVThqNftUpDUaYTw+A+BJC8822o0L66CAS/KVuGxH/5uLQs/ACLWgRKbjnUVwBQCJeuO1c4S2HTMFwWcrvrt89qLXvNV+2/386c9p3D759kN6/q4/fsXAZGu6uPPrFl+WbdvZ/GLhqHjQSe4oJht/EoBChYbbah6W6Q8GUHXXK2xBvlWzv5hH8n5DEAjhxKYt/5fAvA6SkCTlRDwltqXAJ53WJ/IV0Za1xHh20B83ANz1pJvDMBTlNi2Z8NHtNg6EN7eCat1kqBmQyJhvSYhpdtNwxKSwjY+qmeO03WzDmTja1rna7q1Cpxep91fkN7r1jLjtmX7p67rYJw2hcSssbCa9s23ISy+wuLfQogl7CEkmvA1aYdncHCk1tozhi3g1nzuC7Ek/s3nHDn7i20Xn64sSSdQKQbRLJRRjj1nGxb6cx6pLwbYJASgFGIXIeQbxIsVR0iYlstAFKNy3PE8IEPxQzZe2fidTqfeoAzz8nlhV0rh6OgI06D0KdAI4fJCzEKZDAwBja5Uv99Hr9PFfD4jVDSg5TLyEF4jRXYjxDHdaONobJwOqKSr7WsMSYBIAmaiSIFAVwlhDIyhB58BInaEjQVQ03EJqALlCEsBQAKWDH/v7jkHjCa4yE90XH1OSEp9E1LBgBWKhHtgCDhziBT9wVVis9ZVjrOAEbDWQMQRRETspqzTQdrJESUxZKzo1GBgLIt/apdGJyCsgrIC0hgoC0hrEWkH6NhGeM/yRNxa1LyzaZt/WwSRKSE8pbL5TbCQ8GIBKlHa2jndBzjJFmOdxodA7CZrYygNE4qAJislykjB1AKqqiCqCtZFsCNjkUURBp0Oru/tYzJfYHx0ikVVQ6iEkPtMIU0lJCysIUZdDZfhSHdnyRj7vCAM4dHO4LMNixefV9h7HIQJt2kDAe1t6LO2kdls0t6cvwvBCN6nB2H9N2HbsAivtE/fu835v+gxf/2tHZlcbzhevQItOwjLILj7x4sBTmL5+H7ciCVoKciYc5RwJQnt3dAKXeNiMYNOBLIsh5QKiHqQAHQUYxFLGGlRajpPlSUgKnhj6PH1KKWgBJC5ggwdNz9xtK60BpMZpUMtygIVSEzcwDGbFgvMFwsS/nRzFBkFjYh2CNAwYyhxa4hQVI3t//z3/x7/+T//CHmng9defx1SSkxnMwAUtep0Ovjud7+LO3fu4JVXXsHLL79MzKg88YYcwBqFGpeXY5yenuPw8BA/+MEPcHFxgQcPHuDy8hLHx8c4OzsjlsyjR3jw4BauXbuOV199Bd/+zrfx6quv4OjoBIeHh46B8RKEEEuOL635ZKqcnZ3iP/yHP8ajh4/wg//0n/D40SNcu3EDt2/fxvDyEo8++ghVFaEsi9WbCeCll1/GH/3RH2F7e4Tj42NMJhO8++67uHv3LhaLBcbjMfI8xxtvvIE0TfHkyRMMh0P88Ic/xMOHD/Htb38Lr732Kra2ttHr9ZFlHR/h4zWeBKkHnhUCEAuaA17MxGYAYTAYIHfphN1u168zFqRtZGyB2XyGxWLh0wriiHS10jRFp9OFFNI/JkWxwIcf/gonJ0fI8hT7BwfQRiNJE+RZ5vUd0jSBtRG2t7fQ7/Zw9PQxDp88xZNHD/HBvfdRLOZI4wjZzg66eYY0ibBYzDG8uECeZ7h18yaEkjg7v8BsscDZ6Skm8zn2989QVjX29vdx4+YtZFmGmuIm0MaViTZk4ywW8UZg8PHjJ/hf/7f/HWn2EYE3FxfY3trCm2/eQVEUGI1GkFJie3sbURRhOBp5gXnpnrckpdS+t99+GwDw9a9/HV9+6y1885vfwL/9t/8GWRZjZ4fAUta7GI1GOD8/RxzHPq2TA4/n5+cYjUa4fv06Xn75FubzOe59cB+np2f43vf+D7zzzruYz+eYTqcEdM3nEABSp290enqK09PTRo9JCCQOuPq7v/07XLt+Dd/97nfxL//lf+2ZQFW1nE6nJaU1rG2CKiju7Owgz1L0+10oJZEkKcqyxLvvvoMPP/wIP//5z/Hee+9hPpvh8vy8sUfZwRCCChMkCQaDAb70pS/h2rUD/P7v/3f4yle+gt2dHezt7qCqay+4PpvNvOPFKYisccQ2M8/Rxlhi9Dkb/kWYQ3z9bVBpLfseWHp9cXBhVR9qHfD0POAlPO4nAZ6Axue4av+/jvYiQaWPC+JsApqeB7SF96ANPD3vnD5XoImPCTb/7ZL9SRiJdK8W2kmwaKPJbpDWadZGiBWBt6VLqSKtM4U8S5GlCepigcVsDl3XECD5DAlAgUAGXVdQUiFO4iZgZx0ew8DPilHd/mzZCF/2oYht5C6TLy7wjVq/5z2641MlNCIfaL+ZlrGXKgAAIABJREFUA38oS9j/XDp/PkkSxIrsAAt4hmdRVryht4fCIJsQpAslIFxad8ialh50sq4Cnta1B5tgWVfLjTtDfmhZly6NsQq0oyjVrtI1aqNJk9ClxTMrlQgoAt1OB0oKVE63UNc1ivnCg0VlWVKwKHIVQV0qclUTMz6KY2SWhL15rl44ZrF2acyhDnUURYijCP0BBTCE22fXpdMJF5SQTg6AK8IzGAqtqRpdEhNzywXhhLPXkyiG1SRWflX7YoBNACGYomELhQAS0AA5oZB3m9m0brHh/az7jif/MC3PWusjURzd4f3w76QbyEw7430yEylSjoIsCaBh4IJZSAgiewjOTboIoG1dm5QyeJiFN6akIJFjniLCqXvpOsPFwvW1P6YQpAFkGsFT/o4Fuz2yLJsHVAgXHXVgC/l1vF8Gm1RwVi7V0MDNUMaj0XDoqXTMJp4keGLmB5+BOp4EHFRGr7Z55c+sPycEcx8j/QGjyTLPyO1DEGJvwp+5CdQEvxcWDmxbGshgvEW5yVVZup/KWiiG9w1VpVPurRJALAQiIaBAqYDCWghjIayhCnBCIEsSlDXROrXWJCrL6DjogJTayAyq1lhoRsEGDIM/3LQgr0F61mzf3vVaGMIDX8G3AeDjf9v+bM02QMv44DNdc6ntZdUvoaFY1EZ7pP2krQODPj3V3O81AMTA71fxvLXt8zNFlyO37WZtoF7wMew6IZp9P695w3FtX1sHPq18Cu/Gu+eOJ5KrRrW2FhqUTmclyNASAtoxMLUBKhchs65yp11yiFwlyCii6c5Q8EApBRlJ1FWFejGHqZ0OgK6hnXEIvx7AR9Os66wGGF92ggDQ3GyZ1SRhrMFsXmA8GePo+BjPnj3D7du30d/f95W5WDybUuZu4OWXX8ZLL72EW7dugiuGhj3J4GCed5FlHSilcOPGDcRxjOPjY58KzjqHZVkiyzI8ffoUUaRQFoUrPAFPCedrYoeVgkYKQpAW0Gw2w7Nnh3jy9CnG47HX1Alp45bXiTUtyzK88vIr2NufIMuImfXs2TOfCnR5eekZLaz7qJTCeDxGVVV46aVbmEymSNPMBb+kjyaG/c909mB28duwE9voIShPkY+iyEdGjbWo6oocEj+PCUgrfDojnR9VKmMNBQqkVTBG4+LiAlIpjEZjVxCFjF0+R0A6IX+Fuq4xnUwwnU4xm01RVxU6cYpIKRINTSKqEFtVxMqTLo3eaGjHIJpOJsjzDqaTidem8swmXrTdPSJBdNZ5XG1FscDDh48QxQQ0MaAXR1SVL1KOveOisaHAdMiE11r73+/s7KDT6eDmrZsoisL/Vsomqgs0lYrb2pjt8UWFaU5xeHiIDz/8CPfv32/GgiEdUqkUYse8Y000vlfWGFg3zvtbW5jOZjg6OsZ4PEanQ/pSoe3baI2unyMFgCgiIDHNMpc6x5X/pjg+OsbTp0/x0Ud0rh5s8rZpYyNKpaBcsYAoijCbzXBycoLr16+j3++i1+3SPKgbke6QBRNG3r0dK7i6qPXlwdvb0+GfD7KsA5zWbfMiwFBz07Byrz8tgPK831wFgmw69qbrWXf8jwO2vQh49lm3F2Ektc9j3XcfB3B63r4/ebP+v7b98YZdhyHt0F5nbeCIK3ZLSfqs4Mp+2jv8UjRpauwneZ83NHh5HVl3LhvOL9y2CaCJYH/eM6VD++3t8nV7LMqNI0ugM9kRQYEiNnjcOXn5G1cBnX12DwbDsmEWXLNtbEMypKhyXDAfCGEghKv6KulCfbqbtd7vsK5PCSQz0NalngWp3NqErCbrv6vr2utO+0IC4GtyqfQA6qjBFyDggSeplJ8n+ViC52ZjoB0uwX3C60uo4cSAfuaqCodzchyQeNj+4Hk61AbV2vh7FmIVUjSg4/Omhi8M2CSwXAWunfYWljUFsHTzgKazGSziNDRGE/mv0+n4aJUQVLb4/PzcVewYoaoqXFxeYjgaodvtYnd31xt2oRETxxGSdLmstweIlPS0Ojijar6YoyorJEkjiMmoJNPrlJKkzRCIK7KgpIVtBJ+D628v5gzUhZoXYXSGH7ZQ/4oHcSjsCsDT+plyJyWdn5ASIpKAo+WxQ68c7MIAmxAKQjgHwCH5tUOHtRGwVgNKQlvSM8o6OWlUcGqHtajrCpHWgNEQVkHCQgkgURJpFEEZA1XXxCByTni0zhlfmvAEnY+/b8uLA6e6NaVC+Tfsqgo/j1prG21hu/waCQspLGqtgbqGFAaqElTe1FjKIowpRzuFRTeKoKMI3YiqUHQjCSEszGKOyfkZNCT6nRzWAWrQGrqqUBcldFJRf1rhjXtYBa4sKJyl3zrF57Srtmp9d8UafdUCLt0SGYJC64Aq0fpAvNgFfKr2QoDOpzZOXuQgDfBkgRZ46r4Alj78NZzVlcang2Nx1RhinJn3xZ+t2XLjMfhfZKRZMJMJguYh4dKYHBpOT70zRKwApezqdaOOmowixP0uVBcoBMHNlTbQFkikQKpiGBmhVnS1qSKDMAgr+Osi4UvASjoHJQVFzSIJm6WwtaK0awH6zkaQXOTCUjUYbckC4ugUpdlo6NrN8c62SjMCQ9IshYoEHj96hr/9m7/Fo0ePcHZ+jiiOsb+/j9u3b+Px48d4+PAhXnrpJfze7/0ebt26hd/+7d/EjRs30OnkiGOJqqoxmcwdi4oYuXGc+Ll6f38HaRoDsDg/v3CV8HKvH0NzeY2zszO8/fbbODg4wNd+42v46te+QunBeb5UfU4I4fSNOuj1uhiNRnj//ae4+0//hH/86U/w7OkzdLpd3HnrLRhjcHx8jDzP8e3vfAfz+W3808/7GI9X72en08GdO2/g1ks17tx5A3Vd45/9s2/i/PwS7777Lv70T//MC57P53MMBgNsbW3h/PwcR0dHuHfvA7z99l/g5s2b+O3f/hZ2d3f9GunHpbUerCBmk3BGNTwDjUU4pZR466238PWvfx3dbhdbW1swxqAoS3cfU6hIYTKZYDajtKeqKL1Ac1mWODw8xmg0wunpKS4vqQpuMZ8hdlqIg6Mj5J0cZVXg1s2biL90x1WuId0IJSW0ppLIP3/vPYwuL1CVBSIpce3aPvI0w+jiHMOLS5TFAsJomLrGYjYFIDC6uMB4MsF4OsNsPsckm2AyGqHf60EJYu5IJYjobHkVNah1hbre7GxWVU1pgPE59vf3kec5ZtMZHj9+vNR/RVVCKeXL0ocRXbZpODVgPB7jo48+wmAwwA//4UfY3dnBG2+8jmyQYTymKnAjx5AyxviKa2xXvfTSLbz+2isYT6Z4771f4NGjR/je976Hw8NDPH78GGmaYmtrC9vb21jM57i4vCRQzY1/HtuDwQCdDlUbqh3TbTgaYTyZ4K/+6q9wenqKr371q/jX//q/gVKRD2wSK78KQKc1YzzPsLND464sazw7fIY/+ZM/weHhId599z0cHh7i8vLSp73uHRwsORwM3JVlifliAWst7t+/j0ePHqEsS1y/fh3/4l/8V/jOd77jWFS7HjBl2zPsc7ZPGXzV2qDWTWbCJmZT27Ze9926103MptWg2/oW+hLPO966f1/F/tkELK0DQT4O8PbraC8Kpr0oQPYi17dp/y8CUL1IH3/mjcFKsK8QhBssATLCOrtXAG5S9GCRNRamrqGriuZaAL2tAbIkQRolFKzXGqYsAWuQqshhJa6KLTnSiKRE4nxA0wZ9PKzj7DPR+syjU/yJs6eWInjW/Z8MDutqgS/5FwzWNLiR6wdLv7EujU4IV6UdsEZDawpgAE1WU5IkPg2srmtXGc9SEQPAAVENo1y4anRCCMqEWQKZhAdUSLtJQkRufTYB05IBePbja9OkUle0Bld1RXO7dq+WAoJFVWI6nyMej3F8eoI44mAIoF0gSAoB5cCaLKMCDF5LyWpiN7HPHWAYbBtxYZJwvuK/UPO6rmtXWKUIKpoK37chlhLaJ4wNVBVVD4VcLtzCmoZVVbv0w6sfjS8M2ARgqTNDICX8DlidpMKIJhu1XIWDxUp5Ic3z3It5crSGQSaidS8wnc0wm838Ysk3lVlOAHyqnh+4aDQY5BLAA6pA5EpRR5HaUH2F8khDfQoGeaIoCiIu6/ut3Vd8Tu1+lC4lr/0bBqB4Gx7Q7ExEDmTidDpIErpmsEkAJO4mBMAsKDDY5IpwWgurLYwVsMI4FNxNhkKQSHgSE93Rg2Ea1jqdEmua1DQhEElmeAWMJsvnAj/Ztf1dDyzZ5cnRuH8oN6n6aTVA5E3A1mCQSgTbIJhYFYjNZKwTrDOAdFossMY5xApSApEEEqmQKIlECvpTApUVsHWFYjaDiVOknR6SuHbXZz19kXN/efxZCFCJz+C5AdzC8Lz2MUAmtAAC0f5uFURg8K5Z3AKkqb0bdw+Xdus6vbk/n5XhQIOFgZ3WKa1ufSVA8lmck2hehVj6BEt9Ylvbr+7hs2zh9a4DnKxtmE0vsLeWAd8y1t29Dg+xcjzaTfNONGNGrNmuYTY11T034WJCKagkgYgNak1GzsJo1MZC25jmLwFoSdW8lJSwgoBq09olMy4JEQKUK58LIQC3iFslYY2AkCRuKZyDRloBzsh2YBPPy9bYJnDhjklaKrFbs4DJZIyf/+IXePr4CeazOZRS6HS72N7eprTx6RRCCLz11lt4/fXX8MorL2N7e6vpO2OwWJRLxTuyzCKODfI8RbebU1q3uY1+f4CDgwOMRiPkee41XbhQx/3793F2dobhcEj9IindjNPjeSwwWJPnKS4uNE5OTnF0dIxnT5/h5PgYd956C7t7e1TK9/IS3W4XL738Mmazl3D/lwmwBmyK4wi7ezu4ds0XgcMbb7wOawXyPMc777yLi4sLPHv2DHVdY3d3F51Ox5cbPj09xQcf/BKz2Rxf//pvLLFOQieHS9ZTtbpgDbFNyiMbgXt7e3jjjTdwcHCAW7duwViD+XwBCKC/NUCcxI5tNENVlJjPCAh7+vSpq3JGtsZwOERVVSiLAtPJBCpSOD05wcKJeA62BsiyFIuyIOclyxBFZOQbozGZjEkDazaF1jXiKEWv20W308H44hyL+RxaV3QxRqMuS1gACydcXywWqMoSVVmgWBSoysoHEWU4x7sF01gNY9TG+dsYjflsDp0ukOc59vb2UCwWGI1Gvh+lJN1HZg2xPgbPS2z38bNSFAUuLi5wcnKCR48eo6oq3PnSG8izFJeXQ58SWbkoMI91Ho9bgz4Ggx4Wi0c4OjrCRx99hH/8x3/Es2fPvI3Y6/Wwt7eH6XSKoiy9bRnqiTAo1QBINS4vL1EUBR48eEAGfpqiLCtKjw8Y/Xy/N82upO0Yoao0FkWFy8sRfvKTn+Kjjz7CgwcPSITePWNZlqHjhOs5hYLF0KfTKSAE5vM5Tk9P/bn2ej3s7+/jzp0vARA4OCAnKo5jH1Vne5JlLNiOBoSfx57H6uHftbe9CkQKf7duP94eugLgWAd8rdvvuuO+SAuv+eOwc8LjhoHj8Bw+DoDzce2mq4JLz9v3OqDpk/bbuuvftO2L9Odn2fyeg+fTSVfT9VpOzSIWUKO/5vIQHHBgNLFFpRCIlUKaJIGcioV1xaZUHNM+DAWAJODmQwG1BHyuM26Axg5vPmu/J5sseMuBtCWzSTifRiwdyrl4gV9k/TGXxr/gn7LPZ7x9Rsxb0guyoNTDylXq1qz15OxGy8CJ879J/8osPat+/HDqnbQQhv7NlXxJtsVZcI7ppJ1GUaVr1Lp2RVhou9qx0DRYS0q7NLsC0+nUYwcEqDmh8ChCGtN9jRV9H8cxLCymsymKRUF2XlV50InTChkwki4riQkjzJbmP05lDnX4eJ0C4F+5Txi3YKY5VzQ11iCfL6havGyqsjYBg2UbfV374oBNLfZNeyJnI5Sp9txCVI5vAFOhuWPDbcPSzAAIXJpOlwQY93Z3cXBwgE6ng93d3SU0kGlqta4h62VgzKOB0lUTqEo/aKuqQlWWJPAsm2pyjCbWQe66ELIRaAyjptbSJGYMhbqN9Si5EJIQF9ukHHrgzqHpfhHF8mJPtEF459CDTSryJbyjOHKpIERntFIEaR58HCeGGjKboGBhnFaTIVaPNRCacmCVS/NQkUKeZV50U0p6KL3ApDUQsD43OZKEhhOzknSjFJxwum3S7DY1BskawEm4BYH2z9v4V/cwSvc7frAMO9UCsG72lS6CEQsaB5DNfYgs/9YSgwFuMZISIpYwJsYgy6CkxFRbQNQwRYnJxSWibg9p1kMiBNIoRhrFEABM7dLpak3glUPQpZVuyLQWfr72z7nRY7oZCGm2gQMBHEgQnu46EKC1zTqjg69x3VIbfmdbG4jW39pzdgiYeM61fZomWv/6/MyjT9c2RSqZ2XT1ArSc2ky/XdnkE1688PnpTRBj9TwlpzpvaNoaFFrDLEo8Oz/FoihwOZ1hXlboDvrobW2hNgbzmpxSTn9VziAAgsIFDsiM2NiqK1hdo9/p4Nr+HiQEyRVI6YoDuMWf+8qBVNY0UTcfyXPguNFkLEVOyFtFEYwFLi9HePdn7+Dk+AR5nuPWzVuYjCe4e/cuYC3++be/jTt37uC126/gxvVrEJCYTRdeqLKqakynlBZHDAYSFS8WBeDo5daSALfd2sZbX3oLg/4AB/v7+OY3vuGd/bKscHJ6QmlqSYonTw4hhMTu7h7qusbFxYU3EhvtQeDo6Ag/+MEP8NGHH6Kqa6igXHAcx+j1enj11Vfxu7/7u7i4uI6f/XSAs9PV+1nXGsPhDBcXjWZir9dFt9vB7duv4N/9u/8WT548wZ/92Z/j9PTUgzxSSrz00kuI4xjvvPMOzs7O8K/+1b+ElOTcJ0niUwUBXoMp9VAp0j/kMvChZqQQwlf6293dwd7eNrQ2mOWUMqZiCvJQgCyC6BNoWdc1rl87QFmVeP311zEeT/Hs2TM8fPgQ5+dn+OCD930g7fT4CA/u30dZlTBG46VbN9Dv9ZAe7ENJByoYjflsCl1XkEKg3+0hTRLESkFai9l0iovzc+Rpgk4nRawUqsLZUobSRNMkgVAKSRxD6wplWWA2m2I2naAqC9gg8GcBaIOlAF67JUmCgxs3kKTErhmNRhBCYmdnB9evX8c3v/lNdDodbO1se6DDGIOTkxM8efIE4/EYDx8+9EKrUlLK42KxwIcffoi///u/x2uv3cZv/dY3sDXYQhwRU5CrxQFNALHX61FwUSpUtcGHHz3E22+/jaOjI58e2u/3vVD9aDSCUgovv/zyUrCTdUEnk4lP7bu8vIQ1Br1eDzs7OyjLEvfv38e1a9fw4MEDbG9vYX9vD1mWYD6bYbmK1WojJwz46OFD/PjHP8XDhw9x7949nJ6eIooi7O/ve/uS50N2VLjaHkCRa67Sd/PmTQDAfDbDxdkZ7r3/Pv5+dxdvvvkm9vf3vCYTAA+ukZ5Yx7PQSGfKkH5c4MSta88DItr+gVya5zfZGs8HSxxEsbTdun1+nGM8j4nzWbRPAt583sf5JGBWeIw2gLZpv+H5fN79/PGady7I33BgjAClHwkBQCoA1q3p5BNVFaVBC0vBqzxJ0c0ySGtRLRbQZQnhAu8KFHivtYHVtbcvpAFQawDC2x8AluwpwpFCG5ZTne2V27ir4ZiB29yBQ1xkCpR2xtuws0V7YOBcQikCn6QUkIqlFxqgSSj4SqzGGlR1jaIsUJSlS/NNPHgsOFDp/8jiMs4fZD06v53hSxKkBYxGeNwH8a2BZf3omsksVJiprrWrMEwsXQuLKCUGVt7J0et30evRX1jwzBgNawySOCHgR0XopCm4sIMQAtmsg3wxa4CswEtVMREy4ihGFDdEFGMN4RjaeOaVsYCsakgVQcUxoihGlueI4ybjKwSZtKtgLl0QM8uBngNKtdawxiJJaQ2LVQwJSawtQQHWq1SbvhhgkwNQrAdbxMpkE9JtgQZk8qybYJJn5I8rhgDwiB8jdRxdLIrCVwphIGt/fx87u7tIXIlCa63/TbMdUInmPJaOAQKATJCeVlUlyooGJGk+OQALjhboQCyKDAl//nEcI1LOPaGngZBt11+w1us8CUnOjZLLYJMVPDEso/38GoJvbfBOKeUGNvWxjCjH1UiXkuKE1RqwqekPISL3wBMt0FgDaNIPEQLQhlIHmUWl8pwcmYgMdWjqa6s5Xk+AEoNNsatkB/5MUK6uK+LjHfZ1SyPvEcErp3Sp1nYQwj/qrPVk3XxM5pP7zoEgLrUYsSSaZKNzJRDBTb6CquVQQgGlzcQufW4ryxBJiVFFFNFRWWBSVMgh0N21iIVEFsUo4gSVBXRNQJPWGsrfP8BC0nAJnxu0IxKfT1u1R1YRI2ayrNyg1oIoWicrWtvQ8VpG3lXXKJb7wZ+vAwnprOzSr0PwpwHRVqGsNkj0aVqzrP9/s9kXOPtwnKw3Yj9ZP3qgfWktaRulVGFDSrVxP8ZQNbrFYoGHh4cYTiY4Oj/HeDbHYO//Ze/NuiU7jnOxLzL3VOMZewQaE0lAIE1RkqlLapm+92pd3ReJj172g+wn/TYv/wE96EW+th+kJVsSKVKLEAkSIwE00KfPVOMeMtMPEZE7q07V6QYBSrhe3r2qzzlVu/aQO4eIL7744hgHp6doXIfr9QqdRIJ8CBhK+rMBxfRe8lzgoTQWGRHa1RLtaoX79+6iHA04LRgMPAcR6/Vpn9bmFMMUQcsI92ulF6HKvMgwGFYcmAvAxeUV/unHP8bV1RXeeJ2BoM8++wy//vBDvP766/h33/seXnv1Fbzy8ks4Pj7GbLbEYr7CfD7DbDaPa2ee55iMxyjKAsvFkkUpuw5t0yLPC0wmExR5gTdefx0PHzzAt775TTRNE0ukLxYL/Oytn2Fd1yiKCh999Anu3buHBw8e4Pr6Gp988gm89zg8PERZFvHWHz9+jL/5m7/B2dkZg00KWERdpwwvv/wy/viP/xifPj7E//a/DnY+z67rcH01w/mwien2Dx/ew3g8xMsvv4RHjx7hl7/8Jf7hH/4B19fXuLq6iul0L774IhaLBX7yk5/g7OwJFosZrGWwyftyI2ClfXAbbFKQSV/GsJj4w4cPcXAwxvHxIZwPqFY1C6BKylRVDTAYsGbfeDSUvs2dou0CnOM2+vjjj/HBBx/gv/xfIzz57DP833/7Nzh78gTGGpxfXqAscvzOG19H1zY4PTqEtwb1Yo62rrFaLtG1LTJDGIzHKPMcuWWG3Wo+x8XTp7AnRzg5mnLgTmyiIGyWqihQEDHY1HVomxrLxRyL+QCN47QHawvYokAIQCeVbG4Dm+7dv4+qqjGbzTCbzZBZi6OjI3zrW9/Cn//5n+P45AQPHj5AVVXRqf/Zz37GwOT77+Pjjz/GcrmMDO3FYhHZSxcXF3j69Az/0//4P4CI2YDK6imKIjJ6vPcoyxKDwQBEhLZ1eO+99/FXf/VXUZC8qiocHBxgOBxiLeyro6MjPHr0CIPBAMfHx/EYRVHg5z//Oc7Pz7Fer/H06VMQgHv37+Po6AgffPABfv3rX0ew6f79e7h//w7GoyHOn1p4KTizb2oNnrHq9977AH/5l38plRR/gfV6hRdffBEHBwcoyxJlWWK1WuHi4mKjwMByudyoJjkej/Hw4UMQgJ+/9RYuzs/xL2+9xWW96xp/8Ad/IGmwBYyxog+1jAV6NN3CCsXPZsKmCDHytnNL7f80EL1rn22f4WYQY4vZdMu2M0C3BW49a9sVhPmvHXC6DeTZt8+zGE67tmcxlj4Pw+rfciPt3vr8IfYO9bIwUYOp7eDg0HUebdMgeAfjgcwSBkWBUTVAW9do12v4toHxIWZ4WHAQxbcdMms4JS0AaB1AIuUtwSh2DNj2iXZ0es2aGqJOSrxy3ZkAqE5Sj0vFMkleIKXABZB6MIriEdj/FZZPYGKCVf3LoFXfPGC4sEaWW2Q5gzVt12LdsPB2XhQYVaXoBpmt8W7i9WqRJASt3Jcw70V2wYkfpsE93zkE0cR1bcukEcc36z3v3bm+Kl3rWKi8zAbIywKD0QDjyZhf4xGMMREf0MIIecG6kEWeYzIcw2YZqgEHCKvFEMvVEo2k46keUwgBVlLy8rKMlYGJOJvKZisOYtUW1DRwntnxJsuQ5QWyPEc5GMagiH5Pr80I6UXbUtfCtmlwdXkFFxyKvGAt0MwgsxmKLIc1BEep4PvN7asBNgH9QEAPeKQTS4rCbQNSaaOlFXn20cL0d30pe0h1mUajUYxApUDXdtWU7XPozyzjigJt2zDtPOFJbAMgEU31IYlY7Y6kEPXi4bdRi6Og91abbV+7/kz1JnaCTTGNjoXJYAheJxcCJGkNhiSSb1Tgm0EWL0YFBaYpUjAyyVgWSZPKKpTnyLOM6Z96naJTZfQsIpataXPQ/iATiqbUbTqxSYNLoyujJVkLEtAp3TVxUKnH9IMY+gyOU9yX0DObSBB+CvJeAKfGECILSym26khmAApj0BgLGwJIWGdinSM4B3IeubUosixW91G2A7yOjc1nzQCp2WiM3XZJ2k+24Zrtz7Y22uyLkOjEjd1utC7FD/Q5bj+v7ePEtHLdZcvQildKGz9u3EX6Dm19uhP62O5Xe7YvavPdhObk/bSNNj69eVe/LbMzJM9jn9F3uyqG7CMPenOuu5lGF6CGyS0rmVyUzo8MUvL3+lc/HwL93wov7tqUleDIovMebeewalssmhp512GAgAYBLQGdITSG9XlIjAMDHfuBq2YC8MYjI64gUi+WOKhrHgnGilaT0qH7dL8QWN+Ay832VU372+/FKVkrkO+IATDWFjAyl3vP62HTNFjXa4xGI3z961/DCw9fQJ4XG86WtVl05DX9PIQA17mN56EV8VSwW4M8o9EQ3ntJhxugqko8evQIddNgMpncYOHq30VRoCwrEBl0HaeVXV5eYrVaRYe9aRpcX1/j7t27uHPnDu7du8frdmb39j8igrGInckmAAAgAElEQVS9NiQHkhrMZnNkWR7ZGG+88QbKssJPf/rTqI20Xq9jilXTtFguV1gsVgiBYopWKgbqfc/s07ZJ7Q/tX7rOhkASLfVchU4DSujX/Kbl88Y+DQInbBOKssTh4SGWqyUePXqEIs8xnkxwNbuGkxTG2XyGi4tLWGtQ12vub9LHmZ0zxnq5xNOzM2SGEOoauYhsTybMdgo+sM5gVSIENjAHbYvZconFaoW2abBerVDXa45uE7PNMxA8sbQByTmLhJa/vXkf0DYNjGkio/zRy6/gtVdfxde//nWcnh5jMhnHQJj2x+l0itdeexVZluEb3/gGzs/PcXZ2xjpMkp7SyvNcLpY4v7jE+fkFQAaDQRXTD9IUOn0GT548weXlJT766COsl0sgBJycniLLspgKd3Jygpdeegmnp6d44403UFUVptPJlug8pz8omNVIFaLLy0us5Dqfnp3hRz/6EV5++SX8zu+8jvFojKIsMRoNRWtj91Q4m8/x5MkSn376KT75+GNcXV1hNBqiLIvo9Kh9O5lMogC4/lSm/9XVFZ48eQIiwuz6mkG3qsLxyQnatsXjjz/Ghx9+iF++/TYODg9x7969GOjVtMbFYgHvuUJSpiK//aQVx+Q2MLT9976xvL3/PpDp82ypbbzNcNq2t3d9dxe4tA9w2r6+Z13vF2EV7WMK7Xvvtu9/EcBn1z3sYzLtY4qlfuEXOf+XDVql/p2CS3GpFmSmtztutkWQFDoCp1kVeY7MWFgyaJxDs67hWwkqE8EokqL2vxFwSfxJIPHHoGx8irHSviiOsA3Fr0n3iaiSVws5sT28wjbiGwcwuwmajQIoq6m3yTVNrb9GHwwoMBHBSRDeWstV13NmNgWCpLj1V8DAlJxYHdLAgNjm06C4z6YvEBCIwab+Xw82Be8FbGIJGIT+/lWXOY55Apq2hQteCnQwKMdFWiyMZ2abcwwCMnjWAQFYmTWzn+S+246JKZpynJJt1HbQ91KwKRUlV43Aoui1NZWh1LZt3wahz8pSQGsbH9Cgkq6NqWagBliftX1lwCYAsRrdtgYCcHOC0M8UCAF6BXc19lJ9ifV6ja7rMJ/PY/68LoLD4RB5nuPk5ISRQkm/0IenhqICWWoc9aylNr5PRCiLEsPBAKvVEm3TbDg72FoM9UE718WqHnpf2oF44DEbipHV/rpS0E2PmwqA6XupQXdjggu9JkH6/e2qLkQEsgQQs3J6iW0BV8j0P1OwCQGdTCQw7AwZE+C9QZEbNji9gzUBq0GFzBIM3yjgPdNJIWkogScxE1gPKQjQYgKL45nAaD+F0KNGtOVKUhD0PUQAKU6GFLSKJv+djCGeiGTilCI6HtsaSATyPOEaeZbW92CGCYx0GTIIBDhQr+kUPEoQhjaHtwGZD6C2AwXDOcVNC79uAe8xLEr4QOjWnOISpCJQqtMUpK90MgHx89yfMrR/e44FWUGd5178N7WRbqzS6dvP8d4X33YdbPMkv82o4e5NDdt+Hd1xWTvf3L7S38aV7zKgo8EYodfbt80mJdxoYtL8/mdcC2QnteyIo2JkiDU4JUqm64JuJurL7d5slmE4tGh8i8Z5LNsGl8sVns7noIMpKgS0RFhnBp0H6mDhPGHtHUzjpKKkhwWhCFyiuCDAhoDF1TUWlxeYTKfwZEFZgdwajlSuG3jXsEEGxHWmaxrWZ3MefRAybARPgoL74FSY2XyBdb1GXhYoypJLsq/XmC/muL6+xunpKf7zn/xnTKdTlOUQXRcie6KS1GZl2nrPla10DU3XQl1fiQiTyQSHhwcoyxxF0Qtcds7jzr27ks52xXoCtg9SqGDlZDLBYFABINSiO6PC0CcnJyAiPHnyBE+fPsUbb7yBH/zgB3j11VdFIyrfO1YV+CgKimls8/kC8/kSBwcT3L9/B8fHR/izP/szPHlyhvPzc7z77rtxLVbh8NVqhadPL/HZZ09xcHCA8XiM+XyO+XyeGPeFGNOcOrdYLKL4uNoLqstYCNtntWpYjH3BbLJcKPMcQfWovcf8eiZrNt9PVXFwbDAYYDQeYzQZAwR89PFH+Mk//wRXizk673F1dYXPPvsM7733HtarJV564QUQgPGgQl6WOD4+xv379/Hh++/h7Z//C7q2wbQaoshznB4f4YWHD9ixcA62yHFydASbZTg6PkbrHH713vt4+vScyz63DYajQbRRhoMhbJ5jsa4xW65QFCVGkyGGo3wj2JVuzjksFgu03TzaWN///vfwv/z5/4zBcIDDwwnIGLQtg7DOdXDe48GD+3jhhQf45JNPQET45JNP8Nd//ddcUbBpuKS4iHY/PT/HO++8B2MyvPbqSzg5Ocbl1QxXV5fR8Nb+7ZzDP//zP+PHP/4xfvyjH+H68hLj6RTf+MY3UJYl/v7v/x4ff/wx3nzzTfzpn/4pHjx4gO985zuoqhJ5bmNaKAF48uR38Yd/+O/w3nvvIc9zPHnyJDKx6tUKrmnwy1/8Ap88foxvfvOb+Pf//r/H3bt3MZlMURQVxuNyZ5v5EPDp48f42c9+jX/+6U/x43/8Rxhj8Mprr6Ioyyg0z3IFGe7cuYM33ngDBwcH+Pa3v43pdBpt5Lfeegt/93d/h08//RT/+Pd/j6Zp8NLLL2M6neKTjz/GP/34x6jrOrL+fvjDH+Lg4ADz+Tym367Xa2ZDTiZSHCeRhACiw70h+5BoPu0DINLft4PO27bvLkDntm07kJseIz3mru/t+rnv83TbB2R9nuv+TbfnBVy2gdcvej27npW+rz/3AVtfFovrS29TYtsfxO6HBr4Ua1JfRPWUtGiIY+QEwTm4tkFuLUYDBoirvEBhLOZ1g+VshtB1KA1XMTOa9dE5oHPitxkEx5UwCYQ8yzf9P1C8xiBgkxF7LVCIthtJRD5oHp4PrJWtRVgA9ksAIR+EPtUfAV4AKBP43F5woIAOHn3VNhCfi4JB67nKG4leI1fVLFFUJWAgGTJBLiegdQ5EiYad58rtvS4cOBAPALGimsJFCpEFeOM32iM4h9BJ9TkpiEKen1X0zUNgofLQg0KLxQIBAcvVCq3rEAKQZbrGSZU6Jb50vF4ZItRS7KJcsm4eZRZkWfMxrWCqm+oVbms3acBLA2MqMaB2BhEXRVM8I9XIDKHXfFI7cjjkIiJd28XrmEnlFR23XEwjwD9jGvlKgU27GEnbP/e9FBxRg3gbqdsGi/QBqS5SSufWiGIK6qSpSJqmtO2i6DHTyKl80k+oATfucdemD58HB8Di4Yqa6H17API+thfhm8fbvw/fD18v7QCbeAIDcV4tQCBhGMVjga9x415TsIuHaRTEC8SlKg0Zjq4iraKGeN/sNAmKD+rZQZDJXMCelNGk7CG+MHF6473KJClAU78KJOfSfRA2tI0Unw/J928UbtbIhR5WnF9lOkGfp/zzIfT3FJjBlRnDWhlyDBZF5+97yZu1hsXao/CqQv3xmSTRh2jkYMf2LENjH6qjbZS2LSX/J7vtGCtfGP14HvvotnOknxEDj3qrmx/dPMj2e/8qIBRtte0GgBr6N7e/luzz5V3l7uht+vfzt8ntzKbntIMRO9oWOKj5+Rsv9Eagvp51jWwLBmEScvSt8x5N59AGj8axLl0rhofOUeQ5p8WCYEwGC0LrGXBvnYdzbICosRLHia4TemsIcU2KbZ78VCNqe/PeoW0bdG3HRlcCUugryzngUlVlXEt07dxcx/o1btsZi08hpKzjNCjTz0GcqhQ2RJPVkNF1OMts1DlQ1pQCDhqlUwOsqiqcnp5iMpnsZclsXmR/L6nzxEElPsfBwQGc86hEYxHAhnHmvcdisZAS9cOkz4atY28ef1fKespE1oDTRttGG4Ai8KhvE/XBpzwRAJ0eTDFbzFgEPM+jmGdd15jNrjEeD9HUNVoB3LTy7XQ6xaCq4LxD13ZoTAOEwLoSwyFc26BranaYrEVmLVdelHHlnOMKjlJAJc8Lpu/L8wQA13XorGWBVWd29iNts6ZpAGqiLTIej3F8fARjjaTYOwabgsgReIeq4vSC8XiMe/fuAgDu3buH9XqNYVVhMWINDVsUmE6nACB2ItswCpymgt76fNbrdUyt9GLDtVIBT6sWHwrLh/vkWLS6GHQkcJcYDIc4PT3FYrHAvXv3EELAr3/968iMK8sSAcDs+hqz62usV2vUdQsiTtvcm/obgjCbmIHV1DWyoi9ko/1yNBpFRuCD+/cxPTjA0dERJpMJqqpC2za4urrESy+9BGsMfj4eg5bLGIRVIfrZbIbHjx+jqqoI3mr6nAJOUX/USlBYAqgyCG5dY7eBiO3Pt3/f/s4+EGf/nH8TMNo31922PWt93L7eXeDJrveeByjbdfzn3Z7FqtoGnL7otv2sto+7C2j6vMd/nu3LYzgpC5ttEbZAEmAV6sL1dnpA388g/oAhltXIbR5tAu88XNuBghd5Dj0eS6lYw5VwDSj6JuonpbNFZMaLi4Vk3xAQ/SJdSXeYGxsWZ9j6ifj7Jmdc99HiKf3d6/0z4ylAUgTVj7as6cRVzDmFTdtMWUJxvHkPBClC4DmNz4vkgDLC45gGRAomIFidj7hxgvMInn0tr0zyjXYwG8+s50Ql7dw/ID5m0jZBGouvg68XCVMptAHBMVOqE1ZREDtQ7Ute931ki7oNjITPxetSEX17AHKu5PvUr3sRm0iO70S7Su2gdG1U0E3t7NsM9q8M2BSASO3fNmh18d8GnQB+WGqIKA34/Pwc5+fnWK1WOD8/B4AYyZlOpzg8PIyoYHqs+ZwjvYpUAjcXvUhH00i5741bTcerJB++aWoAkjZlM2SZE+O/5fKJIhRKRLG60HY0x4k4WF5kEiEGmILIJSIZGDJyDgGCZHRTktbErx5Q6veh+P1NoXUj4t0KNiWVzYiivhY7noCOqJ7ZBEByaT1YQJTTOzJW/AfBk0dpDQpjYUAw1CGDQegcfN2CnIMNQcp4ZiiMRRaYKZR5IAt8PmMznoB9xxO12a4oFlJkTfqb9B8K/cSnIBb5+N19Qyd+f/sDCqAg6Lrz8I7ZTKSze+cBSzA563UFHxA6BsuCNcgAjIsKhiwqY1EAGNgMwZYAEerFAh0RqiwHyGJWtzBoGfxK0j2JiFF0iRxs963PBzzsA5x2tMDNpr6R8tZ/izbfSDCfjbe3TxGeff2CWW4sfjs/099loqQION12z7/9LS7e9G95FTe3fi3ZbYRH427HM7+53WQy/Ua4XbwOjxD69OvUkTfEbFVDJGxw5iQqHX3ftYYAdF1A5wPa1qHtHFof0AVgUTewsxna4DF3LRxYHylAfwmsvVRzpBKDETIyMF0LkvLfMJw+1TYdGtvBMaTOc0fnAOdZ4NMFdE2Drmk5VVb/eZ5DvGvhfQee3pnNBQB1zalms/kMq+UCTV2jyFmLcDQcYTlcosh7bSRr2ahbr1eYzxcRNOg/5xLnxpio7aJr6SZowmzK2axG2zJDy3uPvChweucO8jzH4eEhJpMJWhEGByBruMVgUKIoslgBT19ayUvtg7ZtcffuXXznO9/ZEHUOfe2/zefpWTyzaaR6j4AEGqT6+ONPkecZTk6OMBpVODlhB3w7qOW9x7vvvivpfjnu3j1GlplYpr6qqpiqBDDoFzUXZC0tiiIyx6qqioCaMprU3vHewyiwQ0YCN/16re1grEVBhOFwiEePHsGKvpGyrliv6hpvv/021qsVvv3mm8isxZ3jI4wnE7z06BHGRQG4Dv/PeIwVGITKsxwnJ8d49OJDXJ6f4+yzz6ApEhydZ+fIdR3q9QrjyRiPHj3Cwxcf4eTePRyenkag0zuH5WIJUzeo2w5Pz0s0bQEgv/Gs2rbF06dPUVbneO2113B6eorT02MMhyVm8wU+/uQxvA8oCu4PddOgcx0ODg6Q5wVGowm++90/xHK5xPHxMT777DMsl0uslks4AVMnkwlOT09RFDmPw45TGNcSaS6KQtLfcuR5hrpe4+LiAsvVCibPsa5r/OSnP0VVVXjxxRfx5ptv4o/+6I/w3e/+t9KnAhaLJc7Pn7JtK1GC6WSCF164j0FVYPGf/hM++eQTfPTRR3jy5AkOjo8xGY8xn83w2aefYr1c4vGnn+L45ASHh4cYDIbIst1gk/ceb7/9C9j8f8e777wDWAsyFqv1mp0CYn2p73znO/iTP/kTHB4e4NGLL0jqBtt0JydHqMoSd++c4ju/+2386lfvAAQ8fszV9z748EPMr68BAE+ePMHf/u3f4uzsDD/84Q9x9+5dHBwcYDqd4uzsDPP5HGVZisB6hs5x9L3rfB9AIdqYr3exXXgu7rMK0i3df8PG2QE4QWeFfQtNQJy7UumMbcBqF+PmeYLI+7bnCWql1/Gvue0Cf75ogO02gDA9z7/F/X6Rjf0fuxn3VdaPAEEE4pQskpR3gKvLOQcKHGwu8wIHY9Y/tCD4tkNX12iWS5RFjmFVso3oOA1rVBQImUVmDDJjEMjAiTZaYWxkUKl93jOb+ApNXCsp2p2R2bTl7aTAigJhgfqiMGqzBk0bFJvIGUjlXoPOGpB36DwDRy4Q4E1kSJksRzWsUFYlF6fKDNquhWtb1nUiwLsOzdLFFgaAIPQpHYcQsCkE9GlwiiHIPzKALY1UuxMg3DOgkz5IFT3xUqyKNXdVToadkiLPQdagWpYoyzzO0+rLq8g2H4/tUrZNrbDwLUAGs/kci+UiyiIQiOUByACOgTlqOwTU4p9LwRQfEALBZhkKEAbDIaYHhwgqHh6JOBseEfvsCHwdMCCRr3HOo143MGQwGIwQghdbwvf4AigGCbu22Ts2vjJgE4DYQYjoxiSfsnx27ZtGVNTYZfHvxQaQYoyNJV7VwFQDjxfBLjrpPfBCMVUPUAOLIiKoBmWvPyELZmLsMoXaCNIqrClhUKVgkEbe48AW5FS1Ffr5OGykMeh1afRzE2/eXJC3ATQym/TA1ElTAe9tI8DzxfH1xdMo2JVEdcWjj8OLlMJJIBHQVpFboy0m7cIpdFKBjkhQ+16vSRk/htT14klS/C0IaiDXlAyuoOg9A01Gpk79DiGhvu7rq/vAqLAJEJBOaLq/9GG9RmY1sY4VhQBLBoVlOmlGJGLoRiLI4FxgsrCUMfuJ+l4W2Q2hZ0SkRlLsO88DAqQ3BGyhHjcBpm2E6Fm2CAFR9yroEXVs4ybAtL1tn5IiurjV+yPgePO725/Ffb6YHSXX88UOsjl6gR09bc+3nvHWl3BvwKYBmvax/vfnP9a+tno+M5Nbaj/4y/8JRo5kIKbw+P6j90MKOr8puAJSKjWznDyAQGajbypV3JiYyyfH64ELMkYicfFEPWqlwGeARNsShkToL1KBf2PS4sLMhGzbFl3bciEB5wDqtYI2qp0CIGLDTB2u7aCMOnwadOHvbDp7QL/GNU2L1Wodja1KI4XogzOtBJm07DqzYHqnMdVM1HP0IA6LNx8fHSETmvht0bUAJAwvbiVtB9Zl4ipwZcmaOKp3oIai3m8QZtPV1RWaphYbg2I0ltnSNnFOexsmXWPTVPWUQc1p1puOK3+PK8ESKGkDKcss+1lrMRqOWHsyL5DZXq+haRtci9j2el1HAETlBMLRIaZTZre4tkNmtFBJFvV4FGjun0ufRoAQkOc5ptMpJtMpqmqAoizR1k00tL338F0HNA2ahqIu1c2x5yX4WKMoCozHY0npNAjBY7lcyX3zPTdNg7ZrI4vLWovj42OMRiO8/PLLmEwmWK/XUVJhvV6jqioBT9lB1Lbc7mtaNVe/p2PDOYfLy0tUVYXXX38d9+7dw507pzg+PoZzDqsV77tcrrBer+M4GQ2HqMoSk8kYDx7cB8BA62AwwGQywdHREQwRZldXyPMcrYyjyUTtxf39+/qKhfavrq+5Mq1ctwKr1lqcnBzj5ZdfxnQyxt27pwgh4OnTSzRtizzLMRhUGAwqnJ6ewDmHF154ASEAH374Ieq6BkKI4+Ly8hJXV1cbQKmOgXSeszaL+2zaJTeBhvSz7S2OKQQRB94NVuz6jvyxu/H6jrcx3/FbN3WCbmMvPQ9I8nlthNtAnmcxqH6Tc+177wZ49xuCYts+Sdq+zzr+F9l2gZhf7rF77yHoWq0+SmJ/pPa5VqMjILKU8ixHkXG6XPCs1+q7DlD9sxDAuoAhVt21hv2kAMAYTrXPxMeKaXwhHUP8ntFfBIDa3ifobcnfHrv2oWhTAQGeNi0rIpF9IkIg4s+jWxH6F7GpxKwmBoFAzNzpvPoLAii5EK+HQSIT27Vn8EhzC+jE8izsl3nynMLntV9rOmBqf+kN6C87wDd1d5OsJiIFsLYysfRgpMSMhAkuhirjF438LXJByb6MIwgZJRjEVEJxZI2xQEbIMg4W8n61BP3CxljWG9Pr6n0psW+dECSsBevH9DaN7kvGMIv/lu0rAjZx79JEDy7ffNNLIiKQ0t2g+a5GGq/D06fnCD5gvuAcf2NMFCE9PjpCURYsspiX6LoWy+WSOyYoLp7WWlGZZweB0UQ5PyjSytQAISLkeZlMKIjRs7qu4ToP7xGNS+c6eC9ioU0D5x0zd6xFnlnkGaeVEdCnVhFiqp+2y/ZiuD1h8ziJ3QfKSFJBojjpkZShJBZOJRKmEBkZ6KI1YKx8XScU6dj6IoVpEEEfHZwEmcyIq64FMiA1EhFECNuBXAfqOoSmRRAj2II7aWkMCmNg9T0iBmGyDLbgsp8hdNGJVMSDn0ufnhKBmdg2PflRf7I2FG2k0KWf33hve0aVUWgynlR188JII3ClOi657jgVjwjBWBTWIitLDFyB48EQbdMis1zlpUZAvVzB2wzFYMx5zQAyBNaHkrQC7zseT4HvQyftlLG3b9u7rO/24rc+2AXpbL2/E9FJU7woAZrCzn1vXuU2NLO5T2+a7jrnZr/YPO9XZ7upDHbbtn3/+57R57uCzeNzN48MUIjhlDgC9CzEMD3uxuF3fI82YMnkEYX+O4rABI66GCPzVaKVwte02a9uaxFDQEaAyXM8OL2D0XCIwzunWLkO5WSMcjrFuutwsV5wxE2OXtgMmcnQrFZYz+coshzHkykyMqhn13B1A5o0oLbBg5NTjPMSA5sjJwsLILcW3mbIrJHqlswK8c7BGhtLqStAxaA86zNwMKRP/WrqBq5zMJYNhavLKzRStn48HmM4HGIwKJDnFuu1OupZFOJWY6WuGYjRqL+myejapMCJBnu0+MZ4PI4AFQDMZzPMZzPWlzPEopoC5HRti+A96rqFcwFd64DA9942DSAFJKxhcB7eoxCgJMsyZLlFUe52UgFeh8uqxKDKtgwu/pkJg0h7sfde2pyv3zvHDLO2FQZTCWu4/HCRFzg4YNZ0JQEtAsF7XoONHF9BouhEJGMozqpb1xZCiBVHu0SEnNtaNCAai0aqxBQFa2WFoEL1nJbhOofLiytMRmNcXl5hOBhisVhgPBrC5AUmJ6d48ZXX8P0/+gEW8xmW1zN0bYuPPn2Cd959H1VZYFhV8HWH9z96zNeRZ4AxyKoKL77yCl77+jfwvT/673B0fILhYADfOlxcXGK+WMAH4OjoiL2JzOL6er9mUwgBruuAIuDunTt49ZVXcDA9hHNAnpU4OT5BCAG5CF870WFi4OQpNEio1Q1HoxGyzCLLDNq2w3rdiP3WX4My9UajUfwszzMeTyHg8vISH374IWazGUajEdqmYaaUMTg9OcErr7yCg4NDhMAVjM/Pz9F1XTyHAop13eCzz84AAC+88CJOTk7xF3/xF/j000/jOPLyrCeTCV59lfXIGqkKtFoNAAx3NRrOL87h6X10XYejoyN473FxcYEsy/D7v//7ePjwIb72ta/h3r07AIDLqxnatsXZ2VMZ02sMrgcYVBWGoxHG4wn+w3/4jzg7OwMRsc6UOLwB7AQ+fPgQbdvi4uIipuJlWYbJZIKyLGPlx7LIUQmgLB18J+iQMpR29o3488utwBbQ672koNg20JKOy+19tsGmL+v60uP8WzJ+fhvMpvT9GAjYAvV+W9uXeZ7UdXfyO4MuHHCWxHJO0Qpc9COEgNA5wAX2b2yGMssxLEsUeQbyHr7z8G2H0HlkAAZZAQIHuUCE0pbIjLBTgoApltcl6wQ8ERO5BxOiuZb4g0AEfLRcs7yX+pQBYcv5UfuL0nfiIQOATphNPs8Q8hy160CNABpQkMvABZYJMZkFjEHbdQhEmC/XaLqO2T9GtYpsDz4BgBRHCXIBfTEnAIafA8gChm1BgmdgK7MgoziUAPqBBPwzEQTkU8j8gBA1NdWSDJ5ZVr1Qd4da1hS1m0B8vsxmYq8xsyz66EQYTyaohkMmZAh4pQzztFLoNilHGdEpcWS1WqFtW87a8j4G0LTavWaUxUyqJGhFIE7jCwG13L+xFrmQeghsU7VSXfe27SsCNgFxGIpD7FX4LGIkVkaGdq2+tKFO7rPrOeq6QedaiUwZDKohsjzDZDqRMoNljLDUdc2Ahs0l+pLJOT3Is4p8lgsNzsm1+XZDd0Fz0YkoLk51vUbbNOwcSIRaNZecwKxa+jh4z2i00B9Zt0hzaIVlQ4wqWmtZuGxrMbzJWuo1MvTvOGmQghy8EXPgERlO8pMdAbP5ipMl+Dsp2ATV/yeZNSjOZPHUgVF3D8FkCMJUEv0n70DeIXQdfOdi2ksGAZaIRCicmU4ZcSQ5yzMEBLjY13vAqV/UNPWk/zyFH+JtEGADAErTAyHOLuLv+p0eO9mxeAoirxOfCYROJnvLzY6+JxEDRNYiLwtkzmFUFBgVJRxZODJwLsC3DYL1sIMgzLBePB3CBuOqFP0NaVUH5z28NFK/rG4tsCFdLra3bUc/bY8NVyltmc1GQ9/62jA3z3Yb12Tz+Gme9E3ASIGrcEN7C0jwiV3fV8Nj67mmfyquuPMKQ9jZJT7/RhEQ3d2i2+/eBrilnyff+5w2Vn/PGya/2CRqzej8vT/aTc4AACAASURBVP/gcYqI+9+87nip4Yaps/Ud3WVrUiLtnnSzqSDz4y3PicCGQJZZHE+nqKoSR5mBswZ2MEA2HGLVNhjPZ+i8k6omwKCoUOYlVosF5tUVCpvhZHoAS4S5MWhXK1jnYLzH8WSKKstRGAsLwwA8MZuRmZ8KNnkuhqDMIu2AEoUjAJnSsSX65UQo1DkXAajFYoFWwJKyLFFVBYv3WoPVqonBFC0DryCRzqVq5KQVT7YZCkrXTo0a1oLh1Ki2bZHleQTBI1NGQKe2dTydqV6B4xLEKqyqJaMRAjJJXbfWwGSELNvvzKjRVhS9UPEGk9n0wRdAwCDvQSKwWRvDAp9dJwCUgn6Iukaqt6HH0fFiiIDk2HGuTh3T9GJTp07bKGGc6drfV6Fp0bYWBeXIsgpZZiXF0gmQlsE5ZmQtFkssFlyifl3XaNoWZVGiKkY4uXsfr//Om5jPZjh7/BiL+QwffvAB3v3Vr/Dw/n289sor6DqPi+sLhBBQDAdcMSgvcHLnLh6++Aivv/EmRuMxyrxkFth8gYvLS4wmE0wODgEieBCqcn81OgSwGH4ADqYHuHvnLobDEbxnWYLpZAJOuciiTRNCwHw+x8XFRUyD0wrDWZZhMh5iNBqg6xxW61ZSPWcR7Ew1k3pmUya6GAGLxRxnZ2fouo73AbC4voYTYOXOnTvMEAtA2/KxQ2ChVdUxUnHYy6trDAYD3Lt3T9hGJxHAreuezQWw0L86MHXdoG0sdoFNIQTMZ3M03RMMh6zBxaDXU2RZhqOjI7z22qt4cP8+Dg+mWK3WeHJ2jrqucX19Hc+zXtfoJhNkeYGyGuBb3/oWrq6u8M4770SQejQaoW05aHt0dBSrz2nFPWMMBoMBsxdFb20wKFCYjIHvZIzeBj7sZM7IOhGS/Z53e6Z1kdjWz2Lwbn+2i9W0DRw/72e33sOOa/hNt89zrF0Mry9y3l3Pdx+zaRfw9zzneNZnX147co9U01uzGoyCMKQ2EoDAa7lzHdvtDiAvgJSxyK1FmefIM4t2XcN3HafaeQ8TCGWWg1RHxwODnFlQ6gMgeE6h9QFAF2vSbzcHW+2UfJbYX1sAVDDJZ9hvNkZ7K9ki2GQA5DlQlrDOog2cSteK8LfqObH2MdsynXfwjrCu16iblud7m8Eaiyzjc8V8lMBpZOndRR+MAAQCaWwjiEavhfi48vxUGocAAvvk8dkB8KSZN4m/k/QlZhwFEffmud5KMITHDfvTWmkvHiJ2IkI1GMCKzqHOpWqHabVQXSv0vIxh2I0AiuIcTdOIkHeqi5ndSNfXa0y1OlknK4A66SeCVUS/3hjWePR94Z1d21cHbAo8yDKbw5EHSe5kEKSyE2OgJ9ERODe2w2rVwQeP9YrT4Iw1Qh8jUKUU6EyMbxepZmVRASRAFgge0tCZgQkEsqLsD25w9eed81L9ZYjMWhRFAe88zi/OUa9rLBZzrFdLFEWBYcXGllEAJ3CeJ0+yQGYthoMKVZmja2vUyznq5QL1coHCGpgw6gGYTNMZuB082FBuhMWlOflaYU0pcoTe4OVAeM/qCD5J8yIvzpe0u+6jMJI4hvzDwhiZqKX8ZPBaersDf129SXlqIcAHRfQ7BN9xe3YA2gZ+sUC7WMI4hzwEVMZilGfIAtCtV3B5ATMYIrMEmxnYPAMJUwwQobRA4HpOm9GRCGwEWQY2jAgoDtcP+tADYnIn/L2tyXpXOt02KIWgETKPzBIj6XItNniEwM83NA0QPKjIkQG4f3iAQVXh/asZZtdzWBBKWDh41E0NbzpUhjApSzgidHXDSjSdgzEQUWLuDM5xNrTSOvXGFQij5Jpp4/I1YpAgiht3GbSz9YsSgmAOycIUQYibq93m+W4uZz2ooiBCCjTpy2ztk24pqNjvswnF9G2i/Zl9+RDHkX5MpH0oube4P5Lf96c7PO+md0qJYd2/D9wEZyheHyQyRXG/dEvEqJ+xhbD5k7+9zZ6Uc8rcE3Y86hubOHNkiMvdhiDYFCe3yuofF7XgAusApGtaPIc82eCEjs4pZVppW0F7MgTnHZq25aqYmWWjZs/F+q5Dt6xRosPJaIDpoETILIK16AC0zmFsDI6mBwgIatPB2gzWZHBZjq4oYY1BWVSgELByHl01gPEe5DymoxHKAOTBIwtGAPgAkjRiCjy3ti1HyqzNkBelROPYaKjKAZx3WDU1IFhzRlL9UqrXsQPlJd08R6waGh+HFIJA70h0XSsROQctSLHtaLCxwhqC6qyr4cOVUVbI80KCNAGDwQBVVfapV6RFHkTk1FoUORtZq45TAEMIyAsBvsQ4MnKOABadBixAFnHp2vFMg2fwrWlcDJx4SN+D6D8aE6cRK2lkBMB1bdRQBCRtToNDxLpMTb2GNRZlUcTUcFCIJa293C9Rz8zVfqrH0xR7BI6Ae+27sgYbCcKwLeCFYZ2zHplz8N5CRWPLokBVlvCdQ+s8vAtwbUC9rtE0LZqmA5GFtQW8B1brGjbLcf/RS1jOF/AgZNcjDI9OUEzPUEwPkU8O4L1HlbOO4Hg6QVEUmB4dYjyd4sGLj0B5CUcGTceCrsbmKKshrM059Q3s/3TtfmePKxKVqMoSeWYFCCRYrqKBsuQKfj5avWKoDwc4lOeTi4Hedh1a12G2mGO5XsHaDEVRgqwE0gJrebXS3xWMLUqOAoM4At92HVY1p4XGf2LmVFWJ0WiEqixgDaGqCtw5PWZArigkuu1kLMlaYgiz2XUyZgzrfhBEG0yCizJ2DBFIUvr2bcaaWP2OnQgXQc2haHhkRYG2Y0ePDMFkFqPxCEXFjDwXPJYigs7Nys7ft3/323jhxRdQlWWsbFnXDQaDAY5OjlFWJVrXYbHiipVN26AwJXKJpiNIpFzGqBVAMMsyHiNbTlPfzkgqB6MPEhD1QT15DtFKINyY10mMumeBEKlm7PYcmYIhu9iR6fu3bdtA1vZ3PxeAtgegSa9512e7rn9XKtvz3Mez7n0XSLVr39vOu6/NvqztecCptG3ie/JiEWvWs8tEQzcy5OQ7hgg21xRTToVzgQM4hbEoNIvFO3RdQLNeoWtamAAMigKFNUDXgQCUxFkLlbEoSAJNIARPvQ9HxGlQep3RL7y5QqbscUqdHwm+bzyb5MsbwVztB/I/yeed4dS5YEy0wAc2Q0ceofPoZJ7b1Epj5iTTg9mHZhuEfVkhdvXeSOhtU/0vtf6D3Fd/hZ7bqnNJVeJN69qJDWYFYFFgqxdcoShf4JyHF3/PGIsiLzAejpHlWWRMz2ZclbZzDt5LCr4y0WVtGQ1HGNhB7Ds8z7Lm0mKxiEyk7YrAaXU53ZQRVRTFRqAwlSNQ0KkHxPqxzH1XW5J6n14ZXupHPmP7yoBNFIIYdjmM93CSg+gcA0mbud6MDlrr0XVtFL/UwTAaDVFWA4mmDmRyENCqY2DCWoPBQCNDPHk0XQsfHKzJOD+RABgGZHwXEEjRPw9rc4zHEwabspyrvFzNcHl5iYvzc1xfX+Pk+AgvPLwP7z0bxVnGqU4e0UC1eYbKjjAoCzTrBRahw2p2hfXsCsM8gxG2j+tauNYgiPaHKtK3rkNoxVFwLDZuM44cGciCDYJPQZTYM3gCVP0gZhwRAAfRuIYFyaTDC5Yn7oiFnAMpgNR28AAa1/IEAf2eUhADO4MhIPgWwXViWDv4ukZ7dYV6dg3btCh8wDCzmJYlsnWNZrFAVzpkh4fIM4MiZx0J1xCc70DwMJZAwcBSP6mSIgBaDcmLAFz0oLUHIAGa5E1NZyTE+9+F2Ks4XQ/PySFIQTYPHzoYAgOgRDF1kI1JdihccIDLYDJecF6+c4rOZlj84pf46JPHyLIco2qINjjU6yUCDEY2Qz4aYla3uFytGMxshkDGrDsYgzZ4uM4xBSrnxYgnRMR24TGoj2xzISJtrpBMPjcHcHQa9YupIxkba8tGNrJ/P23vOPSuc8UJTltdAIo9YNPmcbb3Sf6OwKACS3LK+GVKvrN1lmQxDqEX4/8iW5+YevNIN9ul76ub30kWjue4Ih6pW1eh94VNoGkDjE0Mfgad+j13nocIJmPAo+sUPueFjcUSZR8kIKEPUXgSlLLHBKhyTgoRqM6dgG+EmCbcdg7ruoYLHlmRwbZ2b6P4tkUzm6GyhAeTCUxmkRUFjLW4ns9xObtGWZY4OjxiwB9qoPDQygkoiPPr1y0zXduyYu0FsZasMSgQYL1HRmyoGh840int7p3Hum5QNy1sxusalzTmKNZoaCSKxelxNgRkAKfXdsoWZSZtUeRRkLqvKgKJdik9vQERYjGL3hnW3tE/1xA8nDB/29ZAo2ZZZrFYzDGbzVCWJZzrGJSQQh7L1YoreUmaL/iRSpENFtdcLTwaSd/T1LTgPYI4hFnO4FPXtlCQzDvCjaiAPk/vUa/XqNedVPThDquGZh7T6PgYuc1Q5jmDFU0Dx+iI2O+skaGp5a7rsFoukWc5JqOR6AlKSwnI5UNArFgr0Wg1Yi0RghikneukXbk/WxF65lQ8mUQDG8q5RCq92kveCthIGJQlRoMhmnXN1yBAymqxlgpnDYAMeT5AXa9Rr1ewRYVX33gTq+UKnclQnJ9jcu89DM7OUR2fojg6BRCQNWywHp+cYDAc4qWXX8LDF19ENRiAygE6MvB1y3ZEXmA4YjYLayIFdM6hrX0UTN3erDEYDgcYjYYo8hzWEDIDWMMgoDED+BDQuC62KwwhL3KMJ2MBL9kBeHp+gXq1xmzOJaGn0ynu3bsHAwOy/KxX6zXaro1rXGUIWSEC+YbgHbBuGiyWi16TSN0mw8LsBwdTDIYVsowwzgYYD6t0xotjpm0dahEif/r0KbwPOD4+YlaQtShDEZlMCioihCjdYO1+sCmzFoWk2WqKZRAHeDKd4OTOKYqqwrrt0DrPKZB5jukhp/+tVis0TYPZYo6nF+dRg6soCvzg3/8Aw8Eg3o0PAZ0Lok+1ippWi+Uyzh02y1FUzJLkqoG9TIYW1NE0EwaViyg7wf0ccYGJ2ihqp4gsRKD+Zxps7VkbKbPE7F0DCaqv2gNOuxg4u2ygVMNuG4xKt3021K73Py/gtO/92z7bdc7bQKF9YNDzgFPPasvb2m3f/l8G4PS8x9gGFXXTCtbeO7i24TU954BD11Gia+dhDAd7AAlSOI916yRwwHppRZ5xQL4DVosF2rqGDQHTwQClzYCmhTEM1mREqChDDq5GZ62Bh0MHHk9kbLSHlBkc+6o0pQ9qU/M1Eno5C73VqIsUG6M/QCT56BgDoi+gYJAjA08EZwxcACwZhKxA4x373j4wgzlND0NA5zwCeV7/Mq00x9fqKbXIk/Bz2LBQtuy7CE2xfR08qOV3ijytvssAmwsSvBRNpbD1AiEKdK/rhqus+iDM8QoH0wNUVYXpdApjDD744IOo+6egj4I9i/kcbdcBRCirUvoU2wHX19eRSdo0DYqiQFFwcZe0Ulw6hqy1saKuVgwNIWwUdlEmb8roTHUyNcCW+nYAwaPXnn6e7SsDNoUEngyxk7PAlVLP+sbQBuGXUn85SphUTdtaUlLnccP1lElej0mGG9Z7dtKV7hh8EPqbGHfOo3EO9YoNmOViifVqjYBeWDQymuSaQnIxQXNrvY9lLTsxEIJQISVoE+n8rAHEgtI8KRhBsAks3sXGf/CEYDyCrM4+oM/BDTphcht7r5OnVDEj318nSc5qnKRIJgBx6qDoJpcD977XLZEbBSCATGBKfwie08G6DlnGaWNt26BerbBeLhkY8Wm6XJ92psLgJH8HQwjWiOO2ORGSTkQRMQpK9oiTYup8x4VEZyo9gJyMNg7abwpxGPSpd0SIAJ/ma2t7986dAI4R9wr9GAAASV+0ALMchAZGxsKaDIGA3BiuYmc4xZBCYCFh4hLUAEfX/RbUEoeADjtpiH54UOynuuvG8q9/pG0RAjYblbYaeKvBk+/F0ar6WhvHVdClBzx2b/0+N04h/99qUmwh9Lvtj/1wzeeN0j3Xpn1y511TbLP08iht7+T99K3Pa6D1Rmm/UKc/lcLMc5xEwWj3VW/dQoKNJRHD+N+O9iYgKNAkH8Um2AJKgU0DliLoHeJ97XnQABCd+9waFEJrtsIsKYhQEiEPAahrBNOnhFmbITMW8F4CJgAcA/uVMaCiQK9cKYaec5AiICCw0xiryCRtrYUbQCZ+PRoHjpkM/VoaNoy3jXsz/byetlXaZ9UQUrYB/82afmrE9GuDSSjfvOYNhwOE4JHnBaqqjBRuZdcSSXEII4ELL5FBEfPsq6e4mOrmgwd56oHJ9KbSLrpnS7qbrBN9RJOn94QPof0r2a93YE2yNsYG3DxRemkhGTOhvwZmLKVHvnmtugylttGNTZ9deg0BG+/F/qAM7yD3ZUhSy2qm/BdcgXE8nQLG4NWvfQ3GWpwcH+P+3XsAgK7tQIZwMD1AWVU4Pr2DyXSKLC/YRtJZSxwea1kPwznui4ZuZ+jwPvw05vM5zs/P8eGHv8ZUKhgulit0zmPdcMTX5BwkVNHvsixwdHAAY9l2zPIMuc9jn7q8vIxjyZoiAntqZ6bRXU2JUPmDmNYQAvKyjBoWOgZ5/w5rAWCWyyVrFlUli7ZnOfKijJULQ+g1Q+u6Rtuy96OAx7Zkwm1bOoZ1vtI+xIz8AafNGk7bL4qedajrR55n4gxxGmLUtQoSvfc6p0gwc0vfKC3aQ6ZP9czIpBca+/LmGN4awFudX1cItad1hUhDKfF3GWQ3W2zPGp60366qcrtAktsAj2cBVF9k+03W8F3XsQ9wSvfdxeb5ote4/dlt7fN5mFa/6TV9nmvd3LbaTn+G7c/Dxv8haF/z0GBrz5Yl8flCLJakdrIBa+DyS9bRwIEp5duYwC+e40XTMfTBcw1iqYll4pwRent822bcXmxDv4MJiMLiO213ov4eg/phci4fknMlYKQCyUiWdQLr6aqvtGGzb+4bxB/Z/XRSd0TXcwBgYW897obfo7Zi0DtJXJ4t30E/8xLgUWkC1bHTdbjrOpENcpK+vIYT5tFisYisJGUwpUXQWA6gSM7XX0Fa/EVBJbXjdH5TiYQUWE+ZVHpePXfEMJJ5OMRmoWeO0a8M2ATqlc/1BrMsk5xvyZsniov9arXCbDbjcr7XLHB4fHyMssxFe4k7Q2o0yInibyH0Bq0XIU2nUVMirma3mAMBsWoalynOYchgvVphtVzh7OwM6/Uanz7+FOv1CpPJBNM7LCZbFBUINayx8NShQ+oYdIB0OAoOq8UcoS3QrWv4tgWC6DlRYBaQszzIiGCCAQXDo9zLwAwsSRc8xXS5IIgHCUhCTiraRdCjB8PSUsqGDJx1sN5uRHg41x6oJQLIj45/egGxWKZKzkcQ8ItTArr1mnUnVgv4tsHw5AQHJye4altcfvYEF48/RbOqWQjPEyqiKKBeGoOMWBA7I3CUMzcIVQ7Xgkv3QvJwAQQYxZi4FHjAVpnz6GLIn7JTHDDUGzqaj2OSvhTtn82UohAkxcozk8FYPYQI2xJLd4CYfWCJ4A2hi5ck7UkEZw3yEGDajvOvA0BZhkFewlkDk2fIbYa2dVgYAgUPX9eA82z0WxZkBwjeaKFOZYc8H/1xG1/YNN12SVfT1jv7QQchRG18+wYotL3O75zQftP3dhi2W9f0m25fRtSNx+L2Cs5bynrq39u/7YpYPs8WF6iNlXfTq+e/SAwebFSr3NvHZGyFdKGKoHCI93cDP5AuFoFjSLocKRDdp4elDkGM2AThUBEkV39/e2SZxWRYYTIwGJScDqedwxMBxsK1HVZPnyJISnMIAdPpEUbDMZbLJa6ur0EEZHmBzFocHE0xkKgVAlDXDa6v5/DeY+1WCIGNhWE1QJH3JeG123OufQEiA++FJSEOKtOrpZpWAHzn0Kz5My+VVvSJ9JVWN8vzdl1PpVahXzVYekCJmRxsiNBWexOyjN+bTIYcwCGStJ6A9bqJzjTryTELynUOTdeAPKFrOdjSNhz9a+oG9bqGF5FrWCTV+TS1zAhwt/dxcm8hFlC3SRAovX4Fj1JeoiGDzNj4HSOaWllmo3Aoz/EmgmdpuenNrtufM+4PihV60smHwZa+Omzap1MDb9eYDgF9uWX5jncOjWg4sLgpr+nGWizXa3x2dh5TM4u8wAuvvIqiKPD6t77JouiS5hEC4DqPAIpsm6LMUeQZnA/oWrGpWmam57mBzQLWa9azVE2wMt+v2UTEOlME4P333sf15RXe+dWv8H/8l/8TF5cXePe995hRPpuhcx3K0RB5WeL+/ft45ZVXcPfuXXz3u9/F4eEhV16bTqPO2MXFBd566y0MBhW++eabGA2HsJnFarWOToBWW9OtbRusVissl8tYvY+jvsCgquABrnZX16jrFpeXF3jnnXcxm13j7V+8jcVyIWLgJ3j06BFef/11DIdDDCP7ie2Gy8tLnJ2dYTgc4vj4GACiw8JaUmb3EiibkwqUWZahLIqo2cUFc6Y4PT3FdDJBWbKIfFEWbBsJu0+Dueqwuc5huWZAb75YYjabY7Veo16vucS2MJGKBHDT4K/OH6vVClmWYTQYxPGi48Fg06aIjiLUyVf7jOLc3/fxIPMaLwgGHlydaROIeu4VLwKLXbTTUyZIWm3z/yvblw2C/ba2dK77ql4zxblfelwE+pMQvKyz8Jym7x2Hgq3hAhJlzkUwXNtKCrwDeQ8TAmwArA/IvO/1HQGY4MAyKCzR4b2DdZqK7SPgBCKQp0S3Vyw3YVGnQHUEmWQRUzMpAOw/oF+qNqVbFBiS0Wf4VyN+CIQdbbwHdapZxcQLQwZZRiwRkGVAZoU1pSx68StV1dir58WjPMg6Gl2W0LOuds0BJDdBRoNeHOCL2S88Icp8IucUG0P9bL7NlGhAEbBpmibq9qmG3de+9jVOkQ7Mdlstl/j08eMo5A0A8/kMlxcXcQ3Q9VKLV6T9TdlO6ZxZliWGw+HGfmqv6TPS4i/6udp/ynxSrEXXQrX/otB5PF+vJ6XXv2v76oBNO7YeALkZgd3e0lLCu6K16d/974n3tNFR0Dsl0rHs1gLXiUjoer3GarViQ9gz2JPneazkY4SdEkGL/ijRGUvpai7Vx0iQZtV8UHQ1EAkDRyYLQXl7BCQIE0oGqZzbcI1HaETfxJSUPtqMEOCNgQkGwbJgGkm7BXDKSec9nDKv1NOT2/PJPcbJS3QDvKaO+b6MtyVC8A6r5RyrxQLBdWKE8PC26FMWVERdUXHEaSbtN9sdaeuzsPGL7KLXrzuH/rt08ziKmBMlc9LOa9h0DPrDbU3oApIhbN5Xev8GAAIznDT9zBI7vcr64knQIwi7Qc930+C6CbJsaDlvL+a3re3bYFE6Vnbss/3p7mtTB24TNNg40a73nn2Je7d41o3+svnNXfPIv4bhs//6d2gv7QDLInxKm+1642jPuhcdNwnOFb+SGIIRoLr9aFuHTgEnvREZCdsHSiyhZATHMXbbtmFQmU2wYXtTgNgQuApZ8pnvOuSWU5Z8YP08SMoKnIsvJ1RpkwUYNQ5B0alDCAKCE5yMXyQOeP9I+Jd0neOv92tIrG6m4EJ8/+aTULYSUXqusPFK2UrW2miIMKCl+wjjVe0zArw3CQilhgwzPlgkuTd6CGyIOtFMhL95HUHXwD1sgxvP75aOt7lW9M9/47jRLwg39t34G8l7O8/J42XXkrTbJrl5fdvXuWvbbpMYBAk9IKff3BQ/7p2GAO7DFAhEHj7jlKaqqpDnrCFCkCi2BlSSq7WW+7D3DvVWdRtjeqFVvVa12faNWO2fxhjU6zXm8zkb79cznF+c44MPPkBds0Zm5xyKwQBZWaBtWlhr0dQ1Hj58iPV6jcODw1jlrUgqwzFzndnyWi0QALPYuVGS/hci04AAEemX8WEt1us1rq+vcf70HI9Hj3FxcYGPPvoI19fX+PDXv8ZisUAIwGq1grUWBwcHYiuWrO9RFKJJcrMd0nHwPFsMDqYgJRAr3DVNg7UAa6u6EXtTUnilArG1GfKM00OUHeUgc50AWlqIJo2cp9fdV3DyUnkLyZwt++3tAXqc3r7atUanbXKjdRJbf5cZt6/tttt7F8ixPTd81bfn6Tv/miDOb8qU+qoCTcCGWRI7a8D2uA2c0RKkmlmis6OBCoLYAd7xuAwhBvLiK6gdxguvrLR8rAQ80p/RkNiwncVb08/T/dLrRT8G2efxcX7c2Q5yjj5AKb/Ec/fjKoLbIbB0glTqJnNzvWOyha4Zmz7cvi1e5o5+RvFI8v82dhCPTvJ99d6UtQsG2qQdjGGvTefd4Puqvev1mou+jEa8Fsk1qbyA9w6DwQDBe6zA6ZUpM6mvaL/JVE8r0sUglp4/9DpOKTtpe5++rSjuq+dNz71hh5A4jc85fL86YFNyw+mNaRULzXHUCK42Vp7nePDgAULoachKDePD9ovurp8A+siFMawP5RiRBIDxeAwCMf03hCjOxSlfq0iTIyIcHR3DWoOT0xMcTKcSIWvA4FC/WCr4Q9IZ1Shbr9fwco9d13EVoZa1ItarJbKuhclzkLFc7SbLQKrPJBNVHOQyGLogua1BO5wVvEoGDhFAfQyXF3KJ7CYdXTUArKRQdCFwico8Qy5is4pudsFFfQjXdTxZsqgHjIh559bCUAHTdmjOz3H1ySd451/ewtNPHoOaBaYFUJmALHjkFFBZwjDPcDgeYjIYwIYO7WqB0NQIdQ1mgfGkEWnjynDQvpVaK94jzhY3O+PWT/ldH94WmKJpQ6pD0Gs4eXgKAgQpo0yPxS8vzoALFHNfg6LDrkMwBlWR43A6wrzzWDYtQKzJQiEgCwEBXpheBIeArqk5auAdCHl/uf0cD+Kkv8RR3zDlenAiaYEeDNjVVunfz5594qK4F0X4r3v7Khuft13btjGX/s29JH1e0ZK44ZxrBCX4/RFggoI9m3Px52ZfEcXSsbsc8l2OYqHnOQAAIABJREFUg55DF9P9h2aWx3o9x9tvvx3TYUIIePnll/Hqq6/GBd05F9m2kDXLOSfl03McHByIaLZD08yxWi2xWq1RVRUODg4AQNY5FyuIsJOvRWb4+jUVRufbGPwQFkYP8PBz0CgV23p92ygNm6NbFI3fGPhwLjIW9JnO53P80z/9Ey4vLxN6ODOPrWVBZ47gVZHynVY8UeaTMQbHx8exxLyySJywMFKR0MgmCP5G30yNoo20wD3dh5Lv7QpM9UAMYvvp+p7umxps/Az01fet7YBXet3pNewz5jYMwyTlbBcTaBcQEQKiLoRGO9uWNaeC1wp2PeupKApMJpP4PKy1aJoWbdvh/fffx9mTz0AgmABhnQ832t4K02u5XOLi4lKYNCwefvfuXUwmkyhsSsRBubzI9zILrbUYj8eoqrEw2K/jfa7X63jNo8l9EBHqpuEqbxcX+NligV+Vv8S/vPUvGI/H+IM/+H3cv/8A3/veH+L3fu/3YIl1J53zODt7iqdnTzEajVGUJazp4nzixW6xeQFkOfKMy1UPygrT0Rid61Cv1wjO4cc/+hHef++9GDRcr9dxnDCTzCOT5zwcDjGZTHB8fIz/5ne/jePjE3z/+9/Hw4cPMR6PMJ2OETzrlaSOBamNd8v0mKa9RTuXOCvgl7/8JQbDAU5PT3Hn9BRPnpzhZ2/9DMvlEufn5+jaFicnJ5hMp7h39y5eeuklHB0d480338RgOMBoMAARUOQZMjJouxarxRJ5lmE8HDL7jwwsGcB5tKFFngcgLzbcw3487gdR+wDd5je3+7mmeXCwlMR+7ccYhV4qMgYz9rRfQM8GTFMX9XpSdmEKlqTj/v/f/nW228D3f7ONKFYc9RAcyAPwCagRSCrLeri2hXcyL2TsZ5VFydpFyyV8xwErCh6WWIcvoz64rAVEAB+BLQazfCQjOF13RaKCJVZiIhj/7wUIRr/G6pjRQLzKsKgPcAPk3XhP9NVCzPeQDAtmrXsALng0rkPjHFrv0AUPsjmLaRcF8iKHzS0CsU+l1eoMZA0M7Mf0bd8/gnh+QPzb5PON3TfxAZIq7BAQjAKEZS9+MkFK6onUjmhB98ylIbO0nYNrOxgyOH96hqvLC1yenzO7czxi5tFoJOsts9rGoxHe/J03YIzBarnCavX/svcmzZYcx7ng5xE5nPGeO9Q8oMACQJGAQAIQW6SM0lO3BrNWL/TMtOj1W711m/Wi30/o7Vu1mXZ6Oy16KSP1KJkkioOahEQajTTaAwdMhRpu3brDmXOIiF54eGRk3nPvLYCAWJApyINT95w8mZGRER7un7t/vkaapmHfPjzkqqGPHj3CdDoNfZaqpVJdWPZu0V1kz+06ecRxKITh8p3szb1ez/MQTsK5AASno8jJ4Lgxn5pqdG2UWwSJ3ISQYokSLgq3KCRAoyhu4qKIFdOzFEftF1QZ5VimvqqMdhQGfLlcYjmfYz6dBc9vkiTo9XvI8xyj0Rij8RhFscZiXoXZ7QhNRY2ADDagGKfTCadC46m2xqAuS8Axvw9py9FASsFZA7Ka+X0ixJjQpAc657iaHgCn2x5lRypADt1NXMLrtdZw3vBIbApSCpVjL1dKAGkNpZtlLxFhQdH1fEPkHBJi7z6nJYDTCFcrFPM5jg6e4OToCcjUyDX5ako2kJ2mWqGXZ+hlKcg6mLqEqyugrkBwXsZ3jE5CNOjw0j/+t4icZtwQDm8b0t3fhOeKSKCKuHcugE5B+QnnABwavhY+noV98GZYxaWxnUOSaCaQpwqqrAI5vA/qbDwe5OEAYzgdAy7MCee9CpzvLN2IpLNgRF5w0im1UA49DTiFI2NUi9rfnj4GIGqf/8OAIL+OFsuL876P26/a549Lmeqe57y+nmUkd39/yluH08/o3LuPrKaPBDLJabBZ8TwvEqDrhDi7ixRChx89ehSMR2stdnZ2TqWOCJm2swjHiQNEwqAlQmM6nWM+n2N7e4JLly6F/Y5IBeeK8dEA8W3E+fjxfW66VwGPWmkfwQvXRC3JEGzy6otyIcDVvXv38OjRo1DGXfojqUVxqXnmzsnD+AiQkSQJRqNRCPWW5xcDgvHnoshuipWL9/YLW7Tnyu9Oj1vTBxm/rnOq1TdIlE/7GQgwEHwdEQh13gvRfNwkczbN8/Z3zX4u4w6gVc5YIsVcBOAlukmJkmNF/zo4OMC7770PBQZ2M08aHZdmFoBjPp/j8ePHAUAcDAa4dOlS6/rSH33O+lNekZYqOhLSX1UVatMovoPBEDrRcLMZjGUC+Nl0CgB4cP8+z8Esw/HRMT770gtINIOhRDtYrws8fPgQVVUhz5nrCU7D6SgawPnIQx+dxSS8HIlEFTu3RD4cHR3h8MkTBm6845CIAr9Z4UnxpV29dg21Mbh+4wZeeukl7OzsYDIZY2s8QlGUmM2XG0bmokggnw6iGsJqWVtHR0e4/8F9rFdrrJYrvP/++3jz+29iOp3iwYMHKHw02N7eHu7cuYO6Nrhxo8CLL76IAZjrKdEKxTpHkZUBWCMAcAhOT4lossbAivMvnrPNrTR62hn3EsAhVpRa6zecT+QGXGs/aOldT7m/xMB4Vx5tcljE+9avW0f5MO3XGel01pg97f7/zIFMUWvNS3l3aM3HUHVNwGSRLYrTs421vnqoAWyU5RABTczn65oLBHOlSXGKW6y3O2dbO2kTfdXYkFLiCUBwNMYqfmP/nG5hnYhN4e2ROMbXgSvNmSiLiBSn0GlfcZOUasawGWCWG8FKoWC3he+ByInR2VMRF5Zp7+X8UnCwkUO+LW9cdI1upGPqHWx5lodopfVqBQCYz2YgIgyHDDZNtiewlp2Ro8EQaZJgb3cXeZ5jtVpjvea9Q2uN1WqF4+NjGGMwn89xdHQU9unBYBBS65hiIQ16jUSgxvcoupLohQJIiW4m30ukKhEF3KOrCwFtXsHz2rMDNiGeK/wvUTAE1Vuv15zzX1XY2toKqWo7OzstJT42ImIeoljxijcSGSTrO+FcYyBkUhKw5Cid1WqFxWIRFAa5vlTZEWJwAcVEWTNecMQcE2macn6pc17Q6GZzdFxhZ7WYoypLFGXN4FeeQ3klvtfrIcszDLxirz34xlw9GqCkSeEDg0BVVXmku6n2V9dMvlpWpZ98UqUIYbJnWQZSGknO70gSOMV8GypNvILhyzd6gnPh1EiIkCoG87SScuYMPk2Pj3E4n+HeL3+Jw0ePsDg+xlavj61dhaG1UM4iUwrDXg/DwQDjnW2Mej2okxlcseb0PCeovgg0EZhRiD75zwLY155z/FD8e0t6uo5Qlv96IyMCmKw3LKwAO3482CtNLWAIAfRpAC2OcjJwNadLKp+GMx4McO3KFej5Ak/KAxDYKLWoYEGw2oJqg1RO5wxgyafSecDSWThNACkvq72wpDAsiP/b2lQ6G9cm4Ida49rsRARJ42xwv43tAgMrvm73/ZNqF4FL3X59GtpHUdKaezsLeALchgd7HtgT9yd+nWU4X/hbIfDfcM5un2LwRUCbs8aF+QGXODrax9/93d/h3r17weudZRm+8IUvhI1bwKaqqpEkKYdMJxrOOh8lUmK9XuPb3/423n33XRweHuLw8BAvv/wy/vRP/xTD4dBHQTUlaTf1W7xOSaLBAbmNEiHglwBIMUFl91zxWEnmXgw0xcfIvR0dHeG7//Rd/PznPw+KstK8d0lEhfRD9rg0TdtKjyIM+gP82Z/9GV577bUWCCNNayYZD9FXSYpEJyESqBsRJGPwNOtQoik2jYdENfFYNw4TAciaYxqwkj8TDlfeZwRo2nj9jtLXnasU9bFrRHfbxogpamJB4opmgAcY0xRJmvrIZR1kr9IKWcqe5X6vB2MNjo+nmM/n+P73v4/vf//7yJIUvZSj1YbD4al7UEphNpvh8ePHGA6HeOWVV7C3t4ednR3s7e21AE7Wi85+ZlprDEdD9HsjTKfTAN6UZQmlVQAql8sFjFesBdgZDodB2dZa48GDB5jPZ/jOd/ZQlhWuX7/G0Tr9HkajIcqyClHzWZYhz/MwpkoppImGsYCzBlVZolyvsVgsAAD9fr+ltOe9Hm7cuBGihQAE8HVrPI4fHtIsw/946y3c++ADFEWBq1ev4j/8h9/D73zlK7DOIfcVGKuqakX9nTfPeX7a8Oy11rhx6xYIwIMHD3B8fIwsTZGlKeaLBR7t76Ou60AYu1wuURQFpicneP/ddzHZ3sZPfvIT7Ozs4Mtf/p9w4/oNDAYD7GxPkOdZWAsyz6QCkjiHYzBaxsmFyHK05n33ruJ1RGi4AOW7LiitVOMgDZFdEPWvSQ2+CKx7WlkS6yGfFh3g09Y26QXP8lg7r/5aDxK5aJ6rEDUTUagYC50QEqWZJsQ7VmxdwdYGGgx2J6SQUkMlosHBB0wYHqfR8UsqoVoSZ/PGHSR6d4hXYBu7iSL8uqu0q6YJsBRhPEQcnCBrXCKbKttENVk41pnSFDrjF+mkbbN5XU/5VDoKBVTEyPBZOiQAV7iByMnefi58iD9fYJATwMnvvZEtEDuZYqllrcVisfDycw0ieGfJENZaFEUR3ouigHU2gE3LPlcXrqoCed5D6otISEU7pRR2drha6Xw+b+k+/X4f29vbQWc0xmCxWARHh9jwvV4vBOekaRr0SeGKkt9JxJPsB6LTyX4rOo/cx3mZAXF7psCmbosfzPHxMebzeVAItNa4fPkysizD3t5eUARFAQBOG1ahjJ9rQsBam4Rnv1dJAp3wBpkmKayxqCynthXrNVbLJZyvqJKmKXZ2dtDr9TAej5GmKVYr3qxr/wBtVE0nVlSTJPEoLZekVDpeOICpKqyXSzisYI6nIFLIB/3gFR4Oh+j1e1De8OnpBJQCWUZcwjlNfdobhbC62XyGsqpgLcE4x8TjZcFh36ulT+crfHg9cyoxn0DOm3ju33t9qDTj/msurcmpw44BE+egQdDElZwGeQqnuKITIuBl9uQQB++/hwfvvYuj/X1UyyWu5T30BwPo+Qy0XiFVGoMkw3DQx2gywajXQ7lYwiybPjZikmDJkzp6gCMATQJ8yBA7NBUUYjbYgJwI6Ztri2EPozcwkwea0BbXyqPkIQcZDiSVoqwIKUao2LPAVQSN5+YiY0DWYDTo42qSwiiN3uEJnLVY+7lrQTDWgYxDAq7UBB8Rx+8GTeUY5cnHvDIVbtmFew77hr/v2GNyZouUwQjnDx/GQNTp7a7tfbwI4PnkAae2kfjrBpw+znP+Kt7AOGIvnA/wHi8BnKLjm3COM+cP4TQw9LTj3T1To3RsBimlT7FhIHLxvM2SS3qv8fjxY3zrW9/CW2+9FYyqV155JZSQlb1FCIiTJIVOpFoZRwYVRYHpdIpvf/vbePPNN/Hw4UM8evQIf/iHf4jf+Z3fgXMOu7u7UbRRGxCR/YrBJqnsxmMvCoCATVIa3bmG7FZa7HQRpSkGSzZ59iWq6eTkBG+++SZ++MMftsZXqrLJWErfRSGq6xpFWYTzTSYTvPFbb+DVV19tebnltw3YlATASqkG1Io9cMwZFZF3XjRbOnOt65WLI5ri6mMAgsx3YC9sfN3m1dbrnYjRCFSLwabNXAg4tW5iw/qs+wzAqxficWqiPA8x/OM0KwdOsU+zDHmWYjweoihK3F8+wOHhIX7wgx/gG9/4Bga9PkaDIRKt0e/3W5Fhcv/z+Rz7+/vY2dmBMQa3bt3Cq6++Gu65HTV19r0orTEcDNHvDzGfzwPwt16v0ev3AkH38WyKoiiQ+RSCPM8xHA7DnDXGYH9/Hw8fPkSaZjg6OsaXfusN/OYrryDPEg8EMZHrer0OjsxGUffVFQ0vktqDKKvlEokHfiVqaL1eY3dnB7u7uzg5OcFyyZFJAiQz/1UaxmuxWOAXv/gFjDF45513MBwOMZlM8Prrb7TSIkSuCAh6EdgUz9+YauK9997D8fExyvUa5XqNJMvQHwyQeqdpkiSh3++v1yhWK6RZhu9897vY29uD1hpf/KLB3bvP49q1K0jSBFVVt9ZKnuetaDRxwCae/ymWR92oAVkwm6IAN0XAdAEnJYb4GWBTWAsfcS/sRjh1P/tV9thPsj3LfXva1t3Hn8kWqz1OdCb+TOYnV1plHcIay1kjxHxxiY+ctHCwdc3fwVflVgopKaRKcSodzgKaxEShgNDGeFDH/cbz17WBJmltvCZ2Ikcn8384au/hLT4fsQMC8OOzX6xBbQ2MszBwSDVTteg0hU4SSHUlAcuE04nPx/ZlAIliAIgoOLmjx8JzR9Cr1neibzU/aiKb2o65Rva09V6R5yyjDZQipClXnxN5J2TevC/VqOuSI8J7bNeXdYk8z7G7u4fJ1naryMJkMkGWZZjP5y3dIc/zQMOwXC5RVRVmsxmm0ymyLMNgMAj6U5qmGAwGwUEi8nA2m4W+idNEHH0S1DP0XFNdvfRTCTbZSMkFEFIQ0jTFaDSC9iSMVVUFZcBai+VyGUL9BXSSFhsXXa/26egMAhQhzzPkvR7quuYopqrC7GSKynNfJEmCJNdINacNCEdU5avZrYsSZVkwyORcyDeN++EvyJtjkoTQbAU0BpADap82VZY1HIC6LKCTBLYoUC2X3M/VGmmWolquwmTK8gxJmiHNs6BgAiyQMiJQwlVebJrC9vsc2VTzoigLBsmMBypABEW86ClNAFKwOoElDeufExyYONP5qgVE6CUZsiRFlij0sxQaQOIslLWwZYGqrjE/PMLj+/dx8vgA9aqAKys4rQGnmRuCFPIkxaDfRz/LoaxjEl7HYkApDUoAhyglwFEQvE5RJPOiPF4lpnKg5o4im2RTAwRwEm+F8xUWiBoOpuB19seHsqKkToFNbIl477ffiRQRyDIhuvXKEpTylYoUsiTFQCXoZTnzTNQG2q8X7Ry0tX4zIhiQr1oXkbG7phJGwwfflcLRH9FnEi0WG/KtSJdTm77cX6QcyIXjteb/e5HKECsYFx3zr9G6RjHw8QJCn3TbNFbd/rtNsiqeH3JM+8x+4/0QY/EUAJN80j1r29MketXpZ7Pp3LIPxIbvWU1rjX6/F8qDC9Ak/Ra5KkatKJTG1CgKBuoTX0k1SbnqmrUGVVWiqkqUVQkHi36/h36/xwCVagADUqLUOFjH61lpBZ0wia8ocfIulcHkfo2/Vl1XATJ3UpXO2ejl/Y0ylsrLJEUhekr6JZA6e9/Ew9ak2hEY9FK+gkrmK2JVNRvM8/kipFx111DznBry801RA12jr1GGIy1yQ/NbU2s+yHPdyP2Ednp+41GlAHxJVJU8+1gZjRXR+D7ahvT5tq9zris+Nx4TgKvo/p0HHeJ5HqrhWilMYltVgJkA2vlotqpxnHkORuN5jMRzGq8fIgqRf9bJGmteIiPia58lM4RcVetmbQ09z8VwNMTlK1egtMZnXngBDg6lB2SKogje2tWKeTUFnJzNZnj33Xdx7dpVPD44wKDP+ptWCqvVsgUCylgRNsg1L/+IKKQbpGkaFPWjoyMYYzCZTIL3WSJ7hIcUQOB0E0B2vV7j5z//Ob75zW/ixo0beOWVV4KcISLPsWHOlbO1MSjLAlp7IDD6/dbWFl+rLFFXrFtWXp9ar9dB9xwOOa2DozOZKNwYg5/+9KeYz+dYLOYctZ6k6PdyGGsxm1XhfmQ+CtAU5JEHoKx1YXE04A/LltMrmJo32zg9NgFQXRBXa90UzxH5RGfrHYQIFNi4Vs/f859lIOS8Pj/NcR932wQengeiPw3Y/utrzdx13t5wMs/8tkRQ0KRhycCCQI4BIy7wo5B42S0ZIcy5ZEPqbqIUUqWhyaergivPEcgDTq7hcUKz/ygPXrF963sr6r/zepvHpZo1yXkhQR+Qf0dr0fl3vlcBuNACh5prEaxwc/rfir0vVC/CZRz2YKWi6t8EUi7k9sWFXZr/ycXI9yey99iY4a9FwIgDKPaCEzXfib4Eue/T+3zXHpBIz2K9xrrgqqtNZLELOlqSaOS5B3B8ZVsCMDuZYqYIxbrE9GTmOZN2AtaRpin29vaYSzqSdaKfil47GAwCECS6VuwQPYuCoa0XNA5JqYYnUbbxuS7iapL27IBNzsF4z5XcrNxgmqa4cuVK8GqVZRluvK5rPHnyJAyqkJnGAin2Cm9Ko5PjldJQWmE0HGFrawuHR0e4/+ABVqsVDvb3UZUVhoMB8jzH1miMbU/4muc5QMBqzYrNuuA+KmLiL2s9uZkvSQ3fB0Vc8aOXKk9YqaCcC55cOIditUZdVZhPZy2lUbgMBFxK0xTj8RhJmmI0GiLLc+S9Hno+tU6O3b20h36vh1x+nzGwphRHdAHwiqdDWZUoqwLGWPZeOYfKMTH4oqhQVAaVMSh8WLSpmEehl3EKydZggPFgiEwrDLIUzhgUsxmX0p3OUSwXePTOu/jZj36M5ckxqukMyhjmkUoSaAvkpDHMe9idbGPc70MZC5QVuGwToDV7vmtTY12uWclxLBwCiV4kOPnhC9CExpoDIgksx4kh5jdB0YciKzAYeo6FJ/nf8anjVE7h1CIEV4NTIGdBcNCWYAyHgDudgHQCrTjNYZgm0DrBdFVglPdAqsKy4gpTibWwpJCCkGnFm4qzcBYwdQWqFFwcJeG8WI4TskW6BmgJUV83eTsIICEU7H7fNf42n0Ou+mlo54Eh/1rX/tdq3SiF8EIDLm1U9Pxj/jCKIAFhbUh00If6fbRuL4ps6hoKYhRclEbH6dGcMiSpZHEhiizLgoEbcxKt1yWqqgoEj2maYjzoo9fPYZ1BUa6xLlYoihWIgMn2FrYmW0gSVgK0Yi+eUgSlAZBDXVcwpkaSKOR5Bp00gLdSXrn1Cp3SLO/qusJqvURRrhl8diak65rwt7wI5JF5pQCn+dry0omC1o0CORz2maNJcbqg5PUDhMlkC3meY3t7G+ModWi5XOKdd97hvdob2V1DogsEdaOQu3NU+sOf+fl51hSK5oL8XiJm4ggq6dcmziMS48CHmPP84WpsbKwrKNUo+xKJ0gWbBIg5D3CKf7cR9Ig+C3uNd6Q4x2CjpFKJghmXNOZ7r1FVTBYupOFVbVBWzJW5WCyYQ6wsUeuEgScPfMh8F8Neaw3j55YLukyGNNVIUwZSBbyrqgpVfXaUjvFpCcbMAznppUuXcOXKFUy2J7j93HMYjcd44cUX0B8M8MH9+zg8PMTbb7+NH//4xyEaylobKA729/fxy1/+Er1eD1/5yi9w6dIlvPDC8+jlOeaLBZbLVbgXASGtOs3rFQMegwETpQunxWKxwP7+PiaTCW7fvh3khXMOT548CakKAAKnlciWsizxD//wD3jrrbfw+7//+3jppZcwGAzQ6/Vayr09R0aWRQFjFwGcIwB5liFJU1y7dq2VVjmdTnH//n3UdY2Z5xTZ2dnBaDRCVVUoiyIYgMYYfO1rX4O1Fn/yJ/8rptMZ7tx5Dl/6rddhrMXJyQmKoghrQvhEJKUWYM9+WZawnnNL9oDwRwTOypwOL18BMXZzyDoWgyhO2Qu8drwQwjqyVm1ebL7J+g/geWf/2NTiPeXT1H5dQNOmfnyYsXs2x5nlrvWmAtNIN59rUkhUwsWAnPE2Cle6TbVGplNoENNoVIaLKlmHJOFoplwnyLWGhkMC5533BHIO2nKVUK7gzXuFJtYJrJAFi67QwlY83yA1Ebli4ii09+NY33JwgZcNAFc9R/sEDRjFm5uLNjmxhzmowcLAMkuSksimBCrRAClOZnMIEU1BZyQG7xprTpCxdrkjf3sMcsU2iz/IwXG2Tet+vC4hz6/Bzk4BTtIUEXr9HInWODQ1prMSBKDyKdlwHIiRpQkSrbA1HuHS7i7vhT5j6+GD+1iuVtBJCq25qMy1a9fR7w9w7do19Ho9XL58GXmeh36UZRkohJx3AimlMBqNArgPIOhQ4oAJ+3WEicSp16L/SLCK8HFKERzBY2LnyXnt2QGbqOFVailY1HAGyYYNIITkGmOCh00imzZtDN20gO4ianky/aZeVRXqir151jTezSRJkHjFlIh443cN67/0OUx5gvcknzbiJBRfCUJL7Wp8zp+bnANJqL+1sAAqY+HqGspaVDoBGQOdJDBFgSzPPODUh9YKWcrs/gkBpfA9ZRmyLEc94GMSn4IRpJKpoR2j5UprOAckfhESaaQpe8UyY9iD6id17ok/B2mKnlLQDnBlBVNVKOZzVEWB+fEx1vM5FicnWM/mqJYroDZ8b1UN44BEK/SSHvq9Pvr9AXLvIa8llBzEFQ4UAznKzw+lPC9UzIEVo9UOkLpaDlFKmQhImTPgqCcRXNFkDaXKg2D1xOFsmMfuAy/sPSDFGEwMdpGXhmI4Kn5FYZ1s3EhKokZiLDTxZqPJc2ERV6nQ1ntL4EIKHfwca0JYffdaPDuRP9FF6pwLn25Ysq51vuiWZZjQiGsXNp8I9UN89u6m1vUadAXaJ+3h6l5/07/jfjybClC7Pc14daNGmt90o5mAgOFGlUqeehxkbZ76+GzFfqM3O/r3pnNsOlccnXR+fylErsjvYsNaft+tbCaV4yTvnQ0fkeunx1ZAigCCROGF5NeReAE3KToCijf9bPaaJlq44RJqUq3a48XnplPnkXWstcb29gR7e3uYTCbB0BaPl6QISRUyieaIIw2CshiNYTwWMn4S+SKAQbxvikMq9hg2iuQF82/DWpZrt9PaEL7b5NHsHitjJ6l18Xm7YFPUmda15JlvaucBTZvBOudTNjrXjXSrs+Z/rH8ppdDLcwxHIwz6fYyGowAWyZjF40hoDP9mnTS1jVpjGMpYn25CowCswxra29vDrVu3MNme4ObNGxgOh7hy5Qr6A04L6PV6KIoCR0dHgXpBUl2lz6vVCrPpFI8fP4ZSCs/fuQ3kFAjSY69viIKXZ0IUnEhyz93KZcPRCKPRCLu7u3j++edDaivA6aPz+RzL5TL0rcszulwYdkEfAAAgAElEQVQusb+/jycHB6ECXxoBs6J2nN0auRdAnpoj44uiQOV5pfI8x3g8xuXLl8M9ALx2e71eSKmQZyy6dlmW2N9/jHfffReDQR/GsExKkhRp2gCJIhe784PHKuptR+8KVi+wYW10fhfNY7nzeCw5bcmeApcu2qFaIFdnL5Fr/rqAmY+rxf0/6142ff6r6jmb9Dj5/KJzP5vjvlGLad6d7E0SiRMsLA9INdVGCYCLuX3BjnLteV8VETSiSnTe2lBiXzj/OUmsj4sAHwQFPR5Hiroc9y3ua9DVGmUrfms+ax3UHZ2uw68B7cOBfh9FbF85kQHNPtvSfcI1IrnR/S6sW0RYU7NnIpzX30e0Z7pIHsnxG+0Bap6jc445moNewSl1zmnvWDWBG9BZw0WdrOVI9LKCUMKXZYnFYgljLKbTaYu2IY0wCMFDer1e6J9E2koAj+zXUl1XfhPjGuIYEAdpz+8Tsi9uSvu/WIfm9uyATWi8mHE4mHjNJGIpy7JAtCWeudVqBedcyIuPw2hls92kVAoJpD8geO+n0ylOplMm2VqvUJdVCLUeDocYDocY9PtMfGotVut1AI6IgDzvYTjUqKsSxXrN1w5Ibg1bN55a6YuQegIu5Opr56B8lExfJwysGAMYC1uuUVmLEg4Ly4voQHgzEo7Q0poVNFIc8p+mKa5cveJzMHkypTnn7CdpgoHng+oPhkizDL1ejl4vR5pm6PuKL2neg0oS2F4fNss5CkkpFqaGqyBQWTEqv17DFQXWyyVODp9gvVziwXvvYbVY4HD/IZbTE+zfu4fp/YewZQFVGmhrUVYLQBFuXb+GW3t7uDwe49beJZAxWE2nWNUVkrKGgoYjDac0SCXIMjZ0yHNvCXgnsa3OOfYawEW8B8LLFIEcSpRIeLCJn50IUoJP3yMK4ZwOCN5Ga60Htbxgdw5U+xRDJ5Xk/LVcU0aTtPJhBAnzYHmgC9YBsEgVYdzrgZTG3K44XS7RSJQnglesJKcKqOFQVwWMs0iGQ6RpBgsFAz8eaEJN+S/fD78D+Du5eNF2ZQw1nwWVwKNsRCL8XfNlvNPFz2CD8Nqk6H1SyseHVaielX6c185T5s4yiuN/N/VLIuUAfkWo6MFHv5ONfFMjwBtu7bSVi8bxNLh3HnDS3hi7joymqtvTjTMRExBLHjvAgNJkMgmbNhGF6FClKIBI7HXnaMV2uhWFNKPNIBGDL5x6V4V+EylwoCxHngJN9E1dc1W7qqoDQbiMQTsih/w+y6HdISW8qoJSU5Z1KBoxGAzw5S9/GdevX/dl6Xuhr+Jhk70bAB49eoT9/f2Q818UhR8nQu75BOQ68XMXI3e5XGI2m2G1WsH4iqjynez/cVo8g1QC+G9+pqwQNvMnjl7iCOAEScLpgyIT47kioJkoi0kikU3KpxYmHrBrjOuYH+H0PG10a2ldgCikake/PQ0GI5rvbODUpm6BgPBKMKxljpBOFIg8N9HDhP/ouTt38Mpv/iYG/QG2hiMURYHDw8Pg3Yz1mTRNMRqOMBqOAj8EkUJdMy+UeGVZmT07jbWqKuw/3ke/d4C7d+9ib28Pv/u7v4uvfvWrGAwH2N1jTovMV3q7ffsm6rrG4998BW+88Qbef/99fP3rX8fh4SEODg6wWCywWiywXi5x7/338Y/f/Caeu3MHzz9/B1nWw2A4YJ5L7+2VlDitFa9lAlSSIMlzpB5Idc7h8PAQzjVlpF9//XW88frruHr1Kl5++eXAuwQgROb/9Kc/xfe+9z08evQI//zP/4yyLAOJ+Hw2w8GjR/gf16/jhz/8IS5fvozPfvazwbMsusdZTSe6FfkOAE+ePIG1Fo8fPcJyscDzd+/i7t27uH79Or761a8GPds5h9lshuVyiXv37mE2m4V5BSBUGPzRj36EX/7yl/ijP/oj/PZv/zZGo1Hg6Do8PMRsxikgUpI7VLT01esCR9oGQ0UMxE3GjEMbKJX534C/2leziip2koJDA6ad2+j0dbs6ybMJeHz09m/pXn79jYAArAvPnziQGEAgKCgHwDEpOJFDniTIkxTKGpiigK0qrjwOQqY18kQjVwq5VlDOIrG8wyXRTsdnbyKbFHElN+Xdz43CFs1n10A1sQanEBWaULE7gAIoxUW+IycHEGmI8Zpmy1pBQLdmHRvHxOEWjnsojjyx3UngNL4Pb9U1gFHQTX3fxT7Y+Gg86icdJQRgWyvNuqiEJGOzo7W7B59Kt/XOJmsNimKFNGW7NE0T5HkGRQpVVcLUNXZ2trG3s83UAlpjvVYgxxkp/f4Ag8EA1lg8fPgQRIT79+9Da42dnR0MBgPs7u5ib2+vld0kxN+i81UVp8Gv12scHBwEXibnXNBfrLWhanCe53DOhb/7/X6Q4YKXSJp0nucoyzIAUbEetak9U2BTrJjFymdsNMhmJ6FbouSK9wdoh7vHHufuxtFVcmrLi6Ioy/CQnPdQJ1oDkXIWSC49GumcgyY2WljpTOGsCQqkE8DDulOKdUBUvaEvHj/lK7YpAIkiSMUnBzDy7dPXRPkOpIs+lD5GIYUcLCXCqtcLylKWZ+j1+0jSBMMh8xeMxlsc8TTsww4HyPMeEhBcymGeZC0ozaF936F8KKPSDIzUHOlU1wb1ukC9WGB1fILlYoHpkydYzueYPj7AYnqC1XQGW5RAbaAdoEGAtSAHZEmG0WCEgScJtWWJhTmBrS0fRxoQsIlcqHQnRO/kQRXAcb+c55ZyDlIeNEQRUEOYHSKAxAgKn7GUdTKPiDeWBtkWsYoGsAm4iheZTuAqtISzeB+cN75DVYUo+kgRV8XJjEWiiPmawIckRL6ioU8fdI7TZAzxhiTzJ/YoxgCP94pwFyMwSHovmEHYoKLzbCAUaQVNEcLJ29gSj4BsVJtaFyT+JD2L1O5c6/qb/u727fT5Pj6g6ONq541Z13jd5Pl0UaRNmEECwm663/PGYINX5JRyf0Z3278JnTjz2K7B0I0E+TCPSgwZAIHr5zS4xcCRiiKIWO43/Glx/xtwAqF/zXMAIJFNVnihOt69yEMVA2rxeYjae2l8/ab/BGvb4JwUGHDOIUk0rly5AuccBj6lnJWMGmVZYT6fB+DBWouDg4PgDMrzvMUDIJFN3echf4vyIoqTJHMGjofO/TXjcPazo+h+49Zy/PjoM5nnp+fK6cimcE+Rg6v7bLp9PXPuXSDWNsm+7nmldXWp+BgZ/+Ds6ow9gKBkTra3cfnKFQz7fYyHIxTrIgAsEgEj1xHlczKZYDgceCJx3RrHbnTgpiaRTYoKZFmG8XiMS5cu4datW+j1c4y3hiBSAQTv9XKOElAJ81pai92dHVRVhSdPnvA88n1crVbYf/wYw9EIpefFZIccWmMQzyeH9hyQ40T/FABtb3cXn/nMZ3D16lXcvXs3UD4ACHN5vVrh3XffDdXvpOKhAF2r1QrT2QwHjx8HnXeTHrupqWgeylwsiqbAjThA+4MBJpMJbt26xWm5Pnr9wEdUzWazkL4nTWTfbDbD8fEx9vf3sVyukKVZIGgHELzp8rxPzS2ZCzIf0ZbgbXnQNpLjOXxqP+vIOKW4qhTs6WiIi9qzuH//Ku3D6Ev/mgBU7Djq7gOb2rP9XAIc0rRNQ+nEVKEADGnFwQRStZycRDX5NU0UIp1kVfCrqXLNqnZbp+Y9j1oLrA0Fyd9+7P0H8rv22oz0vlN3/jSjI6dpR8m71jFNBJiTjjBEF+mExGm1EMbdLhQE1i+jKwRcrX0xb8Y1Nt3G+eU2XyK+p/A72et9EEiaclX7fq/PQSCFQu3lfppykZckafM/SoR0XZuwv6xWqyBLpQpcnuchSynWS8URIlGzzrlAOyS0BLLXCE4SO5skokmimuTzrp7R1SXPa88M2BQrY3G53q7yVnogCEAYJEHjpNJHl7wr3qC76Q+i0BhjMF8uUdXM5D5fLNDr9bC1tcXHTiYgoibMmghlXbW8uCFX3VeZcyS5qRGI1lG4VARWmLqCs54cDhJCCQBc9hKKAR2ChdEa1vffKi6naT2YEk9+sfPJWlBZYbX/GKWgt14AhfHxBo9OeAyTNGEvr+byi6S1L5msQGkG+LKMvX4fiU7Qz3tQINiqBoxFsVigXC5RrFaYnRyjKktMD49QlSXW8xmqYo1cKdya7HFVvGIFDYftLEMvSfCZ5z6Du7duopdlSHsDuLIAigqurJAQj42AK3yTHLUUkpIDKN2ATar23B/iiZWXNIpEqTEMUEVkljJuJN5rPz9ZDnmvm3jarRfhhsMk4RzI2EawkwBgkTGoFKBTQDH1HzyImesUgyzHZDiC0gWy5QqVNdD+uSfQyBWh1gp5okHOoqxL1KZCavphU2IUqF3K8/yFGQNNaCZXQJPO2EnP/E6GmSAlSP8ttosMgmetnRfRFCJtEG80zT/IK0JdkE74Ls5rZxlQDYB7GnDqGhkC5G8yRrogUHy/sh+cFVlxVn8lvPjg4AA/+MEPkOc5BoNB6/wSVSDXlrKyR0dHODo6QlGswGVvk2CIAkDTFQfnGnJ/DoMufcQRG9TKk3Vba1DXFQDnf99E2jAJ5QC9Xu6jp5ooKmuZSLghPYePxBJlhzmflsumslW/38cf/uH/grKsAjk4i1CO5BJlZj6fYbVaYzo9xg9/+AP0+z0AfAxRE10Vh3qLAhQ/r5inJp6jbaeUiHHnI3LOAaI7860NEMbz0O/JMdgVXbuJpojBotPzuPubTWBTS5UXJTw2ujp9lGufxT8Zn0uic3q9XgMgpSkyX8FmZ2cbeZaC7RwmqJYoFwC4evUq9vb28Md//Mf44he/iNFggMlo5Inelx0AlftQVTXW6xK9Xo7nnruN4XCIS5cuoyxLrFYrLCLdqtdLoPTm9eecQ13VcLnDtWvX8NJLL+HGjevY2hrDWIPDJ8e+sIkHi/xaTpIEV69cBqzFl770JTx48AAPHjzAfDZDlqa4fPkySCm88847SLQO0XbWOThrUdU1ah/ZNxgMmLyVfMXJqkZdllivVpjPZnDOhTH7zVdfxfVr1/DGG2/gC1/4AobDAQaDnjcOOOopy1JkaY4XX3oR/cEA77zzDtbrNfb39/H2228zsbi16A+HXLnyO9/BnTt38Bu/8RsYj8fBaajU2RWA0jQNkZdaa5RliScHB7DO4cXPfhZ7u7v4/Msv4+VXXsHe7i7uvnDX86fxPOToqwrvvfceXnn5Zdy7dw9/+7d/i8VigcuXL6Pf6+H+Bx/g4cOHuH/vHr71j/+I69ev40tfeoPTZyPO0aosfZQCy/HAgxVFGRGFJHt58C1ZLnayx343zpPNIG6zvhzaa/FMRNqhJV82Obk2tU/bfv/rbpucC0+jKzzrUVisUyQBKIJzzEdkHZzh6nPW2JDerBXH62RaI9eai4aUBWAsFLiid0IKGRESAjv4nYWyxl9DIptY/pLfDCnoXi7o2QK2CDAFeEBE9CcxcbwNSbbRCVrNZ3kIKOVP1f7MOTE1gu1AqgGGgs5mnTfZuJcSuwRH4VzCyqQ128vOCD9uA+yxrdvYsdzx2MZxcD6LBA6A9TuWA0BcpIuaaixw1sIauV2WR+J4aOnK0bjBOtjaoLacudLLM0zGY9y8fgP9fg+TyQQ60Tg5PsJysUCeZ/xsyHmqmwSXLu1xKnhZYz6f+0ivpqK8AE0SoXT//n3PK7oVyMN7vR7G4zH6nq9ZAmQkIglgvUaAKhkj0RdE9gkf02q1ah0jeMl6vQ6RuvKb89ozAzYBbSEvitRa0tCA1mCIZ0wUVwBhQGOlTFoMNsW8TnI+rgSywroocHJygpPpFDs7O7h06RJHAPnzxhtb7RVQOVcrFN2vsAA2OQGa2p5SUX7hPOeTJ4Xj5SULiDl5xKgjIiatJCZdC2GazrQnP8C8PAK8WINqvUYRAV9NdRCf4uf7Kfs9A1AqVFQirQMKrBRXWWEFI8PWcAtaKS9MLdbLJYrVGlVRYLVcwNYG1Zqr9LmqhLMG/e1t7OxuwZkateZ85N3BEIM0xaXdPVzau8xh41oDOgH1R0BS+XEAGiXXAqgRULq4eeWCrAVUzYLQgz+wAv5saIq5oFysnMgzS9MANDHY5IJCw9eDV1wIlmo41CEdzuP1HvzpRDooCoy8zhNiKjColSUJ+nmOyjokIGiHkJan4ZAQIVWEVCsYC9iqQu0EvGwEfYz3b7r30JsOCBf2lnOVghhoapDPDgzgv/t0KWcXAXSbPn+WFdDTESGnIzBan22IyJEnyzJQtc73NF4PotNj9DRj1j3mDKfTKcOjq6xe3MfTyq3sIfP53POWDLCzs9MiWxRSX5EPVVXh+PgYR0dHWC4X3mHiPI/Tpvs//TwYSDFeAVRB/jmfni19Iy8blaJQ9STL2pwvHOloUdcV87qdGi8BDA3KsolUyrIUn/vc55Bl2ZlGnjEGT548wWw2w3//71tYLhdwzraKd8R8PgLmyL7efV4xn0z8SJrry1wV0Oui+dPsXzIHug4qaXFqf3zN5r67IGv7Pd7vN4FC7es1slP2kuAwivp2ltF1+jPX6r/zm7ryTqPBgEP1E+9djaOkperueDwGV2Ts48UXX8Ro0Mf2eOTTOg2cA9JUt0C3urYoCgZF85xBjNWqQFnWIWI8VoDPWn7xs59MJrh69Sq2t7fR7/ewWC4xXyxR1TXWxRrGc1gkSYLtyRa2xiOYusZnPsOcSWmSoCgKrmQ3HMJaiycHB9jd2UFdVawTiO4ZlX6WasOKlI8UNrAejFqv17DWYrVaIc9zXNrbw927d3Hnzh3cvHkTSaKRpdpX++NU1DxPkaYaV69cxu7uHobDIX7yk58gyzK88847WC6XHE3W62G5WuEXv/hFALTaAPlZc5y/l3ROAf3n8zkABg9ffPFFfP7zn8fLn/88dna2cefOHaRpEgo/iRF2+fJlbG1NMBwO8Y1vfAPr9Rpjz0V1+OQJ6rLE8dERfvazn6Eo1nj9tS8gTThVOIkiuaw13piU9bkpVbojz1tgBLV0hYsBhw7oG5262cvObl25exbQ9Gnb77vt6WTIJ9+H8wCnTQ6iZw5witVksQ8ELBFwA35e2aYCLJzzBOFcaS5RCsYx9y1Zy4TfyvOyKsVZJc75FLxONBMQgCaE6/rIQulbq69tcMq5poo2EAFOQJvb1bkWmHRqtgdUy19C9izIeAgw1hzHkVhBkwwAkvRDbC6pzm3JoS3+2kCTisCmts7uGnNRBZwLgArptk23m15IRLWAZC2QSf72zRqpyE5IE45m2tne5rS3vV2Ws86xPe9TXQhs9iWJxmjEqdQHT45RFAsurtHPgxNFwCYBgmSfEkoDgDn3xAEac2UKf6Y4gWUPjnUtWWNyXEz+Ld8LXhB4raOo5vPaswM2+egQ51xA7UQRjYGlGNSRwZOb7Hvia6ABrmKPpLT4b+GZKIoCB48PsFytkGaMEI5Ho0DuKJu9XE8q38lnRITKh2krywaEeGSNMYxo+5QsUXSTJEEikVvWH1d5L6pEQTlGnlNJI3Re2SRPTC5gkw9Bcc4FoULwUT/wjDzOobQOhrh0gXMOLkng0gwICyrCGIRrh8/kn1MzhoBDYg3UcglLKywWSxAA49PobMX8VMo5DAEGjPo9jw31AGsxSDOoqmJv4WyGhAiU96EzhdV8iYODJ8xxVVZQ1qJfVp7LSiqnWcBZ6EQh6zUldkGRwJBkYedAOmMh70EeJwe3mgdljPEk2xFA6AWZTji0kLRU/+FxcgJqRYPlygq2rNgjYWST8YNsag94OSYZVwqUJgD5d6Xg8hyu10dmgUG+QllbkDGwFYdXOs1pdxoOmsBgExzgvHJsa3CUhAM53fI4RHhBSwGjzt/t5qJX5/MYAKTuGePf04bPP1r7pBWQj6pAfpoUz03tlGHteMXE99X2IG9SDs9+wnGA9nmA0HlNgJHNn7f7dJZxcN5zqusai0WBoigCf42ELb/zzjv4+te/jizLPC9NE20SkzfK5i2RHT/72c9wdHQE55hnUCJz5b67fIWyj8mrTbR9WjmPX3metxQROZekuTjH4dlSgUQ+CyB61C8BZ1arVfBuSRi29Ek4nMQo7jqI/KjCa2mhT0JaKfeVphxNIqTqMTi1CRwSJZBl9UVzpj1W8flYyWKOHmM4Fby1j/vxscFobvSP5vpR6tUpYKxrSDf9cR3jZNMz3fT7+LO4OTTcS0mSoN/vB86veNxCJz2IKTpY/GyVUgE8LYrKH1PDOcAYat2L6OLWOpQlP+vpdIb1ugj8UQ05qcVp71B0D34uCdg0HA4bmeJ1gDxjLgnX2VLSNMWlS5dQFBxdU5clMs+vNp/PcXJ8jNVyGXRKgPkyhQtM+DZEIQ83SOz8aR2bJLh06RKee+45bG9vQ7jFVqulX/sVrOVxmPt12ev3MB6PQsW5f/mXfwnPSiLRpKqdeI+b+XKWzGKnZV1XqOtGP5a1c/nyZdy+fRs3b9zAtWtXPO8GGy3LxQLGGoxGY89LN8DNmzcxn8/x4osv4tGjR5ienOD46AimrnHt+nU4AD/5yU+wWCzwB3/wB9je3vHcUgnqukJZVmE+MHjoI5tch7PJ67IfpZ0GcU+DuqccKecIie6xsew6z9H0ad/v/7396o3gK09DVijruq05ZRtwR6EBkxKtUYE8962Fcg7KkX8HiDhihpzlyCV/TQcPNMmeah2cQgSqBoPO/1+ORbxBBRwpzGIxAlwE8slvyDVqfNjAENmMCOdFWN6+3JLzmp/zROceiCLXAZlEJMRgk1KAszA+Qlp5IFpS7JRSgUaGtArypRGZEeDkCALHEUXxYa5Zz+JkpfC5jFkD0iGMMkeZw1GI1q6qCmVVIqvZqaKUQpqlnv/Isf0KhD1ma2uCwaCGdQqkEtTG+H2WHQ4AWtFKsieL7snOzCXW6zUODw+DrleWJY6OjlrgUMzpFzs0g5Mr0ptjx0830lxoEi5qF4JNRHQbwH8DcNWP6p875/4rEe0C+EsAzwN4B8D/7pw7Iu7hfwXwvwFYAvhPzrl/ueAigFIh0qYoCiwWCwgxuKTKCSmneMSyLGsNzmjEhJQx14OESMcEljK4YgBMp1Msl0s8fPAAi8UCdz7zPK5dvRrCzOq6xnS1ag2yoIZyLqBBRJUm780uw8OtPZikPFKrtYaLwCb2MtcwVclV3YwJpTMVuDSmdg6J8yGHylfZUApOyW4uUTPkA3zICymOiHLOYW0dTF37HGA00TnUqahEBE6c8cLR8KKzHrQwpmIgwxiYYubD6gr2jpY1rHXIdIJU8TMb9PvQiUae9vl68OBMXcOUFexqheXRMYes7+wiIYX5bI6HdY1yscTq+ASZTnB1ewep1lCGBa7zZbvzfo5xtuWr2wig56vgxKiKCLoA3Xt+pFjKejRG13UAm2wcUkoElWS+HrgCdAjmFC2bH5yg5euCX5Z5trh5ZauqGHBiBA6+Dipfw0evUd4DhiP0HGHYX6GsagbCCh8lpjVIJ9DoISUgTxj9d7ZGbWoYW/vn5mFHJ+BYdMuNvfF0QJOQ7YU17Nrfi4Bu/U6uEP0MAjp8HLDTJ9f+LSuSpxRxnDZeZdOVf7OBIN82ykDclDq70lT0s48FzDsT0OoY6k/7nbSqqjCdTrFarVrhyVmW4a233sK3vvWtMB6b9hk5t+xlAEfr1nWN7e1tTCaTFsk2gGAcSq58l7tIjPVYXnevGYNNUjUOQFAWJL1GHDvyWbyfyt/iTJH9bj6fwzkXwrlF+ZE9OnamOMe8ARLSzf0DREbIfQvYJft9miY+MisJhnKiOaU7Bpzipy8Grbyf3dog02mwycKYNtgk+ziXnbeh30IE34Bdp8PJu3pHew6icyyroDGgRD7dXg6Wfl4IzDr2tDJwwt5Pqdy76bcyJvJsRYHVWgfA0tYG63W50ZEnIEib04znz/HxSeAA6vf7YW4wGNIycVqDIXNxb28PN2/exNbWuLFtLPOaDHp9kFbMtVlXkF0lz3Ncu3YNxjAZeuXJTHd2dlAWBWbTKebzOZQiZFkawFYBX51zyHPm1Qi0RV5XlfltrUVdVTBpGqKG9vb2QESoqhpHRyctsEKque3t7WI0GmB7ewuvvvoq9vb28Fd/9VcwxoQy0+v1Gvfv38d4PA5FccKcOEdkioEhKaoCYOV5juvXr+OFF17A88/fwe3bt1CVFeaLJdbrAg8fPkRZlrh16xaShOfLZDKBtRavvPIKtsZjfPc738GD+/dx89Yt3L5zB4vFAm+++aZPDz7GtWvXMR6Psb2tcXIyDeTpAsQ2pP6nENWgt8U3d9G9bgSR3NnHhPS4s86HhucsdmSftS/+e/v3xk3AaAVFnMbOLBlx8Qo/p6xlQAlgDh9iovBUaRQAnDENEAVfdRpgwnDyEUhyXgFShI4jIP2AUy5o49w3jw4FVT3yiLTWDbF95A8nF3kQ+AenDYb4GtR81TrGst0gf5IDR2+FQygATvFpRUcUHiNnm4hfyfRhOhrFFC/Kv2uvB+k2UBzUD1C4DWMpmNAuOi//RKpnuvDOe1NTDVcGj4uTwKdDckpkWRaoctb9RA/s9/swtg4R6aLT9ftD1qV1hjTrYTqbYX//IGAZAFc0lQIQeZ6H74wxODg4AMC8e5I2J7rjYrFoOcxEj4ozyaQJJZDoRjHIJNcSvWyxWHw8YBPYDfl/Ouf+hYjGAP6ZiL4B4D8B+Fvn3P9NRP8FwH8B8H8B+BMAL/nXlwH8P/79/OY4v1vQO6m8kedNCJnkq8ecAvKZtNgDGSt9MTAkA7ZarULeYV3XGA6HyLKs5QWuqwrGWmil4TQvFDlvTNrYbh6scYDx/VC+1LOznMYVlFoHWA9SJFqDkhSmNrBEUW4tAMd5vtYwKTis9wo6tHJwg8cvWhSiXMM5JM4FSiMpn6n88YpsZPyRR129Im15QVnHABSFVDwLTYBThFS8lcQe7VRpJMobItqHixuIDCkAACAASURBVDoXUHnGK/jfqVIY5DmHq9cG5brA3DmYdYFqtUIxWyDRGtpy5A4ZC/LhqNYZpMsMs7KA0hSklyLtI5EaRZg8Ai7826Q0iHTL8BU+BHJyDZGtvkIREVRSs1BLNEgLtOefgkQvSephWYF8qL4yPKYSBsqyudmomicDH7HGn4sgzdIEeZZi2O+jMsaHgjpYRajhQg638r8mZ2FqroqodAadpB5IbNYdXHM1EbSQORBiX8WokLQ/Ou2Q3kAUHlB/2biiqKYguMX7I3dNT0cCfpFn/1dtp6N0KPz7vBb3/TxP6NO2pxmDTeDQhzn3eUBTAEzgN+IoVDl4jRzLhqcdI39QNAfO7luI2DznXrsEunEkkNxDdw9ogwJnPyetmwgjMZaMMQEsks/j83Z5fqRiHQDmj5nPWyHMcm8xH1A3eilONYuJleVY+becR/Lyd3d3sbu7GyIuhNtwvV6jKApMp1M8fPgQ4/GYeQV8RHEDqJjQj1hploiQLkm2MQb3798PqXQCmgkJsoxb3svPTAdiEAfI8wyTyZbnfOImSo60oiiY34AkCur81EhJ5ZHxjOdJmrJKtFgsMJvNOKLE2RC1VZZl4FkUhxfPDXinRGOkOofWPGyDBQ3YxbaDpK43KQFhTVoLp1ihjhXD2KPpHBeBYJBO+dQt43kcXXAmKaLACTkYDDAcDqGThK/dvS4auSDcT6Zi55DM9e5aieeBtDhaR5yFEvV2npxw0fUFLEl8X12QHd5g0xqVaiooiRdeiHcDwOZ1Omts0ImqskRZcNU5HZ0DaAwTRQ2Zr1xYjB1xfg4HA6YU8KByPC5xlcd4bLROMBoNMRqNwpjIehZQsZUGKWN7zvy23riIZRUAaKUwHo2xu7PDkZh+63WetiHzenRd11guFsh8NaI8y3D16lVUZYk8y5t57MfCSuS+dz7WdR2MU6ksJUCQkJdL90V/j2kdNMDclc0ItozboGf5z1pRj9pXleqMz0Vzrfu8zprL3X3ofDlz+npn9eHDHPthrverHHfWb+P7bjl8LgK/o+PO++wi3Si+zkdxVH2SgGEATP1cdn6/TtMUmgiwNqyRVCuMh2PkaQpFQLlew9Y1RzoRISVOrWO8w4aMBLYfBJQhCEUG+VAglg9Rnxr8hzV8GbuAkTTQTmzJKNmLwjfO8xc18k/OunEsZJ1QsLwANLxMyl9DOQUl8UPOwXleK+tBNyYJdyBXQykr2YHN1R3YTnHeceHENlZwxFQjDQDmLRDeJFjGumZe24DZ+cANL/f5OhZw5LNFmE8z2JUBmIrBbw8oRoCN6E1aazi4oFuJ84VtRqanqWoLUso7vWqsVitYawMmIsEyol9sCqaJ389yrsb6Y/zcug6lriOyuw4vWv8Xgk3OuQcAHvh/z4jopwBuAviPAP5nf9hfAPh7MNj0HwH8N8dX/Sci2iai6/48Z10Etqowm05xcHCAnZ0dXLt2LRAdElFEYtp43+J0A9mYpepGHSJIeCAkHU5SAJ48eYIHDx4EL5DWGrdv38ZgMIBxzSDXPgoozzL0sgxlVcHUNeDYQx17oEXQKMXAkoVDURao6hpJymHapfeQVlWFqizhyANpAHp5D5Q5rK1FZS0SZ6Et54BaH2VjioKJq60FrOEKZcpHwnjhAMNpbB4l8qPACzoPebwuAFUwftF0qhaGcEsgyttlEm5W2AznFCsC6QRpnoMg5TyJQ0C9iRo8zsa0FoD245XmOfq7e3DOoVoXOF6tcWwM30tVwxYVCA4fOCkgyn1z8AtJEVfDI8D6iCyCEL41QJJWrIzrRIVQeCFgE+Q8z3tQSiNJvKKq2Fsh0plASJIUitgDr33KhyIF9ib7Mtoq4Y0D7JXQxFXjFDG4pkDQCt548UoUAdaPtXW8jWhSgZx92OvDOYcbV65gPB7jwWyO42KNSisUcKhhocm/YKBgUCznKK3BcDjB9vYWQAq1p6wyLXQe3ihJOPfZpwgay9FjxtSoqpoFsJZoMBEujXAV2W7R3hWc89ExfoMjECzp8Cy7Bn8suD6MAvLRmyhQm7/9MOePjbWzFKmz7ukssOdpr9vy9Ebnizeai8Cp7tgTUUhTEYJpWYEODKrDNX19mj47SMrYacWxMa4IcWnD7qYWPOaeg00KREjKmpxL5LT8piiKQOp9nvdc0o/SNEVRFFgul+j1etBa44tf/CK+9KUvebLkeQCZrLUhWlZCmEejEV544QU45/A3f/M3ePvtt8O+FYNHYhwKmBHn1ZdliaIoglNEFIS4SIacR9JuJpMJJpMJZrMZPvvZz4ZIA2stDg8PcXR0hLfffhv/9E//hJs3b+IrX/kKE1T6fVQiemKgTlLwJAxblCjp62q1wje/+U389Kc/xbvvvhuKbMznc2xtbeHFF19k4undHWgdk6I363i9LkEEbG9vY29vF5cu7QUZLoCFUgrWWZycTPH++x9gPB7j8uXLyPLGGXVqzjnx9LWrvBRFgX6/h8EgR1GUeO+9D7C//xjT2bQF2skYa61DaXetE58eZAKYIIBI5bl9qqpqqtYmOgAUSZLCOaCqDIQ8nSJwRNZB5oHHuq4DxYAQRovHMdEao2EfxjoUZYV1UcLWrCvI/CciVGUJRYRr167hxo0byPM+0wl6XSRWXmWuLJdLLJfLADbFz0tAL5nHsf4lz2E4HLbWmwAr53M9+IqqjkszMwlq7oG9RkalSYok5ZQ2WxuQI9jaRyN74ybRPDfrqsZiPkdZFNBKAw6YT+eYHp9gsj1Gv99DoshHhROrT9ZzpyivL3lSXdF1Bj2u0Hfl0mXcun4D2gOWAjLJ/cvzkzliHRcSuHr1GkeCe1oGWc+xLtsd0/Pka1VVMG7JY5OmwWhLdYJbN27gNz77G+jlOUztYGo27BQIk60JrDUo1gUezeaYbG+jl2YYD0f4rddex7UrV/Ddb32bn4z1Ee/i+LQGdVmhKkrUFevMpq65uItO4GoD6xwSpZEnKY+9l6+DwQBVXaF+woBmludIOmlrMcgh60KiIUVOhvdIZkpfT0UrnTHnCA141U0jjvuxcbZ29tvu5xd99jTneprffNhjNhmfm97F+IzX/CYDtgtUnwXafdi2SXc6z8jtPrdN7VfRtc7qo8jAdcHUK6NeD1mSwJQlTFmiriqsVgvowQC3b97A1nCE/Xsf4OjJE2hrkCUaqVIYphlHPbFRIT3mOeqzQzhQoAFwAjm26NROoCQPzrtGP+fTCbDU2CACNCmQmE8AAGNdiKgKHyoPZlEMgFP4n9herPIrGFJIHCEBkEBBk0ZCFlqirgw7A6iskJQV08VQDYBQqxIgxfI+ST1wxDdlrb+8BQiWgzVI+Yp1bBe2nGLSNwgwyNGWtm4KRYg9T5rlgKkZYDKe55LANh3bkRoEQlWVYc8y1gCEoK/UdY2yKLyNmYNKlpGkVdgnSHky8CTH1mQHdW1w6xbrYOL8Ojk5CUEyEmUucy+uHAe05ZXoTDGtgbyE8kFazAklVfBEJvZ6vXA/seMLwCkHVNw+FGcTET0P4HUA/x+AqxGA9BCcZgcwEPV+9LN7/rMW2ERE/xnAf/Z/xZ8HL1gcji0bRexhlcGJP+t6rGNhJMofh7eVQdkUwGowGGC8tYXVeuXDyJXPE+WoHTmPIoLxRNqxcgiK4RlBSBtDmuR756L3dsi8QizwKPqvF+DwAFKoYhYh1RTwZ452cl4rY7Oex8qfxYOw4Z27GBmYaH3RREp5wEX7SBgpzakJSP1YJ94Ly/nFrHhbf69W7tc/j1DOkwhKJ3DOMrDmHJwn4wwho46rOQhLFUtNf1bLksaBqz+07sSDIkQKWhk/x1Rg+mdwRSI2FMraQinNxKda5oCU6PYefV0x0JcmLGh89FEMNuUqgSYVqkhoIg82ETJJXVS+eB6xQusIcNpXMlSAI0LiQ/zLskRVFlwpB5LrzdUqLCl+Dv55hDEl7rOrOSJOopZETMu21F0v4uUmAo+N45LorWH1qL6kV4mRReRa5wzzdlNr73x8Pne2x/BpAZqP2sSg/Tia3MdFHtAuAHSeUnbed5sU4V9V8Q19g39M1AWt/LeuiTTY1NfzWjxOG76Us506d3O8V2o797JpPOK9QP5+GiCTiE4Z4ePxGDdv3gwhynEUwnQ6xWKxCBEhw+EQt2/fRlVVHE3igaLTEVan+y396x4bHyeGUWwY1HUdwq0Hvsy5KC0CIEmE0/3790NItOy5cXpZrKjJNTeRTgogt7+/jwcPHgSgTUAXANjd3cWVK1dCBHF8zu57lqVexjZOASGtVEohSzMUZYHDw0MQEVcaO/dpxvtzw7fIQFkD6Dx61PQ/yzIG3cWJkGXIszyMrYCEcq7uGuW0Hf9sRKFvGWAdMLXzfJ2LOaLaz1h+E7gqiFBXJY6OjnF8dMwARccolOPjyCyZbvH33Xkm9xLf51nyRY6Jjz1Tpp/5xKLfdQ6J5bToUKIQh36JoSXXdeGsp56Rc85HjjfeaCLy/CpoRQf4H0V6V5M2mqYpHCGKNmuPY7yW+OdM4p9E+mX7mLbzoMtVtqmFORdH9lNDEpt5QL51L2ADVmajFRe/H4s8z9HLe/535HUXXx3Kj12QR9ayS9I/A/gIAVEv3YaxI2ocyKIbtu5Jnnv0b2mnQI/W/tTo2B8FwOnKvG6L1+PT7q0fl67yYc/5Ue570zz7OPr/celYZ/XzXJ0iOuaTaI3M5nkuc9xKvwBoH3Ep+w6DGDUIliP70OjvsawJuna42Hn9QHAGio/XRbafmHwOMn4dXUnOv+FRBZkd6e/BWnWyz7U+DUCWN8eaf0cvkSWNfducnKOqYudE6HzoaHN//tmT3HMchROsWsgIWV9N17qmUmBsW/Ot2obg3fqKfMSV4ONoSxc99xikARCKbyGy8bkinQf7FAFQ3j4FksQhzfIQbCMp/SIr4wj0eL9o8UtGQHsTdX361dxnu1BbjLvE/JmxHvg06/mpwSYiGgH4fwH8H865aWezdkQbc2jObM65Pwfw53xu7ZRS2JpMcOXKFezs7IT0BPHQSs56N4ReNnkAwRMUp8IBvPHP5/NQEWixWKAoiqBscYWTPm7fvo3RaIST6RTz2cyDEZ6wNPIu13XNxF2GU6m04iiP2nLKlbEWtrJoqvxQWIMOiB31pxZyAKGiB65EyYADdGv+g8iBlOWFHIjXfAigsxEJnR+v8F1zaalCIIBSDG7JP0M3PdiUKgouaQZ/LMhUftHVHLXg+wQI8o4giKAb5v8QfaU92qI09yPPAcfkeEq8iV6BUXCRqGCYqfZgVu1T/RouDdsQUrrmGTgCLCnUfAJWcuoa9aKAg0PigSZRep2zAUgij7aEsr5elDrnq0lAwCYNDV5oCkACBtfYe8rPTwmpnn+30bsjIB30kfZ7MA6orEVpDI6WKxSG0fWeVuwtTxOQNeg5BacV+lkCQw6VIhjYQB7uoGDQ3Icm8uiUPGSOUnF+Poc8a3Kcptiat641V4hk/5HA3lOqYdhYWqc5p52n+Jz33UdpH9Npzjj3x9vXX3drFPlGJnWBtYs2hdgY7BoNrCzQU5yEQmRpbIzFYIn0rZtaHSsCZ92j9Xx7El0gKVU3b97Ea6+9tjEdTviMRJYLZ87JyQn+/u//Htba4J2azWYto1y4Y6qqCtEOkvotv0nTtOUwkcgmMXJlvyQi9Pt9bG9v49VXX8WDBw/w7W9/G48fP8bW1hauXLmCxWKBv/zLv8Tdu3extbWFmzdv4s6dO8xt468hLa5eKmlYco/z+RxvvfUWHjx4gO9973v40Y9+hOeeew6vvfYa7t+/jx//+MdIkgS/93u/x2Xsb97gfTGKJJZ50ERoMbGyUgl2dnawXq/x/vvvg4jYOTQe4+DxAf76r/8an/vc53D9+nVYO8BZPEBEgFYaSjVpYDs7E45o8Z6/x4/38Rd/8Rf4+c9/jsVigefvPA9rLX7xi19Aa42bN2/i5s2buH79Oi5duhTIOJVSGAwGgW+K14UY8hp5liPRSSsVDuBIQSZEb6fox+CmsRbwVdykmtp0Og1h9YPBAIlOUNUW773/Ab72ta/h3r17ODg8ROIBMWstdJJgMByiPxgEj2sX1JAoKFFuYwVVa4Ws3w/PadO7rJtNSqy0LMswHA69o2azPGQupRx5lqMsSsxmM1/dbsT9yDLWDdcFSlUGvU+4KuLrybzN0hRbW1tY/f/kvVuTZcd1JvZl5r6ca91v6O7qavQFDYK4EAJAkJJIYoKSIqRgjKUXvcmKiXlRhP0L/GL7QRF+8uP4yY+OcFhjR9gRsqiZ0ViUZYqmSEIgCYFoAH1Hd3V13evc985MP6xcmbl3naquBpoiNM6O0+fUOfuSmTsva31rrW8Nh9BOUG82m2i1WphMCozHE5Sl9t6M7E2UZUmQu2ryWRhb1I5iUmBSFr6dxhjPlwHAkboqFAVd2xiqm3Ue6xyaJ4WAKUuf/a4sSze+MqTJyWuW0RrCFCSD5Dnt45rGidYag8HAty9+VqxYMIjabDbcuLQYDAYEnrPM4daUmM8s5rGy1nqreKvVxPz8rFvTJp624iwlVt4saD+oAIiohh6zgezYdaLrxX8/q1Lf976IJa7fs5alYnBnmuHgLEa3z1K+aP1elhplQeGkVlczXRtrYHSBNFHoLCygkWUoxmP0jUExGsEUBQwMyepKec5X4eRx1nYsHP2R0+PoJ9LzYJ2TAdjAT3qEcb95qCqW16wlTyDAJy4yXoan+9JZ5C3krsDCW/gbcPpdVcaHr6PvCMAIQANSO8cIWCJwKg1QGghjoawApIBNKHLHWkczYi1MWUAIicR5pwb2RgaorFPwACssrLB+TxbCtwYCAsZY6KKg0H3NYJOprDtetjIWpeMrprWG9D8egmU5IS97AY8v5Hnuveo9xYLRjgaFXLKUoB6zDhxQKkGSKsepTCF2MzMz0FpjdnYWo9GoEurPBkQ2cLL8CRyf1zEF0VTDWA2EYjmBQ73r3lMsI9SNpvVyJrBJCJGCgKb/yVr7v7mvHwkXHieEeA7Alvv+UwDr0ekX3HdPuoknzuKHw50Wo2xsweVSFyh8fLpS/ncW3EejEYbDIQaDAdhKxEpAs9lEu91Gu90mAdu5u7EwFvNCSSkhdQmUwZLCE55TWnpB01nlYpXcAg5cmLYrxgt18IDyljxBrpLWUJ/RJXgx4Fltou/o94Ae8+QOyHU1XI7BoxO2YwYfPKrLIA57U8XNoMlDpN1OCURs1XU8F9GGISQfQxCVFORVo7hu/IIDnlzfalhMQN5m0r1zZiAaPxy+53i3EINPTjFwANWoIIBTOe8jvom1jjOLF20Lt9C45+gAK+NI33KRIhHSE/xJgAjeQWATrdXkqUV96hZ64TYLt0imjRxpnsEKCS0VtLUYa43SWogspTTDDvxLYZG4xYsyXEhoIVy/ICy4PBa47oL6PggLNeuicEM53kFEGFthE3OChR9PbG0QlWvxWAtjZTrQc5pCM+24Z1H+qWWXY1Zce8LcO+G3z2uhm2aZPYtFN/qLzzrltxNv7u9XVRgYcDpD/d11WAk56RVvoPHG+6Sxcwz8dyBVp9OhsC2nnMXgVt3ThQEU3t9YkR+NRhUwpw6MxQJ7DPTUeQlDyAdxHcXHCiHQaDRcZi7aT4fDIebn5zE/P49Hjx7h1q1bsNbiwYMHSNMU586d8yEqDFTE9wLgPTn4t7IssbOzg62tLTx69AhbW1u4ePEiFhYWsL+/70klz507h4sXL6Ldbru2hfbG3FvMPSSE8WFrWmscHh7CWuuzkw2HQ9y5cwfz8/NkcNIZYINBqj5a2IOV70MZ+wg0I8+vHn7xi1/gF7/4Bc6dO4eZmRns7+/j8PAQ7XYbS0tLmJ2dRbvdQrPZ9NxXPA7YAysePzH4WQdCpAz7CO/xx8eehjXwwl6s5DPAAiFQltQ/H3/8MR48eICxA6gggpdRlufIHJl7HB4Z6hN4dGLAlManhJJVvrCT5ss0y2n8zv1xssVBQEnlierZ8CgE9ReF8lKoHQw8pxO1qXpP6+aSdGPaW2at9eOYQweMqZKnkuzgxpMNb9PWRp4rRVGAyWAB+GfF9+bjpvVR8Pah/ZQzE3OfkQfeSX0GD4bxmsNUDZ7Q3K0LJz0z7kN6p92dw/9Ypo05tOrebrzWesVKa2+Q8/c/aWGvjadYDq5vJRXvpcr1qp5NcZ/w56ctp+0RMZhyluM/6/0+7z5fv3b9Hk8Co6aVeMyepJfx38+6j06rz1nKNBnns/Rx8PIhwwnxDQVv6wjppOiCNEUzbyBPU2hdYgIK44LR7GfjjGxkxKd7hAtZG7zICVqJ5gii8Q5epxDjS66N0hnurVPprAN0whSMDcWC2yloPZD+TqKiB4Sjo2JRnddRxVif8+CQ66Pg4ED7tRWSolfceaSf0d/+0rzec11s1Cesj/v6MShFibaMcZ5ADDbBwhpd6TPLnkHG0G+CueekW/+CrgkEz/D6PkvcdC6xCEI7rQjt4bVbSqJPAYQ3AAHwkV9CiErIGxs1xuNxJRlIbMDj9T3eH3kviumKQh2kB814H4nlp9hocVo5SzY6AeB/BPCBtfa/j376PwD8MYD/zr3/79H3/6UQ4n8GEYMf2NP4mugmkGmKxMVcA6hkfhNCuJS3oeM4Y50xBgcHB9SYhMkxQ+Yefgi7u7sebCrLEs1m05M5koUtwe7uLvb3933GkBhs4jh7rlfpXqSks9BDQgHPtdK5zz/t8sXx8MZ50lgBQDETf8ieZh2wxkCXiUAEgMm+WRmjIxlIEtGxIiwb7n0a2OQGJgMFgqoBywohAz8UP8uLheAJz4unjJVCEBdQWQIixA2zqzbhPKFWhBK56xkm7qa/tSCw3PqKuW6yDK4pMMpnLRzxNa9UgZzaWou02fRAEpPDUTtN6HN3LclJgrhjrKVjrEVqJaSVlFGCQSYI72lGYI/bUFxaUCt8DkBA0KfSaEzGE0ilIFPqk8yFzyVpCp2mGCUUl5zAQpgSwmjkUqBUEtrSWIShDH5AcJfnPpaSQExjKcMSrelu0WcyaEQkyxVHxmibc5sRxYJLsFfUlKHk+93/H28cUZkmHNUFlWcniD0bIeiz1udZAEd1ge5Z9E0AFLmODrwBKyl0xLG+s0+Em04FiOh+Zzg/WleA415L3jIVCccx38dZnzlvro1GA3meU+y92/BjhY3Bg7geBPRqjEZD9Ps9n9WDySgpI6nj30kUhMiRJApaly6N+AhlWaDRyDEz03WeB4kTLOj+JFAEZRxOkO12O3j99a9gcXEB/+E//HsScidjjEZDJInCysoyrDX47nf/AnNzc7h79w7W19dx9epVXLlyJVKgBWZnZzywdXR0iFu3buIf//ED7Ozs4IMPPsDh4SGyLMWVK5cxHA7ws5/9FIPBAMvLS1hdXcH8/By63S7KUuPoqIeJIw7n5xQ/qzzPkOcJ1tcv4Jvf/CYePHiA73//+xgOhz7c/vDwEPv7+7DWYnZ2Fru7K9jb/zqAxWPPTynpDEsWrRZlAWw0cgDAjRsf4T/+x/8Ld+7cxd7enrfmLSwsoN/vYzAcYHFxEa+//jouXLiA2dkZSMkcZgReEHDIyj58GCWDQ8YYzyvG45THHnnrJJBKwNh2FeBTElIJCKnI6pkkWFxchDEGzWYDWZpg6/E2Hj7cxAcffIAbN27g4OAAKysrWF5eRu/oCLc++QSLS0v42ttv4+q1a1haWkC71cRkMvb8YmzQqxNU+zEs5NT1uD5H6n/HIG8A35zx/oSpx/05mUwglfTZDgEikB+NRjDWInfpn3u9Hvb39zE7O4OFhXkn9+1gZ2cnALpu/iulkDcayBs50jR1xPBEYN7v9zEYDLyXDwDkuWVRgc6XwbPKe7+nFHpfaoVCE6cFy6aNRsPLj2xEjftpMpnA8niIQxaSBDKaG/Q8TsngFxUZ1XE0oPPTlNJuG2PQ6/U8iATAh4QyN1yWpS7tNhyfGSXtga1my2RZO0kSfz9rbeAq09rLaqPRCIPBAGVRVOrqZUIaMADirHDWPzfhldswRmJQXgjhM0lVwEYbGQysffKmEtftDMBPfP9fVvm8e3k8bz+vTFVvbzy368By/Zj/1Ip1Qg57yZRau8TS1M9GlygLS1w/WiPJM3Q6HSRSYDwcYmI0yskEsBTlkAhnKJYSiRRQ1kV3gAzXUtDfAo78mo3zjCo5Y7WPXhEBeGLkSbC8ZklGYC8mTh7lpH2GY+h6rr0MfFUeJeNQ4QOrYT5jnhSUXVtJ4mxKZUJ8btYgcUAbjPX0Kbp0vEhGQUgGjOBAHwsjNIyMknQJAaElZ3OgJAMCEJqBEa4ew4Mu+sJYwGgHvjFDeAgjhgO8OVKIs777lyWdisGaoiw8aJ86XEMlKbSl9hVliaIsCeCynJCJdF7v8DAZotR9JCpBmoUkaUDg6GT+JM5sHHs2sREzlqVZ1qgndYkjyGJqoTjUnrlLGV8B4K9Zz2R8UjmLZ9NvAPgjAD8TQvyD++6/AoFM/4sQ4l8DuAPgD91v/yeA3wPwMYABgH/1xDs4sEk51AxAxX1bSllJncxCCG9mgwGRIc7OzqLZbHrrCTO4j0YjHBwcYDgc+sWQw+eYhBwA9vf3Kw8oWHdoQ2WLtTYa2hhybQd85gzGpelLuMxtT1a26oUtbtZ5/VgAInGop3LxTsLSAHXHSNCcEE5p4dA4OlR4AEnCeKCBqmmn/D0NaLKV1Uaw66BDY8nBKQLXLC9SDqQBAxbsFcWbp4HWLkOLDIuCEK6NEIi5pCyDMo4Y3Lq7Gjj0mwEnxBtqWDCpQ+g6ARzhhrnsAzKJ6sEP0zXKaA80ieh0QRelYxwhpywBaQhkUpb4rRJ3NwU4oCmATdTHzDlFLQMMeoM+yvEYyhK5rIRAJhWMU3xNlgJKoHT3EdpAGoNUCuSQGJdhAWUrCI2FSFF3GcaEFZSV/zadzAAAIABJREFU1SmT3Gc+bJCJXXEasSs9M1GJF42OdWPmScJy5YqnCEX83bMAap5V+Sz1edaWS75mve+exX2qgjwAP9erFswnA00nC8GCgUvxJN1AON6zKlBVD6OL+ZYYbOLMWE9TWGFjD1y2JMWeIGmaUPIApVwvUDAt7V1jDAZ9pzTGnoQBbKK6KSgloXXpyPkLlGWBPM/QbreQ55kHlMbjkWtz7sACtj0S2NRut/Dii9fRbDbQbDZgjHbpecdIEoWFBQpR+9u//b+hlMJoNMTzzz+PZrOB69dfgDECWpcQQnqAjUnQb9y4gb/8y+9id3cXH330EbTWWF1dxfr6Bdy/fx937tz2HkGLi4uYmZlBu93GwcEhRqMxrCWghbO5AYj2fsqw9txzq3jzzTfx8ccf44c//KHvoyzLsLNDgMJ4PIa1FsPhBg4Pv4xpYBMJaDlarePE5Ldv38a//bf/K3Z2dnF4eOi9qWZmZpAkCUajEfJGjhe/9CIunL+ATqcNpYKnFIAo2xjNB35uMdcCZ+XjMcp7FXk40TOHIMWFS5IqJKmCMRZFSX3EzyFxdTg6OsSNGzfw8ccf486dOyiKAi+88AK63S5++t57uH/vHpZXVvDqa6/h0sYG5udm0Wzm6A8GGAyGlTnNc4LBJp4nMhLTTyvxPK6vN9RWfp18DWsNinKCSTHxwEmol8Z4TABSyxkL2fssTRVWVhZhrcbBwQH29/c9oMLt4+tlWe7mGVmRafwMPTjFch+Dh14EikLGeJ1JEgKbijKBUqUPb2Ay9zzPcXh4eCx5DYNQlgZoWMOkhEwSyGh98gAMh5ScUriNOrofA+xFUXiwm0Pg2FrOxtbJpHDE9UCeN+j3CCSNjbsMusWgcQxEMQDLcns5hUg2Xv/jZ2VtxMEpqsfFQFLotyrYBFs9juXGk8pZ9seT9tFfNqDyLACnaQadepnmiXTacfw5/v6kY34VgNOzknumluiy7NlE4AoBn8ZolAVxMlmjoaREu9WEsBaD/V0iDZ9MSGcQIZFQIqVLMGQgYaGcoVqyvMNj3rIOx7pSWK9ibFYgGAqdquF0EHhdhj4z+BQZpVFfbYJmK+IL8P7gb0p6lK3IZY4gXEoCm4yGshRrIoz12ei0Lqk/LOFnxOUElw2OuIiNqHECKuFchQEo9z2DTZwvio/l58bOEdZpk5bDHyNQ2nLkDutQcL8Z0sMty1ra7zVJkkAlCVRC2AZ7lBYlJSjxRlsw2OTAc2sxGo8xHI6QJCnyvPQAE9MIMbDPNAa8L3B2OpY3TgObuDA4pbUmA44x/phGo+FBJvZg4n2D972dnZ1j2emmlbNko/vbY+MslG9POd4C+C+edN3aSQ7JLP3Gx0gZW4xHo1HFBT1u8MzMDKSUmJ+fR6PR8DwYk8nEW2+YAJytUK1Wy1+P0TxykSNeGm/Fc5oOE0eWRYFSa8pYx67DSkWzVQDhLTSx9h5KsOaEBxVtiobSHgNEGAYpIax0jPmWJpVm5JomrIR7YparVQ2b84tEBDQJ9xx4kvnJhsqJ/LgcWVu4HIdkCQhCoQVcNjq3bPFm4yew82cRFklCqwBPBsoAR0TXBBTBczXBsoJGAIqBhbYUc2wADzZZwZuaCG2IN1cHfFXBJrqFsRqwIixMDIzYsPh4YdstngBZHhBtAErEYJPzbBJ0pnLjQ0ZhdLyAG2Gc55BfBZEmCfEyZRmsEJhYF/acZbBZCg2LESwSCPKkgvUbloRxKVfJm0EIt20JQWNDRI/YEmm7h6T8ONS1XSsGNThsLh7drn+Zo+vYEuL+rmUam/ZeOeuE356VEOMtIM+gfB5r50mL9rNq41nuFR87TTyvWjFZwa7f4/Rr14Ve3hQ9+bFfJ47Xs9qOqsB7kjAdKyUx2eFpQre1pz9LBq74c+ydA8ADtHF/8Tmxgsb3i7kJuY7sidDr9XyoGV+HQS4hhPfE4HNZkWUho9vt4qtf/SpmZmZw7959PH78GHmeo90mDp+lpSUIIbC/v49bt27hb/7mb7C1tVXpSxZUBoMBRqMRbt26hb29PYxGI7RaLe/Rsb9/gKIo0Ol0sLGxgbfeegsbGxtoNlsOTPKNBkf1xJ5o1IfkydFud3H58mUYY3Dp0iU8evQI4/EYm482oaTC4uKiB54Gg3YFXIiL1gaDwRj7+xNsbj50vAeH6PV6+NnPfo7RiDxOFhcpM2qv18Odu3cAAVy5cgVXr1zBlcuXsbKyDCklhsMRjLE+dTEBNQEIqE8tfg5xaNje3j4ePtwkEuYGGb4c3h9xNmkUZaQKuOdRliVu3ryLvd0d/OM/foB/eO+n2Nra8mNqd3fX8zl0ul2sra3h+vXrWFtbDdkZIw8qHr8MjPHY9cAtb1UnzIV4HAeQ5vgcpFDOEYZDBWNSEBhb7ysJpShz2ebDTdy4cQNXrlzG7OwslArcVSxYN5sN5DnRIlgr0O8P8PHHn+DTT4nFYXZ2FtoY7+XOGfLYG5A80AIvGwMzlJyjwGQyhgUoBNEBKSyoZ2mKw8MjHBwcwkBU5q8QwoM6XNcsS9FqNTHoD3D3/n1sbm6i3+8H+UKERDlxeCC312hmgZxSnByqXKjbGKQg8LOM16o4o1AcScDExUxefHh4iMODA5RO5mYgjTMy8xoaKxy8xp3GiXe86pEsZiOvJUtmTBF51vEx8XiLwzuAAFrXX8cmZq08SZ6o70Xx388STDlNzjlt367X5zTZqg4MTwOaziqPVGWCKdrOCWvC5ylnBZFO6rfPDUR50YciN5QirUc53UGXJYxzAEiUIvnahWKVZQFdsFcTnZslComSQZ1kNcU3GH78WtZN/A9BL/HbK4va/Lutfs/nWfCKUtcCg/TnnRgioCn+itUpy5+9rmdhBXMusbzo9GxYCCMhOAlGUUIWBYpxAWUsZJqCEjTJoEsKomixxjggi5+vCHqs4BBtBuAiFV2IoB9z1nRBOhXR1BDPlZc72TFAVHtHeAnVeU7aqpel8HJAoAlgQIlUUhep5EAD7us0zSCEiqKrHMF4ZIyry2Qs/5GxM62ESsfzss5ryuM/pmaYto6ysw4bVjkbcV22Pak8VTa6X1qxFmY8RuHiDLniRVF44ZoRO35obF1uNBpYXFz0qYkbjQZu376N7e1tDIdD7O3teSCKOZnqWXCYw6koChhrkAhy7/MLooVLjWgwnoxRlGUAm6SEShP/zq6TNKCjTCSVKRsKA00M9iB6cBRHWsII6VMismeTsBZCGfKYtII8nODQV7dAEd9R4H72IXT+xd/zIlKv3/HveH0y2t3PzV4CTqjdEiSUSkjIKLzMnUmAjou1E1Igy8nfh+P6aaC7sDowDmNdCB2FnVhLoWqlCWCTtg7tVgykSGc5rSHfmCIQCLd82ChuFbSyUD+589wXSrBw4yatEL6+xFAFJMaBTBbeKsFcTQn3VcTVROufBYSugE3tVsOBoBJSJTAARkUBbS3KPIdOEpiyxFiXGEMgtUBpgUySH5uyJaA19GSC0aBPGfiyJqQjyqVFLih/SjjAzjqvMUu/CXZNdf3grSTg/Tb+OxYopggWwjXY8CYwXRg6TVCKn2EMUHye8izBpl+FBe+08nnrE8NJVaHyFIHvlP2H1owQMsJKLV8/POcnAGL8qrWvDmbVeYfYOhSDPVObEAng9XvE/EWsvAVLEylxLBjUwSbKspYiz7PKph7zQsVcKzs7O977lq/B57AxpuFCijhUS2uN4XDoyZOXl5fxh3/4h9je3sa/+Tf/A378459gaWkJnQ4p3svLy7DW4uHDh/joo4/wgx/8AFprZFmGbrcLIIS483ur1UKn00Gapo40uMSHH36Ivb19rK4uY3FxEW+++Sb+5E/+BLOzs5iZmfP9RP0b+ohBm+AFVGIy0VhYWMTCwiLm5+fx7rvv4s6dO3j3H97F5uYmrl69iquXruLo6Ai3b9/GcGQxHo2nPsuyLLC/fwDgAH/919/D3bt38cknH+POnbveI5rS0a9CSon3338fDzcf4qUvvYSvvf01vPLKy/jqV99Et9tFrzfA4WHfPcvAW5Cmxzmb+J+U0oMHxNk1xIMHD/Hhhx9jfn4eq6srUCpBlmeACGH7xtJ+y2OWwZ/xeIy//dv/B//wD+/iww9v4P333/de20mS4P79+x5YWV5ZwbUXXsA3vvENdLsdNFstvxezpxiP0/F47Md1BUywgIg8rp60ppykyBG3VA8HBwplOYNpYJOUAo2cvG1u3LjhjYaXLj2PJMk8gf32zjaKssTaGoVocp329w/wgx/8AA8ePIAFsLq25gnmG42G5yzLMiLBHg4HGAxG/j5xopler4d+vw9rQdkkk8SH+PV6PcBaPH68g4cPtzAzO4uZuVkPWvGcMcZ4r6GZbgdzs130jg7x7rvv4v79+9jb3XVyR/BK6na73isqSZIoUUEDQHqsz1ynA0IgSVNv+e73eigLF8bj1pQ8z319rJN7eC1m/rEsU7BW4/Hjx3i0tUWhtEphMBjg8ePH6PV6fp2KvUh5LQ+eo0/Ye0T1iNhab4wJRs2agsTHVgBRUa2HsczhGQFPp9fmM5XPBVhMKScZNj7rfabJVLx/TQOcpoFG065RB6WepHh+0eQi4HP2KwIYpJSAFAkEBBIIwBiM+hPoYoJGkqCZpUiUJO5XXWIyGqIcj5FaIFECWZqgkWdkNBacqRvHsmHyfGCJm19UnyrQZPk58f8CRNLNx7DxAKQDOV9bD5RoOLgoytLGoIuw3Hfwc7gi9TvAyfPi+i/pvERSlj4pKGTOaAMzmcAOFZAOobIUIk0gFclKUhBYJ6TyXkJAAJGgJEXyuJcVpLMIwCu7BFi5OlrS0xOVOi80R8ciQd5UCC8jgmdTcNTwjarspVVjp/XrK0dFeeBcunVTKnc1AyuARpMSfsSAOxsF2DM2pmhgeY+9nWPgn9fQGFtho0MsY3K94wgA3r84i3HMBdrpdCqerf88wCYAsIEAlTvKC1qR1Y03MAab2LWaYwcBeHKsmI2dCa6YoyPO9BKH69WtMccQ/ikfrKv/sSb56W2jUyIFDahssiKc6A/wVp3o8gHMqqh/rg62sjAJUb8uAM5ax+i0f680LDqh+o0/jhWnCE3nv0kwjUJhHJDD8c08AesKIS8adCkPjzuo3CHMbnWnDAMBJTeValD8M69tdO1qe8IjtJXPghfkSr9U3wXXyQLBwmji3ojGRPScnKcPAVthbAjhnrHgPnLtdc9AMJAIS9kJWRBwd0iEQCoEMiWRKQUtBFJolLB+04IxKIsJrAVUaqP20D2N4RDHKI5bCAL5XFvjzSSgMvE4CG3mKMgTi+XueDKYdNpv9WM+Twnz6vOVadaz+P20Y0+yDNbXomngymex2k2zNh67DoKHEf2O2gc6ql5OvbOb6HVAsbJZPvkq4Qj7ZNf/4+vN6eEE7JpcBUeqVqBp65ifE4LD+URFeQqgFzyYRhY0+psy4DEAn4DWS+NS9Gpow1xPcNdhRQu+jgTKm6BwOUBndnYWALCysoK1tVU0Gg0UhYvVVxKwINJluqs/vygLwAJFMYE2gfx3UkwwHo+gjYZSEqVTaFutJtaeew6XNjY8x1Gz2fRhgUJQSOLEFMesaQw+spBEPFlE5H3hwgVYa/HJzU+wu7Prs82OXVIPJdWJ606/18cvPvwFup1d3LlzB5ubm9jb28dwOPT35XtyXfIsx9LSEq5cuYLz58+j0cg9QMleaHUlrR4OyM8oScnDOtAFlHj06BE+/vhjxze1C6kosyiAkFVQSggV5BOAmjgej3Hv3j1sb+94knIG7GLuysXFRZw7dw7nzj2HVosykRUT6ncI4YngYwCzrthba+OIdj/O6vOn7n1x2lp92lKrFHnitVodHB4e4tNPP8WDBw+wubnpk8mQ9xGBtWmSQCmJw8Mednf3cN957u3t7fnQAJ7P3W4Xq6urWF5eglIpUXS4UA0Ge3wd+eXkyFazCTihHNYS2W+eY3dnB3fu3MHFjQ3MLcwhSShrJT9/NpIC1lmE6fk9erSJzc1NWIAoHYTwigF7X7GHFQv6p61xUkrIJPVj2TqwxliL/mCAg4MDNBsNNJoN58EvoK1FMSlgYZFlBIAnSsEai/F4gu3tbexsb0MIygIJa4mMttRoNVtoNVvk0RHJ7VrrIA1Z6l+tNXSpiQT4+KA4NiAsy74RSB+PoYoXQUWGDIoWcaBWPZyeptTH77MGlc5677itPK+e1qvnNJnqtPJZ2xzX81mDTJ8XdKtf6/PWz2s/zqAsGWBxAITM0sgIVMJGMgUZq+H3r4qbAuskTmH0Y5hVCkRyeaT7sbO5CVOw9gFO34HPaiec0F6lV7HemOxlFHee5DHoZLUAQMW6Ytyv3Ces00YyoHUeRa6/yqKAFfBhwFYqApNEiJRR0hlxYoUXotofNuoo36fhbyEsLBSsEH69pMihsG5aayl8z/EoG6OdfuScBSrJlaLudXqVB7ojkA9COl4p7m2n6Xk5kCNG4sdVBYF5n46B9LpMG8sksWzCMlb8OQ6fj6/F59Vxk1iWfVL5woBNFuTGPBgMPNoWW1s4njx2K2arkxBkUd7c3ERRFNja2sLBwQEJio5bg/mcGEjiED0u8T2U5JT31QclREB7Wa+2mLJQiQDT+IFqo0HMoIs/PMTieiXdbZBaGyK/NgZGBvsfn2NBxyJgMdERwXOJ+ZOkx69ReTGgcdYi6gAYnCeRcB5NEERkB4DItWkCMQM/xU0YJzyzy2gkgIoI0HErmICFUMK5aknAUOicgoW2/EisS3VJ92flTSAivUbQkb1ShrAWKSkr+BD1awjroe8MfXYk8RbCZScIPcqhIon/BjAQiDd5I6wL16VFy3s0iQAyWa0B7bwdSkVPUtNCnyYJEqXQkhJaZRBSYsFoDIzGWBeQRuNQFEgBmMkERwcHSPMGsrwJkSjPZWW1phhppZDk0o0YUi60od+U4Jx6oVRGsYBvaQWU8kdUTqjMk7jfAOA0oeiXaxl7dteuC1lPI9RNE6TOIhBNE0SfBnA66e8T64sa3nSsrk++bxweXQ+jIt6aM9TjBMCufi+uF4Mz/DqpjMdjnziCN1XmO2Ei3fqmTfcnoIcUzgwWFkUxwXgywqQoUJQaSWrcHLAwtoSxmtYqCYzGI9iRQbvVRpaRgkpD02A8GWE47BP4A4MkkWi1GoAQkEoAwkKbAtq4fcMa6BIYjYeQUmBldRmLi/P41jvfQKOZ4pNPbuLdd3+CsiRuFSEkZma6mJ3rotlsodVskmeA87BhUvOyJKFrMBhg/2APsMCOJDBkZXUJrdZFfOc738G/eOcdzC8sYGZ2BsYY7O3uQWuD+flFdDpt7O8f4Oio54nX+fkAwGg0wuHhIXniNDMsLy/hO9/5DoEI+3vQpUa/38d7773nAYRGYw7bOwnGU5ybPrn5Cf70T/8UafrAr+VMghmDW7du3YIxBq12C5cvX8Y773wLf/Sf/xHarRZarZYHc2Ly7Dgb7mhUACDPLFa60yTFTHcGFy9eBADs7Oyg3+/jr/7qr/C9732vUo/CeVKzR3d3dhadbgej0Yi8vcsSk/EY1hgkWQapFNrtNl5++WUMBgNsbm5SZj4nP73zzjv4vd/7PZw79xw6nQ60LrH1eBtaa7TbHczNtSq8Ukxn0G63HYfXyPEKCSghT10lT1qj6ms6GQ2Vl7XqpdVq4fr162g0Grh58ybeffddDIdDHB0dYWNjA1//+teRZRkWFxYAAM1GDljgg3/8AN/97l/i0/uf4t0f/wSDwQBzc3NEjF1qDHp9vHDtGn7nt34b58+fR6fVgS5DBiQlXfiCVLDagXFJikaeY2lhEesX1nF0dERcFYnC+vo68jzH3//93+PDGzfwn/3+v8TVa5eRtNvIsxyFswqXZel4shoABCaFxqOtbXzve3+DBw8eIEkSrF+8iMlkgs3NTczOzmJ9fR3r6+uYmemi1Wri6Kjn5t3JAn7eaKDR7CJNU+IsdWsUANy6eQs/+fFPcO3qZVy7dhXWaCQqgdZj7O/voSxLXFy/gKXFBRhjMR6XeLy1jb/7/vfx4MFDpCrBxsUNHOzv4/69e+h2uri4vo71CxfQajSQSOCg30ev30cxKWg9swK6tCgLjfFwjOFwUOGtciOiokQCwUvAOIJxiBhUr+6p1ZBoWTm/1KWfm6xMTt20vuBl2p7+NMBT3aATf8flSYDck4wzfI34/Z9DeRrgbur57p3AIhfh4EKxtC5QTMZIZzqYnZ0BtMaw34fVJYSlrGoKggzGiUKWpZTIpyyIj9cyqX2wQXNW7fje/Nl7NkXytRXMqIug51mHAAOecDzw+0bfCacOMVG/DZ5N7AUVq8WiVhfhQGSiOhHQVqPUJJcQcFXlt5pMiDNpIoCkSIGEMrLJtoKKM2tqi1LIqnFDOJDNd4oNRjkd9G4GsKlbBYSke2q3thqns8PCR3aUpYY1FpOycMnBhOPYk1CaMsb5ddl1ldEWRaEBSBTu2nS/BEIpCOUyxbrnZPhlLbTDDHwo/RQCbpZZeD2t/87OOez9HhsqOAwuXlOZgzTm4eO+5bBxlnE4+dqTiMG5fGHAJh6Q9YWQG8uWHQaP2LvJWustKcwhwWRXsYsYv7jEC2psTZVSBkCpVmwMh3K9o6MFqmhkZeFmINpGA+KECcojle9XQbJjhTAGbPk3yx4pNgJGuKY2vm3kAWW9QakKOFXbayv1dIuSdT0g3N2Y6wgMzESgSdQ+Rt39YlZZMeOGOcWVzgKHnHGnMbThCfPg4m4Fo7L8jOnYWsJf16+un31dXOtE/NDCNXy9K6YFEX2OPZ2q6Ap5NAnf/gBqWVh/fFwnS8Acp0Xl58Srqqu/EgKpkMikRKYSlEIgtZpIxQWBjMZQRgypEv9MQv2Miyt3ikTlGfJzqDyWSrsgakCIjZ9P+K5yCD9Kd8PTLeBPBmqeJQj1LK51EtB00rWnCWnTAKDYYhFf7zTL52n9WD+mXneAZ8fTldj6dlLx605NEA6vMwjQtf467dnVheUnPWfazGlzbTQaPgybyRrjNb76rAAe08Kl6GUvIw7RoTDw3GXCAngdpudmKu7JZDjJ/H1JeQyWLJUEHhYhHKgf1YksbCT05FkKJSWWl5awsbGBo6MjtFotv3fCk/8LIj3OUmhtUFgDaYEQmA0YQ21kAUSChJv5+TnMz89jff0CLj1/ye3ZCpMJJ+8gYCtWHONnFAOQcT+kaYKVlWUkSYKV5RUsLi6iKArs7u76EEKpjl+Ty2g0wv3796DUp5jpziDPc+9pFN+PPdm6nS7m5uawurqK8+ee84TvWrPRojr22BWd9+6Yp4HlmTyn7HfsecKhkTE/17gI2WGMMZidm0NnpuvBt7IsMR4OAWuxuLyMTreLZoOyqXFYFABvYHvuuedw6dIlzMx0yfushCOc1+h0hBdIY8Asni/VttYW8lqJjz8NePLXPuFSHBaa5zkmkwkODw+xvb2NBw8eoNFoYG9vD81m04/5spwgGSpsPdrC3Tt38ejRI/T7/YpAzM+g3WpjbW0NS0tLUCrx88WvC27uBg8vgUQlPosxX1MlRCKf5zkODg9x1Othe3sbvd4RkiRFkuZkbHJ1FI5MfjQao9cfYHd314PZKysraLVaHswWgrwQu90usjTzgNGTPJsSN8aEoMxypQt9k1Li6PAQj7ce4bm1FVoPHMCvJHk0WmNdWEaC4XCMfm+Ao8Mj7O7sYm93lzytmk0c7O9jNByh2+m6UL8OkoQzBZbea04gHj9wHgvlVLBsmvJsDCedsV7WnrZeVMZU/XxTXaPPZr4I5VcFmtRBnZOMSHWg5CRDy5PKNEW2vredZAQ8i7Hnl1XO0t6z7POfV+bjscljUAjj9RYLC+XmlQEZEziztXTyuddDY/nktDojUh8qtQjfMYDBn1kb89Ebx2T6oKUZBECpcg/BypvTZ0QF3XF6PH3FxOBu8fPH+vGEWNZz3kGwsEbDliWEFN5gYrSGUTEnEoUY2miNiViKIp076FLeO8vry1QH7cC7ADaFrJXeYaSk7zQDLkLASvZOYgcFN44s/L0sX8M44yln9477IwbB4Ly/4vUqmof1/bU+T2M9gukdPHAfrbuxN1QcyRUbT+vyeCyXIarXWcoXA2ySEmmziaXlZayvr3tBnIGk6qHSWxEHgwHG4zG2t7e9BXo4HHoBstFoODLJkGWEkTkGsFj4AOAFO/Iqokw4SipYUDpLDkXgerALnFSK3Nwjl3M+ll7szusGMYMIXGJluz5xDYEQmpnlraYQKmPCSsKAiWUAicjmBKxbxAhl5zAsDsmSERBEd60LADb6v7rwJUIAgt35yQVS6nCteqG6hLZS5jjXX4Yxd3c/zvzmvhLRZ1jXjprEYAXAzqdSuHA2n6kgVL7uUmopky9ls3PfCpeNIJBTcn0CtBg+hUnp+WfcxEwleZ8p9xKw9G6DZ1lA4d3DtBYWzsPA/Q2j6WUldw6EcRmLOFVlkiLNJHIp0clySKPRMBqFsWioBM00w1gD46KAkgpGFzBaQom0umDBOPI66/tORMh3PCL4OVswKFVVtmMgNoyDIFISTjBtdPE1nh14dNbyK7jliWWaAFcHnJ5UpgFOn7UcF2z4HhW85+zXc3Mm9maKP9dJEE/e1ATgvBPrx8dt530g/p33g5MuTVyAi8jzy/iDP/gD7O7uOo6jDl5++WUXglb4cCfuIaUopEc6Imj6TqHZbOC1115BUYwdh2ALX/nKVzyIxJYmPt7CYjQeod1p4zd+4zfQ6/Vw/fp1LCwsoNPpoD/oe04lIYQ3qMRZpngMsNdK76gHbTQuPX8J58+fxxtvvIFvf/vb2Nrawg9/+EOXVe5j3L173xl1EtePxvMCMFDCoUFcn42NDczNzeFb3/oW1i+s48KFC5iZmQHguJ7K0hFow4UKHcFa6+P/+bkzoNbpdNBNBPtFAAAgAElEQVRutwEABweHoOQeTaSpwu/+7u/ilVdewY9//GP8+Mc/9jLAeDx7IkF4q9XGxfVryPMZNJoNJCrBzs4Otra2/DHNZhPXrl3D7OwsvvGNb+Dq1au4du2KywyoMRyOoDWNTe53a60nTSZP6i6kFBiPCRwaDodkCSwmnqy52aRwtjRNMZlMqgY059nk3dRdGGa73fbk5RM35obDIfr9Pgb9Pu7du0fjyJG9f/vb38aFCxfw5ptvYG1tBYDAYDDypPE8J2JAjzl7+BkBCGGOJ8zAJ5W6QspA2mQiYUw+9ZzJZIKtrS00m9tYWVnB8vIyyrLEj370I7z33nv47ne/6+vKvBVJovDo0SPcvXsP1lqsra3BGIODgwMcHR1hYWEBly9fxhtvvIHXX38dnU4HAJHd8zyNOSwODg4gpcDs7Aw6nSYuX34eb7zxBt5//33cuHEDUkksLy+j2WziwcMH2O/18O/+3b/HzU9u4tLl5/Gtd/4FOp02ut0upGzjwaefYmd3Bz//+c/x/e//HR4/fozt7W03NinzIYeELiws4Dd/8zdx7tw5dGc6kAI+u2EMCNb7eXZuDqtr59E7OsKtmzcJWF5cRJbleP/993H37l30+3202x202y0sLMxDiDY6nRaMsWg2WyhLgxs3PsL3v/93uHnzJm7fvu1BafY+LIoCMzMzeP3117GxcRGtVsuBfsSxyusZ9adAURgcHR3SHK1xqsWKejxG/Phn45U4DiSz9d7zQ7nfQxhpCR2FPAcD47Mtvwx5ZZpiOQ3cOcs16sAVAEwD/U7zmqtf62nb/Kz76FmBWs8EaOIPzlhDoe4aaaIgsgzNZo52u4lx32JYFoDRaCQJcblqA2Up65y1BsIlBRIAlCFycdLh4PS845bfWDexCLqFlGTcjsm9PQ8ue/14PScCE20EAAvHyeuuLlxjpfuRddcATARV1o8VqWAhkAqNDAlgDTJrIKxBJgRgNCbaotAGpTYox2MUWsNISnZgjEWWEXVOnmYQQkJVvGKt8wyyTo9iCgEy1GsfyuYoCBygQ4CaWzNciC+Hv0VqJ0pNv020Dp5NTn5Vrj7SeVayH4BBWMe0pSAk6kOJWFu2DE6BYnBIxXeYQcShRN19HKDzPRCBQAAi+TaE0U0DsSt8dva493+eE5VA7G39tGvAFwJsEkJAZRnanQ5mZ2fRaDTQarU8CWmMynHHMGk4k4APh0Nsb29jMBhgeXkZ3W4XjUYDnU7Hb4ycoppJQFloZoFrNBo5EkV6yEqGTEGas6Ahsn4xQhlxTQAISOa0F1gJitpfUcGjYsOxRhsiLuPFyMQgCAIo464RMhjUQuZsDDohWqwCWhz/Xf/LX0cwDXb4UViEa9uAkBPw4N49yk1fknrGE8nBcBHq7DrUXT+0VUb1oWOcF4QIqL0AAhEcHRIAHgT8CgIuZllwpztQy7hwPz6aWu8tF3EX0Wru4rU5a4JEIjhE0jricHuM7A8i8mJjR0q3WAprAKvde7whEPgFrWEhIKVCApB3U5Kg1AKJkOSeKynFaGE0rC5hjONM8NcMm5B1G5B1SH3FmujGH9zfYUxwgyJwSfjeQrXUIajTF6ppC9mvytL4tGVa3c9iYYvfTzvuSdc6KzD1ZDAHCHO5egzd49TLn16iTRMIsePhu2rdp1tYq/Xh4+qbc3xtPiZ4CUxvRJIkaLdbaDQW8eqrr6LX62FmhriH1tbWPI8Kc6koxfdyKWZF8I5gA8e5c8/h6tUr6Ha76HQ6OHfunDvW8Q0hcOYAJDDkeY5Lly5hNBqR8tntei8WBg1iw0ncB97q5/ZNBqhWllcwNzeHS5cu4aWXXsL9+/exv7+P+/fv48aNj3FwcFjpYykBpQgA4j0TAGZmZtBut7GwsIBLly5hdXUVX3v7a7h8+bJf2316XQdaWAvXZyMomSBv5J6vIRZ2WIEcjUbo9/tI0xSdTht5nuJLX3oR58+fR7/fx4MHD7C7u4Pt7W2MRoMTlfEsS7G0tIRm03qgaG9vD71ez98zz3OsrKxgdXUVr7/+Ol577TU0m+QpQmF2EwpjECFBRNxGKQURxUrKWMb8kRSOrL3LO7eNnzXzUFprUZogYFprMZqMMZ5MkGVEjB3LNA8fPsSk38dwMMCg30er3cZzz1G43Jtvvokvf/nLWFlZQrfbwXg8Qb8/dHUIgH/sLRPPFfaS8uGmNYWkXs6iCHObqC/UicdrrR0paQ/Ly8tot9vY2dnB/fv30e/38fjxY1hrK0Ate2gxMHfhwgUIIbCzs4Ner4cLFy740LTz588jyzIMBoNgaEQ19GA4HEIpifn5WQrZW1zA+vo67t+/j6Ik2bTdaaPdasN8Sslmbnx4A7dv3cZXXn8dL335ZVhrMTc3hyzLsH9wgLt37+EnP3kXf/7nf+6t9kzIzd55TLx/2WU+bOQZAOvDKow5qY8Fms0mZmdnMej3sbezg2ajiedW19DIG9jc3MS9e/dw5coVbG/vOEBuBUlC2fFoXhqUpcHW1mO89957+PTTT7G7u+sTE7CRVhuNRrOB8+fPY21tzQOUvM6E0DYJztg7Ho8JeC3L45adKYaCIDdbP17rBpR4fWdA1HsUMMj0lJxNnxXQeZYlViZPeq8ff9Y6Pwm0qvd//T7T3k+7d7zH/1MYEc9iYHuW9Qg6VqS/OFBDSQkkCmmSIEtTlFLCmBJwmdYSIYiH1XA/UuiulNL7EEvrvJ5j3SgCnERF2nbeza5iVoU6WsRAFekQbLyvSFs+VV14piKaX/GxdfCDjo30PToIEASwSCugEoPEGijngKGMpgzdJt5PNdG1jCVUWSJJUgKADKE2SiqIJIvqaV1CI9KRySvS+AxxnmfTaufV6eZBpE/GOIN1OiybEPm3QmsUWoMzyUkpkRgLIRWyvAGpwjZpUcMC/JMAYuKaqsrrWHStOHEOVsbeE+ZxnatpGlBVB5via7MRk0P8R6PRsZC6s5QvBNhkjUExGmF3e9unqY2VLiHEMWsqcxcMh0Ps7OygLEt0u13Mz89jZmYG3W73WFo+a+0xoZyFRBaoVJLAmoIGtQgLlucVCKiJc4cDudJFoJPmWE8e/OAY0Niq4j67CRkUelEBfIQleNSUJYyga0rhIFJrCXRyXkvS0ELCZHPKgkKoPAgUENyQnY6bxUsREBoaTw0qHMfLoVnskONBCwfS8MLL53OmOibP41MZdSdiNGqzC1Bwl3MgjwnuiQFgC4utlPQCWIYJccVEus0TnF+28tkFpYT2CgtAM9MT3UM4vgoRub1yvwhASfJqShLirlIwLhug9bHN0qEwvFj7RUlE4wKWgCvXviRRUImChCDeJCtg3GsM0MKnNaQhorxUSqSCLCFSG6RCoZGm0JDIjHAKDnM0UVpNKYDEcVVpXQJGQCREtKuUhJDCj+d4xLie9p+qo6W6mdPzi8f3/7/KP4WQ9csqx1YHEWGUle+DQOmB5VOuGWSRcB6v83ULzNRrcEXcXJRTgH8+LgZiOM6dQonq/CGhkJBCaV4vX77sUqyTR8rMzIzfdGkPMVAq9W0AyBo2now8iJGmKV588UXMzc2h1Wqh2WxieXkZsCCvl8m4svHzftdsNvHKK6+gLEssLi76cJ46oMTtZYU5Ltw3jUaDhKaiwP7BPpRUPlPd17/+dRwcHODKlavY3d3zoXVlWWIyIY5DDmln5X5hYcGDAWtra57UeDgaBmXPhmwqjWbTEQ+XKIoxmg2FPMtRlqXPDMvKaqvVRJalsJYUf/IgK104WoalpQW88cbrmJ+fxfb2Nj766BM8fryIv/7reTzePv48R6Mx7t+/jyzb9MlFWq0WXn75ZczNzeHChQuYm5vFl7/8ZczPz2Fj4yIajRyj0Qj7+/tQKkGeE1ckAxTxGGs2my6EKQBqbDCTQqIsSuzv77tQqtGxTC6sWNeNVaUTyoeDAY4ODyEAb6ktnWfb+fPnsba6iqWlJbz4pS9hcXERL7xwDfPzc5hMCmxtPQZ5hkjvNcZzYTQaVWQknoMsUDYaDXLJt6hko/Nz8IS549tU+8xyl9YnC9JlWWL/YB+DwTZGoxFxLjmwksFeIYQPg2Rhmj29mL+T29rtdvHmm2/i61//OjY2LiLPM0gpPADY6/UwmUwwPz+Hbrfj5rNyICOtA0tLy3jhhRfw6NEjXDhPQNbmw02kjv9idXUVR0dHODg4wIcf/gJ/9md/hlarhW6XwhcfPHiI3d1dNwYJXOJQx729PRwcHKDdbuMrX/kKXnrpJWxcXMfMzAy0sRiOxrCW5IGTeOakFDh/7hxee/U1ZGmKO7dvo9FsYn5+HnmW+3v89Kc/hZQSc3OzWF+/UDG+jkZjjMcT/PznP8fPf/5zjEYjrK2t+XscHR2h0+ngyuUruHrlKq5du+aI1hOUpfGhogymnsaJFwbRcQgzrH+xXFZd22OuppAcoAquG20q6xCLjydW5Qz79Elj9pcFOj0JaHqaMu3c+LtpBq/YAFQ19Dxde/85y0BPUyzz6BiDNEuQpwmkFCiKCUrNiavgdSHhFAIBp9tJeH1Sxs/LyTpe1vZvwmVfI8ncs2wIUGZpBM4mVqHYmMxSOzsIeLnMss5C50knz7nRASZq8dQebmIJISqAFuuWxnHpGpCuHHQ4p0uDPIMkDIFr7k5lUUJrg+FgiGJSoEgnmKQplFTIXHIIYblt7NDhkqPAumQntH7T3qNhrHY2fRv0UzhAKfJ6stxmS/utcfKgNZQ1TkiKimFuLeKHUg4zEGFtUgpClIAHnSiixyCay5aBStaTXBxSbT6eZECOZVyW9Uhuq2Yv5neWx+Lr1vmX6oaDs4L108oXAmyCtSiHQzx+/Bj37t3DYDBAr9eruMcuLi4iz3PPKcBEkew6L4TA1atXsbi46K1EbImkW7DiTk2ONyzudEbwdFFWhXgRQqM4I4yQ0oNNBjShvRuNCWw4lHLVerApgE6h+XWw6di2aw106fxuJI1FwQRxxgFO1rlZAj5dpoKAcuCQBDyCKyqvOlBwOuDEoEliKTVnjLT71JiO1NcDWQK+/2TskiT8j74G7NvDFnHPD+yBJnc/L/DyYgEQNhIDaAH8qMYtx+xI1UUqtJXC2ci7iNsukAg3qR1JKs95JQWUIGEvS92GXBaANd46wf3tfXs8sEj9bKPscww8CQFkSiGTRLuu3JWMljCWFuLCaAidQGqyoqRKIRWgsEZtkUqJhiSwaWQEhAObSl0igQagyBMDEgYWpSaro3IbnlISSgqURsN4xXya0BDGbsUjyv86bYGccpmofB6h6rMUv5c/g1K3wP6nUmJjFU+aMI6f9kLHhdfqKxxeF37jOHNWVmKyw7r1m3l5gLCJ1jPN1QsrPHme44UXXqhcn5VUJlYGKJNTDHiVBQEoaZr4kKmXX34Z169f99lUAVptOJV6nXTaGINWi8LtmMdGKeVJyrmevN+x0BGTVtcFEbZQ9fo9dLtdLHYW0Ww0sbi4WFHM9vb2sL9P2dqYJJ33VPbwWl5axnPnnvNhxMYY9Af9Stg695tSCq1mCwAwGpFHciNvotFoeFAr9m5qNnMkiQQTkVtr0O/3kSQJzp9fw8xMF8vLi3j77bfw+PE2PvjgBm7ezPDeT6eDTcPhEHfv3oWU9z3499prr+HFF1/E5cuX8fbbb2NubhaXL1+izGDOCLK/v49PP32AbreLixcvQgjhvaTjsBMCmwjEYLCGQSkpKWPu3t4erLU+lTCDduPxmEAfhEWIhT+ZkMBqtIZ24ZD8LBeXltDudvHi9ev4xje/ifX1dfz6r/86Wq0WlKLrPHiwiZ2dHR+qlaYpZRUDtY08soJAyWOEgdRms+nBJh/CX5sn9ffTXtw3pT55jS+LAnu7exBiCzs7O5BSYn5+HgsLC2i321haWkKSUMa6JEkwGo0wmUywv7/vvckePnyIJElw+fJlLC4u4mtf+xp+//d/H0mikGUKheMPKooCh4eHODo6QrPZQJ6nHmyi52ChtcXKyipmZmaxubmJixcv4ujoCA8ePIAFcOnSBmbnlr23/c7uLn72/vsVgyYXBqAajYYPi7x16xaOjo7w1a9+Fb/2a7+GV199Bc8/v4E0zdDrDTAej2CsdSDOdABHCIEL6+v4tTd+DaPxCP/vD3+IRqtFocBZhhs3bmBvbw8/+clP8NFHH6HT6WB1ddUn0UnTFIeHhxgMBnj48CFu3ryJmZkZvPTSS8iyDNvb2zg8PMTc3BzOnz+PF154AdevX8fMzAyUSlEUGkmSeg8tWndY+nlCqRkoYqt83L5Ydud1LSh10mfPDRERNUD3VKjpeDmLDPLL3t+fFdAUl3jdql9zGvjE9Xiatv5TezT9KkpdY4vXN2EtmnmOXJGMPZlw0gYGmqzXI7h7rDGAUN6zSUjpIixsdKNYMKIa2EghIX2UDjOso7KewXqd06tifdBViWR1Aa/7UF0dNxEQaU31whEzMaIbGfaFgIEicmwLUHSFcEYQG4FNBsIQ5YwuCzpXG0ipkKrEZR5VyDMGm/hOVFkas87IZUm/91iA8zjzuqog/Y2PqQAqgupmIVA6fdQ40IkcAlzWQWNgRPBEEpKAM782ubWQgSsLS8knTNBRgYhwvaKpTzfY+JEQza9YzqrLiPW5G4cp172f4uN5HadMqlXOwKdZD74YYBMACIHEWUvZgpUkibeQcPrXXq/nM6PwMQsLC0T62G771L8xkVXcMfwwYqtxTKgJuEEpAvgjRACPhJug/DnAA5aQZbjBYExg768gygEkmbbn+eEVLQLWElLrARLhlGIgqoBzNHbasneojFHmqXez1T9POMZG6xO4RQ79jSNrvLDg10VH7Bh9Tye6X42BtQFs4fZxVzHy7rokoAGs8MIBTCIKrWNU3AslgBAM8AnPa8UtCcUJ8EIAltwnZbTY+vbYcE9YBv3gmPRs1AANHxNdu4r38on7PcLTaKGnB01kwQYQElJQbjspJfFkCZc3TpC3WSIFUgGkgrL0SaORSiIOLxSQJRZW0eZlXepmz/GlFKwhSyAEu9c6d1WlfEaM0BSBuPrxGOAxHJrz9ALHNI+N+uf6fZ9VeSYCnQ3t5hL3GM+h2iys/FHfVE6yapxUTjv2tDbWzwvWl2jiIcyjClAbg0VPqh+q48fBT2G8QHhQK4hKfIaNjgsCWyy41dsUj6cKJ8gJhblg0jQAOPGmzL+z4p7nGYGzjrNJG400TZCoBFKSwMkeNQQypAT8+jC8cFzoQ2oQhaOEjJfsoWJteD4MLLHLO/EOaHd8WA+tDwNTsBaYTAjAmBS0F+ZZBpUoNBtNFO2SuBLSzGW2I+Gt3emg4RJ2lEUJfkLGuCxsJXOlWFijoQWtY+SPSfXPMsrUNxyNULh9OFYKJ5MCw+EQWhvvkUXAjUBZaozHE7+np2mG+YV5zO4kx7y6uMzPz+PVV34Trda2y8aS4PLlK9jYuOgIoxfRajUBkGcN3J6uVOLli9LxHXH6diWlH3Cs/I7HBawlkHBxcREvvfQS3nnnHTQaDczPz8EYi/39fZRliUajgTRNMRgMcHh4SMBomsBaykqotUaSpUjSlMBNRx7NstHi0hI63Q6uX7+OS5c2sLS05EOdKOSPvcRIhmIlnMcKG/XqgiiASrYaGjuGhGSedPSgolIXgt0+zFPMKTCkXKTEZ3JCNrp2p4NrV19BlnWw9XgL/X4fQgj0+30oJTEaDaGUwnA0hJLKhRWWGI3GYC8zep4tvPrqq1hZWcXa2qrj0wS0Fo6qYYKyLNBoBFqFXq8HrY0nc2dASkqBZrOBc+eew1tvvYlHj7bwox/9CP1BHwcHB46Ti7ywHPpNvWJMMH0JIEnIO9Aag17vCEJIrK6s4Lm1Nbz44nW89KUXceH8eUdebjAY9DEpSjTyHJnzMptWhBCYm53B+XPncOH8eaxfuABrLXZ2tiGFRJalWF5eQp43nLeawmg0RFFMXPskAXUlfV5aWkKj0UBZBjoLIQQWFhZwceMizp17Du12C2mqMBgOYE3IZMhyS1m6hCQCkEpWwuoqSi6/vAwLLz9745tT7ozznifDqvTZrKRweYdZJjaOCsHa6usMJd6XvQ7Bf8d1niLvPJPiFQB3Ry//Ru9AVadw7zXoyMmWsUZuo1NtTTdB5bdKlUT1PbpDeFaV34PuRWNA1M/67IV1kimKd/2w8B79Hj1E3mOftk6i/u50Awv4rIeJ49Cz1mI8GkOXJchjCF5v4/2QJgldodAljW8G942JjPuRF4yvQdiDOFLEClA2c+H0UsTRNfD0HEyBEtogfBSLdACSgXVh/uE5+46M/xROb6n1JTtlGJnCKKA0JsgImvithKGERgkkUkH35Ezg0loI44i5S+pfbZkmJlYIWVIM2rnX01zbBdeP9Tv/zmtE3By6Nns/QRKgzYCScB6VQrp4IUv6lHLfB88mOt87nEAQgXo0goSjL6EwQBGALVupULVf+RgAwtC6qBIFqZU39NV1Kf/iPnFFSs5bH9oey5Z8v5M8HU8rXxiwSUiJhgsNaLVaMIZCF5jgmy1M7KLMAn+z2cSFCxe8lTLmkmB0GQhuZQxGFUXhQaujo6OKwkHp5BPyYnIDKAxA98AIkIWFhY4ULwvHr1SSUGZt8GSyHi2KBnncB/7hBaWLLuhcAa2FUcK5RdI7X48XoRPUcDxxET1lvHA7qTrCL/CUvYzrKQJA4VwkGaLzA9LdgxZiEiiM1RR26O5Da36sNdYEEgayePOCBYR1YYPseml8xT2az3uzUx6ObYbukwCibEbGh41ZWAqJsxw7TZlWSJAxgJSwVsJaAesQKutIAH33OpScwbfg0Qawig1hYZ3sLS25xuqiwKQsXIxyDikoFSggkZSA0tZ5dgkIKVAoCcAgNSUSXaKhMkiVQAqLUipoABOjoUsLGOM8WCWEVDAFUJSOvDNJXFhe4pQUC9iiMl7qooMQEWmgH1rCv1eHmUDtC7pOBA6fBog8Sch4JqV++2lTqf7dCdPttBrW2zntEnVX+n/qMq2Z9EzDts618naZUwAnShpgnZs2/wvnh5BfAqKNYKGB7lQJBY6XjGgDrFt9uMSeTUXkKVIvxBGUoN0O45FD79hTKcsy5wXD9+azrQONLHGquZDVdit1x0qwh8x4TIp0q9mGVArsBm609ZlPJIdtw7ltK4lUZK4twXACAM1mC0mSwWgLQCMA1RbWUPiSFAnyTMEai6OjHvE5OYV+ZWUFjUaGdruLJAngmIVFMSHOojzPkCSUXv3g4BA+EYYNaYO5T8gLrAAgMFQEEGVZjk4nR6kNdvd2YQ1legFIHhAAev0+eTKlKeYXF8iruT+AsQaD0RiTUiPPMuRZjixv4OLGBkYj4UGCerl69Sr+6//2v8H585qso1Kh0chcW5Rf5waDEUajCQF/QqCR5zh37hyM86rmfV0I4a2s0gmfRmscHfZgrcXK8gpWV9ewtraG3/vd30WjSWCT1hqPHm1hMp5QJrlmE7s7O3j06BEZzjodWGuxu7eL0XiMRquJvNHAZDJBv99HlmVYWVlBs9HA4uICOp2WH4tCKiiVQmuN/f0DTCYTtFotrK6uYjKZYDAYwBjjgSSWm+JMdMwlxCAqzx2tjXtGFsTfFvY0ykgK913QSmmP5tlK+zOFbiu0WupEL5211VX88R//MebnH+EvvvsX+OijG3j8eBubm5vOW0X7sQIQGCsE0Gq20el0sby8hLe++hZWV1bwW7/9O7i0cQlE2j5EqQjMG48L9Ps9TIoJFuYX0Wq1MRgO8ODhQ+e1t+oAriOMJ0N0Oh20mg289dYbuPbCVXzwwS9w89ZNHB0d4fbtWyiKCTodonNI0gSNFnn4ZCqDcEokBDAcDNE/6mM8GePT+/eRNxr4nd/6bTx/6Xn8xm/+Or769ltIkxSpSjEYDvF4+zHG4zGe39jAwtwsWs3pq6oQAhsX1/H2W+cAU+LTe3fx4MFD/N33/w7DwQDXXriGjY2L9By1wXgyRu/oEEVZYtAfOFA3R5olmJ2dw8WLFzGZjLG989h5gZHX2wsvXMM3v/UNnD93DktLCyjLErdv38ZoNMbs7ByazRZG4yGGwyGkcvu4EEjTBFmW0rPy8kDgECXlFl4hBH+GIeMaggEQcFl4pUIqFRJB3uUAKXSEKJae44WEduONaGcp3MunHc3yTrz/8Tn1pzTtGJzwnVeUK/qFUzzjTMmI/mbv+Ago8p4s/u/o/xooMA1g4ruTEWNqF1DdvMgeeV5wg3lfjC3TZ3sEp5azeqkFQKIugYZ1KoBNZ9GVwnj1j8i6yzhDtSk1JIA8y9ButTDpU8SOMAaJMyJZ7ZwImAdESlgpoK3FcDIGLCV38vOBSasjHdJaEVXNzSABHwWjBa+69M8DVuB5wSBLJL9ZgPOyM/8vRW8EuhN/Hggcoafh9EOQkZw/Ay4JkxBQaQ6VNTDRBqOyhLYG2pbE3SSBXABKSKhEwliLwrhII8djKLUGJP02sUHOhIgy+cX6o6Tne2IwrwWgw7yxTs+3IopDEUSBYgXpgEaCvLBUQh5MaUrPTwQ5PUlTJM6jXTlQCs5TvXRheG4HhRAOjFJUT+1lKePCAFHJWAjpwERjoI1BUZIMy5iDdNiFksp5JDHARDQp1lgXFmj8Okz3d175fmxVjbKx7hF70J9FH/nCgE0QAkrxg0lgrfEPKViTwyLGFiiKe2+i0cgjgM5GncSKa7S4Rtei61UgHwgh3X2D1S0swhGDPOKFnM+lP31ImYUfsP4h2QDYEGhJniRKhmwvjIorQQCCiBBs6yawATwXk9e24mNEbTMTDqACr/k2OCr4hdaBM1GPWKDq2SS89yFZmVjQdDHD8Fdxix8jKgIBiIcI/Rc/Ahu3g/7260bUGBGu7l7Vxd8/LSf8stORv1FoaqUQWCLdOWHxAKJ+dufGAouovMIIsdH3cTgdZ6fzz0KEv8oCDQQAACAASURBVLn3OXufFHC+CSCByVuJrCejNQIO5bdQwkIJIFMSmZKYWAuUpQsDpJqZsoR1vBzWhXiIaNGg/ci1xtLnGGCv5yWyru+iEeifj29j6H1/ln3CIuWMJBXgqQq4VENSn0Wxfk5F9bBhDlT+xpTv4r+BaJwJ/0MYygEI9YBouMRUwO1Er6Mpx5zVe2kagDXVq6pyAD/XurDDn+vPe3odRP1e7nvmCPAcTnxTCD++5LEbkFjFc/Z43xFJdKNBvDscenNSP1nLRMYh5t8LAdpASg7TDtfnfUAwuCxib6SqNYjXJNqwHZ+OkA7klpAy8uXypJv0QTjlnvcHCfJUAkB7lwM/yFMqcKdImYBWlNDjVCfjjuH6SUipoFTiCCJz0Dooo/05gVIF2A2eAQjPTSdiEm24+0u3x3L2tQKlEIAEkjRxbSXgwGgSWhkUkVL8f+y9W68dyZUm9q2IyMx9PVeyWGSxSlKp1DOS2n2bdgMzg4Zh+xcYMOw3/wHD/iWexsD/wK9+m/dpz0sbdjckwxi3pjXTLam6q1jFS5E8l33NzIjww1orIjLPPiyyxNJwAAVxuPfOa2RkxIq1vvjWWmidBYWC5VUoP65ysNXtyk9Vc+a8O3eB2rHR66yBsSxoGFDXQN4ezkZEpaYbk150ycDieA2Fi1iMvFILgIQ1tFws0UiMnpPTI2aHBaDtOiwWCzTCblJW3Gw+Q4zAZDphsGk6RT1pUlKUuqpw97330DQNTo6XmEwnTOUXY8T7Hn3vB+mOS6VwTJkv46Tp/kPnIIoRwVuQFHRwf4zSPznG5fAe2uGjzF1kXr0qWgmg9t57Dt/56CN07R51zYstfd9h326LOYlQ1w7OWRwdneD87A7ee+8uPvzwIe7evYs75+c4OTnGvt2jbfcSU8VzxiiIO5aAjWZPMi/K84GZNKVLVl3XEqvsDj548AH6rsOzr55hs1ljOuU4Y6YM1g9hDwhgXFUVx36rK7iamfsfPHiADx8+xJ0755jP52wQeGYIKkteWfO8InW47djAMDg6OsLDhw8BAEdHSwAc7wkEhOCZfej7pDoqUJ6C6+rCGnFWZlTAfLbgzER37+D8/AxzifuVV8uzVwDLdY2dAhlfHKAXUTOAiyxnhYON6Ywm8RwgOghBQaIiXAQof7IIgddOoX+lawxbaLih+B0oqkvG8bb0TrXNkhINjObIWGxL1yEa6I56ncOKzA1NfPCbVJcY6bPl5ahUihGLfbFQUm6eV27jz/H9x8fF4p4KMGrfUuXm6/WSNysDo2Bo7+ju0nbAUEcp2ywWbVSWMXsjgkHL8l5Jd5NYO8psIZnbTakDiCFUwpPJposRXoDR5HmgelbkkCmJnQTV0cvHMan+MVBapIsEDpQNXQQqxlyMoDDU0dWrI9k0IuMDFY0MPi/rWWLPgrj+EjNJjw8kJAnjEXtxbfUeCqCS3DMS4CDMn+KN6Kg1iDCiD5Z1JtFNyhbRd6IyozT/hjq5ypkgtrPY3JTjNUfVadJ9Cwa+9BEW04V77yBeXa4s0WBL8U2eW9tT9d0kK0v9MWYbVwaujlDVY0wyoG5Kj7JBxtdOcACGtsSvs8j9joBNjOzN5wucnJyJW4EX+vBWAljuRQEMmM+XqOsqUYEXiwWcc9hstuj7Lq3QKahUGqwhtCBSSnAAwHRr3U/Eqy9MKzewxN2efe4hM2Qe0Nz5GJSwxBN5DEDfeQQfQWRhKKKyFUwkBNoB6BlIDUCER9+1MNZhtpjCkcHL4LFdrzGxBpOqgkVE7S0rtL5DL3RKknhAzkr4e2NBiOzeq8pNZNZLosEDqSPrWmNaDTHyXCrIRPhBzyGIAgZGlmEl+LgpFIGsaJQAUEZDixmQwL65WjcdyKlX5M8EWqVtXG+C0BvZmVZ7k4wjzQMnVyVlhbGQ5leQJ2s162x0MmE4RBMQoyrsfI88RhnsUUPOOiOTjChahu/riDh+FhEqYihLwSaCKpGApoQIyVDj+8TKoLI1INkJAkJS6urawVQOeyL4fg8DhwYWZIH3FzPMG4e/f3GBi+srYDLHYnmKnfd4fn2NPkZUdQNjLWrrmNofAGNbkcMWIVp0XYQPHbrWw/eB6epGKxjTu8tFJxidxfUNxvGBt5w/LFnZMQeUodw/b1OSii3FtW5MSXydZGQc2Du+fqGn3XoMyvrGW48pasjPiOy6G2l0wjcshyivt4FSt/mHy0aozlKy1vh6xS8VLbcUQ5wp0RjDxnkIKfGBM7wy5C0Hrw8+YOc9fBBlD7z6VTmbASCIcebZmPO+EvYDt6QyjN5//32cnp7g6dNn+NWvfoX1+r1bg4Tvdjs8e3aJ6+sWV1fMgD0/P8NsNkPbcuyFECL6jt1LprNJYsg4xy5q3ktjVUkaAiB0PQMCRMBicQyA56veZ4PNOofKMCMpkGYTsSAQfOhBwcMCqIQOOQPLEGMk8L+t4OoGhjgjJQGo60nxfrVfQGJDsVHKwBLBGAfnNM4T38M5oYoLMMXuONWgvygwZ8Vtplzk8eKGVdW8mNT1Hk3HilFljU4YiBHo2g595znI6rSR1MQ8L01nE1Tibqb2Y3IVuKXPhRCw3e+w3QF2xn2v7XrELqLvOnFz8Njtdhyrq67hrIV1DtY5IEZU1iEQX8d7j75tWXRbkwAG7fftbo+W9iAQnLFAjNjtWiAC89kcsxhQ1TWsczg/O8XpyZLnHrnOe/fuciDwBKoJC8QQB0c1hK7tcX21xna3xWazTcAckN0qNSuexgMj4mx2rO9UOLQ6GWO8wQxP4EEKhgokTVb0iKqqUU+qrLcFn/ojxOAxRvvwDRU4lel0gk9+8D18/PFDfPSdD7DZbPDZZ5/js88eYbW6xpMnX4qeyErw0dERZrMp7t9/gO9993uYztiNrqmZoed9D4AzRnrfY7/mujVNjbp2sIaZ1tYaTKcTWGew2awBArqWj72+vsZms8FkMsFyucB3v/sd/E//8/+Iy4tL/H9//W/x+PFjfPHFl3j06Atsdxu8ePEVj4WejdPJtGHA8/QMD7//Pdy5c47f+/3fw+npCX70wx/jzvk56kmDzXrN72zXwvc95rMJppMa+90OX331HOv1HMDiYLvtdjtcXe3x4P4D/Pf/3X+Lx4+f4O6dO3jy5Al+/vO/wWef/QM2my02mw3m8znee+8OnJtzogIQrq8vsd1usFpdY7fdopk0uHP3HMvlEv/0n/4zPHz4EN/5zkd4+PAhjDG4XjErcjqbopnUmEwauMrCdCYBzYi8Wr/ZrHB1dQXvO9SVgxM2GsUA33Xou1Z0Ow4DMKtr9L7Hbt+B2PdRwC8eI5U1nBDFsG5lidD5HqHrgb5P54S+FzC2R1C2021FXe+kMDFiOM9pl9cYK6q7jhUU3ZaYApT3qPYkiYyTTqnsNyBgjNWWRmm6EuXb6vwLZCBiCDah2DbWgzA479Dxt7uc5+tn+/qmrhdT/Jy3o9MMLPdyW8x3H4BL8eBXZtZoUqhETMhZQllmyqV9QN+1QIyZSSNizFkHZytYRzDzJc+3toGFxaSeoiEH3+7RrtYIIBjJWNtL7Mje9OgsiTsqx4HMhIKscA57GA1+IdlKMg+aArig0QViYaOVV4xlWBL+NJ7SYrm2qeR+zGBzYBsxFu86wT8p9lEH6iVurty/oghHbLsGscW8gdg7WmV+12o3GTJwzpaYSQJNNDC62lM6zkbOdaLDGpBxIBC64OHFlmAWk4ExPJf2kBBLyqqNEZ4jUIHANDLvPXyIWCyWWM7mqKtaFgvEXZEAZ03KQuuFWaS6FN/YJ6COiDheI7H+oKym1Ocguq8xzHKS2IAhMGPOR3bHHPd3GIKFTa6BpgTMKb/nCPYYYsggk3iAHPNJdUFdsLqtvCNgEwDK6fVYQdLAq31KKaxBFpku3qTML85VQ5q3/GUjaeh3yKBTSCti1nIzqEKlWTTY8NPVTG16HfZCiS53aY9PqygKfEhnMgxGBB0QsgrJnYUDP9bCbvK+RzQOZBy7bhnxM/WUnofEUIjI8pbd6wIHMgP/8eArOpMY/Sx8xLgtZbZYyFEGrSKmfBp3zoD8vCUND5DQRcRZDLTkOpYTIJB4uaTgS5KTRUsPpovBY5gkfJBGUwam+MF0lV5nCwIzgRC5jqEARigSKCbxASZwa11yfCmthD63MTlmgMg4lNROzd5nZSBbxIIOLtNCLI0kynMGEWAN9xcf8/HggOSODLoIMEU8wFKEA2FaOQREuBgQ9nuQa1AR0MWI0HUc8K7vB6vwENaBmOcASBQDYQOGmNz80sRWijF9UWOdqABcKL1ZaFfM+0cv+pAyZAZ0ljy2s/Fz87zy99jFanjgbabP65VRa7zRmdpv9DoACtkz3vGaVx0996Fn1u1f57KoE5z2vfGoPNiur2wMGTN8A1F85Nok/RERwRhWuAgMVqdxzuM/AjKeefUOgMRlCaIwlso1JABwjefPX0gMwO2tk2Tbdri8vMR2u8fLly+T+5H2OwVW+q4HUY7R1DQcD2i/32G72Yp7twZu5Pbetx3aroMThi7AsY5CelaOFeQst3lIUpclkg89QvQyT7HSZdL8ERApCMNWzi/BeCro8On9mTQXhqDZwkJiARNp9hI9L6R21fN4fwTREGzSwtfl1UyNaxUix2gwhlA7Vep1XiMQ9XCVS4qlrXhOrOoKVeXge1baWMF9VX/juqc4UjLJqPtf37NbZfAhUc2D58CfRpkeQGIgqxQLXvpuZBBMFUOQ9McYYSXgK4EQfEh6BkHo+MbIItd0MMYnqc4RPvLihrNZfsYY0bY9ur7Hfs+sJ1VkVZ9R3UgXTHL8pTj4HDMdh+1WHivGi7q/l0EWEZOsIMrjEAhgYpiCVCQpqW91boC1FovFHKenwOnpCQDg5OQUp6dnuLy8wPHxMmW0I+J4XIvFHA8fPsQnn/xAAlXXADh2VZlpJ0Z1PQjSP1k/UHnhHCv2vWeXQU2fzQkB+gTQLRYL/PCHP8Rms0HX77FYzBFCwNXVJRtbMSJKIoEYgVBXQIyYNBOcn53hwf37+N3f/THHQPrwQyyXR9huNxLDrMN+v0MMEZVz3OohSJDhw26iAI/9ru0wm01x795dzGZzfPLJJ5jP5/j0018xK2y/Y4acZNFjV+A5OIj9jtlfkWO41U2N5XKB8/MzfPzx9/Dxxx+njH1d12O7ZWCWwXWT3BnLP+2rXdfJtXP/1N4chWWt5qCOtRgKBrvME0mnIknMQpnZhKDsr5COjzIXRE2d/oqJ6eYeXbwsdR6M5utS8bnpUqdtkLaN5/rRFK/xSw/VJo/XcttQvx7vB+Lo9+3ltuPG88Xt5776RmPW8avr9XWVpmGjxuK7/l/YZocWvyK4T+iClbpBKMzhKjc4GhBZGhn0H7iQqOwzhu1SQJgxzA6kCuCsCFJLTaoRlY0i/ScEdJ4XyrKnRFmD8jlp8CsDnvIXRG8av7s4vAKDvvlq2e5RkzAme9LQ8M1EsV1SFlWdB8aNTZCx6eW18MixxE9q5B7qrqbVjMV7Vq8cS0BlhlpoWjwlSlnOvVwvJ4XKf/qM+o6C2mHShKRJmQjJTuSMrFIftYfUFhfZk3CEAoBRuWYEdIMhxMCtP1z0FfavtFdiGynIJH9qA5MxTEQBkreK9oEEDlFmiWUsuGAy6Xsc4AS5P1FEeq5yAfpNGIrvDthUKPu6CrfdbvHixYuU9QfgbC8aqFMzXmy323Se0tdKw6pUuMqGKrPQlef1vce+ldg0wibp5diqqmDEzS+IK0XbdQDxSi0ZA997WGPgC6WUIoMczlUwMWK35xTXHgTuC4TZfIFpXWOxPMJ8eQnjPdq2Qxc82q6FATCvHPuCEtP6o/cIEixdsx/UZOCIEJjSJELipsDSQavsGuHUDFkmbMFAuyizmAjRG4Qw9GtNbmCkFOryBbORmIGhmASY3hfIoBELv1xnBpDKZxCwJSqlOiYOU3628kieFKIATmyAEWKknNhOnyAUx0QgRD5OJxVdxVJBpfeUWyArIxZkKFG8LcSogoBNPILT+aUAhLafzgIsdRBMZKMwCR5Wki0Ap5OBNPwEQDCEuTVYVg7eEDofYMVnPAC86td18JJ1KHifBK3S4o2kE9Y4G0oHvll+HZjm1yuHjKPbKJ+677ZjblNvDm1/nW3j4TRWRF91z2+7jMGo2yaPAS1+gA4Wx4w+x99vlqgzuozhMo6wuMiRULcFzGVmoroe8ogJMaBvOwYwiuQQXd8CNJOMZjczadR1LVmU5ri6MgdWkYG//uu/xr/4F/8bnNtIxjlgMpnK9fg6nBWF3fL6vuXYA5Zj0bA7U5cCWHOg5imqqkLbMdjECoEX43qZsk0REdquS0Gwq5qDPntZKKkqB+ss1NQp57C6aRKYo4Eqa1unbHDWWmzWG+z2O1hjUzp1V1XMgqocZ3aSN1hXNeaLOQiUM6RJwHIjipAea8ik7GWa9aX3Hl3XwRqD2XzO4JvKcOtgBHgBIpyzOD454dgujmUoGQ6EzrEdmyRwu55ZY2RZKbSIqOtipW5UnLM4Wi5wdAzUVcVt41jg1ZVFU1f8PuQZrbXsAiHyl/slj4V6UufYVGLtkdE2kDlEnzEpdkZcHSPHdYz8vKYImhwFkAMAU3Gw+KgKH4DepxkNEUjA5qSpcLScp7lNS8nW5ux4Xdqu/Vd1pLTiWuhGOm7YuOaMQYgZRDSy4qrzBbPCGficTmcC4OQMjt4z8NK2e7StvxXo7fsez59f4unTPq2c1nWNjz76EF33Pj766MNi0RAca0jc0/heHa6udgkkYlAxM94VWNJg6iH02O289BNhtgsrT91T9TzVUQFu28Vijh/+8If48MMP8aMf/RiXl5ecqe7LLzggsLz/2XyOyaTB8dExzs/vYLFY4OHDD1A33KfXq1WKI+e9l/Y2qJuJ9A/WQarqVar70LBcLpf44z/+J7i+vsb777+Hp0+f4tmzZ3j69Bm875Mbsc7ry+V3wUyxY5yfn+P4+Bi/8zs/wHK5xHe+810cHR2BCJLxr8d+vwODGfyMXH8Oul66ZcQYcH294sD4XYfKWVSO5ZMzFpWz8D3LTHVjjALWVqKDaEIUdSuyRKgrh8oa3hYix8n0noP4Qo1JXlQ8FAB4XMbazTeZq6n8EkfbXnktdn3KjGEkUBwoQaX8Gzi87V0uGbT+hppP0cBZH9U2Y3BAF3OZ2EPD00YXM2SKQJMKnGijIwHr2u80TpcRtj3Em4T7J9fJ2Rz3CIH7rImcybqyEjQ/lgvWhuePFGMo+V2MSrmNbuzJoQ0EdBjEsIiDM6loFwWaSkYTtyrX0RkrWbgzQGGLhYYIcMwgAXN1USG1gbBZ1eMEKAAgIxALKdSSmdxj90YqvpuSXVs8mE7JgSK87Mscd70vIcgigxGREGLWL6P0ISv7OLM7Jddd9dhg7x4AgfWGIHOcelj5vkeUWI4M/ESATFp4SWQIlOOYElgEQNhW+d2lbwryqauwfhbHeZ1fdS7HsAzAprI1x0KlCCOB4p5lBuFXlXcEbNIJgCurgU53u11KD6yDcbFYiE98nbLW7ff7geFYKt1lGmoAKYbBeBW+PLbteuwlO09evdYBa+BAiULW9X0Gu3wvgcCQlPCEQsiftRZG3LSY6sZABhHHZ5hNppjMZphMp/DbHbrtDvA9sN/BEDCtFjDOcbwL6zh4dNdDY4sgBKZmGotIBtGwUh+CHwVFLNhAUb+E3MkUOZW2IaOAks2gS8isKhVZA4NTLyAGpU7yKVqTTjjySapEDFpML6PHFGNABhXpp0m9KT8bAbryyjYy5d+aPXB0R022k+IUyfc0YUXGo8zgmHI1q+hTsFnhQcFsijq3sYmdwSZWNLKwyPWKhERLVwNP1z0seHWAinapieCJMLEWM+ewNwY+ephYgE3iNx0kRblPvugSAFcFF2tsbDQUrXVA/L0z5U0Bp8xGPDydv2pbeZfxtvFveo1jxvf6Nlr3NpaTlpLxULbXjXNGn4f2HSyqEcQCJEYSPze+GyomyiRaYsqABOQsT0CmodcNJ4XwPgewZiOfM4x5P7m1n3z66a/w6af/O4hWKWOXuu5o4bg5J4gx4uLiBdoup5pN0oWQEl0cHR2haRp0fYeu71OyiqqqcP/+fUyn0xSrcLVe4+LyMtWViND1HbuRTaeYTIZ110ys0/kMddOgdhXqqoKzFSbVBJWrcHpygspVePnyJVarVYp9qPfQ3ynotWHw6PT0FOp+pUBMeYzWQzPENk3DrgF9n2MN1TXuvvceqrpKSkozmWAymybFpaoqzOYL1HXNIIzVhSLuDHXNwGHbceZMvb+srcC5w30bgGStnWI+y90o9d8KwKRGIXxzVw1IrFI1nmFvZ5e8skQGlDTwKYM8qmySsL9YHa4dK+ZGorT6IDE9tM4kbnAEYML18YGz+OV4lQo2GXSdvdUYVb2pVCiNUdflPEtmcNGMwJoygCizsJqmHtzDe4O+pwR6dV3AbS41fd/j6uoKFxdt6tdHR0c4Pz9LwNih0nUd9vs9+t5js9kkna9caMwgiEn1b1tmPznn0lg3EojVyPOGIEwnySCpjLSqcvjoo48GoN319TW++OILaNZk1V8byeCoSQUA1nmvr68l8+I41hYHqNd3EyNuzUbHZdiBZ7Mp/tE/+h147/HBBw+wWq3w+eef47PPPsPLly/xy1/+Em3bpuQCp6enWC6XuH//Pr7//e/j9PQUP/rRj1KcOwBYrVbM5uoYWNJ+qPJBwcqsf7PBvt1uWKfve1TOsouqMfCG4CR+WvDIRpMwlDR1uBp6HORbQhNYC6fs1xhZp+GLqOaUPguF99aSgZ4D8+MrtuURMkKXXmfC120E0f8KZkOquYYEGc4rwM1t4zF+izh8o3Lout/0OsM++oaVS+1aQnIjey6K3hDHb4wG3/JrIFiy4kbH9Sp12xzrCKyvlLaR3rAAVgyYyWRAAkRoMiWO32Stze5xkY+PImsVICrjLx0st7yMqNWBQQ74dMtTU9GcsXSTy9usPCe7CDrZX4IuRX1sTCCJytoc2Jq9Jso7aL+OUPMq3vjHSvnhSTn0fbGFoBZUAmFAMAIelp4qERxDKqhxIxfxyGAbm60koGXOcqnB09VsJuSBETWYts8ZX9UN3ss+nqy1fQpLj2j4SmXApRAEyPPwAHgaA1EjvT3mHfimJYYIyAJcHL3f8dx6W3lHwCbueHvJlLJer7FarQYgkiq/rli51gk5p0POwNKhPyALo7HikWoiyoKzNknoGGNK9+wsT5DsI8l1UzekuqrSCiUZIPieX7DSdkWZ9m2LXgx78sBOJtPr1ZpXjQloplPsvEcwDPBUkykMItoQEdoWjnqmZabnrlCTTRNuQEQnnZ5ihItehGAOOJfAHgrDAHoEFnYEBnBCXic1yufhXJoiXLOrW5QL3JhnYzGodJQmsIm9ag8G3B7N3epGk4WhOjRqDcoeJZdPk0Vy0tGpnMGagW6Q6cspw0IU4KWAfrQYAvcFEIN7RIhQGjmBiNvIIgeyTO8BAMFzYHWp41ikltwuFU06YZl0FQMjWSYMNydnpwO72DXOYVI3iNZiF6Q/GGbUIXCsBNP3sOpbnFpAV42jKD35xdwWYym9QZ4vUzwC1YXKqe43UW4DSW4DUNSdcXCNQ9f9mt+6rVw1GNz/a35/22Us87R8XTuRaievmFje5Flum6TGsjsBCsrU1NhpfJVUP1P4wyvQoddQA0avM5vNcHp6ihCWifk6LsfHJ7h//4ewdp2MvdVqg3bfMmuRzCB49d337oAzXu3F6N1hs+FzFRjSjGDT2QzLoyPs93tcXV0xyDKbYTKZpDltOp3CSbp6BXm0X+kcqFn1gGzcdb4XtkRMSq6NnBHv9PQEdVWn+DPqvk5EycguWS/6fMoYUXd2nZPL96jtPZ/P4SrHSpcEVfY9G/Lz5QLW2sSkdE2dUkMH7+GcxamAVaVCpt3ECHU+aCgscQPyfY+23eHLL47x7Nl/AeDujff59OlT/Kt/9X/jzt0Nz9fGIHg2Tq2xqFzF3VsYM2kF1zpU4q7PLo9ZLdZVzKaZMCAI5FTExaINouoXHCuhrpsU64805oLM567i90Gs6TNgqveNeUzwPXjMWcfvN8QcF4sZa5RYU1x/ZeWpfoPUzjHGBJ7oWElyHzEZJKXRXupk5V+56Kd9RFMxa59bLjnuxqFircVyucDxsU/XqOu6CJng03FlyeMxuw+W4I0eo3VT4MYYkwCkMTter6WZKPVYAMJwQgq/oPtijBzoW8aK1ss5J/FIN6ldQgjYbre33n+32w1+9/3hNtN2adsWHAQ8x+UqGZ1nZwzY3b17F+fn56ktAWA+n6NpGgH2zjGbzeC9TzG/tO4a10zrqmCTgsj6bKV812dzMmb1PSlwXYKd+lf2ozFoon1Jz0sGXmEYaUnzXFQj9vZyA6KgV//mc9LOQxd89e9iW4r/hPwbouHGBHQM5+zxthIgfpvlbYBWKle/rn63LRgUSA9SJsykmIK9L0jsGwGcDlyE6yL/q15DAvREEIxmfgMzIU2Slyw71R5IpIKovxmwqBRsAkSvZmZTBMftQeBA14gxLRxzPFSuWBCiwLivap2GSrguvBdNxA0NZX6lGLHyHAqKJZuGIHZK3k9SZwJQCdEiLXZHBZIUa5O6aoxBaSeNC6RAU2lzFXASz0M6BoCD1lCpacfCDsSNIykBTArWKrOJcHPRUs9lr5PS1so9RTVEZVeqTWZibldreI+1wwU4iEzz3gOR2VScLEEys47UzzIhBJ/+ep+Da7xi39edMy5lX3mdex8q7wjYBEQibDYbXFxcYLXiIII6WRhj0DRNUip14tdJTSd2AIMXfBuzCcgTvJ6jxyflQ2jf1lrOXNIxcFRVTpQb7obOu3TtqnYZbCKgb9uUclW7b9e2aHc7tF2bkM4QmHr3/OIltrsJ1FeOZQAAIABJREFUAhGmyyUHOzeMkDfVFBQjdpsVwr5LwEJTVVhMpnDGoLEs3PxuB991vMK033MQceLBUltWdI2s+pR1S/NVzDEXym2Qa5A6wIovvYRoSwj2QRqwGPEJ0BF6dLp/GrB6Tz4zM51YopmiY+sKKokg0LsqPpL6VvpX3sEUyIfWNVMSoQCVKOBaP5KqWemz6h5AxiDC8hFJQRUapoBNFhiCTVGD5wXx0TcFup+6mBgDEFCKoSVLFoYsA1uRYCNgo5cAdly3igyCAWZ1g+XUIwbgygeYEFAby5ODBrhtW5iuTRntInHGmkgBAZZTCpuoXnuvRBQy4EQDwEmfhcbHfcvlEMPpVqbOt6CgvWvlViUOQ3CpLINt9HWq+uuW4QpJeX/9XhrVapQo0xWj98erb7wgsd1usdvt0HUdNPtZCF2KuVRVFY6Pj8Qd7uxWlsR7772Hf/7P/xmqapeMmadPnmG1WifjqOs6bDYb1HWFj7//MRaLOV68eIHr62tcXLzE48dfwjmH09NTxBjxt3/7t7i4uMDxyQk++OADrFYrAGysHh0dYTKZYL1eo21bLBYLzBcLbDYbfPHFF+j6HlZc3hSAUgZwYpYYwmK3QzNpsN/usNtu4fuAbtvBWouz01PUVZ0y8em8qtdTY1WDSR8CEgBgIhnUemFndT23Q8kc1mItB00n8AohL+AwSEOWY8XxwowYlxW7pB+iZ+ucrnWbzWaYTqfYbbd4+fw5+v4TtPuPcQhs+vTTT/Ev/+X/irp5jMVigbqu0O5bdPsWk6bBYsZgke853o7eaz6fy/F1Ypix3hGw3e6w3+9xdnaGBw8egCi7Gpbtp+1Q1zUzvO7eRdNkdlTXd+jaDs1kgrvv3YVxDvt2Dx8Cjk9PsDw6Erc/l4zs8l6TyWTAljGG3fadtWne4+x7Y7aRuBhRjocXo851Q4OGJ0jtB9nlrARr1cWMiFKoA31+BYAVeFmtCFV1WB5VVYWzs3PcvZsXFhVY0L5a9odSB9R25eQvMfXnsu8oyKTnalxQ3ZbaoQBh1cVN2ffeczB5BZYUiNR6nJycpPooCKVs/M1mMwBWFMyZzWYJaFXgZL1eJ2CH4ypVB9ssxigyYZvGJbP55mkMTqdTzn73wQcDIF/rqM9e6tbKTtQ22u/3aFtmnHHcVP4kosTOKttWv+tCbtM06Tn1faos0XvrO0+y48C8VdZbx4H2sRJAS6v88evnrvFtXgtoehsoDMCAB4a6EVHhXv4aIE1Zp28DcPpNlNsWw2RDAlFKsElBLJNyyhMvRpeU6FiA7Ho5bXSCuGxnmyGI8q3f1WZSwygBKXIt1vEBZwiNc8yA0UVcqa8jDgyOEBBbcegiAiQZirroaf3CyJ2OgZmYvuszZdBR6hMVYFLrCMM/ysCSPoeCTeUiKWelI9TqRqdgE7Hdweezjs+ZJIv3RbmN1Nphdq66yAGgmIAgxJBc6YojCoC4bIfIIRYGd8xAUSiePsieMvSJQc7Jq1cvtcDRk6RFFkuRuRYCrhmoXSrAuwLnRrKyitwJCoJ7nmx94IU4lot+IKN4ASwD9uPP1wV6Di3mHmJBHbpe+d0ag9pVN8ITvIncezfAJpENXuI66IRMlBlNCjYNg13ezI6gk7cq4+OVqXLFZLxiP56I0ko6EajPKyV83TzonLXpeCKlk2caXdBsROCAmZydhZ8p+h7YB4QYsd5sOMtB1wtoYVLMpU789znYGSUQxseIVl0DA4MunNlJpYAEexa03ksb8SCMCRAAykm2AIbkOlFpoqrQeQMKBQpOGVQwkRk9SMBCbteR6jpq/2E90rHFSYNJF0O8KGhfSi9RJ4pirtGapEDDY2El/ryDa6jgoTTYNPgcB6KjwfeExogCT+kf3ynFyiJtBRWRZcSaUtSVdVUCa653+h6RfMqJIDRXDlZbOwfXB5Bnd0pLPLF46c9RMywUNRiWvMqjtUVR/zg4Rs7XaheldBHM53375dAK56sE9VtSHd+pUoLu+vu248Zg3ID9BHqjSebWUgLCo/dz6E9luhqvA0VAFwxGiwtqsKlc1j8v8fAUcLmtL8xmM9y//wDTaZfYAXfO72Cz2aKMQ7Pb7eCcw/v372E65Qypq9UK7713F/fvvw/nHJbLZTJKLy4ucP/Bfdx7/33sdjvcv38f1lqcnp7COZeYUa6qUNU12rbF8fExG1CKeEtRwAnILI/Oe4QY4KxFZR36rsduxQyMuqrZdaUARDh7Hxu1ZSDl0rjXdlIDVEEGbc+u7zCdTPm+zrGiRfn9OOvgQ8Buv8uAfpQ5MSpHk0uK5RCHLBm9P4CBq19yjzdK1T9cSuOa/5jNZMBMo6Zp0uJSKFyBVDfRT62HtosyutQo1jYcjzkFiZxzic2mbd3JAlHd1Hjy7Cm3OwAQMFvMMZ3NBmNB2R5e6jGZTDCZToGYA5U3TZX6RDLGzFD+qSvBEGzKczdRZrhxkgqN3dAPdDStl4IRCgSWQK6OPwXdHj2qsNvdBZBBMi193+Hly0s8e9an9nTOpTbTcT3OpqfvVp+x7LO6T9/jmH01ZjiW7V3GtFIZpP0/xphYS+W5YzdTvb6OOdUn07sIYcAYVHBd+7cC52VA/nF9OTD6JLkEKhtv7Paqz53ivMlC7phRVP7Wohm69DnKZ6yFpahtp7+99+jaNjHBcpavmx4IY+Pn0L7yXZfy/TZmU7rOwZYbHPWNAKa3BTiVi7UAa1Vj8PO1rvMGx/6my9cteB36HB0l/2fmDoAUG5cNg5gME9LfI/3z1ZUs9MAYxSaQ/iiXzveIyWjQREFGwJwQ2R2UjDhfEWDFVhAHkaSvE+U5MLNzburMMVWLTx6865ifkjD0PMlAU7ZnCOW91boo2Ut8vjJ4SJ+/uK5RmyYWtYsZ1CloAAwoxQJKimqfSl8vgSXK3/P23AOSNwyJ8YnM38pvCwdtkQBmq0UqwjiQeKuU94B6zsSi3dgGDMlEE1sayO0pN1ZviQx2c6KplLCAsq4dYsznaB1G4+BVwNB421j/GB87Xlwe7yvrYA5c6z89sAkAiLDb75P7XN/3mEwmODk5QVVVWCwWKcClTiaqdI5XX4HMYCpXxXV7uWpSGjEZwMoTXF3X7IfZ9ZxGUBRN5ypUknp42jQCdnAX2e627D6xXmO/2wMIyeGp73vsuw6LaYPFyTHa3Rabiwv4vsPfP/ocCAF3j0+wnM0RjAVktedyuwVCQG0YFbeBwZl9DNhvNgwg+MD0TUkBWxEr0IRsQPahA2IcsGw4ELcKCWYdZSXIF9/BQjMCtanhyMLIP1VUiQAbs59+CagMXzdlYR5TckwpXA/NNAcgBb071Nk1hpLPspY/Y0SE53onMcnX0U8WDlbagMVKiqAUMahXEts66IgQyHB2QSPxsUgCGoPd6hSVYeGs7Y3c3gm1yeASJVGjDyTCtgCaKOrqgwp72RYh/uGcHrgii3ndoAWh3e1hdy1shLDggI2ATKFrEbo9ouV06TGBcQqCceyEmNYItH550hhMiHH0DMVTDrbSsI1/E+WQApp3/oYr846W8SSkRVfP3kYzRTDQoArDeHIrjTwgAykq9xVwKY38lElU9pXuH8xIiOlaL1++xJMnT3FxcW+wCl6We/fu4U//9E9xdmZx7949cdfywqzw6Lp+YIRutmv0fYf1eo3dboejoyPcuXOW5qgQAl68eIHtdstZyIRuzcG0Y2IFqJG4Wq9xKaDE8fExiAib7RZd391gF1RVheVyiRACfvL//BSfff45fucHP8CP/vEP0e07XL68wm67w6PPH2G72WC5XGImAIa1FtvtFo8fP4b3PjGsmqbBZDLBfr/H9fU1uo6frZdYhcqcUKN4t2d3n+Oj42S8kuEMbF3XYbff48mTx2i7DhMJlL7ZbrFer9OiUgwB16tVYq4ASDFuuq7D8+fPUx2bpsFms0mxeU5PT7HbPcSjf2ggoRQHZTKZ4OGHH2I+Z3ZHVTHzxxmLpqoxm07R7vd4/MWXaNs2xbLSfqhtpHGBvPcJZLi+vsbTp0+5b4suUjLEyuDbIQTsdrsBkND7PgEg5CysdTg9Z3fCVuJ7aT8ux0vfdQjes1tS0yCIUR8FcCoFrLUOtnKIkTPeAkjZfIeKaRT7ieX9cjln987ew6eEJByr5+joKLG1FLRUxtzp6ekADNJ20D57dXWGJ0/+GwDfvfGurq6u8ZOf/ASPHl0N2FvKhtHrjl3USkBK20qPGTOjjDHs8ulcYuqVuqC+d2U2lcBK6bpVgq9lGRsKKge0r5dlzB4s76FAtR43m92uuh8dLXHv3iwdW4JcCpDqeyj36bOoXNH3pHJVmWUAkrtv+fzaZsrmKmW3AvIvXrzEV8++QgwBR0dHmE6ng75X1qUE4VT2l+9l7HqnY02B+jJw7Y3Fi1doHYcMtPIdfpNtb1JSrB6dZylrTocAt9sWz8rtb4Ph9G0CV4eApdvBpqx/G4kjCgizKYIzhUFti+H5ukilanf5PR/EH0a2azZWCFBAenxkrgxF6ZchwNgKtZGA94Z17C4yq4UQYWwEEScyid6jI84yW4lLvoIbQOTg1YjQ2LJ5T/5fHbqG4R/Ylhi6wwlghGyHGKLslSJjQplNCpQRAVYTM3nJ8IjSQ0POjzeZU4gZ0Crfow8B5JW1w0CTKcAmffrELpMnHT4jGNwp5it9m2rN6oJVZk1J9nGwvRgAeEa6Bi+fCR1i6VBIVqLewYkRF9SGJeFhxQhLJmfIlLNC8CCK8EHmeumrIcbEbMpECX5GjYtoCnlVemCVpZSVZfyksewvjx9/fxVTSvUIZ+xBGaBzmtoMt5V3B2waNZBOIqrAqBKR/B5xE33LlxrSzMpGKFlN5fGD82LepkKtPLZ8oQRKgal5lDAFzve6usKdMNKQwmuM4ZgWvRN/XY5ZFfoe3cIze8ka2KpCjJIGMwQYsnBpxZgSAIQk0MBxHmBgNYYQUaIPBu7RaSJjgcHXKkFaNgTFCzBCgmbHxJiyMQoCrDBDxn+BLHwAleMxXzxtU8GUkejymyLP5QmxgIzSO6HyHvlbLJ4lQlcm+JCSXaRiRO9d5jeI6X8RZDqBQ1lMyMymNBkk/P8gwJVQrEgAyZu5MeMNf+u0wYpQ9mWjtI0nB51wIcLOECTTi4MznbxvzuISAJC+4KjAIiUwoQSHYlTRj3LroK0H72T0W9t82NLajf/jIjwDxY03/Npgyru4oniIpVSWG0pZATiV58ZXXOPNK/XqeujvQ3+vekelwVAaj/osaohut9sUG/BQaZoap6cnOD1lwzm5yUROMe49Z2usqgpd3+HLLx9hs2HjcD6f4+TkGO+/fy8ZbiGEBJAEGVNN02C55DTuX331Fbquw2w2Q13XuLi8hJF4T++//z7IEC6vrpI7T9/3yfCuqgonJxyo/B8+/xyb7Rbv33sfDx8+RN/2OD1ac1DffYvr62ucnZ1huVwmhWS32yXWx+npaTK+q6pC27apjuv1OrkOKthVVRV88Njv9iBDODk+GRjTzHzqsd/tYJ1B23aYzGao6irFadS4ViEEXF5e3gCbZrMZ9vt9ArYUbLq+vk6GbwgB6/UdPPmyAg6ATcZYTKeTlGTEOYemrtFUNZzhd+R7PwABXVUlmaBMJmUhqQFOxqSMe6lrSx/z3sM6C2syyKEssr7vEWSFU5VRdtkAjGW36qZpsNltsRNwa+DqFWNiNlV1jVrBplGfTka7c3DCNNGFszEzqCyqax0dLTGdlmCTR9vuE9jUNE0CnNR9yzmH9Xo9YKRrf1Ldbr3OganHpes6PH36DMCLNIYnkwkmk8kgfucYbKqqKrmh6bXLmJ85Kx9neVwsFsm9TN1JSz107LKo4KECxGOXSV0FjijnFjENlXk3mmN0DJb30PsCOdW66jTeE4DDrnQhxBvyTus4iF0VJVZMVOZZTCBkclU+UEd9dm0rrZ+yFXm/hTEZhO57llWa9dYIcHd7oPOb8piIBtsHc0FUd0Q/+LyN3fR1K1zDR6fR9nG73Dz2m8+PpSYc8zOX14txfNNbbaG3Xd7KPW6p6w1GE/+49b5JAyYqmoQK/b5YrCaIbntTt1N9V+uWYmTRENsY9MmIpNBGOY8PjgWrCTlovXxqUHDNrMvfkbYpKKQWlSrig57PCtgwJipGIyaqRRdTEO8ENNEwVlOxhJ2CfnPsIrUPczvGEEZxejPIZBTcgLY939jou4kZhFLLIUjbpdAdhUWZLY5bgBC1MfW/mO3QbKfx5iDPlNzFFQ+QzqLPZ1AATen5uS4D8I5y+2ldDvaRAqQcyqKhLCtFilrICVClYZifMRh+CDAq5f/bApuYmXezlOP23QebWItDI/EQ9KVowFRdgVEmkioZ5SSjK0FK41batD58uXpSrqKULy5PWBHBRwQy8B372/rei3taBnY8ONtRp4qoMIL22x3ado/gPRv1USj3vs/KkcRRiACiYXZMJy52vQG8I9TLOc6mDdZXV3jx4gW6tsXEOzhj4IhTxpI8N0WJGQXAG04X3emgDhHG9yJweIDaqAMpBz7Lg0dWl4zEIYpRfHEjYFlgehjEyMLJ85iAIua2EC5JICgUE4vvKqhEWGR3PkrHDkCpUU8vhtuoM5U8rbEglutShj3yHw0vlXQSpVAyYk0k7gYEeBXNROiTsObVhl7mH3ZXkxW+9NRyz2hkssiCMhQCSeaVXF+S4ODGgojfpgH7TjvDGYAUGqukf88aQqwrrHuPRp5oagwsgL0EqkffI3Yd9xFJsd7LuwsI8JH/QgyJ1vumakdypUfGl96WevR1gu51S0z99S1c5x0EnICbQNKryiHA6cZE+c1rwv9KsO+Acqmyulz1htQgFMARwEGSdZ5QsESNw9lsBmOyQdj3PZ4+fYrt9uWtzKamaXB2do7ptMOjR18wG0RS3p6dneL8/Awa4PHqaoU//9f/Gp8/eoQ/+IM/wPe//308f/4cn3/+GRaLBT755BPEGPHTn/4Un332GSZTdnt68OAB/ugP/whd2+Fnf/0zvLx4iR/96Ef44IMPEkukzF71xfpLXF9f48H9B7h79y6ePXuGX/zyF7DWYrPZwFpmYZ2cnmAxY5e96WSKhx99gHa/x+r6Gs10gvfv3cPp2RnHAbKcrv53f+/HbAjWDBA8ffIMT599hePTE3zne9+FIXURYzDEkMQBqiyC5yxoADCdTmCdwdXlNa6v13CVxnRhWRYj0PY9fLjJOlCQoDQWS/cYjZFTutDpO66qCo8+X+DP/pd7uL66+T6ryuH05BTTWZ8CpJ8cH2PaTHB5dYknj5+wQS6ATiSgCgHe9+i6Hl3XwjiHxjmcnp9L2nvOkHt5eYlnz54hRiRj+858nrLnAQxQdpKt0FoHYwiz2RxNU6fYWRGAD8ya++Lxlxy/q2NmU1VX0o81Ax/BOgdrDCYSiyeNGx1lMcf+qesaE2GIXV1dJV2pXIQrXby2260ApDWqyrEO1DN4sNmsEWNMTCMds8rOAjhrmepu6iKmblXMjlunbL7jcnFxgX/zb/4PzGafpTGvYJIG2Y8xpuD2CqQsFgscHR0hhJCYgiUwyJkpczY5jfmj99BMx8p2Kq+tpWQzKlit58xmU8xnU3R9j912l8BEELN+FvNF6tfat621ODs/w3QyTS9PDelh/2Wg7j/8h3+MGP8zjGfQGCP+4e8/xV/95ecFMMIBjkHApJnAVRKrCgz4TGdTOOvSJzPbZfXfD8NWzKaTAnwDENkFP4aA4LsU48b3EqSdanTtHleXl1hdX8FYYDptEBsGcCeTBgxyBQG5OnA6cKQ/kfRg1xPtBwZ17WCtARGzB/b7LbqOkwR0Xan/i65Joh/dyFA2LEQZoLi571Xnff0xr1f0QjnWTsyDGRgvtMRsXKdjyt1fszDzRrV6CzpNNAYmhLGqnYGltJHS9vKug2cp21xti3SdmD8LoIkgzSjnK1gUdKMurKnNk26lejsSgKNeICRhTCyQYueSZy8SEzwIrDebGBOQEwFUxECIU3CKxI0rSrr7BMuotqTWlG7Pv/OR/MxGAZRYAEKAuMaBkz1I2zq5t8acKsEm/dSmIAWQEPMxkfL1y3tR3qYXCAQEWy7OR3FHy3wm9qUwoh8e9p5AFC+kyA/FBAAeHyHKtSKlLMZsywA+CuiECEKQSobUiYy0c0gdTCAvsQedBnDPAkpsf4JHQAShl8Wovu3Rd31id4cQAGEIGTIp7INxVcbLkAFKo8cVoNFt4NGhBeJSbz5UXsdmUrBJWXBjYOo2Jui4vBtgkzSuk9WucgVFV8XGtLDxqvXYcCoVVAA3/NPHDTSgnGok+BBSKsMYhoyoGAIClS5m+dNLlp0YQgJgQvAp04zWQZlOzD5iVDfIwAsEVHWFetKg7Vp0MWIvq00+RnjDL0+FgjEECwHlBLzyMSJ6CcTtmf7IYAnJkBDBkgYeACj9MqZ6pckrRhAFGeQFZERZwCRUXgZNKQ4T2BQLsCkhxCok1f+36Bs62RS27hBoivlrKRykbRGL7AMoBGeqdxRf7wJoKO6R20UNIxFexD7X+tyheJIISosdASrcVG3KwJyRaSFNFzECJBNxzGCTnpHSh5LktiO+jyF2m4NMWgoEWkOoYdETobYODoAHwYkCYiGTUQyI3oOszc+d2iCyME3/UneQA4sXFlG8yRHIp40qk/rbhmIOof1vVAoQ423X7V0phyakUvYBuDFxHAac3kZdCDEa+Ut3k/soPV7fRgCRA5EaIloXXY3nEdT3EZxJU11AHEIgxGBgXcOpe+X5vAfW61fHbDLGoWmmMCbi8vIa2+0OOhYnkynu3LFpDO72LX7xy0/xd3/3C3z44Xfx8ccGqxW7XZ2cnODhw48QI/DFF0/wd3/3SyyWR1geLTGdLgAY9D7i8ZNnePbsGT788LvwHuj7iL4L8J7rEgHsdx3W6x2srXF6co6Ll1e4ulpLfSvUTY3pbI6j41P4rsd6vUPlJlgslujqKaazBXb7HrP5EZbLk8REYFe9ZcoOFmPEer1HfPoCdT3F+fl7stBDBZhXw1qCcwTvI7qO59uq4ixoT59+hap+iclkguVyIS7xMxhLuF5tsW87cdVrWFYmgEnnVJ739/s9tttN2gbkY9WVQtkppycW8/nNGEDcPhZ1M0VdT+H9Nfa7Dn7OknC36/Ds2XOEEDGdNLDWoeoDyAS0Lcf48j6ADANJ88VRyto1m83Q9RH46iXrrpZZG4vlcQpSrXEc27ZL8YyqyuH4+ATz+RzT6QSz2RwRDA5ttzvs9h1CAFzN+oNmUGSDnxccMsgxw2Ix59TaLpkIACK6jkGlpqkxnc7QdS2eP3+e4pZpeIIQfIr5E2PAarWG970Ae8RBbQW8qaomATjGELxnRkmMhK4LwgITF0EBtLouoO8D+t4Lq3CGrusPvqvdbodPP/0Uzv0ijVllvG+3W7x4wYwndaHV8AvL5TJlWNtsNuj7nhl9wrZShqGCTWXwbw3QPZ/P02KnXlvZPqV+WoKf0ym7hR4tFzg6WqLrOqxWq0HIhnv37uH4+HjQf9Vt9sGDB1gsFslAGIPwRCTvusLzr+4clFkxRlxcXODzzz9L56luSkRYLpeJ9aUA2XK5FHAxDFhuRID3ZnB+09QF28oLG2+YqCem+E4R1hp0XYvtdoPdjkFF6yw4rxWDvwo2KRspaRAF4MTzD4p9lPsk2Ohn4FQYVP5wn9K54+tAkwwc3Tzu2wWcsv46BmAi4vC3vv8CjIkx3rz5W174+nWvpfHkxr33VWyn8ffDs3VmgmlXGZxRqp+UYLzB9aIq7SmMhN5bPjPqx2cH1p3VpjEEWENsw/ggIS3E9Uyure5sERoriZIXgrKFQLFQq0vAK0NOMf3WOo7qDDAZQb8jAz/KNuLPzGYaMpq4GfJMIp4gMV/HpmOE6SS2SH6eHPNJCwfX1idB8rwBsusbu7iJSk7lU+cSQkzHq9GpsJQ+r8bfJeR7DPtOzBeI2SlR7bvs3EcZvCOOeQsgvUckXZRt6+ADgsh9JqhQkvcE7csk8sjAFHENuQ8GYcEdZvWXx+p8NCbX6L5XjdfXHcvaZ/WeY4Drdco7AjYBIIIT+rNO5PoJZF/zspSxPHRFrmRAHTKaSqTv0H6A7XgljKVAn8IEKdP8IkZ0PWf+UPQPRKgrh7p22O0Ngu/R9cyECqJUOGvQ7/d4udkkWnEE0MxmCMGjiwFXmzUmTQOaTGEnU9x7+CFnstts4Lsefdti13awAhxYIo63I3U2AEyIMJ47rYk8+CvxKfUaq1+AJhRgiw4GhYHEJTqj1BGIPoC8MroKoa7XQ4ZdMiyFHMBagBX2CMyUyyFco3XTOskNBpNAqZDx/nQ2lZMIBghCAlSSgZ0D85V10LqXYkezMzAmKYZRUKEt6dARQRJXS6/HVM7kkJfbP2rT8cEx5f9URCYHdQXENbLMj6vKkx4jkyWBJz1nLRpjMbEOU+dgYkQrwQprIvSqkHrPFnjwgDHC3hJBH8UllBQ1yysBWdoP27icIvX3aD781oCdMYDy2zIEmrQcYjh9XZsRDd/hNy3r9Sf47PP/AURtXtGRcZvo8ciuzWVskCCr7xG8OKAydLMRlx25xuXlBJcXR+K20wxWeZ49+yPsdv8VvP8IMR4drOPPfmbwZ39WwZgZLi/vswuTjM+joyWOj5E68Hq1wF/+1X+NFy/+EF33CX7607vY7ZZYrdgl7c//nAGQf//v/xBfffUh6qZB09T4yV+d4S//L4d9O8ff/M0fY7NZ4xd/9yHOz4+x3TZYrZeYTBqcn0+k3h9hu7uLO3dOcXoCXFyc4tEXPwaAxAR2woAIgZWeyWSC0xOL4AmPHz/EbnuniNnEY91ai2ZCSYwAwIsXp3j5ktBMJjg+mkvbymqoczA2p2uOkeADx6mzlhWp9XqGzTanurfGoG5IjPsKvWegy1odr0WcCukTDCaq0P1eAAAgAElEQVQSus4lgJGPjclw4LmdAcaXLwwePz4sVa6vTvFv/98/hXOb5A745aNZygD48vkLxBgTgMJgWg7SzIAR6xfPvprCuZy8ZL3e4PLyAgASg+7J06lkPMxMlmFga4vJpEFV1dJGlSxSBHR9j6dPP+F4VDLPVFWFyWSadBkiZUiZxIxSBbZUb7ysqjrpGwxmbRPDR5OahMAAAbuIQYDYQp+SZwie3eh09TQtnsnzKfCgsR4ZhFIXKyfAUw/vF+i6+wff1WQywccff4zFoklupfqMbdumDG0K5qxWK2y3W8zncxwdHaU6e+9xfX2N/X6fXCc1ZhSAxHo6pMgr8+vly5fY7/cCCk5Tf1YWXslssobna2VZKfMyRo45xe8jB7EGkOqvrr3q0jrWg3Vx9fHj7x6U0yEE/PKXv8Bf/MVfDBj+Cs6cnZ1hOp1iu90mFqS2icbXUuBxzPrPfdZgs91it9snvcw5h+PjYzjnknut9gcF9Pb7PZ48ecLxWJuGXVcLN8Gu69J5Y8OqfD/6LGPXxtK19fbFA+by32YfqSz5OuDj0O+v2/4mZTjHUtLnDs3d43u/zrZvXq+38Ww3jeY3vS+NPtNqVYwFIHTbtQZn3riOj36QNEnjuQKiYisgFSOgcg0ERwaV4azg0QeOmxeCkAGMLOxKjMoIUAywRIDo4iRRmhRIYjJCASYh68s3PtN/2VbSIOYm2SAZRNIYTQoIpVhNyOCSQwaUDIjj/QHJnkygFUpGlNo/GWzS+ugrCggSQkCek7L7XAKbonwnscBU1yveWaRxnN5stSWwClD4Lm1XEEqPGdssRHpMTDak2ve8PQNlRo5TO9ISP7+1BtYZWMvMbxDBGiPXz2SZSEDZXRPYmcyq7OlyG/u+LIe8BMa4yTcppPVGBptKZm4JQN1W3hmwiQBUMoGrMqClpNADQ9ConIhTdhbxdz+0MlQyowZspvFLkkknBRpnrS4pln3fC1WuxX63G6wKTaYT1E0FQxHtfscrQD0/Q1NXsJZwsdng5eUVxFENBKCezQBEdMGj224QiNBMprCTCd57+CF81+GrJ0+xXa+x6zzW7TYFArfGAoaFXhcCs1W8BxVBww0I0VhYIgkmLZ03gQU8LBPVkgiWDGAIZLm9nAiS2PUg9Aw0CYCkbZkvqisMpQsdsg8zIiiIABegaAg0JYe+dB1+P0XHSSteSIZqTPfPAzo/57DP6af6UqugGddDAaIYJQNBlLoF9jVWFpsGw7PIKVgValEmGisSURhFw2kv4zYq5XgyAuWAf5EUYy+4WCQ+tWKMcVZAhrQqMoCxmDiLmXOgGKD8jNoQukjoY0Doe0RreSUmAoYsQMSpVzUYIg1qOnjX5WbOXmiL/WKoYCj8byd4vp3yW9Dp9lIymd5khUJOytrDNyzrzSdYb77/a13jdcpnr3XU4Wf/2c8I/+7fOfBUeZgtk8scMf6XACJ+/vNXteUfSNvTyOhxAP5JAlC4HB84/+Go3ify9zrFjM7/unIqf69bxiN6Jn+HyqGYM2kyGJU3U1Vu65rX1ww2vR249G0WdRnJW2KeDF77Goe+YnSZZMi+8fW/rXJ4rEwmE3zvex/jzp0j3LlzB/P5PMVsKmNfKWvpxYsXWK1WKb5XVVWYz+cAgJcvX2K32yU3PmWIee+TO+FkMoFzDlsJWL/b7XBxcZFAuc1mg7t37+Lk5GTg1qoxtNTFbbtZY7vdJABQAakSYNL6qz6qYNNms8Hz58/x4sWLBIgpw5+IcH19jd1uj2fP/vODc1qMEb/85a9wefl/om33WK/XrLdJYPR79+5hsVjgxYsXePHiRdJ9nXM4OztDXdfYbDaJyaVZFsdzw/PnL3BxcQnnHKbTBvP5HB9//DGm0ymePn0q9dxht9thPp/jww8/TPG6jDGYT2fJRbFsDwXltF20lNnx9LNcXNa6lkHBb/SydM3D8clu7Z2vCTJ93b7Xu9nwa0zb+Ndti0XjOnwbgNPbYkeVTIzbyuvUVResSxmWtP4Duj63perkqpWrnh/T7xg8Ihg40Dma13JzqA8I41bDqlhjYUGojEFtDWdd7VrE3qOqazhjYJWtImwXipG9EaIBYg6wYeT5wytkMwngoXaJPl9iR0k82MxMyryglHGOZB8p2ITBXwk6GQC1tWL/RVAQJpfYf07q5Ey+dsmoKt9riEAffQJUIiQoN2ICgTTkRowC7pCylMp3TbDikg9QchfVaxhgwGYqwSaPXL+SMaUxsChlqJNFFOJQJYFy+7D9wj0uhMDHWLbXnBXAyRoYAZuMkEFIFvGTrUqZ5adgU7FFcM1Xgzq3sZ9eBwR6nUJAytJXAk16j1cB/FreEbCJJD5QrniZdUJL+ZBlOt0bVytApXJyGmfIKK+ZfwMxCFVfVmVkTzogRl4tZne5TPtVartzHJBZlQjEKDEcNHYUQIY7oTUGk8oBMWC/3yH4Hm3bcYaZyJ29dhWOJjOm5Z+coJpMYKoKtmnguw79boc+RFzv9uyOCEacK0MpM521DpGAFuo2pXCFvgEVVwVdUI5FUDofYAV9tyEkQTLGH+KNa2cgyOj7QRCBKEHakFcPFOxhFLm8x9g4S70nPQEiNKRKLlHcAYuNA6ZVcY8S/En1iOrHC6ho8gEpRW0EzxcUQwKbAphVVMJVkSi5LZYTS3I5TNUrLQ7uj5rZgAd9FNJTAAwznfrAMZX6GNFHdsXsTUSIBkHc7gwItWTbqUQ4ODJwJCsNwQOhR1RQF1b8x2OKxaCTSJopxjUugL3fpBnzKkXozZg7MYFi31Z9/mOWQysfJeNpXO+hbCzO5QvceuzrlduAhXepKMPm9Y59/XO07Q/vfbOm/Lba8F1/N9+k0Ojz3SmHsZ9vWM9X9J9h33r32kGL9x6r1QrWvsRqtUoMGWWyZ9e8LgXer6oK19fXePz4Mbu0HR2lOE9VVeHq6grr9ToBOco6ApAyMK5WK1xfXwNAuudyuUwglQYkVyBGGTYqQ8eZ5jSuU9exy6IGJlcQaT6fD9wgaoldWtc1ptPpgDXG1yW4yt2K9zeTBsvlAt5PsVwuYa3Fcrlk/XGxSHVT4EvZRwpsqXeB/mncOL0/694Z8Kkqh+l0mgKsN02T4liVbo7GmBRHr27qGzr8mO2lpZybxrp82Tbj5D+HQJm00Hxrvz/MunkdptPr7nt1kbqLvjp2NosFUKJQyfBZ4o1j9P9fVyehA9++SYnI9sRwu34pVltiuXPUFpTtBT5NbIgBIJHbotRRFZRK+1QX8mMWCDtQZZcwsRmhtgK/I2sMKsNZTZ21iH2P0HUIvQdVDpasZMoLyRUZAMfdNYTo2a4s+6baH2oDJSCNtIko2zuyk13cuLLqmaKuYWprJOCMUABDlACFxFACBswoK+wcEwN7pEQweJbO4SDaGqrFFM+AWIzHGGFjDsqRYT5tbwXbijx0UY8ZvVvSfsB/KXccJb8cqG8KM5Dymw0kd6McDsbEbIfFZBDG1EeUsVXGrS01CmMsSDAAZx2zwdjwZ7ZzZNsfZDKYSFlf1BikjiQsiiBupSw7xFQax3Mq56PXAZxeB/hVG1C3HZKzryrvBthEAKyFL3z7NWjiOBWqUnzL1Z5y0rltQirTvJarKfpZFt8zE6lkTSkYGUKP4AHft+jaPfquTcEf65qVmklTo5402GzWCL2XSZpjICD2iDHAWAsrxx4fLRG8x/7ZU7Rti4vVGuv1GnW1wrS5wvHyCEffO8OkbjBdHgEhYnV1jfVqhauLCzx59Aj73Q5XF5fwXYfGOVTGYD6ZYjmbwVkDU9cgAPuuFRZOTOCKGQyXHGMJCZSKHFUNnIWOADRkUKUBnc9muZLBpnLgG2KBxYKLQbcYso+/CofkYkcY1POgikBSv0PdStMEskQazJFa18y4ignvUUPaiK8100ZZZAVFvEVYh0gwgQWsJw4CmNhfcHAw8MSuak4EG4HgSIX/AdBOioJS8BHkVTBFOd9zewhq3seILkT4GNEGDw+gD4RgKCH9joBlM4GTVRfjAxpr0EfDAFXX8kvqWiA6mKYCDMH3ktZVUXNkQPJG0UkPmRL7myqHlKkSSCmP+7aZTm/MFPqWy5usft7Wjr8tvy2/Lb8tv6nSdR2ePHmMi4u/x6NHj3B1dZXYL0CWscog+pM/+RP84Ac/wBdffIGf/OQnqOsad+/exWKxwO///u/jzp07+PnPf46f/exn2O/3uL6+hjEGR0dHqOsa9+/fx9HRES4vL/HixQucnJzgk08+QdM0uHfvHgAksEuBI2b2TGGtTUHtq7rGZNKg6zoO7t62uLq6wm63w/Pnz3F1dYWTkxPcvXsXk8kEd+7cgbUWV5JlUt1bNZ4SZ1hcp5hTXdfj4nKKQ0Y/EWcHvH//fgKrZrMZPvjgA9R1nUAvjTN2yB1CGVvTKYNVu91OAt9HnJ+fYzqd4uLiApeXV3IuB34/PT2Fcy6BadvtVtw+J8n98eTkhNvLcLZkZSUp6Ne27WB1vtT/FchTzwcF+UrPh0OGmJ6britu1q9b3hRo+tZKzKBDqsd4Ue/GMXRQt/w1qvBrF7UJxrVKxisl+76AIA7dXA3eYkcBBAlt5NY6ZJMge8pERLSdGtGyj4rscuCFXgkbKPaMQW0dJlWFSVWhcQ5x36LbbuG7DmZSozaVkBgCIEQFQ4BzNYwh9D7Cix2k9bAJTLz56IPF88K2UXAIAChaQACU7LEi4JCAUfpcFmyz2AQcaRKpmMAVJ6wtCgKakcRjitmNzpFcowCw8jvizmpi4PMROUs7AB8ZejHghXJldsUY4RHTvli8YzY0TPHJCZsieLE/gIN4a8ImAr83D/4LAHppPgaeYgLsSqwzaD2JW9EWXUoDjfdyh7rmbK+TpuEst3WNuqoBIlSuZ+vWWr6WxPtK7KmIJMMqcRlH5DARJU5xyBNL5VHKhjrCOfS8QR86sJB867YY4Xv/pqugg/JugE3ADcRsvFJxG2UYwMC/PLFqisbX32Vg8fI+5WRU7tPzWDgKZlHWS9g9znH2N55QKw6AmDoA+3pWjrN87Nsu+dEbY2CdQ9006LsOPkR03nN8BmImTIhAHyL2XQciAyexIGxTowlzTPse8+NjuLpB13LKYSNt1gPY9T1s4Oj8hIjYc3a9LGxUYGa6KAkocuj9+BgTig1QQrehn0VhgIkSkh6BHAdI5holiypKzeBODjApcFCi8N0EnLIgG3g3q/wlpZSOJzbkYwrASQEvfV4FmkQkAPL8iYapfE2WhsiUVoJHFvJ6jk9YOx9brjaQSsTUelwnHuwiMBK9MyPtMAQvQJOPAb3nnAieDEIkDlZvWVA4a5n5JhOoBYlbJcfsIA1ip8+vNZHVJh0PqtSMS5mKtXyKg+UtaUCvAkcOASiHACg5+NcSpv8plDGLaSz3DrXL4Ld+pzwOXwVEGbvDdPI5DHXYt3cQwte5ov22/Lb8tvy2AN5XWK3uYb/vsFoRVqtrAZva4ihK7JrLywd4+fIeLi+vsdl8hLat0DTn8H6OFy/ugegMl5cPsF4z8KNsKWOYtXR5+R68X+L6eo7VagZjjnF5yaCNFo7FRei6Hvv9DtY6eL+UQNgcQN4aSr/VxW+1mmG/32OzWWC3W2G7PcZ6fQ5gjsvLB7DW4vp6mQArXlhtAMwT2NT3fXLH67qzg20WI6Ftz7DZfAddXyOECUKY4urqPqqqwm63Q9d1uF5V2G4nA/23H7GKYpzAmAUH598tEEPAZnOGECbY7U7RdSvO+hQCQnBYrU5hncNmM8Nut0bb7tF1OxA12GyO0Pc1JpNzdN0kBUZWoGi9WmK722G/38JYk1kbxbNxTNQJXG9h7Bw+NBIvzmDfttjulvASuw/I7ifyMCAi+OAQ4wLeL17Z914HYPo2Aacxowm4qVOlqfgVxwyu+WvWN8b4llQ2ulHBgT6CMux1OmPEaQErmyOwKf7/7L1LkyRJcib2qZk/IjIys6q6qrurZxozwA6GsyC5WFkcd4E9kcL/wQv/DC888k9QeKAQlN0LBThQhCRECHC4Q1Ag6EHPdld3vasy4+HuZqY8qKqZuWdkVtZjsLVAW0lUZPjT3Nweqp+qfsqovFdoJq/Mr1b+Nv3EEl8cA3eISIEag6dKGBtBSMEbJ5EqBuBwjOAURYcgAT/IxlsS/hBCFW7GCnZUINPRKmeQqbQlVXtqGE+ub7qaAa5FzzMeItN7sq5rxn6+AaxkVMCPbeJ5u0OOAbMidAo4IdulKw1OXqmDhqsxMrBHmCd5gtYTBlqafglUb0VaIOueXHA5+7jZdblcd/bMpnkCZuwv/WE+SUmVjoS0ZR3bGp/EO0w5LuuXqFOf6n0FcD2Gb8zbY67j1N83leu8lJZgk31fd883lY8DbGIAmr2tRuJqsKkmLTSSbgA5GwiAHKdfh+DVFpKly63Fh5esNmpFSQV8MsJN1owDIQigEyepj/MOd++cwzce53fO0XatZueISrVDaBqP9XqFxAmvvnmB169fAQR0fS9Zg+7dw2G/x3Y44OXFhaTpPj8XDqu2RXQOX3/3GI33OD89Q9922Jyc4M75Pdz59DP86Hd/D9Mw4vmTpzgc9nj63Xe4fPUa++0WT1++AMeIFEeJrdVwqtZ7JQtt0HcdvHdYda2Sm5lHmczcnJQ8Og8uRs9Ao0CM0/aek+qJ95JXoulG02Q7L0AcnKakDBEpSMRuCd8r5OAGemT3yOpTT1XMCTFNGYQBVZOnI4Cc1o+ylSQPLJ1ckYxDSevBKPWA8hhp0F/DxaXSJwXtlCQ8QMAyJtLUpgL6eEVpnAJRjsx6gBmaXrej9fGoAKVNjV5JLp33IOeQFGiKKWEfJyG/mxyS0wkqRQAe674DYkSnacdbR2gTwSUFIp0HBR1nbF5ltkCIGy0B2dPt2Fi2CX0RgHqlzMG1D1uWE/OxSff49mOixj+MUi8eNwFNtw85fHPZnHyF3/8n/x0Ow+f4u6//a1xc/qfvdb0fyg/lh/KPo+z3P8JXX/03IBowDCNitDVwPifFSEiJ8MtfnuJv/maNw2GPYbjEOAoJvfcOjx9vlMT9v8Jut1OZLyJGwsWFeL1fXkpoVwiSYe3ZM4/vvlvP5sN6viw8QhbSdtVomVIEJ8akRr5J5djtzuPJkxbOe/y7X3UgkII9SeV5FqJdL0nSY0xZSWUwhuETMF+lkmD2+Prv/gTff/+HcM48NkqWZ5N1i4eYKTS4ojiaZ7/UewKzZI9zzon3f4wZ2BE5VyINJKwxSrYo9Yj2TQNHkgTIOTdb9pk1++LhgKQy/nUlW+59bdCVEI8wTfk5rityvMcwHiel/6H8/ZRjwJ2NHRtX18oeXP2RUiVI1hBLkeOr0Tu/Z7VFCJ09QhTox2Rek9e9ghZOlf8AAGxp6YHOt1h1HfqmQeccJjDCOCBMExwzWiLxomHlhAoj2BE8OjQknKmIIqPDVaDFDHabwx+q3Mz0IWuKrFOAlZ+XK5CpgEs5PJCUawmWTIrEI8p0FAKQEiIgXMBKD2NRMuYpBM2WnaCcVyzn5XcFFscMr4lA1LPJsdnrzaOphLnZe4ysDgVMkGzFBHJegSZ5IuF3km+pk203ShZWAvlMgCISP18NV9RZPANuGcitu9kCpGFUYWuVwR6KQThmoT5xqo9SrpWczQ1Ys3KO46RG/aLHLEN8jznP1PU5FhJ87NhjXlNLsEkzYl2pxxJfua58HGCTeozUi4RVuvZsMkCoflBbqGrQqC7XueMuPahsHxFVnapkfElROroBYNGyEJBD17U5O0nbtRgGSeOanw2aTSyRZK8bDjmzim8atG2HaRKLTGQha2zVTdg1DTgx9sMARw5d2wPksAbBtS1a79E1TeZ4Gg4H7HZ7TCFiCBPiJRAgwBqY0ZA4TLbMaJnREMDeC0l58uIKqYPC+miBOBTfJZnIzAPG531SDKm32Y31HTARonIMWVxicozkZti23SUjx/XSUSPi9RSQUuF+shC3PF3k+wPGPMd6XEaz9VMj3wllEiRUgx7IE6J2HLCmcCIFWxwD0bHGMRcgLeryQUZsxwrKkF6fLayxWJEiM2LS/qdhd0mnYePVSiz7ggJOCep+yiQWlhhlcfMtPKu3FVn2PCok77aACGHYFYCP7Fgbs8uiTcrV27FJu/SQBZpWlSVyv3QXXW5b7ntTOTY/vCugctN5N9X1VmX5PCwv4z2xn+pyx/mZ3ujZhLmQNtt+5Fzvtzg9/Ru07St03XN4J+mvPyycd/VqR7tmrvScL4LZIaUOx58qgGg6eo/r7l/u/bGBlovxVz9vngoX+2ixi2zevf0tbf6+uq0Um/VvGsdlX5k/bJbhanphJsTgIZntfij/sZaU1thu/8mtjmUGXr+WT10sgc9ud/25yu8Njc6blZvOe58SAnD4rVyZsNt/it3+09/K1f+xFM4SDK7MV8spaiZrFuTut1/JtygfU0j/m8qbDIU3yWxZ1uT5qnNVBsXsRWZvFZQoDMISnEFxpOFyXQfhXvJODekpFcXcDLaLj0nI+TdXSj1n1anuhbMnqXCOShfS+s3k9gLWlAvN+/Xs/EqnMu8dW/OZkQnRTfcz8L8EeIge4up3aCCR6gwWRVPuxgoQFQN1HTBiH6ejMr/FjAPoU6o+k/RduuqZXHW+/K7ece5L8mLn76mSfxalvJcSzWLvkRW4XwJP9mKzt5UCZdKnNYspHMDKGw2uPNLmVEH2jo6BQ/X4ORbRlWt+BA9ZXkv/uBK5ZNe/bflIwCaCZdxaFnvYtm1zvLyRM1oWEMtcZ/vNC+pYCF1tfTKiSeNlsn1d28J1GsObRHkfNKucZUBpvJKAdS369SqnR05DUsvagN1up27LI7799htM04jvn3yH7W6Lzz//HJ/cv4+u73AYR0RmfPbFFzi7exc2C8QQMIWAFBJiCmAm7GNEGAbsnj6Fe/YcJydrfKIpZ+9+/hkcOdz77FNM44hhv8d+u8VwOODl82cYhwHPHj/F4XBACuJ9NcWI/TghcUK6vJBOpe6kwqYvHlBd2wqw1gjh+KQgkyeg0cHjyQsS7khI70CIOoGPkEG9G6cyCTNn99MS40uZ14kUgCFQiUPWYe9yv2eZ+b0HvLi7k8H11RLDyqKXQ/p1/Dv1ECIQXIsMokkdoYiuA1i97jSjRGDlcGLFzVLxxrLMDgxgRERLHp1xFKglxOu06ZiVlI5BjiUFOYurvllN4BuAHISYXhCHkNTTLCZNjyfPzCBQ06iFQNbcEAPCwIgtpI10AXQ6Zjrn0HFCxxEBwDhO8m7CJB5oIDSWgjkrdyZUXS02iWebzEyzXxy54NJajvvl39cddwzBv+maN5VjIMybyrFjzEL3Nve67trFcvJhyzFr/JuKjM1KULtBOLTfXbfF7/z4f8Bnn/4Z7Cn4PYVyOzMlJQtWw0HiVPgRqPSNtukyv4uR23rf4PLyd/D11/8lpun8yj1OTv4f3L37P4Fo0MykDHVyzfMBMyNF8ThgLp4DhYBX+QmWj0rzdmSIF6m0TQWoOJcFvIxQXykmOWazaGklBhw5NL4FQNlDxHvxUnDeofENYhIvYU6Mpm0kw462EyuI7UiIhJ2vgJyjwJ4IlN574Sd04kVrXg5kQJFKzczCa3jn7h04cuJJkVJ+rq7tsFqvAIYSMwOnp6fouh5TmLIsQES4eH2Kv/g//xAvX9w2Q98P5YfyQ/mhALV6OwecVJ00Jc8On4uaovSmm/KI3bZcVXFvYxg7JgfdJBsdu961QM57GOZue4/6Xsc8rZfnEzlDZXQHagH0movbuluuG2NESLKGbDYbkbVNxgYLoTeZDomcUdu8nrqmwbrvMex2+PrxE3AMON+cKIcrIU4TKCXJ1tZ12PRt1k5EXy06awa0DIzhiqPoakNkUMMiNyyyK3uBqsCSgbNK1zJQS2SEmdQunj4KrLEqTAYyORjtdlUVlFFjxnAigLx5XwnEUzd9AmAM51SdI0mQLChPvkMijcSrKVNQ6szIpPFyYj12CzCYMuCkXcQ5NFSeN6FEdOTsePltseGBAlsQgZ1DA0IiyV4fNdQZAMZhwPMXL+C8BzsvfcgVvCFV/Vg4vBoBmmIUsnqGyo+YAU11kjPgqlPOm4x2S6N+naDC7jUrzGB156jBq+tArGPl4wCbZsJxKXWDLLPKAchEkUvybzv3WEa7+rrXvbDGexHM2TyfosbKh6xE0KpH54Wfqe3anLWDo6S5tY/E7e/x/fff4XDY4+XrVxjGAx58+qlkGnEOUwxIYNy5ew+b0zOEGCR15uGAuN2BEcGjDKghJgQOGIcR0zji/OwUTddic3KCT8/vYL1awfvPJEY4BMQpYHe5xfePHmG33SKSEFEOhz2mccR4OODycECIAfv9FjF7ZInLdNtImN3pyQaN9zjxHRoS/iHPwpqftO1bfQ/wMnAA0smEJQNDAlIMolDFCHBC37ZYdU4nbVs3nMYS63uCTgQ6owhRd915xFMoT9TmKoRqDbJ3aUCJTmpMNum6nElOUs1x+RCDEwmvkTyQehhlvN405+xmS0xgjvBISMRg59EQg5yR58UMuGUPLgKcl/SpDkAjLSHgn3PShmAFQMXlXnVJaS8nFydX2QdY+nVIjOSaDKLZxzuHhgiNb9DEIO6nqsylKBxORF7diF0hXuQjE9LsjdQ/Fqv/bGduunrH9Qh7VZagxnI8v3VhzpJjVtX5Gn6na+px07a63OS5letSXSvjMrc3JNx432V5KyFysdDY38sFzK4r72bA/fv/+1EQ8X0EWAbUGCBcJzZ31mSxcn+PVS9EvqvVCl3XwXvxKn327J/jm2/+5CjY1HW/wd27/zOILvI1DWwyL1dLXMHMahRIIBpylizmkvVp2Y7k5m2VYN652pbO5fHMCnZdK0ULumMovU6mOt6dR9OupN4QwN9XBpyu64QTZrpAooSm7XMWr6ZpwCxCsXMOpx73LJkAACAASURBVKenedvsXVTv39ZiI/Jt2zZnubJsXktBZbPZ4IsvvoD3Xta+KqTm5OQEZ2dnYOZMIvzgwQOs12sMw4BxHPO9nz65j1/9u5/j5Ys71jBv7kg/lB/KD+UfcanWpWqOrQEnWgJO1bQyW7qP28/eopisdLPR67q1/LaA003ezcfKm5TY25Y3KabHwoSuLzT7Ylngrgea8vuct0dMEZFjjlBhZsRpkPVb13Z2LGs2kJdhByhNiGQgP4wjnj15jM43eHB+jtY38ETgEDSawKFVyhJOCcNhjxSTGKsMRKnAJubqnrn9Zo8DQz+y8Y4NfDMDmGaXZjWMs7RC5pECZfJtRg26VOBUBYw4+wbMgWyG7yWwehipowAZqGVU3VmBQIGSSJ9TgR5H+hhWLwnvy21kj5p1C8OsZMSWIVS3XBnH2gNgoYTsXXWoXb/yENL7MmvwHZkOqY4WTnTfkFI2ejJL+PTl5aVwM6838E0VopmBoVInTz63TUpz8Oc6w3oNMtUJEpYy1rIcG1vXAbyclEIHx3Wt28jwHwfYxJB40CieQ3UjAaVxl65j9QPbtloBqBvazq+VELuGeTZ5RRxJ3dhijNlLytDFpvHw3mVScBCL4p+JrvWlc4JvnFhjCbhz9y7W4xrdqsM4jTg9O4PzHokTDpom1jUNOu/RoNNBS9gfRjAc2rVXoIMQQUjOAYqWRjhMDOynCYnMC0UHlPOgvsfJ3btoTzb4+aoXkEmzkpgH1jSNuLh8jRAC9rsdphAwTaOG3yVsYwRiwOVwgAPQMdAw4CG8RI4c2kYGXNt4saRnwjzZT1AeJCKQ9yB2iE2D2DSCIOs8G6FgyOy7An+w+BtJB6wCNgo6yb3Vu03/n4W7AWoZcdn10nZSdQ9JWWrAkKK7bKFoJeuCWAwArzG+Psp9OufQkpfUoaTovlpNjERQUBzB3BMzKDF8lPtwssknIsQAcEKKYbbqOKdZEhIBJFO6xVFHBf2Y1bsXBOcbjctOcJyyl4fX9gM5pJiAKQKOweSEt8smavXAmE1JamHiejVmPYryjvnAzwvCzcDDctKsLV/1/vcqREddRX8b5W0FN8KR5vsHUN4XaGIgp9ROKWF32CPqQm9ZSw1Qadsme/MUEGwelr0s6/UJHj58CO/PivWo8myqF3mZ92WtMM9bsZCK9FsLAmxKy0JoqPkKAQGbvAI7qXJht3WmbsMsxrHwt1kaXU4J3jXomhUAYFISYuM+NEAohJA5DwWMK5mfbC0EMEtZvhRyluPTzhvHEcMwzAxHRnZs11j1PV6+fAnnXN4HyNwvGb5WGfQiIpxqOvppmns2XV6cYLt9AuATAP8awB+8S/f6ofxQfij/SErbfofT0/8Nbfsduu4xgCJTLHWP+nv597Hf71ZmJrvbn3XNWnaTYvmmbbfZ9y71/FDXAoDi2oLcbGo3zOBQaRsz8pRw+gQCmQXbFnhUXjhsOojsMwDFk0Pj1Jsoim7QNUJv0jgvHKdaAfNMTsSIsXgrMy9C7cjM7O/SPsfAFdOBODdKlqf1ORik2daKrGl3Z2YkKgF2vNhGIAVjAGsw1muSGr4Ihbybq/dkPoAmTyVC5n03edcy/0XFEZMCWaWJCuAk0RwsiZFIuNwS9G+Ip1LkSjcigFl0LoZw6QoFidCXiF6aZveVbYREXLLe6bFQ46BAGoJpjNMInxLYNfAxwifR9WNKiMyio1MCNJKl4B3angvdZ5lx81gStZvmoGMGXzvnOuN6rsuRa992vvs4wCaIQGzk28eQsyXZd72tPrYGm4CrjWlgU62sei/giAA0hDhFxCj1ORwO+jLlem3bSqhT40GecpiS4zKAk3ZJ33hsTk/QdS2IgClOGMe7CDFgc3YK13iEMWK334OIcLLZwDeNZLPzHpGBi8st4AHfejAD4zAJqbbzgGck7xGIMCbg4jBgiEWJ6NoWvXpdnTUtvHP42fk/Rdu2CNOEEMVja7/bYRxHvHj5HOMw4MnTp9hut3jx4jmev3iO3W6Hl0+fIoQJw24HjhErEFqWkLcW0Ix7ErPcti28Ey6ptpEwvL4Va3bfiGdaQ+LJFJsWoWmrrHZciOTMQqFeRGAJV5H+oplTOOX9BjY1Vg/fwHvLNCHutha+YVkYmDxYQ08ikAEx65fgEsYnE6YsDK0i2g1JeJwjZIDPQxYfChK73ZJDS5paVDqlkDYwI00jOAaZ0Djqc8vNvBJ1xxAyeWhKYmWx1KE2F3l28Ggy8TqIchidXlXI8xSZd00Dzx4+BbiU4H1E4yMiEbyTRUhCgwJYebZqRbJ1HuZ7Zou6ttgCcMqjr/pdDn5bjoOlMPVhBLvZHW5dl99mmbUclcwn/+Fr9vEV8ZbpwQBGBcgNABGQqYX3jXrUFM/YpafssXJ6usFPf/pTdN2hrCVKMHncoy1mIEg+4o5/DJBBtYDXwFX98d7Dt20BtKDCBXgmZNSJNJgle2lMMacE986j8wI2jYNYbOv109K5r9frGRBl7SOElWP+zl5eeu+aN9Hatv5elpSSetiWdvXOoe0kTXAIQa5lWV/FimAny3tvGjHYLFOeMyHG/xHABsB/ix/Aph/KD+WHclPpu1/js0//e7TddyBnkuC83AZoum7bu5X5ir9UAo8pl2977/8QgNOHlNl4JqujykSn94KFaxeHBQFASrgazBPHiKCTSczI3wb+WLp67yUorFWDOpiRguiBq7ZD6z3aRsAmZCORJMFK8EikYUuV94oBTfb39a1ctx/jWF8tTw9AvWUM9DIdyIAgAZmMLls/NdhkzWv6LYnVmuxazGqoLecRKeF4/o2clZvZ6Gy0TbncSySbrPZV4FamwSrE3zkbIeUmMJUxKWiUMoAEIWhHAZEiTDcSAIrBs2MjoImXOBvvIwiRCuBUDPr6BI7gvPiJhRRFtxsGOB8Q1MjfxAjftPpsBOcZ7BqQKzzJlkSL9T61YXHJTb30aMpv/8g4u27+qM85BjiZ/EWYR4S9zVzwkYBNZaDV1mYAs0YGClpon+smytpz4KZGz8I6EpDE6yTxPDwCQE6L2WQwSNBx5xWkUo4dAJK61VWeFw7o+g5N8ui6FokTGlUgphCw3W7luZsGTUroqEej6CicVw+aFpyAMCWwYzSuAzUtun6Ntl/J9cjJ4IlK8OwIFJUmzTkk5zDGhETCb8JEgPdoViugaXCmROLsPTaHA1anG2zu3MH+sMf5vU8QwoRpv0cKARhGYAqglOCiZSaI1rhIDIzMCEGQ3DEKH9GgWUQakuxs3TShn5psOSgZFMRjyMjGLdqE8nvDYjbW7AmQmGqn79Yn1owLZXIE1fxQEh9s9zCwyZB4QonLJghHlZBqCwAjfXUZvmZZDQOAhEQOSVe27JoKlFSgzonHFEeZbDQMXfoQQM7DRXlnxF4z58XcFgQG6/slIkRXofzQbHgKPgXNKJEXDhRvJwPdbDE2S4xZhaBzuy1UM+deez+VJcPI+LLdpqzu9Sk3ltsKJh/MSsbH67V0W73tvvfxvFrcRa/z1peZ1eNDtFN2U36Hcsz9993rUdrIFkDzxrFrm1eT9zltQbVuyFwxjuOt6pFBqpIC4UqNEs/FxMz9ABwBm+bteAxsImcZqcr5Fgq8XMPMmytxQjMFRM1qEmOEI4/O9wCAtmmOgk221qUk65PXe3sNEZ+mSYQv48dSkKfOGptszqCl67+Fgpa6nqzXM4+k2tMrX6/OUqvPm8Od9XinAn8NeskRK4TpKWL8ZXU4ZY5HAbSKgMcm1ULnXthcRjNvaesHSaVh51wOhxTPVJUbbB9ZVjCnz2Hhz6z2jAIYCrmqeJtl4xhzzixmbRVjxG63175VhSk4CQlvGjFOTdOIlObjwMaHZDhL2O8PCGGC9414bJOEndZzzYwTQvuOebgVz2/ScWLnkz4HFJwU79wYxRPZ2kauQ9jv9xjHQcewykfTqLLc0ttdW5tI6yychszKvxKm3C6A8E8Slfco9W/EcKjfpAqonB8r+Y9ze8Qo57dti9VqlZ8f4MwFZ7JsjBHjOAAgtG0DIpdBWusPYEas6B6IoF6RUevmAdaxT4TN5gRd1+Pi4h5evb6Pq/NQwubkO6zXz/I7SkrJkFKS8cSMe5/cw717n+R+NU0BT588wTCO2GxO0Pc9+q7HWsfo5fYSKXEGn8/Pz3F6eioJb/YHTOOI5y9eIIaA07MzrFYr9H2P9XqFaZpwcXGZ34uMOXk3+/0BFxcXcM5hvV6LV+MkYPZwGDAMB6xWK9y9dw+Nb9RwS3h9cYH9bq96QABgBsWsYkNHmK2cqL9yP9Ixvl7/f/B+C0dT3cHqaWa5udIvjlz4A5QlpGDbsm1uJn4VuevK3HvTTXSunm+6xuta56z3Bos+8HVmaAWq900ma+v/M7AJCkDpOSTGY9C8fQ2ogoEq6nTgqXCZWrRCipL+p2ka5aF1mQiaDS1JSbxhdJ20kDBbm0pfnb/xSu2/pjFsEVs0EAiguq1zJ5nJHwIwLQAnPUPC6iw0DiAWwMk8mkTPXYwNO8+eSIGoZE8ze20lPM32G/iFqi6J1YOIzdtJL6o3ZOaMP2WPIzAiyfE1sGRcTKIL6bVRgKm8z+4HA7nMU8qOm7dZpjPRc2OM4GkCxQQmD+ciGKQ6l7x4z4ymiRJ2SK60Gcm7s/F8nQx/HWi0xFDedHytq1yZA5ir/vlu+sxHAzYBECJqTdFqD1xbT+sQA/OCAsrk2LaFO8kWdCsm2MxCGVR4Mrd8GTwQQSOm7PrvHGG1WqFpPNYnJ+hXXQaonHPwrfFJibDQxgYptRjGATEFkAPO7pyKZ0/fw3uPi8tLvL68wG63w7ePHgFEuD8F9KsVzu6cY00niBAAipxH367BDIQEMDmsViIMbE5OcEeFBgZjZEYMwhXSxQadkpn3vQhG24sLsFqum8ZLLOlmg9YRzj99AMoTAgRcCgExBAzDIKj8OCCFgKffPMLF8xeYhhHjToTE1y9fYhpHvHr1CuNhwPawx7A/AJyUb0Q8exxsspbMd40K9iJyGmE4oW/a7BnVtY2G6pnQeRW4cJCx6UQuk6xrpLwfFGdCh0EgjlwmCff5OnNgyRPBw8E7Qus9HAGdejRF79GqQgbfCL+UchslHsAhCrCji5NZVFyjBIGp04wVDA+puHEeklclIkU4JSBOHBXe1zTQ5uEFzhOw/ZMwGiCQhF4GBg7ThEiE5MVHKwRgTElQfwXNnFdwKsnk2ngH7xp1FTXFR0l+85rI+ZWwvh/OSrkBU/L8pZS6gix2+82AyLH99fzwPsWTEOC/K6rzod3DP+S1PsbyocAmU8771QqkJOAhBDRNg77v8yLOzBiGQT2AdmAGLi5e5JCtZUmJNbRbQsyInMbnF8W/AD+cM6AYsXbN2bR8XqpAiro9lp8rvdoA3azs0JXzQ4qZO8DAptbJumUeSqbwWiidKaXMvCBR9xlsqtfZpF5Hdp/Z8ym4NANSqvBGIsLm5CTzOBnYZfc3wSaoUSlMEwblamqaBgRgVE6s09NTnJ2dYRxHXF5ewjzCwITXr3+J3f5XWb5u2xZnZ2cAgIuLC0zjlJUOjglRvUnbphEDkhoTxnHAcBjgG4/Vag3AgJyEvu/RtkK+TiRckq9fXyCliL5faR/s0HU9UowYpwkWXimAyoQQIqZpxDCM6LoOd+/cATnCdr/HFCb0XS/ckCTva7ff4au//Qr7/T7LNm3X5iy3p5tTpJTw/PlzDOOI8/NzbDYnWK/XOD87l5DT/Q7jMOI3v/kNXr16hdPTU2xON2gaAVKyRzCAYZBEJylGxEnG1enpBkTAdrud0R8YP5e1tXNOQ/Un7Pf7XGeThTabDbz3+PWvf43vvvsOq9UGd+/exTRNeP78uYZ3drPwTQOpvPc4OzvL/SelhO12i1evXuVjLMy2aRocDgeM44i+73F6eprraLxi3ntst1tst1scDge8evUKzCzt4RwOhwOGYcDdu/fx4x//GMyM7XYLALj/yT2s12s03qHxDtvLSzx+/BhEwL17n6BrW2x3WwzDIIT3q1Um5QeLQdI74dS8uLxA13XYnGxkzhoHOOfw85//HJ9/9jn+6pf/Cv/HX/wXSFzaRNol4idf/q/46U/+Lfq+x2ZzisPhgG+++fc4HAYcDnvEEPHHf/zH+JN//Sdo2w6rlYSv/umf/ikeP36Mn//+z/HFj77Aw88f4qe/+1O8fv0av/rVrzAMAzabU/R9h3/+L/4F/rP//J/h5YtX+Pdff41nT5/iz//8z/H64jX+8J/9IX785Y/xoy9+hJ/85Cd4/vw5/u9f/hK77RYvX73EOIzwrYCff/f13+Gv/vKv0Pc9fu/3fg9t1+LZ02fYbrd49OgRvv32W3z5oy/xL//Vv8TZ6RkefPoATdPgL/+vv8RXX32F3X6Hy4tLkCP0XZ+BX5vrhVtzATTU7eWcJjvYg1lTGS7m5DmohNnfSzGBCFfu8a7FpCYD6YECO/CSlqAC2Zbrwo1GnSPyysJeMrvHBxFHSG7CR2/ylpfi+VUyjoQCAlK9L4uh8kcNMOUWNvBXT2CnxosQwCEqP20D7xxWbYvGOVBKmA4HOGas1z0aNRg4CHgMA3pDAHlGdC4nI2JDapS+wgy0bJxLqHiNljCiuRLdxLFgVvRZv5yH6lk2uHLloi25qhWNOsRyvUWkGRdUgEV/ZIkfwf42QErRnJoKICWVF5wCRsTZIG79MSpAFbNRq6pwkoun3CScQ9uCAk/ZswmcgSMBlJSahqowugqQsvMCzCOKRYdS0M2ALJB4LlHTIhFhigEcA+I4gsjBDSOc82hXI5q2y3NP07Q5iYpDI3IhRDdN2hZQ7OKYHHmdh2Oti7ytnL2UKYmUpgXF6Pq2hvSPCmyyYpbA6ybJZQMe+75pgl2+hKWAbAJ6sebpRGWeTL7ULevOBNhSwNW/xGkmGLWdEK7SzmXQbFBy02EcQc5hnAIaCyMwi97ihXrfoO37/CFAswylnA3D4k4JyITaIWkomksAO533ZaJzrXJ4eBGw5wS4EprC04QUAniMaH2D6TBg2B0wDgOca8RLwHkMhwOaXY+m24n1adIsdCkCXMLRDM3W5s8IrmOAkmRfiyCwS3AkMb2OqlUvh9EJOEQEOLVWR0oaLkd5jrZWNHlCACXpE8nmZG0zAcYUbCLhYmKzgMQE54AUZSLzzDnLQauEUBwjOEpoWiTxjkqOK2ANsxSqZJnxiHJ/A5U4ZbEAaD8lKIhH8s1mMWBk/rDEOmnLcpHU8y0SckhKjcobSGRijt7KIPjKEFJNRKi3HRcf6Jq/AQKrhcQsXTWift2Eepvf717kiW5rDTh2zJvcV5fPd50FYnYvHJf/blvmoMh7Fn28665105x92+NvW+xMu0btcVErm0QilNW3Mu+Om0BKWQtCJscmSkqWOHclNrCJOcmYzeBK8WxaPmcm/q+fJwtfxZvnSuu4ueK0VKKWfc2plZWcTCa14rX81Bla6099XQuxOwaMXfcc2cqnwBMRYb1eZ8ChaZqZ8aj2moka7k36HrtOso56Dedbr9dYr9cz7ywDH0N8BdAut0/XddhsBgBACK/g/ZjbKCmo5aiQmBfvmwOAPZqmwcnJCQBk0K7v+3w/AcMmTNPr2b6+79H3PWKMaHVtt7YZx1GB0QnODei6DusTAReYhD+xbVsFO/UdYY/1yWOA9vm+doycv0NKCav9Mzg/YrXaoe9PsFqdYLXeayjmHt6P6FffoTu8RL86w3otwIuBK3luwg4gMTixj3qMgE0xbuF9AZvsedu2xcnJXvvUJZwbkNIeMe4yUb/3Huv1Kbz36PtHaNtv0fdnODmx5CpPEULI7VjPmdY3T072uf8Ix+YW4/j6CtgkXGFDbuO+P1UPpW1uOwGIt4jxEkQDhuElmDn3U+Y9gAF9P2K18tqfdwAY6/WI9XqFthEDFNIlTtbfgYiw6g9o2xYx7gA+oOs6rFYSsuqdyH92jxBeIoTXCogJKX5zOMA5h9PNXZydefT99uiiQASsVlucnz3DarXCyckBfTfg8uI5+u6Art0jhICzs6c4O32a+0uYXuF08wS7zROcnd3D+VmHs7MG52enAL/G2elTdO2A83MB6u6cP8fZ2VPE6Tk2J9/jsHmGs7OnAC702j1OT1ucnq4xDM9wsv4OnLYYhpfwbsxAe999i9XqEfq+x2q10vo8wTheYrV6jNPTJzg7W+HunRc4PZ2wOUkKVH6LrvsGIezQthc5lLoes7Vydh3Y5JwDqVEghCp8bglKVb+XQNOx9f5DAE6qUihQPg9vqWXaY/ed1/f6uiw9GG669rUeT29Z8js5dpO3uY7KjFlxQJFe5UfxFKoBx3xEhd3kfabXkZ1XGVFz3TVrtCN4C6NTD1yChIMbtYbJ98ycr81ZDuFKgJ579uaS71sqS/VO1FNA3aIMrn9XlzWvIUIBlcq+cr1UmhWGEZECNw4m7dOsFsbLlDWJWr8hFE7UbIyye5Z2KTqJyuJaBwOGJLStqrBVkoVHilmePUH0pMhFzyzhc6weTaJTRpX5a88m8WjiKkIEyv2k95iBW9ZQlGVDkd8gmcPJwcOBXAJpdnHnHBhiuBSvOCAll9ux7ps36RbH9l8nD77pOstSG/7q/vUfvWdTGcwlFZ81pP3O7sfAlYw4S+4mANmKaqSkwHHhnFlBmMQYxwlhCtk9mkjDCbzPAIBYnBOYCRw5h0QxGLvDHsPhgMNwwBAmEayIAO9ydqExjLi4vMDldov9/gBmwL98hbY7YJgC+ss1bJaLCdgfxB1+mAJCTLjT9Ti7cwebzQZn9+4BEOtjUgt0jEEBFEIkj2DTcNvDNQx24vGSUkIYRpAj7KaA4qGlk7OFB5hHTufhW+DhT34XD7/4ncypwSkhTgEpRYyHg1ip99IO4zBgt71ECBMO261wEI0DUoiYhgHD/oAUA6ZxQIoJw34vvFRhwiFEiXk+HBRllw6fQxFSBHNE6z3WfZctFbPJTudwUyqICI0X7ynvhaPIQ7xawKyk3Rp2x4rmG+m3hdyBNAZZ2slAKdmn58UISpKxr4HyWlmKS/JqOTZOKWl34QPT9m/MSqcPQmXqlecRUNDAsavrlG7w4iqVEiPEhOgcWBW2NE0IKSGwQ2RB7I3fKSYGU4JnaNJSuSoYiEHdx7I0lG9a0o9axobZPzbsSg5pKnfPCnCazQtHgOErivsRQfJdyvsKQLcptxHajoJ2dHz733+pV/jFnrcAmt4X/MpCSIzY7XYKlPscJmX3EKXDTiCcnJyAmdWbJGAcu2vfxziOeP78BbrukNeQlATIrY0SFkqU1IuphE0l/Rx51mp+tVJ7CIkxo4TR5fNtjqsUqDokiYjU1FitdxBONwM3Spplyp5N0iYC1pj3Us3ZZFxYuW6L+9u96rre1B9ev34N0nuZJ9p+vwdQAC1rX/N6EnBiDSLKYM9+v8fLly8VnNhlbxd7JgNpAGjI0JTbwbxcmqbBpIYY10hIjxGjWx0s411uU/0Mw4CDggF2TwPEmDnfb5qmDKzVYJ0pxQbUWJs753CqXli73Q7b7TZnDmyaBj//+c/BXHvqcQ7xWq/F+2qz2cxoB4CSxdeu86Mf/Qj379/PoJ31IxtbhbOS0bcd1n2v7xy5fY3ny0Afe48GIAyakMR+12CTebN//vnnWK/XODs7w4MHD5BSwpdffimgmZ43TVOuv7WRAY0ShlfAQwM4l/3RgD7zxrJ6mPeTeASJR5F5L1n72se8tww0FbBvDnKfbE7wxRdfIEbxXtrv9/lc69tN0+DBgwcKtvW5HpvNBicnJ/jkk0/y+7d3u9vtNXHLEQMIgLOzMzx8+DBv67oOv/jFL3JfMfD2z/7sz/KzGb/dw4cPEWPE48eP8fTpU/z1X/91rj8gXhpd1+Hf/pt/g//lT/8U+/0er16+zPdZrVb427/9W/z617/O9x+GAS9evJgZcF++eomLy0sFJE9ARPjmm2+QUsKLFy9wOBzw2Wef4Q/+4A9wdnaGzWaDaZrwF3/xF7i8vMSrV68wKPectecy2cMxY9BS2ZJkLGX8ASiROTcANtfd42Mtt6nnTXJJrYt9iLp8EFlN9RdThrNCzGW/lGVoUg3qqGBALMbjpAYjQImbSbhjycLXExwc2qZB4x26roUnh2mU7OA5EQkqvzSb51l5hNQhALpOEzuQd0Ln4QjstFapAEN14VoQrNGkCrsyU375DZSTLIl9Od4lPU7Dw0z3AYxWhJHUu8V0otqbKusg1vYZo2NkchFSMErRG3tGADmsjBOMErN82z4LtWOagVICXNkTWu2TRGcwZbBp5pkEMbqLvsPK40RCGA4DmsyzifV82SdeT1oXrV+wV+EkWojJIURGiBF7lRucn0DOIaSEdppAiik0rXgse98gtkG8nTL1wxwTsT68xC9qr187pt7/riXPc0B23FjKeLcdyx8V2LRcPK1Ra+G2FpDfNGmZYGHC8lIgro8DICEBKSmvgBGJQ9LVqxWa8kBgnUeko0qHF0UjxIBJSZ3zfWk+0cWYMKrgFIOEPAzjiMSAbxpEZjRNi6btwQw5JqXCYO892q5H16/Q9cLFEVNCdFFZ8SvvLaKSbc17YxQCk7oLSryUegQRXKQcy28fr4AFaYjbql+jU8DEwt+MSyOGCazu4eNBBPHLi1eYxhEXr14iTBPG/R5hmrDf7rC/3AoQtd+JsuO8TN4HAvOIlITvocxGdXilZHPrWhbPrPrdMl8Bm7zTkEvIO23IoSFGhABCYAjIklImLCcuPE5kPB020GxCRplgnXpaNXqcRwU2OSMWVE4LXzhHmkaAyIYF1JTwPlIPiLJGysBHAd+oSi8qHVyP0TftJTyOY0LkoJkMZeizk5A5tg/KR5qcy6ReLVvJ3sVy+LGNDx3PuZ62S1duey9vAHduApqWHhwfSvBjW8luqM+xcmyCv25Cngm3XsGLaQAAIABJREFUt5m0P8CjvS+4A1xv/bjp93XbbrPvNsXACHKEVbOW5A3aH5YgAUCVMi8ignmlHCsxRgzDATHuiwIekgC3mnHO7s+cJDMpFz6km8EmzAChWpm1jxGE1+1UK0O2FtbhcEQEMsOGHUMODg04lTC6+vwaXAAwU+DqMLoaPJmvD35Wp2NjtF5/s5IbY1bca7DJPItqYGBUYd7uIUYVqdfBDByHwyx9tdXT7mvPWHM/1mPR1hUDhaydDLhIC8XUrhdjzKBgDdZMGupn/YSZr/Q3ex7rl/UzNvoedprEw4Catm1x586dHPZl3lHTNOXnJyL0fQ9mxm63y4CBGeAM9NpsNpljp1dZwp7Z2tjq1nUdTjYbgJN6UnP2hjPwykLlgMKhVns92bY6hBJABh3Oz89x584dMDPW63X+NtDKshpa37W+0jSNhKh1XSa6t/ZfJoYZxzGHv1lft1C65btgZhwOh9wOdX+w+xORGr4KQb55wVm/Nu/IAlpLfQxIs/awOm82G5yfn+d2NFkyhEn4to5NWET6/CdIKWaA8+TkJF87xohnz57h8ePHszHz8OHD3G673Q7DMMxCHq1fxRjx6NEjfP/99xjHEYeD8Cr97Gc/Q9u2ePnyJfb7PbbbLS4uLvJ7EEBO2vf7x4/x/MVzPHjwAD/5yU/AzBLWOk24vLzEMAxYrVb48ssvc58fhgHff/89nj9/Phs/9Xg5BgodW4tr8MTCpoiuJjy5DeB0bNt7r7PLBf/Y9ept16xfdNN+5rz9tkDTh5CxfhvXMWUY+ZEW7+pG45j69zgDqrJwinJ12y4ybe3V5J3DBAW2zaupOpO5yF5Flka+L5tu6ETIt2My/zVQDLioL7B8JtEBuH4GO8HkcvMW4jkIZVxMBhDZmbVnUtJLOT1/CW2B7duug2xgBghet1t1wEb0XbyHDFSavaO8HUU3qeoNvbeBcCWMDlWCJBwh/7ZtCkhRCZ9jLHidqt/2sTpZpjtiqDOJaMSJhY8vhACG6pDk4JoGAMFV1B9hCuAkWQ5dcrVoKO1fyYm1x7E8+vG55kPK+vld3jAfvql8VGDTcsGorX4mFNaW1uW5JvgurVBmtamPXX6zoqMmnIpQJESb3nusTtYq+HtR5smBHAOUWWcwTREpRQzThDFMSGCJw68ELuOkuLy8wMXFBUKMOFOBolut4ZwHJ8awH4C1R9cL0Wd0MmCdb9BQgm9a+KYFyCGqV5XhMU3XoUUnteK6g9rgBypc2BoF5j5b2t8J4W0CoEFiNgEzJwysXjn68ZqhTIz1HtSu0PoWfrVCvzlBigmffPqZKBAhgGNEmALCMCLGgHEckGLAYbdHDBOmYUCYJgH/TGhXRcmsuWGaEKYRMQRM+z1qLowUlVNEwUOGcoskBsfxyuTotH0aBYK89g0Pym6x4pGEcowzjh+XM9zJeUDfNGi9xHNTUpAsRpmgNLWCAUREyMc4Vu4m4TjVNOapgE2kIYMoNhtHyPe3OUCIC4HkCOwIyXlE35iDByIIk3OIzuukrRc3b4vEebKmajwRCXcVoKDrlTXPvLGMUFmnKhYPC7sVAPEmJAO1rgctbvKUuGn7WxdbQT7Epd5wnTcJXbz4cVNY/t9XKULTmwGlN4FO7wt+ZSEkMWKcsnJuyRkyr5C2c9MKJ8qZEtiKcObw6NGP8dVXDYbh6j3qxT2EoGCNKHvmZVF7/VhGydoj5DqwiRbeR8fAprbrJENb1XaRj8fuz9ZPvXYGMlyDVSveLgY21ecs4/BrIMm8MOp11Y6pz1+u3fk9Mc/uYd9B286UfGtH4Gqont3fe5+9V+ah7qVOIQRcXFzMeHxq4Mm8juzdHQ4HCcFS0IqGA4ZpVE854W4axhEgwhgmvHz1qgDlJKA+eWmjYRyEW7BtAZK2jiHm8eK9x/5wEGtqiJlMPMWEpm3QtR1iSkoWSnDjCBCyR4q1kQFW5tFjz2LgqoE9NfhnfXgc5dlM8V+G89VyV+GVGvXeIw66zlpofS38FuBVwMQXL17Ae58BhOW4rL3R7bzD4YDnz5/nbdZnzWuq9l6yZ7RjDXy0927eL7X8aP1iyflpfco83gwwsr5Sy592n9KnCYf9HiFMkvZcM+I2vtAlWFhl3/eYpgnDMGTQy9rI6mPgyqNHj2bPKG3tMnC4LMyMFy9e4De/+Xo2fo3DysaBeVnVnl0GPI3jmNvG3qlts/uaJ2kdsnZxcZHf3Xa7xW63w263y9clEq9S4/s6Oz/LQKfxo4YQ8ODBA/R9j4cPH+Ls7Ay73Q5ff/119u6LMWZgcwkW14DSdQrZdevubNs7rrUfTA6ZgQWYyyRvAp7stz2PyWPLQpQ5j/Kz89WVfQnOvW8hopzs4X2vk9dP+12Jo+UWxbMJMKDDwNrKgKOCcV7TVJdhBa8cCaeSJ4fGec1ELfqBucOIDKCMSypLcrVe5zpnob8CZFiM+ebNZJDPXFOjxff8V8GhFHWqACvbydU5Bn+ZMV3ab+GlZMc6AUMskVN9MeLF34uaWqIle1sEDyP8YFJvL3CBuVQPZXAVpma/XdYXDMDLoGn+FMLxqOBUzdNkWeSCHmf5B227SbhJtzHEE8ocN8xAL9/IfLfkRBaAcignTppJXL3HnIOfNHmFGitSjKJfeo9J5Y6+7654bNpadGztAyrZvJKHPtx89P7lowObaqH3mNCztJzaeTXYZMXOMyGiPna5GJFNGIo+No24SK7Xa/hGLDvkHCKiZK5TzxPp7Jp2Wrk9pjBhjBOYGG3XKtgk4MThMGYBY7vdggGcnp6q4NgCRDgMI6YwoWl7OOeV+yyBHIv1lBy8pn0GUc5mIvwepJagufJgpQz4+RQ2mwylQWTgJx1kzCDijEhPIULSXxrQJKR5Zr1yTojTWydeUo2FeZCFmpXJDSzWpRBUoNVwwDCNkr0kaGhgCNjvdogx4PLyUoTC4YDhcMDucoun332POE3ZoywouTkHBaRixBQlG8o0TUJ2GoUMnjkBKcI7h5P1ibwzUo8j59A4icXuFFzq2lbANe/hnJeMcV4y1jiI8NmvV+jaBhylDhwlZDFpyKGEH7KEIoKVa4sN3ckT6hQmTDGoYlOBTURVGB8KgZsdo/uYAHYE3/VoTzbZ5TUREJ2TsLoapXK22En4UWLN7MDFU7B1FgK0AB7ymFKAKf8r++qFPyYdT3bKNeU2k+YHmVgXC+Vvu9zWymfj7n2E4A+18DDLW7/Jivu2wNP71ceyRhG6ygujBhlsXmob8Qg5OztD1/Xo+xWYH85C75alBptMgZ2mkBXfWYiZereW0KbjYJMJnSVMec6pZWBQ1/foNeuV7Q+aFKDmQKr5SQDMxjMRoW06nK4lJMuAiVyP6ruuX72uGtgDHPckuC6M7rrrAZrFTOcTCz+zetk7LO+4vMdBUcHcHgocWEiOeaMQUQ4ZtDaycKXaC8yey4CYlJIASpAwNPMOgiOEGLFTIMc8Lvq+R+tahGnCTj1B1tqcwzhKSH4qnjX2rHYva6uVkttTIoQUZ21Zgya1h42BEvYM1q51qBkRZQ6lWvGvPYKIaOYFZOcXIMdA1YADDmBOOVOcrff1+7DvV9qO9h5qwvk6ZLTuJwZ41OOhBpssoYv1Dxt71r/M4zDGiP1+PxsfxlFU9+fa48lCxqyNbF6wephnlgEv5mVGRNjutsJdSZIApWk8Vv0KQGmTrutwcnJS5D8Wr7MMZjPj5ESI3I2g3DmXQRppE+QxsCzMjFevXuHbb7/N4ZRLa3QtP9eeWfZOLi8vcTgcclhcPccYGbyFTJZwYSFKd87hxYsX+RoGhFrGZePf+vyLh7h//3729LKxF0LAvXv38ODBAzx48ACbzQbb7Rbffvstdrtd9hBbrVboui57ar3XWlIBMxlzeferfZBiQAjVaMFtntGOyWBDHWJ2pBDNr6vHX2lPPe5DAU7uA1xnqcPJNv2Drcr69AvLnagd9UbKjUSmo+S2E3nYMo15BZy88+rFhBwFwWpEToBkBNdtcxAUBWjS9d+ReC6CCtiUwZW6jlC9bIGLcvVdNugfWXicI0S5j7GdX0FcCj7VwBFT0TGovuQRwGleY6jOZzKj6C3ix6DGpPxWyplyz6oN7HEU9BF5qw6hKz5ZVpU5wffcMylmIIkq8nC9fs6OJ55PTBpyRxb5gQpoku1EDvAOrhG9XObNSk5jBiUHFwKyIZ4IKcacjMMHW0uLMcbm2aXctfRwAjAzwH1s5eMAm4hATZPd/oFCsGoCvr2w+mPCSi2UyuVots2seDVvU438mdA7jKO+eC+p7Vm7LAtHECVG5CCWZTCYlIiZxPMkJvlOXFJA20Cw8LOors3jKB/vG/Qr5QxxXuvr4Shlt2WA0HZSn6kT63rX9wo2AVMIALMiqAyfakFdEdaUFEz3GTXO7QXkScB+1xYDoEwkGRUnB4tRYxAiExAV2ONJ30HxfPJeYC7vSAGZ7OMCYuM/sZADCY0Ttn8H9jrRNw3WjUzKfrUS4t4pIE4ThsMBd+7eF5BK32cIAihNYcKomXSGYZDv8SDeUGrRTikhRWlHTes242WyumaUPDIoBtAYindRbk/xQjrpW7Teg5NkJeCUkBSkQ9RwvNnkUS1AtnoQIXovpN6U56ji2aQE8h4ltK6ATjZhl3aepknApmlCIsKYkiL9Ba2HUzdOOLF4OMrpRq1fF5JAqItvvZCV32URM4sI5cVcxl5Qq0bpbMcU32O/l9s/GNjEi2XvFmDQm4SwY/vquei682dbFnLhu5QP0kY27q8BsG4DNH3IYko3QDruizI6u7f+aYqNHONlvrmmjuv1Cp9++im83+S1aBoDYkxZqa2NISo+VSFa4llZr1d57QH0nZa1qAbImIWzyS8UXhsvtRJdfyPXorSPI4++kZBsU87rct3z154oppxfN+6W3gP1d93Xs1dydczSa2oJQNS/ax4eW79tm3ntDMOQr7skJrfQIANJ7Jj8jFys/ZbRcPn+amHPFG6TUwBkL5WlZ1Xpq2WfXdO8O46BA/auDQgywKb23qoBEwsdNdDOvHAMZDEgDiiAVF3P2jgHAEJyz4gk3sRZManejXnA1O/HPLmXctsxMLIOqbsCzKJ4Li3Bptq7xZ6jJpZfjg/r/xZOaM9voV7W1gBmHj51/z0WDmd1a7z1B0YIBbQzoNTC1Ha7XQZ0rF+ax5N5BNl7M84rea6kYNPxMTsMAy4uLtC27RXQzsCy5Zxj/dLaoQZ/6nBEazvzRqzraAAds3hmnZ6e4vz8PAN4RJT5tZxzGWyzunz22WdwzuHOnTvo+x6HwwGPHj3C69evcz+t+9CyH9X6gClq14HfOcxZXk7dE3Fl0zXlWB8+tv1dC1VyVD1X3lgnlPmy/j4mwyzn5mPb8m+YaPTh1vLbyFVve50MghSsLZdcdS7ARn6eLHvKf1dkTruPhs1l2TpxJaoX3dWhRC8kQ27yTRxKq5qGtmwPBcRq8DMLyYXHyeT7jC/NXk9xDiivrcjnBZap92iyntxOyGCUM9Uox/dRdZZqAyRguOmQNXCVMnjnJNpC9WqJnnBX3kUGy8haCXr94tHEWg8zrhm4KEBWBQrBPJbUcA4lAq8AI/NYSoAkVrLj7W99bwYugSRihCH9QsIgne6r6jyD3OSRlpFZ0zQphcrcocbCp2vjUm2YrOkLrHyoeeiKjFj9XdfhtuWjAZtc18EpglcLCyas1AJjsfDMJ1LbZoJA/W3ZVey42vplLur73R4xBPRdj67tK4BL+AkAYIgTQgyAA1jdc8izgk0CdMRaYYB0TuMRCSEIoej+gP3ugPX6BOt+LUKvKvNNI5wgfderpbaBb3sAhGkKSMzYbDZoWgmJOgyH/EwA4JviZUOQQS0CICkRXVb/VfGfW6nzhK1tJb9tcrZX5kGedOAwOAGTeegoGFeIq0sYX6MhLl5BEoKEkrGCTcyMpFwQTicx1zZZgFurFdY5FeB0LiImUBL3SvNUihXYNKhn1LAXz6jtbishAQfxjIoxYhoHjMOIF8+eYRqn7HmUYkSaAjgmjKMKXQcBraZxkhC/KCmhmSMiJgCMjiSLnaQ+V0VNicYbauBA2tcaNE2Lru/gHMG3hmAr11fbglwHgKXPoWTzcxq+Z9ZUB85eY9Y2rKsNM5CGARQmgBOYCLuYMIExERDIK5+TF9CKK4UYaiVIDE8lVtqICJF/l4W8bCxuuaRhmQ7S18dxREwR2dJT9cM67GYpMC1/Lyfvdy3Ms5U5b3sTAHaTcnzb+86EvqPHoKxbb1k+pJAo89r7A003gWy3KXkJd0KuCChvXcXRVCuw0DqbQh+jJHgYx+HaOpydneNnP/t99P1QgIF0FfTLc2fmVjPFN2awyQCVYulK2VuwBhNqRWqcJowLLxMLv1sqXrVRJuq1rZ05McIo85nVw0oNktTbTKmuFfAadDnGfbQEy/L9q4/dq772sfvXY6IWwI4BU8vtxrGzrE+tXHedhLibJw0q+aFT76clmFcTlNszDxru3SpXUO1RU89d9lkCKvWzLNvDrJpd12Xl3vpvzYVk1zXwyTxfzHvJZJ3aEyUDk/puj82x9i10Ak74bRKj8Q7r9Sp79jAXficrMUZcXFzMwp5qI6IBgjUfVNd1M7DH6mTv6tg+a7tj/ekYIGEg0/J9mIdY3/dYr9fZC8zqSETYbrc4HA44OzvDp59+mu8HSFjoOI6gTtKhpxQxDHEWsmi8RMaHdHJygrt374KI8Pr1a1xcXORnMy8oAwsBZG6yy+3llTnI+tLl5SUcnmaruIFEgHjqGZ8ZIODsbrebPWPNC2Z9zriXjMTc9tV9x/oXs3hw3b17Fw8ePJi9B/s8efoEz549yx5id+/exR/90R/hTAnxmRlPnjzB48eP87MtdYOah2sJYtZAy7H+nMFKKoq7yevvWt5W+bpVoWJh4sX31UOvGq8+FKDzMZYacM7bZvurNtN9ddPN3lfVVi4bW+fFOwfftGjNo4/EuJVYjKhGWxF1m4sCbyQV3MjAFrJIgnllM5aEkvnMPGzsGNKM2Fk/I+RQSGsAynwLIsCrSwSKVFl0uVp6N4zEPLnsUNMKiR3AVNqwbsuiaehJJX7BVeMO+vwGsSVHCsiJ7mYRHSBkLivrwqzPwxkugugrVbuBhF3dwCOmKgwOFjKnROGkXk8kmbqFIJwq/iiGscgYaAUAbFnCyYGdgEtkYJMCTqKhSbuYJ1R+K1xkCpsza8Df1utR18ySCZVn3zXQtBwHdTkGJt+2zNZOSF+7Sfe5qXwcYBNMID4ucC+FsdrCYb+XnBO1pcw+tfAI4Mo9bPTka+bJW69bzVaMupEzAiPEzhZixGotrBSzFHWxzPdOeZFLNnFBOl3jhcPB+QauafUeYjErCKdNmkA9dRjia5ZzqX41Q9WHUwUqGbKgz5WRaQ1qzo9M+b98oUzQhsX1K4RXmZ8ASJwwgMwHZJMC54nX3C0FcYZ+k/5NpPRCDMB5ON/IZOm1b/gGnCIodXBRhO2m6yRGdiWEtKvhgFE5o6ZRvJy6fo0wGdiUhFtjEjLbMIxIMWE8HBA1m940SahfGCcwRwQewZyAKETpnAJS0jAHDT0kRSq5bRAbD2ocJn0mAekYOb+nEwWTiSXzISqCcAWbPBEawaZgqjXpO88ASlYmGJgmsCNMSbItBBAiKSGvUyjL5WjyfEE5X2LuWVkFpU8UmKmOf7d6QBfkkgoWWeG+brI6Jly9Dzhxq0IQV+h60+KeN9Wh3rc8521LLQTnur3Ho38oYZizLe74QvM2gBPwbm0j9bh6DQPClvdmFiEQarEX0ENAfVMojxUzRgCDzpEmJS4Aehu7VX2KEFCsULUiYEOkVpSWoE0bAhr1wsqfiuupBlDq86N6P+Xnr8CmHHaiczibck7Is3MGe5yA3rY+szYmAwLC67nmVZti1PtqtlBdM/L5Fchha2ztmWRlqTja9zGwyYplNjPPkfqadTvZdgMwjKOHmcExioVRvZ7m8sE87Mj29RrO06qXSkop12NpDKufpy71Peo62jrf972kqFeSaatL3c9q45pdaxniZvyRdV9ZgmF1Wy/buPa2WIJ89h6tPkugzs5ZynU1eGmeNNZ29Vhaeqgt27WW8ezYJbBay412vh1rYFmdhdD2ZU+Yqg/V4ajMjMmSBUwBjnkGOlu7CIeXhPenFJU8XMLootWVxRsiRpe9I4143M41Uuvri1yHk/JA2rOGgJHz7F15dXKWAVMSL/ig85koRASikiXRxq4ZL8k5tK2Cnyp3Nt6L53KUqAFO8/V+vV5hvV7h/PwcZ2dnWK/X6Lp25uE1zy6YYIlr8nybvzHrlzbEClZTBNe8P59jffp2a+Obl9APJZ/MfJvK1jfIQB87wPQh5bdjgFoFtWT5tZq1cLRRdY1yoAw2LV+09EPKXk0A8vgCNImU6Yg2xmb6UllfS92rnleDKouHYVZZXOteX3YmB8FCyaqtRYA/8uDzG13ta6o65EtVxy30xyyTgPJzFf3BhCMFyxRcYvVsygBPpVKyjuvyeud1tPMLMpj/UG8myiFw1sYzInK9X+ZeAmXdU6TIcq41RvagMuVT53fxZnJlH82qc6WdwfrsKWmkTMxRKswMCkGupWuPeTfZ2levqUu6gSt3rNbJm+aGN+phR7a/zVj+OMCmxEjDINw7amWxRb22KNZCl5XaMmUu3LVQZR5NJiAaT4K5/y7v4chh1fU4WWmYWmIwElKCsTDDOY+YBDAiiyUCi0eRc5KRCMA0jTnjjrmsHwaNY9e6BuUjohhxGCckZnhFM09ONrhzfhdE4vXEIPS6SnrvQOQBG3CQ8DtAJqYYOZNGC1ik7WVzApd6L8n6KE+JJuzV+/R/NgRXBhYR4HQou/pYUnAlr/6seJYOcOM0gQO7RiqlfFMWW0skCDSYAXVLhwlIyoruyaPzvVoPSIEqTSna9uiMT8lldQqMeR9LMcARoWskFaWFvsUQEBVsEo+mhGEnYNNwOIh3UwgIw4DECVMUrqknT7/F9vICIY7CRxUiplHD6SYTIqX+kRMmrcsUJLRsUgLZxMIUZkIowHkSbpz0uZaUR4koh9hZzDh0QeyaBqu+BwiIwwAmIHjxZppACHBg7wXwdB5t20v6Vx2PThF7gDEGiXJmsomIka0N2q+yLKezOlk/nC1eRYEFF+H8WFkqH/W2Gul/nxJDeCN5ZT1pvyvKf9tST+hsUtN7XOvD1ClJ4oBb3uO3BTbV5xsAjXhcuUxJxipAOXzDOeFbe/78dMZ5U5dXr17hr//6/0XXDVmZbRohGq+NGEUBks5de5Cg5EyZAQPOezi/yCK3UKAto4mtc0TqJbvw9lsCnCYkFe8PAMmVsYZSx5QkBNwRwTeNCIg6vy7HFZGSsBMhRQ0bj5aF7yoglZXnDDYVAd2E+tpbxcqxUCt7viVHiz1j7fWw3+8zcGAgn51rHjU1EANoeKWGOU2hZFqr32/tJVJn8DMFHfp+W80gaDKGESyHCuycWdJp7j1mz2pgiRFLm+xi33U71IBIHfJIVHiQ2rbNPDwWElWH8y3b2sK+nBrRYIktqvrZ85i3uFljj3lM1WDTUkg2wn37vQT5jhkZAeT7r9fr2X1DCJlQ2q5j3lPWNiml7IVW0ywYQGTtaB5iNh6macpZ0eyclGRt36cIjgHeEToF9vYHacf1eoWuaxFDBFLEfneJr/72AgRC27XouwYxKMgVI8bDvowHA5AgPB/HCgFo2wZrzSpoc1HXbQAAF69fY7sdshzXtA1OT4QrzDulZRgnhDghxQnTOKBtWzz45B6chd8x0LTK2UQiD1vGOxsvRITdbofH3z3C5XaHb7/9TjIuqQz2i3/6C/ziF/8J7t+/jy+//BIpCcH4MAx49uypZrQ7YBwLNxVzkrTy3kvKeZXpjMDAACdSmYSoyEmAGcU0Nbop7xAZ5O3LTWva+4M9qtPK36aAViDTMQNY/b38+x9iEXDUkJcCZsy1l/KmUgZAMDvC1ihEBnmPxnv9HTMHEwB459E5j0Y94sAiL2psmazLqIy7Vj/Vt2qgqcy3WpusF9Ufmv22o2vsKAM5eR9V91Ggh6uz6v4xa6X51gLelPYSLx5XMk1XdakBMnUuyvd3OggLUCVXFJoU08OiAjyiUxCRRM6gAE75HqxrdmIwKdsT1SFrFj4ngFbUdjKPJslCp1nkSACpqB5KhSCcSghj/jYwyamXA2XOLTjJQlf4tkrr1QYh824DWLKDhwlETpwQHCElSUgyhQBollDLwmvh80vP05qHssh714NOwJtl8uV+ZjEU1FFQS5nzTeXjAJugXk1H3N4BzF7WPCxCSi201EJTfU7dQFctbpJpwPsGcIym8SU9sS6uWUi3zkJQ4jcDchTFsYHiKgHL6sXIgkRcPKdZlyWMrqTi7dpOJpuoQ81JNpIraD7Npw5WocQsy0CxvC/ORJ4yrvQZFYhFazmyhNrEJAAEVVcnRbRyNanYGOoY4+xmmCc3kw4qhTH/Q6XEiMLCSiaUHIHIBFsHYhFqHAggp0TeoqiJgFTQd+T3kOCdx2a9RuN9BTZFASFixDSM4Bgx7AbEEDEOg4bSBc2UFwVsihOii2jXK0xhQAiSlWg8KEG4humVUBQJ1QwxIowjkCJAekyCgI1swCIBZNwsGpKmSDxxCaMzkAkaVpgcwSkQGoz3BQxmr2CTTh46XhpSj0EdAy4nHNWxo32GTZjL/a68p3q1pPxZuKtXHcvGoww9GVM3TWa1MvJBwJR6rAO6ys2ve0z4u/IgNN9iz5VloiPb8u/FpfKxV6vy91d4+fPN7+RN2+jonPIeZdmv5rtyIoWiXMscbQr1sRLChIuLS3TdPs/LbdvBu0ZJcj2IXFF8dCwUb9siKtoalEGrtoHnOfnjMXdoopLxU1Lrzte0o8UVQS+7rbNlh5T/vALVScE4Ioe2abJAyswZrLEEhu2KAAAgAElEQVR3Rc64jgwcKYB9nkflbJW3Of+dj1EB3vjqlsDScv1fbl++qwI2Rc0UGLFerxBjysKYnV+H5i/D0Cy0qwak7Pntfdr5ALKMsPSQ9t5nHh67nnlP1aFZ+d1W166fzQAYC1+y8CeRk1iyt14zNy3byIxvnYb61de+DmyyMMCUUk46AZ2/64l9mkIGj2pP8rrdLYyuBo1qOoT6/dbPX3vB1c9XX6f+tve53GfXsXodU8rr+ts1aq4ME/Dr8EOrJ1CSuJqBCo4QSH6LcTGhaxugbUDE+Z0PymfUtg28c2Cnxk1TwrgArE7lv2vBDpJwn7ZtsuznnUOvfYdIPBlB5hleErqQgb8xIiXK66AjQtf36qmkxtymQZOpKpqiBDVisCVHwF7A1mkcBcAKAa7xcK7BZrPBgwcPcP/+fXz22WeZZ8rC6vb7vRqG46x/yLuw0Jp6Xr2mObLcWY4v8m6eqeoTrlzjOrnieoXuw4WvLWUNk8f5yD1mOsASfKpli2N9Z/kst5C53ru8zWXmKoFuK7rZXGU4ruEQanGunJC3VXMyqnNsHwFzviaY/qGZoh2BUulPBZOp+ydlOVlkW72TvSarVX5VNOufGbBZyKWk24xfaanpmXZ2tF2X+wrKeeVgu28O5aOrr4UXgBZnOcVCyuyjOioXXiWWR4Y5DZhMVfRDeRoGA5T0XoRE9R0XXko092iaeTdRdWxdB+AK2AQqXE0gp3WrPbeobvL8HuuxW8asyUWqhXECkkNyCZRKPQBkY1ntSbv02rZQ9iU2cp0xfKm7HPv7/2fvzZplSZLzsM8jMms55y69DWYgYAAINOiFkIwPEPUDJNOv0P+U0fQEmkkySSRoMtFI0QhqqAE50z0z3be771mqKjPD9eBLeERm1T3dDRgbZspr51ZVLpGxun/u4Qv380vn6vdRNAE/GmWTHjqQ7g9rwJUkm5nFUhjMV9zMn2cRkx3woQJLC/p40V28kzMx2c3NecCrV69Ea70fPcNAdvB5AYORbJBUiVRmiTcjmliLISD3nE9i/ptIAiISoNnUFjw+P+Hh8RGX6dK2XUHkUhjDXcbxcMDxsMfxsMdSCqbHkwKH6j5npCenrITUBFenngoqCDkPIAJyHmSH0ru8Ehp3a2ul//C9LgCqwUngCiZPa18FaGJosDVVhmgJixVIUOUZANIA6fAiTYUhdM3AKDNgcaGKcZuMokJVWeSZMi0AK7BKFqjcwKMpnFQhZfUB8P7xqVXMMYJlGANIoMMRQwHy4Q4HljgWbFZwLDr0n/3pH4lV0jKJZdMioJMLo8zVEqDoXF1mcUc5XSTeyPlywVwWnM8nnDW20WRB1DUV9aIKMV4W8KyB0aeL7oqeUeYFy3RBmWecyoKzxpw62+76fgfkATMIMwhpGJAPwDACxzRqungFojrchQum6ayKLwNslrrUBE4bJ/gfCX+QeauC6KxWXHWs4dTdylhK+E11tsVnzpdLmJxtOavfm+fkd04JWechSOdcUAC5UkgZe1QebR1epXCCN56JUHBVhhP2Gzf9Jz5epGDaBOfXfc1fcth4TNMkfZjWLkEWr87G2oRHq5KTsY1jmiY8PHyLnJ+8vJwGECW19qgJFwyAamNhYKJnzFEgTimptWyqj/kaivQ2tMmIkwodVanj2BEUBGYRuIUUamHKC8SySxTaVdlERJ4IILtCzerYCjTGd8h2+gIopPCf86fwafQhusFrsRWcBmUVs1l4Df4e4YWlWSPx2jSdfY7FMSYSS5RSbCNLPs3q5+7uLtxb620WNECNp2RWS9FCzbKYmVudKa2AilP62FVbSqL+/YkShizjuZgLvirxZrUwI0DTdNf5UxbJukqanplZeBAgVqyUqN6j48nMmCdTRInFiPHENvC9KdmSK0NM0Rpd9aKwIP1g1mazrmGxjLLsvYC5uAE1o2PtEwPhvetpzhljHsRa+DJJ+mkF6jlnt9BhtUjwuZ5Fccya7CUq9oxP7XeS1e/p6RFff/NNdWdjoLD0Z5kv8rcsWNQS++3bN4FmkH83SzlmW4+kcdqqkkyspQW/HndHUXafr1nxEt589Aa//we/L5ZZ09LMx2EUl89BM3PaWrP+Z2bcv36DnLJadk0YhhH39/di6a/0yRTNZqEJAp6eTzqusmmaiPDRx5/gD3/+x/hv/7v/Hnf39/ijP/ljvH7zBh9/9BZvXt/j88+/wF//u7/GV199hX/5f/1LPDw8YJouWMwa0OLvKe2TOpPHZNvtdjgeDkiU3CrZBFVbVyB4RjCjz2VZRGhm2XATS4ofxosAuELwhxxVtm03E9ziNPIqXw9wAueWPXpuU83AGz+25EbuvluIAdq43p97yT0vPa7UraBaWVYlURWo40GoSW0MDqi3t+B3ltAeA8n27cK6uat8KlMSBavhN5ZsyrwUDCDBBShIRRUBHcaslj1GczTEjxJqCvTaXMDa5ioNNfGuB58s1jouP3Ftq3dhjz29j8KcQZAjra8AjVWkfzoP2Qomsi+1OFe+WL2Vp4PUQJawKHaxTzbXB3ecUcMNa4EIgjIkFFzkvFHVeIG1zyw8y6zyiQQO17hNEEXXkiy+U3xW2mOKLlaMA6crJJU0/Jeanq2DQmbhpmuXrPQC5gWMBCqL8NcCQDchlqXqOGxjwjCGWTpZLMdohBMTQPTHLetIIMoaG+fNwADrtfWS40enbLKsbWZ6Z+fHGPDbQJvGh3BgwC1INyEegBIOxul8xuV89rJzHrDfHzAOI169upOg24tmDTufRShHEDC1PgZyzM0J8GRyEoxzmpHGATs16748nyQr2uWC8+W8ilEBKEPU3UQxkRuwGwdM8yLrjI3cqFjDrRAS41ZFpuTXXfgIDMwEhqoq6ioFZcocSEkcGy9J6hUwJTXXtRwXyariwNzeYEG/YVZHVdwyhlJ9pCvBMypaIPabCwsQkvFpXS7E/ZAwDDXugO2wWx0XzUqXSUBhTgLyU0oYVNk3DoPHSxJwH9qPBZQI96+PGPeDKJuWGVwsrpOYUBp4NlA5zzPmZcbz6YSlLDidz/L7+RnPpxPmZcZpOqMsM87PJ90xl4Ch82XCrPEgJAj6gpIfxf3vlIF0wTxdVOk543S+iMsmCGlgzABmEDIzdoMooJAy8jCG3X1CymJBIMJI8bF0pSAbETXFoA+hmIoyNE0sXNGGQsoCTIkahPYgSDcKLFDzzqLxd4A4J3zmNPPk2j0ECJgdlZn4hLf5JnWo17QdAUE5De7czJwfW5vAYc7VNjuz73iF24t8V5DWHVeZkP3/AR6yyU5fqmjaenUENatCNl7IEUxKAUUTODCLe0fvYubxh4zaqHLhQ4omoMZsSuk5KAKqZWl8j815NpCK7YDZ8TkKdDSC3hIEo4axU90Ztb/eMoiI1IKgxlcRrMDNu3POyGrZZDFlorUOgJVlj/UJUJUkvTVIrK/x8d7qBIAnYBjH0YVhr39QwMR2WlwmE9htfA2IxWDTrQKr8kh7lyk7pH80TqIKszHTWG9ZYX8W9NnqOo5j46Jl/VdKwd3dHe7u7vx+V7QH961e2RTHw9wDhzxgv9sJxTJQvEjsh2mecZ4kG9+o8QstK6FlTC3MmMvi9JcADLsRKWfZmJhnAffqSlLMlURpuskbzJLtlbkuUgG+1rfQ+V8VUhJrsuIPu2eedQPkfMHlMmEcB+z3O+0js0K3rH5CSiK4tjEyV8HdOGK/EzeyAsEMEitpqYKT8mCQBD8Xqx7po8s04Xw5Ox5blgUPjw+Y5xkfffQRXr96ja/evROMWYpbtntm1WVCmS+YpwnPz49IRHj9+jWGYfBA7TGwep/RUntbLeDFvWRRAZaSuL4ZBu4PItngfPvRW0zTjMt58rUKAHnYNZZy5uJZSgHUnfD+/h6Hw0GzJl90k/fQrG1zCSWqysuYsc7Kub+7x09/9jP84//mH+PTzz7Df/WP/hE+/ewz3QCb8Ff/4l/gn/3zf4bf/va3+Jtf/hIPDw+4u7/HuBsxXSZMl8kIiVhsDSMSkcd0SpSQ70QJRikhFcXIvZJFJ44rm4oIgE5nTdnkWGN9fJdd/B9q2VTbgAY4kOOeik965UHF1FYSKl5pjs1Wdl9541rLyx1K9a71m/dsvZvaez5UR25/rFu1ZXUe39SILU2zCJJoh5lcnjS8mkjmYAJ845vVstc8TkQfUdo3UsWI0gdcO4OrxwmHkeTmM45lxch9H5gOqFibVo2t3xu81ykpXc7V71ZUtFiKoKmOQJAr3RRW203xt1ozMdyC0mIr1XtriUSp9p4Igp4QL2bddaWQ/vbA3uGzj9lU9H2WidvjA0OtrrxsAqgqmdg0eq50QlVAdYeLC+F2qwGDQVwgVucSTgYckr1oAUa/TenUK5SMhxjeuEV/rimcrn1a12Pr/Mbva8ePR9lENWgfJRs4+EhNs+xcL1wwlFmBgDDk5/NJgAyFHWMFwMNoAUMfMU0Tnh4ecT6fsdvvcbw7Ig0DKGUgJZynCdMimmqz/njSTG+maR3GAWnIKEXALQnikAVgCgQFsfM84/npSRi6uludTidlkoT7+zsMw+jpcQExVx8H8UkfsvgA+x+LsC7rONW17StCLaxgiiUhjibQhbW/Okzj25/VAhs53e4HGKxR3ATYoppxOtOzJcXhYlvtAm6oZCUaFRzIuwCLT8UcCmH3xPf6piQTKXFcWGshj/VZsDEoSJsYHsxcjKMYVAoW7faL9pa7UIa2M8Ss9mm5YBwzGAXgEK8EKiBAd4WLCKeLgek8gtKAfR6xY8b+7jXeKAGaiwDaMsnnMk8SP2xeNK6Uxh1ZFlFIqWXTMmtcqYteO8maKUmI/FwYkyoDLbvCOO4ky4IdlkGQgJQGeNZBnxGd0qlqjlxnQ1z7CgDG/aEOov3vj9muMSlf1vtsMjKqVSGCcArraxPczYoMVXg1l0DHBbK+UsoSuyJcZH+ttkndZ/23z80wIa3ecaY7ALYOqebF5EAwKi0DcVfNiCujepCJFl/YuyiACXbBuZbju0YOOLyAtnBvCiuoIv8NQjveqGA7rrXkdVJ6UWpmKA+6HKwUllKQoBYMQPXrXzT9eM7Io67xZCBTs5Gw0BtT5tY+Ya9HStBMdnndXj1SStiNA1IaHHxWGhYGQTuffcxz2y8+7yrQs7FxXhfEI6d8sf7hVdL1cf5xM/5R4UbqCmvKpjpGQjNTsFDEstSYDKr0QlmEvno5Fjxcs/ao0t7asupJ4wXhHm2A9/Gma7yiZ1tXsgTILa2sD005Z++IyqJQCe9vD5asyq76zqpsSimj2uFyMw7Wz0l56zzPWObFXdVs/MBiBQoGxt2I3biD74CGa+5yz8ZX14db7VDCkIdGSIC2fdE1QyoUiYAg9c2UJA4hOMxjeS6pskUsZNmtn3yMjACC1TJHWriURa/JvZaxTh5TXh5oqJIwUfRCKidzWBUqc3GFlCmt6nqqMU6IWqWl0QxT5MyXQTYU5XapuQXCDoIMivxeFgYVsXAmIkkqAlYcKpZk4+4jgAhvX7/G/d09jsc9Xr95hf1uj//sZz8TRdtuQMoJvEyicCoLJrVgT5psw4KQt4ppdiXRMIhF1sKM9+/f47e/+Q1SSvj4448x7nbYqzviX/7Tv8D/+E8Strx/71/d47OffIZpkk0lMFwxa0kRTEEclV33qiTajSOyKsb20wQQrdanYQRz6WWWeDfMjHG3Q2HG8e4Ox/t7MBF+++WXeDqdMC8Fx+MR/++//wU+//Wv8Pnnn+Ov/92/xePjE8qyYBwG5Czp5TEMboli8UKWeZaZUNizgYnLa3F+78NrceRY4tEx1RWdqW4SGl6N69uOa0qLv8ujUi3l1Qi0nQLONBEJAZ/DVmOrAgi2If4/xbsYTg88xI/99ptZEt74u2qw7EagNpQTMIUXaXXTRDcxV1F7T4VAfi7gybgR08vVhkMjJ/J2aOMMtzvsMmURgOUiCX6WSTadd0noWqaEslQFNJiR84AhDSDd4AZXxb4QkIgXrDKpNjwln38Ru1nbrOK9grGWxdW1LeBsD44qFfLnHPdZpyVHI/VzA1jaGrR7Km+Vxhkvs86mkpyvKSdC0cx6S4FaMpmHS6Xu7DGQdE6ZcsdHEZ6Ru5SQAR3KY9TdoEoicMsmu9O2yAtkg50hmemY4ImoEN9bB0bKDA48Zq1EiVxHUGNWwbFIv+Fo83a3G61HtcFiq+cb+RFvKbaJm1Jm9GLvMUVUn62uvjMmWJC/GDMzJl+xjTg3SAkLLdLEv3/KJmPuCZ5qy7WIzB78e14m5FndGChhnmY8PDxgKQWH/RHjMGJU0DcMA8bdXuMknPF8OuH9+wecnp/x9qO3uH/9GnnQXSJKOJ0nVHNtxvl0wuPpGRIQVxQI+8NerJ+Ixb9eZx+jYJrUtHyRhTdfZpznNkDo8/MTnp+fMQwDXr2+11TUk4O/RITdOOCwHzGOEgAcbIomRgIjA26yHiejxSRxV7ErVkzxt/S8jcCNSUP104Rsl+GYAuOj1QN12bMKYPbC5opfUKcXePBov32jfoHAFlgAMykg45qpeX3YiJTVRymW1IOpEm+tJS0aqNuAie4qNwSgSIaE8SkjZQnmbhZVOaswrFY4y9IGx6VEIvCkhL26aez3O4zjTvqOglAFIFpQmGvppPGgzAWCF8l8Y2b9pvwsS8F5umDSbFLzMuMyz3h6esI0z2rSLhn6Zs3SBCJQAlIegiDBzgflcNZRGWA4rE8TEQ67nQoorIy5wo5G2WRc16yJOPwGsBv3GPLgloalsGQRLCwujFzULNUUe7PMGZ+AStyLASEWws8MMQQQoFWYNaOklSOgY1ls171Ivb2OAIJCDDDaJkwxqeunBZaWFZTCPagKusAgIgPxMbD+DUoGF4pRsy411pBsY2o7bG25q4PIBVd9sYx4iXtMLYMzejQki5cma+FyueB5fkYC4bg/IKcsLhTzgplnFxLGLGxq0mxGy1xQ5hl5lzDuVQk0KBMOfbFWrljbha/LuswYcloBVjtyShqMdud0trd2AQKJAAAkd8tq7uG+PhFUBiAQzkUg8BILsluMP9ajBT+60cMFXFqLWy4Llrkto3f1agSB/l3hmp+zZUFX5przqQpoe8XRGhMrzehA3VYf2F+Nl6fKy5Qx5FHniLp0d9bC676L1VarJWAVwLlRuqa0Olct3FoeHeM0+PPWO7p7bBa2JvUZDySQx7/IKfvGkwNhF7SqoOFzzwQFsvkoD+QsLujyQEvXIg1zl9XEzT2VZsd7DNsnkK6dpFnOxGUyIWmcnpwGUQRa33Hvqif948pPbXO2PkqBLoo0g4UX6Ud9ji0GCwhDlo3L+9evMI4jXt3f4+5wlLJzwscffYz/+i/+Am/fvMHrt2+wP+zBZQLKBBfESsHT4yNmy3i7SFB1i/1l1nY/+clPxPotZ1DO+OLzz/F//+t/hf3hgH/45/8lXr9+Dd0xQcER/+R/WiubiAiv37zBT3//Z7hME56fT9rPGmKgBHod16VhGq7KyBKyTPauipSzbNSGOTx06+HueMTdq1dASvj1F18gp4Rf/OIXWOYF//Qv/xJ/9Vd/hd1uwOGwxzgMeP3qFXbjiCGL1XgeReG0lBqwf9FwGFwKEiXfOAOA+HYGgIUVE1YLy9hP9susKkrhuj/0A44fYtVUUXOrHqLwZ2uYgcYbgbsy5Fx1fa0nOTzAa/rN3W89x5E/2PoCIbopE0lmZIT+ju+3jd1FXXLI2hHoeU+5CxuyMHxekYbRgraq3HxSvYDYeTWREXksplIWzJezKJQuMwjAeNxhP+5AhcGzJqGYJEzK/V7iu07nE5airvwWsD5pP1Lfn5VWs+H4QP9rZ9bxdh6KoACEdhy3Le4iD1Wy60qSMD6qBN+csRz6klkVbRo3jdqZZwlCrHyJn5uDEkW8iwqAuYjCiSFrz9palTyAswsizxhXu0/umQCcMbvFEmDiW7Pt7SFb1JDWraEKatB4UzZ5hrmUGre4KiIajSCYgYzNe1M62WaS8CTZhIkJPRZ1VU8puyU061qcZnFlN9kKEJnO9CCmHDILJ0vQYUomc0M397qoXIpKpt4SvcdEMVaiJE6rm3Q3LaBuHD8aZRMpwFiZ01tsjf3eAxsCdf1RIhw04OV+d8CQB4kzMVbz83mZ3WR+t9tJxrnDEfudCKi22yPaWR1kAihLCmSw7XIR9oedKJvAKtgWLLO6HTBQSnLmvYBRljpAxqx7twdvq7mRpSp0qDbL2yzn4DQE8MsNEbrG8CI4CI/eGJjVFygV0vLqVYo/wmO1XjZ2Kzag47l1Nta954GqWIpcS2+8ze632HJX4YbVr5/0TyWEDMguBbM5YtfgcxCzXBDVLF7algLzzTbFgmj9qYglVQFA04xF44KbhJDI2q7gkdkVpRphA+xWSeJaNAwDRl1HwyjuncMkcaEW3a2Zlhn7w1F2NfcHTLMqm8xkntS1SBmyW1bo/9HSwmJ9sIOXqqCECQe2yx3HgyurtHuZte0cy1PmS8C0LLpzUmo/2DRNCcSanVAZUeLs2MXeoZzIAY3RAm2GWkgtKKW64DAbCNd6ou7mN7GnfJLaWPML72GPL2FxsyxFapznUfg1yGFC5xZNMIBpgbKX0to1mqVM0/86fipahn5bB8v1EaWq2DLLU1KQymqtl9SFJSVSBWENnG8WGlJHFSpDW8pSULSPBHTcVgZEBrssyX3frzPMVinT9yNRXbsrwrfR73192ldVIC3TvVqgcH9feGs8d/U3bFZZG7x5AEzfUGFqig/pF3veXBDDy3x+hFMVAHM9EfF+7Ld1F8VzdOWe9l5T7hJVFy2g7YpYpuNtNYlPPlfbnb/+6Hf1+nsIbdISeS+tPjfnBXOspCp8lCYYa/LVV9cg+3mF2RZYloQXJKibQBgnlzmVt3hcwgD6q3u40Nl5ZrdssgdqrEZUfmw1DBPJaUbVcrmMIW2rMXbMEkhiolVsJLTPgvELEy1utVTfYjSmKs2UHoZ01R4uX8ui0LOmpJNYoRnnyxnDkPHwzbcYR1Fwz8uCt2/eYDcMePXqHoe7o4ZhmMDLRfsSYFY3vkDXorKJSKz1Pv30UxyOR5j27auvvsS//8UvsN/vcb5cJI6Y0oRf/s1/DuY/q3PApw/j8fEBv/vyd5iXBdM0K48R601zRdwK6u+0RvmYuD4qf1NLbIlLaRbZRceGlD8KBrZEN8+nEx6enjDkjK/evQNBE+TMC94/PGC3k2xKO3WjdZddm/O6Fmz8IsYi/R3vw6o36tFsrBrf7J5JeRvzbR23BKwPubHcLBeVTgtmqXXk7j7ALPrjuUibwnnqaHbgId6Wnq90v3lDbuG+FswoRts6vFGhVseXvdXXjwab9Nfie66NS3e6tZVpb3AaSwBxq4xpNhv0qaL4SA0lwUovOWRCYupHsNJwozVui9VCK6Xnoebc8/FAs+zWaFXPZrGmo9WNDWBBLGq5MLwXKiKyDpCzyBaGVL0eDaNNHgPN1CYLiyJ7Ydk4ZEDi7DKc3/gnUwUhpvTxvpXLCxcsZG54Oh7xHsj32nUR0yIoiRQEhE+PTxX6SBRZdUx6nLC15p2VkmEUK1ZiICKMoymnJHmE4YRkAKV5R9QnEJErsmxzyhRIZm0dcUdUJEVFU1w7McFGVpd6swJ/qXKpP34cyiYCkBPG/Q6H4152tuelib1g8Q7O57P6mIuGMA8DPnv9Ws3GZBcMkA6ZZ4l3M00aM4eB12/eYDfscLy7w6tX9x4rQDpWlo/F8xl3I+7TPYjEzSPnhN1+xDBkd10qZcZlOovJ9EVcmoZzxpRllz5avVhqYAsmagqquuOpu1w5Y0xZAGKR4NMGhGyBe6hWFf5YCVokAFsCx9bR3/WS3R1KElC8LrAqDKx3rMM+jQEIrIH6mgmtz/XWV0ZrZd1+v0XQFtgRGa4Et+HVSjk4pQCe65iQDwSBkVAa2BAJv2nXTbAE5nkRBYoSjcdnC8YNmEVMtdAwYaCjjVZPkLiJIuOw2+HV3RGAxQthLBpw3GCFAcxSCs6nM5ayaBYlsfpbluIZuiQQaAnPFb8nxvSI2vKqlBCz92k6Yy5mCQS4ogfsO1q2BtxgllEJnwpU6TK7UGY83qxvxE2WMAxVAePCVBepLAHIbNeqMFzhXjwH/10jnrEyIlulVQloTStlUSupGCx4VuVL7QeG7HKcTs8oZRFrRo0dZmmqrRpl1j5fFhUQRBEDiMWf9EMSmhLqtMTnNI19WarLJjNLJszAkMq8tJYbcY0YMOH2mXiPdePxeJTAuQC+LNUM23ZePP7OUAMgksZP89TylwsKGJdFgsP6rpXFP7mhdLLvj4+PKysobxpMobiE5yOAWNM6wIS5+u4PKi60f/osI5t16mnixn1b54LOwn+zV7mtv4NtbSw1166/r1c6RbBqh1GbUmz/cetYK5e2wVzt/2aOXlF+Wv2E31elcSmSaGMY9oiWTbF9/WZRH1/JPuPO4a3jJQLp4EGZ27poAbFR2/egHV6TCRrldPfdym5qZ0FNWTCPnGstrsLNKyzgV7p+WtWZAy9sLq55v9PJeXF+ENt5/f3UrAP/oe80xUd177T2EOZZ3OCen5/x7bffYrff46e/93sYxxGLxpVapguW6SzFJrFWHxTHRqtOy3gIAClnvH79CuNupxukwnefHh+RhwFvP/4I4zC6QueXv/wfUMo/ADr+xcz4j7/6FUD/p9R/GAAkJBrBDLekthhgXGo8qP6oa35jlSq9SpTEdZDVkpiLY25Wt04uLBu+S8H5dMGyMN6+vsNPf/pTwdQaX67fiWdtj4gHiuu7OGwRU8SRjtSs2RzYbKkoN9M4NiDq1vroFc7xs7e02zpuXgvfaqTBv5ujblBhRUf6NVgCzbP6L0GxZHUsK57Y0aMNZVSQwleKpf633fP9+oVXNEIKLQATyNK7g2HBn1FvOTgAACAASURBVE1xYQDONjIBYNbfM8yChtxKy8bOM7c5fqw1r3QyVRyvig2LRVwxZtdnpLiTatkMszTj+ueyS8XPc1zRDHhYCcdrcDWNjV1OGSkntbwcXAkMQIJHB/rtdBbs7bgUxsIFl2XBeRbvj1LNrRyLmLLINh5EuUR+rQkKnuycubjV2E+hc2EKKvlJPj5WZqJUA47HeWvt54pb4tyxcAVJleTtRiSUnsnb7NOmkuGQ+oiOF1km1KR1rMomv5PX1qZRQTRNk1s4WUITW3e2wZtzbnAysLa6dnfrUjDPl4aufUjR1h8/DmVTd0SNXS8sRMBnnRaZeLzHGKoBeCIBErv9XsFEboAXcwUVtsNpZUunJ08XzczgxACy777PNLuA2wsZFaz2O+9OmfzeFAYwtt/XjndG6DRqf7tYwGuFzubEMNzaF7A5QD2hpM3P/ntTRDdpP3TPrYPamr/g+ECZQRnWpvrs5mK4vynVaGQgdkJbQsA5rmUoZq7nlABZ9qUKqOo8WPW5uUEpkW94kv4oHEzk2X5bgpHKxi1TzjCOoCV5fWQdCYHbKShmZWaF45qsYIu5ps+OglrdHSrtjpkJEJCdUmZ4UHgL5smiTYB2qXyaYB8HAbamzC0tMHRjZAi7VvofA+7R145sfaY+x5Xp+13qrpUs41nNfMMMFE7goinnFxN8k7TX4kqBAc4ouXgfmetsooScLG6L1GGZ9Z5lFgugYrvRcIVgUjcVRgmuEvIc5QXMBWUuKFksNtNSdzSk7tVNlINyKE7oXuBffcpEBApLqm+1XDVBJVErTAABdBEhMYGGGpWiKIApRS2cfO5wjY/Wg2jIrrG9I66t/qi8KEINbuh1rKuvtVKaxD1RyR7LNhBr4KO/tobf2gK+9bs/V90HO4x5td0dpq1Tf6M+rUDQiwfrw0NI0Fa9UfupqUPP/CjUaw12TFjtmixA3gQ4IlU4weN3CfmsOKBKUFr34FbnhZMJArUufaD02jvcn7h5WFa5poSN5APt9Xb8+vf3eMoEmmYsONRUJjAMHLuS7YqySeg+rl6zzy1l00sE/FX9J4sdtT6uvf/WOVHEF8d/jivBHhj7+ekZj4+PHpA8D1ndGWaU+YJluuhcEiFjfziIQKL0+zKZsknGKqWE8/mEYRwxTZPvUC/LgpQzpnmSLHqqoH3//mFF1+yY5wmn80l2tUtRvlfATLrxwxK/MQgrYcDacYr9Ip1TV7gJJCx8wiyaJKvh0lhyTdMkyqazBiPHHcZxRM5J3Zjtr6I55hquIIyW1y/inVD1OLBOP69d4+Z3iyQNfwc07XNb4WA41welvkUD6cr3Bmn4/y8p8fsfPYX80LW+7t3vFbMIRLI/Ovml55EtPapYOdarY5vr5zZaYVWMcFH0CdzMB6tLVPd5HbQ+FiuQQ/3MziuqfDYPEn5kdYpjz2AsVqiVQFDcEkolV2m1nRVfoxjR6WeII7WpNPV3NT2mbshqaZPVAsiCd3fyEYdzjsnIXNcsxiYFJZLWIXRCDRgeWka1LCGc5PeINwfqAMdPw/t6rtIv+53qffGI7dGfpO+yze0o58V77FTldRRohb+g5eckis6KaUI7unGy733MpZjcxNzter5r9Mp0GfHolUgim3wAqLzg+HEomxjAsmDW3Z7LZcLlLFkwLpcL4k7h8/MzLpeLCG2ayca0bxY3xSyIzJrIFFeSJvWI4/HOd66iIBQDa2WN48GcfOCEGDLS0kZwjwB0WRacTic8PT02oNMsmuxvGIaqRAoT1hRbls7QBE9CEyawmSA2KZPqXrdAXMsIf/hB5Eu2qXtbJ6zeGxWC/bn+/LVzq8UByM4mqdD4Q5rZg+BOucTdvfIRiBdC26MGCTY/armM6I7VCuWVOUSFWwTga0G6AjB1t8pt1qzL6YT333zt85TZzC5rwNJKZGozp+ni8/dyOfsuZBP4DrXu1VpnBGDxjGxXvDXFlnVIOmzGsdnBJkOUHZVphXtYmQ8zHjQWWzMunYDqdVWXWQZ7fCYPJr4sKNMMZV1ayxifyBQEVvZGXCmI+epuf9C5EYE8NTyNNFBdGpJEGCNlfPr+lBIOh50HTTXLHg9irsx3mUTBNHnmQ1UkMUtMEgBDGgJNMcWR1pmMunSWckTIZLv7wiTv7u5wd7xrgZCO0RKUio2gEWixZbiaZskoNF0u+Obd15jnWVwpdEd+GAbM04THh0csujsOIuyxB8YRs2bfYrD43CPsajXAEXVdhrVqc0SCIW9D+WVZ8Hx6RkrPQSivZUehIH7NaVBFgcDO+E4/uFv7Ng/DfEx5HTy7V0z52rl6jwi8w5DbZm48F9sUgTaZjb4X29LFeK4p8co7ALjC08BtfXsb3FXOVt5XqaEcNTMda7IOvcvpSNs4lx+TBDx3JRxB1wo3fJRAEvzT/nXKnq0dPrNAcXrV9QlQ6RuwcR9LH2TFKcbXOLSrOYeqzF4r8Rjg4psKzSjZOo8iFVVMUXGubTgIHZBnr1k2bZ+L56/thm4KP7fOMQM5t4m2nOxXoE6rc32dSDGfbYyIAmteZhBB4gglwt6DdGfkQdbm8e6obn+MeQHSLiPhCNYsmSmLZf6QB1Wcq+uwbep0GRDPyxnn8wWHwwEff/wxAMmQVxaxQjIr4utHFWwsE6Vl6ywzu4WKb/J01iqOZ+K4aF8bLbcN0ZyzZu3V7IwAxpxdCI9CKDO7sunucMBht0Oc9MxKEzpLWnl/wDkVeQKUkYcrsTkDRr322z9I41lRdOvv11HE/YFohMKIsKLXdZpTd47W38OdtqGzSiL3fY7t5Vjf19PpnscASJqV0uiDyS22cRfPXXsfUOWkhokaSenaalhL6GPYrNW/9IK+4a5v+/IJNUsZGDDFg8mAkmacNOSFhL5YdBbOReKCFS+j4naLA1rrrXgeBIsiXeNyiopKHBdYrQEXnX+m3I817bBpLFtbagl1asbFdsbG4W0MBHoXOaWZabdHHkZwTkAepFa6XoyWxDVr635RZcUEwpIWlBEetg+ocauagyobb34bxvO/ZhGry093znhACgXahyqrMiQjrfViuwkjUYQtPm54ueIOgrh2axlc+Zvw7oSUiobfiBvu/aYMIZmrHxmVI5+/PmyBB5puwz5jsPCUkmPuGK9JvLRyY6XocVVVL2HzwcoB86Ziqq/TrePHoWwCAG6tkeZ5bky6rGNMWSODX1MBiuA8q5vP3KSTBVAtlIJveK/4cMCYjEmX5h4hkv3OYhXQ7b5lWVShlJE14GidZO2ibBY51Qnc7Iza/O53NEO9dYajrRkUTNPqXT/ooAq827qvP/vvVu+X7Dh+pyoRa6KJ24zuexbeSSzxEvk9Pn/s4gZIjoKGfV6zBLF4QL1vLdAqpFbz14BgyAhBJJlcLNOGzUfL4OOBP0kCwEYCZLu5k+7G1vTjKdRfmFs/7lKmtSf5/Lfr+/2+TeOp0qF8FGVkrOfCTqe70YlgN50nTJfZ+YCPgpUFhqWV97wU3LpbFZYd32WS4K7k46dE3zNE2Lmg/EIEoJKClJIFULX22u4tNAtcsGK0QI1Efk8CYxgy7u7uPdMTEZCoZsxjEgX7MlcFzrxMmqlTAI8rm/LoGak4QDAXprXsRKrU0nkwJA2arPe8ffMWb16/rouAtW8hgZGLuk8syuj6lNgm6Dw/P+Obb77B+XTCfBG6Lkr2jGEQX/PT6YTn52dXnCHMHdZ1UACURBXBGLjo1mik0825dJ1gMFsw03UGqesHAQMBmRxQNiAvlO18pQNrNi+zzpv+uVu/23MGTMWdt6YauvEsKv530Bkee8mGwEuueXsDeY2Kn0bWsQscbwr3hMvrv66/gqKlPa+8CUXjG5Gvl56uxd8xLbHT6aXfJAo0H/Vzdc2E9Cr5uDBqa9a7J0x3duEwjnvX5o0Ninj062TNwy1el+3ZV6urW/z7mjLqQwqpW0qmKNBY3UJtu/asz221uQXomvnSA1rJPbaBI7RnQUoZ46h8MickThiSxHoqxYB/wm6ULHJCAwklsW94WibO2la4gHA4SDzSeV7AEAH9BbjesWTsP7f+VR7rf/E5+6P2WfvFulmAlFbCh/Gy6M7RexzsdpJoYbSA9VY3ZrdkdiX0NTrbyouOva73wwfOUe0SwdFhFa3ev229dAu+3sK6K35kF3RtM5eGtn2f40XYekVvhYM27ZeJ0fLRzu3m1rquR8Vg/tOvXOMV7Wftqdub6ETUNwv96EWKKaRClD6eqRfVvaqQfZdnLKi+4F+hCwsH7qN0OdJnMoIdIYvjGrlWwOKiF2m6lxE/S/fbe8yfXZj90XUip5YNRhmmZtUTjMh5AA+DxE0bBhDUZZIlTldds8WbzizuhVwKlkxYIO5qThM6mbXWXsWuvoL2uxIqvUdvSu25SvrJ769ttf7QDV6zdkfVN7Ax2WbWUPi+5mWmSJLzUKOWbb6qYnvTuIZfhf6o9VnzxihTe3ZQpcXGZ2KgcGZ2hVNvJLItu1/fHHqJogn4MSmbwjHkDDocHAAANQDt3d0dXr16hZwHjdtBrnB69+5rPDw8Oljf7/d4/fq1uM6pNi+nIWShqS5BAFyATln8LEupFk2XywUGtijBA2/ZjrENomkX5X4JfGjvsjg5jZII7WSJE7QRRMlSDl8Bi2HRvkS58/8ff7vHVQFMkKP/7mOJWNrnqGgSd7U265XQ9HhfVabGMiN4SSGroysk7V61ZrJMBlMIAm7uWrIeKhOZphmzZnh7fHxykF/b0+6abxHGSqyFAZ9Ol/iEyFfGqJzSSopagycE+A5YUcnscHeP/f5Ydz3iPVo2q/tWQRDuQ3ZB+b2Aze1WgbkzalMUa1nCTC3eVGttAAr+7PGIgjJERGIGaLEK65whsWw6TzOenk8AWaIMU0qp0kj73WIvLborb8A59vw6Iw8gQXmrFZy5CYtiXnZrBvXPz5ppoyxQxZ4BIbf50LkjLpjH+1cYhozD8SAWAIcjhizJG4acJdvRNON8PuM3v/kC0+UiCjFV9BdmvP/2W/yHv/kPOF8ueHp6lMD1uz2GYcQ0X3A6n2X9BHPqeFwTWOP3lN4i54RpWg/XbrfD27dvkfPQrLPtuV0rIDtdxqC3ae9tRXPLE649f+t3Pbem/1tt2Oqrrc2D3jrx1rGqY72gwdxbQHlt02JLUWjfzU3+Vj9u1iUIjQL6xM1UMAWv3tmDRfve7y5u0fn4/do89HPaPwTCZbp4tL9rfXrtPfH4UNDivk0RsNZ7mifwQ0wutkDqLYXe9TVQPENZmFz+DvmMWGtdRgX3siEyzxOm6eL9kHPC4bD3QKvGI21dDYNYPhwOe5QyIFNVNi3LrEqjg2+qTNOE3W4UTDpkHI5Hn8duhT+O2B8Pjk1tfhmfOj0fYCy9P6JgIbHoDAvIxgcXaEZZqt1FUeFBQcHBzh/BjJQO0q8m2xF5aJvCi2QmduGYdYoYNgaGMYM5aa4PXf+dlVZUYvVCXPy0630w/u9ymEDLrJYkAcHcmn+3rvVWZ/06uoXHDd/YffJ5jYO87LB5Fct86bEl1AJrehjlnw8pnSLPe6lc8mEaDq/X9evUfMS+9qeIXDkhm4EAJ3MBqzEhLUbQwqJ0BmTTxBL1wJVEHIEsGLYmir9O3hapvNw3B4VRbUHbhv631duDlAO1nCgbNLzUaIO1v2IWtsIJ4P0OGEdwSigpOZ9iZsyIISBQy9JM5cxZgm6XIkm/soSBcCVKbLkOjPdgGC+GuieaPAQLfq40qCuzmR1U34HVNZORKr+4tk7tfD+PzVMqGsnET9Nl9MqhWEE7VfUElkDqw0ePe4jI4wKaLsX4SBuT8DpNinQjerLEay89fnTKJuuUnNu0qpYx6HA4YL/fY78/4Hi8c7e18/mMp6cnfP31114OkZiM7XY73N/fI+eM8+mCeV6aewxEmA95Bb4zLGDyRS1CiIRR224UUUZSCwZn8Cq89+5187xsDlBP0L2sQLxlIl9nFEIeyOsOUjIkK+c7M5m/T0crvv/w41Zf0Y2+dIYYfrOmKkZpXcxMaWEksVc2VcJR48lE6zix3Ovv7RhvqnPclBTJ5gWkXqfTydNnmsuqAezj8eiKVCJSK6jif84o1zQzXFsLiHYTMzSofqkCZwRWzvRDH+t5yyRkvw+HI3bD2DAw0gfMvNnGwXafmBlYOuFeBs4VTQjXtoTYa0KtWY1dE+i5K5eBuvPsLRW3ieenRw/I3YPWWI/NOXAF9MVdEKO5NTZdbnZEjD5aemAurIpJrSeJkoooYX/YYRwHDPs99scjjscDPv3sE+z3e3z6yWfqxnzA4bBHThljHnE+n/HFF7/G5XJBVnPkeZ4wzRd8+eVXuH/1Bs/PT/jq3Ze4XC4YhhE5DeKGdzlVSBZAyVZfxzUWx+1yeXVVYBnGEa9fvUIe0tWxruOhs06nWhRy45j131+iJPkQzXnZOamUubxenYsf4BVGcz50bNbDP3sYLcc1Bc/WtfierTF+eZuMewo/NyF9S6Dqhau+vVWpsa38uT1/ehpRUKYoaPyw40PCcw+w+88oaFa1//fjvP2YbNVtq8/X5RSUZYJ6Onh1iK6PwbqM+Iy4vs3zpPRQNlz2+50rfuzearkkgD3nEeARicQqQObh7Bs3lpra3IWHYcAwjri7vwNpyIhlWdxNXTK17QBCa/0Lwlf7Pa7NCJmbVYgAIKnKlZ8yMRJE6bPV/23fKF9U3DrGmGXYoB1dvxZGcCc2JZ0krzB3uVhe5Etb9dqij9/7iHI6i1VzCde2FJ7XaNBtJQdW6yoKrE2VyOJ76vnw8X3W/xYW+b6HlWX17JVMjeyysWYjHdmify95/9a5LYXkJq1wqtXRPgTMqEoSwcvaLiIsqkwynMG6ubVwUVc+xehgdaprVgK6lQFA40ZSox7ygVZb6uY5WUHcKcSCYqdpl4BwBrzuVa6t1kUppapoofqMYWsrkYmA3QiMo1p3qRSh63EqhKWunjD+AJClzEyCrYcBSbF67TlUHMzcKptCD/a9Cg0/YGNIdj7eA7T0qrbK7+s3dKwNt/nGdQwVywAqzjaF1DV6G+eiyYiWHiyWt1WXWF9zp/O4f4rtbSOCWUIQxXhO18p11zylydEL5rus3x+Hsokg6cmNSKW60K1jrIGVsFV3OVM2GUA0gckUTZblApBgs9M0NcQwaiOlfJnsloHL3is+nYsPgGTFSzA3IXNJYtik4MaKqpSY0cjA3Rp4rbIYhYm2EtkbYl7PNwuTr++kfK+DW/L5XSbd1n3Xnn8RWOwAzg/ccL159GC8H7cVwAhpg811KCqHIgmt86B4muGi94pw2ApRUo65wzGie1rtB1K+ZJ+V0eZUwSBDdmSWUnSHUhUypYBKQrZd0ZRkVyLUVydD815XGHVTTs5VDsOIAUDVuiDc3RdrzzbF6oumacEyVyYFwE2TDSBYxkKGZpZgtNZLMoiA9oM2shlrbtYbORvg8C4wIzFLQNcrwuSmsKnPsncES9DvlF2w6VVvRevfKzFtzAFyN7FWmdX2oSmq7ZOZMM8FoIJpWmB6bCLg+fSMIek8MIChKYJTlp3ucdhht9tjHAfc3R2RhwH3x3sXoEa1bhqHHabpgnfvvsKyLNjvDxjz6C57798/4Ff/8Ve6mfCAeZlx2N+JOwYXFNbMe5YrxMbH2tL3LbjGRWJTUDC2usXGOOVB/pKu1zBfNiBK+At3cJwjVoa+N8yHEuec3XelctxM3NrG1T0VvsgZrp+toMi309vq2n6psmm7zvVY2IKuX+v/ri0feKXRT+a66xbXxdZ7bI0Y5AfM7UfPOUDvlR31Xf19t4Thdu237ZTffQVfKmTy6tG2nbWOSrBa4M7BrZYBcd+JgjWUNxTfyb/5wq4N61Mm6EBFLSnOMJHNNYbSaOo5gvaZKo4Ll+D2rPM3rrktOmzl6UcTX1OVTUwSt4m/kfhpyywxCOdlxnQRU0iLcaKLGQlqOcCWMINw2IvS6vl0wWWakFPCMGSknDHu9gCgmUQLxH1eA5R//aBtF3cqCwFxOp2v9v88L7hohmXBxJaZlcL6iBhTx2RDYVJppLgTDoMlyAljsLkwo5IwxvNUXrSw8yPPJMihHlrnxsWZozJZ3O4kM+v1mHtWcF9D4w22QbFwwWR0zfimMryelxLI6xivOX0sLX2svLXeVzF9PNceqcKA2D3f+WB/Bd0s44N0hmr2XlNONN4X2jc2oQIigsy9uu7s31ZlG97ayTSbdV0PbiM/tQ+1v71v/KUEolQ/Uel0AdfA1Aqgi163ceSSwPac0kiL8VdVB1THQgNlp9BvMo+0L4UAelusf41FJbXE1eUtJbPFNbLMbVoTxfFCnzScg3767LTvzIqrpIFEhIkqnyQdT3U6xwySzHIkmNCyJsdjKeqdQKQeCXHoWqweuYuhhNINNDOwWL/7vfVZV9ToAKmRp1+rK7ImAngprOn5SsQbcdPXdAfStx9WVtdolXEV3F6ZtxRQQLVstLpMasJ/uVzcle7aho4rJE32+b5ECD8WZRMIyMJ4xdQrORiJOzpR2VSKuABN04SHhwdV/Cy+i2Qp/8Q6owbGnWdx24ida+Zl5kZUhSgBlEBlluZ+I8GSL8hZduEB1hTxsyskmGuwcvkTkNZqORkWoNkUByullAYFLmCfdyvtKYXsB1dA7t/mwbzFwuFt337mu9Vha3do6/C3ETkw/SGL4ppCzD63lAVx1ycuclMw1YD1YqEnARI3e9AVUdFlztITbwlRAqzLajxcqy5dI/cuxa1VAGApjFKgAZh13i0LcsnYLQtACZQyMiWkPCCTvHtRy6qVQLhhfedKqeac1TGj7uuEYHjNFApS0opJyffTeZI62e3+SnZJKWYgQ7JdoQoeRT5g4YqIAcK7gyowuGXCf3O3c2uNbhXCjHJfacrmPGRT2pkwLYyzZyDLUt14qxBhynOzmFucOc3TDFPqy3Oy13Y+PeNyPoNd2cM1QPl0dgs4s+Sc50sIWF67cMgD9rs9Sik4X04AJB7U4XDE3d0Rd/dHzJNkfmINTkpEeP36De7u7pGHjHE3gAHPrEQGqIIryVUmr+vPLF23x9Di/I3heTT9a2W23yU+F0IQyHa91l28LXr5od2m7sxqOtV7OIDVNc3a+tt+Ry33JW500kW327BwdQuKZQNVoeUK+NInUKh1jLt1sV1CQ7fb5/UMc0PJaNdH2oddnzLXPt9SZFxvdy3vgwd5sp0PlFfv3yya4K74/gyxCxT2UAlCv/GSNQ0rDT6Rc9+d2XrcP0oO+432M4ugzU0D12ML24DxuRITa4R72TKb8upcX3+C7gab1dKcAQbeff0OSyl4frrgdFYlk8oxVh1TDJjqw3ouEbDbiUvOeWLMCyMnQs4qMBWZeyZM7fcZu13CPDNOJ8GMwyiB8F+9usdut8fDw8MVwYgxXS54enzCUsRNGUDAze2mVTy2+JXcJ+NOVIPLmjKmPmMpvhHW05Y7aarCncVPDmupCsCVhse2WbIRE+qiK8it4yo9C8JnKe2GxRad33KR6ftty3thS4i7ek0/h5SQb9DQFx86TrfCmb5kM5oAzcCN7f7wv/oMb3wrOt5bI8LdE+vt9et1tl/MaBvqU/SKXKLXZLij0YOGcJkVq5PMF2TS5BKaoZnEnVRc7jJMYVZlyASTKs3xy93mtD8LZVU4QRQ2DJBNazV+SAgxP7Nu7lFVNpmRhimuLM5UIglqzmrFlKgqt6jrB6ePhd1wwmRgUMZcqwOAdKsxYaYkCqTEQJGN6dytlYWSuMz6e9fyT1VBVnxUVtfC/Y1is0J+g/82tszcKrgiFIdY6zd90cvXG+eB1s0s0tVo/WNHr3RalW/KRD+3ZYOF1XO31q7RSaP99u5o0WShfrbwstFX3xwKbf2ux49E2cSBa+sA8hrEmZJHFDpy+zzPeHp6ctPku7s77Pd77HY795OPTDZRdZvrAWrzLuiOUMr6KaqcaWIspSqQRGcwe93EgsUUSi04rzuhV3rB7wkCiVFlB5LtxI8T15gJh75kvIyRfLejAvEtq6Rblk7f5d6t+1fPW204nrkp59w8bgGwa3XfFNSY665r+DOh/prAFkFznTe1pbG/mrohOelfHQaoWJUSPSHsBC6o8GoCnhMrFfp8R9Krf3uMorLJBTRU6xthGKJo8h0mRpvyNDzsslLTNlT1kNWtSoO6Nsx0uWbtSHbegJLGdQqlNf3oX1cTrGXbVYEW+ydkJXGFR+2PttNCPzgIsR03U5LZXAPQxI7S+eEs3cUegIqc1w5MNuZku7pivVaWgpSy7h4PMmc9JXh16yi6C18mmSfDNGBZqrKJS8E07+SehWteYEDc6AYpmzSY9rjbYxhHycKVMwYGdru9rwsiIOXBgS0bkND1R2HcmVH7SudYHDabw/MNS51SCqbLDOYa0GlbwVR3COWd2QXpyt7YBTd7v82LWq/WSmbr2Fp3UWnQ3lNQlU31ubp+t5VMbX9UmlppXaxDBE52lppp3tRfbyQkJJ2HrDRHFHRtTIQI5FxJwHXNiFCavf2xbbdcH93iwMaxUwxe64+t7x9S0jXtv3HPlgC1NQteWi87ouC+Vspd57NbCggXPjbnW53T/T19fWJg7Lg+twT49v3KX9UVnLPxRHeYdlAg9BCqrO7nPbr723fYRiRQFfX390ApEp/p/v6+KikZKPOMskgMqXm6eB2IgN2YkAi4qLIpaQbxZVnw/HyR7G1JsOrrN3d4/fqIp6cz3r17L/1NC4iA4/GIcRzxfKoufe0h2e0OhyNKWTAPpmwyt7prbmi0Wqs16121bLKMfS3t0xI6awmxqirNnPHsTUygTIol2vkXBZ0G3wqj8rHx2IIfUDbdxJcIlhO55cK9QLg1L7fOvSSG1EuUTSn28QdL/GHHSzY8tvDvtc2WDz13TTF+Dd/KCXT9UZUlRifZzjrhpOa524KBk1xHLgAAIABJREFUYApXzAe5yi1+qW5SsoJUFl9Rvd9iMgW+GGI2kQeA0DmSrFpumlTxabEmsF5KjpltF4I15iZrfFZAFEtQXM2wz4CXwm94zaA0VeGkPW/4ExKfiheWeG/2nI5hdK0zeaJXBBXm1qOgouEGB7u6yXBB+B4PtvFFnEr1LnOuM7zRNDbOo8ArmvJfyMu3eeR1hcyWsom6sXD9hM+hdRnx81q9t77HGNIWnijS00h7jbYmIswcJJqwRm/x63j8OJRNDCC4m83zjOkyI+fsLnA2eA8PD3h6esLpdMbTk6Q6JxIF0k9/+vt49eqVK5vseWaWjEalYLfbYb8/eMcuy4KnpyfvcBGqhbmO4yCxRXQXjojw+PQel8sZl8tFd5ckCCRQJ928zAGk1Ox65vrUKyXiLhAza0ycNk28Kbu2DiPeFvStn+hbC+IHD5kKuX3ZUYNqv68pVZr6X3sHbi96v8Z/9wzZjhb81Hr0fzb28W+eJ5/n24otXs2RlAg5DUo2o1tn7J/2ueYwIqNzi4mQc2kISkqSOdEUYYBYfNi8rO6snRUINa/wesT+2RTOVBIdaBCFB+wPziJUptS0sMoEjVnVUhxgpCxpOwuzMGhVisl61jewMFHTyyWQK24UIYPY0vIak1fkQuz3kUEb4/ErwBjARhgGE3CcsbP9LN42Z77VzAIgeIDuTAmZcn03AArumYVF4c1mDefCtfwvcl3SsrQtFkzelpP1I+ABXE0JmrJkLDQrB2aAF3lnYVEwSRsM/klfJNuxpmpFxprO+3w5qZJelDR5yBJMtojVVCkF03RRd8IEkAhvlITeTEsBVJlvgg4661QHRsXcUuW+p6fn4M7ZHpfzBV+9e4ecH2ECakvvpE9TshS4CG1NLkjFsa/K17Yc4T+1HCurvs/qGOlPPSfll817iICa1K6+nzn+rs/ZfW6hpWVImbQqx2cXxXJo9RtgTcksSsNEGUhx5dss1UVuwSaovt/Bu5YjQe2Heg8bONV1pWNtQf1jH1WrRgr939Kua/xnS9H0Ep51jd9tCnzWa1fe1b/zmmJtK/vuh8D0lkDc1vHaPOrvifyhnotZFquSIjVzv5ZVUNeP1V331TvLPUIlxwaPPVlDEFC8lnViy88kSQ48bh2JlUNKCZ99+inevv0IP//5z/EP//zPMZrVfGF8/e4dTs/P+PK3v8OXv/2tbjZJknRLJjNN1UqZATw9PeHXv/415mXG/nDEOO7wx3/yR/j5z/8AX3zxG/zrf/VvcD6f8KguxJJGnYD/5zP85ndrtw8i4KOPPsIf/uEfopQQbyPLpmmrKK5jS6FfrI8jTjHsejqdvUwpzzAgfOwEVyTFPLPXA4ArqzINyEno+zVrq36XXYaonePXlE0vFRwdU9iko0oJX4Q7sV63ca19n8OfZMM6rdXFdz2i8vTqO1+gbPou7+s/458Js/Ge+L2nNZt0qF/Ddj3eTxUgEXVZy8L9oFqarPWqNAWAskjcIyLIppjV39pEBdAsbaZzilY43P5X3+zYUdeOK8ZqXWyRBXjt5bD1rf0y7AYDzkL/mLIH1DaMl7TcjvTV9QA0yiJmVkt3SSaTs2E5sXJkInBOoiAjdZOzUB2Kw6cioWSIU/VAifzB6HujYOra6/3HjsM5lFNxhw8uOPY1av86n2BWmnybH37oMBpmMZJMbuotHbcUNBT6GmyKH/ldeNs1/9b6jGvJZDf7M4OdoiGFLEZglQWTxq/OnlwNzCBVuPZxXuN7bgUN/3EomwDjWvpV/LGptIoLQAKFn89nnM8nPD09ecfI54DD4eBudLXoOgnyODSpAAGsFCLRlM3iP3mQXO1gU6pY8D2guscJgzDU2xPbbQBLoa5gXj2jFeq6rCVeJtrFNhlx/7tQOL3k+JCi6T9VvV56NLXvZb6tIwzC1m19d0SiUJVG7bVW4GwJVGXo63N9G9pPau6vxM+UmioYslkViNAugcG3NdlRGOiFjOacsTPW7yYYhoIaRmptRFCc6KeRNsvUVsuxILaBeTb9qsSd6vvIboqCEwvDprqcXRkW3xLVZHKVwmBv9wUDjdtOVcQ5iq8jFd4tJ6uCTMCyO9F6rYzW2M6tBYdnm09k7l4CsEyxZq1I9lJ29g+AMQwZwxiUj8xhh3rReldB0TBTJk36kNS0eylYZhHIdpedKKlUuZCTxH9iBsqg1qJZMjxZjCXHYkp7C4xE1vcb865Tq6U97OO9fdjcB6kyy0eErHTlBfW79HUGUQsQjA+bRUYERqTIh6ha/K0F7giodAZZanZXLplrq+89oia2MMTlFQGHOWtl+yzRYgWzc61GM0t6WrM2R4+kwlYHoB4EVowJBfWLvr+CcDcYsMDGZPFosltuULK1Rsp7NYdQAQrZ21V5ZvEuAvhrTMXBbhGzFmvaNrb33z6iYN8K+SsW3yh/rQcrhijh+/ovPte7GrZlbtdv/UleVhz7XvkoxVJ3T3uu/pbnZL4btlrP/eoiF+loARHrJj/72icVQhDqH61E4Gu0/e30Vi3lck4YhwGUEgYN8/DJJ5/g008/xR/8wR/gT//Bn8p1kqQwX76+x9PjE+4Oe9wfDkKrFsvwKmBeNpsW5WXA4+OjWCDNE473r7Db7fFHf/Rz/Mmf/DF2uz2++vIdnp+fsPt2xDRPWOaCpXCDb7vRwziKZZPhXoBcOFzhzpXgI5sIYHhm0xpzVMqycBN1k1Sd4NXawpQtsrmWYa7YABRHJwxpQKbsG7vM1R3ShoJoXT/DA4YNEmkw9IZEBuHc7r/SW1EpEH1WfbX1WKrBW+tSq2LvmnXTC9afXS8y2QMn+15HpAdXsbYrXOKpl+PyiNP6d4cS7c5V2VsUNq5XpZaop/TMRrf4c8Gt0z772/t3kBALPwfA4x4ZQ5R7TGFC9U8xVFQiMSpW3TzCe5u62G+iSPDq/NfP4r8DKo3zPT5Oyo9bDi1PWlypBhNZmaT0qijcKJqBMvl4mBWUVTdSf6PZhSUxT2ILhs6xGs3YlO43gOC3EYE0oV/dEVJU1tRbbirG6p4BsEknrx1kIAmVHm7x4b65WwpVIyl1GiSUALuu82u6eb1vk+lUbNMg6kGivsXkQgv5guBqGJ+Ldbh1/HiUTUTiNjEMEMiZmtgyptgxxc/xeETOI4ZhwKtXrzCOEqPJtGtmHmYMV2I6FQx59FfGLApxYuScMQ4ZecgqoJH7qQ55AI87HPZ73N/do5QZ05RVuJNVVYq41/nBkF2uRWLdLPOCMi8oiyyfIWcUIpAyZAsSvcwL5mlSQpCaBdF2XTVbJFqnpv67UOhUgaRdNP33D5Zz496oCLm6kJS6ESnj+aHNJNruZG4+6uZ6IoB1FyLps0l33YjAw+BWTTZ/mdlje60s3fxzLcgJ2BbiWrA087tVZtoucBfbBITdfo9EmlmASKxfGLJzq5ZBpFYvEhRZ74OawWrdPHtDyy/8y5r8x896dVkKFjIBUO/iKpQ6s9ZzBZ2rlBZZtsRfmzPKVYgDoLDxi6zXmDx0S4GrBQR7vatyDFzfVgNlay05xEDxWkXibJO16xN7f3WMh602SlnmmGZ+08bIh0kviaurml2w8c8DckoVR4SaefppbVwBu7uSuRWKckPNqJNBG32ZF1oVGbUB1o8Xd2MMAyoK+0XpdWFwUdymAUeTxkGAmfhSndNEjCFlDBpk14FeIAS+06fjaBkiKwh6e9X1Ybff46OPP0EeDmC1eKv6Kes9m0U+qeCZbFj7iRGRj83sWtMwHx1UkyjkPJZaQ4QMZAUkGUWn1T1Ka8LiZKrPBagFUUbq/KMEQAIl1+lYFVm18uRPW/sdwlHtIzkjz8+zBEMGWMsniHLJcT2qQsheG/pa51FZLqoQVDkhPGdxxrjoDqv2Q+1taoQDq2GxOQLAUDTp9T5OiW8QQZVNFHalu0Pe08/Q7XMEySJW5Y2qaALWm1cVw3SbVACWpVYnksVQq0awT4nAAaBHRVNraWJ9ZvNB38vt3Kvro94jJMc2OsTVSywb4a4s7m5iikILsoM6lvN8dgHJSHvSAXWBTf9csY4ryiZGcImpFk1J3XoLA9O84Pl0wjfffAtmxsP797icz/j1r36Nh/cP+NlPfoI/+7P/wuPVyVI3JaZmmCUCUcbp+RmffvoJSmF8/MmnOByP+Onv/wy/99Pfw/HuNd6/f8Lj0yO+/PK3OJ/PeHx8xvl8wWF/vIoHd7sDXt2/CbQwru46no2C1XlfnU9ryyZGeduoZ1DUaj8etiFruMfKIiLsdnu3BLM5WpS/WHyoWNstfGktMqzjsZbqpdV9iLVuMEv4QbZZpdQ91KWuv1Aed4XVgrYqouVcL7tpALNYCweM8X2PeZoxLbPWrOvHXslE4R5a3/8SIdz7r0vEAeWFBEIaBpDxp8gju7pIFZV3BLqT/Ib2OWqYKVWMRORBs8Md/rtRxum5AiG8M4AZjEwJQ0pAysjqMQNVyPKQgTy0sEcW082+aq2wWnrEXd1MwcqG91E3XzfdxbWsNIgleN28DbEMtPMcdyh9rvRaGS8Jb2siTjVu5xEXSbGk0dPNsqkUofk1fmCgYBTrwxqzr+JHBpCtPiE+LTNpQPSWz2jPKeZvcld7uwiGkMz6J45MWbWtPgvnkUldn6M1o7gfx8yNAS9Zb1Mf+01KXsI8lHkf8NpL55K9rdMB9M8bbSYiz0Ruf9EzbL/fKxaRdRhjYBtveEkczx+Psgm2S5GQEwMhrhIA7xQPWEUJOUt62Ddv3niqWLs3Mrm6M7PWNsbD30GyE5RTqgCZDcyKoD7kAbtxxFIIhKLxbDS+DRwdyhpyIar4p2Unc8E+heSLjBrvZ1kUnF/PuFGtFBTXXFHgvFRb+6JjgxGt6nTl/VvXri2Um1ZZETWLPPPDj4132dg78TFCp+8mpZmJ1W6UQ53DvI3B5KRdZcUk4g52BSPxU/82g6ECttPIqvSIz6ecMShRbHYyUevIzK60pJQcmNcaCfETK5KtMTYG0oOaeFNlMxYs0hhKswZs7YR+Z2uP0WB9SEXkK7CstxSBz99VC6qUG4dgRfC3QGcFtbLel6V0hZTAZKAKp7o7ZMKssX+7JhgpCECNAIX4MHyHxK6HTo3j2QBqFhBhQjNYs07ZfCxV0QSwBFCn2i6pf23Hqu9gbkzNKMo8kO02T7zAGkScijUhYRhM4EwwV8YaF0GCgg/j2GYu6idcc84UDgKW9vtDFTy7I+cBh+MdhgFgXsI6s3L6soMlCFIVZraANDdf1tcBLPMCDvd4s+0X1WGJ5XB3j8USlJKo1mnVbpv/NrciCA73KNGrj6u1iwsvltXNKhcER1RhVgRFhiuk/NNey3XNlH6uSTnzvGCeF33GnhW3oRpzJipmTHlXAW/shnhP5ENROI+/W5og31/qSrPJC+M1xSCxLo1A0QsYKz5ym+/H95srqKyLsJ47KtluLAG2jqJwKCyT4BFxKLW0qGlnBNdV2SW/1UWK6jyKilXmBfMsloUa7gsJwYnZtY/2GRUrTlzlHUbnUGOd1PUg7l+FRUl6uUx4en7GMs/43e++xOl0wueff4Fvv/0Wn338CT755FNRNk2iCCuekUpdkdUa73w+edf85Cc/xd39PT7+9BN89MnHeHx8xkeffIJxJxk7T6eTKugE8F8jHUMePOxD70KxpTT0uBxdANhe2RSfs/uWZWk2dqVurbIJgLuU7PcSR7WGlai0asuNrp9v/WEhKm5h+vi5dc1/h8/KH9ef25uDbbm3rl2rG7NRZqlBAXRD+ocBW0a78UUtset+h3u4ZQ/fRX6IfWDv9ueVr5ty80NlR7zqNBjYtGqKz+gX+YvWSpHwXHu/4ihTsBQohyMSeW3QxFVZ+B6npN/r3InvMLwQLihJqvzVLejD+/07V+zLRJoxWgMF2DXAMRsbPiYgszS/joO1N2C4GA8qsH+vo97lOETnhmNzL5OuXKuvk7oR2mUdsXgfhMJkY+unpBgC3t8UsIzJ3xSeEigSMFrzXsMYcW2qPN2sVxuOqiwzGtvTRZPDAEZKsd/X9Kzhp+3safrcyr76bHj/1u++jGsKIsM0lqkOEL3HmKrsyMwra+m/V8oma8gwjhgGNIqih4cH9zUEgOPxgMPhDuM44v7+HpLSb3YLJrMi2e12yuT2yvQLzudzw/Ds3cY853kCPNaD7Mh4UPFMbs5/d3cHCZwrJtMWqHyeZzw/P2MYaqynqAU0f0mpY1VEOLMHdLIuWOYZSBlIQ7OAr3TgSsTqFTV/qwonf23LCK6Bg63Jf+3+eO+1RePUiqvQ9cPY8oePa/1XwXI4Z8QxBAgfx7ExS3eBq1M81Xe1O9ae5aDI9UTJM+1E4tEqreRTrPSS32sWgOYKuqjJvwkdKWVRuCpDjPER6phtga82Q0O8x/sRlTm6EEHrGBTOKTjiBBU4KJYmH1RLQ72hChEGpoxB+6NGoKGCjl3kWHzLNOyynWuqnRKGZLEkQhujZY8JMlanVT/JiwwnpmRmrQWZigpEWqdFXR94kT5lDvWWvlqWonGw2A1axIqMHZhU66/sdM7V4G5dYC5l7MKTpfXx33ElqBVW3ZWUcqLlwsCWZZG12aa478aTyDOxkJ9SITL0te+YstTRwZCWzQpWJIPedHVde6wovsSJAJ9pWomW7lY1pin/XLiFDTk3KZH9U8fHl4S6ia8Ie3hu81y8ROwbKAAg1j4AuFWQGhC0OjYtq5i4grbmozvn7Y19FOcRsFtsh3YN6HDjXP87pYxhqApz0dHUtRfBn3w3OmljBP80Xl00hkMvpMcNsB5c3hIyrx09MIwtZw4ZQo22vUB47cuL+KM/YoyFvp32Kd8NTNdxrHMt/m7nUT3XTWCCr/2k7p1ZLZsMZ5Gtd4fgsWwOeO7k42WMoscBcR7XaWmK+XpJ+kHKj7E6l0XoaqJfgJDw9qO3+N/+9/8DpRQ8vBds+v5bsXD663/zb/G//s//i7iNaDKb2nKpYyZx05vmGe8fH0EAPv7kYxwORwzjgGEc8c033+BXv/oV5mnCZboIjtA1++7du6tY8P379/jii9+oe57h22ghF/qlWTMx7lw7r+MufdyNl0QQU1PuMAyapdkUQTXJiCmbqlte7Hmj6aTzIygEA11zasmaGGKJlk2VzzMCbQk0w/k+A5Kq3V4fXI8bHrbeVKjCer2n69lwT1gPXfzA1rLdni3+JqehXU/Ft9HG73iP9f1qulDlofYAOcgKayh+iQNN9a644b2mD4E2adkeX9ZvuEIzqc7dRhltlXIw1reJKmBsNCdtuzmMp2WnjIcF2S6GmRKJUimbZlswHaUEJKOz3uzuS/1qU5rUjD/KDkbnPanBVjnW3yk5VmVAVPP+/ipPm4xZuG6ESpuXuhb6rje8ZmOa2PFxUvd2ww0W083oPAHt5p+Nn9V5JfO1v1ta1V+TGd/eY/1k79d7mr7raQgci6ScdHrL2o+bSNcOU7ZEuaiPP3cLE2wr020+wsurlmHXs1z2Cll7n8mafb3jxlmsr73D9Ce2YTDkAWm/902EqGzaij+8dfzolE1i2SSgw5Q20zTh/fv3OJ1O2O12GIYBh8MRn332KbLu4jAzvv76G5zPZ1dK7fd77LWDzOrp9HzGZTrDdnRiJ1mHT5czpumi8aEkCLl17P2rI/b7Hfb7Pe7u7oRJZ25Mhi1D3uFwwH4v7h1x4KNblZiOC5iLrhx2/7wsSFwVXN/n2AK0f1vHNUXTttVLWw8Dty+5d+uoDCyCgp40fbejf5/V8ZoGOH7v258puGmGxRyVTVHpJERhrTRqiZeaPs4qFFHy9PNbgehq9wiTKbOluJ/VvdSCxUnwvpglKKfcxChjzp4Suh7bRLWtc0FrZVVjK7HHwYm+5BVmkaECikzGhB8fJTDXnRuCWSrYojFlg41pBXmloKl7ooTMYdfNGXEFrlXR1P4OPa8uwOay2wvzpuxiZ3z99QCpwYutheKAK0Hcgyy7h2mkTAVECugEJEhxc2GQPufKJutvFcKyp9LVHTxSpZkJacTgssgfChade1i0D61vG/5pilhzX4H3tQGPSN6YJfvTPM86Z5cAJai6tjTp3KtiE4C7aRQFkcw1Joi7U6m1z+VyuSq4mQv2UCYHrD47bU5qF5sw3v8ZUPbUxghiSjP+pryr2CiljDwkk59stJrnOlmsPafPDcOA42EPIhJ6AfYA+owuGPxW2RTqrrFEPCZGd09dve05b/QNeh/BTq/E6WMU2XMR9MVsKm35xS0Nq+WnVbHSbIn7Kq7wPV2ze7Z4RA8yb1lbbB1b9zKLxR+A1qs2HLc2am69o6fVt444r9nCjYFXa2YLVF9TjsUNvAp8l9X49RtN/ZwopeB8efYNG6Otdq9bE6ur1S3FYAyrYGDbNikfHx8xTRO+fvc13r9/QM4JwziAi421xYWSzOgZ0k9l2e7bnBPGnLAUxmWRpAdv3txjv9vh6ekJz6eT1yvnjPv7ewzDgNevX2O/P+Crr95dnTPfvn+Pzz//HJfLBc/Pz9rX7aantbHt/zYT0dYmZY/3aszSes1iqFq2I8M2omza+465v98CzlpMv1yVFqTMiy1rpZL4wmZvQqq0Z994sRznaq/b3FPczZsqDyd2wV3meVSCKaM0/kMvuSdrX9c4Y4D1vVlM2rmawMDKMYXUOEgQdVgdAw0It1dlk3/pz3GlwXpVYFU9SfE/7/vaRENtPuWMF5oCKCV3jxI+15Xd8xDfaKjYxwpv+BxpnxMczzRz03iRPRMUSpb0JCqZVvdo20op4vZl/Wt1IVdzy5RJJJnfXNmkn1ljC5hCxxAL1/72tiL0LwMg2XhKdhPJ/F7mUgc4rgcC4H0tFrx2jyiBUtPWcRyRiDQGm4RomTXpyrwIbyy2R9gdROTdiCxxKJOegw4Zc00gIBn0ZP0mDhsVaGlMeEP/xvDudX3ifVt82D69b7m95pWWLzotCWlQesZF4iR1tO+a/NfjjohbIpbp6xjL6E7UzIdc3fF6+W5Lht6i2VHZ1N/Xj0XELTGxxDzPGIcR+xDSCIDf8xIXOuBHpmyqnVPA5YJlWXC5yGe0UJIAiAfkPDQR0YdhwDAsrlza7XbO+OweWcAVUERTYfsjFbjHYcBuJ11kASaPhz3GnbyX1QXAsm4s84KyLMgpY7/bYdB7bHIToquguDRVV72qkFimCdPl4ln1QDmum81+iwIIABeWtyZiMzGo/RL41eZ7Vo9duf6hoyEMHwDMW4qn/rmqeELTD1fe/sI61vuFZ9ygfta3LuGxxxeqQriWGRY7AAlIWorEyQC6HY0anFvmrGqVc2qIfHRJ8exhsREEJR7ybtnxtDGQG8Q1Neu6Sv5pwoYpMaS5FkOMYIGQDVj5OnLgLvE/5B7J52q4MJnCt5mHBobqugH1MzPs+KiwXMthyG4Tw+c1UWU+DLHgcXcM8j6XdW6OGFZ6g2dqPcn6Td5nQpgAXzF1jopKK8P6qD8HUA2hozSBQKCcmu6ROdXATmFSHHCVWSIQhQ1bskkBz6wXrRIY1Vyc5QeT7FYJZjBkW+vuI5SgLnFad62jx/5BAIrSUvnf5gvYi7b+JgWMeahjSGRzz4BiZOx1nbC6KRc2wUSVdsyukDPBpYW47WH3iTJG1rX1WFWkcHW5UTcwy3IIA95As5srGLO+2ZWPrgCSI6UgFHulwnNKY2p9fZpIfxooBCOd4UCWjRgxOqMTmwfsZbt1gSFMdYeMD9YQZJWPyPvJaXKdw7UfvNZc+xrgEO9D6iR0rVuLtmagMkcxV1wN2B7aJXPCymwZRBUAtE0uBAl9a8ox+hSWn5B0c/EkgEulaz/kYGgUde3POLgI49I/s/rJXk8Yzol9bf1BofC+QFaKmCLt6e7ken/8vnWPAVmAdLMNDWg3a4ZaH52XXIVxcZ0rGHmvO/SRb8rLXIm69RnWGWCYSZMraEICy2YMJMzLjJQGHO9eISVCHiSWnIFvi69FpQCapRNK33qMIxlmZZ5Oi/DE4/GAIWcM4w6HoyxWwwmCdzMOxwPGcYdhGEG0xZdM2BP+Pe72IBBy1kDm1m7tG1utRIJDzHLBaBc1c78OKelaJ5JYgD5SKlwi1IGSuqmQxTgxpVanpKAcpqCruuG8lgAqFQcwK56mDFBVNlkcTSaLUWeiPdfMtrbAYc8RPBOlY40Qd85q48y01i2qEoTcZ+feRiedxjt9IZ0bVL/D+Ke6WuqmSl34Ld3y7lZW5EbTWqsKERpKCyBaK1sh9VlLAJoMGxgJN/yG8AxZ+8lfZeEPfNxaUlxxQ+AVVpmW0wWlmI5AgB/h2VqC01zra20fa10rZiOdM6Q8sSrSWsU2QDkjFQbl7Dhr1qDJRp0LM6hUxWKsIFmHdgrKSJsRrgK1nL4/5Cf52hc6rgNPAEukqeZ20rbXTTeVEbjAN2bjUot/zuCkT51z+5SU7xauFklwdX2+lm3Y+v9j7112JEmSbLEjambukRGZVV3dQ9xLDjcECBC4AL+N/8UFN/wCfgAXBAYgSNzVgBeYGU5P91RVZoS7m6lwIU9VU/OIfHRPDliaiHR3M30/5HFUVBSRy55DDAhas6nfxc06mv9vNNfGp5Of/GA6FZ/r1pfV3JRW9ktvopI255NlEBX5c0tqk2nhY1js6LbG2LbN5RjX3clOVtlt4OTrJOtT1h89YNSDTxkg6zduovtanhg8OcoIdwCyKWubCGbNNU0TrtfrbsxG4bsCm+yI2cvzC56fX1yJKKXgw4cPmOfZARgBlhZ3YsUMPDw8OIG2zjDLJiOKU5lxu614eXnB8/Mz1nXF5XJp0LkP75/w+Pge8zThtKh5nM6eeZYd9evthuvlgq1uuN1esG0rri8vWG83nJcF9OEHUXzMNxMLqZynCadpxnlZcF5OAjToxKqrWDy9PL/g08ePeP/+PT48vcfGwKeXFQMrOgBp0qTj3bJT1O7rkm/JAAAgAElEQVRW9fGJWl8LFkwvvxdMr8+Tu8+7zfNIQM0m2vRq/Px+J8wbBe6SjuTeo/blRZoZnQtXO2EcznSMsBmRq51SkyoKKhMIjGLX9naCr0STJ9lCyJTpbZMr5tdkIWXAk5muu3mjEZ1JnN7LOrPdNCNWE4jsqsuzHiE4Y5pKHD/ZRNggQByMmzBKickjACcDAPaAGACu6htK/vIuZAgugyNZyhRiFKWPbdcmGKUp/D6ELhQZIwLgu1lx84vuDCFZwOyG0XZjI+8QKG2HncTZX1KOXIDwOMBusoLS3BcfT/MkO1N+/KvKWLT9oDOzGJM3IRw7sElS1ug+Bhiy+7FVta2p7E6bN3cWzSC/ASz7hoILEWGzZuOY/eHIM6GF0r9mbcIGFik2L/xZrOvmk/nvU8Fwsx2fDVvVuV63Zl3UrYLrJmCTtrUVpslk+qHCZoFZ+sT8uTBcrnPsjoCwWnIBOvwMhEonY2U3rTRgk31jeW6zo5SCicyUX+OYFRv3K0bbBrFqK95Wif/y/Axmxqo0xD30lAKapiafqr4qbFRB5KbmWQnxkdWKZLGYrG36xe8wU+Fl3O/sH6/xIA/V/wMGwvbgx75MSpdM7EJuaAjKzTMDFAWpBU1zH+vtwZab/wt+2PKkvk0tgGR0GGC3IuREg8OiAp5fm2c+emh8MSsM93n0W4LPP/00x+olK4YI3irHQForpeV8QtvXwaV9PiatJwOFjTaU5p5FbPrdnmld7ZINk7FmkqvP1+sV61WO3eZeGgn7zHLtdh4P45OlCEgEBK0xOeFPP7/DUf9TKZjmBdO04HS2eMb7apoj+lmVjrjsGEBffMrL3S52AabdPJe40zxjmrmbY/K+6HkfuYjErFt1Q7huzkPBBOjNpCkD1A3AxqAyO/BmzSQFl8QqxQBgTWcXq1TrS6XqHPU2axZy5hkUeuzst50/5i/O0sVNX4Dd1lpto0sBHAdwWWpJEOs3A2IjA4sWvMi73GiQPrAmZVpsX2yFtM80b+vqNG7uP9OsLjxy1CncQrENRKwXK8xd42QfOeSF5yXiaVK2Nf+AOI22lpio6xYlvYSkjv+JyP0r2Yac0zeXw2PelnnBydYhgJUZ28tV+0Nqum2MbVsDMI/ehTtlAwF2lU3jw01lHpNt7YYcyiMXnN5oH/yTfUMNTJ7ceuvmFiwm8MGP8Ntc8XlGVoLPGJhcZmPtG2MA7GbYSU/nBLCLJj2glxIBqCXGcbQJ0OhfCL7kTuFJwbYq1uo+jilwnqs2kKQ8teipk1JAU0Flxk3lx+o0OJ96sB6RPiEowEQzpmmWY/x68dgNK8Ab6sbYUFFowjQtMGfiAHC5vGBT1w21qtyhDtxvtxu2usk4s7ar2HHzveXpEU/J/WiXrGW63VtrWb4Wd3fUrlb8+vFXkeNSPUop+PXXX/e6+CB8V2CTWzZ1prmGsAnANPv1qQC6M4l7pC8Yd8QfdbIPHuBWUVMRZ4dA67ldK6sl2mQxhhILhSOaK0v5Cl6xHmCw7V5278yErlZWUEFRyjQJct9x+g4ci7oNQGRKY27bQZq+fc6cB2n7Pu5/H9XnNSunPm+PE5HHcTue/Zbgsmj3fWchZiBXihsFRcHRZ6aAZ87aw1iSlqE+LVRoCQshiFNCiusqSQEJIt31pQK7xpght2lMauJtRMWOl0oVWP0t5ONzBaSIjJz77iw2KOZudEE+HkkohXXuQtuU+kUZR0VBe417lqK67uSml/dSyS7Qvr/1u1lBU2jmLgxIuyluykpMP3YLbPhj1y1ApVxWM4Oa7+2UNWWOUTjRMuvzvltMKEk+rAxsMubq0WnffhdhjKESJUGn67IU36zIolV93rmtOPhuNCWGNFEJb7f7CWmk1qCvlduz8uEDTXfwTQngToRyMHAA9GrYtke8PP/XKNNz7EumfHzzFKm/KEAC5RDNnPXyOFYDp7y9bTBLWEnvnkm03ib/5d5uwCaTaf16R0m3qfN32+EzoYsQxxk3Dof9pGNhFna+l2/j3/XHYR9xG+erLX8+MxzzNxHwdeheyUT+uxdNuvpgZ+gtIY2p970Vntd0R9NMac7WW6aMCJCj/v1q8mGWm9Z3AMNvpLRdcbeYbGbdVwQCzEpWLFzsNsK2rSajmEWOfZfH3RmQHS/Nz6ipdkMXOzqQ32UQzECx2gn/rHXfblest6vnkYcpZAejA/sjmNbXMl4qf5pSqTRtXX933KVKM6P/4o+5+DyBzhOmfh5Q9JfRslTvHa+lfibQ7v3gqcs2xelKOFiuykOJSS/QoSiI5TIWZpVR9NZSIzp54yMslHX0g2C3cmC3llpwsuVbPb/un+1lDUtnMl3mymJLnDd+DbjvlclWqqfh7cvG933ldHOdD54N6d5+ETVj6XJcN3+intbJTaLjAkbzpIuyG7L0PPNRg0Ny/KYqWffJ6bSOnFsYQp5n1OoV/RhFDfdD1PUFJ5kqyUP7kOhg+pLr7+Cxvwh5o+mdllTuS0kP9y3jXRlN7EOWwM3w92Nln5kC930XM5/hlrZeDW7oeJA4bjMY1I90GbY8M7UJRk1GGRwvnD6fsEzKl32168OwhH4OHIFLr4Xe4mlfr3GcHAKLYO/PFqd4m6zzfYBNBPA0YavV/S0ZQGRWTHZ8bvZzgxtut/bK1aI+ZsxaKTPw2KGKgbZr/T58+OBlTaVgmWcsc5FrXbebH+eTTm0FGzFVnrFt4qeJiHC73fD8/Kw7UyIsnE4n9wNgcT59+iTpl5PHISKcTmKxdb1c8Mc//hGVgedrBajgw4cfcNJz7+Zzyo9P6YKwyWRHi+xYYTav80lFFMcjNIxoXQ823aEq/+7D0GrqszJIn4fZZGJzPysTqFw4ZGCe26OfjbBazTdJbcdLNfNaK87nM2qteHl5afxGtdd5Jssjbm8fMMLTd1P+mc03p6llIsZYxOokbkOLvyC41mbj93thD3rcrwV+DYvNU93qo64UAwx2KYwgOzTmb8NulYjWmTA/Jv5S1+zLIphPtMfKb6357HdWMJG2DMnjcTHZWtvhgLXGM75LIYDa8TNhmnrVK9sOaVFlMlXGvybBlcRSy632HKTy2NiFLJel7+zm5fHdhJ1CJZzTlwKGgKpgYN1YfYzFMejr5YrGyX5NSqmNmwtsSh/1ZtDbth0uw5///J/wf/+f/xP0Ht+mPW1zhyLl4FcSp95IYlyGGqQ7kJ9GlYjyefC6U9DHTaT296D8EXc4ivN9BcZuKQ/DW/neV7bSxugzhctdNp1wmJ99Tl0GMMw3Cw0NlAd3K7Ov/lvb82X1bvXJbO3TPnP6wtV31dHRHs8w9WkGcHowx4V6fyLtv1z+AOYJo0A0gcqc0seuetKXrRII8Cka2/JKpE0I8aOH9D7HcWCK4nfT9PSdWcGmznpnq3PiuQZITa72gRnrtqSj05Z379h0z3dtM8gt9qCen7y+ka7Nh+78jufG+7XEFH+s4BFNXTwgLnnvQIJdLvuQbLK655/3exxnEMvn8j5dADrsEe/D9HfCQJZmyAZMBqSZ9M/kXUsLiJ6j1k0uHJYSeVsGecen+UwCqPnQygAUoO1t5YxdNqkFGdS63/i+90ZzNP/Mg7LPXSyoclr2Jtoa6F3KZ/jOxGUa8pLx7LLNKaOIud1xiXUa6CRYjnJkMPxUrdGjvkmH80bWV9wXfDwCPe/sf2eDl6wn5wugAPgGvp3Gyu+yrlTZjtPZXKNdPV4LWW874vd7nR47/06eH+AbiEd98Vr4PsAmhfSqKcxJSc5H4rIljxzBCMfIRIRlEcaVb3zLNw0RyTE6O2pnVhyn00nOw5/P8oxkJ2sFsG43ADF5xMFfWG6UQno1NzdOwuRcZgkTYfXTZM4QZXdqBUCYpwpQnI+0AVy3Ta67ZcJ1BWiadP2FCVu+1cOd2aVJ1JvU7SafLsawdMKOeVjwdAON4ggtHYVeAL4X956Q/NWg0J3Q1+nI4mpXfq8ZDohddNy9uqeF7nNCGTaF4BRCaj/WATqZcBTHi8JpKoDGYX1uq26O7toqZWxJ6H+FVSYAxZpmYJObDnegWcNBvIz78yTApf28Oppr/tPNfwnQG/sKG8jWsiOzTjzaadgreO14H82tPs9gFsnvG7VGzoNZGW1qykn5QizkSM3c+92KUV5ZsepscbTNrzBDzvWllEPXRwRXWOLmoygj5oh9wn+Hk+B8BXASkMjabvO4RryDat9uP+J2+/G4Xb+F38Jv4bfwXQXhYRkwynRUniHJe60WkTciG/5PANUC1osqct4t30q3h3V8twGboPp/ApucFidrmUKkjrIjTCBQqX4stGlYZLZT5g1samAc403Utrnv0569jfndSLlTzkeaz66u+zJDYthrzNxHGqV7uw74WUHybfWAAFGijgFVMGyDK/Pezy94/6jfPPLyTabJ40NtGommY+K6T5Kq9Hff84ScdyuB7aV6k63aDaYduMFo4zT5JX2C2jeRPMM3o9DlnfqiX2sEXee8q6XL7f7TumpY5qgW0CP0eaxc/AyrMmqt9nLTfV5T2nSgQfdw5Nc91nwkBWNff5O7ezncvjdt4vEFUiN9O+fnN89378o0ad8T3JZ9oMeM0h7VLz8frb/87Kg9hUgg8EH+9wCtHL4TsImBbcPtesXLywtutxXbtjVOqFq/NOxgU4BOAPAMZuB6vbpj8dtNwCIDgpbljFkdi5vz8NvthlIKrpeL+Hk6LTjNswJfwq7Op5Nck71esVW1WGAGUDBPs3Muiw+IMr9eb6jbhvPphALC47t3epRZGbGDZQVlEk8f6038Vr1crvjXn3/BfDrj/Y9/wJw83xugZlZcVApOD2cH0Uop2NItIIdgk3oE9sX1CgHhhgh9W462F0z2Snm/GCgzir8C8PSWOsVLhBTjhJG7CCMW0f42R+PyKlFYsjwAothP8VxyfViVeGX4djPXu3WVebKKk/taxYcE2K5F7ag1ZO3JdccZ4KpqTVIh11Bb+QkUcyKq1iaE8NehFjOMQPl9tygXL43dzZFt2/z8dt9+bvpt1MMmhOjxA7X6McHXLcQ0D3esymmtp/o6UD5NTRuIjwQKhJArUrr2iQJgesygBxftMz/fhxCSaw3W6gz+nuTaA0EOlpW9wHRH8PUfTRXD+TkzqyNyfQbpu7wbz1xxu8mNiauOdTP/rBA9gkjqqFIWjhVsDF5AqWJCMJWeh/4Wfgu/hd/Cv8tQIcfuXFllka+bvUKjmUPeQSFeOP9Qvp3lRxJ1reXFBHIwqrX+yiKL+SMSa/xQQBkk182nelXW/5K8I1Rd4+42deKniRyswFNt0tuf8p2dZVRb9/bRiOGp+h7Mus3j7u+u3oFKdM8ljERNf/+X4mUDEXsH9DTPDaxpAadR/M+uis4PppBpgZDZmj6wzlHLJpetVNYyedLl+FTPQRdo/eE6R+/nL2/K97BQgzqlD/TxBnNudGyyr5MbNLWi/7A1nNauP1OXET1QY2uojXtU/3EwyybbSvY/A4e8HPnMrquaMaVUftOeaKtLfaneMuZyWaWdyjVjtRCDdUzv6HxeHvNug7437DDMwn4bpkFEyf1PuMcxO8d1XUFkvvzGq+XIAKL/fWSkcWTIMfyeAP8j4O218H2ATQwBZtZVQaLWvCz7W8p/28Z+XIWZFaSqDdhkntINgDmfNiyLWDIZoGWf67qKE7P6ADrrdFUFaNFrzMWiY/MJQBBnyWxO4djSAFzFSRhXxjIvIBAezmfUrTWv48pyYweE6G3rhisuuG0bLrcV7x7f4+mH3ze3tdgkvipAN00T5tPSAHQwB9FoF4H99mDmekCs7ME8OkJvX5t0bzG3uwc05YV8F3D6C4R71jF9+cOFjdSv8bAvJX3v22Gm3y5muCAX9dI8aC8D5Z8FRZxGW07c3si4rqvPKXEwvrZjTEaLK8qtJP84kQ+qXKseQEA/b5LyzwhH25A5GEcLVFjx7ou+H+2mmiVjnu/99em53fshIMQRWxm1WoLxHO5cALsybC5MensJWfzDXdO2jVYfAOKvgsdCcC7v6F0Ocp17juOF3atV+725uef1NUfdj6hXHD0hAJVXkQcBF/wp030WS89t27CtqzsWt7bKjSxxDKKlNyb1FSPpfjKxKNjk8f5ikvpv4bfwW/gt/CVD4n2u6IomtW085BdHFLyh+lk2zClTGaSWHsONQnuW8iMiUBGgKF3oHYBTosXGY7OdSSirBKhz3WErkjJpB6rzX6vBDgSoJrteuBpp/lrHz8kHaRwofvWxDOBwi7RBerd8/guwsQDurExuPgcpEGMYgNPXV6Sr0yBPl/BMVKY0tll29P7KMr3JOdCh1EZnXcAKt/F2BET/s+Sj5t6R29pG7q3pRlOL2wmdVklUdmTpJvEiQ4viY9Usd5lzmXLIJcyRCk0u6ZmezWMI0MPdq35eNYCT9QS1nx7Rxi+VWi0/RD5eNe2LirhBr/HNb1F1ftipKXTvpEv2J4eiu+R3TQYfFrJVk29Mm9/oEsdJRE7dn1Y6Cm/Rnfvnozof8Ym+nz9X5/4+wCZkmiBe62kmP+YmjonbIz92zMJQQmbGPMutdKfTyY/PCUJIns88LX7Dh00oU0xvtxs2IhAztvUG5oq6hV+oWis+fvoFl8uLT5TzecGPP37Atm34+PEjnp8/4XK54na7qfXU3Ew4J9RsFk1ApdilFyCpopQJL9cbni8XPL9cUeYHnN+9AzPw+PSEZVnc55T49AmLJlOyVwUQstme9/c35EZvAZNGcd6S7t93yKCQCSFfkkcATUDbbwbokAopo/VPRnmLmKyHQs4+N2wtZEK4bZOWZfEhF2tUxjTNCdAJwEo+VwWftuZ4UwbMTEgIy5x8d4jV20CEEDbZHflmZiz9XOwqU+8j8f7tOwN5hyCBRZJDAppILJtoizVpvqpGAGsPNDVgUwp9vFFwhmHfWQWCA7r+FqDpCJT9XADY2Y3eShfPRhUbT3WRzaI+U+pXtwplNPM7A6LyV8WKjTIYWbxu0mlZ2THhXYSTWllv05O4D49/wn/42/8Nl+e/wZ//+D/icvmbu/3yW/gt/BZ+C99TKOUTPvz4v2M5/yPO7/6zWCc7bzRQBkoaB9pVFziSwrW+g3h2HGf0GTp/gCAMuT0WmyhT+dIcoFNyDvjlSMHb1e01HtttWB6Ft1gQ5Ge9rP1WpYwNFaPw+dQf5Poewl1r/i70suo31TsQCnCW71wycdE7xru1aIr2VFYfj0kK3Z0m4Pz9UCDrxfX0aj+v98lfn4+fGzJIwP1z2sdzYKdBX6xp3MXv29E3OuR4v9EQMXaH08doVarPngZx09VBrihk/l2bWW5DpnSEjlvNo5+vR7QpP3PDkbQu7C9vymdwKafzsku7kV50bo6skd4a+k3wPuR1PNJR2Gj0Z5fchu8GbMqzTm6eKw6oEIlDbbNiEkfbM5ZFrsSW2+nIryHsTddyHIM27YidgUx123BjBphxu1wwFZIjG7erT4pt2/CnP/0Rn54/+qA8Pr7D9foHAMDPP/+Ml5cXXC7PuN6ueHh4cMfgdlTP6mQTkAhYeQMQVkg2/z69vODXj58wLWf88vGChwcBm3748Uf84Q9/wOPjI4gIj4+PAOBXWlsf2c1+bfvRTdwer9z/7MPXT7v/fwQ7mhUPRiR/n+r1OAco9Pjebtgta+maE7ldJwU7qlprxaxHSMO5vrZGebQTUjBYLZkCCNiSpaEAtjIft4a4mlP7dV3lxqMkJlh5zgyd1x8DHAK07sEdT8ftsz5OAE3yyQxwESBs6ywEj3YF8p9ZGDb16OL09cl5Nzs16hg7hyNB797uhKV7SxjuUBtMmS/TQMssPeY9SULTCvg/OeBYqeq2lIoxDAU9q9LQVS2bNnCtfktRC6Zr+jvNLEXLLAKavf/wj3j87/9nvLz8Af/Xy9/8Bjb9Fn4Lv4V/V2Gaf8Hf/Mf/Be9/+D9AtOHmSoxtxExhrZBZ3hsCJ55kHDVCbF7ZL1LFhE1BaawPhOZueuS+EGGa2qu9vdw7/DJv6vTgzq7+3QZLw2fz706x7MNbQKd+k+mIz/dgWSurqEPhBIh8b+FzThP8JQCnkATVEo7bmel3j5jQig5sKvE855Qq7eLLHnR6pd1NNscy2mtx/hLAXBMMVOqeuQbS4ZzdnZ8W/dWQNZoR/Xgt4RhogpG2u6EBHxW8tTuv8QpgnYGmHhiy5yPLJy874QZmJZU39nsgC8g+qiu2TW8EzsDZG+ZO/74HMMey/T6/TKe+xUz8fsAmkhsn5nlGoYJSJrdsktetUpGPlNn7aQpLqJ4BhQWUrDBmbqyifEAUxSsErGswClGk1521kPlIsjqZ9VK+4cuALblp7+a3VE3ThKlMWJazl6OdAYAwzQum5aTaneT58vKC5XTC8/MzHh4eMM8zlmUBQ27oMyfr7U1kMXFyv4wIWkaHczzr43jYDt+IoefffZxdfnfq9Gam9pnv3parhjChaJ/1dbNnSqjbtnDEebWmX4Bgv/aEoy+d4NorL5b8audd+0ghICIlgKxmsDE/zMpOwAD5NCDLrqMHON2UeJVdWAOatA5NtRUE9t2K7jsAbOuGWj6PKHLqImeCCZSqNcqCE3yOcSWvsXWdAiRwgXtfoV44tSzjeKRPNRWiSo07M3IfjczS3TdCFqI5eVA4AiQPAOfhePi1FAw5+DbO87WxCDDWatcfo4xbg+x2Iutb8+5Ushf711YAd8/SGBVasSwv+PDj3wNY7qYf9c2Ibr5KYNIEOeqrRshJ8+K1sBfqIt1+ziD6IqdnFUWd9BnvrJ9HO++EbyNOD44boF3f6Un84vb568I9j38NZOdxTp30/qYQ48K7CdzXjo+zp8G8sfaOFGKnxzkNNcrIvbq8OdDuyxeE0Wx/Q6rX5IpBn436eJTPfsd/VIHmoy1DcxlOSW7XMANYln/BvPwrSrl24E58aW98+sygiilXTnMj5e90OWQcAivgxK08CbGqzpkQFfdbYqzF5AW/ZRRwXpb7LNbha+NptDZr1Eh1OVbCIov+3X6M7qU/km+dXyN8WAn4lWc3oevKUQ19s86ayXtC+EXB5XjAGLFXy4jtqBSRY+D1atScr6kP2vw4vZAqZdmMUirTR0KOs40tDwzkjH1Opve76ifZsX+xn5r9sz4CDZ6Pno2CrJCgAYmDdEQh5lfEbCRNk/mVeHCK0fbxuJ4i38a88aOszOkIXop7t029vBuUwCyVmhQZwEXIxtL3MYA+He+CLzFv5PlRmnzaIvKQEx7yN03tHJR89vKKy+6dbDYCbl/bZO7DPcApp/f330Dg+z7AJgIwTTifz3h8fEQpAsLM84zT6QSgPfvILEfmliXeAYSHhzOW5dT6Q+o6bdv0uEZCFR8eHgAAi1r/8Laibhsulxest6tbJplD7m3bcD6fvb4//PADmBk///wztm3Dp+ePuN1umOfJQaZffvkFl8sFv/76Ec/Pz3h8fMTj4yPO5zPeP/3QgEDLcpIjgSBUInz89Iy//3/+Edu24c9//jOeX17cyuvh4QHv378HEWHjEASYGaTWFWbtJHkvbxCq2/fDHR3gWOjtGOq3RuktzzfHfeOzXegBplEbHFyihnKYE/i2oJZgRU16Qk3Nu37HL7dgT1wSE0tHiuxZY7bZAElh1TNPsws4bITZhD/epIbm56bZUTIkXJw9VwcM9NYYfcfKyCtXXF5esKWjqrl9VQXbbRNLlnxr3rqqE3MFI67b1S0FbZdyUuHVgDMi8xCUSzEJorZCS0L1HYx2cKKASHy0xU060nd7wY6TMK5vKHc97T6DWVEoFt2EbYWCXFx3ZLAbn3EYwxeZzebqVq6oO7gyUgUfjzl5VK6glUUFgSLzowI2HmIZZ+C59IkcnxYHs9Mkaba6NXX0sUwbCQ66UWqzjiMVwundC/67/+F/Rd3O3uc+/zU9EPOL0twq5ui+FBeuRzj0jrbqi11P6rPbuuJ2vWq9Q0A4StfMXWg/orUAcItFFSYL6a2pVklOTvFJeoqKOIgUXnLztf014RD3/MwwlQllam938XWTv3fjmWkmrI8cvDShtKXFrXKjtHR4ZDNZ2vkCooiTf4P1WdB+E50LSgKMayu420UMXofks67jIUKv7JYwrQZNslZqXLpSHdg3x6elpZ2UqUXP374g5PzSfKao5HFaBx5kjudh2NFhJ6ExD/q6t4A+2eJs1pjPI+Vf9p3B7ghOKNkrIc1PV8BqXrFyA1BxKxlOCjGnYz/aWNowz/8SV7oD3ndxrA14vWKHlRVerJcr9P0TFk02h8nfsc85csXJthbkYpwZhQjzsshxjXSrs/2ZW4wNq8vvfb+NQqa5Rp/9SSejvmUz9EiObcpJcQLPDVnI+lSWdZb/BuUXVZHZDtSluL3YCGraFfUYMKOvDe69WfMmpDLasvaHASn9/3WhzzOIW5737Zx0uYPCuTwzwM39MgzUIN1GTii9HlWEVZZ8rbb3n1nYbQnjuNdqihOfnOZl3CQYfIZ9dLLE1sZBitn/3m9R5XSaZoSkADpvjGbGeB33yKBfbX2ZY/NM38loKzddx2SbZcVpSJth5p0ZTM4xI0NmQq15vVkaWbfiXzTwC5FfJZ3xKUkP1DmWlGS154kjgCnTly89zWBxh5snhPZis8/MF/hewCbIsNnRk1KKWjcVb3y2bOoRPTNlu0dPY2CqK6jZDJeI4hY35aNTmRysCfM2sWQyi6JlWdRXVPW6U6pXBqjycZxpmnA6nXA6nXA+n5tBPp8FNKNpQpkXlDLj8d3PuN5WZ8K3201uoSPC6XSS505vta+0T/tzoU3/pf6332+dQiPrpaN393Z0cvwjK6jXyj+M88ZnqbL3f+dnDSzN8TmIe9ynfCBQ55EZvRc22Pct5+zS9Z4mHGYhuxkjry41BE7eJH9Kfec17bMdS1mLdmdZPq+cQWD5vWHa9hIwc6QrJKJ1e1UAACAASURBVMdCza8SUdX3QWzrpoJ/EmUB0hvJSjxJ/RTtMaWykRj2Sql3rrHEe+Nm+cbvt+w65Knggrp6MuyV86PSKX3C5sdhilx2K3wbHfOUJjOQi7WD9mjpjXR5cOSvqY4m4LafMq2OOsbcl98FLohQ7oGuPK+v9nPHOIkqzg9/amhxAzZ2/dT7OsufddvvZt5TXo7e3W43XJfrLm6r0BwLH6zG7yOwyUI+8hmbMlvT52I5LHFM8fuq0CC7Xxf8Qgzs19ho/fUbUbaecx/tgHq/1ZDslIv3bYBE7PPPwabGh5gxaFUibAGkvO2ZGftPSruElsgzq3ZVi9AMiPVxom0CkAOGR5D/ttsZbec18oEAUiAF1ZO1JgNfiFzswmguv7rzmpSKqmvfaNOQ1gwAxj7aaI2Py++tLXWjQvuOEu+7FwwQzhuE9qwiZM7cZgekuDrY1Ozg874vG2pNzcebQp5KTXeQvSVX9nLbjhiUumFs6diAhubQWqYEXXqNDhmtH43nW5SlzwOcviy/XWC1Ftb+aSyfsvyyE1WP2/gNyGzkiSzuJt9NLv/ekZl3OX19aLD+3TelW1m2yTVI1R3Jw438kxJT+t6043A+fq4mck++7J9z99lVKbEeTv2yd63dOuaPOJZh5jUjKUsL8luAe5BR4+iGRrw02bzLqmlSu3naRKRBT2Uh2FgrzC6L0vd7oc+kf5dkyfxmBwqFLBvybOZJae5x8KV2g/t1vpjltdfp4rE7kMNwh0+/JXw3YBOQhV5pgIE1+X0WGuzGuefnZwDA7bbJkbKBUmtBjS52oI8dqZumCagbUApO5xM+0AcwM56enlBrxfv3j7hcXxxwevfuAe/ePWDbNgePJgWtbrfVrZ2sHU9PT3h8fMTvfvc7/PTTT5imGaflDGbG8/MzamW1mnrAw+Mjnj78gHWr+K/+w9/ielvxL8my6Y9//COWZcHPP/8sx/lOJ5Sp4MOHDzifz5jmGQ8PD6i14nK5RB/kCcXt5OyX1aGwx7xf4F8QRqBUDkcg1lsU93+bkJh7Bm2OqklHJC9xCIgi0PbFOMMQ4BhAUdpOMs4GuZAdT7L+C8V9JOzZehLrwnYHJWRFSn8F5nzc3tk6bI63MnBS60Ty/42pQHeOxdE9qzVTWDaJX6itbuDKuF4vuCkY639FW0zkE9ssG9iPZ+muuO3YJsEjfFbRbr4ZwN3TmdEOaQ49qNqPWwMogFBg/UneL2/Nt6/Hl+56NEwRsiNLgF9lO46bbCu6Mj1Ordi0TX3/9TcdMrMeO7b76kyJ0LEyq460nnpwweuVwKJ8LLuv4wgg7fOwPuz/Kldsa7NV+lmKS67H517u0NTNLtOl43S5jRZsneU89yDNV4ZvlE3vfBMY1/GYd7S0DBnZ5Q7MSQq90U5uFqaAPU1eLrDS4NlxHAKrZYMTLymvBh0DjJYZ5eyALG2LWC9VEMVccKf6BtZwluW1DdZW3XndKivIhVTXLw9HQutrv63HoGCTwTZhNdbGtf67Q5kFPDIBn9LmBCXrWKkMiAizWbVSyRUSp5t3rG2sPGZLFjZO9r8fVG3mFnlRxAXFBsuUGq1OUZ6nepysjbX6b3hu+t7GgG025LL1mSY2359WZ/PNZ83vLQfZhyXaRgBOy4JlmuR3kjvMLYXRG5OdR5umwNsUqxx3yGdTWUdK2GvzMYf7m0mvK4vR8darspnSyOl3yv8SRfBLQ6+TvUWG/1Zh1MuZqma8iZv3tvAYrBt5BgLkfEo3HE22g8J9PX1vKokGduiI/K8Fk3q0R/5YTbwqCBXsb3iXhk3UQJCQFIcjDqD0xkjoQS2arkzjIXQjx6VUJw7ym1i5x/RJovzylfF6TaYH9msub1yZfGV+pEdgupVhfpqc1iU0q6df7aZs9Tj9Orwn943kpv45M6Oky9h6GvrW8P2ATZxvfYpG77y1O1ooiu+6rnpVu9yQ1Xt+74EV9z+LIJQGUPWdOJUJ5XxOcSqoMM63kzPG8/nkPpuyv6hSivpqCmfdANwK6fHxEU9PTwKwlRnbJoAQ8+YM93w+4+npCUDBhx9mXNcNq9rbffz4ES8vL35Mb5omnN89YJpnvHv3DqfTSUyT5xnbtrnfHOm76BPibsfE/udjRj6aYm9hgiMm1KOx+x2cffn3AKe/BoN9U6Ag1i0HzKEVFoeBWxR8mB4DAaNThgEjx5KM/Y+bfKLYTIDGRMiK6avfEqI96JTDXJYd4WqFVcasiu8878GmcLRfUMot1jAEbMrtz/UPwVIBDd7ATA2AMarLUR8d0pyD+DEm2HUgkUospjyQCQYHAtYbhby3CNGHdXeFKKfrTZDHdTt+B9+p935O6XoQQQBEPe7FZkWX6I5LLOT8xMCanj71TLP3ZZe/H9Gi/G7HgF+ZLxbeQq+GcfJ66Z/tFKZD8W1Yt6O+H31+edD58w0k815B/Fyesc8LTiP36aH1bj/RrE6OfHb9PaK3I60mlPnGSsY3y3RN2vcaafp8wAJQVVZ1g0JQdzYFBth8ocHnkrRMlQ62uXGghX1BGPKreDn8HS0zeM18/jFGfPYtcyzTbm8v4Bs0TOmYKfayotdTuhGgAW3sNCejoDU4s4/fBFWA81EaVTyG/UEKDpJsUBQFm5ggoH6RW5gaAztro/FJDmWPtbz+xOc0yakDt3VmEaoZjI11HdQ4XlhtIXXK/DxN4HmKuiSwKStjAbZ/Hj3L/dL+HANOJq9/zXyE9ccrYUc785j6DNANMMRMPALC7pbR5P1twk7eSGX4O6tHVOjbVSAtlpFo3TyLigGULHf0t49XP26Wd/c4k/SjFrWyWIrM6feuxu0361GjIj7z6I7UdaeMAJraUimu7PP8RxnLCifvl6hTXwFCZ7I+rmRimSPAaTccHH0v9Wavb38Oo69bcLJ9rdny2T37/NDwgsF8jxNYidek31J2FfJ5ICv2dCvjFm+pl4Ve3rPPEdAE6Jw7oJ1vDd8H2OQ0S4h+3fSYDMtxsRyscfkqbHsuN9QtO8AppzXLJgu2Y0IUN97VbQXX6mBNVmrld3WFl4jx8SN5XYgIy7zg4eEBt9sVLy8CHj08PHj7SFFCOV5XcXm54na74U9/+hNutxseH59wPj/g3dMT3v/wz3h494Tf/81/BFHBu3fvQKXg8fGxUbiZGav2ycvLS0xmO6OuZVuaUHYZZg7vDhpVaDkCkBiC+n9LNtYDTUeM9a1Kw7cIrxGPPq4pGNwT2yZtru9RnikOiZBfwcH4RrqnUuORHxRKxL2o6lKK1JObokLAa6vDXZUyqm58m2HWTDtG2+QZ6YgIxFXBoXjtzNQUqirlFxSgqI8ZO2+tdXt89+ggU2p4UzbrDThcA2yyT8bm41eKWKbUTawBxLJK02p5rH0qaXUNmrUUh0VO7jeL245NcFqzOnOwjCg2N12xPJ7/ozWTf9utP/3zHI4Yjyu2SJsCqjA1Ao73TfQPujguo0LGEmAZT5noqNjkGFrdJK5qO+JXyCUq1K1iq6sKQpppCfplZRwBgM3NIGkXquvA4+/6Z1VkWwyA+MubX3cTHK0Zh5wnXonb17MZYYJYRbDUrcm3a7/MOxYn/7aeNU7wsK+k/czY1vWuv5W3hs/ZZbsHSrWg44hOjwRA60ajewYO9PU5erbLcf+bCuBO2d1TFKo5bVXyHAcD+rIILeUxay3OF5Sm8rRdnhaNZQrKV459CrtepoM5Tm2cePz6cYi3zI2ya1Obqx+VQ+ipu+AkqIgFppO+Ef8/pg0CbgGyEXJEfyIfMt6hbShG0wCgAMxqwclqyaFlFM0zn+Yk2K1TMqnsJiRTNk7LIr7bkPx7VembTfkeb7aBY34a5RmM/zEc4LJ5W5l0I1g+5cpvpD+O77B5oJPl3vhm8IhkLUmS0rxjrrCLePog8enw976849n42saBlSDO1blpH3FykDwqwtdIBg2+3VptyuH02S/izOt39RlU+IurwfcXvoYAwBgNyU8LeZeNydJk1NQg6BTlgFApOxjkOkrQ8Xb7j9oC7k5zK0t1gJavEaIFu0QdTENNm8G28aAxuE/dfpM4r/O5tEeopbIz0mYT1qIZDRoAgwMHHGlqumTWvHfkKpV3NI3ubR4DIXtkGSQDQDl9BpssbTmQOz29/Gjq09evT9d/H51ouNee/GnpCpVdOz8XcPo+wCYAYL0FrhRV2pLChv2gGtiU38/z5Ne2Gwi1A0w4duiyYmU3xtW66c4M++14ANSUV5wn1xrWFWJSXpsy50WskgDG5XJBKQXLsuiuTRzXW9cVLy8X/Ouff8bLywv+6Z/+CZfLBQ8P77AsJ5zfPeLx/Xv8+Lvf493TjwJAPT7irA7NAfGf8fLygtu64pdff8GqYJPfeKc3+pmjdetTn8zJdNz6iUtLmMag0zcUOA+ApqMd6+8NaMrxvCu5Z08jgbN/jl0cbv5aQWMnADFEQMlxMlNpFAsb76npx1Ceoo8zTtSCSVF68IF7xDATfmOAFUU1DHolPYEwqVNbEaJjXr57907X3H5+5ONY9t1oR4BNcoyuFPFPIpaTAszKOg9npZbnUd723YDd3JbX5u6IgNd1v9vQ70BEGeN1mneO783nHciU/myftfH/0hfe9X/TXrYKQtMmOjMpbdoMoEtAk2pD5izZxmurjNttBQgoU2p3Bz7kedXMpxHYZJsUHoma+J4+AU2AWo0Q+SdKQcYt7lEqF6xGc8L68BUho8lvqNAABmTC8rO5VkLxyuBSBq08DonT4i8FmzJF3NbtbjvenOcBwNrStX19R+niWeY70Pm+r6t1VXRncfCpK22X754n7AV181NngIVdP+1/aW7xLk/7zXJUih0eTjQ+uFQDOPV9kNv+tUBjDr6eogd2UWJZN9wjxcBobN5SzUxve4UB2Fus9nR3RFeWeUEpp7bCyOOTlciuks30KK4UHdUbud5ZRtbknt+UtDvAlWdFqqJYI9NWR7M8BUCF8HA6ix9TcAMkMTNWczS/bahbVYBILwfpFC8UA+kFVCL9zv4Zfw4yVQGcmLXd1kfDkGaTA01quWefSDScChyN33d2Ozf734P448cHz3MaF9RYAd4NbDe+mhPkpCz3ZR6CWYxx274oUDeNOZWBforv++ob0A/nTJ/TJheNc+W4/cz5E0A8AJnyUKV8u6/7wrt+QSer52e2gZY3I5vfTc6xlcBazv1uMdm7fdb2adq45eBM+zok+ajhewd8zvOGg9tWiMsmWeZK9LXqp3UjdfphO7Lc1KTlG4zwK/W2MJK1R0CTPbfPjGH0nxanPyI8lFsO9OOj+PY+W/X3cY/CqC0ZbOrjvDV8P2AT5BjasiwhYNWKzcCkHJHF4eU8zX5rHQAUvS2nV/wygmh5t9kJB7Nbr0SCMx8uMsnM6ul6u7qiGuhlTMbsvPt2C39ToaxewRz+Qq7XG56fn3G73RQwmzFNs56PhFoqPeOf//n/xen8gPODHJU7nU5YlhOmSW6YmW8rbrcr1m1zZaCy1HfadDKTTnQ2khFklBBm9sT5qvV4nydqoWlnLSmMMLrXTUE7bmM5ck7XvEn5NGsjmXMmrtbRp28a7oFO93bJE49IYSwUv1qHQih87LdlD+h0cXjP8MftCrXF5nRKobujwhAqJ6esnNrVmV/1Sn84DpR/RW/vArPc/kG2lqz8djcqD4GAHpKzrLvV62HKlORTmzVqv91CR5kkd7c1GaHOjkuPlIzeCXpmMjnuyMdTjtMGrciC1A7etSWEKLiigY4xEIS++jE0Svlbao6+NyVBrLa0jVZfItj6NREn++6wT6OrPkcYngI+C/IjxlTFj0dYmIjPAD/ygaCl27rieruBCJiYgEIoTCIgdgLAqI9bGj5WMozu3Vv7ff6uP1NrOTiqw2vPc12APR1+SxoT5KTOe7PrzB/b5BEnA5WjuF8S5EKONxDukWbX6JKmOHbv7yQfBvIZCbPAABIt8TViz1109f8iXU9TR8/uxxHMUoBdsUKtmCj8i8iSYrXWNren0VrKWTJgLIRRm3bocpb1aDTVWIcu8gCnvkzQHIWgJenZ6BeH8Oxg0HGu6fvbBOMMMB0B+iMAfZSHffd5wNmCiZ0XNzXu5y2lGULJ8siidHP/VeHH+U70t4w19AKNrJqF5MfCCACYZbVY/2/b5jPNwCZALJsAO/4X3CHzTus7u3zHbsJsrEyJxN9izUAa1GpV6+/fqVtFuY9by4yui2OlJDmTB31pcXaq/kG/l89YHxkmiI/kOoRCOgZiM3O/dihAkCHfo10/fGkY8UQb15EybM3arcMvpSNJXnBsJNWtWT8eM83IA+Lhc8t+e7fF8/07NP1KldJcanKHg4ReffI2RLuCR4/GTPqxq7hZuB41jNHN3E6Wyd+1Qc0mNWzuc5dLnyc3vw6qYsJs0LA79UGaR0036fxvutP4WdYB7NmOLWSpIM+WeN7S/qD/Pa3PJNhk83t+mfq0hgfYmm7WUK9Bprmf5z373LF5LOnDx243Prlfs57QgUkyHaSfS8dPP1cO+G7AJgLhtJzw7uEB67TidpuwbZv7YwLa6TFPE5ZpAZWC5SR+X8Q/UlgpZeXOHYCXGaVMTdlmkeRWUgo2lUK43QqqWgtt2wa5SaY/sy+TyJwZPj8/45dffkkTkL0+Hz9+xPV6Swop+7HBUorfTnc6ncAgXK9XrOvP+PT8nzGfTvhv/va/xfsPH/Dw8ID375+wbRvO57NaMjFu64p1W7GpZcWnTx+l3dr+0+mkE5t8YvsNf7AFnISSXsnS+VonuUp5NJL9r7xgfMp3hJ2T0FNSup5pVJecpZ52HOAvCTh9m8Dp7+1pCFBhTJZqL+i2QrDdRDQugxHErpQ8f60PA8zIIc/1SfMx4dWtQBScBaVdv46INbuuptiZl2kVUKMde7Am6toegQKA221N4C4PiXLLJABAjt5aPAkVcqSuwKy+7hHmfic8x8sC9ggEN5qRf7e7ELnPyI/nse/wMpg3j2vtkj9RHE0IlT9RXM1vS4hPwVBNDhCgfwXYQKZglptuArh4I1pH0/4MOHmf7JCXWNfmY6QCQBEaZjs+plQXUZOl/HXF5XrFp+dPoEKYT5NeMEFO73yDgfpz8T3Dj7/7NyEdM9geaAqBUfr53u7SvXc9uPNWoCnmqZQf80GOu2a8KN/m5jtZnZ8r61Pg88yy79Xv/HBu+xZo5D7Oz7IC0cXhyrJJBDRHgjw7spmejzjA51+S8UF6zDjPY+hvE3IdYO7i5Op7utzmLk7/Oz+zYHw705GyGQhcvf2+3kzNtkz9aFXRo0nsFy/YMV93LG00WQi01G2zCxSCx35TsOkz4raA06DPP4O3jtqQLVffthkwFtBB8CNmUB7nkEKeF4MJ4JuXPgwyJs1lDFn5CoRhVzfT5yoz1q13n2BOzyNtrJk01xPYBADrbd2tGV+g3bpq+qer3jzNmMuEUiaVyZO/pqnIpkhhUK1qgSogaJnk5EOZJr+lNdaabkQy/PhfqzVEv9pT23ZlFUXuLsY3hCxr5xD8tXqXcTDPRG/SGi4xpwwwEuWUYL4mnbIpoZT4xvei/RF3RH0in3i2j3Nv86aXkUaA018iHOZO8f4ozojXElr+YnzDssy91KeVON18y19GzKx92aUajcfRGL1lsnZyTaeXAdTcztek23XksBde+d2Gkc52j7fc45e5N2xZec/w8bKOddHUrPsem9Xt+yg16/oW9OQyWG+XDP2K9b2coqiVUUreyEXqGFv/XQ2HkzrzImiZwLaZVfZ+vtvnkRxMpP7/akVdxxcovFUe+G7AJrAJjezCI9fE8G0GTZOeSZcjaeJgW47WFCpgqmn5RefZDRekVwn3SiCQ9hNqBdctJsO2yQ1w2yYMkOC30eXVwi7I9U3T8+ub3KhlVlICchmXC8GyTHp9Not3+soA365gAM/PnxSUWjDPZsnFfuSHwKlt4mzMbrOSiW1CuZRLaXKXHTHSxUPpCRmRomYXKCPHSRRKz6h52sTJ9JfZ42aBLBMMQ9l3JuiDYMJbHpT22T4Pyu3Fve89CesZQB/nCwId12JXe5FEdhQ8n23PgFQbnb0se9Z0G4VglouCC/7kylzQyUw4MwM2oAlIVds3PQFXbPmQgScuCWjlOqAG2FHkmMvUdF7fpwZucK4bhcgR5ZO3kayW2nHSZF1fVW+oKnqvDLMKNSHUu0Lp9Q5rv6LWSMQGXgHFwTnzDRJ9TzAGkoROUjqAguaqddhAmlWGWizVKrvebDvVSp+hCoDTzBCSG6U7C88cjK7ZYdIxI0COaem7aZpBkJ2UynIsAwifcqVcsanfkLXKMbpplt3woj6bqAONXGhHzCeKaiCNtI93Hsd2UaScUn/LHCn+Nq9FymkzqUi/OfdlepcVDlkTsQ773dJs4dPLAKEMWKG0e7e34IjKhhn4XnCJfHZPhvEA6FHD5Ecs8xDr3iTX9RvBRju4Cm9F18UezUlF4iuIHmCPQ6BksclA46toR1+84jRqOPooVquQTwYh53MgxIWQqOCh+eJC4rO+vOW3mcEXI2rGXBuQyuZUtDDvl7f8hkYfh6HvndEGYmphN6fjWbDmkAFKopVOZzJdPlwf6QUDNVmUmOxofnO4O3LR59P/znqJ93C/5tH/Jh8L1vFpBfmB7YLSmB0YZ3w505o08fMaiqzSXEfME+MrRtNs6pjcGkpr6gNmsPHqHEd/O7hERem2AUwkwGgp4FLBpQhNt1sZNysj099kPWadrPyaM4BAbS+6/JL6yOiAN8W1yK6z0MpDLlfsQmzU2GpiQxNDaogqKM0L7pyIeTZxc9k9UTHKo9EymZhHIwppv1+LEzVuOQMOeH8noXMeszbNZ4eDpKOa9+zWnzd0O+rVW6YFD7INtOALmUYLvYDLjdmyaa8rdfOYu98df26ft3JCMwc55MCme3nUM9zWP8k4QWebrmhTDzrVmsDNgxwh2mZLhnPEDswISUPaTUSJthxxHVvTiRY047Wnq0Dyh6ZJbd1mkMl4o/HzrEeBdGO2sp7uLWntA3JKyvIJPtXqM7F6qw9zvy67toKw74qIK7iIbRaNF07SboZFOYWnFlTO1Oa18N2ATcyM6+UFn379iG1dcVv1uvPNbhqRZs1lwrLIUbNllnPxNiHnecakQFXdZEdkXmZ30D1NE67XFdsqlkovLy+tbxX9W283bOsNMqnk6vWPv37EVjdME2EqhB9+/BE//fQT7GRRBeO2rbitK2gqOD88YNtW9wN1u61yJO7ygsvliuv16rfInU5St3fvHgQUgyhV6+WGTy8XTPOMh6cCXiv+y3/5ewCEp6cn8VPzcMaHH35olMubHvMrPKHwhGkqmCbZsb1tN73RRk1ypzBjXuaTgngyeSsbQwVsQpcy60hMyFOsoWv+bf/exDlf+ymCC8wmGShxJzKLppSA8nEgK6FfSFrztBL2i7JdqDIF6pCQ7p/tGXbOq5DKMl1bB3LLMDSMfNvuRU2sabDslZDVWrHptdVc7ciY+CpIuIkSSvKrX/3YhnKRTJTdSJNkTii/27WD0xc5GMWBefR9oYKlzdloYxJU4kv0QJ8PD75mPs0MvcbJX1au6oeNc+v67KQdOmGHrKAy6npLz63vLEvxx1EMEEpx2hAAedsOE/p6ISLBup2A6SAxkqNzTy5fivmuSANjWFFFWLIxc7Pb7so0R1m9wNLzubptWNUabdLjlMHEq286rHq82UD62+WK9XbDdb3hcrug1hW39SKWCRyWYuGoPRrq4269p9KjAYBTKaAytWJdD8R4P0sfl2K72eoYmEguf1i3aLsJOOm3ryfmncWbbVpQkc0HTnOjxHmotn8behubNAzWDRQR1sSSKYSUbau4XsXyVsyukxm/5cZxJH2aZph1SdDErFT1n/t4APQIeAKb0hzpLZRGz2z+sfqIySTAVpXFKal/ss5mY8y6FietDyehz4TbAK10/Jp82mOlfrxV07kdMJHSt9w2dfrtWgo3886UoqAd8h9N2iK2g+VBHxsAhPLMsCLY/ZNtVf3qmB9M44Fex5hoe6qImCs7BSCNu8pWsfLSZlVSAGSJUNQ5K0Opf6H8qEBlEvKWYRg83yRYUxpAlucbNo9DFCCHrd1+jWV+aCVvm1p+cgBYvZWgy2uJf7jDbZbvhQAzQQx63Vpb5T7qrTKNb4iCtmpT5V8hBenSmgkLuQATbG6bjCB8Dy7cFCKheUiynbtqgOeTj+ASwU8Y2GZxmcKv6TTPvuEKkuvWp3kG6gbaNvBW5ea7raKUCfM0OQ3Pc8UspHxNMWNTv1IEQgWhQMoXyyb1Q+gb2lK+bdyCY+Mjz4G8ASfP0nFCtk3fVtgpurUrlgORuJ29mevbRFF6WTQvd8isdQTgTuVVAyZEnLRq0zPufh/FYW9xMdk8GwSYpSUHhTCxwKUPze5glX59oPFPo+bda19fFidbEttacp68buHjUzcQfT7rnKkAVo5x9lIp1cTHMeKYRR4bhdW1JZHzpRN9C4zTTcgnUqwohlmmZzmXkAam7SkHvdr30jcBlkRIMmKSRnNf90Czu3JIOZj+XQHdnM1VNdqrm40UvkLdyrjrFRCBpkn8OnWKW1P7nVIXtNyNUXgDmLFtCbAhoDBjctFSarTeVmwbY8EMollOIVQlmlXaLjLqBsYkG9BE4gZC5wkDqGu2HqfuU38pMB/Wtex0Jlz9FJwWOxVjHh/b5la98Mz4i/Rn9b7v9blNsZl5nsXCdFC3UfhuwCZAbheqeqtb1c5in3ixkJxZFlFG/dYnjqiAynVFbn4T/xAFpWxyUa4pJNlJsIFN64ptNf8vYoJ8vV1R6wbmCbWE8y3hR7Vj8iLQ1ypn2810vSrTyQ6EAbE2smMf0zQ1qGqtG6gW/365vmidb7hcnvH4+IRplmMQBr5V83WlNK6aIMYI301aRhyp0YmWruw1hUWcKqaBIvI6DoMxA+cTewAAIABJREFUk5SGVZgbL+30m/YPGyGbgwlkxLfZ6Y9qNmGEhO9NAoVZH4Lmg7DP1wRLm4jY3+RAEU/qPcgX0Z5vxZwjv5oqlq5XzuUbik0dEXJ5JIggo+3vu7efcqqLrts+euxM758NQy+sMbfPOnSzeWZMshHm2/jtZE6PeGxhx2wOVLtqAm38vp27OSuCRPs6Cx09Q+qFx1EcAjjTTBVKCSCaVMHKbdFUBjhaMtKZsxNclEZ7G8bsaFP6RxAfHkbTXRmD9KNsBlRcLuIvb55nrLcVy3bD6XbCVldcrpPQ1Lo6Tc83DuaQlTU/Oq2fpgBZvZudrfTJOuHdWlZ3481f3rZtcaU4xWd7bCyEWVLJ0D+r2m10Sm5jxtxMo7Z3DVgKhRj+vbV6E2HWFFxrr204WLNFl2AVrKMFrbC5799eOc5B8mvFRAe4rYkcpfhxLxsGE6ar+ReLOG79SnlFkKcDksCa8jKnytlCiKzvGnqXhAzPJYkgSShnWywdCcncK+KmT6Kmzxxc6EKzvsiUOmoJsq2nVC5KARmdauhnq7jnMgwYattOaS1EmYkEe3tMAUbXnw0IA4q105SDLr1sQRX33ed2lkDXU0aj2i7J9W9dI+TjBFG/SLe3AFR5SQvLHrRGx3WU2LZyhvKSHrzy103UFKfr591RhzvCQzN7M79KDCnPq4jdjpclaawuE98x8MZofPM3jX9XO1anFk/kaG/KP/12ppTGyQH+xO5y78rvfq7k8TG6G7JrK2O2lqZWkVj/ATg18h5ijExRjK6N3wMpKM2ZWOPGj9jolfUF2rrmfD77u0+WkJe8lMwjQwjTNZ++D3L+0uBlviWztnhJdqAP5D8rp9lkc2DTxp2auZWbb3LybhxdZgoryJZ2yV8rW/WfXVaNzJeZdw/FcFj6pXnSTD37sqMdvPu+B2wQ+YGauR5dQru0I1ppCYaAHYdM09fMw2iMYeMoqZr15zU3es7pW2/lRAokE0jBXwEmK5gL/Mis+UgkQB0stjoGgo5Y09o1rp8dbfaNBJ+rBDlem9tKvqHdrxO3iq+JlnJ6rv1b2clhrOVUb9skbntxH74fsMmYijEvve7ciZfKKetN/IhcrzcQXdRpt+zKUhFrm9vtJg63C8kuSSl4fn4GUcG2brLzlI5mPOjtbuY8e356xFziBoht23C5SFmlyFnLp6cnvH//HswVWxXn3qfTSeNOuFxEmLbdeCvrfD51t0KRA0/Pz8+4Xq8oeoadweIwvRTUVY6LVPXHdL1cVKFaUXlDKROWeWluDZqXGfOyYJombNsNVArKNCu6yt5nZZtQJtndIVWYeoeOVtdt2kBUMNMkV9Ejdk6yMCafLUF3GiZv09MU2kgwQh38ypyHU5eM/QiE73x3QtdOCDuI85ZwF/jITbEvd5ZhFPm2sr84ZMLu1e89akVw5dNv6DImO9ghQtT+LtBk761z5IqJ6CvYGGeKGcADUpymTBOAviiMyCTFRHImzu37XOldPpQ6IjOyQT5dnJwpcz7e0Qq07ee9d/JZmuuJbMciFIecTe5Xc/hqO3yktDoYMLytLlSnSUBsQreJXCEdxDhWbAzd1BNaUopwsHmZAQaWZfE+MYbNqADJmXcAWGvcINjfOJg/8+2C/bu8ERG3jlb3H2i/rX/Mt5R95uMsI3rTh7yb2l+Fa+VbnMw7RnlbOvfDl4U6Xbue3sqeCpbTCbZJUvSTjAey1mPbQCS3bZkS56TN6tsBc41FZFIOpDp1J8/uLJss/yxrdXG4imVTFt+a42/6jdjWE7dxEk+KvNMc1TR+jM8UDxe2PaoLpG4dW4LQVeNb1g36WS0nQfxivFyYzHxkTzEyqHcE8E12ZDHNmz4fKkV98smuLYA2bgayUmhyS5m69RsETLYXPEgzqpMJsUjPXHDWGMzmc1NHmrp0Pke07DQ2oUAKaLUsJ7m11+MwtlVpnPmoS8q0bzMkK2um5ONOaX1YCZKCmeR/MUslfuZizIx1S5utsLkWO9mZ7gctizROD/LiIQFzzRIu8tZjmVZv6JZBYoWr7mozNqSO0KlroH7MEzkiN4GWxZvNLKD+PKsl0yTWRbPd2KxWTVTUQa4rUoRpXlAK+9E6KV/8GRLrSrKj4KkemIpYImifmMxqtDAABGBjdr+hpLxA+EJVyyZO6ZCUVwHjF5KLD45kSWqnQAqeWYqJwffRb3SCVy+7fEY+w2f33+1ktr9CeIsMnkNfv8wf7/HSAJuM7sMIoj8j5a/VeUPSh9L/uzrt5LaOcB2mfcs42puRfAul0d0jPva19XXjG2nDn1373BfGQBTmpnx2cm+gTeaFn12zrBfZmJvFnp6Sqhzyr8s6lVGLyHtVrc0NhMz+mbx2asQg7zYFq4xXmDwpUeUGezE82RQLsXzM0svqaZJPns9FL2AQ1z0rSiGltyFTmHxrMqV3OVFjiOM32ytdPp3PYVEFNGnvhe8DbBLNwivvITF2k2rrtmHVAdpUOXh5eQEzY5pPoFKwrqt0EBHKJEDQ9XqVRVRjQE2At9vsTIF4fDjj4XSCzejK1R18i3NVAZZOpxMqb7jdZHIty6IDO2n12QfKlIN5XiC3y5hCww5+2U0f88yexzxrXnUDQ46eSL438dOk1lOlFMzTSc2QBTzatkWO/s0zmCTPaWEpH0IYS6kozCjMcqSuCFPeExzyZyK0MgomEMJUO9qZlMiGoEvfj3ZYMqjVx8njZe9GNMWJvs+XtvzR71x2VCnNwwNk/PhdyispPOi+NTklh1T3SOXXkPohK8qC/AFzaXZ0vA6mCN2pIw2e2StGsmBre0dkX/3m3cNJMPbKeSFDmMkqF5OnS9vHMUFf5/kR4098uxUJaR9hCCz1Kt6u4s1nKK85ziht/6z9TUSt35FYjP47Wy/knXM7jrYpsxVHwi0DhDFNNsfx8OcwxduLVz9NVDDRpPKFMnCuCmLbURJRRIR2TupHT46smfXNNBWcH+Ro11Y3VA4mmcGi/JmBqAwsPT8/N+/XdcX1enVLKdukGCn2JowcgUGWzsajH59e8GWOzYoMSJkVrKXJ9XBAMOXfX3/r5cEUcwJNYlV7XoSHzIuYSBsP3mrFugnotUy2GYJQjnQuMOI3kH16WRybAezm2JFP11n6zF+lOPlZ3eLmxKPy/YgQq3DWgAaSD4vGnPKB0wqz6rM44ER1nDYGjQzQTeuoCm7eNfTkfR91QrULdU4TklDcjX0PoppM4z4mEXNtdwMYEWhqL0+x+M1nfpnWNOdnwSQdiGmaTdqeAXCVxPOGthrolm20xJrR5nzoKm6J1LFj23muerxB+kjn9XLGPC96pNDogoHQa1xWEJMDgNEjgp7yQEU+nmZ8q3idyDok8QJXOjx/+56vydb+9GPOrYwUu+r59waCrlmTm9R6nYj77vc8i9dPx0/bXDeRV+MSj7YfpZ5m6UnqwgHYigEwxnaKKkQCNpUyoUx2+gCeDyiNPUlfo8DTbZuMpRhIZu0+z1nSOjGYDU6159FOk3EKs/o0DboemxCbD4bzQYRyRkTQUyuN3EupTvau4RE+FThFY4T95X6MhqGT2Q9fvTU0Mtf+4QiYuAcCjeTvrwk9nx0BSvfCCHAa5ZE3SvIXm0mseiIDybr2oC+acg4Yn766V/08ZQYt6+Ie9HkSAf3RG/rsted7HcvqFHEclsvitRH5Xb7B7/ru6jdW7tX/tbnZpucYV137bRtF75c1UHbzyHhv02aXk1rZMcvMTKQbP0Xoq4Lo5Ju1aPPTU1NWdt6Y5GoyQGxU2g32cuGZOP8OkErojcm5JvNGvoJhzPPkbi6ygcu9CfudgE3w83/53HkWsPNvQRJDqJKrWIFFz3t7OoLuzsaZcRMA7GidKDHyacqIIXuyS+L7jgAA2zm6XC4af8X1dsG63vDy8oLr9aJ/V6zrbadcUCFMmLx8Y5YAfAdb6id1LzaIJPtMyzwnpRgAxMeUmXsXVpPjkvye6LFEVns4UuWjgpMT9irnR0tB2VQwQCwTJ+rMqO5vxna/WsZpN4fIs/ydUr0N5e0JuzGwljAEUwviHLt7RoRqJ4Jp2v4hm7+V4VSEiRAHUcZMJDMhJ6wtMxpGtzxHPAcQYpC1tC8MrHkd7eSM4u+IOAI9P0z/BjmCycbkgNHmOuszAhxf8vHJaVJWsQMQ//suNIC8gxxxjOsS2nPrSM844rlJv+1sJcWBpIwQemuXT85bfUrQKE4e96+bAMIsj8ctg8QhgAejNyXZlWWnDlKvojTBfREkP1Ok7Se3hGQX0gnF1y7AYenGckvnxsBab1pJp0aSlkJYoUmHJTHx+LNjYnYLVw8UsdIE4HxasMyzM9lVLX0E2BdeQwA2vUWk1io0vfFJsrdQyJ/yHTAaGP3NzTgIHzjj4eGsO12y8y83ik4eLytD5n/QFOMexDL+5RdZVJZj2MuCeZrw+O4d5mnGcj4JP9ZRqhB/J4UKzqdT+DkBkC8gqPad4avMaZv1gwnjW/LtkqZ8jjM6RtffRpfzNvfepM8U+pT31ZQCVuFNh17XbJsPt7+ZY0fWLP00H6SdR3cvvuk7pQXZb0Qs6eARzqIySOVz2WY8mjxslzUDp6vy+nVd3bk+pzg2DwC47wz/zKBT986OQQloZzdE1ugjb3/yxadjBBL6SDaGJPRinibYLGEfV9ah4qbNdsyvpPobPVqWxcEm+BqU9VHU/6CtJ1mDAcgYfZB+kdnOdUOtRQFDAa+ppF1ohgM14qdNLooxGrRuFetWta22ptubQWNEo3zTTfJtrOtqdeOmjg6maUeEvJRBqwpm8anhft6MhyOGLpzG9n4wjR/a4MiN0VgSL3SJCTCjs1IE2IoLG+wSH4LpJXK7LvlGK9GGdRXZe55Ehq2VwVX4xjwvKptL/ZtxVZnEwNSiAzHPAmYFn6lYN5HJbdOZCKAix56neQYzB5jfrTkJ4h/MaDG5bKLHtZnNHWOi9zHWQEuT7TesN6lP928cgjB1D8dhBD79NcPnlm8ygN20OrJyGd0UPMqnT/+XDkEz74dvNSajPjhqt+kJR5v7Jkf6tu4bAMixHHX87CiPkf7S33z9lvHMbezjmcWQfc/l9RtCbXkIwiQMDkVlCFbTbOP7hOI8b1I5+nZb3ThmU1+n27ahlIKXy0UtR6X94rJINg4287Onf9fbTXxnX2+4Xl5QpgkP5zOmecbT9RHLsmAq4qN03TY5IVVkU+YofBdgE1HBfDo1O7byfO+szYIRd/fNAbhALv6S2quQJQ1Q1DHq6XTCw8NDY9l00aNpxGE2y6i7cjkNpoBNL1jXFS8vL7hcLnh5uSgYddsJeIUKuDDmedZJaDvwsoutPQLmAOCUI8qkmiYXsuzq4/V2cyCtqLPFwoJY8raJ07rbqmbJeuxDhfxaNpQ6gzbxUUVEKNOmHuxhklEc7yi6wIhR9Oa/MEnudknpYPe0U37STFBma+/yuFMTr39mDhyBESvsz9QfPZMwlci5yctkXKLgwf6O2q+cCMiwRjm9JhhUJ+k7XxyanuuEnGZXKJfbKew5wn6X542F9885fTooZI9H9aLu9/2CePDZ93kqOmLY8aFGY8rxqBlvQJQht9jyaNa4Eun8eXL6SEA4jGxFXKLxDsmXBFOWJN9Yg7ZjkddrTmMCMFWhKeZwkmEKnvqLVRoAmO8jVXRUgzELACJVdqo4XQQzWI+/bWtNvvtWMQO+GdO8qdWSOf0W+ly54rZdVQkhVWbKjvZkXnL07OF8BhEF2LSumKfiFqrbuqIQsK7FFfxRflu3fhphIikdrqyR0dC2zqfTCefzGfM843w+i/WRfto4mVVsreLXijnAJ8k7gLBaK57V91VVZ7vLacHp/IBlWfDDhw9Y5hnndw9yBJtkw0NWg1w5/vTwTnwLUpqxDI/D2PtVsjhA+GMyOJIR6+ZLfDYVUNTRSKn29+ZXjdsxOsaWgCRZiWHJpJcUp5tpJc7GtQWbmCPv5FhZT2sl/sHHcTLYRNHWvPYE5BzwD2Y/3nxTS7xshXe9Xhtrvl9//RXPz8+evl//QFjMmUyU6cFE0sd127DdRFYQusQOGlaEo31z9GAgYvGjZvJsmiY8LOpjsgHt5Pum+fhpRqMrRGERpc98Q6+k28wmAQXM9N+sIfdgj44SV/z660dcLle1alJH0kWF8W1G3OQa11YTFbVWJ3HYTsDlesPL5SrlFHj5Jt/YijBaYEcu8jOAsa4btu3q8Q3ciu82jo33sV0+XBn1ZvQgKzVavuWlvKjlkRTrhwjn8wOmaRbQSK1MJ3X7sJzM4ffsfQ11Klw33UDgROdrxbYJACTykrRrXma3dpp03Jb5pJauG8wJrqykuGBjmoUmLrOA8fMy6ckAAtS/yu12FR6y6iZv2kCaVZ72m6s138xLpF7kNNnk31hrG67Xi9xcnZRts+rKa47SOgRRt/bxnQSleZ0eNQr/FkDTCKQ4qscRUGLfHfQb8O4eUDgCUFpH3F8XRkBNG6GXaY/DKJ97/fFa3PzsKF0LOA3SMjd7r/fa2spQ48+31Kkvw36HjP22fF6LN5o72UVCBpwiDRKvr65jECUZCFC+XxUSmNwgpVahb9fbDb/88ovze+PjsklZmjbXbdNb7zdNL3Lky8sLbrcb1usV18sLlmXBhw8fsCwLXl4+CH5yPuN8PuO2ihsfnvD9g01gRl1XrOpryT6JqBGqJaoMRkYFzarHQBj72+8gAL67nghL9tuxritQq/r/MWZkkzIcgPkzEoEjKwnOnMyUzetkEwUJhIIKQvvJ6qa5pfiEKypQ2eRl1l1AEqsnu51jUqsob79EVMUuCx1KIFn9jhCBqYqwr4W6sgnSthfZGVcBxYRI1DAVB6ljMhsHa0O+jh39wjeBIwhUAE9RDiOOJGSh/ltxaEHdI+d4gVS31rqmERRgYAk1YOWOlNLhj93TEWD15uCYiUvaOwBqmLuPUYfce99Q83E39B2kX8QCyCsIk8Uz0OmnDPUZ5TzyMKmVUXbua5EZ5GnYneBTKDOpRvbOjp2ZY9IkarianPuN05xu8skpqT2iRx4/5U0UT1iE+q/EmVS3jjViawj23OrWCTgNfaxiHblWPU7mxzEgR2oppgxRcWsnU4WKAuY2tGJVCaVJm9DHzY64BNi0+c2kwghNUTHz4cobrrerg18ZbAICKO8V7AwOGf22HetsNWsMuG6tGXXOM/eXKBJGO6np3xzyDU3tbU3xaWDTNE1et+xnBEBTV+bYMWvoFId1jh3f9uMvHIKMzxWo8ONrjnxcqzCwIUiSYVGyPGBqa7wD0tEyCtLtn4m0GIjLnNJzxDFJLMdxIIfRrVHyCkVy4ynx21dlERpRjBklmcCAEVQFspTaE8FvtbNNHRg4hDhiR1q5BpDr6sR1SXyun2siS6zriq3KzY7ns2yCXa5Xv8lRdlknLIu4Boi+ts6Sj0IJmJzSTWakwCBBHOlrf3ttEp32fuv5jPJUL7MqMKV9aHTA+5Qbqtnwdu6+5PZQZe3PrVnvBmRMU970sjYyGBMeHt5hmmYF1Ddwhe78MjYFw20KmFwUQJYQOgJQmdQ/V3SAgUQwWztnaPkYT8hGRMDpBDw8vJM5MvDbR2SSRvH6WD6xXtXf2sstya61cScRq9YUEY41pfPajovYBQplsmNyE06LWF6eH06YSlHfIFPw3irAWVUazrViJdlVtyOBokRJLaZ0S900zapYEUqtABNKMR+SBazglbQ9z1lSGVEmiMm5djW5zQub3yarw+hxmr/GA4OvkG9qO6HM+SGC9afJsWlGd/oJN9M8iwDfReCvlEFzVgf88EvzGvHgozLfWrfXwKajvL+RCvJNw1H/ZB149P4vFUI2AYLzHc+Lt4BJ94AnC/tNVDpMm9P0cuMIdMzv7G9kLUUUR24bGc3lcjj7bLpBeYltSjJMvw8+RFTkhvrzGafTSbAU3YACsJMbp2kCd5tKfd9ZadM04eHhAZOCVr4xRYTL5XLYfzl8F2AT14rr8zM+ffyIX375RUy3rjffxc1KgSOCbNf8Aefz2ZWY7OCVCqkSlEErYUhy65vuUKpA9unTJ7EuqhtQq5xPXCa0TCFulRDmNAFY9CyjWCstyyKOvQl+9t8Ulm3dXMgHRDA4nU5udmc7XGZ6Zz6g5kUcti52LawyVRP4CxHmkzD9eVk0jl+tA96qngUVJ+cu61QT7io2WlGpYKqqLCpgFpzPJXlVXGynThU3E3r0NquiZ/ddEFOlFESgBOKZsORCr6mnqmkQSjgGLSZgJQUIx8TCwgjRPiIu2ezxiCFmYjUCoL4rnuOKG/mxUn/VCVU5sAlKUCKalLvdabCc7g1VclJGSFqjlNl3Ofe3o3VxjExzdxYx30wFrX8/5G0cyTvUzvYadE6JghSjfee/zezV8pF526bLIF//LHY+zVooF+Yiqo1tVsRpEIdF4OdGuYMrgcLD1AOb0RUo01TLBfGHxLhc5Lhw0+aMBBwIAv18IYjFRP5t8YRGyjHguolCcbvJrXTrbdUdmYqtrli3DS96S2f4+6Dd2u13r3pwxy6LMJP6XH/m9ohan0/fVtsU6IEt40Vydv7YksT+DGzK5ZigsnYWLba73gLDULCSwWoRdr2twoe4ClAyVcyVMVXGWgU8mVZxAswzYNeeT3rs6eV6bYa76WWto1mz5Ti0W0d7AIEOft+LkzdVRuma9UDACLq5Vz6bIms0z9lTdELmkKUUnJYlBEsDUfRo/pb8R0Udw5ICSWk1i6BGMaaWhufdyW1bxVpk1WOf1XyRfcLLy8WfMVenByKjqJBsICKnTTFWGI0Z2OJaL9cVkMa4exbf2/ZWFovsiNfy8J3iof1RbawJsAsHDCzFlmqim1bTbGtulqN7y6zHqwjLLPLJNAuA8O7hMYEfsUEoeGK+OMD6yvxopvhgLLcrTtdb5GNxrK+NrlWzJJe6msPseZowzQWn5YzHpyeRa813lMuP5qeDfGd7ns233azWRgIabtuGT79+lLR+tCLA6dYPnY193n0Xf0wMRD/O0o+n0wnv3j1inme8f//kFpjzvHg+4lf1glo3Pz1gipBY4S0NXbWbo6dpcjndaN40GehnY/CCS73qGJuvKLvgRvp9d8wY7A5up0lOAszThNO7s+sZ2iEuF5ly3FvvW59aW0x+z6HnRSKHkcvwXhxCwfxLK/xfE47k5pEC/9cOX1LuSE7Ic+410MI+Zf1bpM+uxl8tHOk+wH3Q5luAg31ZpmEc1avv375uozz7OG+pd/Z12azVtNb7euTnGZ/owaZct7wxmDEIB6p0A3aeJ0xqVOKbUyaWzjMMmHa6pHTv97//CfOy4On9e5wf3uFPf/oT/uEf/qGREQ2LMJzifD7jhx9+EOulH37A6XTCTz/9hKenJ/zw4QN++uknlb/Favr540fcrlf8+uuv+PjxI8o04e/+7u+cnx+F7wJsAuBnC7PD1qwIADEZ7fiYPbMdCdZ8HGxC0SsJI24S6aTchqmqWVtlsW4q026yWVpTEgRwEQAqKw/TNGGrWzNJzceHgWQ2UawNo8lpOzIuCLJIVo5oGuBS8k1FusBMWAKDzV/Ljnj2i1iubZRPSg6341OylF0m0VVFuGOXzGtz5CF2qQ0cIlTdBi2k0JICSwD5ASN5wVG8ZK3xStSLvi1zy8TkKN8GYDosm5PS3+7UUlPnDJ70hJG7918TxkcHvQ02P7oUPuE61fItPX4vjqt8OxSC7v/untm0ALJ9Qq4Eh8PPpGyO49CgvLAOAWw+pzhZufI+4tS23G99P2b1Nj3TCe9PU3G5druu0vrR6BmFQmx0RD6DnsqOrjlLNbBpUz1zU6Zz890Sq7vRGTsjZIwQiE9066QQuQUIaSONOlt6uwFIdsftCIZaPNXN/wIIij7pBd97YJPR7uv16hsTvVA5EjpHVlMwxSdbuFJsePTKlF3qQETu28TABrtNNfO2bPJsl2Fcbzd1bFx9Ldu8oTSv2HpZ6S6bn75JLpXwzQHXehA0HqHcZzqxV6/ESXJn04e8QlLH7p8Nft+L4yyB2tUXgeJZkNxdXmadNCy/p8+5X9N6I6ADDNUxca2AWvqGfzZEhZN8YfzbQUokGSTNjVwqcXWhoJS4EbHU6vOmlMmPLgnYJH6dNj3Gv1VRnO27DLTchWm+mmo6Tmg3MJmSxfYbaNa60Rz/pT+qLdY8B9L3UEREDrHND4kYs0tJWUNn7DYoXtnlk+p+liSbQmJRTgVgFMwnuSGtqTGrhZkDMKIQiM9Q84cVPuEYWs90CQszYytKwzYA1XxShd+nUmTtl2kSH2rzhEVdPRAI66ZA+7Spn0856ifzRWS+edYNyWkRUGgSOlS3Cn6ndENBSDmiZ9ZGa1J0wnp/qxXYqsu3vt4T2FNrtDH+bBjblWie+sbKO/lGQbbe9LQd/c0Afpa58+8cslIHRpPGnOefz+e04WsTqy/Xpqw9H+gPA+q1V3hbiwnj9t9QjPV2f3VwGeaVaHdl4Vau/pbhCKB4LYzqwbu5HDLMvY1nj3sox39ZuNcWlxzvNHe0aX6kt/TyWg84jUC2o7r2fWXqxb3wWr3+WuHeWAOvz3PL46g/+vmV8xOKkvmPbGqIkCF5yE2cYX0vvE2ei3ugM3763U/48OOPvlG5risulwtqrX7UPoNNP/74I5ZlwfsPckTu97//A57ev8fvfvwBf/jDH8A1/FR//OVn3K5XnNSC6unp6U1r+rsBmwC4sAwi74jHx8fuKBqrk1ZyM96HhwcAhI+fnnFV9K3W6lc65yMIYmLcWkllgIuZMRXCNC1YTgseHx+kbj5xhJmc9bwi84bbesXtdnVzsvP5rM7BKy46CAak3VRRCoYoO1J5gecjDlE31h3qKgLJFEy1zLOY+rPcKsfmMNQ80ZPupJSCQkCZkvd4qnIkgkgsuoiAsoGogKcJmPXmJzVNEh3YHIUilBp3iVB1AAAgAElEQVSIaR8AseggA5I6qyU18RahjDHR9P+x9y6/sjXZndBvxd6Z59zXV/5sNbbb1RICtwWNeEnIk6b/BsQMBjAA0QxAqCVG9Aip1TNoxAjJiAkSCCHBAKGWEAyReAgQMtW0m7csu41dWK6q77v3nMzcOxaD9YzYsTPz3HOr6kMiqu6XJ3fGjueK9fjFihVqYKU8BiSpY1ZJnk1cBCowjzXXadAu6JEnU5/u8Vrq844+h2XriPTgjdaAxlyge5jx64VXGCn7xbsySJSOoaUYRh368ToxQJC7tmW02kDulP9snww6QekK0E2jfGCTebzJo8+JxAIH4H79RpxU03u5ET3IZd97szc/4+5ZX5ftiSOtMX0vVeWl9MZzMoBVxZP1jzZA4Wo3tCnP4Cq77muK+9MHGRbvicWBKsCCJyOMTzNeEEZMskJU4Vewx9rIXZs5v2c8OMqT6toLHPrUC/y8e2XGhgFAgAjli164MDraZuXklIEB+3c4HvVGN4kfU6aC4+Hon2LkTMmjKQJ+51F4en7Gx4/ilXA+i1fAp6cnLBfZqZJbUs3IsbbC+yXlihH98PgGZSI8lgmV5aiXKCgPePNW4jA9Pjz6MRlyo9koz3heaWhQV28Dmti2DgjiiQgEIGR5sjJLg/knNAFQ9/L4TXPpefAOuvksJLvctuV8oOuHiTK7Fa7JQ+3KPl/kinSLR1TXKkdE0bnXWyOIUvDr5DE8GOONvGEgPHFs7aU5owlv33/AhzL5xSpcGReNKXk+n7EuK07nE84noanL0xPWteLp+YR1WbEsZ9R1AdUqR+kcOoCvae7a0qzZBEIZ8HVAd+TU+40wwG2uiNL4qlGuu1ir8RkO4KNaYCxtoxzhLZgmCeZfyuSXyUxFbuj55V/+Fbx99xBgn/JMbxdZ/1RXdc8dA5tWnV9px6rHxtZacXoWvfR0esblcsayrlgWuWxA4kwRJuMLB+ELh4cHHB/eSKUWI65eADavNeu3xM5c1SN7nRnTVDEVEi+pacLXX/8SSik6jysulwWXy6JeRif1ihSgUWKNrliXFRc9wowiXnqn0xnrUkHl5Hxm/vYjpjLh8c2Dejs9Kl8THi/AuAHkGhNrXVFXO5ongJnHvtJ/1j5p41l1JOWvhwPmecabN2/w+PgGtmGQ9bG4PZRQdNP5cJDfHx6kjYfDLLbG8YA376SctZGFsVZlriOmybIseH56wtOnJ4/ZCgCHeerkcXCZXT0y8aGftXF9MzXMUx8NAImcbnnPfAnAabQBtJdu1dd7rgToysN8+23Cl1DVnXNdK4rRysdxe3gDvPa/732OQJ9+XvfoIOfNY2u8VdrE8Cs1btBTTrbG9zYA7fNe2hiBavmzH5MMEvUbmrmcvLlp+cypJDvWZN0Syau0kHiAPj09ARQen3KcbcJ6WXA+nZRnr3h4fMD3v/9r+Prrr/EP/IN/P/7uv+vX/Yi+3Hovm0pPz89xykHpw/Rfu1HxcDhimma8ffsWX331XjYozHv+csFaVzx9esLz6Rl//Cc/Qpnkwodr6bsFNkEnG5Cr/xJI5PGLXBsJop3n2RW/PJETJkzdkSiLJdK7u2XGYjtNs9Zv5bJzErkB5fHxEbWu6gYtxDBN7Q6L962ry3cek1tu9m7KPE2E3AKqhKUUTFwBngA97lGyISdaD6q2eVGBTlNBYXHjdqNG/7F+rwqCSGxPO1+qO05sCnp4NHGNo2MEimuuSc1tUgCAACYDWHThqjFNhZMRYnmqFYKwUrQc5kY59XgXpqTo4I2MzJz2mNGIifXMx54FTVGTt6HoK3X4RHvZ8PH5kmlH79nk4mRkGeCU2+8GpTVT/77K0wd5NiBIMjjs194wbF/eaD5wsMg87DaJtY/Rdm5+Qzy0flN37M2999q37PcmrxeXG0Pd5+hZ+2kl90O8x9b3lBQxzEmCn9eIHZO9ZNaqAQNr3GzFtTZgk/Ei2VVnF46+ZtTI3LgTK18C0KyhqeORTZtVFiS2sttnkwd97Lue4GO9tnyXinidLHq8bEqCuDcMRt5M21hLBz3OPGE6zHIk/PiAMhWPwWQ76tnA6vt/1osoLssFp/MZy7L4ce8Am2I8/YZVa3tluTVUY8aUUiTYM5PH9js+POCou/r2vgdfBtmUJmCTAD1C3Yw2JdDAxr7dawAoAwqlIdbcfZs18j/28jCgVxDnF5s1oA3NbXX4VnmH6B5J6YUpyZwKpcQ3Yp1mnURfdq8Xg0JtI02On1dfJ/4eyfFdGUKtk0J+UGpzO0JtahVnzUfAPB9wPB4bI2pe9IavMgnozBKjaNUNKgY0gLMAI+uyoIAxBYy1XZMNfwzA3I4CBJ9Ihhwl2dKthRhb1R44j755VivfN93C5zGCmFdiABW1EtZCKGVFSWDHPCsAq4HF7XkpBgZbByPIK7PxQwUieNUey8isdcV5OSvgIcfZKuvxVSqwY99SX3gXTtMcXo+m45leWAhUkyc/wz3lQarr1QrxniMFYWY8PjxinidcLjPWumCa5N+yXAAyLzPZCAWAtQo9lipHF4tqh5UF1LLwC2VZcbnI5unKi8RwOi96JFCOCNYqAcGZWcAuFuCV9fSC6M0Y6szuuXmWIxoGKB30mGopAdjnG8V649XKNd38eDymnX3ZGHjz+AYg+DETA5usDKGlMCBFbi5687R8CgD34B67viwGOuI14CItjZ9zUs7PWy0ky51b+vJPrXUDXT2n4Ubwzrj3oMPPHfQzHXz397Gud73IfZlxD+BzD9CUfw9aaN/JduO1+nfB2Q7kGQNbt0dmbzxGoFr/71Y9o996IHOj87qmpTFJ6yo8GjrP0wSAJbYys16ks+J8vujGZsHx4Yivv/4F/Oqv/goeHh/x9v17APCTVU/PJ+ercfRX+NnT6aQnGETReXyUjUgwYz0eG+/5N2/e4nK54MOHD3667Jr5+p0Bm2gSt+GHhweP9fPw8OAuWnarih0dMHUnK/gPDw+gUnx3WnaJDq7YT9MEi2NkwI4JOxvwdV3xMM84zBOORwOUZCdD6j+poQX1uKpYq+4GXi64XBZva0YvtZcyKZyNni0BujpLgeBaGSLQYld+miYc1lWuoq6yg+cAj5ZEpWCiAxgSM8qYGBHpLnPaqVYBToXAtWKqM7gUYFYVKl2968a7GtXkyq2rmA4IhYpuAS9UFS0TKq1hkZB4MpEaKqKDFqWJbR4/okexC8ndAt8HgzDMdw1AGuUZKQ9EcrRhr7Zb737JFFObdso7wMTMgmuMv8+7BV0GFd/IQyiwPfLcazc0Rx3ZFGLHvoL2mrKyUQczk3I+6vLIL9EuM7wD2Bj1qwEQvV4zHLuXt5b6wH60dopW4bHJUv+6rqU52j6zdUtlAlUBg/2eZltfxln1+A+KHONhZolnZTv6entlHjhZe/p+KX77l/M59TawK87jdetj0JV9J/sfkbIp4/dx7WsphOkwK6/MO9ERbFyMwlbAr7UqsC6GJwAHApgVxF8rympuzEEvMs1hGIsRBDEYiVCJMFe5vW1aVvUqkM/zSRWDkjw2wWo4aqB0lQVPT0/49ttvxXDVnaXzSXaWCEVvXgpPJJFxQSnMENAQF+DpSfi3jh8YwExYlhWn8yLAXxUvWAOOpqKXTVQWbk7UGFJGZ046evTZvX/sTDT3efQ9TnKqo1m+loehGw2qA0zmVRsFEMNlYSwEHWckHuj0JuvAGufKcOYmHN/zGFP8LH+Teqr5RSMQDxZmV+SQ+QXZTWv5WKk3GW5Z+GscS8/an1uV+AiR3JB2WcQjnOzcOhNABYfDUW++nfHw8IhlXfHu/QfRd84aHL8uEqNouaAul2ZUtvKKfUztMhKPc6T/pnnSmx9lY895k/3zOH0dqMnRbzbWqsEsfEg55pRt/NkoRwnD+g9AQJqCt2/fIUsOTsfdWuPfjtZp+1TuyD0OjMPxAcfjgxzvXResteLtWw3cfnqPZblgWVZcLivsRk3AgK7iN57Z7rKPaZ1BmLDOEqtuXR8asKmkm+8KTbAb86ZpwnlZsKx6o6eBh6vyP8gm7FRUPyZgqhOmUjFPttMuOveH91+BmcAswBkYenRZ4mMVsthTk3ps6cUEs8zFskoA9kUvAjIPz6LBwM0zM2iYdFxEBlmew+GIw2HG8figt0pTB1QJL40YrqxjPCECfM86PkWPpagXop2wUJ3bQDCRZezegLVW3zAA4BvTW//xrfYzUvFa47PXYr5LKWkUP0egadiyO0GG0Xv2eavdV+v4Dk7ZHnhy652fdjJ19xqt5LG+BdKOnAFGG5j9ePQAUn4v2+Xu8bgDhoUe2Nbdf8/xmTe0xCIzmSRmZgHjqHGjj0fhq8fDAYd5Aj8cQQSczxfdDLrgd3/3d/HDH/4Q3377Eb/927+NX//1P4t/5Dd/Ew8PD3h881bjYAvvPJ0vOF/OcN2dGeVwEH6tF/UcDjOoTACLt2wlwrKuDUglurnolRI3cZy+G2CTNnY+HHA8yq7vVCQ4+Js34tp60R3e5+dnnE4SnNY3dChd7TdNfgyCStFrVCd1QZsa+8gmPJ/TnucZj4cDjgdxsZUjcYuCTavuYlxU4AmAU2vEzjC0UFye9Rrv5K1UqICmdrFYME4Tiq2iKHkzwVvbs/vbWgpkw8yC+0qFVERYT2UCo6CuCWwqpoDVRhzWadWdfimI1XCUtthV35PHEvF+dNOqEQWSItzPO/TmO41tlYEk/W6BFM3QsauEqyl51k/KsbtoKM3v2VG6BwTqPRGGeWBwBTZ5rrVnr42vAaAcDmA7thBrwA0my9uDTTfKvFrnjr7E3V9hC+ZxaOvYYDNoDTLzOGpNLv2bUgat0IOGex4K6wWAgFZxU47YK/26DYArfm+skrbNlpXQ5EGXB6B0LTqZ5dQMZz8Wo/nYjpcZsha/hWO92D9DdKlAnH0EZADraBCB7HrTZrCD7tk8acyug4J5ehrTjpfWqseLkvEcf7P1XgEZOWpC6m0gQWDFcJ5mOUpNemTDFAQxNuL6d8YSO9Zc1ZYw6bi265orqk3UOla+LG8+jjdNqkhQEUNOAaZSit6+RDhPl8Ywyscara3Wj/P57Gft8+UXAHSzoehxkIO3BYgjJEtdsdaKlRcs9VmMysMhGaQQ79dlERnCOt5ypgtzYdQyoUwAaywglNabJ4MtEXBvS4x9HqM6o+2r9D3Ko19KuvnQuRYHrbHenCo/kUQhSnqAgefSnvaIoHkbeRtSAwOA4AD4dAnlWGQsg4qit7iS3VTgL9h76cgWfHgVQJHFxO4dqO028GXPONCqqsZlKoUwzRMKFTfi54O0dT48RNwe9dqxfkrvKtbzCZfnT7C12W/MxHy1inzeyWVmPwKVPQeNdnPMq77M7a5ywTQdXAeITquCb7e/mTOZ3l7JHEG7GdbXYNo2NVzDu1KKl1igDYWS6CJF5/Lh+Ii3796BwViqjPtix8gW0R/XtfqztV4cWAFDwUDGPEmg70xHVGblmdXnKJ/2ljnRDUG7lIUE6AZWpYMVHqpBr82T9yaUooZYqZgmBH1B1v7DwyOmafaj1HaEw/k12e3KsXnBDNRJQUaNPWXGzeSxlgJsCtYoIJjE42sBOTlGN+Hx8QHv339Q3qeDYGCwegaY/BH+XPQ0gRmFIWvkCGbENDNqEgBthnlo1CrxTtZ11WDzk9O0jcFt0KLV+WrK+10HnEbd6j1KflZA0zXPlC9VXv/bVfsBt3Xjn0faA1Ku5ftppJY2aGMf3qr/1ryOwM9Rub0cuQY0mexyPbIrK+uNJruyrNqLH5dlIpmBo7LcLuogYhx1I/V4EL33MAtAbxeTEYCnJ8K6LPjbf/v3wQz83u/9Ho7HI/7Rv/AX8Ou/8Rv48OEDHh7fgCYBrZhFDVv9kgmJFXrQ4TUcI+QzC+ikfHvVS0l0AEDimvr/AbBJt0ck1pAq1OoS/Pz87GCTH/fQjkqoBlHIiwZWzV5KsuM5qaJv8UdaMMdbkAirznEDhg26/AuD4HK5SIwmYgASoFbq7BaE4yGEQgVcLJ5A1GtAk+3GZ+HoBEuyKGN3voKr7B+vUwGXyXeoPDj3JAYFVHCKrqRR90txI9N3am3cwCCuYLLb9gALCA5tk3g+sRv6xAH+WPQcMiOT3GSXPAy49xO5RRoxvwdgkxkTpHdL2/9g+YjArDuc5L2NafCvrTKfJ0nt/GSU5/zpE3CgTphM/O79NithR/Bd85C69vdrktCg1tUZWpY4ATB5oTR5gO6tXEmbb5iN8h+NqAkacj2Lg47Su9TkQQBOZvT56yo4CKlsoz1q8sDBojzelB5ljy6xPsQjIizQbfBxaixoDy7eW9V738EAF4DY5+xzk9GaexdMM+a5ohRWT88IDhv8COm7Ct3LGcvlrG3TSFnK0ySPAkjV+JqdD7fJMm8D2zw2Kdt0HKSg1aSGQZkUPFewSQwbgErB8XhQ3tTfpKQgTWUsqwI5a40boZInVP4MagkK7fMY/ylEjWeReSutqwBYdmw64ioZf4rxjaDNKywGU1ZE7PiHjIsFBD64sSO76sqDGC4np3VBuSyoTFhNkVEAQe7BkEDPckMZMBGDidXrSrzginoAWPBwKpN4uxGUf5MAKIDfFmrj56OZ15+RAdsaDrjHynEPueSRwjTIo7JM5CO8HEtsa9JJrJP/nN6j7B3BLtdkvdqcJxp1YzryhATVTwe54xmRwVM2Zvo6COZlbCzfABFtUnSDCHbjWtMkasc/CX6AavKCK+lmUnbgymMeaZ2FinuoEAFTkVvcrJeEsXxinWDjtayTbd8JdpsvOR/OcZlg7/TlxTTKGDKDV41LaWNIAv3EuLQe2IAFag8aAKUj1jYmjNQeGXx5xY5sJj6QXj2fL2B8AoNRYfxI2l8rQzy1gWnSYO7GJ6uJIrsRMItg8TSdisyJjKPpZkED0l3tvwZEBwO8amFE6gEu3odkR4jBmDy2tepkjTeYzLMcBZ7k+EaNm+18jBBgk2sKbJsK7LH+6pu3YOWPpBuI03TQT6Hrda1+EcTlYhdSyLqZZ71Fbj7ImJLJN6NH0rYYEZDKi1gzTaB37aN5NjFX4evJkJTyhH5so9eAfuMbbF6ACTDiRFi7wOzA4KWsJ7wyvQpEUD53Tzm3vFQsz5dKo/qugd8vAcL2gItRPq/nrpLvTzfHm++rs+/LZlP5hfRx73sBPopsarPfnrdrz638Hlxs5iOtq/7v/Ll/Odf+kTerK4NM9mzUrr78bWH+q+u2nOzq5XIBSHRYi7tsnsHv37/DWiueT2c9VnfC09MTfv/3fx8/+MEP8NVXX+FP/9r38fj4iMfHN5jnAy7rgsuyiI49zWAW8KnWiqdPTzidY5Ozrgsuz89Y1wUfP36SuH4aZuMP/uD/xroswA1a+G6ATQzAdmKXRYSs3j5kk2lg09PTU+PZFDvKEx7fvsPhcGw8fiz2hJW9XAQ0yrvRRhB+/G2ewPOsgQnjXbuy9XK5OEGVApQJDmbFjk4rJ2S3O3aJgpCDmFvUlNzdTgALqHEmwRVdQaurKA6lYF1MeIvCejgcMJlywWJUsC8qUXrYFFiOHfNSxQW6gsBUwFzg2qYKbmYZW1P+xGYwTxBV8TmQazbFjM1TSRQaZqkHBM9jR+SokOreRXaKVU8EIAaoGzyqYJLAqvd4LqUHrTxXULDBCweAkM3z+DdVZgYMapR37/38zrUgf/cmou0RwyHiv/Ou5/GH2D67kjZ5uIe6JFdBUvzJjBpKOcNUy4DTXn35s89qRkgkSg/ZH406yDs/uuHclx12Z/sMozxRrnsJWeyyz0jt7otUZCBTFqxbod2C4YAGDK+L/iZeIqvfZLSCbed8ZTVGFlXizQvDlPmiOyrQ03xmCBWP9yHHOzQmx2ztVxDdbpdC0Gdl82SoYTxXiZxjQH32HlrtKvBu96qZz05ZCfAtxskCnReVKesqAXbz+20ZrSIT8bDW5nfz7s23LR310ovj8eiu1R7gUft1Op1EVi0SDPi8LPj4JAZbUZ5fGVjNEF1WFGL3dio0C4gzzZjmg14wYcqNeS4YlEPw82NugAfNJnjB17PTgx5dsfhEYbiHpU/+XejPwSY3goUjODdJy8TkW4w/tnmC4AGjR8vgcaVcyiEAZSOAAgM/bPVXb2OuSgjdvZccoLOcjjq5F6B43URdbL+z1gszgM3QtrVux91Vppbqnk0RJ1LACgMA1iprxPgyEYHUC2qe5XjXRI84TAQb8VtpJF/AjGVd8fT0tF1reT6SLNoYN6y8nwnMi7LMUPyNx9mYBKNV/YVIFwI3Fw5EK0TRbwipa2noeezFExhPn57wzTcfZSonqa/o8dbJAPNJ4nsK0DzDAGc/9lsX0Y00LiZpR4rrrAak6JFYxyVsrdkmmPCU06dnARAVMJ4KYfKI+9ZH1WmKlS8nDBzoJ8I8Cb8Rr6rqV3VzWiOFJsSqlT5ZzKa6Soy54zxjnmZUXrGqp6zg/oR5LigTQS7qIFSW43/MjHUxOSVjfjkvOJ3O6vEq9OweggoMERFIgTm7nXpdqnplLbgsZ5E/hQCKY9cGhlLzL2JGGX+ua3UvgFpXPD9VMBvvx4vSnlH7c01KUhlAe1VxV4zw16Zb5V4b25HevffeVYDjleMT5eyqtp7hZh7s8ODB5832OHD0Oe9BAadxHiv3JYBTtlnzu7fy9l62e222d3qP8tymHmy6Zaf1tuG2ftP5Q66DBAt4fn7WWKoS+/HxzRu8efsOh8MBv/S9r1Ar48c/+Qan0wl/+Id/hD/5kx/hBz/4G6hM+Prrr/H3/L1/Dh8+fIVf/uVfwfv370F+Y/KEaRZ+9nSS+HN//Md/jG+//RbPz0/49OkjzqcTvvnxj3G5nPHtt98KBqLK1P/yt/4WlvPZjx3vpe8G2AQ44GG7ICZkLUZRvjHO0h6i3Ex6aV3aqhLNrucIM5bLgmdmuc2uTo0rXY9i9vUaius7eIkgm/4m4+1asgCXfnOPHgMxLSqAKgbRqoJWmYLGSxCDsMqGnAnQrGOMZoNJdYdRIFArM8AmMTjiAnpnuRvNnhrjQpTPtEsOhIcKk8W5TGXpd9+NJG9vjt80TITYgUfk7eeQbVNOszKrRxBRGFfNeZGW5Y+QdK0+dm+1jUUBoMzE+/aXUtytMpeVh2T0bDMKJLFkMsPr0whsGu4GUadI9XM0Sps8fSFhRwFoTr713+3P5oYq7zAPBoHjMaVGcJMpvZMJAIgtJFOiozG5BxwF9I3q2nMlUSgsYpiG4UCDObsrkd3IFMFumW1Mgk7DMyDa6vRswMA0gXlSY1DApprBJo2VxKvuHJuwtvp0Cz+AC1VCSK8jRwEVBNikLr4Wk4Q0pp8YfDpPNuTJa8rG0Ix1a7/LEjUSpI01roHXYx79XNl4mVeUjJuaduaBqUC/3fjVKGa6tgz8akGnpHykNWhxSbJ301EDj9uNTAZEAVaveilNM+ZlxTyvmNcVoBkMuSlP3LHjfYshdZgPKBR1zBqs2EAdMmJC0PpQ4RXrc7s2mNFsx3a01tTg/0l5RKgmWpWCzEGObZEnsKfhNyoDshiwDRHfduCQQW0aLF6i1KZgRDYmGezi3Ilu0Fqe78TcPUtMzefClOweWKG2LGsDx6cBUf3Gl8l3IgE7UBKdQoBlaV7oYjsq+5YP5/qLxDdrWHHHp33txuS3NNWJEAM+zNsl97n/22nNmA84lU1pLHMP8zs2ifbMsigPzUPv800wTyorR8oS8Dbe6V/WzjbTSW2WjmYdpGTANseKzTkodcncUhW8NDCLzAMubrkcbdb1MjyDElm25Hn0N9ibGHPN8Ph+0X0bL+mogG/ctk3/Z2MhPLr6uiai7WxS8OwyxTwa2DRlXZ+3HrP9v5o2C66nlgH0ua8Z5j/blCboRnqJ19CXTC8Bia6Vsee5sgeCjDaSv3NAoaY9wGnv2Z6NcOu9Po3s3jbDts5rabRxZ+/2YNje+/1m31479+Y3g1px628c/c5jt0c3Q1obtNHsb5Pz/s+kpYeEEBygEGEqk1588IB1FeBoWRZ8/Yt/iI8fP2JZFrx9+y4u1ypyFL0y43SSm1J/9KMf4ePHjxrG4QmXyxkfv/kGy7Lg6dMncQTSLnz69Okuuv/OgE0AdBdcd2JPZwlsqGCTpRyvokxxC4Xt0NvRBb+hThX/CNq9uGeTEUicx5az0z/+yY9xfn7GPE94eHyABVmMuh48OLcgkEIY9iwHELT3grCDkOxaVksGkPl5eusPgEmF+rrILVEUmr/2Oc6nT9MkilxZsK5ihHicKTqKMqEiONSsMKYKARa2YwJQwLDoTK4UsLqGk4sjD27qu8Dqhh3mQPSVWLyduLIrr+apwNAjgQVA0XIpQDLJq7ETCC6VmVIMqaR8+C45kHrN2zww5WNqxpcAVNKQt+aBod8tmK6bRD2tduCNKzzKNCoSo8sKaLwgrtlfwLPJXML7tBEoqa35Mzqh/2mEOoBt0V09bR5ZB2unyNiuvL2QjAEHZ8XjLucpVNp2ZtvM/miejfLtJLcrKLTAHpS7p5wXJ6HNafJDIa8oKQwOZrudiVFLFvaWh3xtBL8C7HhcmYAgR7tjXcbEjo04U0A6qua2qfwoaygdGyKA7HIA3bnOhgazgjSV9Wp3hseby7RCGtOO4riD7M5r31jerWvFsi5+xC6Db5MHuNVjR4h2OMCvQh7crSGyOEJaV7OjBh9To+tSQllxb1s9Gma3znnfkA3USP1u43v7robsWitOywUAYT4cNeZVOn7GOd4KOQhldG4yFLCgyWjoPUCedo7b7+2BfrsZz37t2Uf/rDX322fiPde/bfmDkYtcmaIkhiu8zHKcMOpI8SRs2YfpGvy6UFsP2h1X+cxto6t/xzFD9cAxfssZjEit3OPTqV7z4hAdw65mZ//Nrka+XBbXVQRsstiWE6Y6idfiGjdRwhRjLa6Fa4J3NzyFgCEJ0D0AACAASURBVKkUHI6PInv1KG4AtAnMNfDJAEprtyNJOktOaqJPkNFaCNIGaEiPQTSJjF91Y889hWLTktI8KFeMOU1rjwHMBZgOHDrVIAWYYOC5bRha8NgwbloaqWC9CbJWA7Rs87RdIbnu+XDwUjI+ZHwMDP/cNhawjUWP/ZQ2YDM/7N+XMQnvMdOJLueLOO8xwy7csXZbTLFcxlpXnXbNo4G+C004HExv07ht1UJgXJxn2XjO86xHsVWfn2dMswBqh+Osy0xPKWiLwjBdcTqdsa5yI+jpdMKnj5/wSQ245+dnAIxZ25ZBtv35Hwy30RPamf//U5tGchC4tuZG85D1/tLkuRfAaBwXpNA7e/DzSd8FQCzGHfp5TYbx7qf9C0ePFgzqgSWzqfeOxu0BlZnWsq5m2MOUPNqzQ8y9wBfQqk/ruqCuixzlVf3icDzgwAIKscoprisuZ/YbZAHC8XDAn/o7/hS+/qVfxMePn/A7v/M7eHx8xB/+8I9wPD6ILCgTnp6f8fT8rPqr8PdVN10vy4JlXeWitIN43tZ1QTKlXTf8f374Rxuvr1H6ToFN5nWUPZiym5olMrAko4hAQ3jwpyF43ZhIDGbEsExwHI4HlCnArGhHMgp6rbtLffm5ndauPZFiC8Ti7Djhss24GYOmgNiCKx6byRdZTUaZaYagtkxuKocb9/63KZPUKpiqmLkngcU0YIZ4IOm85H46asSpP+op4Mo/dBO8wg5SSVarK111BAqjVh8FpCbKaqNuUpRlCrDtblNVQ8K0DdFgpJ+VJKYJAwIEsRsbEQtC58XmwLoMfUfpgpV+KFyymjyuFZbiVx/3Btc1A6ynqkpbN8+hAN48GaSssbpxdOud9ArtvUSu6BlniyxCjwaY5GcRpyuxbDX2bY1y2hmmXPXo4Dv1eeDKLiu92u/xjARETWVEumNwuu/UjJUCmp+rJ1ArSC0GXFGwydZA6cCm1gPHhK3tAjOA0gx5sdXKRtdqMNr4s3VC1qyBtrbW7LZQW6Nh6LDefiTlVyvTirPjW4KY+WZCmSZMswSVneepGYNaK6Z19s/Miyf19KFudxuAx7XJ18Ca15a0QYzpQgrW+FGTOCZtbMJkStyMNDUbIafTCU9PzxjRT6NIdfzbDVntQ2XGtB4BGNgU85w9sEyGWDvyMcSm7uukdleyudp7Z7sixnkyj92paFAQbf82rziMDT2TIKyv5FcHrWqUyPwZL+fcUXbDd2BeV4N+XEl5Ptu6TfxvFW0joVYNMFC1gEocK4CgE95PL7MbBZvjZpMFAKjgYBGsa36hglHApCBubgvlkrvkg9bqWlFAmgunubacZtNH25nbn2smkOLr0cKmdn1/a9AoL++MI5Mj8k9vArXxSTUb38if1vfob2vsEMkNko1RTPE7FLgnjQ04aqt10DYeagKPMujUp41BZX+7Z2j7HhGBVvKQCvZObw+08igBglDPUzZPvZa31VpRUPQSixjvMhX34GTtJ5T3AVC6l83qNo7rEiE6lkV4/2Qy7P7kfAWhT+yV8BKw4BZQcl/LMNaRXll/z6O+VLq3z1v+x8PnVubntOOeen/eqQdpgP25+dy2u1mE4AGmx98a2735HIFFfRsz/8mAU8+Xxm3e/63xMursqh4Eu7fMNh/glq/a9oUmcXZwOWsygd0BpWjIiePxgAOOeHp6xvPpGWsVb6V5Psit0gx8enrCx0+fGlN/1XpXjcf8cDzgzeOD1iaxnw2oh9rjl8slS9fd9J0Bm5gZz09P+OabbzDP4gJmk9js+OrkLevaHLGTXY2iglAVIoruu5tZKTgcih9ByPX7DT4qOOZZYmHEbXbFTqGFMl5XXJbncKOtKw6HGW/fvsXz85MHNrRjG9whqlYvkBRDFaLmicV6xp8KMB8mTBM1gqlWudIYesaTWcasrguWM4E0NoAtiKlMwNIq+kJrZtQKarpczrDYKuuyqO5h3kv6vmhkqkyK4bnWBRVVYrasDEZVIEh3lBDBfuf54FfGNvE+rGHeKraJcsXWn1Juv34SImYUGTgQ4FPSCmHKv8XUqry45sjEKIgrys0WnpC8n9TbqSRPKwbAaxx5NJzDvMpsx7rAjujpmOp3QijXTOReWzbvHtrVuxPGio2JRu1wGq/Mm8sCksmebBnyKQZIvbesFqlTLniSm40IRejbYtlon82jxOuqaRdC13PdKDHd8UTrTOodNwo1e99iR5p9LLOqTokfwIWd0cyYUWZRYe+TT447s6JhNlqegdveyu73GNEQxBnoMeeejQV4Je0KbobfZBV9o1R/NqiiL/Y3QW7xEtCHwXpZwmrXX69mHMr/7IawwBPyWX8x6qu9Z50kijbFskSidthYh7A1zyjyHABjqSKUsS44X+IGz36MegXTdpHqysAqu/gvURiKCnJeGHqNXdBA/x5LT9ZasawXnYOlMXLlMorFeztKDW25DNEVU1kWayl4eHhUnl3cqAJ0PfvIieYh/Q8TiJlBU0GuKqeed2DzNfOXaPcNmOi+5Lxz78f9r03SGC/XismtdTu/6wNzHs/b9XL6JKAxNHvAau99woC+rDEGvh6PSVanrqmH24HE08PrTXl97ZQJ5RB6g8uIvfnnRFkcn5UIzxfxtMsbXgxT1q1vIXv6UbATtH4ZR9+v9AblpwM6BBDxDHXtOdtNYsgkkX3JY2n1LesiHkD+O8UxWwvOrjzedBkGo0x2MY1tIHLwbAfp8njnjpjFkNvcyR+Mlol5dJiHfjunttGRwc/83ANjM5A9sqxWA27cK7Yo4F5XQL3nsgcCEBcr9EajtL8F6RqbQL2Y+hgrvddEawwm2afNlthZK9Zlwaq2gFy4sOB0El3/6enJQScAfkkDAZh14yBviPXG+4gdFCp+OYONqR8HvgHY/FRT0k0+B+jqP1/y/q3ntwCDUXv2vn+JsRRQIDlGIOlwLykHcCeDa5nu2Xzs+zUa19HY9Gl0E9te3m3dwtfyQPimLY3jX12bf6Onaze95VvkMtB0re0jwHEEShrG0MdqstjS9jzzoJr4XcY1fOOP2cO1WKvsSLO8xy6bsl3EqV1c9WIvdfJ49+4dvv9r35c+GE/SNjw8PKi8V9tdGgoQsKyi5x8PBzw+HkVG2cUHasdNKsuePn57Va2y9J0Bm8DsN7wVKpgeHhthkidFJi5AGgOR5nXFqlelLssC21MHwvVNrvwN9zd7vyfSqp5Atssc7nJx7EFuuWOcL/lduVb8cDjgslwaAefGeEfI/a6NDgf8ZqdKwCTvTFMBl45ps/XUjAFZ1AZWFS5YwL6DztOAqRABGvxQsALGusbYWgwHP85mx8f8GJmrTnrr0ypBGP3mQDniN2tw2WnW3aQyYVL350Y1ZMBu98lmZChUdiRFH2vtEQA7KUkURQYghCaf5+G4OcWeyYE9DRpeoIpoDZCoWO+LL1YGBGziuOfbFDTLY4AIAx6A3ZRTcwKRJoq/SGAA5E039l0QyqjlaVl70FumHfeX6hh888m5/akOIhTWQMFc3dPDmCpPE3LKdTvIATQSswnKujHt5NOMlj6PKY8gKz8HTrWma/lk9kk2gpLQ2xHi1P1B2y+eoWaPkCDkxpgETGlu178ZMcQAlv32WN5U3MAQiXp7pb3/29va9GSrlDEbSKKBrZc1DBwSxdmDyxbavAtIMOLFvCS0yYTYgXdcO99OmSbAxt6AGS/fJjfx9X68euXGn4XkDkOQeTP8NHiXyGLI6ZGUyrlrw2R1jCaYWS+E2IlT2H4Pus3Am9F2gQD7IMKKmAPnc2mOmcNw7SpLbeuUdrT19m0dKY7clfM56ZZimttzR2ES6/sOgMd+3Wu+64Jo/riZWtY2pov91uz9yI3uJI9irkmPS06lYGpeG5dafC22irMkcp7b7yD7WtTPyzp2vY96O+advxg/tTHKesytIaN23mK2yWkZEF2Cm1zRRzL5TY0kk3yrGhnG+yg8Ru2Yag86iOwpqm+FPrmm7aFrtG79YZePaOmI2nz9gJjMMF59bT3F76YXRpDLzOujbYxaDVCy+U30RxFmYkMrXZ0N3Sb6A9Lx5mRU3upHNwo6funW6fPZTzqs64rT6Vk2mC8XD82RbRSC2Rpo1lqOj5bnPHUOQAswiAjZ9mNkEG/60q3zl6YMGOoTbKVg5L1VTwYIrF3X5uYarX8u2DRqawY6b9V1b7Kj6QCSWTOS71v6fkkyNY/ukC/3jNE99Y/GaQ+wyd9jzY90egxp4x4aGQGGfUy1y+Uy1H33yr4FQOZ29fGfjSeYk0qfJ/dr0w6TJ2YP9DPrZgb55DMnmvaxUL2TCMeHBxyPj1iWFR+fPjVYwzzPmPUW46K2v20oGth0OMx4PB4A5rikQcfTcJTD4ZAJfTd9N8AmIpTjEW/evsX79+/x8PCIx4fH9HN4SfgkM/CohBDoYsRV8omcAnkkIr+FIsfCMOFkRPn4+IjDNOHxUW4Cyp5NdiNUVq7k2kDG4XDwss7nM9ZlGRDrdoHcSgw5s+40CQRBEsHirNh1iHIkozTHMUyILctFb/9ombkBSc1YFbktyoMwgjTAOFQx17rtliK9BWS1m0rWKjcdQQKUizFX4MHKCeB1wXK5IN9aFN4NCgrkZed2ZYa30uia0uVX96JZA+Iujo1Lfg4Ya7GNcsBxgq9vzZMYl9JDUUPbJsqNutAupC/KCKxvIAJWgIoYq7Uz2jh5V7iOnQWuPe/f64UCom1ZcQiD1wvyT2Nm0PEgIr0yWJjbVPQGwlrBddV4CSuoyHliD+5DECVuFTpYbFbJJ1SzKViwEUrxjLqfGXqlcmWnDym7RH4Xyqo0ZYNSFWDzyGne202JHge/yrRnpSY99w5Q/KblkK8BAQi6qtJn/1tqBY3y6EGdFDfJlH/73heQ15m10/gEgz0ekvVLPtNNbQmwiXEgvXEOoFITfYR6FmudB9+3IwGiKIdtfdsc97RkHZHP8KKy0Q8lO9bftgxfb2TvkOeV4R7U+xnJrrZtn/XfgRiTNo+BHkSkhkuAZ71Rt6dk3aNMjmTaa5Xpe9LnGJU/i/Sa9hh5Qm8j+yLeXzfrvF8nqWzrEuI96EuoBV4cIB4BTgBsL2JTK6ce98BfpksTt3PHEZIs82s1mFUHN9nVlgWQyxVKMtxLTbqA/pFkaa6cNOCqXGrQGzW9cSJNi/XXr8fe6L6Xrsz4MJ3Djza/oIzdcrF/o9Nto137YUcEVBYzgFKLy+GQHdiVRYjXAbB7jzXH2Dx8QjLiks4sZYt+/eOf/AS1rlgWibd6UR3ePJtqrbhcTk0M2P6Ynn2GvDcP6nYMgwRDylj4CR8rDrkySqM124NMLwWdtnOXZK8bttLeXP8tcKAHEPby3Qt4jP7ey3Pvs1vgxr1ppLn+NBLDpuX63N4TT+dmXTt8aZRv9PeVkpPu2NKSpXv5Zf9sTzcYAT0vBSxH5d77+yhxDEJYwcr3evzeNhSYWfcz2fc1Pd6t8tepzJjmo8a3s9AtpveaTWdxScn5cuUVvLL6VqhVpoxMzMOk9bK5elxPN8EmIvozAP5dAL8M6c9vMfO/SUT/KoB/DsAPNetfZua/ru/8KwD+WUhE0H+Jmf+zG5VgOh7x5t07fPXVV3K0apajVSac+yM5FotC64NLJKIAh8y1NYElz88nnM/iQWVR1LMrbCkFb968wfHDBxwOcxMgXMZ1TQaVSAyJBQIHmyxAuLn1tn29NeLbxAw9kylAiAUNC68ruxp80qsM28j4DpUw5GicN2SryGSwiexqcoQbvXngmIGWg6PZFeVQ0KWuZtgoMTID0EBmCjbVZcFCJ9PTtGVWP9p4SIB4OxCBkteKgEIW1UnLMIGIABR8PNN3bn/ScWxpLX7LnxzDAAOcGh0UFTX128oLJUoWcSpY0a01zUnX9K49143Q2j2zuVVS2CQbi7DplSFxlMPKeOSYKmGdCCCJe4MqoCKrV0etJQA4UOOlUavcnDjPh20/dlvXZEKexKqxFPI4ZGGSP11YAWHMGHBNct27GU278sINK2A/E1oQqMnazkv/VOjKNO3+N0rP2dsqHzzMI30j8YpEHNGQeK3meciu4BLpkTKKXQ+/idVu7ynF10reXTZl3BTyPC+ZvxQwaKq79H1NOcyjytQCi8y25swQDoWG8iQofY/WWtyaZExm0D7hVLJGdMzDSe+6oXBPcgOL8rMRX7ryzNZ6IXWxFr4wApleorhfy/M5ittr05cs50uUdesK5KttQCxbpvHRhReVd2d/7gGcGBaqKY4goXLnERNC0OQ6oTUEMs8AtjTTK9/5GXMEqCciHErish0tD71lUvB2L8sH4YZcbZWA5j1LxhdHaQ/gHT3rx+hz6NLGrup8lfwwN//Osq2dtRvDa+W1ZatkKhPQ6IVs8eYBmEcwAWxeZMZhkx4I9Y61Y9ITkh5aUPQUgl9EAStH5JyBJoyK8+WMH//oR7joZixzxXq5eMBfO5pnv8U8br1OTXeNcYnvLptqB/hDdeOUCk0opfUOH43zrfHfy3c3PTnJt/PYbzLcApxyGZ9FywMesSe77gWbfiqpVffvy3+jmL0MWYcdZklr9TXpHlB5pAPcHHN2i2i3LmBMLyNees270egzh1N4PRg7/v1z6TxML+NdRgOhmRoLWfVyLTk5lGP6mg5fgCPhcCQwC5BUoLdSg+I0TSlxeY7Z+7TmS1Od8zIRVm1T2L8Ivnol3ePZtAD4l5n5fyCiDwD+eyL6z/W3f4OZ/7WcmYj+HIB/AsDfB+BPA/gviOg3mLkPF4PuPczzjOMxbsq5StA8mMh+go0Y07XSp9MJp9MZ5/MZl8sFABwsORwO4hY2zzjMk55JlKJCuMZVg367XOpDUU8PiWGzP/jBmPd/j/6FFwIVQrVjTQwwS2DsAgnmStpOOTNuZZiDcD53G8ao7e5bsN5aDKQqIKpKVKSyP1EaEGBTKZgnO2qnrc5Xf5v5VqzvBaWSHr3iRLAAUQRfl/AiCTxTxdJ3phAeSH7uJrFozk8oL8ZuvJtMdZhHsEWrz8bBjs6ZN1RaoQHf+A5wW6BWxx7+XNvSuYa6VNk0Nh6ZYdrkafMZ8wLrjm8qM1qq332OWxoBCb2tGpNiKRQB6JXm11p9nkoh9zphZrDG6BGUvWK5sAMFn5NsbOq6+rxlvtHvqMW4Rv+5+buC19VjbDm9ZHtD/xt5Nj/ufKXNQzHCEDSTwIpqGTVusTF2NtavDN5hVtFo0zM7ntpE4I26FUCS493qoZPAJvKbFxtSCINOlXAC3BvPgmdnYW9u5aMdJfNy6lMzh/FwLLydLxgwGjs/BjRt7cXY6bb+pq7pe8lo2AN0chleOEGuEx/37SWpaXf6b0tDLX32z3oazeVkP0JKFN/Xmqvg9j+DNneA7k7WL4QPJZp8XYEuul5rkzhP/7zUD+2XAL96EG1kGI745qYcDm9Ai5EHU16JwBqPaDO5Pj2xJVRr6AY5n+3cGo+238OokPVpPLHY5SjclhfGPdygZ3vJ1jkluUs0XEvW6kYO2rM2k4pI9TIf0FGuy8az+a2T8317YvMQ8ZzjXUbqswM5qb8Ydi96Q+2zrhrl1+JFtPUskJylJL1TRZKBMqw6s4yTtI80JIKKLtito/JCuygdbCIgbpEMMiSyY54yyW5ssx3Vk/Aa62p2gcSaPJ2f8fT85EG/maucTKitrm835/UGcWu4RogHNnnc6HPbOQjZkR/uzFRnIN/iD7fy3cVfKJeDRjZe07VG9ttLAP2XgEj3AEx7oMKX2mQAtus4l7rXHtcDu3duiSJq6Gy/ji8BtOWNAvs+AjFHQHp85rwMuzzqVh/25qYH63vwqafB0Ub0tXRrzextZr+WnkJP7vU1AGzX42z5i2lz1o58nFDiRVeV0cKYGZDLxNR2tQ1mKd2wjlX5NHsN1iJz6sBmbrfpJtjEzH8A4A/072+I6G8C+LUrr/xjAP4DZj4B+D+J6H8D8JsA/qu9F4gE8Hl8fMS7d+/ENbXmm0/gQbdip6pnujbBxYmscsVaZUfCgvn95Mff4NOnJw8Efjgc8P79e8zzjHfv3mGeZxxKwVRswFvjqdbFPTTWdZWg3bO0wzyqmCNQ2G2Cu06URjR2A4wx+YkmSOhqxkRApYqySH19fIbM7myHRtU0F3LDzxQ/xZS/CKIpH3bjk8SpOiogZMwzs0yps6Q4LqQKa9FdLtOrSpkAKgq8mgdX+17R2E9GQAZEidIUio7/7mO9fYb0DETgZWkEPfsAxPs0MKDNdZG87D0DLpWcdcFWL/Rk7to7erC3p+3XNpUywe6fr86c4Nqaq4xsYwH0Y8YE99xjAJfl7MCwBY5b9cjkehCvJQsGLmXLOnVwYt1XAO5P4elniaXDMvpkszDwVOoFZQVWxDFT7TZs8NvXB+VRzHhWJG7SY263GQZq2PmtdEg0a39ZlFz/bgVks0Lm19aMHxYrcO/QtAj0Hw/LEVZru7EA61Hha3NoXqEBzgSt9vu2G8UFYaDtJTK+AnKek0HFvmk+n9am9NnuiI3bFOVQ837iqLJrZEbQ6/W8po2b57mxO3mZ4ga/foaBHI+jHY9dfkKJd+R6zOg1KxMxf/0wvB6K+7LJA/K/tlkW4PkLtOmnmXpD4S7l247Ti6BWI9+s/IhZ2A9iBPGWz8oVy7J2a2vLX9DJqXjGIksgm2Md57+j89FE13a6WyeHr90xRmUiFEyNDMjNs60Arz/rEKmO0PtaPmWAU97Yu9ZNZkbVsTb5kcGp3K7t3y19TLoR6IZdNqxJZVShtk+MWA9VDJNCFseIQaaT6J5IrSvYN46MU/UbJvLuNDHmOXi9DzMjGVpCaxJzSXT/81mCuNd1wbJesKwLnp6fUXnV+lmAsY3Ra7IhALXsKSFztiB7PPVtc7HKqZyhZ8DraRHY97K8W+/KOu9ID74iH0egQW+I3wsIXQMl7unLlwBcPicF29vvZ5+HAT/CNMpvmfaAnfzOlwKbdtuxk6cHmTLYFDwkbnscvxdpD+DJ749uxrwH+LlGx6O8udwezLpHjtxTx2jdhmhtbxwNupH1abH0hOedPH5zNSBMS5DQggkgm0WmSEiUFevCAFcUAmaVsxPJsb0An2xer4/fi2I2EdHfCeAfBvDfAPjzAP5FIvqnAfx3EO+nP4EAUf91eu33MACniOgvAviL8qWAU6A9U337RdIglgmkaY26yEscQtGDhtXVARc7hjbPs3s1TSmosdTTuuW1LrTc7Exl4ttTBAjt5N6rHGWD19um7ekDkOW25GcmgEXpKPAjbYLcuTJnQAocIdU69b+NejiFUlUsflOSs6EsqP9FkbpCLy0Arfq3/VZdaZF8E6aiQNok/Sp2gwEZaEUSn8uAJlAYSpYH5MADkXmmZCNb+1cDoMj9bifU6okZZHkRBspsCIDjzRcllgXvRtygDFdgmXfzyBG3oIUwxNmwtNQZSnpdGBDs/VQBooH0s/egoOd2S6TuZKvXnIw9YEBhxDzYafO9Q0RTazhZfxH8hAJm8VEzQCCPYyt0yKdevH/an5pgX14xdeVQM47EQXub1W+Kvt12x07NiJYmS8m0FLscgE0hTnncsECr1CaSpg1xbhV4XwkZbEqfzigGyoC/nXk6Rd69lNdgu6QS3/X/IWjYkaIma7yZ10gCCDfLNpfVt43a95sy039fp3bwqAtdQ7rPK/n2vCJGHhSjv9um8XZsnI/wdg4Gytw+NP6zT6/djbQU8uB1Cr5R0Jdok5fX60yDsvvd4L4M0YGpXecmV1PLvTwptPnk+I9nyvpFr2v4WJqO0hhawYbvGinP2+b+UuPcVTOQGakNAz3trrVHad12KevDxptXA9H39Omdv5vykm47ymdt7cM4eF5mO4MJItZYJAE2WRYJVWFley+Goyq6OTyPbUSLrrs42HS5yCbx8/PJgwYLALXIv7piUZCoqgcA0ni1c4Lu71v6fPdMdYFcDu/kvQcMvkW3o/V8bY3vloO+j1svplzu6NnPOr0ERPhiibmZxSz6Rm0xEDjn6W3bnLevq3++Bzj9rNMWNOKGJuQ3eZ7b+RIAcQTG7fGlPt/npGu8uv/+OTTfcpBWJ0sFx2+q05nN3rg5qE2/aixd4bvKxws58C/2m8VP5WRvADJnYkdlojZ7gV6wk3o32ERE7wH8RwD+EjP/hIj+LQB/BdKEvwLgXwfwz9xbHjP/FoDfAgAqEy/Pz35Gel3lmE72bDJgyMGSIrvZe2g3s5xltOCU5tnEVYj9eDzi8fERx+MRv/ALv9CUvSwXnBcTPCsYhpSyelBkoRp9siNldhzw4sG4fQzRk1M3xvbX5vl0POhTFbyqbNl4CRFFfKWMsGaFJoAjPWICAqE9sphR4Sy8/TtCDTSPEioFy3RRo8UEvzcVYDs+ZYEzQ1CbEW4xYSRGjATGpaJn1yfzbJIF5V4aavEZaBg7fuSBvqlQug3GAqfJZ+vyTagAVgV2shLdgFpSoeBz+p2JUGvMUPS19NNpkxp/m/JpCqiNtetVGg+pIZ2t0bh5Zl/M5qvVr6j3A6CcPztjuzEm5AeLjzVP1mC9dcuO0iECsC6X7vrnRIviiQIF6LM5ndcI6+OM8I+VTulAib+J/LvgBQxG3nHYKceAvZQqYzeN5Ym03+ztTF82lgHobgVhGFZW2uQCYNc4T+DonpC72EJOgKu1Lcdc8fcp1UeDmk1RMGUJGlw/5TdBxsxY1lW9TYUOp3nC4XhoxyDTnpeVnnmLUj8AiQ3mWZOoHLHbjQzXd1mOl95UETbLzIy+MP6MvxH6ul6WROzsecnkWjsFs8sDhCcRG4C1ozD5mzeM3+s7tfvK76iO70r6Ukr5q8uxtd8NT6YnM8E7jjnOk9bjzXKI3PO1L7u413e0KG+sJQnoOooZGSZrDHjYQv+JZkzeZMPW+LpX0a/2bRptvuXnOe1d7Q28bD5Nb7j2fm90Wf17aGqTJQAAIABJREFUbcvvZS8A++z/5d/XdcXz01PcstvltX7bJuwozlUua/Q8970H0Jp8egxtIj1iz3KMbr/frRdN/0zaGzQm/Yj+5FMIcoP10vTVx5Ng4Uqw9Uqy+jGQk7GqBDTIz6MPvRCyY6Bt2hrnt8D40ZiNDODRPG1qv5vGg3PsAU17dd0CEu4FGDKQ0Nc76uutPF8qmX2U66jcUsMe4NTQA3N45F8DlIyvXgFpfl5A0xj8SYATwrOp5yuW/x6+3ddxL7j2uSDcNb3olk6V68uXeLl3pIUcoeLSsd88LhOBeAKoykVMzChebsufzpcFz0+fACLM0wGlFDw8PGCaZ5xOZ5zOZ6ACK7OEwjlMimMQIryJ2oyVFE+pkDvaJVTEgJEN011gExEdIEDTv8fM/7EO2h+m3/9tAP+pfv19AH8mvf59fbafWGKuuJBL56SvHUWzuET7BNMSYL6KfJomHI9HPDw8aJyogtPp5Ab5YmAThwAGgHkuDnIQ5d2JWBjTJKBTdoHOBpw9G7V7BDgRxfExdy82VNIXMBrj0MovU5HjOBTop5UurwTkNALsMgLNialprTr+FVTl+uSsmto7cKZCKGWFKQsGNoVRLu2hdGTOA6GvcyPsM9hkIFLjHUcpEDEReDL3b30H8r1yBM2Ggm4OaKayXIE0I5il72EU9x5gBJ50Nhix82oyxZSWhgSyIp1UFOYOAGmVF5tHGDjD23xmcFgxjIEQUwGHPI06Lu2zLADCmymMYhOAEkTcjR1CzFnua6MI9GYQIIytN6dS7wlSdzWasrnREimAH2YDMKzsBFApcIK6Ne53laPh05QyaKL8KhH/tjwzBqx0bsdlVB+JhRhzvNMo27EVQLijbS2/4WupTJt3aRUluozKbD3DW0ppPCXehcX7kgDzjGktzVg4HZRMB8lzyCYy14G2Hc3YAI0RG6WlZ9zlv6GAUEd/SQQk0rxuJNybiMyYGv3WLssRcViel7bnHuWpl2Gk88M7+XMrvqT66218ZTneptcq51fAgnsb0puqu1Uhr5I78nC/GnbyJ3HStMP4AxqW0Dae+++hq2SdwriJf0nKiekjRLGC2/3W1OOrelSrf900Bkajw1d+20kNhwjC8nXqa6djRZJ/P1bpyKjqg+L2Btu6Lnh+fhaeW/ffW/RGV9O7mTXwbNL7Fj02nevKnc6bSkD00+SaKCCsl9worXHELt0z4ELXbudvBIpFMO81TjSkcBxbQ1g2r6ccjLuTbXlWewO4ac9GB4t3Q2Vi/34dGOh1na7EK0Z4Hp9Re7d1bfl5k/cO2u/BnBEN5zquydlrtlFfzrV678lzrc7PSpzGK9lPV+vjLpPZGF3erc6Ohrd+0X7stdWbeNtrbBdoYtO3AduAGAFFo/kbfbe8LwGa9vrV59mrb++30XrLNNfzxxYfSI4hlKxz533CXIiS5WJjKQU0PJiWRW+yLygHuzxtwjRPWJbi+jFz1TACUk4hqL3C6hWF1i7xviYl4caw33MbHQH4dwD8TWb+a+n5r7LEcwKAfxzAD/Tv/wTAv09Efw0SIPzPAvhvb9UDIECmNMkGGNhNcRYfpkwTpmlOBpb56gTQsNbq5xWfnp5EUFbGPM8eFHxdV3z8+BEAcDqdsCyL3JJkiyMdo5P2zG1bxBfG+QQRYZ4PeHx8BDPj+XRd8TQhOqL5TJAShFuMZQa70hAEAMRNHUJwERcpKYUbxalC7oXKjC+DSaaY2E8WzFH2x7kSqioNy8WunFW/GbZz+Aw7sldy8O9mARnhah6QOAWpV5LdylH0Nrr+ivq4GQtuTJvXUrGrHalo0HdRLDIgBaLNGGUPsUyH0PqkjQk48deFFnHRvpHSpfU2/hPfYRPl9+5JM8T6hWMhxpNMVe8N3JTH8tnrAqw15imikMHfbqnWBDhA6UEKzQAulOYmmaStIULkwTsLKaXUmixlSp/wDkc5OgiUVTBtx7roWERcCsvow2sgi485YEHl3fDp60Ir2Ll/1j2PrtqZawL02BxqC+wMU1ZyfSIVYB68Y/Mbyu42OQANRkY3XfcHsCZlvzEYBrS+uDclNb8FbxHvwFXn1sZG1hHh+HgA0RFrXXG5PHeN1TmzNelzqHXoZGbeIQZLHKHdDOlmPPaTk2L3QtDUtoDRb8WE/pW67kl2rGNYY17n28XW5hEm2ZWdVIeB0Wjl9gY6bwAFbFiKLzrL69+7+r+EYlzyLtwr0pdqD9B5/7wi1dttGnD0bZ4afLUJpdh975XJPhEziGOsW/mTy1FDQvWomnQVZgsQ3b64GTFnKdS0N1Lx/2YfqG0+Tny772uba9h318/upA3T6eJrkiGmN6VNu8qua7k+x0CZxFsbCJDEb0db5NhXXSsui8QHXS6LgPnrql5MoktzrbhcLnFhi8pv+71mcIZ58668km87gl8GYoauD5Tx6qSTSH/Nq0p0w4nUC5Zt66J9x8YthvQGf4PqpGw6Kvv3nI80gP3Q6z/Lxih0aDg2GV1HVr23hlE9TDSQVBwgfTOeP8M0MrwFEB3R/ev45MiLMINJ+XufeiBz7517gKf+t9cm23htSlMauVZfHuJGLvfPepCkxvdrAMo1sOTe9JIxGoNGPRgU9vU1kGgEzLykPyNAtwedr92M+jkp014PWtk/Owlln8zsYXzsBA7UDpZ3zZ5QC5OKH5whr0PHSpH8+TDj4eGIeZ7x4cP3cJgPeHzziPlwwDc/+QZcGeuy4HQ+AZCjzZMbSLbxIKezKrnVCQJQ9Cj03g2nfbrHs+nPA/inAPxPRPQ/6rO/DOCfJKJ/SKv5vwD88zqwf4OI/kMA/zPkJrt/gW/cRGepsu1KyPcMBtikGIGUacY0zw2hVlaXRZ3kfAX36SRntQtNXpYxq+fnZzAznp4keOBhmnDwm+hkYsXDCgPgi7DW7MGEOEZ3OV9dFLZrNzTMUx6pU9rjx5+oFfTyMViMI9s20SUrEBTgRcu8AnBCM9bBEDlilbkCZx5qWUljMVxpDrDJYj9Y7WS2Zn8bHcFvqEuxnnIfSyEHEPO49YDRNE3N9368emawdXWcFXjRd9kGtxcGaifkSSCKoH9uTOvtKVK550naUUyfAz6Nag0gYmz5RzIMOeerlDS0aF1vJ/q89YQp0xgKqjJtH0tMmK4EyIvxtbpDuW7NJpsPHcQkjZ2xejfYPSOjntwb+57n2NZfnnskugSMjqWKVnDeI9wLzbC58VmkokbYVgHYKLEA2phQGxU1Kaha3oDpWx5QFkqt0O3b3qwLWzN6WG1dFiyXReZ8noVm9QyClbnWFZd1bco8PBzlts+DHDV+Pp1wej5H/dpGEDXtsL9Ruu82JkzCD4bM7sukbb3XE4NiXX9muqaEjdqxMd5ba815lpWd6xmlEdB0LTV5evru+cnGUP38JOBHjbI/O6mcem17AL2s4vXJDFhPPG5h/6z5rgzdwWru8vTfb5SjSlZ61r0z4I8b4wPpCuZcfpPIJdv2d+PdHq3O68rtAIzUxjvmoxr7tO+tMiwARuchnmQnujW4agMgGd/M/HjWzTMgjplIrKEFl8vF/z6fzxr0+uwX32SvHhmArf7W15nf6Q2ybJT55u6d/KmRM+bZBL15m7nh2C81invDc9SWrL9l3T/rggzGyn3Aemx4CivpB3gI52Mjuh/yaSu24ZEyCvbOF2CLXTeue6GMDHL9C94Y78rtxt1T36jOa2DRtXr2DPv+e5/nS6dW34bSRmd+9fUbT+91zJ13Gr3zhh76pdO1tb7bxsEnYLbndT6S6xgBTSPA8Vb7e/6W+/Al0zW9amxbYnMhRKsLt5s8VAiFjf6bClyXnuYZx2PF8XjE+/fvcDwe8ebNG8zzjPWy4PR8whmM87nlxXY/mtj3q8yUAlgmtf3fnUN3z210/yXG2vtfv/LOXwXwV+9rgqYRSIKYsHxO3byflrQjw0i3mKkw6YUnIAJ8ng+OJJpw9iN7AKap4HA4wI7RmaCuVdyIiZDAJjtqZ+fOr++wyuTcOkK3GU9ctF6Q+83YsMGUrgaASe+2zDgPLhQ8GBu9rQA1pc12uKoy0RC67Ipwulmga2dcrZUMfKvfzqbG9VvSXiIpkykZ6lCgRxbaWqHX6moRkLkwjwjzchJXaQk0LkayGKqmJAojEM+qMhGoFEyliCdUKZjnqclD6mmVOu8mSzzSxa8msXyVz0Lpdh8y5bl4PyTPpDGmQsy79xPlrDrH3TMTgI6go1WgOSiimRtFvTZGJzNj1dttKtvamjCVSW8xiP67MEmQCyttEIDSxSOK8Qr9Pm4dtNFN6qk9U2Qz06OVQFFQqsvmu3Rk55Lfy2MlTc6/Vf1N1wB7nUHfdbV6Ys7JjJD0ifSuc4VUVSgh4aMUc4Wgn3i0yWNzl0ygWJvoErfV1jWPNYFXvR2xFolvRoS6WsB3id21VOGrthaICLUuKGXCcpgxz7Pc2Lkuys9a2s3GWhi2QRfWIAtnGBc1FJ/rYd+ii/pH4sPk/2nqdh57rcCuYKLXg03SvJ156vs36m+rgQClvfvvlpLWA017Cn3+7J/vfQeux8h5ScrK2nclvXT3tUmJCdTuxrZmBxxoxCUg66d3RLDLCGgvT25mJwxiLzMqJ/372sxl77dsSNl/TS7dO0LX6qq+Rm/T8rV0bc5uGUL9954ee50qAznZ0Mg6V948M33V/rYNTdtQHYFFXtdacVYP/5Futwcu2bNR/0d598YjymHV0RhF/6HTIeWDg144vpse2uRJMi3y5faq3pH0TUaMlW08MYCa9VY2+d/2KU8rEYnHVm3HKsegMkMwbwiZXKeeLhB/aw24lu4FWXoArC+jf76ldfb1TK5MjcvZa+fo2ShEyi5Adycv7cfjmszaB9hekXhbjumJV+vq6MFGefSOv5to5meRMh1lkO8ayDR6FuVY+1/Wh0wj42OxbVtH7Ri9d80u73+/Bor2Y5TLsc8ecDKPpszzNbOajublLzzHaGXLP8yKEivH2hYb7Pkf+z+Q8VKzoeSfeZ4S7DRKlFOSXX1PetFtdD+1RARMUyjMJABBHkxj5C5QmbF2TP74+AbzHDfMLWsbbwkMDQz+xs9xXy4XfPvtt2BmPDw8KBhlgnzFsqIR4pfLBcyJSRKDyI7YhadM271ksNOIjTS50QuZylWCLYP9aFwpRXYGSxxlcZACrTLRLryufA6FMr/blgHAju8h3KrdEOJ9gRaG8IjYYxF47iHhstdF1X63o128WXgWoLxA4lXJNhraMVJ4ltg8NhhcZFHNZRYQaCLQJNf9TkW92Q4yxzPNAoIQwy72M0uZ409Rp5Ox6oCgNSMBYrBFjKmZpsN8wDzN+kwZSoMopWf+HX7cgXU8pmlGnQ8A4hr0XJEFonNwp/EiK0rrcoPcetG1BTtGdxA0vALrKgrlusYubhy/hIK2FxAR3h7fSN84zPw4HmnzaV4r7IqhD6Adm6v2fhZeyqCZfa71LGqMddF+2VBYMHYvC352Pn+aUhtglK2FMKpq7Rw6HUAJmt81brSsvNbaXVAvsnnWf4/Ses8/W38DgBrQI80G5psxIvM5F1kPlQh1bQEMP+axrnK1uSlaBJwPswtWBz0p6gTQHKH2tuzyS9sBJiV5pWVO40o9d0M7T01923l5qXcPK0OU9XyvKb2fMpC4rZ82VYzyuOJBcWOhfO4bIff0eZRnD6AavfddA5teBRANynpNKsrGzIP0p9mme+bYGLRdmiJpP7DzLVqVZXL/nO2NAYNAvYJ+R5uu6mgvTP07166+3gN7gC2AM0p2rG7U7gBE2vqXywU/+tGPsS7Lpg3XPkd/28bsCJwajUfW35lZNqO4eqgKUl99MHSTSvNA5U0VmlvrCnDSKWA3xgHc6aZ+xF83gZmBurKWKc8WPUHh5RB5cF4HjZLROAKbAGzAJiI5QtvKD8CO7zG3Qb97Y7Edx830b9IInBkZ2dfmdPTZvL8BBG4DBLfAp0w79wJOwHatfQneeGvNvbSs/GnDRBjPS3wZl3O9bH4pTvOqtAfgjNb7lp4SwGTj7Wt2vxPX+HGmoz1dYgQ+7cW2a9s77uMeqLTXvpFeZUCTbRoYXrHpE7MZYPIu2jb04Blgtp7axUkeBDaR7O8CUGH5R2ZvVX3fPKoZ5k8xNaCVhUyhNrzqlfTdAJsAj6ougyZGorsBI3Z91nR8Z1lDSAOEuq5YKY5KTUU8lGRXXSbwqAHB13WFIY+zHsczoMlcbSuPibI5rlOgABc5OklE3s7d/tLA/Q2tsbglbGuHAnFUAY54S/3OiBMuoILZFL7M5PojWfHzHgOmsN9HDXdUvjfYKP+d/m08AOy9QbnN333b2ISg9V8XjmON2nD9ZIK4IRr0ojcVEhMqqgRWrwBTBZeqbouyaCtVFJDoy6QKRCWzddW+01WYQAIBbrABm2CLXyhfX2WTUuG1VVjmMTiQ5GueCZMiB78YIAENZlNsfZwi7hU6sMkAMDnuUDxPBh5Yd7gbI0Td0ddFgKiGppU6uIqCx1yjb6wN0SkyIpPu+Zv6YyiEdnOReyYlsAna9/Be0jLT79KqrVAMOtJybToM9fd1wFEapep31pWMYXh5jfi01UOwIK2carGxzDX03+NZNFyILAQOuWJcFByx3RO4Qm/KewC+Bm1TBiY1rWv1uCHrssimgAllr0OVdBoIdw4+ZkM2Apt8LIzGddHZsdbMf3omOzSqwE4N8v/4ND5l63rkHeY80//QDZNNy1+WqGvP6Lfm2RWwqaXnpGTnh1GQv92PX8/3qc+Pduw39G3K0iAQ/+ckrlVcvF+bRrLo55ScrdexDH5xeWSlvuC3TOsUMpWrbHw13IbynxtCbZ/p92K8e7d73NDq4FepLW3+2bpv5GNu0047b47xDlmM1mCp5eYxymyMcjeOQ4C54y8Nf+puSAt9i5SVT3g4HrFOeWMge1u0fGH7ezyzW91iE6nVh4EOVGQ0eY12SAEnsABOInItvqR5eAX9r3UB2DaYTberYDYZIPIKyGBTBfOq+0dRjusvHjcrjDtG8EXjmjG2G1Y49GwqttnXAU7+TCpRFSfGsqZjfKbnD7jnJt3DH/aAjmvAkz8fgksvr/MlyQz8/JmTPbsFat1qzwiMeF3aAhimyl5rU86TfrzaXkv3SKwv0zds5mM0N3sATg82jTW7/XozOGl/jzyUbgFJe6BZ/rR0DdwcgUx7ZfcbHY39mzbL7LMyq3w0WRCcgKRQtWnYCk0/dnKDNaTQ5QKAZaO4VqzqEQvAQ5+YtxIzyQZ+KSjqCFSK2Q7Cz8ThJeEUV2X5dwVsIgFqlnXF8/MzinqRcI3bL/oAXsuy4nS56OtmDBCmefXr/Y7HI773ve9pfinn8eENjscHP+u+LIuDTYeDHK+b1Ahbq9yalM/Uy99xU97hOOPt23eYpglv3rwBEeGP/ugPvew7On8VvZWFZYq5GPfCmAqYi5hVKpiqHXFjFbY1gU01EVVXv68NVXziSMp+mkpJhMX+3/xmgwYnoyR/khLsTufvYqTReNslM6amhichAumZCrGKsVvZoAYbW0KlRepV76di8WCIQJMqygYSZe8fO46nDIL0xjx/psqD6/aUnmy+h8I5T3pEDXDm0no2yR/dDZkBNgl3QimTA6IRDLN4e8zosF04i5EjgegyKBVeMsZ4KjN4lZsPznqTo3jjAQ+PRz+6Ok2zKn8rCBL/h8yRi23OKeqC0AjpPEYwUYvUYf2wDmwVIweYuABUETMBjUKk5aoSy2zrdqRkwd/3L/lT/zAlu01qXDePUwE+5QQQ66WiHMd0tR/NJCPmESDNsyEEgGUdTiRXp5pQOejOyuE4o0wFh+mAaZpRJoojoyRxmYw+lvOC5byqA2G7QiuLr1tdqwSwrRXnywWV9XNVIKquWDW2U04OfqTejSAJU8UdbFpt5NLsZP7T1aF/+Hy4EUepHBesNPwNqa1WprdVgbXBEL0oXfO2eAnYREjgsx9H3oJNG5rtwf4r4FFf6+i5/4Z7zJX7krCkVwyylUPkfO61SWTw63poQMLre2ZtGk0JbZ4NwY7QWgUw4MQbrzSwp1Gji0Iku7kObEcjs8HvRoAG0c5rtUI7pEfjjR00YEuJT+tPADHGc0X+W8wjb3fbkeAJPe8fjFkDeKW8PV/JbfSyi25CUTqOp/023U4ebUGBrL8JoCcxIb/66v1wdnQ6vN2bBts35f1Ft7Hz/Lgn0LAck4Wqm/ZgE+yYBtDeDJvfZZd/ES8/x4qckGV1sPfwqDbv3GWRkwnrKmBT1bIvy4KnpycJkO7H4ZJ0dhnQGa61akB1HY9asa6L9zf3p6Hnpb8xb01AmJR3uUig9710L4Aw8vp4kSFu3mfIc7vfrpz2DPIRSDHKlz9H5V0DkK7luVbHa9JI7zO17Vq7XLVLD/balIHq+9r0pfp2/1iN6GkENo2Dz7fl7IKgun5uvZ89R/tyspfQHqB5Dezsf9sDLfPz7Nl0OBxE/z4cPO9aq8afzvp+oo+qfI0qaCVAb5gWnVh5qm++VNR1xVIrflJ/hFImPD98wjzPOJ1P4HVBAfB4PIBKwYOePliJUCujHCYUeujaL82Y9ITDFlMYp+8G2KSpOrADV4b7IF4jIraBrVyB1VxnRRGZp9mFMjOjTMXfsXPwEp+J3aWtuDTn4SBnAiUQpmnG4SBH74yQrh0RMJOY3DhOSe3EjclAoRhQVnh0ByrHjZE2m/JhBlzspPQeU00z9b1e2YpXtB2MTSO3gjkZKjuGX//OtXQ1jyuhSQn23xJTs10wNRbhH/k9HcsKgMTvyW76g845a3BTi3Eq4JPdbAcxyljed/AJSQH1MEQt2CQ/tTGbUCtqyW6SGIBNSMfo0OSxd0pZsa5TGnRrAVQBlj8scCt5XKvitxuYosx63r5MFhhcPJXk+NRZjtqtVas6Shy0ecbhcMRUFr09Tsa81tWduGBGANJ6Y42tZPMGcqUvlKCCvCYktQofe2+VBkBwwFbHgBNYuSvNieIdH8fmD21ru77FmykpCpTG3oummBey9Zrrjl7k+rNnVsRWoUEeVr5G4AqsywW1EIBVdjTmVW/cLKhr0Zhlq4JOQgPLZcVyXqI5qUsVYYDI7UYVdV0UjFz1VqJVjirqkcWW/QzGnAdjTdC1TGgRHYPoQvwOeSw41r2vf50jEhPIPepsTnR9+W9oy+Hcfg3EL95b2y7dm7z+QSIfgzwkG8kB5zJ+ZpFCKU7GvQ7AkOqt7HEdO227SwV5faKo8HXlEIH0KMxr0sjg+Nw0cfkSXUsyrgeX0uYH4o/YePAS5KOu4HXg2dTW1pbdVKc0VErQiNOcriXWIwTQW0/B6cY2zQcDdsmuqAWbN5FvgsTtp9n93zZzmos5DGxaFnQD4vTVfg56p78JaGlrDU15Ma6xU2y3lsZNrdHmfTBg5HmEtg6YF2rcKNr2KU2Xgn6hE3BToOUv3i74P9n4YddjAnizMWDUrHeBUZjUIy1kV75d2Npl3uhV7xiyOjPYVMqMhh5ZJV0Cm+z2vXWdFNxJN/JVxrzITX7hKdGoUmhIJdOpxigU4Eo+l5XCWxuWP9EzK3xTuclTDSQ0/ccnp0v9o2zsbnPv5An62RrzW9pijIzubW0tG+li1vR5e96S/hzKoCFANWjrHXlGv30Zns1d47ONYV8H9knK02ixL2jTHrCXP1+bODWS8vz2qjdaXY5TH10+umrG4wJuJFvHQH/s8v5xaHls1N+DSf6pvC2ebVWPqCLJwU5e7Hk2URHrjzk5fTT8AHq8t0DiLSmXL03Fjb1tcm5dVlSquNgpMgXqCpEcRS9xyzuRbAIUvcE9by6Q25O2YRK88trsfTfAJmYs5zOenp7w7bff4jAfcDgcG6DHJsMBoan6WX1DBU+XC5blgtPppHkKplmApPP5jForPn78hLqumA8HRxU/fHgHM5SZGevlgvNywWW9qHcS6y6/XSM4YVmkrrfv3uKXfukXPco7EeF4PMqNIFWDWndCnptPC0IcgIaBFKQq1TQVHI9vlID8PrrNGAatBXFORJBjO/mX+1PrChxvF7LdwW3e/r1ruyc9+PXZSRdtAAXWBlOAdNQpLXmyMbfZEM4xlVnbXcGNizd7+dUWXVXjtAQoYJ5cwlVXmKd39sQwTyuvX4O0EQirMxnJc2aI01a27GFKM/s362vO44oj5XeiGTYaPlSkscDIgr+h8dAignurgIHDQYAJASgmrBoYmgrheHzANB/w9Vdf4Xu/8D18eP+VeBpWxuV8xul0wv/xv/7v+OYnP3aKNUPA2wR4e1paa3dBD4ejeyi2/UczL0TZFZRQyuKGiLwh7vlZeTWGGmMYtOUCwMde2+zXVquSbYLMdRGhR6L2/TCGIOGlasV5IjG29MiiHmBzxT1GjjwPIYLRG+hclxV1WfB0PuN0OeF8OuPjN9/isiz45uO3csPR+YzlojusekvlVCYUIpRJ6IAq/Lia0LR1Tf5XmX2sp3nCw+MDpmnGhw8fJGbem0c8PDwEyEFqVDTzG5+lOarHsb6UvjnNWHi+2dj2xnVStnP9SUEIWswjm9tnY+6Tr4qIvWvQPjV6VIN3p++jZ44h6bGRlnEb6BPFu3lIfa4Yo7g6V7vgmp/2yYx+3koYeT+OJ7aG9tYzhdJIWAG5TLL2dP1qB4LjWfNd826ejQbQlNo8MH2eePZFdHKyG0ZfL9cqoRvrz0vmFYRBeQ76OInnNWNPUuBQpXVwu1O8vws9Nvb69+x7Dp8wig8k8jfiu1WlowYETX1pn2Udpf19rasAAJ1s3PBllyvp9zRucXlMjLtt+BmdGiBFRHr5R7o5V72aLPh3O1a1KbdJlHhXI5+CE7gq0I1L84RGFCedlOMWBaMry8neTbpi6H9KAxqPiapuOJDefITg8+6FllqRN4yDl4j+luchDYXyR9Y+b/lRW64du1Og03kkWkZNaT5ZPHiPNIf4AAAgAElEQVSr0o3ElQKIuonh7JllMaQW3ZCT4+arB3pvA7wHFxsxpsS7u8d9/RtPJH2vGU+T4X4KINMY+6mKVg9NqRUJ2BJW/Lg9YD6QONthHI/Dpvvtu8O10sisbZGvSYPuDubk1nf+IsLI+EjoWcEHmsZ2ukifR9SFgU6wUy/7+GaZ0GfiJIu37ck6mcwheZlW7rqoF6LZKiReNnluG/vNKzE9Xr7LrZ1Rv5sRpoez8BpnB43yB9chB+ZH0lf0sTsmWIDwCVP5f7l71y3JcRxN8IMkc3P3yKjsyqrqnp15/6fambPbM3P6dE9l5zX8YmYSsT8IgCBEymTuHtnRy0wPmSheQJAEgY+3DMWMo5wBzSw7MpwsBVYA2FAdP8TunLkcgw4APWRs4/X1FboajOXMYz1mKJ43vcycAXM7ZsPvQCqyF6CyEOGK+2bApiSHdZ/PZxHYxcBQ5uognpdf6w10A+7u7gAgb9NIC5ZlxuVyxsR5S4hWxixLZS+XC+7v72UryQF3x7wiya6OBds2Dz30b5pGWe42lStpiXF3d4fHx0d7AuXmkHrmAqvy+KHUzpTRd9dlfKOAH+Rtti/MDAJVA9WEy+x1b/CKdJa0ogIxKKLp/Pwz/o6Kifq1fq/poKthVnnLvzrrVhRoN1NsimPpRER5+xCQUWuVQZG/+TdZnEryuk6pdZMHSpcX6xkxvuLljKlKSjHSUmZ4V5KMVLmRjm/x6jBFItZ6gHGK9C8LvyxgYEqwP+tnWRY8P7+AObf/aRwxTpP0tbyMfBhGTOMBGBn3d3f4/OkT/vz9n/CXv/wVAJDmGU9PT/jn//4/cH59De2n0ASUmd8KzAt1ln3KIBTLlp9FoNotCnKuV55NzuctkClmOpDp3X9S347PWveD3hUqbqQBBzu4tjF75qZEIqBLRktWgAmpbIeVpqLrsdReLkeot8MwM87zDKQF8+WM15cXvDw/499//BGn0wn/58cf8Xp6xfOXJ5xeXzEvCy5L3k46SXsYRzngm0ZMNApHtD3DDCpG2bJ5d3eH7/70OW9d/tvf8Pj4CMKfMLkVpqUBuvpVMJcH26oKq2MpmbQDOaKj1I+eoebajHdEOmgDLOd+KDasZfH2y7VxVNsC+z6t8lYqxdIoXvYOQmXPVGEYgBgompt9IxshCiFcQpVvZEBRTp9Ueyzt0a0wawEGZRav9DTvoizn+mNRErX5E4EoVVuoo3yE1HWRrUU+kgvDHnWznNTPaY1Bi6YQJmk53qvkE+ULT97paonyfteb2Nkaw9XJ2qHS1k2xLeO6je9qsKOWd1UT53L+ZutPt0d4sKk62BUCDoCQUIDWFb9iW7zBtSba1k/J2PnpmZ9Kvy+Hlt3L+nEcs7weddzN45Qe9aA8ZRQ9quKt0av6oo6Xrh6lGwz6e0e5W/5KW9Y7s4GTdOJM4rUuyjGadQvmsoDTksW+Xt6iPHXnB9oobz/Y9Fft8jYau7EwJ1TGBR3fbdJMYxEAVw85CwH0bPcYBwHt2uWS7BB/bbOrG5o4iQwv7Vvbc94+V7bSWTqxblvtuNMO1n5cha/iR3nn+nQrTuZn1EUhg2psWgX8hA8tefhRRNOtw2yVKZRtFY3D+23p3Pq5OKrKXLFJ60tDhvf3uq2VTZa96DmVfmGUr0iFEsiubox+8wv5cl2vNR1hVFspEiGepJfVINGDZLzmVGTP0NhqY6z3QJPTo2wDiSLT2oCdgqVqCDlZYiLBJcXqqQNRs3wi86GT3go2kR0VMlA+3mVwMsfL0ij7PfCUbcqCK6i8HsfRxhLdbYBEdlHPIJPCmm6pq5LHQIPdiF4OQS66pVOruu7bAJuQ+Xp/vMfn7z5jkDNq7JuALf5U9WmaMMoJ7toQ7h/ucXd/J0zMV4Sdz6d8SK3so767O+BwmHA4HARUYLy+vgAAzucTlmXB+XTCfMlnLl2WC6ZxxOOnzzhMk9yEt2AYBxzHexwOk20ZWZYlN0apMD1w/HK54Hw65QOoB4CJ801OsgRXO6e/xQKcZ5Gmcczlm5Po3WWw9YKs7NMv/8qoWgZsx+zS99h1FqmIqtGwjEf1dp5khlx56n5+U6SKBaA5AT6O0JxC2ka7xrTv1AnhfASQy24ooaKwgDsQuPIFloULvX5IJAdUwQEgorCwyqrG3mCvGikHi6BW6cYubTg/stm/vvNiPwh7EdA6i4UqjBiPDJm5kjYprMxFq2+3YU6gJCvy5kueEV4WLHQRRSqvFkqXGS/DiP/ncsa//u//jePdEff3j2CWfcTzBT/9+O84vb5WJfGrlhQAKwr9OgyQb5ksN/UUXlerliqwKZddgbX8neWonWJUZT44YFWBVtmnPIRZaeXoMI5YLociiKkIZT2njEhWCyHPbudlrJI2idKKCXS8q7r0QEUxt22FyMpL4rztk92h3rr3++GHP+MwTdYHmRksZ0Y8n05Y5hmn0wnz+ezAJqENhHGaZNCZMAwjwOXw8KQ3z3nu6z/Kg6plljcGY5Yz6ZIcMG634blbh6r60HRpyFefQ3u9Kg6+iRcZkNtv/piYy+GuKkdNZhYD0lZSNQZ9K4nyWuWGO/M+KtCrLqi0kTOU1G+ll3nZXQc1P29MWakIZKmXc/pahmvTeHHPnjG65VYxWPpOUGrLjZ56/h5pgUCmUNb1aZOjnvHu1tIVFe68upywk/TvBZo0nyWVdtdyvi1wbWS16vW9Ts+GueZie1Cgo1Ji8xcU5broCPl3mRzxT6/E1uHhnl7hVeN8rQQXYBtYlGfR5tkoZ+TrtbBlNWWI72R+lRaLki7bzMdhrDrp4rYZZ3ABpqsNw2Dji9fiC5/WPNOxEkqr9nnKfUyBk3pyzRKF/3fFEdcnCh/kDNEIVrjxruZV6aQsYJOubFLaVTpVYxq8DGXrusna3ppizc9/NrkqOqpe421MJrIVVaXNlfJzWBlUgNXyW89pihOugeOo23Vy2/nKTc9WjkbD7IGNPT9Ny0MDZbJbgGPnx1yuVld6y6Ma0XzGzXxbvjk/Du8+/Y7ci0qw8t6XM4CCTapiMtX4sb8cNV80fzm7tXig2Gwl+2oip0FevXo7fG8oU70xOU946S4Nz+Lcl1Lgt/Y3cv1DR92ERRezSva1PG8Bk4ZsVRoKuXG9AJJFBrGYodkuSyCRG6jGDT2qI9NIor/XUiOPRY4XQgo5UoBB7AHXtlWGkgsPlauank+zjGXMsFWrCirpCtZhGIqfSYZyBIsu5IDPiVwroLKaiYnAurJJdOQ4DaiA0zRNeHh4sONPQPUtdQVoZ8s7TQdZkFOAsbwiF/CgW15cc11T+abApofjPb777jOAWqB6sEndOOZT0pnz4d9gxv3DsVpWtqQMNvlZh7ztZzRAiplxOr0ipQWn0wlpWXC+nDBfLrYaahyP+PTpEce7I748/Y7z+YKDbMM7HA5YloRhWJAUbBIAaZomHI9HnE4nfPl9RMKSZzyZocea6QohoAabmBkjBoDH3KmXZJ0maja54tk1XjWUEASSZ7gKIpgw1HxNidAs2N3y0XB2kj6XQy3VvGnKQFUmyA/UIUhjQNgCpMrV50ABa1RSFEb406gq4a++DCwqUb1+WVAlCTm471lqqXDlxc8D6PdaFTJRbXS3wwAQQKR3cG1QCMJvr2SUL16TcsKZvTpSQpPddFdo1MPQeZ6xAFhEsS3nJDBel2cwM376t3+VFYdJDurMCvY4DviH77/H8e7Ope1XoymNCuQU0LHwI9dVPoB8qsNoO5R60lVbmaclHZ/2QOV6Y1NcDGwabNZylBsayi0O/nrRnO481TPVOuM9DCNoGuWmhwwBTPJbB6TBpXl/f+dugsgg9ChE6tYRnSWbl7wik+0yA8a85EsT/ss//RP+9PkzHh4f8fjpE+7v7/EP33+fZeGUgbFlzudpLSkfmgqUK0+n8QCiEcM4YRjlRovLIs+5rGaQemFOuFwu+PLlC87nM/7+97/j+fkZv/76K758+ZJbJickZlzmCxKXQ3rn+YLLzLI9QSEcliPQtG7z3nJd2ZAVFFFdK4FC1szZ2jEE0EoyPki7doCSGW0VuFVkTsswX8JgbwAcc94SB9cfufQ00e5EaVJ6vdJRpyMcrtKxnK24tcBXqaxfe4ZJoR1NI6IVq7midWVwFq2JgAzKkyqSMgbJLGQLbCrytj4vL4suVX9k9jMZx1A0/cGYpenklQ7KQN9+3+50vmYLlCttpoyv1eogn94bwL2Y1+VyqQ5T9YaV5udXDvkVRTlQ7mXrdlXn04sfVzEBqPS5N5QKOoGypAJ0bwJ84jYNszfEi26eZ8zzYis79cKa0a12023k8zzj9fXVbR1kGyemacTx/q4rczzoJF+r8THPlI9AAtLi+8CwSk9lcfQrekqUa3KcA/txOqbpeRc0izmf11frFPlPb4XzZqOOLTGMWneV9qTtOaQDlPFSJ2x8m7E5CuNx0cWZ+wcRx3ZRDNDcU3RVgF/NFld+NdMVOlsTG9Fda7vOPHSgUr27QuuT7FnGch8mCsjeOLH1bVV2V1eBbPNbxaHchNJG2Xd1WVEXkmvLMUVyvvbNUKoSisCmW2qQaswHAm/X+aiMjfJxa8XhlqO0IPFQ9SPrN/L0Gj9Jmjahqf6uH9Rih5t9tmjvcBWrYHTZcVL5Q8d+tQ8BNVcU3CljTFnZBMEJmJLZIbk9l+JWFIiclIHa8VD0TAGEip8vhPYR7XccwuSJPT3/qOwUGUS/l10Bup0OCkBJf4fKpijXNYsi0eJ44AtrK56QJ7/Hh4cVrpKTW8uicRhd2MxTvRRqlAkULf8wThUHeu6bAZtAeZbfI2z6FwdbRbNV+dZ97bQMdZhUDN9yUKAOGr6SkuQDxRAAyHWB8wWXccDlcqkEf7mhbkFKC6ZpQloSxmFAWhImQQX9AYIKmJSVP0KJroRJyXVCQKejtPP61X6OcSIsbldIbQkeqgWsu5whoJqGA8muD3xfw6k5E5UiH6IMACDU24WpFYkbH1FuRWMF+Xw+jHrJ9QYveEcY9311FsAOp+I8y0SvnNbKnxtSHD1xMJUwRHIWmM9JTGIqp3tYDDHUmfTAZJKloqIYeoFNItw0NgFl+0wOqq3VKwCL3Hym4B+BZPubrAoz0Cffgke6ssmW1ecEB9IJNCmFKu9ANVsx2F7mGlAqK6cI8zjZb0BXL+UBZxwz2KQ3vuUtaiQ3ceoMR87n+TCV87MAA6Iy292KKSKTjX7AYWbQMODp99/ByyLnMl1wub/HJED+/cMDxjFvD56mCUNKNruu6Y+UaWUk8JLzGMB5RdbdhLrVZ7k6DIRlPmIcCA/3x7yN73wPdtud8zkWcqnCOGBAXubLREikKxhY5KSULwFMA5gGJCbMF8g5LmISc5FoWrc6SBsAlJJcpZ0BrawAKD9J2gWJ0SAIhWvz7PqF9it/fbbxQQKzrvJw3anoYDntATXYpKpLlY5osMXPq0Gw9lyvbXIXDziV8KpEWQUIEwMU8jEFRvNB813DWpt1SiU4nxfmC6T6la7WIMCN1eR4xFU6+h+ZYun4o7OLBEDaWeIdPNnjtsZAIqs/qAINp/yjtB9Lzkfv+G2FmS9zAZtkQCi2kuSZii6UdIu+bv+SChLRWNoX+Rxdu/Rb/LMlVxRz1Vd0ZYsOs5HzXGhbMYOsFxcgoGfBKT+cLG98tTrLwYrMB9yh3fJtyx0P97DZbFPQywpaAKDDhFH0w/u7fK5ovnWUja/jOGA6jI5ivT1NtmHJKtC0LEU2IBtKanTZGXYM1yTrVWpFTgo/qQ7ndRuVc6aBWz1kf5iO6iqCSloalOxGECpB5GOhusSj4GdhqExo+vJZO9T89IsDm0wm5eEiyxwuiyKLVhz1Il+0qAeJDGRNusgugItsjy27IS8GSccktSuLf+/51a6MR1W/sqpz/VvKwNDjPbTs0SgHfJa88mObAPLhclcajOa1XeOkAXvulxagwbNsf5/ENlqp8KbXw+O3Wsvg+ottV/feXD+dq0brBgEtW9g/q2/6L6/DeZDJ60l13P4zEFWKyLwOS/X+ljqdzLPYf6mqUes8zhUdowZM6ne1t/UJDI6HAfClOm2fx9ptyX8fv6Z9DTS39KYB4yjnFmoH8Cl7gnwB9VspbJV2y173vIrAZj0x1APKXX/cHhIBfEtg0zBgnPKNbr6gCuoAKDccpZQNvyU3nstFtu8QMLotTLpUWVdS6AyFDv7T5Gcr8ha3AWTLafNqp1cwJzw/f8GyHAHOM3LzfMlb9Gz104i//vAX3N3d4XKZcX98QJLzUZZ5kUME0/owLWawXG+aaAHl03dFvuu5IgCxm7138Ve73rx7nwze5bTh9oBBde+dnb1KB8FhPCEvGzBjhEYYJ5yrQTOEZfVbhalHl3Wx91RKK0xvSNgXpihzIQxHv0a6IQwBmMb2zByDoLueeMg3Sw48IAEYQVgA8JCXtg4DGbBT/9VUr4crockNUousRARcWxPjIAJBkD5OEKWnBAcBGI2GsO3EgToFVJJtdGqMqL83MBrxbCZjyNtkC7AzlOvOlX4Zl4ZYnw7kmgy8mjCNI4ZxzKARZRB/IMLl5QXTNOFRVjY9Pj7i5csXHI9H/PCXv+B4POLh8RF3Mgs/6WBkTE5AyvL2cpkFOBtB44DD8Q40jI5CBpCQ5gkTMS7nA+bTC+4PI6aRcH834fX1Fb9/WbAkwghGSoSBFyw0YOABQyIsRKAlLxOel9m22DHn48sTCEsCznMGmxa7iSiC3qXOWfpvYtj114ue3VVtq6QqflRBWZnDsAFfVxulRehEUUhta6PzM2VeDB9b6eoOyfWKtTV4Ljf/WTooY4PGK023bKKzFtTWaTcdaznA1j59moVlRYmj1Tf3HSpz5VVBCsjYIiHZ1YleTqFl1dWAOXqtzBv46nJUQsptZAAot7FFAU0NzM6M0OCB1zEMMyPNshqv6kOalxNc0ha59Q62bZ4+unctRb4VJi1LOfhXibGjF+r2mVgPSS5GifUnaevk2qrJUJWvQUnORWuZD1T1HbhyWj/R2+icXwmXdaVB6o9kK0MTALD23v+mQEruK3liIMtVuG3O5cbZ2Pq11h4fvsOnT5+REuMi+qqC6urG+4MckZDPyyDAzuyZl9nO7YlrJRepxyyDz1gW4LTMcn6J6Mo23o2y3ZmgN1Aq9z0frBzkVnQ35ENuR3rY8FpvYNYtLWulVP3sJDmifNutZoi6jWh+0SjPYQpVeiZJCe9qYgM41vFYiMl6/KIXYziYqWqa61VGZYyI8m39zQNjpYTW052XjDRyVqbSW8J6DkT55vqQBanHwshXlV1GrZfhpbNCVzXk6E6+VoapHIshYLavk5KnbGMUXYwtbOE5u/DcqEfjbTlY612OjLattOK39Qol05XkGtqK11rdPq8qstZgKXdroUVFQQSSHKWmY1DpXzqumlyX8H51mNpzcdO1X+Thi1PJ7QY/fByqfItPHSOWxA20yOONpqoYie2uGUqDXa/68f3Q6e+ArSrdR5P383FqAMfHKxPTek6T7qiobZNpGsE8YJ5nuy0uUlDpMQ5cUpugvbK0TOxFwOka2KRhix2lK5tkMcxOJfIbAZvIFJWWARv98kwZsoLobi5BaFy5Q6UV4zbpAKrekm/nckairDpIaXENXBqP22IzTRPmixMErI2/dJ5qAHC05a6o4qIaBjyVQqqsTOqUa88qo70rkbzQivFbK5ti435P3m2CqoT8Y92OGFj3ikaYBl0t+qPfOkz7MNY6jZXPBj9qFWOvi8riKslrqd5YPSrw4AytCPbkNuL6uymvkRYu9eb5IulzqK8k+5GtPYogVv8KcJKr6XXbjQbPJ72ZVtAuo0tH005Bful2Xg0fn+2ZAqx+A3r4YVbUbZgWmlXwT7It7zAd8nl244jDYSoGExHO5wtoIJxOZ7y8vuLp6QmXywV3hzu8vLzkm+IEbAJRVnZNOWLwvAjYNOMyz3nllW4NvLvLIL3pTzlOmmdcXl8xzzN+/eUXnE4nPL884/X1FZfzGS+vL2USgTmD80m20V3ygHuZL/lK6XkNNi2cDwjXlU0Lkx30vDJwM8MqpSvJdqtFtnQNQ1opCqU1rv1tFt/0SUl7KdtiEjRMUaqtN+sPUmCxrFgruj5VaXtQIqlhEvSkFQxEDsjy/g3j+5orlxWE9KIB7mmJ36D8hIyN0rL9FkH2ipVlgNF4lNNIslpQ6zSnqa1wvbphDTax2AYpb8na0nf1HQ0/LQ6zHBoM20NAQLnFxoNN8PUKMwBsNYBubdP8HE9uudWQFSRQv2IpCB8h+QnYp4fSyw0ZZfWVpm2FASjfulv1jsDD1nqiGLic0ZrTZjB4yB+8n8l/SZdIV4BrRbuDia0NsvSxMi5Z7vbK9k4CXg3IhjMxZSyGkgGfxnaTJ9n3hGe5pSyfRadgkx08zXmr3DROoIHswhldVTbPugqNrX4q3Yvz1uhlnvNKfb1FT8/t4IS8NSPfJirrfB2vqfCnVX6QG4/1o07kOKMsrODWWtHblAt/jDk5HEcKnHrG7l0DcDtMqSvXn8gewcWxXBMSDrl0lGOlxZELHZOhQudKHrp3cv3DzRCbPPdPlVnCx1iOqv8zSru3Utbbotp2Tw1SrfttQ4537LMqVR2PTA8rRYsrLCpdzcWP6fX8c5/p62m3ulYdR7ZR5ZdjENXvKkxLtZb6jeWJtlJ00UbsfV+DTY0VSxFs2klHVT8tuhr5tGxFotKnqr6xSkkkSYeOnk1pE8kNu9OXIerdJZ1W295q7+14W30k6pYZvxiadbvRFZt9B6h5c+1by/bYortlo9Rh1v3Fu28DbBJBr7MUERxSQxIoq5toIJCc9+EPvjRUVgb5JVyd22KuVYCeLSoroYZhxHfffcLxeMSnT59s3/0wDLhczrhczgDK7MqfPv8J0zjip59+wm+//YbXl2ecTs6Y0usJxUgF2pWjAjRVHe5GiwBt4fSWMFtgkU+nJcB6Df+ruA8Yc7ZmD4Cg9Dm/Os76oMj/XznOKw5bAtz/pmHcaLXrW3r62a0Vkvjea3NbaTPzCtHX649V0e8N9j0AyX/fs+d+q1z5ez7LzZezlLfIhlFWL02Hg61uOhwOAkBlMf/y+or5csm3bC75nJOUsnJo50oJUGWZs5yZxAnLvMhWtjxgemNCZVXSLcMoNHozR2U9IV/o8Pnz58pY8GeB6OqKsqVHDV7hAUi2zgEXveQo5Rl8q0czXmFbJq12Wf6EDyDIVsLBjHs1DqElUUWyFD2XyxsPiHyQL/L0y6Nro1hX+pV3It3HHxRDodtPUDgyjMe+nWX8ikJ9rA2iygU/Rj7EvZ4EqevX+2se0ZcBsO5XUWaD3blWhWeWhvJI05Doo6ywKwo2WyWzM9bMxnP0mGFNuQ0veX9oicfO3qWSDoDN1U+1JefBJirpKKkWhy2e3iDpV8NpJq28WjRW7ygurwIu9brO3/fbzFUSKyufdZP5NoreLBiurFaQtja4FRnalrHtDGDzfitjyj/zLV8pXQAxPoXdIW+grGAtq0vWstafZQTkiYgM5KSLnu0mQHfK5w9CZR7YtuT+/cdf8OOPv+QxQG75yXXImC+LAEllddEwSvuQM8jSkmXfNA24Px4wDHL20zjgeLzDNGWgavRnAiJPhOYTQAYMA2NIwhMGFFB1EqfhimSoe7C2hwzA2aLwToX6OuOUb1dKttzZQsGfHRVS2OGneQCcZvutY0f5raE7xpyTK+NIyOuH3bgR5OwqGYLVY5Vu8Ku/aa+CjWV5m2Mq3Q+Z4+Ww6Y4eE7c2kDHCHCOf47jqi1UHcZSvvMj6xvUJ1GLbxAk3b3/ZrYaVPiP0Nuy/HqhCWw3xBlfSMUkaXBzvvIAvT5Z6zL/Vr6a/Df6tnZ88tVwbNlbzu2vxyuvUid96Auu63sq7Z/vF+LfaRE0QxrUlv+BDv3ldvMXrFtDyUa5etbSm27d5vSEupVRupVOVqFPu1tP/7oKPV95b/NAw2g7jooE9uIB33wbYBBSNBWvGqVs17pWyEBpPQ1jF8P7p88kNgDBNBxzkVjldMZAbdh45h2HA4XDAOI64Px7t5He9UWRN/7osa+cGNg2zs1PsAUr2xGsZwT16W6DSLUb/Ndr2Oj8cbAFEvfa1K4+rApPX49IN7o8AqFYG6hU2rPSXjfq0PiW/7bkSlLn95y2w5QDKmOw+cO8211KAVJyw9TkG0B7IW/S0Bq49tz/tcbplMQXg3NOhg9w0z2Vl0zxnYFzApqenJ5zPZ/tbFrkUQcBwLYsfuLOBtdjgmPlVDk/UMuo3f+uVDlK6nfB4PFTy8rvvvhNQf6jaRew7XYUGWaGrwab8bPHIBkhAV7nLn6wQIso3htIAO26hGnNolb86Z/db2W0bXRH6Fn8lIlxf0XerD/ldXSfPZZaypQIPoS0S6RJzYKiGFCoGE9byZ63Mq8G93f/78QE1MrlcxJrDuPFOlWXDihyKUN9aBaRhQKrAJtgKKda4rlmtthqKjZGQBGwCWGaefP72k0M6jhVqiJu5TspfZ5Rq3ca0tfwuL71sJJYjct/8WmEIGYLw6ZpJTG68il8L0JT7fQ42oICggNvmS7DV3YNb0RX1Os0juvWNNlz8mKsYBnUzIdEMZpJj49n6UvUksrYYQSdN0WQ4K9gNAboByMQmsQDuKQFpUWGTkxCw6fT6gt9+/SXLurtDle75kg8Ph8geIuTbfexJdvDt4ZBvNB3HEWmWiU5OwN0BdOB8ocww2AUO5SIKOZxWt6nruNbhe6tKCm/YPbms5CRr4etkpKwJImehbTo3NF6L+PKuHdLLF0IdR8JE2VeXjes0GvKqSAgB4m17iCNBx4kVoY68jmHZcgpgAZCtZhnEK9UTymCgWr/eVkAaxfBcQqmeE37r2q0yDq/LsVc39frZTbzp2HtbYFNbGt7u1kBzpG0VY9MeUrpUvxqcL4cAACAASURBVGjRv0eH3QMObelHsS1s0XFNx75Wjgg0bdpgG+Xf4ku0M+O3PQDSWkfZ1673uL0AlvJSJ+2zjl0DTi7VVX9s5bEHzLvFbtK0ekDerel9G2ATc76Ce56rG1N0dVILMMqriSZRhjIDdFZfKxGOMR4BLbfRjau85nnG5XLB+XzG3d0dDocDpsPBvmnjIIJdJ/jXv/41r8hastF2Pp/xyy+/gFMykKoUtS4LUT4pHswF7Qeg+yGTKHmmYN/E1rWw+IiOtQXWbINoH9ux97qPKjewR1AR1kufPzqPt7nK8IVTOK7Fi2FE2dwCYpwpY65WXPxABGfwxLzbMyTRRZAkPqOgXL9LQgNBb8AiXs8stfJdl63dP95Sj3FGgUVOtGSiB3uICOdzWXmp8Q+HgwFAy7LgcDhUaSmY7vPVtIsyUZQv9Su3uunFCQWQ0HQOctC5ykQi4HQ6rXlHajQWPrSVm4wpMANzklVOBjYtsuKgGDkFpHCDpaWT2/Q0LqBhMANDy1LnW5Q5paqAC3XCTs0Hyb4HSa3qHUyy2UUBLekfAw2ytY6r2+fAsnrLp00uL4NSyjhDAiisFBcJsPl0vJ/dOYreNVt3SykUsCkthFKk8lt9TCTYD9dO3D8KyHle7xkoK+NVMxqkzSjYBNg5iRzi+XcfpozXBAWXCArOkJ3HZWsWfD2IUFaY2tYHaaYyvBCwArvMiGyEGShZ/nrBhd02pKSymZwZZmKSCxxKgcdhwMFu+TSIMv9P0urI+V2vBlcwz7K1DPfhCJwvEgCDMCFvfUrI27wKuERS5ij36zTz77u7O6cT1gOSxvO6Y5Zno92UPI4H0DBiSYQ5ZVn78Pgpgz5yWUXWM7kWotIQkpwZdLlccJlnPD99wU8//TsYbBdIHKYpg0nDABoHazPMjItsM17kMPh8A2x+6vmisF7i+p7J8NJ3onw3SabtgUTmuacIICiY7m/7tKcKTS634llXrbqua3eWP1Z+BKpWfubukwuQD/tno8lHr2Sa9lEvQ1iATma59CRV/cBkhq4QrBp6lBCxOLXuw1z8yJW1WlEVKF/L3/VEXQuQ0Pe67atK5w15LWSJ15rAadOi6a77WaTvlr9YJuC9N1oWpzpTqzw9Oyf4AIJMlkmpdTn9+16argE7rTRLO3b9W/vlht7uf/f07l1AV4hfvW8UvdW+1NWTwzsG+P8AF3dnAet2rpO7l8sFp9PJMI8ct7ZVfBW0xjDvIsjba8exPXq7KdpQPr/YP7xs2mPafBtgEwDITLBfDRCNFs9IogHD6BhD+ZBcNaKKIpRdPF/Jg0127kqShjAvmOcZh0NZzWQAlrhpysrG8XjEn//8Z0zjiOfnZ5xe83W2z8/PGMcBd4fJGW0F6fZODxe25Y5cDxzsB7edriVE9nbSXrgtkEn9twRCD+3+SOfL2qJtK0zL7ZmZqd9NE5O8NMy+tPd8e7NrjY+3xmkFaQ2k3kgJTo1eAAZ+mDbWKPbegaVlSPSAphhechKrfJADI7PyULXpTBCwd7ZBabNylLZRjN12XYsODN0C4vuPH7j84KEyqqWUPT4+CsiTZU0SMNy7KB8j6ATAZt6jjFF6PE2+bg6HsUr7fD7j6enJuLQC/lw78flYfshVkZjK9jm5Crmiw5ILszLuadCC1bf4p47SW0wiTdnRLAaYNiEXysetwKZWGAIY+cY9APUNbZzfVaFspV3S18OTAV051lNi9NlTaIBy8+NbnMAuAOQigeR4cIP+uNnnbkioROe8siRfkSlgX3vVWDQlrZmq/U6EUZksnVhvz8qWnW8vBNdUCnigCdOAeAtpLLLZhr0wCrxImmQ0+UxdGABJDU0FnDJbMI0DDuNUta6cxZ7xql8vsT3q3/pyhxJ+kHY9DaNcnpAy5UHm94CmqFA/PDzgcDhUfgUoz4DS/f09DocDjsejydNPnz5hHCfcHR8wTQd8/tOf8fn7P+PueI/v/vQnkalhS7mMkVrPDGA+n5CWBa/nE07nM378+//B//jv/7dNnIJIbktVUCQDzumS++Pz6yvmZcbpJZ+HlydN83l5zy9fZGxIK92yHkukHzr/LSPZeCwNiVHHUzlcQCfRbQVs0nKUH/rQlxp+qcIIwlvarBCfxHaAgE2JJaofCxwPJBsbU+Sd5Ef2H2Bb1ki+x7GcXFnE1686IqMhdlaIDA8qEGMd1o1aazEX/bQeYtzMJm+TENV+SkXdVuoLm4z8N+ixW21qC2zycePvtzrVq/aBSmu/mr9UfqLuXz1gRn+3bJat/LfBq7VuluVFn3fX3nuuBxBF/Y85rkR8e75btuiW31exqwJdLYCwJRN1YYvfpjZNa3yilX6vHNcAJ0+TOn+xUmtc9M9W/L1d8NsBmwCrCHV+kPJhgFx4rQwFkqIw1NuZfDxNd1kyoOTz1QMah3G0VU1qcPl0WUZjIphxl5jx9PSM56cn/P777/j999/x+PCAh/ujWy2gVy+WMufbpwYzcogoz0oSIR/yuH9pXE+I+d8f0dn2gEaxwdezJh9LT04MV1v93vy2OvJVP2otgywD+h731QRiNEoaRkorTlyoxVhvEVu1PTNweor/+5WEmH8cULYAJ+9f3iFtSM43WPUn9moY8iHnsLot3zJjPYfytyCwG34aW7+Ds3HfK3MVzylNUQHRFZcRvO8BDB64Wg80ypo19fnqVl15Va8IWpbFZnRUpqpCvC6P53lbvmU6xFqmsdb0M5JRhScairHgG7/PNiVgoFJG5voMKqe4OQlovMjkMMBytTOjdCDWg63d2qZi1UgYLY8AZU531fOskNSqSdmPzfqxFVEEyryRtFnCQ+hbbzfK8f2THAih5WRmLGm2m83W9XXNSfmYwImkiiJ0cd2Flm80xiGA7J8ScUWpAksMDMzGR1n/YS1F2en7p/fz78YeBXZIV/0QoDdhKt2kB6ditYqKJZ6tmkLIvxFvFYbyoeqDIk16267LX9uCgZZqWEuf0jISJwwpBSiz4bj7Unz8WOGelbzWWzptNZVFwYCU5e7IGCivbNKeXW73pDp9A0fKN62mMxHS7GStA5uWyyXrmSkh3d2BU8IAYDocMFI+6y4tCeN0wP39A3iZwcsMLDPAIxQ4rDlQGgmBMYx5UuGQJoATPn96xD/97a9ZbsqSIL3VWG9OTClhkYkDIsayTLgbBsx3E+ZlxuVywPl8xnx5wUVkha14QB68koiQAUW2+z/t9wC5LbTaAhh6ib2WJEkd6K1keV0mS1gH6MB1TarY4RuJ+AVZ7duBnrEnt+HlcJmSxIyyf5Ts8g9yVLNs6V9Mh6xBfdF4rDPJ6ANdWRUIdtEdsGR+TobLu417Jkd0fEuQWoncMhuk9kvNMCWsZ2DV/SrApPh76de2x9RdM0p7/tEI7+kvPfcRNsQeg7znV96dHun6Sw8ouwaIbJW/x//KJpNxvMrzhnK1/KLt1itPq87NBhRC6Eqe20AaNr/FfGNacdJhL6j2VucnTvzkif/tXcU/gmEAe9u51+Fb5Yt9LNrmrcmaVv1uyYOW+3bAJmabkfaF8auJPLOHgVbIX+J8C4ydFeIAKWWsboWbnVJBJMub5bpqvTJcl1UPQ76K0DM9A1PJ0kkp4bfffsOvv/yCn3/+GT///DOIgB9++Ac7w0lXE/iKzde/kylCSo8qVnnO7nojuwY0eb+PBJx6QFMLef7agFM99HbC7MjvPWCTKe/YN1juzfsjnCrYJsxgpG7GQSPMtZUNuf+V7Vj+jyi3e2YWZH/pprNX4fByo6X4rMGuVhiAEJaE8npuEaj5kuOp6l2e9RBPjfbZ9vNfM4/0ZqJ1OXz5Yt+PStvpdMJFjCYd6PxKJ40HYKX4+W/lzKYyo73aemcgRwHydRZHZbC/tlrDrpRQVfRR2lxRzsU8pgHDKEqeHjCtCnaxmFBOttW6q5X8TAMBya1sYoZOQuQ/Vep9l6DyJ1a5KpsAm71gLYlV28pxmBk6a26n5aihACANmpveEJaTSWq4MGC3uQkZSVfPGD0JDO1nxShTg0LPcyrtyhv2tWK2yHYf39ZucgKO5W10mc6he1jwRjJhbOm5erwBojBj5JVMNMhVysTwCJKJP/eOhp++M+dD1HM9i8KIMs7bimwFbCRMlbb8WBRs0rzg7G5HSEVjI8wit+qCKN8aibI1H4MDYJyfdCRLL9M6ALJKx/LYoXtcM67iU7ed2TljJlfKGpqBMtiUJj20PIn8LvKxtbW6J0OTnHGnzsszXeG+XC643N1hPp+BZcF0OIBSwjiOuBwvGKcJnx4ekS5n8DjkazLHDGBbE6fwFDBhHEdgHEBIOBBj/PwZh//6X7GkLDsXXnA+nTDPF8yXC84qT6f8PB5GLClhOd5h1m10Ka+yf/ryM5AulltesZPlRlLZY0Yu7Jv2F1aQJTEWTtJOBmkXCSYsmDHImDko2MIp+zEXELY1qmrbRRhzqR9mGEhup+Rc+5WIFTAfZDJzECisbHMVGZuQb6IEg4uAlQyLnA0ZoBzirRQ7/lXxqKTNGpzqMFK4om7phA1buuUrGxner3Qzpdu7Es98qn6pB3oXncUzv7r5u+F6gFP0a+kUPdBpTePafQRYsJXGHlmGSpNLNh7ntrAuayudaDP5rX17XBW2DCnlDM0r5dqizeexB2jS323AqV6BtwXGXatbfxh9y0Udthf/j3ARdIrgU6a3iNIcB9X3lg0TXQvs8y6uNgXK+Kp1pLTpN59220a4Xv5vB2za4SITI3K3pEWMA66YBrgOJwBWDMNqVLoGMY4DpumQt8OJUaZuGKg6f4TFiDqfz/mK7pQHldiwsgDyHaPujIAX9TKzZ4PXmhct/lRpNQTarcL5GqDU+x7jx/r6msBKq4zXEF8f5u2AU0zzOq9bwMHXdFX6Qbg1XSMMBQHUjObaoAcKiICUdDD2iiV32bUXdGrV69tnLzbiNNuJWefFaGQfpTc4hDyJxNMNlKLckus7vX53TXHSQcKD6L5v9GSHvg5ykC3cIOONOwWbiKISuZ69rAGkVt5FJq77pir6BfQi4ZGykHw8FAXMQ4FFuXeF1HLpOLERjxzEaB/Zz2oznBmfDRyhzYw5yFkzRkjeBEJABr8kDFv6JQwkTA7sDBe37IaRV0Pk9sWumZHrjzAerp/5d66zeitF+bmjjzEA5BVmzINowEM5j8oAmFZUV7Zijlnd166kU2gVmRPkjK1ASGwrevw2OmuJ8mJ9W5L0F0JpGE5LaSQCkuSVZtm4L62BypkxIR01FxVssoVqpYg5Cy4cMTyV6zCglFdJEZVVFQI06nlfZbVSMc61wZUVXQNA9crP0uyFd612wI1XEx76EDqI5Jwy6btUbpIsK+/KyqY067mWjGobHQqwtgKbQJa2unyj51DR7w0EIsLhcIdpmuwIhXEccTweMQwjJtlq9+Pff8Ln//UvuDse8d13nzGMI4ZpAjRtHfO4GBNZ78yeaZ6R5hnn8wnPT08ZUBKAd76csSwzlpQwLwvAMknKbLqvX6WfOF8C8eX3L3J7sm69JRMVlQz2uqaT7yzfl1kvgFAwO4P9viI1nSQrsNjJ/WRHH42ZFidbqnakNFrTiX75PdGARHK+qQA5uuqy3CwLK6sCSeRaO5OMTXJjnqbN0qEqAMojvMzQ/sAuE9at1yEdlfOM8m7yCHAAsY6BZVz0HVrHDD8KrUGi2o9dfsVFGZ4Q82raJ1d0qb26VrRXWsBAK8/WRPZ73J5yXQecMn/Lv35cXOcRn1FH3VPGTfvLSAr53VC2Pfzo1dXmYgO+nmcPwLpGz15aPU0f6Vr6t5/ciGdG6yRGmfRFNd6o+hBpvQY07aFTn1ov+jum3aqrqNdn/+08vymwydSvHcYhsz9rKQ8qp8sZs8yY661wugdfD85dlgWvr6+WzzAMuLu7q/IchwEYBtzdHfHp0yMOhwM+f/pkW/KICPN8weVyxuPjIx4eHnC5XPD6+oLff/8dr6+vtkVkmiYsy4JpmjDPs63osL+hDPSVgSVKyDSOSImxzGWJeDVcNPi01XGV/ve6t6bhBdF/pNui4+1AE0QyvH0Q/Lq8yWZLpUrsIDeGGSgfxp/HMu7+qRLbWp2o2+jGcTSDoOeuD/T9gc6j9dsyJSuFQ6U8t8O3Zhl6B+tFeq8NoqvvzGABx/Wkjq1Bp/UegaSWfNgaJEvZ8oqmcRgxDGSrlDyAr24YKF/pTRRWL5V84wpTU8yxXupMBNlm4gfisjV5njP9A5cVGgQCD8WsHxQSolohZILNxkP54IyUoVgqot4XI0i3jJBX3JW3KZVtdcird3L+DCPEDAOdTc9p23lMNEgubiWTPXSmnDQLd2g0uSzEXEpzzsvObwI8qFT8Sv37p7aV/m10W0oHu4cAHDyUlQdWY4Y8CJBTjEv2aTAah6gLr0lXA1Emxs520VqKhmMCOK9qWBIbvxjuEG8JfnUbnX6RQ6BZV+aQFiiDPQ4eld2V8i71aGvnVDmHr9ua/Ag2tcIsJOdGkYI1urUPgh6Ln8bROk9lXbXSN8gZOBQquhjBLr7GdQC88Y65FrG+6lfjoG+fBr/lWqZFnvKuIAiU5cppoUMBKE8RWYgCEriz6ZY0m2KdwYRUwAkWuSZMeHk94/n1jGmccDzeg9wMtspLlbdqfNjV1wPlWyyZscwXnC6n3AYEkBqkPMM4YHR6br757g6jvFuak6z6YQ8ksHLZ6sJVICpB4hik1etloIFOFSiRn0n4pLo6M9vK02GYQOMo6bq4FR2a3vY4Gf1awMU1HZiIMExyhqu2AC7jUU93IFqvjNCzr4o83EqngPns/HI67YsYWuVp+RUaKHbHirbtNB2lVNezj3OLjgPUR5/o8xog8zXd+4Am79fidTts5FMcZ4G32wNEpT1ZX0DxuwZWtGiM+mwPaGqVp/Zbx1+tWt/pruME/b679e2tzts9QMEYPMikZ/7d39/j8fHRZHi2URYbF1TvBd5uM/d0ff+7VVfxnFafRnzPcuo6Ld8U2AT0gaa14aYFLQN3PMzVx1PnG0MvTR3w8vieB/W7uztrENoImJMM7APSMth5JAps5UG1KBrDQFiWtXXPcRCSpUxxVq5Wc9vuowT1VuNu8XZPp/8jQKb3Cumv59arQKLrgQgfKhCD0g9e2QVrF8NQUdybwaWu7ZrkRoJVmRoGx7UBfg9PtmZ+NmIFSO56mis/n5/ywv++oWxeQeiFd4QIv9sKj9LArGmorIQZBdnoauVXZI/GZ46z6aEiaciHLodbVVrGQKDSfpFPDzXPtQ16xV5rztvLyptgEuWVHmxvQlsp89oIc0a8o8rCONAGVdnKkzURlvKx+vqxR//h6j90Vjbl1VfkcwCxGnG2BiDT5NI1iMItmfEyijkb7uyX07AakJ02yL2eU9qRlnlgAA5syitthoqnbMZsLn99oJGWRWpdFbOqGbIVqjRjX7eZNzk+Awog6DZQDUOFNxpZ/cilbe2iNCSn+bPL0zUXdjRFsag6jVcbXP6OVUCHxvzMm8wgYBODioy2XVAkO4dIbkeEyQvNngRsgfyOrjf+DsOwahd7tuT0v7HwmMXg13ObpI2JIDORrNDe4AErh25ZAdwqQgZ4yc8lyU1vc9mCYADUUsvAL08v+PLlWW6qyxOZevPfvCxIy1LGg2HAYZrsxroswjW9BfOcbxQl0SFHAaRsdnwYbEWVHvtwOBwwjSNoHGQyB3YeVBEea+DAmMGtbw5cqsa3us+y8/dbkPUGPhs7Jt18VoNNEL5cHfNiGHvnait1GedCabysBrKunbRvyJ+OiVdkGoXxPo5rm6CXyK/ar06rl+81v9IXsSp/K851HYtANK6+bdkcPdCixZ9r8T96RVNx1+2qdfh9YfcAb3vjW+4NPqzkpQ0wJR3r+R0b+ya99Eod9+hjZu1cu9OJ7iNsO7NRPrgt9bCHuLqptcIJKBfSlMlWvwp6n13eq4c9ZS0AUvsm7r7tfz3tbwdsIqcZmNf6Kj4/qOts+jzPVskazu9LjO8+nJ8p1yMtLpcz5suMaRrzeTJ0h4eHB1kunek5nfJVtPfHIx6OByAteH15wW+//Ybn5+e8umlerDHpAeFEeuOHA8jCzU6kivMb+8GW0P4oECY2tr0dNxrmHwoKfYDgaBvAawHdFfjMqK2dttviw9cCyrKdsVZsruXWUjt7wsivZLHFBquyAtq49+yZ3gM0xZUw/tnza74PJIfL9hVMKoXoP5sRtX2Up/XVUrgqXwIwDKMLweEReFOSWckPFivXSxroAEgjCCILB7fNpEqXTYlJyGDNOE7gIV+qwG5gpMHzVmK7a7ATyw0c41C1LzXCKkVJaGcxihMnUFIYor7lqJS7PtxZB+1iMslYAjWCdAZ+zdXYZwKxnki3yyI5eZSZZvxJWj417Lj8uYNjs5HEdgudbhOBGlP6H8O2QinokmyJi2Tj0lEm2XYNX0oFJ7QeG0VmdteAO/6uH7G9CR9slVG9/ZCESz6FugWauix+et5JaGcA3Do22OnZYkmWLTGo+c8BjHP72hgWvfgpr2KHdS9Dg48Un1yXyivj1qhbwsjRRpGOGMbUK+EFMVjO3MEgIJ6Vh62sHlzNWByDZS8Uaf1ujLs9eaty4H0ub6Mb5MwpZjj5Oxjgl9v1EPqe69cCSC5LBs/13D6iAcNwAAgY6ZCV5XjIN8s5RFJnzMCfl0XO/yy6Xb7BsYAvamwQ6ay2tEtmA6SGYcB0GOBbT6artJYCnOUX68MM8JJwWXSLWRg/MCCOVdpSIyxv4wQo36q3GuNCeG2u0jYya7huoEveiscxThAsbT8nUXT7G0o7VIO2jHeu/yi/lFEmOsqIXyYeuE7L5dHiwcreFyZUQEpaj+81qwtNqRazuwCCnt/eVQpbfl7HaoXZAzroe89m2ALm2nLm+kqiPa61asvlHMKWyZ0Y5uto7iGnPUCRENOyZ1YA6c78WiubbgEyqvRCvAg4tuj0+ffssVvdRwOYOq553CLSphMCd3cZV/BH7JzPjXOqqeZ/L9/WU397XvZo8/z3Rw31eFOfQ32dN98O2ORcbFRNP0YNOgEyJpZwWvHaMHvCszBdzqRYyiG2zFnt1i15CkyltOBymTBNI6ZxwDjkrXXn87mc28SpcwiYbxBlMFYkM49Rq8XFN7keCt169/zd43pA01sBp6/h+ghsW8BsrSRqCbZuGLOd3saHVnv/OFcblOBKt2k70WtXQ2tHCBn9ogS0QSBNWNNJ1XvMp+Xv/VoCfQ+IV7/niiNjiBjELf7HtLWuUPOpSXN4Vn6urLX+2TBVScP1Z6muKSUtwL0nr+zPySczQqisPlnzvRhYDLnEQYwybR/eWfcpsXO6Vk591uARq2FT2TReASybqHweuo7ByifXZpuxbYAFuRRdTagxZUSgGFcKDqEoDKEyHJ1qEAmH3TdefYPVRcUnl5zNl/tGSS6vWBirV60TXgexcvXKUYdRYysEbqZLjjZrEcr6VQwOqagMKdGAAqZV273Yxc8VhdKqdTwuPKr6dGSbe2+J/QprLd3WN6cV7yonjZlb+cSg2AhDMSuu27WlX3pFXTZXn9rBitCyvh0JK+Jx+0acvqPqUX+RupL2ypKPySV71/AeDImrUfJjTglL4rJVbQBIL7kY9WKLUfxK+czwFP7ozYNpSVjkEG+9HEHLq7PZuoUCAJKsnlLdc5pG3N8fK55ZG3W88xOqXu9lFnkLxrK6hCOBKuAMhWcgwB3YLyYK8kRSHGsJ6zbsD+puyAIiEK/BxreAKVlm1zestp4lgrZHK7DgrARPTmyfW0ZwTsa1wRatfgz1abn4So92v1x/q+Lv0uev6at74q3TGTAM1+tjr9uj222lV3j9Pjtiywxp1bXqLu0wThZ8JdfjSeUv4p3h2jJQ9JheG96o/2v5btkDpqtrnOxp37b6WqSt1569Lb/HXvsa9meLr5E21bPrs5qGKm6hL49nfizVfFp5t54tWhQk0nx9Gjp+JDc53CpLzPea+3bAJlOs6kbi0Tj9nVKe4o5Mubu/xziNmOc5D9gyyOfkC7rnD+UaxxF3d3dgZpwvJzAzxmnCkfKs/TzPuFwyiDQMgwFONrCbIpbw8vKKp6cnnE4nW201jhPGca5o96hhPkjcV5ZT9DnB7HCxV26VYS3h8ZGdLAJNewGnb9m9i34G/FXm72X1h4NOa3zlavi2nbw98GSVdQvoua5MbLlrg2BskxVt3QG3FqweBGu5CGT5gaJlSO1SEvTdgRu6kkRxsBogr9Pwe9+3BnFPv++z4ziubkGJt06U2+gAbUTFEKrp8f6e/0Ue7usnrTLUBqR7MpuybsBg4CmkLLyIDBfjjFPKNJnxIPlEfnfoqpWoUmfKqfIk/d8S4xCu1VqE2+63hKwiR2aymI8ObnujXGqPHev6zX2r0NKqNwUptU1npapsgSqkEpjlcGViu+FcL1VXvaHwjaCnHlHgJvu2ylpVXP7Ix3Hl3sMbzYlzeRMYugqF9FBw0jbB7UStLUSdoPq86VZhtOlbMoW5OlzpTsrVhD3ckJZLEkAK5WUNALIWz9pEmUzT9rEscWVTvUqBHL0VWaqEC1FzMuJc6WvjBuQANmOK5xSDU+ZHTi6DD+myAAQMs/R/Wko9VjmhgJqJ81lXRBiHvLbt7nisjSHLNt/ulpsjAZS3xY3TlG8tlEPFF5m8XJYZaUkZsE96q2RYlWgyMAP7AGEcDtD6dszquFpSsfCDAfCc6qiOhaWLezkbAxY9OJ7VeCuI0vLb+t0GiByYm9YrpFbgUNAhYnpAfbNTTKfWL3gVF4Cdq2Y3AG6U/1bAaMtdC5f77LKit+e2JpX36LV7gI6PtmVaftf4UoGXesMs2H3bx/9bXKuOV37UCOv0oFvzegvA0LY3beDdradGPX49gb3u2z0aoq5+S3n2ONWfW8BzrCcPjjEz5jmfY6rYRNY7yKZb+QAAIABJREFUr9MWZU30884DW5H/UVYpXhHjA7BJkv98YBPaipQWTLfmVMxELQCnacLd8U4qbbYZJd+g/MHhd3d39p5SMpVmmkaQXnW7LLjILXP+GlxjsOj5iRmn11c8Pz/jfD4boKTb6DR/D47p+6YRmhKimvStuS3AqTcYfA1U+Wu5PQNdCaPl/tpUvc35dpSNPGw2LFNiQ5jrigmgZl/jqyWo51Tc4m5RQuNA5cO2vmXwQxXCjbNpnGsNfFGx3IrXcj5fBWTGEMcPaCpPfN/rzUy06PBx41WnJZ2smA/DaFeTF1dfV9ySa/WqKUlf9qCUbT77+WIGudqapVlpyYoFFJQ+Bsp5OHJjEpjNkLM4cHymishNoyS6ArB0FCO1zBzJoeS5G66Mt1DmbFvWHuKnoM6KTY28+q5vOBSgYWOZO+v2RrlHkOw0nSaIWscX5WhQcCkr+boSiaVgmZ3urANPH+e/FhgaEI0NHmw7ArCo4QqlR8ngbhlb7cf3lfc4y9/QpHK6kTaZVdNxkasxA0MBNiD9B1oPvl/UCZSuozdTRqOihpW0vRqNHlExFDefbZQq3rXab8foqfJ3QJA0i2V1YXjP5QgEIM0LeM6Xwtwfj1nflKfKQL0cIa+Qv1ifIcq3IA8eiOGEOSWktOB0OtuZoP7abyKSbXn1OKfpjnSAbgFk931VikqPUcNZyahXEPrwdVqErf5DlHfRtdr1HoDBf7ulL0V5ZPUMabsqx7HPaOvJqS0jszdOeJumKGaB/xFM2KkHfZRrGcr+Gf22AABNb0+eW9/8ltL3uN7knX7bpo3KGG7jd5bbX7s+9LlqqxrI5PTH5BdB1Fvitfyv9YuYb2/iWH/32lxLXnwNG3RPWXv0MmdgZ5Et1OM4qtaIrRrc0kNbddWaZPbjiX+Pl/j4elDcJY7jPfdtgU1u1Y+ig639hXaTAUXkOANPfuDVK9qVkdM02dI1AHaoN4PzwYqHCYcpH7CoaV4uF/z47/+OwzTh8fFRzm6SPIYB85xwPs94fnnB8/OzLZkmIhwOE+Z5rGhXECtXWn73oBkN+RwCEAEDgViOGnBKdEQge521hdy2Bs1rgmPvgN4K3/vdS6tFT8t4qcO0gY3Y2VrpvHX2oc3vTEs2ytfL1CNNEZhrCdFrhmydf3+AJyJ/NEf266RTDVpZ+9qVv094ByDfdW+pj7cCm2slzn41i10nR6snF5t2g9ZrLG0pkv72s+wR+3fSvI1QkhlkmeVeZUoWj1S2BHDKxhLNy4UXCxY2M6+Uk6w68YY86cqBEtJWNg1SHtdwvG2ZfzaMGO1vckiv4DXO9JNArjEW5X2ttBDpwbW1szbCfl2RS41DvxJjuJShhOOYutBRgWceBKkI5woArvADzxJPG5V+HFOlKnRRnhHDbHQh46GMS/4ZwygxLHQr1HGrkRnDx/cWkNxKpy4v18x8s/zicjte7W0P356i1b2CRJp0dBTzDkXDQHmVtKFxLFWR382k9b+vOWnLpU2RpbdKwnvpIBTCKV+0vTFD+qKkLsuvIoWV3NngQs3Hxtht3qFvbzZ/N75K+YdhBE2DzEwPSAzM84KU2M7ES0vWdfNqpaS9AEA+k67cXpiNkJRYdMARGefP538CsDP2CkChBKmQGNx2LKrrwfHD5BpzLTuNF7RijeahZa9S6zQjVrm1YVy2fl9zewAm9TO5QHlqqdK3OunvmUTV9FvyqQUKNOOjFgtF/WJ7AqU95/JEGmqx8hGYRzSO94BJPQBH33t//nsr7iq/1lDZcq0P1qa5DsLVm7yGMOan41hJsGfD9ICTW8C33jjYCw9ALuBwZejUzxZ4EVe57KGhsq9E5pP71gzXSKPltxc42qcHtNO+Fu4afYpj+D+PPxCR2fD+dlFH5YqOa3S35JRiEvG2PAB2rrRPe57n5q10Hstofe+5bwpsWhySpgU9HA4rtNwOsRXmHA4HAMBlWWwF0vGY97qrAqMMPMoM0yyrlS6XC758+QIiwt/+8a94fHzEw/0D7o9HvLw84+eff8LLywv+7V//FWlZ8Oc//xmPj4/461//gn/8x79hGEa8nmc8v5zw66+/4aefcnit2OPxWHXQclg44XK5YBwHEE+2CmtZFtzdHQwoo3EQoygVRR6lwSm/fOPzDSci0W8FLaJw3JNO7Ih7AKsWGBTDNcEoRpc+/37LYNmjcaujMzP8gW7X0nwLqBLjRaS6y3eqteZounfL2UCur4kXbxB3vq4UpPe4LV7f4jJ42xowgXWpqfNb37sM2Kn8uTqGrLcyzfNaAgQMY1XHaZ4RZ6ZzkiRbQAjg1OEjVQ3GKFgVpLQ1S8ZdD22QCtfbCvSKe0LepmH1yYX3RHU96NXtzAnzkmVguZq+bt2Vcao2rrt1qYwtDN2dwrye5Y7lbMoTEtrEEPPmeAbEolIXKbwuF3xzvNbqNaXUaDZMBRSiRoKrLWVq4Pi2qYfrcjG4yTUUBpcwLmXmMj5vGZ/XXEsp3nJeCWyNc+93JJNVYZm68MhW8zmrxsBJDxj0xUe0g7q027g3EthWy5gGkb81ZFtPeWbAHTbdctcbZS49oQDSoX+6f1gAQD+eGL5teehNFMJXRapimv69VQTzXJ/plPOPPMIqDIEwjBPujpN94MQ4nc5VpJYhbfV3yYeUVxmoTjFMGIcJI6fQnyQv52WgHQgzD5W8W7uWvxcYqjsMJXidWb4VE4Ad3B/arwfT18dHvM29G4wCbNLaDLWNNPZMXEWDfAsgWIWBsIUYzHnVt00gbbUZR5v2ZwWcPkSkiRvH9gRqz10DQHrnjflwrTKqfz5DDVi1X1796POBcbUv7SmLUAi/zfiqrXA1vb5efg3k6aVzSx7+vTXG7tG5V3FC3Ft4Eb+/R+ffAjCv2apRhxjcopYYTu1xf3SPLjDRVUMaLy+E8bDM/rpu6aJKm8qlVh2WA8phu7YUI/H4Qmw/5ZzX/4Rg0xYKuFYKIbfyFAbYQbTKGBcvHsDl89TGoFvrHh8f8N2nTxhHwun0ioEIX4iwMON8PoOI8PT0hN9/v8c8zzgcDvj111/x/PyM0+kEIANgo62Oqhun9wOQQaUrnXgYhzxIu/JGFLPFT31uddw94E7067lrMz63pHWNjlVebmS9JR+lq9U+blVmVBE2W8s05w8c8VHzwNOv7iqvajKrtFauZfRQ62STkDh6gFIcyJSQ9/Ho/WCT9q11uqq4+e/+PSp1NZCwnd81F8309zifTqW4obSFnnJXpXGTBqugi2WQ37k2uEvQtQJXGT2IW3adIr6DrKo31snWuV6Rm7kojTElAF110i2Fr68ERtfSq3sGpK5OKCwN/CEA7lwQU9pdVSD4CaEuTzUgS2dQyaDmk9+q1SDSP5puA3NZfbnGwUjDexXWXi7Mcfub3wrf4Yad9+EAFdTplCYifWqjwLU8anfZljGa/QqNUe65VB0tsZaoEabEY0svyobyXXq6NtPctgSA5l52RkcEDRq88t2BAoUubM6/7gOZR76P+zbv+j/rpmzJzEAFLvm7MtdsWMsIT0BdHgZWgG6RdUUPITgo2PJd9YuGn5bbqAlgW+t2RvbLm7WcPg1Nt5HXHvdecJhd+78GNL2HprcD6X2/FiDQ01X+aLdn3Iy/b+VRkduq67byuY2urbB76rXIztvS9n4tfb7lNm0/wA6+v6Uu3pLXTc71tWs07V2ccM3tHd9bk/S9Ml/TG6K93/utaRWANSZUe76lj+zhtQ+vT8VM9Bn7aUn7PxvYRITD4YDj8WjMVzQQqM8fybfP6a1GbiZBtp5pxY3jiIOcy+TTUcQOyKDQDz/8gHEa8Q/f/wMeHu7x3/7bf8H/9U9/xW+/P+Hf/u17fPnyBSklPD894eXlBb///jt++eVn/PM//7+4v7/H999/j6enJ/zP//U/8eOPP+J4POIvf/kLPn36ZHsfS+XVV99ySjIhxw4QK8pGWhaM44j74wOICIvE11VZrcbwx1TX+7eefbSSn+2i/mz1H82jjzZk9gxQ0fl6aqmV2YdW4ePM7sfBHbWzvLrW6NpFQR39Ptr1wLwt8PQj29oNrOmn8YHtXq/zvtlRPO/DG0HFDwBsi0ijP9sEAlGeQ+eylZiYnFnfURTMbiT4rSSBlHe6j6i1j3Idy8OvdLDToR3N0U9uqChGthivTRDCAxCycglD9b6XPx8ueaz+3Za/lfHuAlftyfMo+pU2V4M7Gn6AP+yztGvtT4UGP3u4zt+76BdpTFjTqG5wcWJZW+WXVRaxWDF4C0VohCnYsBbaG/vFL6/yyYYcyRY8YlSLbCpX9Wlu+7VOQt9sj+Fb3I9eKEYCYYlM4poFBgxxxYGOqxpT9tlh+IpaKb+lfbmPVjV2a2P9Xqhn8xsxgEBIKNqEwoX6H1mtlsngFfRHBfz7jwKaciIweXCLxN47eXur0+2QXkrentzX14Xem0ZcAdICnLZWmaiRS1J5baDpep/x394CLq3BjwHx9IxYtq1yX9Pncx49foR8xct0I7xvLN0DXABva/89/fqWOB/htgCn+LsXX219XcSyddNzfa4qQyepSpj1Ftk97lp/im0wXlzgV2u10vR82Hvu7rcDNqFG03rL0/xf4lJRDGCQa2pta4ZjVmuZm6Z/d3eXz3I6TBinCXd3GfS6P894eLjHMs+4Px4xXy44nU5IKeF0yoc7ns95efTT0xNeX15xuVxwf3+ft+vJUjlfnhW6KX/V90oJzb/s8EfODUXPffJ7Jvd2vI8y0PfGb9F1bSXOnnyq+AEweQtNW/57nVfbS3qM94l5l36Hvq2VWYXX9cyniDJrbl2giYpRJonqp64r5d8IYzYwiyHbD9yb5WgBT+93Lh3SrVrrgXDvypf3OCcJ3pVOi5YoB/b2R2/EvIGKDm2tb9uZJMiZLgp+WfO8arpVRtc6R7WG/RdaBa8Bk0b73FFnrRCFto9oz1T1+ALm5fdSVm88q1pK6zBGWqTNq7LOENDwqGW0+Qdsq/qGNowSw9jqhBWwwY14bpVVQ7ZxQaKqsvQdrcIQtaquhKln5AlcrtcTII8tHcD7aRuMvNYwWzT6MOzSdqGkTWhfrN+Ls/xXfIp+2AyT3PfYH6vqlKbJDBCxAU5QmaHgk8+pQQox+sd9u37R7+NovEVXzuyrk183ivxatqC2MmiLgLUhUcLXrZ0DfxX+0fYP8mfowarHn9qUSWcBQZyREgEkBy6VN20tXPVP1nLG+r/FSUd7t5R0LOulVQ9Pyv92yOZQ1ktT3Uq/qYGmGriu+35bMFKjHW3J7NZ77Vfpa+90Edx5yyR0lE9vAYd69NwSv6Z9O529gNMW0ObjdW0jaPdY07K16+G9tuF+MLJoAz06rtH10UCTUbZB/7WyRfu+9e79I6YxDNnmt2NwUMvZa+1h6z3S2et/PozHYFpgUw7XzaZy3xTYpE5XHwGlYLrf0JDBgTCNmXxdtbSwDG8CQC0pYb5cQHKGkwI2ijgqaJO/DUgp4Xw+41/+5d/w07//DE6MWU6H/+Evf8H333+P8/mMeZ5xOp1wOr0YzZfzGaPsxzwej3h8fMR0OMjBkMluwMurnMrViDQMJiwNaBPFJIGxpJT3JQ+EcRgxUC6rlkNv21Oe+WvLfeNo3Uj1EbMUb3VvGVyupgln+gUU3gDKztWzH8YLAU6ywlkUrzeqUyHp/WloX4l++Tru/sF6Kx4QgHT7DAJjbQDUX1mMhw2F6Yr7IwYeMIOpNpP1TJqsgK+oKjO9O29p2Mhc2PIx7aebywZI2Q7v+b1VaSuLC5VVA5/OetWTKktrMjI/CAATgfVmKy4wR4+Sls7NzYDewG+XlSWv6km90IGGkG/Lr0nfW11lANdgR+2in39XudYytNbbxmoAxr+3TX7fPDj4xXcfxsePvI9+ZQsPY6hC1cZd30X+tAyLBjhB0i4JKCuKnHzmcntdToMB9oqpGvrrOuOSSyOMA5oq4zPOUrMzUEWCNcKUdSutfuH7zDUerc8QiyuO2NFFQ506gHz0AOVbOsUjZOd0DFYKi+pOIgy0NRIVgLQuRYFe6t6QXanF8iUJ+O00jMCA2ogAXNtzjX4FpXBIqQrDFkB5V6AebUOlHDB2seOHvgcAStE7OYxcVzqVcZ5R30koY+AqPUlVBWVE9250jBoAe3tCWrOl/su/0eTz+Tf8dsmQPTSF9DjyyvU/rQi/FVc/WT8jV8lkUevk+mF6gMytzhYINACE23TwfceD7A1zzVjfA0alxNDTU64BSr0we902KCJpEnXrrTVZujWBGkGSa66bDoKGsYOOr7GK6RbXyz+CR+r8CqbWaqfWyqb8LPpusd/W/WTLxTYd+9kwDN1z0VrgmD8OqEVzPqPsOm3fDtjkGKlb5XQLmoJNAOyk9nEolaaHbfEyY0lcMeLC5YR3v5RNmauHdqnfPM/45ZdfkZYMED08HDEMA7779MkaXEoJLy/PeH5+wjzPeHl5yUCTpK1nP43jiJQKSJb/CMsCo4UTgwZYGDNgiQC3mssQRncYl5Y/XoUL7BdisZHtQZC3UPc9Ar6V1h5E/XqYPMS2BIDWXWtGZf9MynXaHBkhr6BZf2XXWn2jip8BUY3ytEAHb0j6tDa5xjvCaHqq+XaEeYuuNY23D9abdPn8uVY0/SH9sUq97szvoKmYb0Vl/wj3PqXDLCCfIta1vEErl++1kdSitUdzMV40OXYs6vG8GMoobS589+SUHCL4UlPizyRS+wnULlWrxNGPOYZ4j/MGk5fp5b3IYKD09fpmHW9IR7CpxNf0fHj9TS5tuWOM6zO7PHyxLkH73dtRcGmteFolIHIR65vN6rL63z350wJ2Qo7k28g6fH4ORnXhb1yH6ouwbocxnK/PQlKpo1iHNdm0ClOl3aCpRWfxizySdhTkaMukt67qAJjSM9nVf9XD3eqmlqwOfrRV06WVeFqqcFzz1V8ysal/RRmkgszLSY5xqgguHROA9RhUxarfWn0GzLLiL+RDQGLZCspc859rGta5+W1z9YHv5TysImNKf6YqpdW7psGdMFfTyX4FDC8jbpGBVUnhVx8W9my/e1evbISjERVfYl6lfty4VAk/qkoXxVBzWLlR4H4k2NRyUd9r66P6W8u00b92Ak49QGaPXw2KtFds3Qo85bT6AEfLVf4xiPIz0H3L6iGzWTvxvH8vTIvePZOdPTvtjwCg9gJd0d6Mk/rXttGp7CdCFSbH7+cV21YPbNobvweg+bgerNprP387YBOX85gubruaX+EElEoDryv34eEBNAx2JtPlcsHzyws8WHV/f49pmixNX/nMuVLHYcx/cvMCp4Q5VCAR2WopZsbr66tVwuvrK4ZhwKfHR1ttNI4jDocDzudTlwWlkt3QKHw5n85YxgXT3aE6PB2owblFVmJ5nu1Fof/IVU5RiH1Eel7B82jyNT74DrYV7i005TSdIvhBroX6t4SiLxtzyjOucCDKADD611cSEUDeKPwKrqX/3eA+etbDp7QHfK3idurhdhqKgtmHOm5IrzPo6Lf9K5t6kMAtzinLqxLuk1WVcm3GBsy+qMJfSXlb324o+03nci1WVZWaGv9RYc5Prt4/zl0HBHTc259elDExfhusqdsToZwnJOm40BxCxvcYZjfbhFhWouVpIMLVHhbL0Mp53QJDdjuo9gDNVtrxW+xP7TyzXwlrTZbqMIACczXFvOJ+i65WmNKXYh/jqgz6e82lZikbrPRAlisp1g+1WoOxZmlK7JZffEfuy4seC263bEZSo07AjV/rcrXAuPV2tvibQshCU5zI8H6rGmMgrwPTUG5LXpO2CraxHHTbIG1t/dzZoQsw+850lFJpChWexPX3KlkucYxZPoz4WUlJxlaPVq5oJAmn31st3vu5hHSMkfcCOgVCfHuvzubbCINbx4rb3DWgybvCm57s8WNqvxF8NFiR22McH3n1+xrQFP32AC91ZLxdWey4FgCxpTv2eXv97Kc/emXT17B9Y5oecPKrm2pX74rJvNR+1z4qRcO13hU/aAFhvcUpnvaWXWwYDLBKe8t9O2ATYNfsnc9nvLy8GNjkQSFdicRYg02Pj4843N0Z4PL8/IyX19cKbNIzmrQS6orPFT1Nk23RA/KS6MVdUQjkK0AfHh7s3KTT6QQacgU+Pz/jfD7ju+8+GdikW+ji1iZPP1HeHlgUPpI8l3wr3jDiYSDQ4WBXKCrt8zxX1yjGA/j2uFsAp7d0zluM3Vtd4gQs9aHCHmi6RsvXAtqKYfxxgnJvvUa+ppTPOQMcj9gphA3hyDaYf7ygr8oRZ1L/g1yvlLf0pY8dFL1C//Z0r9F0FXByCnRrZvd2F82vtua9pputTxlnZHtBz9xtm3RbnoXbxTi7Vl7Hp4qQ+pYRNeBrvzL2bKYdjPCapl6YfU6VmW2nSsfWluwW0BTTJvfsG8o9v6o+nbXJnfCreF4ZJnJ1lunvc2EL/GkDPa14vp7r9l34oddn18ZdTLvVLlth6naX06/9rJtzHQaATVD4SYf1iLZVS2s/5hgirjBrl6NqU1Wy9ThbpcVtvzXn1/KuTsPRxGha3rlcMqNsKXtwpyQQT0Cqwji7P4apfxV4KLp1/dQyovzr043vMU2RvQ7d70tGtkJU5W4dBN/pddckb6/P75XYPkySbaQKhuXD6R2H5IeOPgh+VeeIYSKQCYLDet2HRhvTbxU4R+3w3jX6WPHoxeuH6beK29yWLrK1oqLE75OxBfRshfnQyUqnN70HaNqyi/y3P2KRgF/t4oGfCAJdA4gI+8HKa4BTpOWtbi8fW/lvhfX0KYYxjqPZ7cC67emYbP46DhA224NPy6dp51e7fqVPv51O48cyxDOhtRw1GBaPUGi7bwpsUqegUguN04J6ICqlBBoIx/ke4zQ1G4SvfL8UUBtA/p3BnnrF0CXndT5XFfPwcI/D4R66wul4POIwHWylk4I/HizzZSoNIuyrhI5F5VR6MOTMqvykajXWuoFtuWsgSwuVboXZ8t/Kc0/+8dsuhJvLQZdbaOtewKtXxmvOUq/yWavm73U9Ye95tuYVr/xVOY7xfB6dUf26MrdSdqoE6nJgrbb2VmzdWre3uqh7ec+PrcW+q9XK959KoXprj0WZxzUB+VyqRkKEoPiuUkOfU95YZGfkS/IcGC5WcTu1AGa0lOQQvkmZxSWLahtyWNtlx7B3IAVD64okBcDXXoFTo1/ZClRtj4oGbrP8Wy0jpFUZPdH4kTBbfPQGsE9L2SDR61O/Y44iWyqD9x2O5EQzob169qKsgI1CyB4jte1cLNKWFkKwywRFsVwZpzaVCSlfZ8xqwAkbVFn9lvrz+fl33/elnhxjPkrOlv4heVYADapfGtZ0I/iNoUZYX1JGGaJKvXtt6RbWA4McspUp7CYD3OqPtEoFdV4+d9//UPPaUqjEok/P6VZthKrKce16uklPT2rVf689rGmhSp4C/rbLeFQQFPhwIimGqbpQY6zWY8jIhWGfDjiHsYQCEMaNExMloc3+x+163HKt4OuD/0uP8ONnMVJbqRHaqVP4vR1G23glO97gtuyza/G83oqKDC8p1nyom2wsZ2vLsKevjh/DRjs1ltG/bwFNLduoJ2t7unEI1AWytt57frfSFv220url31pV0wvz0a4FqrUm5Ft0t75FDMLjCQrYpFTXa1GPCx+a49RGHUY+ebo8ntIq/7U8PNDU60Pqvh2wyRAywuFwaHZGoDBgni84n89Y0mKHZB/u7qob6FSBUPAqoopa6cfjUcCgIa9OkkO9L5cznp6+4HK54Mvvv2OZZ0P6/va3v+JPf/qct8t9+gRmxuOnT3h4eMDLywvO5zNOr684nc4YBrKtexHR5JTA1UokXeGU6R8k3Ol8BtGAYRqRHLikq7j0APWeIFenK7y2q+L2lUZvAbqu5dX61gvPzEhu+6DWeU9obdH3fmU6ptNT6N7vWkLHr57zgsm3G/2WoIfUd8BKfuMWOnaKeutjoF1N9FiWlpBvve8FW3c5aiiYwEq5/JqO2POOG79ud/3zyssW4pIR9SpPo+R/LFzkWC9y0NpislQuTMg/2KUPFeolfdZ4mlZYORrL1KKMKB+kqQk6y2Wl0zYSz5si5Df5E72Ksl8Z66u0c3l8Hlv5bfu3LRy26pFeWfEF4UW1h5iIJBSSJ59k6PT2rS8MJOm3K4xVy7O+yyjgQDAs3C9vjgGMwb29x5E7W5GFZ0YTO3/NjQLPiQqggWaN3iSfPGC6MieZ87k5JfC6a/K2gXGrGwDLJDdLXhtH5Ooq6DJyTLVsxRJFuTB2lV+fbt+eeV31yohobfp4JO1XAMLE5dDxun31JKSWia2LVV200RytXRPXReiEhG1/a31ft6SeDPGrGnfpiBxfpXCR1VxOM0uC/pCrziw/SxjmfEi5yjUPMxKXs9gYfix1h8GHMAAwJFbSTIyqNDXR6YahXjHXTW3VqGKA2k/L1EyHQvjotzUWxG8t1w/D1jiVyLc5r7/1njG8PpnrbUbUPAIiDm6twc71PgKA9fXttS1V+8X3LbcHaGrF6U0oq59/xt/i82F68Yfp1t+4a7XHPcDbtRVHAGwXleIQgCweIV3gou3Cxa3/6dpD+my1Mb/4wgNeLZu4HPpdvmmeEZCq09pkEYBvCWwS58EhfQew6jTMeeuUHYxNhMslA1AaT7e+AbBDwvVWOJ/P4XDIq5ooj/ALlurQ7ZQS0lL8AFS/ier9j/V5SguA+oyl1uxZ9UaFFltxwAxGoUcbqT+vKQqoyNcWKtoTYu0VLuswFeXvEEg9uvesaLGwQetqCdq9NEagozcY9nhZz5l+jNuiPdZvc4VTJ7oHa1pCDGivnnu/SWY5hfzW7TB+a9XrhwyICs9vgJN/2MDLqx/vT7KRVM+eWof1ipo75DUm1M7ZxS1+6/ams4zs0vOGnVfKa0W6fAqyr/rROhBavnExfnn9sRMl2a7xAAAgAElEQVRXzd61ccjmWZT+KBXMPvZhLJM9PeyK4dJzvYYghhtdmaZyMAGUB+VbqGvlg1p+kRS8r4Wz0q6/OfK6NutNd1ODkqTMoKqWbpNv3rBbK6q6tSqTF8YM4XUZYxrla/5qTQS0QgMGgbYYHeq6Z9x83GQMXL8InCP/tiZzFd/RRPlHfrd/yo8e2aUvVr0461/swTmRMd6PqF5tE5X9Tn5WytjP3OqoTUy4glf6LcQK4v1an2q4pFMFhTaT0SsX8lp98fK+BCXvR/U31iHZhWEXhhvlUu4UEkuYwv8Sphx0znbzHqmxXvEalgAbMlU861qnKopxIJIr9cxcx820XQOF2uDQ+8eQRqjq8OsPkAFXXJST+3S82P56742YGxOaLb9rE+Uf5XqyuLXyxgWq5UocE3fotVu219ZY0B3nPG0b+W75b9muH+Ui0PTWSRaNF+3yCPbEPE27Ynas2sez1rdW2FY7jja49/d12gM4ibalwjcFNmkF+POIPALIzLhcLgK0lDi6FOznn3/Bz7/8Uqcnt8N99913uL+/xw8//IDPnz8b6ARkBuoNc5f5gufLE56+PJWb5IhwvL/HYVlwPp/tBrpffvnF4v7yyy94fnrC5XLB/f09Pn/+jPv7e7y+vmKaJhyPR7kRL15HDzAnV5liyhFhoAHDwABknyQIy1z4oGCTngulW/YKUrpuVL1bIFrumjD9yJnOj3CZt/V+VV+GLQS6B0xtzxy0FPONpfxf0UWgKQ5CRNQ0eJhV4VofJGcurcGmjwOatAB1orcI02vh92YPvL9cH9UfPDuGj0pzY1Dfu4KwuA9vAXXq2m6Rlfq2cSOgF5Xf29v7XDQX3+vla+W+Vv43Ems7f5uQGhnx6Yy7ryNOo8KdnL837hm6Mow51Xx18Vf2ccUC35NKusyU5TOzVFG+Kj2aLi1TNcIPfXN27WKY6r01hlH1QF2/WwZMXZLCE3Z/Os54/ntexyuEY/q88d3ntfYrtw9GA4IqejI/4uqV2q+mR98jjZEndZjcHpTGlk7SS8uXDRWg0MAxu2BPy6UKMs0BV7p+9KvAhvxv4nzOp+8YrXZogC516pFJVpy5fhRTq8Aw4e2q9TK6pfZN6lqnYwInVtJWrbHC6Wz/WkxbNkBqAqFkPqxtSOY6TOXHa22r9R79Uut7Sg4EzJlENnQz8cCpJ7ARL6cv3NOqbrRvTq5tr4YZz9wegV3q3+RqMOx96b4FvKjpsITeRUfPtSZd9wBNPcO+pZ+/137ajGvjbM3bXoxrEwnRduwBGnsmJHglOPr0XPP7KLe10q4H6G3Zg2prepvJHw7ut9F5ex1gpCicmrpv7faDsX3nafbp6tPTW8fbl/63BTbJUxk/CFAEwIAVXcWjaoFWVEoJp/MJs9smNo4jjvf3AIDD4YDj8YiHhwc8Pj7i7i6/p8R2e93pfALNFyxLkhVSMnNIhGkckSivngIy+KU35l0uFzw/P+Nyyec7TdOE+/t7jOOEeZ6tEvMWvEbBGaGhaNm0AWTFhTiv5uKlNIZ4dpW6Fthk2TWEZ8/tRe/3NPJrwNVe2np5ZdtoPUj0QKOtVV5b+bdo9WAh4BSjr2uTVy4OZPFba6TxYNNGyvV3LetGDNMxd8g+S21joN7jPgxwovYh/uv83vZtLzWVuvgVAadrKxkqf6fkOvsBtcd2Wyp57KG4bEtrzt4BWbsnyga1afurZDpUrD9qe9yQMhvvVQnLmzOO8iuVPOybD/oBgqMqgOTHjDyTHiutZZy0ONCXa+36LKae5p0N5Ox/LfcWZLEKY+0gyqXCY4rFqaJw5Vc4E4Gdlpa89uu1CLY0Goq0yL+V3K7yrvWDELtDT/yWn7kaSIxeFr/BGQIuTJV/b8l8r2y99hQV45x28SrloOomLCqffcm4xRvf1/y7d+T+XctHzgSUM32UMpvG1bZDgB9LG4ZdDczoOF2KymCXTzEW4fxaNJY6ljAylG5BDdYfOp1O4/sw1npqkVY1OfJ+yLz3fnbSFmvbCgmsSvZ2v1ucjrFxCFu1lY5YXvXILf0R2DWca1siHds0vv0MFdOo8f6ZT7336Of6tB185SXy7a69en7bber8Ru+2zr6VVwQZoi2wWz8K+ncv3q7VSRt0Rhd1fq0mkwy7QKB+mFieLTDoul3YPppjH9C45udHudgGtsLsTadlKxYsoG2T1hdbsYx7Jf09wNM1mq+159gmPT7BXA4Jr1dibZL1bYFN/hY1Zq5uW4uVNU4jaBwK2MT8/7H3ZkuS48i58AcytlyqumvUahuNZGM6FzK9/wsd+y80piP19FZVmRkRDNL/C8ABhxMAQQYzM6ol786KCBCLY3O4f3CAwNevMN05AFLqjGTbtjgcDnh4eMB+t8Fhv8G5u+DzF+utdDod8fLygufnJ3z9+hVt22C73aAxBoe7OxhYAOtyuWC/38E48OnXX3/Fb7/9hs9fPuPr168OzNoBBji6t+E9PDz4uuRc6QA4418rXtbLSd5DIY/4MdjE7cPeYFGeCeRz2nshTWsizGsJC9MYbLZb2z4VgjXZ7mqC5ZBr+T0pIBfV4A1I6SI81ng8ZT2/iBVYsQBPFEVAcqc5PFV9lMmwdqwteftiiispPANjpXxzJkV6QZ3PUVCEX4ty4GRykeJ/EwZKIueJMKl0JkqJLJ6JrPyQKoE/+rcB3zk1Miqy6c04DwDBauQw5a3BdoEwStmok5+6adeQJgy5xPNjQHS/lZ6syXYP8jEVPv7OvxlUEzujEG0ANkLl7IlbU/8uxYnvx4pmUfStSYwVE8XnTtGAC7fbID5DHPbc4HaHAA7SLUoi7QAQwJf/Gu/tRCq1a0H32vI4nzhWqh5hyoaxShhceeM48e02Np/Y1y+3Iug4qfEwuN9CdvJYkwCYs9KNadzYideQKWlTCrPZZfQhp+0bFRbFFUCFb6kIGE8wYeSnEKIMAJL37eEMEf1L6rcY9KM70BIAvH/jvfhto4qDsD7MldA7+WVspYjjGACGjxOLwe5BqHhN5d4N/C+kVF0X5UNOzaHYsgOivjMqwDWDraoDIAlDeSNqghVDbo44b0S/DEaFie8qYwt2Fo7NziIT1gJun2ikvz2Z0BhApu/nAES3RCXbg59LqqmPt/0yz6by47DaFy8taeMlQNNb0lywkrELDVpqu5/7OngVNQhvMGZZFNa5rF6eA2MzZeq0KXxA8qfrOAbFpum2wCYif1yOjUd79Cw28Lmirfvc7XYgIpw6e2G47BTptta2rfdu2u8a3O0bNAb43ZV7Pp9xOp3w8vKCl5cXCzQ1BmazwX638wPocrmgba3Ceblc8OXLF3z+/BlPX5/w/PwMIvL3Qp1OpySa6TtrSExSL9RdnRE6mgCQ8PDq+x4XdzeVLEfmKdtzjQlbQr7n0Nqo9Mb1CY8hAKPPkrDUgmE53eaCFo0jEudxEQs9iHgMNGkSemSaaDqORO+DRpWLU87nmnEd6WsJXTNmTNZKWgypNOvMtcm2XoHmAE7B8DEqLEEmH4GId23i9o36sghGBh4ywydhfgvGvHLOcQX45aGCnEEk4jL/PHdGlqRLb4ICQWxcJgEnsSZEY+0KotEXwd+U8aCfm3FjUy4PGc4GFJLgS+57Krf0d33JeqifbEcZVwMI1miM199x/fX1zzKe/RuIPYBETtI+SiQlcYkzG4qNkf3Pf6ou6rWf2iCkUR3IP9GvQrCAE5Jx9OxI112WlYpjyQ5zv9URJgiMa4fAdTyTGvCxw8BhurzcSMxRUc6mZGFGZiZL5IElA0aVc20oZV5ybeMwrTvKeGIuuLaVIJB8Nsrd8arFMI9Jkmfo/EQ2HnBSrLqXJsggOZKuo7XkI5GxpwY4rwhItB8McvgnEpTj78a1T4GfIqeZKUSAuwwfEIMffgBJgUoI68vVLcxZGH/8+fq2zhvNORp7gfAfT5NxXt8y4DQnbo2nS6rX5gBNbENK2zIXd4qcJuBn0rcONMl4bONLxxJ+lnMwkc+bxmAYpHxMt03kxTYBguWcWuT3kg1V8pQKIFmWBU+3AzYZey/AMAzohx79xR6HG2hAg/hI2LiygDEN7vZ7tE2D7nLxx9cAoL9c8PnzZ5zPJ9zf3YGIsNs02O9aPB+P+H//72ecTid8/mLjdOfOgkywwAUrfE3T4PHxEcYYHA47HA57l6+9lHy/36NtW3/Erm0bbNomAj90x5vG2MXDyU69RnjvExoiu59Vh9GA1hOYAKIhfgud0KqIxJ6yGf8exZF5iFXY10/057iL00LUr2EyAzl6JfCh+XBsNsagbYJHFwngMkca6Z0CpHLpRsTKxuoIwZTyEBbg8Hs6vRResi1CO8QaqQ9N9bHOu8CtVZqUQh59ZV6yEWJDaoX1yAtP/i0KDCOcfPfaaRArvH5qUMTdCLKSYak4PsQrwetSbgEqj3+WR1NjkbXeVHhc/thAU7+1MS3kgHyUg+WkqIpDtdEjQQmgXll3itOoeP9+qYo8FL8juk6YyCtS/GW4kO9jC3VXUEZctkH0xjbyHWCiFKp0eCMV5MVjkB/6c5S6jvTNu0k7NGFwO97X3GAIQKpkxh2J92ut8aBLWGttXlb+IgN+y9JsfkHSiEGo6i8BCb2kRra1CpMjpMnkPZeCggvAiOOkRO53uPDbn451NS2uMaqvY+8O0U4pvtVy5IKiZyYR36gU7IEu4xnE6ovOZ1SqCW1kOR7zPDLI/D/Rl6RR53UuE8e08xJB53Nz28sPIc68uehfrGBEaUYti/G4CbrsdSvbakZo1NZB7mtd2JPfWAg15gnLb5HMj0s/IeNH0VjSGXDM1PxjfnWCcEpCJllMJFvlunY3JvTdWL8zPo6VmSwH5Zuv3Is5Ilkl1nOly6Q2kiOD243myAMoeu7+VUuMnuf+01fFjQkjZJEMS+jenIdBrIuGrAMTNaAdibxHI2QG0GOMGd35O9fTKgJJ5CqWaMckbznBfSU1EV8JXT0z5Ef2vAB37Ikr4Q1mAEjwR+pkkS6k5c94mJEaiFJXY/nDv5qGX7Ym8vLjnKLfrH94qSZVP4Ez8NVF36RnExmDfhhw6TtcLj0u3QUAYT/sgIbQGNFg/OeIO+/x4REA0F06nC8dLpcLjscTuq7D33/6bzRNg/7S4/Pnz9hsWmw2Gzw/P+Nvf/sbzucO/dADRO5ZCwOg7zrvNN80DT59+oT7+3t8//1HfPr0HX755VcLXu12uH94wGZj72l6enrCdtNit9tis9lEfAY0kLyiSca4v2gK2n+JPZMANEbINHu8rm3bGBBiRW6wSo/1gLqAALSmgd8ZSWltepZl57E8JpRemFNJJ7PXkjUXxj9dJo0Z3++VQmtL6PJ66PlIVCWeUSFuLk6pcdSkyPASbsCRZWaOA/JCRmMudd/NF/clayU8E/aRWvB5ERaX2y5ut3HZJhMjuRAlS6JxsaXfmTAOun45racpBcbOq9oXDeTnVLocnW9KifYZKANrXmtpcKo8+8udZ7JlriVTlpNvQcd2GLMaXBNvZHPrUrpWSsB7LWbcLvoXv8EpbES/5cgu0Xp8WFFqvZQYNBpvlAUjSstfIvjNJfuCkLlja5wmvbSV0sffpX/UGi1FAIbBjkwPtg1iLeLX2mOAIQNquFx7/NNvyjmFcOyIIke5rlcqDPnmEMOaEIZ7Mgzjtk5JpfA7ESrzGhy4L6KwsSHXHor0MZWr3wgcNZIdazydZTe4Z/5QJVeCy3ftHso0ALmXC3B/iDv0tJwJXm2CmXck8jzZX6G1TFAyAXfELTbmZD+SMWhUzZL9Huk0gNxJTl/wLkNS7SU7J9Tpep1SFyMKuEIQBFCdfwc+wlySL/8Y208ArFNkfnKlf2fipH0kC3NPNIP/zUMjKs8EJuXmg99JoDE/xtp23B5y3LAOb6/cM0EPEoNKjpIIQJM1mwE0AeljdHM91JjLnJZA8T+TK9Qqq7bUY1iVwXgIJePzc2d+mca92KttYNoGDQVHGWNMcC5xGUVyPAI3EvM8mtf8W3A5GngE0zRom41LxTaxTWvHxRDZWH7wcIZi4OkTWnO9BG8GbPLtC4syNm0DIy7UHsi6Wtt7inrXca0DVQagCW9yMY1B2za4XIDufLYTwoXRYKXT5XJBf7ngdDzifO5w6Tpfpn1T3QbG8bLdbrHb7uzROADkJt12s7HH6Qh2wos7p0K93HLhFlfjwCE+BjcMw2gg877eQOL4m2gmK4gANI04341Iy/FAyyAWUSdQ5ZISFkoSDjlOnPnxLsx4E/2K8kkpMyKLeFWQc8Txpdc6cpLbOGHMKhMMqStG7KSYMpD1EbKlVOfi6drUC87UilciLWxKigDvprG3Gz83rsP0Qi7VowmetFLEOWfajxLfpkmNSPaAkDmNlDP5YS+39Qt34FJxlhLiCZiA4HZygwLIqTjMUOCOgNGVN5EAD4nHpOKEnfJ4buV8RiSluyTdT0ZovGNxFYzk8ViHGNMYpU9TOkL1FKRsDmBLSULwlVmO4o6X97DHrZ3wjJND45cu5RQEybPoVX5O6tlI5icrMBUUk2FFhwdj494aRTF/zIobff72IcOKrmwr0e58hw6sEhxJLFcJA/g245YrzVgOT0nCEEeuD2LOijUj2h9mHUrMbZnrWJ6nOJiIQ6EdbZ5OZnoDg/mC+x2OJ8RKnJJZ+q1yvkjR2q7BKY4Q80kijSE1thGGoiJycaUha0ReZCgc93G/4zjk8kjLd8gwiPEWyQDRht5DIK7/6HL3RBjJNiiRXHR4ADMZ9ojQWZlk1iPvQUIE9sjiPP4g7uQyPlz3r9BtoJtTbsSoKql4OjxqMxPLJSKjWxl+jpNJ4BJioys1hWRe08vdiNOQLpU4cKpleZDabMabuM8j6W68PqoRTu+xmRIVFOotZY9Mn77jUkhb1l8R9xT5sSZkn5A74/yYsVQdp+JIuVbqwDgnTWoW+JaP1hPXWGH9jVceuHnHXe7fAhiVHQmOUZjIKeTBYT5OnAHJMCmWowqPvSijNERxmGiPUEsKbcBDwIVHslB9kx6pFBoPS0iuRaUrSObkNTH1xzIoko96szxOE41Y1s10H7mw6OSlkeByIu9o6Amlz8TxGYwhAvphQD8MYco0Fl+wa4/tzKZtPaho4xg0pgUNvBkjipbVDrstqgW4FfRcQhSX3J1uAXgKUYyXbbZuxsi8ltPNgE3GAG1jsNk0oLbFFltsNq2/7Pp87tz9RJ27M6nFdrvDQAMuF0bdWjtoDGHbtjj2F/z+268gAh4e7mD2O2zaBofdDs8vT/jy9QtOxxO60xE0EB4fPmC/3+FwONgjcU2D7WaLdrPB48ODvxz8y+cveHy8Q2MAGnq8PD/j+ekZLy8v/g11TdOgaVtsths0mxYD7Otwt7stDvd3ePr6FS+nowehCHagGbKXnVN/Qd8PuPQXP8CNQ7uNMWg2Bg2MzRfWi2m49KBhwGXo7bE5B4AFAxZu24rUsQqnGEh3P2UY6KHmXbNFPv7ljUI4cnZh7SafTufm+ZHallqcSWhkMg2p2/1tcor+tFeZjs+/9ZsCZF5TJHdd7DE+iMZTykC8bobdQCkcjBYqfIjFgquGtyNhbJghoQM1vlhWipvMgjGHyNixGgcCUhHloDjOeJlotBrMLvkUdk31Z/ge+sSKiXC5LecumENox1ScEHXo2ZQSCzmpRV79Hng8StkvryKBH85R2GiVjBqI5+oQ/ZYUu9/60EgPnlY8w3frJR1HHO3UO+M4Hko6jfzNFx7G8exdem2Gt6hEUUQqogEMbzaIPi7kaadMYi6Q8ncy8Xf5JVZevCQS/6Z598fJPKgalEH9LAiKHKlKZhrSGLse2VztnTiGL6C1K4i7l5jrxmNNXFDtQCnp1MZYNitq5HdjY/lkP7g8S717t7cSg1HLydGdi0MD7DonH7rIjf8a3MIjpXyk2bpIxv2IOhniN6+VcpwZocWOV0w7JMVROif07ZruwshxbKwGaPfGtOKolUzdUqmWSyw4cmyKekQ9ohq9J7fxZwCe1zyO+PgbYDzgxLLLHjMVcUSb8fXkxth0XqcwNo0B3AgVY80bQLzmItYJJqZFUpSosSO9hTzPRkY17n83Xpw8adsGbauuVBcLh1+NnKyhPo4TVisDgzbKJxhrFHJyDwdRwui+fyPXQgQRKYYpGYPIrnDtH0k2Ny4pGl/2k8P8u6Jd/saFWf45Sey1wnWLeBx9z68TdhNkEJ8yojh6JdzSgg5hx5C9h7UJ67psXif7Grg6uevVBuNeNMAX9ROBeqdzqukFhPaOdHIDmFgh9i0az9lQp3AkVs5rNycaHp2hzWmgKE70UoNIhmXiwOqVYb0eeyBHc0XyO5psxs+V5DqrieCMY8eTiEti3IUq6DU4EaZ+N2wXDFbWaAnL89X/ZvkjsvNDW+U9ykeEDSKO7MX4CG2cD6dL8qh+Z6aLzS/hmZIL48/oRI5oh5J9xPc8sc1FIk9fhqw/D8vEEqq++PmpRpe4Ss6M8jG8KY/Qjp5HGZFYzsKt0yz8xYsQjBuDbF+6F5Fdhh6nlw4gJ4vdC6y22y0GAOdLB2Psi8fg246w2W7RmAaXrsPl4iS9m2vUhN9BJ+BWi+3CMDMaJ/vJnXTiShKIvQIRPrlO3r7k1jahlfkoZXih21C1cXwbYJNYt8KZ3MZ/lwsId0q4qykM+GHoQz6NvavJ3v3kBKUbMHw0iAardG/aDdAC+90O+/3e/7VNi91264Ctrb8cvO97n5YGssf+Lhd/YXeMBLPAd4BH494WZ9T5V6esGCe0iQiDu8OK1Q69/2yMcXcoEKhxRqnabZG6RURCMpH8x7WNX4dkWr0geDQ40aWk4mo5pGc1l5vis/RbhNe4hepnNSDSdcfrKMmzVEBCtJSXTQiJBbSbJ37Rjj99ct+XWujW1Sm1i5Dq9agqctdGJdf3RpDnP2QyBpVSn3HGRGPlVXMdCZoMjXdGpVegCNPjV/GN8eNkGJXiyGdC2Mf8MmiqVQ1WEELclKeSLDw+ylNUUzBug1QaGac83nK8jctIpU31bXoHLEqXfVI3N1wrRPPBQNQjAgJT/eM+3SSNvVlYnckc+U2poDGyPeLWCFnhjUUKeXiPIz82Rc1M+o1nkX1oQpqQVmiO8oJbwAILzurK6pUi71ScWB2H6johW8SXSIomm4uidvGpklPHxPFSrxoXc92OcyGtjZTcTqHxyAkx+uvz0uLJm0UU4shqcNik59+oHvp5+DISkRyemOtaTubFii1/dA+gESNOy0z3wzbXWAbXeSDHeaV+R+kiHoJHht8uS4L/YMHgTAD2UGIJEldWwEgOyAhl8pgn9Vuyp664i6SOnBMJfAPScDfid1Rrqdfqusr7mxxzemiSbybFmTd0Za3qj2p4vXmIdTq2IfTQ0gZzYFB4L8VV933tJLZqA/JxUh7BurM4LGyuRimCHPDx5e+0PpCjGACS7U7pRTUx2oTpOa6MyFP6kYYRPh5sS08XkOqaWEaI9pIJZFgiDoePuoJo3NJEyd9ZkZkqS5NeXmgivgqfipu7NiS6QymyW/N5pO53nbKz9KmSEaAFMdKopJu5PDlNUoZ5hiXzujK+3GzeSGiQqg10vgYAmgbUW4cPwyCVMTDuRWWAfRmavWfYvtFtcHcq81E70zCwB/HJMkDbOrGeEljKt+LYxkrNz7hmWt8K/R/ilyTSbYBNMDCbFsa4hh8GXC5nbDatvajbWICmbVvc3e3BrmqNO0bX9xYA+vLld3tH08UeixuIsN1Y76JP332Pw90dtpsWl8sZd4cD7u/vLADVtE7nt8Odj8wxmtk04T6grusc4ASczz1Opw7Pz894fn7G6XTyYBQAV48Ofb+1F403FmXkuvCrA/UujOzMfnDuEUNvn/T2CN9gxNllt5hyr7eNc81rwuLH+V2c95NEd6N+ABLhjjLGTNFQmIhjKuJMhQG2rfmidnlEUVMAJocIpZfeT7VeTFM07tdcLXK1qmglofx6pWomn3OJ5+iYD2mIiJ1DwaeIbE0gChfBSvWVvA4UGzHjsDegKS1Chqlnc8bwOFZ6vs0hvdCnni/I9crf15Sdzse+Mt4A6OENoYn8cwrYNNAWNjUAqcgjdJkx0U5oSbGWnpZTCt81FO2UUtjUiFYJ/scpIAOrgMrmlHPaVpnEMwPjdqBl0xg2oLSRVzMMSnFeRRbMWcVyYUZM4QwIAReFggwPwpzjCzmgraxc2Kr1KMcZmw0yLB+n/LtujSTZxm+5JhSIKGCE0nMBCMZUqn1GoAenj8SL1OgFoO7zlF5HIbEHOMVR1zHj8XgaX8U+Pman8zIynRvHvmt4oANF8GdtSnmxj4GmQFNDibyuwgYnhG4sOneO3lDFN2UyLRdkN+qHwsZPTs/oozjxXac5xrWumruyYqX1LQMiAPDrzChM/I7mpcpad2ON2lfbxUs0pmvC1qAsUJQArEqUulh6SIwRK69EX+k5nOJRpYu+p8pwYSM/PQ0oivICliPy400jdyqGYO3Qtm3ROHt/u91iu9v558MwYOg6m/dgHUUaZ/gQjMAHbFHDwKdW5LHxqNaCw6BvBFmn567B+IRChliWR1WWd1JOZ3EbYJOBuzjL/uQLrQHyIA2DM9utvXCbBd8wDDidrEfR8XjE09MTjscjTqcTttst7u/vsdtucXd3h7u7O3uLet9jd9ji4eEB2639NMbg+fkZXddh67yZgDDB/CXcJrgS9r0Fb87nM87nM3qHZsqFTHo7hY4xHjCTE09OZBZ+RNZ7yvRhwTbGOPdAATgJangXOrHADmbwEzs5+RJgRrzerSzKCgjzHLL9YRdH2d4l400DTTJsPcrUzFsWE2GFvMJaGoxrRsE5w5CdMwmjqi2vZ603WEqpCyxppSiVz7i8OF6oe8qzpvw7F5biYxyvZud8OWjg+mtRH8Vvacm3HSXCyv0Qj6dRrMkwmTpZdQsAACAASURBVHfgLT2uS2EMOkblJMZKiVKyYXr+U/KrzSh8YSUnBfTpY7xSiau9F6G0I5kbq3ocjMPG8yWoJWljLcSUccYAs8dO1l4/UnLlalob6JuQ8xSC/BigkC7fZCZ6mI63bl3WXBtNYe2vg5oELWRrDrir53CqeIPEvFLsFfszU14ublF2J4bdaGLqyJPtmPY08rJHFOZPEPgADk/w6tei6Y68ZgyW5d2IHQDlsReNnxV1yJIsn0tax83Eqs6LaWoDxX0r8FRVZCJzX0j0GZsp9V47JeBRx5kK+6NTSg+Zq7+kbLNkvpBdPe3hKGWQBIRIPCuN2VIfR/zIcSXz9M4fsRMD39XETib+GeBOSLnkrrxhNFYbjx2wvhzr9aU6jfX/WAfPpZVzh6sca3gBe+C2zbIB4FbAJiKQu7BbAjZE9iJvYwy6rgMROY+mxsfjN78Nw4DNZoPHx0dsNhu0bYv7+3v8wz/8A3a7HT58+IDNZoOnpyf8+uuvuLu7w8PDA/b7PbrOnp/87bffcD6fcX9/j7u7O89e0zTY7Xb+twW+2mhBYN7s5eL2bCbRgMvl4v/4LiAGztilTtY3bhYLVhlYFzyDtJGRE6w6TkngvsZO+lvSMAzoGCWeWDwC8Jf2bEq9deFbofFYAID4smf7eB2FLfespNQR4HfyG/F7qpz3WtyXAk3rUWkXQz/PAZIpI0cv4KmjXDGF/DRPsuyUxZMzcGLex+04xaPN2p5r1zs+dSRlwTUUks97AcFcBWgp5QDgKUOktm2m5MIfcd2poRKwmHu2pIzXpls0rtYaPTkdKqdLjPrPGQHSi1yDTGvT5BpEBL783R9rzTYYIXkmZaJMGe6Pc5MtaDTn3dIVh4dWei+DvsZYLqXj7zJ8DZ6AdeTjGuAX55OiN5fhPFRd+5c0jFWKe4dxuYY+8laU8xrMEdu1Or4EhDSoWTM3S+vsFO/6pEZt20ueNf9s80tMYLPZeOxCn75h5xPJr8xTn8apJb2GTXmijduLAa7rZtrNgE1D16F3oAx7+9hjaBcA8GATd1DXdTgejzifz/jtt99gjMG//uu/elCpaRp89913+Mtf/uI9lYgIP/30E/7+97/j/v4ej4+PuLu78w3+008/4Xg84tOnT/juu+8A2IbnQcDgkEUoGw8eMb9t20YDq7t0OJ9O0QCDc48boZxRp4+NgMaBTTo8NVGh4mkw5ZZoLZ70xE21hxZiqXZcW8C/R3uPlDlK+cdcBzaVlM7Sb88SrN7rr6Ck8c7ULdD7A02ScruFNUZCLiyASvp3Pt/55SdKt0aQ3zVJlV/DI0AgcbG5BrAquVlDGVf5zZ37tV5NS0nP21qwKUVLADIdnvLKXUq3rpzPBZz4+y3WaS2eblUXqdUJxv3nACenp+bApjqPkGleS78BKxdB6jCcXmhDZAT5GQX6MD0eQ51tHKLxrZMpXWQMOL0f0LS0LD1WbnXOpu2L16PasX0NP3Ko1s6XqfWhds0qxf0jU02da73GcleclPSBawCnWn6X9ivzLfnnE00A7Nvsdzv/eTwefRzGN+Ql6uRktgav+FidLLcEcvNzCWCN5XcdldqmNpvbAJus1PAgjGzEy+UCIsLxePTf+Y+P1X348AFN0+Djx4/4+PEjdjv7RrkPHz7g48ePPs9hGPDx40cMw4CHhwd8+PABh8PBA0v2SN4Jd3d32Gw2PkwvJET2yFbXddEfAF+H7XaLfuh9ZzOSCeF+ll+gYmPKDjzrxKYXOaZUuESQ+XOJgp8baGsqi6sYe2rhZ6oVgt8q5YRMioKHy+uATSl+ChHBnJjw8yq+XoOWAk6rzA+Keyq16xF4WJB9sm416eqfpftFKp5T/OTamo07+z0FRC0BcNaSa4T15ExKWbiG5uSjlbalBrGmtQGia/vttdeCOYDTGry+Rn1ubb3kFaQsj+o3B3JAU2qN5XA/jsPiGtLNGJM5vW6K11JcvpzZPykttKPg9E52rGuGOMY4zy4K9RnxJTxSbHiA5K4x7GvnQ42xWkupObumXnnrADpTSa6l4q3RRnxX+hLQcg6wNDeP1Cb3Ero10JJJtnct8FMCRJhSeel+nTsfch5S8rv2FMrp8TnZkRrj8s8Yg81m409bsf2t42gsIHXSQ5aXatdcWK5eKf7jegAsn0MbjJcJovBXotsAmwxg2taDRIz29X3vL93mI26AbaC7uzt/ZI6Pyv31r3/Fd99958Gfh4cH/OM//qN/i9wwDNjv9/jxxx/x+PiI7777zt/rZIzBjz/+iMvlgpeXF5xOJw8oyU5kL6au6/Dy8oLn52c8PT3h5eUFALDZbHw9+OJyzscCUY0/Qqc9o0bNwgPBAXEG+biSJK8cn2/G5wH/RyMpMOSE1AIrJVTWWiBuhZLjgwVHwz9eD2yalRfSnk1LeHptqlLu1RhcqeTlKWe2y9rtWCurpsLzoBiphU4aQO9HA5F6k1iZ/iiyZ4pyytD/REoBTvr5LRoca9F6a0j+rbhLyqwBDlIGNhzgFOkZBQNFA7g5w2iOERyHkfciCuJxyIvHiu5I608Aeza5EH//SKoQYxSPmYKXrF3XzJkl8ig3Z9cY29+SfMwBb7mN3quAJv7HiBf9YDyKrgFur8nnlvpszfUj16+l+ubs2pzTQ8kWSwGLpfxTaUvgUKkONbwSxY4lPDYPhwP2+70HnFLlasBpYFNtojzZJyn7NgcO1vaZ/a5t68HPvYAxfCtgE5MxxcEGwAM0W3fpN1/wvdvtcH9/j8Ph4O9EYu8k2RFt22K/32O322G32/mjbPLonv5jQCg1UHlw6XuX9HfOi9+ul/JuKnstjBf5EmBSmjxTOwGachN6DUFWQo2X5KU/U3VdIjRvga5t71jJe0cysMi9CW/smoxfc1RszVP7maxGiod2PRJhfqd3BSY8KOc+4xN1YgfasxP4SvFYV2o+Rqo/5oBxpTjz8uNv9YpLzrjPZLOIVjOkM4rQkraWu2pz5HfNjp4sb04ZNyGPViZdpdBU8cX9HJdxinx+6xhC19Laea+iPwBZP/4lc0SHl/StyMAOFxKFOZsY/6m5UQs0TfE6CmMvIssgX6WUGWxiQE6QBpqI3Ux8TplVzyABQuXBpmuo1Fc6XgooqaXXBInX0rHfCgDJjfXa+NUUyU4H7mIabJoqcw05e+s2xFtQqt+1vJsCm/R3pql+uGbO5OxcflbyjOJ48l4ljsdX5uTs7pTtLsX00jbR/MWA0Ti/3Ho0ytsxp+XctwE2EYBhwCAuzgLCxdxt2/rLvPf7PbbbLT59+oR/+qd/wt3dHX744Qd/HrJpGjw9PQGwHf/zzz+DiDwYxEBT27b+DXZfvnzxF43zUT0gLBpN03gQa7fb+bfhDQP5o3fn89lfBH48HvH8/Ow9sYjIf2+aQ3RRuPZs0gOhbVuA7HFCdhuVJCdtbhLLQbGWMHyrBayWfFshnH+VxlUKaNLp5bnZPyLZeq1RN4M5VrmJAJGQgwUtHE+F7AxrqQV6jT4bqcw0VqKLCspVXjbkP/03VtbVZ5TK6f0kUs5pG5P4toTm9sdyw9AEI8odx7YjxnjjRhuj/jXzJMwijQJcSbzBkKI5crNmY6DGINV5phSlVPoUYMdyUscvKWOp+tTyW0vXr0drrmdcrxwQIpXLhSW8IdC0Nq1pkDdY/3iUTpNq62j+EGDXMbXzLvjUeWueU4DH9YCZKw9uHWVjYRxboFF50vdipnWKjNFGAI1fMp6MP0p7BWkwqQQQzS0rJePXmoff0nxOUW79A67sU4K/y55tp9womgMS5Xj6luXsmjTHMWAExiugiW01STmwoyTf9BgrORzkNh9LlAKSSvrSRbzkzBh7hI5fOCZtUc5XOsZE+Q5jeTSHf23z1/TblP7m29rY2RYccureLHkbYJO7OJAHj+4MY4wHktgl7fHxER8/fsT9/T0+ffqE3W7ngSq+ILzve5zPZw82AfBAEzdi3/ceGHp6ekLXdX4AALbT+OJv/h06LTQ4l811kKAZEC4My6G7Id9YMfcDdBgrQDllJZW+NEHeU3jmFv+5lAPcapBgLUDWANHeok1nl+GH13ptPTcNuHjjZJaZcwiiTK8COC1V9o2F0hZbkuNSXL7G/+Lu5KbloiQklgNXU2SMkSmzcXwZmSzngB/XGVa+BcJPTCsXoe3I34MXgUwL579fFQptfq2sWwo45eZqCXjKxZ96ngOsSjxfQykjfWFO6nMpxSBzUjwYo8KXgbNFsPsbMIpW4dHUtcOctkrNpxSw6se7EMI5uZUCWnOgbC1vpTAJNAEA8UUgybim8GxcVuBX6awJv6bQRhw1z6tOx+WlaKksLY2HGtn5Fvrz2iD8a2wMLxmXSwC9EckNNTbecT3YNFeWlsbKHxVwnKP759pUbuwz5cZFyXYtydmUDrKkLedsyEnwi9MwkJQ7Pqev1HGRwC93SJWRsvOn1o5rAKcoP88XRaE1dCNgk22UrutwOp3EkbPGv0nuw4cPAOCPyn348MEDUHyvE3/yXUqcrzEG+/3ee0oFz6T4LXIMKPEdS9zQfd978IonyfncRR5NwzBgu93icDj4MvpBxreg1+Gw9+XzIJSeOK41fLs0TWM7uCXkPJuYtAtf6tb/3HFAnde3SBJoKhlXQLrOay4UawBoSym7oALI3jw3M//FQJNnxH4xygX/Gp5eq71rFY31lVCeuzxW61PK9ii1jV5Er5UBc+q8mnHFIBNCG00BzjKf15irtXWryWfK2KkNm2qHWn5ujdblySzFGmeRBi4KMV+fmXeiNWR2DL2ny5hLU0AT/44UeAZeZo6dWvmzaL1xO9AGwj4wObOcM5nmN8eP3axgQCutTxkzblte53Jg3BQv/H0KVJT5peIuWf9eU+/4ligHApTG6GJdg+A9m0pgUz0oi+ht4zVp1lrfS3RL42rJvMilz4FNr9WmnPcUYFNTNhFVAWVs3+92O3+aiiicsJJ2KoNNnleAkdRkGXrN0ABWqk5LbDZya9pa+vHNgE0gQn+5eFCGiLyHEqODTdPg4eEBh8MBDw8P2G63aJrGXwj+/PzsAavT6eQ7XB7H22630ZvmePAw4ERE/jicRB8ZfGLw63KxZTLQxKAV59+2LVqHVnKeEuAyJrjQpcAROSCDFZVHbTlNysCsNYLXMDaX0FrlTgFNOm7u93sCRddSie8AsL0VNwWPCv8PJhXcJbtOa9FSUEkvcAtKVp8o2VRF3qbabi3AaalhVwJ5y20dDBvZLlNAk97luZW5XuJjeRutT7Vj5FuWo29J+fb847bdWkY6EWXl4msBTfJ5LEvqjhPk8qnhKcdPkkchHgl8dxOl1xCfXj6Mw9LtEOIQxV7KQd+QO/YyTfw91Q5z16OavpqKe21Z/9Oods7IZ9fo+2yME8ZA09K5kvP8mAM0yWdvuWn3FvnkaI4eIHWymg1AHZbKV8/pOeB0LeAk03J5GjDS/Encgp1P5Mknzkt7NYV8YjtetmFKZ9fraa1uOzUXjTDUJG9L1u/bAJuMgdlssBVvo5NvpGMgB4C/GHy322G73cIY4wEf9jRi7x2+Y0l+SsCHkUbOm0EoBqmA0BkSrGKQiPPQHkR939uzm0PvO9Ke4UQ00Bjgksf67B982Ry3acY7Mlqw5xZSOSFSb7OTQiA3qVO0hiBbC9ziutV4Nsl6yrjfivIwtaBm6zF/43UWH76YCvBCqrE6viY5t0rK5Gv13xID/3pDm8SfAAjJ/nAz1l/+6kplZiC9XYl3SSKEj/kUdgbYQz1Yb1FsETcPIeo6x2G6SXT5SZtpKsyNazvW0gpfao6nZOhqAIkxozYqjd0pKhlJtQqxNrhKa8iU0XcrsnJNPkxifrwVlesxr4630jclWm1Ty5gaDD5LuXlV0q1C0foIXLzApqRhDR+1z6flAMEeUweIXUG8m1OqEM3xeDdoXEaI4z2beI1IyFwDQnzsUa5xacNxiQFfa4DquHPLyukd77Fp+xaUG3M1MmfNTR56peads5am6FuzJebQNXbg1GaZnq85fVp799Q6F0zxXav3yXJ1mMyLgSb+4xeRabuzEQ4pU+XWjilt0+buldNtmcrHFimeE8DrXLTuVdDNgE3Ndov93R0eHh5wOp1wPB5BZI/W8XE6Bn3kZeF851LXdXh6esLpdPLeRXysrW1b3N3doW1bdF2HYRgiQIvBo/1+74EpIO5gjsMoJYNN+r4mAP5InwSbuNy+D95U2+0WXddhu936i8WY9MCUF6pJgEuimqXL0iS/JaOn5BHwGjSFrM7JR09kLRQk0JRDiGXca/l5DyotjCb+Z/VyksplZsfIRazKv0ahuSWgaR1+EkAThMA3ZnzXFQVFXwJNfN+bPdowTiLDoqVjhJaI79khNA045cpfBDS5AEJ+Tk/tkpWAnKVkp9l452yOcp7i6RplWCss8n6BVDlJkHhCya59dovKuJ4Lb1NmuR1u0WZdSzdYA9hdq3nmAk0cHsucID25jRrUAU5z26FmDbIPuHyxMKQajfgfowN9WLqMEIdo7NkUj5W387It5XttPI6b+31rQNNasnYNPWeV/nT/rPX24VpvmFKYfvat2g9TdC2Yltv0m0ojZa3MJ3f0MZdvje1bSpuTT5ofxhHYKaZtW+8Iw/H18Tn/mZAt0r5P2fn8x44r/Jey91P2bx5wAvhto+F5qPMcsO82wCYCQPFxtu126xuZw+XdSgz+sBcRA0fcgQzOMIDD3k+5xmcAisEt7iiOLz2tLH/273g84nw+o+s6X76/UPxC6PswWFgh4e/Sha5pGjGIEjvOUL8TIJNe8CRyysiqPB6oKQfErCVAX5vkWwx53ABjvmuAplsV9pJyCs9r854DmnR4apGInoMVh3I93hNsKuVfo3BebUyNplyN0jzmJzzL8xh+u3IDdpUAbPJ1rAWNUjzV8D3K0xi1YT/dD1J+5vK/ihKLsJatst2XKrWluCUlQ8fRnyUZOKetpmTpaxpCc+kt1rcaPkMf1Ofz1uvVWsbU2m1eLzuuH9s58pta/HtGebm1NfesmN4A8MfnxFs7k7wYAThFGagwXSYbHhzTAlYmETdsKujyxzInZQS9tx5as4bcEhAraY285syjt+wjOUpLYOU146d2DVtL77tFSm3WS5ozFpbqfNeMqylAqUZfru1Xad/zn5QVEqiR4SIHB/SMr8bR8bmsVPmldWfKzo/1ENHv/n5UrkPdptiNgE0E6jpsnHcRH5VjryFjDA6HA7bbLR4eHvD4+OhBna7r8PLygvP57L2TttstttsthmHA8/Ozv3NJ3qnEDccgU9/3+PLlC06nk7/Qy3so9T1eXl78JXLWw2mL/X6H//zP/8Tvv/+Op6cnGGM9r+7v7/Hhwwe8HF/QdWcMFN5EJwERY0x0MXkAt8YD60LB8uN85BlQOQAZ3WTQjr2ohmHwF5rnqOT5c8vE/QiEtmXASYJueiLpibw2vVX7vRXQpMuTv3N1lc8iYe9cbxhw0kp5qY90+XMQ9regtRRjousuLJ5Skm6pzRYR2T9qZICllPECjMfTa4BOjfN+TeU5BcJO8bAUaMrVNSX7Sgq03J3TpOd5boytaUytJ/Nuy0AgqlPivkWaUoar83mnY481pI3gufP6aiICH31efmdT2Ss0U/AoXTluyPtaY/K19LhUOTqMP0veFm9Na65r2ljWlOu7GrBhKZXyrgGe1qY/hE41QSn9JTXOUpv8HCd1tGsJH6nLuvX3nH4018bVoHJuDkiHE/0SsNxVL/L+aOOApsbhE/ycMQT5VnsA0Z3Wmoca/T+vowFSjvv+E//a8g2aBmgaYOiRpdsAm5zRydWSAAF/Z3c0dkljoEgKlhSgwEfcjDGjY2oSrJFH63hwMAjF4fw2OkbzNpsWfd9HZUSIpjEwDb9xi8u05XEZ8q/YQhR2yFJ/KdIDn4G7nBEWlzftalcayHMFbk1etcpazUIytXP/GguGFsQlg27t8lwhxSsbri8QkY5J5DBwEwynVP0MxeKLwadRmMg3WXwqfG4/To2xwrPkbs+80nWO8kYMn6HcIR6Dp0JGTPDhx4IJXmYOKlAHKNQuvUwrCtBlpJoyDisthOPnozAynv+oXRBkZcmzSZeQCsvRe6mT18iHlCJWmy4H0kvKbVRMAdG3RoGnb8doeCswY611au1+XwrA1uY3WT5LHa0jVfCTm5dTsqvEKxEBRujVNZ5N0M9Y2s8g4o9UPbD6lJqj86XkkNafc/Irl58G7997k7Zm3M9Nfw2V2mFxWaY8Kmtk4RzPnNo4GoC5hmrGz5r2F6dZS7/g32+97qfqkALHUvO0lLa2bGlzS5BJyxltR0dlOH3cgk7lfpTAlQawSthAHfHGYQixbSafGdQK9RsBm6zw4DfJcYdtNhv/1rkffvgB+/0eh8MBu90Ox+MRT09PICJ8/PgRRITT6eRBoa7r0Pe9PyfJwJJ8O93hcAAQLvQ+Ho84Ho/4+vWrj7vf7+ERR2O8p9DHjx/x/fcfcTwe/eXh/He5XPD8/Ixh6LHf7z1YNQwDjscjmsbg7u7Oo57b7RYA8PLy4t9ax7fXN00DGgh0GewnURJkAxCF8Sfnz55itvwmyiO1aObyyxkZ11DprilNOcWM+4jTpZSKKarZmakRniUgb8pYS33mhJROm1vs/O9BgBbXkEncF2QfpOOzAhrZcJRMQSYgU76tRBiMgVFAis07DpuqZe45IdE3KdSfw7mvVL4SMLuGyCC85hcO9qGQNxchL2al0bPMmIXerQjwlgSZjKyj7kuRl+6UqThEhL4f4kAGRD0/iJ5FP72BFyJyusEFmZSBof44fqIKqrw0H+OI4WUMQBnkycmDnLyqVYhyYPYalOJ5jpEl5dpaivkSea+JogF6TXuNlTT9rJh69Hr6ujW31PZr7CQD6/UZgEgHWUrG2M280TpyJdg0mygALLzxKHtxip85IEE92AQAA3i1DpI+lS9BuIdmaYkcifmz5ec8A+aUIfVWOS5TG6IlYI8/5WYs51PiM5VPSfdbQte2N8vka+Rjyta4pn66v+ZnEHSitdp5CkSaE38t0o4BS8ottc+UfZV6pteROQDd2m2WG0NzwKFU2BQgLeNpBxN2hrm7u8PHjx+x2+386Sq2xzk9UbjWRs8x48S3BrAYlwDg8QY5L3lNPZ1Ofh2S+ebqqNsk1M3qMVZXt8467EAgx+Yw2L8S3QzYBCL0zrtIdshut8N+v8eHDx9wd3cXTcDT6YSmaXB/fw9jjPcw8m+Dc6ATHx+Tx+AY7AEQpWHAq+s6f3RPdhR7CR0Oezw+PvqLx6UX1jAM6LoOpoEfIJbnAX1vy9jv974ubdv6jpTIoQeRQBjc6JsL9kjgbhgGbDYbXC6X0YXhGsSKu2Y80XLP5wAkHG+u0ZJTGPREyfE/h1JAU6mONQZXSYnMAXs5IEnzquONFVOgbFJPkxU2ZWAp8zPOxwMEageV+Zf1UAll6RpokvFLoFJyUUnxnAEsSqAo1+hqY8rzQ/x/xG/qc5RDYTjqdhAj2v5r4rc9kfxnBC7NM/DYy1NzlOLHOMBx/IzEOJKcw48hjXppmUP6M2MwyLaSOeaUtlpFaK4RPAdwmqKSIjtHhs4Fml6bajYFcs/X4zGlzM5JL0f06xs3b0lrgVYss1NrsoxTE5ajqnnE/wgdTa8lc/moBZuycTnMUByWqo6sQByI4gIyKp+FcYIfAyfDdWAoa67M4t+5NbCsC03LvlrwqMTDUsptGJTGuuRnTt61+cyVjaUxvLidWBxKPTFT3rVzf+mcXWMNSdkCtf12bZkpmtocmAMSr0FL8llLR0mBTRIU2m63/oVjbG8zMCT5T9m/RnxKfjSwxViEzPN8PntgiMtlnIPzmDpFFdfLAk6Rnm7sBJR2dk1X3AbYZAzMdovT+YyvX7/6u4Z4Yg3D4O9T4gu5n5+f8fnzZ+z3e/z444/+LqbNZuNBKEYN5Q6zfPPcdrv13k9d1+F4POL5+Rnb7RaPj4+4v7/Hp0+fos5kb6THxwcPRnHe7EHlj9UhoII2jwZEcVwpRBhJlIBA0zR2x6wJSoIcpHKB03c3Sc8ubkt5lPA1KKWszzVEpuKmhK8Oq8mnlp/avLSysbZhVduONWDWtXysQgRQArdauoi85iJcojlGwfy8na2wQhstK38Myhj1meNnSvHToPAUaJ6LQx5tmqcY5+SofL7mHH6v8TlFa/Ml5fFbgUvXk1F/702xEX5LdFNryP/SjRFvQiTGCAEwlDBMxIZBAlwp6VNrgZa5/N+T5srPa0GU10y3aj5Ob8Q3tb6sS3Pb73/l7XWUsy804MTYBeMR0hFFEsstbbMPwwA0DVoTn1iSZetrhiR/8oohzZ8sO7nRPsIi7DUVTWPUs9ju5rApuh2wabPB6XzG09MTdrsd+r73XkHDMODp6QnPz8/49ddf8fXrV5xOJzw9PeH+/t57GLG3EndC13UeYOHG4ef7/d5fFM4eUC8vL3h+fsanT5/w+PiIh4cHfPfdd9HZS+7Mu7uDB6zkwGGgiYhAgwabLHF8vugrHhDxLqYx7t6nJlbi9UCVoBqXwWAbH+EDMHLbew2aCzilDM5S3BS4pPMv7WzPRbeXAE1r0hID+C0Ap8X5UPgg5Xjz3otiza5hDa1Zj9F+8zu0EakvkZRaADQx1V6mmhxrIkjemVJKr4GlHNC0Nr33uE7Ra8mqGqDptQCuZSTh01syXtYBnNZs67WMu9cyEt9z00HTa8GF772xEved9mgqph4vZs7/i6uj9WQZ9lqbeJKW5H0LgEdpDcu149Jyrq3v1boV//P+zX7zdBPgoKJbktE1VPIw1H+bzcbfLy3BppRcS9nu/Nm2saeUnHfam0qGS5yillJ6cOz8EjyZAKBxapIGsaboNsAmAjAM2O92eHh4wN3dnf98fHz0ncaI3X6/x+l0wuFw8H98b5K8WpJJbgAAIABJREFUcFt6Rh2Px8irh4/n8Zvmuq7zQIwxxpcXgUdEYuAQmsbgfD77OADUhd8EXn3DoApH/Lhz27b13kdNY9D3FB35o4HQk72zSZJePFKvVwQQjvWtNMmn8shNztcUMGsKsBTgVWM4pRb8pXVPAZSpvFJCbDrvWawkyeTt+hoOfB4Ql08zZKA1Vsp817+yfWT8P4XU8FgFBeayce3GWr4B1oSa3CZenHcGzBlvGquxktodVr+n6hadeGTgsAJcyu0M1dIIwI7ydiE8MH2fk3hu45AzbuxneBuizM+I2CHMQMcyKs6IMc9f/YhIAfVLSKdLyY+c7ErJ05IhWOIhtUHAz9aU2dfnZS2Y95ePkvLSby7dElC0rvGif6fBial1+Woj2IkbvyscMo7KTPGWKr8kB0o71VE+N2qQBx6DjpyTOcV1NiFDlvTj3M3F96CUDNXP5adMk3s+Ram2eAsbYjK92O3SoG6N7jE113T4XJ1+1c3GjIwq6VNryrVU/tfQtwQ05SgF+OiLwSUOkdJ9ypS2JSUQJPPSzhcSC5jSs6b1MLWemODdFNpiWue5EbCJQF2Hx4cH/PDDD/j+++/xpz/9CdvtFg8PDxEy+OnTJwDA6XTCy8uLv39Jdqq8u4mBls+fP/tjeF3XeVc3CcjIS7X4nCMfQzsej5Fr2un0gL6/4OnpyQNVQHgN4Xa7xTD06IdL1OHsbcUXmAMW+OIy2cvqcrn4y8Z66tH3A0i88U6SRxwTrxJmsI3502c8ddy1FpKSMvRa9FrKdC3QVDOpa0gLD40418SdU94SIkriFrPz8B4pHmZKKAoZI8uHmujjOopcdtJEWY5S2V3JlQEG1dajfqU8PykgKUuUubNKp5d2QoqfyjC5E5Nmp378SuOFjHEXLA4AQQD/LsYw2HoSA0+KrwgAFWWAVH/y2E3xMyQb8j0NmZzCPWWk6DRrgV+3SQR/++w1uawhH6PZODUzvy1adx68PzhA/I9gpbSULAFWcpTa3KM1BuArk+U5jOtaPbEEiF8jY+bu1KfSvzZNtVFuI+HajZ416Vo7Q6as2ZhZc4y8JU2t17k0Szagv0Vac/zWtJO0s/lTXvzNF4RLzyap35b0rTE/6Q0J/TunszFfjCdIvq+pu9yvlh5dHmwq5HEbYJNjkS/V2u/32O12vrP0roPsXAZY5GXgXdf5i75PpxPO57MHml5eXnA+nz0gJM89SpCKQSH2pmKwicvf7bYeFJKeTSniRdHyOQC4+DubuC7syZRFzV36qQU2NRAZcOLvNTsdOSS/RpBllZ9EvFS5EsHV5bzVrsocQZYTItcoQ6l0UwrqFOBk4wJrGC3XexKQQ8KlSl4YjzU8X7n4+GIT2cztRz92r21rAkzinotagKeqiMq6RcYTsQfUvHxScmWJ9581poSpQggeaROyxwNNQumN5qzsM4p5Hc0nX7BmMA2u1cjBuXJviYzJyYyc7Joz37UMT7UDx3sLZbhOlq9veC2um0B0g7xeB2y6Na+Na/v/1uqTopxBPOXptORZ/FvLBYyFduBSRFJhKMmBcRwUjjOPyw/jeo7MyW2w+Vyv1PFqQIwSrSHXUu1RyjsHNNXkrctI/V5bXl8jH4nUGIDQIhcATtfoIlNlrUHzdPxlNse3SteuATVzJDcvYsBl7O2UkyOl8af1o5ItKO9jLtVFp60lBpLWoBsBm2ylPjw+4ocffsD9/T3u7u5ARB6V043OYBJgvZwulwv+9re/4fPnzx5Akpd///zzz/6ep+Px6G9y32w2I8+oL1++oO9776VERDgejyAi7200DD3atsHT05MHtBh44j8Ye+yOj+HZu5Ps/VGHw8F7Lx0OB3+Dfd/3OJ1ewiXjrqcHCkf59AIggS452OUl5NKzKUUlw0YDP1OGR4rHueBNTRmapsqYy8dUXqnfcpzK/luar857alGc22bvRxZAaUz4nTOmahXHNRSFGqoBAYio+j6iidJmgQdXl1azaFH4MCpaTfo5cYrpCCCnePoTxgMi3CA151NzNaXU6zSpfHLze0oxv0Y+lmjJWMkpsCkea+V+jcy6LXkE3IKHDABnSQFh7l8PNr31LvAUTb3ZaAYz1uPwGwCd3pPCkKLMMCc3vObqUIxgqcJyr7xz5Ye+D+M6B5zJMMnHe9JblD9Hjy4BTVO8zlmL1qj3taAVD6/S2l4Ky8W5NRmi19wpoEmmkb/fe65oujV+gAAsaV0lBThpbyZ5fC51TxPbgakXgslLwAGE+6HFaaSUXMyBYJokICWBKZku9T1cQh7AJnv1DxBuq5AyfJpuBmwC4C/X4sutAkATX4QNwHsvccN1XYcvX77g999/90fk2EuJ8+Df+o1sfH8SHzFjkIoBq2EY/HE6yZf0atK3ytuIEBtG5MoaYAyiNPqsZ27BlwNsypDhvyngo3bipwyJOVS7iM0pI6WMlBbjqZ2yqbz1Mz0mp3i8hiT/NV4G+ec5RXA+P9eScbucrjVxjTEV51v2vpvDe0lRKSlzczxBrqfacmS7JHKh9CenjJKQCCMRmEmveY3EZAX4kXzmgKaw5DmOJN+ZfphS2DTlPHRyfUwqH73I1z7L0VKlWj7LgW2p9DXtWGqjmvSvQTnvgPg3t7vjKTD3qrxlSU22GHBamOUbAfFvTX7uz1iDJ+XKEhKOQZHyPsHjEt1h+TwqxCnIaq0vxGXplSHlIaWySbZ1XrddsvF4LdXI47cw5GtkcCp+CaDQBnTtWnT1HMnwOpt4yEnjG/EonDPnS/rinHxeg2r6c+46/b+UppwNmQJjSp5NKa8mqW+l5p/Oj4CRE0nKhpYyaMq+TtUvlWZcDzl+tI7v7j+laXXppsAmFh6fP3/GTz/9hPP5jC9fvkSIIINF+hiaMfbOox9//NG/mY7PUBJZz6TL5YLT6eSP23G+0vtH/mZvIyLCbrcDUfBs2u12AMLl25wnd2rbtuiHHn1/8W/Ds+DVBX1vwauXlxcAwN3dHQDgcDjAGIPz+YS+v4Q36vWD9Uhqw7lL2SZa8PAgkfWTQJmmGtDkregaHmpQ3prdCx0vJ9h1u6XaeI3dEt03OcHxbREpAVU2pmrquQTgmbMw1ypebz+PeCxMx0yzJnfPrCYXH2+MQSUjwsIF4bqcETyViAMM4o2d8TO5qKXbmggKcHIBAuDPLdDjcspzNpdPflyO61NSGGqUiRLNGXMlBTqnuNTIzqm2nuLjGqpRuOryAbDSvU3LmYCbWHJ9uQ5sql37avJZo9/WlZFu3hfKqRmHV/GUGDLX9djtUT2g1aQrLsZ1nF+4CzUlh0uyuWY8Lh33bw1wTVFuDk8BEil5L9tW67q5tSiV19J6rDLXKtb31G8dVtL3S2lemzQwIT9LPM5Zg+fysyZ9a7aL9EbSDiLypJS8r0nf2ZTqn9R8S8Wt0b90XMZFJHikrybSaXU48+dfggZ4z8Lw962BTY5eXl7wyy+/+E8Ga4jii7UB25h8Idef//xnfPjwAY+Pj3h4eMBut8Pd3V0EvLBH0uVy8XcuPT8/43K54OXlxQNS5/M5ApX4+Bm7yUnvKwmAMU/G2KtkJQDFdWA++O4ofr7dbgHAe2Zx3iDrXqcvG855K2m3PQnMTQFLtcbXrdKSCTkVL/dMtmNpYa/hdY4yPOUt8Nq0VpnGkAAxOE9ScaZ35GvilBSOuYBRTV+/Zb+E+pfjlFmSSk0I8xQQHbHf7S7SJorik/qdD+M5pONglC7Z5tqRyfgtz1l9UTNnawyhOI90OUu8f6bqMMeglr/1OlBqs1pZM3fcXztP5uzSy/KK64SXR+sbqVUkcNrQR2n5WJXdiuvElP6wJL9rKMi1defHXJJDZjSvKspayltRdhn+oJiPZH4pjyS5rVDHz1go60dyLMv5ONbN5sigVNyaZ1P5lGhuP15LNfWf0kdl/ByYd81a9BakxTMRjaRjzZqeWzdy8fWz1+7rqbJy4/qtx+UfmTTYowEnCTxpAEp7NzFpnUSXo3XiFOBUq9Oy4wuAiKeUfNS6kZYD2j6Qv2uG122ATabBZrfDuevw9PSEX3/9Ff/1X/+F8/mMp6cnGGPw+PiI7XaLx8fHEZLIdx7d3d35o3j6OB4DLhIQ4oHCyB+DO7vdzl/Y3bYtiILXEyOW+/0Oh4O9zJyRTL7om6l3Xk9E5AcgUXhL3ul0QtM0/q167Im13+/R9xYMO5/PsEdW4vtfuE4pgSMnBADvocXPZR41JAddrYdJTZh+vkQgSgR3LVBsrlGlFfCUUbpWeVoZWEtxensir3eGKqQXyWt3JueAQrWK/S217TVtJPOQn29BuTlT89uGAXxJ+GtTCrRY0uapdHpRnyOjl/RXSRnNgTHXjrFcva8lbTTN2aW/WSIEl8H4cMiy7Fas/1pA02pyhsgZnWUvjNcEmrL5YhpouoavybyIABPWWQAF/JRQ48033VYMNCXyojg4gKiWxyn5mgt76zUr9fsteMjN47lAUym/qbXoFvQegzBUI/mPECZpCnwpgU6pNG/V17nvuX745ta5b5RKoBNjEtIhRTt5lGQYO9YYUFSOtG9TQGRubEpPJp1HaoxJHq3DCr/ISTx3bi9z5cFNgE2mabA5HHA8nfD777/jp59+wn/8x3/4O5a22y2+//57PDw84OPHj7i/v8d+v/fg0uPjI4wxeHp6Qtd1OBwO2O12I08iBmiA0AnS7Y29jLT7G9/ZJEGj3W6L3W7ry9rtdt5TCoAHrrqui7yWuCP7vsfz8zOICIfDwYNmfGE5QHh+fsbxeIQRPk1cH3lHVA59BTBCWGWbcH6aSoJsSqAtBZokbzkeUvnlwKalC4KeQKXFHRgfnatRcOcCRBLAlO1f6o9bUAryFAypwGb8NsdrDftSf8wBn0p5vwXVjqGpNlqlXsbawGuqM/otnjkekjIp4m09YzrXjrWAUzCi6stYCzSqTZNaA/Q8eA3A6TXojwc4kfuf5WN5PFXluFLb34rByUSYKTPeiHey6Em27GtAJhmnmA9fyE0C56GMAPfjzOhAH5YuS6FYRdbJl19jLL+GDCpylyhfP0+leUvK8TgXaMrlV0p7M/PeML4s2oE/r+izqflZk7dncYUxOqc8GecWAcJvnTTAlPNu0sfoUiR1Ev6tT2u1pkGrQCINNnFaYHytDn9nBxadTsfT+YVxFMAmH5f0O7brxtdNgE0gQu8u+P7555/9XUa73Q6HwwH7/R4//PADHh4e8PDw4D2ZGCBizyQeBBqMGYYBx+NxdIm3Bm54cHDHymdMcpAxehku9o5BJr54PE5rQNREF5YzkBUGBaKBSwNZW5zSRkIJbNII5poL9RzQKReX21PWRRsPU3mmEN8ccivT5sqZa5jnFvqlbV+jiMmweWVc3/9TO0AVOSAotvZtQpZsGIeO48vf8klGeZDHByj84t8hnvuXMHqWzjdXLdU/xVwqKamYm4TRUG4jyw8VmSryawwMwe8omskE01Sj9FXLq8jDaSZjJnR5aTzZ/SbVxjnjbYJKIOJagGdJkSiFpdJrOZmSm+9FtWtG2VDltBz5Gjm5wrG1le3pW+inVyEv0uoM5FdtBxYHPMZGSnnMw1sBTvr6hfemOX1QmrO5+udkaM1aMhdwyIVdq2eX8pxaN1N1WLIRNaVDX0NXbVro3xRLgGuBolKcqXxea10s9a0u/w8r6zP0WvVNgTvy2dRfjtdSH/lww/bRNI96TMg/tq2XbUTzmBsVumhv9ybAJhoGvHz5gv/v//5fj8Ttdjt8+vQJ//Zv/4aHhwf88z//Mx4eHgDYBj6dTv74mQSbgOCJ1HWdv4fp69ev3ruJiKIzlnzpN3sW8Z1ODAYN4jWEjFrycTe+L4q9ovh4nDEGA6k7nBSPDDQ9PT35Omy3Wxhj/IXkRIT+csHp+ZS81BxABJJJkheB8aDjel1LawBNzJc87pj6TOWV8m5KAValSZ3b8Zb3bE3VocSzNnqmJn1N3rJOy3fsDa61ZoyhsRCaRYMDCEgZC2Pl2DiV2X6PiXwc/UxCWDT6HGHzXJmMgaApzc36REiZUUvayC1AFWVm6+Y8m9akaxQFY9wWpzHBrb5mg13mob6UJKNJ7PzrfmhE7Lmgl9xI8LkUFJe5ecvPXNi3SCVZPj+zNfgBlvR/IFMth+bQt97PacqvQ7XAgKTrPPfgNwd4PGbV+BlzrxaUGsdjILzOcPkWqXZjbkletyYfa+q1JjiUshNu3Tt0KdC0Vjo28Ncgre/XgtQp+2uNMby2LnIr+QB5xwX5qZ1RUo4nU0DTFIU+RiSya0BjILzlXl4ZJPnSm2/6r0TGgUzy0z2ZrBdwI2ATG0LcQNvtFh8+fMDHjx/x3Xff4f7+Hnd3dx6AAeDvQpJAkARiYAx6B+j0fe8BJD7fb/gSbRpGrtjc8APzRPaPPYs04CM9puRfpG4WQA8+p+nPa7qOtN5NW6szmA7GpD1ZUp49ktYSEprW8myaw1tOGDBpIKaGpIBOTbypvGqFyFpAk/bgmsvLsqEQRjMbU+Yq5MEE0IcCDBR2hUOxhAD0+3i5OyEgYCYaA01S+88rlyqiBnaM42CiHUP2EhLLhZXijIFLSC8lY0ZtZFR+DFqNZIOumKYUe4VuT9nZJPNOKWxZfoKZlJw7DDQp/lN9nUyrfoR0CY547JGA9BxYahJeMEbwI4nH1rgZaBRH5jZuPj0fdRlxHBteNkRK4L5Wdq41knX+11Jqc6EkJ9ena8ClDK2U3dpK+S0ZHD6/nGeT+He0PigyQmpezQ+lZMkoUvp7Tfya8gz/NqtiTZSSj3r9SvEaIfvr9X9uzuuwuXnJ37XjdW05U9qwrNVJc3O2BphKtuPVgP6Kfe/yY/0mFJHuxzJb02viVJzVNj1U3msATtfSmnbkrQC4kkqeTDJOCrhJgTi536kycjZmzg5N2X3yTzqmlOZ2uR+4PQhyAfGAE7gd6kTCbYBNpkF7OOAv//zP+Pd//3f85S9/wV//+lfs93t8+PABgH1DHXsANU2D5+dn/P777/7IGhDeFNe0LdpNa4+xGcA0DQ73dxbI2mwD0tfEr/Q7d2d0l84BVAOGoXeeQITu0vnOadsWx+MRu90Gv/76Kz5//owvX754z6ndbovHhztc+h6XrgMBGNyZTBoGgAiNCa8k7LoOwzDg6ekJbdtiv98776kddrsDuvMZ1A0eMGNvK37DHA88rkfqzXj8Nr0U1SKb1d05Q9AxqMZ8SH5kmMwnB7Dp+5OWkm6PVHky7luRNqiuE/xzARBSYXPy4TDFLym1U+ug3s63/xFRFGazcG1B7uirNCzIxhvYX0VoJEE5t39kguGuQaJ0O6faiCuwriI9GmMk2lJ8mPSjGPAeKAJxsvmI4gxGPRdTynbI2RM6o1xTJZvcGk0mavIApqWSTplFyTZSQ9W4CKTDJthNVCDBVUxjcZLkspD/OiCQjHvru9klWs7/DcjHG6VbMzhKPmDjZ4XY62IyxfoZZyDnZJViK5sXP0uKVU6zojvqmI9ELQhItmTNenBDlNJBS4A8P3+P+XHNXKoBmlYlKS5rxauIYxCvxetqXCLfmUDTW9F7ATXSu+caSr3Y6lsl9mxiG5GdX9q29fcwjZxQFFilHQoshXucdDx5YonD+coePrnEOIEsT3tmyfRM2sa26Rgn6cUzi6s0BBjTeMCp1K03AjYBTdvi8cMH/OlPf8Kf//xn/PWvf/XuaV3X4evXr3h5ecFut8Nms8H5fMbpdELXdXh+eQGI8Pj4aL2fXJ7eDdTAu7lxem7Ivu9x7jrQMKB38dmbqSdCL+5WIiKc0aHtewxDj763oBPz4d3W3NE+wIJMRAOGQQIYFHU+p+M8PGjW2ON6IKDdtBGgIkmey9RACRFFdyLV7GYku2iGF1MpfgqIkgO8qKAVwCYdr7QwzN3xlulqFxyfxiYs5lvKZxROVAcjFyjkJ+GGTNnFjKpLFJFTvDPiI4KEwmGcwW2FGSXjZO1sjyk5DxRSz6SNmFF8PMbln/P4cb+y3RGYCmzXAQIjIt04YhyQ6EPPL6NHcuzE+RDv5UduMzyv+G4rbv0xP1GPRsqfEUfOfQfEyVN1HGORosmFJeib0Khk47oa3+W5TjLxN3JjjL3FeFyqMjmQjIgjOJCed0RRTeL0tGw8pERFEpOEgTwcOGeHdCnVyMg5cneKanZcc7J+HE5qrobwIiBUtK1Lsk/mnY4jwe+rJH9tX1f0zdXmNK+l00J0Nul216K3iHkoIzaTcb5Urs5INsVxU8tNouchxU+q//SzMIr0ekoT15DJNUCFTconwf3kELOd4Ll1SbP4ghmHzfHouTbOUn35NY3pNTZTl8QR76Fyv8USb9JjOBvHJOKo8GQcEx6R+JuiOScdgOVt9Jo0Zz18DfoWN51q2izlQFBTV+3ZpO3v0sujdB4jHWYYbzKzc8kwDBFwlPNqkvdCS487eb90rl4cL/BFMMY5sHA8GAs0VWoDtwE2EcEQ4R9/+AH/5//8H3z69Ml7/Hz+/BmXywVPT084n884n89omgbd5YKmbbBr9tjtdwAMtlvr9XTuLjg+n/zxOdmo1utpAxgD0zSAAJK226193rRo2gbnc4eXl2dcLhccT2f0F3eZ90Do+w6XrsPff/472rbB/rDD3d3BCdYBn3//XRl2hPA6QyAYrG6A9AO6c4e+6bHZbNE0Ldp24y8KPxzu0G8u2Gw2vl4aOZUDT6LHKRc/veCmkFZJevJJdDXlZSTLSuXFcfXl6jyZdPqcsZJzX0yBbiWeOC+JBJfAoFkLjVQE2UhPCTMVD7CjJOmuaTIgQCZM5xtCXC7J3U+3lEda6kj1y5WU+U3+M2ARDeAFmXv3IgWVVFNcc9W/IAwgWx2v//NxPUBr3AZNpP4OkbEp8xCggAQP/N1VsfrjeTSxsS95sl+E9pQzOElbSMGwIZdukBwYWyIf7/L3GA2DfdmAV/rcPU+G7HiKutk4I0DWldlR8oOXG2EYhO5x3mZiiEUKorGAV+quJHLt1Lg2kHdSBcND8CQfikKMYD/0oocwfXWt7Uu2LOEMJxVl2RHkrCTCePqkfQ1yu4IsyySXg3iWm+XyDSSyHDgQy/4OfTWWhT5VQSamvl9La3oA5MCmHLikyyeys4cI6Ichmv/GyD4T8hKAkS52xAM8zJcwXlLyDypMzqcQ5tf2arOqQHHFklGmeiQ3GhfxQrrOopwp8DD6NHG4ALBGa7jYfh21pol3jMPkl2XJOZPmqmV9CqV5Nd0dxGug4iPKx/OhWyKsMXl9QAutVN1i63+8K27ieAZuwZkYJa5uRrSqiYua5hewm8JD73iLE/PapT8hypJyk4Zx/jWbn3PSvDblNm7X2lzg8SglHY/BWDq+XhwZNqc2a4MlKRtB21LXUM2a/JbEYMe1VFr75zpArDXX2AGFPYOYP30ntAaVOI68y5lP6sg3zMm6yTuBc3UwxqBJOGboT/5r2+CMIt+Wx7xo/rlcaWtr7ycOD5gCwDORdVWbZ2P1/ImuuBGwCTDDgH/405/wL//yL94r6HK54MuXLzifz/6ibwmgmLbBxl3szSAFEeF4PuP55cWDMhy/aRrshyEILmONwd6l27vLwre7Pba7HZrjEV3fY4BBPxC6vkd3OuJy6fDy/Iynr1/w22+/omkb7Pc7HPYHtE2DL7//jufnZw8UGWNgGltoYxpn4NqjdAPBLXKEy2A7/LK7+AvH7WC3R+sGd4Sw73vv8aWBJSLyxwT5d9TUCbCl5CWUIjlgU8JVu0nmgC352sgUbzngKMWPphLQNCWgNGqcy69EybYkoS7NFKqpPJMGVikfpBU2y49MLFR5kryyEl/KoGRYpX7bNIaMO8omjDnPE2uGJvppMQzjdXHy9XMAUBRmq8EH7QwYTJFtG+/cBTK+PHgjgVSVKIpOgFgsTBTFY0ekAk0Uu9hsFH9RAI4wVHwS8gV7gMbYJ4aMw0G47qINjAjzrGqwmmGU2OgLfWUZYiceyauJ+jcenfydYRcv+2HbNgCMak5qH3tXDpsgAXwK48naSAY98dgh3wyym+RXBtE4TmzopQwucmVr+SvawANSjYvfJPLh9ih9alkVf74n0PQatIQ/Xe9+GNBrg1MpxhJgIoIYS0CYlbrN5fcp+ahmLQuyWWaVzjaRVgAyQHqEZcNkxReSnh3R94l1jgB/DA3GjOYn80bMpwaXjGwSfsbSQJTl5qXcyPCr6HiY+LwaL8rtvYa5pV4DTima1DVI3Q0q8/dxVJJEbErKhVFOaJtN1PfGmGhNscJUj43UWCG5fMFlUxxWqToOZO9W5czCLnyYn9w3vLaHZ6HlaCB7xYWsV4ZuXRYyaYNxhRytCmHGfSGllASEauPosJo4r0k13i46TAIIf1R6bSB1TQBpTpns9MCOJxJnkJeA59Jvt1sPOKXAJmnDadAuDSIF20SXJT+B4PghHU0k7zJt6gierm9qnI/tX+N1U2Mab2+V6DbAJgOvNBCRv3OI3zgnzx9yhxpjgEagjAiN0rh7jzwQA8IwOPW/ceCSU+Qufe+NBh5URITucrHH6oxtTA+MtC1aEHa7HYa7O7y8PKNtGvQALl2HAfBvtvPKopPQUonkdc5WPaCCBPi7oi6XDufzGRjc2/PEQB2GwaOZAEafGn3lZ03TREfxagRjbvLrvGWZEgRLgVvMR9/3vs11Onmjfg7o0d5Iul4lwVVbr9KnpoiHbMnzqMSn0Rrr0oVOAR2xEkhJQTIuad4ioXpy7FyltWjPnDYIXDQBVsTCTyiVKmFsatkbnhh2Ghes89TEyIMYi5SqiAwXaYVRZKIqVlglo7wTnNG4OaPjHiyDTDC9wkCYLtJHUYtZlvQcTRmGhfJqKBhcwVAc5UFhdET5FgqhijgpTpSNH+dJOtxEz8bfU2amGOtJ3qTBlWc+BzSlFJG1aGletcZUPo4DGSKhwUpdNjcRj49kIpHvAAAgAElEQVScyvBSmhqSptnrUQ3INHdTo4aKrZQw4lLprc7Hci2SQL4EK2bVqua8NmOpZfWzISGnpUSi+FEgA78uBYVfXJsQAfFpXlOmtD2moEuT6xnLbykguJocj/IdNmracs9KUC0KmzVMRQKBTU1tevp7G2VYwjhKAQDy+5xNw1qq0Tevpbc0wn19JuKR+lwaR8fl7xmYcpKuBXzmbChLm2ut8kvlvQetB1haWgPMXYufFEiTe64dLPh6Hv6TzhM5XqW9yvIod59SieecMwTnIz2c9N1SqXrmwOnxbziep/VISbcBNgGAABzO5zP6vsfz8zM+f/7sAQljDO7u7vDw8OCWKwtMHY9HDH2PwRmb280G7cODvcCqtfmeT2f0g3vr29Cj7+FAKOfS1jRoNi3a7QbdZcClc+50TQvTDmidpxHRANMYtE2Dw36H8/mEdtPCdAbn4xE0DDgcDri/u8P5fMLL87NVLgY3sFwHOXzNg1lwvIDIvTWPB6Pz3trunME4voOJBwlPFnYFlBNIgjk1BoMeuDqORkNlvBLYJCdJCmHlepTAKs3XpJKS4T/3m4VKLcCUJVN7mrVMU32XU67ybMlFcTFXWA9OY1L5eaNAFqnjTHwm8g4ASyqscYCTdPLP8JcMM4nwmnQcpsBKAiCORC2moNuL/MW8kd0pvtf2sDaFOCzVHVmDLfE7GZYyfkuLHhtf4Yv9oMThvdUUqrgvx8+QeJ6Si7K6qTqOJoj6nYpnn0n5qeV96vst03WKZwASQn3n1ntNQ5ASf388Ks3Zqf4MYBNZ73AXWjVexXxiD1cuc2oYZT2DAQeWw75Qpu9ckNOR3NEyu7HJYH7jf9vMbaiPYxq0xr08xQjQivhNroP1nmWQyx4Cd/LcuBC7YRqfK88g3aqBLPYfhxMNoJHnaP6oaRzmE4gcA/htyyzLHq2XzfUkmVojvg1pd1u0ZA2vWucr0/0vfXuUmofvqWtIbyMtgyTQxGEMNPHROenVxE4gKftR2sza00h6IpXe6aDln7QPU/lLEEzXLdfmJduXvw6DBZxq6WbAJnIgy/l8xuVyQdd1eHl5welk717it9DxG9kGGuzb3txRu2EYYNzxMY/owV6sDcDtoKQv07r0PRpXvnWlG9D3gp+uw+l4RNd16Hv7troGcol1u2LD4N86F46yxUALBGhgnBKgnVOGgdwb8Wz9DAFmGwYjn8uU3yUIpdFLDciUwIlapV1PJqkESJAoBTZxnBQvKbBKptP10jRnh6kWgErxnytXRPSA4TW0GOhKUJ4XkpG4YJU4lWqlpZ/0TzEmKZTjQZFM2aGt4t8jUnWJFhniYwkmFXUWRdgNG0QefcnkzLbPyspvTU+NyirgiVJuaAC5NK8oEbaEUqlT43vSaE3JkKVM+TzHYWOQODXVUsBPmtfcWC/VV65HHC0F/Kd4LgH5mqeUDM7J5TXk2hp5WArAg+qtfPzVyi4TT8VFpRXWID/FdRzZr4k4q7U4j4skc/lSYiiO3HzK3xuh+Y9Adz82s5yonCghJMJLEezl3Azw8IAyKsz+iSXN8WG8k5QZDUYN4kQ36vEq6UPCbxLpSQQZN4SJkaW4LCGjOL906xQWiihOTMyGgebBRM+iHFjOyZInxmWtfJAr/lxjeD0ZtH5+q+X1PwCJW2I3LI3zLdJr1WvKnntLfkq2sgzXQI78nnszutaRs3VWdnNK15bpU04Z0ntK/qXqWrJxS7ymys3RbYBNRKDLBV+/fMEvv/yC4/GI4/GIl5cX/PLLLyAi7Pd7tG3rj9cdj0d8fX7Cy8sL/vu//xuXywUfv/8eh8PB/+12Ozx8eAQQABALGPX+CNcwDOi6znfgdrsFoQHB4OXlBb///jvOpxN++/lndF0HXnLv9jvc7ffouosN47wvFzw8PPiBF3mkGMAMdiGNL+tq0DQBXOkuHS79xYNNh/0eD3d3aMQAl6AMHzHkT/2Wu9zO9ZRxmDZu7Ce3ncyPicNTr7hkkInrzzfl6zJKg1hPHq5zDbCj804h0CWjNRVHG9rGmCr1q5YYeJOUExpTcbSLZ87QfAvSfTHloVXidWrM5EjvZsSq/HIyrLcLXX8EOGXSvZZSV/IkWEIlwEnG0d+vBpoWjtka8HjuTnmhNEx1ZM0Yzy3wpc9cOkuLIYubpnXAeKDJXuLuS5LbR1eXWSxJr8sr5atHJZnYA1f/XrPsmJHUDkb63rbyPHBaGQWAZpS1ifvVS3sB6hjnGVRkuVANIz2U+Lv75HFFaGA9m8RbfNj7CU0QG+6uJw8mu3/D7wDHSOCFQnbit7GeVYZHL6NI8npuUTm+lCfdPfm2iUCxMg3kTgk4hhkMNHBrsd6BTTDin7JOI+NPjSMKhxkZ4mMd/VbojwpY/JHpPfXp16Yl+vUSeo/20/ccpZwgJG/s0bTf77Hb7XA4HNC6O58l4MQ4g8yH89L3KUU2LYLw13p17moZPfa4LvqCc1l+yh4ugWFsi7LNLX9P0W2ATQBAwZPofD7jdDp5YIgrxBd4XS4XnLvOg1JPT0/o+x77w8GDMdvt1l/8nQMz9J1A/jWBjYHhu5u6Dmf3d+nOAOw6eNm0/j4o64rtXJsluBRVz79oPFoU/eIq4w4EMs7r6nJB325gj3zEt8nzgK4FWYCywVkyDEtIampApox/7f0kwaLavNcURKmJVoqb42cENHH/05TqOo9PXWaJUnH0PKjxBKkzYJeTnC9TdZwau1P9WOOd4cOquK8g4p1b/h1ug0ryyVvdxifPfVlEU7uzJTBPfk+BS6l+1OlzC2MqTon/uUpdiafa8HqSvgblnXI95nXcOe2pn5XGisx3qh1fS/lb0s5voYiW54jwxMDbwHbrAGmx98eojnoupuKsxIvmBxBtKkCGOUDT+HmCfxnRby7EynmxQwtDz4gpH4AsBpHEv74IB3Mw2gEDf2xcPLL14/bgQizQNP4t2Q8MeSnkvpAsJMonEE21hS4GesyU5mnoNC7d68WJTZ9MDglexmNHfk/Kyph739alCxBq5eYadBOAEw8FxcoNcPbqVNP+c3Xzb5VeC2zSukjKZtebwvJZbRkl4jJTjgxabkj7W3s2abu8ZuOwpHNru1I+q7GTdX04LNfeU22ky57TB7cBNhkDtC0uw4Dz+eyBpcPhgB9//BFN0+D+/j56teB2twUMoovAP37/Pfb7fXSGkhtRehLJW+VlR7D31OHuAfvDHX777TfrSXU8oiFCdz6j7y8gGrB1ZzO3mw0OdwcQCP3pjM5Y/l9eXnDpLgDC24+A9IKnJ9LgFmN++15jDJ6fX7ARb5ljxJI9jCR4xmH8J9HHEiqa+pPPZB1yA20qnRzcqQk01UbyyKB+NtcATfGr+dRxS6QFw2sATZK/UljJmF/Kx9qUA7JqjPDUsxrhN0e4rkWlcZ2Ky0ClQKVem8VR+bXAUQ5wysVPpX9rev0xINDCUqzEnJ1VSsV4sqR5seZdLWj9WlSaz+9D6x17Xqceb7OTXEtr8yLXcC1vSvLHUgBvrMfosvsR5Ryco3CXeHIaVmSNG8chkcOUSGw6iPuY/FtZPe7EHlECzKHw2+ZtXAk2Jt8IZeM4L3cP7ggPaZIAlq6nrJEoi+X8qNaJyDZBHIfBHBNCudm1gZTmK55fOR1iDpH6fE8JJGkt4/56mYYAOOF/Bsj0vzSm1wKbcrrYW+oCDA4xeCRBI+n1ZIzxOMRut4vwBk6bq0dJn07ZeDlAqHRySJengaZUeSl5m+OZ08p7jWt16dsAm2BArmM9wOLQQgaAHh4esNkEdgcinM+dP1o3DAMeP3zAfr8Pl2Gpy7cAREgk/zEotdvt0LYtHj98h/uHRxARfvnlFzRNg+50wmW7RdedcLlc0BoLIjVNi+12h/5ywWazAcnjekMvN1ssseD2HW58HN+xhMhLqm0aC8I5jy0JmmlDL3W5tgSdUgCQTpsCjKYETSp+Ll4KMZ4CmlKGbYmPKUq1Qwn4klQyxkeA0wrCOSeglgJO14JQay44KcFX+i1JGyf6qKGOy/GuNyqmaQpITZUV85iKI02M6ym3ezRt6MV85XajdDz9WVNGyXjPPUuF5+qaSveWdG2ZZWNL7mDlcvB+BcHAVMZfiIdR3DRP5d+SV/nMGA7Xik++rNegkc1cWdlomaecGV9P649GuTa4EJP+nQ4LY2UVbirWr3xayw9fVu39aSqNlpwiP1V+3mBQvxM/yP3HeYe9BBJ18JGtwWMLTXgspcoyIhdRD55Xxv6gEYNj4lmotBv/YUQc6DgOEBsDTSLWyLgJ4TmwKawZcbpYfyzXq0QEche5J/Gy7JyJK7K8/BxP11D0Br9rBKkCnP6oVLJblob9keg16jdlT02VX14n6sc85yMdU+T9SzJMXgYu/3TZORBHlplec2J9WbdNylaX5eVAJv5M2V2acv2SwxKm9PkbAZssoww2AbZBZKfzG9YuF3uX0el0wul8wjAM2G63ANxb6FyHExGG/oKLPS45ahTp4cNlnM9n+9ld8Otvv+PLly94enpyHk18Ybc9xkfGAI3BMPQAAqjD5zPtm+WG6Fwj4BYP0R+sZhgDP5CJBq9sGGNAA+HlxXo2ARjdeq/PXpZAI65/bhAv3WnP5ZPLWz4vAU21xPnMNSJlO9VOnBzANKfcObQ2uKNpSiBf0y9T+eo8c8J3ql/ngBZF8KoirxpKgS9T43xkAIHlxfpAk+YxWX5mXKRkSSlNqf45ZSLXNkwlvnNpdLrUsxJg+R401Q+p76WwQLKtdLtxWwajPp2ulGfIKx0nHTc9fnL9tj4Kpc360bhDAApyz4B5Sm6el/VmfOjLXEkyXon3tbgyaJqgnMdrMMH6B3FZKZkQlOpGb+jNIC2L9AZGKX7uWeOVfMe/gQcxAAovWQ1f7J94aUQ4OqceEX/wkS/h0SW7zedteRiIgIHCdUwUR4ULc3iUB5L4nkFyfDawF6FH1zp5njjBII4ASggs1C56E2r0iWQKUVoo0JUxDOnOD10UQ2N5HSAAdVFTqjlhxdc6bxrOk1lllvkx8saA/R+J/ieCSil6rTqX9Mda3XItkvKI7WrGFKRzin4DnbZnUzalfIs8l6FtBH8tzpC+XkTG1fmX7FUdL8Vfrh10/jWgYIpuBmwCEN6+JhZ9dkvrug5EhOPxiNPphEvfo7t0aJoGu90OTdN4VzZ/Afgw4NJb8Cq+kDt0sAyzXlXA88sRx5O9N+rp6QlD3+PSdQ7s6iwvTQO0jb9Tihz/XLYxBm3TYLMRQJADmthrycZr3GaQeNMcGgwIZz4HGvDy/BydC9VgkwTPSkATkwacdNgUlRDnVN6pNKn0OcFeM5jngA8cp2biLRFoRAwSrEfXGjBT9cih4LXpl/Cjx82cclICfg2e1qKUgJfhOYHNBpc3N7wBdj1vU/M2xZcmXa8S4DRV59z4mtMPNXzndm40rTWOpui1xlk+jgQbAuADkBNTEkQIQBMRGyop429cRhmM0nE0cGFGfMpnMb0G0OQY9DYtjTj0YYVn/P1qCy8ylq+lmvZ7/Tb2OZvG6XaxDLd6jBwbUu6lAQID4wGT8tgrG42sa5ZkVs0ztK3fGAwP7Z9hdEYMHuOBI0DuRRJMOPQmPG5CUgvKUDRfxLhzgAi368B5GwEscTJEw94/bJh1j9XExwFBFAApwIFNFgrz163TGD7aNOG4imV1bNzElAI5reyqE6VxvmNdV8NhcdqRXCKdxCRyWU7rrfhwo+u1wbE/Ji0BmmrtlW+JXlsnSumRAKp0y7WJbXENDvGpKAaaGGzabDbRC69ydk2qHF0XX0cP2KfHX8rmyemzuatzcrzkwmtt+RzdCNhE9viZO+7lj8GJASYvCrcAi/HgEh+dg4gHwIMyxhh/VE43Eg8sgDvRvp3u5eX/Z+9tXmVbtj2h34g5Z+Zaa+9z37nnVTUeTxtCNWwqgmC3wLYdpQpBbAj1B/gPaMOOLTuKUlCN0s5DCkQR7Fkggi0RbNh5KkK9S9W7H+fue/beZ63MnDOGjRhjxIiYETNnrpX7nv1e3Thn7cycM74/xscvRox4Lm5KM8fk5wsulzOG4xHTOGIcUx0Gl4cBWIEqyyYnVFjLy0CURI8gt6eEEMACnAEojsQVadwCqRdJ/dvKriZfbSGVATEqzmhqmXU++rxFbK/tzrcIza1hTxv3hL0ErUUE6+/3CnW/tH7XZW7F2dPfXxpwqglsL+8ekr4FXNxaD83vnmBDa0yugS85sextMipryNfX7dY+3gqtOd8bx615VPfRNYbYE0Z6bWrVt37Xq8NbQwJrrgum23nsP864N5Tj0Eqfj6ukNpS4yR6Ffq/S76NpGfqszTL28ZXXBZajNO7JW3jKXeYR3SUbHccc2keSAB9vHad8/+Zadef3LQJx0vu3lZEtXqHf/WUrrwaaqvbVP3mNUojPJulnAXTMQTezA4QE6FGQWHiEHf0SUDh9ZHAqbWYGBGIYHEoOAKrBJqsvWxxv/WSvM7Jatbkt5TJnjCYyg3i9e79lvVDz5rfS66IsQXa49c7K03eWw0act9KlO8pZaI/KazL6Mur91x/28rMvIfv/8xZukS01jg9ba29LD62NUfRTsQi1YqoBJk3vdeZWvVrld/VoRyt9/XxZdT7XjDla9boO8vfrrJjDXlr3dYBNzMDlgkWOyOmAqvladI7D9ZjdOE44HA8YxxHv378HiPC73/0Op9PJOmAIAdOYriJ8fHw0SyDteD3ypmDT6XQS594/4sOHDxjHMTkgjxGn0wnn8xmfP3/G+XzCcZrw9PSEy+WMh4cHA6ZijNmReSCMemudlssxmTT7tldsIISQJhqpZRPjMs+IlKyvtH/8FYT1mVFdmBqnZ9HgJ27teEzz1s86nf/UttfEoV4EtbDQAwBrIOJa8It9q633Dl0iyGK6focyW33UEqz3xOnVv/feP/8S/Xgtzz2g2t66+bZ6RuJ/xwYhf23o9VuvroXAzSzbygy2YwJvP+J1DfS99qx+3xMK6jx6SsIt49gqY0tJ0dACgrfadJ/AYL6trD2g2Z74/fJSver0e/raf16jE3vr2Gr/fcGj20JixXFTofp9KhFJOV+DE6/La9tXX2+TqBXnS4UWfbxeXnaG/Zr6+fj+CO0eutRePxmcE/wiPRXwSKU9kprrcTSIRVI+opZGPi6iIIQUKyAIQJRnRrDjX7lHgvRJApsIw6RWZOu5RORTN95RBotMxtMS3RgRpzqx8i/OEIe2UUvhuCDK7r1ZeG3Iif7Pv/fW/m8N91lpf33DH+CT6+Gn5mFfKuyjxfctr/WsphH3qFNLT9Xf3ln48XjEOI54eHjA4XDANE2mPyiWoCebeuX0Qk3vss3vGmDqAU0tPdEDTN7qSnX6lnXpVj8B2SjFO1PfE74OsAm5EQqaKHLorXIKAAKlEk7oAw69gdB3teXPIqCWATbMmOc5Of1eZptYWtdAYVVeclBOSYCQvyTr5/PTzNzbvm0G5gyS+U/PeGsAp54g1n8dYOK1xHJrAejvHrBxa116ROaexPAamr5VX4t/x/q0+veaIvCaONfK/5KAU12v+l2v/r06tvK8quB/CabKTsi+0o95Hrk4kgfyr1eFeyuLrTV9rY+vtb8Vt1Xe3nnt3209a5X3JcIegOnL1KPdr9fnYbvPvwTg1JtPW+Gu8xn71v7vU+jGnXy3qHxUPLCv+aDNZhxPj94Y/Paaz29FHypziqY80Mo/oSwbMXJ+e9ZkGT/lqd/LKuncFcDIWxvp+TUAzJQTimWTHXQycyMGBTnIZnKuypqMZPyu0BLsFrsESJVgE5Grw8o6sNNeKt8l8EtPDuRx8mPGArIzspW88T8XL2ivCMLTW+Usaev5UM7Ta3OCWw/rphbftuRTX7dVPl8p0PDXFQS5d7iFtt/CA/8Qbg9bspq+95+3zu8eRlCvfcUhamfgPv3WDXF7QZxW6PGmus11WzSO3yDs/WmaLb2p9bvus2vz/usAm4gwHI/45mc/w3fffYfD4YDD4WCv9QibRwyXGAX8ycfm1OpJQ+SIeIlmdaQ31wHlzog6GNdOXObFLKkA4Hw64cPvfofTywuYU3khkF17SCHfDuedhxGJAKvoKAAO1GB6evZcfTv5rhGwSD61XsxsgJhHGj24pO32E+vadYnXh+o60tpL01MKewLfliCo5fdQaZ/3raEFkF1r4954rwm9hdwDT3u/fX9sEStfbus7gC56f2vYEuR6IGSrjq0+2iLM/t2XFsJaAEtXUIFXDOv1lZ+9JvhjInvq2wt+zV4DCK4BTS0ack2Iq+espwO9snzde23awzDvGfYAM3vqs3f+tvp/bzn1GO8VtG8V3rcAzFuEsteEpBgrXdsCHN5c1JXQtkB5fcgX3vvdUv8e1RH/2sNL+a6Vx601SvIZIE75mRFjsvxO8ytZmHFkK1vLtfWvh4MUS9icAn2+mMe6tVFZpq1/t9tGWMS/udLzaGlkbImkLQCJywS5ew7ZaokQDvkZiBKQlARLSUsIlCzaSbbDScAmrXCSTUc3cfWonf7iFbBoZWrfU5oDcYkGKgGwsQKzWQVzXAR0algkidywXGYsIq+TGwEwqrw1TwFdIyXwSuRkCsldRTkAbiJwuZJXR8kSkpX6aAv1+kP4Q/hD+L2HLb5+L3lNdeiW/EiUb6l/enoqLJu825ne0bkaLPPPbw01COY/1cKqFVd/b/mT6snLrdv4fJm36NhfCdgE0DBgnCYDmo7HYzGIqwa5d5fLBUCpAOsgRzBIrIA886o7rAZkYlywLOnYWvLVdMb5fEYIhBAIRMHMyHyZHgkFnDNRFZhTxKywAXnjxTNllBM1cXu2o4TevM+DZf55C7ncMhXvDk81Ifem6YEhrcW3t05boE5PWXlNaCnTW+BaE0h7VcnrsKXYXVvoW3H2gmi9OryV0F9D07eIYv2sV889Y/ZTAE7dOqFWc32614NNt6yHPWBTa23sAQO25tFWnLrs+tmeevfifCmQOKua2yDM1rveOujF78fxdbre11tC0zUh77WA014AU+P6utxn/Dxq0V5rqW7retwzZIW4kfcristgDAvgkDXwLINUc67W0lHGv0eztVwbQw9QSH31mcY3uETruANwSrJIpw4Vb+/Ns95mVitEBpZY1DZ/l/5XQIgIQBDQySySGCBOMiYNBT6llk0KOAUBm4gICBqHHHCVwJhhmDpt0J5dt1lao7gYAJWNvWK13siMcQFzLNalfZfPS3q4Ggv/vZDJXW9qPrD5XPEAyo7RPUPliva5wkwub628em5sya9/CH+9wpeQe/8qhi/R5ls2Pm+R0fbI8y063wJeVJf2J668ZZPG7bmr8fnXbdmSbwBkXtCoU6sdvU3eOn3veyttTet8P7VAuq3wdYBNzIjnM86nE15eXooG+oHxx+rUmggQkEmBHtcBDNhOSssjO1FyKK7WQh8/fsTz87M4B49gnhNjvFwwDAMOhwPevXvC8XjA+/fvkw8oAC8vL3h5eTFASy2xQiAMoRwcgNZMFmvmqjHMakk+0415qYzL5WJAkz9/2bpiEa6Mnnf6WnCv63R9GPuT9FpogTq9vK+Vfw3Q8mX2lNeaEGzVzcdrlfHWsNX/dbmtevSUtWsEb4sQ3YP57GEKt+bX+t363Gr/vYXILeLeF2SBGhi4Rx16Y7wnrf99rz7q9Uer3N6Y9erTmw9b4Rbm+SXCl+zrvUBTq/xr9M/H3/r9pcJdyuGI0rKpzUN/H/ODq8+75ftKfnHv4OUQ/5kBi76T1fQCtgHnoySsYb/M0aMfNS/QuLWwbekyIgMaBoQwJoBIrGUSSAQDiZLD7oQgBbHMKdwxJPTDLNpBCki5egSVeYf0LuhxOa0XWb3IECsHpPiqy4OiOX4Wyu80HiUf0xsEW2CT9//JLGAT0mmBy/mMohiseaSfD605ozdA+3HbkldWspSbP7pv/LVASA4n+0P4Q/jnOtwiq/RCT76v6XpNI/yJJfXV5P0/qz7OzKvjddfq3a/vOo86L29ZVOsP+r2ui/9ryXP1iRW9sE3L0zq3+OG18PWATfOMi1gPeWBJB9U3TG+ey8lLcMr+mkyxDGoptCwLPn/+jM+fP5ujcPWLtCwLhhBA04T379/j3bsnPD09mUPuswBltdBEICAMVjfmvIOiITEUV0fnoNSsuoB0dl+ODmq99LuirbVZW2tR+Z0p33ctoMk/98++VNgjKLTiM3MXYPOhV/+63B5otEfR6iHNbw239P0eonsNcPnSQNPeur4lX/+59f5LgYR1OdeAlTaT8p/3XX+vAZq+RPnX1rmPvwdwuoWG1M9uYZ73Dtfafc8yXkNP9q6p3u8vFVYK5OszSn/u6JAvIz27bsV3r7Bq0RuKvEZr9gJO92y7B5RawEKL31tbCFDv2vXQ+7HqhZpPt/h2S6ju/aXJkuTScZowTofNfLys5jcJW/VugVu99KX8l93MxqXqJEF51qCa9aIrX7/o2qhlxhoQWgRwartvYGacpgnn0ynbfDGqPOuTBm3w6nK5FBvUVvtqvdZ5+zhAunqD8aYldv9AdDeW/1PxtD+EP4RW+FLzsSUP7im3J/cRkenWegud/vYgk7+sa0v3rHWvVp2c975V+rodLcCnx+tr+uffb8l2HnBq85m/SmATEpF/OB7x7t07YyIeQNDjYnoL2zCOGKdUfbX2mZ0pWwgBFAlLiBYHAA6HdIOdBgWZzuczfvjhh/T9kn0dLcsCjhGH49GkmsvlgtP5hJeXCXFZ8O7pHTgyPv/wEWf2SKdASQWTTOBSMQHgrLcQ0tl3vwvNSBZazAXKqHVU0MlPBG2jlq19pHF6E7KnuOln7xieF5b0d/2szqelFPr66V9PEKw/WwJz67sPXnhrxWkBMS2l9jXE8x4Et5dHS/hq9VX9bEtRb+V7j9Dqx/pZi9jW9eoJnNfq7OcekZB6TYryyo4AACAASURBVOv+zQn6MiDZPz4u23eAV9ea+rhFXuKctbi98vcAOO0BDfy63qPc1fn01tpb5tct479Vzj3meM5j39rZM0f39k+7bwGYxUOafSleaRnSS8eMIm17HlYT/4rqRm6xULVwWjQ/16MGGJR2YbM96/nJLg2D5Nh72b7rvGfdJldCUZftvi4zIcNTYLXRzBuZcPdNyqvgw1zSJdeveTxIjrD5eicn4hQAxJX3G8t3TQSFtrrHiQYq2JTLYACpAEbCcIQ/C6ATKLXFW+9k0dzzMmm3+57frZ+t6tr8Qy6zAo6g9SbCOB0wisV5brCMqPQDaTso3ZoMAoYgu+KUW1SsZdJ+9CBXsojyn9mayqAcxJA6N7c1y5g1zyXy9CGPbRp7kvWX6VuMAbqG0l8A87gCjXwZQxgwjZOrIWzy6i2+kaMATYxlmcGRMS/JairGBHKFMIAoeCprfr5SnBRvWbzVVX4HqVsgAlGw43ctxczPpzQHdaqTfWq8Wm6o1wr5b+n/kuaBwUtM67bma7ghqLytefB63fq6F+3wcZVAfAGQYAsorMOWIr83/17o8dc98pDPoyXDXsvjrxoYuKdP2zz8trAl86huC2ClF2/pgvUpICBjCHoxmfpmOh6PeHh4MKCpBpmMnonhSa3v1m3ptaP4LasuoO9H1NPTHqDkZcZax/H18f3YclukeXifr/79Xv+9Xw/YRIR3797h22+/xadPn/Dx40eEEMwRV3K4nZns4XjE49MjYox4fn7GvCx4OZ0Kf0ZLjBiRJoZaKz08PODh4cE6b55n/Pa3v8Xz8zN+9atf4fPnzzgcHzEdjohiSUREeHx8RCACc8TpdMJAhMCJ+X37828xTRO+/9WvADiz8IWxzLl9gApTfrIkoSsL80CgdO4/vZeJsCwA54WiIcZUH7/YFFDT/NTvlCKUai1WA0ceeKmDn4T1ZNZ09YJrobytReAXQq1U9YhyT0CswxYIUafbUk5vRXEB2BHOt4ZWW1vfe8yt1a6eSaTPs07X67fXhh4R3WIUvnwfeo7vb302UAAGoFDsuIyzCRo06tYKu3qO7R/5fDsIUmTfaM9egOatwNBbQm+dt9bCrXVszb9bQ9JhIpjfls8637f0dw38K9CUj43V2SelMivmrMxrZ3lb87WmOVvx6rDuBgLRAFV486fmofVp7QDWPMjXP3/2wPlrdVXF/DrQWpaZgKYELGSgiTYpQK3gutwRQt6N5RiTUVCMVXwyQETLjBwBhjl/JmIQh0IR7fEH/2myAOc+MSGnqgEcsDMMyTpHjycUigKlo2lDSDcC+zH2QFDKa62M9PhdSxmpx3tdhgB6RBjGCeM0oWhiQ3FPbSAEaZu2Uf+yjKYp+7JP63kRVqJItaEJP0/zpm0Nmg96y3KVV/GL63mlz/Oz+WHGfFmKeV8rTP7GZd1QvVzOiEvEItZO8bjguCxCEwSwdOlZAKt5TpvGl3kGc/odY0ygqW7USvl64968RHNer3zdNnMpIBAAPfrYolOyabVel2SYrKUlMgBLbyyMYGCxBbPK3z+7ThfaIJrNNx1vckBnlY6Qxv81YQ/vatHJ1tzuyby98vbINDq2m7LdDpmipiutNl2Te39K2WpP2CMb+nDt97W2buk4akSiQJCn2RpqMETBpGEYME0T5nnG58+fMc8z3r17h3EccTgkVznH4xHffPONHaUjIqNLWjei5ESciIoLy/aE3pxirihGR+b1R4hb+fn55vla3af1sXXfj/pMwSZNqxanCtRdC18N2GQEd6cSm3YrFvOPtFQIp0QqjsPVR8j85NQJOE1T9gslkygQ4eF4RAgBl8sZyzJn3lJN/hhjdhzumC6LgFG2QVnOrV3Vnii9CbMSimTBqKf5awpWPXFrwKgtZK+ZQ0tZfY1it29+9AGm1u9r6b9E2CLQdbjWx/q7Bu6ulV3Hq3+/VmnfG+6V71vGe/WO4Xb9yzjXlca3CAp1uizo7xMrbyztSlv2pv19Bj9v/bPevK2/31LGWwLz1yswlvRcn5XvUn8CcJZMZZ/frw6tUPOMXB/LoZlnS5mqWe+alhLSVfSAWhn4dz669Yb2jSoIBc1wGxiFZVvqx7LNeROKtI+ZwfqJpLSyy+smWma5r/unjkuE5D+o5svUfmbQWIMP1aDcHnCxla6W0VryzBRGkPk76lkltf98/WuhXL+36u2f6Sabgk1hGCU9KW6wmu9b/ePBJimtKHuPgr1+iWrJtMCmKPM6VvVlKFq1xLTjXmZch+syZbpgR7+3wSYvq/o5G0NEULApDghhKerrlSP90zhBbqQehqQPsABOQIbHre+d8ujrk0GEDKjXMpQfvzUvEn4lZeraSmXkfk3tbvfxbt4i67Q1HkUeHf3rVrm5FXpykn/nx62WTWtdoTe3tuq6R469BqLsSbcld7Ro7t56fA1h71x4y5hdCz06fI2v+Lit8hXo19NT/shcaz33+qJXj1vXkZ5+0Dw9/emF1hrqrb09ekpPR9zqh63w9YBNLhCRoYj+uBiQG7jEZMkUY8TLywsis1n0eIDpdDphWZYUR1A4BVrUYurx8REhBHz33Xd4enrC88sJzy9nPDw84P379xjHEU/HIwIRfvjhd3h5eS4sh5Y5AV6XywWXy8Vu1FuWGct8eXt/gGQHZX17ngeL1GpJUV4AZsU0TdOKIdbEoJ48LeHUn031+fh8a+Gh2y7Ku549ptMTjOuwl1HsWfR3IfY35lH34Wvr0wKc6k/NswX41XPi1vJvDW2l53YA8i3pivpsCHa3Cgpvqw9bfbh69tqw19y1F7aE0LfkeYtQ2ANH7yXE3Xeuv30+3iso7dbv+tmjr615fG0+39J3zGwbQK3QKqtXvuc5dX4tfuTzSfMnHaEpNXL1lygIlK5Di8KI7op6Yjl2JorkOIx5brp0kSVnVgMGTlZGnI4pqSIf3RFarmq2JeT33m+NjQdWvCzh+0oBFd9vHvSpwaDagqgWlFtl1HlqnYhKq5+cd0CggMN0EMum9RhvleHron2ksk3LKaqP08xP6hWZEUVZGJhW41bz3F7erTXrwx7l2j3opC+tAcs5lN8pajbMtWVTS5nJz3uKHiFkkK4jM3qZU+XX4/FY+HDSDeeWktWSW/0FO0WcGJNFU2QsoiNcLhfLvz424/P0f6qwXpNpu+NU9KP24bqft2haHafuT2B9XKa1Hus6q/7UCrfSnJqebKW/hRftzedLhpYO9c9bqOlYSwd5a9Bb4epyl2UpaEpr48DTD6J0qiqEgKenJ0zThKenJxyPR9PzNa6W4XWsHm/p0edd7Wesj9ZuzP0e/bvG93pj4n97WuH/er4Ve+HrAZscQQPaKKSG1FAGIxaMB400tQCj3z2j8kKv7kjp98PhgEnM6ghw5txJ2CHKO6J+gEMI4EgojdxeGdxuq6+/Bm+l5CeBjz/Ijk7q6rb/ni0mWCslKpTVgpNVeaeCsjXOvbxbk7tHxLYW0a3PXhNuzec1xLgW0Hwee4h8zcxb86DF8O/RRzWxei0zuqVO1+LcKrDcMh9vCx5m4tWzV+V4pU5bNPeWfPaEa3OtLqOeyz793vpsC/f3E4SYm/rdTxaKtrGAmH7tsZ9j63R7+4YNWQGugW23CCrpONnODq2L53ZVajpZZiC/OTF3Ub2Lw4HMbjVyApoiOF06L++YHVzMOZ0vSkEqaBspx9EyGChaX/bz+tkevlcLni1gqMfHFewhAoZhRAhUXFKSlACVk7bAJrUc01vZyjQ1eFWCWGuwqa5rD2xqxfVzoXd8rhbiizLEskn9axLysSRLI3JqPTaE7FdnH9jENt55rpRAkYtafrF5q2lLpSF/qmU+G9jEHEAL1Rnbckl1zxY6JO2nahwSXhWKtnpaU8Q1H545Ty97lnwg18vLrH6T1P+2vxixXMT3KwVETrJ0cssxgGhOq7S2smIGHMBdrx3VS1DUr6Mc+ghIVoYhaB4lCbN8waArdLYYI9eHxZxqrHMiT3OvW0PsoTnNsm8Ie3jRrfLb3nJf+0yfv6bst8oje/WwvfW4Rf6t47xFt7kml/Zkxy2wRcekdtej1k3eEXjdTk+n/Nh6erQF4lzVQeyfsp2t39d09T1jX8vSe/XFW8bzqwGbGOk61OfnZ5zP5wI4ISKz1tEJsMSIeZnNkgcAgrM2ijEmC6OHI4A8CY7HI6Zpwm9/+1vz0fRP/+k/xfl8zoMTRoSQznO+f/8e4zBgqoCVYRzx+PiAyAuenp7SjXXVmftaqHhLMIeELn9lmvM853rJOVTtK98//uz7WxWrFhHYo8j2CJNfoLV/qD2hR8z3PGsBKfcIt/bvLW3YUgJqYnGNcLQIzVb5rTivCTVRbJW1N2w55rutUm2lG7htLr29j7LC4A48AJ267cqxM7/2Akyax5cIPYa+N9xitdVr71sF0jKvO83HewWGOZuGU2xWCqv9I0GdBdPOPknRd6g/hGEYMQ691y0VSmle+VSdCHPWonNdNJneXAaAu1OFNHJWrpHSppWn61CETIWImC0OCFiYk49FkMBPbEuXkRwfQ/JNnyxZJosYcdyS2uairfuA3GfNB6qWUdvSqAZyFOhRIKhnoZTipP4ax+SkeRiC+IYiUdCzzyXvv1F173JjUddluZHnfS7lsnObCeK7yc2WLX6+RZO3/Bh62lBv2hntEZlviWzAkdXE1hfbPOC4BkX8HO4+U4sjlvqIXy0f1+orv2V6rXkbJ4g0p8mWeAwHNvn+63RhBpjkLwRxvE2F/AoiBMp+tvL4l2Pt88wgDVwalnk3NuvBrvOVzsUobRTap22OS8QyJyfkyzInp+RyS/UipyRs7KXPdQ5zjDaezOrEnI3OKpjFWj4zFgWtYpS5wubjU8cuECkqV4yBG7zUhoK4+47wSR3Nd2WQ+ORLZD6AeEMeCMlqy9exFW6VuVfl7JA/t8KtIFCrzNfm13p3T4DrNXncU6dp5b+3fK9r9Op1S129BarmucctTB2GYcD79+8xTZM5Az8cDuYnuqDPVd41f2iFOn0th7fqGhnmR+0W3cbn72+R8+9al3b1wLpee32//JVzEA4A87LgfD43zWIBiPAipnPLYkLbkA9/J+GPsjXP4eFYIJea3zzP+PDhAz5+/Ihf/epXuFwumKYJwzDg4fEJh2NCNg+HA4YQMAAFSONRUJ2Y9SDeEWqC8vganYWrl5r5qaWWd6qpxwt7ZrCvqlUFbOxFn+t3NWDVy3cPEd+jMN5TqbwWXgM4XQs10HSt/zTOXsZwjbleG+97hNf022vBkQLgyJuQu+vWA+PuM7/YFN1a8L811E7Ue0Cl/37L2ntr6DG8uj63Cn8+XBuX+7TLbSF/TcFVqQT1ys8iSdY8dwcyR9bbCkVwSmX9bitdu44LDO2pasOcAY40Mo35A0c/dM4X7wH2eXNejaz/uGFfTHGPDsBz+VpCp7zrb1UOiaqatq0PPA/tbUJ4q6N9R9SoeOef18efNG/d4PLp6vSazssiPTCrVZ9V+0Er59e30Kpa2WwBTT6uF8z97TyGsCBZKC0N5+d1Pt7XpleUfL2uHX3d+tP4CjS1+0PjKgjj4wgQ5ULZJ9x8p4cDescqAWBo+NnaAjbbQQHP9ZrYCi3+EpeI5XIBcz7e6/281lec+zH0z8ythxvLGCPYNqslrpQfAVAx7mu+t6ctOhbF2HbpvXshdDHonGkUpzMh0ew2qNuvV/t37dgYaI/ha2WQW+WV17zv6TOvlU9+H/rIPcMt+kRrDOv0tfzZCvVz5WWtW9R66WuaoviA/ikOoHzO0+dWPfbOzxZ9braNubt2e22q+7VF47bWkn+21Q7ff1ttaYWrYBMRPQD4XwAcJf4/Yub/iIj+JQB/BuCPAfzvAP49Zj4T0RHAfw3gXwPwGwB/h5n/v6s14XSeWq2aPHCiwokCKuM44nw+4/n0AqJ8RnqcJgSx7JmmCceHI7752XsQEeZ5wbJEfPz4Ec/Pz/jd736HT58+4eXlBUDpoV6Z3rIs+PHHH5OJ8zwjLouleXw4JmEqDDhMBxwE8Y8x4nw+a6NSH+4aio0x0L+G8AOUk137blmWpvC3FyCoicTWkblW2r2hJyBd+93Lp/e+fr4V55Z+6oYbGce9GE2v3nsBkNac+lrDF6kbA0z7TdN7hPka09xVEWdL8SVCb07cMk/uUX6d5zVG6JmdPusJAvWza+NynzmVQIMvCcbeGhg3HLd4a1k75r7S61sB4t7caM2jveVl+CmvtnLd6XES5ecOTOMcx2h+YfxB7iMr1umXWtJomvI9SCxCKOfTAou2/CPpd+/stAc6WY0bYI8HptRS2se/lq4GG5jZ/El6GaPVxmuhHvu3CtR1m7z8oQBEU8iW9l3mJVm3dMqt/1q+f+q4Gjz41Eq/SscZSEovrUbuEbvfYl3nVoL/FYgMUzU7P32ZhFQEwd0o6PyldItdQqCSNVoYoJZMHmwC1hf36DMdjx4wWD+vx9F/1sE/rt1tXBubmg9N07Ty71KPlYJXHtAqlVpGGBRMY+itoVqWnweto5b1nKnrXbfV08cty4cNDLUbWutwi0fXtMjX7dq63VN26901XrU335b8/DXL0HvDHplwb/B90qPde4PiA5qXNyjxZWneMcZCz9dLwTzI5Pnh1vjVemIrTb0+9/RhATq5sDXnWrzCv/P6vO/nWo6+tr70d+944VbYY9l0AvC3mfkTEU0A/lci+p8A/IcA/jNm/jMi+q8A/AcA/kv5/C0z/y0i+rsA/lMAf+daIQxgvlwMbKobkM5OByzLgmma8PLygk8/fkYIAQ8PD8kiKQRMYnF0PB7x7t0T/vhvfgeA8cMPn3E6nXE6nfDhwwf88MMP+PjxIy6XiwlR2bl2QjQVbOIYcX5+xrIs+Pz5E87nE74Rh2LDEDBVJnen0wnzPGMcBhwOY8nJXhNEEO1NZg2ekWl/6cRSyyZPvK8W2xC4fJktBtBi+FuhtRj3CF29vPYwhq+F+O9lhBq2GPQtz/e0/1rdfkpF+hbmf3PeHSuOLaW4J+S9tSbwKi45heE1uW0wqluBxXuun7r81+Rdp2sJMlvhywiGEW/fZrh3ePu6vYVvXKNhe+n13lC3rTUnttYssx5648pISnla/t3rRtc6xwslDUgACeWPcrTIrDNKQEb5tn/mrUU8eNRy0K3xAdjlKa04rfnvQSMg+6pU4RxYAx/6fQt80j818ffxW8fYfGjKASz915kyvXFv0YwtJcjLVq2dbg1EhNP5gvNltjlUKOsNYKl1m3BLBmq920oPZuiNyLWFEpjtxiM9gUWaj8x/YmRgSeIMlOaxxtF8AKQbFCmd/AoEwIFNo/k3HRIgFQKocureAihbAGk9r7aPepZzqrawa4U67bVQy+DjOBaWO63x99ZTHnhK4yknO4znZ7CpBqt6a7AusweQ6jrsKaOr/HaiTdf4TAvg3pNO69P6vjf0eM6WjHftWe/d16Br/BSy+l4d4S26hJ/PtTFFPf8BFPRCb5tTtzr617p9TvPrhR5w4+uxV4e1vBp6yJYMvyVL1Txd+7zmsddko1ZdbgEhr4JNnHL6JD8n+WMAfxvAvyvP/yGA/xgJbPq35DsA/CMA/zkREe+oEaN/m4wXptKLxkC6HYIYIy7zjNPpjGWZ8ZvffI/n52f88pe/xPfff4+PHz+a8PT+/fuyjHHCMCRrqdLZtvOJNARXtjoozxN6L9iyO1QCvJbdExq983MflIED2Qz8GqHfM7F6hLq3aK8JUltxenXcinMLE7hlAW0F3yP3ZjotRl2HHiHfUspuKftLMtJrc61+t1Wn3QJDocPInE+ZJ8G9iktIj/UzA1WslVqn2xnYV6jI5svNIyuhWu9fapx7Y3Zrea06+jnSAsT92vgSAiLR1yFoaiAqAZJW/7QEj1Z4De3s9XXvvP+tCsVrxrIoQ/+YC+Uaag8minTa9CktkixO+pqAoDBkYAkJSILJMuJrKKRn5teGBIBKCUAEjMNo8RSYyop3tloOIR1LNNkjZCCLQBgntWzSOEg+cyjXPXJWarVValkVQnLGHYZBnD0zAoVElzgCLHMImUKl35zfUQbbtJ+tcF0vQjMVyCjGyst6xTnGXGiqT06f/eFwHl99loi21XeZZywxyjop6WJW8mcsSw02aQ6pL8/zjPNlljei8IhfpRXYJHXz85GL+os/Jamof9fKx8dLX2qwSda867Mog0baL67eGUhK7WMFCw1s0nR5zaj1k4FNIESZjwjiOF78e+nYF3NN5uUQAsKQQKnBz2tbK8jzGXmu6zwrfH/JsyHkdajrmnTi3CDbaqjpprrXaN2S5f9alk1JVveWaksaVx1DXltGxUrn8fNSy/LHAGsZuQXQ+fdF3SObX6le6NHhnszp47f4kI9bt61+/9ZwC8+7pgd9ifq9JvT69Pddh7o+t6Tb0k/Li73QncNevx/c6Se/CdMCqraCX88tcHZPXr5thS4OuE2obUDI/6772l9+VoNNNeDbyq9V5mvn8y6fTUQ0IB2V+1sA/gsA/w+AD8ysDoD+AsCfyvc/BfBPpFIzEf0O6ajdrzcLcYTTd3zr7L8JVJY0E3C4TmQA9OEHvLy84M///M/x4cMH/OIXv8D333+P4/GIp6cnPD4+4o/+6I8QQhB/URGgABamtSwLYIMz4OHhATFOmMbJwJxZHAkGyk65VQC8V9D21mfHAZhZu/7WCab9pQtL+1Hz0/72aVuf9wIXaoZbt+Pap++LXv63/N56dg/i/KWZzDVAs/XuNeaPrXCPPmLmoj7++VYaYBskec0zewesfFxAlSCkl7oj7AEnE1SLvC23V4SUuWX9RssmDdcE59bv1vq71/rYAqNboQUc1fH3AJW9OPcTXPOU+SoCY1Wha7SjNRbKN1rxW3G3Qv+mre15sDUfXzUvJQmDUR5+ouJoW9KBQwKSQEh4EoHgrSXUB8QxKbpBnolDZAqEYdSjRclvjR6X0dvVALJ0XhAmOZ+nynXoWDYBa+E7CJCl6QGYAq79WcgDkQ04y3mk+tdjHWO+rITFAXJk92kDl/vay3QMubkNbEq/plIApQBpFFQRh8y8KMACKLClYEs0IEccOnPsgDuM00uySM9HGnPFFWDKlk0xyYouH+2XOc6YlznXF7BbzGqwaT0XS7k2+v64Ih9p3FxrhriYB/mb5QQAJGTH9zo+BKiXsczfkMdtCHnMtE5mIWUbNMFZ8aWEaa4J6ApgEJcXSEOW4lTzsmnFJ3O4xYM0XTFnG8dAC3BFRnoIA44iI+tY7qElNR8JIeDx8dHe+dCTfz2ABChdZFzms1g5ReiG9tYxvJ5fKdVP6nLrdlytb4xY5qXZNv9s613dZy05siWH1PXeK8N+CTn+mnzaev9TgT0/lS5zbX7sze8a0KSXY+kar/0J+nR6RO54POLx8dEwAG9B6edaD+zyY+z17BYo1Ptd17EuIxChvpPlljmv+Sg+UeTdsRL16Vtl1m3WuHd1EM7MC4B/hYi+BfDfAfiXd+W+EYjo7wH4e/LLdh1qZtBCLFOlYMKzEqHT6QS6XPDy8pJAlsOE8yUdnfvxxx9xOp2MoPvJqZNQJyojgU0aD4AxRiKAOVgnp8HMprA+3ztCTV0rmS2lu2ZCQGbofjGpwl/fsnKLEujf9RS6+vsecKnFlPYoNHuI2Z62vDls5HMrUNR7fo2Z1GPhx8fH+alCXY+tMX1tnfeOtYJHVDxxdYUqRw3op56rb8GagCp9s8Sbwi1rpbdu9+R3S9iiMS1Qwc/lvUJLTTtuEXZeH9Y7Xl9j2EMLWv1V0+A9NLkV9gpQrwnX6mHvVUlVxCLhS4BYMRECQoABLQkkIoRBwB8EwG7SYoQw4DAd021c6iyZBoQwIJADm4ZRrIWyVZM6TafATjnWvEvBsHXsqLZyrn+3BFzfH/YsYJWuPhIGNBRSoLAgqv98WbVA36IFPSfazAo2ATzrM4JZ/1Tp9yis6v6gNW96liQ+vQn4ccEc5836+3S+T/xnq9+uyUhlnhlsYgObZJcblPorQ02SR/mE/ReiZNlCVMTQNGwJom3WMiXZNdpa47TexKeVB7JUiYlu7vojXvrMz996TvXWh35XHy8ewCUAcYgY1BKqkdctNG1LedPfXqGt+Zn5acKYLrVEQA025bjB5qKX4/1cCCFgnmfUa6A3/4CsU1URNvvjFplVy7jGi+u1fE1GqMus1+ZWuEUfuIVfXeOPW3ndS364F3+t9YhW/q05UtP51prw33trb6s//Jqq1wiAwhDE/9X0ZKstPfp7i05V8+LVc8Me2u3rhWv9Va+3Vl579avXyNE33UbHzB+I6B8D+DcAfEtEIyfrpn8BwC8k2i8A/IsA/oKIRgB/hOQovM7r7wP4+wBAYWAaRzy9f49vv/3WLIZaDWdOSH3kjK4ty4LL5YLffP89fnx+xocPH/Dhwwc8Pj3i5999Z2ASAPzsZz/D09NTATJ5Aj4MA5Jlk3NWSYSHwwGBCPN8SbsNy4LPnz/jxx8/44cffsDnTx+tzuozKsYFy3y5pYubIcm9BDQEN6sz8g0P3nQOgDkt1Nv1iMh2Oxa5AdALTi2T21poajkRbH2vJ3f9t2VdVYeeEnRv5fFueb1SAWvFrQXzrfx6jLZlReTz/hIK31ZoMd23CCZ3CSYBS6A1Ed8z77backswvRcA6+7/7zH8vubEHiGyJUjspQF+PK616V4C3tcU0rReOwm/dXy3xuXmOl0RnoB9gqanc7WT4ZbQqs/8kTNQAA0BYRyTkEcka1+PnlECnCgY2JSsj/RWPQWEAAoB03QQSyCtl9zYRgo2pSvbU94unyCbVMRZ6QXgzS1fQ/uvra9armh9qrJe75S28mlZYPh3vTHU7z2QprRwQrqq/ryI5VCZV0ve2Grn5XIxGa5uW+/4Ut33CWDhAphrtcf3aQ2OeMXntcdMmeUI6nZ9bwAAIABJREFUI6KAqOmIFkiP1XnO0goNMIEFKPLvuJ+COYG37KPK73lZZN3lLOr1ufXn4/e++/gtYNbeI8nQp+MxrU/a3vlvleG/q581H7e3ZlV+Z2aR41nmMWMYAiJPUMsmYA1etuZYPb91zbbWZQ1M+fzquc6REYelOd96ocUbevO65uGtNVrzjGuy8D1Ci1bujavhp5Qp7iWLamjp5XvXRytu691WXJ/GG0/UdNX7Z1KLw3Ec8fj4iIeHB0zTtFqrLfrcOhJb66w9C6e6D3b1CSXASW9+vKYXt8ry+dZ6n19Hvp9W9eiEun/20oM9t9H9TQAXTkDTI4B/E8np9z8G8G8j3Uj37wP47yXJ/yC//zd5/z/zjtqQTIrD4bDaXWoNLng96Z+fn/Hx40f85je/wS9/+Us8vXvCvCw4HA749ttvMU0THh4eCkZOlG+6k/YWDFUHYzTAirEsiVnO84zLPONyuRgxB5xfJGasL/h8fegt0loJ9gxCb6XTNvrz5F7I0c+6L1qMSL/3hE1fty2GscVY9oStyb5nEfTi3KqAbYZGHXuEufes19fX8mkxea2LV0L8s1uY5Vv7qVXf3vzZG26dP+WDftx6TbymbvcIrxUa7l3XewovLRqxJ821ddUrpxd+SoHw9xIYDqwk5OZmOLOZzMYl/9bvmofpoY2Q+5Vc/NvHYkth00/9Wx2XcXyydnpNIfkhCsOA8XBI3RE0rgebxPoo6PG11B6iwQlrerPtlPwrEckzsWwKhGFQy6ZJ8tG6K9gkAnzqqTQsjWO0t/LMXrwtZa6MU4JNvs99vCyDtI/7WBw5DqfKtU8fo/g4YlWOy6NEduIuMubTnPLqyBrAWjlv9Z9uwLUUWA929ZwtWzqCWYbZ8b2ifK9o18pBAjRL2as1Hmg+1+kCsTUiiyx/zMjnM9KYlo0AiK/QQeYVxTAQmzKdyNHdeOizGKUuWguyqrTWc712WzTFmtBIX4PQNZA0xGR1GCjfnFc7H2+V0XVO7jZjCTAfaq36rtuTeoQxyLBR2vzm7HagVrK35vWyLAZoxRgRmbE48CnGKNaIpV8xrxsRCYj6Ch7de9d61qJpW/TpHjy7pl+31Pda3FrO3gq9dG8J98rH56XhWptqgKWVRyt+K+413u/lwRhj4XbHX/6lAJO/kc63x3/W+deh5i+1Lt6r77V4zGz+mjSOlnNN76hpVa23tIK24zX62C3zao9l058A+IeU/DYFAP8tM/+PRPR/AfgzIvpPAPwfAP6BxP8HAP4bIvq/AXwP4O/urczhcMDDw0NhaeNNQz3gdDgeMU6TnedflgXffPMNKAR8/vwZDw8PeHh4wOPjI56envCnf/qnePfunXmf//jxI77//nucz2f88MMPiDHieDxiGIYkdMRM2AIR5vMZBJhlU5wvWC4XnE8nGLuUwZrnGafTCeD2rtQ9wp7J4wWn8/mMaZrw+Pho/pu0vl4Q9Au2tTDqcnsMov7dYhh+AbWU+LcytD199kVBg6od1+p5jQDtTdNiCvq8N4Z76nXvcG3stpSHXpx7hh7zu2V8vrawt55+Pbbe3WNOfG195oX4t4e2UvHTBVVy80ZKP6ii6wEmzUOOKzk1s/2p3+vf8o20f2rwSwGcWtHUa8DXiqY3h1/5eLGdxpx+5b8lBFAIGKYJ08MRoAz3hJCPyAUCQIRAg9U/gwOqBIu1ShjSER2LMzhFV9uX8kl6NqdyTCVN4ID6QGIZjKQUpu9JSWQDWuxP00HARcMUZNwUkKjy02cAcj4KakiaDDZxHjogp3Hls6tjXEqwJ8aI8+WcaTo7oIm59HEE2O9S3pDps5R1acknPYXcf/dKdk3jWoqun8t5Tos/o5idOqP6IwfyEDJwA1ufctRtgzwSZcDXtbwTOc8na9IW6V3jT64I6XRdqwDIzlyWKdKwJmvKyM63k451QTIYILXiU/iJobv8uR2uNgRzip9yqOakxtc1igz6qDNycnL7Z3wGSPxSQZyYm5WTpz1kzsiHIVQAVsA4jWKVQFaHFL9Or7Qj0zwIvUhlcUlCKZVJ0q9FYP9RvotLxBJLS6ZlWZKlEuu6gtCADAKbZdMSweIf5/xy6splWzJ+vW5aSr7/3VKw9wAWt4Y9ed0KNLWAgVvrfItecy2fe4Vad+jpTtfk5p5M2fq+FRQMbs03fa867ziOeHp6MsBJDS5ahi3+s3au3aujT1fHa7kC6qUvfjfAn17ovUv+Iw+29rVNe+dXa+31+OC1sOc2uv8TwL/aeP7/AvjXG89fAPw7t1aEADvmpeePAayEf23kNAwguRFOd6QeHh8Rmc1E7jAdzBnY3/gbfwM/+9nP8P79exyPR/zyl7/Ey8sLmBnn8xnzPJtJ3bIsuMx5B4sALJeLgU3LMgMxAjEd3/MbRERpN+Byudiu5j2Vjj2L0gt0atmki0qRXr84dOH5Pq+Frhbh7IFJymBbC6g1UVvoq5/gRTnrvbSS+DmuW/xuPWMU6QhOudqUxrZDISQWdV+PWY+ItQhgt7xeehX2XD+2QD2Nv8046jf7+6eS/4pfW0y79anfvbrr8y6e9cayFtY2hfr1eNwyNl9TMKEy/SretZSrHn25p9D3+v7bz4i3yvGPs5BPb1j9kkcu4Y053SMkWhBNsU18qTcXAK8b1+vQ5Vl8tp65OUWEeoQSQFPSIP3zFgM96wFNoxdg1A6FvRLo81/FCcnx9Xg4YHp8BNz4qzJY1tEriNreElws02g+7qgdEcz8paKQKaVa73BxA5S3kFkdc3H8tfbJ0gNOejy5F6f2AdlTLK+VMc8zXl5euseBWt9b8gaBMCA0l1lPGa7f1aEFNrXi9pQKFOXJOLACTZabyyMfaiNLL/WoyvG8iwSk8dVi8GqdpchwwJaCIFKWRcmgTpXUUhpgzak07+PIFQTVlVhlEHa0Q54xu9qS5pfljVJyaocQGCFsj2sNBvbAxEVuEPTO9nv0x79TOmLHdi5jobe0yu0f64MdvR2GDMBrn+Qu3lJ+/XcGj4yxWk/Z0X0fOMrH5yIQGZfzGYjr43q99dvzAbsX4GmluYfsdYvcwn7SopQXvOLXqktPhtqr6O+NtysfAN5gsbxlcv27fua5d61PSCygEWf9qe/7m3q5yT5vrn6n97rOap4E5BNGx+MR4ziaoYk/6uaNWjTUY1kckUNez7c4q/drvA5tHQdY0eFXyN16jNDLC9fq2qq7Vqc3z/eEm3w2fbHAAOKCQDDneDVB0/P0dvObmL0vMeL0ckpOGS8zQhjws5/9Ef7kT5Kl0vt33+AwTfjVr36NDx9+h6fHJxwOB3z6/NGchqswZ74IEDCNI5Zlxul8BseI0zyn3bWYiPTDMVlhHY4Tjg8HPD0/4Vf/7C9NGIsxyiJVkKFqry7YtmhQxa1E+gqEuSbkedCpNzFazFCJiUePPbJpf9Cx0jozmNQ/SOoBrlR+Tac7U7VQwkwmkFg/VB1T6z1FCdRYBPUzGZwSoIJdl/yqwI4ssq84ZWFPibQjKC1QpwXCbYVaKAXKeRNIdhiljSLngqA30LAIiLnOvv6vCXWtSxraoKiASqhuXPLvWuktgEO33nLBVQ24etaq4EZoEXovuHrh6C2CAoHczq9OktdbSqY5FAG089gDLvnf67i1INB61oqjz+t0WwNB1Wc/Flt5Zdmt5dQlNX8NAkP5A5CsItY7cECfp6Q8cm+mNK5n9bt9ksXVYvL3tFCnYRLLobyzb5YEg3PuK7egpeNrKhgqrwKmccI4TekIzJCBJJ+fKmggPf5GyYJBr2cPAWEYEcYJSS3PjcxrUdd2PjInkaSvXFur/lXgQTss5aR8U46I6Qtm6JX1cdbbqKT/OR1PS3xdj6il9Om5KnqJnhfKGpFZM4AZixxlsrjSRLNuYGeZFPMtbprvoorrrJbRiz3T2+yUwQTkW/ZAhCh+NjdBJsCOW1kNVyydAI5ZGXLgifGQxmclLUg/pCNGxc19bh5D6sNcpg2UHGGDo8kYXNz+BlNSSkpYCXY6iTQCt5UyT9eyqOJWJ+dYrD6bCoEgTcKaBnL5unhu32WO6XxKMkMGx1L5ZIqJ0Q/9kzYGCmC1SNJu2KNMGS3ytZOx5Tzn/Vxu5U2yrpUu1GCpV0JVdvbp/VFcXetKc7y/2Tq+/+yBWmJMCcaIAXL8rrJkU5kwg1F50PQYnosN7QIF+NX/XO7DUkFJwyV0RwCncZwQwpDXN9Zr1gPfTaf+KOfFtWf+0wdtf8vR+WtDP5+KVsgze+fFSVf/ltzeBmq+bLBSGEgKll/clWxm8nEZR9dooKyX6XK3ZOC8rizLDEjnLL2SA58Btrtk3Zfq2iamS+SFDsCOq9fH54YxWKFxibZWa3DT0xl9Z3+AWEZS6hvlpUB+L43Ro7leZm5KwX6uMyP5jS4a6wQv/6F0Pr8sJGlKF5HUaynzfHbAtZPZCi2Ni/y4HPTd4esAm8BAXESQTJ2nzq6BhCw+Pz9jWRa8vLzgfD6DwoBhGDHPMz59+pQAoKdHDOOI7777Y/z859/ZZLzMM/7in/wCp/MJx8MR0zgm4XUgzJd03h9RHI/HiOPxAcfDAacT40WEok+ffsAyLzYEx8PP8e79OwxDwGEa8fz8jL/8Z/8MDManT5/w/OOztIxqVuDEj/54rdR8ncTUPwZVE18lfArS9cCm1s6L36lrMYSMkjpB1Y8n8qR1y9YRY7mSl5ISkd6pgJkEoWi7gjAd2S+qUjpCQcNYhFxfseYzu8fe1f0exx8TlcrVIpjbDSL3zGIoQcvNu6ZMXwt1ai+XsAjF5WwU4Yy06q3ZSZ3nd6qpjDcxJwCM/fhwEaecd+zmWpmrzZiaRnKnj+pnG0JwvRbXAsYrx1CFYOEBSX9wliCvGAIv7/sMeu269q6obCWsrp+hE6f329exOSr2vK6P7uTl8d+as+VYMb8NJPyaAxsA4ZUVJ1R0eEpS3koaX+x2OXrGEIGxoGP5k3VehYDj4wMOx3RszY6lVFZHg1fKRJlLN73moyhJiEzWBGN9RI5UbDJia89rsCmJAcqXqzkFzlfC++cVPzWswPMlFQilL8n1KwAsy4zs2yctUj2GlcCmbQuClYUTYBtofpNId2Nrp90tmcHz+RjlGE5k2ymNzLjMl3Qc7nQWa/Dsu5KXBLyEMZU7DVO6kW9Mt+8lNpt9xWidEximgJhrhxvC2kYusig4Ba9o87D2eKW2qvxXyEHmayenX+Uhc46poSzZ2sgKP7QNjuRlMMzVmbLtW92STNE0nVuhJuakzQXdxEtFqpJY0Vt2OXfIJQMGOuq6Acd045w1p0E7VRZyDCgQkl8SUh6XU27t/gMNNwscV/NW3/cBhCxrqaJFKG++qy/ZKVLL/FB/SEpzmiU1ZGqfRulbupwI5h8u1XICiNfzCl4BhtB0lv7x87DkkSGkPtENXs/na0BtpUfMCx4eHtPzxrE8pT+1M/KW5WUNNHuAr+Xo3NdLv/t83hqu51HS8m3ZJOf5U8gStdybf2W5uR3Lt62OwwC5G9Y7zTLW72SA4H7nXJUwOobJwOrscEHDS3mRggN7wwyK+X0YAsZpwDSl01LTNGI6jBjHAXHJGzaXywVEpVN/BZGMT0vJQwIoQGoRLc8jMzDPYIljQLzwj0E21EyHd02LHtxy9DFylA0abXneANF+SzxEc4tFV+n2TAgDxiFdMpDcvin8HpNEw4rSJatrk+VsTDIvyhs6FYPYOcW/ErApdc7pdMKPzz/i5XTCvIjQEksGMo4jIADFMCQnX+fzGUuMGMQJp4IgOpeJ06Scxsl2qoy9hIBpnMTSg+SZ7pAmQTD9LYi84OH4YLfNjdMIAjAvyUn4+XzG6XxOeQ3BykgFqihAeULIAmN5nyX1FGyqEZlghjIKvLABESS07h68WJYZ80y4XM4Yx0EWWHJiHuOCeU5CX2IK4rzRStQdU1i+MTqiwkorpD1kLUVJmJOAkayXAhhRdnCEqVkfuOYRssNKVZJyp2XiRBUzgjZBd7kc8Silx2qxcE5sDSyq0w2Z4UtcBzaVm006B7W9EckJpDA9W8tsz/LsaSPLa6bG1pRcP5b+UKLmCZwT0lxZeU6KKEkur1zSdnD9uJLFXeIsrHISYL3UZMJx+anwkt4iwxBckgC1ridZe8S6VpKFV5o+ngG76pqCqGa0ECAixyqFIS+gVXOmRBDXoeb3WasCEkvIygil9bMh4uR/ef3cTS57zMiWdgZma3mujUGZKNfZNGYA5bGsHlbVlTXsEIuabpjFh7MMIf1PkFtLpTQKMN8WETIH1p2S15L+5lzMSrKy6q/bkVWlLCwokfRpUhP9rnqnX6w+ahnQqLPRNt8uJzARQCJE5DUuNEr6Ufurnrbqc4QCWTmFib28K5UoUZKIbK7YTp8KYQBYHG0/PD3iMB1E8yyd85pl0jCI8hUSOESJNwO57GEYMKry5q0ErB9KvmBCpdZfyld5odXXupvrxzgrY/U84oIPWFwdJ68sC/+NLECLB5t47esoWzA559sCBPl3tUJOsraUx0eX99ZRNvP1suRbaOOyIDJjjmmjbpkv6f0iVlhReUv+sMtYFobRTmnronPTW0kof4rS+ya3ZYHDRjXmdVCJDnm0HC/2/C2TZgIPwfxy5TlriSyvmtoRleB29VLqmOeGRgzCr5L1kc6NNC8RqHiWLevI+ezJMLpv65rb+F31tJ4p92SuZ/6R61+SlVRn8UuW+im4vHMiYn8UVV+m/kz8K1s/rflEoxs1Z17DwCIkbfBEl08lJ9lvQuFnqaDjRXFODqLSyiPGpaA1vgyl90qXlij0bWlZOBEopLIvlzn1mWjsGTTKdN7AMm2KHNfVhnk9oL3ZrNX2tKJqssgGtmEtPCUBjkmpVd1BAQC1coxLzL6hhD4NcrRHb5GMXFpEJbqYZdXVmnPfjWZWNK8V/Hj7BjLYWW5W7YdaKeoaYZQ7l56qOP7iPz2B8LSLUMhe1+p/LbTokK18ElkPad0muiotc/Qpx9H6Sz0rHie5+kKK8jNM4+QXYkCtXNn1o1t3nAleoyyRa2y9is4bAgIx9PbYwzRhGhO4pJbMpHOJ1f8zJx0YWV4oJj9n+pp+yvx1urgHZNZ0FzYvtdmenBpfUhro5SvKlqeeNJtthLLB3GOuTHlKmr3DHpDoQwiECEKQ3WxCyP1PKQ/S00W+vpaNEZRc9ytk/KsBmyIv+P63v8Zf/OIvZFCBJS44n9PRtuPxiGEc8M3TO0zTAWoRM88zjscj5nnBvETzlzRf9MaURCl/9v6bpLTNcgaZAATCGEYcvpnAzHg5v2CJC8ZxwOEw4uUl4nT6UW6bOwMAvvvjn+Pbb3+O42HE4TDh9HLC97/9gI8/fMQvf/1r/ObXv8bxQXZsTVEQYUqrgzzRal+riYcF/QlCApouCQ1KcrnrNxUIAWUahPEwQQEq3VU4vZwxX8744XcfcD694Ntvf47379/hcrlgHANOpxM+fZxxmS9O6Es1jUvEMl8AIhymKdWPIxYwWFaQNROAOpBVwSzT2LxjAyF2kYHFg1vCxFMMQXNF08k7WVyWByAMAp6RCvEwRpZ2SzWdapJcVs7NFgqywIx5O8ZhpNv4bWorOyZh+ad2hSSSoSbX2hbEJItGzUuyUBY3UEjpi0WedgSVWCQgpAI4raaJqDMiwIvNS1YBX49KFEzOK2Gq3AFJttAjWRuh4Kb5I3gGzNCbmGGAglsPtZm3rSKyzoI6EZ2GdMMEcnLH9OTTKWIm/CwC5TjCngyI2ATNpBRpG1KfBMo3OrZkg/yMpR3ZsbB/XyuqCqAQEWhIOx/zfDZwzMyZNXbJ2WxdFECYq6AXTBOdTbRDBd1xGDGMA5Z5SYB/jLgI7RunCUMIIoqEogzzBmI0jJD4V563KiyYraO0R8UbsJhcq/NWYZZZub7AdgspKT5q5WIjXpmIM4CgYEkluCoQlWkz54shdK1RXv8epND2ZEFS6UIqaT69YJ4vLm1yPAsBRCC0sDgStp5GmJcZ87zkWprwUO4Yx8i53wkYhjFtmoQRgQYwZcXJBBYP8Ilz6jAESZ8dbAe3M5e6KfXgMA5m6TKKLwTdIUz5uGNw8oxAgB51O0wIspuvYFNQZ9yqeOkROgoCJOVjdGpzorfEKU3OFDqvCx+KnhbBSoZfwBDZcXR9zRwRvR8lN5dUIEv9Ei1+AeTERcAYNmsdEp4XWXYZFwbPCvZo3FSxNNa6MZTAKb1RajEa7niQa562rRBJGcVxuqQULnYkLx2xq2lTFnS1pdJZuU+QsMP6+BnikvovEpYl8eZFrLYiVE7SI3NsyzjIHFVeBAMws+KrdErnmV+rubm5frZ6da2ENAcP07iWCYyEZiUozwlPX2smQAkwCjBlOsl7Ke04jBjE5+iispawtnEcME4j4hIxn2cRf1IE5cUiFDmeSkgb+wnoSdUpb0SzT6E1KlN4/qhiEdsX7ZDU58MwgAZyC40KvTt3X7KaDsr7Kbin7hIalCQbQNpQqXoz09eih40HhUbcBAaV8VtgkMYloVmqnOkaLte8trXk2a4AAdqbhQh/JLPkpJAUv/KZzm9Pg/UmS302OLlU5QCV0Qb36fmMk2MtndSJAkJY36hFqtCnRosyD5BYW5VHpEjkJqGhDf9QSffK17qXtCfFS+uZMS9L1mFUZjUBJ/Xo42Na83FZEOU47zzPBl4ZDfPyW6bYjj5FxCXfslkGndly5FtofwrBYgCQ8RwkXjkP9Lefhx6o9bOemRHFWmY9i/qB3Ded6lZDA130QoskARn14gJWM4skCkkmSCRIjuUawO7lH7W20f7QsRKKYEc75M/1nElPHAF/pByAGvQkh/3lfBbJEcOU5I6Hh0dM0wHjkKyaxnHCYRySPCJ6znJZMC8LxmHAw+MDVGrTdQ6gBJVUf18iFshFWtKXAcqTpBVO7rdx1CPlUVtJec1Q3tgACGx3LQTrR9W0gtBilt1m3XRO/EHS6RFm6OkgYF50rgeAOG3WDQLwIhk6kOjsOhvMRx8o+fpkIJhhh7RZOy1szcgcvhKwSQT0ecb5fDLlTP0AqENONTVVgZZE4Uvg04JlOSVgYUkASSYSacEMBMTAyVTeuC+ZNZTtQIiwp0i97lyoud3hMJlvCEYyxTtfzjhfLjhfLjgcj3kHwKOgsoqzgqZ1sH+QH9UcOLPyNb80UlcoRtExDt1ZnOdZTE+z07O8q6Ll1PkKOls/JyqtT5Cn6dY+U2bOlHb/GUasfIw8TJmZBwFZ8rG6RCpsh1rrIRkQAA4ARXa5N0VDW8CZwGjMFmOAMN8qR3aZyGOjxa4pueb+t2eDmacyOFkDuD5Rn1hFm6TO/rYbVuK+koeVEShRrDrE5VEmFGZdJWDXNgaKDQt9pofACOTq6nMti9o0QRaLCw9erZh7VYc8uFWZvsWyfmy2OOEy9SyjXpu5mtLnXPeXKjYE1T4USNG6WxrnYyYxoljl5cfF16M3Xm5VWV9p6gyy+TrX7VNAlVjf+vdU/Fu+yYNvwjBcHfwSk7HzzpdDIJmi+Tw8uzooGJHKyDQl35bm14KuLxnFTFLAnmnbyBPyDHXlkubh3e0aRXB9Xq5C2NzJMTxd2yCXmV8Y38iCt7d4yQqZa7/ygwBRbpP/nERDJH5IQlw6Wu6OqrljbGp95Ouh1wcP44jpIGCT+E5SnwbGW5zPJagz3HE0cMsUYB1/U7gUdCJTyszviafLTvjy098riNrFhbWCzj1O1roa3UAe1796rJtV+NR3gB35VdP0GNNWjFoB8bIkwEkVLunDdFw4Cdhx4bQZJsqX0sMkRiSLoSUudkxlrq4v92Ojodgtlymn9EbjquWB3VoV8wZWmQ8ZMGR4hnUYO9BgLbt4Ppf0Cc9/qu86LgSAMr01Hu3+En+VvnTPFeRoijNV3Ky0N6peTiYlU7a+y3aX6YTyuzQoiI0XHfxVJiT9ned1DZS5iBUZsX8bkTLXUDpMLgZbfTKPczKKzZ0gfltc3d1c0PVXsO7KIti+lezYPa8zgFmJb4Usi7lnV+Kwe1FyzxJQLMBFlOvMywpEyWKg2TA4HizHtYkjWDTMEEWpjzL28wKgdEI+DOofKlbAUc5f3yl45K2mNM76j6Ue5a2dgOg+ss6zTFXmpd+ZGYP0j/4mosJqSeuU2iyAlByTjjGCZvEXW9E3s3oCbLNRwbdIAQtyOYEDFiyrscojlhzds8y1GKnox166tWyUmYstRSNO9eCXfdcL5IXD1ry/kn5NE9h9T79pFZWzpOTWX0uySbKgK6QQ+J28Veu5yjeVeqrwpcxb6+F0kiwnOvpFjp4oH5WRGULAOAwYx6G4JGTVBo4AdPM3UztI+z1pTXUonWRzFL9zlMe86CtHNF3PVjRGn+XBKusBT1zhe5MZLub6q5dhS+7rabE/Il7NCFYel9vgh5zywGyJrkX4SsCmFKIIaRQ4ne8PAQ8PDwiBkmWTmGeeTicRXBPheXp6h2Ve8PGHz/j06RPOl0u6OYEgjvCSkywKipyyCL/ZJ5GasS/Lgk8fP+Hjxx/SjXJDwCGMGKd34oCUsMQZkYF5Ifz48owfn3/EZ/17ecbD0xPCOCQhzvscuCnkFETAOA0ijJPVuSC+LvSU9BgjXl5esCwLnp+fcTweAWRnhd5rfe3HQfvqcrlIISilpVy6e0buGed3mVJkRQbJBDI99RNfxCApIvICcLb6UQGfjCq4mqiJrxOOif3NNbUgK1Zk54u12wMB9htiddXqd9LdWBXuWe2CUv6qHDvhlq3Nqa16AbL2QCYaZLTHA18aLzMNJfZFJuUoiZDAQPLBgEyUMgN1rEoE3hhZAN3FFC34tO67K0wIqYIE0B7BiBHZJiGFQolEEnCpyMe13D5UgXLli0ASpS/0iIfVkUsBEkhzZhgHEViSsBJF8TSGQrJ75Qi3Ws5F5iRAgaADqVecJ1PV4IdG15uuAAAgAElEQVTeY8h5XLSRAk6NYxTLJjbmtt41E9ZgyrGOI2fGxOWEiFGOE7o+0HXu1/84ZFB/HAYsctynFFbX3kUyQ/TjmQEEBZLSZy0IBwOb9EYnL7wCcnxqHJIyPusulNIKkjmrgtsWS1T6QxhlXI1euGQtZdr3c247I4wDjuNRooviyT4G265togGlsMJSXlRa7Iol7Se1AGMkkAhIx7dJLNRCSEfNwyjH0EabhwS442tBNk/SJ0S5UR5pTrz1aLgI01kBkg0gZ9mk9dCxTCCTo/+k/Zm/67omyvPbwZM2JlkYFO8Di/JBzhdMuPWtu+F6TKIAZmyuEIYw4TAewYxkdRMZF3eEPlkbydhBlCBE25haxLdRjBHLfJayM8CkFsMGrIgTaVYH30s0H01qzTZNhyTUsrfwK/2l6FXlHkBazXAdC9evmU2kfkgzIyD9L4qvW+MAMC8LLsvsjnKR9aPpRwk+S991U0gFfkfnSktUpVUeNHX1l7mTDZxyftND4ulmGUJphus4pa6OuZ+k3mrZQ7I41fI118mvWdbOynXT6WxtlJjSF8RiwcFp7qdu0otXcpuDm7NW1yUdwx1CAs+D2zlJfCMDPplmCM1TcSv3XuM7aSLtAJNZMvDFFpMbcwEuGSHvwK8oLeV+tEc2RrkaOeRf7Psba9mCgGKTMT2jRiXaQemsrSs4Oq/z2tXZaJQ4uid4SyZPvatvefisjjqPNR9ToqV/06VIEQb+U5A1k5yIux5A4l+Qd2rZRA5sGm3OZcsoasbRjecUJ40SUdoslBPMILUsd0CT/0zdV42VA5k0eB9WmsZAcOfDqaB3juaZjLcs4CX7jAJgfn+9/G56E8/ud8TlErAswyp++hTXIpaH98uZZazEm5QeshqyGA8rNvScHges14eObCsU+VTp8nwTedHxQjIDZUK0c3NsOgDYr/uYrDBZjlrxel0leiWbEouviCdAsuHnyA2cAYf2hcp/Zk1ocmvuiWQgoeyzvD3ufE7vpumQNsDMOfiAYcjWUBkHZMQ443wWXhSSe55M5rUnHAHwfattVJk0E4lqMBhWaW2HbqBU+YAz7VHA3wAnNKrRoOtc/UaDxuZuJSRLDDdWLI7JVU3lgEzZ3Zonv9myj9h+RWCTieBQeqsELwEhyR+TCpbMsAk0julo17IsOJ3OuFwuCRSh7GxP42tZKkwBWehU4nO5nHGZz2CwpBkwjmQ7tObME+kGu7OUd5lnzJdkwqkCtbbMs3ArM30pu6EaOJ1rdrzAFl7qB39T3J6ghDgdDZzdOfG0OHUXod4tUUVPGUDyK5BtVVzDKsZLVRzfL+l7UJsXFV6Mgfpb7kgAgIwTp8WoN9Gk9Lp+UxXyIgarRUktmGh5SoQJRPOO/izbbflKkSQCpjZLWHYhTOiCJdJryU2UUTE+PVEv0UBpYq7ppZOypUWiWtXIFI1WcEatCGy/wQFqTRorzNkc0SpRNiGdsYI/pc11XyflRsfECbauPzWeCZXud7HGTFFw9VHBAlz8Vv5RQGW5U03oS37FEljoHUfrUS+4sQhCPwLLnhlDTGI1HRXjvuqiWlhzbQs0AKSgRG8Oa9vTH5EKa9oWESBkgdT0x3yqyGee//k2jUFMxNXKg6i8SUdDYW0jDFMF4dzHYsZtu96qhGVz/3xzjqdxGeRKZTsaZBJf0bRKaHFxHU1OdRRLKSJnuVEGH794XgmfwxAcv3HHpoRvJMCEnePeXEMbTUKpABdrQpeVAEBCSPT42jAMAjYN9necHqxfCWTrSWl/tmgiBNmc8bviNOSblIjUn1LeqFAAgYjsqFypnJITppTbN/qZqq+c05D0HSNbSi5xyReKxLz+vYICTqAOgFJpYVmoTDhMjDFMaYzsSMYF85KApmWZXb2zP6NluaQ6yHF3jhHz5WxKigrQenwO5tMoHWmOSzSAYZGjI4lPE47HRW6TgZwyy4rWuh0NHzMSWte3rwJn+pzIlbNAUBCaGbRkC88SsHPyTTWqtluu/LGheEKobV21UhZxpFHXrJzEtKNCuRXJqgx6PCTxrMgujqOz0HkizVE+Uc/QzKOQJ6WroOdDBu5l0dPWb0GstHygmCt5F78er2xpa/kCzgWez7dMX9CuorNVcMkSSEqe1RpyySyGiV9SH2PnJPV0naZ1V1rmq+jqYUq4l5ldjXxcL1JlCno96BgygAWQ46wo+qssL4NCOm+CWHqV8whQOdhqarcz+lq7mtK6zoscmVW+nJ16+xb4NaRWQ6NTqvVI9WJKdo6TNs8VfMpWU/oMIIomXwzBbYSZnFHKLS26kp8p3eHqXQbeWtZFNS0vvqtPuzCAhySXqlFCfSNnThexxJDlWMnTMAGUwH0UJ6B5Y9/LUJ7vC2+QQcq6SE0kUORvNLQCowbXFy19xHqyJahA83NycYQDjdf0uVkGZdlIaX6Zf6tuXKZHnu959D2YlNPYBrbl3WmayzWN62KfMS5QubHkeeX8TLxbLs5S5+fs/oQBaBnWAFinmL7kh7gGFXOczANNjnf5lHRT2khriqc/tNg6+CXU5FyOVacqkDxL5bkeKsauWUBLjuiErwdsIsI0TXh4eMAwjBiHETGmHT5miC8B4Hh4kGNzAUSDWemcz2c8vzzjdHoRsCdNtmkaHREjzPMFizubm5l5RsJfTi/4/PkTDscDHp8ekqB+OMrnIR/dAMyXRCDCMs+4nM84v5zw8vwsRNpmYPlZB6NZXA2gCEvMSI6OZfK5K44jL5lIAmKim5jnwtH6IwnIM3hmXOYzzpcTxnHC8XjAwAHHh2O6GpJgJvoAyy4Oy3jMWXCkJEp4cstuoagheSFUFX54gEISs3MQIb/THFgEINm2012xZKnkbpDRshjg4L53CGMWnsjeU7FzkavmE+Tjq+XKphwFiEmZyM8IrAqolueELiXnqkRZv0YuiEOKX8wueEAq/84VS7/UxooF3JI6C4HXHT5jsp4B6PwiADxgmORMsTq+Z5192ASb7Iyz1D/Esq5e1E1lA0FzVkshL8BCLc1gDJ6tJpmHq34H9n2bBXk9WhU54nQRJdCYdclMCAEhLDYgJGUwe+FIl7oXoLI9nAlZ/je5ESXYTvnCC1SIz9VozWMvJFkFnNC0FM+yQKb1SWAZOWvJ1D16tC9ZZjGiWDYJmAWYHzwP3Ou16d7yQvsfIrho38RCuSI7wmX9ieyk2MAm2b0CA8uS2putIN2cVdKLqj/8PJF8h3G0YyKsaWROmX+nZv6ad4o1DOLfLC2wRAe07VLFoPPPCUSB/JwExsPBnF/r4teNh0ySnLAucSe7zW2EXqbxcKzBplD0Y1I0ss8lA/T0iLU4TyDkOkP8KQWXlwGFTrgr+xLG01L9y3FgBxjBCeLRfZcIxVyGi1/chMQJzKkdYsdF/OjI+n6hF/xIz2BmzOfk9Po8X8SyKe9ug8hoBYMxLymOKoeZK+a1mEEZBtRvoOQX1TfJsmC56BE52ZWPhECz0RK/7lvzsM3nGNF8rGRZKNMlSRM9zRMWT/myEci6CDRmGkteSSlpUuoqpW/WdSaAJyPlvMNt9ajk15Ka+xdqMagblE6x8HIIy7pUPic9GbQ7rXKhVMIcPfbgmT0z2T1TNBDA8wxe5kQnIZthup/GGZBR0NKAIYmjfp1AyFY7FQ1zTGzVT0UcyUfbnmWETD2sRdU4+O/678JL8u/heZGrG8t4+Cr6bK0WDWChKLEnJ1f1q6SeusTrQXk00k1STkxYX17i15ZsJLLK5IQsyxVDVNIs6yOJx8b33Uay1iOys+STHN1FPZYb5+8EMvopyxxxWcQS20i4gE+EJajVx4AlzBXYNMr6T+trCAQe9ca9xviQ8iLl4bKhaEq/Dk2u42oAGet5YVGzZKx9MgxToifOH6f6IC3BHM5OyGPELP4f1Ur0sBzEso1lraijcrgLHJSXZNnG4mh5FAAMNo4grC508bTZ005f397aKLt7BQNUoeRBmzE76802nzmDN724e4ICLFajeqjtd5aDyTYAyfx85g3cFOkiN4lelhlTjMmf7TiAgvirNOonOoxazYu8wUH7PssTLV7q1XPdTPV/XM1f338F8NR4B6UHyKCeldGYD3vnSZVq9YRI82rFXz9cbXbvrMNXAzYREabDAcfjEdM4YRwnzPOMZXmBRy6nw4R3T+/ExHPAy8sLPnz4gOfnZ7y8PON0fnF+iLKpNgAR4mZcLufCgkf9L0GUg9PphE+fPuEd3uGbn32Dw2HCN+/eO19RuXMHdYAKQpxnzJcLzqcTTs8vGIYBh2mCq4DVowj1+NuMzlwrmxdqFBFUOd/04LMjkAnI7NSqRXxJXObkZypdYXtEGAKODwcMc5A4DvEXr+QquC9+l0YWvTLRvKQ9FzGpDBlIktikdrkuuhER3xrpFpFyTFRiBlhvKxJ2bQ7H0SQYLUGmGFMainSUOnqVxi92lQWKhRcX3RbJfUX5U/uI7VESF5xskrJxPjlgvUHlvDHtMxNp7T7pvcyaKAE4WoNE5HJ2HrBQRs3RHe4LwKACFsp0QGK1VjVtL9IR0AwwyDy4LLlv/Ye2hwxjKsbQ6q2JQqgApxSBAfO7kgU+N3+qOi5xMce7GWTzHSoj4BSaDI7RdjoHCObbutpObU1xIFVIXHbsIV4XOCvwekSnUMiFhuboXuEXmhHZHdnQfiEkRSxAGaoqz9GYVLnO8o5hlI0CNqXd32yl5vMrsInIdiitrrECm4r0dVf0138LbCrSVuXq34K1ELIWSlJFwiA+p8Cws10+kPohUh9FskM+DG5uAON0wNPjoyn7BgBJX9kz/RTQaDSrowGB0jG34/FBgKo0jvnGt5DTOR5Hrn5Gu1wf5qOG1Pyrx8M7eU2Cuc6/vEOpTorNIknM+1vXZ2ufWnkS3ysR/lPzsGNoCjbpUhEH3TFGzOdzBpvckVKIEpWAl/TfrJZNcsQsEMkmly0L3xFpjiiRYj2SnBxmx3lGlOP8ALBcVMnKvMX3by3Y+nlZhuyDqTdGvn/ruNpuCkOyetMydX6jTFOWYzW0ZzFGnM9nzSHjPY0+WymO7jP1Y7T1kOhyXhu5z12QQiLIyiPjAU6Bo/xd+URXvXN9GWMEFoOSoMCRZcSJrtthQ3J8TMhtRDTn+NYPnK3JTOkznun6RfuQch95wM5v5mRZs9Eyl97aJvKQLFs3VlJCUacqjssnW6WW4XZFtuDk1bN9QVuvG5hij9spSp5HFlmjuEtQZKscnTWujEEErI9IyirFXz0e6a0xVKImcIxZ1EPmw2q7x5UMSAREBBDJJUJylCpQ8oUbBj1KF9IFJsGDTYtY+iYeP4QAsFcZebW0gGxFqcesmZFvEDUlupTlbD55OgDAI89kxIENmJsOh1Qvl2c9h7x16SK09nI5r/iCHsWOwhBqB+fpby74yvomT0rD7XQYJx6Va7eoc35vf8BqTdYyol+5JT1nqPxe0vNcxhZIoGlqgMQ/uzVYHsqrXU3XkV2Fg/Ig+U1OZxJXKXrcfV4WLGKhGESWypRP5qvI3QwBDhEbcyf3X6tvch9Q8ZfIaejG3wKcss5DNraqU2gvteSq9TiW8+A6KMX1kFg+RL6NpZB96zz4asAmAObTIAuF0TnBFN9CFMTXkHYA49OnT/j8+TPmeS6UEG9G500gVQlKzsfzrrDuKh8PB7x79w5PT084Hg8Yx9FMtGdBUDXvGCOmacLxcMDDwyMeHx8LgMvatqH01KNcDqII2yJcUyUA2DRUAc8ygfUFAPNDE8VUXy3BGMA0TZm4VMLNUhNTq2PwHAEkegFxFmcMcHLKq79hrIxTVb5oTPqRLHCyUJTkKQY4iD8tNYXMN86VxFyZvnYafE6WbxgHZEYqwlPM/c6AEYBaRDOZVXUJ/97aSA53cGKGZ7BFMmXSWbCi1dWgORZWNfNsqwQFfbnGiLRenBUJCr58d1uTK2HNGt0z0mOE6VN9WTAFOYOGtdDlsuM6vypom8zvrK+TMRw3MNpEnyMBoAAKg2TCudfdfFHLEKswYFc96w0NsqdntUuPU4GlMp/OgISaQWkq2RYrFBZrw5rQB1XCjUHpd4BjOgKnSlSexzCwYhyC1MUxWqmzKiVpN3EA5J5FX2sF2gbdAHWL1W6/WvKNHlqW3n5l9Fh9BVlzs4CnQJ9ZNgFmoVXWxfU+r5/59qdxJaP1/p3SvXwc07U1RXCful60u+SdW9IeyLE/EYxGccyt/Z34yoOlAdpHonye0HyIDFwahsFZBMvNc6pkhJAtmfTGOLu5xgl6NmfyzWe+n2oAxPOxyNnptQnoMh4KJnjh3R+TQEwKwLIsbh5JPVj7VOoh86AGmzzIVIBNajXKAC+cQILIYmEUk/BabRjo7TxqkeKv9ta5kG7aatAq7Sulr46dE+l4MOwYNJdKWgvQawFO9Xc/x28FmwC42+DyLTk6H3KB+qGDUm3GEJIqLZKt3uiZwaq6v/zzTMdqssfaf0j5K+DUkJ6tOKYMLhCUZLrxgNa1SAm18qhz9jKJKjtg2O1bRVzyCkqKWK/v7MNGYpjPmBS/VHBbcbQC3FzDuZHKk2VOkspuQDbdIsu7AKp0LIu4VRm+c3zPETVGXPuAq2etzNpj2wrlNHDMv3iSj3AnS+pKVlhlVtazjFbLZn5N5U/TVdmny+vDQN6izZzlDN/X7NadG+C0LhL3gojiRJQsHUEIUUBkCgJAEZZB+KtYP8liwhACFuErPWDHb1D4o9n1cfua/vS+bwXbYKjStZRv5nRsjtxcZi7dkKhMr/wtW8AuZhWVjB5iwVeAvKEZF8a8ZJ5vH7ZGy7Xrb+krrLOYwUt5ScOq/UDBF9Zv4daTnFDB+uij1qsVtsCEFnDi37W+V9Vb0Ua/dtabFrR6FkKojkLWl15R0aeen5H4K6Ja16h4YK9fWsBP3Q91P229g+pefhlTXt91+rrf966bFNfXe/3MxdRY0It36nL2lvvVgE0KbKivAqKAeb7gdDrJYFzkOMCAd+/e2e5fjBF/+Zd/iY8fPwKAEbdpmsxxqZ88KlQokJUZfPJTEYjw7t07PDw+4PhwxPv37xLzp0SUXl5ecPr/qXuzJUeSXEvwQNVIukduVXlbRu489Pz/Z7XMy0x33SUzMhZ3mqliHoADQI2MqKo7MiI5DPEgabRFFyhwAMXy/m7lnrcNc068vLxgHAf+8pe/4Nj3MDYJvg3+vmVo4m9V6E4CZGgAoFr2kEgu1L5Gd3e7f+sNoh06J94PSxD++csX7HPgx/0w76xuSra48qtqpUfvxw6BqZWTi6EZ4I5zYQ1h0kAqXPS/kGgjQqBTCeN81HMsVIfKGgcltHrrInGAC4guDRcvg57uzlRGqFBUz4+4wTIFUhS1+H2qVRVUlN2PJ0Akht/aNEY1cvIBdc74IQGVgbnTvpoMVKNVCK8iwKzkZVn0QvDI8YMrdaW4qWC5b725JgKHROLQVLiZvwR5+zKG3hOC/sg2Z66wAbYFkC7QuULvpSnfeSWmst1FDknQla8QZV4f9kme3Mf7bWvA08suwLK2S7JPcZN1zpo0tO4JcAlipq8KEdtFLICMin1AUc2d77TrriP+yDo05qyCWymKmmq6QwMpKHpbBbolLPbkxiwH73e7Xq/Y+tUAGW8d68L62FsP75rtckEYkQAcg6XVHdg5P1ZohJaJtMgRxK7v43Be4YmC3UhjP58KMQR/LDvuHKJQL8pxG4yYj8eRVbdjPPcGDN5HT7R8MhF+JKjsTmNMZNmayakmHsbn4F/EPGQul4vxNSZJfpqLgLl1eA75iq/BMDLZuAEZjien+1k/gkuUYpZOB8PpUxPkPStUQXr7lrFnMeb53/Ak3KS9eYxIkk6aCSWAyeXDeIWgfXotjWnV4KpnVDx/znAyIjHLcJqIUD7nr+7dCxqbkCKJJYTDAK+Kcax5D0mPTmbRVgkQl3mxrMywnTsGQXILo0EC7TLHp/V8JuEElOfr8hxLQJ4y06+IRouIJwhfPak59RoD+Yw3Zd8BK2N92S6uzNaNwHovk+E2dvRD5F8Fwf6b8wbhfPGsZSwet4dI32PMb9LxPwao2XfHPsEXuT65VvPZ9d4sJGFJbVukkWAfbTwQOEQ9fUJiHK5HWdrTpGG7XP05JHiJMB+2QbmJInCZkfeOzTZ6otd5iOk4HXtyDqW0xH3g3wGEBx/inMzhp8s48t7clM7+Yrnv350xygNJXmlzV1FsYnFdLzxhOYRcWAwhFaf5PVPQ10vjRGuLPlnHgWoQvKZem2sQSzjy9zYE+N5Ooc9ng1ATwXbyIop+1fv8HWNTaw3X63VRns/yoLatGg6q7KOh4XuV9up9qofTtmWOHxqdzoanwPqsLBoyZBr+5blAYLt9P/D+vtsx8royV+e/3PgYi7FpjIH9/X2NaDjPWeFl3za0+cOhiI3jJ0aS7xme6rx8z9DwXR6ZCg5OH57e7zyP57nnOXXeMlLJ8BSdKO73e7Sd1/TYDc3h4WbRP/uqhizS47fO+/tyxBa9uh6IyBX7aGj6x+73j7++fy+XHc/OW4XaN19/GmMTgACKUaUHiFAKSxRuxg1WHLjfrercOMyFrjMEAUiA6wmxGasr8DxL3bxXkmCTqLe+oW89Qwqwgubp+R9mM8FNwn59ecHr62sSxTcW8MJUFY9lXYugSoUFLrD9gwCl7uLCdOI0kDCs4smEGIqdEoa9YxwG4kWwbaZkt245Po4SOuXsH5GQ1xdAtrlKxgSDFdqJrB8e6LP8LqiPkOx3oCN+VQOXS3v4XpIHL4kvV7C6Dr0EsIdXY5CoAmYAKM1opyFYumftaqW9y5OEXZAylemB87h0y5GKuR2gi0qUpuf/7UQbqvMxGvAsPACyuUWB42PF72OMsND0k3tGlZYCYmhUiSo9UDBXf6GUtcflw8MxfVA9HtZX3fHT03wnPi3zKdzb5c6grKeeWsujqlVYWiWwaAcyYaWgedhUW4xN9T5hGKR3gLAFCzoFHvqjwGkXvJ2QLQ0ZcJoT8co1yDlKl3F4OXZgqI3H1i/Y+gWklBDSWo1NbkxpHdvtaoYUBwuD/L2ArsNBV+Pa91xBMdWq2OnZxHYW76fJMIIYxUoPZWyWkTgbmlmB57ngrPZurtkz+agDumgNWZfQuJNJuHvrFsLWGjbPldS36pGUwCnWD2SpurWATJ/Pem4ORqFZKUaGk4wKg1IZMyrjNDSfvY/OYb51kCPXxcwQhmOMMvcrCJ+RdNsrtB0lhCF2kzXAP/w7FQPyq8jPpGYE0jlP7UapDgfb+FeEsWnlQCvQY/Lm8GzSdMVX50Zc60Fby3vKobqsM1m+hOjq7mRp66LkT8Kj0fEpHSxPxwraW6ER5Dzwc5KHgMr4MQb64VW7TufmRoYfYzvKi+TWmlX9tN8z31uMYaUNVJ523nVWTO2hhPMhuePPvuUEVKyUs5K88YGnxj3LL8sp+uT9nNuGY2hcE+Eda/Ne5eP6WAZQOXUXaBnHoy3Z5zA4ycqn4hYn+GKGfschRd7HuvRjXoTtoefLaDyI2CqhiSECTZQz1nl17p3nR9vyL0KWiow/98zatMze+hQOSDV88Jkn/LDc4omYcM4cnxeZRAXxAek83vOpDFJNGPzksjqi9ZqnzzKwsvw+MTOPFJAhSGWdDF3HOWgysMSqBIvjvNlm8B5GqFixpdX4svSJ68H5gIWP+1rxa83QOJB8EGE0q15U0dpiGAA81F093NwLHtWQfoDPmsWLZoJFpzKdCYeyYbrhqebwIg2nnNPok6piSguZYakMGuYxzMu1Is8TFj5T0nPowsBQBSvjJhkUz6SFLpI0hLw5RjGfVz8u9z1/UITXTkROfPMl5e987npd0g0NSSyIsqH3zfKUllVxNmTWBp97+Iy3nZsRxujKE8+gsshCnh/vdR1yXMh/4vJ1Vecay+kiRqkGXFnG+du9yaHgOD6eU5+ztqHqZCs/Ob/+VMYmllQfSpYt+PmnnyBiu2CtdYgCf3z8iC9fvuLjx4/44+MfGMeOBvNuab0DU7G/3wEAb8vEG3N5ud1M6FdmBwJFxXbdsHnOBXFGRzfK4zjM+8oB6dY7fnh5xSYN//u//iteX17w+++/4/Pnz7mIaxtKOFZMzGl+inN3rLklf4n/KhXMSUkwWM6pZVnnnDj2A8CBY0zsX9/R+wWv9x23q+DD9YbWGsZQ9O0O/fIF+5jZVkHERwdzjS7U2Ngq+iqxC9LLpb615MgARHoCMxL4Ysgq0DIeqhhTT7tBEowzHsYdsnxcTEfCN0EwZxQoJAo0XXpFARuPAyIHuszDdpdKmIDGHOkpESoFe/lc2qZlp92ktwZqVH9EhtaJj7REmwDzTBsMQVkf/fgSRFuDoUTbNEJLCDbqSMUt0uLpl6YyFXWDJsczfwuF6axcNzdSlTHnI2ZdTyfpJ/UL1nFMg5opSn3bsF0u3n8q0LmbGgL4NFh1rACGQrix6VSaPPIjSIZ+SuyGSLRthvI24ynfl4CAID3XZDmWxo5ycgjKLlUkG4iigX4cpkjvhxmmdQowTbC3bYMZD+3i4XndRCxMpW8d15cX9NYtJLn1jMHXBAuHGxkiDLEYksTn63BjBaexNfN+UlUcehQennOkWPlvlmxnP8twCMCEyKvQlfiNfFbsA6jYcq0FW2LlRNK8sET2M88kKWss39mH1JhLx+qLtOwdqu+pMLlnUFV+iCinX+/gWdVDgdxIYwlXK7BDMdqk1xLiefzLfHNzzpi/cWQYW3gl+TVLngw/J3eTi2dTWU9jzAjRC54981u2vfC+MGKQPStkwsJKILiEQcbDRsD2aVQ4G4EbbIUF6MOMNhbqKuux0BSk5LJz+muC5p5OW7t4qOnJoIRUplZ6YtnyNVylhhYslQfJX89GDqfndtooOMbE4cVaHky74jQlcQe/d96vGrMtRUJ6G9Q8b/QmWBT+RLzIZaGQKH96gXoAACAASURBVASSfPZMz+sGhJ83yxpBnlv5fKyn+Joop55TXxbe29wbzz0gIo2kF2vJtJIhZ2yTy7YGhtr37cINCw9BHTT+NIh7ARLT0Nh39mwy7Of0iwnEZhF5Hpw/kbY02mhifrrSBmybGD6rvFbzmhizUJDIj+x7eCipQlg2ncpwJNzNkL0V99l9NL6bB23vXrY8vFvl2bT4M0obCyPVqRjHHlgvHrfIE+KpdS1GCLys56hb6eMd5f2hZQWsVOMI+8plhTyNskIAM2z4+mAfF/P/cytEvhb8ZK9ZZZB/1xHbp98eG8dr85jBQxZMJ4J7v4eAjnGhUu7nmPOAGaW7GxFkK2M/BW/HW8xD8DoPBW/9LGNzGOqmoD0rPWT4nt4vPWei8Jbl3Ydw3w/cbrsNpzAUmgbTlKGLR3fI2SLTjgPv19six8p/qQdEOwo/ShTn/LB4hfp4P7s+77/SXUSDhJdtznqLL8/oq/JXwxkKeCXz07oulPT8D8HXAh/7ptFxsEBUx+12w4cPP/jfB+z7gX0/MAaKgU9AT+LmNoBp1SqSJsm+vrlsJHw96nsUXgLXdL1JeQDS4LScU3R8jl16deY40Agl4vrf6TeAm9/f7cR/6VV5XxjL/h5/wZ/K2CQLwXPRm5Gpeb6Jjjkn3t7e8OXLF3z64xO+fPlSLNEuqk5A2H5zBta2LO/sluxwZXSBTkBWmQJQGYUDmTkBLyt9uVzw+vqKfd/x9etXfP361a/JHqagS8YT7Lwwkgrekg4l7SYVdIVAkELTmr9JUXqA8BiYnouCf1M1wlL6tmGbM5LGVnaQ7V13ImxxfEvIA2H0JC6BYAk8R/HIKsxs6UdphTFvX1gO4tJwIOfTT1dWFlbbRys1F761MRlKjnG0Wk5KAPmoABgCbb5lHgzGzj0F/YDMq7aqYsbQsUknuZVi7VYBZvbbFGD/5PedqhAaPvh4ObWCbcgOZsLiOCE9WEiP9Z2iqu4cS7mfePto8Iu5CKWLwKAqUJljhr/V+5r3gkb7az+WtcHxDIDD/BomkC+XCy5XMzZlBYt0i32kbdJwoQFYW2lsoiHsmbGp0djECmMhUBXqYJx+MqK6dOP5i6G2Rbn1RrMQAtdJcA4xY1PwmwAv00G4Kf73fXfFHpiH5YG7uDt8d8B9zAFWaLFndqty2Tpebjcrw9w98W3gH8Xhbuk81rq4AU7CQEQDhGu6xsN7w4TimIfPl0b5b47HIwZ7wqA4Vuf1XN7DlR80iBJY+/yBpOBMgO0/eY1JTfBd5uDpbFYee2q31nW3zFsabxJwShkJgs4ci8g9cTL2VI+g8/OZq6gam8LD6ZTYO40LRd4eAxgTVaZOzedb1Z/HMDg+I41NI5/PPqr3Teq0P44fAFd8Abhy3YIXp2IVPIPgnesDroSRqxV+dJpJpABnA1uR7cbb6GHdGVLVL77Bc+YxyTPOoSXV6LQoblTeumGALbwqS7Uou3Gh1/U+x3AvxCCd5LVLrY9YM8WIVu4zxsT9/h6GRIVm7qs5MfVcpCF51nlzp3XKQQ+PRNJ/eLGVPGNQDdquv6E8p8rW/Lq25XwOXwyPnTpxHK7MDJ6nUFi1pMwzRzlFr0oFRL3Koxub0ByfWJtFB7RJkXkK903yZZ/3Uc1nCTFI3ekKWSk5qIVuI6TjfB7HTE73KkCu4ozAeHFnKaCwYJt4bs4Jj58NaSItwpQW7KTrO8pVwSIW/MrNndKE0yuUw9KEhYefPtlY69P3x9e6/qJ9J4wdVzqgDl7wpNnPjq0dKvRXnhFNKIpv3m0CT9pf+8dTYu1E7rbEdUa3J49RzVAnbjTyWuJChkpxA+BZ0ZA2XU5Po1Xy1ORF+Qy2SRf6OYcnWUW+VN7PQ7iOk3neSvFsItZMfsF2t7Yam/j7aG0xQPH4w/uik575ka2RwOouD4kLymIFjRrLEgSvw+m5Sfd2NflxGbOq7IHrNukt5/5MSwV/Lb894xFpQOJ1rLy7hWcTQ3bnct3yvLi/Zj84Vn8PcS/jwK5r0Oe69sHBi7W7rJtl3MlGn3ssldss56zzWvv17X7kfe3c78DjBRPnM+tYfPviP42xSdTC0RjLC5i1ORK2qoGJf/u3f8cff/yBj79/xN/+9m8L8xljLgP1DCAHUxJaNU9KhQJjP6wilQMDEcG2WdgIc0A1VABoYO6vf/0VL7fX8H6y+N27A9UiyE5EdeJfCyGF6yHgQt+ZHvu1oGE7RsCeirvlZFJVryYDDE+6eoyJfT/Q++aAgvH9DZf9wHa5u0fU7k+xhh0HyzwnE6gwoXZJCiBlfobANdJifomBhHimdI2bR2ePplxagpobKAFcESz+PY7jzND88jPNVCBRhaHIA9CHIEM5MZLBF4FkYyWPy5IGAmnrb37Rwmcnk+RyICRKElNF6i6kbVwl8p6sougEMABkngSfN/bRz5HWsG1XiGRoTRhg1XcJSl9JmzU4hSMaqbYlmb7EPCU4WMaec1iAHqDB/M7K2NlocBbMpqCYMGq9o1963jaukwC0YagqRBjGB/bO150/xMeCq9h/E+ZJkOh/DBfBARSYJV/bmWQ4ZmUOuZvR/IQzhdewJ86pubbz3Wh525ik1try/r67d4lAZ8Pt5YaffvoZ27bh5eUFrTXc7zvGOPD+/o6vX9+szPC0XaMWVlj4OnHvJU1jE8m5xWZAjgtDrHieeNnmCcUQV4Bl4vwK42cZvjPP5Ss8OYJPIGiOOZcq+AXLOxcF2DrXgpGFMk4+yHMLeON8M0QrwlZIz1q8Ehn+xb5pzhELOkTIGROb6sDu5Z7rmmT1tukbDt+q4oZna6aEsY1ZEqaqWp6veL6dG+ewClx4zSLuH4lW6b3E9ilDL/35LgepcISxLCks5Pm6jivf8DmH5yTcB8Zu+TY6xNaRSHjOrLzSk/vDcnChJHp3EbnQQ9IAvzNU0q5nNdXueSN73yCwXJHkKbzh0j8gksI3cUOmVG8CO7+1Fgn5mYw+QnhP4XROHUH7uR7EPFGHlnM8BxQVPRrL+jlktBVZaXOYxV9obPKQSSaDBw16CS5Wo5hzY9/MqbmbuH7OngH8PZ+b57TW3QhejLh8f3rMV2BdTxwZAXQOHMc9S6Ur0mNrprwibuCmxvDKStvlgpfbi9OT0X6El/o4QWlIWrFu4Ck/vu9HXBMKZFUynA5zbTA81cZ1BA+vOZPWV5WH8XbWXPidntlacGvpB+clDHT1WB1raaditpTNaxPT0Pftc5q4YS+GIOk8/vdHG08Q6Ci52SpOAZJm/MLg89BF/nAjM9BR7G3VOV0YSqyDwCZYr7F20hDTHngeX984fD7r9F6vz+fnvRzPIzcFAIk5sHNbuYfde8XWCEPBcYzAAzXMnXwkx2PF5CGvHdMQL1Tvzpo+pY5RtgmI0LPA5yViRMvcCwBp2K436zfvpSmjOR4Pn8/nzInX28vDuQ/V704h7efNGEAx5uFylV6kRYYrjV4o7eE9uS4dG7de5i0kxBO6kHJOGccY2wbLT1cwruacJr6qXrVlrIHgoccxnE6Yq/mK2/UF19sN1+sVgDmYaANUE//Moa5Tlsid2gNZDaHPXs/W1NkwdD7+7PXst4o1np1zNkJ9697/zOt7/T0/+8kJf/f+fxpjE2AhWmbMse+somMWbSP6jx9/x//8n/8Lv/32G/7v/+t/4nK54Ndff/VkYB7iUfq9Wu1SsXo6Xq5dzDnsz5NSGpPbnFF1bJszhulX+T1/+OFHXLYrfvvtN9xuf0AVeH+7R39CuGkhpJPQSz2EzIwg1y35VVDaidlfln12jwQq7a1pKZ3e0BqgcrgCZws2jBCS7vW9b+jbBnjS9hR74jk40rhX+/iMZFcjQGhxGZO8GA7WWbG+4fsErfVaKnn/wB8qfPeOlMRGaWRZd5FTWD1PXmhNLWErRTCqpqP4ua/iAisJIQc3cYfGXNf+szf0vOj+rj7WgwpfGTLSFlDdY9kfzlXJnyO2c/vyYuXYmRhXZwKc6YlLZwg1uvdzIHJm+zfm4awYPlMUv6U8fmuu+dsirKm4ciSaQLp847n2d95Jqs9M2HgSHk8YuV1TAL6hp+V8NcmIb+/MYBk/n64CA1Lw857VEwR+nrmRW3L87gmrb7fLMrbv73c3NjUAHR8+fMBf//ovuF6v+PHHH9F7x/v7O47jwKdPn/Dx40ccxxHep9U7BYAbtMx4L2Nb8v7U9cTXg4eN9xUCjDYjOfcTTFwm4gk8KvR4phUpx7+VI6fOfd6Ibh7G60KZKMs6lFjNDYJ5MHeVKczMb2HgSuJ8VE8NJNui0YjhZ9PX45hW7GGh3bmC1bP30cOcFTAbALkaq6oXVNmVfVphrlwvPiCqejJeP/8DUpHT8/lAKUKQ04Gn8+Xz6udYbrIBqGC2iQZPQHsSTSImC5vzVdm6FRdpDc1zbqHygyc8RMS8ASlLIr9Z744xLCl88PXg7+vrgc+519z3kuaew+n4t/Cc0zPAMRy6OsWU+2UVYEHf6vcWffShAYAHupgzaS6SuGM8tMXaw0XrqEiThz/jz3zxWCZDz/PYxvM4nOmuHotnaABCMOnwHAPjyBLrz5RFEYncoHzt+45933G9XvHhw4dFZp3zpH23rzD9bIyBd082zBDQ9RoJuX7mt3U+vvf63liXA4FnNMrGppJ95u/P+jgt82jOAxgFfMJI8ZIn4/NI6yKZIDsHIJFSemFlV3goN34Nx9acV7Xf5G9V3iRszXQCocdjbSPKXSvOrPBnGauI6pgPsvTcjxyZchwnbKXrSSs/e7i1T2/tA9ectSmeKcTXK+60yIUJwoKaML7i1Qd+/hSPi+dHFI+UuSCNTc9x5nl8k8cKtJEfE6urqzFmaF+GijT/DNuVsa1DqFOByxpV82ztz8JXzvyU18kQxxc0VBesXsN5A1dkzkFVdR2N43HOafdMXyv8+QltGK6ijJxIb0XqWnkfeXI97zxVPcWDVX6VZvmWL5crtm4FvMaYno9rQkbKuTnND3SWvnDuzzaDv/d6MBQ94YVn49Cz38oR5wuKug5Xo5LNyXND08qnFnn59Kxvt/vczv83rz+PsUkE2+WC6/WKANQQ3O/mWfP581fs+46PHz/i69evOI4D27Z5IjADaNwZas2Am4KKbg4UdyNtodqiPDyJOPUD7tAx8acgk9EZiDelYBzm8r1tBqheXz/g5eUVf/nrX7EfO37//SO+fP4aIHg1iGh8r67Bqqk0hsHJDU0KJqXzxRBD1xJoOYOY6l4j0lyM9egbZKK3iaMpVAX3faC9H/j8+Q2Xy4j7ThWIeO6qtu5u936xe5Y+VQCQDXTmzeowFFCSgqF3DvzK6OGMnYyk3DQ+xjdFGBojx0VNpFtDWfh8ti1v4eKjtsPGlx4GPQRZhmLW36JRKWV8XnJ+AQKkJ32htaCaCQjSQIGAWgLI2y2WJJwCERKGHCq8Qy03Tu20gvlAKO3s+cH04xjHxHY4rtcbaGwKhTlyE6WxyWiGO85psGQJ3ks3I+4zG8FZpD1jhXWMjLEmjQkVfZEY27jPAk7VDRUe9tHz2hCWImW9PgKHxdhUkr+eX3rq1fPzsremuB9l4vOUpGPyjDQ2WfaPtf/NFcHjODCG8TwaJo2HCa6XC3rfcL1awQNer6p4+/qO/RgWiiwbPvzwA3799V9wvVzx40/F2LTv+OHTJ7y8fsB9v+Pzp88Ywwo6jDmioAPH1vijQFoar1tvsdPOkLssee/cUODhasDWjYBUVmX4TCf8/ODZ5PT3YLhE4ROSx87Uqqcv6ood156U6aNazEUyoVnZzQ3408NlDm/r1MxrZZVrZuTHsuuMJg/PEROJtd0rYcyBfdxdNjgYdWPT1BmycFRjk+pSrAO+vqk4M9eR3VNX8Mv8SpoGreBjkShfPJRWy7z6CPl6pjwDxysFaRnQEkLN86KQQwG/BF1FeaiguG8N/eXFpKV48mr3CJKowNrQtw0iDdv1Yt8vV/TLZutr61j5ZQ1rs7bQm7E5n7AQt4atda/QZkZYARxjZD+S6gjCkz/JciyFowCBlahshQwLRk9e4zw8lI2yEACMCRyj8qE1F1l6EGQuFHo2seohcwNtLtO1ejbpyWipqZTGfIqACdbhawfKMKjMu1QbXr0qq/Gm0hq9HBJzZ//PBov1O8/LcGcnaORGC2XkBHMT0dD4+vqCyBWnwJevX/D161dsfcP15l4Smp5RTIgfSfFnrptlsvyjqkYOtlHWIqMCOCbPjPtc62aEZl+fKyXn4+s8LAcjXxuPqZIOsq8a/K0cY14t4p6C4+r6LzMV1wXkPp8Tk+xU5fIlQoGVnnJcF3i8FsjIxTIeweedl9E7dbnO32Pk/YNt2j0PYU59xg0AgQNt3iyU3nMQiZSckN97reiE45zIO3PMJO/kxj3XY/LboE8tOEtZMYwbWXN9HhRjOKINIV1HiK3xPJQng3kYkB7wn/Olbnx333fQABW4KfASwPVJPJnvfAacDyXmN+xleSyXTpX5/tY8Lpyd+srJ+PGwaaOKyRy6T37jtX12/83paaoHRhCra2JzTeP9CO/k4e2isa/w5VMOtZyjVujkVFGy2eYMn2+PFefBHE6BbcTmdTzHeLzx+iFGg40VD1tziGHenAdzP5JZ2M57wJDwdcD/N69qYDobjJ4dQ4ylk4xwNZVwu4oFCobRGO+V/z+zEZ242GnlPzlPbT6+09Fv/+avP4mxyZjh5XLB7XYDLY/HMfD1yxv2fcff/vZv+Pr1Db///hGfP3/Gvu9eBY4gagMnoTeG4yHDr5Q7SQAZ4TGO2M2FwBSunpUJFB4eAMbcW9jZnBZ6tr/vGGOEpfwvfzEPq7f3N0gTTBX87X/9uy98yfUIJNEvmlFhOMrv4pcSIKxx7xCBKjuZ7o8GvHy3AA2QzRVOO7UdijaAqQ3v7wdU7/jj01dcLgeumxnw5hRI25zxUXDY+7Z1bN2V5QLIomsoipvAd5uBGqIFZH4siCzHAJiALG6u9bpHK2vmzYjwm5MQOsP184uL/nISYI2KgazlXHNnxJUGMpF2XngzFnMIjica8WIkQRE2S34mQUhvzfsJ/0mWtubOuXiYw9DpFQZRDHvcUXJeXLmTFKbnSMpi6JvtvIsEPZCh2zpj/haOa3p4TU31T0Twcr3Z/BehTAZHN94qOJ/uCiF3QZM+gKpc1PfHMUcsTxqbbLE8KioEYPPUjqBddxF++ozyin6UsMZoSCiNDnCZz+h0P3ZRgOLRYNcGzfI3Eby83LBtFxzHHfuxexdNQbxezTPjdrvhum24vbzErjoF4udPX7DvB66XK67bFT/88AN+/fW/4Xq54MeffsK2bXh7M3796dMf+OGn3/H+/r54OB37jvf7PTYR6EHTsO42b86DuNZ4fJn/BtthbIJ2bc5nHo1NDwakJ+AiihEGf06xjjP9lUSePI+KK0+P8LOccDfWuBcTsCgzoYT4NZF82pNfh7FpeoJtD08cEbZmvH+nQcrPGe7VNOcMY9NQhvLMMCaFJwmNTqOGLNraFP9M76cFHvlvY1i4zTx5csiTMe5unIi1z3uVMT+vjmeg5myUQCgxkhMtdjeU9U5Q6w/ExhxkCri4i0pefbMKtX274Pb6ir5teP3wwTDIywv65WKAlwmd/SHNi10wBCGUeqTcIFDe+mY5KsV2aKGK+/tuhjtwk6SCzKIYAeeRAhU9AHh5ecHteg1ekO3Awm+feqiVO46hOIbT/EnOs13xLuSdyUP57N4bru45yWeEMqQZjnnms7VvLgAxIwR3LnSwyMIi02tp6mdGp2fj92hI0Ydz4FX1Guixi6LM2jhwbOlFdblc8PPPPy887uPH3/Hx4x8P1+V68g1PTxBeeY/3fKWRJuahLrJ4WK35TGuIHOKZXOtLyOM3x+Lbxx7kdeGPydPPIT4lJCgMUasMeL7bfp63YpALfIHkYWoYa98zTxhI+6qR1zSO+VoJPkUZ4M+mR9TU0zl+r/U6w01VReTG13Hco4In6TraXLDy2SgBIc+1NsvJiPgwJ8uY4OEYVBc2Kuynv6e3C8edxtzV2GTPm+7RLKEL2LmkczuH19jvlEVsgd9bzCuwrrHz+q4v8qMVx5+8lSWNG+ciC2mQTb4mp+IN2+WCy+20HiYThK8Ybv0DKn8UqZlC7VomLrdxKuuirJdnRnFW+g3j5aRBzwxLdh7lYIav85wZaRysr4oSjkcvKaYMMRAWurfpT7YBw4ANaR3iziDzRCPUQ6oXmxQ9xP5YQGIAx4SItc3m0p41puK+H9j34SljAHXDaE3FMmdqjjz8nKf811//rMGJM8NGpol3zfcWcyKPv/F1tj2tIIEca30/tz1vlDLqvzJGfw5jk9P5fhy43zPsbL8feHt7w/v7HR8//oEvX77gft8h0nC93nC7vlgysO3quT+MGGnhJOHai6U3bSGPkVbCNKQYs2vdAKA69SuVAXARaFkM9DZimWorC75tV/QwgFknk3n7m54pAeVcEh6VWHHgawlxAxZEiJMCEUbSMXSiezLQ1hq2i++YeqUGNAPONKZ0ljJXANIh0rFdroA0jG2gtR4JW21YMnkv9xlDQPl8hlAUFHDMnRAyJMtVwcmqinPsKocgyOV0JnaNtku2bWHgfl3KVxszLUtOGfu7rUxfHo1NDy66tU3BHAlCPEGdP8uYs6wLX4BIWKUtv7N/C80gsXbQk8SfqieCPuUVi+eEEia+TnKtSKU9yYdUMGL35k+VTh01OVOKIi3quyEIGOyGDpNI+tA+eyATFko9pjFbZeBgoaLLE0pf46OUQ05rpM9slDuWSRqbwuBiz1UFWuyUKng3G0NXKpfnlTZw6ipo0NobKmV+gSq0b1iV6TKO3vysTCWrFx4Qa2jbruhbt/AsNeFE7zcLA+pmtG9bzIs6wc45cd/NO2lOYBwKy+/2B7bLBffjCM8mFkn4/OWLeVEVLx9homI3ME8aIjx3E8eJxQqsbSnk6rsl2xHzZHcDoT6xJD0zNtX5qMd8kkPhiGMgKNYAbOedxAryxmGh2NFeTWBooW2aIWhKQIc0QMEVkTH9XnMxNln+tWJs8rCgo3gWMVfTmOYxEl5PDgxrCJ0ZidLbt+ZpIq+UQgthQELyoFDSNMcK7GeMd/k/zuFN8rUCn2/tuzkZeKjhMtelGiCAMLifNy5EXIapGb8ufbO+HKn4Bl8TCcW9XzZcrlcrKHC7Ybtejbbds8lYsrh3HnONFNkBNzaJxOZW7z2NTc28hlu/WP4rsV10YTuKfFvGiTxJ+d1G7nq9om8Xwz+NHlXVuJDGppWu09uQ5LnR0a1OgpyXHfkhop322ajGMJbJWfUkubU6cKvv0KQVtlbZglTCHoxNkOB9rfXwuqr8gMpL3jPFRj4u18DKxWtbSCeK67bhupkX2ba5R7ljEuZjorHper3i519+sdCbafQ2xsR+uCFppkeT8QNF5Gya7r0/1/bkZpXPi1h4p9Gvh/jNGmZlHU7Dhd1rjAmIl3uHzc26jUK+uB47f392DitI8sfEE9X4V3nKo7GI2ukDFlzkRLnP6RibJ4Ar13N5VlTi1PQI4+9nQ1Kdgchlh1P7n9ynYoGkLPt3HLsZUpFeQlzaweY4Z2XsMj+YhxgFJi40G5UY12IL63qw74Ls4+oRTAN4zkfOI++jZYh8Tbc0vqsa4pyUM0oRXL4XHSgVujTFzKloLvvXftY1ath+TgSWEwHmrOkxTLdjl2ZLD0TyriVvoykpK/2JuAwoz3W5WV/nSqKQluHa3vbIRXbGPcsUFBxb5hFgP83YaHTRbO0rQ+OImXPcg/pU0aPypXsyh36RxqaopscCJOp0IYk7e3N9imk56IGkZuwifXCOcnwzdQfn2d5HbCIcB41cWhxEDM8wdzI3/mgMi+1u4mjneRqUxqE9AcnT6x8xsn/LqPQtg5NdFFOCMDMpvnF9lUm8rsiCBzAcDV3a+z0aCyPiqR3/7OvPYWyC9f3Ll6/4z99+RxMDX+9v7/iP337Dly9f8T/+x/+JT58+4Ze//AU//vgTfvzxJ/zLX3/FnIovX96MiTvhcxcSQBY883jsy3bB1juOsWPfuyUYIzCfBowvVze02B0w54yY996AJh2zC8YGr+wm0G7K3O36gpeXD3h9ecP1cnOCSAZI84OriKdRqIo7ys6hudUDYrvL9slCYFphbg466DLdm4WitG47tr13/PD6it47vr694X6/Y4wD+303ZU8uUDS0frWQxpdmFug5cexWpphlq7srpzHGp96xO7EbW4xOVREXB4COyFCZ+2LQiSSaK6p13mbCdazjttAXiawwLFO4NCpcTdXYVaaRCTQ21ThwIA1inKMSChnVszSTeCrMGJo7tdEqH6rVGwsozG7KUqkCkASY2hwQiA+hoHvabWUYEkwhn2ipjJdxDQNgGEWS+ap6SE8RClM5p/DyrrL2JxS8vNtKC+X4dGeOMmnBIDnVBFaPGk3QEnODlMlOyFGEL8eD9BiKn+tdCsWMxMDWXua+on+aWnIcKNLzosHpJSrmeYU2gdNuyQ2jwIACOjEPV+4IxNwTMRUzYLqRgAsthoBCGRma0lsmAt4aE9ZjGXe0DWhWBS8MU1er+indfpvo2BmatR84xoHf/viMt69v/jwrmvDy7/8BJjcGgPv9bgYPepoxNwyMVmTb0FVxETEXZ18M7STAulfFpKHcJ7KsGAMz1nGFbg5sxQkgaPnxJfH+uBfEnElLKWKnoUiafRwhM84JteOvyCPuzI7Dw9qOI0LX6IU6B72N2BJXOLx0rz1rNw+nnbltRiTuNR6WtDImeZufIxrGY+ZtCQ+WU+4mG4hA+o/jJgn+l502ZfJotaqX5LesmOU8n0ZQHTP44UORjO9N3OnQ5XrxzZQQmMHjor3n7/Xde3FpHS/bxbwc3s3zbh6HKyi+K75tuLzccLle8eMvP+N6veHyKhCtcwAAIABJREFU8oLLzbyG0H0X17dxLeG3J/4OuUKeQ1nSI3H35uElWysyXQ0DNNBTNY3IIfyAJWQxkm5bvETyO2nhCZA5epzjU4nmfaqyFgPOHCVlwyGUzAwRe3JlpZSQq/Yt89FRTlNxSdlcvBtCGbWQfyZR5+465VTAPqmeZTBi8518hYUrQRWtbR7iWPIXsjpo7FKRdpDgksdgSc1/+ekn/PLjT+hbw+XqFQCb0cX7/Q37cbe8XM3C5P7661/Qe8PYJ8aYuN1e0bcrjn3H29f3YozWCJdleKyJkaKkCOlZXPZ4Y9sGCMybP0JpfDB9eTQ/h4Pc5kRzniX7HQpgC9xHZZVjkshPCcq+cY7CjfHHLNcJyqD7H8PRiyK4JCg244J5TpTnw+dWE7dAWVyHmzuykGfIa3aA11cDjNMdr3mmbpmhf8Rags8Vld0x3BN82aQAiXpZN8dxd689x5Extvl0boISedszaHSiV1SOf1TQ9E2NWtiBlb0qNlauxVgsMxtZcX/FXPxMrFvOJU8hNXBzQ+ewPwWKDdL66Bg186MC0g0v7Lt5fmrzHLVyftZzb7w09tg1TMditJA0ASTLe9yoQBhE+LqOgYnVeCDzkVKqPtGahVBrOaZTMT29S21LPjtlMKQaih/PJ36pXpHVKBXrj980jZYAAtvU35/leKzn1Fy2zI8lLne4EZRtyCiG2r9VTmsxbFkfet+XvnDMdy9mZXmFhzuw6IMXW+iVcIFB4YJ/zHPnHzG6fMuo9C2D0z9z/ffO+WdezwxNj8doaPqnbr28/jTGJsCspMcY2Lqgo7uiskW5bFYjiF3AyxVjTPTtAFxx0am5i0kZBrgSmIugqe+wqwZ4y10xWlUlBldasxLJrQHT80J5KeFQCgd3lv33zZKVidBluCxyzeWttZ3x/BTNrP5lffJ8TFSaWwvDGoVkdwGRxqYWxqbr7QWbV56T1nEcB1hyl+WRe7OwxO47tToVTczTa3RPYMs8WYowrlAZpEdmqHtFcaYiwN+400qt2HQCCTBK5pTGnScL0gXMZG6Xb5UnVcBcjO3ZqhNTFI05RFRjTNuZKUkyKgQjLG2p4DQsnGbx96eXE3W9yAgUtLjnzmQCXftYhENLcBLAMow5RSmxBD6u5CDalsaWUpHoJKCEQEPEkxPbGqHgT+WtjHEh5FVYFOHMtgLAIMIiRcg6LMhn5Hpcx10gFuLiIDiATwGHBi+z32GkoRHTwQNNSJA0NtHIRf8sdSBsvSXoo1FPIlcYDVno1n9m4pqwHXtoA9ooa8eqXFZjUzxDFeeyu1Qe7d2pJ7wBWxhoV97ig0kXdltwUJQ/NTfkw3fR92H56caYGNPOMrB+4P3+HmMJWHLboySTzZ27VCS0fA8gtIAfP87zfI5PqzpoKyp2igtHY+Z5DempKAnK3tabEpAV44tONwQ5cFk8izzRus70KIqcN8xJUpJy2i7ctB3rSe8CB0+DBRvgtGBK0X4MC++YE8fY/Z1KxRGepuA4Thq/XKGEKyoeGxZ6BzLUj/0N0EfgVRSxXFdcO8CUhpYnWbsDtJH0nPjIR1FokXzgGYg5fac8rD8TGpIfVYCK5mtHcs3jzEP8+WwnDZw6J8bowACadqiHfnBthVbTGqS38NSzsO/mvGMzHtDdyMFzCn/nfdLg3yK5uYZ8t/40hsRLboJwPNVpV4gGdcbw2fiWdSUZbs4pFl+TSnwCBlc8kW/NcIPfjITnIZZwXivLBtQ6c5yzcnm9VxCD9UwgJv88vCbPh7fceZmQjrxTHkWZfz14yZngxMGYycqTR7x75TJrJhsuLkspc2Os4UarbYtqyrG7D4kCHb0Zztq2i2PajtkONE1sOYdC5IBguudu9l10RJ8zv66BMfMkzg0UiLgR1KXWFEwxeRJcOGQz6UUttLk3YE60zdZ19/bWedV/yNiUs2/yrgGe/D04Oz2CC0+R2KjNcypdmbGpHkt6orGJNAmlsYWDVmhABNuDsSnXAzF7NcAuhnb+r85XmRdPsRibnuXWWe5dxmnbemwehLEroKNGG4gTGH5GDy0aksDxgN8H9JAzQytlwAivVvemGsXYxLYO5iXjUGm8kw/F7BRZwN8ezy/jLAp6YiWetF6i8Dw430vc5vLJn7FmeUvjc+VDbAc3EkRqVcGTjFKeczaACKSt3jDHcaB7QaUimLnE4r/WmLvK9Ct009tEJGQwvYsTl6fsYhgfQnfV+P28mUIDhNFJgzQFPOVEGeGU4eWa5/OVenLrWjbCEQNnG/ReLMJl44P8RBpkyd+Ck5Z+JC8R31BpEA8VZYEZ9lecz1eDWHKPXPOLQSuYapn0f/h1PjdxEqJH2b4c18Jqnd7is1ZsY8eDdvycSs/LPIOGZ+MNi/Ep2Mv3jNzn3uX9UGYoeliwRcUZz15/DmOTg4PjmLjvEy+3G37++WdABP/tf/tXvL/f8fLyAz798Qn3/cBxDIhseHu/Q6ThcnvBBbYLrGM60EwwCYGHiXhCuNbQAGxiwGlOCx+4uxJgeYp8F7IJZE5cxsRoHXIcGDLx0je8vL7YRLkF+G//8R8QGMNBa/jxp5/w3//7/4H9sLASMnNbXFbWWJGLtRpZIOKhExMiHX27QqRhQqJU6gI6JXcK4Uyk+zMgZlXureHDhw/Yesd937EfB8Zx4KAl2Kfjsm3o7nrdenpAANUzZwYjD0Hkf5FMMYQ1gpqD2P1ZvV9wuVmJylAK+X8AUv/8hGziJQ1tM7fcRuHo7ROCBQHo4SZC4xJykfjKDqBcmB13y6Y2S9hLL6xyXlWsADW3eFkZB5FhGAdKAlkafsIjxhUOVnuzppZ3dWOW37zSgdEuwwG9282TsRemmr+3Yriw99UDgjsKLiQ9gW0aFh/nSKohpDJ3SWMuPNmsaIt7xPtJaObvdW7sFVW7CkCMvB+TgGkFi+uc+RjqhNBfqVXmyrl2w1+Lw+Ut70WjJZBjUp1FJiVG9JE/ltS3LtiHG33AufJ3qCmlAaZF3KagEAzcRyqdEICb3GOoeaf5eIgoBgZEJo6uaG2iHYL2btXLLLedYqJZbhpp6A52RtAh1/6MNUuFch/DBaQDXPea2OfA275HtaRIGCvA9XrDi5iHE3xH6qGSUxM0VwaH7jbn9D9bCNGnxY/FbtgcvrM6A6A3gncH4OF1NG0cVEs+JDc2Tff8pNeSgXIzLInP7ZxZfnw/dvdkQtKk9+kYlgD42D1fh3dgjAPvb29QKHq3ORjDEq6Td6hOHPtuIXPHwBweEr6Z+/zQARHB5WZebOM4bPc0DEupfNKIxo0enbrmYYJ5lNS1jcKnmpeZ3i4X99LRGPv9fgdUcXHPtbK6QYPAgzEfCqari3vB6Tdya2RODunMlZQ8J9Yq11zxpG0QXLYNr1crN92vF8w5cR1qNO4PkN7xPg6MQ3AfB2Rs2BqArXvYjN1/8+fvwzzQNgW6IsN1rAEQ2M6vGbl229hpHdfL1dqlbrhxWSDkU4XrkKeFTLAvRe6Wz5W/Bp+hcqORbDuVF86HGcGZt8pk4qK+gcqdfUxvi3x+ntNEAlvQ24JtltLGSgMKjzKlB8Yw3qU0/ijpowgi4SbDzHE7yRDm2BvT/quemuznknjX57i5VyXlJfnLl693QD9ZXqqrGRu7F7CxMuQTvU9sHdgPMx4LLG3EGAMf//iC+33i2BVjmLCR3i1ieLP7aPA5NwoAWMJdvLiMNDerc+NBN1/DaoZt5l+BzZltmNg89SbYNhafITqknFaEh1jMEXGfJD2e8++4Ef3oE43yiYYTbvDC752+wIXSOC/poZQ8IZUswGR5qrByOmfd9Ao0pxU3eHinY8jAWEDylEKcnA+hl8ey9nw1TI6Hh7rpjGIS3ODgOukiscEV1tMIdyi5diA+zsljrT02tzRmEpNzjrg5kRsf9NY9Enc47rPQcSvuYfwhc3UmFl37WiumhWdXHVsgN3DGcNk3l/xgFSOpGi8Wn3fA9Ife3Wim9Izi2kg8QfpKL++UB4DB0HlMrLReJjdwXsonGvqSJwvux8DXt3sZa0TOJp4TBhjJSpS10BDgqU2KbKwvKc+veS2bsNped1loUQ/3/R5pYLTSvHDNIWk5aFqBbrKnNesLjaiQBjRLkn7pj/lJQw9p6UELoV4hsXGjISEKNg8+UT5Tl+NGnq+tbQ5sXqjoerFUOi+vL7h4VNIxjc6bh8abR2/xkEN6sIY3pHd9ljadvZfOekocA6BocQ35klEr6STzqjoFxXPDFqCIzX/KNpfG1r609YUnP82Gmj8BgDvmIHhN1YfONBm2ByA2uUIm8wnFsBdYfHp4yv8vjE1AAIU5FdI6rrcbWt9wud6w33f88etnXC83fPzjEz5/+QpI87KGQL+Y148p96Fu+EsWAg8vFVsvUJgLJWRCqss5Toumdcu844YqelfN6WERc+Lt7c08rVw5ulyv+PGnn9ytL5MzqmqUGA+misc43jEtdl+ko/cb4Duf6uCYTI4gipXSeIy5hkh5lgD41cor9wv6Maw878WVSraD13I3VsRDcrigYKApElTadeGuOum6S2GtYZSAg9hYwF6Z4MxQK15cPn/z1Sw0SP0ZrtzGjiRX9Hk3rz6yKkx6dkcUsowEZsJjSWc+gN6GFs/hPQiEMnFqzdvhgsNDnOj2T+XYhq8ACgI7TSYfDEMyXwhJovUWOSTK0IJeUIt3gITJ5SGpKAVIeJWU8auwMASPC9K6psLYxDAR/gsFYP1c31PZWp+9MMACFp/l1TkLECqjKg3Q4Qx+3bWiphJkwfUHFAOl919MSfCHgWQZADlA8PqABZjCjTOaSUSBhOAipnyJiBuv/Jw4NwW2iHsvg0YhA98aS2OCVVyaAjILwOP8A4CH4TBPytNyu/687AN3ZXWdH9WslOaGfr5a7xjTqn0xr9M4PasxOaIbUgyMjuD+dccLcB0KSc9jGHjWacYZUTVPUJGlXzSyWPibG5Lc04l/x8FiE7uH0LmxycHFnBP3uxub9jssn9OqBKkqdg+Ru9/fcRy7r8mOMQ68vX2FKnC7mUHC8r8cpkh0HwcWvXDDVscGafbbnMPH4rLyukLnbA2VB8AMA8w/sox/U1svp7UXMlYsL9Bl2wJ4zTFw+DMsKXbPOZLn6x85Qsu8RlhrLB8JGc9QsfSsQ67VCqgIthz4b5dL0OZU86jpDtSm8/ShhhWG2p8CBp6ZNJgLTponaHcwJl5c5KDnH8MKTK7PYcZG89D09rOgQhmLVS6tvOyBr33jvGUcK63Pkoi4Kj/NjE2bXrA5XzurZFFyUakEG19ZFC/nB601dB+mWmab/Ys1Gwb7nPOofFgMAZLL6NRp+4/eD1WnymeIj0PS/DrEgjGRyXDVHNjU20rnG8qA4xh4e9vRu2DOamwiGpmmB0/DsEw2vd93jGPg/X3HGB4Ka8LEPV5lCfWjfGjihupp3jzV2GSbIxJVq2zdT+SoNmCmJ6pqGRepIfY5nqH/xzECKV3OCd4PGDaHgsanjpH0Ai7N9jDulT/mMbZd3fqIJ+eY/KVvMK9L72DHOgBoZMoBYHjviByRfD14UJYX6bdLi03Z0wknGZh5lWpSfs7HpXc3ODzvP5ubeHrNf8MxsSiFzb/PpasMtZvh2eQyTDVp0w1Ncw7Mffe2ew6x72CrRc66IUkY+UHdwGUtJD1Rv4nTiv7B4aCupR6uzQ2vhZ8g+ZjJGBQC1rgf1+bKr4DASaUZ1aiyYNU5YTVkU15SJ6n6JI1Mc9rxdrpPaw1XD7t+9gq869dDAW0KpVejEN+ZTBljRPhatBlyyhO1PAAVoooxauQ6ktCfzjL7IZ/tk++td1LjMs/1/UxXU+ZyjsyMdLrdbp4z2arCBl3C9ChrKL2r2jL/EIQ3EcijtXp1rUNjhjCBxEZGeogRTYXWGZhYg9eQx2oZXz6H4YRNqS9hPX9Z/9T9sDyLv/ITeV6ErC44zW+j3IhZMdiiA5X2nufmH3n9OYxNIsDlitcff8Qvf/kLri8vOIZiHnd8/PQF+33Hp89f8PXtHVOBvll5bpWGqYJxHBC4ct0vkVyVyashyPCS5lZZFZgrb8N2BfqcgHSMOdH65l4IAveTMYNI69g8nCxc9+cwHKkTY949FJDu3g0//Pgz9uOAtC2NTQA2D3Grxiaf4tiNHVNxTDWo0W+AK5Uxvbq82S+2DgrxC/EfVAX3+8Todm+rbNcgcgEEuHR/vqz5Z4D0yqC3yzHKLkVtj1puIECh0pFhW9m/auSR3s+RVH7WOWwmF0O5TSEhy3cBYGES6h8Iempupbwr2+RPnFxXBEISim3qLW6lF96lABDn4DdN5SPL4soyDgzDbA+eTTQaIfNK+Y2qdX+WgRMpAyMSOwkx1iUXRR6j4tWK4csEVnc6ai1LrM9pigJ33tOwq0Hb1ehQn1FHnUYyjXQdaQSUIgSWOYpj2af6DGPkmScrEmVqCXEiqAggUuYHMPtgpH5y5LYAXFTCgp4b4rzH8rT0EBaKck35vgjXek4ZxwDlLjRVmIfJo3Y0Zafk6C3rI27ln+dJWCgct+tE17yXupcMjS22+9qgvQdIBgxYRj+KgOU88Jyq1O77jre3N8w58b6/B3ASERzT8kQpNHZZCFjT2GHGDNWJMT23BXNQ+I5xjKPGYon7VGMTq6gxHJK7sXMM7DzHw+BqEm3u7IRBypN47/c7jmO3hNKeX4LjeL+/W3LcorEZneQ5NBoxdHyMgcOBfhMLtYldaRn5fFYuVN/t0gmdaRgUAY77jtnMqwtagDNSue9i89saFR4iGtjaB9yYXTY1SEkisfFxKbkwjD4mts0MOpfLJT2bzoagB57B98JTuU78+moEN9d9KUBzES4AxMNds/9b3yxsXOFhrvangG2gTF8Yzb3t+gbZ/K93ABPjmMBUjN0UjuMYGKqYkDAeMD0FQ5GnwsNWB45j4MDEfpjRYBM3UsS6shtEv0GZlIb9qryw37X6V4x14dcK9Tw+vnHk/Jjz2loHpOFQC/cAPHefz4RAA3dBE7xrHKNHQpUXzqd1NVtV0EsDOAp5eaPB/FBdLEthagUpZWOUGKK14BCJYzxV4VUSI7+Hm2VmJM8CIMXwNCPUyXLsDGy94eKefZctN46MjEyhtwTh5tl3uV4gQHg+vr19xdv7O3rrke9kenjROA5E+XHnGZYbDmFw5xixqpkvVjNoalE4JmVh2SoHIJ5EeYqiMX/hIkzydNV6QJ+8SZ5slJTrkcpjeEit4jbmCWtoSDRDFG0rYXRlHgVYN8ICXaz3if81PTdpZBI0V7AL15EsrW7tTTk+dbjcFYQFsrTA5mxdA2GolAZ62yv7w5Cj0rXzdw6/cj04Xgx113UVen8CfcEFXS8gdpu+rlKGupGleDbNYZ5NxFRz8cqisUuRm1SGH0LmWlnvOI/rYYxZ5DLzAGWOHj1r5myzG8swBTKbG2+IRaYr6hw688Y5v6phXdwzRTi3AGpOOTsfp++5Mb3ILSr1Pq7VmHQcB2hYW+Y3plmwt77c72zkJH+uBp2aK4meu+QDdUMnN6FrftATz4y3Quvndvr6pK5C4485K3DDaYv2UDb3bfN1lDQDZFqBHL9sSD4+cdy+H3lPz9tqunnizjq6KUd9Pfoa4aabaj4on3eenXrsCUGV3+sck5flX56XbUo+SN2B7aIBcRn9QttVXoUq6uPBzUEgN1VobDK6yerqeW8+77nx9581OP05jE0QSL/g5fUH/PDjTxYiMBX3+46Pf3zC/X7Hly9veH/fDQz0zfMGNExYskGBoN/MCNWwDoBAPGRfcjeT+EUaNrdiqnR0MmwlhHIjQ9ssv5Mbm2JBj4bRDHDMCTOSuRLSW8PL6w+4jAGghUIGVY/ZX70DgEo0CUKBjtYt1GwAIRSiooT3NxLSohonCiifwHFo5A2w3y1PQYNEArdWgJk3N6tyOAM4jhllXOtSAr+XxHnnSkBnphnGJhuAmLNKH+exeaCgvrl7f7Y534m+VhjKe3LRxvFoj13XhMlZs4ksW70YnxzAQkhrLb4nCMkBq33p0h8EB39Lg2RlRjRapPKyTMKTMTKaMWFPJSvGwNtbhRVfs+kCUltruL28gMam2GmeVUhoJL3msWdzY7S1DnzSUQLDYHuS8/h4joHpSZfyAafZNDZxPUy3KC73EXiVpNRsktknpZ+Z7LqjYMCEu1fZ528z6Wf3ouEOAqsg2TgC5FWAeKhB0OCK0vEAz5xeVGlYKnMxSTKK6rOgmqVz6fIe6wkEdJkf4tynmkSb3j81uSQLL9B1nvQ3BhNbW1JbwPJBLcYmoVeCRvlz48Pz4c/oYUY/6JFaDU+AywR15XxYu+73e3g/nUsN58DymP3+9esX3O/vZhDbqqKpXpjB85WcQOrzRJsjjE0AcIigtXW8x2k3lWscVRFwfn3sZ6Dru5zF00jddT4c+ZsA7hR5cSU5AK7UEACEsYOFFc78hG7umaAaT8eC1FjZW1HTor8Q87Csz4qCAQtjL68nsqg3C1cyHVAj/GHCZe3gPmxzg1OHdCvjjGZGKvKeeewwkqPB28IR7FnMyybuuQczUE3FEQlzbT4vnuunGjbVw0S4SjtlNvNHtYYLFRXnZce+Yx6DwgqV803SiTd0ubdX8TUMZPK/uZFnxkSUkBq/F7XgGd/Tn1PF1tex36E6a1TAolSLCDrDILlZ6KNXCaSjxyZSogfOOymFNFi9lk7KFRWnxg0/bgBFk/yY+FzbejePxYH3tzfzNIQFUzSxTcVoqqahnZ7xrEgnIsGL3t/fcb/fcfN0Eq01zODPFu58vudi/PZ1HRtBAsDzemaKg1XucBxyTdjzpm9QxS44qhKG0/XPXitfqDqWSFnHoUe5zBVZ6GH1Mc77tLbhsm2BsYCVhhYVTjPr10IagBta/WADMu/ZmjMq0ikw/NA93iJhO7LADFteFUzFzByD0Q870Bqi76eO5PiV97gygJTdQCRDLO2x6Sl5vs8zLA3kvAbusY5Cw8hEg1AajCj7bA/aq+nNYRvwvlFjhiQ+A3HdYxhf9axKQ3liFrvu/f0dYxyBX+l5b7TdFvrMrp76towFsSbXCedvpfOKC/m81bCQ88Jp4LEwQomkQeSEmwSCo7WHuTrPV+Xk/D0K5TSX6ddLVPTlpmzmdeWx5I+1u1XaijBCYW1BbnQwHNCM9b3b576ZN6Z4PlOr5mpGzuRdiZ/Wueaz2ducw+EpB2gsWbGG+HzgYcxi7ur3WEP4Oy/5xmfeN3F6pYv1mmSCSS5SaC1/qzSb93feqfmcnPu+8OqgEEl6ToOSnyGFHiSv4XOyf4/6yj/z+pMYm+xlwyGeb8IUkc+fv2Dfj/AWoqGpSbPdV2gk02zNKmUEwEHJv8P7lxhzmzubIFXFtoklVJ3uyQH3wABt3XAQhFjUqoC0boniWoe0uVb6QK06hGAqouaiP5UlV5P8WwGhczpD8Apg6f+RxMMdCN8otGdRsirBI2P5B+rOmLMZU7QlcKhXh3IQMMn0LUeL3c+TCQswBWWcJQB+MEdJq/ZTg9OTd5H8HvfA6Z7+PIEpGpd+WUDEuvgVNC7QSGTgKr1/qM9ruLnYdVEFiN0DUBPIB8NfUClil7kqTFK329g3oBi0JKsN+W9TvZ12JqAaMcUTkgnao6cnwRgfCh37+BjT8qYHAPWrhKDdd/mcnk1IKqSlh8wsAqNWYQlQG/TKh0uMtXoyFgNIUnbFPUTFNRQzCHH9MDxULYGsip9TKgCGJ8Ew4xJDIcBnOf0oYsexbyXhfnE5z/VZDVDrO09UeIhRARk54Rz7dTdsBacnmScn43kRJM+Yfj43KUHg6xRYDDDhVek31Sb2VwRLGmc8RGw26HQeoo+KTvz5rufhnkH7wapqIzyG7u93A+ruWdQ3FoAww8foLSq1hbFpUGFzY5MqdJgRdQ6C2vSCirYxcWoxMM0xjHZrng3VMESNY+C+3y1sjvmYoq9IOgolzoD+4W01+h9OhyYb9rvlqYoy9G4sUGh4T8VOI9cSy3JzgilHCI2VGwrJ6wCfA1CCkfjsrbVueQvllF8ByLFIksX14ps0DjrNoEOvzOxH8MgFpOdKaH1zGeNG1ILxzlhW67tjsW9VG5WWYIuGLGOb62qIkSuynDIlEmVLi7hLYzMjcjIpJjCdbuDtaQId8AqkHgIVM7SCTcoSBWW3heVFSEQo2hLeL3NYOJ55c1vVswjxoWWACq3aJpUUvmFKod+/AVTDY92LIK3+OW8awJ1krmGw4HiAuSCQvJ9eTKHc+xrJnOLqxqMedE3PbEhywcRMxuOtHQUXqLVbgGJwcoWjKJPG5Pk9CUldplEWKCT4iilX09cHnK4S2xjr8fFT5nayPGm97u77ceF4KEo4R0nvoL62toE2rZLnMabl4KtLNwV6UcgSc0boEzxMRcTCeyTlu+JRYaCBTorx2NpG+VDWc8UcT2RQ3svxlvNpGpzmVDB12eQGEtsmRl2ijjqcHkRsjgUKbRz3EaEnAdvY0sJMxAcueGGQRpHTizKVfGLBVHxzcppF9k2PdaeCWyR2HTZUDEZmGaY10WjrwjcCWsrybs9S5/vVc1EQ+EUEmauU65m876RkyhPMUmUbE5ZPLxg0Fax6ynxUxITdvZ+PY2Dbpuc/5KYQ8p6BHwEWy6BeZLrUAFN2ZMjtBMPUx9jMqDVneCkrNLAe55QzkMpyPp+Givp7/pnTwapkaw51DNO6DiqeIMauG8jVkBWV/zTlgHpBieYeSpF/0AlCCj2yLY86lzlktDZSL5EWDgXSkg7I51dB62Mo8MJRddPdjBgh60OIFz2mRGy0lm2qsKn+pdEplmPpZOpgXOW9MTejh/wiPXlyfiSxU+X/KHRQIizi53xiGeQ8Fqef2F/wDXV9K9oihW/UvuRjeU+u09V46Wvd36nHz7nyA970bDh6srLL2KKMuZbz61p5zu81ifvy83KgAAAgAElEQVRxMMrrz2NsUsMsU4H39wNvX9/w9e0N//6fHzHHcMjWsF1uuFxvLpx8MtR2FFq/ZG4leBgBraQ+zpOCBvDZ6GjdfqQr4P1+x/Q8SwxTopEqjAPdk7KiQdpA6+KJxQ1iDZ2Yh2LAdr0ONzhFd1UxxXf+j+q2qsU6a2CkqYNyaeDStsVDrwJXqj1HlyUA1khyS1ArAI6WAh9SEtFJiwTCvaWAV/i8DGM7B58LgUrH9JLaWo1B9GQq7pyRaLxljg8qOZGXwRfHwjDPDLT+wYGlX7ORgc66rMg1mHGpGJsobP17q9cEw9H1GqebNHXlOeWEGF+REmrmNPvsRfqGZOhCLg0CfAlC5j29KF0AfYErtaCwS0WUTzEARQbiz59w11Pvjwiks60tjpF5DXeNIU2HYq/zIbdOjZ8O0DY5zibkUrAD6uXTw0PJBYEGQsyxWkqMMSyAuQu4LlgS241N4DkkOrX7KKwCzOWyIYSsjbLz3wwajLl5YK4pWFo7ea/Q0UJoqC4ekvFXsKIw/OpAghPP09QQ15/bI3KKtWarpill1QAT3pb+GsKUYwm26A4/duNlW2/YOkGSezWcjE0zQOJ0I5Fi3+/uLn+4C/SO9/e7jan37XK5mMHDJrCMFez6mTnyjFcZL5RhwkMdoIYhyV33wzNF3fW+7KRWGh3jMIOQF08YI41N4Tn6zLspFB433nVAuuXdm+6lwvVBY9O2bRHuBd/woJGKfHEOghQqFAieTpox3r96NXDOdQ7M4zCvRU/UqcPW0m3bcL1ePYdC8tGFrh0wVw8M/rZ5TpFwYRcmA5XIn3EchxXMIG02T4rKOFA/fs7/892ds1Z4b2mP8axve4cGWOKSL4pbnAfj5iYCNJ5VK/uNOTCbYHg6+ulrdUCxjwNjauRlulyu6G3dcGCYsvr6ma6w0duFmz8ilvi0947jGGjDwjUHfEfUjTw1yWscPnkbZR5CshZ53KX2XEDw1oGjLCHhfJPD14wjZCbyjbxWquZBy/ORkodYWEQyX1fIxzSSwO+fO//ishGR/6+5gsSEyMxrJJhFFHN9mjcWK5Q5e4HJQHqC+G5y8OmGJp6z8mKG1SuK1xhpw0Nv5qQHW8flevH1YJtDlImWgWd4Ogf3jOusWGc0ulFJEcE91g7bnLKUPDNWih8PvubXoUkkzK8yWB0voKwDwD38SliOAFnsoijbySLWtVrXVRih54rfxqRBtsw9sQTzoFWdh7ib2GvaMZ2HyyDJNFWpKSYVK7FAYiL76IaR1vByu7m+VDEKAnMTw5myaO0eQzGHBu4xuhZqH37B8lY+AMzrScOplAdbnnYNHEpwUOcsNMTmOIkKJnET1A3nLa+XNGD0zrxcj7l1ci7dK7Eam8JoRHmfnk1sUiYan5EPKgxJB+mYmyhUxI13qKaX5xh7eLGkvLZzrscFmeQ8MY3pU+n9e/4z3JP3obytHlqJZebyeeEZp9cDLvA5lIdz1txU81g3x2zzfPXWqboSjennwkGLTKMsPMzzK+Sm1Dmn/HtibCqWEBHgclEPias41jFrs9yO5FuQzKfU+uaGd+pxLWgkxivoqOgBM59ta1sL/ZuetHmxitxcosGpbLZwE4WyULk6FdzIZUqBWFq+3DgSwSPL0uWafvaq8ClxDrFcXivlXDtWNcqKXewo361JikyNwg3KHqGiVbxXJ5tyNH4zg5UisjvEdWRWLjkKfQf+5MNkGZ2H15/H2OQ5C+73A/d9j2ppFKx0z2NoUq4J3x0DgmFNaHHL5eQRqCfRkpBjEjjKYkYeLUTCHTbbIDAjlARxGnHb4prmyj7VrewzQEiVydzxm6oWRqZutffJFVekzXhQhBQqcE1QCsB3x+HVetWTiTvIdNKmUkDDDvNt5K4w0hUvHmk7fHYHVhEwZqtiRrMq5I3JcVzcmt2Z4JIGFSNO7ooHoI3+FKMVhZ//RqUoPht7QRex/DXe/2qV5jyHuSUU+1bGz09+ktdJlvuQZmyXrXCkeN5SyRn5eSGCh9c0wCtzYWq1LDxHmiCetyRsM1pNY9Mi/KZ6CWkEneX4GGhniIAIspS29zEYtSAqNK3GBaOJEbtQFNLV2MRGo7Qj3YnVFS8zsM0CCtlQUqEjq5brGjEOxbMJCGBA4xPPItiMdggypMoZOCdOVIqxK+c0yWFl5LJ8TzparqXCF0I7DU6k9enjzanQ8qikKw18Gc/zsah0JMULqYK2FJrGN+kZSrqjAYaeTfQiQwFmpnAi82VpDZfb453eQpZUe8e+vydQ8vWvOtFbw95tIFqzHCn3/W6hbcxn5GAJU4F9pLFJzVOpJihFAIp1JzordPiurFfeO47DjWLTqs/5+nkArtw9DSOmzUVrLXaoF6Bw2rSwYT+BAAd/4YHqE1gN9szlRIBMgxyZEfkdDQC9d2zXzLMGAK+vr7hdb55XquRVgq8LTTR12Ta8vr5CRMz4iUxg23rH5uWNe3cDgHtovb+/A9KCFkQEzZXrCOmpVBrEmvS8QJjg44gNjjxX8jan28UU8TchL1vHnn0Pb2HyJzWDwVSvEEveJjCA273AQ+sQzVBIA/0eIo0WHr4Aosrk9KpPoVBAsjCHV+yzOZ2YvjmiqhAH0SGfovsJ3ofz5CqfC4OJMX0QffGS9WPIYrHnhyeG8wRkv7XI4EV+CrHpiZEpIB76Mj2Pj2aPQDCujo90uW/dSLKxXoUvceBKFLGOocF/KjUQbM/pcneaUQGweSctmQ512gxbxsru92zjLPhB3Ct/00KHq+KbHQmlhGNV+BM93FmifZZzeIfzlE9Vy1kG98gSeOLjKi/r83K8OBeGLS3cTMQ8BqsRIw1iqQBGgmcfd4kGVpzrf64kW748hSdoDToPpU6sgRxD5hyl8TWwkcsJe8aMdS8nj+rsftJGUpjE2tQyPvYc4VV+iSQxnsBEos3oAECl7jRnuvxFpiY7/0ERlLiPRltz8bPNjWs31nDyhWhDXbtqtK+TdOy4WDpUGyAT0pz/N0FThYIbaFXGec7N6TdtM7zFGCJHntmmta01dQ/q6Yb76tk0Y57O6yfzR9LYVNdb9fpeN00pb+dJR4j15OfFpoyR07LGVkMe8jxgWSP8rRpz67zE05/8Ht8B51cSdJdGColxb63ihrWd7KNtnqaOZn8TQBqPytXls3HXhNqx6iP6IbzAZ+JOpnaIZeKyhuQca5RipwoFyu6YFx4vJ1TMoaR5JNYunrSUYmsfHb8sx0qfn/BF42/i/LXOc33XaEQd18fnZB9y/ZBOhX425Rma9+O9JO+T/T73zzlG8MCVJqOHJyx1fv05jE0KzDHx6Y/P+I///A339zve3t9diFhYy/V6s0pBnqgy8gOIxUhDrOTl4TtqEv/5i27thdC54MJyrLTsK1o3oXu4xZ5Wdu7QbCqe10LMowkNl9srpF8g/YK+Hbi/v+Pt/sUUJM2dEWjuMM7pJRpn7n71yVA6QevmVzJITOB6IkhB5JixCr4a7v3ilKWgp5fgermgtxYp7wT06BGPo8uS1nZz29nqZIwCE7ydBqtZdi8RgLSCAxH4zgpKmIWdk9b6FHoBKqJaEBycJajkPTx1LZpaaemoRuf8e9kdQ3kuvaAq+HtClwhwwGNaKhfoArpQjicDHet9NO+Tj5DlEeGs4w0ac3ruLgp5iTHmmp8Ahs8E6ShyarmHW9z7zIS1YpEWik5NFme0R+NCRGiCwCzcoP0c8kubCjqvl4ngkEyeVwGBXbgYm8jyJcFkpaN6Xs7FIxDIn4ugQT23mQFGEMy1+XiH4RRImqGCgaTTYOAxuAhyZohs8xwkkWTZd30iOb/fe0zbDRQdGSZAUC3Zgdjhqv+ddnTgyauXXUDP4RVhv5oCxgT+tJxNc9qO45xoTdHFFeVZgN0yj5mHwTyzJu77jumJQMcYnovvi82tj+H1ap4c75cN17dL8Ow5LdcRc0DMOWxnqzXMY2D/9BbGJEChg21aFQoNeqjGBBqCiuJxjMhDFQpXUWghZsgZUKDsuKojS/MK9AIQ9Lx1Q64VP+3hoQEH/QrLQSKq2NzDa4wD4xhgUn6G5jQRXC5XbJ77wNawoG9W/WrzEDdWVbteb/jh518grZnxEMCPP/yID6+v4Xlac2exP6Tr19dX/PWvf4Wq4suXL4tnlnk3eQnnbsaC97c3HMfAx4+/49OnT5EMXqSF0et+7LbjLRoGTtIzlcIlDN61nuADriixPDfEbc8CNFdSYmWH8uBzzvVc17LYIlWYZ5JCIdPk1ftx4O1uIZ/HGBhKmdzQtytutxcoGvYxse8Hvt53n+sLrrcbxL2UxfmJjbUXFNktP9gPP/yA2+WKbdvwcntBYx4/SOZGmRphpZmX0eZ/TCsfPo6B98OS0L/vd8w5cbtecdkui0GEybdDkZzqntkahrlgMX5Obx3b9RJ0rVAM8dCPJr6ppsAsim9QuYF8JbSIRMg5x+T7onDFo+W6gvo6SSWIBjmBJQqnbHgwIjrQlmmYa051L0QNg3HfbMNtBfAmQ48j84iMObD1jk0NPttGoyUDb6JhIGzFiCvSincZeb2t1QiPaWaU6q1jdhrNaTT0XHT0kKcHmt8n4BPXw4RvZI4F42jMSlHMfOOG/Ih5UxqTVpNNgWvNiYI6W315IwTAkFRe6YnM78P5qtFaDXsvHs1AGjLduJSFWgpeDCJzbEeBK0XOu5fE4nU9NfpKb1p68hhtteh4rWLnA5H0LZyH9NK2/E3rZpnGdQUbI4cxPQ39iLclvaTKeFdM418ZoqmudGsUFGn+V/GSt1snZHDNOF9040S2xukW0wbS12jgBN7XaZ39aK5e9sUzyA08nqsxAYt492gkAjpz040SIudelOp5HFvxXHyo6ldkfGASnYucqxXC07BMrye2OWXiGTdpYIo0TD0USynrnq80bCUqbpI5p2Kqi1K/GABpcDop/UuC8G5GoPt+2LiFZ9PZIG78KTY6ke/1dRzpcc1UB6oIXme0n4Sq7ik6xoR5GZkTwnBdFyibk/w+U8fIl3qbWME3x5C645zw5Pr2LJsrXxdlI9uumyFDaFxJUVr7XtdjaY2m0SaNLoUvPrwqDzHD3nRD2llOVdnDtDj1e22O+kFp4u3W8ITPXFxuRI02KuFiPM94Ar1cvQ1KnU9Br6nIj0psKGmg/Udefw5jEwAozLNp33E/Dk8oB7BsenOXYzJ7heeyKRLMCKvuep2JpIAOZuhH7qvG2WK7YxQMM/lFtHVKAXue0b+1bsahaeWSRfYUMgUgxaL0dvKcIGAUYhB3yY1SwkEe2c9g7nmhiC0+5vOZfp659bcltCvqZriw7tUjqRnY7W50irrrnW07uZMKilJctGMHtlIYHvA9YxNKEqk8VoGkGZsMXIgqNlrQClA5L+U0NuVCXBlseRVmsig+wmcwXMk4lvoz7V1dAFJQ50QvQoRoJZ6py0+K3AUEmYYIIgG7HyP0WXII6BpOGeOhhekEWvI2tommZORsVLrQq1dcGTE2bnwKBmxhCnZv0mxmjTnPyBwa43zefVqUQ6DMkyz0kENXFmgO55Pfy7GTcCB/MCnqxwR0qFqeX0F8uPdzYUIBHdZnGq0W4U6Agfxe/uJW5Y8tlvx47m0KvCKt1IlueshBGJyUO3vphUbrXwVoTO6pHk7XZFr4rBubUObsbDSc6mFvmiFiNOQc+92SBCPXdRNAZwdjqhVJE/f7PYDnnBNdBLN1zP3A+9evZmzipE9ff0jaWmhAc+bzWBLM4WF48bvzw9gIDh6EeEadiVXprYDOWGdrGb5LeSNQYDNeYoYcTzSrFsZ2u92Q+VSA6/VqhhvSSGuh6G6dXk82/9fbC376+Re01sxjGIqffvwJry+vpux6fg2GPHLHl8a1Dx8+4JdfzNjUtwvGcUSZ4d56cWM3L7TWNxz7blW13u+Wn0V2J/DuhD88V1qRwJrq8Hm1phyl2ULiSstdZ9Vaxb/jNK0Ea9PlvwjKHADSDGQtMtmfUvnp/0Pdu+1KcixZYsvcIzL3papI9pluQQNhBpKg//8jPQgC1AOo0eccksXameFuejBbZuaRWeSZGT1wktyVe2dGePjF3C7L7WKHOWaMioe+bfuObbDSngMGqujbhm3bTVIR3NLkIzk48yjYtg0bwxuleycEDAnQOaOM/RmQOxguoZ5zkTwJKNUxJbyMWTGQIkBFY89J2SfBrKTKa0050shjfP6mAC3XMVcN2RZXsTA4rqz4SYZ5ZU9kTr9VbhMsi+pHHkgH8tlCN8kDTJdqBDiRz6YBRT4asgAE4wHLESQWbjxraJm6DvhEPiB5eioZUv7N+dCo/kblLuUjn7XKOUnVqTwjaBtSnplPPu+ts+pTWg8SwGlO4qJYUOsr92a9JkB4v3TSgwEVbOJBVoI00KL7lbFq4+/y8Hx6yBvfLt2I/q/gB+ULPZsILKXRqdFvfraAGZzDAAlCyVsMU/ubVLeGv6fNknP7qK086jDP6EKzQ6EvJu/EsrDO3XIWw6Yp9KmRoRX0i83xs6+UcbnIoeNLAivSFBgMJX42PoTX1GLItmZe1QSbPHy+eaRJeFlTV34yN5OHY8p8Upm/kfkU7VqP3gjvUHk4pJPpuVOVfND03tUj0ecn8sWtr3pdkwZti7Ka/EsTqFqBpqS1B9DC10JR+jGd/0kCBauHUoKOCbom/0odsfR/Gp9+GF6tLun9pm0+T2t01s/iEUuj/owyzPWM4nFfPNP7NBrhPFZumLzZwJuidZfrqmx4bB+lPfKstePTQ9a+9yLP1eADJ46dQ8i//fqQuOZw5iKEfaAsKQ2J6zjhDJONrlyo2KWnruv3vji9/hxgkwCQjvt94Ns3O+2bKl769YIIKVDBfQyMkZMmMiOvEuN6I/O91E1I4qfiiBB+6sJkajHom4fmDUNBKTA8VBxTebJpbau4Kz0EzQWplGTmYNKyWdFF96zqcMbmqDVLRG4X7PsFCgeH1CmIiiSN3BKiFgodCnkX5n31HB0uKhCaNcgfaDgjklg28fwKwpxLiJAiA7JOMbHPNBe2GYqrCyJX1h/INAT9MpCF2YRyqkBHw+Yng+RWEeJWx2p/xOmLRLOVIXDD1vmhsm+/Z2wxGVoqFmnVpKeFlLmuCb2rf3Jsds0uAAql4SvwxJhi9Ck5PwrJUshUpiiYmbtICZpqnB5pPEtDQEk7uGSutKWgI9g0T0CStUsO6L5uJdF6KKBF+Vb1hMjcEwDoEVPnlYPkfq4nGgkWcjUrJT3nAalE5hzznYAHgQGIoJNku+U+aGL5weB7D2Kef7H3mvh62ym5RlLz0g3un+n8xT2dK0AqnkcKc8QtVSDwd7vmrEAn0Bmfj8Ny+MwsV8zE2Es1OT2F2kV+hgFTPKeF5AUo4a7rDi5pWT8m/1bVqOY2mMvpdsfHt28+VlvLsXX3YDW+MEvbN/fS4PisSIRAx8T9txt0TJpX0LJ3uffV+RP5VNmFSTG+juZ9NWO9bM33olDDTwrFASBvwOXOfr1gv+w4xjCaaQ37ZrkLNufBIVTMSjVvpY0eQgYMTF+jy+WCH378Ea013PxUeN93bPu+gEubl0pnPiV4Pr7L9QVffvwnQAQfN5vH15cMo2vdS3r7afI4xuJZ+Pb2hr/85S8AFL/8+iuO4wjvqxb70Xf/nPj1F6si+3EAv90mDv0N4+uHzdEUN6x3c/PinQpPQkeNSHFeoNzPUvbxNK895y/GyU+GXzEipo+pC693vuAJieNBWp/VzOsMBqRdry94f/+Ez5+/4Mcf/wl/+ae/4Ha/4/PHDff7He/vP2Oq4vPnL7heXoLfqDFPzDHw9dffcByWu2yMgS+fPuOnH3/Ctu14e3mDiOD2cXi+EyeVaKQc3PhoxxymH90PfPvtN4wx8O32gTEnXq8vuF4uwbMEBoj57DkvIj+yqnOUVQDCo5kHUHaN84XD7h06wpgDcwzVdaP8pnHCcDRnsJ0hglLCX4aNd/pxSugmYEJYsWp0lAUhEwp/1zSUxmjBf/phgN0cdu3b2zUqJcLpZLpOaSCs8b8xblBtgB6oOgkTt7duOZ5STjmwIoqJYd5GaiGR2jo2ne7x6oVvtAGsejwNBJbDZGPrLUOLYKkbunt2NQdg6P2kOjGm99G9/6mzudLAkTodMR8Mh1WqSLrwseVwngU9XVM2qhfrIP/lniOQFGqamgZpa506QBjRKN4SVY77hyLN+Jzk8/PgR8r+L6oVi5AI3CvA5nKMwx8RHAGpU6jrsHWOCHfzM+tTHlLQ+4fsTNe5JihIvYY6GJ68Ys405Vd5X17URfz3qRphkMADS314zpMPbU7EciSablMSOWjK76B5kQCCNAZlc9ma5bJjGHWyeaeRkz69lTHbAUiRD9RxdYK55J4dKtrQDGyy5OOrZ1NUv6X+TN1M18PPJQwPGvIyPN2od6Pc950qtvX3OebyvDknjtvNl9BWcwnPi2XR5ZoA9TTlcWo5Ts9qv2coJZb9Q/awOAvYEI2/CNA8lQJDlpt0tLa5N655bBLtmGEoM49f7Cg+KLa26UVFbnNMQSf5btE7NgfTPZvJ//MeLWZcKNAhM81Zp+zhmKk6V+xHmXKn00zVkbp2vHxPE7hjVETklktzKPesM1+dsHQ4Ze3ycNtWj54frj6CekqC87mwcSznz9QKQJ3GiXziOhtBDrK+x+T8Lmf5k4BNMPBkzIn7fcRnkIZt8zwTE77JFfe7CVCbgAaWgg2lTDSSXVMAU0DRGRSAE4c/zYUM3XVt/vOUs5IhfINaPpWyIaV5uid3mXewBpELx7fIpLhXd/trQNMIezODv0VyNYXApqUII7/GmHsPA4MnC/VUIWa5tUgIS7JYhFcd4dJ+i7abG9fKXCfhU1MY6PeX2acqd1v1bPp9UtWHuHGX917FRdCRlRIWDQOnfeD3LK2JoO64OAng/eGKuQog/h5jd0XbvMp8PQtrJUEJKDglhK1w7pzWoy/HAT3uBjTRFYZgkxtXWjlX+I8SQPCwAUXJD5a5H7TMhYgArSRYjfnwNQgjguvF9V9daLlCy3pIKlj8bIwjPVLwDMTj8lSwqSRJLFLy3GeOpwJO1QjJ3319hAIorxWCTQLPzeKVuMjUPQlj96XhOhh5W7tz1XTLfiE4WXy/yHCk9Ku8oscnhYVeR1UhOv+M4xbg0hlIqu7kS9LsWSrIqFdK05lKXq3sVk7/TMiv7Z2vOY5jUahEBDo6hmRos4FUFkJyjwpv1i49GnQqxsfdcpJRcBZFbJmnMm+czKDWApow1C+UuNbQkZ60Z8+FOKklPTgQpCLo3lcmP395fbXvAoxGAFKv12sm2RYJT7SXlxf85Z//Ga01fP31Vxz3u3nTeJsXejTtu3k4OdgkraP1zTybfvgJIoLfvhkA8XK5ZmhVz3NCznldu7e3N3z54SfjU9vFwuj2PZM8R34pX2cV9P2G/foz+n5Fux2YrnxaihUBpEeVqliT8hNKzIn2q3wzD5DMask8TlRkw5OAGiKVUBhg3lIoOS0I1djQG8SNzFhjEWweHne9vuDt9Q3v759wOQ5crnfc73fXWcx77Hp9CR2CgM4YA6INx3EE2PT29ob3t3ds24a3lzd7lN5w3EeMJzmeQDaXybADomMMHHPguB/YWo81egCbmnvYOT8ObuQGj4VfMb4ZriCr60QmPKdODB7ciV17TImwt/Aq9CVrvlbMU6rTcqEBgHQDzroDBwq1U34F4IVJFAbWmFngMyDNqpMp1Wkq1avnhNGxuLGmaBOw/MANTRXD5cTlsuN6vcR95FEMhz+OGeFXUycOnQsPIJGa3knvcCr2Pm41gF4YUqn0DufhBgz8BSsdA3MKOjwsBGLeIWDOZ+MrIhIGh4XgAXMOtOGN+mEhVyToURUIjZjURU+eOjbyz/QGqEDso+w1+tci45T64pkvL+Fm/jdlYTH6qGewmlXMteT8QhBp4jUOufLVxH1z4lrf84t8qM+O0ZOy0kgUxDqGKsIxRQ6/NaVAQrt5jy7tPNeDH+T9SZZVfkj7gCNQLVEYp7bq+/c+4zh6a9BOjpmyi7I4jWHnwZ7vaj0cMB7deg/vyfMz5Syn60vKqqhaovJpQBNpdLm8zAsPxiKvk+9FHmixEArbOetRVXdZdCTVuK/2I55xHDgXJHn48UOW0JWOw+47jWdZe+qUXHfJ3KcNwGxJS0ZXhUir3SEEXOPiELvpYVn0+6Dluv89p3KpPlfvi/Uk/wF15VUnZ2j1sv5a5LayjbTBSQvpjbW+qAou/QeLNcSgT9AKr6v8r84/Tu/PbJbc5yLCaGUfiyC8q8V1ICFIbvfREwzRRoY6Jn9u5Xtb+QC3HpiylPs4V86fT5fm+q687dxu/L5M8PPXnwRsAgB31DTNhtadseZpANOc6vkSNE6CAMERLs72Y9WUJdoMchGetsQ0Q+Bu9VB77iTYYy75E+61xMOTJbbVSVupRHgOpmPiODzPjnQ7rZ2pxlKYKolZmMzSe+2V51rf0DfLW6KRuDlPzFg1hO7xncnTz8o4ZzgUzfK9fXFaibhhESBUNqsHYG5YgmmM83zy0pw3Ikddzfmdc7mIuGBQ/KD8onXu4SeGXgJ5upJxTgJZ2nzQjWBMRkFF4cTo/LMHIXM+sVC1OHgFmhvm9CMLxf08HiaPJN+c+bVCHWw6EmyCAJ7MXeNULxXF6HMJiYKacTV5ul8Qea0dEilzk/vK3tP9dfpVNOZy7eoKVtoDrEwg6VLzfuFDNAAaCLKUtY8vTs4CjCB9y5J4lzSdgGt6KcV3S8d8/0MzZxKC5IORGxBnAqGHcksJAiwuuaEUea0iI0gkyJShA0CGFGgAnGVGQ3FFCErSWoJGRXlyg2h48m9WZRl392wKl/M84Zuj0vUJtFq8FRSYw4zJAkTdjyO8liL3hq57JbyfZuZOGGOW9QIG+ZNPIMPu6jOodERxgalxKtIZZDgAACAASURBVC7K0zoNvkwDYpZ5VMC9m13h4d53eh5zusGdJ2VTjDfLvlmeIiGomODYtu9oveHl9RWX6xW/ff2Kv//8sz2vCaRv+PzlR7y9vWHbNvN2ag1tszZfX1/QpOGXX3/Ft48P4ycAPn3+hP/0n/4z+rbh73/7G24fH9gvF2z7hn3b8fJyRZ7mIxKdd5chJkvMkN4v5n0rvUMtHhqAe+xtu7GX7XBj28CLoQ3fbsP3kbfXN69w55tBzSgR6dgub1DZcXn7hOv7bzi04eXbHVBFv2w+p9whRekJBS7XOV+mFUkxXAC65WfOgcIFCt3mPqKCyrx9HosNy71j8nlMCzW0pN+Cvg/sx2G02RteXl7w5csP9vODvc9pyetvtzuaNIwx8fr6it0r5lQ+r1Nx6RfMMXE/7phj4OX6iutevd58ZXxgzCfRQA8Cy8u1daOhS7Q9cby+Yqpa26rY++beyQk2hWJf7sucJO6BQbkptmHGHDim5WCL/V2qPA7PmbnwrFgN8kx/qq+ZdIn+EDggK80KZeOkeySwZO42CL5BxbzSDWmk5nw7juSZAHC97th39yxs4tdvvo8kDFKTgVnRS2J9rHP7vqFt1hdW9gRo6B7uQcOJ2DBGh2oHy3ezXRoFqg1jeOgZw3gk+c627dHn8Iacijk7jumn3wSbqk7lsmT57LTXlr8VkGY8PMAWSFSqC514up44G+ZQN7o8Dxdlm29tEWWNDy9s47w41hNOszbHvRqoAtOtIjStjEnIj1B4iskyJ/aiG86l/+QjvC80MQXCo4fpxqKyF4Ie01O7GMjeTvK0GfvZ5nEmPQdzE7LVeP6qx7J/AkIJCssdpTEF5UAznhtLkH+jPoc6cur8gMaBlm/M0EEIKFXPJh4K1jmN/kuu7azP9LVjyOrCM4odF9Mv3z+grv3JA6EEFXtfE4TT2zHoE8/yCJ0O4so7x0B+TW/vqdP1rjyQewZkRaVbzZDO3lrRX7Dcw76FnDiN1yJSrMjVvpuMP81qzNP5/XyAVv8WsTx0zNdI5wUepEWF3dJOteOUa+yfUFc7h1VS5/reqwKs/Pt7QONzIEiST9gHcNLkFafn8Yeg25k/8nm69O28D2rbue8Y0mcHCNy7PIejfKHMyFBtAnsosqiCTdlv64tTQOSie7zm+cGD7wmhUwV90xBrt87E89efCGxqbpYJEO7UErlhPm6Huy76MMXcwBWIsDr7WMp0FYVEeIJn1RGsnXShFQeaKNgsfYG4UZ0gTT1xj0RmwYisnOsxJu7HsDwVzRMPOhFaCeU0HKOnkjp7PKvvlgPChQXdFgHL4ZGJ2qrL9iOTiKcURvQoGM6bK4lp3dRLi6ZQuSSboXCtgNOjEM3POhqaurdUmZJAjYtiUqViMA7fKJZLw5RjIR9ehMWyox4ZmVIgrp5K1oDGM/8RsKlNi3Hf5oi5YXWXqKBUnlur+Kj/XVQV82pihTQy5dbtZKC1SPwHYTvkjDPozBi97zGVcId/ZOjrPHH+6jyqZr6LemLxfdFA5VA89CMR+yacfO9k5FLJ+86CkAkJ6+dnOl6FbwWmyntapuCMG4hAwed5CqKPFDFUgrVcZ62EJofz/nNDPBKoOy+oZXqx0hPnV0cBDU/rkGBRuoMTKDpXXJl+Sm9G4gjvggUQmnTnzvwG3EeYXiVxjAjHG+MOVQszqc9/tleyPzSYnBfZZBmnlQR3quJV7+fLjNMeXIhAU4BNwEM/ABenNNYoVGkscF61VJ0SQW92UihN0PYNncmx/YfK1vV6xdY3vL2/4/ryir/+9a+4Halotr7hyw8/4ccfDXAi6MTE6K+vFnL1r//6r/jrX/8atP3TTz/hf/vf/w9s24Z/+7d/w7dv33C5XLDvOy6XC97f3qBAeGJ8/foVt9sN237BfrlgTMXtbmPbsaM7f/VMDWhqQNh+ebP9Ne5GJx83jHnD1I5vt8MUnL7b3G+bF6dIBczKzk9sVwH6gevbZ1zfPzCw4fXDaLx7iBGdZxb1c1IRG8776eZPiS0BQpPXqSLApjQ/SiJfl9Pmzp+cigl9pal5FosCYsjF0Ltd46HwF6fD1hr6vuHl9RU//vATfvjxR/z4w4/48ccfg2Y/Pm4QCI5jRA4to61i/CgwXwxwPo4DcwxLvt22GJpOdc+LzGlYeSBDJ0k7jaGT5RVGib+eGRN1r533St5o/O92v+Hj/oE8eKj7i3u/ytezAYDgm9UIFMED/679p1fCSYzbPB0TrOZ3NjDrPFR+QqC7gk2cR+pW9b5ta15B84gEwD6ixZCwa7sVfICLlwnv+/AKl0ftGcbYYHRs60yPparTjSELL6vl0OnZVI0r8vljWPjc2XPx2TuN/affcbRHhvN8b75zroHhyXqb04QUD3247h3b2cVnQ4JNpIXlOZIHQvYaqTzGHKxrEjJ1UvYWnVDVjbtYMd7p/xeZ7Id09FJQ8cTgUvgSD/JI+6oxt1r+Blz1c36QWiC74Z6HsRbJL/NK77OZLoXPqM8hoEpeqyC4FHxXk4ci5GbmlaLhyp/McWV8UiufIG86rRUKLSmM714ue8p5/y50bL+e+kDYR6DOdjZti63xHZ3wQRfTvurxDp4vrUa/E2w6gz1n0Kg3cZBo4hhWvfc4FUahLgMgPcr9gDD27hjY+9rHen/aNHD6Pem2nrrFUqBsuS/K2M48kvc/29epd7enYBPfs3rqk3l0+p/IsNqq7z2zV9d10OWnfne22c5r/tzWSX2+bvsnl/meoV5aryN9sn0BE4GnTHvkvee/7brizaQWrphDqLYMi09sceDUeyvPokyibpRg+rNrbP74HOrmvIb8QDE9bF7E04M4HX4v/9r59ScCm+yldJF1BdI2FxKg4aS3losodLtNqUXzz/cigvUHc4NXaAMwxfOqiG9chcyVsMJY9mebsJJol1VSlqApsTLPUPVklxrKGOb0RG2ZQI9Cp3UbG5OLajGKSAS9saJVWwgtjeowf6k+wBQZJjNvkdsq89/4GsSGxrLzFLkn6apsQJ2ZAfDNxk23CERBuiYXpQCjgDvh7eKMqfQjPdLqCY9G7j1VjYTozYN08/4ZpyVV8J1f4nQSa4QyB8r1M5YZzP4U9iUUwKp+ijbjXhrVXBd7ZqFTzpiWOYBX5RjTMSmlxo5wEi9lygTuSQPzrHJ9KRVflvItibUqwwujm5St6zWpmCa49PswU2H8IsHYxSehMWyVoy39Yn9auXcFSa2RoOflhFU8Rpq5LE7P5grwbx+CeU2ttCtxDoPc3aQv/ybNX6dLkbB3w5/JPYJqmMqSMwmrEhyA0t08Cci4Iuk771ONUvPMPaBTH8GmcXh1o8zHo+5tNIqLeeR8qi7iCvdy0ACbwpNJzfvo7GIeilkda8nrFMaUFIIQSa8GPtv3E8NS8zWdnhmd7oo26KVkKxI5IGjcdgHE+GYA9R4ORro4xhFhdE2sIurbJwtxevUwuK33AJ0u1wt663h9eUXfOl5f3nC5vuAYA3/729/d4+WG1jteXl7x/v6O90+f8P7+jq137AE2vUIA/L//9m/BC+Y0j8CXlxfslwtefv0KBXC9XLFfdry8vODTp8+YOvHt2zdLFP31q3mNtQEZVjL6OEzibfsFu2S5YrHpQO8b9svV1mQ0X0vBnOKh1zY3FvWqkGZg9lQEzQzN/FxjGrwqrUP6hrbtAIBtNw+bCjbRetPYXlWZpmXqnmbBI6hg+jgAPFSNCsBUMRt3qBvLYKiTmvcxFCIDionu9/dth7QedE2w6Xq5umLdQ1kO1jAnPjx3U3dlMCrL0TgFIJPGqe+PY+BOw5ZpAw51RdBouwJOOqfpIqpeFbB7CGYazqk1kbydhwLFa2iGbAu+4J5JIa8EFJAGgIlkvhvvg0DjNDa3qS6yghWv4jvvJXnbEiqvmb/lDDYF3ZB0fP8TcixQT/bf363yJ8M+gTUUoQCf1AEwyx4p3hrxi/fZdYOs4or4XprRLauQxldM8xA/brTEPOjaTlrdce9Z/s6aP6bOsesLtP/rO59VVYz6nc1HelQRRzh/l6vnMoQeMKuGg7LRFx019KKQ+VV/SFER4qJaiStZPb4cCFEAaM5/yjhpfIXxOQE0xWQ4GBA6mILvDUqvpKq7PKwetTUOmPoUYh7CNqH8W+62VtMeOfWVD/U8jzamBJEE1N1WwJZrFLOqSf9GA1ItGtDjNJK6k1eUPcEqeGmHaIxHFWhtoh3GC+nRnfoOgl5CXyv6H4tjTBELt5uzpLsoeizbFXhl2NI/zb2bYMeJlsrMK0ODuaeqblNAJ85ZFw/fFpsvgWC2id5HAbifHFpP2ipeAKU52MScl567dZbn1iiTZT9W/udgU2irmvQXG6m0QUCP+xyud2+bVYOvh2ydhymteYqVlTEEmBg/OW9nMOl7Tg8VSFpsrSeA0vdeIaPLtbSlQwU5vS+7L/4W5MF45nlSOG6wRGMg9AxrxXUc9/wkjVZ7i0D7owhRz5ml0Ej3yU2cAoR5DPn8tMXroU4ve4t7ksOk15IfkIn6NTPsY/Ie6kP/44FN06YasKSwOiZkKg4VUzr8tKD1bnkoPBfFVPW8Y1VAu2hVRB6ccO1VPi69M9LrRJ2pTY+Vt0SZVBAtOWY3oMsfoAoXRhZa5CoXFILWNlwuW46PniaSJchbMXRoZDZPunq9vuDl7c02BeNg/ZRUWvapt16Y+/paQIKkO1OCuwFOzROMc/ZqrpVqOHKKBZbvoUP8wJNCYkWXyVwWNh77w4h9DJYKTeOwMiVuKjJ7IuJkYuKKclPzyhDAwuj08dTBmk/Q6qyUME1Elt7kBwjGsCSEgwbYxDaN5tyKOm7mDeL9M77tG58C1JWBoL/SrUmlYc4o5a3NPP60OeMaZpyrIJLXh1jhkotgQGJOEXTqjHbR13KtJFt6oKVnbF1Of9XKg48nJca0tl3M+Od8hnBLZeUcrmDfncGm/gBAVfA1gSb6PpxG4HTRxUPkQrELosjsZPT+4V5xOiCznswtwoShmvdhTgwtCbmHhetYUQQCmOW0bU7cvn2zpKP+jJqEewGb5sQxD1dI5nIKBrVwF9Cz6eSZN8YR7abBSc/NKokVcLAJ5f7zXqsKOflJhtGZwtREPJeIxBpx/VIYI45dRHWlMRVm94Bqj8+oQKSpZWRFEH+77OibeSNdrlf01qyqWyhXwP0YOMZh4IKHu3358gX7fsHbp3dcrhfs22YeTduG6+srtt7x9mqA1GW7YOsb9usVv/z6Kz4+bvj555+xbRt++Okn/PO//E/48sMXfP78ZfGMent9hari//nX/4JRE71Lww8//YSXlxfcj4HL1yteXl9xvV7x9vaGn376CWMc+Pd//ys+Pr7h3//6N3y73bBNYJuCYyi+fRvo24ZPn/8J15cX56MW3K2Y6H3D2+s7pAmOwxIi9+2Gtt1Az4ypcNAKOBRofeK4WxVZ86Q4CscXHFOA7Yq2K/bXdwDAftn8wKbyfF/bKEZgSo+4/A/gkddornAoWLHnUtFm6Ie6DpF0DHRhBT2FdBpZh7UrByBA3y9ojSd5MHm7GTh4vb5YiJzC9p/37X674+9//Ru+efJ7ALjsF1w8/+TWLIHq3jfru7O92/2O++1mesdhfe5th0gPozHkliDAK3ri8MTZqhL21FsK0iKnd1CmnfYwXxXwt2aGhTLBDZqixM/mRpbS2FGkd22ZeyHv0uAhgOlaBGzOgDtDgY0/OV9xg2XzpPosmkI9iUYS7SkzBNNzpnUCrpWrOK8MYMtPetu0aMtmMZetSVGybazkb+w75xwKtK1BRdEvHRu20Bdab2ib62AFPDLwTrxKkIZuQAyVhxk2bkq0lA/8WYCE8krPl9yDCTDV76qcJNhU7UkqSACHHYcbs3qEEHQqoRiVzrJjsWZnQADLZ3ZXXYfUT9gv/0wSpJmWRMvWvFPbdBnm/CUMPdfPzGNekh5Iq07fUNfJfBQdywRBsrIH8t96eMp9sBrmE2Zb+GS4fDSDvgUoANTH2b0lxIrMgt7U4UFadd0zjZQQWvEDTDdcQ5eYftBAmgeCh+eeK51CucZDjBNsQqa8qDKbWygOCzP0mZGmm2rYIFxkyvEMU9RyqJl65epV4/ZV6KBBAmVeUgYFzzsBIUYkRk87daOt5j+sfCXfM0F45oWjbcFcUseRnk18/urhl/1Qt4eMjmz+4tCz3H8GaB68CX0SRMSq325b2Iz0ZBLxfMHuScZ1p50wufIxZwUsewI4nV+/BzY1HnScwKR//FWerzzcwCrDFi0SMMZLT6zI+ub9r9505Rma6SxoL2T+Or9fxXI4+5wzB6xnikDw3zbB3HFN4InE3Vby5OytIQ6D1M4q/ZDFrkH0z/gDWYXCw4yLZxMPYOa8A9AArehpt23pOfd7rz8P2ER1cSFUyRK8JPxQKyWMmEoOC4MTLhKCqcXpfAiLdBql0kBlluXc+R29l3iCxgR4wdLFkUX/AXViMjDN0+EUKic0Nwi1hfcWf68MklXilhxSMUfk75pjis+QRKaaHB05H4sh6kZ15jHK9sObSSuzTQFK4QIUplKnGias5hilv2ROKwNfDFkkUzDEVZ1xk9n73+5FgkInmDP7cGJO6fx0UrJ8XKFNAajJDWXmteZdNdFU0aaF1DVV9MpMxbFuknaZF9Wcs/obXOknrU5QMU3FpHFI5XNF5tVi8mn1T/lw0ylk1UfZKcFaPc9puZ4CPTsRMj5MsOfRnZlgU+sZGRitFQMnaZ7f+Xsr/ECsSkorSsmitLYEm+C7Nw0MX9v4vtIENTLmKUgFU3X4WtFT0WY7TpUL9U+eJro30FTFMQm83MOz6JlHkc6B++3DgCKnv1ptLk7KDib6PjDmsYSJPOxnhsCEsjMtIaVfE3x1VqWVc6MnsMnHHcoi8t1/j0T5QXtJqNyzIi29S2P/53o8E2VVBZDmyr4WYkpdHCJiVZtEcHm5eoLnC16uL2ibuYMHnQC4jwMHw6b6hn3f8P75s4NNb6F4bZsBV9eXl0j+vfcdl92Sb7++vuH68gZIw8fthm3b8fL6hte3d7y8vOH68uIhUZuBGNcXQBVt22Dh5Da/rXfslysulxds+wV9v0fOpO75k6bLrGNYKNfX337Dtg1shyUXvh8CuMfsfrn4KZz4fcNOKvfdT/8VMhr6NrE5EDqGMYvmWeioXKpXhJ0TDpBpADQoSUObFzXo3QCRwf0Vypp4nxQKHt+Je6/Skxh0aAPduy2U0pWvk2KokKD/VK7sWeZt5GBTU6iH0AEK9UPayEsF5/V+gtubVQCjEXEcB6ig3u8H7rcb7rdb9kYt6XOTZmkcZZo/hGh6IXnoqinjlNk5N9QI1edlyojPZ5PY3wbkZWi9HU5lPqTKC4ECNkUeFnIuyeTLHrasmGDVNS18QYNPpsd3tsPvXd9wOp1j+O9rcQLy2ZDp0EUPmaFv0Eh2MMz3rzSBTjfKI/9RZRyPgBYAV6o5J2vYGo28NI5a0BHnIgAL54uUfYDLulbBERtfhvpQAyN/Zjg5gZRTiE/01GULhT7MqKHBSkBO15gMhETX+vvKd896kCr7YfIzqq9V8eB9nZRfJ3lYNJ0ypiKzleO20aWUR4pov/8sE+p3Wq7R5f2J0sW2qedVgNJ7QE48qb/4+i1ard9r963PkVweB3G8f6FTFP3bm6LN4hsw74kO+5sPPPNgcllPobBlz9p2TD0iabmMR4LRxn60cfhDT/ZFeUxU3Do3yQ4afWuOMXSJ1P+X/Gy+FpH03dufuUNcj8jICvV5tnFKmSdfQcqek26KuE6Wd9J96ifJDyIfJIGicl/r3fiyCNJLqq/2TCv5LGfyEKiFzNo+bu5hnLTXar8BD5+1fgjBrpAgWtY9x3B+rYe8OY4aYpzRBSvAlEu88g8tny+TXD6vgJEg6c6+xwOZxe4s6/VwUBLtP967Ph+o+mvQz5NbqE+GrRKbfM3hlo+wzR8VIeOW4m9a+TA0wOv4rgD/pLUmiukVsqamVxRcjvHx6YlaDt/D+9DH6l5T01PaEGORRs8mhPsTvXs5Pf+DeTYZM7VS1s1OSB2N6z4xfaP3jamTYwD34w7VBB56SVRVgQf+nYSkz6gvTohaVzQVjAmMI+RHGLMKwZiCY8AJxt3puiGKdtjZMMewpLZk6gCOYT9zGMPtjkAugJNavC2UibzA4xXINGJoql6YbDrwUZDUEPou0Kn08XMBVJopqGJurwr2URdXzZroU9QSegus/+ZBZO9UDBXFRbQI0Qhl4YqHfJ6LwpcCUcM9NhRVIAzgQISLgrA1ejfM5VoUWqAyHcpAzHn9XeNUh98JP38gGm+fwIaqlTJWxfU+sM2BDYrNNQ7xDHDCvvIRLsRtbegp50pHc685sTherp+KYDo9TkkHyCk2z5szsybm2TSHJXQesFwKy2ikmdgOuZEnpnQb5UlnEwslqQImFMQQ3DjlOePv4kzZ1xrm2cOygsEUQab47DR+FRUCnu73h2spkKtSpNwPqGyAPGFGGGTQkeePqSCPJc1GegE5fU3uI/fOVNgJkxlXB5hE9zisTPhxWBn6O/MpjWG5ghalY+Qe0NU4jOS8IxN0V88mnAwg/h3VJP0ZPD1jKI0R0qqshjv9yDkKhZCKeZy8EjRMQAkA2jQje/rnrEiFpkE71FJD4JG/tlUwT9BDoeNyffeS7K3QoBmejbltrlfzPnr/hOvLC15fX/Hp/RO2fcPL21sxTNVKyI8RBRi2bcPnz5+wbTuuLwYkcc+2ZkBWk4aXiz3j0/sXvL68YaLjl68f+Pj4wOeff8a+7fhf/vP/iv/5P/5HXPYdl223sMppJ0Rvn75AILi+fcYeFcmA1/cf8MM//TNeXl/xt1++YkyBbB1DOg403Afw7Tbwb3/9GT///DP+z//r/8Z/+dd/Re8X9O2Cy/UFnz7/iPf3T7i+vOPLlx89FHDDMQ4c97uNdbdQt3b7wHEMYNvRL0fkqwGAtvEU2Nbp629fcUyYl56Hc05XxKRv2PYrxgT2FystfrlcISL4uN0xRipgosjqcL4nzbYt8gAKlSozjJduvRclELHXMdb9WV9MSG1gEwAZhn5Trop7NvWqTBl9bn3DuB+4ffvArz//Ah2pXP/6y6/4+9/+jg/3bBII9G2YZ4xYuXuRBt3MgNg2C4FjziPAQg1FBHvbIuHvVLhHtPEY5rAc93KAgqIMl314vV6x73vyRl5IuX0yDmI/n8Luj3nH/SCINitbBSVWJn4HUEK6/APbu3NY0Re1pNmqM3SiBCZSUa79BcgKV8A9EqcyxYB40RRIaYegWTW4rE3mG8lw4OEVMN3zc5qi3dwrfNu3kP+qVsFxzJFcqzXsu4Us9Oa5avbN68HYghp/gX92YA5YUv45/L6cS+pgYsQb+e7o3cBr5hjQMYOvSGvY5raE75Udkn9rTq4CKz1whQMMfLyP+7FWlH0WLgSlR8wMLk+vNHs5D3edVjzX2bMCM6xGCDfA4TQXtBafOT153zljbG6qpgctUvdwrQhzGkgwSDdTGXkbL1MzNOmMz/Ff/GuTG95FQQJOkYTax2J6g9kHcJre2pYyzXU1ApW5dtT56zE6D8apA9j4A2DOKYpBBdBntrKHUG1OB7beU2BAJtSXJKS1A9QIwuTzTV8xwJpjReEP0Wt2aHL+glqMJ8Fz6kmG8VYPGRGJgwl1kpGyIGZoEwzmWNvCJ2icp17Mrs2li8GLjjvuI6vImd3Y4kT1EcBC7Is47DsdEh5+EDhLcQL2a2spiwVe2MSvuw+7735434LO6p6t40gAmV474nq6eTZdPT8cv5cFaFDV03zMeFYFNgWeR4r0GLS2CBP/lfNla2Uh3Hbf5gdtUMVs3v4kEFf4iZL6TwBSidnOg5bvRD4k1YAbT4SHMQmGMiqpylnyUnjePT0OO2iD2GdY969wQcKmJN+wqrvzUDusmoo+FW20iBSYO4rnmcTvcBzFdDKG9CNlIdfZKwanDUW6n86H4eGUDa1ZFd3eLxDZYOB0zUe4vv4cYFMYLGWBYq3JGFxBC8Zl1d60XJzbu6DlRWCS0S7PPPdDQg9AZp6ncsMfyd+BJFonutY7+tz8Xq/OgnQZdQ9J4kcm8mqsJzL3AFAQeAW0Vd8of03/OzYXmbQWZrIOOKr+AZhMmK5ZBr16OcRKKCDqiXgPC+uRmCxnMIAZvFWBhZ9eck2iLWpOZZJjjWIRcqLrWkZIhRu80oC+uXBTny/Ne3wTa1EontIA+6gpgGLsvK+82E6cYgDY3Jtp14ldgQ5gU1huEDIR0hofyR+xDEE8uSFCHcvVYAwn8pX5Wb4Uui9tKTyG3AUUQddgMEE2ioSfBNXjjc2HHdIYklTmpxr4NHQK2FR/J78mCGnx7Qq6psZclt+fCWmui13bcD7lqe74HJc6HVSFZiEDVSwVa6gEImPqa6hZuJU7jU2eTKtG8m3uBzNYDozBktoDt/uHKQb3O5i8drgiHrS6MKEaRleS3I474H/XBOEAXZY13LJ5eg49g008WaNbrwaBhtJBg2GUfYRccwr5uldoTDR4rgU3IABE6ALXhXwplcIna+90S9+C1rpVXHM3OQJAkUvAhePLyyu2reP902e8vFrepE+fP2PfN7y+GVjFto/hhqPndtq2De+fPqH3DdfrxTyJnH7NqDfhvu+Wu+n68orX1ze8vn3C26cv2PYPAA37tuH98xe8f/piyeibJR7WcaA5MCOwXEFt24PvbPsF2+UF++WKvhmAJHH40TDVCmV8u93x28cNv/zyFX//+69o2w2973h5nbi8fsJ1Tkjv2PZLJBjvx+FeR7CqVQDaGGjOu9QNePKZzRMSc9363eZepp8QIXM3VK+mrJpq1rW0aS7eXNSy5rGH4xqN8tBLogpQiWpln8dmtnMbp+c4bfdXC1DblFlpALqd5NHo2HpH23pt0nUxCXD4frvjmj/xBgAAIABJREFUo32EvPv4+DDPpvs9zKPhScDt9NCU+iGC1qZ50UicO8OUeDi/ND44VdGmHTyIUp6n98qzEDjjs+k54/YBHmapyupirEGANt17rTVoawFMGi08ek6QYUQ+S5fF2bb9GM+7OQ8j6KRuhM9op3r+xKBKv+f0BLyqmeqgyJ5Jei55ZM6hG65bY07x9xF8mIUPjjg07GhtoqMzZYeD+MAxjIe7mQag+YmxebXxsKXR+pUanpiAnHkmHU474bex2mKzubzO+XBpZYccc0aRA9FpQNyj5viwfilquE4nvXHRwVIuKXCioXo4gzA0V0V6Ijz7Q9+Sk/brWpDm+DlfoUBpyknqmIvizlFTlunjDEjQZt4TIANSteY786yueTTrenxXuSwWyknvpWZ2Ms6hLXKT2p5LzwlxASFcD1nbC48Rth/6DtdpLuuYvYwZhoWrJz/Sou/aHMWi5JoFv0nASVEiTbCG31G/59NzHRHrTh2CHZyAyYSzUg7SYjWJFDWnFry3EoRVdcuqx2J9j9lJkIrzoToxpWHlwUUHPeuzxV5bwNm2elMqzLlghodTtrVXsEmyYuaYEzhocxpQLprgHm1KemiG17CYrKVctXZtnJ3gDjS6zrlb7csEtLgO9UdCBlVNnDt9XR/uFxJUgo1uK/Bz4ZjMtsqc3HJ6z2tKb+PfQvXPX+Wr0HnLD3PyUQ8OvZbr6zFtqcsSANPYI9V7zyfXdDDO8ZyehkYA8Sqtw2S0jFH2RAOaxp4JGSKFqZGRMIdMzC9pyn7UYXeRTFnSmtsKrs+VSX/6+nOATXy50G7o2DrQpGPbrqnAlpd40tb6Mma2Klt2LRddIlF3CKq4025QtcofGIAlkX0BoOblNI30G4CpnuRUrUwy1PNJ+cLJ5mciw4wzU6gAFTvZatINrBErRy+lK9ItH9IcivvtsI3hSgyJerqBI8Bj6dlQBrJUfZwC80ma2ytZ6ET5EgSKTC+w71xfRhsm9ySS81FNcMUCltBuTL8hg+NMebvdMMfA1pufSqv7rHnlNk2vqUj6DfBIBcytwH3VW8fFS3vnxi0MROObMleSApHrj+LKT8WpSMnm1wZ4IjV5uwmFbQ40VbwpsMMMtg7AKisJEPNkxoPlWxIMMdZ7kDRF7ORIFce01RnDrh8+nwPibrKpoqca06ACHGJtDyja5sqruIFDWvE1mnVO3FjsW1+YDyAP3nhnsCmBJSkGD+8DaEWrbsYsLRVGtFWVSC7akgSclEwFfVooGWm9iphUs9lcEe6s9ObJ3HUewLwbvUbuCU+CPQuQE0m3WU0ugZwAnhwIWsGmGV4iU83gmqoBNoVnE/uE0772/tD7MICpiOVnMnwtXok2R3GGEqdOGiV3o/KcosxhntIaNbmo9/vNFHK6X+gD4XEY/MDXyE7s+BxBb7s3L/GuNLKEBRCs/PzW7cABDN/ya1vvuLy8GeDh12y7hbjZCd+wHHivr9i3DT/9h3/BDz/+iPe3N3z+/Nme4SF29Mwac0Q1OqiBLdtld5reLAkqahla+xnaodrw7aaA3NH2F/yHf/mPNuY5se8b/vLP/xHvn3/COA6MY6DtwGX3BJz7q8uAF6C9YNs6LvuOtr3ir3//DR93Rb+84f3Lbt5rqmj7joEdAwdULkC74vX9R3z+8Q5W6dwuV7Rth0rD33/9FegbPn36hFeYcX3QU+9+j/XXZsEjTTZbE/dK4LwEwAHF7nmwrHpqymCeYu7bHsDI/T7coBabS665RkaR9Hx1zyY7kKGB1JOuXTZbskrB3u07VmkcDur21u07EYhXCovwUs9lZoVBhtHaljwrPaCY78V41P12wzgOHMeBX3/5Jej3fr+h94brZXd5YR4qcxyAtMgDqWqGwzEOM149nxkgmGqeLQccsGJovpEjtKWxOHVgwr0ZQz76/FPxPdTDBNdXGHVc88I385cEkO2AIEH44Eu+z2loRPvUOxb93Xji7X5LRZsGTqPZkdeuhiPlDvdetwNVpYHkt03rK73xTN1z/SesGso+ACLYtgOtd/foTj6f+Y/MwrV9N3Do4ZyqUdBYXgxViJo8Odxzk+A6izdIjM0MxCqjBIre7KSazkjcF6HH6KAKFGvGAgjk2wTKAdhB12LKVZ0o17/qffy9rETItKSNXC/aL641WpgHqHeap6A6QNnEgJrWGL1gfLwChVVpox4n9ZlCeTLqcMoNy4cx5/lvfc2S39UQ8OkyjvpC6CSK5QDoDPKqyErvWufYPqCMXnIdzhnfQ23+TE+yuWsxHjGe1STSKcSjNOVtvEPLHvWVLHv+2Vyx40FbEGAM3D5G3KeAGb5arwS3MkKmh8FdrtNsGYXuAF1tOOe1pDJ6vZOvLuANybJMPvUO+2hC0RCHCXax75XkKzmP1uAMzZpzvcq37Ki1s20XVP74DLp4mGp/fjdrHlPVc+5oFGDgT9os56qM3Pd2SNBF0KZCZUPkDS1TnjIUy/IHABcAlI1t44GeUK+knv6Mh6SjAkFF1CU/zULwP0nyIewcEUdkslC348WK54C6LhJEcv5vCynlocLuQ8fEyOHHvC5yBIVUY748hY5qFMpiZVtlLyOtRwtgug2JfX8MIGwFZA6rnO4EpXMcMVk2H3OgDTuw3OaENME+PWl3yce8sdCNOwhsfYQtxcP/HGuuWaxryGjr4+1u/IgpcI77RJcdXRQDN3zv9ecBm0ik0zdss5LDhqRKYgy5I9ybLWfqmFZJZhEwzhwWwKkIRxo94CfqeAbMe6Nveyitqgo0RAJheOJORoJsFJLu+m6efwOgMggjPkiHCNDdndrDJb0HBCSa5cC4DxNsDGFwBssKdas3iY21ni7Vkp0xUioU/JzfCYLx1leNI8ahkAn0KWjawvvINhhP4TK05/ASqULB6d/dvn7Fcb/jsm9o++5KVUmmHT8GNPXpAn76fOhcvI1667jsuWGDr5WhpAItkYPimcfM6uXh4ybY5HO+e2hO9agRdbBpWDLRdwAXv4dg0/S8Xx6BiaEGHE5YatrhzHaKn2LD1mrCGOMBYKpgwIzIoYaLavmpo1URjKbWbgnZjOEWxh+M1OnQkuFnAtoK9lTl6jyPC8ovT+bZyNvpYQNE3VW8EJ0qjHRItycPKa6m0999HAH8LDQdPytNE/QY43Ag4O5K6wFMT4g87VQ7S2WPMEAOVgg5SvJH5BmJehIbAwozLHUBm+bE/TBAgCW1ayleKiv0VE6aHB6SN/PEnaFtOcKV5pEGTvCFORewqYr5hZJC2eMsThg8KnbC78t5sihBw7wq05M5V2CKY/Nw0qBf93U3pdC+7/sOlvi2k6PNvZAc8Okd+8tLgEatdXf5vuB+HPjtt98grWG/vGDfd3z54Sf85T/8M94cbDIy8v3dOgDmMWJuGaWeErxXCxhWaXyiQVVwOxSQAekX/PDTPxvY5Z5EX374C66v7/j49g1jfnhC583L119dzlwg/YK+X3B5eYFsV/zy9QNDG9r2gpfNKt0xr9REx0SHyg60Cy4v73h9/8D9OHA/DrT9AukbVARfP74Bv3a0fUPfM9dTpScm/oQbrKqAHOZNURO+s3Ln5nLSo/CCjqHGmwWWOPt+v+PbtxuOMaGyQ4XrT/f1YkGrGtMK40gqpQCer2b4fu/asHW7zTz8Bo7DXL0vGxysROSiYFiCYthzxWRO64JtM5pnaP+Z93HvA8DtdltoQNVKYLd9s3vFFM85jiWcYjrYhJHyJ3gVWZhvaXqHhSEuAGQCTaHD9IuhI0Dw2LsegtQOy7d09urJrbr+/b3PVs+g5LfkWbZWSyvlvvxs+NqolvA36lXVqNBcb1XjGfbuhqdYKE3mlFz1miWkH+d+5b6GCObsEWrGA4S433mxeTumkdXEQ5skvdFMgaR3gsa1FcwjNUPEDgqExrQ9v4kBMq3MGbdAHSt5LG8KXk06F3LsWQzLnIsKOixz92T966FEpQcUmvAh2TNE/WCWeT+4y9Vlvo2zd/Fkwwk21WfmT7bPx81yoHrq7ONn+eVJwgGi6U0Xcsu+ic9j3IUmy+J6y6BwW8Zwfn/2g9Bb7Edi/fm3h7jADwmnRB/5uO+1vYBhz+bm/Fm93t+HWjhhHlifxlU/+512gBL6ufTtsa82fJNDxiOm63/FYzMuTg0lgaOMTjFD3++PsH3O3+qpT3qrfG15BQ36M6MfJst5EPBsLz3Mf+H9IB8o9xFs+r1XAFHwFBVT0SF2KNGS/+W61BHp6e/Hz8hnowJ84cmh93KPFl6X+zYoNegkRl3X0L1+qW0aq+XMipvoPPT0w9bgbJL0poDybCX2lD+dTF9hh82AGfUnW4UvPivGFnteMLOnfrHTVROw0nsckDf3hlYrgjZZEEIL6Bc9TY0o5/G0N9zLrfduvjFuR7bW0GaL94PXeR7HoQoWFGnaHsbM51RbJOfCrVdVk3NTMQ6gyYYmE4/HWfn6k4BNydZboZfgs7JeGXpnLDD5OxFGXdokw0lCQ8gHQzn5AL9azSAyIMHdlZnoEXTB0OhDdYnzFPKrsFoM8A7ZMjTO5a4Tcira07PVjzHMe+jw0xvJDahkrsE0C2PTzM1SwSeewjF/C1kFFZ2q8HCiMpknIMM33WElsel9BBEPNzCl1gfhJ8bOAMvcd99KmwJdDWDqMGU//lY7zWkwQjX6aEg3a3/3OewjE6bGlpR4pC+Rf9DWdanfRXJ3MddETET4Yp5UJ8jUgsrsZ5MGUcWuik09tlwLmfmMV9KbJJXSUOZvKo7lfkEKDVkkSDBzmi0i4eFIxU5cudZgdDk39NZaThp7AXkknxTTK7K8U85LRQOhRQGjQIgNGAr/6Yq4TinY/PJJg8wZHsEXKE857OLUY3JvqN8XILKDTebZdLMfB5ugK9g0ppWvPdxzgu/htQNjzhZG5znQSm4R5lk6pj33YH4l5mzy/tupx4xxACU/1ByIRMKs5DhmKrqFQhRl2mNWJ1Yl4KzIaKyjU1FlwWHkMaOFCWOJfBQQC4+gshYVZ6JEK5/bSu4ypx0He5onve7dKsWtYFN3sEmsjd6wXSzRdvO8Kww5k35goIVn0+VywcvbO15e3/H69o7X90+oCinpejCsR5kTBpHAPOP0WwDsqTDaGCea5eZzj9gpgBwGbHy7HWj7HbfbgY8Pz5U0FL1PbNthvBsN0jdI3yFtg6LhPiY6Dx8AA5vm8KpmHUMF++UFL6+KLz/+E6RtGHPimAO9b7i8WM4FhXknffv4SAUovPDMg3bzuaaycRwDHx/fYj2B4tlUlKCzosZXgtVWRbZhAn1Dlw0KA9DhtG2GlJ1ecn+Tllat2GZ7zIFxmJcsAaPhOczidJX7cALzbioRw1wZQscDElXg6JafZxwGpmqvoXQJy1PvsMTG7vWMDPEsKhxCNqnna0jFJcaSrRZleqrthdYwa5LY8BQ8THegn2uoI/T+AaADc6z7/LkBsyq9Z9YQgBoAhuJWsCmNK96gq4xwXj8dkJHlQW3hVfZx9deNTqTcU3glp1yXxcie5ItajJIyMEkZbHoecmxACY+2NgxMBLjQzB8mArSZcy1z5d21+6m+ku/Q4Cp7R5zfRH+89wsWe9oP3pZQL/SoVtMzch/EArEd/4XtzaXPBSDjGk8tiopCVCJfTx1s1TurXpDIiOlznWAjv+buqgI/jNMyl1SHHuTXYjKUHfX9a6brPWd9KFqItdcHHle/O7/OwNyz+8+dYkQL80MlkDR9zdjPNHMz2pH6A1Bz5qz7p/75HR4gj19JaJeVsynS4rL7pN4uT5qkPVB6oA9rinIAb1cxWs/0jAmoeHEhasfU38mnMt+c7YsEMROo8tYLra6gIHnB4/wl2JTjDM1cgEwSpXnT6deFmNcVCE/FGJTmbnygodgrfnObxRatnn+rvbA+uzKplEbZoeSg6nuy2rG8Thf+sRKS4ok+eWbteiKOerEmT3tCoo+fPlzwuPe0/iPZx/w+V0pLZyM3GcxnTsD4HY/ScdnCqnBWpMPfe4fohAyBgB7TsYuWPVWfn/QEEjqo2wgajmGyh+F8TRq6g03NPZyOOezzkuw9DpB8LSNVB/Qh9Uy460yz/Y/74Yd7z3hJvv4kYBNcYCcyGxU/Ac46zjyzbAVA1BN5avkB6Ji/MLCQt46RzjUczxIrWkWdLh0KtYTK4nkBkAtj653IpRnxJ4AArCjnJ8Cz9FHhCoQZvjyt1aHuRaG2qHevduP8y9RVMlcyTIZ92GRFLgcSjJQ8ONQXoLHbY2RVMUSinFB46JwlTsfhgmUm+i5SEo6NAZkWwtJDobJmdxcIG9RyHMFAJoI0DRmCtvn1DYJN3INomuBjckhoGhEPJ3KFAMLVnPPgKDQ/a81KfBJcVK2bLE9kFoAp5IuxKQOsFZc5zCMLZKJww1uAZgYoKaFxbrgBRKDN49K7WC4aOeXy4tgoyGOglHwSdNmaedJt3Q3fJqg8vZ7MU1mtyWG/5wX2cAogOS+cmIyLrxLJv4+Mp+eXbYw8RUAyP9XIW0KDcR7OHCOpfBoaNVwmQCYPlUiw6QB0QOcNc3wAGFC9A1NxHGbwHdO9j4YZ31OnJ4OckTCTCrl5ifipi+cyYz4kyzdXE6fCw36oHMLzAXnOp/huNeyqghHGPhAqobhg0hDQ0+mE65CGHOkz+GT5xVW1aNsATHcgJoCk3hoNPq6cIl2VI/ki6bKjNU80z5DLZiDHtu/Y9osn/776yfceQlQ8V5k64LNdrp6faYe0hsv1BdfrC7ZxQDa7//XtHZfLBZ++/ITPP/yE9/dP+PzDFx+Z7fcjwmcyf1V4Ovo6ckZiYyP1PBq8UwX3AjYJFGMeOAbw6283TOm4ffvA7eNm4+mHlw/eXNg3tO2Ktl3QtitUNnzcBxT3KDfNnCyXXQHZMKbg+voO2S74FxX88MM/ebis5aD69vFb8LxjHPj166/49vGt5PdKPnC5XNB7Dxo93EPsmUFV+Ubv/bvf8TStb5vlEtiukLa5h6Z4ctSsqogIAxV3YDyFiDn1HmPgdvvA0ZrdJ+o5xdJAZW4gIF3WGUK77+aKrnPiGDcjxaaYk6eSil4MjoX/OeVUY7nB8+Q9GJWunCsPRSrTF5cDeY+F135YeeHWrQBKCY3iXqNHp2iGvjbn3RY5KBjjjuP+xAPkv/qV8oW0QK/I5E14Mldl3Wh0h27G/2a0DcBB1bG0l2aGGAg5YaEUJTR3NRbXsJ8VcMohqcAqevIqOV1F5F29/0PDE3ficFbAwy/Pk6F5Or02VeX4owxdrmtrqGJiWBxjzk3uzRqGZkydQA8PtUAZCjeQlP1NqQtNoyevmam6+iMm6YFqB/WR2g6746FBFm7oxlBjMndKGL6shaggncvlAxdAZ/Txv+fFMuNFM19e55P/Z989A5zOn/3uWnP/eA7V4WtiI801FpiHfM6UFHmrti+A0DuKRpa/+XoQqEn1TPOeqrJFHyS+kNNahWZKXRs43ZG6eE2pE7ueaqHbENG2FHNbUy8HBIfTsfXFWuX5D3MEpo1mvUmZhEgzE1EMZfUfvZL0YU6svfKXwPOjlYmIm87v/p3G6BYux8JN3K81P1jqd7yBuiCNCjGnhjnNvgzWnxTxQOS/u4ksBKxF+Pbj/Ojy2Tq2x9a+81LgvEVKWq3lGq1/Y/37abvf+SpvkjL/PLjX+PssOexQiTyOoaIuk5F6AVjIoQlUG/qwJChNp6d98JQdyOny49qVn8j6S8UCMM0ze+ia04t6V7wDS7hyhiyvr/BMB3kOAtHmXm3+8/FxxzFmFnv5zutPAzaRzUscj8eUfv+e2DNUbJ4IdvCa9W/+JY8f2oIIw/RK2648tGDuxW0RyWiJbhoD4E5P5rl4QvkpEQ1MBYBpTs/m8mbXiCvPpp8WD5LC8GMz1Jwa1RXOb1oAgWWOcv4W9qcnQe+MGg3J6B1FhedcUCi0NfNSauIKcjhAYusbZCq25nmPXLGhss6fDcAmgh2GCu+wZzaZntsJsQls2N9RJjmuAsAIJF3POa8i2KWHh1zMtzO8zBjkTJAWuhrdMuOMjaNBmETVjTyiSvrkb218d6bHa0hLAoSYdu2xniJFsvmTEmsunfDE3v552IQ+9gCZXDALwoMjqytwnpwGoh8P011+yTXPVzJoctfzPg2kP959qRnW6EpVraKmw6+PE3+Gc5b8SlHG3Q12gk3qYNO4Yc4P+109jO5ewabDvEXu1uZ93B2IQOwz9ue408WXYFOelDFhvoVoZV4o9RP7CjbNwe9y3vJU+6wQpSIYfDEUSNJSfS/Ko6xrwY2jIdndIAYB6+TQjN93LlUUp9Ka50mYAfK6Z5MICTPC4Lbtgm2/oveO/VLAJk8CDElAX3rDtl+svb55ON0eOYq2ieWz1sxbCCWxoYDeqOr5mCy/g4bYtzE+053U/+E7lGzdPN5qGXuoJR3utw33+x3347C5HBOzT9xudxAs7J5/irRzu1n11XH33F8zaRkKsKqhAUfm5RW8BfTORVYxm9OST3tbphC18Brrnl9m6sRxPyJZ8vlF3l9P7nlCxrAudXkGV3IU6mGDnbiQk2UzWp+Wr47rLOLKz4mVpCh1xkQatgoEkYCZHj6qqUjRm4vV6LgHp8K8B0Xdi9D5Z3iu+E4K/cMVNlWgelYHz3a6oXboufvMi9s9hbyfs5wApFdI0SWA9Fxw8H2Oeqik0ZfqqTzH8YfK4NOX1B1s/V37Z6eg5En1dNZvX36h5qGYDlKlLBYpuhEqP802q4xqsJC6wYOGYkTFjvP8kaEaPegHmt7FanpXaNNUDiW1rMUAiX3t8rdK31i7p1OK4LtFhzvvLBFBOMEFnyctlXFUueD9UKcBGqsEm4IMNduMEMPSrqs7Kz9XZNEVJ3fKg7hdsOgkKYP8mqfGE8p3fHLKcH5XjVrSeP38d19/dM2pnWfrtkrY077wNgR46M+ztuyL8g3vkfhn9ewpdBJ/xrLxeeW5WkFfSZo4X/cwulMXl8/lNBZdhhHaxLL5peQPX9ee1wYw6vtsInVGAqJ5PRvj4LXwJM8L5gVGzkBBws0m29cxaflB7Bvu4dBl5Ly2Z0rgzORca6wTJ0Wj1fU7/kI90Z9Q6D65h3vLLGvKkdS2a5RNth9/PtkX3/N4rYDo+do/+izm6EnTj15aj5+dKa8s1fkJj7Lne5+Rbwrlmibbh+SBw7JIJ+lBO2i5pO7DM3XYQWmkX0Ee4gbFVrtneeQqjBeol31TjYgnylMC1NrM1bW7bjBPOXBrp5kqIcZc5AXHRLBpsqDSH7z+JGCTAjLsZIjZ0yN2c6CeD+W80zUSBRB6nLSg8TBqJYQuGzszjKbm/WEVR23Su0woJrpgMUEUGvY/04gozFCUeUCHeUc0P2Vo7rYVqPpU6OFlatWV28OS/tIxHqrQwxaUBBplTznwOup5Uv6odPi02f2piLaKltlkxXvOjD+w2YlU3yROpwBT6plkl5t0jIbZh4FNG/NU2XcXEYxtQ5tqsaew02OBYhMLobtKw0UEF+l4aRs6gItY+cs2Z+R1iipbJVn5Mh9S3300jvIm2ORKpVhC2/DuKfMUd3PjEdiIfD32WYRc9mmiU1xpE/GE4ILZW/zN/ExTzAthSjOvpyZhKAbZu/FFsEcABz/tfp4Px04QrjHMKNwkwvP4HTjOArqtfE0e3sIluXD46OdpCWoetVT83fCZvh/jeeo8UyOfUNIwhWwJ+7nfzJifFWQyI2PcPbH3/XBvpLslZZ5mPKvO2GtWiXFAxx1KsGne7X43Zo5xt/xLxbMpwug0gSSCTYOeTSFEbMJM3aEXovM2LWaQkrMw/C4N9tB8qiJ6mm0+IzybCu1Q+ctPW9BJ7h0t65WeSS2OrjvE0/lTqamhcprDMFqiF5RXTmlitN88J5O0BtksH8DlcrWE0u6Z1LeO66vlY9r67lWljP4nHNRpHdv1agzYQavL9YrL5Wo5VvY7mjRcXt6s+tr+CulXoO2Y2ECRr0Dk5BpD3LvJk/IrIm8goSd1urXpcqESIZw+pZPhWwYKtCbov/yKj/uB43aPyl4qllNoTpMRU4HL9dUrkQG3+x3//te/o7eG28dHVJyZOrH1DdfLFYB77MGU9Na34GtzKppY8uPfvn0z6qLnq9rvImKhitIs4bcnS57uAfjxcUs6dHoSeIUtPy3bmITbKZPg7PCEtq03XC57Ji3vl0hsPcfE0Rw0gz+XFEkWQuBKUyvovUH37vKa8tHOubuHAPPQhxXGmDfN9lfHGA1W2eWGpgTkBGMoxI48ABgwGPniQm42k+nNTtfDo4biSBBhXih8tpGP8++YN/4AohMdsLDDCQAGfpkn9AiwsYY02pown5HnaYiy2f91rwfzUhlmlcYsQa+UAY8MSvIXwPfZcb9Boek5y+/ZjiJANH4W5y8QiHTTPyZ5UQvdKvp7Mg6zd8G9os/m7eoadMhN7xuLEkiaBbwvw85c/sPzTgI5rn9gprVMG2AylglcK8ywQFgFaOL46u/RN6mjfm6ILW2U685/85pYo3IN9cVoP5XU+FtqS0zy/QQ0Co964OG73/M0+m95sfqyLn18fDGJeFS+O31eUAJ2NH9dGhK7x79XEX++AbEKeFhf6mJVR4uJ5utEg8tnZevlWtfPdKW7J80/HUP52/RQ9tMfkUvuDaYdx21pPM+f1vIzAHGIvFJu6XxZA8JTUv5D/J2tWJadKOmTQKlMVCAplq3SAun4pOueqe8cTXRejrhHsfCOp1Ssj+0tHrE+ddMVken65FR6A+OBr2S/Hj/8vc+eyY/nwNL/P3vyH3n99zwnloOLsTBHLYTsX5zHH9ep066k/jfVHS+KB6Dbd1trQO/Q0TFaw4BVpmXScQ09crp+YG3nXjvtQrd37NeUbDYEWWWIyOJE8D1Py8oTyNdi/R2E2qRhk2aHoH84238asAngohE8MrtIC6Owl8T+Op3EV2NK4HzJAAAgAElEQVSVPyVmzhIU+sVaGRCZ93oKRTCHwJK9k5laFTRzSdZIjsuE5TxzD22TVQk0Ca/KDMTfhTu44Jn+WST/VetbyfrwKBROjEuF//BhCOJjSMqiE3DzVYBFzEjtaoZjb1YxD56rxapF0bhJw1gm3CuBIVne3rbZvLklF8xfxNwLXfnu7mbdm6Ui3oRZs5qDTZkbQZEnBcvLaSZ3awJMFWjixmaoZCT+5jwVSR2VeIBY7ZmPC2XVsnIj8y+F95JVirO/4cAS0uPJP+MaUAkivVZhamucBnMCY5L9EADdAEKIe5cgFRi6FQOrsv78RZCXs5Hjtj1W6E+NrheF1i8Mkly3agGMVsCUdMkTTxqplui6gk0eIjes5Ou4W+jR/bjjuFt1qvvdc7q4h5PqHQiw6WbAk4NNFqJnIXNjAZsUhycRr15LPI0/DqPNOC13TyKFglV5zC0ciDxn9RrMdQ4W7v9kkcrXIt8TxLbBV+PF/yVzRRFYpW0tVKf04IhnlrBOlBBNcaNQxCuZSHgzGd/pHua5eSz7jrZt6NtuP/uGvlnOpq3v7nVjzxAYf5HeLXxOrDy7Je7e0HqHwpKBSjyPnkLAGIpjzBDCUMXdwyRHCaUbR0kSHEIEp3RpTuVRFUWdLWWixXFYzPzH7QYFcNytkhnUaOToHft+sdw8kQTYFIhjTNxuNzRp+PjmYJOHa259RKJLkkZvmW8Qgqyk6OFkCo0yyaSvJVxWMrQgktqPA9UoJJ9p7sFaPZv4muW5JD+epvXWjB8RLFD1gw/Pn1L5UpPMeze5/uwHIu8LQxi6A5wEm9QR/6owc23mtAIkVvXJ9zGmK3/cz8Pa0BIeR6Dc6T/+JjhOHqdI/qXO132TioqDVhYak2F0PHHUUGqDv3rbczp/83xvATYJLJGvCPo0hTXDRP7oVXlGkf9cT1Uw3Jdz+Dzc5JH31FN4C828A1DjJbLKHc7hXPLOmO4VuotYfjeZ3XtJczef9QA2lT2bHlPObaetNdSaytLfzFXoglzyLmjhzW5oMLT/qW72vZeLuHqHefP109xlq+cQrWdhLQQG2WN+zlYeVol7rDwN5Topz+We1dM18TsNdUV46geg5bqMOaPPZYx1HN8zZr9nJP23vhJEhesoz9t/6M8TcGfhj3V9ar95DRDzuPztf2WIHuqn2eDDPf6Z6tq29yU/w+NdWp/8MPDyzfk+UC3NO5/8nW+6NCPln5Su9Rf/VGu/liu9TQHdqB6hG+4BPoV6VYtmKq9gnzjvC7gZmpAuvSCbX/rlAoCeM9/dK6jT/zjXcZi1fhy/czlPogYRFfA7oMw/AhR97/5n/OeP7vGu5rxVujvxgPPff9SHP/rue15b5Hui5aD2Ce956Cv1wbKIaa+UBSm2dHVgCPvyNCflgUCxyUIDP9Ej+3bmmcy7aUN0j6YCcP8eHz3PVRZ9Ud9uhsEwxc4fvf5UYFMTyysjkAhbkmYbtVG8S3NvdJYWtHutFGLJ8UICcmGbDKESBp4uc5bVZKCG5WwSKLZmgMlURNhSlBTczHCad/fH0gmlgl4UPYG4S764R8YE5rTcR/H3Cn7VuPAVHCmx7hUcKvMan4qd9IpYic3mQJOFuEnEOkMZJ58Ckhtkg4V27G3DJlb6h677Wa2HHhl3jHkUsEmwOWhzXK+Yx4Hbb9/w8fVXG6/7Zkd509Y9pt9KZ3fxEDcI+pg2v0yKEuM+M5cyIUIjWCIUhwCLPdBBo+GJnUE64Hs2mKcG6+mKtelSsZk31xRYSIYIhnsrjW59Gc0q0M34cW8nyOLZRMOFYNTKdMxImfw0JWRcowC0C1x3jbU2UgrNoAj+nMr1FIcb88Sk6O8cfs/ZQHhD8P6y/zJBuu0JqIZBw1xJdGvgma7ODC0zz6ZhINJhSbMt9CU9mm4fHxjHwP1+w/1uVevuN/PSYIid5VGZxbNpAnrkNdOryg17BqvRMUyoJggPYzD2kJaJNYUogbZ1skMHlJz37mGNZ90q7yfIWoTiPAF8QPCpsiGQ4oua3+NDYg8FGTQA3fromFMVmIh90Dx8jYnmN//MwtdCORNB91xL+/UVfd+wXV7QX67YNvNyaq2jE2wCaQYYUyC9oe/m/URO0PoFaDswmTcL+DgsMfvffv4KlQ3719+w//I1aBQKz6XFEGSNhO7WVxpFbeUbheWwnTmOyAmkgOUDOqxU+q9ff8O+bziOEdUQx5zoveHv7z+jt46ff/kZ3759xPrcHdwEJDybyBcCICqybPdE6WMcODxXkeUCyYpSFZxgG2zvOA4HLQhsMK8T78sxx1yA7eTflZaoe7VuJ8q9i8l7ZydTBKINFvHdMadV0pxDMD3BtaqGJ6uLfmxtg6qBa1uU96Wca5YrwfkIxzXGgd9+ax6C6KGNXbHtftCkDhpMS1LoleZT/gKrVwL58vDPHHiIk8YwSlN2s+R7rWgY3/u6b17Jj3kd6dU55sDt44Y5DYSk5xIBpZDZjYcQWvbvSTOsn/+B0pig6yoX1pY51iSD1EFSJgwvWZ+ySLIVp7EHzyYAdihpwDFUoLO58uvgU9FXQldynTBDHxF7c0b7Dvhz3sTD/89r5EYGdU3qOwEykd0XEEJPP5yDfI9jyJjrBMjrgVCLzyIE4iSLF7AGxreG66FwHaKmSqy5lrhM37umuR5ELTuZ+CrKhKtV1r+MzNSjR9PqybysrzrWRSf+g9cfXaOqOMhX/gED7PcAsbOh/Ed9ONPFlDycpsOEvXlWoqI31XnV8rfCw3T5BdN15EOXdmIdyzWRD3V5q9liz+zCDwBIIN+bRi1re1YjkfrqqdXlabTf6claG6MMSlbNdZlQbYVHIuRfUHRa9QvQV5eu4BBLf/hl/S4P+umxxvmxVcoqkTnG3Ian+0o31U9nZdKTiSkXphc0YXh9KZLxXwnYPAMb/pH7vv+Qf+CSP9h//z2v7/bVZYsqgLbmDaz31T1a+3rmAXmIZfN15tPVE7m+no37v5Xf/V67ta9/xOsq2Bdepkw/EGBT+hX+3utPBTaReZhGWidZ0UTDkyg8cU7j88wo0V6cOKHwPip8Wm/NRaf5lZFl1kYcRkKXJJ5qHXTQhxng/YzNQaZAA/1+EYmTBygVW7+GSgsVF3K2CiC4AhVl7BmmIusPqJwhCY4Z6Hvz8AdP2sprDACbkBNnaDwplo4mgku/YOtbAGP1Gcb4JsbRMGaPnE1NBJuHr3URjMOqCHlCDJvHWAdTrOBhNpas3YAn82yakGmhjerhd+0Jretp7tQVfVkyciOTcgdwUAhieVFIpDIX4tcXNELUeoM2wRR1sAmYnuh7dlPoIoQOMC8ngJnlEmxiLh/SexglbkgsTKjQCdLtn/JNw9f52dhWoQoK45hHFLp4dnZUFIgCtCgKky7gXNrGEgrIwqwJBDmyR9ELTUDJwJ+B4V5LOpmPaeK43wNsOg7LOXO73TDHwHHzfExMrsssivOOOW62qmpeJ5Egmm37Z1ZIIMOQ6ti0jL9OrA1Vns79cm9uXNseYYjJw63nU7PS0Ek4+v2F7sOrJ16prrIvD/LI8xwRKLLhrLQnESLH8Npm743FEnoUYoCIJ/Y2D6XIrdR3q1zWdwOetxVsggLaJDyiIMV8kY4AxMBcRWYYftzu+PrbN/TjwHY/FrqDhwFyTRchy9lZeOyTdVTFcbeQTfJ4VcX9fgcgDiz1xbNojOHgkH338fGB+/0oPFWhhosFuFCfV99FJCr3Hccd9/vNilNcbB6W8uUK56/izx8OxmTbk4m6Y574LF3aOfMDAaLIAA1llLljQcEG/H/Mve2S4ziuLbpAypk9c/b7P+iNOF2VlkjcH8ACQFrOqp7ZJ6LUnWVLlih+gPhYBEAot2BimPF0gL9bSPGcigFuAZ0hqID66o9vn967h3Sb3LHciy1Cyw1Ie6A1wekbSoxreBjhjTeKEkww7yB6XJEe4OfTv1cZxvnHHc12OS6+oykAZihOQIv3SPefNMLEp4Pe13VayOH5xOXeTcN3nCEd3Cmo3xkWv1oJvjOuXw/rs/29diF6rijjWO5dDO89Uak/L943gGAOm7PNz1uhsexvGpN44dEBCNKAa80WA5vAXZwgmgbDutru9AHqbVqbGKEXlZfcg053YFMmcKVsZx63mtz1jg/txs+4LgMJJb1HpPDvZWjau3sKDYU+jCLr/Zr3A6R44G+kUiGCvc57/b8zuL7jw/sz3/2mipDlv3pu79t38+GfgE1RHvnsaqCUmwGqDwG+htqVSmuAfYFO6Gs5ZdyCo5XbtNwDFHUNy23xRjiQEmOmuLnzpj21HI6rncT7BUi+W3QSLgSHPlOvx/QnnFPyH0UytBkqKIq9VMuT2slRz2TnYVIWmyFK0vLAcs0tS6H+xp9u9OqbewJ7cnk81RfGPEckz8MGvtO/9/d8IxfyXa/3fDv7+KOup5XUclrU8a089vWe+2PVdZdf4sJ964vKfHvPPtfrtV22VhtGROLzHd+w9q1e4e/42u8CTe940a/k+1059ZVVn1FUb39ynffHHwI2mQLZmnqYFfMImWVM9dIEH1eaxA0PmrPiKG9hhS8CDiDKDJaXv8RKTgUuBAp19E5hnk3dPZum302l+njYCv6zNZwAulh8JvMvAUx8HawPcCWlKdDhCnkXQNTDS4qCDoQC1bwPmkjs5tFo+JX7w/xypnnQ8AvAqYXHQ6wGamG64oqBJ1jtHhJztAO9eU4PJh71rp/zspw01wG4Z9ODK87OnbUJ9Lowvxqe8JxN7He1bV976bMH7BrcdBR/Rt0YiFEtgmExhIqxbmMtbBwQT1u+qeGGj6cFc13Ly2JS1qbB9DmatgrVIru5dAEaASWj0ekAEnM3XcWzKT89Hw3zOc3maxsehgcPuUOuqCMoEa5QprBcyLwkvVv5jC62UFzV/P31+t21LGv9fqOQMcF02W7CVu4NyJnXFUai6zEx5rYL3XQPkoHz64nn11eATXPatTEHnj+/MBxsOk/zBiDYRJBIuKf0vKDzhIFNFuJZDYXFaACQXlfRhFTI2NYclnqavbf0CRm5lyMSPO/l4E3+nS7AqYg4TYeQaxayEnkgBJDuClUrn5kPr9ZYymcqeM4DI4dXWYF3sKl5Hp/unk1wjyfbUc0WD+j1dHx8oB8H+mH5fFo/IO3h8bfdw/dq860N0yfd8L5rKuja3JDsqRio4sfPEyo/HWQxAIPgzeF558JTLZQCjT5hMuw7hWAx7jxsjrTABM1fzxO9jUjMbbugDTeSbVtcmwOwcGqlh5G9gyGc4Y0EZL4RHxF63o4xcV6newE3V47pweGLFGG02NyzviV4KkHQwWoW48p5oPOTmp8NQCTVNmDFdwci4D48TJV9rArbUEHRu+/eIs1yZU3FaM3mY/N3W8NtJdclbHNPpt59IUU8ebmH0835wOfHgTEHjuPA+Tzx42/Fz59PcBOQsAImoLNnbi6oezHR07BYGtHz1aDIdkE1t4x3A4n5Dtn/8bSyLNuVb0IiCfgYA8+n5Zz6+fUDYwx8fRFsGgsIafTqniiafDjtjmQeWutbfsvnFir339aru1K6X4t3+cNxT/GyZbu5MxR368w5SDmQfIqx6M15S5PM+xLgdBkiRWkbqEFGNGOZ24iwXW6aIQWcyb7TfIVmXs0qO5ZFipAhta+Tp1aDg9u2E1jq/chdHR14omf6O0OEIYszDOxCayKRWy/Zfd4TwuzmWqx/kZ7IKtT6YTo/UEWEGIYuoHhDa/m9tofeAdVL4B0P/h2Q55VvO9j0i+fy/vs6/+77azkvRihmFa3x59SRPETcBuF48H3ex0zuDvZ/1QWr0QzEnOR53FN5uf8bdsLayOUzdJc3R/XAvC1neSdergUPu9FXzXBnzqv0W7B0KFk/wnHCXDkoqVkW+nqtWur+/JR4Nxe9uKhIfWkyu2qKTYA5O22yuB7DmIrm14aVF8nRiqdTZFfxsG9wsxrHuTn2hdeXRry05/XQ/NBaDu4H5/d+RDKWm3eB43hXznpPlQv1er3/zlappWn5N3RzzfFeZWN9/528nCW1ExeqdGkL7ZM5Vw+npDUuxt314X076nP1vrp7rdVP4rd3tl0ptZRd31Hb5z1HPvWuKPwxYBMATDRxsKELVN1iB8EmyZ0LXGEV5jpwQqCSbUcqBRXxJ8dNIVmEKIzxJH8n81UcMj25l7oyk271zVfrj8OE/+HeTV3MVV5bg3hcY6tlq0Ruj6kWLtMEEN8kqfWOdphnT/U+ArBsZ9iZDLTlbwA8SSr7wYT34/Ew0Kf3ophvW9uzLxalpyo/FuIm0iy3iSdCppEss1supTGAcaA37xvkJmizCebZoEcPsOkQA90gdl8PuSo4oJ4jqmwrrO7ZxIkVTCXHjVfI1DNJeFWv8lMBptEBDSzmDotS1cMjWtIRwT6xgfdPK2M2ZK4m/xtu81eAyb4LhtdzigFso/kqRTzvrRSushemtJ8jeYBEklAKkFfG+Q2vWEp7l//jO6T8BVUPwyNj7OcYBiDNaWATjVC+WpBeT3N66NzA+fWF58+fmO4tYkbYD/Ns+vnTEwM/cQ3zdhpedqyuu3cc5gDm5X0zlntqstJYffR+jD5m277XoezaJqiwCa/wcvCktQQQ4z2af7FqF7qBsMhSK0LdxkvRLLeRGTHGwziv66o5V9XrCmIoVmByXwPEAhxvno9JBOjkVQxzsXtUgYOGFsGmxwOtN8vT1D8csDKepdIhN7Su6Jg+2YYasN+1YagpeNODsBkG9uPrxIhkjOmxJiL4/OsDvSc4VRWK8MjhTiKFHy50oRqJ5ytfDTrS04GPBC4v35VOkVvSNs/dNOeETEtYXsvh1s5WJpZ6zGkKzjVthzqGTNvtZszYek4vmjtguYlswSDXg338jkJTmsSnqoa5cpfFYME02AGZzZ1EPLchBGNcEN+VMYnKRvQ43MOsCXSYPnBMG5fhYJNtziAOWppC3jzM/XBwqbvh33t3IBFo8pd7KTU8v54Y1xe+vuy9y6JCMy8wyvoGgk1uCHNziQCcCgegIsz8RgE6IVENGhSoz5djGj2jgBTXdeHraWGUP34SbPoKnkdQI6eI1bHm5qq0yu87/d6tvtYy3x3vf7t/F4AFSzdDMfPe7bw32uR8xHrwyHOn8c7yWhZu86uaFv6v16P1VPB3Dxq43sm8onFtbz8QeSarJ+x5nnFuixYZep1HC/4mG3/hXD+ORwBNx/Fw4OkoeuhWb++7fSdJUl+eSF7zc+rJcU8OY95Ty+Hh7+EGBhn2nu3dPbzqWO/8tv7ldvby0kfLONz0w3e/hZftbzxf6/jOS+E7wKneez/fnNab65E0HFDGjVENqONY36krX9XKXbZzeX/P0ubaPqx2grFAWZ5R3Pej8e55ew+7Zpl3+6EI200rKgBes+cnPxHd5xs78U7qU2X8gvb0hc7goIFuvCx4vc8dJmDmaDXQHnNAC1TgaxsAneqait9fdsybnseW+Qq5GBTixr1iE1/S3DBJi1wrbazj8fa44dd1HLyz7h6Mut/9pkCp05t7lqF99453dd/G6G0t+E3jKV8e3ICZu3cZmIQyGzh/6Q3OBeqdH+cChI1YlX+05d/xjHdHBae4+FtlQpZDL6pCt+Ud9f4KXtl3c4IhOMox+EYliOMPApusYT2ClC25K6Q7H7SdgaQaM819hNzwk2ZGxmKFkUCEBpqz55inZjAt11TT60ndyDs6oMBxdPPoAYKZUQD2bihRa57E2o04Zf4lZ5IV5GJYS3OhqSLo8BXZo+N4uCfS42AnAUhiDCUDEkobFYaGmnDUZm6uhts9BC+y6OyVnAH2PZJrikQ4lkIx2wy6UxhgYmFfDSIKtAZ1dHWoTdATE5dOPHXidCVfQc8m81vqYHsUX04RifrbM+a5wG27s74JBMDrrdHeGPLoEyeL0FlKjhxJVcrmpTEh9T7kbdbXzZSAnu9QMaMlPJKYF8oTgg+R8Goa4nlovJ8jl5MidpngKvuS6HSZ6DtgVFhqACRUsuOf9C7w9uysLahCXH7N+fImPhciJIcgFZooKyu/lOPKKVwhUdXc6cU72xKAW+6k6Um7x7hs9XYM23FuXObF5CDTuC7bTW54YnAqu5EThGCTh9NRuPDdFLpLbZ35htJd21o7wj+ogKSWBq7gLsKEUpaKuVooOYt0svT5xvLcsPf6dqzhPgLYqvgSypSGSnfwmSvnBLgX/lJAIk+cBwObTKUCCDL5b+EBkt4Bxpv8L7wLJZKG98MSe5t302F18BV8YYKf1BGAonjTy48KKHec7EdflFIuVETO6iZojhxbbqgetGe6WlmFFQSAQW/PpZNdmTWvxhb3QRE8kHkmZjPDes7cXOLo7HvLQTRYppScej4JWwN6t+TWdeteuNw5jobjMqCfsoj1VXDFl8qUc4XIAVYJeHq/swJVYXcZ4rkVRZnsm2TMOa/Rj3N4yDQRddIv1sOw8QmI8QDPnOWgj81EFQOBDJQRxLZ1Os0zKQw/ygxBbz36enZb4NE5zYN5DPMIg3nHTZkYCrTDxmfasLregaCLkAQxb1M6BIfzsYn/6NnETTbYcCWf0VDqbEc/Syh/XZas/bwuDw+2T8vPZd6YwU68e2tOuQVk4rvcKLEPjYTuCWC7gcC2lsGqskG2q6skSV5awYXwIPbyDbR0z6aR8ol9yvG0jTwajqaQAL0lxgnCOVsVnDQr4tONtsY8mkXt4ZfwUiiE/wIo+BPdwznn1AVsUlUfpxFgU/QxgHdgE8HC9MI04FRVA5Cu9y7GAjzExvO41LoK+0TWa5EGoNBkXJtB9DFvc0cv3lxAfALqY80T9+IlXD7ZJ7VN/KThtgNQ+/EOLLo3pGzKjg0wuns+78967nX+Doytz98DTcknQ9+Bhkragg4px3ktiTO4tBR9QVkWf7RGv+RsAm6veWeEruJVi2piozmUazu/gGZodmUalY/Y46/9aDOYDRE3wpjIwvmt02Zz4LnBN19oLbwoqXeybuTSEm/w8tiBBdh5kVQ+D+yWGLQYv+UZWZ9frjexiBBd7xN6bU6AScxFJdUn4GVOpJ0XXY4KOL0s/H4HyvwC6LgDKcqP3z57V/4Ojrzox79Zvx3U/efHzp9/cXeZxyuA+j7Ubl/MJI+vfKQ+/64u9X312V/xotq3v8srKSNSP971xfvjjwGbRBS9eU6f5qETNgOhKmiXrxD6yjvEwjNUFUN91x3MUCAy8dGKZBsDoZHA87YKVm5nr+phU5YYG4Dlwujdk8caETA0rR22G9vfR3dDoOHjcdjK6/CkmsO1cAcPxPP5SNMYjI/+gaN1PD4OPD59J6YPCyUJYxavAlEaFftsb13zUZjnCOZklADChd+Zm/AE9ZO2pYV/eZcBDRiiOCkcIyzKxKJOe9DCxjoAjSTOP+eFczzx97zwt9KzyXb5+xDbeW42xSX2NzDRIfjyoW3qyWoxMDGKh1ZRBCTbrdkpXn8NYR3XvI2tW/hPAFROSqaUO5ipR8iSUAwZkuTLqooBhXskhWeTj4ODTVNsdwADmbSATRrg06W2/TzHbJH0NDDjLI1H5GzwdtDgyJlCF9sZxpx5l9U+49xgviuoQj0kaO733DzHOrsqsBBkGjN+aZpHnH2ah1HIe85yJv+eA6ev8p/Pn54I/MR1cuX/b8zhYXRj2E5yzK0Uq6jubM4VBjWPOQQwl/JyAcWqIgULBSN9qff1ZI8u81XinhwcQD1ZLpgkH4C4Yj109VxpQICdnLwtQt/q32LFRcJ9C3ETBzUMgHo8PizB8uOwa73jeHxARPDoR4b0NpvXyoYRUFk1H+e8pr6lwqPxnMKAnaM/7P5SRxoQBJpspzkqkZJYIGDeYa0FWGWsSAFpkH6gN7Xcaarow7xojg/b8Q7uIQdtvjjQ8PF44HgcDmjqJkjtpb3UJWg+DHdrd3/0UHZJGIs7c/SHzb9oj/MkG4OGcQ1cl/rY2j3TAe/DASV66RgdG2l+PDoejwPQBwSfkAY8DqvtdBpbDJzxRrEqDJKLeBZaXrH5MF2dP6Ks7OXc0nnayutIkGGlVwRAGIo2Z51YiJ1iQsQNV0dgp0wILvcSFkC77bzQWniItvkApoVrWr8ono8DMod5wcyBqROXemJ093KRCWjr6BPAw3fJ683rnl59YfBxfjM8l3LeeZ0AZKT+HwEGCRIzncb1BefPz+s0cOm88PXzC9e48PePH7jGhefPJ67zwjlOnNdZnkOAcrHZJYwvAbANGQAMpWcyzKCBmodauYeJbJs0dHFZ7h6/zT0OlTvFKRBbuoRxpPF+9f4Z5xUyFgIPPyt1LO2I96PFvBKx7x/Hh4X3c/6AvLYodQVUqQcXX2jcNfFlL1m9bCimYj7HcOeCHrWt4zhwHIeDTTPAJnqmEWzib7nIs4bD7QuZpmumZxPzsh3Hx3IPn/VqWv95SHhMa86wou/toFHO6lWm1/60cV+fI++0HT3dO/gaQddc1aeXVw0xvDO+Wln4YJhzBeMq2HRnIH1neC0eBzHG7+/fjzuPj7vnFoAX7z270rOpnAvCm5JzhIvunXnfRCJktIvEmCoQ96QEw7IBUL12d09t14tBGjcjdSLqNDsdSZatHulBLYt0ynsWXTGuVanAerQYM7NfDIAWgacHAfrsrrtoLFiZnBS7VnQ52oXWDgl+dqe/1u+5SUTzfn1Da5KcP3TyZVUW7sUk6IwD0aLX8z8t2TvVvKDI51W06GrTdPQbOr0DLv4zUOZ/97gDZ35nLu5l/G/X6Ve/Ewzn8TZU9KbMO161P7fzkLv79zDjO/70O8dv9bei8K91MePu+GPAJoCTneFINJQMbOpNDNxpmfNDHAUMI8aVIDP+2MFcJaBK1zLpId+pfdFL1EPmrMy5MGAK+ilmlJp3gLv29t3gQzDZQM5ZLhCDxcI5wJastdsqe+sWVtKPSNyoW7ng96jQmpwAACAASURBVC0Loyzs0K/Nmau9XsFbUizGVNWFS+HgrloJ5GRdrEITFmsmVvdpYWFTFacOPMeFCxOz2a1TxBVLX51sDaOJhZi14kkkrhhNuKeQeQn4VoagywLzGplizDpyiYjSQ+Jagk1b32iOWQpiFz1xK0NrEMnHzU4g0MT+cs8mf198wlbTGTqnyE+NtqTQ8YaWzzx2pqTlOsGmKElL43iz1qe8/eVn3DC9uFyrw+fimiwt4ENLMaF4ry3kQ1ztV891Y3HPl6/cDvd4Mk+nOa4AmUyRdbfVZVBT6Ym+KAZGtnnvltLQoHtZ2yYSioqdJvgjm3cE+5PjI44aGE/sYYjADSKucHIuRz6c+GuxcQBpvYkBS+Lu+dJ6eDYdh4Haj4cZM60fBspIM7BJzNPSFLUgaNDAFs0+sHmjobyTxemkqmTzsreOx/GBCjYxFMZ4nimJBPFjdUeSb6rLhBY7ak7oRBgpcHqpI9Y99DiJ1ECx1mxn0dYE5j8zy+PitdYIoatlEueAmuxhqDXpvbDbMm98ssW9SVri3jxWFhUKFIPXfgsWxnxDoZZTDgb79egtYzo5CwvgdSMJonyXhdHYQvcLjXuLxXelpEyiQmKHZ6CbiHFPecNayNpXqu51qGAutfzjhhYefjXhvEBLwg6GZg3YDoUAvWOXsZlqHqlWLCZDG1SNfpsk26ATdSUEHpWVqJcb7S1iiotNRRdQzeSuBJtqmNw1hu9k6OeXXRsX+RyAwXnm+V/ceyrBJgkvlRk0gHw/pYQWGvf/ypJe9CPPg2MvhmsyAs7d5PmSbMTlKSk4aSwNqzQqVz2LRCg0zr0aUubabgDGWdAqq69R/2hHyNJ13lubUlcQYPHa0eKpm4yiztXsn1zc8Le0hirLOR8qOAF/3wKySfSWf/7eynPUJuZzTuwX2Y68QD8XdQFZQfqYNzR6St3rXwWb2N5W9HuONcOda+jc7gXAa9Ur4s7DIPqVQIzuPVQYW/m2TPNdf0Jw/HoTCObGYl/xrObuu5Me3aCnl/eH69kChNwKD+LmeRibxKZDmafM6sBw/I3igh/UIeU8r/fELJYaKbGWk0KidEeZE0GJwo5W7299fU88nu+K/GBB0UV+I3kCikw0+edWkFohMUdAYGmWZ5EVrnw9XVhZiZeDdoZtFlDkGt8jhUsylyYQ91feq3B5kOE10V8hWMozvMZqLdM0dBA+s9HqDRDx++BEvW8XgHdHLrwEf0WQaa3wL8quc11f7s/q7/W5aevLWRLBQgZy3y+rhV3G6C0xvR4V4Mxr+f6KGWRpXrZq6UBFrXvU6qXea1qYd7hSvc7ddVkJA0t57XUM7o4/CGzKVYreD3Rf8WYYXWvuMVnBJjHV9LIkDlvsPxs+s3PsLctQGCtac4Goh9JUzyZOjcfDcnpMnRhTE2xCA7rt0FTzKzE3BxUajrttqa2mgOaSCmx1zbwLjuNhHge9oX0cwexep12eVHOXBBvtUli7JBlgME8B1HNJEP0PRp3b4zk4opFbagKYx6YIehhZK4rDhHlV/XhaKNP/9/U3fvz4Gz/HE+fDnlNfIW6e8Lf1DjRPCtxs5fJ0gdGGg4baoXOgdcE4HDQC48HdnBCuHggytMf/KKxFAQIA0vzZSLFIKRn93EhHkuqn0LvAKYaJbSFFcBAwbGEOgt4fTHPLALXpVWZmKrYpBzObkYIsGYMWAaUch5BTVq9MUls8FUhXSlmmqYiEwZn3FT0h+SsQRn5UOQrMI2ifvajpWdWlhaEHeCjFtKTg9Gh6/vxhIXLnT8zxxBgnztN2n3t+ea6mL+7epTFem49JvCPldzHH48sW8odqGpc2ATa3mvOBZucM+0BDAJIRdsRRdx7BP4Gg9w+fWx1cf17cZSWTb7feltVgiMQqKD2b7Jok75LcKe4R4WuH5U/yazWJdwBfUuhxSmk7QnlWAMOTW4eCDXvuOA58fn66IkYe0r2u3LigobUj6QeW9Jo7r4ypkGZeWIBAzieuOfHx+cDHx8NrdPi8sPn8+PiwMBedmSBerU8/P82jCEOh9ADa8pOJyxMttKNuoE6X/w0DAnpHuTHYHhBkP/DTvBMOnzLOu8bAcLo63FOSq9MDVqfuiUNbyV03pycTHQ3aJkQvHDLd89Pnq9cx+hEK9ZxHbGDG+mu2dFTFAuBOl9wmnc8WSoCES810kMe8ZuA1FgfgSdPxPV/in2m0Mnl0GHrzhOACpmA+L6A1DB1Asx3ppAnGvCDzgvaOE54E/fqCzBOHKD4PC3u6LgI8JhMmFKMxG8YEmq88Nw8RV9ttNJCKZnWd7rUyCHI5QA4RyJi2sNJdL2len5nG50WPEDe2z+vC6Ttu/vxh/O1v3/jg6+uJ6xzG+9wbdA7OGJMcvXV06e7p5HqC5khxtFLe+3AyhxG0zH3rm1BG64YCwhAUJsk1notZ32QhoI/Hw0Vy6g+N8jpk2dqOBgLSEnmZOnmiZtWND6UBVr0s/H8ED5OcX82pffodL9uGa4LHy0oB+9SeyhBwb7+F2Kvriua13QbnrCy6IY3wJsBRQ5lFco3MO0cnMK/T5k5bZUOtWUbgrvNTvW8ENLvXa+vd1fss79HtnvAantkPxmNtTEO32ECn61p3Bq0hdNVzoPbHO6+iO++k767VI6iGenISTL0pW1zqoKD+VW4tQNtweVPDC6fPecoi7vZ0DdsIAEyPQR1C4N73vtGP20Pc6Ge2Hvo9earKGhURVS/8XKjj5Y85h53FzbYtYPOeFwUo6WH5yYmHILDJHtMXaGtNz3MX3lcpmJyOBcp8kGG7OV+AL86J5WCjx1/qRM31HsuBxFD4WJyqAIaQXzh3LPOKdBEglXO9oYprCbsX97oUpNokYK6+6TtZMgUT4XyB4OgHAHEv09d7Cjs1RqnTvfLdfuXiS6G/NZSujtL7a9H7skjmcv/7Z9YjeY7cUsfvHsFp8N6b5q4+enNWoVXqK1ysq9xvmRlLKQLLxwXAFr8J/FXQX7L/pPCV4C9tLzZB2Fwm4c6JuvAf46fkuUabkQpfQ4iWQ8q/7469pQRSNesfi2eKzBb2/viDwCaEEGnClWfx1R33ClIsYXT0bGq+9Q6TWKciZATjpbuRsIJNdmUDm0RAjVw9NC1D5syzabg7ju3s5oyvdSeGV2GPMimrQKXQNaZNCU+CbJE/hbuhhFfTS9+tr6srgdkweobN8jvinfne9Y+qiD3g0sUNaLSMVTYDmmCVC6FYxVDzbHJF+jkGvsaFE9MFGAWiYNIt/2jQ1jClYYiFugylsqOBgWkDtAvkkKWrK9g0ufIZHnPeDrF3wHMr8bl8vjJUiX5uZSenXZoqBah43ahwU00TS2pvdfX7kYJ3QtOTyZnNRHmeslBYXw5vUXa1KDn+mwIm0EPh8LlC1logdGLf0cdVE2Zf+GkAvF6XdZUq67s8zmOykKSXMmNByA9u0HKlNHZzuEbuWkflljmdItm43WusgeNe6+yC5HaV5/6TD0dTRYLdRA+V0DpxWjOPI3ioJZWO7G/1gaf+YBsPPDxMqkMK2ARU0OhwgKYH4NT7YXZgKO2vYBPD1tpxBOjRPWfS8XBvp35EyF3uVsd6s6NY7wJsTqPD5qBnhEk4vT0eDzw+P0lpDoLTQ4lJypsnFofnZ1NAhu9ypuEybgC/oE/jwb019F4GWpPuO5XO6UpCWfFsvsMnmloYcB1nllYMLrY4jHgtHkfsDR0m/EMTmOmlMydZr5VP0JOTv7nh7sqKkBf4xBQqAAXUsUeHhzHPqE8LxZnKsykuktvcFP5GL4AkfO4sleyOKlnyTCn9bedraAhCGVaYa1MWWHfWXPUWl8XhIZJJt1VLmQBUxTdT6K70tVTVxGhmToYnWJ3MqBdcRRYzIb9O4z+NYBdsN7w2NYEQYQiZGH8twFh4LkyNhQeK2wnfEtnDE3Xazq5T1XLLueE5HWy6roHztFxN4zJPpmsMjDHdg7PmorO6RZ4racVbm6wqOW18yjqOYd45AOTLSQgZCoSRB1c805gCmE/FVhBITw4YdA99C89Llk3wNvVkgqkE7EUyCXhzkrYQ6Eo+4u8vLbwBGij3mYvNnvV2k9ai7xzgKKwly1t7s/wCEXUgzRcbCJSGHKXR7bXX5EcRrhl/tewitxzMBChHg6nYyC3yfSnCQd662JL8Lf6VEhL95h67rjk3owdCPL4cu7dW1Vs4RjVXExdweb4n4I32y703U9SpgFXrPZuQZ0ODN32j0Ny0HUDmANxyWO1hhFaE0RxDLsMhWsSAJR8HmRPSOyDmfcl7MoeTPWf5y2bSMMeBega1j5g7GmOVeo+H8UFfe2fTe+oiY4z5rhuRZFH4pefPHFzcmUlXZC+x77TvJGQ4dYI3uasuoOph7ArLKchdpsOTUdJBoanz/JSP0U/egLq4ByDno9dJRCx0VEf8jrBHLeeSmXGca2nAUwRXPmfyAXHPC9gEYDUUCu0FaLaex/xcSHaj4ZtrK8jGe9bzu+PeG6jyAk2aLPrGfm09//13vczDm3tivF/4d+pEqvtvWf+9fC4qZQdla7P6rjVFErG1bTPGjHcm502a3OqP2lcmd9+197t+vDs0uAL1F4HKr8e/Hn8W2ORMgyFkIg1oh02Z4fzFwRfAwkHmVGjnSggFMZU6Ta7mb2hUuyXf2SJExY7WW1EASPwONrlnU5sTzV16hWATmoNSVp5CcHG1MlyFuTtHKqCWx8mUtgZgHLYD2eDKvdhKKRi9UgYd4IATTEMoflKVRz//+PhXTmpNlFIk47/NcK1gkwsEWIYkhZqm18RyOgzvxzBcPecRlWVftZoew3+NgR/PL/zfnz+sfz0JuoX9mAeFhft071vzZjN2KamEFoY6oTiZZ6GwAQXCzZ1avppma71YkgtT6ZyuSXnkw0qf3tedeUoKM9RpSvIcA+ytZARaSCwNboQ5kEI+FE8hk0mlMWiUza/MjsKG7tjVKPOfY9GtNZ8fVnZjH1Gqw1eYgGUOhMEhG+OnAF9rFCdxrTDQWmcBBTeiHpZYuS3Jy83b0ECkcZ04n1+eGPzy3xNoGsOS5s55QdX8RHKuSLze5IKPgnJcGBZQ6GhpR9zOu6NVqhYKa4mt4Qm24XzN+BZXIc2Tp/YXFQIj2NY6/vX5PxZGq1Rs2Ocr2MSk3gY2dfQjt5qXlttmJ/Mr4A53jOvd/poloSUAJVK8p1q3epc+YsdE+I/SK4OJV83TL+nIwKaPz79QV8zIS6U1T/hvno4K9wiCJ9mdtuV9GwOtd3x+umdTm7gu4OPR8Dg8zkkLiAtFl2EQhGjs8uKswTyapkAJCKFMGhrXwWWdIykTKiuav8V2FhVXPC9fQDF60HmZIokEOx7duYHYvB2DSqg6jdpCh1XDwsgMRmmetYI5bTwPjooBWTrQYPePE4iFGAEaHIhyZZtKBADjb7HQ67lW5uV6k9M58zLpnXK6kLTPWwt3a2rGVQsAKjj7ej/qJ+cclWfnjQrM88Q8LVfR5fJXHsO8SJhjMVZ6O2anvFO0Q/Dvf30C+j/48eMHzvNpsp6hDmo0PocBcHN6LjYjFjN2S6gjnJcs8l7pvcEwFzdM2gx+qTAZb/zKaHzqxDku0wOcl13XwPNpHg9fzy8LGfZ8OFDn42jAwd40I7M1bg6A0tcEhFa6Xq+VcBUHZkOHjnnDEN68VuWIDxalG2jchrHWUp4kQDKDNFLOUV8h2GT3OyfKKmpVjVcG9er5AueDTChcVXuCxeVcgdqSJE6+hTJgNUXUkbEKpqzhYwhwnteP44GPj88AWAAsScDT22ndqXg/iIN+axdEG7fLL4XF6LqcqgDVZsyGbIf3sY+umregzgZtGS7Hdu06d/3OfrvbgW5/5j89fuUB9a78Wsd67Q5MozdX7k5YEqa7DDWdeThe6zpLzTHUmvnAdHEgWz0EeKV1KBPs5zH9etQTrzx8v2eZnzGnS/vrNVXUW+t7au9Rt9PSB/T+WuwvrKG08AXpx/Hp+oEvmgrD4mCefgLoGJE+YPic6c14YdV7hfr2iyeIhj1FTyb2BXm5MzAbPza46n1S7l30T9exmWMPJv/FF/kQ9KQhi90EWvo2du8cpv+qKtQ3i+AGWsCNfv6bx9282mn99wv7Dyrw/+j47zhFyjAeda5XPrKfr84crzxl54O/Ouo778bln/KyWq7faPeq4SMNAu2A2SgrfvLu+IPAJhoWLXZmEw+fAorS4YnPaCRJ89hmUdSt/+DGxGKboRgKITTLKhyohHqiyMrwXFAevlsSk/e6JhfaV/PQOss1ZTkfmExcfQcSYwhIsMkZjUDdRnCgQ9U3W1DQUiPYRKNctnbhhnjJIFsTPD4/jNGG9m5HEwmXbRqZksVFP1wYrmy7gBJEiFrsbPWwTwoSAk3wa9cceF4nvq7T3PvdJZjAUvMtfc0Qb9GfWRnKgyrFBtS361a08DSog5+JLB1Yqg30hN1htrmNWT2iQyEWgS7uxClk5pwGyAXBruI4KTHWkyKOvQp8hRvnpYrIee9Cm8qdX6eRFvk+5sJ0UnGXLSdQzoVlvmhRvIvOrtBMRFc72A0tb8561AuLYpsrzzRA3HRAF3lRaKcP/hwX5hi4rhPXeYJJiAFdvJusDyxRu7iUjtxJ7MvFZmDPSlxjMCX7bmHk1agoklxVItS3frbi0i1CQOqOUVs/9PbAv//9P5ZIe+txAJ6PSdD7Izyb+tGXpKp8x/Ew3hVVL+9Jw69BeobhVbCpNfeeaocbOLLQRgJMRblW5rx5JYPjeODj83MVwuHJWVcNjdaojIsIZA5Is1Xf1jo+Pqw+Y3aIKB5H8xRuTsNqQIQ9zxw/Gu7PZAfQ6RhTAUI0jdmqmGbj3bNIjULFh6WLKb8zrrlHhwVnhUeRAVHWrgFPqi0zcnZQ/sQ8dxA7Z4q1Y+q031SBeVlSWSiaJOAB2A52OdW9D5ysyBLrxn8+q+CxWUmDxXiqhkGM5a5Awftfh80w7694i/c1NhqycnM+8h7SnI4TOk6Xrb4oBACz4wi+Xv4bGZKELvj8OAD9C3NcBR+R4BfGcqxsNPXdvwAZ/ilMuZ1HBRKqIVn7prXSBl0XZc7zxFTF1/nERS/OOcK7ac6Jy5NO153NElDigtqaTLuO87LoRoWCtP1yD+uaczhtLM7XHPsc8yo6kpoqndSFrVzd1vKufIZlNzcYOdaNtIP0gEx6fH3+TvFvTRYQQylxbpR+hrpDQxkJJ13m+oq7OaEK76ugQ3q2eOix08NxHPj4+Lit63KO17kWzS7j8M4c+G2DiwMS+gKnor70UdB66YMwgnzsZmtoOnHHK/KVr2Xz+ztj978BnH4FNL27v9Zn54U7L6tgU/0jHUyl19O1JBlurUX+JZMj9NbMvo3ciUAAe1rqsffTy0E5fYcIKHXWOAVwX+a7cal9Bqzz4KUf5jr31rExAKnjcOcDhhillz5tNBULW26tRX/NtsqoHDNKu42OC29beUbEOK6TzK/xngoS7/S000zoOI+VhvZ+uC2DKWDo6c85G3bF63i8O383ZvW4m4PfloNUo1KOyMtz+7W7e/6TdmwXvWw//YfQ03fjsPfLC+8GbmnhXb1/F9S7u++Ol/0Of1vmXAxWLsowTWh6Z33flj8HbFJgjmmKlDZMfUKkox02g+dMjwOASqqtQI9B5sAEduqGL1ef4xV2l1Zm6oAOciLOxvwYGuFzvXWgCc4xIHPiGhPjumx3m4+SwFeAdhzoxwPHQ3EcF8aYuC6NPE+MoDD7peSBUQuCPK/LZkATtOOCdAdyAM8/5C7nxlVXBVKQ+WCEu1QBIhrXzY07je3wKqGXD2z1ljZIMDIY6u69BoUZDl3txmDu1wUVCUX7vC58Pb9wngYMzDHwODr++vzIJOgiOJgc2MFEcYatYj4AtoM4mbpwmHOMhb1J5S8ZbN2ZDqBdw9kCyzkrsoBUd0zM6Mee2xHt2InArzN/C8cFQCasJfNkvUIRq++lwv2qoL8AjayTt4tdVJm6reIwv4Y/rbUNyPcCucCTWjMhGvdquGMust4pZFoEXCkA3fBlSISHz/KF00Muddo8m3NYzpLrxPl84jpPM8x857prnOY157+N6wzB25pA1EFs9rvHvEfSaibLnbbzn/UH7/UuWJJgO0xN75u+KhOtdzw+HjCvI88TcJjXUC/5lKismNHA7qPRZzs//fXxf8ybKPKE+ftbrm537hjX6T3F99qYEwRmIm2+RpFeBVYm8zu5p2LLXY4yCXkLb6NQbim4N6W6IVdVw7MJRhOWU0HX+RHx35zZUjikwsKl1bwZnL9Z6JuV83HYjqa9mwcTGa3CdrtUMY8aAWWDzbmkPAIIDMJFcSgMCeHNdcVONYRxSCmPjWqYOJp5T2Ge/q4JadN4jcLqOZ5GXlM9192ENEXz3FQiYs8D4dmkY5hcVOPLqureQ4AOxYwM1mvduJ28uoHOBLXwPhUIdLhSHmCGedAAq7cBP1lWGSlUqboaW77i6sCYvZu7MZZyankaQ5m5TZjDyb0YueurSAPGhd47dJ6xg9dxHJi9o4tCiwHQG/A4Go6j4zi6l2dJxK/T+rz5xiBMoi+SYAfnb22xhYSsniy6yQc2jHJlTtsdkd7AY048v35a2Nw0Hmi6hBlj1zij3wmqik/slE3Wf45Jx7XkbKkjUQGOKsp6zV6U3oz7hiQ511JOUA+xatGbFvE+4zVwfoqQ65yX04U3ZV4uRNo8Byyk0ehJoq1rtchTWO8bgxEI0Ks8iZzrddFFF51CSrsV4gZznQdFlmxzps4d5mAl7VvdDETPcUlgjzL8d4AmCz/M394+svE6Xc6lbI6QyoW1gaFuSVWso4L3OScuhjXzBtYcTNVg4x/zoO67LfW3izVrX0df+L21nNhIgvxne6bmDHr99tqLpPc6jtThyB8kxLikruaF+izBqHGvSF3F1DbTc1WaL2jQ8yC9xKuO+pu26rftE8hWji7n7wzjWz06dIJ70HUHm0hVAPvMZPmFE7MxLUgB01F0GsFCSwKYrWOF5ad4mzgJ9k6TpJ/KJ2ORVm4+QX5V5m55b6GyIEGjoYZ5nVSgcw7d3Jsy3PuseMhB4Tvu1rZIju97Qt7GTV75Y5HPWRhlibyULZDM2fVS/uuxz+t9U4Ad1H2t8/3x+gwXsTV04r367H+2BIIIi4cwF67mgJJcC/80ncD6cYhApiYdstytjtR+k1qCs2zdu9JlYc/Bo0lL9qNzaeG7Vn1BN5qbDmAqgAvD8JFrQC+mKPmGkPz4g8AmweVg0zWA81S0duD4MOPGsml6eEMonuYpYyEHPu59KzYmVgoT+9BQXiMRnX9eQp3HgZ3W8Plhbpvm3q62A8w58HgA/eMvX+m3iObeP/D4+AtzCo7HAOTC/LowoLimJcwVXzk1AewQybS2tevEUEs2i97Qjo6PQyztQVO3jBxIisTXSA8r5k6qK47CXf6cFzJ2eFO8jCE4A0O6s2YXUhm4QG+SLvzRvZd8BZwx58/zxI+fP3BdF67nF+Z14fE48O9//8s92bqLCnt/98BG10LD9KSy6SONmGAcZdfWpGwfT9GRwFMq96n82Geoo95fN860wXCYvPftIQ6SVcYW1ZY4rbyJijyTDZMm67aSyUxyvJqkwkuFBlBGsQePEXqLsSIhU8kky+oK8hq1rfrvsjtBNhkoNJX95sqje42Yl8BlBsNh4UVHzx3C5rQQo8u9AM/nE2NcOK8nzvOJ8zwjQfj08JLz+XQg6gvn0xKDW9iPmlGIVDhUy5bMczhdW5+MCZzMxbKE11blgiGeYiGf7v3DFSx6BT0+LefRwWSeD0u+zWsohtPrXwtwp+Hh43xAxN4rDmBliFuLZMj0DArh7GPRHw8Hm6iIhT6UfRPXaeBJJPBluHEmKpdQHNhLM2i2KpRGK4YR+NyDGhjWaCCzLjOVtULJJg+NJls80yxXmwiOZvPjrw8B0B2cuOIZQM1JVhUiI0Y09MKgVPI0GlZlzvkcGw4IcPdD64O6LiaRR6bDnBqAEZ5B3Rub4foTOn76k1ah7n/qCbxNWTFeJZEMUl/6OlSGS2IHTo4jgdbpHqAJhFjbOQhVEVzCO+bOEauykof1/YznF8MaBF0UOk5bfYXtFGkiZHtH1AcJLl2Z42Tfavi8DGy7+oHeGsb5ieM4LGTz48M2H5Hp4JPNh94AeXR8PDoeR8cFjVA1yrAKEn98fCyr1VnV5Ht7X92BDHdeYcl/Ldnozx9/4/l8YswLYw5MB9SMV9s7mHJAXD6+6H1SAZhVRtTFOAKwCWYk7Wc762yZRW4AmZcLJek7Q0mSJy2KqbiY3w51oNScv7I+kexXnIc6PdCw3gGkLG8EgAFgGb/gwZs8s4O5wLbfihznFg/qzPRysMnmQc6jlzF2AyB2m0TuKAoRzDFwnmu9pew6GlW5UfQXgAVMH+Ejp2+eKcZSztWkR8pQo6e20Lq6Uu72mvEwHyvS+tSJcWrIXhsHgfgGEB8fHzf9/76N9nz7tv0v/LH0XXj++nkA9jd9+F2dXoxiYX9JaBGhnqIsYvBecYBJwk/VDUykDsa22Av93obpm0RQDlvolht/et83e/23i/bxRrvdu0QLvdx9rvfmb9zkgTydvDxCyIu8uQULIRAMPId7c4J24mv7EhRP3riD8dxl3Dry+3HfWhVlAAj9CyA/eKWTSnN3/JV892Q5RSbQHqt9806W8KF5pUf4d+9fdXa8Dra8UkWdV3nbqm/s77ijke+A4cqz3825/+pQpkFY3xs1kX0+kBtqmZNOB1r0QMpGt6Gme3GOeU8T9f2y9LUs7+RnLOm8KQMwu3eO4jUgcvOJaAuP2OmUckAtlQJgOppAoOewjWzGMNqQHYxejz8GbFIHXqYqZNLAHpBrhgZthpDGjlj2jOLynaaMUbUYeCoofEN8MDzI6UNi1clIo/lk564opph0tGbvmYyoVQAAIABJREFUGmqri9c1oCI4zgut2YqqKuyeycSS1NrK64NDM03c1heupDA5qDjYMAkLu04wZULUwwGUwpIMdc+rb4FEYzSozjS0gilIxC+nWnLnQs5VLM+DI1S0gAh38TZdvvX8dV4Yl/0xxImTUvy9/C45haK/qliYRVCLvzHBjJzwrjqFYct+j/80w6NqnSu1aPn+Tw8accsuHfmj0ddWtkb993eujIAsxzpHMVUg6kkiraGlDj76CkteGwmCxa9vb3qnbG2d0DZBeNf+O4baWvMk98wzgRCg/IxkkSV8xJJ9+5+Hx1GBVTWPAKOzGraS/VWNCpvnnidCSReGwnYRy9kT1JVMJMI9WuZIMpBJ3HtiA5s+PiKPUuRM4j3MkSTpSRR1bLa/UngzqQHdIiW3WfeNFDwvU++sm4CeTBFW7PPawJ0WhlKZspm7wHlH8E7/W8iYdBqcBeusJf9k/wucLyk0eB7bXJ6h8PMkw5ntl4kyqTj6rPZzAQz0AVAN3gh9CyU/21TZcjQbiHwRKTgk5EXwFjUw1ACSFZBPw+XNvIi2eo1WnTd4N4/cMa/wL3rjxbxBAA95kJfXwXMFZGbyaS7exB2bwlnzDXKlNFVfrrclw+L3UIJVI/FrznFmOrX+MyAgd2QjX2OdnUVkKHpJqBuAG8xwMe8rAGNiuGAc4/CQxInjOHD0huGGRZ99yRsSCqTS8HEvJ53Q5rJTMuRKnKA4bq2R7le5SaMKSEOBPIrXK/BHA2JczvO4sjhrPUuOQmdXOlv2HTsOntQ8vHYJCtg8DGPMk/soECuunCe58xiK/kTpKjHHwkgmf4mk+AaO6yx8iXS2pJHLuZairCwZuve36SZ8L0LZDY/ofWJ5h3Bq733N2heyy3q8VQByQQusq7Ot5F8p+2ho7YZSGhcr+GGLkfXezI/xHdh0x3uaJocOzvbmuWWhQFaD/844JaCkTZf2UQ7ymnj+RZlGVOIr5S8W7D84diOZdWVf1+/7sRjnzqvqYP8KbPpv6rovLvFa1v/7+/dn6/N3x96WvU/i2Sq0tzIX0OO1dfaLC+rbPg8hzu+ltDDw97HkbbtGbPe2OTG9r3ICZp04P0n7nJG68QdV8Y0a9OVd3x+rFq/hl4YEm4IHIOonRWYgLq/f6TWf8oF9UmSxUobkwtGuw8+h0Td1bkYv3dDS79L+HV/g57y59iuwid9vy5uvIbf/W6ATc2e94xW/ek+du+8As3cA01176v3vAFxFzrN3suU1lcprRM7aD6sMoCTe27XYaymovz3+ELDJNKU5AcON6K4/cQ16t2SC6FiPc6Xhcvd+KjHiioIIYvWYE9tVw+ybkpuB3i+mTFJ1smRt52Vg0nDl//TcCcdxYqhvSdoMbPq/P37g58+nJ/XultlcGiAlGTS5qCbzY5t8rRddmSwPGDrMGyoYvviOTGnsqeP96slNexNMaaFMigDXddrd3DEpGE0aJnvYyAtaDvNMoYEAJ8olwE7hK7ET1xh4ngSeTuuXoZAJ9A4cjcphBZ34pgxzNOIu93hdDWSxZMHWMzOeZX9P1tEV9IEykYwMwhMgDacUIzto9DuLH+mTUMolc97urWBekSrxEUw9+pr9AKehRJ5LoSBR2ePTgFqnkUUN/wdMW0TCo6YaTvtOMrvXDpVSQCF62HgONzgHVzwtzGc6rYw5cJ1P84q7nv799CTRV3g2fX39xM8fPz2J7hOrN5htgZ4rrRPNV84jmbo0+9OGqd13DTIvsNbce+jo6F3Q22FeEa3h8emfj48IYesezvZ4WL6N4EHNEuCrx6caDTMMzhJYHv2I/Eu9d0AFOmhgZBibdPtkKE+mapGwECteAiqvkHh/JcTKI8hPgsDcaFIPrTWPR85CKi0t3yE5R508F1pbhZbdEXVtqQ4mweXcCECWz9BQcG+PAJwLv2dfd+Js4cmA3ErchfV5DkzntVF5vt2NfDDxZgHOOVfNHRswzXUHgKIZr6dvhDU3VbBirWx6EkRYRfkt+4wf1sA5FefF5zIpaSriq4IDIcijCxjDc/L8yqM4PvszcT/HhiG04iv7emGGZxOSawtKou58H8MCmHw7AaEEcsRX9bm7oiWj/8TjOHCdTxzHgc/Pv3AcPbrtPL+cZ0zMSc8m4z3eJWit4TyfIOBkU405JDn1GP4EC+/Tieua7pE0w0DgM/QQDs8/NY/LqZ67aUxMHZHDi2GE7HP4QpcIjG9JnXvkxcN+iyuvB+cB6hwuXqGgAe+eirqN/VIWleaWhlPuFNWWlzbPn2Ke1yVXZNiN6XGp2jCbAX8I4I+hZg2oZatGaye9VTXIGxogdpG3ccPeplU+ysvv9Tbyl/QuZBjY3kfJL73+xSAEAHP2SWZN/l/7eD9ejCVFwR9/H2xaQKcFIE0vsnr/bijlLqE16bmBu8PDRF31vq373fffMYJrnSvoVI/qrckwuhevyt843gKHN0Zr1YFqe/bd9Xi9+wYj9T0ECSK0vXhTV0+9Wpd3QNtudP5zw11CYeBulaE0KCDc3U3LPc7TCXzbJhTT+XyD1HywrgdwMaEYGQYw0V7zsB7h/IgQOf+LLbxL+3YbBzPCzvWd3F578P5y9WzKXmJFuAF0XNVoA+uZvbjeo8U00NAzwvPQwRLaGKlzpVxhqpd3wMdv85Pf+O0dkLrT43fP7/XaP++8i/+Tw6XZe7n4D8r/DqjaQaW7Pn83Hr8q911/c1Fuf+5XY/0CNtFWQp06W+TTL44/BGwCjHW4UaxkfgodHprlQMN0LYTzVV1wQX3nNr/O3AAZSZLmTxG3rtNa8sYAm5pEJ09MNAWuNtBEcen00D3bVQ0iOM8r8gwByKSgxmHXP1Q2RXbqxpVpPsETY6DrgL4MrILeAty1Yk5TgucU272CXKgooWlcVnfHKLKw5YqWl5o72JSrmxXQcZjOPU8u35p5jgFuDS1aPJQWuhekLazRHfHpfy1OTDRYrpg1yVAFm2Li6M1vqMy59iwKnd38+BuHxrgiG4I8XYqKMfZ/1J+/BaishFD0bxTMKFj9XmBhGFUY7s35lr1uzG1XTO8UQ1k+EySlQRo6yoTvyjQiCfiMcLkRdGTeTjNi1OfwfCcFySeISi8E/gGC5nOGwl1jx8OOqZaYXltJjC2W06Uf5tX0OD4SbOoNx/ERYFbvZgA9Hh8+7+vck8W7jNuG98PC4I7+QD8e5rXUPQn3aDDPIA80bS3yqyWg52QmYgpP7fgy1/PaRiwEF5DzUfZ7Kp3ULwIk/AnQSMw1vrWsO1aWuVzuJxZnqKtsdn8FMZjHiPe5gqlAfF8nc+mj1EoBhsaVPsr6+iriNIC0etBFeDe40mP5nG7bcsvDXzoWgINNETZlv8+X8Dl9mf7RMheItsPZCBCI/Zbjc6PcYVU6qoEWZdQ2ac3Ptd5b6xo5bpo42DQw9fK+jZanoYCioBawpW4ZTkAowSY+NzFGeleoTnycjzAyp3sNQgTDPb4IVFtS9YExR1CyhXclXwnwJMLYrNOb12MM21VuXJ6TBFa+DUsPeoZO25DCvbrpzcScdBaymRs/LH0/J3LLMV0m26I8thUg3A+tdECQqRrB1XDXtaxaoiThhaCbsEUv655tXjjYhNYsX5kxDy+sMCPJZaQlb6IDWTPmPkLn4S6RsQJLnULqinDpAJ5sq0mvRkHtteUXMD+mBk97laZ3hgH5ZpZfjQIuHrx6062H6YPbpVewSeTmSSRf2GR6Kd3FRYWt1v6JHVLdgxelvyfHTiS8bBce8s3n/v3unNd2QOzOuFrLr+X8vjaUugbPl1+L7nx/ZP0Q6n/+VmnjBiSsyvMiXzcgCa912I3+OA89wLwJdxNct8+qwy5eSfLyJb/X1B/MxxY6YVVOUq7lHNWlo5S5e0OjFpf3st7ud0FlWzh2WRTv+O/AJtHkJynS03JhGq40X4ouaNXzvs/naJdSaafxD9LWdi1vp9ymHaXRz6/AzYtSmC39hn7fgkWAp19IfsOPb4rL50VAnfkd2PS7IMevX7Z023956MscZr/+DsD33W/Vrsl74LbBq00mIlves9+offBE12tjbtyASi6DU75+/54/Cmyi/TAnlVaB6AWoYKh7YwglsvjENbBpFgXtBd8Rxph7rC8vUvRqGloALB9KF0wdGPOCSMM1TQGb3rnneeH5fOK8LlzTtj5unsT7+TxxzWEC9zigAvTDt+c8ujdSg1GY7emgj7rG2gAVta2zXRGVyDidhAZkOydXDr07K5AUB3PtSMqqFGNF+PCMBlxsy+bEODO5K7dq5Yr7qGEeMM+kQQNpDAOahBsLSubMdma/6nEOMtINXNe6CWDlqfouR0CopDR8wEwsSMOJ7eBkgns2le5aoauFUn/jKFg5O5ryMBu7PfIiWd12yETvRTPLsnUT9HyFuIDxFVON8NTS0F1LqvRyo6BZ1TVWAWfxKJieVDf6XVLQ7CUxNPT8+RNzDDAhs3k1mWH29fXDP7/cs+nEeT3dk8m2/X4+v8yb6TzDmGNCRnoIfXw8IiY/wv8omGOM6M10AO0DkAbpD0DM20ik4fE4DHDqBx4fn+gONklreBwPD7WVCJXrvnUtAS0OGOdMUf1XzyYHm47+MLocnPbbyhTnd+hW/h4pyg0QO1h6x+ecDoJKw+hGJcfaVcyJ5jyIwbqLIM12SVwrJXoeJSvG6pqwFD3vss6hKLnByCTkwDS+pDO8jShEovWaytugKlsUH7hKDcoShvqyhKrM0aOD3nCz8r4R99AY37WqmBc01nejqryv0uh+X7rQJ499ryml0h18OVLtrKbEMldpdBSjk0DV8LyFO2hFIKTeq9t99lrbDbAJAmxS92pUX4UFAYngVYWeNwCLIDTgK/+lzzhXzLPpA4/jgfN6ovcDnz8+YifU1ixn5DUu+5tPXPPCOX7ieZ5IkMjDW8VABXuHnzf34LGaACDYNIyvcRc7l83BH5xuxzRQijvNqaol4SS/5Tjs+aCaeX3vngxV+Uugfb3+1lgoiut+/j6EusiQG4PYNuCwuTzVPdQADylmjp/cJpzvtc/QzlynE3CnWum2EQMI+tU5S485zbBqltvZpogspoEDRAJVhKkQ42YG0Gu/RcLw5nJGsOVtyTIqzwyAFKXPIL7g8NhEstcrQvR2j5QbmS3wHKGsP6zf2Me1DUDJBZdeiaI2r5rmNvNUaVDmP5D5nCwfmoWr0nDpV49FSciaRuJu0erdtaXf35zH4lTJb7N7X7P/RSwSYOm2Xyp6NzSgCWruPWvXq1bpMgwEtjM8Vl3PX7Pdi9NU0pqq53adiiHDARs13SBCWP3di3wvElqQAKBSX7xrQ1E/o715UqPN7Vyw9JGy3u59pPDQS5+6zvZF1o0tuJheXxo6ATInVtgy6nniImG4UMq/1d1NZnko9wY22XR9K2C3gpqlgbnpI7OF6JrlH8qNlqyebjHZfBlO+5FOoPatC3HXxVTSs4lpKglszcHxJ++6AXDaCh4nvS5XXnQTyuSX6xyL8mkt9HoUQ5XXWJ/lnviJ1+Of8Jz89Tz91ZHOK9HW2qh/cNS5v9arnudCwdrGrEQFqfbfc3HZF6DF+bnUJO6pC9ymWFjKTFX1hfcGf9bXPhnm3W85mr/x5PfjDwKbci4pMpkePIeDbSVLsMmZmEjs3DLV8ilxR4waPmfAhgnlhsxRJObDCTIjHiIWOjem4hrTBLuM3P4PmZdpKoDzNGHluwYxAaLVQ9DUcqyIJU7IVa8yNgvjdy2cCq5qC+MnubuBb+JGkrhRyzZTCZn7TPTke9E/S8sri/QrxUBIruL14Cqsu/zHds/VAGFdwaq78oI1mWnopAuHzs9V2GRZAnpJaYJOi6DKelC0J8C0f2JhsK+98Q8OYbkUcT5GtQ3Lm7ZD88bKjOO3alQgXhFFBYZUmbnuDEOirJf3hhF01zYvC0gFbs6i1JVcIkiBthThOUiu68S4rhgzHep5lwaeX5YE3JJ/V7BpxLbf13l5XicqaBpMl0m7H48Em+jW/2IoiXkzoT+A4xOQhtYekZ/Jyjks58txeNhcw+Pj4QnCH+iRNDx3iIPk+PCVTIQZYwAag/ZMPw50NzQAwKOEkbM1hXgK7ULzyHPursh1SgDhyp1zc13F3I2PhS7K/IWvILJOMc6VpnaFEyRVUmaZEFBAmda+jNH27vgDjUkF6GXJfEDleUs4n8pp1GOhS/dEuap3y2rohJFPsCmMlxlgU3r9lHrzDVtSz92IArDkY9qPXxlh90e2fIbLfenCfWw2JXR/l6raJhkb4LP/fZf8Gr7xhIUw2pgl2ETDlMsDjeIuxmh/F43KHVBZDEpX6i3Ztympc45MOO2AzXQvojkvT8p9uceTjbGIQGYvhpvaZgFgHieJPgeAMc7wfuOughY2lrtQkvYtZPLCHMYXVdXk9ZwJoOTALXRBT1HKhRej3FZ2bmnp3ZFGScrp3jvkDQ+l3kGli/JO80dAkr6He6Pp9M0NVIE2ob7DZLTJ+3mhVZHwRrUoOoJNUuaeFgN+7Y8mgk5FnXnripcoeVCY5F5/7mh6Z+Aw/Kd17xtBgE17aJMZAu/loz3UPecR9Tw2PXWKu2Px1kKlxs24LAZdvVeF3oMNMg2waN5/q558D2wSkKzzsd7TNGkkdK83PO3ub39fPd7dU8PX6h/bQI/nUlI5/14LvAO7Qie/fyL+1na9tnM5ZKuValm48fyu9oP9tRZEw7FTOA24/hbshwTmF0JbWOpBmVB6hbLuTl3k3Gdz+Yqiw0Q4vs/F1TOzgpHktqyA91dNVRFqgus1kvOX9ljcV4x56hrp8ZS85m6WvRtVe8/M/uThoeGUQSZo7J0jdmFlfyV/nAx79/+4yEfbIjsEb+6xP8tU8RrmupzP+1a9A3Lr9RcdRtd37Uf1zN/v2flkPHNTTuwi+d8ei5zJ4zvZ+N1xN/fv2vJtH33zfO6e2gyrEAl8I0K4iwx4x0/eeU698NqktpXPq/rCH72nvu+vPwRsYif5X/NMINLQ2gHmJ1ICRESQXFiNaeEBEFvNsFu0TCqEh09jKApSGUqfbTvaYeAQywcyObBV1/K/DA/xC17qzF56Q3/YKp1tcQ4ch63wHGe3ARKBiq+Ucotq54TcBr538d2atDAxB4s8NKQmtEzjHqxR4XnOPCkcqjISZcx6qzNGZ+qbZxPU0PgZYFOGNcSqdxjCEszXdVfbWY8iTekKu74ilUYsdVbFsnoZ244zR49qmM4hkgqTrteXT8XiYvtu6oSs2hS617vKjZoC3yu5liOluJ3Bs3eUY3LD9FcpmrXy/heYgdNaIRh+K0rjr1uPSNoNYMmVsu9atTOvJa+TJ/kez5+Wt8kN0Blg08TX07yenucT4xrmcXCZ8XaelpfpdA8A8zyyJN29m/v+X399ovWGz89Py7fUuNKKZQtWO0+wSRxsshVz92xqHkbngNXjeESCcGmC7qvZEjtBlh2RWhkHGoMxnm4M+Fzhyn7lPTlcRfl1pTDvSOQ6qHpJ6OzkEJ5NxXCvYy6vVBQGLnmHt4NO7/YSF25SqEezNgvtOl9hsvOF3rz87CPmCDJFToH0LFJqbdNzfzkvUXW2tQIfCKG4KxKVTsfyzP49GYXVh0m2Yx64dx1lTIwI56y60sn2aPnN+az1F8fF27J81vqWvsML6+Cgm2IbWJmPWuTeSUqKRVSOo6otKtT7Sj10u4dhdDFGeC07x9oBJU/ebXyhgE2VcKG1gOgjADivgXFdDvr2zQi2u+UakDYwIWjPE72P8EjuvaP1gGI9x+AXrmvgPM2rkt6IAoG0UWuB3PXVwSZF5FqMdgQfFog2KGzHMoiEwnaNaUDeMM8mKNC56yN7QlwHunn/yrN5nvy+0kYquplHbze2K13yGsMxl3Hc9I664sp3VcXVkoZ7WyCW29DZS2umC9Qk4vbo3Og/UyqgnYDn3KNFKYV/ZE1zXoq4TgeJ0Ed6OIbKEnwu+6u7PvmyWg+kx4m3TQEP8Xv9Iw+txy4vj+OBj4/PrEf06ytwtR6yjKWAwNpah5pTsdLE7glU67YDSHdHzaWyG1nBL6jDI/nDd+DSDtQvrb3pRwJIBKFZBsNn6QmZII/l9arg76+Od8DXDjbV+r1rY5UzUbdVA4j37CCfiJTcU7gd13fG+37Pbb05z1zOR33in21c4kPjmZi7zh+4g1xwFqUGU94lYjrZosRgUZoDTKqakPpiVQkBltC/EM+wqBVkKq/w3xby2udasAHJC5WPOluN3cd/h65Q6KL8F91ZKIMg0QQ9pFKBIxXPqQ423fONex5S6rPR+c6n7n5bumgHTsqOye/o71d1AjJU/3/j+M4n57t6vOPhd7/9DgB1V9Y+H2tuttz06D2Y+K6PfgUY7mDTfr9MLVEGvz7+ELAJyVjoDubnkfyxNxCQgrRMhAtF0xH5gczQM8U0BarvKxVMU4oKJ6hgkwjQ3LUekHB7DIWuKGmt9UWZpkIuzZIJB9iEAjb1htktSbC6K2mr7weibgZwKSCzMGzLz0BGX/X3XV3Mw9mO90P6u+ZHZqmqBOXGQBhXKzMWpACfc+J0gyvuE1mM75gMMPBvqvoQzmTiqdcugsypnResn0P5zAcCTOPjgmIU+XXRxcOpvi6a+B2fu+lrnkc/1hu03rcLZBd47+YrV66QN+2K2Evl2ACpBi8AEbQut3pUIuF8x15eeYPqAjK9M86r8qSqsY247bLkK/fnE9DhGVwt6a+FkpjBZ8DSGd4Lw/M1Xe6BwrJbs1CZ49HDA+lf//oX+tHx8dcHjt7RmwFOFdgjRap0M0WOD0j/ND7jYFPmYspPJuis2ycHf5BNQPRV0d97NYQKkOCLAMxHkBqR5nlSTvztc3d3n6UenflnXtTZG8LW/JsUfp7PBbH+iconouy7PyBCMNMN+lUo3inhCfiQH5E/WRgdASW7ZPdNd/OttHInULM/SlicbgBp8CGnmcjrk2ATP7u0khD/tT0AXtr1Tnm7u75/vzu3UTGatHxASKVeJfpqKhOOVt7plBGgUVCjefCJvL2H5Qj8XUF3O2l5KPYs+Yje8jbFysqSZs7zwnVd6L16C23yakzINawN54k2Gvo10MSA6X60eIfxHvOgPK8nrnEtddpXgXcjnryuKs5VQTRjyML2ACy0Q6+x6zoBFUj7QJde3pU5o+ycHXxnJMcIvDkyqflqLFV6Yz9Srk28vivfL/Kq7Nax4JyhxylEc8M6HZZncjus73evNnopC1QuQBomXIfUGpa7jRPW0GMRQff+zHYWxX4HaJCRTYuBkKplejAI+JIFAHgF+lZexO/H8cBfn2OjrwSb7rwAqo6bVbMFk9qWChq9S7J7Nx93fn1nQFVa33+nByHl5Hfvq+/dPZNqed+BTWwvQ+Wof9g8zWQKUyda0YuTHl6PXxlp9bcKDH3Xzn2xLp640UOrEXpnZO5bxO+JlOtz++fdtdQJig6CVWcln+A1+0yAmPIynu+ejHsRO3XWFl0KzWRF6NNO3xHqWvqc/Y46JdmODP/kZ2nN2seFvyr2uS75EWScc45t+qdHBZECcKrXvP6ht2mhO/6nGnmjqBXW3WzJc34FRkad3vCneu2dfvLu2MGmSrP8Xmn8XZ3qvP5vDtX7LF3fgUF3v+1tv6vX75az87m9r7ipQOXj9fdfHf+Eh/mXoC+eM+qsys3vjj8HbPLwstYtGa6qrXr31qEiEHXQqRV3aclYXmmCYx4eh27eQIuQdkUIBWZqAGz73LJSKIjtyhXqXkdFoFMJ8bAXdnP9vakZtE0amgi0WV6Cps2TCTdHm92zya1fkl1zRtgkk5Aq3FunhImshzP0+F4vWy0FJY+OajJa1eW5ZGDlXVru0MwQpGqCenX4XMu2PksmB6zJxCVfbX0dWxoHx1zeybaYbqApAzGXe6IYKcVky/y6Lmrz70wbkd+4CdkEG1zFy6oQkEBTEXxVpoawjhCYgjJz3DhGrhC4XPUpooXefUWJHa7ZH9aNhaEoUqChAHrOXBgqOj0sczBht25bk6viGjSgHCQKsGkC1wmG0UC53ff0nZjce+m6MIYn693KZphEbw/fLe7A8XhYqNvHJ46j4+PjA/3oOJoBTmEEsL8VmPRsag/P1dSAfkCQgFLrBlYZf2ihsFAvYr+mgmX8RYrRIVS2OcYx93z8PQw4crcRZHZC1i0R90ZoQQ8avIL0J+5AmCCJ/XSXn8DpiCUWbxuvJCyZen02203Fk2MziydS/WsimB5zn2zGVaRFEVcvxw3OSW0uwScdl78jc9vY17kARyHEF7rONiRdezJtT9C9ClobH+XOYlPvwSZp2xxS784CrEQepfu5x/DkHFz/rZyvLdDt3AZ0quK8yOt8kAsPoUeSuMHARKW2tlF4KYCjGU/J3Ts161ZIU+JdqZArYuo5js4FIk9yrekxW1tRCrH7/VwAHNIg/TDPxYflTZyeFyr6WRpUDHS7hoWlWVjbREez3W7VQujGGPh6fgX4w+Tjiroqj4Uewvuk0YvMwiPCq0InmjQb+5FjvRuazJfTIjTvsO/1HQE4+ZjRSyCSYafcSEWwKrW4LSeNJYKtKPMww0Oz7AwFtjfEAJlRg6pMzyATdS42uMa0hf8vY07yWhJ9mzZkuq5A2+DoBE+KlAeVVbqR2ZxwxC+28jvfK16hVmQql24yR0yRIeK0L8whOpzf78ZUi1DL3UihsR48cCoawyKYsJ3e/yybNOENkmjIasTMUb08VgCiedmcV9Hz0dcI3U2uC53AD++JPrA6dDjd09tGkjLq3C2DHn2wAyLfGbu8b1nE2WSMhSFqGLCrUS0IXxPnOeaBkgZ+Hilsq5zLz6QdhuRJoRFyQ+pllg6kWa4dsZDQJm5P1P4lH345QjrDZkGeU3ZwMFO7z3D5bDlH3OsZFXSdofI4AerCfFEJQ0eJ73HN3ha6Ktvits90eT2VERG6Q3ffAAAgAElEQVRsg/tNuy5EfvLS+sZKrGOmCLZitOlhZJwZIhL5UJPjFBtDjS9q3EO6LfQpOe9ZcnrmpkysdVou5cOIwYYC4ruLNo6HLgXQM7ZO1tBlgn/ku0hXdaGCoDT5hQTvKPVgOwtJWNmVZuhZV9+IMifWQ4LM2BsVdDSPVoabvyuH8y5l2H97aOaRYz23vokNDdkIV2QKB6mV86/5UOg/C+/Ke2R91NOSaMgsIy/mAYR5qnk+vGIgmCRWTVKSlca9udGEvHf/5I2rPBChrqgv734h+O34M8AmAdAF0htaF5i4Otyosx2dJppNeIJNcGYNjZwK4mifEeIuvKraK8kVNWPnybAit4sASvdEluPKY+8KVRNkVNSbe/E06VAHtZj8u7tn1uOjQ8R2zzJv8tw8nMRMOCwUpAZAhhPjlhwUikh3vc9MpdKVBMHVrRBLRTq8IJyRN+P1CPKaGsbT1JHCzjodVchW5jjrpPMC+VzsRlfoPydTFh2pC/jOTcHU8sl6hSDcfst2pfJRD1nuwT3gVOSLbKWGBVDj9GoZ3pZsUp5kws5XhSsSn1LjDVqtipV/b3A69OejzNJy1UzyW7a43v+qcU3PjutKr6Op6nmV1PIyueF2nqcZ8OfT6jAvRM6W8ITy94+BCQeyZvFSQUmq6vPyozX0xwceHw98/vWJx+OBf/37/+A4Oj7/+swQOM+rFMo71Rb3bLLcTZ64t3Wbz9uqy6LcotC78w+rX45/01TqzfBFKHL7aohGm8RXWm+mdcnhcbeqy88s2whzCld5LWwpaNI6cjEYxCWSlDHPLe8ldtTL0LbV8+BlpdbpCjPDbEW4Cwr7Lp/PZPZJo7PUOeeoOnhJsIkbF/DWWQznLbwT2+QHbKv54q0557RdR8tz3mGhMFkYXXpEGd8SNDTUMaASqi/zqrQ7yrRnOK98iLByolTedhpa6gngGoqfT5chEW6kL3puyIJyLXBypxFuthHJj5EKEXegYT4cxFxJ5TYVdwOEYkvs0m6CXuRL0XarAACGPwGH/8bFGYXiGmeMh04FWsN075frGsEuBcAxOvrRMceJ82kbD3x9/cSY6WlU536YTRsvFhEL91cH4aHo0m3RCaarzDED0DRe6PJzqnlE9+47X374JgGfaNLR0Fx209ubiiRAA9DqkSFpSQ2+8YI6W/OcUZnoPMwGe2JmHStdW24+kwsmKzIMNAgBRl9KGmGZ7u0zabyo4HInqZwiZdsOAllKSbp5vnl9FQAagSYDoARFh+AEiQW3Anywyv5+Lux5hbOPi1SmTlKBBEZJq7/0Gieucfriqb2x+86msUnFAnrAVYQK4CiO/sA4N88mAkROCzS4CDolsBODYdfb6oH7Ajbxt9pnG42LCIYDSOTnMfRsm8u1Ri9glyG13j7CL+rTnefNXo/9/M4jY5erBJtsjPMz22Y1msNphJvo3ByvOjIKAXs/fLRIcr9Tm5KZilpKA+3AVNPxWyZPTxo32rsHnPCi6wI5z12EL/kZUcqTcs72KuCLCy4fwiqlvoFQTaG5b5C6wAh+sPym8VvWMfN7pgyEy3l67xjPzLaRPuy7QD1yArBtjF0XqekDXMZBKu+TiHQhqBBzD0n+3NWOo8hvGvMIYA5yPjtlo9VCSulvheR7zBvMywSBmgKdHkrktzBZJhpJwCHZv8hXLXVIeZHzawWb1t9YwV3fYe7BHG9gTs+xKShjmOf1YNFKvVFhdrnYmIl36Gtd1jZlvdZw6//0qLZO1jX7iO9YeA2Fr0gkdy/Gaim8NPzlvYj5tc9u7qzN97IedJzR1kqAkkaYJtw2EAdom2T9yedQxwrODQS+OQDpstjsbJ6PbaSjoC6uvlD4i+PPAJt4UIrv11DmrHeEXVQw7GFnFPZdXq5ladu/Wr9zMmTiq9SHZjCnLI7PTVhC04LiaxoltYmtJcjFf8mKCkvyumswpARVQitCiKXShuy0YIN+ie/VLNefS+WexUzsQi4Zhn1ZVumrYcUyTAvLehUhGjx2Z0zL9zo+27GNqxamHcXIwu9TUAIlefJvlI3fmE9Vc611CtVYlt/ZpjXfZ44rJ3iWT6aRZaW5+I6hpUt07ngCZxhV2L+Gv70L85lTMTy0xIwxA5QINp2ngb/1kyDU4tk0ZwGbZqD5+V77vKYbKrMmIff55AIgx7co5pEDrvmOUxbaakaACeBUfg3MhgPFqZmUUIqSQDbBppKHKyqh+0j7VCvgAnMn6TrDKHxsVS2FRCh6qDQCrCtj5A+cXzm32TfGEmaAIuHZJAk2xUoe5w6VOB8XAUOxAM9+CRqHBKS+A5sMuDIvxMxOgeyPSo/+XuAmRt+NMp2KcZ4p+LSskpK2/D7ynZgzi7ehOq2y7gyRoxK7ze1S59pGzk8pzIbjAmBp4zJW5Tc+w13MgjY2hSjp4s38R86N1rq1nSvvpFyBKdBV66Hs9H+lyObcYAM53/w8jcrifUEDN8rkfCF4WCTsQrvFJJWUFUx0HbuIteZlc3wn2mkJwMfMsBl4f+Vubukhq0AA4mMO32wkARY0SXlV+3evP8fwdSD8+sZP4QsB3UKdHo8HWu/4fPwLTTqO9mFgkwNO4vkcIQm2UWMg2MRhtPpaTYbzVgMXAJHmIf6v+ZGMni+ob5CygE2aQFok3y45ce2vxaIG+WTl6dz1aenDMgeWcQ+SzHvYv/Rjng62TeQYVWetMMPc0Jd4J2L+QjWTkivv5TulVmThxcuudM3r5fyjAkDUDVn/19ma8804U8p69qOqhseWgjKCZ1ierzqBsek0XKrXUAV2fmXk8TeGcOzXAV/QcDCtvq8jdRHWaeenS29sQNNep7v7fueo91NvWPzyXNGTF2P7TXlYNb7khfm53m9AT4TBiEArEKaKDtL3KgvuarO3524cayqL/bnb/tvHv1xedS1vjwIiBA9u9KJAUhqYnxX1N6l3NTANCh17jMWKAyySOVpRIj/qrqVTMuqhyA8XWC9/dpd7kNcBXQZXyvN+7sWHClF1vNqd/I1VKucApVC5Mbi2LNcQ8xUOBrrcEbPp2ObyihAPlRbf0slOq8XeABA0W4+Sg/7leDc1K+9B6GN2UFYHH755lp92z/+GZxOwyJ+X6/fvKMMOqmZ3Zew84rdqo2t9qOOtuqOuwmh/b8iopaZL30cNlXSUQKEUUgcQeaKXxv+Dhv5ZYJMfVl9jSsOy9mFQ9rdkJlTc6GURaDPL0RkdV5WXYBLqigTtbzKxBlxD3NC4lt/gq7C2IglAFZOu2zSE7QGvhXsSuFHdRNFbViNW4FByAQSPXCprjETSVZ4Nqspa/S6AQe0ljG4ARdmKhi9tfCXy/VgVAXoqvG7JHDdFv8yo5yxj1pb3tKpgCj9SiLEGsnxLwXKXsUG3z/34XWbwTrW5v55GDVBCQxZ69Po7x6JHCeDDRiMtdif0Jxla5Oda+nhXS3T62M+BicvuegGWRqxi34Wq1V195px4Ppmo+/TzLzyf5sH0fFr4G4EoK4dAkufWce+aeV4OMo0EIqbNfdLERNJYVb6BTEZaQ40YMmNLzg3pKXmg+Q51x/FwxdmUQo7UVMEk4QbYRKMsmb4EjdV/N4II5cWUJ50WYqHInUnKAj4A94QgqIVqHIfqkHUQ84JEHXPSFjWbQmsEW2I81QGgoD0sgBqFUCS0di8R9d0nbV4SKJrxXi10EuOpyO3bvQ9o3ENLYukyzqzjussheV/O+TkmrueZnk+gwUdgy8usHoJRV5aFUmcPB/V2Tw8jZKLymFf1X/4Wf4s2mUShCK+wHegCULZALm7ySlSFOSda0F/SY95j5bgiLcYPW294fB42H3p67C2gELbP23uyObHFeePOU7abIr0c8rcC1pKAFZjXyI0nQt+mAkpOxn70Pot5LZG2sR8Hjt5xXid+fv3AuC78/ff/xTWu/5+5d92S3eaxBDdIKTLtr1zV1d0z7/+Gs3r1lH0yJBLzA9gAqFDkOV9NzSzLzhM3iaJIEJdNXPA8np4r7jQgcZz4+nGEbFedXmGyYY4T4/gBnQPjOILGFYoNkhEkmvSSeoTNa+piBNga6Ltsm+8MPQbEDat9f2DbNvz+++/4448/8Hh84I9/+XergikPP29Dk16AnMxHGTQU45QDyt/PkxX7KG8tr6QgPVs41lOn76xWGTByPRWZkfwJYYyKtOhb8PAL2DTGwPPr6TKx6i/Lgnl5jhVsss+DfKUkIibN0AATH6BJj0mCyHMasKblGk2wWc/iwWuDE7RJ+c4wPG3G5weBmKmWtJzOC2Wurh5FyyLg+mrrXPO61VBM3ej18HGdwIjco68G5/vcT6Ul56s/fvxY5pP9rFVf55zovWPbtmLYpDcRDcmrd3I97oCR69iwX7WdBci96Ay1vaVqpdtQnXpY8aKLc27auDtqbsd63h14xnGrY6aqOBkpgLzvhL7e7M2YXeexPu+7a779LsjTcuVKAV6yppCHdhV9llEhRobO1x3ENZVG4ZASahLxCc9R520nj4DZa4rQ2HoAEzP+6IFT9QF7Lj6LQInUU6bpNDuuDDPti4R+/L+ylqUgTQJgDsCwdEU6RXA8NCoB81g1O2vFACQ4klP0jLypjx2oolkoJpkMVQsTMlG8ps7tO8Cpvq80zzXwLg9l0OllM/h6iAiO8wxd7A7w+hmAfLUB/lnA+a69O/C8jsPdmrrr611ffgW0vh51Y/1673d8rd7/ah9V8O5XEqsvmwLi+qmsurm4zfIrcwb87cAm4vdcTNNKrsIHCMKSEaFwVELJssOp9dOIS8WfCiL/NLbpOf7pTrYSIfsWxpsyursusDU8RkDvnxnGEr8HnH+omRdSWE6+UhELc9jvn8w5w0Po5kg3N4nnhZi4CvdLFIIL5pFgUfCtynzDsEn2qGE8YmmL3b+SNA09hg9YvgCfW+TsZWe5y5SN1v2oei/ecKkoV7sj5dT7Ny/HyxLS1+9qbHg9UfmjxifUd4jnWF2aiS5zrKOKBMRzbpE+OUdlh7I8Tc4vP09Eta5peS5qyNqYd8mOM0QoGc0IsOn5fHrYyRPP5xNjnPHbGOeLp1K4q07rCz2cdMwFDAAQhi8p/go23TLemATnBSKoJiBQjaFUwiI8Plah+P8v+3OX1hDzV1bFspp98MvZ6TUZaZVYnbCJJSBuCijDFUaseZtvKWszeUYuZ39TKkjSKFzAQzXDl+MJlEo29mWub4WXp1efV4aL8XkvIWo1vDZAJufrmqDm8bRwyqxilt5MCRIRZKpgbfL5OR1sKooOPVLsfZEhVUHitJSD9Dmu7v0g6HTPK1J2oPDdlRcG6FDApgDRF5CorG9kjiB+T7CJDniClud4DgtR3svpsnW0/QMQgfQ1pCfWAQ3gQgcv55Sjfh/J87ctKryJJ99OUIrrz64fh+V5g5RVFzw6841RzgXBLWCTRIjs83ii9WY53qainwfQGlo/cBwNQz0Zutrm1enelBD3ryPgPhVj6gtxSOEpPriVAlATO0hYNq+KGD1l7PvmVcd2fH5+4vff/4GPj0/88a//iq3vBjZJh8gOYUheT++xF2Gk9f4ps1mcQVp6nSUgWJ9Js7JszUVW855N5uZj+HzdOHJPFs+NR5Wsev5NHRjnwF8//nIAfA3Brc8khQ/Xc3gV+VEAVdQ5QmcrOZy0FDQZFnrLTZHwgAw55dVSGdJjDMA3+1Bosgw7VS2hV4tNQAC1Yfivxgpz/NR54/ta6TC/K39Yf3t3VAMRAg+zWD0IEgzO8b6S1iwbUDHnTlM0RElXrATH76fOLIbzxljic/wquHNndH0HNL3eyx5YUJ8571V1q+/beW+03xmkVd4u/YaiT9cJqSsjtd3v+nFt85cMeHmd6ddzXYciPUOAkDdSFHb/3fmgIn+SAFEKWKtVFgLQqgsjeFJ7Aa2AAHrFcrBZmC7z3ND+WcEma1NzzUjeY1Gcy4g7p7beR2Jy8vCkGQGCT7yYFVpnkF9TF6xcJL9LQUKlLmVLKP7rZW4M5KU28BI8KFoVFkl4Dzjx8wu9Xe99OTI/1Ptz7n6q6+yfBWf+M2DOz9qodsZ/Rfv/mf58x3v+GSD8ClTdbSS8+80uRJDS2uZ6vrXx/pn+PmDTHBjjxBgH5hQvz9wgzYCIMd3AoBIndH90hagsZVtQVE6v1gQNHqRyEg4o/N5bLoZRgCS+g09F0desG0g06jzeUpLJLkmT55p7hG6hk0xZ81nYrwlPgikufugO7g9ghhN3Ymc8S9Z4pzHDlnMAqDjRmBMk08r8a/yuCmSxxHuRvHr1bMrg8cs9lfdy7wiWN+UTLUzavy9CZuGnZPcKRMbabyheb9YS5ej7i/L39iq7LtfmjgN/iDlj36QwN680WAVELOAqNIpQ4zAKJBOH+47t1PSeCYblYz7GgfP4srF3GiTARJDJEnSfaXBo5mWigjjmxPPrC2Naie7hHk7HcWCOYTsXV2WvCqmY1xR+prQ40/PvGOax+SK7AlEQweZG7rbvkNbdMHPPD3oSzIkxBK1Ni4UXRVePoCd5hW1bQhy0Upq4BzgXBglhxu++mHOCCvkaadOFXOOGSiMIzsPGwAxPEvv9YDJ1vw3HLOg++soXGkf8yX4bDGF0Y0vdYIw2BJFjJmi3GJXpoTYw1Tw+M6zjwkscbEIYJuRPSRcGNh3IXUkEv6UHAlQzx1EAEJJ99j5mpTmflZnt8P4BIBHUxNIMEIZbApz2NOJzpKDOW65wcWTX1UxguYz9HPqhuW3Z4F4vZCLCyqQS31koVfc1Ympvb93asjSAXoiih2hE9iDKsbe+Y/v4zcKwOj1keoBEjdUVC8jEQhnMxdLdI+ruHK7Dfd8dANqWXTWjZ/rhmVJyPA9PXNyC5jKkq9BSfJ4x1iJwA949cXTix48f+F//6//CcRz4+O23CNsdc+DH1w/89def+PrxhVMtN9cAMMeJKQY+mb6xQzA9X4bzYn/Wvm8ODlhiTikgPAtdJO/2GSghRQAgTbHtuozRH3/8gc/ffsO//du/4X/+j/+Bj4/f8O///j+x7x/4/O3fsG2f5pXZ8v7GMrlOpd7CjKnioQaI61bT9RX7rbnnZngWk2WpFu/DDEuFKg7m3VMr+MCNigSJDEwJsCnyRazh2pQzoVNddR7XnWgUkhbW8Fy/v/M1oxWu0cKf7aFcBlo+qnkOzyk4/XXgx18/cHgVwjGMNo8vq4j69fXllVJPLx7g3riLHHOO0iYg0xxBHFjiGmIuo7bkzKo6VZnHAJvyt6iKXPnPkrMLL+/turoZkXrj5aRLLy6KkaJsIGV4agBK8JyQYl7UvW+R42mfE60JxmaJ8hneyue8Pvd3n+t35P31O7ZbK9jWSqR3xpvRmnkaWkVEjfa/ve4GXKob1D8DfDh+fFWYbqJweYUEVYHXeS0NrUCCvwdqntb1qNoNdZ96XerR5CUdvVk+S8VdKLZ9Qy5PmSYB0mioP/xjKgvTZVz/Z2JuynJf11Kvi3VHOkDoU8mTV95FXlOemI3hHAMyR/CZq2YQ9ICyh2ed836YPSOgF1HMHEolDTBixz6ld3zhIpeDY7nqovFvR2xwTS+2YeZeKoAVaKp/QE33/v7uvPO8+T3OKWBFqqS0xfm8fs/GEO5v6Pnmt/8qr6G741dAnRdw/mZd/YqHz68cd/yG1efuQKgrWHfHd65g0i8BaiS/Znk4q/ym0lA3P76bjb8H2KQm+JQGrwK24d7AsmFjMkafjEvC5jgZmgPutgAIhODCOFTTQHebMIquuVJSXdh4fezMYbpHTg/Bz82JMWhEmdv+daJDiSu7pgQCAouIbtZpUyiGM+E8MQUEGWnuGkSJ4nj8cNAsbSL6oTEQNt5ORiD/svGk1lcWlFIIXNsv412EVyqWzoi9nwGdVY1oYcUSz1G+iTETWlXfUXvqEHZd4eN3l13ZRngwpT68GvzlIh/GC7hVxroo9yJl3ISeS37ClZmBzL8wCAKoXuFw2YUmfc2J8/zC19d/2HcEmxxImn7dHDPKdtfk39VrZIyBL1fCGUYXhp0rdi9jecP86EHY4NGeLYEmEYkdfOZeWhiwK/E02HrflvAzIBnvnApppnQkwy4z4vNQk3pXKWs8heCtInIPLJNfiehOaKWKAQphf19B7ekKiWPZUFWcx1epznXZfWCf8gUEsKDrd+M4I/Egw8zmuSrGATahXHcBHVUTbKr8dVGI9Qo26cvfDLBJofpaMY5hfwh+SQ/K13We7ZKv59yzzVG9pZRg07q+WtuA1mL9khhiSC/35VQwd0QAhUhFOJU9T+Tb4GBAgiwUaQ1eWtwV8946tm4ADj2ZetvMO4XtSEOvYJPkvabzoLZteHz+w8EhK76xbVt6JBFs8tdcV305p/l1eU3DtlnITOvdcg6J2GsFmmLdp6r7/DowzoGarNqcPJKzp/gqXsEU/06mxzhwDg+dm8OqWIrgPI+Y++2vPz13W8f2H/9hNR1Pz/MFypAGkQ60lvhf8KJewB4a9yOUiPZOAWVn60eYwr0/PHzuH3/gH//4B/71X/8b/u2//Xd8/vY7/v2//088Hp/4lz/+Dzw+fnewaY/7r2OKl9erN1rl4TRM3+1qL2uUXsv+fM/nM3h/lRNVX6l0RN2Iv9/zgpzbZV1J9isAc/KgOTGHh2Czoil1g+hL+ewbgcMro47zxPH1dLDJAKb/+3//bwMjT0vwPc4Tzx9WlXDbdpNxh9Gs5QM7X+4lAkhXtO6yjWt2CSs1eWYAcR3/94BE+YSlApMzqsrzeN6L/uQyTAu//g7EuOsLE+ZHXiopYFo/MLWj9R5rSuGeTvTYFcGUvP56r58//yut3oWFVHlVPXpfjbgES4oJv4zPd2DTXf8iR1z5/bper9cHnbtEsnuZT4+QR725/11b7+7P57oed+NHvpVyzPin8Q9WGczqjqa3ISooehbuOKfK1Kq7Jw7FSJH6o+Z3ikxSjCqL3aNCZaHnK6+ZOrA4D1CnUEWXAQQfu18X1+/WtW8KWw/xZsUvULy87Liu3ToaF2M9riuGhIi3vVYFtOGmvcdxeKW1S/PL64tyU37Xy2s9lu/CRrxfy9bXhtYSFPlurJdr9d4r57/qeOlv0B+in1c5d73+V8Gm/2y/r3342ZixX3fnfMcP4pz6jroQQylDEXvP2+rx9wCbgDBKLJzHqudEqn8wZ5MLWhEzNvnQSsP5KB5FQHCnuAdCOdRqjMWrK0TDEouWKUqDRc0DoXkZdRGBdkOy6YJ/nIeBTZA0AIIv0RqCK7oa1S8SckG5gD3wikoZJA1RwjuvMearpWn/kClJYWr+xK98j7JGEIsNlaAqsLNIjm8OKcTLUII7hnhtR28+6ApsqaopM9cblut08SCqv9QJqtdW2llnJnOrMB+EX6NaBGpQ4X2b2Rpy/tewOSgwpu0mxjNrxrybAe1hAb7jepzHEuZg4QET5/nE8/lnfAcqZLz+Ajad4/CQkrGEuAXI5NexPLtCHQH35NuRyDd33hNoMvrau4Xd6GBISwqkvnkojocZ8P7C9S8SuZfMEO7Y9g19M4WX+YcUHhqiFpY75sSYnggPphgyVLAVAw0+1sCMpUTlhw+UBo5/lrJ6p81t61TGDADoYm7pEwIVr65XjTuuXxhg83x+OV/j94VPXPmZf2dsUZ0N2I9mJJFWEtyvJMlExHzWmreF4SbGHFYwXgPA9xFxUIogj9FsKnJ81nlaOGVUq6p5leitECAged/FmI+1xd4gnpusFmI7s63MmjGktrYTlU7h1dZM5hTxEO2mkE2wpLsh2f0PVAIlw+Ho7UCjU4SeKJfKMUKvJfdA8XOYFynyIbVmniR8DOGOMz2b7Dm1Z84mkQbpG8B14sYwuslXbZslrm0d6N3GpXVMERwDwJzo08CEiYYpQFcFmoWz6zAv0PYyxCmTzmn50SwnWkd4spT5UMo2ERDg5Slp5DjPbRsgG6Qp9o/f0PeHzUcT7J+f2D8+8PjzT/z1PPD19QXpG47jadWyoMAcEIZkjdN5eY658SPOo5rXdVmzlPexBmOlVnL1eesN++MT27bh8fjE/vjEvn9i2x7ofQdkg8qGvn9ie/xmHlcteZ2xk5JrhzQuzjtrWKRYSNPkJoDkepHL56or2FothA+g7Sfa/oTO6bk3rFqjVuDAcw3ZeqBC67PJdS2UBa63VMMtfkOITI7xOU7zLpoTcxhYKAWMrvoeH0uCh2h4Jlm499MA78Ne9/2B42lg03E8LdTvr78wzoHHn3/a98+neeRNz/kFdQch8kRF3xTuAGKeB0CEp9IjN70ay9iDulnSzlWHiI0UOF8XANOBbl8f1RifnEPBqsPoK/hyNVy+8ySoBjtzJhJkGWOEcVbD8vmdGSvztSIx38n9d6+9cf2Xsif0UHWaca+mybDIDPm8erjoVDzn4XKK6QP8fN+IC/mK1KONd+fc2mYCqwPy3PyuVrYib8lx5nfOd3T6hpzrh8FccoUmTfiAiVcq5NgA6L4xELBNySehhbLqZ8pQ6rXK5yJ66rpMi5BuiefvfH5HXhi2y4ETMY90e95C60xyTfpXTmUxsAtt2xyXvlYKUX3Rqcwbr0SYAJEaQM4TaGeOgXIDkDoNv9Oo0AtB8BW4ZxMEpu9BwaS1qoiKgPTOtsvVN8l9XSkperURKMc5H7lp458VUJTNZy33d/t4ur7LK2ssCVzvjaFbR/Ki012AT/KB8p2UawAsbRsJSOQnu+Mn747vQOf/r4/l2ep3ZfkA6UVYnyLYEuob/fac8BQqfPjKn69jd3VsuQL4V3Dv1x4cwXsZgWTrXgIC+NVZ+BuBTQ7ynAPnUPMSgsDib8XliQDNlWOVyEtBg+s8jkjoTUWmkIYvAn6tseirEQEA4zwwxwm4cDDm5G7lnj+l9w7dPPeFmqLPXZ/jOHCeZwB/7I+IZNhVWaxS3JnvJi4MWkkmZ3yNhDNfCLG+oi1ZZQAAACAASURBVCwKY4TlkLsFrtlx6/z6V057+VxG/PpMVQDbiZfP3x1FGb1dLNMX08udL3TAZLshVOsyr5yjXgOQPSs0S11yXuIcCgCfo95ejI37Za7R02Ws/P2I0IUUtPMSslkrKR3n03dvDfykkB3jwNPD6Jh0unqtXMPoTg/fqruD/KP30stcNAQIG7u5fZ1nAYBpSuc/Pn/D1jcLxShu9SKC7iE54jvAwWBpnAfY1HB6/w1s2mI3FcJUkgk4QVuATfQYstAIjXAgLM+VIF+llNvdF39AVQ0lWOA8q0UhLQANzSvOqcLSxhBsr+Fqc+LH80fMFykoBDr7QEdBztEkuIMY15xr0gbBpmwnjKDS/nkaoDjcU6Q3Ks3qCT+BCOGlgse8J6qhqF9pSIDYqSSIRbqOHHc/UUCovNLrZMbgBKUlTUXSYiZ+d08WEUvkC4J+iLxAdi7HI408VXW3BQODDABq2J3m9233cDcJBYQ5iyIfUglfqyW56070Mlbe/37JucTwHLve7iFhxJphcM6Jr9NDkPtm66dvliy8NQeUpLpi2Lj0Ddq6ldplAlsHo3u38t0bFLsoeoeBTNM8FZuLkQw9LvOo8HCVBtUOKEOK1rChaeUBbAVGuLW1G4UYpbuX1w60DdKBx6eN5+fnA/u+47cfP/Dx+5/4+PM/HGz6Aek7ns+nZXWdEzpO85Lx95UH0MNr8QaK0Jys9MZjyfVYjWrPa9V7x+PxG/Z9w+Pjd3x8/I798Ym+faD1B1R2QHb0/Tdsj39A+gNoXtzAw+jITCI4MXJZmTHHnFkQMf7Gqooh1zS0xTQ81s/p1WCv+zixe8VG6jt85WGJ4tOzat29trFqTdC39beFvwUQZf0czp+P42mycA4M90zbwrh3bwKud8lXhozN00K9z/PA8/ll8vL5hTkG/vH77ziPA+fx9Puc+PM//sR5nvjz4wPn8cSPH184ns+Qt2GMKgA5AUxsu2B7uCHdNMbRaNXHViWSC0cWTn981+iMdwQ8ntfRIA5eRXkj9HCyMZuaCYiBPK/+XWX7C71eFLRrjqFK66SB80wdnABUDQFhuNiVHywGlyT9LaxcV/a+nJMds37ERtqIUE8azLjoilMVT/fSZsL4MbKoSRYK4nrgHzcaEHlw6PEJaDmHid7d+yciIzyvGSRp1QEnUYEQSOQQFJVUUbxZyA8F6A5i8pzeG7YKNpUGDP6wyomRkJt3i3NWsMmAMucvIdtYKXMtDgER1CgQ0tDj8bjkAKza70pfd7SpvrE8vFprlRm8D+mRul3VcblxFl6Z7QDOWgyqhOku3tYe1MfNX2FYjJVeUmmQTj8u6lY0CRLkJJDV+GzlGcXToqTB6k/m65dAZ86jUcKLnuQ6qFXqtfuJIABMEfGNKLH1IBI0E/dUz3pX+smiRCEfy3d31lTwJv/cyg5U5UOLbngBRa6eev+/Hy4rGaxdv1v4q6+JnL/Cr/gd9fJyznK43HqX1P/O1uf7d5sEAP55oInXKUJfVdVM00YQ1EnoZ8ffA2wSQF0gWdJGyXjdOYzZOdOjkSUqaMpcHOru1CZURICaQNaOC5cmlVA4U/wpwuCzNWgLMUI6lLvt4veSaCsqbSFD+TRiGyvzLveH59QpPb47wqgDjQ+Je/G1ts1nKi3Yv5UjINbLhc9LXBEGIYCaapn5qajUGFMqi8ivQ6CzhS/yHuJMWNdFYwu0sC0FIp670EA+Qyp0pWnEKoj5va4IvXtslKspJbzjLhRKtzipK6gUxAtyE6LgrHBUz4txjq8i2Q4AC104ns8QcmbAJ+hD7yMK0uO0pMsBKDhocQ5TsLNix7rrM2aCU8H4YXMY+Vb84bdtW6hLqPhJVp8K48zBpjpCZGAf+4fFb7v3SxraDc09CeiynUo9IhdJ38zIb/7svXe/zrxRpq9ZnYDMCZkDEME5z7gPAN/BtPu3OUllF8LINZZcpUobkipP4ppTTy4r0EnQ0pPVjhNTPfeVGzBUhAg2Hc/nCjZJWR1aOqRAuom7sqWIpNtUuqYr0awsF/xPuUqY+42gFcPPmISz8A2/cSb/Ls/G0LiRClrSlTPeUt2J/VZfA1nwgKLNiOia3NKMaq+wRq1MaN45OCAAvZayFHR37xAxDx6/Syhg5B9UjEIOeZdY7TDAJnEgwMrYG9iUBlHkRYqwtLZ6MpXXLHaB+J6VE5mEm/lfFgCEr/GPg2VTMbsrhI3V6Ir3nwNwk1mn1Cs6agO0QaePCwCV7murASoYKpDpRvOhaDIxdEDcy6m5N3L1wIECc5h8FDnRxJXo4d4BPmdpIOWqs51/YyLGmt1zcwLSNhtrEBg0YHnC5rv3HZ+fv6O1Deep2LYn5mlV6jAH5vE0AnQQlge9kYT04+sr1kjNf+PyjLKaawlqfKv3zQzA7cPCf7t5LQEdcwrGEByn5f356+uAytPydfXpwKbzRYKXdVzdYO0ccwcoJyuvaSbjZ741Mucqw8LwIT36/I0xwrOIHk2LZ5OkYmpGdQtjhuNBAKJvVZlOjpo0ksYx5ZyFuJ3pFQnF4TJVUHiky+1QgtVzXo4BnQNznjhjU8Yrq55HtD/mMP7F+e8NbXZsW4fODfQuCP6mGoA1nSNBwMxpNvhHCtJC2fFDpfIgwaAuv2ACLEib/F4BZQjN5DnlPsWYWzYqvjmu57zkceT4tIbn8xmA0hgjqqxVwNE2b2kYs2++Nvxe3BwKgI70wGEFh8p+DXHL9tyYm3Na3iPfxDGZ6HOaAgyAuLxyXcjHdC5/3tMwsGO5ea5Vm3cz2AXNd5WNDDTOYV5WaekJGWsvXED9HrF0kgsSoEwPaikRDi5S/ZkYBTFgN665Q0Wbj6O6vrJ6FnFcrhpzBXUURR/3NTfhepaUxedpDKjz0ZZTpNwCWnmPGON4KPIj/ksPsUZbJ/tKm4ybbbNP1w0zJURrZ+i9tnGy4Rz0XvNnuYBN9Mqc8Vux+bz4TmuairxGh51UJ4CWaz3G2v4knAkkvKfCKyVmu6wH3kokZyIVQ6dFRevN9F+nGSZVTx5F/Xwd//Swg9Gk65ExT+p8TZEOE9TRg++RRstYkH7e8KGrR88/Ay79yrl3YM3tVfryZs1RWhg0qwxKfdDyWDFvGmIhlTRZh8Z+ek3Y/R3IdPd8Fci7fn93vAOjQm/zdqh/DzGw2+x33xz+5vh7gE2u7I9j4PjxhdY6Wt9skY/pOzQCVXE3Tk9CCJvr04W97bAZwmyHom4X2Zq5KFrIUynkaPClUovKfwH4DrgDUjT+WPmkQdE6LFxnWKl5whprvnIqe9bHa/LpemSE2KUjRSGLM14IJkEVCr31kMvZ13WWzJ4Hw7dejtJ+MXuA22czwTOHz4ksVyAXYm1xRgdzwftib+tuZub6oTss/5y5c1kL4jr7TNQ9DXeymKkedlRKniZ78HAXPuywvzDUFQU0uAybKoDpFYCcCXtp7ufziNxITNCZOzPpFs5qWcxhNlm22efq+Tzw14+vON/GIoElUNDZZLhHkhmlWUHHwKTHvod3EQD30sjzRVCMotQ76ArOZWWpjs04YgibealwF1VSeaIg41wJALE4BSqFpnTbihgOtsg0cHqK7+LpxOnJyCI/kSfcn1AXzJnoMl3AV4FM+qtGZexSk75EME5n5FMxAzQzgPA4rJrfjx8/cI5hXpGcawebns9nhJ4kvTqtXuiIoFkIGcUaMnkFv0NJrQIKrjS4kjur4axRxSsVb3U+hJdqcijKWo6XXTPmwHlwFzybitEtBq/AvDIFBiwxbDLygWxpgBvtdEsYD4lwIw2wyWSItGaeMM2TPouY4S8NhK8VBFnCZyLHL8AmsVAwSS+m3jq69DBGE2QSfHx8YtvY/+ZgcQnvUAQIRLDGQArmSGLybfKq65z5vCrALOIbBDu6GaMoOV78vCWkRS28TaZgoKGp92WKA2sPSBOyN5wn8Jw+WnLYuX3mevaKdH3bbB6Za8lDmkI5LfSYngArX3eC9rU2XMG3cRpD0fbfgDkhzTxBzzFwDCsQIPLAvgv+/b//nzjPE5+//YHn84nn1xeO5xcwB/RkaFYhRvLFIleSCWjh72ngpLzNtVgTKvfW8Pn5ib5t2PZ/QeufmHjgeTYrFfDngb4Jzva/se8n0B6Qtr/k14Jk2MqiCVwUy6p4ng6kBZ8vXgmm5FoRgbr2CJBGrqTCX6IaHeU1/2hMissZXIE5yhosPKAeTLIbPKQWHnDj7/l1OnjOcO8BnScsBNO8RI1aJ0oAM5oXXREHtn/8+SfO59OvHx4ibudE6CLMc3cMenRZLjxVtcp1mBZe6R551CpHbJYhVYbi2cR1BxRtTWUFiyCe49P1JtKfl1of02ULX0EASlc5f6GLq0GzeqKtRs3hmyJ3huLX1xfM29g89/Z9x77vCTr1hqnDPYfTazU9WF1O+dxyvElUIggaJUDKDZPpa89ojPxBgy7TPmaLKYuminnuOi8aZRObesVgXyfnMPW+tB5tvTx2RSTfd8IWYRJzjtaqvycojTDafvv9gX2nicbxcN7TOD8Sa58WfYCQDi4dTmsS14nn+HN52YynRfg8gTLNGbC+k1Yk1F/6RVnSzaQdCZCCVUO5kdjRuqJNm8suXuyim9t3ACZ8Bj4W/HqUSpwoG0pLT5NeTc7lxqrpy/Ya+jzo9eSOBH6/uiFbk+LX0NBYC5NedAfm+bS1r5u35+s6DHLT9eMBlXm5NLm4qiUs91G2NyWVQkRoFGoK1aRsvqtiMh4RhS/HukLo/EIdR5y+iy4G2GYlpofc0cmYY+X9n8NtdqROWKnXbqyx9sP7rADX1s/XDbSc01f7qXrNvQOpKs+q9+O6Xtq7uV7K+f7GviedcUiLyftCl8KcZoCBhHkvAWJDjzabAfSZFLze/zt+zld68V3H4d34vQO3AMM7AKDDNl9kTgyfzznODNN/c/xNwCY76HFhDKfmmwFNN1ujLWc2zpn5ikLiRHeuBIKbAQ9lYE73RPA2llOLVwF/UC7SNDDtTL8+OGcS4OXBa2tvBud6oZZ/a1P3rdTLb0jtuzvftvYKcZWm1F/eNBsjGIpUMXRqf0Lg8RoK9+hGXFsBKaka7E3f7dauvsl1YC/0c7nu9XNRxrjTfqGZLKmsq5EOFCZhgmiqeyRpJkA9jieekSeiugHri+KnKGWqWcZbZ1GmeO7a97oT1bgr3VfQKMuhNzweewiEMKC6XM5j2AlK3haJ24oqPI+q5RVwd/NrlZ5Zwpei15xjhg25wJ4UHIXp8tpGJXaWagrsF5gXiiEMrxQUSl2lguAntX91zTs/UN/1E1l2x2w+R3gMDAe6azjjPE2RCcX18nrtT9Ka8xVN4c6+CpNm1XWVreQCVnjqPHEFqnC1ykv9fWTCEIG8ofX6XrsbBBclnM9Qv8+kx903JAxsQpP0bGI+pJLQmbStTGoaYFO3MDIp1di2R4BNqs2HoK1Kk9D4aZarAi08pCKUwsPrdCqkEWzaLHxof1hesdYjf4lGSXGbs5rgOZJnO1jVNybDbxHmnSDhDF0xxlMYGrkBHpKusFBcAjcJwEvMH8Q8ntTRYlYg4mvSuoeCknur8cLpy6vBwu10mGynJ+8Y6aFpXzmNioXiEfBlOJ7xEA1FmApud93AUqR5lb7ZAUwzuKbtKAMKaRu27QFIw74f1nd6180ZjMoA6sLLqZAXvsSlE2DTLF5D5F0z9RjyHIJwfXvYXPbNPLKkO925wTgVx+HJ+JsNZpOGrY+gh8pvqzxM4zUNLqiBmtzBJwsliEmgdBJs4rhDnF6bAXKsZFlAH/I516FDmU5RTU/FBOSKmIfJ7VeN4gVsKrROo+F5nOG5ZXrgiTk9BFwttA162tpwHa3JRPccS809Co7jifN0YJ/5CMdwIGsNNQPX2IsaUACUAJwQu4XltNAbQ4dZwCZxOuc5RmxCT3sgxp3Dr8t7WfQQdrsaIleg6e7367HQf4xD0lw15JgMHSghTY1hbDMMbJ0EIo3mWMjBRsH5i9MSvTtJZFo2PqIKb+S3NI+iJuTLSW3eatEtUOaCSqwAAZJQhjgwQLFZ9M5oVZAhvpVYli9y7FS5QZO6oI0Z6W3tmQCRJ0ycX0Q6jEKTDJqFs3mJxxJXnXzzxruv10fR8rnMLzUkSgth/J5WQN7mSZpEOmtVqy6OKT5XvIZzZE8ZMijWA5+cjgaUaTAZzH4sA+tdQoKvHD3VBhGjlabmaWSyND2pVRH8rXr8D6e31kxetzZc5/Q8XyK2kakTqmUjqMw1dEJlZu4n8oyYZwdfBSGDREmxDki5nH9hmYKwaRrprnfzLnP6F/5LZh0jY99Ri31xp6R8EcmIdudFLHQlAsPBVNn5tOl804g0BDi/ARaews/XXE+cQY7l5aFf5PMLn/Lrr/wtNq7XFs07unxP8FRYUYy2jPB5JUCj2o68tJyvIfvK6yvXfT2uQFN9puvfz447Xv/6GUvPriP7K/f5e4BNqsA4oeeAnidGy2pJJ91fKXZq6AMHd7jx5mEiS7shyu0woxSxsHmeyQ1Onu2CUclcNIpFikjQXLlpCqGZO1s/GYDy7z97/OJVkt36rziklzTCFGKVIGu33nxvXyehcnEzjS89Zyi0lgYoFJAMO3YB1RhuCPKXBZgCHWDlkNz9elWmlh6vHERX+giKU4QBSXCBOXJCMZosI7/ulhBIYp6B5/PLvFtUX3ZUuFNjwqoaASWXgprS1fuG3z9/KwKlzKekosB8G9vGEuktKsNRgdz3a66ZBJ56t+9Y3jT0gzKu4SnupbU3B5uEHidlRMdMEClco7lmaByqmcAEk2wcnRH7DA33umlQYKxCqVGpZLua9JTVp17X2t3uQtKi0xjzWzkxUSFnXqw5p1U9Ok98PQ1YHOPE8Xz6+HkoDBXPmyUm5R97SdCVSUlfY8Cl8C6OBZ/reod4AGON9OC4PPvdrsvVjZfHcE+uq0LGa/I6KibWf3oFiXt5oImFTnqybPNU2haQxpQdB4QcYJLezchvzQx+aej7A9Jo9Js6PyOHlRsmHCQm+EYaI5Hcn0RXlCDmddp2lkd2Hwud5qWT6rs/g7j3E3M0EUjbgyZAhVRNFaXM4w44lXFog7i4FxdtrRhlVMZJR3weMwJafgeOQZIEFVWzOZr/5mEaapVkMRRyeEJlUlyl4zBw3BBqYqHyDMsF0ILXFmMQCk935vOlUENlYMBbh4iFpFms30CfAGTg8QBaO9Fkx7Z9QnSi0aOn7HRyZKohVYEUMwoTSBFxoB4ohsql+pZ7h7bW8fH5if2xo+8faP0T0jeoPDC14z/+fFo4jGyWm0rSey4TExePALZf+g4gCjnozF19PkNnDi/nB8xvUuU2vVYFiPitOat3Sg17QPCcHEMCU74hKMhKjFrOeZFMyQ8o2yqYrsq5Nz0QUzHngTEPqA7MYaCTzicslG7YqpOJJvR0snVw/PgLw/MU2oZj8Q4+LFRwnA5CzYmTOREJFOOEYpjcb+ZZBRllGItB5bSe4CCwWvtOz8W7RITrOKQU6OVEXbQay9EujPfkeH5vWHx3RKGcUuntuvF1zVdWN6tUzcMJc1huGk39pV7PeYbms9gY5JvVrKueTcF8Y9xqvryV5mwzyxZ2DxonnTNVR9eUYSHHc4CXDjJnJbsX8rg+QJWT6KkHK8D8YjotvH6ds1c9mLTwouM6XYvLJeMV4n1c9Tlu4ojA80RRP8q/ORTndLjDQYLMF8diFw1Deo5Dc28m5j50T+DDq3W3voXXaxS+cHmdnlaUrWqeriqxAcboE8qgnIeYfd9nMJna1SoRt2U+C3+OcSu6SPGMmoWfmx5fc4GZZ9M4P72N9JQKW2S6nu5heMrwXtI7EmyaJ6NiUq5DHVAtYWsLPQjHQQNs0rHy54TnkOGIBeggyMW26a0PRlF4r3xwwp6ZOqF9RtqE6TpFJy0xzFQnoO6NqO7ZPOu91GvpMuWE3438XjOqJriAI6bcNMlF7GfYA0BVYxOQ4y4QyObrw5/LromByKH2+weNuKdjU4s82NqG8DbnSFXQrsoBBRJzsNHXQvK1KnQFkrIqtH2u+T6DpotMvm4Q3NsseLl2PUrKGXqiem7Z8oDfHn8PsAlwjWFG7L8RVXFldGEqgZoKICyHTk1TM3eAH9c4wswPVIiIRBAuitTe5WYxB3cHFTaeGowqzvcJ+iVh/gvnvHMVurt8+ZxSL0Xw/4ujKN1xmwycXzvAG5b+LLuD/lnAtV0MCQ75okcvEhzizDmfa11EV+P3bjElKpyL+tfHIhW85flIuxRQSjfeFVCysLixJui+AEoVbKrKXv3MfDp263RNNQXdeHlvGzZPap+VVBOIoFKWYJMbuVt3w5eeRwSi5PavNxqMrLSVOhZ34LkuhGATKyjBjKhl/nwXaIqi+M74nLvSQ1qcE9rEnBREsg2/39QJTKC1CVPQq6GW9zRD+ef0cMe4V/DzdQdimceoEEfvJgstG+N0IAbY9935zHxzr3zWSDrKsSwgwV2+wQUALODb3RHfFpvwHdgUzwsUnr6Oo5UU317GcFHsNHfK2S+G9AgTbNcwOv/c2hbKboBNTojmSdIMaHIASLwqW98/rXQ32Zka2MT39vhUZlqCS5HY2vOTzJQhEVrX3RuwGyBma9XM3YyhLtXpmrj3lXtoucEf1eFcoQpxBoTgDwA9vJAaGrYiq9yrU1Mt4hwncJRgf2XCSkU0WHQqrFqMlBquV2VzeCQxaaxEc84bJMZFNPOcUFFbqdMuzn6kf38YfP4M4u21ZvPb+oYOcQBb3NMyJn69S3mupaIUsCh+kY/Iaa7m/aigq4hg3/f0cOrm4QTZYKHBDYqGc0yMeXpIzHjhtbVvd2u5rrUqO+q1vc/l+ipfuC5bybvHTaXFY1d1afOV17yOUSjHoYTPQok89HaMKeeMFp3ePK/TnAfGeMKMP3vV8QVVBn4a4NTEDL3mOt/59QPjPMH8KzpNocbULLYxJqYnJbY8UkhPL/9P1XJCQRTq90hQKOk2xZJrL7fnhNXk6zCBZL84fle9tuvXxlq2Mf6ZBviO/2dfEfoKC4Vc6fs61zxvTI7HyHG+bLZdk5a/k79XeXV3PulalfS9enOZl6fxDSGvoE7kBTys7dcNpzuZd7cW3/UVgHt3JY8EkIVeUYCzcGH5uX573dyxtcb7ed9UF+M0KgcLQcHi0RVJ6p0XFbAp04O4p7BoyA7erzVYXij/ExEMB5z7NK+iTQ1IkNYCDLFIAQnv9SbNNhPFE2vDQ7qc7hcjQ+Ifl11aPLAUgn4ZowGRdju/UjZvr7lO22RVNYJNLXmfrushUxzYJjN5KJDXg/bMnJjSXLYx5M6NfKjzskp7FxoEQXREDtGYE3KQYgewlBGd2Y3knPd6r9A00iRM8uzmdDdsPZul7lvB6rKQQCerMuuETkGDh/5CQ6cUlwHWR9e7AoLS3FhTD4+l8wdZnRR93gGoptQxch2FT6nrFo0pF2Lc2Khdoz78zoJ9DqhpJM+xcPTm4+A8OGwLMuYrvSoWb1bathc2TN1tqm+sz5Tbqy24ysnv+Pna/itgHRpebcI94pW0+Eut/53AJkyMceAcT2CYYTBVPR9T2jfiVRAgpojboNrgnPMmjxAVo2DSZPB18v2VyvS8fF8bC+Jh4/LyNn6lwfEyGz+Znht38quK/a45Gslvz5OXbv7y8a7Zl7VUn9nfV4O/Hg1mIPIJaeyY3Je8741wZa/UfYRzN0mX21yVAb7+THG4HQMy4HkBdIqyxR3fcRyhkF9BorWSTypuV0Xfrk1DgQe9huohoVsWBZOGIoDWNq/elicz78sCJLnBvrlR3nsNYSoJibPpkO3cHed8SD2nKiFkrM3WSBcmLSyK4OSqt3Ooj5li7/PlrTFZ8mzTwuSECgINBobUAJCJ02PPZfe+dgtNsqU/g37r8yQRIPlJFA7A8qrqO97Qt7RSwyK/vn5gjIGvrwOHezY9j8N1IyrIel0+Ze5zrO3caXmIfNHz+9yt5CPxt/ZyzuLJUdZnrPWbzrxbP9fvaYAsVRaBZb3UNVMutPxgrIzD3VOvSiid4WUd3fMwSXfAhVWrmBjbwSaG0UGaeZe0Xh5RMHy8pisJEdJdUNRYc1TMJXedttjZ32IeCc7TQGxRSazmOTPD8TgMGLK8Q/QidLCIBlHQZKwIX6Pq75kDPY2ENWyp5Hmw06KlOtWqsLVUhImAIRlJJSrpjafqirp7iZy+Lrps6d3injXNtbnWWMVKwsM1crmTdnnPMKTF+U7ZFWyuxAu9jIcD0RP7Q9DGQGsbxjghE+bZVAw/HuFNJBIeRZz78CydmWuGibGjepHzLV7XxMH81vDxeGDbNuz7jsfjAekdff+EQnD8cP0njI77tXQ1cqvxCFiFsGsF0WvlQx7V8KdC2TwVZgv9YTWUXvozkzb8bD/XrxMpRWBKOB7mOvRSCW/1ImP44/k0kAlz+ObOablTdGCcXhBjmGeT6gn10Dpb2YrmngTn82mJ4mlZhOKpBijNDG1SFliwLvs4mTfTmCeGHEiwCWG85NxJfSx/3y5KlgWhkgfTJKlzjjQdQZ6d7dtYiUjUP6hr/gqAXMHL+h3fV/0nCpJ4jsGnF7Lg99QXqvfMnR77M53ruw2fCo5cz+dzrN47a04Xgk30ai1u2NHXF/kfHafMV5oZ8Tw0mLNTIXXjYl3aIB/hlwp4hIWdmWvsbnOmgkzX867r+6qP3gHXfF8GAPCNDxUJj3IVwvgNog5i07MLrMpXPJtaw5zAOK2vfTMv3Tl36LT3fbNNme7FHhieN4eAVe0m9Vdx20Ek5Bx1mtxwcz0mcoyu5wHAGM35Y53nOsZ8XYHuWXmgqvGec4/r+FsCThoRDcZD7XXOFWyyMF4WnMrQUzKcWYAsM2oLAQblqRfSIpTEcaJdgKDrAPigGayhSacK5CYDSgiv09HhKR8I+FNavFpY/wAAIABJREFUicDzg9mGBUSMB0/POQtPyk4+C64d02FUFYP5/obx3DGHFSDBK9jEHGC2q+RfK0GrEfOYPHuGOgaltsPpp+epz7l7Men0TQW2oQpVe8Z9f6C1DcwVqAorhALNOQ/1IkYWkQfS57H35pvuxdagTcJ583QPU4Fhj2tpCfyK1hAYytWWrmDSlZ/wXqGvOH8ykVJBLT4B7bYbHlmOvwnYZAtyzhNjHEFqUz35NwqrdQQaIpBpEpRu1COU4EvroRHY4Fj88I3LNnl8fCEvp6xfpHJvVuHLjVdHqJu+vR6VeUQv8G4il1AEfyO4v1Pwo+9p4u2xtnsVneUNrRN+mSjBa5vN3G1rq5VvchfGmrxbGE7uIpCtL7382Y7Y9ZxfAZqqYL+CBldvo/F8urvs6zUVbKq7hPX6tc/Z9yvoUz9XxSo8QC7KRgrgUj69/NGjaU1EvCpqNkU5/u/GOE8vLp1VDYudhouY19IuSaeQ0fWulstkMyEsBjbptCCoOYZXrHSmTyPQk+KiMTmmhFvvVSm+o5krPdbfanjBdTfsLgTh6+vLwJfniYOeTecR4MS7MqjsW/5RsDQwdj9ppy3tVKXyHT3F+zoiXN/fHO92U65G7QI26bo7c03G+dLXAJt6gE0Mr1vKLbeS50EEIgSh0rMJfn7fLIwuHhOUF17rikajdSbfgzTj4tnBpq13X0/NFWM4jVVZpZEQvEeeKWtqjBkggTTf1ZUBkdgKhC6LQd2wUZeTpkn1Ltg9OezCw1+MoNdjFsOYYIHGvYSe+DY3HAMqN2qelWMm3T+d5rsgAEE08YSxWblKxFLdyDQjmQBcd+Obn5nbwewHz83EpBKqXinH/6RZPqg2sU1AxMCmPk4LnRvMjzGDxgWI+bnlg4UPVDqtv8eIl+vJXx+PB7rTyb7vkNbR9oeDYs9w2zeF9fVebPedPABWsKkePwObaEwNn1LLd+RzTyPoJlXA0ibPd8U5DCSnoZe8g+U3ayvbXc6bFrLx/PH0DQVLfG7ewgfmHDjPH2B4iyUQP6B6AuHl5InCNTeHGP4CBbjMEOPOQULRdfgyYP5NJwaGhz9ybK5eSxyYXFv2z3u5cwUE7K+BwHIFoKpm5vZ/kQO4aecVsLyjDR5VlyHYtG1bbCBUWqs6yZXNfCdGwkD6iay5jtO171edqD5Tc34obcP+sHx9GRL2Kguvx538r/LqV46rPkEDcI7DPOScutLoXNcKZSb55js+dL3nFZy6Oyrg1HpHf3wAIpHHj/xX3UHA+A11EKtEaF46timEaQDC6Un1p5620aMD0OGbPr65plZ9E7rStYil+zddknK+Akuu24Jhx/67oGxcrHNKT+KfzxFiftaxVpjHzg4d+6rTlFDRnLPT+SB53wheCyQg9Qo2VU+o3AzwXua8UaqrYMMeCdUBeUmyX3U7UlrV9UzXyfPSFptRifM4j0wNMmauc8kKvaxKrVpy6sHHgXs8JuVClzK73mnltNQ6rBRqqk56eJsa0QuQVnQbBegh5VO1jCPOMo/FSE6AUQNnULWq1tqKTqQGVG5eXTs83aZiME/dYAgh0qEFzKVFANSfo3WrIriMd+E1Ypue9Pr2IYziAFADu8e0NCRs+5XX4O0r6cFHImRUjThLffLnoMLfBGwCAPXcNYPwgeUO8GymmbNJgxlJK3aPGpGuTKEejHHlDnUqSddzc/BehT/PN97HlfhOIL6CBpUhvD1k7VRJmXd7+vUe7wSdjZ/cDc6vHz4stmjtQwxnJVbV+G4Rfpd+XhX36OgVMLq0swpmzwNwGZ80WlJ5qvcWkdtwnXcLsZ5LkIBK/C24cDxfMvRfPZwq8FAVhFelbzVU6NlUlaerQpVgUfPdP39utgn3CBKxilHN3keOBeZpYl+qwqUUcT5mxZiAlnFDYVbFYKGVTFpJoZDzPDwHW5S6npajKjHgCqS4YTXD6zpixU9Tx71ayAjBOZt4WE0DNsUc3Qux/JxxJqh0w6CdBgikXJXCGjJ5nmV3eORn4zFmKI5hz74aCbnjncaFXPrAa9ZdUR68lusEoLfD6kZvfXHx7+u/AhTLaEn5fjE2fb7y5pZnK0Jp7N82M6Esx6v3XgAdRHWzAJpag/SHtcnPknmRqFSBChd3rxu9ZDPfhOl205VpIPx9BKg7pzV9Lftf2Faoa0z4bLOQNGNkT0W3Reiq5VbhIKvZqlLmDx5WpnlavS+EvxUj1cfzOEe0paDymHljykTcfjf9qZoUzx6nQXEeE89BBdO9jZvP91QPClCGA0nm2hIDAsWNgqSdSmGhxYbyy6TqyVsAFuvIXBqs5DktdFVnrCvzUHGm4ruRAqAmw7eNUirAa1JT6isRxlx7rJwUAojMS5egp13boOrhv1DoaVV4B+ULwU4mqwagta+gIZXh0AIbVwgwDgebfBE3708TMUCvScjsWQwdeh0RtLT0J6R2Ku+FVjz0pRqpqSWoy40i01Erq44l30fOdNID5QtUYyymJ/W2PFvTPCww0GRic4OAFUonbHMydSxlgS6owEO1L/eNteY8VpHRmvyscG+PidOXhmJapnsAkYxjbd2HiMbQ6tlkBQQIPnteDtmKrHcvTkkdoPL0QoCQlmuE9/zZXz0vyPmih1VPps/Pz5BlL2GYTofkD5ineaK5oXaVk/Ved8e1j9fzq275HdhEg631jm37yA2My3XvAKe6OcL7Vs+unx1XvaGCTeoGec1ldgU5rrpF1S2v+mS93ytY8t5uINFI7+jb7mulhR5F3RCyjhVpt1EWO70y/6aqom9WpGPrzXMxNmwEhAQQr6gXXYuE+YB15ITROwElieqtU6nPblBkmgZI7j/Ro5jSTcrz3kyWy1qCPMgwRzWmYJuYsujDK9BEW8Pz+tAjSoe3W8CksAlWz6YacpeAYeXB/tErFXZsCE9n14UJvvlwgPLUR7vIv+TXZh80cMNAVQNs6udhoJrLVPiVVRcwwFsw9cCcGyJXJYcwrlKweqKBTW4rnSNyM1s4LjVKU3qMDHspBoByDuLZYro43gqTHYsihbCXlsIW0Z9p4FORxRDg999+x7btvh6tuMTJvH9eXXyOTLGRwoW05+QXdKkRsjg1+6igt7XrXZ5GYmOxj14KfrwBldXpM+afoi5sPGq6RXaHUE7oscr6SobX428ENtGzySswwXdEh2kGE2kohOGr1Yhy5QvfME0gEpFxou/ODbcwKhM3xueC/t78et/2N/2q51QN8mdnX+7x7bP7778iBN83YP9ECdjrfX0Rk1FcFYbQ28r5S3/u5sMBiXsB6cx5TjC2/HrcKU5X76EFJLp5rYBS3c07jiMAJ4ILIfhP2ykNIORmvO4UqqoQmYK0eh5dy19fvVDomcScIASdmNhQkCFrTczYa1Jc3SNZ7IVOhDMYejoI8Krani7UBbDmM2bS/ivt5U49BXkm080djWtCPBq3ABUbuBHM772XrWNCcMppn8fE9B01tqPbgLSGsW2pjLzQXz736/wlydZ5tJC4r2WeX8CmMXEcXj57vIZKNulujB2uPGfS6NZWgyFpn+sDIMhEWaNqyhv5UxoxBDMRHkG8l9EU70V8gd4kpp6lJ/Mi4f1VUinF+l1DQ0fP74AMrVGNRPcxwG4o99ZtrtwYgzRI2wFpkc8odztz5lJsOiTRmod7WUidyRkkcfOpqMQGfRB0SNpmN8P4dmVvTgc1vV0qLRXM671j2x+LcUOwzXR4XemNd7xj9ZqKeoynONg0POE8xzryOSkyrI+KGflq0v/UidYEH4/f3GiEK+6kyRb53bonymQ7Y8zIxcZXi25V8+SR5GuATSXgVK0kDwsLiMIRTpNznDjHmcYDjM4FNLyssuM4SuiyllAx8qvYWFZkLIGP4xSvNu35XxxkEOGYKaY2BOBUEowT1BFWUwpvLkvMrbCE9EPF8yEomg6MqTieT/N0VCTYNGxDjrmvIplrhGKah1hZsBaS4XMgVET9ARTTwhH83lNZsY5jozGPk+GbyO8Cn5HUW+htVkmUpgsrZzHX0fN8mhfSceA8fL4uCWCZ2Jj8B3AgVifm8wTmtJLMAgATHeZVpB5JPAGoTAyvkkhDAsrcZQr1KsehO3P9QCAOFrXIbgJQ8+Zv5smkONFxwm6sjUZRypYEhK5epg2pzVvi9m1j1VdbF8wtwoqcIs09w+8BEXE+rXqG8cfvr3819PIKOvG4epnyVTU34Ag2VW/tuIaPPE/o8ATI+l4Xr/253pP3fQea1PG4VtSN6wFMFQf8H+bl3FK3on4VfKncF1g3Ra5gz3fHrd2x6LSAegVF1DVT7svXK+B0DZflc9+BU+82W1/6BjgQ1zKdjbXuplLaZixYEAU6ltQnpod2MfnZN6Zq2Dx9Q8PWuT6MLobTx5xqIUmam3yeUg0iV2CxYd9NBj0eu3s5bVbd1MPma35S0wE0nudKfxwEWj05D6EIpzLI5NNY56omw0+ar/ZLBZtMIK1gU36X7VxpTUOks5hAQw/+E//FWs95LBe6zM/PALBtO3oznfRaMZGFbmYU8bFzuIFmdEF5eWLOZ7Tz3VJJWs2NWNpjted8EBYCSD4RZ5TnKjSuvoGmi/Yask9VXRZpJFofpSrhHD4OarL1j3/5F3w8PiJh+qRdOBXHoIeW6/pIeqKeRp3KKogTHvMxcm8sXilokYYgdXXPPdVsvHUC5+n9jygS5rWivHYpK6R9jUiPnH8Nz2Hm0IXrNDWR+XfH3whscoFfAKO6KO2MUDNggjldlLOVNC3e3ideX8+Nb7jYtHxbbSmt97q7x8qU7vtQjquNW667rJfX+16/+6ZvVVD+vzrquORNL+8p7PJxwgZdruP8KuUq4gnin2yrDobIfWLvu92aCrRdw9+qZ9I1nO1nYBPbuHo2wRX2O7Dr+lp/vypGDGVrrgiZkOzBXLISXPPfrMQ6QabeLX+NNvXQMgSYtCibbpxIDliZavXlwLmVGNP4m6sicwc2Xo9x2RmcM3dLTjLnOUJgc5xaKO7GpWv8dPS5kFj0tSpWZKyeiHG2dqGvZRiisSqwVOXlewC3ijYrQo1RwyiHC+hVaQhaWYT+shJCtzHgW+M7WxeuhJWez+mCovAzGuUUcuqliKe6AJaGxvj4SK9jCUIrrQSYVJInG6CJUATiHP8ud+7ujsIwNK8Jgez3CDc2GtYvjDRbq3+Az2tl8YLYqZJoV5dnzHvwmbIxwUp3KV005oW8WZ3uWm++q755YvOS4FKAOdfwk5A7d8NGQzwH2cY5fy5ree3tSmEcHL7nPSdUraKUhXjZn8HX0/xcJjC1wSp+AYw3irD1ZZy4g+qEqgTh8tZGw+pdthBYq5bkMyJWRttyjzj9gnTtxthMJTWNq5XvxFxfLQ3kfdY/vJzbGuer8gKe2wpIRhqm4VQ9Oejt5Yq7j5sIFVIu6gqd8qh6zAwPN4JhzPPVhACh41PUK80xx966R4/Nu9FSzFkBrIFYliidXOR8LF94UzCAWj0hdhN+72HPyJwmBLKY3FcEyfvVacdzL6U3BGIzwrpoufyU4O8Uf19DJoHRBDpHPGl4uWpwLlOuo10yTS7OCRVFR7OKumL81oYmw3ySLgq4A5sIKRtmrfUCNvnmilS5T8+mzcal5caBMwPv98TULegoaVIKbSMMdn5G9CvJy7zsZuyqs/8KxT52qFo4HfNQclc/9HhvS8cBzC2MadI/jzu9qH7/K2BTBdHuPJRE1pxNrVshjtZZhZdgUwIn2a9cuwx/opE9xvdy7e6nPL/aPBugk4Qe511BpzsAqY5FHUvymqqbXPW128Pb0PAwRMokwCu0uuEboJMbvlGNTjw/k4c5K7zAh1Vc7X1zL3uGQvlcz+meji6DXLGxwjf0+p6wHD8Tqh2tTYwhaM28iJp4CJMnyCcPNhVCfKNRketneXiXLUXHciBAnKnxN0zjj1Vba6UYCNBQ10PMdfFW4vc6CRoWQCqAJtJcK+2wu8azCYKLdj6F/1vCCnOngDOJ1FPKwgci+sGzMYVMpg7aqteOGkhSQUem7bINpm0Zh0pjKD0ycIdhou6ZPKcXfankufKF5btyHvWfeGoft34Bm1TVQqfB+wPabfzPOdAdWMuNHwObHo8PPB4PA4um6foi5vEmw7z6ZhtLonXxKbNBtg63WcAmlg+OqSHtmTQCZXiRD1yOOi38EEABmwpfj5yeLlVZSCBTxgd9KfU3bSEbGhy4vNWb1uNvAjb5A2FCMdyrYUWwrZoBGYaNpMxVgBf9LtvVeg8gQ9+K8KsKZyU5MpDFRCmtvfDlykC8xYtS/+7Zvzuo6EsoOW8uuX53J9RY4eE/eZBgA2mHlpViR1U0RdYvk7eREagl5Sydvns0WRQkgJ4c/GhG/PmicFRhW4VpBY3omVS/u+4UXQEpnlvD4BbPFFXnG4qr51EFlOr33EWLKnDhteQjIPdA1JXR8ruodtRa5MWioh4qLQeQDFhTWLxWvGN4gwmQOqbTUX56DKAICYJQ15lVVRxj+FrnH0GZdDvlb0teqV19F2NDa/D5MwUm5pnGCAXHeWKcR+w2cMyoYFbQrlKihkGx0pYPVxJ3eb45FceR4CNgSTHHmLYzctKjacZzA4hQJMQYTyhsN5HJOM0ks9uRP9ZQOebrETfc7bmAcY4w/DIOiztdJIeZa62R7jxnkxvw29ZtR7DckS1FteJFoKXQT+Dkogj4eWyVEiHsE0WsgxnXaVwbO4CTrvRqHkFlHqdmrqWYKW9MxGLuR6xfU6Ra61YcjMpvMfwqj7HiMK40smfiEMzMNtlfEUHbGx77A/u+47fffisJTGEVCaeFPQ2MC03n2JQpAAFktp/jXNa8Fh4qCf4JHADg7lmISVdseP85rTw87wOYZ6CcaE0wR4YuZIU+xvnzGWxnTDyELQxQoRs/QlBc5YxA0KlYeQ6I8zhxnu7ZFAaENTvVS9bHZoB57XB3uNJgEw8D9Hmsg8tCCslfOY6kA/JB5dD6a1V8V0NmujFhfC4JxFqz86eIgZCkf9XANlh/xAfKr6Wy6P/68DYBZLPn6LsZX489PVl5Yxvuhi3EWAs9iKApPe6CrpyOSvGz9FB0QzlUV1p4qoCal4PIaekSphlr87Sdb3j4I1TDyG1CNdiApQZTYpsAj96wtYa+0asBnt9LMfVh7c3Tgf2BOQ9/NvfIdVkTK0bJ2WJqimdTrith1SQHlqYMTBmonl5XTyF6XuZ3ZpQHqOV8JrwCXjyb8vpmDKoYVxL3pf4aHhC59C/n3dNq1RUVrMDnOk3JfxNyF+mle81DafTkRvJ5WJ6tG/33dazk7XffbW5d9avoa7mPqoPlIuFxyPCvaz7Lev87oIbh74sBzbF70Rletdw4x9dMp9F4AZvqcffs1zDEmoOtglT1nLu2r2M9dUZe3OhR8B0gpL7L8siNiDRO4Rt7Y3r4Urdzetsc5Ev9y3irb9xNC6M6PRH1eZp3ydePJ57Huayn7kVCdA4PJ7I13hoAz+vaHHTfuvE/C7UjKHN/cN7qHKcXT54kep37eHdtEWS6tPFC81HaRQWYuoBNNnfXqnT1cA/iwzdrQJlNnQ7Jxmqlcwer1n56FWAplXCLaO5qeYqmJ/E2CnFgLwARgnYbVDd/bpezLkOoj4t/R3tEVV1nTltrOco1L+2Uczghof1SPl4rvbveUcEuVtM9R3o2xea1msf2v/7xBz4+Pkzf8I2u8zih03JVTua5cjApCoqEwgAfOeIhKOPo+obvCEmpmBdAkm+MqIefzjFD70/Nom5o2kjQOynsgAvYNHVaTkOdEM9J1cW8mrb9kTrlN8ffBGwC6iLjJK/qU/lXQ/UJvQXAInCB0JHi2jixgiNFAPNz7r1KXot3C/r1GXguheH6++Xgvb9pm0smlkg8zjcC681nwSVHxz9zkMFULlN+Wk6V64VvzrNesrfe57tzrp8uuZj0Pn6+HlUgV8+k+r6+8tyqNFXvpyvI9LIzFIx9VXpqGFwFn65gEz2Tckxfcza9U8qW3TwqtS9qchkbH3gy1QCQJj2L+HzG+Hpbx5QoPnNvcIy0zMsilO0Tnh6HXcGsSXfVC9hk46PoXdG6QLWhtRT6c5T1N2eEx1TBoZyzMYLqRCxsSRrDCj1vUCy0wtRf1t4rk2V7153GcwzMoWXHl2HCLy2EsATMdT1AgsUVofbDFYoyuXJti6FSwdsKhwt2VwRx6AE258357RjX9U2act5EeuR7Kb+jfpdgBxUDdSXIqYVdst+nNdrEAafZIM13fWQCKh7KAqDZ+WzH5tNBpsi5g8y90mouAu9r4+aGRl9eHpoiJVRw73AoDznWLrgWpbhvHX3r2HYmOgVo+GIoRme+NSqZ3gz1QZdfBMNWz5kwXe0zK4Txt0IssUOZKLTRrpQh4nOoAaDRhzkt3w0EbcDCBkWcbkJnzPwWy5/d+yoD4kGDp+Y50z2b7NXmSN1TUemRQ/40K1/WmKs6L77KHJzwCUgdOMYqXdVt3JgbwtgL8wNO5NiivAILHSDf5k4wFXVTCSGA9J32WfQ+aE5BIkCG8gFSxpLvmjT3GhBsnZsbCaBV40GVimy2zzmZOjGqvAGXs49F1WFhBl3JzuXnmBYCNT69zQaMjt4Fg6HCwk0Plx22vG2cC91y68xYo3kybE2w9ZbGpDB7wnTPpgbVhhkA8UqTizdVOaT8lzKh9IX5ZWRCG8OfEHrpd2CTjWVW1gKYWHvz76osr8AJf0v6elX8Faq9UMO9B9+VZq/vueEz57wFYOo5V70p16DLxCaYDhAveuQbfaaOSf2tGp5XAOWqD/H6pb/I/HtgaH7xbHqXs4kyneNRv7se7/TRu3OCuQPoLcPVGUZ3d90VZLqOA4H2u9/u+vfKuyrY5BW9nJrWPoW0cbqnUctXClygEyxwjyfzxu9F70HIaTsm0BU6BaImYyx3nhn0VvnRNiDnBJoodDYv1DHsPT2blBItOKrrTa9rYh3rfA2W0epvJhCvfOObFvNP2Rj15IlR3ttwiMtDCXnzqo/Ww6s0TubvrHybnk08l7ob+wVkzkKjP+ZVhOsY0W0XuOYVP0MPz2xA9HijvDR+ZOfYM698ceU7LWhVzHvqBmzK8yWuv/K4ChT7Ewevvw2jIx8hyOcgmrSGtoBNFvZmm+B7VJmVOTGH0f6cGoWJZnsFmyhLlfwlqlASSHIvJlinlZJPqXm6rsWQbsJV9Phb6J1CydoyiVbAJkFI7JCJXulVp8TcNukGOIWN+j3d/63ApmpwVrAJQHkOLkD7kkLlsnLeH4tnU20Tl8+/yjAugqK0ZX376cVYwK+7U3JV+yL4rg/3n/9LDkX0lfqpfYh/4jPDenIJk9CdqAujN2vk7hncXZTJW5ECMg0l+3yOE1/Pr0X4XgVxBYnuwKZaIe4qlN8pDFelS1yRFhFszRX8EgJXQ9uu7t01D1N9fWm/CI1381x/IzJPlNu1BDfknQ0VhH56Yu7hu0iWSNfAm6msTdWW8YhzNL115o1nVNzPGZbCPCqugJNdN1yoG7Pv3cetN+znjtYE+7G5wqd4PIbTZb1ew3vtPA6M48B5DhzPp5/ja9ZdIZjoGMG+7eeiDpM4UY2NKrS5Y6pO0wFUHiPGifTFXbzIDdEMdIRIJPfdH3sqASGsbX3MMm9QxI5z6xv2bbex2jdXzDUNfl+zVAcoe+I5Se/Lw9vcnVNxPg9/cl3OXxsi75bbcwTi+cEALOunAOJa1JZiOFgS0Aa0DRCBwkoyi++8MfTUJ9WaEvNAYH/E8z5ZiJOttQhI1A6Z7jau09qcZyjH8PXFHE+Z9NvGq+++U+trsT7f5vnBPj4/8fnxiW3f8Pn5ASkg4nl0jDnwtdnOLOfaDH4Op4dYucEZRm08Yyr/Ig1b23McKy2XuaVClYBz5aOmWEUurSD58LWzPk6xXVlJw2O9n91/2zIHlg0RwZpqACVQHQSRhAH1pfvYrY0AhFwdsGYa5mwYgyEHrvY4sGneMtZmCzlL5c37W3KYJUjAeci5n56nYnMvieALsYxKmMG0Ua9hfdPBpul6zf6xe4WmHD82Gbnw/JVu91SMc1YRodStd2z7ZjuSW/e1lvQU1/lN0n/R5mCMA+c4YAYCl4IUA7NMUax/Xc4hMNLEPDO/nlbF7K+/Njy/vvB8fuHPH5Zn6vn1zGpOlBhi89Jdje5qGT233vDowL4LPj+ah5J7wnnPoTQnS1JPmFdA0lPkZC3zHnmZFtrNpP/1nEic3tTApmLN/Axs4nepM1XZkq9xDdc8XnWhOhGhH8h1/eTxK7oiz6FOcvcbXwk2UYdZN0RsjObZMR0AkYv++w7s4ufFEG2ph1z/3oFWK9jkOZtEXBYIpK2gX33OdwDNFai5O6pOdh3zFeAx+UzdEW7s/wzIuhuL+vz13Lv+f0cHIpYH7qM9XAcpYwLc6khJl0arysWvDszBaZ4yPfRcVoO1c89metM5zuAZIg2jDXRRwKtJGjBtFYUhDcMBp7MBUDv37PZ+nDbfs6nJ+t6Wqtg5wMlD7aPzWnqXhBdP/vYqW1FkYP0syxcLtDaHGfhqegtUcyOFYBMA1V70Kl1vADu3c74YygjKZZdPIqv/hRkG0RxZYYDwYfwV606byzIND6AcD+pbpMNuc4UCkrBXLeVJJCN34gq7Yg63Qy5rlDplkUX26+rFVcFAIR4w/JW6Bh9fGcqe+ammhxLrpLw23UhE8PH5Gx77bjmbfJN+nCZztnP3sM95E+1BsMn6GN9XmVS90WKy2O2iN6lvlBe9hCdrXJ4e2ZV0SlaQ5SY6J47+RIR7Or9pYqGDEYP/zfE3ApuARTgCNvFlkaZSZMwXWryHOAu/IDjvBG5+/15YrJdrvmVfUZXi7M63LYaO8F2/s7oBFeyXLl2+vBMc34ETv3RQ7klxNV+oP2cqFn2ZwKq2OStE4QBLv0N5nzOfWWHMSRU1ITJg+X2ifMZwAAAgAElEQVSO53MBLVh6sroRX5NYVrBpDZV7zQdWx/EaGrd6EhmD2DyRcYJNLXIwXCvF1TZXkIlVadYdOR7vgLCK4ismpgrOMXA8Dw6uj+sbQE7TbdXKr997b7EpekGFK20BWdJoncFggy15Qud5k6uNxjXUk/3Ohj4n+qQrtADu0s+ExU2StsjYa0Ju+xsuALyPrtwp1CrwUWlDMn1daI6UIUCpUJbjTiHoHlKz9qOGW1reFM55gk2bL4vmOa+7xbp7j9KjDqUaRp37rFDRe8fubq53O6/fGQ7vgNbpuxwA8yi8V4Lffea9bw2BRAlu+2uAGvMOGAA0cZrSFAnOM/FnAkQltlxgxkWzWPvmygLP0amRzJTKsvlcZxvUTRa6nU4ZAk90iqAP5ld7PDb03vH58cDn5wPbtuHjsQftqNrO7JwW638eHaxUpmW46c1ibWe+lqTHYpRJx2PbY74Xg+tuzp2uXoDiOXGcejOfr/y7zhlQkneCBgZKf3iu8yWxNidzYBSFibmKVOFrnkBQKrQ97BoHjifQO8fLlWBhzhv3aNKJGGQwn1TOZ3OvwkZPEuH4wZXSVDq3bU/XeHIRyjQCS4PgOsAcQpGUFKbbPB4d21bq1lcFn/+Sj4PzhAALaShsvWNrHW3bHGwSbN3Uv8nrpriHmLiSKwVssnuNAZy+cx1A0w1NQTVTGck6z/U6M5I9qbFOC29pijGeGM1AyzmdhyoBBAOGOuBVAm2WuyiaKLaG8N7aNy+mAAKNDcwHBfS6RIxmaNwDofmvXl6rrqPLd2ppCpp67g2ntcs4VdpbAZDSNvNkKZbxvQJS9/w7dSMDXVYl9Dve/B4MsX5VT+uf6R73+qbLsKoD4Bc2ZYGXZ71+d9Vj3oFNlxZsJIUyhQx0hQJ+BvR816e7cbh+F9cUPvj63f3zX+9xnRd6wd/x+bvv754RMD1037fL70Uv0KLPL32ku0QjV03PFB/rKq+bg31sP49uHiGSGxACWIg3ir4+BVNMPwIa5mgWoTs75uhWIGAOzzHY3BtzBXuy89aTsDH9tcV3Gt+FQLrYc6uMu/cqbEWHtHcN03kdeyYocx1SEHe9jrYIDAXQVy0zV5jjrj59Wj9XO1fV9SJ7GLbjTwWFy2qyy+g1cl3xOT08u86bwPmveN4v94iylkwu2IY3NwAzZ1HIdM6k5NwJVnm9AFLEHIaWuHR1uuOaIsjl8ruzGl2COaoj5H7fNsicLms8Z5Na5ETaSUDm6OJ8CRjXR7nNObyTtd/p6tcct+/41zsefj1/TreTQu9H6OJ92xar/t3xtwKbUokm6sdDgrjXgSk7GHx9I7V43RpBlwqsfebi1mCK9SA/WRhJEObNsifvffny+lEv59VzBLRocv4vSt1yqV7vUH5KD4H/1FEMCWkr882+Wv+T0TDnQ+4J2C/JHOCJ/Vj+cwx62JyJDnvuhjFZIjTnQmGG/LOATXbuXAz9AJKm5+2YFoMeHjhstObyKItcxBIJiogtMLFSk61ULBH47jpgQJPIEp7V24aacHL1WrIbMicGKy5s27SY8htmkuFar8pP0LzPzjinVftBhgq8rLmirMXrKN6GbliF8cTX+F1YjAMT3WeHuxju9gzHwAVoXkUs6SER/9g1MlTFBFGzMIqhLqbmRFNFex6RRNKqeDvwpRPH82n0cTyXhO7Tdx9if0GAMYdXiMp1lHziylB9p5mvC9Ak4I5tVX7Tg82MjX3bLbHgbh4MmyfKhNMNBBC3nCdyZ4egFYFR7rps2+YA04bPz0+01vH5+fHi6ipSn4EP6ivXBeGVDmjAnscT53H4nK07Kpw7BD16exTqpDdXorjI6MWVGoLxElOsCq8QJKIottbUOAgiwbN4rippgMzIPQXP+xfz02bkEYgKjEQpaDjK4IhBR8++iYRCslCGAyp7V+wbMum3NOxece7j44Ft63g8Hng8dvfA8Gf0yei9QRXo/YFtE58PM5JTj6DMyRxq14SfXK9NGrrsr0qBr2XyTMrdOuez/AYAU/eyAkpTyLVCsCrOK7wu8s54JaCizqbySt6uqVLzu1Cz+Zs/o3klcHqoCJNXtcIP1fm6rV0L2zK2r9zhDEJ18I+YJRTrUtKo2NeUnk0NvTEZWOmjf+6+q9tCtLteU3es/f5NrER8AEDrKEU3hXMEjfeVSUvrgHbIHBYWIIKJEwLLGcVNGe5Kcz12WTc5xjhwns8wDMTPJQgkHDnyzEVhtvlpIhFCoDpxHpZHT88vYB7AOCA6IPMExgH1HHfMT0LtgXPcXT9UrxhoeZk6gOYJ621dCBzoK7paZTlmdL7qT+RVlRPZuJZNQMA8m5QqUaFPIPXU0uq9R09aGur0V39bvEUuymXK/UL5OkOHiae5GBXv9IbreyDD0K56Qj13BdXk0rafe56eADnH6HrcGUjX38hXrvpLPXgO39f+MUE4nC+FVSpldOU60qXH1Va5PH/9Pl7J1y7tVb2cdNGoE8r7Mapj8Z3xeDU43xmq39FDaw3jHAvd8Rlf7LU4J3VnblHXsVKCp1Lz4vXQhVXNM39M88o/D8t7c56nbRi68RvtsUq2CDCHpyCYmGeHzgGdw8Kc1JJMj/NA99QVBOXKoPEh7cXf38nLqhPfTW6MWYQtIT6Tb1b2YNU5nyvNkJn5+ypveeNVPnD8fc0Wz6ZGpjed1jW4Wng2Rd69mGz3aJ7Z2Spl1Tp+8Y4V28gR6ngSGzq0DUx1kxg/6+uMPEKkLC0gjVbPJkXkLKrzxDlkyPbL0KiNfxNAesukls7b47Ti2WSvvjmuyGd1Prt/bNj6FraHTkXrbovM7vwp9Rraybkz4/dwXaLK/QSfV/0NhQ70Qp+V3y3rn+dedLvkU9Ez/9zRm28OUWd3/rTvD2SZ0ffH3whskmUAtBDLSiAViDKF7gVwuhy5HmnyXhcpz4nhJUt8aSeUKV6r1/ZuH63c6815+v4cZVniu8v0eu43/UB9wv/MkWOmSprXMsA0wJw9xc67xjW1rWBX0nwR0uvIvFDGODGmCZXDSyKf40j3RTIezAiJUyATuZUk3tcE3z/z8qgAUPVM2nfzDth3Awl2F1IveZiQiVPTAGqlmkzmEIgRcRrMXEn0KtigWoGl15xRFWW/SxpJJjfOq6sjjVKNTuRyIXPVMs2Cuj753fIMYTTxPweZBG5YEWwSSNvdWKk9uoQweugDmfOExLrDNE8CPQ5sg1WJeC3D156WFPy5JoNXVYx5pqCECy2pPKauqVSicofhUt63GASRaLwooRYKuPlfx8fjE601PB4P9G7Vh7bNwuYM+IBtAsHCl6bP77tk9vu+o3cDMj4/P7FtBjr11gIUvTMGcv5SYV9zbxn4q3Pi+eMvfH39QBLFK1AJ1Qjzuctp9sKnmrzybspWXPobyouUXJU07kvuLRpZsUtcwlakQZoa4CS53hmypFTurLf+qAeYSyeMEvp+RP89Of+meOxA6waq9N7x8WFg02+/fWLbONdb0H7mLiJ/aPj46Pj83ECQ0fgDXOZZ3whcZhsuM9j16QquewRWERPKySVs+Jr4lr9dAfI72qk0w+9fwoQJwjUsdJHKE58N0dlYR+QFWgCxMXNKFpWhqN9agFVxMBLpFaVTMI+ZfI7jp5WHB56IkGv/D3Vv72rdsr0JPaPmWnu/59wrdgcGjZppZqCRodAgaCf6J2jSKBoqaqIgGAgmBiJ04kckTYMgopEKYqCB0oihmYqGtv5+97zvXrNqGIzxjDGqZq219zm3hdvznP2uteasWZ+jxsdTo0bRIQrchjfQWtJO6BwQTPGpuA4jrKErnSVvBsQ1spj7W0o/sdMYyF34jj+TcQBigBMcbNJhPPr8eKCPbtsD/BljZ2jZNiUiOM8H+mmHK1wPqUhesF5JM4Ae5kFF3mVg18A4H0A/gfEwoGmc0G6BpMfjAwyoDqT8aCLQ44BKwxjiY2GB6m37pI9ZyJ/k9smni12ZvVm+iY9j0f6iy/nM6VOQQNMENC507gRw7atqSFiavF9lzyK3WT6QRllpTfS9zmP0DFy41tUuzuFV/8h6AfMC2rxAHECQe7K9oplX4NcsU48p798KNnEr9VrWb712Mu9VnnWe2WfRsZ+E2ngGGtVnt9st4oDu3gFw4fe7ejdpONsVbLIa7sAmzi+CTXzGjwSgKr1Qp2In2IExps+HTn+esWAcqy+LvBost5/ox2H6Sz9xu92A0XEcBzoP0fGYqbvx2PX12n9P9ZpNXt5i4xNle+sMNg3ns4VmCNJEnyPkJbitD7O+BPhhHa1NJwhrRIK2l+gvSSgeypFiqACAYJOxJSlpSnxT9w5Sz9tUrcPjNTWLKeT6oekeuXMl5JkQDGuhrgDKcxygsWBQhH10ewjU8hsX2clxgNqjG8c+ZG8UnHxUWfUjQgnEAWY+fm/3u4VeCP0EuHH7ndsjOlJWrGXx6qPj7D0fber/7Jr0LoJ85T6/T/RbFgfrMwFCpxjHPu7d/Y0Bwl/X8U8KbLLBLJ3gE6PSjxEbv8/KwPRwuXhbNN9bGUMouMxV5ndLTVGmwFrS62Y+vV69V1DzBe6C1n7gvcuduAjK1edsry6/9/dCc1oCvgIR0C/iK7jyXCdrySeYi7ohPTK2jRnUDz+5q+Phqxhnd+O6k1kRNU7ltRo8K9i0nsoxr7g//8xtcLfLZzWigASQjIFrGEGT4YQrSFmBpMnI961sz8Ama0/S6RqwUpWKnnmNzQOaYJfJ/zL6LpCa1NGX+C9HsbzrNMq5xLKnP5BmBeJHvtcQGBLvcfXAtzXyD2ZUi48f+/H0021ipzfBpt7NGyj+2C+5ZYZjoqoW4JW0iQqSZiVTaR0c5ZJmNgTIiOnRREDpOG54e3/D0Q68v7/Hlrfb7W5AymHz6aEGiDEmSx8Dx+2GMQba7YhYWlCkZ9PbHe/fvhnw9P7usZvuOCIIpys8UtuFssXHg4EO26KqQ6EesP04LBaKdcwMJO2U1l3gUn7y3mqg7K7VmOGcBJL2cTDApAFrNJw9A6NbltOanYaDNDSaK+X0qCYdxHfXTky5oMLosTWi/g3HARzNPGKOQ3AcgrebKbVvd9/eczQcjXTnK3y+8tnEtt92qIMSpvQpcn4QWAoAJPqozLMBoCmgFjzZBsLGvxoKI0Cq4S7oNMsdvA3NUnn2FmJl0XrQYq8xhoG/D1Wo2LbAQxTShAcCwU4AtDzhK7UcyHqiT+AYMcu4nzCVb/HeEQ5YCLXCbawbCCPFSq86wGMBME/2iKWh3TrgAeNt1TU97lwODsC2K1tMu85jq5mmislpMcbb7/NQVMIAUaid2BXK+9I0lItzjnJ2MX4GhpkS2j1oaCo35+Nj2moMKR4sBw0Fe+PsfvIfgBHzkPOKY8mxR1TWFmAMIG7DwIofP36gelAakNX9xFAzDHWcdrz0ODHc05csS8W8XG1xXqHDgn6PLuj9AFRwOtDckIsVKpiNW0WCIot8ggeOlfAWkhy3stXNfjrtHsM8v4NwruOhocut9+rloF/IFCyfnOtBBEXeIscBVZct8m41OHS+X+9FjbzPZt1Dp2frSbvAVbcRIrRVf1yuVyATv1cgaa1PrfNucQ8sXZ2+ecLuizJrnrvv63vPwKZZN9jlyf70Gr0AmypgVD95n2DKq2sHVk35qELQcEi/vOc1DNlI2iSPCc8a+2X8JYAE052CXlC9dO397ovL5D1jjDitdfQSr2lk6ITap6IKHbYQaR6sHUcT9Nb8e8NZdAmvZUwa/htWkyK+x8lr9d5Kf9Hu6IHC5zVyr4aXgRJ5SqlSmJNH1XlQ3r+a/IKz0TOW41G2n1HuIC3L0M0981HmaBwK4rq+FH6pQG5Fc6VEYLs/uJAn7s6rFYABQm7n9jc7RRtAeIxSGRuuCzcRjIi1WfQF8lVhW7nAWGiCqVwP7nKWwSqCKwecKkjoyKBtFZWzPiH4HfZEietE/hyZhW5D+ZJj2lojRVnuXwScXunPO74DAHAHCfLUoC+lnTogflrjGrcv5k3Yf/vrTwRsMgEe+iORPwAYZTWSacE4BzbI4gpja76/NTqK6UsxS2fskeiV2NZnX2/Wr3tvXxcbbGZIotZMzgRrs+s9TjSj2vLeps767HdOBe3cdc9th1HJcrrO9V7esu95MldVOjNQdxUudJ9djVr+fgY2rR5NQE6Qu69sVADp7e1tApi46iGSsZaeHYubq1Ik5lUApREGkYgJU1cJ14DlNGBXsGlCoIt3A8uLvlF3yxwmuF3aez1dLeCWP/9uCloeRSvFK0Raw9vtDQxKDNS2k4mTnW/2FiOZ9HA6kYapTmTqUAtKa94Lp3m/DVMerG8tzceP73h8fJjqIqQNB+1O247ZPVC4bQ1yeqCLrCt0Ywx0364x1snDKVH6ujX3mmk0YgWi9NSz36Sx+91Apre3d7y/f8Nx3PDt3QChbwSG3t7x9mbg0HE/0MfAn33/c5yj28q8CwJub6qApKrGts77/R55Esj66aefzCMPzlOLgkdexa00fVy3nqrHauofP3B+fBgt+xhdtl4unlGR96LM8pScZ6f+WH/LNGfrnDsOxmKhLHCwqTH2VuYVU1BcwW1J6xACxrYKaAoush/UAISq0qBpeFERxJPDArTf74LjUBw34H4T3O4Nv/vJtkl+++mO++0e3GD48bhsq4jgrb3huB3oUJwEAHmcbYkTYWNpcWKoPAFIZU6UO2nixBV18EldMRyqGM3H0Y/wG61uzSXsROZihwwkfzCFTqHoDj5azILhoJPF07k1i9N0uzWIpEcLhns5aK4Uxpp3I1jooL1qbiXwlV7zdBrIJViAKBHlTka4KGKTdEFFVNW2AZCuSTRqabhtbHigzsAcBg2djMfEU2oSkILLxNKP9FbmXCRvKeOYMr3IkvpQ1X6zrAgUyjQ0QA/gPKBHA3oCtEMVP358N0+B02SxSAZav93fwjAUSJ5sxTkm4lvtQGFiNOP9yMY04VZyOxHv8Xjgz//sz2y8PY3xa98i8/iB8+wYj+/mcfV4hGeT74Y1Y1HEjlGXhhMDMm4QdDQZHvOJHh0j5huNkPBEPgx07Odpx1IvposTCQcKiP6uz3w8BJA2wFNS69Hk8x9iftUFIaYFzCA/jtyyejUlUzmrgFWqWhnbZvX2eQWArKDDs2c7kGldgCMwxe3eDx6frSiAcs5N5rcrd71oGPGq3ur12bpwuMsHaFAPTB0xzDZ9tMql9W/VTZ/1WW3P7NHEcowXRIDwmEu4jMv6t4JN1Btn/fS6sLPrdyjBTIVog4yrlwRYwzDmGaPJ5RMkdcUFkCRnznoxVk/653Qd6MPkRbUNqNvBdRMLHM34b9S/FN3pst9u6B/m+T0ePzwG1d2Nek6aXICL7ih1YVuh+uQTyT14nO+o/MHndj3lc7GfvMg4iTDMJS6uUN8pQxAmndQz7YxfDDoBRDsktqhlyKNqILJaBEC4wFs8Wlxeqnv0Uq8PUhWE9/LtcO+xm+lt1Y5h6BTywACEkPK2CsPgmTCw6TiO8nzXH8UuWWyViit8Bih78da8mMc5N9TbbLbjgTo4O/767OKY0VYwC6dI/Bf1XOc3kHN/d9X0z+uUfAAOApv+ln1zu9+Bta82158I2OQXBWX5PelVoCANLrB8zkI38mAS5RyR+cGGcWYspprNnGllyNvG0PCu7fjqNRXuRFEUnEkXLTrrXPr1KgBvtHPtZ9a7dt3coerKb64WBsMA5qDF5V7WN9t2nicebszS44TG7eM80X3bE9PQdVZLeVDz9ji5jY5C1gNdj5GKesoPF3oFTJqApKI8NX/Oe6tRvArpoJ1gSFVxm3rVPnUPNtHYZ5dVRaZuUwEYRJztKidxwdRsMyyAg14NDNYbcUvWQOUWrNoMimJUCoG5t4WRX8GmVMwLwETll2NEjwbBGn8bAWT0Oyzw+OmAk3231SyjQ4vt5UanC2btOemFhk7zgJBys7xJozTkdaBpWVFxw6LOJvYxkIGZw/CG9R3BJgMo3wLEvN/t7+3tDbfjFtvn3t4sUPTb27vF9jkabm83nKPjPj7MQCzHJVVAtX6SZu/3+5T34QAUt4FW4FAwCydVDY/CoYqDIO5woO4wxY0rAyvIxL8VCFu3rtKbos7HV2DTLk1r7A/zapvb5vRHxYqKgdiKkdSypG7xamhd0enBorY6OnxOG78TW50cGoAKPB+oQI8TOsQnXwO0QdS8S8SCA6WcG93qT41FBKOLBwnvGPTmJK36Z9CCCFpRKOs4ckuNHYk7wJM9tTCGoRk7wRYRbO6FEk2Z6i9GvDda/TDvEquWj7F7qVLxtnu+ndaC6ED1jHhsBjRQZrj8tUKK0PKKU74UD8UJHCLvgJZFDpo1eeXKe71HmeVacwBCthgWa6JkC/A+Hsk/VNViP4WargHsUXqGfKDsDcPMa7bquepq5wR8U77IlAZIb5uo5RgYraMNgRawSVXRHx+xvXh0r3Gj4WfbUWioMMYhILbNF+Zd1ITeqeLjWeQ9MIFN0sVOBuWpr5JzWIdvnz/Nk8k8nHoA3UED4jxQBF0FkIFTYACG0DvLgCirVipJCrX4id2CusphPLwTVOcY5QugnI7BcoqaZAO9bduAnaqoQYc7sCm2YFRjK8aRYNNYFLssf6YNeDlY8kkA4gIQPDGCngFQc12XuVT0pd77xKMrOHCeBjYx5CdpeM1rbhcu5fHeCjataXeA0LRyz/TSjHdDwoOYvCi+l7oBxSCWBIoV81Zy6qPRf6PwVaDoSswThY64EJJ9tKv7OiYr6LYDm55tK1z717843xeIzsHGIy2QeEUc0U5dsAXPNF2sFbDJ5pFE+tStyE46F9aGL0zHApDrGMM9ZNju6OO6NXz4gqXpG+d5orUBcV6gdX6ITOOyjlEK0DIv/N/g62XMlF/rOK78eZ1PyNivmoW5J1Gdf7XvKCqNsijxhjtysH+pr0ezpAxeVC4EXNaZi6ySuzLYNuUGPIXpS85/pdnWZpGGY5hdEoCoJtg0Nu2XkPvFOHWZpf58kL+vL9d+WcezgjLeOtUcm5LJk2vGBvibJDID2le+/rocX9jxgXGpn7lt+G79voJNz3j/16/KA/Yhg76a958M2KSuzNEN3y6zQFWBfhYwQwFpB46br0SE0Aa0b7MvfSYbMkpiViBiQATTcUZZJ/U28/haiEpientRJHyd6UwlFTTNHjDwwo5SFkg+C8MD4TpPuova+GlW0UbJwHATWBOTxQWR5CTM/Ki0MCr9GUq+lhUFVQ2Q5yIIS7u8cfh4PNydPicFVy8+Pj7Cu+nj4yPApjqzq/LQe5+EtLiCewBxnDzf4fHjb29vuBejvF6Mf1P3c8fkpmIzBnpVjpQGBwCkwkkjrB7faX3l3j0j3xvdP72M8+wbLxHryQQX3vH+9g33+4Gfvv2M42beMrfjgBw3yHEDpEHbDTQQSI825s29NBpam7cKMr5QnPIFAHLk3Jj+puFNeo6+CWqy/9yIHDrc4C3aMvUTzguuXo0Tj4/vRg8ej+kPf/hz/Pj+Hb0/0B8/fJvGL9Ax0B4WI8ROUjGGmafWkcZ96+cSfBoOLE0K2QR2E/TIoN9NjnhuSvgNIlzhOdy76c29jr7F5+124O1uYJO4Z9PZO3A/cPYTx9sd7XZE/KXc4jbw4QAlBev9/oZvP1nMpp9++mlaaQ6PPLET6wLAQQa8HTpiHvPo1jD4Rof2bobdmMGu+rluo1uNlHXV5dkq63pNipIRBka3Y1mTzZYxKozRlOLQel0JFihK4P/WcHbbbnmeJw509KEWO0YHzjhREEHPAbS66/jbt3fc7sZb8O0d2u943BTjvEH0A+dxCz3KtrcaWMb++fhu9QlPkouCs+hh4NTh1lMaPGCAG19h9T9OsUjiyxicsy4Lp8ChpVzqp6lDaypGLFc1vIaaiHkECfDjO0/Z9ADvHncPSvtA0SM+BOWcBm0G2OQK4iRf4tM9VFyfkMJXdoo9oDiahE4RrWW8OiRwJIO/Pb+RZQ83nWILALUZepFB8xCL2Eqg0c4i+LMWLkus3jng0TfwwSijlE2shsI8bwiWDI+Jl13k+YSiXoK3Ot8AcsGeZ0wNr4awbZWOYPfNO9MryJP3wgP1EfT+w4OGn48PX4jq6O4RA9eJOmzedZhu9N29DFvL4PNHy5MPQ4l3q2w1ItNAX4fC+inuxcSjZse5D5sM4wT04e+u2+hG9LGVo0u5SaOUvZOcWrxsa941TR3/ypd312fGwyvQZwV2+LmCImNUXUhxCE86rJzleq35/O26VhDNdGXXjVj2tkLM4EnGkttKw/jmZ9G5NfibZ6a1LtYnuQ2c957LxVfgID9XQ3SX1wo0hgxRxSEHbu2tJo6uqDZLNsnrjDSc0/uJXDfltKzzyn9Pp5t5vlyIJNi0DkjdOhW63ujoj4FxCsbjAyKCH+5xVRe+1mvXT7HgEMRS53fZe80xjv4ocgplzEOGWhoRpMdo1bQZYNzbRr2jFdAz7VW3nQe3f5e+DkWJDajnjioShYrKRbzZfC/1iFQenMFLrSs91TTUMWEwbsrwUvSU6dr19bmUWGzR5uyvyOKFLslrBJ/O/IuZiaTH5G9Xrym4fbf3JKqVkjJ29p3ewbl4bbGf6JP7hA6Xe89+v+qDz/mre5G5LnAcuYgwxsAv379DjwO43YCP57n8yYBNwYy2rF4WBYCDRHR+JA2+oitNzHdPxSb8qvJqFOAFbxSUWiN+CYJNqL+0hJ+CnFR8UPdUVoWRLpXkusnkIYVfzFnF92QQM1DGFg9VNr28W2tYQaPcJgAtJ3oVT5zJo2HZr2rVzwp/fHzgYwGb6NnzeDzw8K1PHx8fkTcwT3ieRkJju7lgJcC0W9m6l5hLDPJ9v/lR0G4A3wrQxH24rL/Wdmjtn4IkC7cw5DZB9k24Afc8SczQ/sCxIv/TtzhUsEmV9GJbuW5HugwPsWcAACAASURBVLoyIOS3dwMbjvsb2u0GtBvkuEesi0qY9HJpwhPzWrgY3243tOPminwjVXklpfyuinvWn/GEUtlKQFk9tkUfPV1qfWsF49AE+OmAR+8nHj/uGKPj8eOHBfn2MT/PA48GtPOB3h+xgqJjhGOQbXuamXBsCfXVGG73IJC08gulAY8ZbGKgcHo/Tc/agSbmQZeBvHOrm91/sxPqjoZ2u6GNE2+PN7TecPv2hsNp9eYxmzjnDj9xj9fb21vkye109PKowZoZOHQN+jcBRzf3UulGx+KAkxnw1r9Jz3Pg2BVwXg2X9d6vv6wO47zG/zD+JWvqDI6JsEDj8zi4/c49FH3rlyoiFpiBbVxtnRULkbKqB6PdcbOjl/tpJ/j1UwClx4UBoWGM8TQdvxJsmsu49IKPbQDW3vdCbUUtIHS226nXxZSW38D+njtFhok9OIsDXNBUjChSxNvobQWNBxE7Zc+3idRAoaZ/Fvf66skEBHATcEblx4M01ef+1Mz8Qm3qY300AEtskwUkMu3PWtlZh8VrSUSA43jaR53t8IWHrnniX3hSlXoSVLOOIb9C6QPeAEKDmhqpKKtOuCpKnIPlHj3bMPMEHm7A/lYgYnhx/CNuFhDtl9L3I5RXm2e92xb5/kiwqbsOME4egNAnwze1RLHtczTAgJx/xRgxXo7tQQS1q0wfSt2LQBPtWeMfXjKNBc4IDyKv4wGMD3//GrNpNTSr93Lt622snQlIyrTzJZe8yJ+/en017cVofvks+XODn1K18Oz1+oqh+Fn6XR0vXlDS7LCSLxprr9pdY5rsQJ8dDeS97A/bCm4KfjV0d23dAYK7un32fq3bSEXU5oAMi4mYb006vdZ8OFmsJL+XhnPmkGlWsMnq6P9ITcOyFeNMEJXydAZiMMX/i3oO6suW5vRdFJsOKy14cq/WKWydbG3to5BXkyzS6JgMTWKnWQd8JMVz6YlNM3vsZB/23ox/SQZkz0pr6Yecj/a7lTQWniLnA/u0Lb/r2M1pmE9rxo93c//X8CgBIvj1q4XKZ3M3fqMsgm/mzrxII7EoX+UL09B2fVnvzZjFTpQA5nyHBBAg4VfApl1f7LYOf/1yfi0C5YK077Sq9r4T5suc/oTAJl61o7LD6VbPVbaY7in9gyG9zndVLa6C2gzDq6D5TPBdgaJc1Z/GojCnfZ6ZD1UZrcjrpGQWzehJi0sFJwWWivzO/TjSAJFG3duB2x6AEW7vow88Hn5C1vnh23CGnyTBI+YRyj/dyx9+nGkAWbDgxMP3aHf3MMiVOfbNNXh3DdT9LJ4S/2p8pnqCV+2HXeyB1XOj9mVucTOvrx4rxvMWo2rIjzhZL1eR1tXL1g68v1cgjO3I+Ajv79/w7f0nvL294fe//z1utxt+/vnnAjbdcdzfcHz7GRDBcMHDwKd0BzfXfQOWjvsNTejhdBiDdSMq6ZYuz1WAJb0BtJ9cMdFilogd8Y4G32/vwJAy+LfleLgBz+PfRz9x/vjugOR39N7xZ//v/4Nf/vAH9POBj8d3jH7ixy+/YAwLOKs6fCuHzeMjlDdW1WivHeYxKa0aLAvYNE05a3eCTS1Au9uNW9bKiXXNQKcbvZ2K91jGArMT0dAabnrD39UsboHcDgOhvIwwwobi9nb3bXsI2n1/f8fRDtzefM98UeCoXNBMpDsylUQG2iQgatsSDVQ+1E7dCm+nhf5f/U28Zbm3Xp8qHkooSSOIfdgOPk4CvSi4toVNENvKHAARQyLtxd4NUPOj4gmwYXSgn7bdbNB1v9A3+1cVej6g5wOiJ/rtjpsO9OOG8W5ebQLSNZUdWrNBVgZGn77lLkRY6RfKmgD1izJNOlVXPqctOJLllZ+8ofFIw/spXtEsh8ozPVmmdpQ6TzwjeAcBwuqCzyYSbKplpuejToPtRogiVrnX7UvZIJ1pJIkCUHfrj99ZRnjqQktfc75o8jV1/uJeCUDWNbfa6fRbvZ1pgJT+C5G3B8ni3maqXIGofT6XeabXVEX1hjh4mEZeUEKSJukwjxBiChBIicWdRT7yMAc7ddaC5NJjjnOtdAGIjNaV4uYrFNU7JIxQ+2fqO9aLeaqyZRJ6iyVNXTNAplj0pMzqML8rBbfy1H5+/jmn2xoJ65BOv+tELa8okKvtV31zp/c9S7M7zVR1CSpbnl3zsD8uWc36/q83pqoMeaaf70AV1reCTfRkRuVVL/J9Burs5NqztLX//A4Ak+Pt1iyeGJJlfgUsWu+t3z8D0Gpc0wrwmv6SstX6KXmeqtpCJng40BX4ZjSbDYV5fQrjE9crYxeIYqIaDlfJTJCHRKQXfYo3rdkBk3fuaiFakRqdn2bbco/8WTzcuZ9oXB4tn1LEkdcuhCzjE9puFmdV2UdZNCizLF8u6NQeMmBgKANN0wc1eWDJqfRS9ib1K+vShzV96ox5PKZ7y2/m3ZoWz6Yllpz3yY4+qli0/Cu4dqnEpvxLSfDiwEh9ocvxQckovKcIEIlcw1DoUskiSSMXe2HKj4dwxLFSZeujyq7+z+dxvegs8Jsv5U4QwS0O30l7GDCHEdOXX4NsfzpgU2Wi8a8z/jUp/73Ebtpm7J/65J5MnwygbUY1q/Yqf89pEbgi695pNlG31U0gZK6hiLfziWfQM9Z98Zxa6hqKbQFDdoYhlcAISO2xcsytn/ugT/Q+8OFHKH98/MDZTz9Zxl3gBwN0e/l+cs/ovrUM6nkiAsQPpUeQxvYK9p8IJkDJ4t28TUDSeirKDmyyQGy38DapF0GretHLYOqTqijrCLDpPD+KJ9IMNqVhTmUwwaakfbve349L3VozjxTW/+3tPcCmeuR9BZtu7z/h7Xe/B6T51j+J/5xjWl96/CEDXRpux80VDcZw8lVpZ46RB3ClbeoqnGPKewY23e+2ejcKHdIwaYAbbgm4qg6M88T58QNDDWwa/cTb/YY/vL+j9wce5w/088Tj+y8+Tgk2kXHmNjrWzmp43A7c7vT2wUuwiQZJ9V4ifR3HDW/3NxAwJzgISHg4ESzlsxrgHWKmeIPip1vzU8kk3b38GsM87o4xs3LSswVmvF2MBNKkIo2AdVWTvzu9ClygBHUWXrECTZdynijbu+vLAFQxdnMFEKGA8ZJdnsFMEQqYigD0EAwPLgIcI+5ZbBkHmpZA/bVMxiNqotDbiYcIxnEA48S43eqsia3Q8S6nim/pLqrRRemqIIXW35Ps99UytvWFQflqrCpQvqb9CoBYadA8Wtwop6IX+nMv7F5i7odyXcqotJ38I4Frf3B5b63PeZ54fPwo9fm8jc8MurVOz/LYAbB5A1dXgE1Zz67P6vgsn0sapFh6Ncf35Y7lt/N2X+ip72Q621a5659dXUc4dG6An6NuHyz8j2ODeVy4Pd2eOdiUrCLKyWxcBoYIVWfTPCHxCjZd+6iwoyVNNai2/eAD41y76A/5mf1+rf9X5/yrq/bv53Pf6phgk+kFr7wRXj2j7HmWdleHHfACkVhwA66A2u56Np7PPBue9c0VcDLyPI4Em2o9XrXx2TjWufQqn2rHzDopt6bR6K66auZrOoW7BogsgsptLOQyw4QPcGsWuGhmYNamx+LfKH0y82Z+o35Py2PSHkfqaK3otLUU5ifbe8lFcuGrgi7i/aCq0VjrV4IJQPkS75n9spyOp+r9ruW9Pb/mW6qCgcNrp6CXkeKLdi0/9flW3K+AxBNAJvBxnQXcr5VTLOdVO75qu/diA3zGw3Z/67Nn9d7Nvfm9BovhGzv4U5h90sZdW2kbf6Uftpdm2JH+RJaej4eH1/g7BWzyK9nRk4efXNc97ctgayoYT9PU74sAsDLm96qSlL9XRuBML5h0LYOlOgDgmgvNAwViZa1oJQhjcbNnWYmgohCsuiLnAtFiBT0P5GseN0uw3wjMnHFcKtg0xsAPj5nTz45xWiyeHhohDTsKAjP8XVzZhBeY4ecTzo64pFJi6dphp6e1wwGS24Fv395NaNxuJcD3EWgsJIGVmwcCvt/tZKjjaLh58GTKlgCbvJ9H94CpaluyzNB3URMxl9yzCQrVb95GgnrZ//k3DakVrPOENjDsXu4xDpDgfme8KcZsuuPnn3/208fsxLPj/objfke7v+P2/hPQLH6KCtDUDdCWDI8na7Ub417ccr+2I/m5rTP7NUSvpGg2xaJo665wcI4ffnoXZajZJ1qU9+rZxCC9BzAODBVAb+hN8Pb25sHkG9ohGLcTN2FcIAswznqL5EkfQoBTTdQ0V/AMCLI6NvF4X8UwSB7AsboCm6HYFIYSRlCLmRB0gWJ0q6ibKi4CBRhd/SAwGuaaWxSn/AX9tEra9zPnQCg7OcdTIasMJFd6Yiuix0u7Ax5jb0TMpjVAeJ0PWYaWuiZItbuoIJJu+E59bquYlndDBS0Yo8f6iiceki9TiFcbjMcvj2GehPSqPHu3YMZ94HT+Nh4MXmyenqrpmRT9OGC8z/usHweOAbTjwPl4oB1H+ARqzBGdPA0B30b38JhNtfGKWJWFanr0RJJCFKZZplzLRLPUqAY/yljpXHYnPZR3UhaN6zvlMvZtNeH2YtIaqmHP+aASMnsNAs7xjZaVOkWg73Iv2+6yJCtkj4aNN+mI+bM/nxrmVadw2cET3NY8Pv1cOk3Hck+QfPaFUjwbX3Naju1UzsVgmdPUWCtCOVroTaKtySqnz1oln3zn47FUuhTIIMlTm9YQ7zZv0ahbzcqw8bzrNosgl/jhtJetwSTX5kp4G+vNBJsA2yZyuL6SsbSWer80rOzzOOgde3m98MfUF7gFZxdEPGqntc1z+dRHgttO362sttmGeCG27TM+tzSNc7Sm3AA8z4yzWvfcPfDc6JrA6GhrnRMA46WkHr7mdW3nrs+u4B7ffTFfp8vSHfcZbFrbsjNqdzyhxkb8DGhaP4MnqYY9cpEjyD4IKbTKDs29KZTdc6MKj0F8yV8BRJV6q6DhKDzdPsQ/U+9MmcbuoUxh7x6+aM2Rm0oShJQJCpD6m3aLwnjBcG8UdkLyAfX5SR4YEJhqdgD8cIDWcu6zjXWMnMFq1U2jvRI6TUPNeuLE+NKlDv613OVdumYakvX39Z4DiLzJg02gYXtRpmtp09SdNd9ob8zALAefyMiSOseh3q39iQBTKYdE0rNp0q/WMtY6lLTTfAy5aicIjpgQ+21wVZd6BiY1EYzd9tBfcdFu6rfmJGf9RF3gfDxiYfXV9ScFNv1m9M0vTSv3WQKkmRs3f2N9njBmpBCL1X4oyqbcTTn2x3g4cRpDaQ6Nyqnc8qd6zfyimOl8VDr/8qSQa9yVHkGC3TPJAxKPfkK1m7E1DGx6fDzQx8DH48MCF3eNo4QHPJ6Se+RYXBwz7I7DAzN6gN/B9nkHGJ9O4W+eIx6MuZn789vbHb///e9s29Att9NV76Z68T49g1pzsKmMO8GmXPUcOA47uvO83dL4WeiA3kzH/QCPrt3FbrDPYDuhGFdl0Ric3a7bAk0JPRwou/lJY3bE/XrkfbvfLfDx7Q3t/XdQEQx3GW/gCRMSwY0Z4JKrwo3H0ZJYreLT71BDAigtRhFSgKT8Hw66OPhTAuQH2OT55KkcfmJVAxpuHqNLcYyOb9++QQD0/sDZb2Y4vt19m5PHdAJBJgtObPPGFPTYEunayrRiUY7Jo9KdRjGVcM5ZjltzKZmzMNok2Y1UQKifxryEHXkPEeBm7tRjDIvvQvAXiNgD8wltDQNAl9mYY93G8JMfA0TmKGW7t4qsBzPpreHuCo4UsAlA8hfVy6mRugBLNQbbej1bNV5SgcBCg28D5PapEtcnTheKgMyMy6Ixfhy726M72JT70T/Oh28T/sDoxi9HNwB9MHbTMr+7nBA0nLcb+sfDYmb9eDifuZnnbFXWOUb+rwG7wPnxwMePj1TigdD4ppU4xiYqeuRFznGhQ+dTRcJQUPbf5pn/UK3BfmfZx/dtrKm2R+mT0vZ8XOsx1KaAp+I5Lvkp4Fsax1zGC+OLV+VRAQ7H9odFs93k9QoweLW6uV6vnl/ApiXvZ9dLb5hPyn/V9tvt8KOOZ+We0yj4Im3rZPnkMEGzHx8foCFTZfv8/ZO2CnCSH1948OZ9iq/SWt5UMBhx5kOAvnrAXDNMkxNQHAdwNP7mQeTX6zO6sBNE37Zg0/x+nU/ZnqyhmFdyNeA2tLsLp/AKxABe0+LLZzqmWDo1/TOPgV2eFTR6BUy95jlGt32Jl/cV+ltBq2fXms8rQCx+N1xO6P01YBGvNdbpV99PML3IjXrv0/cByo5JVgB5KEI0DGHAx41oM39v6Po4IAQslrqNOjY614NpWINWxnqeVVGBy+/5nr8nNaC5x5LLVSEoTwtdYjSxf3m11nD33TW1betcxfIsFlfgcrPwsKtxTLmOF5cGXz8OoD1Je2GzL6bNJBuF/DG9vyhLePqvIO9d66rL15Q2n83KmjK+r3S944VIfUEWEHe3ePqKh17moy9SGQzq4PfqQLMBtp7xk6/yp8+u1gT3mzluDIbTcPv48eMHwuv8xfUnBTb9qotzJwRsfbBeayfsOmVVP6pra2WenuZChFewqdZI9zNlMTw3VZraqBNDpccACXz2UtjXufPo+AlsshVmOwWOaSwezBT0O2IoKPr5EcCTevrHhwX6/DgfGKNHdUU82F1ruN9sa0+7GUh0u91xv78ZG3YjhkGzxzjDqK6nPokgYtzw7+3tHoG+19hNfK9eNM6nmE/LcbD1fRrUnLzHUQITyqzEcTyOex71meNR6aZSiAuF5XjlZBiIOhnYZFu0rD/thLPb7R7Bo2u7WhE4PGpa0eLoclE/4p2ml3KlVj2tewDVLgzjlli813kLNvmalrKtOUcYbzy3ycDlm6+miHs2GWWAAGd/fDjNmgtnHJXtIMqIKK8EcrwtFF6+LXM6AdKF3TT3QIUg51Aq93EXFiOvCg4/mUoErQ1UYHQMtX3rpT/Jq4fXfcABDBFwo/45egBF9KgJuqtHTbfa+yl2Y9WE81oH+pnbPG08uO1vo6CzTwWmRqlGxen91CvANBJ4UI65pmAfbAeuVyqFWf+9IuCbXbRPYJMFinb1TpNPqlagqSoQ1nd92FHIw0+cs+OWTwxVnB6Trp8OMvl4DBSwxRVHzh8B0MWCgD8clBxjmOdSsIUVbIIHhhU8Ph54fHxcFPZQnr28rSIzd1YqtnWrEMuf8t70+XJv917SoxpZLCMb04t6lTOKueoSiQlQS6yKZ12yTbCxXsCmqV+fqAfkKiBwWoCIqzqnF0FdvXsu6WPy5XsbEyXk+0s1rfAc67InCsPSr9fHGwPT6efVvfRUUNxueTKrygJORDsKfUQTZn0pf8/Bjz8Hmyo9WqsOElXZBvMUcBKUOs35NtK10KPJ3/XflG3XzuX4Go0e4dl09d6ZSiwV2BkLBjbdL/ev7xdOX2ml5J3euc/HYv2++6zffwuAEve/ADbV76/AJh4M81k+r8DhoYCMa31+C9j01X54fc+Z5RfBpldt671f2vIKbLrk4TLBBabxyot9ofE9ZWqhK28SdcE+6MkdrS1kK9PnXNXKRW2BNuTDMrFlHZvKZ3UuW4oBv86qr4FNruNI4YEMnq0pKUy/roCUXwvt5WE8XobW92GBsatwC3mcEin01HCj93ur/JwqEj2CS6qNjjHLpfmeXMZTl7QJ8+z4zVYX4TDLrs6pz3z1Yso4WbbUQZbfU2uCJqTcZKZLvwrmLl0ILKld1keWnOkWPYa0kHKppOE9XerzK66lSdH/tLE4Z+qujFfXnxTY9OsQOAU87stua9o+/ef3jFavrrmh2iwGWH5PsCSFMdAOAKAnxFVAiFPMbiXU4niIG3luXBaAqW5zMyBp3dJSATAjCtvqNp8YdZ72+/F4uAFPgOlcTphzwlLF4/svdiyxDltZruV7X9nJNbZV7ZufjPW731nw6rdveVLWTz//jAC7VOPkuYefTtNHbsMjaGJAUIJFt9sdP73/tI3VtLsINlVwZj2Z61Zi3dDDqS9G/hqA3J55Xd17ax1zXpa+Kg/8M0GSaLmN6RSj6niHSG1r8y2D2ScEy6QdANwj68cHVIDhguzw09M4j1zNrrIK4V2AZX7QkHIDKEQynaC8qfQZKhnMSgqMrlT9aGsKVVZDCBDZti0L+m2014eDp+cD47QT7czrTjH6wxmkBbWPOgaXtrGaDOUwMNKEWMeuzuVZ4S+0puZZWulpAgCNMcz8RH2sNf8gAjzMUHhoT4+k0+c4jNaaeMBp7gSI7UewNApTzACc/cRJQPn0ee2G49Fu7r4tkMPaJMQA/XAAcZdZHnEOIICo8CLyZwn2IAFKH/PRR5wAE0BmUShCRLKMJU0oK6qQ4bHklPdSNxqxVbJsmVTyxJKdZCw0prFxmLcX9z7CS4qKdKhNWoBVFfTW0B8PiDSct4/JoNaRwaIDTCf9uCA/+4kHt9F5m+uBAs9kJstgnkM7+nhY/ZQTcTVSqz7J+VGVTp761YrxNiKNao5HyrxaVjV24CdcVgaZdS53LkoPpnnMnA38jL7n+zq3tKiHdrS0Z2Dsl1+eXLXQqjtshiAMrPoqEONqX18Zm34Fzl2UW9krufXeCjjZoQJP2qZlru1+w3/76635tpHw1ibt5PzmaXaToVLmmf12ycBql3qHUc3yp7yTVlUE95BhAsi8YLR+n2ytQZMHkY5lE2yyAOPJO+NI09o3ngFP3LNTm0qgeezH+tV9ANOhJeu1zvvXRpafzOuNv4ACqpe/9fma7jPa/RSIGhYDrz7bAUzPnmU2z712PgOppuqoeTat9f0K2LTmtwui/ux69UwlzrLctm1Xj12deu+XPnp1bRd11D9pF4V8AEh3F3oBUhZTzxN7fp69CpvkC9vrKhdCRx6k6Tqxn7dDse+DGl/3Qrt2c753yUMBsTizXTtbm/UPnjpMu414/Z5uzPUn2DSVUmRH1blDnc3KTnUcJRMlA6T+RLZInoCEqoJ1L3JW44WwFkI+8M7X0qSuxvrM+iMyDZBevgT0SheveWX/b8ZpFppxF4oECxVFf2Ycz5JWPA1zdboebjtXfZDtqOFEpJQltY9IBtIgcpR5IRFioR71GxThLmeiNL4s3YCi13jHZSTne+11GottAwAYPOUbCtEDf0eCTUAqFbbSvBKMfd+RUDx7onwj3kT5d007C1Uq1FXdnssuK3hPhP20erq0kx4QVZ2uK36AlJNrRk5C0PBxLwhudSsnpcWz4hqtqvj4+FHAJvNeeg42dfMY8TxpqKgqHh8/DGziqnIxxghA8DhHEQSo8/Z2x/1+x/s3iy/000/f8PPPP5ln1Gnb8FoT9G6f53k62ETj3Hp1PXHOgK28twOb6rjulJndXy2j0gSva1mKMVzhzSiYEwXNavTqeSWAzkAEx2oGm+6gtwzBJuBFm318Ok4oBKONGCepoC1y01ga98l4jG/Z9shK1xRE9qVy8BRgFSQIgcA09GwCcsUzsvPfDMpcwKbTPe14QtjQDh6TrQw8rw6OxEzT+IsTEJ12RSSOU12vFWya53yI/Ug3vFsrCJg0RUUbkWcFiG2rl4+RGth0arfj1vvwWGh5elZDt9Y9AZsUsC2TEJz9gUc/Dex4ZGhEFeDWBoYbpnJQMRHnQR5jpxvoV484jyPnkUAO+UUEvw4lNMEmO2lNC60hlMIVbApDccqLLmEPhAEbNBWjPANDxQOUyYfz29a6jS2c7yqK55JOYwRFtnlHI2zUCbQ20J03BsA4xgVs4sU0Ziick5yJGFpaS57ensEmsfhIZ3ewKTVd79S8p/NAIOkcQGyFPkJZTLDJ1Ul9ns/EDBWmIEUsDpR09ZrvCfUf3pU8ogDkzULF0L5Yt0u+73ygCU+SYfXkIqdLl05y+vU1B5pe339qyG7KiF0G7L8XYJWUAV9r2o4jthBfa5t8OO6tYIYUWhO+VWRhzFk48ZPTJi/I8myGCbhlIKo9Ke+TwRN10sjLNqRILKZIyz7i6T4VvBLJE5uM/lIasP+u8t/yjNOCXoFNsYWihy6Q1wZI/QTQoM5USlrKXH/P9/Jq4Y0W8WJQ5BTj/r0CnCizy0E1V/qzdm7pmM94jR6G0R8DNtVt2K/y2V2THgfA11ucr7wem0seBDIAi/k4GbSzxjdRxYv8BwYqcv4KcHoFEL7qgy9dW7Dpk+3W+WsGn4Tyd75/KbJ8X0lnDTNBFWDdbvTSFtzwzuE64so813u7NIAGX6End6IT4m/5FjpF8pAgOlk8V+oJZdkP69i3daYF709+Q7BpYhFRNftCIKNqM3GPaZAgEQtdFz1epvF0F7AJCPBtKO1cxOJk6CYONmnp61Ata5gaTzOgZTeFt851g1rv2u2j5C2RT4vf0UclH9K6QiED0bY89IX952lqvSVjoVlfU9zbyCZJk4aQJyaLA1A5HZKO/B63UQpQgMV8Yb63T2NFSsS5TbuxXmVMnlx/OmBTBJiqSq4UYiJjsk6I4dPKtF4FqPKBLr+vPZNM0IwJKYyOU9jqRhITIPJloDZ+SgzQKmaobrGdpkDxGG0aOvBJZx4EFrhUOw0ejxnCbR3DthSNoQ7Q9IgrAnXAQge+f/+OftKbw7bkcIvc4/GIrTWRf08giYqequLx/Tv6Iw28BMJMsRWxoxIbLBj3Tz99w/v7O/7iX/y78fb2jt/9/vd4+/aOt7c73t7eMUbHjw87ve2X7zec54kfP5p5Nw0LNm5KI72ObDWTQcBbO3D34+SfAS71+yvhu/N6Oo7joogBV+WHCnGI29DMdoohgBBAqVWvMjK3YHFb3NxGG58e7yVW4wKnHYAYHPEYRqfqK8BNLD8NtDyptYIEpEsqFZUH7o6TjSar5cOjqzEpGmyDWGk+D5JB5xwVdQ8TBzzGaV5LPOWwqULUg97z2PTBFaYRda4rTFBXtFFWtnyuJ78p/0a90iMN0Sd1/CtdUOiXzyId2lJN8AAAIABJREFUCMzUAPLDlZXOPvIgoQwYDj+dUXXg9LYieKUWAeZbQH1wmsNNj+GeTX2gP4yvcC3m5iflAQr1uFaj27h0B6gaNPbuhwCe4gj5GIaykEpo1JG/S5ogqZomuz/vlAdWloFfAZoshm0egZx9NOsBFSyay6KcqWPLBzXFVNVCugEyQi6eJboAdPW6GExeviCiGj29qDam2omwkwFE8NJKh7lfgwagZm5UXsBtoTzdZAGtgCAIqYwhxm0+bVFiy2YqUlvldZK/uQqYZbVU1oArAy35CHmOlHsEIjTU2svYfgUY4qXILe7ZnitIlOBQ9FgxLvz3dOJuGdFJ2Su/ZU7DN5tvYy9En/VdgSW7eWkTYDx4DN/avsQbiXmsfD/7ExpnVEGRMSCAJZCvz4c4QjqAJdeWIo3PZwGamNxHzBVJPYDxBxlst45jkHjSAwo9mP5WZK0gaHXq/5CR7IGOVRf9CtC00hgPPtmN0TQy0X27NGwLvRHrO5Q91qexsBk8yRunpauWxqy/p7Ztn/mTPhK4WA3o9tw7be2j3rvF/trkswOrotcufVXyjikbnObpNfFu55N87yWXfvIo5pAAkKPQXNZp157aptXL6dd4Nq26LStlvIjGu8a8TFm6fsbTScYOgW0pPz/AxZ9d2VaBpz9AuTTcHqqeQaTfMKB3bVr4d6snEG54+2f8n2M21G2uKvcoQ4tWI9NizFVkLdw++HqVWYDEAgJ1BGF81aKQx3yuwGUBkhSKpiYbVFx/VIntiUwTXmRMA5kBKfF+VNmmsW4QBy6o05LPWxKCTVCETtkjNEL2NdOwjvSjjUgBoC6Y/cgxEnoESfY/ahprZI5ZxLpkGtZRMgwmJd3NX0cBzZzHhrwcOfZK76/ZvRd95AJk2lNlywj1F/dIStBw9mzCAPTuVDeBn/bbsAu53gtdzRrQ3J4HFLcm6KNbEHtpdv8LYPafDtjEYQ6DzwZhNuQypWj1MPFBfdneYOPInZGVIdQy6nMgjuwUI8BZX1kAJ68GPxeWlXmWryEkwqshj4FXZUwSVwQK+MMtbhZryTyT5u1nfQaWuoFNDARe81FV92zSyC9OlqIilTMHj8dHgE1SBa43i6e4wb/f7zfc7ze8v7/j27dv+Pl3P+HbTz/5SWs3DN9XfvYTvdvpWRY7qk/9XYEgejTZUfK5jWy34nOhBt0c8VpHSq7bn/heFeqteMFYngBBUnpE2FjX/H3wLwLHqaasHgJ+YltVtsqKR11ZGoxTM5b2uBdTV+DcgE1kvLmabO/yFC+QBvyeCDxORvJk8jYgeSlPBBv6HGxiYG0UIUM6S8bvwoeGjo44FZG0m4e75hHpSoBUEmwKAUIPDI/1UsEm9tyYxqXSUs7sZwoeaXR7qdMI0gNiPQlyApt8db3IP1/NGzgdUNPufe1CroFxOhA4wuFb7c5+4tEf0KHoD259tfcOOQJ8VO/7caorrcZfDgiOldkGkIRlHHMkeY9pqqxf730lDUAhr0Acy5tbD/Id0ugsTy7DojVQPArzrm39XKgC1DV5kqjHFJlioaeh94xHkffcjiPliqcNFre8KvFPfhehfmJfVvAG0ztO20xXvJaMZYhvs/R5K3yrlTRArrkqcpv74jEYJ1sJeDgCQaOpjqsxGnlzld0B8xeDK8CsmG+M2Ni6WpS3KY8vAk6Vjnb13xk1VyPS+13LmGBNc63bM2O0eufu6vvqd9WT+ug4O+P4eRlDfTQ4z7VsX+REHahg09Ea7m83iMxyBq7/dOobI3W2NW91Gmm+ja4C/JQrVYYTMAL1uOg8xIQKo83l+s5LegJTvHvIewC1k4SCNiUF45OxenXvOK5jPY3MRv7M1zy/1rRV/5Hy/VneVd9Z6/usTdvfrcH3d8Szp/28eVavKmdfgVN1cW531bY9K2u9douP6/NX7+6u4XyVcfs+m9u7/HaeTa/qsl5TvwExX8wwTb0sxfyeZib7zefwaLb8OKY0Cw9aPqe68V9jGkXH5sI9QimtoBNfqwsAzI88Ytf+3e96L+oo8Fhkknfja+F+wdPreC2Zl9dZlqlypIGMqzn9QSByGN/19sehHTKiPhevJYbKkARXmIa8LA+7XNOIeynb7+bLYdoyjbj+Cgeamrvszju8BINbEMO3QSEeBoL9NpC2QoJNcx2H2ino2deulwq1lWfbxqqHFD20dK7jtMiybikn0Fw9tKzsMYFmc96pd1kfnR4+puqh0dcL2BT5lPIDbGxLO6Y61vIdtOJEjy161nAR4EZP4NHRhpfuY/k5p/wC2CQi3wD8twDePf3fUNV/Q0T+QwD/GIC/5Un/GVX9m2Iz8N8F8FcA/MHv/0+vS6Gg7lB0QOlw2CCSIJQxMB5PaQNqBEmzcLNvaSqDn7vvpc0IPuQD+lyAAjsGa/nS+J+vEkC3AD5cgRg6fFucpxumpEkYx9wqNyJI7Qw2ORDkqxnnyThOBkz98st335bh+PDQ2G7X++meTW746ogTpMjPhZJH1VfKXXETtltye00ojJ5POXNctMwHsVMTKChiC18vbfPYLmSqGV+pe1DwG9p9EwenjNFqBFRBDACPx+OyqraCUWueDE5Zn/d+5qTdik2ND/O2qKcG+KlsTKJA7x6MrWyba3Ki0rqBTOzuxcNPGtTBpk6+TcNNiiCISlnh0xYfet6EEh1Dn79dadCpfRnzxgAgRUkKoM3Khmr5XYL+KqDafQvRiHlQP+kZmUekM64UOUYtOOcooHFyCU8WU28Jx/Q6j/c0xs+qAFzScGr4/Js+C60Np4dQr0qgR/G8euEHlge3A3rAe8njqinQ+ujBA+y0yOz/JnkEMLw+o8ZkGwOHNBwrH6z9E/qoTo8SsLZ7RsezwlZzXe9VEAnsGo6lEskxIc+2rhxe5FLV/DIJ2DlF3FkN86XO03sRA80FukiCROCWnlWptWdMS94GJA1SvuyU9KSVrIONxwHVG4Lxlj6SILGUdfTCmsAUs32QJ0/C29iybZLrsTXNxCyQ5VFpAhXl6Afmsmy1QTG+St8HvelUwNSvrE8q7BW893y8z0hrE31Apns1lgUvDgl5eKaRkkUdo9oPtb9bvDe3VFaSWfJb8840Iiv5kl8tv/Nr+WKfBw7c8QYq2DkNE0QOOaAlR/JmL681cf6ENIbUdIShiqZhbZhOEPms7bK+SrqQ4GHG+wwWp3ehkdpC2xx7NlxyriYYKmVuzn2TsjBHMNTvSOxpXwBN1++7cdxfz8GEr2XA978CsNQrwe+rPHx5MebjJr9fAzatC36vwKaaZlfPGqd1V49dXdfPr4BUn4G7lFnS1af+tT8+y7fW6dWpr7Xe9ZrBpsrT7XNnOqV8Wurg75A/FG3sxaX7qc78/OFx3Kx/uNBadPzcjbH0TbQxf0uTdP3d9e96b5EHyecPHE+Oqk9eeJ2VKzkaT60yo26ZSx6U/IkJBbni44NU+R2TpBRzNSFBChHe5nte4QI2YUkT+U7Aks5pKH+5m8LbVEVM9WyiLXCEHcDu00gjvE0MIOhgxK6FNTDVqkOUR1mRCaAscpLlB5HPv6ln074GEDbPCPsEhQiVNZrGo3uIhSnpIq/W39M95q2Fti6eTexUqYVM7eesbSI4fH7cb0cJzwPc3+62OLPancv1Fc+mHwD+sqr+mYjcAfx3IvJf+rN/WVX/xpL+nwTwD/rfPwrg3/fP15cMWGBlGj+5Vc4axfvcdpQxXmaX5f1Eh6eclacrO4s5G5Nkrwhccl6AJoDgxioA5m079ExSTY8iBj1mfBpjzUY1/N1P225jpyV9IE6DGwOPxw+/3x04yjx/+cMPP+HNCd9lvurA2U+bpD0nrEZkBIIcHJkxK8+lK+NcMwfL1EGGMDY1+9qcPoW5RZ9UwImgUx2HDJjd0XvD/aZ4u71vFYkKNNUYVjtAgKu/O2+mZwrVDDZZzCtA0Q7xU6dm6VJXfaxPKqiF+HNrFBqGtCC3nTwmxmLjWEGrvGylzE7a2ukcla5JoxPoEd42ZJbPFcp43xtoQMoKsDKt8yddy6eqERu5vR4d9PiLbVPDaJRecNCcK+nBWFZQPXe2I9roaR+9WzyjouzseOhKC/Wz0tLu2frHPq5ps0NsXJlfXcEPAMh5R83TVsWP6ZPXxWOxtGld4atl0KuySZ7cuOuTV3NwTb/Wrebz+aUpHDEQMf4kROii1JriRQUluPusC63TNV616Zj8q0qSmk1pSflWTVG7wy58ZVStcVt2oPfuCvqkWzQNV1cCFZqgC1fQWbsAYYoaVPo0Gu3KhymP/k6TuZ2RD6YMau0vxuXcS3bnkoaKHSa+nmJ9T1PCHKtRKKYci4gpTUL+U7cLy0wzpag6E4JVOBNnmqS1az7rPcIVc6q5/bvrM/1kRzOfGb7zPbUt8r6tN7YTbNJeDd/xgnZzG755Tu4XeCZeZRUoZSSYfsQJrA1y+KIUn7YWtLNetrjmxpZswAYRrG9N/MOrJG5IVRCTT58BBntQpOb6+fUacFLUYP+793afU+0/lfs7XWKbuCg5cx6v6vKs716BTc/qumvbChrVz5r3M1CHn2uA8Gf9sZ1r5DxjmVmFlnb98Gqu7GT9s/J3QF9l3OHPSK9d1jq2rKF8zlw0SlPAtlSPcqNyVWx+13rn7cPDXEy6D9vbLbEWm6NWUmt/VrDJbl7KvQJOzCBvrWP/cua+mE8hjUuS1X/kwkM81VVCCTKQz0z7Ky9c4/pNZRz7ufMM0H120RN1kYI2dzZ8v35/JkP2uvXYdvGqZzi7n8bjFe/Yyabde69sg1XvLiWAXICef6v58Wv15c90xVeX9Y85OxBs6v0WsnqMgfvbHalgPr8+BZvUavpn/vPuf69q/08B+I/9vf9eRP6CiPwlVf0/PykJxrQG0kwc7ibnbEs1VHZLkKcLRR4TROnfy9yj01vRSpdLnrK5EDr+XbEa0WyDfV6ZPCdADlSCTdwOp1ewSelKSONa3auJqxb0aDojdpOdJDcSbNL5hLkQa4qI/xJeIuogFKFswE4VdkYVyHCNAeEAkCVOoaxqAczP88Tj8cDHxwdaa/j48SMEeWvNvLp8699qDD+bmJE/+7GfaKNdXL3X/t49iyPJJbfojTFwu93cu+C4vLfWx+6P8Gyi0nqxtMr7OjLumP2lME19rAp+b5uubRQe7lPyTyHPYK4vFrgQqoNyO4BVYDjjnmn72fwp80v9V9katno29dOwpDQhve4CpEur50WAmfVRgKc0BtjE1laNpKo8mr+tPayz3elwzyZNACpJJsd8VeyvAqU+q2n2QlOjXmt3FsHo/MtISZ2f2d8hYpics8Y0sNw3pOQfB+pK9IrLCjPQWihdppwc7vKsx6y4VcqflFORrSI1kqAtbduAVqtBtyhGc1qUeUbewy2TqXRlDMVVOZxXDk3fyDqyy9TpOGLLFBrmLFuneG718nET9tHsIZH39r9tqzDn/ERVux5hrdMwAsEmQTvYHz4f2NfVkGP9fBxTHZSyQEgatI61RQjGxGnFLpKpihcHp9V4Kv+kX0/2h1c1erx59k1ze1jUrdTctAava827gGrKzEO9SFnPL2uUKy511bGP7+TnleS8zzSz9Bk2/05KnairtP/ZxfR7vjzzpKtupGQomzR8c2DkAulSTvCy0NWQn0Ue5L2sF+/PNS1xLZe2TSV7f0dddcA84D0ukCC2jZuwMZk7LdZMcgqgR/2FV6COwUwjTK8Q20ouuAxY/fm5kfZMxvrTOob6pF8iLWXr9f3PPj979qo9T6+hkM3pb/X7ZAS/2OL06v1Xxl+9bzrE/lS7XZmv+oi64q8B6yINYjZcDtx5VrfP6kQddwtubXTrPfgvuTU/Kxp1TV2q1oPejFxqSZvpjG3v/u7l22ac6qfPXzkG5sVa9e1H6a1O3TP4j7cJWsBEt63qdeljmXlGTZPhJDTCF+j86nxtSGGd+W25O+LXPJcn/hMa3f5Opk7vKNXqGbWr7Sx/5rR5/yqnnvADxtcrUm6Sn0HsOWaCZeu26DQWw0+yHuk9YfE8yuIgs666QLDpYWNX9c/t/JWcU3GvfFZAuupgUcfl3lROKg9BS8DVfebStxu6jDpjv8j01cu1L9NFXbdjiJwxOnofFlYBzzUPXl+K2SQiB4D/EcA/AODfU9X/QUT+eQD/loj86wD+KwD/qqr+APD3Avjfyuv/u997ATYpIMP2lGaoL0AltpKEq3Vp1hg5sOwZWfNdFSIQynrWLR7Xw09g4pGAeVpPElf1TgJmz4sqwOy7BXAese2lZ8wlj4USnk1+X3XEceMYZxjaCFDCjO70biiA0hgeINy2HRFoeXgQ7uwfRF50O43TlrxP6c0kIjgINjWJyXABXlzJYlse54nv379DVfHnf/7n5qUkgg+PLdVaw9k7Ho8HTgem2D9U/qYR2igQZz8dwLqeRlfHinnydz29jl4W/Lvf7wE0rd4e/LyuYmmOsZ4gYJdJMm5M2LWLsByjPmN7Jd6tz5KRCLCc7qLK8so4rzB5dVtNNcdmSGzt4jY4b58qunvSxDyqc0/SxRKYgSobTwFti8fHcDCHbrxyyccUC4TSIKW+zMhont5v4ScXYwLU4JblXaagcnAcwHHMygr7zIXBbtV0BZ1tHM94MQU7JlqIKbNTlkPJs9PofFt8tEE0DV2RBrQ08ER4bHc56aLI3UMEKHutueIfHn2cB1nVEGiPxxmehqti/2xFeQWN/aXrCVkbYZ98ZX6moDGvkDjZjJ9e6ax8KBfln1lALlWpPNbms6+U6RqjJhUCKjLN/6v34pM8tPZZq303t/N6ZH2hm41qObfBeXMTHPc4qjDz9n6t/Vv7e+oWEZc9pQyvc8RDagUmkqU2/h7jKyTvrPwx28W6rCBdjp0EzUZbxpwL3Ajiu1Le44kv4SYv6uc2er3zUfyGZn+ED3ZpJMN1xPbzojczH13e473QNUvtn9vvVMQ395cHCm5PWBZaNrrRNTf2h/e7CQZnuxtlPN666kv2mQtYmX6O3aO1zzEDTdF/ZGZKQ8F+iviWfCK8qrZlPIwbedqn2n27fwnuSxkW9SvpSY4itacEowmGrCft7Qr9yra157pqLsqs9a2JLP9qR+9sj6+ASQCKPrt/vstzey1gE7Dh9194xsNbnq327xYna934WWOXfgZ87d6v32t9Xo3v9pnkaNIeCN7zoj7P6sS27QC2Ne0zWc6tURYbz01GztHQ8fIzN+ZrPouJYL+79jK3dJor0OQ6tdo59z2rJqar3SUXp323B6jjA3k6XLEl4rRKFw62QDxfF5q6GpgXsMn0p6mL9vS8/g7PTL5DvlUS6fKe6uxb8eQSYR3m8bWmp45k9yp/rM/mPK5lrPPv2sq8t6m0wJVjxPPgr6q+YJj0MOsGxkvUDOzUv90OWGk/adt1AfXgPMqwIkh9bXMFcPmEnyRftitiR7UqEOa2B/BGT/Qmvhtyw//lWrNnfKbiE3/MJYIAlW5+2EbvHWfveLsdFubnYlzO15fAJrV9PP+wiPwFAP+piPxDAP41AP8XgDcAfw3AvwLg3/x65eWvAvirS0Gp3EwTYRlQ4OK5YOrIOjBXxWufpj6lEqMuqJctQazDGBGLJkGn4hmkhpT3iCljpgnjnnCgVrDJno2Il8RYNNo/QASeE8h+EkgikOLvj26g0Rp4OJCKa+trf1pvZL9MBhISaPKxnIR01UHrykrdHnf2E8d54PF42Al5o+PHjx84e8fHxwOP84HzNKN2lAmTQU7JAP3P+1bqqn2cwKLgKV+XQMyank3WhmwvoBjjQO8WfHzHXK7G9Qw2DZ0DnEevevfFtnIyLxBs0jicUTwAOp9BLRh4MDzmq21h8lTcC5PWufzcGuc0XwyFPBK5bIGAC/RyHHsozYviy/SRL+eFE4kq8HgMX3wuMTUo1CN4YebGhqxB/sfocaR9WnHRaAQf0Ll+mHIpZemqSHqZn9kGJcecF14NeQ0u1e9pFNNrpHFDEUpiWL96mMDST6T/mmeCg0kfkY3TfMR3EixzIfOxlducg8Efyt+uPy7HwddmbOuzll/TFLBJFGFxhjemlCw/AVEwK4Zuo5rCGnwWmAKQgmu1E6lmH3GD8FLnWsbcZxnwc+K87M/anKlvll6OOTn/lrYJWF+VFln66Ek/QYpHX2lPDb5d892plgwgmvNBytyq9J+0MVXL/7mw1TqBa5DWGKVZ7lW/GcD7ih4tnqjOFuqQdZ7pnOFiHOmsfujyVvl94T9RN+ONeY18dR3r2h9FVwJyi9hUu2VgdKrsnEYlR5S7ujUQ+vX952CT5VmfJT/eLSJdQIHwbs02WrBS0oVJEhWPc9iOUn+Z5uOl9Z1xhCgHrYzakzHPvSwABnRHLsCQhsEt1DFvV4KdO19k7sudLJ3eLv2JqOE0GNFOt8HWzJd8ynfVfamK0GefptnV8ZJQgQHX4efrGWi0ewYgPNA/e5f1eUZXXIjcvf/KkKufvJ7V57N8J+BCbQH1AjYVOtrNF5uC1/r8GrAp45a6TFL6SGvEakxSKbzTS87TX30eVTIWAlIkyMLP+E7Jq/K4gKmpA6oFUja+e9Xta2iCC/Dp3hniwn4HjG7HR/dpyAotlAW9rKeUnj4bK9PTRe5DPOh2GR9NDzH21mdgU/ApXe8WCS1p0dnnsggF13Y+m/Dlmv2OptrENY18iJ5ZBumc5PLMjyUJuyL+koxmOTcpfTLlOztBLbUPJQAxBorEC2pZkyeZmn6+aVpmqylfJ43kq/29U7KyuoC05wm+fDnNCCDNdj+o+ing9BrezKF6/arT6FT1/xaR/wbAP6Gq/47f/iEi/wGAf8l//x8A/v7y2t/n99a8/hoMpIL4OcsD8BOYrHEKPyEDKMTEf6kqIia3qECezD552dkzNQ4dHp/E31QqSOn1o4OBvKu3zBw3hcBPfUbvo/Pk8eN9itmk6m6gEUDRvJvOh3kGRSSrmIB5TDDfOUcFqxxQUY+Gz3yL8ApaFfEJ7Hc8lkcTwa2ZQXS0w3jXSIUSxdhknRTJiMPD6fHAjx8/oKo4bjeLIfXLLwAsINrH4wN9DHz/8SNO06uCW0RwRGDw9CpqTdD7wOPjhIjgdrM9weaR5Me4O9jEgOnd41OREaShl3PmdjuKl1RDbJHTDP5ejXLO+gCbhoGINkdX1ivJnIpBqxwn9d06CtxudxzHzVdthoM9pDk4XeQeaMqIdJ03Gjiajx8q76RCQIFbPsOziXMklQd6waXyw+1MpKok0r0Sa2BT79zZcIRxPgMYAEVs1dfZn5zvAsXRmKjN870aNUwfw+GZOu0bzTcMSUMrN/YmIJCebqlscc4brzggvgq4rhiu96Y+8jytSw1oeru92ekdmmNRwU5AfOvbzpiq4zdfrHNtR14VzJ3BEZtf36b6V2/CSoPTEJR6W9nGH412VgU821K39U2AjK8C2WoQVyarZjvnV5q23omLq9KVj8e2ytjCyXKk0ORs8NqpfnIppQ7P3F8CXFJTsFP5R6SN8aiGI/8tiluATSJotyenIz4p+7OrAktfXXFP8DlrzDGThW5R7uZihl7SDB120l+hZ1m9nheaJJCb899rEV5OWQRLDVi/8IWaJt6jtrukIf/T7T1vrc5l8QTJyYmI8qLmg1LvUr4u75S3kK9XXrlPE/2jdiyzZTlp4ND6iVHmfKlf4QM0Cmc+M9NPXRDigh6BMzs8RXDzueYzyapbgNyYoYuhIWVk2QbSWrSFsUILzUaELc79QETtu/nn25gNzguNYuMS18NKF0/DQNnH3ybnl6Eq34KSNsYN9YvdLI85cxURc7rSD5Wu1meZPitw8S5QrQ3YXp+BNb/mvaceCEje8uykvd8CNl3aKzu63OsGgHVNdz2edAUsgeedfFf+lNu8EzCNoSj8YXoHzhMpX0ViK3gshqCZlzVyqKlaVT0yIjE96R9vSNQxW6wzjWm2YyFrUPnuZ0c7WgSWNicAdX4302r0PTB5b0efl3ruxvzVPRUHaaSHLr6GSKu62X6u5Qt21PzssVdDAzD1pkaFJ/liJTzWp7/EU83qvwSc+I55Ejmnc934dEeJ0pjSNl3qppc0xjvJUznelX+s8n15ezOnxEO50IaifR52+kQHNmcyPJdpF7ZWaTZXYy8X3WanzJIGR5lL2ZDyNfiul1/bwPxZHgCVZsDlWeJXCzdQcu4XGRSybUnj/St+SvtcucwnRm05nZCCSVhzp4cmgnZ/s9AOcgDS0Y5bkS/Pr6+cRvf3AHg40PQTgH8cwL8tHodJrJf+aQD/i7/ynwH4F0XkP4EFBv9b+mm8pueX1j+CJCJIwTqnfiUwqwG6isXpV8QM8t8KqM7brwJsGivYNKa9wvnMJuqjgE29P9B7BgjvxYtHw5j3mEcPy1uSTkJuTLFEwuD1SUbGOwmVRVHR+Ynp9CRcMmgaFcl8PrvqZJ+8mtxjqR0tg4CPgcf5MNDp48PSe19SEQgG4IxUVd0jKRk4DZIMzszxZR3qmCWgyHaTaQGCMXp4etipaRYPy8ZVvfzad5YP+58ea1cAwBk5PSWwgE2xImN/91vH7Xb3enveDAg9YCvWwkC6c1kJKCiOduB23JIled8oNkDToowFrSzPpBBkfA0FCtP7s7AQV6jozmt3EkyAo+fmtRNEG+2razzze1ulwGZS/l7BHjfg6bpswHWZD6VvZ2Wx9rOEwKvK668Dm8jtBBi2T/p2HHG0e/2rXi+tBA5f89yu7LG0SRgv/JQCpm7xEgvw2NoRz0VSeSPAUumwti2roX7KYq4mr/2c+c/5sS50OQbioNnSh9GEjdKzv0RkCzZxqXkMKXPFFbWF5mkMHO6N+Fl5nxk0Ih6YsSg+VJgnhai0egvuboypP/Za6W3XDtJp7bMZ3HB6d3A3WiNGj6JTajZlElvZ3qThK9h0rVtItaJTKHA1EhROawgFTKNeWbbrZ/lQuwO0AAAgAElEQVROTVOU0nqvLqIJYKfpMI1YuaxjirKcr9O9Uj4NzvU9lsU61nxSJmy2CHo+Q9UOEPEbUZMgOepl4/KsaqNcpLNxSb3Cflf5NesPphf0CWxCG25UXXnr03kFyeO/kQsnUso0naHKRUotneZdlSHGtg1w+hLYVO6t2zGNLDX6y4fB61yuyGfky4UsoUkOqx5SecRXtuTsrqegAufj5tkfAzY9K//Ve5+BTTWcwi6vHV/bl++nSm/iUVV6jG1cG52CV3f9F9RJUPn+VCSAxQ7AJ/xh4QdT3i1Bilo3HmrPvMksqWOHR/wi51MHL3KibDVLjrfREwoPvUp3u1q3+GzBK7gotBQrkrEFY/HCbZtoT52fkMt02ckQ61dJ70nWc0O+IhIyZHky/VJxX3+ZB1oWnWIukWnEeUKLRAyvGwAS8rfxPMsJ3gZ7SBlqn2P4jgoIVqeO60LQNU3U0G1UaydtnfX93XuY0ogg6VHtb2iYwUUnLzJVnT2Sv4a+kAkUBF29S65sLUV6CSvLdjOX4MHeNntvTz8Zz9J1zYtspTyXq0eolBAhUQf7buedrNTGOma9JO7VNIyTZddILmF0KA0JhH1+fcWz6S8B+I/E4jY1AH9dVf9zEfmvHYgSAH8TwD/n6f8LAH8FwP8K4A8A/tlPS5AG3N4gxx2t3UL7UNgqmqridG+RRs8aVfT+sIbj6sZFxpnCmUpQopI9FBluf7OU/dExHq7Y0LgPjxaehuV5lXvn+XBlrHvMpB5b4+pJb0MVGit0A929bR6PRyhUueInpriNM8ojpYtPHAqi2MoAi62krRCTe/aodAyBH6uosW0PcGGlhYGp92FRXkbvoe1HfIpYVdAQcOr5DQzoA2g/mgXwbg3H7YbvP77jdr8nEq3l+PmRpmMKhW61+jjd6Mr4IwIzdm/u9XQc9Hg6isFfkW8kMBgMNEGi7mNrcVS8MfDYT9pNeatbEpbIt1Q+ugOLdXWV1LlVpHT6iHLHOfAhjynvCNBNAlDrn8o4srSoGEYfqVTMpU0Vqcp/FU3m/x5q/Sycv8Zz5pIizlTZJHbJx9WBRQFRn88ADJBpKVxT00Ch6fQQmZRIKm9iXo0DA02KYD+8DpIKIwGQbLNEwdWkZO1ZsKyfsoxW7VKff4fcNgLDFYWW7dgZ/1P6F0r4FfRa+qh+euU4x0QwxzsrddX4N8eWAnZ044tTiwoByPwP1gmS8JJC5Yba51oTXvpO92QfdOHjqNYfN6ezWDGdXyn1RrSz8uN4Un9fxt1/aam5qnk2VTCnfu4ARN2HA4Wqxf/DvumZTOuPa4JCuzX/0NM3dBS/p75T/9/nSviwcw4Xw5kTmvrWdjYwV2qB1/ZsaTsmnClW9ESdKIcKqvdJ9WxSqO/vUE+jU/2STyGAsxF1tE+u89IAV8BWGEsaZVd4Puwae6+0X+Y6Rr25pZ7vlPeyfC9PMooSF7W45cG2LGTbgl45llVHiTRYRQW4+pw9vafKMBTGakxyYIDvUdcdL30ulGRCeXIc2VIooi0zYOY8MzghCVNinGi7rAHiLydqP6G16BNvZwSjv4w1Io3K8HEsugj5Z+WZ0xQvQBrl5AY8nnh/5WNFn9aZMMr8ZrdWo2/hwRN9SIzduqizIaQryLUd8wW0rryIddtkE8ag38jFtU1pDiSkN1z8s5SFKc9o3yqfA5CSiOl3eCyw4LMjZVPnvCh6uGWTMFE1gqu2EjyrKDX0qkSoSAKhZxM4BxNseopWhqzzRvscJs+YZEK9Cs0+u0z/WBZt1/SFhgnytdqPnEelijHWQYfYjE/8E3Qt7kVkU26R2xs5XjOb1AMIHq1N74kPxDwVNvI4ACPTqS2ouwEEcZoxAUU/fbW19GJbZTznMh0Ack5c+US9f9U3XbbQxpWJShFvCjDlPnfM9N2iJ0hJ455BLe3R7uAj4zFGxIVasttzB1KHnWzg2ooimgm+qd8knaS8IHFtHDS08PyojNdRDkB8V07to+ApLovj58JMucFQxdorpe+W7KKtgAOmoSEge9UwhTZskfc47UCv0QceA1C5+zyq+vx8feU0uv8ZwD+yuf+Xn6RXAP/CZ/lOlwA4bpB22J8I0ATdgRvDdkyoWLT/VpQVD1pNxM/BCfZtCklNwar8zlPMZq+lcXYDCvpAjxPezmkvsCB5K+8RLKoBrs+49whwoypj0OEny6VHz+q5YAgut/GNpHZEI52BpMEHtr2xPAAyjNk4maqasBp99gsg+p84JoLILauR1ed/aoH5cn0DTsw2Ax+n9cMvvr3t8XigHeXEKJL1IsxzCqVE8CEs/ag4jgPv7+8mUA5nEC4s/fADVsjpqSf4Nyj8bMX0LLEbqpJg3xkkuDwQlHuSNHGmdxyyJ58a8dO9mOaCjr5Nw+e52qFRz1k5zLraisIaHLDk9tRAZv+ncMo0tY2fX3MZDTvhdFmJBGZvASXF0q33cHqq7wc3zd4MMlvAGQFDtEGLQMWSbl2lTNpiO9xDDjsl+DrWO++WqX/UFZhNHz2t0xNj4RUQdSn3yTPjnxYM0IBd4zkEevn3rO21DubpeFwAr1fX5HHEeyG1JX/nw+lL/rzW76oMlNXUTbm1XdNv1kSvY/ppG0vfpcif816sxReqeBm30ga259n1Ks0rGtoCTF9KU6VPbMKIj+kVgmnl3lqfnRfD+mw3R9aFDqDIPllIyZVX6hOrR9Lho+YR8aajlXkvFqzArbrMoCzYnP0KEs09tK1jTaOA5dH3QNqljps0UUeZKXL1FPmsr9crjcTnY7XmvdIQdaKVLl5dVxBKA5Db15G8D094R87ZiN/yYjxejWMCmwhlJ8AmZAYza9OIgyOFWIwe5/Hazg9lCPi9PMqFhP1Vdeu1j2o5Qfvl/lrWrux672nZf8Rli9d9S7Nfla/P8l3r+RUZAklvfjmaLzo03NyDmGPLeU2wSVWBXsEmA1boZTusIhd6zMDIqYfb9iuCINzQTB0rfB+ToLHzbr+Ony3Mn6HL/daRE9D7CpHvSvPP9CWCKitBb2m+9MmzCaAwG9XGzMCdeGet91Mde74n2NPXV+wHG6dmzCS2Q5q/SPXiy099micw0+6rufq8jZETho44MbBYnS/aqM/HisMY4+R/AjswZwy4pI4Yy6nUeT7IBaLh2nYUKf6EdVNNFjcU4TkVeQUB1pri1ZX8wDMWyfno92eWUeqAyk+n3rHaqMB2nUgdhEvdYu5LrW+CxE0AVR+jU9HEwDwMRR+Aban72xAg/P/3SwH0YUxyKNrtwHG7efCpw9ylm21jau2ANCkeOYrhq+M8Qn1a+aSCR3RzWEyVcwycvqWKXku9gE3jtODc9E7h6Vt1P7YtPmrERTJgST0Wk2/Ziq12jyBK1TLu6grOiPNe4mpiW4lQJohPvemSuG/ppKZ0RUSQ+4C1NfO8GgPD0e403suWnEY0vKzSO8LWH6cDgbmSmask1zpyaxi3yg0daIfFVmqHeyWItVWkCrDKZOacq/CiAJPmp3aJQGSYkB21v7kVxse6D/dkGvOKaS3aFUD2q1ez1NFrxvp6+e3IYOZBlZJ51DbsnmVeWZnCGpjBRXF+CRosn3M+S8oLf38ubO0qHQLM7UBpx+5ZzX5qU+3g2fjPMnU6MXDV5aacXHnKgMzuVu2TSPWA4paTqgicEG71e4yZj3FZ3VtPgXilwK7P62+6s9fxX+mH41eFSvxbunDqlXI/BLXM7+V4ZA46TmjvqCc/Tlvtoj/mgajPbA7NoJQpMtea+tMyrjrfW5IX1nq5BLMBULLPL5q8tH5Oikp9dTmGV5E86dcaJl8BbJjHVw0spu1kWsp6boxmjYfbNAbeN0xNiCz15b1VYeKpq0Btt2QG9R3Nurza7vMMrFifAdfxoHyvtV6aGQ2JMYYpXFruQWAeCMs7/B3eBVM+9rvOGoXpItUoWyknpQtepHGdhsGGl7aFp9VSz5pG6/zzwiZeXNtf8snCFmNWNbaGTXMufm7GrszH2jaWy36YGvDk2oNNaxD18rTOiyfzTi1jM/zxrB8R/TdT+vM0QTOY78UN/xFBl9XaV2u5HtoSek7p05CTVTat93bt3oBxLq6z5guwMPXgpM7Iy8/1ey3/j7lW3f5Zmb8VbFqB0/W6gk1Imd4amnvrH3KksgREyA3V4tlUWbjAwaZjnp+48owY7aJ3mD6Rcjm3hhdeEkwnKXnWT6hzZRsrn/2to2c05rpR5RlSU1QdrdSnZVvnOSbZ1oiD6fc2gEftArPrBLHrguXu6l7H+6J7X9NMelhNv96bdDV6Nt1hHldmCE16m7epyQHqxrW8bB0mmydJ8Ml8Le+nbWN8YUBzZ427d+bmvjUvSQE3FwzhIRC+C6HSGPW1wL9tT3NpTpWUtT+tltSj8yTTOhDeEU0SdGDc6Fh9/jpVT/oMY0aGTkQHARbOHmRTuE2wpkE8JR1otJmNtHmddm3bbMWrM8NsIDt8o5V+GMjVldft/BMBmxR4dD96FhEUV6G4HYbaH66Yisev6GeHjocDOaejbCNW54wRqQf6Llvd+onuQNOHx0h6EGwieNJtC1wAWr4lbhVI/OS9fuZJc2PkiSnrqgkAEFWGaiironBXZg9HLOKBzCTieq9XIqkI2qLilf2b0+l2syE/SgyEHka6ZVRjzazClUR2fnz48efJpi0AmwQTq0p892DqigdETjxOY3i3+xtuZOhW6FI2UDbY8h83VjXSAnYUIzrC26TuwV+FOYVd3bY45be0eWH7pXxZ0riA8pg/ouXeCyVlBQ3q9RI8egJQPLteGa/T77nR0xNgBVJqu9b8NsDapY41TVuAi5kev3JxXC76W6Fn/tWtdyrcGuZNerHa85lSXA3XZ++87pOsb7h8L+98lvd6vVqZWr+/AsPG2TAe57Yf5/Ln71c6AFYJNQHxS91rG+q94G+rnMX1N3nj9LgYyM8Ais9Wz7XMWwXCAKjXM4PpVRnkT9syf4WRtaPH3fufgV0c68+Mq8/qqKr4CBnytfde9v8LYOm3gE1rmldl1FVfzq9dfKxnbdzVlRc9AP7Y63Ge6OfexX0FcHb1qPd27Xj2jNe2r2kJ7Or0hfGM322mRQFeApI13ZRPf6JkzRV7qlTTyO2+cg/8dkP6/2vvSkKt247yV/vc++cJgjFGRIwtBiQDjSIS0YFEhNigDkQiiiKCEwcKiqgTUXDgxA5FEBUbxAYVFWchCejEJhr7IEZR1MQ8Nb6nee//7z1nr3KwqtaqtXbt5px73r3n/1Mf3Ht2s5pafdW3VwO0fW+N/vg2C1Q7yzjadJLVRC9w0t+XUbPUry/HqhYUPZcn48L28c3Lo1Pgtf2l+JfIL1vH9XetfXjhJM4zMpqZKHbWDNDorj1hX2WtmwTPy0GlIKY6ad1WoZ5o2p82CWjFmOaRrwOeo9yGJAcoqBxAQ6yW1PXlV/Q+mdHCXOdqGTfaBrJNAF85MbCU9xa9/ag8MDrGen1Um2rAbvec1Bu7r2cux5oNuhm53aO0EoviSv7YZEPdpkTvq0yan0q+qe5FdblWWZTR5RtBTuCGk+8EFHJpNDpJjpPIbBPDDE5CyExO5CyVMuctGVOahrLk0tqd+Z2MW0Z/LQd31aUOKAZ59Wnirs8KqWbcjOOhnvxpSLH6q891r8mhcyN2uZwkmakIP/4mL1jLrT0BN7HmD4Gxk3xh5LoxACPXajKDyyCbAM2brPAnLie9Hca8t9H+cMgb7w6ZlR4PeYkay7I1TpxnR+kgqh2wEkGjzGiS/ZTGNJawdRmdFu4o6xFVDrD8AhNiwnb0qZx0NpalduA6kPXkCKuy5QxAtsOYKMnGsPKUOOtHOxdrZPbv+veTorHxl0ashTZTnJ5yyFrIrQLfGMGdHPm5NGBHifFlzD+6X5KXh+vKMdA2yqnf2YFCkkhAt28L1wGDTNdB9p1x0yfIFXQq5YpYJjwqPzR51q04b5JhNkYv6alfVIj0nopSWQcw+9sKrTOG2g2pLXHp+JM4q8HEJp2t3KW+g2TNet3YWvtbIplNqP1v5/+Ya69uLSnNc27nTsnxsPSu7h82lWWJXJrICmrcActKtLhAqX2mj/IIgCWCor/W32OIlDniyDMKtpJNE0PBIYm8vF+Lpx875tK0hnORTSq7V8+OIYiY8x6Fukn0qbL079Z++3TY66nRNt+evfF/q4xL4fXv+49Up6LOItteTmttZOlZDy+vl4z7LSQTICpjFwwBJ5FN/cwmty9lHWf8ABmysXOqM8VPLb27tLPmnqp6bR5tOza9f5bW67BHNgEo+QEzrjAwIZv667Vn5yAtgOkYshT/FmLsXGSTthWiAUN36pf38VtJgpo3bVvzZSFsIZuMdAthLefVucpMSSbCUOUAUFueHz+I8ulj5lnZjN086z+6byGb1GZr4utdqA5cb2YwZ/dN9Wj3ne4flXZ5I25jU5Jsh1GzxCObVDZrG2j4Opu76tjZdhmM3s8SgT1NF2UjdZ1ZAwDELfkHW0e6jwn1MKT64SvJIRFKEJZ6wPXkcO5m9uZoRBZ7CAsAIi4zeGp+SrvW3tSY7mVmEdX8qXmnedT3wMYuJn0mj+Tg+OIEPVoDhZsy6pwZOy+bSJoW25do/jN0s/jeTT6sgMuKqIa3EFttabC7HLIp5YGMRgbfHrCXE8Me397kE8r2eyRO2AnLP44jxr3OSDoAScieMc8oIiWAhEA6CHl0SEI2cSqzbXSvoby8i3HYH+qaYiGD7O+cgpmE7KobfMu0M8dgKAak1jPP8DIX3BA15iQqTDu1njiybtcGVJsezyjUUx/WFEWX4NLKaMTVPa6sjNNOnvsmVN7XfDFIMj1wIY+8sLZi1a30LbJqWvzoS27u7RGhZiw0v1RPJ9yggKmfGbGmfdGESMAkHi+OepSqr0gQUL4eWVJziWzRP52+bKf6KvHU1GsTf21ftdPt09vKYb/ylETVo+bJRnI8dCDsn3nXW8JawlZD0SNy5hTBNWV6MLMh+/5A2/2a3N6yha2Egu2TdL88j6ixv57f3q3nb83w9cpV9/jr3y+lZy7OY4m0OXeewbElzB6egeNhLY61ctgq11r+zcm4pQ32huNSHLY+bpmRtOX9EtF4DNaI4WPLv3ezlsf971w7XIt74g71K3aJEziNSGGeqBKTOsIzfonKV/j7Jps2tZHODqi7AK7AhsNcNqT2nVbLqA+b2Tw0Y0wvV349L9mc3nAOLNVHL/41ObeOH3PhsZBNVe8RkqALo5JM2c1O9kKth3ZUlW5WpnKq3LSt6gb6lrwqp4ltGAc8W+Rc5bbj3YRsmlIKUzl6vVXtQvtsIitVfz00/t0w5AOKkHX7qoP6eiu1D22IYnPaBMAQOeZXwiPrRiyQPLNpX5bJQUjFqiVroStJxEU+kk2mq80yiDsuNg7IEkksJJbKosYeoXpAlaNJt9Rvmy9dntdyacmm3D5y+uys63yIMAtpU5fz1vysNsVud9XVR53ZZfch62domTKT/m0gteekzaglSDWvSzglb2tcivGQMB4cG5thyPkqa/tn3QygQZbQlqlHuvTUcgr9LDadoaXtPB/mQ8S4GgDwgIFTriEEYLfL7Fg9XHqCyyGbZCDjlMomguM4Yjwc5GS3/MtiDNqT3soSt33eK8nObNJ3B/Or05zLTKY0ypGJQjYdOrJJ5AO3Sm3/PpkT6mzn5ylW5Z5N+vuBAFofZKBmAukaV8cgbAcduG7m2Xbf0HMVa9hKKnKrsrU0oKoXR46emDp9ILIzW/zwe/TE2BasklewTR+l3ODcU9d59O8ojw+TMKyftWdLcnsK3JKbLNN83WrXuts/dePXz0o2DRLO4IThy5rS3KbUvVv7RUQ7fpQvG2WwotONBI2rTjmfynsuaL09xWhbI0Fs+J2D8q7v22wftIVsqsefr+fLknFflkCvkAKe/z6OJX/216JvA3pIxFLaPELE+10jm5bSvJSurWH2z9dm29yFzDjJkF7JvzUiZAkeSbMUh14r+bmELYTKOckmjzibk2Wp/NeMZi/u/ter18eEWdxialwyt4sA5vxR94DZ/6g18dhB02NPh7sr0TSJ9g5l1rzTOlAMoePiZ9GDl9wQZpxIpt9Fv7tLW14Ld0u9W6v7fRvz+tylttX3N+0cHTWYl+IXc2EyZG8Y07r1Z0UeZuQZD1a++T53KhM116p/3bVfI5CcjmZtJp6s5untop68AIDxTGQTWDZPBjBYW8SWq4nD5sCk7Jl7FxJMOyuqPLPvQMjHKDMIY94SQmasZJPSkh2GwMkzNVAJEDRuKgHTuunJpvxMUy/xGnKEUMn5DDsjqv21BlJNd9bfB1n1QsMc2YR8no3ORLL9HgG650puM209ndpnSnJpmdTZPyykFJNOMWDJJ0LedpxQT5rTfMl5rWFoiQB1L7Yip2mbXNpjt3emqSvZjbk2Lko8JkIlwkrKtNlPg851MyXZ63G7fnI5ZBOAw/4WN4+fFEMvMWOvs46E/NnzAYw8+2h/cyMJz4k/3NzKsreaITzWTcCTKMpKNh2UbJJjOJMcWaqbZ1vktuQPGKUz6/KcU14HbBV0davrsHN9m3NDGHbCvNIgG3bniuDtm6F+5wz4Pn5dVrPW8VuFN5UOkBojN6W80bYNRePQLyyZQ6jy7GSDcDikgpU/dyZz6mPX+ZPtDNbhkXA2L9aJl/n3lLgcU23Em4mXZt/tdoN8rZqXf/lZJXqGsiHRVKa+c/WfUal/7TszS8jE55VpjXfAc8+9SkiZloyq134a2/pq457KbtPptQ2A8sEd+lVAetm+Fs0pjHNKp7dvyzGwbWvOsDiGHOn7jK3p6e8HMea0zwLQEBDaB/Xl18tzOBxwe3u72t6sHHPG7jFEwNJ7b7nRmsHQ9wcazjiOq+np03VMua6l14trSY6lZzb8uVk7xxi/W2XZmpY+T9byA5jWtbW+dK2OrcW53o9N3W2ZiXwKTs3n5vlS+ToGpl5rGFuW0dkw5uIhOxNVo16pet5QoaaDF2+Jn1u/jVykhiQwlCPi74ZT25lfdlzKZSA5dQnTvLXl6/Y1aZks8tQvIrNhudFFPHJgDXclKV5JWP177v1m/57exH6dqh/Q6smwemjK4TBOlitPxhczs8mGmS+yzl919vVx1g1n4foUMPKJzzAHjdj61MvTttU27sT5tLI+z5uPZkSl7jZysBxCzwB2hIFz2697QAFtB4VJT9O7qf1jr+fa3+yR7K9xk79QD/nQLdqV8mUALExMnqHGMJsn1b6wEEmaDmM7lNUmOpOp+iuzn0pazX5ChDzrU88y6G0eJZhMGnVPPoKxOUCtramz+PQ0+xKOozcRlXhYD8Dayd5f0k8NMG5E9AEt6Ugqryk6KoMAzFbDQq7pd20TtqZVt1spaRIzm21+6MsSNtV6bH90EFI7jYfGHWMEIFuPaPxq+4C7sHPdHgi4vr4GIa8Wux0TMO6BdMD+5hY8jrLubx4XRTaNYz71ze5WX071SHX51pgSDvt9/noom2sjJexv93kTTFX+ZM8lTgl7QzYlWUZ3GEckoByJqMRQkr/aABzlBJ3BAa1j1D7jdhNq61f3ddI09Pt85PomxMzVToz8tiNcQm/s65/tfJfC8ZUaLkpmDqvtILnPFxNnaQMyMOYpkEMhkibL5+QahsRwUtlLjaYzXskfL81LA6L3zjVS5N+c8ur59wmZ+Ti2yGif2Y0m7xIOMCUuPINijWwahgGPHj0qm9YvpR+YN/aa+rQBvXzaMee6KwaeDlQmbtt2PHj1fsnNFmi/MGdgeMSIl0+23LxwtpAcih3qhoNKMvVE+RrZxJxnf9zIBwPFqWSTXdY3l561vFIiZY5s2rKBrELJJs+NR4x4xMUSueGF46VxK7YasH0erYWzJMvW9rFFtv7dWjvw5DiWbLLxVEN823LnJcwRwufAWUimfLMemTMOaBksbXw/F7ebh8xystT2/HVFVXFNsvzxKLuZvKPWX3P62x3k6vs7V/aVcamI14/X8MeoEh5RLmduMqWe5AWnXouh5WpqJq/q+KCLdU7PpS15tAVb8lHjWwpjzd+a/5z3qMZeZRZW49V8tbpe0b/XxvgNM5vycz893njk5cFdSSYbFieUGSDF/jC1ye37vXGnzBrjfNiH6atKXZVy4UmdrzEOiZBI7cGqC1kQ0aS2ewTW3OmIW2wIVWiJBiRcyalvtexylmWyKcdhZzHp6W7drKVu+VeOy3ej9zCklSIlRhq56NyL6TD5bckmG1YmizKhMpBMYCjtx7cXVO8vZJMsx8tkk8aU/Wt5DtJn2v2dhkJaiYzMpQ9k6wYopFkJm3JYjRvJk6EsdKYSjpJNLPZKjpKatFZCSjthruMamQzXuFhLlJpn+WGtxTQImQ3CuN+D05gJJtnIfAsugmwiGnD16BFSSri5ucHtYY+b29tcYENbYfayrO6w3+P25gZAXicLBp48frns4wTWmU1yCl3K+zOpkpOYcZCZTEloVmWiE/OkEQzdvcpUDAjMDwXW8DpGcbDKQBpHMOXlQrnfm3baniHmEUxqmKWUyqwmVQA9Wdr9WQAmxk4aSe4Qh7yEkMZihKq//s8eu0lE2F1dYXd1PTFO206Hph18ycuhdJjn+Aps8+dkoknfdafbnEo0WSLlGNKpf6Zfpk7x28vTE0Rz12vp069vS/GtGURaf+dm6K0bT7n1MmQg1I0EqXW3pFT1cei+LVtlWZLPm0mypDxuMYrn5F8LBwB2RNihGox2GZu694jGPuz9fn/SzCbvem4fmbV8WiQOFvKkRy/3FmPak8WT8ZiZVkvltpUAXWtDa0u7toQHLM+0OyasJULomDKby5+5+JvyUp1Bx9k7zmq8L2w1sNWtuWnGNsdx46fvC3py+Ki4mxdOGBuC7PU1BuQkYPOMvb0nRQ/v3xlb3SyeOTvRdEobYYhuy2ZM1b8ZPfZBB3MAABAxSURBVFIupn1Jl0enooQLNOTAVn9z9+eQ6S5uPJ27KccN/otRSKWylfZWPu72+ZASICsJdMywH5Z6sldlKs+wQICYAs/p0Bkx28aduTp2DtIppTETFybesqzW9tW9x5K2amQ3z0/EKCeZ1/15pm626Npahp5utMVm0EIbMICv5TRCBpi17LXMfB1F7S6bTdyQkTxxM+evX9SckplpV/yJDSDkCVXPZYNwpYCK1s6ydQ2Z/V3FxtQZIsw1kpyVSqShkD3Z7VCaXXP4OaidoWTclnvDrucDJriQN+rOZIbsQav+aMbNTk7js5Jkd5MTPcn4Ky5zOpqP8NS3gyp3KcKZ+j8MA/bX1wAY+ydPkMYDdpSwA+P2dp+PNdztAP/AWwAXQjaBCFfX13kj8NtbPH7yBC89fjkXxFWrkO4PBxzGsZBNAxGur64BAE+ePMHhdl+Vv8T5hBHmctqAdoojy0wmtGy4qZtGvNqo+05SO4OtHafrjoS57AaDUgM4bzpJyGXak0Aqx1wn77H0veKn4XkGSmPUycC0k6MhmRNSojw1kqjksfq1hMJA7Ulj+u7Ro0eLHai0cPdrRR74hjzonIls6gmZRdk6N+Ue0oFsGCyWwlZ5dCniktxL98BxZNNSGne7Ha6vrxdnEm0lryzZtBRW0y4ES8Z0T3zMtdP8nKAmQq7PdRcQVYPnDHtPDn22tCHzHLw23O+Rs0aizP3u9/vVzX09AqTHDoQdUUMyeXsmzZGIKsPhcMCNfDDw3Hn54qXV25DZyr+UV3N1aC4flsrRyu+dPtr79+LoZdKZuGtl5f3213OzGk8x4JZIoi0Gscrjtf2t/j1ZrNu5+rvkd41wcuuFxmHj6sKZk2OtPM5hkK3hGMJJ3cuF688b55YNo43xzSB/pLd13hoL82DrZib5vUE+904tlbIVCrH7gewY9PV3S7tw3XRkjsqcUNNkx03u6nOt5+t5egyYrc69Xv+O7ReOleUcbjy3pY/Y4p86C1mvVE+RcpjEB4CFYLIfkRX2o7KbDsrLdPTVlGjKRnHVH5Y/1NwL2Hwc1LrqEE3GeQvLiMhslbsi77VzKLH1IW7Ri4Gp/ui5XSSfSjkOAF1hGLTeiK1WyoonWUVNmXt50vQmJt6pn/qspmtMh3yoV4Nh0hcVf4VMEd1MJMhln2WxZFNenovSXNA1vTIeEWAnS2USp3ZyTcqNjW7HdqI6KmgbdHKo5qn4HWzdK0kUgSjP0NrJxt7GmpzUUc0PzSMlm/RZTauXqDa8JcJpoAGHq0dgBm4fv4zxcMCjHeHR1YDbg5BNK23/MsgmZuxvb/Hiiy/i6uoKLz9+GS+99FLOrG49/igGjm4eTkR5ZgyAm5cfY9zXZXRiPYLBDdEEzut61aTUSlYNTKOIKCGjAlCvcshjwz62hZVrfEqpyoWcLpICyp183cy8+JQ9m8AMJDVc9G/aETSKr2kU3p9d2qdLFOcGisYQkhXRA1FmXlPKR7Qylz2brJFFANLhkMtqGLDf518lGXa7K1xJ+dmG1+Rh6XFMI+ZCAwBCJKZxlNmCUoK2rGzYHkznMQzDpKNp/M6F1XcEydlwdEHpnlPE9TS2pc5gIs/MoDZH7GwdBCEdZT3pZGGA7vPDCX9XNuReCKcoEo5BLb9X19cYhEjzlOUlGQkoU1NTSvlUSRG4Knpt3Sv3/TvjpjeCtqB33SgdTj70aXSNE2krdj+iqbidcov5fBsY5rRPcwKniasZmPu0GXns7K/Z+ss8bffmWe57utk2pj9zf004TbQynbqJZ6bOtR7bNlxOJO3TYmT20tPHoUu67TMvL2bzSd8bJW0iy0yaXCJB0uPVUyeAaTzdffL8zci0RNjoWOrWkzl/wJQQcNI2kc2rD30chrCexUpcKt85DPxF4qOvK66TOqZvdav1noHmZNIS58bNz3tdbAJq6xaJaGt5q2GXZwx3jGp0MvHkjdl1ZlO9vgvYlkt96Lrr3TiuREY71pLoS44eaeJq781JVuR//NE8gnFX3Dj5UifrbBsrXylC46zh2ryx/cOKLtK+59J313tarNj2wCSg7ps6jv54U8sYTeE09cLq02VGogZX68hS/inRpZ7HwwHpruQOV6KkqWNb/HbGvmRGM1ZWQ7416G18towJeaYQp7qiwbZEcvp775mG6xPHJu7ePxlCQgTOb2+zrSZ1p+gZmmaYake2D6TmfjqaW5tE3dHEX9tvs0wM6MkmWaJWPLYETX5mZh8BsoRS9CS1kYbuI48ZHFjSm20pCXOonX7OsqolUfvPtAdN39Qm88Y06uoa2XLq3SjZJAvp8p5NmrO9rlJl07rZ5rTEZVXpVsmelrf5sTdEA66Ga4CB/c0N0jhif73DzdWAJ4+fPD17NjEn3Dx+jPe/73144YUX8NKHPoQP/d//Qju4Ngc7hZsIuLoCQMDtHhinCXaVaXKubaE4zrYlxlwPAzDsctypXVKV34kCllt/00llNwTaEZA4FyaXZrZNlqZx1LXcABpDca2StGF2ah0zyvGIc7llG9eQCQFSkiFx6TAm3szVvLJs8qOMPAt5dMIAd/KQ2GQVub9LX3rLoDKOMjV3IzYQN5v8OIZYuVwwuI+CZ6idANrtSntaVfK8dJURlTOxe1djgZbq7LyfVTiGxeK9eTabyxNid+XZYQR0P6I7lF3TLy/UtVVFnQhsSdTefUdCLULJprVw5tD79d45siyWjaZtqaw35NG4JR0r9UmV783+F5AaQ+o4Oewz1q9qS/nhKe59HbdG+pY0LhlX47Z9DJZw917RQPWNY8reeVbIig1tqqkrZi8r0rzekkerfRfaNjsvzlS2Hubj0OxHFDM0TEgaTSrPL085Ct5HmA1l5Pc95jUac2oZk7DmPzDVcXc+5GLsNOPxuhiz8PLoFByjh6zEV0Lx9JA1GZp72TvS5Gsx5mf8MggHWVo0ygfBrOLP9Ic27P5MdUtyEeePxOaZJUSOnfW1v7k5g95HGIZrtHsCUZbNG4dt/9O33TRObEfufhs90dUR5I9T79O5Ox1uOJ6+JuW5vz2g1Jsy9fKVArmXmdXQvEoAa99vLW3NX2vz22fdh3KGTMLgGpmQLo2bRXFV/zRl1p9w4OnERmor78SGd9xMwrVpZC0nbtv7Whe3qEf16XFSsSRbHmRBLEsxU+7Prl51hd31Fcb9LdJ+v9qeL4JsAnIHlORL9yh/AGb71oLScVDuLLYSJ7aOc/frONscnkVKNcBerkLyUDW6HDecyLxzKs6iTMaQ64zfMlA4jWMhwDaPPPLLq/Rsv6KILJrWxGXW1jI8pWIyHFR5zqB/3Alekk4gnIBsuBxtvMyUw9H+thqDa+7nwjgD0QQgkx894bAWfjNAqz88nCJ8rNJ8hEG+Kd4lgsm+G0UxO1fZ9XF6OCauY0gYz+9d/S+9WyKjjgnzWBm3tLUt9Umfn9q/nCucY4i3LenwwluS7dx1/z5wR6LJfbalTvWG3anGt+tm5X4relKNnT1ljF1OnRuWf3ysjrZFpqU+Y3ObhTOWuQ+Xw5mBJZpm3bT/NomxIeL8ew7C6Zy4cz9xBn/MrTqzRDSVC6ptllWP5uVyfbC+MMfbtlPZL2dDvZjMTlqNzoQ5GW/68r7nPJmMZWLQcifrnRrbJkHcy9ZW866tMyNjY5/3Y0kf1jS45WKQeq3rR+cmKTTtgfoQajiAyz80bryPqERoiCUVo4iy0Y6Y1VecNHnBzdp+Oe0lKJ1NlhIopUI+rYr3cB2FEYLoPwG8BOC/HlqWQCAAAHgtoj0GApeCaI+BwOUg2mMgcBmIthgIXAY+mZk/1ntxEWQTABDRu5j5cx9ajkAgEO0xELgkRHsMBC4H0R4DgctAtMVA4PLxdJzPGwgEAoFAIBAIBAKBQCAQeCoQZFMgEAgEAoFAIBAIBAKBQOBsuCSy6WceWoBAIFAQ7TEQuBxEewwELgfRHgOBy0C0xUDgwnExezYFAoFAIBAIBAKBQCAQCASeflzSzKZAIBAIBAKBQCAQCAQCgcBTjosgm4joLUT090T0XiL6noeWJxB41kFEP09EzxPR35hnryGitxHRP8jvR8tzIqKfkPb5V0T0OQ8neSDwbIGIPpGI3klEf0dEf0tE3y7Poz0GAvcMInqOiP6EiP5S2uMPyPNPJaI/lnb360T0SJ6/Su7fK+8/5SHlDwSeNRDRjojeTUS/L/fRFgOBpwgPTjYR0Q7ATwH4UgBvAPB1RPSGh5UqEHjm8QsA3tI9+x4Ab2fm1wN4u9wDuW2+Xv6+FcBP35OMgcCHAw4AvpOZ3wDgTQC+TcbAaI+BwP3jBsCbmfmzALwRwFuI6E0AfhjAjzLzpwP4HwDfIu6/BcD/yPMfFXeBQOB8+HYA7zH30RYDgacID042Afg8AO9l5n9i5lsAvwbgqx5YpkDgmQYz/wGAD3aPvwrAL8r1LwL4avP8lzjjjwC8mog+/n4kDQSebTDz+5n5z+X6/5CV6k9AtMdA4N4h7epDcnstfwzgzQB+U5737VHb6W8C+GIionsSNxB4pkFErwPw5QB+Vu4J0RYDgacKl0A2fQKAfzX3/ybPAoHA/eLjmPn9cv0fAD5OrqONBgL3AJn2/9kA/hjRHgOBB4Es2/kLAM8DeBuAfwTwAjMfxIltc6U9yvsXAXzM/UocCDyz+DEA3w0gyf3HINpiIPBU4RLIpkAgcGHgfExlHFUZCNwTiOgjAfwWgO9g5v+176I9BgL3B2YemfmNAF6HPPv+Mx5YpEDgww5E9BUAnmfmP3toWQKBwOm4BLLp3wF8orl/nTwLBAL3iw/ochz5fV6eRxsNBF5BENE1MtH0K8z82/I42mMg8IBg5hcAvBPA5yMvV72SV7bNlfYo7z8KwH/fs6iBwLOILwDwlUT0z8hbrLwZwI8j2mIg8FThEsimPwXwejld4BGAtwL4vQeWKRD4cMTvAfgmuf4mAL9rnn+jnIL1JgAvmuU9gUDgDpA9JX4OwHuY+UfMq2iPgcA9g4g+loheLdcfAeBLkPdReyeArxFnfXvUdvo1AN4hMxEDgcAdwMzfy8yvY+ZPQbYN38HMX49oi4HAUwW6hHZIRF+GvC53B+DnmfmHHlikQOCZBhH9KoAvAvBaAB8A8P0AfgfAbwD4JAD/AuBrmfmDYgz/JPLpdS8D+GZmftdDyB0IPGsgoi8E8IcA/hp1X4rvQ963KdpjIHCPIKLPRN5keIf8QfY3mPkHiejTkGdXvAbAuwF8AzPfENFzAH4Zea+1DwJ4KzP/08NIHwg8myCiLwLwXcz8FdEWA4GnCxdBNgUCgUAgEAgEAoFAIBAIBJ4NXMIyukAgEAgEAoFAIBAIBAKBwDOCIJsCgUAgEAgEAoFAIBAIBAJnQ5BNgUAgEAgEAoFAIBAIBAKBsyHIpkAgEAgEAoFAIBAIBAKBwNkQZFMgEAgEAoFAIBAIBAKBQOBsCLIpEAgEAoFAIBAIBAKBQCBwNgTZFAgEAoFAIBAIBAKBQCAQOBuCbAoEAoFAIBAIBAKBQCAQCJwN/w/JlbQIBK60FQAAAABJRU5ErkJggg==\n","text/plain":["<Figure size 2160x1080 with 1 Axes>"]},"metadata":{"tags":[],"needs_background":"light"}}]},{"cell_type":"markdown","metadata":{"id":"7dKA8DYOj8d-"},"source":["# **You just trained your first Yolo v3 custom object detector on google colab, GOOD JOB!!**"]},{"cell_type":"code","metadata":{"id":"LQHYhLbEkZxh"},"source":[""],"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/checkpoint b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/checkpoint new file mode 100644 index 0000000000000000000000000000000000000000..a1f094eed2d8217798a1d52515992c9cfa809ff3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/checkpoint @@ -0,0 +1,2 @@ +model_checkpoint_path: "yolov3_custom" +all_model_checkpoint_paths: "yolov3_custom" diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/yolov3_custom.data-00000-of-00002 b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/yolov3_custom.data-00000-of-00002 new file mode 100644 index 0000000000000000000000000000000000000000..07f3e1d2dcaf9d4a96ca8d51a983b5e8922a64b8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/yolov3_custom.data-00000-of-00002 @@ -0,0 +1,2173 @@ +��J�� +�J +layer-0 +layer_with_weights-0 +layer-1 +layer_with_weights-1 +layer-2 +layer-3 +layer-4 +layer_with_weights-2 +layer-5 +layer_with_weights-3 +layer-6 +layer-7 + layer_with_weights-4 + layer-8 + +layer_with_weights-5 + +layer-9 +layer-10 +layer_with_weights-6 +layer-11 + layer_with_weights-7 + layer-12 +layer-13 +layer-14 +layer-15 +layer_with_weights-8 +layer-16 +layer_with_weights-9 +layer-17 +layer-18 +layer_with_weights-10 +layer-19 +layer_with_weights-11 +layer-20 +layer-21 +layer_with_weights-12 +layer-22 +layer_with_weights-13 +layer-23 +layer-24 +layer-25 +layer_with_weights-14 +layer-26 +layer_with_weights-15 +layer-27 +layer-28 +layer_with_weights-16 +layer-29 +layer_with_weights-17 +layer-30 + layer-31 +!layer-32 +"layer-33 +#layer_with_weights-18 +#layer-34 +$layer_with_weights-19 +$layer-35 +%layer-36 +&layer_with_weights-20 +&layer-37 +'layer_with_weights-21 +'layer-38 +(layer-39 +)layer_with_weights-22 +)layer-40 +*layer_with_weights-23 +*layer-41 ++layer-42 +,layer-43 +-layer_with_weights-24 +-layer-44 +.layer_with_weights-25 +.layer-45 +/layer-46 +0layer_with_weights-26 +0layer-47 +1layer_with_weights-27 +1layer-48 +2layer-49 +3layer-50 +4layer_with_weights-28 +4layer-51 +5layer_with_weights-29 +5layer-52 +6layer-53 +7layer_with_weights-30 +7layer-54 +8layer_with_weights-31 +8layer-55 +9layer-56 +:layer-57 +;layer_with_weights-32 +;layer-58 +<layer_with_weights-33 +<layer-59 +=layer-60 +>layer_with_weights-34 +>layer-61 +?layer_with_weights-35 +?layer-62 +@layer-63 +Alayer-64 +Blayer_with_weights-36 +Blayer-65 +Clayer_with_weights-37 +Clayer-66 +Dlayer-67 +Elayer_with_weights-38 +Elayer-68 +Flayer_with_weights-39 +Flayer-69 +Glayer-70 +Hlayer-71 +Ilayer_with_weights-40 +Ilayer-72 +Jlayer_with_weights-41 +Jlayer-73 +Klayer-74 +Llayer_with_weights-42 +Llayer-75 +Mlayer_with_weights-43 +Mlayer-76 +Nlayer-77 +Olayer-78 +Player_with_weights-44 +Player-79 +Qlayer_with_weights-45 +Qlayer-80 +Rlayer-81 +Slayer_with_weights-46 +Slayer-82 +Tlayer_with_weights-47 +Tlayer-83 +Ulayer-84 +Vlayer-85 +Wlayer_with_weights-48 +Wlayer-86 +Xlayer_with_weights-49 +Xlayer-87 +Ylayer-88 +Zlayer_with_weights-50 +Zlayer-89 +[layer_with_weights-51 +[layer-90 +\layer-91 +]layer-92 +^layer-93 +_layer_with_weights-52 +_layer-94 +`layer_with_weights-53 +`layer-95 +alayer-96 +blayer_with_weights-54 +blayer-97 +clayer_with_weights-55 +clayer-98 +dlayer-99 +elayer_with_weights-56 + e layer-100 +flayer_with_weights-57 + f layer-101 + g layer-102 + h layer-103 +ilayer_with_weights-58 + i layer-104 +jlayer_with_weights-59 + j layer-105 + k layer-106 +llayer_with_weights-60 + l layer-107 +mlayer_with_weights-61 + m layer-108 + n layer-109 + o layer-110 +player_with_weights-62 + p layer-111 +qlayer_with_weights-63 + q layer-112 + r layer-113 +slayer_with_weights-64 + s layer-114 +tlayer_with_weights-65 + t layer-115 + u layer-116 + v layer-117 +wlayer_with_weights-66 + w layer-118 +xlayer_with_weights-67 + x layer-119 + y layer-120 +zlayer_with_weights-68 + z layer-121 +{layer_with_weights-69 + { layer-122 + | layer-123 + } layer-124 +~layer_with_weights-70 + ~ layer-125 +layer_with_weights-71 + layer-126 +� layer-127 +�layer_with_weights-72 +� layer-128 +�layer_with_weights-73 +� layer-129 +� layer-130 +� layer-131 +�layer_with_weights-74 +� layer-132 +�layer_with_weights-75 +� layer-133 +� layer-134 +�layer_with_weights-76 +� layer-135 +�layer_with_weights-77 +� layer-136 +� layer-137 +� layer-138 +�layer_with_weights-78 +� layer-139 +�layer_with_weights-79 +� layer-140 +� layer-141 +�layer_with_weights-80 +� layer-142 +�layer_with_weights-81 +� layer-143 +� layer-144 +� layer-145 +�layer_with_weights-82 +� layer-146 +�layer_with_weights-83 +� layer-147 +� layer-148 +�layer_with_weights-84 +� layer-149 +�layer_with_weights-85 +� layer-150 +� layer-151 +� layer-152 +� layer-153 +�layer_with_weights-86 +� layer-154 +�layer_with_weights-87 +� layer-155 +� layer-156 +�layer_with_weights-88 +� layer-157 +�layer_with_weights-89 +� layer-158 +� layer-159 +�layer_with_weights-90 +� layer-160 +�layer_with_weights-91 +� layer-161 +� layer-162 +� layer-163 +�layer_with_weights-92 +� layer-164 +�layer_with_weights-93 +� layer-165 +� layer-166 +�layer_with_weights-94 +� layer-167 +�layer_with_weights-95 +� layer-168 +� layer-169 +� layer-170 +�layer_with_weights-96 +� layer-171 +�layer_with_weights-97 +� layer-172 +� layer-173 +�layer_with_weights-98 +� layer-174 +�layer_with_weights-99 +� layer-175 +� layer-176 +� layer-177 +�layer_with_weights-100 +� layer-178 +�layer_with_weights-101 +� layer-179 +� layer-180 +�layer_with_weights-102 +� layer-181 +�layer_with_weights-103 +� layer-182 +� layer-183 +� layer-184 +�layer_with_weights-104 +� layer-185 +�layer_with_weights-105 +� layer-186 +� layer-187 +�layer_with_weights-106 +� layer-188 +�layer_with_weights-107 +� layer-189 +� layer-190 +�layer_with_weights-108 +� layer-191 +�layer_with_weights-109 +� layer-192 +� layer-193 +�layer_with_weights-110 +� layer-194 +�layer_with_weights-111 +� layer-195 +� layer-196 +�layer_with_weights-112 +� layer-197 +�layer_with_weights-113 +� layer-198 +� layer-199 +�layer_with_weights-114 +� layer-200 +�layer_with_weights-115 +� layer-201 +� layer-202 +� layer-203 +� layer-204 +�layer_with_weights-116 +� layer-205 +�layer_with_weights-117 +� layer-206 +� layer-207 +�layer_with_weights-118 +� layer-208 +�layer_with_weights-119 +� layer-209 +� layer-210 +�layer_with_weights-120 +� layer-211 +�layer_with_weights-121 +� layer-212 +� layer-213 +�layer_with_weights-122 +� layer-214 +�layer_with_weights-123 +� layer-215 +� layer-216 +�layer_with_weights-124 +� layer-217 +�layer_with_weights-125 +� layer-218 +� layer-219 +�layer_with_weights-126 +� layer-220 +�layer_with_weights-127 +� layer-221 +� layer-222 +� layer-223 +� layer-224 +�layer_with_weights-128 +� layer-225 +�layer_with_weights-129 +� layer-226 +� layer-227 +�layer_with_weights-130 +� layer-228 +�layer_with_weights-131 +� layer-229 +� layer-230 +�layer_with_weights-132 +� layer-231 +�layer_with_weights-133 +� layer-232 +� layer-233 +�layer_with_weights-134 +� layer-234 +�layer_with_weights-135 +� layer-235 +� layer-236 +�layer_with_weights-136 +� layer-237 +�layer_with_weights-137 +� layer-238 +� layer-239 +�layer_with_weights-138 +� layer-240 +�layer_with_weights-139 +� layer-241 +�layer_with_weights-140 +� layer-242 +�layer_with_weights-141 +� layer-243 +�layer_with_weights-142 +� layer-244 +�layer_with_weights-143 +� layer-245 +� layer-246 +� layer-247 +� layer-248 +�layer_with_weights-144 +� layer-249 +�layer_with_weights-145 +� layer-250 +�layer_with_weights-146 +� layer-251 +� layer-252 +� layer-253 +� layer-254 +� layer-255 +� layer-256 +� layer-257 +� layer-258 +� layer-259 +� layer-260 +� layer-261 +� layer-262 +� layer-263 +� layer-264 +� layer-265 +� layer-266 +� layer-267 +� layer-268 +� layer-269 +� layer-270 +� layer-271 +� layer-272 +� layer-273 +� layer-274 +� layer-275 +� layer-276 +� layer-277 +� layer-278 +� layer-279 +� layer-280 +� layer-281 +� layer-282 +� layer-283 +� layer-284 +� layer-285 +� layer-286 +� layer-287 +� layer-288 +� layer-289 +� layer-290 +� layer-291 +� layer-292 +� layer-293 +� layer-294 +� layer-295 +� layer-296 +� layer-297 +� layer-298 +� layer-299 +� layer-300 +� layer-301 +� layer-302 +� layer-303 +� layer-304 +� layer-305 +� layer-306 +� layer-307 +� layer-308 +� layer-309 +� layer-310 +� layer-311 +� layer-312 +� layer-313 +� layer-314 +� layer-315 +� layer-316 +� layer-317 +� layer-318 +� layer-319 +� layer-320 +� layer-321 +� layer-322 +� layer-323 +� layer-324 +� layer-325 +� layer-326 +� layer-327 +� layer-328 +� layer-329 +� layer-330 +� layer-331 +� layer-332 +� layer-333 +� layer-334 +� layer-335 +� layer-336 +� layer-337 +� layer-338 +� layer-339 +� layer-340 +� layer-341 +� layer-342 +� layer-343 +� layer-344 +� layer-345 +� layer-346 +� layer-347 +� layer-348 +� layer-349 +� layer-350 +� layer-351 +� layer-352 +� layer-353 +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� + +�kernel + +�kernel + +�kernel +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +J + �axis + +�gamma + �beta +�moving_mean +�moving_variance +� +� +� + +�kernel + �bias + +�kernel + �bias + +�kernel + �bias +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +YW +VARIABLE_VALUE conv2d/kernel6layer_with_weights-0/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +db +VARIABLE_VALUEbatch_normalization/gamma5layer_with_weights-1/gamma/.ATTRIBUTES/VARIABLE_VALUE +b` +VARIABLE_VALUEbatch_normalization/beta4layer_with_weights-1/beta/.ATTRIBUTES/VARIABLE_VALUE +pn +VARIABLE_VALUEbatch_normalization/moving_mean;layer_with_weights-1/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +xv +VARIABLE_VALUE#batch_normalization/moving_variance?layer_with_weights-1/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +[Y +VARIABLE_VALUEconv2d_1/kernel6layer_with_weights-2/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +fd +VARIABLE_VALUEbatch_normalization_1/gamma5layer_with_weights-3/gamma/.ATTRIBUTES/VARIABLE_VALUE +db +VARIABLE_VALUEbatch_normalization_1/beta4layer_with_weights-3/beta/.ATTRIBUTES/VARIABLE_VALUE +rp +VARIABLE_VALUE!batch_normalization_1/moving_mean;layer_with_weights-3/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +zx +VARIABLE_VALUE%batch_normalization_1/moving_variance?layer_with_weights-3/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +[Y +VARIABLE_VALUEconv2d_2/kernel6layer_with_weights-4/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +fd +VARIABLE_VALUEbatch_normalization_2/gamma5layer_with_weights-5/gamma/.ATTRIBUTES/VARIABLE_VALUE +db +VARIABLE_VALUEbatch_normalization_2/beta4layer_with_weights-5/beta/.ATTRIBUTES/VARIABLE_VALUE +rp +VARIABLE_VALUE!batch_normalization_2/moving_mean;layer_with_weights-5/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +zx +VARIABLE_VALUE%batch_normalization_2/moving_variance?layer_with_weights-5/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +[Y +VARIABLE_VALUEconv2d_3/kernel6layer_with_weights-6/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +fd +VARIABLE_VALUEbatch_normalization_3/gamma5layer_with_weights-7/gamma/.ATTRIBUTES/VARIABLE_VALUE +db +VARIABLE_VALUEbatch_normalization_3/beta4layer_with_weights-7/beta/.ATTRIBUTES/VARIABLE_VALUE +rp +VARIABLE_VALUE!batch_normalization_3/moving_mean;layer_with_weights-7/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +zx +VARIABLE_VALUE%batch_normalization_3/moving_variance?layer_with_weights-7/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +[Y +VARIABLE_VALUEconv2d_4/kernel6layer_with_weights-8/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +fd +VARIABLE_VALUEbatch_normalization_4/gamma5layer_with_weights-9/gamma/.ATTRIBUTES/VARIABLE_VALUE +db +VARIABLE_VALUEbatch_normalization_4/beta4layer_with_weights-9/beta/.ATTRIBUTES/VARIABLE_VALUE +rp +VARIABLE_VALUE!batch_normalization_4/moving_mean;layer_with_weights-9/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +zx +VARIABLE_VALUE%batch_normalization_4/moving_variance?layer_with_weights-9/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +\Z +VARIABLE_VALUEconv2d_5/kernel7layer_with_weights-10/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ge +VARIABLE_VALUEbatch_normalization_5/gamma6layer_with_weights-11/gamma/.ATTRIBUTES/VARIABLE_VALUE +ec +VARIABLE_VALUEbatch_normalization_5/beta5layer_with_weights-11/beta/.ATTRIBUTES/VARIABLE_VALUE +sq +VARIABLE_VALUE!batch_normalization_5/moving_mean<layer_with_weights-11/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +{y +VARIABLE_VALUE%batch_normalization_5/moving_variance@layer_with_weights-11/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +\Z +VARIABLE_VALUEconv2d_6/kernel7layer_with_weights-12/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ge +VARIABLE_VALUEbatch_normalization_6/gamma6layer_with_weights-13/gamma/.ATTRIBUTES/VARIABLE_VALUE +ec +VARIABLE_VALUEbatch_normalization_6/beta5layer_with_weights-13/beta/.ATTRIBUTES/VARIABLE_VALUE +sq +VARIABLE_VALUE!batch_normalization_6/moving_mean<layer_with_weights-13/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +{y +VARIABLE_VALUE%batch_normalization_6/moving_variance@layer_with_weights-13/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +\Z +VARIABLE_VALUEconv2d_7/kernel7layer_with_weights-14/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ge +VARIABLE_VALUEbatch_normalization_7/gamma6layer_with_weights-15/gamma/.ATTRIBUTES/VARIABLE_VALUE +ec +VARIABLE_VALUEbatch_normalization_7/beta5layer_with_weights-15/beta/.ATTRIBUTES/VARIABLE_VALUE +sq +VARIABLE_VALUE!batch_normalization_7/moving_mean<layer_with_weights-15/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +{y +VARIABLE_VALUE%batch_normalization_7/moving_variance@layer_with_weights-15/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +\Z +VARIABLE_VALUEconv2d_8/kernel7layer_with_weights-16/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ge +VARIABLE_VALUEbatch_normalization_8/gamma6layer_with_weights-17/gamma/.ATTRIBUTES/VARIABLE_VALUE +ec +VARIABLE_VALUEbatch_normalization_8/beta5layer_with_weights-17/beta/.ATTRIBUTES/VARIABLE_VALUE +sq +VARIABLE_VALUE!batch_normalization_8/moving_mean<layer_with_weights-17/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +{y +VARIABLE_VALUE%batch_normalization_8/moving_variance@layer_with_weights-17/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +\Z +VARIABLE_VALUEconv2d_9/kernel7layer_with_weights-18/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ge +VARIABLE_VALUEbatch_normalization_9/gamma6layer_with_weights-19/gamma/.ATTRIBUTES/VARIABLE_VALUE +ec +VARIABLE_VALUEbatch_normalization_9/beta5layer_with_weights-19/beta/.ATTRIBUTES/VARIABLE_VALUE +sq +VARIABLE_VALUE!batch_normalization_9/moving_mean<layer_with_weights-19/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +{y +VARIABLE_VALUE%batch_normalization_9/moving_variance@layer_with_weights-19/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_10/kernel7layer_with_weights-20/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_10/gamma6layer_with_weights-21/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_10/beta5layer_with_weights-21/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_10/moving_mean<layer_with_weights-21/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_10/moving_variance@layer_with_weights-21/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_11/kernel7layer_with_weights-22/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_11/gamma6layer_with_weights-23/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_11/beta5layer_with_weights-23/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_11/moving_mean<layer_with_weights-23/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_11/moving_variance@layer_with_weights-23/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_12/kernel7layer_with_weights-24/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_12/gamma6layer_with_weights-25/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_12/beta5layer_with_weights-25/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_12/moving_mean<layer_with_weights-25/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_12/moving_variance@layer_with_weights-25/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_13/kernel7layer_with_weights-26/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_13/gamma6layer_with_weights-27/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_13/beta5layer_with_weights-27/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_13/moving_mean<layer_with_weights-27/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_13/moving_variance@layer_with_weights-27/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_14/kernel7layer_with_weights-28/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_14/gamma6layer_with_weights-29/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_14/beta5layer_with_weights-29/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_14/moving_mean<layer_with_weights-29/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_14/moving_variance@layer_with_weights-29/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_15/kernel7layer_with_weights-30/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_15/gamma6layer_with_weights-31/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_15/beta5layer_with_weights-31/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_15/moving_mean<layer_with_weights-31/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_15/moving_variance@layer_with_weights-31/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_16/kernel7layer_with_weights-32/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_16/gamma6layer_with_weights-33/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_16/beta5layer_with_weights-33/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_16/moving_mean<layer_with_weights-33/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_16/moving_variance@layer_with_weights-33/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_17/kernel7layer_with_weights-34/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_17/gamma6layer_with_weights-35/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_17/beta5layer_with_weights-35/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_17/moving_mean<layer_with_weights-35/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_17/moving_variance@layer_with_weights-35/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_18/kernel7layer_with_weights-36/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_18/gamma6layer_with_weights-37/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_18/beta5layer_with_weights-37/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_18/moving_mean<layer_with_weights-37/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_18/moving_variance@layer_with_weights-37/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_19/kernel7layer_with_weights-38/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_19/gamma6layer_with_weights-39/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_19/beta5layer_with_weights-39/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_19/moving_mean<layer_with_weights-39/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_19/moving_variance@layer_with_weights-39/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_20/kernel7layer_with_weights-40/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_20/gamma6layer_with_weights-41/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_20/beta5layer_with_weights-41/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_20/moving_mean<layer_with_weights-41/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_20/moving_variance@layer_with_weights-41/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_21/kernel7layer_with_weights-42/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_21/gamma6layer_with_weights-43/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_21/beta5layer_with_weights-43/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_21/moving_mean<layer_with_weights-43/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_21/moving_variance@layer_with_weights-43/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_22/kernel7layer_with_weights-44/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_22/gamma6layer_with_weights-45/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_22/beta5layer_with_weights-45/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_22/moving_mean<layer_with_weights-45/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_22/moving_variance@layer_with_weights-45/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_23/kernel7layer_with_weights-46/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_23/gamma6layer_with_weights-47/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_23/beta5layer_with_weights-47/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_23/moving_mean<layer_with_weights-47/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_23/moving_variance@layer_with_weights-47/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_24/kernel7layer_with_weights-48/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_24/gamma6layer_with_weights-49/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_24/beta5layer_with_weights-49/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_24/moving_mean<layer_with_weights-49/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_24/moving_variance@layer_with_weights-49/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_25/kernel7layer_with_weights-50/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_25/gamma6layer_with_weights-51/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_25/beta5layer_with_weights-51/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_25/moving_mean<layer_with_weights-51/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_25/moving_variance@layer_with_weights-51/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_26/kernel7layer_with_weights-52/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_26/gamma6layer_with_weights-53/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_26/beta5layer_with_weights-53/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_26/moving_mean<layer_with_weights-53/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_26/moving_variance@layer_with_weights-53/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_27/kernel7layer_with_weights-54/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_27/gamma6layer_with_weights-55/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_27/beta5layer_with_weights-55/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_27/moving_mean<layer_with_weights-55/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_27/moving_variance@layer_with_weights-55/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_28/kernel7layer_with_weights-56/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_28/gamma6layer_with_weights-57/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_28/beta5layer_with_weights-57/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_28/moving_mean<layer_with_weights-57/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_28/moving_variance@layer_with_weights-57/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_29/kernel7layer_with_weights-58/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_29/gamma6layer_with_weights-59/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_29/beta5layer_with_weights-59/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_29/moving_mean<layer_with_weights-59/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_29/moving_variance@layer_with_weights-59/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_30/kernel7layer_with_weights-60/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_30/gamma6layer_with_weights-61/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_30/beta5layer_with_weights-61/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_30/moving_mean<layer_with_weights-61/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_30/moving_variance@layer_with_weights-61/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_31/kernel7layer_with_weights-62/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_31/gamma6layer_with_weights-63/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_31/beta5layer_with_weights-63/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_31/moving_mean<layer_with_weights-63/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_31/moving_variance@layer_with_weights-63/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_32/kernel7layer_with_weights-64/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_32/gamma6layer_with_weights-65/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_32/beta5layer_with_weights-65/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_32/moving_mean<layer_with_weights-65/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_32/moving_variance@layer_with_weights-65/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_33/kernel7layer_with_weights-66/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_33/gamma6layer_with_weights-67/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_33/beta5layer_with_weights-67/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_33/moving_mean<layer_with_weights-67/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_33/moving_variance@layer_with_weights-67/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_34/kernel7layer_with_weights-68/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_34/gamma6layer_with_weights-69/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_34/beta5layer_with_weights-69/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_34/moving_mean<layer_with_weights-69/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_34/moving_variance@layer_with_weights-69/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_35/kernel7layer_with_weights-70/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_35/gamma6layer_with_weights-71/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_35/beta5layer_with_weights-71/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_35/moving_mean<layer_with_weights-71/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_35/moving_variance@layer_with_weights-71/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_36/kernel7layer_with_weights-72/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_36/gamma6layer_with_weights-73/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_36/beta5layer_with_weights-73/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_36/moving_mean<layer_with_weights-73/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_36/moving_variance@layer_with_weights-73/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_37/kernel7layer_with_weights-74/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_37/gamma6layer_with_weights-75/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_37/beta5layer_with_weights-75/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_37/moving_mean<layer_with_weights-75/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_37/moving_variance@layer_with_weights-75/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_38/kernel7layer_with_weights-76/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_38/gamma6layer_with_weights-77/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_38/beta5layer_with_weights-77/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_38/moving_mean<layer_with_weights-77/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_38/moving_variance@layer_with_weights-77/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_39/kernel7layer_with_weights-78/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_39/gamma6layer_with_weights-79/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_39/beta5layer_with_weights-79/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_39/moving_mean<layer_with_weights-79/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_39/moving_variance@layer_with_weights-79/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_40/kernel7layer_with_weights-80/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_40/gamma6layer_with_weights-81/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_40/beta5layer_with_weights-81/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_40/moving_mean<layer_with_weights-81/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_40/moving_variance@layer_with_weights-81/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_41/kernel7layer_with_weights-82/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_41/gamma6layer_with_weights-83/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_41/beta5layer_with_weights-83/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_41/moving_mean<layer_with_weights-83/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_41/moving_variance@layer_with_weights-83/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_42/kernel7layer_with_weights-84/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_42/gamma6layer_with_weights-85/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_42/beta5layer_with_weights-85/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_42/moving_mean<layer_with_weights-85/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_42/moving_variance@layer_with_weights-85/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_43/kernel7layer_with_weights-86/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_43/gamma6layer_with_weights-87/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_43/beta5layer_with_weights-87/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_43/moving_mean<layer_with_weights-87/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_43/moving_variance@layer_with_weights-87/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_44/kernel7layer_with_weights-88/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_44/gamma6layer_with_weights-89/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_44/beta5layer_with_weights-89/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_44/moving_mean<layer_with_weights-89/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_44/moving_variance@layer_with_weights-89/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_45/kernel7layer_with_weights-90/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_45/gamma6layer_with_weights-91/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_45/beta5layer_with_weights-91/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_45/moving_mean<layer_with_weights-91/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_45/moving_variance@layer_with_weights-91/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_46/kernel7layer_with_weights-92/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_46/gamma6layer_with_weights-93/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_46/beta5layer_with_weights-93/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_46/moving_mean<layer_with_weights-93/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_46/moving_variance@layer_with_weights-93/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_47/kernel7layer_with_weights-94/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_47/gamma6layer_with_weights-95/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_47/beta5layer_with_weights-95/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_47/moving_mean<layer_with_weights-95/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_47/moving_variance@layer_with_weights-95/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_48/kernel7layer_with_weights-96/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_48/gamma6layer_with_weights-97/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_48/beta5layer_with_weights-97/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_48/moving_mean<layer_with_weights-97/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_48/moving_variance@layer_with_weights-97/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +][ +VARIABLE_VALUEconv2d_49/kernel7layer_with_weights-98/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +hf +VARIABLE_VALUEbatch_normalization_49/gamma6layer_with_weights-99/gamma/.ATTRIBUTES/VARIABLE_VALUE +fd +VARIABLE_VALUEbatch_normalization_49/beta5layer_with_weights-99/beta/.ATTRIBUTES/VARIABLE_VALUE +tr +VARIABLE_VALUE"batch_normalization_49/moving_mean<layer_with_weights-99/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +|z +VARIABLE_VALUE&batch_normalization_49/moving_variance@layer_with_weights-99/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_50/kernel8layer_with_weights-100/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_50/gamma7layer_with_weights-101/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_50/beta6layer_with_weights-101/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_50/moving_mean=layer_with_weights-101/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_50/moving_varianceAlayer_with_weights-101/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_51/kernel8layer_with_weights-102/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_51/gamma7layer_with_weights-103/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_51/beta6layer_with_weights-103/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_51/moving_mean=layer_with_weights-103/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_51/moving_varianceAlayer_with_weights-103/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_52/kernel8layer_with_weights-104/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_52/gamma7layer_with_weights-105/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_52/beta6layer_with_weights-105/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_52/moving_mean=layer_with_weights-105/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_52/moving_varianceAlayer_with_weights-105/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_53/kernel8layer_with_weights-106/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_53/gamma7layer_with_weights-107/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_53/beta6layer_with_weights-107/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_53/moving_mean=layer_with_weights-107/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_53/moving_varianceAlayer_with_weights-107/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_54/kernel8layer_with_weights-108/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_54/gamma7layer_with_weights-109/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_54/beta6layer_with_weights-109/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_54/moving_mean=layer_with_weights-109/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_54/moving_varianceAlayer_with_weights-109/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_55/kernel8layer_with_weights-110/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_55/gamma7layer_with_weights-111/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_55/beta6layer_with_weights-111/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_55/moving_mean=layer_with_weights-111/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_55/moving_varianceAlayer_with_weights-111/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_56/kernel8layer_with_weights-112/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_56/gamma7layer_with_weights-113/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_56/beta6layer_with_weights-113/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_56/moving_mean=layer_with_weights-113/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_56/moving_varianceAlayer_with_weights-113/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_59/kernel8layer_with_weights-114/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_58/gamma7layer_with_weights-115/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_58/beta6layer_with_weights-115/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_58/moving_mean=layer_with_weights-115/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_58/moving_varianceAlayer_with_weights-115/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_60/kernel8layer_with_weights-116/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_59/gamma7layer_with_weights-117/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_59/beta6layer_with_weights-117/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_59/moving_mean=layer_with_weights-117/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_59/moving_varianceAlayer_with_weights-117/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_61/kernel8layer_with_weights-118/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_60/gamma7layer_with_weights-119/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_60/beta6layer_with_weights-119/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_60/moving_mean=layer_with_weights-119/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_60/moving_varianceAlayer_with_weights-119/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_62/kernel8layer_with_weights-120/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_61/gamma7layer_with_weights-121/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_61/beta6layer_with_weights-121/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_61/moving_mean=layer_with_weights-121/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_61/moving_varianceAlayer_with_weights-121/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_63/kernel8layer_with_weights-122/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_62/gamma7layer_with_weights-123/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_62/beta6layer_with_weights-123/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_62/moving_mean=layer_with_weights-123/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_62/moving_varianceAlayer_with_weights-123/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_64/kernel8layer_with_weights-124/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_63/gamma7layer_with_weights-125/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_63/beta6layer_with_weights-125/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_63/moving_mean=layer_with_weights-125/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_63/moving_varianceAlayer_with_weights-125/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_67/kernel8layer_with_weights-126/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_65/gamma7layer_with_weights-127/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_65/beta6layer_with_weights-127/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_65/moving_mean=layer_with_weights-127/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_65/moving_varianceAlayer_with_weights-127/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_68/kernel8layer_with_weights-128/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_66/gamma7layer_with_weights-129/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_66/beta6layer_with_weights-129/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_66/moving_mean=layer_with_weights-129/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_66/moving_varianceAlayer_with_weights-129/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_69/kernel8layer_with_weights-130/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_67/gamma7layer_with_weights-131/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_67/beta6layer_with_weights-131/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_67/moving_mean=layer_with_weights-131/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_67/moving_varianceAlayer_with_weights-131/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_70/kernel8layer_with_weights-132/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_68/gamma7layer_with_weights-133/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_68/beta6layer_with_weights-133/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_68/moving_mean=layer_with_weights-133/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_68/moving_varianceAlayer_with_weights-133/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_71/kernel8layer_with_weights-134/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_69/gamma7layer_with_weights-135/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_69/beta6layer_with_weights-135/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_69/moving_mean=layer_with_weights-135/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_69/moving_varianceAlayer_with_weights-135/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_72/kernel8layer_with_weights-136/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_70/gamma7layer_with_weights-137/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_70/beta6layer_with_weights-137/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_70/moving_mean=layer_with_weights-137/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_70/moving_varianceAlayer_with_weights-137/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_73/kernel8layer_with_weights-138/kernel/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_65/kernel8layer_with_weights-139/kernel/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_57/kernel8layer_with_weights-140/kernel/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_71/gamma7layer_with_weights-141/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_71/beta6layer_with_weights-141/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_71/moving_mean=layer_with_weights-141/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_71/moving_varianceAlayer_with_weights-141/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_64/gamma7layer_with_weights-142/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_64/beta6layer_with_weights-142/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_64/moving_mean=layer_with_weights-142/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_64/moving_varianceAlayer_with_weights-142/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +� +ig +VARIABLE_VALUEbatch_normalization_57/gamma7layer_with_weights-143/gamma/.ATTRIBUTES/VARIABLE_VALUE +ge +VARIABLE_VALUEbatch_normalization_57/beta6layer_with_weights-143/beta/.ATTRIBUTES/VARIABLE_VALUE +us +VARIABLE_VALUE"batch_normalization_57/moving_mean=layer_with_weights-143/moving_mean/.ATTRIBUTES/VARIABLE_VALUE +}{ +VARIABLE_VALUE&batch_normalization_57/moving_varianceAlayer_with_weights-143/moving_variance/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_74/kernel8layer_with_weights-144/kernel/.ATTRIBUTES/VARIABLE_VALUE +ZX +VARIABLE_VALUEconv2d_74/bias6layer_with_weights-144/bias/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_66/kernel8layer_with_weights-145/kernel/.ATTRIBUTES/VARIABLE_VALUE +ZX +VARIABLE_VALUEconv2d_66/bias6layer_with_weights-145/bias/.ATTRIBUTES/VARIABLE_VALUE +^\ +VARIABLE_VALUEconv2d_58/kernel8layer_with_weights-146/kernel/.ATTRIBUTES/VARIABLE_VALUE +ZX +VARIABLE_VALUEconv2d_58/bias6layer_with_weights-146/bias/.ATTRIBUTES/VARIABLE_VALUE \ No newline at end of file diff --git a/PAR 152/Yolo Tensorflow/model_data/yolov3.weights b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/yolov3_custom.data-00001-of-00002 similarity index 90% rename from PAR 152/Yolo Tensorflow/model_data/yolov3.weights rename to PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/yolov3_custom.data-00001-of-00002 index a5ed716e26824d8d166786bedf927a73c6c441fb..84f2fdb0a60de5f6b4a0016e98b463e6ec0d0916 100644 Binary files a/PAR 152/Yolo Tensorflow/model_data/yolov3.weights and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/yolov3_custom.data-00001-of-00002 differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/yolov3_custom.index b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/yolov3_custom.index new file mode 100644 index 0000000000000000000000000000000000000000..d412dc33f0007ad2435d4fcccf860c942dac0e5a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/checkpoints/yolov3_custom.index differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/1.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..01ebe69cad036a034263da538170207c0e9c6ce4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/1.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/1.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/1.xml new file mode 100644 index 0000000000000000000000000000000000000000..d159c342a9eff91ecfc2b2bff46ab2af8237db2f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/1.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>1.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\1.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>112</xmin> + <ymin>35</ymin> + <xmax>309</xmax> + <ymax>327</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/10.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/10.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a02e00027b0ae41f3f9ba675604cd3ad057d2ace Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/10.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/10.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/10.xml new file mode 100644 index 0000000000000000000000000000000000000000..97cce271f9014d863bade26e13d8ffe88d572943 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/10.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>10.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\10.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>248</xmin> + <ymin>39</ymin> + <xmax>436</xmax> + <ymax>328</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/100.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/100.jpg new file mode 100644 index 0000000000000000000000000000000000000000..80c8338e7769becad871547d903d316ff4626a90 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/100.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/100.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/100.xml new file mode 100644 index 0000000000000000000000000000000000000000..a4f1e281d26fbb19a991c5b4a2aec1439a86652f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/100.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>100.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\100.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>66</ymin> + <xmax>229</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>197</xmin> + <ymin>73</ymin> + <xmax>312</xmax> + <ymax>248</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>323</xmin> + <ymin>76</ymin> + <xmax>387</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>174</xmin> + <ymin>80</ymin> + <xmax>243</xmax> + <ymax>201</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/101.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/101.jpg new file mode 100644 index 0000000000000000000000000000000000000000..59bed827780f4c68a9e708dacacdf257cb0a129f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/101.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/101.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/101.xml new file mode 100644 index 0000000000000000000000000000000000000000..958c11046fa5c40a05c221f6776edf732e33ef6a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/101.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>101.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\101.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>336</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>242</xmin> + <ymin>383</ymin> + <xmax>267</xmax> + <ymax>436</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>377</ymin> + <xmax>213</xmax> + <ymax>437</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>381</ymin> + <xmax>143</xmax> + <ymax>434</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>32</xmin> + <ymin>378</ymin> + <xmax>73</xmax> + <ymax>436</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/102.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/102.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eecc32834e0367d99fbee310b49f4a50dfe5505f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/102.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/102.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/102.xml new file mode 100644 index 0000000000000000000000000000000000000000..0b575db6936b0321e789d26d19ac36ba7a6ff930 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/102.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>102.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\102.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>190</xmin> + <ymin>275</ymin> + <xmax>295</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>212</xmin> + <ymin>260</ymin> + <xmax>297</xmax> + <ymax>384</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>234</xmin> + <ymin>234</ymin> + <xmax>305</xmax> + <ymax>345</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>226</ymin> + <xmax>324</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>283</xmin> + <ymin>214</ymin> + <xmax>326</xmax> + <ymax>289</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/103.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/103.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ee5237156bfe91c2ca8d3b9befc3cc21ac68fcef Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/103.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/103.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/103.xml new file mode 100644 index 0000000000000000000000000000000000000000..c717ab0e7d044d5ff6b1ef6360c90f5f50017f4a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/103.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>103.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\103.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>525</width> + <height>329</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>124</xmin> + <ymin>127</ymin> + <xmax>228</xmax> + <ymax>296</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>69</ymin> + <xmax>93</xmax> + <ymax>194</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>36</ymin> + <xmax>321</xmax> + <ymax>145</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>423</xmin> + <ymin>81</ymin> + <xmax>519</xmax> + <ymax>223</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/104.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/104.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3852ad3e3fea4f14901a042cf27b8735d996fb66 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/104.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/104.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/104.xml new file mode 100644 index 0000000000000000000000000000000000000000..1c2a4ab2cd64de1abb20dbe9000820543b202a39 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/104.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>104.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\104.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>449</width> + <height>382</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>127</xmin> + <ymin>71</ymin> + <xmax>261</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>70</xmin> + <ymin>96</ymin> + <xmax>168</xmax> + <ymax>288</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>281</xmin> + <ymin>31</ymin> + <xmax>449</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>87</ymin> + <xmax>350</xmax> + <ymax>289</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/105.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/105.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b4f6c262b920a13fb34a72919827d7a23a7d931f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/105.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/105.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/105.xml new file mode 100644 index 0000000000000000000000000000000000000000..b19e2dba6aef0ea08aa7a2701e7dd202bf9a830b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/105.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>105.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\105.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>445</width> + <height>594</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>57</ymin> + <xmax>182</xmax> + <ymax>569</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>44</xmin> + <ymin>53</ymin> + <xmax>237</xmax> + <ymax>479</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>133</xmin> + <ymin>66</ymin> + <xmax>296</xmax> + <ymax>409</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>204</xmin> + <ymin>62</ymin> + <xmax>333</xmax> + <ymax>364</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>277</xmin> + <ymin>43</ymin> + <xmax>397</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>330</xmin> + <ymin>33</ymin> + <xmax>429</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/106.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/106.jpg new file mode 100644 index 0000000000000000000000000000000000000000..90f1137c3fa01883e90e2e3a1aced2834b8a3621 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/106.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/106.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/106.xml new file mode 100644 index 0000000000000000000000000000000000000000..e0d0731395371c618affdf81c108809c4e1ad1fb --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/106.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>106.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\106.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>170</width> + <height>108</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>5</xmin> + <ymin>23</ymin> + <xmax>102</xmax> + <ymax>86</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/107.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/107.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cd6dc6f32e806e34f485db5b2874f1b6997c1635 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/107.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/107.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/107.xml new file mode 100644 index 0000000000000000000000000000000000000000..7df09c28143339caef9663afa46044eacf8aec12 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/107.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>107.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\107.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>493</width> + <height>594</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>224</ymin> + <xmax>316</xmax> + <ymax>441</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/108.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/108.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d42fdba9fc565cb19b93e68e3b9a7e249b384edd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/108.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/108.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/108.xml new file mode 100644 index 0000000000000000000000000000000000000000..fd46a3df4dea17af6e9cc0341e47b4caa4151dfe --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/108.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>108.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\108.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>395</width> + <height>594</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>49</xmin> + <ymin>37</ymin> + <xmax>353</xmax> + <ymax>587</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/109.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/109.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2f0d11ebd8ff59aad8619347acf3b1193a388f45 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/109.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/109.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/109.xml new file mode 100644 index 0000000000000000000000000000000000000000..7c8b5113f509fd1910898a775309dbd7e37b5a93 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/109.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>109.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\109.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>298</xmin> + <ymin>224</ymin> + <xmax>333</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>246</xmin> + <ymin>225</ymin> + <xmax>275</xmax> + <ymax>274</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>224</ymin> + <xmax>219</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>134</xmin> + <ymin>226</ymin> + <xmax>168</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>348</xmin> + <ymin>226</ymin> + <xmax>377</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>379</xmin> + <ymin>226</ymin> + <xmax>407</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>99</xmin> + <ymin>225</ymin> + <xmax>131</xmax> + <ymax>267</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/11.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/11.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d4587717f7889bca35ef1967bd6a750dcff60a58 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/11.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/11.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/11.xml new file mode 100644 index 0000000000000000000000000000000000000000..4f2ab8385285dd4e1750c7607e44353d17e93df8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/11.xml @@ -0,0 +1,134 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>11.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\11.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>400</xmin> + <ymin>20</ymin> + <xmax>508</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>294</xmin> + <ymin>19</ymin> + <xmax>405</xmax> + <ymax>205</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>226</xmin> + <ymin>18</ymin> + <xmax>312</xmax> + <ymax>172</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>164</xmin> + <ymin>15</ymin> + <xmax>243</xmax> + <ymax>148</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>12</ymin> + <xmax>172</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>84</xmin> + <ymin>13</ymin> + <xmax>135</xmax> + <ymax>114</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>58</xmin> + <ymin>11</ymin> + <xmax>99</xmax> + <ymax>102</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>310</xmin> + <ymin>7</ymin> + <xmax>341</xmax> + <ymax>64</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>423</xmin> + <ymin>8</ymin> + <xmax>464</xmax> + <ymax>79</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>8</ymin> + <xmax>194</xmax> + <ymax>46</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/110.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/110.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4b646a06ec36ecfa82aa3e6f5b1edebe9af803c7 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/110.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/110.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/110.xml new file mode 100644 index 0000000000000000000000000000000000000000..ca3674f25b2a0174db035fe033d5cf1191c0bf64 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/110.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>110.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\110.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>413</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>61</ymin> + <xmax>269</xmax> + <ymax>324</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/111.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/111.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a4396847afc3922ec74260655a5147bd036332bc Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/111.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/111.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/111.xml new file mode 100644 index 0000000000000000000000000000000000000000..c193e113c287d37b2e3e40ae61d3e357e2c7b69e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/111.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>111.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\111.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>18</ymin> + <xmax>148</xmax> + <ymax>270</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/112.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/112.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aea7e0c07f1233fbd8234f66cb8eec86e463b745 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/112.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/112.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/112.xml new file mode 100644 index 0000000000000000000000000000000000000000..6b5ae328e4255250e9da0f97637d182e5bdaa2dd --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/112.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>112.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\112.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>233</xmin> + <ymin>186</ymin> + <xmax>303</xmax> + <ymax>304</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>31</xmin> + <ymin>194</ymin> + <xmax>108</xmax> + <ymax>312</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/113.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/113.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8a620706850e254cbba0f18b660ce4cf018d6ecd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/113.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/113.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/113.xml new file mode 100644 index 0000000000000000000000000000000000000000..f215a8926395304615b57553496ff2916527559e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/113.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>113.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\113.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>166</xmin> + <ymin>210</ymin> + <xmax>206</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>212</ymin> + <xmax>95</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/114.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/114.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7876fa36c5549296476537ae24151b473365dde1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/114.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/114.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/114.xml new file mode 100644 index 0000000000000000000000000000000000000000..63c7af1c30678797a8487a0db6c79f503546bbf2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/114.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>114.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\114.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>113</xmin> + <ymin>207</ymin> + <xmax>280</xmax> + <ymax>461</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/115.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/115.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f30c3a3e24cc899948e634351742c76762aef97f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/115.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/115.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/115.xml new file mode 100644 index 0000000000000000000000000000000000000000..bf71ccf9a473f81f5cb5cd4938f212e8ddfbd312 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/115.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>115.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\115.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>384</xmin> + <ymin>235</ymin> + <xmax>439</xmax> + <ymax>316</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>459</xmin> + <ymin>234</ymin> + <xmax>507</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>213</ymin> + <xmax>197</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>194</ymin> + <xmax>61</xmax> + <ymax>230</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>144</xmin> + <ymin>209</ymin> + <xmax>173</xmax> + <ymax>259</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/116.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/116.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0b1a61b2f03768f49e4f1662b6d490d579dfd756 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/116.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/116.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/116.xml new file mode 100644 index 0000000000000000000000000000000000000000..ccb5344abb84b37663afcb63de06581f18f280e3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/116.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>116.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\116.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>412</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>193</xmin> + <ymin>216</ymin> + <xmax>281</xmax> + <ymax>397</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>139</xmin> + <ymin>183</ymin> + <xmax>217</xmax> + <ymax>331</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>245</xmin> + <ymin>138</ymin> + <xmax>334</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>132</xmin> + <ymin>117</ymin> + <xmax>186</xmax> + <ymax>236</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>188</xmin> + <ymin>114</ymin> + <xmax>241</xmax> + <ymax>210</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/117.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/117.jpg new file mode 100644 index 0000000000000000000000000000000000000000..929b1e3835c003981a2c85723d6c10655584dc11 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/117.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/117.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/117.xml new file mode 100644 index 0000000000000000000000000000000000000000..2f72f24c9191dcead939676baa69cd3f7f328c9b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/117.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>117.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\117.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>156</xmin> + <ymin>83</ymin> + <xmax>255</xmax> + <ymax>278</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>82</xmin> + <ymin>36</ymin> + <xmax>170</xmax> + <ymax>206</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>256</xmin> + <ymin>74</ymin> + <xmax>359</xmax> + <ymax>251</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>158</xmin> + <ymin>14</ymin> + <xmax>241</xmax> + <ymax>160</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>246</xmin> + <ymin>28</ymin> + <xmax>338</xmax> + <ymax>175</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/118.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/118.jpg new file mode 100644 index 0000000000000000000000000000000000000000..af3dfcff6cdb9b7e9583209cea8216e4938f65ed Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/118.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/118.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/118.xml new file mode 100644 index 0000000000000000000000000000000000000000..68e0cefa006ddf1881ea87bedb7a289fe153eeb3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/118.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>118.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\118.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>665</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>671</xmin> + <ymin>439</ymin> + <xmax>773</xmax> + <ymax>587</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>537</xmin> + <ymin>440</ymin> + <xmax>653</xmax> + <ymax>588</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>346</xmin> + <ymin>442</ymin> + <xmax>457</xmax> + <ymax>572</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>95</xmin> + <ymin>445</ymin> + <xmax>214</xmax> + <ymax>565</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>442</ymin> + <xmax>59</xmax> + <ymax>553</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/119.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/119.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a0495e3be0bd4ff0e0f07906c3a099da8797fed2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/119.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/119.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/119.xml new file mode 100644 index 0000000000000000000000000000000000000000..4f383288670b2a8db0cd41847b974c8dfc09fc78 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/119.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>119.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\119.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>197</ymin> + <xmax>127</xmax> + <ymax>303</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>101</xmin> + <ymin>188</ymin> + <xmax>151</xmax> + <ymax>276</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/12.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/12.jpg new file mode 100644 index 0000000000000000000000000000000000000000..82412f5b9cf30baed42b8bf5095aa5e5c3f15381 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/12.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/12.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/12.xml new file mode 100644 index 0000000000000000000000000000000000000000..9f58bcc29b2a73e0c6219b1587ee49c1d6b9bb4c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/12.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>12.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\12.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>115</ymin> + <xmax>340</xmax> + <ymax>426</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>104</xmin> + <ymin>175</ymin> + <xmax>192</xmax> + <ymax>314</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>74</xmin> + <ymin>196</ymin> + <xmax>118</xmax> + <ymax>289</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/120.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/120.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dbd1b526509aadc7ed5f947cc5ebe6f084aedc1b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/120.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/120.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/120.xml new file mode 100644 index 0000000000000000000000000000000000000000..1c0cab18d7ae5a65a8e117f40bedd15886b4bf49 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/120.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>120.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\120.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>506</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>213</ymin> + <xmax>314</xmax> + <ymax>308</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/121.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/121.jpg new file mode 100644 index 0000000000000000000000000000000000000000..865719aaa22dada261f0bcd2258246e9710535e3 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/121.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/121.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/121.xml new file mode 100644 index 0000000000000000000000000000000000000000..944761234557b7ea96673f2349f6a8b12108ca93 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/121.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>121.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\121.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>84</xmin> + <ymin>150</ymin> + <xmax>175</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>214</xmin> + <ymin>117</ymin> + <xmax>233</xmax> + <ymax>153</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>281</xmin> + <ymin>121</ymin> + <xmax>314</xmax> + <ymax>174</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>259</xmin> + <ymin>117</ymin> + <xmax>283</xmax> + <ymax>159</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>235</xmin> + <ymin>118</ymin> + <xmax>252</xmax> + <ymax>151</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>117</ymin> + <xmax>199</xmax> + <ymax>137</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/122.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/122.jpg new file mode 100644 index 0000000000000000000000000000000000000000..89e170917e0d48164f90581bd1a9aabf691af34e Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/122.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/122.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/122.xml new file mode 100644 index 0000000000000000000000000000000000000000..b9d947a59c2202afa2f9fb04dd505affde1fb881 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/122.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>122.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\122.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>510</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>377</ymin> + <xmax>186</xmax> + <ymax>445</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>251</xmin> + <ymin>357</ymin> + <xmax>263</xmax> + <ymax>392</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/123.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/123.jpg new file mode 100644 index 0000000000000000000000000000000000000000..08bc6f4fc4af17feb909db1b6dd7f2e093d7bdcf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/123.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/123.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/123.xml new file mode 100644 index 0000000000000000000000000000000000000000..0eb8bd7ef2d788a9d84a48dac0cb01ec3e2a1c28 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/123.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>123.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\123.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>51</xmin> + <ymin>44</ymin> + <xmax>123</xmax> + <ymax>240</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/124.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/124.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b3ce2f1217c628809e00db20e5bce24983091e6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/124.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/124.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/124.xml new file mode 100644 index 0000000000000000000000000000000000000000..b5fe822327a216ca72025717584bca76c40d97b1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/124.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>124.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\124.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>125</xmin> + <ymin>259</ymin> + <xmax>225</xmax> + <ymax>397</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/125.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/125.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a361e399665eb15e12d8b0f6ffebcfa8e78836cd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/125.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/125.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/125.xml new file mode 100644 index 0000000000000000000000000000000000000000..245b581fc7f24b23d4a358f830bea9315307d9fc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/125.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>125.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\125.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>195</xmin> + <ymin>93</ymin> + <xmax>309</xmax> + <ymax>264</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/126.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/126.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ae566fa972545bad4b0cafcf8b6eb478c96a63fe Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/126.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/126.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/126.xml new file mode 100644 index 0000000000000000000000000000000000000000..1d15e09d77114e104f70ae17f1e1ccabdc3f98d1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/126.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>126.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\126.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>12</xmin> + <ymin>31</ymin> + <xmax>317</xmax> + <ymax>477</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/127.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/127.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3c384b8ef14a07741777d8467d0f3f01ea296d92 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/127.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/127.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/127.xml new file mode 100644 index 0000000000000000000000000000000000000000..53f02dd33dc696122921082e84b4b2bc94b896b5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/127.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>127.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\127.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>529</width> + <height>327</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>50</xmin> + <ymin>154</ymin> + <xmax>154</xmax> + <ymax>320</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>147</xmin> + <ymin>125</ymin> + <xmax>241</xmax> + <ymax>279</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>225</xmin> + <ymin>104</ymin> + <xmax>312</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>286</xmin> + <ymin>87</ymin> + <xmax>367</xmax> + <ymax>226</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>73</ymin> + <xmax>408</xmax> + <ymax>202</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>379</xmin> + <ymin>59</ymin> + <xmax>445</xmax> + <ymax>185</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>414</xmin> + <ymin>46</ymin> + <xmax>478</xmax> + <ymax>163</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>459</xmin> + <ymin>31</ymin> + <xmax>519</xmax> + <ymax>145</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>497</xmin> + <ymin>21</ymin> + <xmax>529</xmax> + <ymax>127</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/128.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/128.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9f8ee6d4c11cb00f8801d6fecf48e58e470e7c86 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/128.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/128.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/128.xml new file mode 100644 index 0000000000000000000000000000000000000000..fab7b12143c8c8b859dd49a6354cee9bab868c80 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/128.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>128.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\128.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>52</ymin> + <xmax>296</xmax> + <ymax>462</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/129.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/129.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0d6c00d96e51c81f7ee267f53b9eb89720532d1f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/129.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/129.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/129.xml new file mode 100644 index 0000000000000000000000000000000000000000..ad637f0742b7c7f9f8b3d9d7b89c664781a70572 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/129.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>129.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\129.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>314</xmin> + <ymin>202</ymin> + <xmax>386</xmax> + <ymax>318</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>93</xmin> + <ymin>207</ymin> + <xmax>158</xmax> + <ymax>313</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>403</xmin> + <ymin>217</ymin> + <xmax>446</xmax> + <ymax>285</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>276</xmin> + <ymin>215</ymin> + <xmax>322</xmax> + <ymax>291</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>223</ymin> + <xmax>47</xmax> + <ymax>273</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/13.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/13.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dd1bb05d815945a7fffeadabdcf251cf41b577ff Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/13.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/13.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/13.xml new file mode 100644 index 0000000000000000000000000000000000000000..fab6df7a28fc5d5b6c3a24e81fe756167fa26c62 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/13.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>13.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\13.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>233</xmin> + <ymin>132</ymin> + <xmax>374</xmax> + <ymax>368</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>95</ymin> + <xmax>258</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>89</xmin> + <ymin>79</ymin> + <xmax>176</xmax> + <ymax>219</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>33</xmin> + <ymin>65</ymin> + <xmax>108</xmax> + <ymax>183</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/130.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/130.jpg new file mode 100644 index 0000000000000000000000000000000000000000..479508971ee955463799ad75b5feeb321b66e63b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/130.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/130.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/130.xml new file mode 100644 index 0000000000000000000000000000000000000000..9949338f42a422895792c5c8759efe6b463f8c8a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/130.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>130.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\130.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>396</width> + <height>430</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>143</xmin> + <ymin>48</ymin> + <xmax>305</xmax> + <ymax>280</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/131.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/131.jpg new file mode 100644 index 0000000000000000000000000000000000000000..64d169561db4552fbd7ce3af3e8c89ea91a249c0 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/131.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/131.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/131.xml new file mode 100644 index 0000000000000000000000000000000000000000..57720ed77f73671baeeda38413d6433a2e4a450c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/131.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>131.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\131.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>375</width> + <height>458</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>40</ymin> + <xmax>296</xmax> + <ymax>407</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/132.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/132.jpg new file mode 100644 index 0000000000000000000000000000000000000000..91f37aedcc3629db74dae46d6144df4f3e54537e Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/132.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/132.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/132.xml new file mode 100644 index 0000000000000000000000000000000000000000..94d0d12a648cdf7994145766520f81a43f8f7d9b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/132.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>132.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\132.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>63</ymin> + <xmax>198</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>139</ymin> + <xmax>380</xmax> + <ymax>300</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/133.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/133.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3e20f026c2ce8d90c06d48db7e4e1d616e3e2da4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/133.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/133.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/133.xml new file mode 100644 index 0000000000000000000000000000000000000000..286952000d06ca9843d44ac6927b25023ccbbd99 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/133.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>133.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\133.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>9</ymin> + <xmax>343</xmax> + <ymax>399</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/134.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/134.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f88e78bd50d67eacdae68a139e2ebc590614a378 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/134.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/134.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/134.xml new file mode 100644 index 0000000000000000000000000000000000000000..6e85e037a6cbddd243198021b6c5613493aba001 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/134.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>134.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\134.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>87</xmin> + <ymin>6</ymin> + <xmax>331</xmax> + <ymax>409</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/135.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/135.jpg new file mode 100644 index 0000000000000000000000000000000000000000..377db54a5ff54c1a336f0d681539cf3b72d3e477 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/135.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/135.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/135.xml new file mode 100644 index 0000000000000000000000000000000000000000..47ff1be42fc3e7096f279a7e5b6c0be952c624b1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/135.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>135.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\135.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>142</xmin> + <ymin>133</ymin> + <xmax>285</xmax> + <ymax>303</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>323</xmin> + <ymin>84</ymin> + <xmax>443</xmax> + <ymax>213</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>111</ymin> + <xmax>171</xmax> + <ymax>245</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/136.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/136.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9450c66428b75490742f64aa49e9336e647c0cd2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/136.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/136.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/136.xml new file mode 100644 index 0000000000000000000000000000000000000000..deea19282e6f408d6d097797be297c58181f5578 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/136.xml @@ -0,0 +1,110 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>136.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\136.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>837</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>485</xmin> + <ymin>480</ymin> + <xmax>568</xmax> + <ymax>621</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>570</xmin> + <ymin>412</ymin> + <xmax>639</xmax> + <ymax>528</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>644</xmin> + <ymin>361</ymin> + <xmax>704</xmax> + <ymax>451</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>714</xmin> + <ymin>308</ymin> + <xmax>764</xmax> + <ymax>385</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>773</xmin> + <ymin>273</ymin> + <xmax>817</xmax> + <ymax>334</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>615</ymin> + <xmax>390</xmax> + <ymax>848</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>126</xmin> + <ymin>707</ymin> + <xmax>284</xmax> + <ymax>985</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>391</xmin> + <ymin>642</ymin> + <xmax>536</xmax> + <ymax>766</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/137.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/137.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5ea3555212980a9a5e49999f6e94c863ba876f05 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/137.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/137.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/137.xml new file mode 100644 index 0000000000000000000000000000000000000000..5bc04c6a295eeb36113a32e575defe7db9ea83dc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/137.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>137.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\137.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>117</xmin> + <ymin>168</ymin> + <xmax>303</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>349</xmin> + <ymin>90</ymin> + <xmax>492</xmax> + <ymax>297</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>283</xmin> + <ymin>100</ymin> + <xmax>365</xmax> + <ymax>259</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/138.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/138.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5387d06aecc6a705827ea8a41f516adc2a8c0f82 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/138.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/138.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/138.xml new file mode 100644 index 0000000000000000000000000000000000000000..161be36dfd6b0e9ec41456dd28229e5ae5a9aa3f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/138.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>138.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\138.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>381</width> + <height>454</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>20</ymin> + <xmax>367</xmax> + <ymax>434</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/139.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/139.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e229ee1c6fb5049866625ded90073c26df5fbecf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/139.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/139.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/139.xml new file mode 100644 index 0000000000000000000000000000000000000000..3a9b7b1544a11328c9dfb89ea523ad1c8c7cf6de --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/139.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>139.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\139.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>340</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>264</ymin> + <xmax>120</xmax> + <ymax>460</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>4</xmin> + <ymin>251</ymin> + <xmax>55</xmax> + <ymax>385</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>208</xmin> + <ymin>262</ymin> + <xmax>314</xmax> + <ymax>460</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>269</xmin> + <ymin>244</ymin> + <xmax>338</xmax> + <ymax>379</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/14.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/14.jpg new file mode 100644 index 0000000000000000000000000000000000000000..82412f5b9cf30baed42b8bf5095aa5e5c3f15381 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/14.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/14.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/14.xml new file mode 100644 index 0000000000000000000000000000000000000000..ba95eccc852d8f09b42e811e6cfa8410276402e8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/14.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>14.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\14.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>118</xmin> + <ymin>113</ymin> + <xmax>338</xmax> + <ymax>423</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>95</xmin> + <ymin>175</ymin> + <xmax>190</xmax> + <ymax>313</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>78</xmin> + <ymin>196</ymin> + <xmax>120</xmax> + <ymax>283</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/140.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/140.jpg new file mode 100644 index 0000000000000000000000000000000000000000..24c8addfdc85c4cdcad71731689bcdfe00942d12 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/140.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/140.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/140.xml new file mode 100644 index 0000000000000000000000000000000000000000..80e5d6637db504bc0d76836d7136b1569ee4ac43 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/140.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>140.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\140.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>183</xmin> + <ymin>166</ymin> + <xmax>314</xmax> + <ymax>388</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/141.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/141.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5de0b10d1627f61e7528d6b5325e3e4733e7b497 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/141.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/141.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/141.xml new file mode 100644 index 0000000000000000000000000000000000000000..a5a1a653ae50d0e4f05c31bd97a2d3d6a43228ed --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/141.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>141.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\141.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>49</xmin> + <ymin>45</ymin> + <xmax>260</xmax> + <ymax>459</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/142.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/142.jpg new file mode 100644 index 0000000000000000000000000000000000000000..735e21e65353c8cd3b610714239739b08441ccca Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/142.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/142.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/142.xml new file mode 100644 index 0000000000000000000000000000000000000000..362b7d5e41b8420a34ddfd59cd4f31fb6a4a67f7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/142.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>142.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\142.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>291</ymin> + <xmax>192</xmax> + <ymax>369</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/143.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/143.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7ca6552e5e7c57a6c699da7236addae19293c80a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/143.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/143.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/143.xml new file mode 100644 index 0000000000000000000000000000000000000000..cad7584590ab5dc9fb94d7a6a2496ca9f5745b95 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/143.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>143.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\143.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>155</ymin> + <xmax>304</xmax> + <ymax>477</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/144.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/144.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4a94d2310e30f9a89e57c534aec31585b0e581c1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/144.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/144.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/144.xml new file mode 100644 index 0000000000000000000000000000000000000000..457d404573f9d702d11de873691e974b98440eae --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/144.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>144.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\144.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>158</xmin> + <ymin>178</ymin> + <xmax>203</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>339</ymin> + <xmax>230</xmax> + <ymax>416</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>158</xmin> + <ymin>154</ymin> + <xmax>184</xmax> + <ymax>196</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>139</ymin> + <xmax>196</xmax> + <ymax>153</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/145.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/145.jpg new file mode 100644 index 0000000000000000000000000000000000000000..02fb790b1876b308d8e7f3d1ea94f2868543a1be Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/145.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/145.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/145.xml new file mode 100644 index 0000000000000000000000000000000000000000..134a8ba3917ac98619e1e797b1a2cee2ff22b332 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/145.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>145.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\145.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>506</width> + <height>341</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>45</ymin> + <xmax>442</xmax> + <ymax>337</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/146.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/146.jpg new file mode 100644 index 0000000000000000000000000000000000000000..78159f2e458b771b5beb4869ffbedc81385533db Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/146.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/146.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/146.xml new file mode 100644 index 0000000000000000000000000000000000000000..74b85a02752cbdb8feec841ecf1019d5f1e19910 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/146.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>146.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\146.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>336</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>119</ymin> + <xmax>336</xmax> + <ymax>509</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/147.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/147.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7e10982a0c453f90bb81366ff7aa5e1397e2644c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/147.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/147.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/147.xml new file mode 100644 index 0000000000000000000000000000000000000000..482aa8a09094d5941bb6a34274f4fb355a08528b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/147.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>147.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\147.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>347</width> + <height>491</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>126</ymin> + <xmax>240</xmax> + <ymax>450</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/148.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/148.jpg new file mode 100644 index 0000000000000000000000000000000000000000..48cbd9952e14d2b7c7b69e9cf78ec4e1ff8d4a1f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/148.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/148.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/148.xml new file mode 100644 index 0000000000000000000000000000000000000000..bd5eab860bb705b27b17467cb17edaec9c9abcfe --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/148.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>148.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\148.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>10</xmin> + <ymin>16</ymin> + <xmax>175</xmax> + <ymax>327</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>18</ymin> + <xmax>507</xmax> + <ymax>328</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/149.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/149.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3314ed2b67ded8ec1ea2b8ed287e4bac72e75186 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/149.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/149.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/149.xml new file mode 100644 index 0000000000000000000000000000000000000000..cca92371bac194de8c02bf0f9096e1d625a62a31 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/149.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>149.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\149.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>10</xmin> + <ymin>100</ymin> + <xmax>94</xmax> + <ymax>216</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>131</xmin> + <ymin>104</ymin> + <xmax>221</xmax> + <ymax>214</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>483</xmin> + <ymin>140</ymin> + <xmax>509</xmax> + <ymax>212</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/15.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/15.jpg new file mode 100644 index 0000000000000000000000000000000000000000..90ef67dca44063a2eaada849f5ecb271bf67f229 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/15.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/15.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/15.xml new file mode 100644 index 0000000000000000000000000000000000000000..019d4deb362b19a63e57c1c0f8449949b51aea10 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/15.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>15.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\15.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>49</ymin> + <xmax>357</xmax> + <ymax>287</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>381</xmin> + <ymin>166</ymin> + <xmax>449</xmax> + <ymax>263</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/150.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/150.jpg new file mode 100644 index 0000000000000000000000000000000000000000..93b977b1f8b516f4df2a60653e0324ae17ed0788 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/150.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/150.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/150.xml new file mode 100644 index 0000000000000000000000000000000000000000..2995b80b8d861da6272db85aa08ee34553c693f5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/150.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>150.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\150.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>112</xmin> + <ymin>97</ymin> + <xmax>244</xmax> + <ymax>345</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/151.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/151.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d4c00af736330984eaf97ef3f4f868e2e4372562 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/151.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/151.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/151.xml new file mode 100644 index 0000000000000000000000000000000000000000..2034df9012fc38b48bb7dfa3f2bb51240c62716b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/151.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>151.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\151.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>190</xmin> + <ymin>89</ymin> + <xmax>270</xmax> + <ymax>217</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>236</xmin> + <ymin>36</ymin> + <xmax>289</xmax> + <ymax>123</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>244</ymin> + <xmax>146</xmax> + <ymax>359</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>11</ymin> + <xmax>291</xmax> + <ymax>77</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/152.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/152.jpg new file mode 100644 index 0000000000000000000000000000000000000000..06c9fd5df48060c8b4fa6f32683295f5db1eab24 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/152.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/152.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/152.xml new file mode 100644 index 0000000000000000000000000000000000000000..d0171f2627166e579829b798383327e9d0931963 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/152.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>152.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\152.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>274</xmin> + <ymin>57</ymin> + <xmax>391</xmax> + <ymax>196</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/153.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/153.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d54a287026558bd6139804e35315c442c1bbf3bf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/153.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/153.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/153.xml new file mode 100644 index 0000000000000000000000000000000000000000..396945bb8fd7f1780c6c73acb7155eaa7710ac4e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/153.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>153.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\153.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>91</xmin> + <ymin>172</ymin> + <xmax>172</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>319</xmin> + <ymin>174</ymin> + <xmax>422</xmax> + <ymax>333</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>422</xmin> + <ymin>156</ymin> + <xmax>452</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>152</ymin> + <xmax>374</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>487</xmin> + <ymin>156</ymin> + <xmax>509</xmax> + <ymax>204</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/154.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/154.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ad6353f5b23ce13a29e1cf876bf9a745408fde78 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/154.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/154.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/154.xml new file mode 100644 index 0000000000000000000000000000000000000000..2756ff8e2a1174a065188a6337e012b39a2d7889 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/154.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>154.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\154.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>110</xmin> + <ymin>68</ymin> + <xmax>178</xmax> + <ymax>179</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>217</xmin> + <ymin>180</ymin> + <xmax>340</xmax> + <ymax>299</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>135</xmin> + <ymin>143</ymin> + <xmax>224</xmax> + <ymax>244</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/155.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/155.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aef3841892159501ee808847ea22c4e2ad7e09c9 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/155.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/155.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/155.xml new file mode 100644 index 0000000000000000000000000000000000000000..82bc0d357a80d7177d2a19235eddea2f11f8b47b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/155.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>155.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\155.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>120</xmin> + <ymin>67</ymin> + <xmax>222</xmax> + <ymax>253</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>59</ymin> + <xmax>102</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>296</xmin> + <ymin>77</ymin> + <xmax>400</xmax> + <ymax>253</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>74</ymin> + <xmax>479</xmax> + <ymax>260</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/156.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/156.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4d66846e14441b98c2bdc9786b527335a3493e56 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/156.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/156.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/156.xml new file mode 100644 index 0000000000000000000000000000000000000000..80b4b0b170dcf0594ab1c5fb073c9121da2887fc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/156.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>156.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\156.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>340</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>207</xmin> + <ymin>93</ymin> + <xmax>315</xmax> + <ymax>266</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/157.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/157.jpg new file mode 100644 index 0000000000000000000000000000000000000000..091b880b24983c8bd34e3c054d81c47b6cdb5186 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/157.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/157.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/157.xml new file mode 100644 index 0000000000000000000000000000000000000000..c523b4e61c43637dd169408366a01f17565cc314 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/157.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>157.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\157.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>552</width> + <height>312</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>47</xmin> + <ymin>1</ymin> + <xmax>313</xmax> + <ymax>265</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/158.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/158.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2e82f8a498c79dc93f15feeff8ac4c0b48de9f97 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/158.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/158.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/158.xml new file mode 100644 index 0000000000000000000000000000000000000000..dcf256b50a50c21ed6e789b7297dc1884986fca5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/158.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>158.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\158.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1023</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>683</xmin> + <ymin>420</ymin> + <xmax>965</xmax> + <ymax>934</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/159.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/159.jpg new file mode 100644 index 0000000000000000000000000000000000000000..98fa2d3c3473c37f33e43358236fd770137acb2c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/159.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/159.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/159.xml new file mode 100644 index 0000000000000000000000000000000000000000..c72ca86fe18915da04d2312730fdf0d89cf6ba6a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/159.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>159.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\159.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>243</ymin> + <xmax>150</xmax> + <ymax>460</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>184</ymin> + <xmax>237</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>152</ymin> + <xmax>270</xmax> + <ymax>235</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>139</ymin> + <xmax>285</xmax> + <ymax>203</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>128</ymin> + <xmax>300</xmax> + <ymax>180</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>290</xmin> + <ymin>126</ymin> + <xmax>307</xmax> + <ymax>165</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/16.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/16.jpg new file mode 100644 index 0000000000000000000000000000000000000000..703d882532a61c920092776e8fd47f3fd6c6c6e4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/16.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/16.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/16.xml new file mode 100644 index 0000000000000000000000000000000000000000..1d7ea701eadfbe5c49172c2da5e89e8bfb6d2b93 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/16.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>16.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\16.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>101</ymin> + <xmax>215</xmax> + <ymax>332</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/160.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/160.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a010832db78fb36adaa830a736d0fd0d6dcfd2d2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/160.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/160.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/160.xml new file mode 100644 index 0000000000000000000000000000000000000000..088a0165cf948d1d1f5e8cab48e0295fdcb36244 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/160.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>160.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\160.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>147</xmin> + <ymin>7</ymin> + <xmax>258</xmax> + <ymax>161</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/161.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/161.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b5e38a85bfe2c0b588a1a41e5f5b41f4442481b3 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/161.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/161.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/161.xml new file mode 100644 index 0000000000000000000000000000000000000000..4cf83e77f85bfbfbd18a977104831a97931cb6ff --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/161.xml @@ -0,0 +1,254 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>161.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\161.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>125</ymin> + <xmax>321</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>41</xmin> + <ymin>126</ymin> + <xmax>139</xmax> + <ymax>322</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>89</ymin> + <xmax>233</xmax> + <ymax>213</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>25</xmin> + <ymin>89</ymin> + <xmax>74</xmax> + <ymax>213</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>50</ymin> + <xmax>119</xmax> + <ymax>128</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>45</ymin> + <xmax>53</xmax> + <ymax>119</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>394</xmin> + <ymin>121</ymin> + <xmax>508</xmax> + <ymax>308</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>467</xmin> + <ymin>88</ymin> + <xmax>508</xmax> + <ymax>202</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>346</xmin> + <ymin>75</ymin> + <xmax>413</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>269</xmin> + <ymin>66</ymin> + <xmax>320</xmax> + <ymax>162</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>199</xmin> + <ymin>62</ymin> + <xmax>252</xmax> + <ymax>148</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>136</xmin> + <ymin>55</ymin> + <xmax>191</xmax> + <ymax>136</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>19</ymin> + <xmax>136</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>18</ymin> + <xmax>91</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>24</xmin> + <ymin>19</ymin> + <xmax>52</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>22</ymin> + <xmax>256</xmax> + <ymax>72</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>185</xmin> + <ymin>20</ymin> + <xmax>213</xmax> + <ymax>73</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>367</xmin> + <ymin>24</ymin> + <xmax>396</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>413</xmin> + <ymin>23</ymin> + <xmax>448</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>468</xmin> + <ymin>23</ymin> + <xmax>501</xmax> + <ymax>80</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/162.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/162.jpg new file mode 100644 index 0000000000000000000000000000000000000000..505960f9097d1559129a0e12896096a37e93b035 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/162.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/162.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/162.xml new file mode 100644 index 0000000000000000000000000000000000000000..a9a71716e4d3ae0c327b3a79fb905601a9d949ed --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/162.xml @@ -0,0 +1,110 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>162.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\162.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>254</ymin> + <xmax>57</xmax> + <ymax>330</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>254</ymin> + <xmax>102</xmax> + <ymax>332</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>252</ymin> + <xmax>145</xmax> + <ymax>331</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>142</xmin> + <ymin>252</ymin> + <xmax>186</xmax> + <ymax>326</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>249</ymin> + <xmax>227</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>248</ymin> + <xmax>268</xmax> + <ymax>326</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>261</xmin> + <ymin>251</ymin> + <xmax>305</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>300</xmin> + <ymin>250</ymin> + <xmax>338</xmax> + <ymax>321</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/163.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/163.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a3829a87450a952900eec7354185c64654c0a08b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/163.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/163.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/163.xml new file mode 100644 index 0000000000000000000000000000000000000000..bbb8815c44081a3f5f46509800216c10ce99cff7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/163.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>163.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\163.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>153</xmin> + <ymin>404</ymin> + <xmax>194</xmax> + <ymax>486</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>399</ymin> + <xmax>152</xmax> + <ymax>479</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>187</xmin> + <ymin>402</ymin> + <xmax>230</xmax> + <ymax>480</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>213</xmin> + <ymin>401</ymin> + <xmax>251</xmax> + <ymax>470</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>95</xmin> + <ymin>401</ymin> + <xmax>122</xmax> + <ymax>464</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>185</xmin> + <ymin>385</ymin> + <xmax>205</xmax> + <ymax>445</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/164.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/164.jpg new file mode 100644 index 0000000000000000000000000000000000000000..025c84855bc4779cafa1f4ea6a1c31c65953f76c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/164.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/164.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/164.xml new file mode 100644 index 0000000000000000000000000000000000000000..5a62d5b830c0c9e5e7ee205893ed390ad94b3ea3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/164.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>164.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\164.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>201</xmin> + <ymin>144</ymin> + <xmax>331</xmax> + <ymax>406</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/165.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/165.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0ac5ff0e69abdbba1b955797d943e014ad90465c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/165.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/165.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/165.xml new file mode 100644 index 0000000000000000000000000000000000000000..a21a1fc6de49057e86ca36ef62260800b66aafd6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/165.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>165.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\165.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>200</xmin> + <ymin>59</ymin> + <xmax>239</xmax> + <ymax>156</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>90</xmin> + <ymin>175</ymin> + <xmax>162</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>245</xmin> + <ymin>21</ymin> + <xmax>271</xmax> + <ymax>76</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>456</xmin> + <ymin>112</ymin> + <xmax>494</xmax> + <ymax>234</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>50</ymin> + <xmax>426</xmax> + <ymax>131</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>356</xmin> + <ymin>12</ymin> + <xmax>377</xmax> + <ymax>61</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>344</xmin> + <ymin>1</ymin> + <xmax>357</xmax> + <ymax>32</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/166.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/166.jpg new file mode 100644 index 0000000000000000000000000000000000000000..77e5432e7bbb421d9ae0e6da2606cf508d14c3b2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/166.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/166.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/166.xml new file mode 100644 index 0000000000000000000000000000000000000000..c6fe5e9e0ef2e6be4efeb145aadc3a7c25437837 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/166.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>166.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\166.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>32</ymin> + <xmax>396</xmax> + <ymax>243</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/167.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/167.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8a9814e9c9df5572ecf31ef5f206b5753d61253c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/167.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/167.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/167.xml new file mode 100644 index 0000000000000000000000000000000000000000..5494f8e6c259de10b84ac6e6316eb818d701e5f4 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/167.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>167.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\167.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>512</width> + <height>336</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>7</xmin> + <ymin>150</ymin> + <xmax>95</xmax> + <ymax>298</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>136</xmin> + <ymin>152</ymin> + <xmax>205</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>338</xmin> + <ymin>155</ymin> + <xmax>416</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>412</xmin> + <ymin>158</ymin> + <xmax>496</xmax> + <ymax>297</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/168.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/168.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a899503782fe6140e055e4ee5dbfedb0f6569759 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/168.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/168.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/168.xml new file mode 100644 index 0000000000000000000000000000000000000000..ee3ba82bcba8909d3e316f20a573f9dd3b938c52 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/168.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>168.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\168.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>768</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>421</ymin> + <xmax>471</xmax> + <ymax>901</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/169.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/169.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b0d61bf2708201480161ba1fa9dc68f62ffb22c7 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/169.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/169.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/169.xml new file mode 100644 index 0000000000000000000000000000000000000000..a746a6ab81a0f3dc3a075134069c968eb5fda4fc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/169.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>169.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\169.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>304</ymin> + <xmax>174</xmax> + <ymax>474</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>160</xmin> + <ymin>217</ymin> + <xmax>246</xmax> + <ymax>356</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>238</xmin> + <ymin>164</ymin> + <xmax>320</xmax> + <ymax>296</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/17.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/17.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f4ac7318edb7e8b07d4cc4055d21b9d8040ce91b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/17.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/17.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/17.xml new file mode 100644 index 0000000000000000000000000000000000000000..0917b58198ec496f543687e542bc21fee5f174e0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/17.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>17.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\17.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>63</xmin> + <ymin>14</ymin> + <xmax>294</xmax> + <ymax>490</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/170.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/170.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5f40f3a9b42b69d3de097a0156287f1f7e54ab6d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/170.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/170.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/170.xml new file mode 100644 index 0000000000000000000000000000000000000000..93e0899c02040dfe35e4c9bbb47cf8290127bc8a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/170.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>170.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\170.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>237</xmin> + <ymin>169</ymin> + <xmax>296</xmax> + <ymax>283</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/171.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/171.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7226ae6c9ee9f01a6358fb55dffbc1bffdb387f5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/171.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/171.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/171.xml new file mode 100644 index 0000000000000000000000000000000000000000..9fe9e59f7b1d484e8db47f98978f1a4c6dca804c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/171.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>171.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\171.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>140</ymin> + <xmax>336</xmax> + <ymax>413</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/172.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/172.jpg new file mode 100644 index 0000000000000000000000000000000000000000..36364509b598ce31a9a137c4d8f9493577372452 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/172.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/172.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/172.xml new file mode 100644 index 0000000000000000000000000000000000000000..c50e9a089ae8591ba296db14db7561216445147b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/172.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>172.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\172.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>204</xmin> + <ymin>343</ymin> + <xmax>298</xmax> + <ymax>477</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>2</ymin> + <xmax>105</xmax> + <ymax>47</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/173.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/173.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5a98cdbcded6afe7b6bd5ae46962512403335213 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/173.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/173.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/173.xml new file mode 100644 index 0000000000000000000000000000000000000000..ee6b1c23b4ce4d5606f0fd6fcd31d829b23c22ec --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/173.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>173.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\173.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>557</width> + <height>311</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>61</xmin> + <ymin>52</ymin> + <xmax>124</xmax> + <ymax>139</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>413</xmin> + <ymin>45</ymin> + <xmax>474</xmax> + <ymax>131</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/174.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/174.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7e260787f9b2ebe0802eddd07d30e0c0d3195dfa Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/174.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/174.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/174.xml new file mode 100644 index 0000000000000000000000000000000000000000..c48ea16e82e6e32945184b4a124fd199ffbdcc9e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/174.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>174.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\174.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>511</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>232</xmin> + <ymin>226</ymin> + <xmax>308</xmax> + <ymax>334</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>481</xmin> + <ymin>213</ymin> + <xmax>511</xmax> + <ymax>306</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/175.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/175.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9066101cf307fc53ade4cdb318329c85841b8e87 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/175.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/175.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/175.xml new file mode 100644 index 0000000000000000000000000000000000000000..300f112bd22eee858f11f2ce4cd8f4483ae9941d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/175.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>175.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\175.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>100</xmin> + <ymin>223</ymin> + <xmax>263</xmax> + <ymax>439</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>51</xmin> + <ymin>26</ymin> + <xmax>258</xmax> + <ymax>188</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/176.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/176.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4ba75b112680b148634fd2b60ee2994ab231f0fb Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/176.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/176.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/176.xml new file mode 100644 index 0000000000000000000000000000000000000000..b5ff0834e0b3e5b442d87eae4106a92641ede84b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/176.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>176.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\176.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>83</xmin> + <ymin>170</ymin> + <xmax>169</xmax> + <ymax>302</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/177.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/177.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b3746c625648295b70a87f78c2e02a2ace8a52f0 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/177.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/177.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/177.xml new file mode 100644 index 0000000000000000000000000000000000000000..2db0a0aa4944d025381e9c230f64877116ff7e77 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/177.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>177.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\177.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>360</xmin> + <ymin>314</ymin> + <xmax>649</xmax> + <ymax>734</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/178.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/178.jpg new file mode 100644 index 0000000000000000000000000000000000000000..53dbe6ca95812684a7b209e840c9b9d698ae703c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/178.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/178.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/178.xml new file mode 100644 index 0000000000000000000000000000000000000000..5d23130a2887603ed8eb5caaee9298b92a7dd6f1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/178.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>178.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\178.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>371</width> + <height>464</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>232</xmin> + <ymin>235</ymin> + <xmax>347</xmax> + <ymax>416</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/179.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/179.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a8cc559a6c1356a74f5d294f108eee2366467529 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/179.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/179.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/179.xml new file mode 100644 index 0000000000000000000000000000000000000000..bd6fa60952d69400e9a9eabbfd9a21411bd15951 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/179.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>179.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\179.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>512</width> + <height>335</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>198</xmin> + <ymin>204</ymin> + <xmax>279</xmax> + <ymax>333</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>356</xmin> + <ymin>161</ymin> + <xmax>432</xmax> + <ymax>279</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>397</xmin> + <ymin>109</ymin> + <xmax>455</xmax> + <ymax>211</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>375</xmin> + <ymin>48</ymin> + <xmax>420</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>250</xmin> + <ymin>8</ymin> + <xmax>290</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>325</xmin> + <ymin>58</ymin> + <xmax>375</xmax> + <ymax>100</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>29</ymin> + <xmax>197</xmax> + <ymax>97</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>43</xmin> + <ymin>83</ymin> + <xmax>103</xmax> + <ymax>177</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>91</xmin> + <ymin>202</ymin> + <xmax>165</xmax> + <ymax>286</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/18.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/18.jpg new file mode 100644 index 0000000000000000000000000000000000000000..137d4ed358a82804098b3e63ce8f1fcf85124ded Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/18.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/18.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/18.xml new file mode 100644 index 0000000000000000000000000000000000000000..e68fd03950d2b0ce96d1a6c738dfa1b43c73d52e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/18.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>18.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\18.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>82</ymin> + <xmax>164</xmax> + <ymax>499</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>1</ymin> + <xmax>169</xmax> + <ymax>221</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>148</xmin> + <ymin>1</ymin> + <xmax>227</xmax> + <ymax>128</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/180.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/180.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7b5658c234354a15c87f98ee8dd60c36e877fb46 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/180.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/180.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/180.xml new file mode 100644 index 0000000000000000000000000000000000000000..345f2e21caf998cfc9fe9f7767720238915be188 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/180.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>180.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\180.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>326</width> + <height>527</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>27</xmin> + <ymin>209</ymin> + <xmax>154</xmax> + <ymax>481</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/181.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/181.jpg new file mode 100644 index 0000000000000000000000000000000000000000..11e3bb0cdae4e089078f7df2dc97461d72633e76 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/181.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/181.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/181.xml new file mode 100644 index 0000000000000000000000000000000000000000..1cb0ae43293c25570965af86ba919c3e2aaa893b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/181.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>181.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\181.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>156</xmin> + <ymin>366</ymin> + <xmax>201</xmax> + <ymax>463</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>265</xmin> + <ymin>372</ymin> + <xmax>306</xmax> + <ymax>467</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/182.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/182.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cd5978f179400ccb4696ed50c07536c509b9508d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/182.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/182.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/182.xml new file mode 100644 index 0000000000000000000000000000000000000000..3da8b19d8b5d939ef76cabf3acf8c98c3611427d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/182.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>182.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\182.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>175</xmin> + <ymin>42</ymin> + <xmax>292</xmax> + <ymax>277</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/183.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/183.jpg new file mode 100644 index 0000000000000000000000000000000000000000..68aaefaeff0afc8f324d69e56a69cd78986a1d7a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/183.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/183.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/183.xml new file mode 100644 index 0000000000000000000000000000000000000000..d2e7a0d193db3e42bcc0f507bccac9e3d3c25f5c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/183.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>183.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\183.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>344</width> + <height>502</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>151</ymin> + <xmax>282</xmax> + <ymax>426</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/184.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/184.jpg new file mode 100644 index 0000000000000000000000000000000000000000..137d4ed358a82804098b3e63ce8f1fcf85124ded Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/184.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/184.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/184.xml new file mode 100644 index 0000000000000000000000000000000000000000..12c9406e42884d12edac7ee08ae37054a8f4d8d5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/184.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>184.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\184.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>82</ymin> + <xmax>165</xmax> + <ymax>502</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>82</xmin> + <ymin>1</ymin> + <xmax>165</xmax> + <ymax>219</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>151</xmin> + <ymin>1</ymin> + <xmax>225</xmax> + <ymax>129</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/185.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/185.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f825fc5cf9f69c10b9595ad810d20f10ee637680 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/185.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/185.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/185.xml new file mode 100644 index 0000000000000000000000000000000000000000..2ae38611e918f26c577d6d5a55ec633ea7e49f96 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/185.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>185.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\185.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>506</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>251</xmin> + <ymin>152</ymin> + <xmax>302</xmax> + <ymax>235</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>246</xmin> + <ymin>149</ymin> + <xmax>272</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>242</xmin> + <ymin>145</ymin> + <xmax>258</xmax> + <ymax>184</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/186.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/186.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5654cf886f0d44f5f43ee40f9a15683c8a5c0706 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/186.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/186.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/186.xml new file mode 100644 index 0000000000000000000000000000000000000000..1b9caedcfd4b05dd79f03205add860bcbbbb4794 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/186.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>186.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\186.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>205</ymin> + <xmax>284</xmax> + <ymax>423</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/187.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/187.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ec74d13270a513f15c37d09ebb087a75e9555e29 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/187.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/187.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/187.xml new file mode 100644 index 0000000000000000000000000000000000000000..41fac624c56a6863c634e82e4b65467988bad2fb --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/187.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>187.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\187.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>96</xmin> + <ymin>64</ymin> + <xmax>232</xmax> + <ymax>283</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/188.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/188.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f8041c5ea153e8fd9136097da848730b78a06749 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/188.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/188.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/188.xml new file mode 100644 index 0000000000000000000000000000000000000000..86fe7763385afe643821471b39f8de442412e285 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/188.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>188.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\188.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>350</width> + <height>490</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>36</ymin> + <xmax>291</xmax> + <ymax>457</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/189.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/189.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5e309ebc1ea1342283a2d6c35f6cf24fdb3c6b19 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/189.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/189.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/189.xml new file mode 100644 index 0000000000000000000000000000000000000000..331abb6107d0602e667d296443c3b6607dcd758e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/189.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>189.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\189.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>336</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>351</xmin> + <ymin>214</ymin> + <xmax>417</xmax> + <ymax>300</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/19.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/19.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b9fbe5d2024e13bcecd606c29c13e89403c123d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/19.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/19.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/19.xml new file mode 100644 index 0000000000000000000000000000000000000000..9a03aee7b077abf3840bfca95d273e625ff36863 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/19.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>19.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\19.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>48</ymin> + <xmax>258</xmax> + <ymax>314</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>168</xmin> + <ymin>59</ymin> + <xmax>232</xmax> + <ymax>189</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>201</xmin> + <ymin>61</ymin> + <xmax>251</xmax> + <ymax>147</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>224</xmin> + <ymin>63</ymin> + <xmax>255</xmax> + <ymax>116</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/190.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/190.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d2ce68d9b18fdc4d8909ce6debe126ad21ec9238 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/190.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/190.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/190.xml new file mode 100644 index 0000000000000000000000000000000000000000..cfb3760d0a0fce8a8be2782a0a593eef288e78f0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/190.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>190.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\190.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>163</xmin> + <ymin>64</ymin> + <xmax>294</xmax> + <ymax>269</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/191.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/191.jpg new file mode 100644 index 0000000000000000000000000000000000000000..177c061f72d2f47bf448baf52e05fd126ee9e2f9 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/191.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/191.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/191.xml new file mode 100644 index 0000000000000000000000000000000000000000..67436a77eb4983aa4da37b27feebada147c9e6e6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/191.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>191.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\191.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>205</ymin> + <xmax>314</xmax> + <ymax>330</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/192.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/192.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a97bdb190855974ba9c5acded6ce48bf44a68452 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/192.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/192.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/192.xml new file mode 100644 index 0000000000000000000000000000000000000000..929c2f4d3fa28ab750eb31485ae95a3aed8e05f0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/192.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>192.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\192.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>74</xmin> + <ymin>76</ymin> + <xmax>171</xmax> + <ymax>260</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/193.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/193.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9619a5e785f2ae0316a7b08a629529876b266897 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/193.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/193.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/193.xml new file mode 100644 index 0000000000000000000000000000000000000000..e6d4abad87e78d4e9b771f883fec3f22ce068989 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/193.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>193.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\193.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>116</xmin> + <ymin>52</ymin> + <xmax>210</xmax> + <ymax>276</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/194.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/194.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cc34ec1c76bb646ff905916d1ae753683a48068e Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/194.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/194.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/194.xml new file mode 100644 index 0000000000000000000000000000000000000000..5634147d3a799331d03b94a21cfbabbdf869ee5c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/194.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>194.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\194.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>1</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>28</ymin> + <xmax>243</xmax> + <ymax>158</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>267</xmin> + <ymin>150</ymin> + <xmax>359</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>151</xmin> + <ymin>1</ymin> + <xmax>189</xmax> + <ymax>85</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/195.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/195.jpg new file mode 100644 index 0000000000000000000000000000000000000000..efd660f7362b535c03ab26991da95b4626ead170 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/195.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/195.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/195.xml new file mode 100644 index 0000000000000000000000000000000000000000..07914ca283422ac22138fe03f02c0644b962d834 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/195.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>195.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\195.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>133</xmin> + <ymin>102</ymin> + <xmax>235</xmax> + <ymax>257</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/196.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/196.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b61c7543d8887c3422610b9367bc2dd0a2eff32 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/196.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/196.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/196.xml new file mode 100644 index 0000000000000000000000000000000000000000..dce0d9a6d7da98e8ecbd92b5af297b3c8dead642 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/196.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>196.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\196.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>74</xmin> + <ymin>115</ymin> + <xmax>177</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>213</xmin> + <ymin>130</ymin> + <xmax>256</xmax> + <ymax>196</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/197.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/197.jpg new file mode 100644 index 0000000000000000000000000000000000000000..62aed578b6926f876904ba0854cc07c881ba9ab6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/197.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/197.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/197.xml new file mode 100644 index 0000000000000000000000000000000000000000..88b9f33b48426890a95bccf97d48eab8f04303a9 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/197.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>197.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\197.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>184</xmin> + <ymin>63</ymin> + <xmax>289</xmax> + <ymax>256</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/198.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/198.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3d1225e8131b8139e0cc01b501bfb2df90ab5a59 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/198.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/198.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/198.xml new file mode 100644 index 0000000000000000000000000000000000000000..78e9cbbf303b8ac941773990a7fcece877cce0d1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/198.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>198.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\198.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>180</xmin> + <ymin>306</ymin> + <xmax>244</xmax> + <ymax>412</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/199.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/199.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7e10982a0c453f90bb81366ff7aa5e1397e2644c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/199.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/199.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/199.xml new file mode 100644 index 0000000000000000000000000000000000000000..8803d31f786dd0ac7956a86029d9ae971d57930d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/199.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>199.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\199.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>347</width> + <height>491</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>45</xmin> + <ymin>128</ymin> + <xmax>240</xmax> + <ymax>453</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/2.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4020175b16c33a75fa04c4b2644388486a0a7cba Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/2.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/2.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/2.xml new file mode 100644 index 0000000000000000000000000000000000000000..4f130d65a364588d87b526e4cb544e5206e50ec3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/2.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>2.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\2.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>397</width> + <height>432</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>63</xmin> + <ymin>36</ymin> + <xmax>341</xmax> + <ymax>374</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/20.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/20.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9066101cf307fc53ade4cdb318329c85841b8e87 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/20.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/20.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/20.xml new file mode 100644 index 0000000000000000000000000000000000000000..9cf2d551759cd629cfcc0fafd64c93a3cc67cfaa --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/20.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>20.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\20.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>222</ymin> + <xmax>266</xmax> + <ymax>432</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>55</xmin> + <ymin>27</ymin> + <xmax>259</xmax> + <ymax>191</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/200.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/200.jpg new file mode 100644 index 0000000000000000000000000000000000000000..77bf49165b4049c10816316e75f2f33b170f7ad8 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/200.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/200.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/200.xml new file mode 100644 index 0000000000000000000000000000000000000000..f03057c7db1ca714d0a170a4003286424a041eef --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/200.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>200.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\200.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>123</xmin> + <ymin>257</ymin> + <xmax>226</xmax> + <ymax>399</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/201.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/201.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c065130322855e89138fcac64b97ae687d06434 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/201.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/201.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/201.xml new file mode 100644 index 0000000000000000000000000000000000000000..097e67470ec816cc3265961bd71ba480116908bc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/201.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>201.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\201.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>360</xmin> + <ymin>41</ymin> + <xmax>411</xmax> + <ymax>120</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>473</xmin> + <ymin>32</ymin> + <xmax>507</xmax> + <ymax>119</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>306</xmin> + <ymin>37</ymin> + <xmax>350</xmax> + <ymax>107</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>318</xmin> + <ymin>2</ymin> + <xmax>356</xmax> + <ymax>59</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>401</xmin> + <ymin>1</ymin> + <xmax>436</xmax> + <ymax>27</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>296</xmin> + <ymin>22</ymin> + <xmax>312</xmax> + <ymax>88</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/202.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/202.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c15fcad3f347e27c50fe0512002737810a7a2904 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/202.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/202.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/202.xml new file mode 100644 index 0000000000000000000000000000000000000000..6c71d6d8fb6a8e6e330cfe051f5e1708c7517edc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/202.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>202.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\202.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>259</xmin> + <ymin>117</ymin> + <xmax>388</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>365</xmin> + <ymin>149</ymin> + <xmax>509</xmax> + <ymax>339</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/203.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/203.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d245687b65d857ce12138abd7182b8c86b4e0a03 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/203.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/203.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/203.xml new file mode 100644 index 0000000000000000000000000000000000000000..d9d68e8000dfdc5f0dce5970ebd87dc32ebf2a2f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/203.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>203.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\203.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>553</width> + <height>312</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>306</xmin> + <ymin>52</ymin> + <xmax>449</xmax> + <ymax>189</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/204.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/204.jpg new file mode 100644 index 0000000000000000000000000000000000000000..65159409ae6dd3ca8ff930366f80ba79842571b7 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/204.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/204.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/204.xml new file mode 100644 index 0000000000000000000000000000000000000000..08873bbff8f5021aa7e738b86e1e1f1427ef8752 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/204.xml @@ -0,0 +1,266 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>204.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\204.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>267</ymin> + <xmax>185</xmax> + <ymax>295</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>337</xmin> + <ymin>279</ymin> + <xmax>360</xmax> + <ymax>322</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>264</ymin> + <xmax>326</xmax> + <ymax>292</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>127</xmin> + <ymin>281</ymin> + <xmax>150</xmax> + <ymax>323</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>280</ymin> + <xmax>125</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>461</xmin> + <ymin>260</ymin> + <xmax>479</xmax> + <ymax>288</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>433</xmin> + <ymin>254</ymin> + <xmax>449</xmax> + <ymax>280</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>412</xmin> + <ymin>253</ymin> + <xmax>426</xmax> + <ymax>275</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>395</xmin> + <ymin>250</ymin> + <xmax>407</xmax> + <ymax>271</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>371</xmin> + <ymin>247</ymin> + <xmax>381</xmax> + <ymax>265</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>494</xmin> + <ymin>250</ymin> + <xmax>507</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>456</xmin> + <ymin>291</ymin> + <xmax>493</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>318</xmin> + <ymin>298</ymin> + <xmax>337</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>170</xmin> + <ymin>296</ymin> + <xmax>190</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>194</xmin> + <ymin>259</ymin> + <xmax>205</xmax> + <ymax>281</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>363</xmin> + <ymin>244</ymin> + <xmax>369</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>295</xmin> + <ymin>254</ymin> + <xmax>302</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>151</xmin> + <ymin>272</ymin> + <xmax>169</xmax> + <ymax>306</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>20</xmin> + <ymin>301</ymin> + <xmax>43</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>62</xmin> + <ymin>290</ymin> + <xmax>84</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>365</xmin> + <ymin>297</ymin> + <xmax>387</xmax> + <ymax>339</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/205.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/205.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a9d316bac6ac8a3b51cd631e812fc160f62b1615 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/205.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/205.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/205.xml new file mode 100644 index 0000000000000000000000000000000000000000..606bf836a24adb8e2af4f8a15eb3b48f3be35bcd --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/205.xml @@ -0,0 +1,134 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>205.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\205.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>10</xmin> + <ymin>234</ymin> + <xmax>45</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>63</xmin> + <ymin>234</ymin> + <xmax>95</xmax> + <ymax>271</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>114</xmin> + <ymin>234</ymin> + <xmax>146</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>234</ymin> + <xmax>195</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>216</xmin> + <ymin>231</ymin> + <xmax>245</xmax> + <ymax>267</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>233</ymin> + <xmax>296</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>316</xmin> + <ymin>232</ymin> + <xmax>347</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>367</xmin> + <ymin>230</ymin> + <xmax>399</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>419</xmin> + <ymin>230</ymin> + <xmax>451</xmax> + <ymax>265</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>469</xmin> + <ymin>231</ymin> + <xmax>504</xmax> + <ymax>265</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/206.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/206.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9066101cf307fc53ade4cdb318329c85841b8e87 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/206.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/206.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/206.xml new file mode 100644 index 0000000000000000000000000000000000000000..427a09ee1338b4a3516c8b2adf7ce255f9cdc190 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/206.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>206.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\206.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>104</xmin> + <ymin>218</ymin> + <xmax>263</xmax> + <ymax>435</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>54</xmin> + <ymin>30</ymin> + <xmax>259</xmax> + <ymax>190</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/207.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/207.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d33b3283369fb734acd8372ab42dcd7a9aa492b4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/207.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/207.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/207.xml new file mode 100644 index 0000000000000000000000000000000000000000..31b466c59f6b9d6c1d0591cf48f97cb58687d2ab --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/207.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>207.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\207.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>510</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>195</ymin> + <xmax>299</xmax> + <ymax>277</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>387</xmin> + <ymin>186</ymin> + <xmax>433</xmax> + <ymax>260</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>449</xmin> + <ymin>183</ymin> + <xmax>492</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>218</ymin> + <xmax>247</xmax> + <ymax>271</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/208.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/208.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5790ebf75ef8081af78ba50c26f48ef9de33b270 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/208.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/208.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/208.xml new file mode 100644 index 0000000000000000000000000000000000000000..eaea94d9dfeb48df25755c1f913666ae6693c2f4 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/208.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>208.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\208.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>20</xmin> + <ymin>157</ymin> + <xmax>92</xmax> + <ymax>246</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>188</xmin> + <ymin>97</ymin> + <xmax>242</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>314</xmin> + <ymin>56</ymin> + <xmax>355</xmax> + <ymax>108</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>406</xmin> + <ymin>29</ymin> + <xmax>441</xmax> + <ymax>73</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>465</xmin> + <ymin>8</ymin> + <xmax>494</xmax> + <ymax>45</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/209.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/209.jpg new file mode 100644 index 0000000000000000000000000000000000000000..21c63b5a634945a9dc5b2cef65316396cbebd0e5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/209.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/209.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/209.xml new file mode 100644 index 0000000000000000000000000000000000000000..7ec9a42458eb7b3406ae89335df6d0cad6c4a601 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/209.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>209.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\209.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>341</width> + <height>502</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>245</ymin> + <xmax>124</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>102</ymin> + <xmax>210</xmax> + <ymax>203</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>175</xmin> + <ymin>41</ymin> + <xmax>232</xmax> + <ymax>110</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>15</ymin> + <xmax>278</xmax> + <ymax>74</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>267</xmin> + <ymin>1</ymin> + <xmax>309</xmax> + <ymax>39</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/21.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/21.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c722cf295782b862d6b6483643313b64db95385c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/21.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/21.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/21.xml new file mode 100644 index 0000000000000000000000000000000000000000..ecca5bab9afbe365f9f650d7884c5fcee8ec5f4e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/21.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>21.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\21.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>14</xmin> + <ymin>9</ymin> + <xmax>320</xmax> + <ymax>477</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/210.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/210.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a6d22867024397988245f14b95407f297588d192 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/210.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/210.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/210.xml new file mode 100644 index 0000000000000000000000000000000000000000..43c7ce58b63137a2404f720ee833d879d0e14690 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/210.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>210.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\210.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>68</ymin> + <xmax>169</xmax> + <ymax>174</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>215</xmin> + <ymin>181</ymin> + <xmax>340</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>135</xmin> + <ymin>141</ymin> + <xmax>224</xmax> + <ymax>244</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/211.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/211.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6544e6dfd053b4d476edb01a89462d67f0397b46 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/211.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/211.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/211.xml new file mode 100644 index 0000000000000000000000000000000000000000..a68e768a75174393828432202b8f90095f5ef2e1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/211.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>211.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\211.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>169</xmin> + <ymin>54</ymin> + <xmax>228</xmax> + <ymax>131</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>51</ymin> + <xmax>172</xmax> + <ymax>134</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>26</xmin> + <ymin>52</ymin> + <xmax>91</xmax> + <ymax>131</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>280</xmin> + <ymin>51</ymin> + <xmax>334</xmax> + <ymax>127</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>351</xmin> + <ymin>52</ymin> + <xmax>398</xmax> + <ymax>126</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>404</xmin> + <ymin>50</ymin> + <xmax>452</xmax> + <ymax>128</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/212.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/212.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d105162a0cc8a16ab51ab74b455dd30e9730dabd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/212.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/212.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/212.xml new file mode 100644 index 0000000000000000000000000000000000000000..0fd6509eec8077a0567167eab9795c40e310e932 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/212.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>212.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\212.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>49</xmin> + <ymin>218</ymin> + <xmax>81</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>146</xmin> + <ymin>218</ymin> + <xmax>174</xmax> + <ymax>260</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>182</xmin> + <ymin>218</ymin> + <xmax>210</xmax> + <ymax>259</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>210</xmin> + <ymin>220</ymin> + <xmax>230</xmax> + <ymax>257</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>218</ymin> + <xmax>253</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>301</xmin> + <ymin>218</ymin> + <xmax>326</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>443</xmin> + <ymin>217</ymin> + <xmax>474</xmax> + <ymax>250</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/213.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/213.jpg new file mode 100644 index 0000000000000000000000000000000000000000..017a02aecbf05187a1eccfe5f5a7e83e087e39a6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/213.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/213.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/213.xml new file mode 100644 index 0000000000000000000000000000000000000000..f8f6777cbe07ce75ecc9d15f7ba2e8d3956e1d14 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/213.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>213.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\213.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>209</xmin> + <ymin>97</ymin> + <xmax>319</xmax> + <ymax>304</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/214.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/214.jpg new file mode 100644 index 0000000000000000000000000000000000000000..da8d5ba91807901c58b58a5204880cd97b3ddec1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/214.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/214.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/214.xml new file mode 100644 index 0000000000000000000000000000000000000000..b866d7032fc7e4b6c4caba3501ad1c6a49a0552f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/214.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>214.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\214.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>388</ymin> + <xmax>93</xmax> + <ymax>495</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>102</xmin> + <ymin>365</ymin> + <xmax>181</xmax> + <ymax>496</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>191</xmin> + <ymin>370</ymin> + <xmax>248</xmax> + <ymax>498</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>240</xmin> + <ymin>381</ymin> + <xmax>307</xmax> + <ymax>501</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/215.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/215.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e346361484bab2c896ee157a04add6c205d7f420 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/215.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/215.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/215.xml new file mode 100644 index 0000000000000000000000000000000000000000..913b736b02989a9b28e2b72ed9a7f4ca7db9841a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/215.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>215.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\215.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>104</xmin> + <ymin>319</ymin> + <xmax>141</xmax> + <ymax>380</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>210</xmin> + <ymin>321</ymin> + <xmax>246</xmax> + <ymax>382</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>294</xmin> + <ymin>323</ymin> + <xmax>329</xmax> + <ymax>381</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/216.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/216.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0a10309afd14643d1bd67e0331ca06b059239667 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/216.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/216.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/216.xml new file mode 100644 index 0000000000000000000000000000000000000000..68cf18f7ed0afd5dee47d91b1741bc995d7af7f1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/216.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>216.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\216.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>143</xmin> + <ymin>114</ymin> + <xmax>234</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>217</xmin> + <ymin>152</ymin> + <xmax>269</xmax> + <ymax>248</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>114</xmax> + <ymax>336</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/217.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/217.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c04ddf104a1cee4b33ade230159fec0827b8e79c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/217.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/217.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/217.xml new file mode 100644 index 0000000000000000000000000000000000000000..ee07ea4820f118bb83dc62952249cdc8493c8504 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/217.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>217.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\217.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>341</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>219</ymin> + <xmax>142</xmax> + <ymax>500</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>238</xmin> + <ymin>240</ymin> + <xmax>341</xmax> + <ymax>439</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>304</xmin> + <ymin>283</ymin> + <xmax>341</xmax> + <ymax>391</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/218.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/218.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0a1f752d52f18c3aba551b6f7aed5022e2f91066 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/218.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/218.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/218.xml new file mode 100644 index 0000000000000000000000000000000000000000..0797498d60e4d2aa78900300a939aa3391aa7907 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/218.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>218.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\218.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>34</ymin> + <xmax>132</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>140</xmin> + <ymin>24</ymin> + <xmax>246</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>244</xmin> + <ymin>22</ymin> + <xmax>320</xmax> + <ymax>214</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>326</xmin> + <ymin>15</ymin> + <xmax>385</xmax> + <ymax>153</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>4</ymin> + <xmax>420</xmax> + <ymax>97</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>376</xmin> + <ymin>7</ymin> + <xmax>394</xmax> + <ymax>126</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/219.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/219.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eed8aac79f979ff1b531ece250df243e668d6cc6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/219.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/219.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/219.xml new file mode 100644 index 0000000000000000000000000000000000000000..9dccd54a75bf67c6e31c2adac5c7fe30f836c03b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/219.xml @@ -0,0 +1,194 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>219.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\219.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>510</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>168</ymin> + <xmax>402</xmax> + <ymax>327</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>297</xmin> + <ymin>120</ymin> + <xmax>360</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>92</ymin> + <xmax>326</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>369</xmin> + <ymin>24</ymin> + <xmax>398</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>432</xmin> + <ymin>20</ymin> + <xmax>459</xmax> + <ymax>75</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>313</xmin> + <ymin>21</ymin> + <xmax>341</xmax> + <ymax>76</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>16</ymin> + <xmax>184</xmax> + <ymax>64</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>15</ymin> + <xmax>153</xmax> + <ymax>61</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>15</ymin> + <xmax>121</xmax> + <ymax>65</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>72</xmin> + <ymin>16</ymin> + <xmax>102</xmax> + <ymax>62</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>17</ymin> + <xmax>75</xmax> + <ymax>67</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>15</xmin> + <ymin>17</ymin> + <xmax>51</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>260</xmin> + <ymin>74</ymin> + <xmax>311</xmax> + <ymax>173</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>61</ymin> + <xmax>291</xmax> + <ymax>148</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>223</xmin> + <ymin>30</ymin> + <xmax>244</xmax> + <ymax>87</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/22.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/22.jpg new file mode 100644 index 0000000000000000000000000000000000000000..391a91991b7b15f907cbe9e240943914afc28de9 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/22.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/22.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/22.xml new file mode 100644 index 0000000000000000000000000000000000000000..88bd6c6ca793f1ee76450359ecef7778a8253a82 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/22.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>22.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\22.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>3</xmin> + <ymin>37</ymin> + <xmax>333</xmax> + <ymax>478</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/220.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/220.jpg new file mode 100644 index 0000000000000000000000000000000000000000..92f76386f69f98b22d2f1b83e534a5e0e307dd56 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/220.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/220.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/220.xml new file mode 100644 index 0000000000000000000000000000000000000000..31f460ffd7ee58c79ee058a83f5a724d53a0c34f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/220.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>220.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\220.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>505</width> + <height>342</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>202</xmin> + <ymin>92</ymin> + <xmax>249</xmax> + <ymax>178</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>225</xmin> + <ymin>182</ymin> + <xmax>419</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>323</xmin> + <ymin>111</ymin> + <xmax>370</xmax> + <ymax>167</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>265</xmin> + <ymin>94</ymin> + <xmax>286</xmax> + <ymax>138</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>109</ymin> + <xmax>247</xmax> + <ymax>134</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/221.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/221.jpg new file mode 100644 index 0000000000000000000000000000000000000000..175b18e445fee83730a8359ea7b74f87f065d70d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/221.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/221.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/221.xml new file mode 100644 index 0000000000000000000000000000000000000000..30214aa533d6a9481bcc6f7df2d2e6921b844579 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/221.xml @@ -0,0 +1,170 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>221.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\221.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>90</xmin> + <ymin>196</ymin> + <xmax>118</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>118</xmin> + <ymin>197</ymin> + <xmax>147</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>197</ymin> + <xmax>174</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>174</xmin> + <ymin>197</ymin> + <xmax>201</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>200</xmin> + <ymin>199</ymin> + <xmax>227</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>198</ymin> + <xmax>254</xmax> + <ymax>242</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>197</ymin> + <xmax>282</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>282</xmin> + <ymin>198</ymin> + <xmax>308</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>309</xmin> + <ymin>198</ymin> + <xmax>337</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>338</xmin> + <ymin>196</ymin> + <xmax>362</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>362</xmin> + <ymin>197</ymin> + <xmax>391</xmax> + <ymax>246</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>198</ymin> + <xmax>417</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>417</xmin> + <ymin>195</ymin> + <xmax>445</xmax> + <ymax>244</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/222.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/222.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0f7204ae92e89a5d2a0eedbf3722ff950d4dc382 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/222.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/222.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/222.xml new file mode 100644 index 0000000000000000000000000000000000000000..0d82b5c3ed1365cd03f0ee7e759f9710b873d871 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/222.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>222.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\222.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>140</ymin> + <xmax>179</xmax> + <ymax>497</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/223.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/223.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6d0eb5c7ccf6bd5c27b68b9bc84c341dfbc3f791 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/223.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/223.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/223.xml new file mode 100644 index 0000000000000000000000000000000000000000..25a28926da320788a8e1e7645fa5080192ec6276 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/223.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>223.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\223.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>99</xmin> + <ymin>60</ymin> + <xmax>194</xmax> + <ymax>234</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>51</ymin> + <xmax>398</xmax> + <ymax>303</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/224.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/224.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b5dc95b4bbff987d767bcf1ea17aa0d6f2b9de73 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/224.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/224.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/224.xml new file mode 100644 index 0000000000000000000000000000000000000000..2b117f04131ab5d1bb6a790b3a85f1977c305ef4 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/224.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>224.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\224.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>135</xmin> + <ymin>182</ymin> + <xmax>266</xmax> + <ymax>462</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/225.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/225.jpg new file mode 100644 index 0000000000000000000000000000000000000000..edf9363b9df8bd614dbe3af016fa2a1404fd7d88 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/225.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/225.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/225.xml new file mode 100644 index 0000000000000000000000000000000000000000..57289b095fc96c0af8251229bd3fdaa9355cb484 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/225.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>225.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\225.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>180</xmin> + <ymin>139</ymin> + <xmax>236</xmax> + <ymax>234</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>126</ymin> + <xmax>304</xmax> + <ymax>213</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/226.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/226.jpg new file mode 100644 index 0000000000000000000000000000000000000000..87717e2c0d874eaf9d0d8bebbd3fb497a5238f09 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/226.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/226.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/226.xml new file mode 100644 index 0000000000000000000000000000000000000000..7b7abaa075930e80a3de28d2ee554890feeabf1a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/226.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>226.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\226.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>678</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>123</xmin> + <ymin>145</ymin> + <xmax>573</xmax> + <ymax>970</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/227.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/227.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f181fcbdf0cef0201aaa506be1a38355c0659867 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/227.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/227.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/227.xml new file mode 100644 index 0000000000000000000000000000000000000000..49b939d640ee4152d439b8620ce3deefac6bbd0a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/227.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>227.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\227.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>511</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>16</xmin> + <ymin>18</ymin> + <xmax>280</xmax> + <ymax>499</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/228.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/228.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d9128e6eada1f688a5b95cc055d340dbae521dc2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/228.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/228.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/228.xml new file mode 100644 index 0000000000000000000000000000000000000000..9adab7e03408dc312f79055fca43f9a67b25115b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/228.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>228.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\228.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>170</width> + <height>170</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>85</xmin> + <ymin>16</ymin> + <xmax>159</xmax> + <ymax>147</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/229.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/229.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7a1a8dac1ed0e2cf3ba26e6f814a196a2a6a848d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/229.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/229.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/229.xml new file mode 100644 index 0000000000000000000000000000000000000000..944b54f47c74890477224450f1aff7127ca3b421 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/229.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>229.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\229.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>214</xmin> + <ymin>38</ymin> + <xmax>387</xmax> + <ymax>363</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/23.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/23.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c6090a4c68c0c9980f44f746d4476e0067b0419 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/23.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/23.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/23.xml new file mode 100644 index 0000000000000000000000000000000000000000..85ba55bbaf08d5df33644dc84a711c8e5b1b2a07 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/23.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>23.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\23.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>16</xmin> + <ymin>29</ymin> + <xmax>261</xmax> + <ymax>310</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>242</xmin> + <ymin>76</ymin> + <xmax>439</xmax> + <ymax>271</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/230.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/230.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c94a5d54e91d8d3c16656a67e8ca24f76118ab45 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/230.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/230.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/230.xml new file mode 100644 index 0000000000000000000000000000000000000000..d056eb59e926bbd8f90485ee74a71c63d09617d8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/230.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>230.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\230.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>356</width> + <height>481</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>101</xmin> + <ymin>88</ymin> + <xmax>244</xmax> + <ymax>318</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/231.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/231.jpg new file mode 100644 index 0000000000000000000000000000000000000000..258d884e424fe6334c7a7921ada3b3f20d8899f6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/231.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/231.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/231.xml new file mode 100644 index 0000000000000000000000000000000000000000..d3a69a02992ba4901e78e22665506209ddaad6bc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/231.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>231.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\231.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>511</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>97</xmin> + <ymin>87</ymin> + <xmax>234</xmax> + <ymax>335</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/232.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/232.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bca15da6737f9d93e710a83704acdf6a6e3d54c7 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/232.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/232.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/232.xml new file mode 100644 index 0000000000000000000000000000000000000000..06d42a1305233062b9f57e54278c63873a1e555b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/232.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>232.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\232.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>24</xmin> + <ymin>51</ymin> + <xmax>223</xmax> + <ymax>387</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/233.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/233.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2b2f24aa2c7f3101f2dd22723f898354aaae5036 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/233.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/233.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/233.xml new file mode 100644 index 0000000000000000000000000000000000000000..d6c3bc6fee80becebfe589cf671dd066b673aa4f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/233.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>233.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\233.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>482</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>375</xmin> + <ymin>1</ymin> + <xmax>479</xmax> + <ymax>210</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/234.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/234.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fbb18efe4f01563d610d8c6b2dfcacfcb37bc59a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/234.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/234.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/234.xml new file mode 100644 index 0000000000000000000000000000000000000000..a6a4e2ddc7924bbeacf6ab90ac661a1dbb83e61d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/234.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>234.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\234.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>371</width> + <height>464</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>155</ymin> + <xmax>173</xmax> + <ymax>456</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>23</ymin> + <xmax>224</xmax> + <ymax>371</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/235.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/235.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1cb3cea7568f7b51ee3a66e7b02109ef25f69ad4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/235.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/235.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/235.xml new file mode 100644 index 0000000000000000000000000000000000000000..39f8da132e732cd8868bfb01c3a222fafeb16cbf --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/235.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>235.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\235.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>271</xmin> + <ymin>42</ymin> + <xmax>386</xmax> + <ymax>206</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/236.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/236.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e9bcf0e2841f4b0ccb804ff8a9b9f9cc473eaa34 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/236.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/236.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/236.xml new file mode 100644 index 0000000000000000000000000000000000000000..26ba8bc91a84826611b19c7018710a94c2127497 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/236.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>236.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\236.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>384</width> + <height>450</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>25</xmin> + <ymin>80</ymin> + <xmax>225</xmax> + <ymax>418</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/237.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/237.jpg new file mode 100644 index 0000000000000000000000000000000000000000..be727126b76d4890224030906be199e9af38e592 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/237.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/237.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/237.xml new file mode 100644 index 0000000000000000000000000000000000000000..add17552a010f76d44ca23368e5bf3e25e92b78a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/237.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>237.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\237.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>357</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>317</ymin> + <xmax>122</xmax> + <ymax>427</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>30</xmin> + <ymin>288</ymin> + <xmax>72</xmax> + <ymax>361</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>278</ymin> + <xmax>46</xmax> + <ymax>332</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>7</xmin> + <ymin>266</ymin> + <xmax>26</xmax> + <ymax>298</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/238.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/238.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1972fe77d33248d51ce700c2f7492aa243efc853 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/238.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/238.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/238.xml new file mode 100644 index 0000000000000000000000000000000000000000..093e95bfbe254312e2fdbda602fd8b7fbdea7c92 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/238.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>238.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\238.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>35</ymin> + <xmax>182</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>14</ymin> + <xmax>238</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>84</ymin> + <xmax>259</xmax> + <ymax>281</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>269</xmin> + <ymin>72</ymin> + <xmax>360</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>26</ymin> + <xmax>320</xmax> + <ymax>174</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/239.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/239.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a3dc1058cc157923dd114cbb6b3fb37f31fab923 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/239.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/239.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/239.xml new file mode 100644 index 0000000000000000000000000000000000000000..c05abbfabfad744e3b77906448753800812b1f86 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/239.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>239.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\239.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>54</ymin> + <xmax>225</xmax> + <ymax>147</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>340</xmin> + <ymin>53</ymin> + <xmax>479</xmax> + <ymax>326</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/24.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/24.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5130b019100de3152f3be049a2fc5cd2379ce384 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/24.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/24.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/24.xml new file mode 100644 index 0000000000000000000000000000000000000000..ebbeef64420c6fc0164f424155052c4bf7820636 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/24.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>24.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\24.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>34</xmin> + <ymin>65</ymin> + <xmax>319</xmax> + <ymax>474</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/240.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/240.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ac4d431210e725dd960957978cd7692581c29574 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/240.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/240.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/240.xml new file mode 100644 index 0000000000000000000000000000000000000000..3b707f184b432f9c9f8fbb8030ed52ded558b84c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/240.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>240.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\240.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>117</xmin> + <ymin>71</ymin> + <xmax>187</xmax> + <ymax>185</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/241.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/241.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4e037b74457a8fb282a17d57a6d1a899174037fd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/241.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/241.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/241.xml new file mode 100644 index 0000000000000000000000000000000000000000..3b3992d4cb4d1bbd644f4999d8f51037c63ba0c5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/241.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>241.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\241.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>75</xmin> + <ymin>44</ymin> + <xmax>138</xmax> + <ymax>133</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>162</ymin> + <xmax>357</xmax> + <ymax>282</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/242.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/242.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b040bf209944dcc3185df1fbf1103dc3783b20ca Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/242.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/242.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/242.xml new file mode 100644 index 0000000000000000000000000000000000000000..7c184931388544e153ce3c688a22bdc2ad1a65c1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/242.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>242.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\242.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>576</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>207</xmin> + <ymin>34</ymin> + <xmax>552</xmax> + <ymax>668</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/243.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/243.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f09beff05baf9c3e207e621bd747b66a8481727b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/243.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/243.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/243.xml new file mode 100644 index 0000000000000000000000000000000000000000..004ad9ae2dab2731f3f5fae99b13b907f109fe05 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/243.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>243.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\243.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>209</xmin> + <ymin>30</ymin> + <xmax>315</xmax> + <ymax>226</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>25</xmin> + <ymin>1</ymin> + <xmax>113</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>83</xmin> + <ymin>1</ymin> + <xmax>163</xmax> + <ymax>81</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>262</xmin> + <ymin>114</ymin> + <xmax>410</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>270</xmin> + <ymin>1</ymin> + <xmax>332</xmax> + <ymax>124</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/244.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/244.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dbdbb15c4be11c3ed9d44495e2c18d667f94a986 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/244.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/244.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/244.xml new file mode 100644 index 0000000000000000000000000000000000000000..cc9009d4d839ea3e4a11cd9f476f2560285cd103 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/244.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>244.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\244.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>272</xmin> + <ymin>163</ymin> + <xmax>338</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>212</xmin> + <ymin>175</ymin> + <xmax>271</xmax> + <ymax>264</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>169</xmin> + <ymin>181</ymin> + <xmax>223</xmax> + <ymax>259</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>137</xmin> + <ymin>189</ymin> + <xmax>183</xmax> + <ymax>258</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>194</ymin> + <xmax>145</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>94</xmin> + <ymin>198</ymin> + <xmax>124</xmax> + <ymax>253</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>200</ymin> + <xmax>104</xmax> + <ymax>252</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>68</xmin> + <ymin>203</ymin> + <xmax>89</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>58</xmin> + <ymin>206</ymin> + <xmax>73</xmax> + <ymax>247</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/245.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/245.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6c4cd50a01627e39b03b0607352f62c5c75b3903 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/245.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/245.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/245.xml new file mode 100644 index 0000000000000000000000000000000000000000..1ea01ddec8debf2d735a3f18ea90008c9750d161 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/245.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>245.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\245.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>275</ymin> + <xmax>68</xmax> + <ymax>362</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>72</xmin> + <ymin>286</ymin> + <xmax>124</xmax> + <ymax>358</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>123</xmin> + <ymin>294</ymin> + <xmax>164</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>159</xmin> + <ymin>299</ymin> + <xmax>193</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>190</xmin> + <ymin>302</ymin> + <xmax>215</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>208</xmin> + <ymin>306</ymin> + <xmax>232</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>312</ymin> + <xmax>249</xmax> + <ymax>350</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/246.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/246.jpg new file mode 100644 index 0000000000000000000000000000000000000000..001070d978da9587d07f2dc68a80968adc611569 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/246.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/246.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/246.xml new file mode 100644 index 0000000000000000000000000000000000000000..f9cca2da0d6f09bbe1e46a9fdea5d086b8d00fa9 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/246.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>246.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\246.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>199</ymin> + <xmax>111</xmax> + <ymax>353</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>87</xmin> + <ymin>238</ymin> + <xmax>158</xmax> + <ymax>346</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>138</xmin> + <ymin>252</ymin> + <xmax>184</xmax> + <ymax>340</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>162</xmin> + <ymin>267</ymin> + <xmax>204</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>187</xmin> + <ymin>275</ymin> + <xmax>211</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>210</xmin> + <ymin>287</ymin> + <xmax>225</xmax> + <ymax>335</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/247.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/247.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0c940cbe7c5cd469f3fbb73142fdd486b47526db Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/247.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/247.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/247.xml new file mode 100644 index 0000000000000000000000000000000000000000..151d36129f29ad732edc32b3a72394f32b0d8a39 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/247.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>247.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\247.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>197</xmin> + <ymin>101</ymin> + <xmax>344</xmax> + <ymax>293</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/248.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/248.jpg new file mode 100644 index 0000000000000000000000000000000000000000..95e4cec4f42e35180f89a51ccdc4c6a75e37db54 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/248.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/248.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/248.xml new file mode 100644 index 0000000000000000000000000000000000000000..8a568d3149339cd72a913968fbd12a3c19f04568 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/248.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>248.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\248.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>296</xmin> + <ymin>184</ymin> + <xmax>408</xmax> + <ymax>319</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/249.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/249.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6768d8dc27aca8260bdfc85b2e48c4e4d238df21 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/249.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/249.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/249.xml new file mode 100644 index 0000000000000000000000000000000000000000..a48aa2ca13482356050272461e63b309381ed7a8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/249.xml @@ -0,0 +1,134 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>249.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\249.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>259</ymin> + <xmax>171</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>232</ymin> + <xmax>199</xmax> + <ymax>282</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>213</ymin> + <xmax>216</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>200</ymin> + <xmax>230</xmax> + <ymax>237</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>190</ymin> + <xmax>239</xmax> + <ymax>221</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>183</ymin> + <xmax>246</xmax> + <ymax>211</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>237</xmin> + <ymin>178</ymin> + <xmax>254</xmax> + <ymax>201</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>243</xmin> + <ymin>172</ymin> + <xmax>259</xmax> + <ymax>193</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>256</xmin> + <ymin>162</ymin> + <xmax>266</xmax> + <ymax>181</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>85</xmin> + <ymin>306</ymin> + <xmax>113</xmax> + <ymax>338</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/25.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/25.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5b1541eb462eeb33b26a741d5097004500d5f277 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/25.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/25.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/25.xml new file mode 100644 index 0000000000000000000000000000000000000000..ff99b86d07e94aa8ae0bb50c3c99074a2773dbc1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/25.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>25.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\25.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>989</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>106</xmin> + <ymin>107</ymin> + <xmax>640</xmax> + <ymax>913</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>470</xmin> + <ymin>281</ymin> + <xmax>936</xmax> + <ymax>657</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/250.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/250.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3fc522811442ecdd3fc27f9c956738ce60c76cdf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/250.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/250.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/250.xml new file mode 100644 index 0000000000000000000000000000000000000000..4db7a2b25d00279a3df16b09a64b8228049699c5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/250.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>250.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\250.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>533</width> + <height>651</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>201</ymin> + <xmax>457</xmax> + <ymax>594</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/251.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/251.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9363b12557d4359ace4b4d1a43b18e53bb117846 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/251.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/251.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/251.xml new file mode 100644 index 0000000000000000000000000000000000000000..7fcc8409c4e90d8ad740eb6ce5fa1cdac781c6a1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/251.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>251.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\251.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>353</width> + <height>485</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>56</xmin> + <ymin>3</ymin> + <xmax>292</xmax> + <ymax>445</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/252.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/252.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b8c048bdf1ea5c25b21ab731284d1c2be20f62d6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/252.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/252.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/252.xml new file mode 100644 index 0000000000000000000000000000000000000000..dadb13d259b16ff2a085bd66396e33e467727e9b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/252.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>252.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\252.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>375</width> + <height>458</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>181</xmin> + <ymin>298</ymin> + <xmax>231</xmax> + <ymax>389</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>205</xmin> + <ymin>242</ymin> + <xmax>243</xmax> + <ymax>316</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>247</xmin> + <ymin>205</ymin> + <xmax>279</xmax> + <ymax>266</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>258</xmin> + <ymin>172</ymin> + <xmax>286</xmax> + <ymax>219</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>244</xmin> + <ymin>147</ymin> + <xmax>265</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>198</xmin> + <ymin>128</ymin> + <xmax>222</xmax> + <ymax>158</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>129</ymin> + <xmax>162</xmax> + <ymax>162</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>100</xmin> + <ymin>152</ymin> + <xmax>123</xmax> + <ymax>194</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>84</xmin> + <ymin>180</ymin> + <xmax>112</xmax> + <ymax>234</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/253.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/253.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3a349575a3217e03605fd0c6c71916210011cc43 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/253.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/253.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/253.xml new file mode 100644 index 0000000000000000000000000000000000000000..16c933e2bf71d555361d697b4d5ce3cdb81222c8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/253.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>253.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\253.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>150</xmin> + <ymin>218</ymin> + <xmax>262</xmax> + <ymax>464</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>243</ymin> + <xmax>338</xmax> + <ymax>507</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/254.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/254.jpg new file mode 100644 index 0000000000000000000000000000000000000000..54b18ae28cde2e3d092d00eca0c2d982eb2bac11 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/254.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/254.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/254.xml new file mode 100644 index 0000000000000000000000000000000000000000..42224d1fb8afba80f3b646ea6bc56f12a356caad --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/254.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>254.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\254.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>358</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>29</xmin> + <ymin>108</ymin> + <xmax>423</xmax> + <ymax>309</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/255.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/255.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9f8ee6d4c11cb00f8801d6fecf48e58e470e7c86 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/255.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/255.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/255.xml new file mode 100644 index 0000000000000000000000000000000000000000..e39b53d456ba8157efca896ce47c63537b17c836 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/255.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>255.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\255.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>68</xmin> + <ymin>52</ymin> + <xmax>299</xmax> + <ymax>467</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/26.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/26.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e542081c3d472297955a5e3a74513409c2494ded Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/26.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/26.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/26.xml new file mode 100644 index 0000000000000000000000000000000000000000..21e4685b0b0c520c8a9b3c399189003e0b003557 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/26.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>26.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\26.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>686</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>120</xmin> + <ymin>115</ymin> + <xmax>555</xmax> + <ymax>963</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/27.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/27.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f9b98b3c5bfa0f5bbee41a12a04b8ffa08892dbc Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/27.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/27.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/27.xml new file mode 100644 index 0000000000000000000000000000000000000000..269536d45d00144d322bc0772181ce30b54d0ebc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/27.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>27.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\27.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>602</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>125</ymin> + <xmax>421</xmax> + <ymax>697</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>337</xmin> + <ymin>269</ymin> + <xmax>602</xmax> + <ymax>1023</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>168</xmin> + <ymin>105</ymin> + <xmax>316</xmax> + <ymax>464</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>166</xmin> + <ymin>115</ymin> + <xmax>247</xmax> + <ymax>343</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>48</xmin> + <ymin>74</ymin> + <xmax>124</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>73</ymin> + <xmax>45</xmax> + <ymax>179</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/28.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/28.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fa2c3f401141fd670eada8faf5d31b33e5c77e8c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/28.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/28.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/28.xml new file mode 100644 index 0000000000000000000000000000000000000000..cbd1807eb72ba55ed8fdca85ea4c3ac21ee60edc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/28.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>28.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\28.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>658</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>46</ymin> + <xmax>246</xmax> + <ymax>655</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>42</ymin> + <xmax>265</xmax> + <ymax>562</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>431</xmin> + <ymin>225</ymin> + <xmax>537</xmax> + <ymax>393</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>652</xmin> + <ymin>244</ymin> + <xmax>737</xmax> + <ymax>371</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>813</xmin> + <ymin>260</ymin> + <xmax>894</xmax> + <ymax>362</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>316</xmin> + <ymin>197</ymin> + <xmax>389</xmax> + <ymax>432</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/29.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/29.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7afafddad9203c7f2cd1acd4777edb8161939207 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/29.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/29.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/29.xml new file mode 100644 index 0000000000000000000000000000000000000000..a87ff5cd2153626ebc41d319f3c832a7b08269ee --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/29.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>29.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\29.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>658</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>390</xmin> + <ymin>259</ymin> + <xmax>632</xmax> + <ymax>417</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>806</xmin> + <ymin>256</ymin> + <xmax>895</xmax> + <ymax>361</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>41</ymin> + <xmax>261</xmax> + <ymax>561</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>250</xmin> + <ymin>181</ymin> + <xmax>393</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>711</xmin> + <ymin>251</ymin> + <xmax>788</xmax> + <ymax>365</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/3.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..899a0b2d4fe10b46d0bba0fbdf7ee9743199e52c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/3.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/3.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/3.xml new file mode 100644 index 0000000000000000000000000000000000000000..4c93fbceab56b63b9c500003be55dcd5179ce1ce --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/3.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>3.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\3.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>142</width> + <height>170</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>5</xmin> + <ymin>10</ymin> + <xmax>137</xmax> + <ymax>162</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/30.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/30.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2e9246ea00f85d535b512bfa2d24f048754a3144 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/30.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/30.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/30.xml new file mode 100644 index 0000000000000000000000000000000000000000..7ad1e12f8c1589093df8009ac398dcbc0c9eb609 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/30.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>30.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\30.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>768</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>297</xmax> + <ymax>756</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>48</xmin> + <ymin>1</ymin> + <xmax>352</xmax> + <ymax>523</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>183</xmin> + <ymin>48</ymin> + <xmax>384</xmax> + <ymax>418</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>299</xmin> + <ymin>125</ymin> + <xmax>589</xmax> + <ymax>360</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/31.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/31.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f20e43d431fa9743325fec2bdd151f3eab1ddaf4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/31.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/31.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/31.xml new file mode 100644 index 0000000000000000000000000000000000000000..95ea8048e389114c90ad1f35dd058f2bd85358e1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/31.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>31.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\31.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>19</xmin> + <ymin>32</ymin> + <xmax>261</xmax> + <ymax>309</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>268</xmin> + <ymin>76</ymin> + <xmax>438</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/32.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/32.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1a88a042be91f82216ead3d534222983b5b07fe5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/32.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/32.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/32.xml new file mode 100644 index 0000000000000000000000000000000000000000..0f671931ef4e20b4ce89001337764f5eedb11c20 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/32.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>32.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\32.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>768</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>338</ymin> + <xmax>289</xmax> + <ymax>547</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>229</xmin> + <ymin>393</ymin> + <xmax>473</xmax> + <ymax>594</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>538</xmin> + <ymin>395</ymin> + <xmax>737</xmax> + <ymax>650</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>413</xmin> + <ymin>347</ymin> + <xmax>566</xmax> + <ymax>498</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>650</xmin> + <ymin>341</ymin> + <xmax>800</xmax> + <ymax>466</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/33.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/33.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b9fbe5d2024e13bcecd606c29c13e89403c123d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/33.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/33.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/33.xml new file mode 100644 index 0000000000000000000000000000000000000000..b18fd0d3c5481f088179262b8fbef9fd89a41aec --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/33.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>33.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\33.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>83</xmin> + <ymin>49</ymin> + <xmax>258</xmax> + <ymax>314</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>181</xmin> + <ymin>56</ymin> + <xmax>233</xmax> + <ymax>191</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>60</ymin> + <xmax>250</xmax> + <ymax>147</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>232</xmin> + <ymin>62</ymin> + <xmax>255</xmax> + <ymax>116</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/34.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/34.jpg new file mode 100644 index 0000000000000000000000000000000000000000..19d43722c14bd38d0c451ad9cb4f23fc08a772d2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/34.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/34.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/34.xml new file mode 100644 index 0000000000000000000000000000000000000000..4b39b925cc17d9c9d98fcc47f013148a7056bd25 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/34.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>34.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\34.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>237</xmin> + <ymin>23</ymin> + <xmax>438</xmax> + <ymax>313</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>88</ymin> + <xmax>233</xmax> + <ymax>214</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>110</xmin> + <ymin>113</ymin> + <xmax>166</xmax> + <ymax>189</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>85</xmin> + <ymin>150</ymin> + <xmax>106</xmax> + <ymax>186</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/35.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/35.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1956703b306b7c5937d6a8467a8c88e0cebbabf7 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/35.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/35.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/35.xml new file mode 100644 index 0000000000000000000000000000000000000000..4b6b98479598bb5468aef6531be82c30aa5f8de2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/35.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>35.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\35.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>305</xmin> + <ymin>19</ymin> + <xmax>480</xmax> + <ymax>298</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>150</xmin> + <ymin>175</ymin> + <xmax>212</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>125</xmin> + <ymin>198</ymin> + <xmax>157</xmax> + <ymax>257</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>97</xmin> + <ymin>215</ymin> + <xmax>120</xmax> + <ymax>254</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>86</xmin> + <ymin>219</ymin> + <xmax>101</xmax> + <ymax>254</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>229</ymin> + <xmax>65</xmax> + <ymax>249</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/36.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/36.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a73acd285fd86c8caebfb75425e174519d45cf14 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/36.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/36.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/36.xml new file mode 100644 index 0000000000000000000000000000000000000000..10a88dcb45c48dfcb952ae030b23363ceabe660f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/36.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>36.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\36.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>323</width> + <height>529</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>17</ymin> + <xmax>309</xmax> + <ymax>504</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/37.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/37.jpg new file mode 100644 index 0000000000000000000000000000000000000000..51d6c1901fbca1942b4f6b6c6094c3ece6d1fc31 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/37.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/37.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/37.xml new file mode 100644 index 0000000000000000000000000000000000000000..e9741a2467c31304a3fb39feb5e3a6b029004b29 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/37.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>37.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\37.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>421</width> + <height>407</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>43</xmin> + <ymin>39</ymin> + <xmax>257</xmax> + <ymax>301</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>115</ymin> + <xmax>384</xmax> + <ymax>268</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/38.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/38.jpg new file mode 100644 index 0000000000000000000000000000000000000000..962eab6eb3fbf4fc309c16e02c0266f1c0e9345d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/38.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/38.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/38.xml new file mode 100644 index 0000000000000000000000000000000000000000..05e3e59a73a8ed9ab78048e6b9522cc95f2fd82d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/38.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>38.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\38.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>492</width> + <height>348</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>208</xmin> + <ymin>25</ymin> + <xmax>428</xmax> + <ymax>311</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/39.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/39.jpg new file mode 100644 index 0000000000000000000000000000000000000000..27aa64ebee438e321853a38b800d450ba3a3071c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/39.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/39.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/39.xml new file mode 100644 index 0000000000000000000000000000000000000000..a66d6d4be73f0712cce547d699e0e885348eeae5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/39.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>39.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\39.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>469</width> + <height>368</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>58</xmin> + <ymin>120</ymin> + <xmax>329</xmax> + <ymax>307</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/4.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/4.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8aa37c4a7a12c29419d95a348fc3ea4bdbc33270 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/4.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/4.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/4.xml new file mode 100644 index 0000000000000000000000000000000000000000..6ae7150fa5243bdb61f61c2fc0d7cd3bb73770a2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/4.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>4.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\4.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>381</width> + <height>454</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>14</xmin> + <ymin>25</ymin> + <xmax>365</xmax> + <ymax>432</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/40.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/40.jpg new file mode 100644 index 0000000000000000000000000000000000000000..963bd3acaec85a2c7e7ee23cca4459fba5e84dcf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/40.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/40.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/40.xml new file mode 100644 index 0000000000000000000000000000000000000000..54d5cd8d132225e1425f56d52a92b60c73357d51 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/40.xml @@ -0,0 +1,146 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>40.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\40.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>51</xmin> + <ymin>125</ymin> + <xmax>149</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>147</xmin> + <ymin>108</ymin> + <xmax>230</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>54</xmin> + <ymin>12</ymin> + <xmax>84</xmax> + <ymax>57</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>150</xmin> + <ymin>10</ymin> + <xmax>172</xmax> + <ymax>48</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>8</ymin> + <xmax>241</xmax> + <ymax>43</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>444</xmin> + <ymin>43</ymin> + <xmax>479</xmax> + <ymax>101</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>305</xmin> + <ymin>156</ymin> + <xmax>407</xmax> + <ymax>254</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>275</xmin> + <ymin>10</ymin> + <xmax>293</xmax> + <ymax>38</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>485</xmin> + <ymin>35</ymin> + <xmax>507</xmax> + <ymax>82</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>314</xmin> + <ymin>9</ymin> + <xmax>328</xmax> + <ymax>35</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>354</xmin> + <ymin>9</ymin> + <xmax>368</xmax> + <ymax>33</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/41.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/41.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3c384b8ef14a07741777d8467d0f3f01ea296d92 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/41.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/41.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/41.xml new file mode 100644 index 0000000000000000000000000000000000000000..c49262c9497ef61c6eb8ce92a5ed051d82039973 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/41.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>41.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\41.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>529</width> + <height>327</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>45</xmin> + <ymin>155</ymin> + <xmax>149</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>128</ymin> + <xmax>241</xmax> + <ymax>277</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>228</xmin> + <ymin>106</ymin> + <xmax>311</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>295</xmin> + <ymin>90</ymin> + <xmax>368</xmax> + <ymax>227</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>72</ymin> + <xmax>407</xmax> + <ymax>200</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>381</xmin> + <ymin>61</ymin> + <xmax>444</xmax> + <ymax>184</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>420</xmin> + <ymin>47</ymin> + <xmax>477</xmax> + <ymax>165</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>464</xmin> + <ymin>35</ymin> + <xmax>520</xmax> + <ymax>145</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>496</xmin> + <ymin>22</ymin> + <xmax>529</xmax> + <ymax>123</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/42.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/42.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f4ac7318edb7e8b07d4cc4055d21b9d8040ce91b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/42.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/42.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/42.xml new file mode 100644 index 0000000000000000000000000000000000000000..695e55e16778cb35ea2b99b4b5be45e154091f3e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/42.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>42.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\42.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>66</xmin> + <ymin>11</ymin> + <xmax>293</xmax> + <ymax>492</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/43.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/43.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d06cf0f3ea474fc47341b89f6b18790ce3b2d689 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/43.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/43.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/43.xml new file mode 100644 index 0000000000000000000000000000000000000000..0feb64e1c1383bfefcce73cc193b471ca31805ff --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/43.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>43.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\43.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>126</xmin> + <ymin>267</ymin> + <xmax>139</xmax> + <ymax>285</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>391</xmin> + <ymin>261</ymin> + <xmax>402</xmax> + <ymax>282</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>260</ymin> + <xmax>277</xmax> + <ymax>281</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>194</xmin> + <ymin>261</ymin> + <xmax>208</xmax> + <ymax>282</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/44.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/44.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7b307cc905f9a83e7a709326c0a8806977c764f1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/44.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/44.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/44.xml new file mode 100644 index 0000000000000000000000000000000000000000..24bc004131fd66c71d6b739a48f1e22b89a604d3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/44.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>44.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\44.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>132</xmin> + <ymin>37</ymin> + <xmax>275</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>2</xmin> + <ymin>283</ymin> + <xmax>99</xmax> + <ymax>508</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>1</ymin> + <xmax>187</xmax> + <ymax>95</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/45.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/45.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4c4f5024c87a38fe492c1c3d982da849011adea3 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/45.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/45.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/45.xml new file mode 100644 index 0000000000000000000000000000000000000000..9fcb50f9ca3c734fa55c734247bb72039fb79423 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/45.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>45.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\45.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>594</width> + <height>396</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>256</xmin> + <ymin>264</ymin> + <xmax>308</xmax> + <ymax>347</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>249</ymin> + <xmax>154</xmax> + <ymax>317</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>15</xmin> + <ymin>240</ymin> + <xmax>53</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>507</xmin> + <ymin>283</ymin> + <xmax>573</xmax> + <ymax>391</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>347</xmin> + <ymin>192</ymin> + <xmax>359</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>289</xmin> + <ymin>190</ymin> + <xmax>302</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>102</xmin> + <ymin>194</ymin> + <xmax>111</xmax> + <ymax>206</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/46.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/46.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7ca6552e5e7c57a6c699da7236addae19293c80a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/46.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/46.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/46.xml new file mode 100644 index 0000000000000000000000000000000000000000..04029dac98ce8d36867c69aa932cc8ef5a6da83c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/46.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>46.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\46.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>132</xmin> + <ymin>162</ymin> + <xmax>304</xmax> + <ymax>478</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/47.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/47.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cf705c85041f072f9000e3fef20f3f7989e6bf6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/47.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/47.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/47.xml new file mode 100644 index 0000000000000000000000000000000000000000..3e3aa3d1a0ccc16f7695e16d4739e5028c9a5c5e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/47.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>47.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\47.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>11</ymin> + <xmax>384</xmax> + <ymax>322</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/48.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/48.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eb62e66ad07dd40e16e197f2888339f684f1c72d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/48.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/48.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/48.xml new file mode 100644 index 0000000000000000000000000000000000000000..68b1fdd321847c9d06d4e7e8c343be44866c4465 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/48.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>48.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\48.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>514</width> + <height>333</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>16</xmin> + <ymin>23</ymin> + <xmax>80</xmax> + <ymax>135</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>113</xmin> + <ymin>34</ymin> + <xmax>190</xmax> + <ymax>164</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>375</xmin> + <ymin>90</ymin> + <xmax>506</xmax> + <ymax>291</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>205</xmin> + <ymin>165</ymin> + <xmax>363</xmax> + <ymax>301</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/49.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/49.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7673a3353051954e73afef7ab2a4692fd625a7c8 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/49.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/49.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/49.xml new file mode 100644 index 0000000000000000000000000000000000000000..7a3761ffd47ef6872354eae63391148063096287 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/49.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>49.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\49.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>594</width> + <height>334</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>27</xmin> + <ymin>44</ymin> + <xmax>212</xmax> + <ymax>283</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>369</xmin> + <ymin>9</ymin> + <xmax>589</xmax> + <ymax>292</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/5.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/5.jpg new file mode 100644 index 0000000000000000000000000000000000000000..391a91991b7b15f907cbe9e240943914afc28de9 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/5.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/5.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/5.xml new file mode 100644 index 0000000000000000000000000000000000000000..5b963a42f1c4e195a6b3a367d1566c326ea3f5e6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/5.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>5.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\5.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>5</xmin> + <ymin>38</ymin> + <xmax>336</xmax> + <ymax>478</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/50.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/50.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5de0b10d1627f61e7528d6b5325e3e4733e7b497 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/50.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/50.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/50.xml new file mode 100644 index 0000000000000000000000000000000000000000..c396b6031b259f2cf9a0af8bdef12cd59eb45594 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/50.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>50.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\50.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>53</xmin> + <ymin>47</ymin> + <xmax>259</xmax> + <ymax>456</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/51.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/51.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5727012fa105123957c9e42e4b6ab53a5b9cbf7a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/51.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/51.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/51.xml new file mode 100644 index 0000000000000000000000000000000000000000..16d57f31d918a02bda72df976e45fcce5e519c3a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/51.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>51.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\51.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>594</width> + <height>401</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>378</xmin> + <ymin>246</ymin> + <xmax>411</xmax> + <ymax>286</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>22</xmin> + <ymin>292</ymin> + <xmax>79</xmax> + <ymax>368</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>178</xmin> + <ymin>257</ymin> + <xmax>205</xmax> + <ymax>309</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>113</xmin> + <ymin>263</ymin> + <xmax>145</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>79</xmin> + <ymin>275</ymin> + <xmax>117</xmax> + <ymax>339</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/52.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/52.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5c79c02e9b15f8fabc13d74dc185f0d202bf32bf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/52.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/52.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/52.xml new file mode 100644 index 0000000000000000000000000000000000000000..80a8ffbf2fac7cd8c62660bea200651d6512c30c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/52.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>52.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\52.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>170</width> + <height>106</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>97</xmax> + <ymax>103</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>35</xmin> + <ymin>16</ymin> + <xmax>161</xmax> + <ymax>104</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/53.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/53.jpg new file mode 100644 index 0000000000000000000000000000000000000000..09d260081ed1d3f2288b6e689fb7c0752f4b279f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/53.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/53.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/53.xml new file mode 100644 index 0000000000000000000000000000000000000000..a86fb83d76693f31bba0053ec6e6486359612f54 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/53.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>53.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\53.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>114</width> + <height>170</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>19</ymin> + <xmax>92</xmax> + <ymax>158</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/54.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/54.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6ee6c1d9ca20d6de8cc7a63e66400baebdce72d1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/54.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/54.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/54.xml new file mode 100644 index 0000000000000000000000000000000000000000..7e059368607fb0a24950911c4330ea9ef7128013 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/54.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>54.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\54.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>309</xmin> + <ymin>158</ymin> + <xmax>383</xmax> + <ymax>264</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>13</xmin> + <ymin>161</ymin> + <xmax>85</xmax> + <ymax>264</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>34</xmin> + <ymin>90</ymin> + <xmax>95</xmax> + <ymax>166</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>276</xmin> + <ymin>82</ymin> + <xmax>324</xmax> + <ymax>156</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/55.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/55.jpg new file mode 100644 index 0000000000000000000000000000000000000000..90ef67dca44063a2eaada849f5ecb271bf67f229 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/55.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/55.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/55.xml new file mode 100644 index 0000000000000000000000000000000000000000..870124701ab6dad222cde82a5b397f7ba9df93b3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/55.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>55.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\55.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>44</ymin> + <xmax>355</xmax> + <ymax>286</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>377</xmin> + <ymin>164</ymin> + <xmax>448</xmax> + <ymax>261</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/56.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/56.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3de4d3adc6560de9f1e4a9253330b48ee09d92b1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/56.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/56.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/56.xml new file mode 100644 index 0000000000000000000000000000000000000000..256b78685e7e218cb345c084807faa46516a4a09 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/56.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>56.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\56.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>422</width> + <height>407</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>79</xmin> + <ymin>10</ymin> + <xmax>306</xmax> + <ymax>314</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/57.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/57.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1159b708018d81ac10869de4849a54afe43e0c63 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/57.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/57.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/57.xml new file mode 100644 index 0000000000000000000000000000000000000000..70c7754a80ddad37f42d2c093976b8d357f52bb3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/57.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>57.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\57.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>23</xmin> + <ymin>229</ymin> + <xmax>158</xmax> + <ymax>394</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>190</ymin> + <xmax>267</xmax> + <ymax>307</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>168</ymin> + <xmax>330</xmax> + <ymax>260</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>311</xmin> + <ymin>155</ymin> + <xmax>372</xmax> + <ymax>229</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>355</xmin> + <ymin>145</ymin> + <xmax>401</xmax> + <ymax>208</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>388</xmin> + <ymin>138</ymin> + <xmax>414</xmax> + <ymax>191</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/58.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/58.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9afdc7e3357fb32fb9c75b44399dbea68bbb9dd1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/58.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/58.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/58.xml new file mode 100644 index 0000000000000000000000000000000000000000..d7e5b8a5b216526919367bd777880bcca9c78b82 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/58.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>58.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\58.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>369</width> + <height>464</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>34</xmin> + <ymin>171</ymin> + <xmax>193</xmax> + <ymax>433</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>148</xmin> + <ymin>174</ymin> + <xmax>339</xmax> + <ymax>284</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/59.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/59.jpg new file mode 100644 index 0000000000000000000000000000000000000000..960c455c0a11635108fccdb1a77a675dbc623be5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/59.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/59.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/59.xml new file mode 100644 index 0000000000000000000000000000000000000000..57a3eb5e6d8ed886b287f24400929c36df87820a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/59.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>59.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\59.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>53</xmin> + <ymin>57</ymin> + <xmax>292</xmax> + <ymax>434</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/6.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/6.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a39ba1e368e2a384d4a8a83fcc3eb50bae5005a5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/6.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/6.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/6.xml new file mode 100644 index 0000000000000000000000000000000000000000..30164432ff2f73dbdb5dd172572dc99ea59458e7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/6.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>6.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\6.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>39</ymin> + <xmax>332</xmax> + <ymax>468</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/60.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/60.jpg new file mode 100644 index 0000000000000000000000000000000000000000..87327bce4c2eedb637ace032229ab8a3517e81aa Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/60.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/60.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/60.xml new file mode 100644 index 0000000000000000000000000000000000000000..fd820d8c78151e52d0ffb4fc0bbc1cac9db90e2e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/60.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>60.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\60.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>482</width> + <height>355</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>50</xmin> + <ymin>148</ymin> + <xmax>195</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>212</xmin> + <ymin>109</ymin> + <xmax>317</xmax> + <ymax>235</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>306</xmin> + <ymin>81</ymin> + <xmax>389</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>368</xmin> + <ymin>67</ymin> + <xmax>434</xmax> + <ymax>149</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>422</xmin> + <ymin>54</ymin> + <xmax>468</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>454</xmin> + <ymin>48</ymin> + <xmax>482</xmax> + <ymax>105</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/61.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/61.jpg new file mode 100644 index 0000000000000000000000000000000000000000..86b02e0acffe271cb984dafd06f6137b8a9726bc Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/61.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/61.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/61.xml new file mode 100644 index 0000000000000000000000000000000000000000..234d206c51ad03671c775d091469d1f1a03c1427 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/61.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>61.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\61.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>57</xmin> + <ymin>168</ymin> + <xmax>166</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>125</ymin> + <xmax>143</xmax> + <ymax>225</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>96</xmin> + <ymin>73</ymin> + <xmax>139</xmax> + <ymax>134</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/62.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/62.jpg new file mode 100644 index 0000000000000000000000000000000000000000..db7b81dc3917af4558b09d11029e5ffbd0497828 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/62.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/62.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/62.xml new file mode 100644 index 0000000000000000000000000000000000000000..6c5e86da09fdff2eda112e4ac2dbefe0b21e3aac --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/62.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>62.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\62.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>182</ymin> + <xmax>346</xmax> + <ymax>303</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>189</ymin> + <xmax>223</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>48</xmin> + <ymin>155</ymin> + <xmax>128</xmax> + <ymax>259</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/63.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/63.jpg new file mode 100644 index 0000000000000000000000000000000000000000..60a029dcd62bd5126266adae7ab4d9405daa6ed2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/63.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/63.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/63.xml new file mode 100644 index 0000000000000000000000000000000000000000..8a22ec396b8b851a79249caf1320e387e82e050f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/63.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>63.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\63.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>292</xmin> + <ymin>202</ymin> + <xmax>398</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>168</ymin> + <xmax>222</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>210</ymin> + <xmax>153</xmax> + <ymax>335</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>183</xmin> + <ymin>153</ymin> + <xmax>256</xmax> + <ymax>218</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/64.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/64.jpg new file mode 100644 index 0000000000000000000000000000000000000000..86f5399311c51cc329fb7d8fd103c7a80992930f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/64.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/64.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/64.xml new file mode 100644 index 0000000000000000000000000000000000000000..856ed467912123196397451dcd2a4559c0a84b61 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/64.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>64.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\64.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>26</ymin> + <xmax>254</xmax> + <ymax>178</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>2</xmin> + <ymin>179</ymin> + <xmax>189</xmax> + <ymax>474</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>1</ymin> + <xmax>301</xmax> + <ymax>85</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>286</xmin> + <ymin>1</ymin> + <xmax>322</xmax> + <ymax>43</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/65.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/65.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3ff2198fe242735d5e87fa5b778563d65db8f116 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/65.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/65.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/65.xml new file mode 100644 index 0000000000000000000000000000000000000000..802484edee2522128e25d51cbe357c1673f5f584 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/65.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>65.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\65.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>24</xmin> + <ymin>58</ymin> + <xmax>318</xmax> + <ymax>471</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/66.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/66.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d0cb30d523cc494bb94692e434850f3b15013005 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/66.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/66.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/66.xml new file mode 100644 index 0000000000000000000000000000000000000000..16f99d0bc13f4cb7a6fae51962fdccf12564eee3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/66.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>66.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\66.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>680</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>257</ymin> + <xmax>329</xmax> + <ymax>648</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>649</xmin> + <ymin>239</ymin> + <xmax>922</xmax> + <ymax>621</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/67.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/67.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c94a5d54e91d8d3c16656a67e8ca24f76118ab45 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/67.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/67.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/67.xml new file mode 100644 index 0000000000000000000000000000000000000000..f0843121c0f2f17800fad45f4e84d9280d95d58a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/67.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>67.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\67.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>356</width> + <height>481</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>106</xmin> + <ymin>88</ymin> + <xmax>241</xmax> + <ymax>316</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/68.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/68.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c0cc64b7acfc6533991db4630656471405630760 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/68.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/68.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/68.xml new file mode 100644 index 0000000000000000000000000000000000000000..7cb60fc813748d489aa9e7022bc9f1beb14b4cd2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/68.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>68.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\68.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>221</xmin> + <ymin>110</ymin> + <xmax>259</xmax> + <ymax>179</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/69.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/69.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3fc33a9fc2e82752469d34c91782f850f0eff22a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/69.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/69.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/69.xml new file mode 100644 index 0000000000000000000000000000000000000000..b13e86158c90b864f77db1ff8af3b28c750e8dfc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/69.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>69.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\69.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>28</xmin> + <ymin>30</ymin> + <xmax>240</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>178</xmin> + <ymin>99</ymin> + <xmax>452</xmax> + <ymax>312</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/7.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/7.jpg new file mode 100644 index 0000000000000000000000000000000000000000..55c95a5f157d99f295fd8c7110455a7764e3a1f3 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/7.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/7.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/7.xml new file mode 100644 index 0000000000000000000000000000000000000000..24cdb64b5e9aeeeab9b3272251a371bd210d5955 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/7.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>7.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\7.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>280</xmin> + <ymin>45</ymin> + <xmax>438</xmax> + <ymax>274</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>79</xmin> + <ymin>150</ymin> + <xmax>100</xmax> + <ymax>186</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>167</xmin> + <ymin>154</ymin> + <xmax>187</xmax> + <ymax>184</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>203</xmin> + <ymin>152</ymin> + <xmax>219</xmax> + <ymax>187</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>114</ymin> + <xmax>310</xmax> + <ymax>221</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>245</xmin> + <ymin>137</ymin> + <xmax>269</xmax> + <ymax>201</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>145</ymin> + <xmax>250</xmax> + <ymax>195</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/70.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/70.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dab53d9cf82b01a0387f327cf5657aee5c6cfd57 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/70.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/70.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/70.xml new file mode 100644 index 0000000000000000000000000000000000000000..0f9684ad168cc5b2038e22b2b070e9da5e38feee --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/70.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>70.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\70.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>363</width> + <height>473</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>232</ymin> + <xmax>155</xmax> + <ymax>405</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>247</xmin> + <ymin>72</ymin> + <xmax>323</xmax> + <ymax>223</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>188</xmin> + <ymin>111</ymin> + <xmax>251</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>126</xmin> + <ymin>166</ymin> + <xmax>203</xmax> + <ymax>330</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/71.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/71.jpg new file mode 100644 index 0000000000000000000000000000000000000000..17c71595c09e52093feda39ded6af86e24358b41 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/71.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/71.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/71.xml new file mode 100644 index 0000000000000000000000000000000000000000..64c7bf357912453265f66eb997af4b62b6a32e6f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/71.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>71.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\71.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>412</width> + <height>415</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>69</ymin> + <xmax>373</xmax> + <ymax>393</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>166</ymin> + <xmax>125</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>342</xmin> + <ymin>152</ymin> + <xmax>412</xmax> + <ymax>265</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/72.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/72.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7ca6552e5e7c57a6c699da7236addae19293c80a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/72.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/72.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/72.xml new file mode 100644 index 0000000000000000000000000000000000000000..0d61d6cbdfd581ccfb81b5b97ceffd1645af1d96 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/72.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>72.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\72.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>129</xmin> + <ymin>159</ymin> + <xmax>301</xmax> + <ymax>476</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/73.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/73.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f96929d640efb84c3cce5e2bc250072aea5158be Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/73.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/73.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/73.xml new file mode 100644 index 0000000000000000000000000000000000000000..0f8f8107f3f7eb860d2bee386606af66ba915800 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/73.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>73.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\73.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>604</width> + <height>283</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>268</xmin> + <ymin>113</ymin> + <xmax>315</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>185</xmin> + <ymin>113</ymin> + <xmax>233</xmax> + <ymax>170</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>114</ymin> + <xmax>150</xmax> + <ymax>170</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>15</xmin> + <ymin>114</ymin> + <xmax>65</xmax> + <ymax>170</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>351</xmin> + <ymin>114</ymin> + <xmax>402</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>440</xmin> + <ymin>114</ymin> + <xmax>487</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>528</xmin> + <ymin>116</ymin> + <xmax>575</xmax> + <ymax>171</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/74.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/74.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d42eb9dcfaf5bac9e6e639137ee778a466f3987c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/74.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/74.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/74.xml new file mode 100644 index 0000000000000000000000000000000000000000..6488c5d6052cf3612c807ce9c8a2691c889bedbe --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/74.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>74.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\74.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>50</xmin> + <ymin>1</ymin> + <xmax>183</xmax> + <ymax>188</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>253</xmin> + <ymin>64</ymin> + <xmax>366</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>7</ymin> + <xmax>429</xmax> + <ymax>179</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>127</xmin> + <ymin>99</ymin> + <xmax>259</xmax> + <ymax>335</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>425</xmin> + <ymin>4</ymin> + <xmax>509</xmax> + <ymax>171</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/75.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/75.jpg new file mode 100644 index 0000000000000000000000000000000000000000..57c98cd0ec0b3552619e7ba263564025a7179dda Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/75.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/75.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/75.xml new file mode 100644 index 0000000000000000000000000000000000000000..efa46fc84bf45338d5f506073e56a6f3b19b6ed7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/75.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>75.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\75.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>16</ymin> + <xmax>354</xmax> + <ymax>393</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/76.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/76.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e7cce22d3a2901dff01f473601f3538a4047d5bd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/76.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/76.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/76.xml new file mode 100644 index 0000000000000000000000000000000000000000..63c748a0e852e2fa76d55778d2cd946a5781f3b3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/76.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>76.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\76.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>492</width> + <height>348</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>49</ymin> + <xmax>295</xmax> + <ymax>298</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>216</xmin> + <ymin>81</ymin> + <xmax>399</xmax> + <ymax>271</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/77.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/77.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cadc057f4c36a8585f5d7b90dee4d5cf2945ab1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/77.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/77.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/77.xml new file mode 100644 index 0000000000000000000000000000000000000000..0a2ab193a08b57922c41fff5876dc24c38cfed0b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/77.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>77.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\77.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>387</width> + <height>443</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>8</xmin> + <ymin>1</ymin> + <xmax>378</xmax> + <ymax>441</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/78.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/78.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f5610066fdc2e0127805545d4ead5edf2bc41c93 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/78.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/78.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/78.xml new file mode 100644 index 0000000000000000000000000000000000000000..ca56d792b10f822085cf171a72295f8a66256072 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/78.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>78.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\78.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>138</xmin> + <ymin>164</ymin> + <xmax>306</xmax> + <ymax>457</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>53</xmin> + <ymin>162</ymin> + <xmax>109</xmax> + <ymax>252</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/79.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/79.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ece385097ff446a46bc08c20c02cb28eca2ad2fc Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/79.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/79.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/79.xml new file mode 100644 index 0000000000000000000000000000000000000000..438ff7841bfccfdf4a44f9c9ffac90bf7f0c3bd8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/79.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>79.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\79.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>505</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>317</xmin> + <ymin>106</ymin> + <xmax>435</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>267</xmin> + <ymin>140</ymin> + <xmax>340</xmax> + <ymax>266</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>239</xmin> + <ymin>167</ymin> + <xmax>272</xmax> + <ymax>233</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>419</xmin> + <ymin>164</ymin> + <xmax>470</xmax> + <ymax>253</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/8.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/8.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ddbb595eb4a93591f923c97270bbfbbc9f2a9a35 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/8.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/8.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/8.xml new file mode 100644 index 0000000000000000000000000000000000000000..f0bfc8c54c84f3fe60fafb5dc905943ff5940370 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/8.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>8.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\8.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>332</xmin> + <ymin>52</ymin> + <xmax>460</xmax> + <ymax>295</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>207</xmin> + <ymin>131</ymin> + <xmax>242</xmax> + <ymax>205</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>169</xmin> + <ymin>147</ymin> + <xmax>192</xmax> + <ymax>191</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>155</xmin> + <ymin>155</ymin> + <xmax>169</xmax> + <ymax>183</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>47</xmin> + <ymin>167</ymin> + <xmax>52</xmax> + <ymax>174</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/80.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/80.jpg new file mode 100644 index 0000000000000000000000000000000000000000..169efd966d71d1069cba2818faff14482d8acdf4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/80.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/80.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/80.xml new file mode 100644 index 0000000000000000000000000000000000000000..6fda51997bc8d2cea21b50c137b24bca933c66f8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/80.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>80.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\80.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>366</width> + <height>467</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>98</xmin> + <ymin>211</ymin> + <xmax>182</xmax> + <ymax>357</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>99</xmin> + <ymin>202</ymin> + <xmax>148</xmax> + <ymax>299</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>134</xmin> + <ymin>241</ymin> + <xmax>228</xmax> + <ymax>465</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>108</xmin> + <ymin>195</ymin> + <xmax>133</xmax> + <ymax>249</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/81.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/81.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a4a3efbeec838e054a4bbf4a041fdbd90cb9f417 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/81.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/81.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/81.xml new file mode 100644 index 0000000000000000000000000000000000000000..0c4bb3847fb79e9c08f6ecca23529f971d20e66e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/81.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>81.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\81.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>78</xmin> + <ymin>55</ymin> + <xmax>260</xmax> + <ymax>308</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>121</ymin> + <xmax>356</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>233</xmin> + <ymin>180</ymin> + <xmax>278</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>43</xmin> + <ymin>160</ymin> + <xmax>123</xmax> + <ymax>253</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/82.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/82.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eb62e66ad07dd40e16e197f2888339f684f1c72d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/82.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/82.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/82.xml new file mode 100644 index 0000000000000000000000000000000000000000..08e829f79ce8bd927ea31c698b72a3efa73b7ffa --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/82.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>82.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\82.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>514</width> + <height>333</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>33</ymin> + <xmax>191</xmax> + <ymax>163</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>13</xmin> + <ymin>25</ymin> + <xmax>83</xmax> + <ymax>136</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>376</xmin> + <ymin>90</ymin> + <xmax>506</xmax> + <ymax>292</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>205</xmin> + <ymin>168</ymin> + <xmax>363</xmax> + <ymax>296</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/83.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/83.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7a255f822981028fbc5df1becf05a10c2df95d60 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/83.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/83.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/83.xml new file mode 100644 index 0000000000000000000000000000000000000000..1797700a59aab71846ac7cf94a08535dfd379470 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/83.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>83.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\83.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>1</ymin> + <xmax>509</xmax> + <ymax>336</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/84.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/84.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d466eac9ac903144d8515cfa3958e2727d9853ac Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/84.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/84.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/84.xml new file mode 100644 index 0000000000000000000000000000000000000000..b55dd0d3ef3f0e9d7c24aa9be7b8417fb256779d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/84.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>84.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\84.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>192</xmin> + <ymin>189</ymin> + <xmax>333</xmax> + <ymax>325</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/85.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/85.jpg new file mode 100644 index 0000000000000000000000000000000000000000..710f6b99d04e7999f40c2604335368d870ca9fed Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/85.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/85.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/85.xml new file mode 100644 index 0000000000000000000000000000000000000000..2b14df2b422c4309989d3315e635809905275f8e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/85.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>85.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\85.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>146</xmin> + <ymin>71</ymin> + <xmax>228</xmax> + <ymax>215</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>294</xmin> + <ymin>28</ymin> + <xmax>407</xmax> + <ymax>187</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>38</xmin> + <ymin>109</ymin> + <xmax>114</xmax> + <ymax>232</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>408</xmin> + <ymin>73</ymin> + <xmax>497</xmax> + <ymax>222</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/86.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/86.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9556b6df8396bb1c8197bca623854c38893bd437 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/86.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/86.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/86.xml new file mode 100644 index 0000000000000000000000000000000000000000..1c4e504ab35cd39b5812c65a351236812066c7ef --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/86.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>86.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\86.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>193</xmin> + <ymin>12</ymin> + <xmax>457</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/87.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/87.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fba51bade931d2fdff72e4ae76544e8ebf4f89f5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/87.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/87.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/87.xml new file mode 100644 index 0000000000000000000000000000000000000000..0648a0c8b0f96d2381e2cc2b3fd1904ce05da10f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/87.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>87.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\87.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>159</xmin> + <ymin>223</ymin> + <xmax>287</xmax> + <ymax>454</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>40</ymin> + <xmax>77</xmax> + <ymax>91</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>114</xmin> + <ymin>5</ymin> + <xmax>143</xmax> + <ymax>43</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>4</ymin> + <xmax>178</xmax> + <ymax>25</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/88.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/88.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c6bbd2fde51c2b43fcc08de769a93ed3d632152 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/88.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/88.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/88.xml new file mode 100644 index 0000000000000000000000000000000000000000..f61101ba72552659d6c4480315f3c96bf656c086 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/88.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>88.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\88.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>52</ymin> + <xmax>106</xmax> + <ymax>355</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>204</xmin> + <ymin>125</ymin> + <xmax>234</xmax> + <ymax>193</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>139</ymin> + <xmax>257</xmax> + <ymax>180</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>145</ymin> + <xmax>261</xmax> + <ymax>170</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/89.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/89.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f4ac7318edb7e8b07d4cc4055d21b9d8040ce91b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/89.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/89.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/89.xml new file mode 100644 index 0000000000000000000000000000000000000000..b953d1ecb6ff011c9f2ade1f3ac49ab87e56a7cd --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/89.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>89.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\89.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>62</xmin> + <ymin>10</ymin> + <xmax>291</xmax> + <ymax>492</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/9.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/9.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5ea3555212980a9a5e49999f6e94c863ba876f05 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/9.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/9.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/9.xml new file mode 100644 index 0000000000000000000000000000000000000000..fd785042d0bb01466c4f88da84cf1199d672ef50 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/9.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>9.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\9.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>359</xmin> + <ymin>94</ymin> + <xmax>484</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>276</xmin> + <ymin>104</ymin> + <xmax>362</xmax> + <ymax>257</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>120</xmin> + <ymin>168</ymin> + <xmax>302</xmax> + <ymax>293</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/90.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/90.jpg new file mode 100644 index 0000000000000000000000000000000000000000..18b17914904fc0e94e8f8109496f700d92503a56 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/90.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/90.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/90.xml new file mode 100644 index 0000000000000000000000000000000000000000..e40077788f69f2e374503b6d5d0bea7abaec493e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/90.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>90.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\90.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>535</width> + <height>322</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>220</xmin> + <ymin>203</ymin> + <xmax>258</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>213</ymin> + <xmax>135</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>70</xmin> + <ymin>203</ymin> + <xmax>103</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>213</ymin> + <xmax>30</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>177</ymin> + <xmax>359</xmax> + <ymax>261</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>396</xmin> + <ymin>221</ymin> + <xmax>415</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>458</xmin> + <ymin>224</ymin> + <xmax>470</xmax> + <ymax>241</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/91.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/91.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b8cfdaf0c1eeccad0a85f8e139357f77e1e044ee Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/91.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/91.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/91.xml new file mode 100644 index 0000000000000000000000000000000000000000..84472c691496745cc5faab9a0176fa1f32bbff79 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/91.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>91.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\91.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>553</width> + <height>311</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>148</xmin> + <ymin>27</ymin> + <xmax>262</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>1</ymin> + <xmax>350</xmax> + <ymax>137</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>122</xmax> + <ymax>88</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/92.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/92.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aa8b6063eb577fa9456e9252b8d5bd66ce588ad0 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/92.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/92.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/92.xml new file mode 100644 index 0000000000000000000000000000000000000000..f7f18b524196b3a3caea2cbb6998a95ee8cf8ad7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/92.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>92.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\92.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>190</ymin> + <xmax>223</xmax> + <ymax>389</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/93.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/93.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b9e54e70e62c21919d4fed814a885f47e4f0b4d5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/93.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/93.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/93.xml new file mode 100644 index 0000000000000000000000000000000000000000..3805ae278700271f60d861a76293f88457c2e235 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/93.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>93.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\93.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>91</xmin> + <ymin>39</ymin> + <xmax>178</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>3</xmin> + <ymin>28</ymin> + <xmax>76</xmax> + <ymax>128</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>223</xmin> + <ymin>60</ymin> + <xmax>327</xmax> + <ymax>210</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>259</xmin> + <ymin>4</ymin> + <xmax>290</xmax> + <ymax>53</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/94.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/94.jpg new file mode 100644 index 0000000000000000000000000000000000000000..98a8d510dd4ddd4de3aa82558e83072c74b1dfed Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/94.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/94.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/94.xml new file mode 100644 index 0000000000000000000000000000000000000000..7337dca0b4b3370976e3e7227bb8778a8b687e5f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/94.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>94.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\94.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>24</ymin> + <xmax>397</xmax> + <ymax>294</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>100</ymin> + <xmax>183</xmax> + <ymax>188</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>111</xmin> + <ymin>120</ymin> + <xmax>138</xmax> + <ymax>167</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>101</xmin> + <ymin>125</ymin> + <xmax>122</xmax> + <ymax>156</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/95.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/95.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eed8aac79f979ff1b531ece250df243e668d6cc6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/95.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/95.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/95.xml new file mode 100644 index 0000000000000000000000000000000000000000..c29900471df0f112799cada8017beefbc06bb433 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/95.xml @@ -0,0 +1,110 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>95.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\95.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>510</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>312</xmin> + <ymin>168</ymin> + <xmax>402</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>430</xmin> + <ymin>23</ymin> + <xmax>462</xmax> + <ymax>75</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>366</xmin> + <ymin>22</ymin> + <xmax>399</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>311</xmin> + <ymin>23</ymin> + <xmax>341</xmax> + <ymax>75</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>292</xmin> + <ymin>117</ymin> + <xmax>366</xmax> + <ymax>248</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>280</xmin> + <ymin>92</ymin> + <xmax>333</xmax> + <ymax>202</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>16</ymin> + <xmax>155</xmax> + <ymax>65</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>16</ymin> + <xmax>106</xmax> + <ymax>66</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/96.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/96.jpg new file mode 100644 index 0000000000000000000000000000000000000000..92f76386f69f98b22d2f1b83e534a5e0e307dd56 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/96.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/96.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/96.xml new file mode 100644 index 0000000000000000000000000000000000000000..23a5390244b0c27ab51f5126142e283bd16b3850 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/96.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>96.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\96.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>505</width> + <height>342</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>317</xmin> + <ymin>113</ymin> + <xmax>373</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>94</ymin> + <xmax>255</xmax> + <ymax>176</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>183</ymin> + <xmax>421</xmax> + <ymax>320</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>263</xmin> + <ymin>96</ymin> + <xmax>289</xmax> + <ymax>137</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/97.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/97.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a8e9cdc28f8f8d7852f781f913b0adfc3fda53ce Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/97.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/97.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/97.xml new file mode 100644 index 0000000000000000000000000000000000000000..3c2c10de8201fd621b1d60bd819d4c7c097c8296 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/97.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>97.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\97.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>432</width> + <height>400</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>97</xmin> + <ymin>1</ymin> + <xmax>166</xmax> + <ymax>108</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/98.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/98.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e03c9664414ee18aec9e61db6d64d80e2bb6c3a2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/98.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/98.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/98.xml new file mode 100644 index 0000000000000000000000000000000000000000..8e096381babb4e30abbbb42573548353f5cfa28d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/98.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>98.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\98.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>179</xmin> + <ymin>43</ymin> + <xmax>255</xmax> + <ymax>167</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/99.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/99.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7a810e26f4e31ca7dcac781532854e5ca0e3c112 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/99.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/99.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/99.xml new file mode 100644 index 0000000000000000000000000000000000000000..fcae8467e04e5d6e324cd8b075ab9e0affe9c2e5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/test/99.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>99.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\99.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>476</width> + <height>362</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>201</xmin> + <ymin>170</ymin> + <xmax>294</xmax> + <ymax>330</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>156</ymin> + <xmax>306</xmax> + <ymax>297</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>266</xmin> + <ymin>139</ymin> + <xmax>342</xmax> + <ymax>265</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>128</ymin> + <xmax>370</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>328</xmin> + <ymin>117</ymin> + <xmax>388</xmax> + <ymax>217</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>372</xmin> + <ymin>101</ymin> + <xmax>421</xmax> + <ymax>186</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/1.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..01ebe69cad036a034263da538170207c0e9c6ce4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/1.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/1.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/1.xml new file mode 100644 index 0000000000000000000000000000000000000000..d159c342a9eff91ecfc2b2bff46ab2af8237db2f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/1.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>1.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\1.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>112</xmin> + <ymin>35</ymin> + <xmax>309</xmax> + <ymax>327</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/10.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/10.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a02e00027b0ae41f3f9ba675604cd3ad057d2ace Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/10.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/10.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/10.xml new file mode 100644 index 0000000000000000000000000000000000000000..97cce271f9014d863bade26e13d8ffe88d572943 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/10.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>10.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\10.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>248</xmin> + <ymin>39</ymin> + <xmax>436</xmax> + <ymax>328</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/100.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/100.jpg new file mode 100644 index 0000000000000000000000000000000000000000..80c8338e7769becad871547d903d316ff4626a90 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/100.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/100.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/100.xml new file mode 100644 index 0000000000000000000000000000000000000000..a4f1e281d26fbb19a991c5b4a2aec1439a86652f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/100.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>100.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\100.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>66</ymin> + <xmax>229</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>197</xmin> + <ymin>73</ymin> + <xmax>312</xmax> + <ymax>248</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>323</xmin> + <ymin>76</ymin> + <xmax>387</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>174</xmin> + <ymin>80</ymin> + <xmax>243</xmax> + <ymax>201</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/101.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/101.jpg new file mode 100644 index 0000000000000000000000000000000000000000..59bed827780f4c68a9e708dacacdf257cb0a129f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/101.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/101.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/101.xml new file mode 100644 index 0000000000000000000000000000000000000000..958c11046fa5c40a05c221f6776edf732e33ef6a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/101.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>101.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\101.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>336</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>242</xmin> + <ymin>383</ymin> + <xmax>267</xmax> + <ymax>436</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>377</ymin> + <xmax>213</xmax> + <ymax>437</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>381</ymin> + <xmax>143</xmax> + <ymax>434</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>32</xmin> + <ymin>378</ymin> + <xmax>73</xmax> + <ymax>436</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/102.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/102.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eecc32834e0367d99fbee310b49f4a50dfe5505f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/102.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/102.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/102.xml new file mode 100644 index 0000000000000000000000000000000000000000..0b575db6936b0321e789d26d19ac36ba7a6ff930 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/102.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>102.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\102.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>190</xmin> + <ymin>275</ymin> + <xmax>295</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>212</xmin> + <ymin>260</ymin> + <xmax>297</xmax> + <ymax>384</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>234</xmin> + <ymin>234</ymin> + <xmax>305</xmax> + <ymax>345</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>226</ymin> + <xmax>324</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>283</xmin> + <ymin>214</ymin> + <xmax>326</xmax> + <ymax>289</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/103.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/103.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ee5237156bfe91c2ca8d3b9befc3cc21ac68fcef Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/103.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/103.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/103.xml new file mode 100644 index 0000000000000000000000000000000000000000..c717ab0e7d044d5ff6b1ef6360c90f5f50017f4a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/103.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>103.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\103.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>525</width> + <height>329</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>124</xmin> + <ymin>127</ymin> + <xmax>228</xmax> + <ymax>296</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>69</ymin> + <xmax>93</xmax> + <ymax>194</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>36</ymin> + <xmax>321</xmax> + <ymax>145</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>423</xmin> + <ymin>81</ymin> + <xmax>519</xmax> + <ymax>223</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/104.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/104.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3852ad3e3fea4f14901a042cf27b8735d996fb66 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/104.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/104.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/104.xml new file mode 100644 index 0000000000000000000000000000000000000000..1c2a4ab2cd64de1abb20dbe9000820543b202a39 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/104.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>104.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\104.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>449</width> + <height>382</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>127</xmin> + <ymin>71</ymin> + <xmax>261</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>70</xmin> + <ymin>96</ymin> + <xmax>168</xmax> + <ymax>288</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>281</xmin> + <ymin>31</ymin> + <xmax>449</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>87</ymin> + <xmax>350</xmax> + <ymax>289</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/105.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/105.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b4f6c262b920a13fb34a72919827d7a23a7d931f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/105.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/105.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/105.xml new file mode 100644 index 0000000000000000000000000000000000000000..b19e2dba6aef0ea08aa7a2701e7dd202bf9a830b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/105.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>105.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\105.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>445</width> + <height>594</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>57</ymin> + <xmax>182</xmax> + <ymax>569</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>44</xmin> + <ymin>53</ymin> + <xmax>237</xmax> + <ymax>479</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>133</xmin> + <ymin>66</ymin> + <xmax>296</xmax> + <ymax>409</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>204</xmin> + <ymin>62</ymin> + <xmax>333</xmax> + <ymax>364</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>277</xmin> + <ymin>43</ymin> + <xmax>397</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>330</xmin> + <ymin>33</ymin> + <xmax>429</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/106.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/106.jpg new file mode 100644 index 0000000000000000000000000000000000000000..90f1137c3fa01883e90e2e3a1aced2834b8a3621 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/106.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/106.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/106.xml new file mode 100644 index 0000000000000000000000000000000000000000..e0d0731395371c618affdf81c108809c4e1ad1fb --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/106.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>106.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\106.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>170</width> + <height>108</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>5</xmin> + <ymin>23</ymin> + <xmax>102</xmax> + <ymax>86</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/107.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/107.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cd6dc6f32e806e34f485db5b2874f1b6997c1635 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/107.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/107.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/107.xml new file mode 100644 index 0000000000000000000000000000000000000000..7df09c28143339caef9663afa46044eacf8aec12 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/107.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>107.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\107.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>493</width> + <height>594</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>224</ymin> + <xmax>316</xmax> + <ymax>441</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/108.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/108.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d42fdba9fc565cb19b93e68e3b9a7e249b384edd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/108.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/108.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/108.xml new file mode 100644 index 0000000000000000000000000000000000000000..fd46a3df4dea17af6e9cc0341e47b4caa4151dfe --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/108.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>108.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\108.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>395</width> + <height>594</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>49</xmin> + <ymin>37</ymin> + <xmax>353</xmax> + <ymax>587</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/109.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/109.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2f0d11ebd8ff59aad8619347acf3b1193a388f45 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/109.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/109.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/109.xml new file mode 100644 index 0000000000000000000000000000000000000000..7c8b5113f509fd1910898a775309dbd7e37b5a93 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/109.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>109.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\109.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>298</xmin> + <ymin>224</ymin> + <xmax>333</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>246</xmin> + <ymin>225</ymin> + <xmax>275</xmax> + <ymax>274</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>224</ymin> + <xmax>219</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>134</xmin> + <ymin>226</ymin> + <xmax>168</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>348</xmin> + <ymin>226</ymin> + <xmax>377</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>379</xmin> + <ymin>226</ymin> + <xmax>407</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>99</xmin> + <ymin>225</ymin> + <xmax>131</xmax> + <ymax>267</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/11.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/11.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d4587717f7889bca35ef1967bd6a750dcff60a58 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/11.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/11.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/11.xml new file mode 100644 index 0000000000000000000000000000000000000000..4f2ab8385285dd4e1750c7607e44353d17e93df8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/11.xml @@ -0,0 +1,134 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>11.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\11.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>400</xmin> + <ymin>20</ymin> + <xmax>508</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>294</xmin> + <ymin>19</ymin> + <xmax>405</xmax> + <ymax>205</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>226</xmin> + <ymin>18</ymin> + <xmax>312</xmax> + <ymax>172</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>164</xmin> + <ymin>15</ymin> + <xmax>243</xmax> + <ymax>148</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>12</ymin> + <xmax>172</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>84</xmin> + <ymin>13</ymin> + <xmax>135</xmax> + <ymax>114</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>58</xmin> + <ymin>11</ymin> + <xmax>99</xmax> + <ymax>102</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>310</xmin> + <ymin>7</ymin> + <xmax>341</xmax> + <ymax>64</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>423</xmin> + <ymin>8</ymin> + <xmax>464</xmax> + <ymax>79</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>8</ymin> + <xmax>194</xmax> + <ymax>46</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/110.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/110.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4b646a06ec36ecfa82aa3e6f5b1edebe9af803c7 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/110.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/110.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/110.xml new file mode 100644 index 0000000000000000000000000000000000000000..ca3674f25b2a0174db035fe033d5cf1191c0bf64 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/110.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>110.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\110.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>413</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>61</ymin> + <xmax>269</xmax> + <ymax>324</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/111.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/111.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a4396847afc3922ec74260655a5147bd036332bc Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/111.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/111.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/111.xml new file mode 100644 index 0000000000000000000000000000000000000000..c193e113c287d37b2e3e40ae61d3e357e2c7b69e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/111.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>111.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\111.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>18</ymin> + <xmax>148</xmax> + <ymax>270</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/112.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/112.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aea7e0c07f1233fbd8234f66cb8eec86e463b745 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/112.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/112.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/112.xml new file mode 100644 index 0000000000000000000000000000000000000000..6b5ae328e4255250e9da0f97637d182e5bdaa2dd --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/112.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>112.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\112.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>233</xmin> + <ymin>186</ymin> + <xmax>303</xmax> + <ymax>304</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>31</xmin> + <ymin>194</ymin> + <xmax>108</xmax> + <ymax>312</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/113.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/113.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8a620706850e254cbba0f18b660ce4cf018d6ecd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/113.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/113.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/113.xml new file mode 100644 index 0000000000000000000000000000000000000000..f215a8926395304615b57553496ff2916527559e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/113.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>113.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\113.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>166</xmin> + <ymin>210</ymin> + <xmax>206</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>212</ymin> + <xmax>95</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/114.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/114.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7876fa36c5549296476537ae24151b473365dde1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/114.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/114.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/114.xml new file mode 100644 index 0000000000000000000000000000000000000000..63c7af1c30678797a8487a0db6c79f503546bbf2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/114.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>114.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\114.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>113</xmin> + <ymin>207</ymin> + <xmax>280</xmax> + <ymax>461</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/115.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/115.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f30c3a3e24cc899948e634351742c76762aef97f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/115.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/115.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/115.xml new file mode 100644 index 0000000000000000000000000000000000000000..bf71ccf9a473f81f5cb5cd4938f212e8ddfbd312 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/115.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>115.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\115.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>384</xmin> + <ymin>235</ymin> + <xmax>439</xmax> + <ymax>316</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>459</xmin> + <ymin>234</ymin> + <xmax>507</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>213</ymin> + <xmax>197</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>194</ymin> + <xmax>61</xmax> + <ymax>230</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>144</xmin> + <ymin>209</ymin> + <xmax>173</xmax> + <ymax>259</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/116.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/116.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0b1a61b2f03768f49e4f1662b6d490d579dfd756 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/116.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/116.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/116.xml new file mode 100644 index 0000000000000000000000000000000000000000..ccb5344abb84b37663afcb63de06581f18f280e3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/116.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>116.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\116.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>412</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>193</xmin> + <ymin>216</ymin> + <xmax>281</xmax> + <ymax>397</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>139</xmin> + <ymin>183</ymin> + <xmax>217</xmax> + <ymax>331</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>245</xmin> + <ymin>138</ymin> + <xmax>334</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>132</xmin> + <ymin>117</ymin> + <xmax>186</xmax> + <ymax>236</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>188</xmin> + <ymin>114</ymin> + <xmax>241</xmax> + <ymax>210</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/117.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/117.jpg new file mode 100644 index 0000000000000000000000000000000000000000..929b1e3835c003981a2c85723d6c10655584dc11 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/117.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/117.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/117.xml new file mode 100644 index 0000000000000000000000000000000000000000..2f72f24c9191dcead939676baa69cd3f7f328c9b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/117.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>117.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\117.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>156</xmin> + <ymin>83</ymin> + <xmax>255</xmax> + <ymax>278</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>82</xmin> + <ymin>36</ymin> + <xmax>170</xmax> + <ymax>206</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>256</xmin> + <ymin>74</ymin> + <xmax>359</xmax> + <ymax>251</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>158</xmin> + <ymin>14</ymin> + <xmax>241</xmax> + <ymax>160</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>246</xmin> + <ymin>28</ymin> + <xmax>338</xmax> + <ymax>175</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/118.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/118.jpg new file mode 100644 index 0000000000000000000000000000000000000000..af3dfcff6cdb9b7e9583209cea8216e4938f65ed Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/118.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/118.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/118.xml new file mode 100644 index 0000000000000000000000000000000000000000..68e0cefa006ddf1881ea87bedb7a289fe153eeb3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/118.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>118.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\118.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>665</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>671</xmin> + <ymin>439</ymin> + <xmax>773</xmax> + <ymax>587</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>537</xmin> + <ymin>440</ymin> + <xmax>653</xmax> + <ymax>588</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>346</xmin> + <ymin>442</ymin> + <xmax>457</xmax> + <ymax>572</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>95</xmin> + <ymin>445</ymin> + <xmax>214</xmax> + <ymax>565</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>442</ymin> + <xmax>59</xmax> + <ymax>553</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/119.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/119.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a0495e3be0bd4ff0e0f07906c3a099da8797fed2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/119.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/119.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/119.xml new file mode 100644 index 0000000000000000000000000000000000000000..4f383288670b2a8db0cd41847b974c8dfc09fc78 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/119.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>119.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\119.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>197</ymin> + <xmax>127</xmax> + <ymax>303</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>101</xmin> + <ymin>188</ymin> + <xmax>151</xmax> + <ymax>276</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/12.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/12.jpg new file mode 100644 index 0000000000000000000000000000000000000000..82412f5b9cf30baed42b8bf5095aa5e5c3f15381 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/12.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/12.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/12.xml new file mode 100644 index 0000000000000000000000000000000000000000..9f58bcc29b2a73e0c6219b1587ee49c1d6b9bb4c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/12.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>12.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\12.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>115</ymin> + <xmax>340</xmax> + <ymax>426</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>104</xmin> + <ymin>175</ymin> + <xmax>192</xmax> + <ymax>314</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>74</xmin> + <ymin>196</ymin> + <xmax>118</xmax> + <ymax>289</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/120.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/120.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dbd1b526509aadc7ed5f947cc5ebe6f084aedc1b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/120.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/120.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/120.xml new file mode 100644 index 0000000000000000000000000000000000000000..1c0cab18d7ae5a65a8e117f40bedd15886b4bf49 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/120.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>120.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\120.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>506</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>213</ymin> + <xmax>314</xmax> + <ymax>308</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/121.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/121.jpg new file mode 100644 index 0000000000000000000000000000000000000000..865719aaa22dada261f0bcd2258246e9710535e3 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/121.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/121.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/121.xml new file mode 100644 index 0000000000000000000000000000000000000000..944761234557b7ea96673f2349f6a8b12108ca93 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/121.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>121.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\121.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>84</xmin> + <ymin>150</ymin> + <xmax>175</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>214</xmin> + <ymin>117</ymin> + <xmax>233</xmax> + <ymax>153</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>281</xmin> + <ymin>121</ymin> + <xmax>314</xmax> + <ymax>174</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>259</xmin> + <ymin>117</ymin> + <xmax>283</xmax> + <ymax>159</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>235</xmin> + <ymin>118</ymin> + <xmax>252</xmax> + <ymax>151</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>117</ymin> + <xmax>199</xmax> + <ymax>137</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/122.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/122.jpg new file mode 100644 index 0000000000000000000000000000000000000000..89e170917e0d48164f90581bd1a9aabf691af34e Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/122.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/122.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/122.xml new file mode 100644 index 0000000000000000000000000000000000000000..b9d947a59c2202afa2f9fb04dd505affde1fb881 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/122.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>122.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\122.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>510</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>377</ymin> + <xmax>186</xmax> + <ymax>445</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>251</xmin> + <ymin>357</ymin> + <xmax>263</xmax> + <ymax>392</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/123.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/123.jpg new file mode 100644 index 0000000000000000000000000000000000000000..08bc6f4fc4af17feb909db1b6dd7f2e093d7bdcf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/123.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/123.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/123.xml new file mode 100644 index 0000000000000000000000000000000000000000..0eb8bd7ef2d788a9d84a48dac0cb01ec3e2a1c28 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/123.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>123.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\123.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>51</xmin> + <ymin>44</ymin> + <xmax>123</xmax> + <ymax>240</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/124.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/124.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b3ce2f1217c628809e00db20e5bce24983091e6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/124.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/124.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/124.xml new file mode 100644 index 0000000000000000000000000000000000000000..b5fe822327a216ca72025717584bca76c40d97b1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/124.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>124.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\124.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>125</xmin> + <ymin>259</ymin> + <xmax>225</xmax> + <ymax>397</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/125.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/125.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a361e399665eb15e12d8b0f6ffebcfa8e78836cd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/125.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/125.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/125.xml new file mode 100644 index 0000000000000000000000000000000000000000..245b581fc7f24b23d4a358f830bea9315307d9fc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/125.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>125.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\125.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>195</xmin> + <ymin>93</ymin> + <xmax>309</xmax> + <ymax>264</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/126.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/126.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ae566fa972545bad4b0cafcf8b6eb478c96a63fe Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/126.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/126.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/126.xml new file mode 100644 index 0000000000000000000000000000000000000000..1d15e09d77114e104f70ae17f1e1ccabdc3f98d1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/126.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>126.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\126.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>12</xmin> + <ymin>31</ymin> + <xmax>317</xmax> + <ymax>477</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/127.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/127.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3c384b8ef14a07741777d8467d0f3f01ea296d92 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/127.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/127.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/127.xml new file mode 100644 index 0000000000000000000000000000000000000000..53f02dd33dc696122921082e84b4b2bc94b896b5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/127.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>127.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\127.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>529</width> + <height>327</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>50</xmin> + <ymin>154</ymin> + <xmax>154</xmax> + <ymax>320</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>147</xmin> + <ymin>125</ymin> + <xmax>241</xmax> + <ymax>279</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>225</xmin> + <ymin>104</ymin> + <xmax>312</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>286</xmin> + <ymin>87</ymin> + <xmax>367</xmax> + <ymax>226</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>73</ymin> + <xmax>408</xmax> + <ymax>202</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>379</xmin> + <ymin>59</ymin> + <xmax>445</xmax> + <ymax>185</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>414</xmin> + <ymin>46</ymin> + <xmax>478</xmax> + <ymax>163</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>459</xmin> + <ymin>31</ymin> + <xmax>519</xmax> + <ymax>145</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>497</xmin> + <ymin>21</ymin> + <xmax>529</xmax> + <ymax>127</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/128.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/128.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9f8ee6d4c11cb00f8801d6fecf48e58e470e7c86 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/128.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/128.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/128.xml new file mode 100644 index 0000000000000000000000000000000000000000..fab7b12143c8c8b859dd49a6354cee9bab868c80 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/128.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>128.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\128.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>52</ymin> + <xmax>296</xmax> + <ymax>462</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/129.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/129.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0d6c00d96e51c81f7ee267f53b9eb89720532d1f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/129.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/129.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/129.xml new file mode 100644 index 0000000000000000000000000000000000000000..ad637f0742b7c7f9f8b3d9d7b89c664781a70572 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/129.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>129.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\129.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>314</xmin> + <ymin>202</ymin> + <xmax>386</xmax> + <ymax>318</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>93</xmin> + <ymin>207</ymin> + <xmax>158</xmax> + <ymax>313</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>403</xmin> + <ymin>217</ymin> + <xmax>446</xmax> + <ymax>285</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>276</xmin> + <ymin>215</ymin> + <xmax>322</xmax> + <ymax>291</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>223</ymin> + <xmax>47</xmax> + <ymax>273</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/13.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/13.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dd1bb05d815945a7fffeadabdcf251cf41b577ff Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/13.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/13.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/13.xml new file mode 100644 index 0000000000000000000000000000000000000000..fab6df7a28fc5d5b6c3a24e81fe756167fa26c62 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/13.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>13.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\13.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>233</xmin> + <ymin>132</ymin> + <xmax>374</xmax> + <ymax>368</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>95</ymin> + <xmax>258</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>89</xmin> + <ymin>79</ymin> + <xmax>176</xmax> + <ymax>219</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>33</xmin> + <ymin>65</ymin> + <xmax>108</xmax> + <ymax>183</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/130.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/130.jpg new file mode 100644 index 0000000000000000000000000000000000000000..479508971ee955463799ad75b5feeb321b66e63b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/130.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/130.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/130.xml new file mode 100644 index 0000000000000000000000000000000000000000..9949338f42a422895792c5c8759efe6b463f8c8a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/130.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>130.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\130.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>396</width> + <height>430</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>143</xmin> + <ymin>48</ymin> + <xmax>305</xmax> + <ymax>280</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/131.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/131.jpg new file mode 100644 index 0000000000000000000000000000000000000000..64d169561db4552fbd7ce3af3e8c89ea91a249c0 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/131.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/131.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/131.xml new file mode 100644 index 0000000000000000000000000000000000000000..57720ed77f73671baeeda38413d6433a2e4a450c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/131.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>131.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\131.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>375</width> + <height>458</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>40</ymin> + <xmax>296</xmax> + <ymax>407</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/132.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/132.jpg new file mode 100644 index 0000000000000000000000000000000000000000..91f37aedcc3629db74dae46d6144df4f3e54537e Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/132.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/132.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/132.xml new file mode 100644 index 0000000000000000000000000000000000000000..94d0d12a648cdf7994145766520f81a43f8f7d9b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/132.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>132.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\132.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>63</ymin> + <xmax>198</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>139</ymin> + <xmax>380</xmax> + <ymax>300</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/133.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/133.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3e20f026c2ce8d90c06d48db7e4e1d616e3e2da4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/133.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/133.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/133.xml new file mode 100644 index 0000000000000000000000000000000000000000..286952000d06ca9843d44ac6927b25023ccbbd99 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/133.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>133.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\133.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>9</ymin> + <xmax>343</xmax> + <ymax>399</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/134.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/134.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f88e78bd50d67eacdae68a139e2ebc590614a378 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/134.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/134.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/134.xml new file mode 100644 index 0000000000000000000000000000000000000000..6e85e037a6cbddd243198021b6c5613493aba001 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/134.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>134.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\134.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>87</xmin> + <ymin>6</ymin> + <xmax>331</xmax> + <ymax>409</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/135.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/135.jpg new file mode 100644 index 0000000000000000000000000000000000000000..377db54a5ff54c1a336f0d681539cf3b72d3e477 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/135.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/135.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/135.xml new file mode 100644 index 0000000000000000000000000000000000000000..47ff1be42fc3e7096f279a7e5b6c0be952c624b1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/135.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>135.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\135.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>142</xmin> + <ymin>133</ymin> + <xmax>285</xmax> + <ymax>303</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>323</xmin> + <ymin>84</ymin> + <xmax>443</xmax> + <ymax>213</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>111</ymin> + <xmax>171</xmax> + <ymax>245</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/136.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/136.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9450c66428b75490742f64aa49e9336e647c0cd2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/136.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/136.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/136.xml new file mode 100644 index 0000000000000000000000000000000000000000..deea19282e6f408d6d097797be297c58181f5578 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/136.xml @@ -0,0 +1,110 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>136.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\136.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>837</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>485</xmin> + <ymin>480</ymin> + <xmax>568</xmax> + <ymax>621</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>570</xmin> + <ymin>412</ymin> + <xmax>639</xmax> + <ymax>528</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>644</xmin> + <ymin>361</ymin> + <xmax>704</xmax> + <ymax>451</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>714</xmin> + <ymin>308</ymin> + <xmax>764</xmax> + <ymax>385</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>773</xmin> + <ymin>273</ymin> + <xmax>817</xmax> + <ymax>334</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>615</ymin> + <xmax>390</xmax> + <ymax>848</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>126</xmin> + <ymin>707</ymin> + <xmax>284</xmax> + <ymax>985</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>391</xmin> + <ymin>642</ymin> + <xmax>536</xmax> + <ymax>766</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/137.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/137.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5ea3555212980a9a5e49999f6e94c863ba876f05 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/137.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/137.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/137.xml new file mode 100644 index 0000000000000000000000000000000000000000..5bc04c6a295eeb36113a32e575defe7db9ea83dc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/137.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>137.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\137.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>117</xmin> + <ymin>168</ymin> + <xmax>303</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>349</xmin> + <ymin>90</ymin> + <xmax>492</xmax> + <ymax>297</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>283</xmin> + <ymin>100</ymin> + <xmax>365</xmax> + <ymax>259</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/138.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/138.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5387d06aecc6a705827ea8a41f516adc2a8c0f82 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/138.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/138.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/138.xml new file mode 100644 index 0000000000000000000000000000000000000000..161be36dfd6b0e9ec41456dd28229e5ae5a9aa3f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/138.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>138.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\138.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>381</width> + <height>454</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>20</ymin> + <xmax>367</xmax> + <ymax>434</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/139.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/139.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e229ee1c6fb5049866625ded90073c26df5fbecf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/139.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/139.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/139.xml new file mode 100644 index 0000000000000000000000000000000000000000..3a9b7b1544a11328c9dfb89ea523ad1c8c7cf6de --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/139.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>139.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\139.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>340</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>264</ymin> + <xmax>120</xmax> + <ymax>460</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>4</xmin> + <ymin>251</ymin> + <xmax>55</xmax> + <ymax>385</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>208</xmin> + <ymin>262</ymin> + <xmax>314</xmax> + <ymax>460</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>269</xmin> + <ymin>244</ymin> + <xmax>338</xmax> + <ymax>379</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/14.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/14.jpg new file mode 100644 index 0000000000000000000000000000000000000000..82412f5b9cf30baed42b8bf5095aa5e5c3f15381 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/14.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/14.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/14.xml new file mode 100644 index 0000000000000000000000000000000000000000..ba95eccc852d8f09b42e811e6cfa8410276402e8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/14.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>14.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\14.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>118</xmin> + <ymin>113</ymin> + <xmax>338</xmax> + <ymax>423</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>95</xmin> + <ymin>175</ymin> + <xmax>190</xmax> + <ymax>313</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>78</xmin> + <ymin>196</ymin> + <xmax>120</xmax> + <ymax>283</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/140.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/140.jpg new file mode 100644 index 0000000000000000000000000000000000000000..24c8addfdc85c4cdcad71731689bcdfe00942d12 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/140.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/140.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/140.xml new file mode 100644 index 0000000000000000000000000000000000000000..80e5d6637db504bc0d76836d7136b1569ee4ac43 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/140.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>140.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\140.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>183</xmin> + <ymin>166</ymin> + <xmax>314</xmax> + <ymax>388</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/141.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/141.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5de0b10d1627f61e7528d6b5325e3e4733e7b497 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/141.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/141.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/141.xml new file mode 100644 index 0000000000000000000000000000000000000000..a5a1a653ae50d0e4f05c31bd97a2d3d6a43228ed --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/141.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>141.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\141.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>49</xmin> + <ymin>45</ymin> + <xmax>260</xmax> + <ymax>459</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/142.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/142.jpg new file mode 100644 index 0000000000000000000000000000000000000000..735e21e65353c8cd3b610714239739b08441ccca Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/142.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/142.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/142.xml new file mode 100644 index 0000000000000000000000000000000000000000..362b7d5e41b8420a34ddfd59cd4f31fb6a4a67f7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/142.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>142.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\142.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>291</ymin> + <xmax>192</xmax> + <ymax>369</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/143.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/143.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7ca6552e5e7c57a6c699da7236addae19293c80a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/143.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/143.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/143.xml new file mode 100644 index 0000000000000000000000000000000000000000..cad7584590ab5dc9fb94d7a6a2496ca9f5745b95 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/143.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>143.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\143.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>155</ymin> + <xmax>304</xmax> + <ymax>477</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/144.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/144.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4a94d2310e30f9a89e57c534aec31585b0e581c1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/144.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/144.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/144.xml new file mode 100644 index 0000000000000000000000000000000000000000..457d404573f9d702d11de873691e974b98440eae --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/144.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>144.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\144.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>158</xmin> + <ymin>178</ymin> + <xmax>203</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>339</ymin> + <xmax>230</xmax> + <ymax>416</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>158</xmin> + <ymin>154</ymin> + <xmax>184</xmax> + <ymax>196</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>139</ymin> + <xmax>196</xmax> + <ymax>153</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/145.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/145.jpg new file mode 100644 index 0000000000000000000000000000000000000000..02fb790b1876b308d8e7f3d1ea94f2868543a1be Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/145.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/145.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/145.xml new file mode 100644 index 0000000000000000000000000000000000000000..134a8ba3917ac98619e1e797b1a2cee2ff22b332 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/145.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>145.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\145.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>506</width> + <height>341</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>45</ymin> + <xmax>442</xmax> + <ymax>337</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/146.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/146.jpg new file mode 100644 index 0000000000000000000000000000000000000000..78159f2e458b771b5beb4869ffbedc81385533db Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/146.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/146.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/146.xml new file mode 100644 index 0000000000000000000000000000000000000000..74b85a02752cbdb8feec841ecf1019d5f1e19910 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/146.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>146.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\146.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>336</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>119</ymin> + <xmax>336</xmax> + <ymax>509</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/147.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/147.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7e10982a0c453f90bb81366ff7aa5e1397e2644c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/147.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/147.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/147.xml new file mode 100644 index 0000000000000000000000000000000000000000..482aa8a09094d5941bb6a34274f4fb355a08528b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/147.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>147.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\147.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>347</width> + <height>491</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>126</ymin> + <xmax>240</xmax> + <ymax>450</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/148.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/148.jpg new file mode 100644 index 0000000000000000000000000000000000000000..48cbd9952e14d2b7c7b69e9cf78ec4e1ff8d4a1f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/148.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/148.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/148.xml new file mode 100644 index 0000000000000000000000000000000000000000..bd5eab860bb705b27b17467cb17edaec9c9abcfe --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/148.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>148.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\148.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>10</xmin> + <ymin>16</ymin> + <xmax>175</xmax> + <ymax>327</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>18</ymin> + <xmax>507</xmax> + <ymax>328</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/149.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/149.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3314ed2b67ded8ec1ea2b8ed287e4bac72e75186 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/149.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/149.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/149.xml new file mode 100644 index 0000000000000000000000000000000000000000..cca92371bac194de8c02bf0f9096e1d625a62a31 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/149.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>149.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\149.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>10</xmin> + <ymin>100</ymin> + <xmax>94</xmax> + <ymax>216</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>131</xmin> + <ymin>104</ymin> + <xmax>221</xmax> + <ymax>214</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>483</xmin> + <ymin>140</ymin> + <xmax>509</xmax> + <ymax>212</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/15.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/15.jpg new file mode 100644 index 0000000000000000000000000000000000000000..90ef67dca44063a2eaada849f5ecb271bf67f229 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/15.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/15.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/15.xml new file mode 100644 index 0000000000000000000000000000000000000000..019d4deb362b19a63e57c1c0f8449949b51aea10 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/15.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>15.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\15.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>49</ymin> + <xmax>357</xmax> + <ymax>287</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>381</xmin> + <ymin>166</ymin> + <xmax>449</xmax> + <ymax>263</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/150.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/150.jpg new file mode 100644 index 0000000000000000000000000000000000000000..93b977b1f8b516f4df2a60653e0324ae17ed0788 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/150.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/150.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/150.xml new file mode 100644 index 0000000000000000000000000000000000000000..2995b80b8d861da6272db85aa08ee34553c693f5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/150.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>150.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\150.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>112</xmin> + <ymin>97</ymin> + <xmax>244</xmax> + <ymax>345</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/151.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/151.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d4c00af736330984eaf97ef3f4f868e2e4372562 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/151.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/151.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/151.xml new file mode 100644 index 0000000000000000000000000000000000000000..2034df9012fc38b48bb7dfa3f2bb51240c62716b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/151.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>151.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\151.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>190</xmin> + <ymin>89</ymin> + <xmax>270</xmax> + <ymax>217</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>236</xmin> + <ymin>36</ymin> + <xmax>289</xmax> + <ymax>123</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>244</ymin> + <xmax>146</xmax> + <ymax>359</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>11</ymin> + <xmax>291</xmax> + <ymax>77</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/152.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/152.jpg new file mode 100644 index 0000000000000000000000000000000000000000..06c9fd5df48060c8b4fa6f32683295f5db1eab24 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/152.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/152.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/152.xml new file mode 100644 index 0000000000000000000000000000000000000000..d0171f2627166e579829b798383327e9d0931963 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/152.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>152.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\152.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>274</xmin> + <ymin>57</ymin> + <xmax>391</xmax> + <ymax>196</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/153.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/153.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d54a287026558bd6139804e35315c442c1bbf3bf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/153.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/153.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/153.xml new file mode 100644 index 0000000000000000000000000000000000000000..396945bb8fd7f1780c6c73acb7155eaa7710ac4e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/153.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>153.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\153.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>91</xmin> + <ymin>172</ymin> + <xmax>172</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>319</xmin> + <ymin>174</ymin> + <xmax>422</xmax> + <ymax>333</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>422</xmin> + <ymin>156</ymin> + <xmax>452</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>152</ymin> + <xmax>374</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>487</xmin> + <ymin>156</ymin> + <xmax>509</xmax> + <ymax>204</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/154.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/154.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ad6353f5b23ce13a29e1cf876bf9a745408fde78 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/154.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/154.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/154.xml new file mode 100644 index 0000000000000000000000000000000000000000..2756ff8e2a1174a065188a6337e012b39a2d7889 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/154.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>154.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\154.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>110</xmin> + <ymin>68</ymin> + <xmax>178</xmax> + <ymax>179</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>217</xmin> + <ymin>180</ymin> + <xmax>340</xmax> + <ymax>299</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>135</xmin> + <ymin>143</ymin> + <xmax>224</xmax> + <ymax>244</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/155.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/155.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aef3841892159501ee808847ea22c4e2ad7e09c9 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/155.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/155.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/155.xml new file mode 100644 index 0000000000000000000000000000000000000000..82bc0d357a80d7177d2a19235eddea2f11f8b47b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/155.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>155.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\155.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>120</xmin> + <ymin>67</ymin> + <xmax>222</xmax> + <ymax>253</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>59</ymin> + <xmax>102</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>296</xmin> + <ymin>77</ymin> + <xmax>400</xmax> + <ymax>253</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>74</ymin> + <xmax>479</xmax> + <ymax>260</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/156.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/156.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4d66846e14441b98c2bdc9786b527335a3493e56 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/156.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/156.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/156.xml new file mode 100644 index 0000000000000000000000000000000000000000..80b4b0b170dcf0594ab1c5fb073c9121da2887fc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/156.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>156.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\156.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>340</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>207</xmin> + <ymin>93</ymin> + <xmax>315</xmax> + <ymax>266</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/157.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/157.jpg new file mode 100644 index 0000000000000000000000000000000000000000..091b880b24983c8bd34e3c054d81c47b6cdb5186 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/157.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/157.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/157.xml new file mode 100644 index 0000000000000000000000000000000000000000..c523b4e61c43637dd169408366a01f17565cc314 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/157.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>157.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\157.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>552</width> + <height>312</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>47</xmin> + <ymin>1</ymin> + <xmax>313</xmax> + <ymax>265</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/158.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/158.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2e82f8a498c79dc93f15feeff8ac4c0b48de9f97 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/158.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/158.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/158.xml new file mode 100644 index 0000000000000000000000000000000000000000..dcf256b50a50c21ed6e789b7297dc1884986fca5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/158.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>158.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\158.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1023</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>683</xmin> + <ymin>420</ymin> + <xmax>965</xmax> + <ymax>934</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/159.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/159.jpg new file mode 100644 index 0000000000000000000000000000000000000000..98fa2d3c3473c37f33e43358236fd770137acb2c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/159.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/159.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/159.xml new file mode 100644 index 0000000000000000000000000000000000000000..c72ca86fe18915da04d2312730fdf0d89cf6ba6a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/159.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>159.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\159.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>243</ymin> + <xmax>150</xmax> + <ymax>460</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>184</ymin> + <xmax>237</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>152</ymin> + <xmax>270</xmax> + <ymax>235</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>139</ymin> + <xmax>285</xmax> + <ymax>203</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>128</ymin> + <xmax>300</xmax> + <ymax>180</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>290</xmin> + <ymin>126</ymin> + <xmax>307</xmax> + <ymax>165</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/16.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/16.jpg new file mode 100644 index 0000000000000000000000000000000000000000..703d882532a61c920092776e8fd47f3fd6c6c6e4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/16.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/16.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/16.xml new file mode 100644 index 0000000000000000000000000000000000000000..1d7ea701eadfbe5c49172c2da5e89e8bfb6d2b93 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/16.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>16.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\16.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>101</ymin> + <xmax>215</xmax> + <ymax>332</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/160.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/160.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a010832db78fb36adaa830a736d0fd0d6dcfd2d2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/160.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/160.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/160.xml new file mode 100644 index 0000000000000000000000000000000000000000..088a0165cf948d1d1f5e8cab48e0295fdcb36244 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/160.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>160.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\160.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>147</xmin> + <ymin>7</ymin> + <xmax>258</xmax> + <ymax>161</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/161.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/161.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b5e38a85bfe2c0b588a1a41e5f5b41f4442481b3 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/161.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/161.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/161.xml new file mode 100644 index 0000000000000000000000000000000000000000..4cf83e77f85bfbfbd18a977104831a97931cb6ff --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/161.xml @@ -0,0 +1,254 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>161.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\161.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>125</ymin> + <xmax>321</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>41</xmin> + <ymin>126</ymin> + <xmax>139</xmax> + <ymax>322</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>89</ymin> + <xmax>233</xmax> + <ymax>213</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>25</xmin> + <ymin>89</ymin> + <xmax>74</xmax> + <ymax>213</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>50</ymin> + <xmax>119</xmax> + <ymax>128</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>45</ymin> + <xmax>53</xmax> + <ymax>119</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>394</xmin> + <ymin>121</ymin> + <xmax>508</xmax> + <ymax>308</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>467</xmin> + <ymin>88</ymin> + <xmax>508</xmax> + <ymax>202</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>346</xmin> + <ymin>75</ymin> + <xmax>413</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>269</xmin> + <ymin>66</ymin> + <xmax>320</xmax> + <ymax>162</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>199</xmin> + <ymin>62</ymin> + <xmax>252</xmax> + <ymax>148</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>136</xmin> + <ymin>55</ymin> + <xmax>191</xmax> + <ymax>136</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>19</ymin> + <xmax>136</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>18</ymin> + <xmax>91</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>24</xmin> + <ymin>19</ymin> + <xmax>52</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>22</ymin> + <xmax>256</xmax> + <ymax>72</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>185</xmin> + <ymin>20</ymin> + <xmax>213</xmax> + <ymax>73</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>367</xmin> + <ymin>24</ymin> + <xmax>396</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>413</xmin> + <ymin>23</ymin> + <xmax>448</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>468</xmin> + <ymin>23</ymin> + <xmax>501</xmax> + <ymax>80</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/162.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/162.jpg new file mode 100644 index 0000000000000000000000000000000000000000..505960f9097d1559129a0e12896096a37e93b035 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/162.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/162.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/162.xml new file mode 100644 index 0000000000000000000000000000000000000000..a9a71716e4d3ae0c327b3a79fb905601a9d949ed --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/162.xml @@ -0,0 +1,110 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>162.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\162.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>254</ymin> + <xmax>57</xmax> + <ymax>330</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>254</ymin> + <xmax>102</xmax> + <ymax>332</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>252</ymin> + <xmax>145</xmax> + <ymax>331</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>142</xmin> + <ymin>252</ymin> + <xmax>186</xmax> + <ymax>326</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>249</ymin> + <xmax>227</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>248</ymin> + <xmax>268</xmax> + <ymax>326</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>261</xmin> + <ymin>251</ymin> + <xmax>305</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>300</xmin> + <ymin>250</ymin> + <xmax>338</xmax> + <ymax>321</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/163.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/163.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a3829a87450a952900eec7354185c64654c0a08b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/163.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/163.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/163.xml new file mode 100644 index 0000000000000000000000000000000000000000..bbb8815c44081a3f5f46509800216c10ce99cff7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/163.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>163.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\163.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>153</xmin> + <ymin>404</ymin> + <xmax>194</xmax> + <ymax>486</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>399</ymin> + <xmax>152</xmax> + <ymax>479</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>187</xmin> + <ymin>402</ymin> + <xmax>230</xmax> + <ymax>480</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>213</xmin> + <ymin>401</ymin> + <xmax>251</xmax> + <ymax>470</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>95</xmin> + <ymin>401</ymin> + <xmax>122</xmax> + <ymax>464</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>185</xmin> + <ymin>385</ymin> + <xmax>205</xmax> + <ymax>445</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/164.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/164.jpg new file mode 100644 index 0000000000000000000000000000000000000000..025c84855bc4779cafa1f4ea6a1c31c65953f76c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/164.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/164.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/164.xml new file mode 100644 index 0000000000000000000000000000000000000000..5a62d5b830c0c9e5e7ee205893ed390ad94b3ea3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/164.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>164.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\164.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>201</xmin> + <ymin>144</ymin> + <xmax>331</xmax> + <ymax>406</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/165.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/165.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0ac5ff0e69abdbba1b955797d943e014ad90465c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/165.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/165.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/165.xml new file mode 100644 index 0000000000000000000000000000000000000000..a21a1fc6de49057e86ca36ef62260800b66aafd6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/165.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>165.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\165.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>200</xmin> + <ymin>59</ymin> + <xmax>239</xmax> + <ymax>156</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>90</xmin> + <ymin>175</ymin> + <xmax>162</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>245</xmin> + <ymin>21</ymin> + <xmax>271</xmax> + <ymax>76</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>456</xmin> + <ymin>112</ymin> + <xmax>494</xmax> + <ymax>234</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>50</ymin> + <xmax>426</xmax> + <ymax>131</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>356</xmin> + <ymin>12</ymin> + <xmax>377</xmax> + <ymax>61</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>344</xmin> + <ymin>1</ymin> + <xmax>357</xmax> + <ymax>32</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/166.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/166.jpg new file mode 100644 index 0000000000000000000000000000000000000000..77e5432e7bbb421d9ae0e6da2606cf508d14c3b2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/166.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/166.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/166.xml new file mode 100644 index 0000000000000000000000000000000000000000..c6fe5e9e0ef2e6be4efeb145aadc3a7c25437837 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/166.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>166.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\166.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>32</ymin> + <xmax>396</xmax> + <ymax>243</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/167.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/167.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8a9814e9c9df5572ecf31ef5f206b5753d61253c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/167.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/167.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/167.xml new file mode 100644 index 0000000000000000000000000000000000000000..5494f8e6c259de10b84ac6e6316eb818d701e5f4 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/167.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>167.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\167.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>512</width> + <height>336</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>7</xmin> + <ymin>150</ymin> + <xmax>95</xmax> + <ymax>298</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>136</xmin> + <ymin>152</ymin> + <xmax>205</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>338</xmin> + <ymin>155</ymin> + <xmax>416</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>412</xmin> + <ymin>158</ymin> + <xmax>496</xmax> + <ymax>297</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/168.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/168.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a899503782fe6140e055e4ee5dbfedb0f6569759 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/168.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/168.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/168.xml new file mode 100644 index 0000000000000000000000000000000000000000..ee3ba82bcba8909d3e316f20a573f9dd3b938c52 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/168.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>168.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\168.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>768</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>421</ymin> + <xmax>471</xmax> + <ymax>901</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/169.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/169.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b0d61bf2708201480161ba1fa9dc68f62ffb22c7 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/169.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/169.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/169.xml new file mode 100644 index 0000000000000000000000000000000000000000..a746a6ab81a0f3dc3a075134069c968eb5fda4fc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/169.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>169.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\169.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>304</ymin> + <xmax>174</xmax> + <ymax>474</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>160</xmin> + <ymin>217</ymin> + <xmax>246</xmax> + <ymax>356</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>238</xmin> + <ymin>164</ymin> + <xmax>320</xmax> + <ymax>296</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/17.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/17.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f4ac7318edb7e8b07d4cc4055d21b9d8040ce91b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/17.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/17.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/17.xml new file mode 100644 index 0000000000000000000000000000000000000000..0917b58198ec496f543687e542bc21fee5f174e0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/17.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>17.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\17.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>63</xmin> + <ymin>14</ymin> + <xmax>294</xmax> + <ymax>490</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/170.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/170.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5f40f3a9b42b69d3de097a0156287f1f7e54ab6d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/170.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/170.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/170.xml new file mode 100644 index 0000000000000000000000000000000000000000..93e0899c02040dfe35e4c9bbb47cf8290127bc8a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/170.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>170.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\170.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>237</xmin> + <ymin>169</ymin> + <xmax>296</xmax> + <ymax>283</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/171.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/171.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7226ae6c9ee9f01a6358fb55dffbc1bffdb387f5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/171.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/171.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/171.xml new file mode 100644 index 0000000000000000000000000000000000000000..9fe9e59f7b1d484e8db47f98978f1a4c6dca804c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/171.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>171.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\171.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>140</ymin> + <xmax>336</xmax> + <ymax>413</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/172.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/172.jpg new file mode 100644 index 0000000000000000000000000000000000000000..36364509b598ce31a9a137c4d8f9493577372452 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/172.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/172.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/172.xml new file mode 100644 index 0000000000000000000000000000000000000000..c50e9a089ae8591ba296db14db7561216445147b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/172.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>172.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\172.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>204</xmin> + <ymin>343</ymin> + <xmax>298</xmax> + <ymax>477</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>2</ymin> + <xmax>105</xmax> + <ymax>47</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/173.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/173.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5a98cdbcded6afe7b6bd5ae46962512403335213 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/173.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/173.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/173.xml new file mode 100644 index 0000000000000000000000000000000000000000..ee6b1c23b4ce4d5606f0fd6fcd31d829b23c22ec --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/173.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>173.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\173.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>557</width> + <height>311</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>61</xmin> + <ymin>52</ymin> + <xmax>124</xmax> + <ymax>139</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>413</xmin> + <ymin>45</ymin> + <xmax>474</xmax> + <ymax>131</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/174.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/174.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7e260787f9b2ebe0802eddd07d30e0c0d3195dfa Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/174.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/174.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/174.xml new file mode 100644 index 0000000000000000000000000000000000000000..c48ea16e82e6e32945184b4a124fd199ffbdcc9e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/174.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>174.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\174.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>511</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>232</xmin> + <ymin>226</ymin> + <xmax>308</xmax> + <ymax>334</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>481</xmin> + <ymin>213</ymin> + <xmax>511</xmax> + <ymax>306</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/175.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/175.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9066101cf307fc53ade4cdb318329c85841b8e87 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/175.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/175.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/175.xml new file mode 100644 index 0000000000000000000000000000000000000000..300f112bd22eee858f11f2ce4cd8f4483ae9941d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/175.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>175.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\175.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>100</xmin> + <ymin>223</ymin> + <xmax>263</xmax> + <ymax>439</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>51</xmin> + <ymin>26</ymin> + <xmax>258</xmax> + <ymax>188</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/176.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/176.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4ba75b112680b148634fd2b60ee2994ab231f0fb Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/176.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/176.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/176.xml new file mode 100644 index 0000000000000000000000000000000000000000..b5ff0834e0b3e5b442d87eae4106a92641ede84b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/176.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>176.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\176.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>83</xmin> + <ymin>170</ymin> + <xmax>169</xmax> + <ymax>302</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/177.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/177.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b3746c625648295b70a87f78c2e02a2ace8a52f0 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/177.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/177.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/177.xml new file mode 100644 index 0000000000000000000000000000000000000000..2db0a0aa4944d025381e9c230f64877116ff7e77 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/177.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>177.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\177.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>360</xmin> + <ymin>314</ymin> + <xmax>649</xmax> + <ymax>734</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/178.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/178.jpg new file mode 100644 index 0000000000000000000000000000000000000000..53dbe6ca95812684a7b209e840c9b9d698ae703c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/178.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/178.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/178.xml new file mode 100644 index 0000000000000000000000000000000000000000..5d23130a2887603ed8eb5caaee9298b92a7dd6f1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/178.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>178.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\178.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>371</width> + <height>464</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>232</xmin> + <ymin>235</ymin> + <xmax>347</xmax> + <ymax>416</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/179.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/179.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a8cc559a6c1356a74f5d294f108eee2366467529 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/179.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/179.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/179.xml new file mode 100644 index 0000000000000000000000000000000000000000..bd6fa60952d69400e9a9eabbfd9a21411bd15951 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/179.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>179.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\179.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>512</width> + <height>335</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>198</xmin> + <ymin>204</ymin> + <xmax>279</xmax> + <ymax>333</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>356</xmin> + <ymin>161</ymin> + <xmax>432</xmax> + <ymax>279</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>397</xmin> + <ymin>109</ymin> + <xmax>455</xmax> + <ymax>211</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>375</xmin> + <ymin>48</ymin> + <xmax>420</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>250</xmin> + <ymin>8</ymin> + <xmax>290</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>325</xmin> + <ymin>58</ymin> + <xmax>375</xmax> + <ymax>100</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>29</ymin> + <xmax>197</xmax> + <ymax>97</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>43</xmin> + <ymin>83</ymin> + <xmax>103</xmax> + <ymax>177</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>91</xmin> + <ymin>202</ymin> + <xmax>165</xmax> + <ymax>286</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/18.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/18.jpg new file mode 100644 index 0000000000000000000000000000000000000000..137d4ed358a82804098b3e63ce8f1fcf85124ded Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/18.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/18.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/18.xml new file mode 100644 index 0000000000000000000000000000000000000000..e68fd03950d2b0ce96d1a6c738dfa1b43c73d52e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/18.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>18.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\18.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>82</ymin> + <xmax>164</xmax> + <ymax>499</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>1</ymin> + <xmax>169</xmax> + <ymax>221</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>148</xmin> + <ymin>1</ymin> + <xmax>227</xmax> + <ymax>128</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/180.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/180.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7b5658c234354a15c87f98ee8dd60c36e877fb46 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/180.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/180.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/180.xml new file mode 100644 index 0000000000000000000000000000000000000000..345f2e21caf998cfc9fe9f7767720238915be188 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/180.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>180.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\180.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>326</width> + <height>527</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>27</xmin> + <ymin>209</ymin> + <xmax>154</xmax> + <ymax>481</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/181.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/181.jpg new file mode 100644 index 0000000000000000000000000000000000000000..11e3bb0cdae4e089078f7df2dc97461d72633e76 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/181.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/181.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/181.xml new file mode 100644 index 0000000000000000000000000000000000000000..1cb0ae43293c25570965af86ba919c3e2aaa893b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/181.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>181.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\181.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>156</xmin> + <ymin>366</ymin> + <xmax>201</xmax> + <ymax>463</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>265</xmin> + <ymin>372</ymin> + <xmax>306</xmax> + <ymax>467</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/182.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/182.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cd5978f179400ccb4696ed50c07536c509b9508d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/182.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/182.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/182.xml new file mode 100644 index 0000000000000000000000000000000000000000..3da8b19d8b5d939ef76cabf3acf8c98c3611427d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/182.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>182.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\182.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>175</xmin> + <ymin>42</ymin> + <xmax>292</xmax> + <ymax>277</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/183.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/183.jpg new file mode 100644 index 0000000000000000000000000000000000000000..68aaefaeff0afc8f324d69e56a69cd78986a1d7a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/183.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/183.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/183.xml new file mode 100644 index 0000000000000000000000000000000000000000..d2e7a0d193db3e42bcc0f507bccac9e3d3c25f5c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/183.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>183.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\183.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>344</width> + <height>502</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>151</ymin> + <xmax>282</xmax> + <ymax>426</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/184.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/184.jpg new file mode 100644 index 0000000000000000000000000000000000000000..137d4ed358a82804098b3e63ce8f1fcf85124ded Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/184.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/184.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/184.xml new file mode 100644 index 0000000000000000000000000000000000000000..12c9406e42884d12edac7ee08ae37054a8f4d8d5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/184.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>184.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\184.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>82</ymin> + <xmax>165</xmax> + <ymax>502</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>82</xmin> + <ymin>1</ymin> + <xmax>165</xmax> + <ymax>219</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>151</xmin> + <ymin>1</ymin> + <xmax>225</xmax> + <ymax>129</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/185.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/185.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f825fc5cf9f69c10b9595ad810d20f10ee637680 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/185.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/185.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/185.xml new file mode 100644 index 0000000000000000000000000000000000000000..2ae38611e918f26c577d6d5a55ec633ea7e49f96 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/185.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>185.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\185.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>506</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>251</xmin> + <ymin>152</ymin> + <xmax>302</xmax> + <ymax>235</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>246</xmin> + <ymin>149</ymin> + <xmax>272</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>242</xmin> + <ymin>145</ymin> + <xmax>258</xmax> + <ymax>184</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/186.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/186.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5654cf886f0d44f5f43ee40f9a15683c8a5c0706 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/186.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/186.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/186.xml new file mode 100644 index 0000000000000000000000000000000000000000..1b9caedcfd4b05dd79f03205add860bcbbbb4794 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/186.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>186.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\186.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>205</ymin> + <xmax>284</xmax> + <ymax>423</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/187.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/187.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ec74d13270a513f15c37d09ebb087a75e9555e29 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/187.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/187.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/187.xml new file mode 100644 index 0000000000000000000000000000000000000000..41fac624c56a6863c634e82e4b65467988bad2fb --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/187.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>187.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\187.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>96</xmin> + <ymin>64</ymin> + <xmax>232</xmax> + <ymax>283</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/188.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/188.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f8041c5ea153e8fd9136097da848730b78a06749 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/188.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/188.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/188.xml new file mode 100644 index 0000000000000000000000000000000000000000..86fe7763385afe643821471b39f8de442412e285 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/188.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>188.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\188.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>350</width> + <height>490</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>36</ymin> + <xmax>291</xmax> + <ymax>457</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/189.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/189.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5e309ebc1ea1342283a2d6c35f6cf24fdb3c6b19 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/189.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/189.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/189.xml new file mode 100644 index 0000000000000000000000000000000000000000..331abb6107d0602e667d296443c3b6607dcd758e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/189.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>189.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\189.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>336</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>351</xmin> + <ymin>214</ymin> + <xmax>417</xmax> + <ymax>300</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/19.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/19.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b9fbe5d2024e13bcecd606c29c13e89403c123d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/19.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/19.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/19.xml new file mode 100644 index 0000000000000000000000000000000000000000..9a03aee7b077abf3840bfca95d273e625ff36863 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/19.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>19.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\19.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>48</ymin> + <xmax>258</xmax> + <ymax>314</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>168</xmin> + <ymin>59</ymin> + <xmax>232</xmax> + <ymax>189</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>201</xmin> + <ymin>61</ymin> + <xmax>251</xmax> + <ymax>147</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>224</xmin> + <ymin>63</ymin> + <xmax>255</xmax> + <ymax>116</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/190.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/190.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d2ce68d9b18fdc4d8909ce6debe126ad21ec9238 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/190.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/190.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/190.xml new file mode 100644 index 0000000000000000000000000000000000000000..cfb3760d0a0fce8a8be2782a0a593eef288e78f0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/190.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>190.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\190.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>163</xmin> + <ymin>64</ymin> + <xmax>294</xmax> + <ymax>269</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/191.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/191.jpg new file mode 100644 index 0000000000000000000000000000000000000000..177c061f72d2f47bf448baf52e05fd126ee9e2f9 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/191.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/191.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/191.xml new file mode 100644 index 0000000000000000000000000000000000000000..67436a77eb4983aa4da37b27feebada147c9e6e6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/191.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>191.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\191.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>205</ymin> + <xmax>314</xmax> + <ymax>330</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/192.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/192.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a97bdb190855974ba9c5acded6ce48bf44a68452 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/192.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/192.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/192.xml new file mode 100644 index 0000000000000000000000000000000000000000..929c2f4d3fa28ab750eb31485ae95a3aed8e05f0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/192.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>192.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\192.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>74</xmin> + <ymin>76</ymin> + <xmax>171</xmax> + <ymax>260</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/193.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/193.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9619a5e785f2ae0316a7b08a629529876b266897 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/193.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/193.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/193.xml new file mode 100644 index 0000000000000000000000000000000000000000..e6d4abad87e78d4e9b771f883fec3f22ce068989 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/193.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>193.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\193.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>116</xmin> + <ymin>52</ymin> + <xmax>210</xmax> + <ymax>276</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/194.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/194.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cc34ec1c76bb646ff905916d1ae753683a48068e Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/194.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/194.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/194.xml new file mode 100644 index 0000000000000000000000000000000000000000..5634147d3a799331d03b94a21cfbabbdf869ee5c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/194.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>194.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\194.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>1</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>28</ymin> + <xmax>243</xmax> + <ymax>158</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>267</xmin> + <ymin>150</ymin> + <xmax>359</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>151</xmin> + <ymin>1</ymin> + <xmax>189</xmax> + <ymax>85</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/195.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/195.jpg new file mode 100644 index 0000000000000000000000000000000000000000..efd660f7362b535c03ab26991da95b4626ead170 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/195.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/195.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/195.xml new file mode 100644 index 0000000000000000000000000000000000000000..07914ca283422ac22138fe03f02c0644b962d834 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/195.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>195.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\195.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>133</xmin> + <ymin>102</ymin> + <xmax>235</xmax> + <ymax>257</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/196.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/196.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b61c7543d8887c3422610b9367bc2dd0a2eff32 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/196.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/196.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/196.xml new file mode 100644 index 0000000000000000000000000000000000000000..dce0d9a6d7da98e8ecbd92b5af297b3c8dead642 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/196.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>196.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\196.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>74</xmin> + <ymin>115</ymin> + <xmax>177</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>213</xmin> + <ymin>130</ymin> + <xmax>256</xmax> + <ymax>196</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/197.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/197.jpg new file mode 100644 index 0000000000000000000000000000000000000000..62aed578b6926f876904ba0854cc07c881ba9ab6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/197.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/197.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/197.xml new file mode 100644 index 0000000000000000000000000000000000000000..88b9f33b48426890a95bccf97d48eab8f04303a9 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/197.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>197.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\197.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>184</xmin> + <ymin>63</ymin> + <xmax>289</xmax> + <ymax>256</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/198.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/198.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3d1225e8131b8139e0cc01b501bfb2df90ab5a59 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/198.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/198.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/198.xml new file mode 100644 index 0000000000000000000000000000000000000000..78e9cbbf303b8ac941773990a7fcece877cce0d1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/198.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>198.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\198.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>180</xmin> + <ymin>306</ymin> + <xmax>244</xmax> + <ymax>412</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/199.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/199.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7e10982a0c453f90bb81366ff7aa5e1397e2644c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/199.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/199.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/199.xml new file mode 100644 index 0000000000000000000000000000000000000000..8803d31f786dd0ac7956a86029d9ae971d57930d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/199.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>199.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\199.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>347</width> + <height>491</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>45</xmin> + <ymin>128</ymin> + <xmax>240</xmax> + <ymax>453</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/2.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4020175b16c33a75fa04c4b2644388486a0a7cba Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/2.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/2.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/2.xml new file mode 100644 index 0000000000000000000000000000000000000000..4f130d65a364588d87b526e4cb544e5206e50ec3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/2.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>2.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\2.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>397</width> + <height>432</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>63</xmin> + <ymin>36</ymin> + <xmax>341</xmax> + <ymax>374</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/20.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/20.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9066101cf307fc53ade4cdb318329c85841b8e87 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/20.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/20.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/20.xml new file mode 100644 index 0000000000000000000000000000000000000000..9cf2d551759cd629cfcc0fafd64c93a3cc67cfaa --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/20.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>20.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\20.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>222</ymin> + <xmax>266</xmax> + <ymax>432</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>55</xmin> + <ymin>27</ymin> + <xmax>259</xmax> + <ymax>191</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/200.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/200.jpg new file mode 100644 index 0000000000000000000000000000000000000000..77bf49165b4049c10816316e75f2f33b170f7ad8 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/200.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/200.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/200.xml new file mode 100644 index 0000000000000000000000000000000000000000..f03057c7db1ca714d0a170a4003286424a041eef --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/200.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>200.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\200.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>123</xmin> + <ymin>257</ymin> + <xmax>226</xmax> + <ymax>399</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/201.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/201.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c065130322855e89138fcac64b97ae687d06434 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/201.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/201.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/201.xml new file mode 100644 index 0000000000000000000000000000000000000000..097e67470ec816cc3265961bd71ba480116908bc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/201.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>201.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\201.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>360</xmin> + <ymin>41</ymin> + <xmax>411</xmax> + <ymax>120</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>473</xmin> + <ymin>32</ymin> + <xmax>507</xmax> + <ymax>119</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>306</xmin> + <ymin>37</ymin> + <xmax>350</xmax> + <ymax>107</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>318</xmin> + <ymin>2</ymin> + <xmax>356</xmax> + <ymax>59</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>401</xmin> + <ymin>1</ymin> + <xmax>436</xmax> + <ymax>27</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>296</xmin> + <ymin>22</ymin> + <xmax>312</xmax> + <ymax>88</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/202.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/202.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c15fcad3f347e27c50fe0512002737810a7a2904 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/202.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/202.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/202.xml new file mode 100644 index 0000000000000000000000000000000000000000..6c71d6d8fb6a8e6e330cfe051f5e1708c7517edc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/202.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>202.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\202.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>259</xmin> + <ymin>117</ymin> + <xmax>388</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>365</xmin> + <ymin>149</ymin> + <xmax>509</xmax> + <ymax>339</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/203.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/203.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d245687b65d857ce12138abd7182b8c86b4e0a03 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/203.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/203.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/203.xml new file mode 100644 index 0000000000000000000000000000000000000000..d9d68e8000dfdc5f0dce5970ebd87dc32ebf2a2f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/203.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>203.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\203.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>553</width> + <height>312</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>306</xmin> + <ymin>52</ymin> + <xmax>449</xmax> + <ymax>189</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/204.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/204.jpg new file mode 100644 index 0000000000000000000000000000000000000000..65159409ae6dd3ca8ff930366f80ba79842571b7 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/204.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/204.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/204.xml new file mode 100644 index 0000000000000000000000000000000000000000..08873bbff8f5021aa7e738b86e1e1f1427ef8752 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/204.xml @@ -0,0 +1,266 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>204.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\204.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>267</ymin> + <xmax>185</xmax> + <ymax>295</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>337</xmin> + <ymin>279</ymin> + <xmax>360</xmax> + <ymax>322</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>264</ymin> + <xmax>326</xmax> + <ymax>292</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>127</xmin> + <ymin>281</ymin> + <xmax>150</xmax> + <ymax>323</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>280</ymin> + <xmax>125</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>461</xmin> + <ymin>260</ymin> + <xmax>479</xmax> + <ymax>288</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>433</xmin> + <ymin>254</ymin> + <xmax>449</xmax> + <ymax>280</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>412</xmin> + <ymin>253</ymin> + <xmax>426</xmax> + <ymax>275</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>395</xmin> + <ymin>250</ymin> + <xmax>407</xmax> + <ymax>271</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>371</xmin> + <ymin>247</ymin> + <xmax>381</xmax> + <ymax>265</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>494</xmin> + <ymin>250</ymin> + <xmax>507</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>456</xmin> + <ymin>291</ymin> + <xmax>493</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>318</xmin> + <ymin>298</ymin> + <xmax>337</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>170</xmin> + <ymin>296</ymin> + <xmax>190</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>194</xmin> + <ymin>259</ymin> + <xmax>205</xmax> + <ymax>281</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>363</xmin> + <ymin>244</ymin> + <xmax>369</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>295</xmin> + <ymin>254</ymin> + <xmax>302</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>151</xmin> + <ymin>272</ymin> + <xmax>169</xmax> + <ymax>306</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>20</xmin> + <ymin>301</ymin> + <xmax>43</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>62</xmin> + <ymin>290</ymin> + <xmax>84</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>365</xmin> + <ymin>297</ymin> + <xmax>387</xmax> + <ymax>339</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/205.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/205.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a9d316bac6ac8a3b51cd631e812fc160f62b1615 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/205.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/205.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/205.xml new file mode 100644 index 0000000000000000000000000000000000000000..606bf836a24adb8e2af4f8a15eb3b48f3be35bcd --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/205.xml @@ -0,0 +1,134 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>205.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\205.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>10</xmin> + <ymin>234</ymin> + <xmax>45</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>63</xmin> + <ymin>234</ymin> + <xmax>95</xmax> + <ymax>271</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>114</xmin> + <ymin>234</ymin> + <xmax>146</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>234</ymin> + <xmax>195</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>216</xmin> + <ymin>231</ymin> + <xmax>245</xmax> + <ymax>267</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>233</ymin> + <xmax>296</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>316</xmin> + <ymin>232</ymin> + <xmax>347</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>367</xmin> + <ymin>230</ymin> + <xmax>399</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>419</xmin> + <ymin>230</ymin> + <xmax>451</xmax> + <ymax>265</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>469</xmin> + <ymin>231</ymin> + <xmax>504</xmax> + <ymax>265</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/206.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/206.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9066101cf307fc53ade4cdb318329c85841b8e87 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/206.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/206.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/206.xml new file mode 100644 index 0000000000000000000000000000000000000000..427a09ee1338b4a3516c8b2adf7ce255f9cdc190 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/206.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>206.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\206.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>104</xmin> + <ymin>218</ymin> + <xmax>263</xmax> + <ymax>435</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>54</xmin> + <ymin>30</ymin> + <xmax>259</xmax> + <ymax>190</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/207.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/207.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d33b3283369fb734acd8372ab42dcd7a9aa492b4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/207.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/207.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/207.xml new file mode 100644 index 0000000000000000000000000000000000000000..31b466c59f6b9d6c1d0591cf48f97cb58687d2ab --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/207.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>207.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\207.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>510</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>195</ymin> + <xmax>299</xmax> + <ymax>277</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>387</xmin> + <ymin>186</ymin> + <xmax>433</xmax> + <ymax>260</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>449</xmin> + <ymin>183</ymin> + <xmax>492</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>218</ymin> + <xmax>247</xmax> + <ymax>271</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/208.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/208.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5790ebf75ef8081af78ba50c26f48ef9de33b270 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/208.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/208.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/208.xml new file mode 100644 index 0000000000000000000000000000000000000000..eaea94d9dfeb48df25755c1f913666ae6693c2f4 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/208.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>208.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\208.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>20</xmin> + <ymin>157</ymin> + <xmax>92</xmax> + <ymax>246</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>188</xmin> + <ymin>97</ymin> + <xmax>242</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>314</xmin> + <ymin>56</ymin> + <xmax>355</xmax> + <ymax>108</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>406</xmin> + <ymin>29</ymin> + <xmax>441</xmax> + <ymax>73</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>465</xmin> + <ymin>8</ymin> + <xmax>494</xmax> + <ymax>45</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/209.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/209.jpg new file mode 100644 index 0000000000000000000000000000000000000000..21c63b5a634945a9dc5b2cef65316396cbebd0e5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/209.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/209.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/209.xml new file mode 100644 index 0000000000000000000000000000000000000000..7ec9a42458eb7b3406ae89335df6d0cad6c4a601 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/209.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>209.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\209.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>341</width> + <height>502</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>245</ymin> + <xmax>124</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>102</ymin> + <xmax>210</xmax> + <ymax>203</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>175</xmin> + <ymin>41</ymin> + <xmax>232</xmax> + <ymax>110</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>15</ymin> + <xmax>278</xmax> + <ymax>74</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>267</xmin> + <ymin>1</ymin> + <xmax>309</xmax> + <ymax>39</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/21.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/21.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c722cf295782b862d6b6483643313b64db95385c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/21.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/21.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/21.xml new file mode 100644 index 0000000000000000000000000000000000000000..ecca5bab9afbe365f9f650d7884c5fcee8ec5f4e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/21.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>21.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\21.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>14</xmin> + <ymin>9</ymin> + <xmax>320</xmax> + <ymax>477</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/210.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/210.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a6d22867024397988245f14b95407f297588d192 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/210.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/210.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/210.xml new file mode 100644 index 0000000000000000000000000000000000000000..43c7ce58b63137a2404f720ee833d879d0e14690 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/210.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>210.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\210.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>68</ymin> + <xmax>169</xmax> + <ymax>174</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>215</xmin> + <ymin>181</ymin> + <xmax>340</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>135</xmin> + <ymin>141</ymin> + <xmax>224</xmax> + <ymax>244</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/211.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/211.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6544e6dfd053b4d476edb01a89462d67f0397b46 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/211.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/211.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/211.xml new file mode 100644 index 0000000000000000000000000000000000000000..a68e768a75174393828432202b8f90095f5ef2e1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/211.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>211.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\211.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>169</xmin> + <ymin>54</ymin> + <xmax>228</xmax> + <ymax>131</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>51</ymin> + <xmax>172</xmax> + <ymax>134</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>26</xmin> + <ymin>52</ymin> + <xmax>91</xmax> + <ymax>131</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>280</xmin> + <ymin>51</ymin> + <xmax>334</xmax> + <ymax>127</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>351</xmin> + <ymin>52</ymin> + <xmax>398</xmax> + <ymax>126</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>404</xmin> + <ymin>50</ymin> + <xmax>452</xmax> + <ymax>128</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/212.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/212.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d105162a0cc8a16ab51ab74b455dd30e9730dabd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/212.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/212.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/212.xml new file mode 100644 index 0000000000000000000000000000000000000000..0fd6509eec8077a0567167eab9795c40e310e932 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/212.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>212.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\212.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>49</xmin> + <ymin>218</ymin> + <xmax>81</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>146</xmin> + <ymin>218</ymin> + <xmax>174</xmax> + <ymax>260</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>182</xmin> + <ymin>218</ymin> + <xmax>210</xmax> + <ymax>259</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>210</xmin> + <ymin>220</ymin> + <xmax>230</xmax> + <ymax>257</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>218</ymin> + <xmax>253</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>301</xmin> + <ymin>218</ymin> + <xmax>326</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>443</xmin> + <ymin>217</ymin> + <xmax>474</xmax> + <ymax>250</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/213.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/213.jpg new file mode 100644 index 0000000000000000000000000000000000000000..017a02aecbf05187a1eccfe5f5a7e83e087e39a6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/213.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/213.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/213.xml new file mode 100644 index 0000000000000000000000000000000000000000..f8f6777cbe07ce75ecc9d15f7ba2e8d3956e1d14 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/213.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>213.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\213.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>209</xmin> + <ymin>97</ymin> + <xmax>319</xmax> + <ymax>304</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/214.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/214.jpg new file mode 100644 index 0000000000000000000000000000000000000000..da8d5ba91807901c58b58a5204880cd97b3ddec1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/214.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/214.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/214.xml new file mode 100644 index 0000000000000000000000000000000000000000..b866d7032fc7e4b6c4caba3501ad1c6a49a0552f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/214.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>214.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\214.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>388</ymin> + <xmax>93</xmax> + <ymax>495</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>102</xmin> + <ymin>365</ymin> + <xmax>181</xmax> + <ymax>496</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>191</xmin> + <ymin>370</ymin> + <xmax>248</xmax> + <ymax>498</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>240</xmin> + <ymin>381</ymin> + <xmax>307</xmax> + <ymax>501</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/215.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/215.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e346361484bab2c896ee157a04add6c205d7f420 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/215.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/215.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/215.xml new file mode 100644 index 0000000000000000000000000000000000000000..913b736b02989a9b28e2b72ed9a7f4ca7db9841a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/215.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>215.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\215.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>104</xmin> + <ymin>319</ymin> + <xmax>141</xmax> + <ymax>380</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>210</xmin> + <ymin>321</ymin> + <xmax>246</xmax> + <ymax>382</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>294</xmin> + <ymin>323</ymin> + <xmax>329</xmax> + <ymax>381</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/216.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/216.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0a10309afd14643d1bd67e0331ca06b059239667 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/216.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/216.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/216.xml new file mode 100644 index 0000000000000000000000000000000000000000..68cf18f7ed0afd5dee47d91b1741bc995d7af7f1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/216.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>216.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\216.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>143</xmin> + <ymin>114</ymin> + <xmax>234</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>217</xmin> + <ymin>152</ymin> + <xmax>269</xmax> + <ymax>248</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>114</xmax> + <ymax>336</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/217.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/217.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c04ddf104a1cee4b33ade230159fec0827b8e79c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/217.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/217.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/217.xml new file mode 100644 index 0000000000000000000000000000000000000000..ee07ea4820f118bb83dc62952249cdc8493c8504 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/217.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>217.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\217.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>341</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>219</ymin> + <xmax>142</xmax> + <ymax>500</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>238</xmin> + <ymin>240</ymin> + <xmax>341</xmax> + <ymax>439</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>304</xmin> + <ymin>283</ymin> + <xmax>341</xmax> + <ymax>391</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/218.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/218.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0a1f752d52f18c3aba551b6f7aed5022e2f91066 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/218.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/218.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/218.xml new file mode 100644 index 0000000000000000000000000000000000000000..0797498d60e4d2aa78900300a939aa3391aa7907 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/218.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>218.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\218.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>34</ymin> + <xmax>132</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>140</xmin> + <ymin>24</ymin> + <xmax>246</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>244</xmin> + <ymin>22</ymin> + <xmax>320</xmax> + <ymax>214</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>326</xmin> + <ymin>15</ymin> + <xmax>385</xmax> + <ymax>153</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>4</ymin> + <xmax>420</xmax> + <ymax>97</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>376</xmin> + <ymin>7</ymin> + <xmax>394</xmax> + <ymax>126</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/219.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/219.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eed8aac79f979ff1b531ece250df243e668d6cc6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/219.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/219.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/219.xml new file mode 100644 index 0000000000000000000000000000000000000000..9dccd54a75bf67c6e31c2adac5c7fe30f836c03b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/219.xml @@ -0,0 +1,194 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>219.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\219.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>510</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>168</ymin> + <xmax>402</xmax> + <ymax>327</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>297</xmin> + <ymin>120</ymin> + <xmax>360</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>92</ymin> + <xmax>326</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>369</xmin> + <ymin>24</ymin> + <xmax>398</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>432</xmin> + <ymin>20</ymin> + <xmax>459</xmax> + <ymax>75</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>313</xmin> + <ymin>21</ymin> + <xmax>341</xmax> + <ymax>76</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>16</ymin> + <xmax>184</xmax> + <ymax>64</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>15</ymin> + <xmax>153</xmax> + <ymax>61</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>15</ymin> + <xmax>121</xmax> + <ymax>65</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>72</xmin> + <ymin>16</ymin> + <xmax>102</xmax> + <ymax>62</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>17</ymin> + <xmax>75</xmax> + <ymax>67</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>15</xmin> + <ymin>17</ymin> + <xmax>51</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>260</xmin> + <ymin>74</ymin> + <xmax>311</xmax> + <ymax>173</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>61</ymin> + <xmax>291</xmax> + <ymax>148</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>223</xmin> + <ymin>30</ymin> + <xmax>244</xmax> + <ymax>87</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/22.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/22.jpg new file mode 100644 index 0000000000000000000000000000000000000000..391a91991b7b15f907cbe9e240943914afc28de9 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/22.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/22.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/22.xml new file mode 100644 index 0000000000000000000000000000000000000000..88bd6c6ca793f1ee76450359ecef7778a8253a82 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/22.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>22.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\22.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>3</xmin> + <ymin>37</ymin> + <xmax>333</xmax> + <ymax>478</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/220.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/220.jpg new file mode 100644 index 0000000000000000000000000000000000000000..92f76386f69f98b22d2f1b83e534a5e0e307dd56 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/220.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/220.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/220.xml new file mode 100644 index 0000000000000000000000000000000000000000..31f460ffd7ee58c79ee058a83f5a724d53a0c34f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/220.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>220.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\220.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>505</width> + <height>342</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>202</xmin> + <ymin>92</ymin> + <xmax>249</xmax> + <ymax>178</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>225</xmin> + <ymin>182</ymin> + <xmax>419</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>323</xmin> + <ymin>111</ymin> + <xmax>370</xmax> + <ymax>167</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>265</xmin> + <ymin>94</ymin> + <xmax>286</xmax> + <ymax>138</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>109</ymin> + <xmax>247</xmax> + <ymax>134</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/221.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/221.jpg new file mode 100644 index 0000000000000000000000000000000000000000..175b18e445fee83730a8359ea7b74f87f065d70d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/221.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/221.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/221.xml new file mode 100644 index 0000000000000000000000000000000000000000..30214aa533d6a9481bcc6f7df2d2e6921b844579 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/221.xml @@ -0,0 +1,170 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>221.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\221.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>90</xmin> + <ymin>196</ymin> + <xmax>118</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>118</xmin> + <ymin>197</ymin> + <xmax>147</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>197</ymin> + <xmax>174</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>174</xmin> + <ymin>197</ymin> + <xmax>201</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>200</xmin> + <ymin>199</ymin> + <xmax>227</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>198</ymin> + <xmax>254</xmax> + <ymax>242</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>197</ymin> + <xmax>282</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>282</xmin> + <ymin>198</ymin> + <xmax>308</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>309</xmin> + <ymin>198</ymin> + <xmax>337</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>338</xmin> + <ymin>196</ymin> + <xmax>362</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>362</xmin> + <ymin>197</ymin> + <xmax>391</xmax> + <ymax>246</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>198</ymin> + <xmax>417</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>417</xmin> + <ymin>195</ymin> + <xmax>445</xmax> + <ymax>244</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/222.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/222.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0f7204ae92e89a5d2a0eedbf3722ff950d4dc382 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/222.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/222.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/222.xml new file mode 100644 index 0000000000000000000000000000000000000000..0d82b5c3ed1365cd03f0ee7e759f9710b873d871 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/222.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>222.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\222.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>140</ymin> + <xmax>179</xmax> + <ymax>497</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/223.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/223.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6d0eb5c7ccf6bd5c27b68b9bc84c341dfbc3f791 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/223.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/223.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/223.xml new file mode 100644 index 0000000000000000000000000000000000000000..25a28926da320788a8e1e7645fa5080192ec6276 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/223.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>223.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\223.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>99</xmin> + <ymin>60</ymin> + <xmax>194</xmax> + <ymax>234</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>51</ymin> + <xmax>398</xmax> + <ymax>303</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/224.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/224.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b5dc95b4bbff987d767bcf1ea17aa0d6f2b9de73 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/224.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/224.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/224.xml new file mode 100644 index 0000000000000000000000000000000000000000..2b117f04131ab5d1bb6a790b3a85f1977c305ef4 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/224.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>224.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\224.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>135</xmin> + <ymin>182</ymin> + <xmax>266</xmax> + <ymax>462</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/225.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/225.jpg new file mode 100644 index 0000000000000000000000000000000000000000..edf9363b9df8bd614dbe3af016fa2a1404fd7d88 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/225.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/225.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/225.xml new file mode 100644 index 0000000000000000000000000000000000000000..57289b095fc96c0af8251229bd3fdaa9355cb484 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/225.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>225.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\225.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>180</xmin> + <ymin>139</ymin> + <xmax>236</xmax> + <ymax>234</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>126</ymin> + <xmax>304</xmax> + <ymax>213</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/226.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/226.jpg new file mode 100644 index 0000000000000000000000000000000000000000..87717e2c0d874eaf9d0d8bebbd3fb497a5238f09 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/226.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/226.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/226.xml new file mode 100644 index 0000000000000000000000000000000000000000..7b7abaa075930e80a3de28d2ee554890feeabf1a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/226.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>226.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\226.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>678</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>123</xmin> + <ymin>145</ymin> + <xmax>573</xmax> + <ymax>970</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/227.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/227.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f181fcbdf0cef0201aaa506be1a38355c0659867 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/227.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/227.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/227.xml new file mode 100644 index 0000000000000000000000000000000000000000..49b939d640ee4152d439b8620ce3deefac6bbd0a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/227.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>227.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\227.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>511</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>16</xmin> + <ymin>18</ymin> + <xmax>280</xmax> + <ymax>499</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/228.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/228.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d9128e6eada1f688a5b95cc055d340dbae521dc2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/228.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/228.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/228.xml new file mode 100644 index 0000000000000000000000000000000000000000..9adab7e03408dc312f79055fca43f9a67b25115b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/228.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>228.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\228.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>170</width> + <height>170</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>85</xmin> + <ymin>16</ymin> + <xmax>159</xmax> + <ymax>147</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/229.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/229.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7a1a8dac1ed0e2cf3ba26e6f814a196a2a6a848d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/229.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/229.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/229.xml new file mode 100644 index 0000000000000000000000000000000000000000..944b54f47c74890477224450f1aff7127ca3b421 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/229.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>229.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\229.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>214</xmin> + <ymin>38</ymin> + <xmax>387</xmax> + <ymax>363</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/23.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/23.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c6090a4c68c0c9980f44f746d4476e0067b0419 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/23.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/23.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/23.xml new file mode 100644 index 0000000000000000000000000000000000000000..85ba55bbaf08d5df33644dc84a711c8e5b1b2a07 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/23.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>23.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\23.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>16</xmin> + <ymin>29</ymin> + <xmax>261</xmax> + <ymax>310</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>242</xmin> + <ymin>76</ymin> + <xmax>439</xmax> + <ymax>271</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/230.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/230.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c94a5d54e91d8d3c16656a67e8ca24f76118ab45 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/230.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/230.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/230.xml new file mode 100644 index 0000000000000000000000000000000000000000..d056eb59e926bbd8f90485ee74a71c63d09617d8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/230.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>230.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\230.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>356</width> + <height>481</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>101</xmin> + <ymin>88</ymin> + <xmax>244</xmax> + <ymax>318</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/231.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/231.jpg new file mode 100644 index 0000000000000000000000000000000000000000..258d884e424fe6334c7a7921ada3b3f20d8899f6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/231.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/231.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/231.xml new file mode 100644 index 0000000000000000000000000000000000000000..d3a69a02992ba4901e78e22665506209ddaad6bc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/231.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>231.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\231.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>511</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>97</xmin> + <ymin>87</ymin> + <xmax>234</xmax> + <ymax>335</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/232.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/232.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bca15da6737f9d93e710a83704acdf6a6e3d54c7 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/232.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/232.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/232.xml new file mode 100644 index 0000000000000000000000000000000000000000..06d42a1305233062b9f57e54278c63873a1e555b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/232.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>232.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\232.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>24</xmin> + <ymin>51</ymin> + <xmax>223</xmax> + <ymax>387</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/233.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/233.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2b2f24aa2c7f3101f2dd22723f898354aaae5036 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/233.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/233.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/233.xml new file mode 100644 index 0000000000000000000000000000000000000000..d6c3bc6fee80becebfe589cf671dd066b673aa4f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/233.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>233.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\233.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>482</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>375</xmin> + <ymin>1</ymin> + <xmax>479</xmax> + <ymax>210</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/234.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/234.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fbb18efe4f01563d610d8c6b2dfcacfcb37bc59a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/234.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/234.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/234.xml new file mode 100644 index 0000000000000000000000000000000000000000..a6a4e2ddc7924bbeacf6ab90ac661a1dbb83e61d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/234.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>234.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\234.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>371</width> + <height>464</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>155</ymin> + <xmax>173</xmax> + <ymax>456</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>23</ymin> + <xmax>224</xmax> + <ymax>371</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/235.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/235.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1cb3cea7568f7b51ee3a66e7b02109ef25f69ad4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/235.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/235.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/235.xml new file mode 100644 index 0000000000000000000000000000000000000000..39f8da132e732cd8868bfb01c3a222fafeb16cbf --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/235.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>235.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\235.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>271</xmin> + <ymin>42</ymin> + <xmax>386</xmax> + <ymax>206</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/236.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/236.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e9bcf0e2841f4b0ccb804ff8a9b9f9cc473eaa34 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/236.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/236.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/236.xml new file mode 100644 index 0000000000000000000000000000000000000000..26ba8bc91a84826611b19c7018710a94c2127497 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/236.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>236.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\236.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>384</width> + <height>450</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>25</xmin> + <ymin>80</ymin> + <xmax>225</xmax> + <ymax>418</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/237.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/237.jpg new file mode 100644 index 0000000000000000000000000000000000000000..be727126b76d4890224030906be199e9af38e592 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/237.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/237.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/237.xml new file mode 100644 index 0000000000000000000000000000000000000000..add17552a010f76d44ca23368e5bf3e25e92b78a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/237.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>237.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\237.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>357</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>317</ymin> + <xmax>122</xmax> + <ymax>427</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>30</xmin> + <ymin>288</ymin> + <xmax>72</xmax> + <ymax>361</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>278</ymin> + <xmax>46</xmax> + <ymax>332</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>7</xmin> + <ymin>266</ymin> + <xmax>26</xmax> + <ymax>298</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/238.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/238.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1972fe77d33248d51ce700c2f7492aa243efc853 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/238.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/238.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/238.xml new file mode 100644 index 0000000000000000000000000000000000000000..093e95bfbe254312e2fdbda602fd8b7fbdea7c92 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/238.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>238.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\238.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>35</ymin> + <xmax>182</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>14</ymin> + <xmax>238</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>84</ymin> + <xmax>259</xmax> + <ymax>281</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>269</xmin> + <ymin>72</ymin> + <xmax>360</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>26</ymin> + <xmax>320</xmax> + <ymax>174</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/239.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/239.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a3dc1058cc157923dd114cbb6b3fb37f31fab923 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/239.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/239.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/239.xml new file mode 100644 index 0000000000000000000000000000000000000000..c05abbfabfad744e3b77906448753800812b1f86 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/239.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>239.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\239.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>54</ymin> + <xmax>225</xmax> + <ymax>147</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>340</xmin> + <ymin>53</ymin> + <xmax>479</xmax> + <ymax>326</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/24.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/24.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5130b019100de3152f3be049a2fc5cd2379ce384 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/24.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/24.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/24.xml new file mode 100644 index 0000000000000000000000000000000000000000..ebbeef64420c6fc0164f424155052c4bf7820636 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/24.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>24.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\24.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>34</xmin> + <ymin>65</ymin> + <xmax>319</xmax> + <ymax>474</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/240.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/240.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ac4d431210e725dd960957978cd7692581c29574 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/240.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/240.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/240.xml new file mode 100644 index 0000000000000000000000000000000000000000..3b707f184b432f9c9f8fbb8030ed52ded558b84c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/240.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>240.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\240.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>117</xmin> + <ymin>71</ymin> + <xmax>187</xmax> + <ymax>185</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/241.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/241.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4e037b74457a8fb282a17d57a6d1a899174037fd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/241.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/241.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/241.xml new file mode 100644 index 0000000000000000000000000000000000000000..3b3992d4cb4d1bbd644f4999d8f51037c63ba0c5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/241.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>241.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\241.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>75</xmin> + <ymin>44</ymin> + <xmax>138</xmax> + <ymax>133</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>162</ymin> + <xmax>357</xmax> + <ymax>282</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/242.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/242.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b040bf209944dcc3185df1fbf1103dc3783b20ca Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/242.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/242.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/242.xml new file mode 100644 index 0000000000000000000000000000000000000000..7c184931388544e153ce3c688a22bdc2ad1a65c1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/242.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>242.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\242.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>576</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>207</xmin> + <ymin>34</ymin> + <xmax>552</xmax> + <ymax>668</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/243.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/243.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f09beff05baf9c3e207e621bd747b66a8481727b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/243.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/243.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/243.xml new file mode 100644 index 0000000000000000000000000000000000000000..004ad9ae2dab2731f3f5fae99b13b907f109fe05 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/243.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>243.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\243.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>209</xmin> + <ymin>30</ymin> + <xmax>315</xmax> + <ymax>226</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>25</xmin> + <ymin>1</ymin> + <xmax>113</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>83</xmin> + <ymin>1</ymin> + <xmax>163</xmax> + <ymax>81</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>262</xmin> + <ymin>114</ymin> + <xmax>410</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>270</xmin> + <ymin>1</ymin> + <xmax>332</xmax> + <ymax>124</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/244.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/244.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dbdbb15c4be11c3ed9d44495e2c18d667f94a986 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/244.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/244.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/244.xml new file mode 100644 index 0000000000000000000000000000000000000000..cc9009d4d839ea3e4a11cd9f476f2560285cd103 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/244.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>244.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\244.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>272</xmin> + <ymin>163</ymin> + <xmax>338</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>212</xmin> + <ymin>175</ymin> + <xmax>271</xmax> + <ymax>264</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>169</xmin> + <ymin>181</ymin> + <xmax>223</xmax> + <ymax>259</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>137</xmin> + <ymin>189</ymin> + <xmax>183</xmax> + <ymax>258</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>194</ymin> + <xmax>145</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>94</xmin> + <ymin>198</ymin> + <xmax>124</xmax> + <ymax>253</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>200</ymin> + <xmax>104</xmax> + <ymax>252</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>68</xmin> + <ymin>203</ymin> + <xmax>89</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>58</xmin> + <ymin>206</ymin> + <xmax>73</xmax> + <ymax>247</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/245.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/245.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6c4cd50a01627e39b03b0607352f62c5c75b3903 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/245.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/245.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/245.xml new file mode 100644 index 0000000000000000000000000000000000000000..1ea01ddec8debf2d735a3f18ea90008c9750d161 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/245.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>245.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\245.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>275</ymin> + <xmax>68</xmax> + <ymax>362</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>72</xmin> + <ymin>286</ymin> + <xmax>124</xmax> + <ymax>358</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>123</xmin> + <ymin>294</ymin> + <xmax>164</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>159</xmin> + <ymin>299</ymin> + <xmax>193</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>190</xmin> + <ymin>302</ymin> + <xmax>215</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>208</xmin> + <ymin>306</ymin> + <xmax>232</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>312</ymin> + <xmax>249</xmax> + <ymax>350</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/246.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/246.jpg new file mode 100644 index 0000000000000000000000000000000000000000..001070d978da9587d07f2dc68a80968adc611569 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/246.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/246.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/246.xml new file mode 100644 index 0000000000000000000000000000000000000000..f9cca2da0d6f09bbe1e46a9fdea5d086b8d00fa9 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/246.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>246.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\246.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>199</ymin> + <xmax>111</xmax> + <ymax>353</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>87</xmin> + <ymin>238</ymin> + <xmax>158</xmax> + <ymax>346</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>138</xmin> + <ymin>252</ymin> + <xmax>184</xmax> + <ymax>340</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>162</xmin> + <ymin>267</ymin> + <xmax>204</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>187</xmin> + <ymin>275</ymin> + <xmax>211</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>210</xmin> + <ymin>287</ymin> + <xmax>225</xmax> + <ymax>335</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/247.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/247.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0c940cbe7c5cd469f3fbb73142fdd486b47526db Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/247.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/247.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/247.xml new file mode 100644 index 0000000000000000000000000000000000000000..151d36129f29ad732edc32b3a72394f32b0d8a39 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/247.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>247.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\247.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>197</xmin> + <ymin>101</ymin> + <xmax>344</xmax> + <ymax>293</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/248.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/248.jpg new file mode 100644 index 0000000000000000000000000000000000000000..95e4cec4f42e35180f89a51ccdc4c6a75e37db54 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/248.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/248.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/248.xml new file mode 100644 index 0000000000000000000000000000000000000000..8a568d3149339cd72a913968fbd12a3c19f04568 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/248.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>248.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\248.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>296</xmin> + <ymin>184</ymin> + <xmax>408</xmax> + <ymax>319</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/249.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/249.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6768d8dc27aca8260bdfc85b2e48c4e4d238df21 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/249.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/249.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/249.xml new file mode 100644 index 0000000000000000000000000000000000000000..a48aa2ca13482356050272461e63b309381ed7a8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/249.xml @@ -0,0 +1,134 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>249.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\249.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>259</ymin> + <xmax>171</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>232</ymin> + <xmax>199</xmax> + <ymax>282</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>213</ymin> + <xmax>216</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>200</ymin> + <xmax>230</xmax> + <ymax>237</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>190</ymin> + <xmax>239</xmax> + <ymax>221</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>183</ymin> + <xmax>246</xmax> + <ymax>211</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>237</xmin> + <ymin>178</ymin> + <xmax>254</xmax> + <ymax>201</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>243</xmin> + <ymin>172</ymin> + <xmax>259</xmax> + <ymax>193</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>256</xmin> + <ymin>162</ymin> + <xmax>266</xmax> + <ymax>181</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>85</xmin> + <ymin>306</ymin> + <xmax>113</xmax> + <ymax>338</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/25.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/25.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5b1541eb462eeb33b26a741d5097004500d5f277 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/25.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/25.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/25.xml new file mode 100644 index 0000000000000000000000000000000000000000..ff99b86d07e94aa8ae0bb50c3c99074a2773dbc1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/25.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>25.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\25.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>989</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>106</xmin> + <ymin>107</ymin> + <xmax>640</xmax> + <ymax>913</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>470</xmin> + <ymin>281</ymin> + <xmax>936</xmax> + <ymax>657</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/250.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/250.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3fc522811442ecdd3fc27f9c956738ce60c76cdf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/250.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/250.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/250.xml new file mode 100644 index 0000000000000000000000000000000000000000..4db7a2b25d00279a3df16b09a64b8228049699c5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/250.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>250.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\250.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>533</width> + <height>651</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>201</ymin> + <xmax>457</xmax> + <ymax>594</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/251.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/251.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9363b12557d4359ace4b4d1a43b18e53bb117846 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/251.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/251.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/251.xml new file mode 100644 index 0000000000000000000000000000000000000000..7fcc8409c4e90d8ad740eb6ce5fa1cdac781c6a1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/251.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>251.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\251.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>353</width> + <height>485</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>56</xmin> + <ymin>3</ymin> + <xmax>292</xmax> + <ymax>445</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/252.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/252.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b8c048bdf1ea5c25b21ab731284d1c2be20f62d6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/252.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/252.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/252.xml new file mode 100644 index 0000000000000000000000000000000000000000..dadb13d259b16ff2a085bd66396e33e467727e9b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/252.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>252.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\252.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>375</width> + <height>458</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>181</xmin> + <ymin>298</ymin> + <xmax>231</xmax> + <ymax>389</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>205</xmin> + <ymin>242</ymin> + <xmax>243</xmax> + <ymax>316</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>247</xmin> + <ymin>205</ymin> + <xmax>279</xmax> + <ymax>266</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>258</xmin> + <ymin>172</ymin> + <xmax>286</xmax> + <ymax>219</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>244</xmin> + <ymin>147</ymin> + <xmax>265</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>198</xmin> + <ymin>128</ymin> + <xmax>222</xmax> + <ymax>158</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>129</ymin> + <xmax>162</xmax> + <ymax>162</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>100</xmin> + <ymin>152</ymin> + <xmax>123</xmax> + <ymax>194</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>84</xmin> + <ymin>180</ymin> + <xmax>112</xmax> + <ymax>234</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/253.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/253.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3a349575a3217e03605fd0c6c71916210011cc43 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/253.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/253.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/253.xml new file mode 100644 index 0000000000000000000000000000000000000000..16c933e2bf71d555361d697b4d5ce3cdb81222c8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/253.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>253.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\253.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>150</xmin> + <ymin>218</ymin> + <xmax>262</xmax> + <ymax>464</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>243</ymin> + <xmax>338</xmax> + <ymax>507</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/254.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/254.jpg new file mode 100644 index 0000000000000000000000000000000000000000..54b18ae28cde2e3d092d00eca0c2d982eb2bac11 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/254.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/254.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/254.xml new file mode 100644 index 0000000000000000000000000000000000000000..42224d1fb8afba80f3b646ea6bc56f12a356caad --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/254.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>254.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\254.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>358</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>29</xmin> + <ymin>108</ymin> + <xmax>423</xmax> + <ymax>309</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/255.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/255.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9f8ee6d4c11cb00f8801d6fecf48e58e470e7c86 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/255.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/255.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/255.xml new file mode 100644 index 0000000000000000000000000000000000000000..e39b53d456ba8157efca896ce47c63537b17c836 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/255.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>255.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\255.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>68</xmin> + <ymin>52</ymin> + <xmax>299</xmax> + <ymax>467</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/26.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/26.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e542081c3d472297955a5e3a74513409c2494ded Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/26.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/26.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/26.xml new file mode 100644 index 0000000000000000000000000000000000000000..21e4685b0b0c520c8a9b3c399189003e0b003557 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/26.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>26.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\26.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>686</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>120</xmin> + <ymin>115</ymin> + <xmax>555</xmax> + <ymax>963</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/27.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/27.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f9b98b3c5bfa0f5bbee41a12a04b8ffa08892dbc Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/27.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/27.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/27.xml new file mode 100644 index 0000000000000000000000000000000000000000..269536d45d00144d322bc0772181ce30b54d0ebc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/27.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>27.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\27.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>602</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>125</ymin> + <xmax>421</xmax> + <ymax>697</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>337</xmin> + <ymin>269</ymin> + <xmax>602</xmax> + <ymax>1023</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>168</xmin> + <ymin>105</ymin> + <xmax>316</xmax> + <ymax>464</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>166</xmin> + <ymin>115</ymin> + <xmax>247</xmax> + <ymax>343</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>48</xmin> + <ymin>74</ymin> + <xmax>124</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>73</ymin> + <xmax>45</xmax> + <ymax>179</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/28.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/28.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fa2c3f401141fd670eada8faf5d31b33e5c77e8c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/28.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/28.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/28.xml new file mode 100644 index 0000000000000000000000000000000000000000..cbd1807eb72ba55ed8fdca85ea4c3ac21ee60edc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/28.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>28.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\28.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>658</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>46</ymin> + <xmax>246</xmax> + <ymax>655</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>42</ymin> + <xmax>265</xmax> + <ymax>562</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>431</xmin> + <ymin>225</ymin> + <xmax>537</xmax> + <ymax>393</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>652</xmin> + <ymin>244</ymin> + <xmax>737</xmax> + <ymax>371</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>813</xmin> + <ymin>260</ymin> + <xmax>894</xmax> + <ymax>362</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>316</xmin> + <ymin>197</ymin> + <xmax>389</xmax> + <ymax>432</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/29.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/29.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7afafddad9203c7f2cd1acd4777edb8161939207 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/29.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/29.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/29.xml new file mode 100644 index 0000000000000000000000000000000000000000..a87ff5cd2153626ebc41d319f3c832a7b08269ee --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/29.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>29.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\29.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>658</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>390</xmin> + <ymin>259</ymin> + <xmax>632</xmax> + <ymax>417</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>806</xmin> + <ymin>256</ymin> + <xmax>895</xmax> + <ymax>361</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>41</ymin> + <xmax>261</xmax> + <ymax>561</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>250</xmin> + <ymin>181</ymin> + <xmax>393</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>711</xmin> + <ymin>251</ymin> + <xmax>788</xmax> + <ymax>365</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/3.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..899a0b2d4fe10b46d0bba0fbdf7ee9743199e52c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/3.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/3.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/3.xml new file mode 100644 index 0000000000000000000000000000000000000000..4c93fbceab56b63b9c500003be55dcd5179ce1ce --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/3.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>3.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\3.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>142</width> + <height>170</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>5</xmin> + <ymin>10</ymin> + <xmax>137</xmax> + <ymax>162</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/30.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/30.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2e9246ea00f85d535b512bfa2d24f048754a3144 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/30.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/30.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/30.xml new file mode 100644 index 0000000000000000000000000000000000000000..7ad1e12f8c1589093df8009ac398dcbc0c9eb609 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/30.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>30.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\30.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>768</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>297</xmax> + <ymax>756</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>48</xmin> + <ymin>1</ymin> + <xmax>352</xmax> + <ymax>523</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>183</xmin> + <ymin>48</ymin> + <xmax>384</xmax> + <ymax>418</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>299</xmin> + <ymin>125</ymin> + <xmax>589</xmax> + <ymax>360</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/31.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/31.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f20e43d431fa9743325fec2bdd151f3eab1ddaf4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/31.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/31.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/31.xml new file mode 100644 index 0000000000000000000000000000000000000000..95ea8048e389114c90ad1f35dd058f2bd85358e1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/31.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>31.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\31.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>19</xmin> + <ymin>32</ymin> + <xmax>261</xmax> + <ymax>309</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>268</xmin> + <ymin>76</ymin> + <xmax>438</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/32.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/32.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1a88a042be91f82216ead3d534222983b5b07fe5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/32.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/32.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/32.xml new file mode 100644 index 0000000000000000000000000000000000000000..0f671931ef4e20b4ce89001337764f5eedb11c20 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/32.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>32.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\32.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>768</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>338</ymin> + <xmax>289</xmax> + <ymax>547</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>229</xmin> + <ymin>393</ymin> + <xmax>473</xmax> + <ymax>594</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>538</xmin> + <ymin>395</ymin> + <xmax>737</xmax> + <ymax>650</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>413</xmin> + <ymin>347</ymin> + <xmax>566</xmax> + <ymax>498</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>650</xmin> + <ymin>341</ymin> + <xmax>800</xmax> + <ymax>466</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/33.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/33.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b9fbe5d2024e13bcecd606c29c13e89403c123d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/33.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/33.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/33.xml new file mode 100644 index 0000000000000000000000000000000000000000..b18fd0d3c5481f088179262b8fbef9fd89a41aec --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/33.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>33.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\33.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>83</xmin> + <ymin>49</ymin> + <xmax>258</xmax> + <ymax>314</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>181</xmin> + <ymin>56</ymin> + <xmax>233</xmax> + <ymax>191</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>60</ymin> + <xmax>250</xmax> + <ymax>147</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>232</xmin> + <ymin>62</ymin> + <xmax>255</xmax> + <ymax>116</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/34.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/34.jpg new file mode 100644 index 0000000000000000000000000000000000000000..19d43722c14bd38d0c451ad9cb4f23fc08a772d2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/34.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/34.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/34.xml new file mode 100644 index 0000000000000000000000000000000000000000..4b39b925cc17d9c9d98fcc47f013148a7056bd25 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/34.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>34.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\34.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>237</xmin> + <ymin>23</ymin> + <xmax>438</xmax> + <ymax>313</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>88</ymin> + <xmax>233</xmax> + <ymax>214</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>110</xmin> + <ymin>113</ymin> + <xmax>166</xmax> + <ymax>189</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>85</xmin> + <ymin>150</ymin> + <xmax>106</xmax> + <ymax>186</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/35.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/35.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1956703b306b7c5937d6a8467a8c88e0cebbabf7 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/35.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/35.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/35.xml new file mode 100644 index 0000000000000000000000000000000000000000..4b6b98479598bb5468aef6531be82c30aa5f8de2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/35.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>35.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\35.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>305</xmin> + <ymin>19</ymin> + <xmax>480</xmax> + <ymax>298</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>150</xmin> + <ymin>175</ymin> + <xmax>212</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>125</xmin> + <ymin>198</ymin> + <xmax>157</xmax> + <ymax>257</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>97</xmin> + <ymin>215</ymin> + <xmax>120</xmax> + <ymax>254</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>86</xmin> + <ymin>219</ymin> + <xmax>101</xmax> + <ymax>254</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>229</ymin> + <xmax>65</xmax> + <ymax>249</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/36.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/36.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a73acd285fd86c8caebfb75425e174519d45cf14 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/36.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/36.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/36.xml new file mode 100644 index 0000000000000000000000000000000000000000..10a88dcb45c48dfcb952ae030b23363ceabe660f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/36.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>36.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\36.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>323</width> + <height>529</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>17</ymin> + <xmax>309</xmax> + <ymax>504</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/37.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/37.jpg new file mode 100644 index 0000000000000000000000000000000000000000..51d6c1901fbca1942b4f6b6c6094c3ece6d1fc31 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/37.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/37.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/37.xml new file mode 100644 index 0000000000000000000000000000000000000000..e9741a2467c31304a3fb39feb5e3a6b029004b29 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/37.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>37.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\37.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>421</width> + <height>407</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>43</xmin> + <ymin>39</ymin> + <xmax>257</xmax> + <ymax>301</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>115</ymin> + <xmax>384</xmax> + <ymax>268</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/38.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/38.jpg new file mode 100644 index 0000000000000000000000000000000000000000..962eab6eb3fbf4fc309c16e02c0266f1c0e9345d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/38.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/38.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/38.xml new file mode 100644 index 0000000000000000000000000000000000000000..05e3e59a73a8ed9ab78048e6b9522cc95f2fd82d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/38.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>38.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\38.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>492</width> + <height>348</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>208</xmin> + <ymin>25</ymin> + <xmax>428</xmax> + <ymax>311</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/39.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/39.jpg new file mode 100644 index 0000000000000000000000000000000000000000..27aa64ebee438e321853a38b800d450ba3a3071c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/39.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/39.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/39.xml new file mode 100644 index 0000000000000000000000000000000000000000..a66d6d4be73f0712cce547d699e0e885348eeae5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/39.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>39.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\39.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>469</width> + <height>368</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>58</xmin> + <ymin>120</ymin> + <xmax>329</xmax> + <ymax>307</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/4.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/4.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8aa37c4a7a12c29419d95a348fc3ea4bdbc33270 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/4.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/4.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/4.xml new file mode 100644 index 0000000000000000000000000000000000000000..6ae7150fa5243bdb61f61c2fc0d7cd3bb73770a2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/4.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>4.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\4.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>381</width> + <height>454</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>14</xmin> + <ymin>25</ymin> + <xmax>365</xmax> + <ymax>432</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/40.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/40.jpg new file mode 100644 index 0000000000000000000000000000000000000000..963bd3acaec85a2c7e7ee23cca4459fba5e84dcf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/40.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/40.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/40.xml new file mode 100644 index 0000000000000000000000000000000000000000..54d5cd8d132225e1425f56d52a92b60c73357d51 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/40.xml @@ -0,0 +1,146 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>40.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\40.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>51</xmin> + <ymin>125</ymin> + <xmax>149</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>147</xmin> + <ymin>108</ymin> + <xmax>230</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>54</xmin> + <ymin>12</ymin> + <xmax>84</xmax> + <ymax>57</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>150</xmin> + <ymin>10</ymin> + <xmax>172</xmax> + <ymax>48</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>8</ymin> + <xmax>241</xmax> + <ymax>43</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>444</xmin> + <ymin>43</ymin> + <xmax>479</xmax> + <ymax>101</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>305</xmin> + <ymin>156</ymin> + <xmax>407</xmax> + <ymax>254</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>275</xmin> + <ymin>10</ymin> + <xmax>293</xmax> + <ymax>38</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>485</xmin> + <ymin>35</ymin> + <xmax>507</xmax> + <ymax>82</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>314</xmin> + <ymin>9</ymin> + <xmax>328</xmax> + <ymax>35</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>354</xmin> + <ymin>9</ymin> + <xmax>368</xmax> + <ymax>33</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/41.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/41.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3c384b8ef14a07741777d8467d0f3f01ea296d92 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/41.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/41.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/41.xml new file mode 100644 index 0000000000000000000000000000000000000000..c49262c9497ef61c6eb8ce92a5ed051d82039973 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/41.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>41.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\41.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>529</width> + <height>327</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>45</xmin> + <ymin>155</ymin> + <xmax>149</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>128</ymin> + <xmax>241</xmax> + <ymax>277</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>228</xmin> + <ymin>106</ymin> + <xmax>311</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>295</xmin> + <ymin>90</ymin> + <xmax>368</xmax> + <ymax>227</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>72</ymin> + <xmax>407</xmax> + <ymax>200</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>381</xmin> + <ymin>61</ymin> + <xmax>444</xmax> + <ymax>184</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>420</xmin> + <ymin>47</ymin> + <xmax>477</xmax> + <ymax>165</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>464</xmin> + <ymin>35</ymin> + <xmax>520</xmax> + <ymax>145</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>496</xmin> + <ymin>22</ymin> + <xmax>529</xmax> + <ymax>123</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/42.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/42.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f4ac7318edb7e8b07d4cc4055d21b9d8040ce91b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/42.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/42.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/42.xml new file mode 100644 index 0000000000000000000000000000000000000000..695e55e16778cb35ea2b99b4b5be45e154091f3e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/42.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>42.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\42.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>66</xmin> + <ymin>11</ymin> + <xmax>293</xmax> + <ymax>492</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/43.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/43.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d06cf0f3ea474fc47341b89f6b18790ce3b2d689 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/43.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/43.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/43.xml new file mode 100644 index 0000000000000000000000000000000000000000..0feb64e1c1383bfefcce73cc193b471ca31805ff --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/43.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>43.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\43.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>126</xmin> + <ymin>267</ymin> + <xmax>139</xmax> + <ymax>285</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>391</xmin> + <ymin>261</ymin> + <xmax>402</xmax> + <ymax>282</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>260</ymin> + <xmax>277</xmax> + <ymax>281</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>194</xmin> + <ymin>261</ymin> + <xmax>208</xmax> + <ymax>282</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/44.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/44.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7b307cc905f9a83e7a709326c0a8806977c764f1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/44.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/44.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/44.xml new file mode 100644 index 0000000000000000000000000000000000000000..24bc004131fd66c71d6b739a48f1e22b89a604d3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/44.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>44.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\44.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>132</xmin> + <ymin>37</ymin> + <xmax>275</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>2</xmin> + <ymin>283</ymin> + <xmax>99</xmax> + <ymax>508</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>1</ymin> + <xmax>187</xmax> + <ymax>95</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/45.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/45.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4c4f5024c87a38fe492c1c3d982da849011adea3 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/45.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/45.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/45.xml new file mode 100644 index 0000000000000000000000000000000000000000..9fcb50f9ca3c734fa55c734247bb72039fb79423 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/45.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>45.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\45.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>594</width> + <height>396</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>256</xmin> + <ymin>264</ymin> + <xmax>308</xmax> + <ymax>347</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>249</ymin> + <xmax>154</xmax> + <ymax>317</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>15</xmin> + <ymin>240</ymin> + <xmax>53</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>507</xmin> + <ymin>283</ymin> + <xmax>573</xmax> + <ymax>391</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>347</xmin> + <ymin>192</ymin> + <xmax>359</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>289</xmin> + <ymin>190</ymin> + <xmax>302</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>102</xmin> + <ymin>194</ymin> + <xmax>111</xmax> + <ymax>206</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/46.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/46.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7ca6552e5e7c57a6c699da7236addae19293c80a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/46.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/46.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/46.xml new file mode 100644 index 0000000000000000000000000000000000000000..04029dac98ce8d36867c69aa932cc8ef5a6da83c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/46.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>46.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\46.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>132</xmin> + <ymin>162</ymin> + <xmax>304</xmax> + <ymax>478</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/47.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/47.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cf705c85041f072f9000e3fef20f3f7989e6bf6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/47.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/47.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/47.xml new file mode 100644 index 0000000000000000000000000000000000000000..3e3aa3d1a0ccc16f7695e16d4739e5028c9a5c5e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/47.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>47.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\47.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>11</ymin> + <xmax>384</xmax> + <ymax>322</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/48.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/48.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eb62e66ad07dd40e16e197f2888339f684f1c72d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/48.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/48.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/48.xml new file mode 100644 index 0000000000000000000000000000000000000000..68b1fdd321847c9d06d4e7e8c343be44866c4465 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/48.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>48.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\48.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>514</width> + <height>333</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>16</xmin> + <ymin>23</ymin> + <xmax>80</xmax> + <ymax>135</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>113</xmin> + <ymin>34</ymin> + <xmax>190</xmax> + <ymax>164</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>375</xmin> + <ymin>90</ymin> + <xmax>506</xmax> + <ymax>291</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>205</xmin> + <ymin>165</ymin> + <xmax>363</xmax> + <ymax>301</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/49.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/49.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7673a3353051954e73afef7ab2a4692fd625a7c8 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/49.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/49.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/49.xml new file mode 100644 index 0000000000000000000000000000000000000000..7a3761ffd47ef6872354eae63391148063096287 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/49.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>49.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\49.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>594</width> + <height>334</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>27</xmin> + <ymin>44</ymin> + <xmax>212</xmax> + <ymax>283</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>369</xmin> + <ymin>9</ymin> + <xmax>589</xmax> + <ymax>292</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/5.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/5.jpg new file mode 100644 index 0000000000000000000000000000000000000000..391a91991b7b15f907cbe9e240943914afc28de9 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/5.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/5.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/5.xml new file mode 100644 index 0000000000000000000000000000000000000000..5b963a42f1c4e195a6b3a367d1566c326ea3f5e6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/5.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>5.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\5.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>5</xmin> + <ymin>38</ymin> + <xmax>336</xmax> + <ymax>478</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/50.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/50.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5de0b10d1627f61e7528d6b5325e3e4733e7b497 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/50.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/50.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/50.xml new file mode 100644 index 0000000000000000000000000000000000000000..c396b6031b259f2cf9a0af8bdef12cd59eb45594 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/50.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>50.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\50.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>53</xmin> + <ymin>47</ymin> + <xmax>259</xmax> + <ymax>456</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/51.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/51.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5727012fa105123957c9e42e4b6ab53a5b9cbf7a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/51.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/51.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/51.xml new file mode 100644 index 0000000000000000000000000000000000000000..16d57f31d918a02bda72df976e45fcce5e519c3a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/51.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>51.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\51.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>594</width> + <height>401</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>378</xmin> + <ymin>246</ymin> + <xmax>411</xmax> + <ymax>286</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>22</xmin> + <ymin>292</ymin> + <xmax>79</xmax> + <ymax>368</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>178</xmin> + <ymin>257</ymin> + <xmax>205</xmax> + <ymax>309</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>113</xmin> + <ymin>263</ymin> + <xmax>145</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>79</xmin> + <ymin>275</ymin> + <xmax>117</xmax> + <ymax>339</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/52.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/52.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5c79c02e9b15f8fabc13d74dc185f0d202bf32bf Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/52.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/52.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/52.xml new file mode 100644 index 0000000000000000000000000000000000000000..80a8ffbf2fac7cd8c62660bea200651d6512c30c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/52.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>52.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\52.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>170</width> + <height>106</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>97</xmax> + <ymax>103</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>35</xmin> + <ymin>16</ymin> + <xmax>161</xmax> + <ymax>104</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/53.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/53.jpg new file mode 100644 index 0000000000000000000000000000000000000000..09d260081ed1d3f2288b6e689fb7c0752f4b279f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/53.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/53.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/53.xml new file mode 100644 index 0000000000000000000000000000000000000000..a86fb83d76693f31bba0053ec6e6486359612f54 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/53.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>53.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\53.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>114</width> + <height>170</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>19</ymin> + <xmax>92</xmax> + <ymax>158</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/54.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/54.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6ee6c1d9ca20d6de8cc7a63e66400baebdce72d1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/54.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/54.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/54.xml new file mode 100644 index 0000000000000000000000000000000000000000..7e059368607fb0a24950911c4330ea9ef7128013 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/54.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>54.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\54.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>309</xmin> + <ymin>158</ymin> + <xmax>383</xmax> + <ymax>264</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>13</xmin> + <ymin>161</ymin> + <xmax>85</xmax> + <ymax>264</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>34</xmin> + <ymin>90</ymin> + <xmax>95</xmax> + <ymax>166</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>276</xmin> + <ymin>82</ymin> + <xmax>324</xmax> + <ymax>156</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/55.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/55.jpg new file mode 100644 index 0000000000000000000000000000000000000000..90ef67dca44063a2eaada849f5ecb271bf67f229 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/55.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/55.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/55.xml new file mode 100644 index 0000000000000000000000000000000000000000..870124701ab6dad222cde82a5b397f7ba9df93b3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/55.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>55.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\55.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>44</ymin> + <xmax>355</xmax> + <ymax>286</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>377</xmin> + <ymin>164</ymin> + <xmax>448</xmax> + <ymax>261</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/56.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/56.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3de4d3adc6560de9f1e4a9253330b48ee09d92b1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/56.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/56.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/56.xml new file mode 100644 index 0000000000000000000000000000000000000000..256b78685e7e218cb345c084807faa46516a4a09 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/56.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>56.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\56.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>422</width> + <height>407</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>79</xmin> + <ymin>10</ymin> + <xmax>306</xmax> + <ymax>314</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/57.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/57.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1159b708018d81ac10869de4849a54afe43e0c63 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/57.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/57.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/57.xml new file mode 100644 index 0000000000000000000000000000000000000000..70c7754a80ddad37f42d2c093976b8d357f52bb3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/57.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>57.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\57.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>23</xmin> + <ymin>229</ymin> + <xmax>158</xmax> + <ymax>394</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>190</ymin> + <xmax>267</xmax> + <ymax>307</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>168</ymin> + <xmax>330</xmax> + <ymax>260</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>311</xmin> + <ymin>155</ymin> + <xmax>372</xmax> + <ymax>229</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>355</xmin> + <ymin>145</ymin> + <xmax>401</xmax> + <ymax>208</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>388</xmin> + <ymin>138</ymin> + <xmax>414</xmax> + <ymax>191</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/58.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/58.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9afdc7e3357fb32fb9c75b44399dbea68bbb9dd1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/58.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/58.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/58.xml new file mode 100644 index 0000000000000000000000000000000000000000..d7e5b8a5b216526919367bd777880bcca9c78b82 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/58.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>58.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\58.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>369</width> + <height>464</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>34</xmin> + <ymin>171</ymin> + <xmax>193</xmax> + <ymax>433</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>148</xmin> + <ymin>174</ymin> + <xmax>339</xmax> + <ymax>284</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/59.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/59.jpg new file mode 100644 index 0000000000000000000000000000000000000000..960c455c0a11635108fccdb1a77a675dbc623be5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/59.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/59.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/59.xml new file mode 100644 index 0000000000000000000000000000000000000000..57a3eb5e6d8ed886b287f24400929c36df87820a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/59.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>59.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\59.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>53</xmin> + <ymin>57</ymin> + <xmax>292</xmax> + <ymax>434</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/6.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/6.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a39ba1e368e2a384d4a8a83fcc3eb50bae5005a5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/6.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/6.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/6.xml new file mode 100644 index 0000000000000000000000000000000000000000..30164432ff2f73dbdb5dd172572dc99ea59458e7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/6.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>6.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\6.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>39</ymin> + <xmax>332</xmax> + <ymax>468</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/60.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/60.jpg new file mode 100644 index 0000000000000000000000000000000000000000..87327bce4c2eedb637ace032229ab8a3517e81aa Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/60.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/60.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/60.xml new file mode 100644 index 0000000000000000000000000000000000000000..fd820d8c78151e52d0ffb4fc0bbc1cac9db90e2e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/60.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>60.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\60.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>482</width> + <height>355</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>50</xmin> + <ymin>148</ymin> + <xmax>195</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>212</xmin> + <ymin>109</ymin> + <xmax>317</xmax> + <ymax>235</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>306</xmin> + <ymin>81</ymin> + <xmax>389</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>368</xmin> + <ymin>67</ymin> + <xmax>434</xmax> + <ymax>149</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>422</xmin> + <ymin>54</ymin> + <xmax>468</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>454</xmin> + <ymin>48</ymin> + <xmax>482</xmax> + <ymax>105</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/61.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/61.jpg new file mode 100644 index 0000000000000000000000000000000000000000..86b02e0acffe271cb984dafd06f6137b8a9726bc Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/61.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/61.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/61.xml new file mode 100644 index 0000000000000000000000000000000000000000..234d206c51ad03671c775d091469d1f1a03c1427 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/61.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>61.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\61.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>57</xmin> + <ymin>168</ymin> + <xmax>166</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>125</ymin> + <xmax>143</xmax> + <ymax>225</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>96</xmin> + <ymin>73</ymin> + <xmax>139</xmax> + <ymax>134</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/62.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/62.jpg new file mode 100644 index 0000000000000000000000000000000000000000..db7b81dc3917af4558b09d11029e5ffbd0497828 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/62.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/62.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/62.xml new file mode 100644 index 0000000000000000000000000000000000000000..6c5e86da09fdff2eda112e4ac2dbefe0b21e3aac --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/62.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>62.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\62.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>182</ymin> + <xmax>346</xmax> + <ymax>303</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>189</ymin> + <xmax>223</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>48</xmin> + <ymin>155</ymin> + <xmax>128</xmax> + <ymax>259</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/63.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/63.jpg new file mode 100644 index 0000000000000000000000000000000000000000..60a029dcd62bd5126266adae7ab4d9405daa6ed2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/63.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/63.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/63.xml new file mode 100644 index 0000000000000000000000000000000000000000..8a22ec396b8b851a79249caf1320e387e82e050f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/63.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>63.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\63.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>292</xmin> + <ymin>202</ymin> + <xmax>398</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>168</ymin> + <xmax>222</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>210</ymin> + <xmax>153</xmax> + <ymax>335</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>183</xmin> + <ymin>153</ymin> + <xmax>256</xmax> + <ymax>218</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/64.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/64.jpg new file mode 100644 index 0000000000000000000000000000000000000000..86f5399311c51cc329fb7d8fd103c7a80992930f Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/64.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/64.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/64.xml new file mode 100644 index 0000000000000000000000000000000000000000..856ed467912123196397451dcd2a4559c0a84b61 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/64.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>64.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\64.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>26</ymin> + <xmax>254</xmax> + <ymax>178</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>2</xmin> + <ymin>179</ymin> + <xmax>189</xmax> + <ymax>474</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>1</ymin> + <xmax>301</xmax> + <ymax>85</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>286</xmin> + <ymin>1</ymin> + <xmax>322</xmax> + <ymax>43</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/65.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/65.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3ff2198fe242735d5e87fa5b778563d65db8f116 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/65.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/65.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/65.xml new file mode 100644 index 0000000000000000000000000000000000000000..802484edee2522128e25d51cbe357c1673f5f584 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/65.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>65.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\65.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>24</xmin> + <ymin>58</ymin> + <xmax>318</xmax> + <ymax>471</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/66.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/66.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d0cb30d523cc494bb94692e434850f3b15013005 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/66.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/66.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/66.xml new file mode 100644 index 0000000000000000000000000000000000000000..16f99d0bc13f4cb7a6fae51962fdccf12564eee3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/66.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>66.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\66.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>680</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>257</ymin> + <xmax>329</xmax> + <ymax>648</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>649</xmin> + <ymin>239</ymin> + <xmax>922</xmax> + <ymax>621</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/67.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/67.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c94a5d54e91d8d3c16656a67e8ca24f76118ab45 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/67.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/67.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/67.xml new file mode 100644 index 0000000000000000000000000000000000000000..f0843121c0f2f17800fad45f4e84d9280d95d58a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/67.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>67.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\67.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>356</width> + <height>481</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>106</xmin> + <ymin>88</ymin> + <xmax>241</xmax> + <ymax>316</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/68.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/68.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c0cc64b7acfc6533991db4630656471405630760 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/68.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/68.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/68.xml new file mode 100644 index 0000000000000000000000000000000000000000..7cb60fc813748d489aa9e7022bc9f1beb14b4cd2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/68.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>68.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\68.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>221</xmin> + <ymin>110</ymin> + <xmax>259</xmax> + <ymax>179</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/69.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/69.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3fc33a9fc2e82752469d34c91782f850f0eff22a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/69.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/69.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/69.xml new file mode 100644 index 0000000000000000000000000000000000000000..b13e86158c90b864f77db1ff8af3b28c750e8dfc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/69.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>69.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\69.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>28</xmin> + <ymin>30</ymin> + <xmax>240</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>178</xmin> + <ymin>99</ymin> + <xmax>452</xmax> + <ymax>312</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/7.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/7.jpg new file mode 100644 index 0000000000000000000000000000000000000000..55c95a5f157d99f295fd8c7110455a7764e3a1f3 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/7.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/7.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/7.xml new file mode 100644 index 0000000000000000000000000000000000000000..24cdb64b5e9aeeeab9b3272251a371bd210d5955 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/7.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>7.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\7.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>280</xmin> + <ymin>45</ymin> + <xmax>438</xmax> + <ymax>274</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>79</xmin> + <ymin>150</ymin> + <xmax>100</xmax> + <ymax>186</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>167</xmin> + <ymin>154</ymin> + <xmax>187</xmax> + <ymax>184</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>203</xmin> + <ymin>152</ymin> + <xmax>219</xmax> + <ymax>187</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>114</ymin> + <xmax>310</xmax> + <ymax>221</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>245</xmin> + <ymin>137</ymin> + <xmax>269</xmax> + <ymax>201</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>145</ymin> + <xmax>250</xmax> + <ymax>195</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/70.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/70.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dab53d9cf82b01a0387f327cf5657aee5c6cfd57 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/70.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/70.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/70.xml new file mode 100644 index 0000000000000000000000000000000000000000..0f9684ad168cc5b2038e22b2b070e9da5e38feee --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/70.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>70.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\70.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>363</width> + <height>473</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>232</ymin> + <xmax>155</xmax> + <ymax>405</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>247</xmin> + <ymin>72</ymin> + <xmax>323</xmax> + <ymax>223</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>188</xmin> + <ymin>111</ymin> + <xmax>251</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>126</xmin> + <ymin>166</ymin> + <xmax>203</xmax> + <ymax>330</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/71.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/71.jpg new file mode 100644 index 0000000000000000000000000000000000000000..17c71595c09e52093feda39ded6af86e24358b41 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/71.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/71.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/71.xml new file mode 100644 index 0000000000000000000000000000000000000000..64c7bf357912453265f66eb997af4b62b6a32e6f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/71.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>71.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\71.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>412</width> + <height>415</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>69</ymin> + <xmax>373</xmax> + <ymax>393</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>166</ymin> + <xmax>125</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>342</xmin> + <ymin>152</ymin> + <xmax>412</xmax> + <ymax>265</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/72.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/72.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7ca6552e5e7c57a6c699da7236addae19293c80a Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/72.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/72.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/72.xml new file mode 100644 index 0000000000000000000000000000000000000000..0d61d6cbdfd581ccfb81b5b97ceffd1645af1d96 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/72.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>72.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\72.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>129</xmin> + <ymin>159</ymin> + <xmax>301</xmax> + <ymax>476</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/73.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/73.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f96929d640efb84c3cce5e2bc250072aea5158be Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/73.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/73.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/73.xml new file mode 100644 index 0000000000000000000000000000000000000000..0f8f8107f3f7eb860d2bee386606af66ba915800 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/73.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>73.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\73.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>604</width> + <height>283</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>268</xmin> + <ymin>113</ymin> + <xmax>315</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>185</xmin> + <ymin>113</ymin> + <xmax>233</xmax> + <ymax>170</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>114</ymin> + <xmax>150</xmax> + <ymax>170</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>15</xmin> + <ymin>114</ymin> + <xmax>65</xmax> + <ymax>170</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>351</xmin> + <ymin>114</ymin> + <xmax>402</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>440</xmin> + <ymin>114</ymin> + <xmax>487</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>528</xmin> + <ymin>116</ymin> + <xmax>575</xmax> + <ymax>171</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/74.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/74.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d42eb9dcfaf5bac9e6e639137ee778a466f3987c Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/74.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/74.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/74.xml new file mode 100644 index 0000000000000000000000000000000000000000..6488c5d6052cf3612c807ce9c8a2691c889bedbe --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/74.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>74.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\74.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>50</xmin> + <ymin>1</ymin> + <xmax>183</xmax> + <ymax>188</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>253</xmin> + <ymin>64</ymin> + <xmax>366</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>7</ymin> + <xmax>429</xmax> + <ymax>179</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>127</xmin> + <ymin>99</ymin> + <xmax>259</xmax> + <ymax>335</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>425</xmin> + <ymin>4</ymin> + <xmax>509</xmax> + <ymax>171</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/75.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/75.jpg new file mode 100644 index 0000000000000000000000000000000000000000..57c98cd0ec0b3552619e7ba263564025a7179dda Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/75.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/75.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/75.xml new file mode 100644 index 0000000000000000000000000000000000000000..efa46fc84bf45338d5f506073e56a6f3b19b6ed7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/75.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>75.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\75.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>16</ymin> + <xmax>354</xmax> + <ymax>393</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/76.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/76.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e7cce22d3a2901dff01f473601f3538a4047d5bd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/76.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/76.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/76.xml new file mode 100644 index 0000000000000000000000000000000000000000..63c748a0e852e2fa76d55778d2cd946a5781f3b3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/76.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>76.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\76.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>492</width> + <height>348</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>49</ymin> + <xmax>295</xmax> + <ymax>298</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>216</xmin> + <ymin>81</ymin> + <xmax>399</xmax> + <ymax>271</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/77.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/77.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cadc057f4c36a8585f5d7b90dee4d5cf2945ab1 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/77.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/77.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/77.xml new file mode 100644 index 0000000000000000000000000000000000000000..0a2ab193a08b57922c41fff5876dc24c38cfed0b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/77.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>77.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\77.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>387</width> + <height>443</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>8</xmin> + <ymin>1</ymin> + <xmax>378</xmax> + <ymax>441</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/78.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/78.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f5610066fdc2e0127805545d4ead5edf2bc41c93 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/78.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/78.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/78.xml new file mode 100644 index 0000000000000000000000000000000000000000..ca56d792b10f822085cf171a72295f8a66256072 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/78.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>78.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\78.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>138</xmin> + <ymin>164</ymin> + <xmax>306</xmax> + <ymax>457</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>53</xmin> + <ymin>162</ymin> + <xmax>109</xmax> + <ymax>252</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/79.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/79.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ece385097ff446a46bc08c20c02cb28eca2ad2fc Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/79.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/79.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/79.xml new file mode 100644 index 0000000000000000000000000000000000000000..438ff7841bfccfdf4a44f9c9ffac90bf7f0c3bd8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/79.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>79.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\79.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>505</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>317</xmin> + <ymin>106</ymin> + <xmax>435</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>267</xmin> + <ymin>140</ymin> + <xmax>340</xmax> + <ymax>266</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>239</xmin> + <ymin>167</ymin> + <xmax>272</xmax> + <ymax>233</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>419</xmin> + <ymin>164</ymin> + <xmax>470</xmax> + <ymax>253</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/8.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/8.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ddbb595eb4a93591f923c97270bbfbbc9f2a9a35 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/8.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/8.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/8.xml new file mode 100644 index 0000000000000000000000000000000000000000..f0bfc8c54c84f3fe60fafb5dc905943ff5940370 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/8.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>8.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\8.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>332</xmin> + <ymin>52</ymin> + <xmax>460</xmax> + <ymax>295</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>207</xmin> + <ymin>131</ymin> + <xmax>242</xmax> + <ymax>205</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>169</xmin> + <ymin>147</ymin> + <xmax>192</xmax> + <ymax>191</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>155</xmin> + <ymin>155</ymin> + <xmax>169</xmax> + <ymax>183</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>47</xmin> + <ymin>167</ymin> + <xmax>52</xmax> + <ymax>174</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/80.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/80.jpg new file mode 100644 index 0000000000000000000000000000000000000000..169efd966d71d1069cba2818faff14482d8acdf4 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/80.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/80.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/80.xml new file mode 100644 index 0000000000000000000000000000000000000000..6fda51997bc8d2cea21b50c137b24bca933c66f8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/80.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>80.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\80.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>366</width> + <height>467</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>98</xmin> + <ymin>211</ymin> + <xmax>182</xmax> + <ymax>357</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>99</xmin> + <ymin>202</ymin> + <xmax>148</xmax> + <ymax>299</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>134</xmin> + <ymin>241</ymin> + <xmax>228</xmax> + <ymax>465</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>108</xmin> + <ymin>195</ymin> + <xmax>133</xmax> + <ymax>249</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/81.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/81.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a4a3efbeec838e054a4bbf4a041fdbd90cb9f417 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/81.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/81.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/81.xml new file mode 100644 index 0000000000000000000000000000000000000000..0c4bb3847fb79e9c08f6ecca23529f971d20e66e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/81.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>81.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\81.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>78</xmin> + <ymin>55</ymin> + <xmax>260</xmax> + <ymax>308</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>121</ymin> + <xmax>356</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>233</xmin> + <ymin>180</ymin> + <xmax>278</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>43</xmin> + <ymin>160</ymin> + <xmax>123</xmax> + <ymax>253</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/82.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/82.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eb62e66ad07dd40e16e197f2888339f684f1c72d Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/82.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/82.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/82.xml new file mode 100644 index 0000000000000000000000000000000000000000..08e829f79ce8bd927ea31c698b72a3efa73b7ffa --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/82.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>82.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\82.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>514</width> + <height>333</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>33</ymin> + <xmax>191</xmax> + <ymax>163</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>13</xmin> + <ymin>25</ymin> + <xmax>83</xmax> + <ymax>136</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>376</xmin> + <ymin>90</ymin> + <xmax>506</xmax> + <ymax>292</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>205</xmin> + <ymin>168</ymin> + <xmax>363</xmax> + <ymax>296</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/83.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/83.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7a255f822981028fbc5df1becf05a10c2df95d60 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/83.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/83.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/83.xml new file mode 100644 index 0000000000000000000000000000000000000000..1797700a59aab71846ac7cf94a08535dfd379470 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/83.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>83.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\83.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>1</ymin> + <xmax>509</xmax> + <ymax>336</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/84.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/84.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d466eac9ac903144d8515cfa3958e2727d9853ac Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/84.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/84.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/84.xml new file mode 100644 index 0000000000000000000000000000000000000000..b55dd0d3ef3f0e9d7c24aa9be7b8417fb256779d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/84.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>84.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\84.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>192</xmin> + <ymin>189</ymin> + <xmax>333</xmax> + <ymax>325</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/85.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/85.jpg new file mode 100644 index 0000000000000000000000000000000000000000..710f6b99d04e7999f40c2604335368d870ca9fed Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/85.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/85.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/85.xml new file mode 100644 index 0000000000000000000000000000000000000000..2b14df2b422c4309989d3315e635809905275f8e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/85.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>85.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\85.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>146</xmin> + <ymin>71</ymin> + <xmax>228</xmax> + <ymax>215</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>294</xmin> + <ymin>28</ymin> + <xmax>407</xmax> + <ymax>187</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>38</xmin> + <ymin>109</ymin> + <xmax>114</xmax> + <ymax>232</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>408</xmin> + <ymin>73</ymin> + <xmax>497</xmax> + <ymax>222</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/86.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/86.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9556b6df8396bb1c8197bca623854c38893bd437 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/86.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/86.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/86.xml new file mode 100644 index 0000000000000000000000000000000000000000..1c4e504ab35cd39b5812c65a351236812066c7ef --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/86.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>86.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\86.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>193</xmin> + <ymin>12</ymin> + <xmax>457</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/87.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/87.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fba51bade931d2fdff72e4ae76544e8ebf4f89f5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/87.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/87.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/87.xml new file mode 100644 index 0000000000000000000000000000000000000000..0648a0c8b0f96d2381e2cc2b3fd1904ce05da10f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/87.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>87.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\87.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>159</xmin> + <ymin>223</ymin> + <xmax>287</xmax> + <ymax>454</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>40</ymin> + <xmax>77</xmax> + <ymax>91</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>114</xmin> + <ymin>5</ymin> + <xmax>143</xmax> + <ymax>43</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>4</ymin> + <xmax>178</xmax> + <ymax>25</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/88.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/88.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c6bbd2fde51c2b43fcc08de769a93ed3d632152 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/88.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/88.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/88.xml new file mode 100644 index 0000000000000000000000000000000000000000..f61101ba72552659d6c4480315f3c96bf656c086 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/88.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>88.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\88.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>52</ymin> + <xmax>106</xmax> + <ymax>355</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>204</xmin> + <ymin>125</ymin> + <xmax>234</xmax> + <ymax>193</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>139</ymin> + <xmax>257</xmax> + <ymax>180</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>145</ymin> + <xmax>261</xmax> + <ymax>170</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/89.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/89.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f4ac7318edb7e8b07d4cc4055d21b9d8040ce91b Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/89.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/89.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/89.xml new file mode 100644 index 0000000000000000000000000000000000000000..b953d1ecb6ff011c9f2ade1f3ac49ab87e56a7cd --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/89.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>89.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\89.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>62</xmin> + <ymin>10</ymin> + <xmax>291</xmax> + <ymax>492</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/9.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/9.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5ea3555212980a9a5e49999f6e94c863ba876f05 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/9.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/9.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/9.xml new file mode 100644 index 0000000000000000000000000000000000000000..fd785042d0bb01466c4f88da84cf1199d672ef50 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/9.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>9.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\9.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>359</xmin> + <ymin>94</ymin> + <xmax>484</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>276</xmin> + <ymin>104</ymin> + <xmax>362</xmax> + <ymax>257</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>120</xmin> + <ymin>168</ymin> + <xmax>302</xmax> + <ymax>293</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/90.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/90.jpg new file mode 100644 index 0000000000000000000000000000000000000000..18b17914904fc0e94e8f8109496f700d92503a56 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/90.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/90.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/90.xml new file mode 100644 index 0000000000000000000000000000000000000000..e40077788f69f2e374503b6d5d0bea7abaec493e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/90.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>90.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\90.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>535</width> + <height>322</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>220</xmin> + <ymin>203</ymin> + <xmax>258</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>213</ymin> + <xmax>135</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>70</xmin> + <ymin>203</ymin> + <xmax>103</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>213</ymin> + <xmax>30</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>177</ymin> + <xmax>359</xmax> + <ymax>261</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>396</xmin> + <ymin>221</ymin> + <xmax>415</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>458</xmin> + <ymin>224</ymin> + <xmax>470</xmax> + <ymax>241</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/91.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/91.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b8cfdaf0c1eeccad0a85f8e139357f77e1e044ee Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/91.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/91.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/91.xml new file mode 100644 index 0000000000000000000000000000000000000000..84472c691496745cc5faab9a0176fa1f32bbff79 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/91.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>91.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\91.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>553</width> + <height>311</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>148</xmin> + <ymin>27</ymin> + <xmax>262</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>1</ymin> + <xmax>350</xmax> + <ymax>137</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>122</xmax> + <ymax>88</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/92.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/92.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aa8b6063eb577fa9456e9252b8d5bd66ce588ad0 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/92.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/92.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/92.xml new file mode 100644 index 0000000000000000000000000000000000000000..f7f18b524196b3a3caea2cbb6998a95ee8cf8ad7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/92.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>92.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\92.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>190</ymin> + <xmax>223</xmax> + <ymax>389</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/93.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/93.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b9e54e70e62c21919d4fed814a885f47e4f0b4d5 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/93.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/93.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/93.xml new file mode 100644 index 0000000000000000000000000000000000000000..3805ae278700271f60d861a76293f88457c2e235 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/93.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>93.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\93.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>91</xmin> + <ymin>39</ymin> + <xmax>178</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>3</xmin> + <ymin>28</ymin> + <xmax>76</xmax> + <ymax>128</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>223</xmin> + <ymin>60</ymin> + <xmax>327</xmax> + <ymax>210</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>259</xmin> + <ymin>4</ymin> + <xmax>290</xmax> + <ymax>53</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/94.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/94.jpg new file mode 100644 index 0000000000000000000000000000000000000000..98a8d510dd4ddd4de3aa82558e83072c74b1dfed Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/94.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/94.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/94.xml new file mode 100644 index 0000000000000000000000000000000000000000..7337dca0b4b3370976e3e7227bb8778a8b687e5f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/94.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>94.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\94.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>24</ymin> + <xmax>397</xmax> + <ymax>294</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>100</ymin> + <xmax>183</xmax> + <ymax>188</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>111</xmin> + <ymin>120</ymin> + <xmax>138</xmax> + <ymax>167</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>101</xmin> + <ymin>125</ymin> + <xmax>122</xmax> + <ymax>156</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/95.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/95.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eed8aac79f979ff1b531ece250df243e668d6cc6 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/95.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/95.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/95.xml new file mode 100644 index 0000000000000000000000000000000000000000..c29900471df0f112799cada8017beefbc06bb433 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/95.xml @@ -0,0 +1,110 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>95.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\95.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>510</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>312</xmin> + <ymin>168</ymin> + <xmax>402</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>430</xmin> + <ymin>23</ymin> + <xmax>462</xmax> + <ymax>75</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>366</xmin> + <ymin>22</ymin> + <xmax>399</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>311</xmin> + <ymin>23</ymin> + <xmax>341</xmax> + <ymax>75</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>292</xmin> + <ymin>117</ymin> + <xmax>366</xmax> + <ymax>248</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>280</xmin> + <ymin>92</ymin> + <xmax>333</xmax> + <ymax>202</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>16</ymin> + <xmax>155</xmax> + <ymax>65</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>16</ymin> + <xmax>106</xmax> + <ymax>66</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/96.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/96.jpg new file mode 100644 index 0000000000000000000000000000000000000000..92f76386f69f98b22d2f1b83e534a5e0e307dd56 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/96.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/96.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/96.xml new file mode 100644 index 0000000000000000000000000000000000000000..23a5390244b0c27ab51f5126142e283bd16b3850 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/96.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>96.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\96.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>505</width> + <height>342</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>317</xmin> + <ymin>113</ymin> + <xmax>373</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>94</ymin> + <xmax>255</xmax> + <ymax>176</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>183</ymin> + <xmax>421</xmax> + <ymax>320</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>263</xmin> + <ymin>96</ymin> + <xmax>289</xmax> + <ymax>137</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/97.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/97.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a8e9cdc28f8f8d7852f781f913b0adfc3fda53ce Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/97.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/97.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/97.xml new file mode 100644 index 0000000000000000000000000000000000000000..3c2c10de8201fd621b1d60bd819d4c7c097c8296 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/97.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>97.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\97.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>432</width> + <height>400</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>97</xmin> + <ymin>1</ymin> + <xmax>166</xmax> + <ymax>108</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/98.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/98.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e03c9664414ee18aec9e61db6d64d80e2bb6c3a2 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/98.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/98.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/98.xml new file mode 100644 index 0000000000000000000000000000000000000000..8e096381babb4e30abbbb42573548353f5cfa28d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/98.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>98.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\98.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>179</xmin> + <ymin>43</ymin> + <xmax>255</xmax> + <ymax>167</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/99.jpg b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/99.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7a810e26f4e31ca7dcac781532854e5ca0e3c112 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/99.jpg differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/99.xml b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/99.xml new file mode 100644 index 0000000000000000000000000000000000000000..fcae8467e04e5d6e324cd8b075ab9e0affe9c2e5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/custom_dataset/train/99.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>99.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\99.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>476</width> + <height>362</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>201</xmin> + <ymin>170</ymin> + <xmax>294</xmax> + <ymax>330</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>156</ymin> + <xmax>306</xmax> + <ymax>297</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>266</xmin> + <ymin>139</ymin> + <xmax>342</xmax> + <ymax>265</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>128</ymin> + <xmax>370</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>328</xmin> + <ymin>117</ymin> + <xmax>388</xmax> + <ymax>217</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>372</xmin> + <ymin>101</ymin> + <xmax>421</xmax> + <ymax>186</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/detection.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/detection.py new file mode 100644 index 0000000000000000000000000000000000000000..d2c48203fca982f1c27a6c8378ece242cd133f99 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/detection.py @@ -0,0 +1,55 @@ +# vim: expandtab:ts=4:sw=4 +import numpy as np + + +class Detection(object): + """ + This class represents a bounding box detection in a single image. + + Parameters + ---------- + tlwh : array_like + Bounding box in format `(x, y, w, h)`. + confidence : float + Detector confidence score. + feature : array_like + A feature vector that describes the object contained in this image. + + Attributes + ---------- + tlwh : ndarray + Bounding box in format `(top left x, top left y, width, height)`. + confidence : ndarray + Detector confidence score. + class_name : ndarray + Detector class. + feature : ndarray | NoneType + A feature vector that describes the object contained in this image. + + """ + + def __init__(self, tlwh, confidence, class_name, feature): + self.tlwh = np.asarray(tlwh, dtype=np.float) + self.confidence = float(confidence) + self.class_name = class_name + self.feature = np.asarray(feature, dtype=np.float32) + + def get_class(self): + return self.class_name + + def to_tlbr(self): + """Convert bounding box to format `(min x, min y, max x, max y)`, i.e., + `(top left, bottom right)`. + """ + ret = self.tlwh.copy() + ret[2:] += ret[:2] + return ret + + def to_xyah(self): + """Convert bounding box to format `(center x, center y, aspect ratio, + height)`, where the aspect ratio is `width / height`. + """ + ret = self.tlwh.copy() + ret[:2] += ret[2:] / 2 + ret[2] /= ret[3] + return ret diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/generate_detections.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/generate_detections.py new file mode 100644 index 0000000000000000000000000000000000000000..287a7ad0e64203dc19a8d07c88b18b274c974d3f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/generate_detections.py @@ -0,0 +1,216 @@ +# vim: expandtab:ts=4:sw=4 +import os +import errno +import argparse +import numpy as np +import cv2 +import tensorflow.compat.v1 as tf + +physical_devices = tf.config.experimental.list_physical_devices('GPU') +if len(physical_devices) > 0: + tf.config.experimental.set_memory_growth(physical_devices[0], True) + +def _run_in_batches(f, data_dict, out, batch_size): + data_len = len(out) + num_batches = int(data_len / batch_size) + + s, e = 0, 0 + for i in range(num_batches): + s, e = i * batch_size, (i + 1) * batch_size + batch_data_dict = {k: v[s:e] for k, v in data_dict.items()} + out[s:e] = f(batch_data_dict) + if e < len(out): + batch_data_dict = {k: v[e:] for k, v in data_dict.items()} + out[e:] = f(batch_data_dict) + + +def extract_image_patch(image, bbox, patch_shape): + """Extract image patch from bounding box. + + Parameters + ---------- + image : ndarray + The full image. + bbox : array_like + The bounding box in format (x, y, width, height). + patch_shape : Optional[array_like] + This parameter can be used to enforce a desired patch shape + (height, width). First, the `bbox` is adapted to the aspect ratio + of the patch shape, then it is clipped at the image boundaries. + If None, the shape is computed from :arg:`bbox`. + + Returns + ------- + ndarray | NoneType + An image patch showing the :arg:`bbox`, optionally reshaped to + :arg:`patch_shape`. + Returns None if the bounding box is empty or fully outside of the image + boundaries. + + """ + bbox = np.array(bbox) + if patch_shape is not None: + # correct aspect ratio to patch shape + target_aspect = float(patch_shape[1]) / patch_shape[0] + new_width = target_aspect * bbox[3] + bbox[0] -= (new_width - bbox[2]) / 2 + bbox[2] = new_width + + # convert to top left, bottom right + bbox[2:] += bbox[:2] + bbox = bbox.astype(np.int) + + # clip at image boundaries + bbox[:2] = np.maximum(0, bbox[:2]) + bbox[2:] = np.minimum(np.asarray(image.shape[:2][::-1]) - 1, bbox[2:]) + if np.any(bbox[:2] >= bbox[2:]): + return None + sx, sy, ex, ey = bbox + image = image[sy:ey, sx:ex] + image = cv2.resize(image, tuple(patch_shape[::-1])) + return image + + +class ImageEncoder(object): + + def __init__(self, checkpoint_filename, input_name="images", output_name="features"): + self.session = tf.Session() + with tf.gfile.GFile(checkpoint_filename, "rb") as file_handle: + graph_def = tf.GraphDef() + graph_def.ParseFromString(file_handle.read()) + tf.import_graph_def(graph_def) + try: + self.input_var = tf.get_default_graph().get_tensor_by_name(input_name) + self.output_var = tf.get_default_graph().get_tensor_by_name(output_name) + except KeyError: + layers = [i.name for i in tf.get_default_graph().get_operations()] + self.input_var = tf.get_default_graph().get_tensor_by_name(layers[0]+':0') + self.output_var = tf.get_default_graph().get_tensor_by_name(layers[-1]+':0') + + assert len(self.output_var.get_shape()) == 2 + assert len(self.input_var.get_shape()) == 4 + self.feature_dim = self.output_var.get_shape().as_list()[-1] + self.image_shape = self.input_var.get_shape().as_list()[1:] + + def __call__(self, data_x, batch_size=32): + out = np.zeros((len(data_x), self.feature_dim), np.float32) + _run_in_batches( + lambda x: self.session.run(self.output_var, feed_dict=x), + {self.input_var: data_x}, out, batch_size) + return out + + +def create_box_encoder(model_filename, input_name="images:0", output_name="features:0", batch_size=32): + image_encoder = ImageEncoder(model_filename, input_name, output_name) + image_shape = image_encoder.image_shape + + def encoder(image, boxes): + image_patches = [] + for box in boxes: + patch = extract_image_patch(image, box, image_shape[:2]) + if patch is None: + print("WARNING: Failed to extract image patch: %s." % str(box)) + patch = np.random.uniform(0., 255., image_shape).astype(np.uint8) + image_patches.append(patch) + image_patches = np.asarray(image_patches) + return image_encoder(image_patches, batch_size) + + return encoder + + +def generate_detections(encoder, mot_dir, output_dir, detection_dir=None): + """Generate detections with features. + + Parameters + ---------- + encoder : Callable[image, ndarray] -> ndarray + The encoder function takes as input a BGR color image and a matrix of + bounding boxes in format `(x, y, w, h)` and returns a matrix of + corresponding feature vectors. + mot_dir : str + Path to the MOTChallenge directory (can be either train or test). + output_dir + Path to the output directory. Will be created if it does not exist. + detection_dir + Path to custom detections. The directory structure should be the default + MOTChallenge structure: `[sequence]/det/det.txt`. If None, uses the + standard MOTChallenge detections. + + """ + if detection_dir is None: + detection_dir = mot_dir + try: + os.makedirs(output_dir) + except OSError as exception: + if exception.errno == errno.EEXIST and os.path.isdir(output_dir): + pass + else: + raise ValueError( + "Failed to created output directory '%s'" % output_dir) + + for sequence in os.listdir(mot_dir): + print("Processing %s" % sequence) + sequence_dir = os.path.join(mot_dir, sequence) + + image_dir = os.path.join(sequence_dir, "img1") + image_filenames = { + int(os.path.splitext(f)[0]): os.path.join(image_dir, f) + for f in os.listdir(image_dir)} + + detection_file = os.path.join( + detection_dir, sequence, "det/det.txt") + detections_in = np.loadtxt(detection_file, delimiter=',') + detections_out = [] + + frame_indices = detections_in[:, 0].astype(np.int) + min_frame_idx = frame_indices.astype(np.int).min() + max_frame_idx = frame_indices.astype(np.int).max() + for frame_idx in range(min_frame_idx, max_frame_idx + 1): + print("Frame %05d/%05d" % (frame_idx, max_frame_idx)) + mask = frame_indices == frame_idx + rows = detections_in[mask] + + if frame_idx not in image_filenames: + print("WARNING could not find image for frame %d" % frame_idx) + continue + bgr_image = cv2.imread( + image_filenames[frame_idx], cv2.IMREAD_COLOR) + features = encoder(bgr_image, rows[:, 2:6].copy()) + detections_out += [np.r_[(row, feature)] for row, feature + in zip(rows, features)] + + output_filename = os.path.join(output_dir, "%s.npy" % sequence) + np.save( + output_filename, np.asarray(detections_out), allow_pickle=False) + + +def parse_args(): + """Parse command line arguments. + """ + parser = argparse.ArgumentParser(description="Re-ID feature extractor") + parser.add_argument( + "--model", + default="resources/networks/mars-small128.pb", + help="Path to freezed inference graph protobuf.") + parser.add_argument( + "--mot_dir", help="Path to MOTChallenge directory (train or test)", + required=True) + parser.add_argument( + "--detection_dir", help="Path to custom detections. Defaults to " + "standard MOT detections Directory structure should be the default " + "MOTChallenge structure: [sequence]/det/det.txt", default=None) + parser.add_argument( + "--output_dir", help="Output directory. Will be created if it does not" + " exist.", default="detections") + return parser.parse_args() + + +def main(): + args = parse_args() + encoder = create_box_encoder(args.model, batch_size=32) + generate_detections(encoder, args.mot_dir, args.output_dir, + args.detection_dir) + + +if __name__ == "__main__": + main() diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/iou_matching.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/iou_matching.py new file mode 100644 index 0000000000000000000000000000000000000000..c4dd0b88391d2ac28036c7163d5d4c988d4a9c4c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/iou_matching.py @@ -0,0 +1,81 @@ +# vim: expandtab:ts=4:sw=4 +from __future__ import absolute_import +import numpy as np +from . import linear_assignment + + +def iou(bbox, candidates): + """Computer intersection over union. + + Parameters + ---------- + bbox : ndarray + A bounding box in format `(top left x, top left y, width, height)`. + candidates : ndarray + A matrix of candidate bounding boxes (one per row) in the same format + as `bbox`. + + Returns + ------- + ndarray + The intersection over union in [0, 1] between the `bbox` and each + candidate. A higher score means a larger fraction of the `bbox` is + occluded by the candidate. + + """ + bbox_tl, bbox_br = bbox[:2], bbox[:2] + bbox[2:] + candidates_tl = candidates[:, :2] + candidates_br = candidates[:, :2] + candidates[:, 2:] + + tl = np.c_[np.maximum(bbox_tl[0], candidates_tl[:, 0])[:, np.newaxis], + np.maximum(bbox_tl[1], candidates_tl[:, 1])[:, np.newaxis]] + br = np.c_[np.minimum(bbox_br[0], candidates_br[:, 0])[:, np.newaxis], + np.minimum(bbox_br[1], candidates_br[:, 1])[:, np.newaxis]] + wh = np.maximum(0., br - tl) + + area_intersection = wh.prod(axis=1) + area_bbox = bbox[2:].prod() + area_candidates = candidates[:, 2:].prod(axis=1) + return area_intersection / (area_bbox + area_candidates - area_intersection) + + +def iou_cost(tracks, detections, track_indices=None, + detection_indices=None): + """An intersection over union distance metric. + + Parameters + ---------- + tracks : List[deep_sort.track.Track] + A list of tracks. + detections : List[deep_sort.detection.Detection] + A list of detections. + track_indices : Optional[List[int]] + A list of indices to tracks that should be matched. Defaults to + all `tracks`. + detection_indices : Optional[List[int]] + A list of indices to detections that should be matched. Defaults + to all `detections`. + + Returns + ------- + ndarray + Returns a cost matrix of shape + len(track_indices), len(detection_indices) where entry (i, j) is + `1 - iou(tracks[track_indices[i]], detections[detection_indices[j]])`. + + """ + if track_indices is None: + track_indices = np.arange(len(tracks)) + if detection_indices is None: + detection_indices = np.arange(len(detections)) + + cost_matrix = np.zeros((len(track_indices), len(detection_indices))) + for row, track_idx in enumerate(track_indices): + if tracks[track_idx].time_since_update > 1: + cost_matrix[row, :] = linear_assignment.INFTY_COST + continue + + bbox = tracks[track_idx].to_tlwh() + candidates = np.asarray([detections[i].tlwh for i in detection_indices]) + cost_matrix[row, :] = 1. - iou(bbox, candidates) + return cost_matrix diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/kalman_filter.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/kalman_filter.py new file mode 100644 index 0000000000000000000000000000000000000000..787a76e6a43870a9538647b51fda6a5254ce2d43 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/kalman_filter.py @@ -0,0 +1,229 @@ +# vim: expandtab:ts=4:sw=4 +import numpy as np +import scipy.linalg + + +""" +Table for the 0.95 quantile of the chi-square distribution with N degrees of +freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv +function and used as Mahalanobis gating threshold. +""" +chi2inv95 = { + 1: 3.8415, + 2: 5.9915, + 3: 7.8147, + 4: 9.4877, + 5: 11.070, + 6: 12.592, + 7: 14.067, + 8: 15.507, + 9: 16.919} + + +class KalmanFilter(object): + """ + A simple Kalman filter for tracking bounding boxes in image space. + + The 8-dimensional state space + + x, y, a, h, vx, vy, va, vh + + contains the bounding box center position (x, y), aspect ratio a, height h, + and their respective velocities. + + Object motion follows a constant velocity model. The bounding box location + (x, y, a, h) is taken as direct observation of the state space (linear + observation model). + + """ + + def __init__(self): + ndim, dt = 4, 1. + + # Create Kalman filter model matrices. + self._motion_mat = np.eye(2 * ndim, 2 * ndim) + for i in range(ndim): + self._motion_mat[i, ndim + i] = dt + self._update_mat = np.eye(ndim, 2 * ndim) + + # Motion and observation uncertainty are chosen relative to the current + # state estimate. These weights control the amount of uncertainty in + # the model. This is a bit hacky. + self._std_weight_position = 1. / 20 + self._std_weight_velocity = 1. / 160 + + def initiate(self, measurement): + """Create track from unassociated measurement. + + Parameters + ---------- + measurement : ndarray + Bounding box coordinates (x, y, a, h) with center position (x, y), + aspect ratio a, and height h. + + Returns + ------- + (ndarray, ndarray) + Returns the mean vector (8 dimensional) and covariance matrix (8x8 + dimensional) of the new track. Unobserved velocities are initialized + to 0 mean. + + """ + mean_pos = measurement + mean_vel = np.zeros_like(mean_pos) + mean = np.r_[mean_pos, mean_vel] + + std = [ + 2 * self._std_weight_position * measurement[3], + 2 * self._std_weight_position * measurement[3], + 1e-2, + 2 * self._std_weight_position * measurement[3], + 10 * self._std_weight_velocity * measurement[3], + 10 * self._std_weight_velocity * measurement[3], + 1e-5, + 10 * self._std_weight_velocity * measurement[3]] + covariance = np.diag(np.square(std)) + return mean, covariance + + def predict(self, mean, covariance): + """Run Kalman filter prediction step. + + Parameters + ---------- + mean : ndarray + The 8 dimensional mean vector of the object state at the previous + time step. + covariance : ndarray + The 8x8 dimensional covariance matrix of the object state at the + previous time step. + + Returns + ------- + (ndarray, ndarray) + Returns the mean vector and covariance matrix of the predicted + state. Unobserved velocities are initialized to 0 mean. + + """ + std_pos = [ + self._std_weight_position * mean[3], + self._std_weight_position * mean[3], + 1e-2, + self._std_weight_position * mean[3]] + std_vel = [ + self._std_weight_velocity * mean[3], + self._std_weight_velocity * mean[3], + 1e-5, + self._std_weight_velocity * mean[3]] + motion_cov = np.diag(np.square(np.r_[std_pos, std_vel])) + + mean = np.dot(self._motion_mat, mean) + covariance = np.linalg.multi_dot(( + self._motion_mat, covariance, self._motion_mat.T)) + motion_cov + + return mean, covariance + + def project(self, mean, covariance): + """Project state distribution to measurement space. + + Parameters + ---------- + mean : ndarray + The state's mean vector (8 dimensional array). + covariance : ndarray + The state's covariance matrix (8x8 dimensional). + + Returns + ------- + (ndarray, ndarray) + Returns the projected mean and covariance matrix of the given state + estimate. + + """ + std = [ + self._std_weight_position * mean[3], + self._std_weight_position * mean[3], + 1e-1, + self._std_weight_position * mean[3]] + innovation_cov = np.diag(np.square(std)) + + mean = np.dot(self._update_mat, mean) + covariance = np.linalg.multi_dot(( + self._update_mat, covariance, self._update_mat.T)) + return mean, covariance + innovation_cov + + def update(self, mean, covariance, measurement): + """Run Kalman filter correction step. + + Parameters + ---------- + mean : ndarray + The predicted state's mean vector (8 dimensional). + covariance : ndarray + The state's covariance matrix (8x8 dimensional). + measurement : ndarray + The 4 dimensional measurement vector (x, y, a, h), where (x, y) + is the center position, a the aspect ratio, and h the height of the + bounding box. + + Returns + ------- + (ndarray, ndarray) + Returns the measurement-corrected state distribution. + + """ + projected_mean, projected_cov = self.project(mean, covariance) + + chol_factor, lower = scipy.linalg.cho_factor( + projected_cov, lower=True, check_finite=False) + kalman_gain = scipy.linalg.cho_solve( + (chol_factor, lower), np.dot(covariance, self._update_mat.T).T, + check_finite=False).T + innovation = measurement - projected_mean + + new_mean = mean + np.dot(innovation, kalman_gain.T) + new_covariance = covariance - np.linalg.multi_dot(( + kalman_gain, projected_cov, kalman_gain.T)) + return new_mean, new_covariance + + def gating_distance(self, mean, covariance, measurements, + only_position=False): + """Compute gating distance between state distribution and measurements. + + A suitable distance threshold can be obtained from `chi2inv95`. If + `only_position` is False, the chi-square distribution has 4 degrees of + freedom, otherwise 2. + + Parameters + ---------- + mean : ndarray + Mean vector over the state distribution (8 dimensional). + covariance : ndarray + Covariance of the state distribution (8x8 dimensional). + measurements : ndarray + An Nx4 dimensional matrix of N measurements, each in + format (x, y, a, h) where (x, y) is the bounding box center + position, a the aspect ratio, and h the height. + only_position : Optional[bool] + If True, distance computation is done with respect to the bounding + box center position only. + + Returns + ------- + ndarray + Returns an array of length N, where the i-th element contains the + squared Mahalanobis distance between (mean, covariance) and + `measurements[i]`. + + """ + mean, covariance = self.project(mean, covariance) + if only_position: + mean, covariance = mean[:2], covariance[:2, :2] + measurements = measurements[:, :2] + + cholesky_factor = np.linalg.cholesky(covariance) + d = measurements - mean + z = scipy.linalg.solve_triangular( + cholesky_factor, d.T, lower=True, check_finite=False, + overwrite_b=True) + squared_maha = np.sum(z * z, axis=0) + return squared_maha diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/linear_assignment.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/linear_assignment.py new file mode 100644 index 0000000000000000000000000000000000000000..47c8bf065bad27dd276fd6a33efc184f15a59c91 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/linear_assignment.py @@ -0,0 +1,191 @@ +# vim: expandtab:ts=4:sw=4 +from __future__ import absolute_import +import numpy as np +from scipy.optimize import linear_sum_assignment +from . import kalman_filter + + +INFTY_COST = 1e+5 + + +def min_cost_matching( + distance_metric, max_distance, tracks, detections, track_indices=None, + detection_indices=None): + """Solve linear assignment problem. + + Parameters + ---------- + distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray + The distance metric is given a list of tracks and detections as well as + a list of N track indices and M detection indices. The metric should + return the NxM dimensional cost matrix, where element (i, j) is the + association cost between the i-th track in the given track indices and + the j-th detection in the given detection_indices. + max_distance : float + Gating threshold. Associations with cost larger than this value are + disregarded. + tracks : List[track.Track] + A list of predicted tracks at the current time step. + detections : List[detection.Detection] + A list of detections at the current time step. + track_indices : List[int] + List of track indices that maps rows in `cost_matrix` to tracks in + `tracks` (see description above). + detection_indices : List[int] + List of detection indices that maps columns in `cost_matrix` to + detections in `detections` (see description above). + + Returns + ------- + (List[(int, int)], List[int], List[int]) + Returns a tuple with the following three entries: + * A list of matched track and detection indices. + * A list of unmatched track indices. + * A list of unmatched detection indices. + + """ + if track_indices is None: + track_indices = np.arange(len(tracks)) + if detection_indices is None: + detection_indices = np.arange(len(detections)) + + if len(detection_indices) == 0 or len(track_indices) == 0: + return [], track_indices, detection_indices # Nothing to match. + + cost_matrix = distance_metric( + tracks, detections, track_indices, detection_indices) + cost_matrix[cost_matrix > max_distance] = max_distance + 1e-5 + indices = linear_sum_assignment(cost_matrix) + indices = np.asarray(indices) + indices = np.transpose(indices) + matches, unmatched_tracks, unmatched_detections = [], [], [] + for col, detection_idx in enumerate(detection_indices): + if col not in indices[:, 1]: + unmatched_detections.append(detection_idx) + for row, track_idx in enumerate(track_indices): + if row not in indices[:, 0]: + unmatched_tracks.append(track_idx) + for row, col in indices: + track_idx = track_indices[row] + detection_idx = detection_indices[col] + if cost_matrix[row, col] > max_distance: + unmatched_tracks.append(track_idx) + unmatched_detections.append(detection_idx) + else: + matches.append((track_idx, detection_idx)) + return matches, unmatched_tracks, unmatched_detections + + +def matching_cascade( + distance_metric, max_distance, cascade_depth, tracks, detections, + track_indices=None, detection_indices=None): + """Run matching cascade. + + Parameters + ---------- + distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray + The distance metric is given a list of tracks and detections as well as + a list of N track indices and M detection indices. The metric should + return the NxM dimensional cost matrix, where element (i, j) is the + association cost between the i-th track in the given track indices and + the j-th detection in the given detection indices. + max_distance : float + Gating threshold. Associations with cost larger than this value are + disregarded. + cascade_depth: int + The cascade depth, should be se to the maximum track age. + tracks : List[track.Track] + A list of predicted tracks at the current time step. + detections : List[detection.Detection] + A list of detections at the current time step. + track_indices : Optional[List[int]] + List of track indices that maps rows in `cost_matrix` to tracks in + `tracks` (see description above). Defaults to all tracks. + detection_indices : Optional[List[int]] + List of detection indices that maps columns in `cost_matrix` to + detections in `detections` (see description above). Defaults to all + detections. + + Returns + ------- + (List[(int, int)], List[int], List[int]) + Returns a tuple with the following three entries: + * A list of matched track and detection indices. + * A list of unmatched track indices. + * A list of unmatched detection indices. + + """ + if track_indices is None: + track_indices = list(range(len(tracks))) + if detection_indices is None: + detection_indices = list(range(len(detections))) + + unmatched_detections = detection_indices + matches = [] + for level in range(cascade_depth): + if len(unmatched_detections) == 0: # No detections left + break + + track_indices_l = [ + k for k in track_indices + if tracks[k].time_since_update == 1 + level + ] + if len(track_indices_l) == 0: # Nothing to match at this level + continue + + matches_l, _, unmatched_detections = \ + min_cost_matching( + distance_metric, max_distance, tracks, detections, + track_indices_l, unmatched_detections) + matches += matches_l + unmatched_tracks = list(set(track_indices) - set(k for k, _ in matches)) + return matches, unmatched_tracks, unmatched_detections + + +def gate_cost_matrix( + kf, cost_matrix, tracks, detections, track_indices, detection_indices, + gated_cost=INFTY_COST, only_position=False): + """Invalidate infeasible entries in cost matrix based on the state + distributions obtained by Kalman filtering. + + Parameters + ---------- + kf : The Kalman filter. + cost_matrix : ndarray + The NxM dimensional cost matrix, where N is the number of track indices + and M is the number of detection indices, such that entry (i, j) is the + association cost between `tracks[track_indices[i]]` and + `detections[detection_indices[j]]`. + tracks : List[track.Track] + A list of predicted tracks at the current time step. + detections : List[detection.Detection] + A list of detections at the current time step. + track_indices : List[int] + List of track indices that maps rows in `cost_matrix` to tracks in + `tracks` (see description above). + detection_indices : List[int] + List of detection indices that maps columns in `cost_matrix` to + detections in `detections` (see description above). + gated_cost : Optional[float] + Entries in the cost matrix corresponding to infeasible associations are + set this value. Defaults to a very large value. + only_position : Optional[bool] + If True, only the x, y position of the state distribution is considered + during gating. Defaults to False. + + Returns + ------- + ndarray + Returns the modified cost matrix. + + """ + gating_dim = 2 if only_position else 4 + gating_threshold = kalman_filter.chi2inv95[gating_dim] + measurements = np.asarray( + [detections[i].to_xyah() for i in detection_indices]) + for row, track_idx in enumerate(track_indices): + track = tracks[track_idx] + gating_distance = kf.gating_distance( + track.mean, track.covariance, measurements, only_position) + cost_matrix[row, gating_distance > gating_threshold] = gated_cost + return cost_matrix diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/nn_matching.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/nn_matching.py new file mode 100644 index 0000000000000000000000000000000000000000..2e7bfea4b87b0c256274937c8323ffc93fa5d61b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/nn_matching.py @@ -0,0 +1,177 @@ +# vim: expandtab:ts=4:sw=4 +import numpy as np + + +def _pdist(a, b): + """Compute pair-wise squared distance between points in `a` and `b`. + + Parameters + ---------- + a : array_like + An NxM matrix of N samples of dimensionality M. + b : array_like + An LxM matrix of L samples of dimensionality M. + + Returns + ------- + ndarray + Returns a matrix of size len(a), len(b) such that eleement (i, j) + contains the squared distance between `a[i]` and `b[j]`. + + """ + a, b = np.asarray(a), np.asarray(b) + if len(a) == 0 or len(b) == 0: + return np.zeros((len(a), len(b))) + a2, b2 = np.square(a).sum(axis=1), np.square(b).sum(axis=1) + r2 = -2. * np.dot(a, b.T) + a2[:, None] + b2[None, :] + r2 = np.clip(r2, 0., float(np.inf)) + return r2 + + +def _cosine_distance(a, b, data_is_normalized=False): + """Compute pair-wise cosine distance between points in `a` and `b`. + + Parameters + ---------- + a : array_like + An NxM matrix of N samples of dimensionality M. + b : array_like + An LxM matrix of L samples of dimensionality M. + data_is_normalized : Optional[bool] + If True, assumes rows in a and b are unit length vectors. + Otherwise, a and b are explicitly normalized to lenght 1. + + Returns + ------- + ndarray + Returns a matrix of size len(a), len(b) such that eleement (i, j) + contains the squared distance between `a[i]` and `b[j]`. + + """ + if not data_is_normalized: + a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True) + b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True) + return 1. - np.dot(a, b.T) + + +def _nn_euclidean_distance(x, y): + """ Helper function for nearest neighbor distance metric (Euclidean). + + Parameters + ---------- + x : ndarray + A matrix of N row-vectors (sample points). + y : ndarray + A matrix of M row-vectors (query points). + + Returns + ------- + ndarray + A vector of length M that contains for each entry in `y` the + smallest Euclidean distance to a sample in `x`. + + """ + distances = _pdist(x, y) + return np.maximum(0.0, distances.min(axis=0)) + + +def _nn_cosine_distance(x, y): + """ Helper function for nearest neighbor distance metric (cosine). + + Parameters + ---------- + x : ndarray + A matrix of N row-vectors (sample points). + y : ndarray + A matrix of M row-vectors (query points). + + Returns + ------- + ndarray + A vector of length M that contains for each entry in `y` the + smallest cosine distance to a sample in `x`. + + """ + distances = _cosine_distance(x, y) + return distances.min(axis=0) + + +class NearestNeighborDistanceMetric(object): + """ + A nearest neighbor distance metric that, for each target, returns + the closest distance to any sample that has been observed so far. + + Parameters + ---------- + metric : str + Either "euclidean" or "cosine". + matching_threshold: float + The matching threshold. Samples with larger distance are considered an + invalid match. + budget : Optional[int] + If not None, fix samples per class to at most this number. Removes + the oldest samples when the budget is reached. + + Attributes + ---------- + samples : Dict[int -> List[ndarray]] + A dictionary that maps from target identities to the list of samples + that have been observed so far. + + """ + + def __init__(self, metric, matching_threshold, budget=None): + + + if metric == "euclidean": + self._metric = _nn_euclidean_distance + elif metric == "cosine": + self._metric = _nn_cosine_distance + else: + raise ValueError( + "Invalid metric; must be either 'euclidean' or 'cosine'") + self.matching_threshold = matching_threshold + self.budget = budget + self.samples = {} + + def partial_fit(self, features, targets, active_targets): + """Update the distance metric with new data. + + Parameters + ---------- + features : ndarray + An NxM matrix of N features of dimensionality M. + targets : ndarray + An integer array of associated target identities. + active_targets : List[int] + A list of targets that are currently present in the scene. + + """ + for feature, target in zip(features, targets): + self.samples.setdefault(target, []).append(feature) + if self.budget is not None: + self.samples[target] = self.samples[target][-self.budget:] + self.samples = {k: self.samples[k] for k in active_targets} + + def distance(self, features, targets): + """Compute distance between features and targets. + + Parameters + ---------- + features : ndarray + An NxM matrix of N features of dimensionality M. + targets : List[int] + A list of targets to match the given `features` against. + + Returns + ------- + ndarray + Returns a cost matrix of shape len(targets), len(features), where + element (i, j) contains the closest squared distance between + `targets[i]` and `features[j]`. + + """ + cost_matrix = np.zeros((len(targets), len(features))) + for i, target in enumerate(targets): + cost_matrix[i, :] = self._metric(self.samples[target], features) + return cost_matrix diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/preprocessing.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/preprocessing.py new file mode 100644 index 0000000000000000000000000000000000000000..13bc3269d194cc597f838697f3dd03f46633b41e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/preprocessing.py @@ -0,0 +1,74 @@ +# vim: expandtab:ts=4:sw=4 +import numpy as np +import cv2 + + +def non_max_suppression(boxes, classes, max_bbox_overlap, scores=None): + """Suppress overlapping detections. + + Original code from [1]_ has been adapted to include confidence score. + + .. [1] http://www.pyimagesearch.com/2015/02/16/ + faster-non-maximum-suppression-python/ + + Examples + -------- + + >>> boxes = [d.roi for d in detections] + >>> classes = [d.classes for d in detections] + >>> scores = [d.confidence for d in detections] + >>> indices = non_max_suppression(boxes, max_bbox_overlap, scores) + >>> detections = [detections[i] for i in indices] + + Parameters + ---------- + boxes : ndarray + Array of ROIs (x, y, width, height). + max_bbox_overlap : float + ROIs that overlap more than this values are suppressed. + scores : Optional[array_like] + Detector confidence score. + + Returns + ------- + List[int] + Returns indices of detections that have survived non-maxima suppression. + + """ + if len(boxes) == 0: + return [] + + boxes = boxes.astype(np.float) + pick = [] + + x1 = boxes[:, 0] + y1 = boxes[:, 1] + x2 = boxes[:, 2] + boxes[:, 0] + y2 = boxes[:, 3] + boxes[:, 1] + + area = (x2 - x1 + 1) * (y2 - y1 + 1) + if scores is not None: + idxs = np.argsort(scores) + else: + idxs = np.argsort(y2) + + while len(idxs) > 0: + last = len(idxs) - 1 + i = idxs[last] + pick.append(i) + + xx1 = np.maximum(x1[i], x1[idxs[:last]]) + yy1 = np.maximum(y1[i], y1[idxs[:last]]) + xx2 = np.minimum(x2[i], x2[idxs[:last]]) + yy2 = np.minimum(y2[i], y2[idxs[:last]]) + + w = np.maximum(0, xx2 - xx1 + 1) + h = np.maximum(0, yy2 - yy1 + 1) + + overlap = (w * h) / area[idxs[:last]] + + idxs = np.delete( + idxs, np.concatenate( + ([last], np.where(overlap > max_bbox_overlap)[0]))) + + return pick diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/test_tracking.gif b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/test_tracking.gif new file mode 100644 index 0000000000000000000000000000000000000000..7fd45e80f06431235a36fb3985e88db95e49de54 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/test_tracking.gif differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/track.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/track.py new file mode 100644 index 0000000000000000000000000000000000000000..68bb88c8990e117d416950eb0912d600c2e3a8c1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/track.py @@ -0,0 +1,170 @@ +# vim: expandtab:ts=4:sw=4 + + +class TrackState: + """ + Enumeration type for the single target track state. Newly created tracks are + classified as `tentative` until enough evidence has been collected. Then, + the track state is changed to `confirmed`. Tracks that are no longer alive + are classified as `deleted` to mark them for removal from the set of active + tracks. + + """ + + Tentative = 1 + Confirmed = 2 + Deleted = 3 + + +class Track: + """ + A single target track with state space `(x, y, a, h)` and associated + velocities, where `(x, y)` is the center of the bounding box, `a` is the + aspect ratio and `h` is the height. + + Parameters + ---------- + mean : ndarray + Mean vector of the initial state distribution. + covariance : ndarray + Covariance matrix of the initial state distribution. + track_id : int + A unique track identifier. + n_init : int + Number of consecutive detections before the track is confirmed. The + track state is set to `Deleted` if a miss occurs within the first + `n_init` frames. + max_age : int + The maximum number of consecutive misses before the track state is + set to `Deleted`. + feature : Optional[ndarray] + Feature vector of the detection this track originates from. If not None, + this feature is added to the `features` cache. + + Attributes + ---------- + mean : ndarray + Mean vector of the initial state distribution. + covariance : ndarray + Covariance matrix of the initial state distribution. + track_id : int + A unique track identifier. + hits : int + Total number of measurement updates. + age : int + Total number of frames since first occurance. + time_since_update : int + Total number of frames since last measurement update. + state : TrackState + The current track state. + features : List[ndarray] + A cache of features. On each measurement update, the associated feature + vector is added to this list. + + """ + + def __init__(self, mean, covariance, track_id, n_init, max_age, + feature=None, class_name=None): + self.mean = mean + self.covariance = covariance + self.track_id = track_id + self.hits = 1 + self.age = 1 + self.time_since_update = 0 + + self.state = TrackState.Tentative + self.features = [] + if feature is not None: + self.features.append(feature) + + self._n_init = n_init + self._max_age = max_age + self.class_name = class_name + + def to_tlwh(self): + """Get current position in bounding box format `(top left x, top left y, + width, height)`. + + Returns + ------- + ndarray + The bounding box. + + """ + ret = self.mean[:4].copy() + ret[2] *= ret[3] + ret[:2] -= ret[2:] / 2 + return ret + + def to_tlbr(self): + """Get current position in bounding box format `(min x, miny, max x, + max y)`. + + Returns + ------- + ndarray + The bounding box. + + """ + ret = self.to_tlwh() + ret[2:] = ret[:2] + ret[2:] + return ret + + def get_class(self): + return self.class_name + + def predict(self, kf): + """Propagate the state distribution to the current time step using a + Kalman filter prediction step. + + Parameters + ---------- + kf : kalman_filter.KalmanFilter + The Kalman filter. + + """ + self.mean, self.covariance = kf.predict(self.mean, self.covariance) + self.age += 1 + self.time_since_update += 1 + + def update(self, kf, detection): + """Perform Kalman filter measurement update step and update the feature + cache. + + Parameters + ---------- + kf : kalman_filter.KalmanFilter + The Kalman filter. + detection : Detection + The associated detection. + + """ + self.mean, self.covariance = kf.update( + self.mean, self.covariance, detection.to_xyah()) + self.features.append(detection.feature) + + self.hits += 1 + self.time_since_update = 0 + if self.state == TrackState.Tentative and self.hits >= self._n_init: + self.state = TrackState.Confirmed + + def mark_missed(self): + """Mark this track as missed (no association at the current time step). + """ + if self.state == TrackState.Tentative: + self.state = TrackState.Deleted + elif self.time_since_update > self._max_age: + self.state = TrackState.Deleted + + def is_tentative(self): + """Returns True if this track is tentative (unconfirmed). + """ + return self.state == TrackState.Tentative + + def is_confirmed(self): + """Returns True if this track is confirmed.""" + return self.state == TrackState.Confirmed + + def is_deleted(self): + """Returns True if this track is dead and should be deleted.""" + return self.state == TrackState.Deleted diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/tracker.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/tracker.py new file mode 100644 index 0000000000000000000000000000000000000000..969e1b5447af1bed5bc295a8f6a40a754d305f97 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/deep_sort/tracker.py @@ -0,0 +1,139 @@ +# vim: expandtab:ts=4:sw=4 +from __future__ import absolute_import +import numpy as np +from . import kalman_filter +from . import linear_assignment +from . import iou_matching +from .track import Track + + +class Tracker: + """ + This is the multi-target tracker. + + Parameters + ---------- + metric : nn_matching.NearestNeighborDistanceMetric + A distance metric for measurement-to-track association. + max_age : int + Maximum number of missed misses before a track is deleted. + n_init : int + Number of consecutive detections before the track is confirmed. The + track state is set to `Deleted` if a miss occurs within the first + `n_init` frames. + + Attributes + ---------- + metric : nn_matching.NearestNeighborDistanceMetric + The distance metric used for measurement to track association. + max_age : int + Maximum number of missed misses before a track is deleted. + n_init : int + Number of frames that a track remains in initialization phase. + kf : kalman_filter.KalmanFilter + A Kalman filter to filter target trajectories in image space. + tracks : List[Track] + The list of active tracks at the current time step. + + """ + + def __init__(self, metric, max_iou_distance=0.7, max_age=30, n_init=3): + self.metric = metric + self.max_iou_distance = max_iou_distance + self.max_age = max_age + self.n_init = n_init + + self.kf = kalman_filter.KalmanFilter() + self.tracks = [] + self._next_id = 1 + + def predict(self): + """Propagate track state distributions one time step forward. + + This function should be called once every time step, before `update`. + """ + for track in self.tracks: + track.predict(self.kf) + + def update(self, detections): + """Perform measurement update and track management. + + Parameters + ---------- + detections : List[deep_sort.detection.Detection] + A list of detections at the current time step. + + """ + # Run matching cascade. + matches, unmatched_tracks, unmatched_detections = \ + self._match(detections) + + # Update track set. + for track_idx, detection_idx in matches: + self.tracks[track_idx].update( + self.kf, detections[detection_idx]) + for track_idx in unmatched_tracks: + self.tracks[track_idx].mark_missed() + for detection_idx in unmatched_detections: + self._initiate_track(detections[detection_idx]) + self.tracks = [t for t in self.tracks if not t.is_deleted()] + + # Update distance metric. + active_targets = [t.track_id for t in self.tracks if t.is_confirmed()] + features, targets = [], [] + for track in self.tracks: + if not track.is_confirmed(): + continue + features += track.features + targets += [track.track_id for _ in track.features] + track.features = [] + self.metric.partial_fit( + np.asarray(features), np.asarray(targets), active_targets) + + def _match(self, detections): + + def gated_metric(tracks, dets, track_indices, detection_indices): + features = np.array([dets[i].feature for i in detection_indices]) + targets = np.array([tracks[i].track_id for i in track_indices]) + cost_matrix = self.metric.distance(features, targets) + cost_matrix = linear_assignment.gate_cost_matrix( + self.kf, cost_matrix, tracks, dets, track_indices, + detection_indices) + + return cost_matrix + + # Split track set into confirmed and unconfirmed tracks. + confirmed_tracks = [ + i for i, t in enumerate(self.tracks) if t.is_confirmed()] + unconfirmed_tracks = [ + i for i, t in enumerate(self.tracks) if not t.is_confirmed()] + + # Associate confirmed tracks using appearance features. + matches_a, unmatched_tracks_a, unmatched_detections = \ + linear_assignment.matching_cascade( + gated_metric, self.metric.matching_threshold, self.max_age, + self.tracks, detections, confirmed_tracks) + + # Associate remaining tracks together with unconfirmed tracks using IOU. + iou_track_candidates = unconfirmed_tracks + [ + k for k in unmatched_tracks_a if + self.tracks[k].time_since_update == 1] + unmatched_tracks_a = [ + k for k in unmatched_tracks_a if + self.tracks[k].time_since_update != 1] + matches_b, unmatched_tracks_b, unmatched_detections = \ + linear_assignment.min_cost_matching( + iou_matching.iou_cost, self.max_iou_distance, self.tracks, + detections, iou_track_candidates, unmatched_detections) + + matches = matches_a + matches_b + unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b)) + return matches, unmatched_tracks, unmatched_detections + + def _initiate_track(self, detection): + mean, covariance = self.kf.initiate(detection.to_xyah()) + class_name = detection.get_class() + self.tracks.append(Track( + mean, covariance, self._next_id, self.n_init, self.max_age, + detection.feature, class_name)) + self._next_id += 1 diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/detect_mnist.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/detect_mnist.py new file mode 100644 index 0000000000000000000000000000000000000000..3deafec505d189afedfdea57576afddaeaf46269 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/detect_mnist.py @@ -0,0 +1,32 @@ +#================================================================ +# +# File name : detect_mnist.py +# Author : PyLessons +# Created date: 2020-08-12 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : mnist object detection example +# +#================================================================ +import os +os.environ['CUDA_VISIBLE_DEVICES'] = '0' +import cv2 +import numpy as np +import random +import time +import tensorflow as tf +from yolov3.yolov4 import Create_Yolo +from yolov3.utils import detect_image +from yolov3.configs import * + +while True: + ID = random.randint(0, 200) + label_txt = "mnist/mnist_test.txt" + image_info = open(label_txt).readlines()[ID].split() + + image_path = image_info[0] + + yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) + yolo.load_weights(f"./checkpoints/{TRAIN_MODEL_NAME}") # use keras weights + + detect_image(yolo, image_path, "mnist_test.jpg", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0)) diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/detection_custom.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/detection_custom.py new file mode 100644 index 0000000000000000000000000000000000000000..567c150b6e59ce6cbd50973c54aec9d1e705deb1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/detection_custom.py @@ -0,0 +1,27 @@ +#================================================================ +# +# File name : detection_custom.py +# Author : PyLessons +# Created date: 2020-09-17 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : object detection image and video example +# +#================================================================ +import os +os.environ['CUDA_VISIBLE_DEVICES'] = '0' +import cv2 +import numpy as np +import tensorflow as tf +from yolov3.utils import detect_image, detect_realtime, detect_video, Load_Yolo_model, detect_video_realtime_mp +from yolov3.configs import * + +image_path = "./IMAGES/cone.jpg" +video_path = "./IMAGES/test.mp4" + +yolo = Load_Yolo_model() +detect_image(yolo, image_path, "./IMAGES/cone_detect.jpg", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0)) +#detect_video(yolo, video_path, './IMAGES/detected.mp4', input_size=YOLO_INPUT_SIZE, show=False, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0)) +#detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255, 0, 0)) + +#detect_video_realtime_mp(video_path, "Output.mp4", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0), realtime=False) diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/detection_demo.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/detection_demo.py new file mode 100644 index 0000000000000000000000000000000000000000..ffe17d4d9f22c2ff11f8b17a953c3b045d59cbf2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/detection_demo.py @@ -0,0 +1,27 @@ +#================================================================ +# +# File name : detection_demo.py +# Author : PyLessons +# Created date: 2020-09-27 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : object detection image and video example +# +#================================================================ +import os +os.environ['CUDA_VISIBLE_DEVICES'] = '0' +import cv2 +import numpy as np +import tensorflow as tf +from yolov3.utils import detect_image, detect_realtime, detect_video, Load_Yolo_model, detect_video_realtime_mp +from yolov3.configs import * + +image_path = "./IMAGES/kite.jpg" +video_path = "./IMAGES/test.mp4" + +yolo = Load_Yolo_model() +#detect_image(yolo, image_path, "./IMAGES/kite_pred.jpg", input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255,0,0)) +#detect_video(yolo, video_path, "", input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255,0,0)) +detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255, 0, 0)) + +#detect_video_realtime_mp(video_path, "Output.mp4", input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255,0,0), realtime=False) diff --git a/PAR 152/Yolo Tensorflow/evaluate_mAP.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/evaluate_mAP.py similarity index 93% rename from PAR 152/Yolo Tensorflow/evaluate_mAP.py rename to PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/evaluate_mAP.py index 0acd35388649fcf0f0c27fb8df94ff6096a06ae2..a5643c538db1680cb823ccb24003b27730f1721b 100644 --- a/PAR 152/Yolo Tensorflow/evaluate_mAP.py +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/evaluate_mAP.py @@ -1,5 +1,15 @@ +#================================================================ +# +# File name : evaluate_mAP.py +# Author : PyLessons +# Created date: 2020-08-17 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : used to evaluate model mAP and FPS +# +#================================================================ import os -os.environ['CUDA_VISIBLE_DEVICES'] = '1' +os.environ['CUDA_VISIBLE_DEVICES'] = '0' import cv2 import numpy as np import tensorflow as tf @@ -127,7 +137,10 @@ def get_mAP(Yolo, dataset, score_threshold=0.25, iou_threshold=0.50, TEST_INPUT_ t1 = time.time() if YOLO_FRAMEWORK == "tf": - pred_bbox = Yolo.predict(image_data) + if tf.__version__ > '2.4.0': + pred_bbox = Yolo(image_data) + else: + pred_bbox = Yolo.predict(image_data) elif YOLO_FRAMEWORK == "trt": batched_input = tf.constant(image_data) result = Yolo(batched_input) @@ -276,10 +289,10 @@ if __name__ == '__main__': load_yolo_weights(yolo, Darknet_weights) # use Darknet weights else: yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) - yolo.load_weights(YOLO_CUSTOM_WEIGHTS) # use custom weights + yolo.load_weights(f"./checkpoints/{TRAIN_MODEL_NAME}") # use custom weights elif YOLO_FRAMEWORK == "trt": # TensorRT detection - saved_model_loaded = tf.saved_model.load(YOLO_CUSTOM_WEIGHTS, tags=[tag_constants.SERVING]) + saved_model_loaded = tf.saved_model.load(f"./checkpoints/{TRAIN_MODEL_NAME}", tags=[tag_constants.SERVING]) signature_keys = list(saved_model_loaded.signatures.keys()) yolo = saved_model_loaded.signatures['serving_default'] diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/log/events.out.tfevents.1670093324.PC-ANTOINE.14216.5.v2 b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/log/events.out.tfevents.1670093324.PC-ANTOINE.14216.5.v2 new file mode 100644 index 0000000000000000000000000000000000000000..3248506ee83f202bda19f41a35a93c118f534f74 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/log/events.out.tfevents.1670093324.PC-ANTOINE.14216.5.v2 differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/log/events.out.tfevents.1670093337.PC-ANTOINE.14216.21163.v2 b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/log/events.out.tfevents.1670093337.PC-ANTOINE.14216.21163.v2 new file mode 100644 index 0000000000000000000000000000000000000000..a3dbf3d2ecf2f194ade73b8169e53046f4f9ccbd Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/log/events.out.tfevents.1670093337.PC-ANTOINE.14216.21163.v2 differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/0_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/0_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..50526365f15152e8a19e6b1b6d607f5a8a9178c4 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/0_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "17 264 120 460", "used": true}, {"class_name": "cone", "bbox": "4 251 55 385", "used": true}, {"class_name": "cone", "bbox": "208 262 314 460", "used": true}, {"class_name": "cone", "bbox": "269 244 338 379", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/100_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/100_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..23b343bb3098f1813746f798f8490eb59e8ba69b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/100_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "117 168 303 293", "used": true}, {"class_name": "cone", "bbox": "349 90 492 297", "used": true}, {"class_name": "cone", "bbox": "283 100 365 259", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/101_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/101_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..082fba248a09467da9044df1f7727dc3ad750b0e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/101_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "209 30 315 226", "used": true}, {"class_name": "cone", "bbox": "25 1 113 125", "used": true}, {"class_name": "cone", "bbox": "83 1 163 81", "used": true}, {"class_name": "cone", "bbox": "262 114 410 338", "used": true}, {"class_name": "cone", "bbox": "270 1 332 124", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/102_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/102_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..58d7404b147d2c7c552d922d25d262076583e58c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/102_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "130 259 171 321", "used": true}, {"class_name": "cone", "bbox": "165 232 199 282", "used": true}, {"class_name": "cone", "bbox": "189 213 216 255", "used": true}, {"class_name": "cone", "bbox": "206 200 230 237", "used": true}, {"class_name": "cone", "bbox": "218 190 239 221", "used": true}, {"class_name": "cone", "bbox": "230 183 246 211", "used": true}, {"class_name": "cone", "bbox": "237 178 254 201", "used": true}, {"class_name": "cone", "bbox": "243 172 259 193", "used": true}, {"class_name": "cone", "bbox": "256 162 266 181", "used": true}, {"class_name": "cone", "bbox": "85 306 113 338", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/103_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/103_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..08c4494f8b3bbb9ad02cfc5f50af979f68fce230 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/103_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "24 58 318 471", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/104_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/104_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..e4fb8c091a1d73bce3270b95e403454363d7fcee --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/104_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "256 264 308 347", "used": true}, {"class_name": "cone", "bbox": "115 249 154 317", "used": true}, {"class_name": "cone", "bbox": "15 240 53 293", "used": true}, {"class_name": "cone", "bbox": "507 283 573 391", "used": true}, {"class_name": "cone", "bbox": "347 192 359 209", "used": true}, {"class_name": "cone", "bbox": "289 190 302 209", "used": true}, {"class_name": "cone", "bbox": "102 194 111 206", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/105_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/105_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2660e429f6cb705307a129c406750f2a570795c1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/105_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "6 20 367 434", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/106_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/106_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..509b7d3ba612d76ad397cc37f8f2a592e0a63008 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/106_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "206 125 321 315", "used": true}, {"class_name": "cone", "bbox": "41 126 139 322", "used": true}, {"class_name": "cone", "bbox": "154 89 233 213", "used": true}, {"class_name": "cone", "bbox": "25 89 74 213", "used": true}, {"class_name": "cone", "bbox": "71 50 119 128", "used": true}, {"class_name": "cone", "bbox": "1 45 53 119", "used": true}, {"class_name": "cone", "bbox": "394 121 508 308", "used": true}, {"class_name": "cone", "bbox": "467 88 508 202", "used": true}, {"class_name": "cone", "bbox": "346 75 413 182", "used": true}, {"class_name": "cone", "bbox": "269 66 320 162", "used": true}, {"class_name": "cone", "bbox": "199 62 252 148", "used": true}, {"class_name": "cone", "bbox": "136 55 191 136", "used": true}, {"class_name": "cone", "bbox": "109 19 136 69", "used": true}, {"class_name": "cone", "bbox": "65 18 91 69", "used": true}, {"class_name": "cone", "bbox": "24 19 52 69", "used": true}, {"class_name": "cone", "bbox": "227 22 256 72", "used": true}, {"class_name": "cone", "bbox": "185 20 213 73", "used": true}, {"class_name": "cone", "bbox": "367 24 396 77", "used": true}, {"class_name": "cone", "bbox": "413 23 448 77", "used": true}, {"class_name": "cone", "bbox": "468 23 501 80", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/107_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/107_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..1fe56446dbc94dc8ec929827abfe9ea5da4272dd --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/107_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "220 203 258 250", "used": true}, {"class_name": "cone", "bbox": "121 213 135 241", "used": true}, {"class_name": "cone", "bbox": "70 203 103 244", "used": true}, {"class_name": "cone", "bbox": "6 213 30 243", "used": true}, {"class_name": "cone", "bbox": "308 177 359 261", "used": true}, {"class_name": "cone", "bbox": "396 221 415 241", "used": true}, {"class_name": "cone", "bbox": "458 224 470 241", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/108_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/108_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..7dbe25055e1212f230093d442cdf8642d411d441 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/108_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "106 88 241 316", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/109_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/109_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..82334d0d9492fda429e72d20daa37047fdff3014 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/109_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "390 259 632 417", "used": true}, {"class_name": "cone", "bbox": "806 256 895 361", "used": true}, {"class_name": "cone", "bbox": "1 41 261 561", "used": true}, {"class_name": "cone", "bbox": "250 181 393 430", "used": true}, {"class_name": "cone", "bbox": "711 251 788 365", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/10_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/10_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..42d5d5d945e72d82af7710e38312274178b3d008 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/10_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "34 65 319 474", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/110_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/110_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..e08567a3269b202661e28d0caf0b1057a853ab53 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/110_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "169 54 228 131", "used": true}, {"class_name": "cone", "bbox": "109 51 172 134", "used": true}, {"class_name": "cone", "bbox": "26 52 91 131", "used": true}, {"class_name": "cone", "bbox": "280 51 334 127", "used": true}, {"class_name": "cone", "bbox": "351 52 398 126", "used": true}, {"class_name": "cone", "bbox": "404 50 452 128", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/111_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/111_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..0926e75bfa19acdf88993ecec81e2d5e0c69c4a5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/111_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "83 170 169 302", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/112_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/112_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..a2eb3db1d052821354b5d60df6027788e684e92a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/112_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "74 76 171 260", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/113_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/113_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..9b6f40ff0483c75e71b9f0886e070e3c9d421ec6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/113_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "159 223 287 454", "used": true}, {"class_name": "cone", "bbox": "39 40 77 91", "used": true}, {"class_name": "cone", "bbox": "114 5 143 43", "used": true}, {"class_name": "cone", "bbox": "165 4 178 25", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/114_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/114_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..dfed061affd95e558423f54ae468c27cbeb9f1f0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/114_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "148 27 262 161", "used": true}, {"class_name": "cone", "bbox": "257 1 350 137", "used": true}, {"class_name": "cone", "bbox": "1 1 122 88", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/115_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/115_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..38f578fddec63f9e864ea48f68963c963cf2ae70 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/115_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "53 47 259 456", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/116_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/116_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..442d2b479d5504e6a2eb9314aff1980cde4d64ef --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/116_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "181 298 231 389", "used": true}, {"class_name": "cone", "bbox": "205 242 243 316", "used": true}, {"class_name": "cone", "bbox": "247 205 279 266", "used": true}, {"class_name": "cone", "bbox": "258 172 286 219", "used": true}, {"class_name": "cone", "bbox": "244 147 265 182", "used": true}, {"class_name": "cone", "bbox": "198 128 222 158", "used": true}, {"class_name": "cone", "bbox": "145 129 162 162", "used": true}, {"class_name": "cone", "bbox": "100 152 123 194", "used": true}, {"class_name": "cone", "bbox": "84 180 112 234", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/117_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/117_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2cadf691ebaf2dca3fa0b68f2f6666325e52a7ee --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/117_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "183 166 314 388", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/118_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/118_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..a5675c50d2b922304d0fa30a1d4c558062e57eeb --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/118_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "193 12 457 275", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/119_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/119_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..0e1c502a1b58ae7e561072b278fdb474add22a8b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/119_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "52 16 354 393", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/11_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/11_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..72fd4794a30a66872c363fbfdd218ef0fb2aafdb --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/11_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "273 421 471 901", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/120_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/120_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..9717dba7a420edc27e6e9f59d5e78c465e105e18 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/120_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "60 36 291 457", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/121_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/121_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..5c5b7cd249ee2d9ce25b35fc6d02c41034d43c2d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/121_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "268 113 315 171", "used": true}, {"class_name": "cone", "bbox": "185 113 233 170", "used": true}, {"class_name": "cone", "bbox": "103 114 150 170", "used": true}, {"class_name": "cone", "bbox": "15 114 65 170", "used": true}, {"class_name": "cone", "bbox": "351 114 402 171", "used": true}, {"class_name": "cone", "bbox": "440 114 487 171", "used": true}, {"class_name": "cone", "bbox": "528 116 575 171", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/122_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/122_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..6a375b0e2a4230663a976d6b30fc5e2635b55abf --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/122_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "63 36 341 374", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/123_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/123_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..10a6c4e8056aa325a2286a6f5c2b72216a315526 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/123_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "27 44 212 283", "used": true}, {"class_name": "cone", "bbox": "369 9 589 292", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/124_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/124_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..ea68948af6b63a56f3770d48f221c5e2da3965fd --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/124_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "50 1 183 188", "used": true}, {"class_name": "cone", "bbox": "253 64 366 268", "used": true}, {"class_name": "cone", "bbox": "339 7 429 179", "used": true}, {"class_name": "cone", "bbox": "127 99 259 335", "used": true}, {"class_name": "cone", "bbox": "425 4 509 171", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/125_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/125_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..95fcc0d564ed28a6cfb999fcde73db54895515db --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/125_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "78 55 260 308", "used": true}, {"class_name": "cone", "bbox": "257 121 356 272", "used": true}, {"class_name": "cone", "bbox": "233 180 278 247", "used": true}, {"class_name": "cone", "bbox": "43 160 123 253", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/126_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/126_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..a5b8c69163b16dfffccdbe749eb8dde1b53c58a0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/126_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "8 1 378 441", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/127_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/127_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..d26076cb95dde372f250abf1481938652b2e908b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/127_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "12 31 317 477", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/128_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/128_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..bd0b0b2d2be6d7d1d019b3313b8221307a4bdfa0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/128_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "206 140 336 413", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/129_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/129_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..b94d00f925c25ec423d23a1d2b0a1e53e95b9a89 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/129_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "197 101 344 293", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/12_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/12_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..ccad0fcf34d8ac7a1c6b40822fb1a040c94dbe1b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/12_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "177 125 421 697", "used": true}, {"class_name": "cone", "bbox": "337 269 602 1023", "used": true}, {"class_name": "cone", "bbox": "168 105 316 464", "used": true}, {"class_name": "cone", "bbox": "166 115 247 343", "used": true}, {"class_name": "cone", "bbox": "48 74 124 207", "used": true}, {"class_name": "cone", "bbox": "1 73 45 179", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/130_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/130_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..460f85329bc5bf1d67bfb0156cf3fe69620e844e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/130_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "43 39 257 301", "used": true}, {"class_name": "cone", "bbox": "189 115 384 268", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/131_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/131_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..406c0e528d3356e9704225a57051cc3a06b74f68 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/131_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "132 37 275 302", "used": true}, {"class_name": "cone", "bbox": "2 283 99 508", "used": true}, {"class_name": "cone", "bbox": "107 1 187 95", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/132_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/132_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..29243ef2ed6ad7d1073e0e22c6d156170c096b7a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/132_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 199 111 353", "used": true}, {"class_name": "cone", "bbox": "87 238 158 346", "used": true}, {"class_name": "cone", "bbox": "138 252 184 340", "used": true}, {"class_name": "cone", "bbox": "162 267 204 338", "used": true}, {"class_name": "cone", "bbox": "187 275 211 337", "used": true}, {"class_name": "cone", "bbox": "210 287 225 335", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/133_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/133_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..ddc9336c2849b4cd51a43b30d845a9feeb9eed66 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/133_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "306 52 449 189", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/134_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/134_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..9d7b9bdcb15b4df788c7e7c2fb8f5375974cda37 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/134_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "360 41 411 120", "used": true}, {"class_name": "cone", "bbox": "473 32 507 119", "used": true}, {"class_name": "cone", "bbox": "306 37 350 107", "used": true}, {"class_name": "cone", "bbox": "318 2 356 59", "used": true}, {"class_name": "cone", "bbox": "401 1 436 27", "used": true}, {"class_name": "cone", "bbox": "296 22 312 88", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/135_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/135_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f88b7181a0bf00ceafbb88878540ebb008389ddf --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/135_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "133 102 235 257", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/136_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/136_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f6b47756f591ac47491aa4b8f610d17e6bf4bd2d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/136_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "49 45 260 459", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/137_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/137_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..9d1d5f9b74d5c09d3231e749daf27c8286c9da68 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/137_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "273 45 442 337", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/138_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/138_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..a8304ac8767f296ed606bbd81bcefe66a390bd7d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/138_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "52 388 93 495", "used": true}, {"class_name": "cone", "bbox": "102 365 181 496", "used": true}, {"class_name": "cone", "bbox": "191 370 248 498", "used": true}, {"class_name": "cone", "bbox": "240 381 307 501", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/139_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/139_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..d24c3b74accaa45dfb447af3b13eb6f0363c813e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/139_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "50 148 195 337", "used": true}, {"class_name": "cone", "bbox": "212 109 317 235", "used": true}, {"class_name": "cone", "bbox": "306 81 389 182", "used": true}, {"class_name": "cone", "bbox": "368 67 434 149", "used": true}, {"class_name": "cone", "bbox": "422 54 468 125", "used": true}, {"class_name": "cone", "bbox": "454 48 482 105", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/13_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/13_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..71a9a50eb9fb91ceef0ef10aba881e63efb84be4 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/13_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "84 150 175 337", "used": true}, {"class_name": "cone", "bbox": "214 117 233 153", "used": true}, {"class_name": "cone", "bbox": "281 121 314 174", "used": true}, {"class_name": "cone", "bbox": "259 117 283 159", "used": true}, {"class_name": "cone", "bbox": "235 118 252 151", "used": true}, {"class_name": "cone", "bbox": "186 117 199 137", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/140_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/140_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..a29d52fd41b8d4795b9892f06aeb1940b897837c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/140_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "28 30 240 302", "used": true}, {"class_name": "cone", "bbox": "178 99 452 312", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/141_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/141_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..3a61509bb4c5e9fe88fbda9795fab3dba943dfc1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/141_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "112 35 309 327", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/142_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/142_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..c08affe76076d61fbda09e47611a47caee283943 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/142_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "66 11 293 492", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/143_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/143_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2d0153a79c82f0e37f6a84b1d7da16e9e72b4aff --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/143_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "45 128 240 453", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/144_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/144_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..0e210c8f8335b191e983eb637c154b49936e1e04 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/144_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "69 52 296 462", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/145_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/145_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..fc42eaa871d22e2f962865e559bf13d7128a8ca3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/145_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "154 205 284 423", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/146_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/146_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2ccd72c0cc91875a2e2aefd9c458a58ef485118c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/146_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "175 42 292 277", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/147_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/147_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..b06c582e98886f2f857e2e7a4e7415e078d70f6c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/147_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "124 127 228 296", "used": true}, {"class_name": "cone", "bbox": "6 69 93 194", "used": true}, {"class_name": "cone", "bbox": "255 36 321 145", "used": true}, {"class_name": "cone", "bbox": "423 81 519 223", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/148_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/148_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..3f07161e0c0e52178aea04d016739271984887d5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/148_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "184 63 289 256", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/149_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/149_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..799060748724bf8d9c06516ca7a086b4d8bd9a02 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/149_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "314 202 386 318", "used": true}, {"class_name": "cone", "bbox": "93 207 158 313", "used": true}, {"class_name": "cone", "bbox": "403 217 446 285", "used": true}, {"class_name": "cone", "bbox": "276 215 322 291", "used": true}, {"class_name": "cone", "bbox": "17 223 47 273", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/14_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/14_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..a2bf6921b453192266b742edb1532bb4d17e2ac1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/14_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "96 64 232 283", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/150_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/150_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..012a54a5626ff76e95ca34e05bedd90b0354aad0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/150_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "273 32 396 243", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/151_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/151_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..da098357ca244565a77556fa3ead8cbb28c3e4aa --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/151_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "3 37 333 478", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/152_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/152_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..9e104a71e1c48309ab84cb8ea6fc9935e86f3289 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/152_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "109 68 169 174", "used": true}, {"class_name": "cone", "bbox": "215 181 340 302", "used": true}, {"class_name": "cone", "bbox": "135 141 224 244", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/153_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/153_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..6d65eb5bc3387c8275934f62281d84183cbc6e73 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/153_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "118 113 338 423", "used": true}, {"class_name": "cone", "bbox": "95 175 190 313", "used": true}, {"class_name": "cone", "bbox": "78 196 120 283", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/154_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/154_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..be4d1ef7e999457390c41f1d167babbca6fa720b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/154_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "6 39 332 468", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/155_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/155_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..441f82d29c53116f85189f4f99dbf7d7e9e70e53 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/155_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "29 108 423 309", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/156_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/156_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..5d91115139de40f2cf28fa7315ce77aab9b8df14 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/156_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "73 232 155 405", "used": true}, {"class_name": "cone", "bbox": "247 72 323 223", "used": true}, {"class_name": "cone", "bbox": "188 111 251 269", "used": true}, {"class_name": "cone", "bbox": "126 166 203 330", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/157_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/157_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..73813f380bb77719d7bdd374845c715b49408854 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/157_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "242 383 267 436", "used": true}, {"class_name": "cone", "bbox": "171 377 213 437", "used": true}, {"class_name": "cone", "bbox": "107 381 143 434", "used": true}, {"class_name": "cone", "bbox": "32 378 73 436", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/158_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/158_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..10c6afb22b45f189a7da2bbb5f55222e1e8beadf --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/158_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "156 83 255 278", "used": true}, {"class_name": "cone", "bbox": "82 36 170 206", "used": true}, {"class_name": "cone", "bbox": "256 74 359 251", "used": true}, {"class_name": "cone", "bbox": "158 14 241 160", "used": true}, {"class_name": "cone", "bbox": "246 28 338 175", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/159_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/159_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..c32dd24706cb1a7e1e9e0a0d7498dd0eac68b876 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/159_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 1 97 103", "used": true}, {"class_name": "cone", "bbox": "35 16 161 104", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/15_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/15_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..98f76c09e9ef82f3cb946be2186911027300eecf --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/15_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 275 68 362", "used": true}, {"class_name": "cone", "bbox": "72 286 124 358", "used": true}, {"class_name": "cone", "bbox": "123 294 164 354", "used": true}, {"class_name": "cone", "bbox": "159 299 193 354", "used": true}, {"class_name": "cone", "bbox": "190 302 215 354", "used": true}, {"class_name": "cone", "bbox": "208 306 232 354", "used": true}, {"class_name": "cone", "bbox": "227 312 249 350", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/160_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/160_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2b1cf21623917fa36e05c5df13c919479d5f1175 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/160_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "125 259 225 397", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/161_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/161_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..10125b41bfd980b1cc70291e73d5e35a7de1a626 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/161_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "251 152 302 235", "used": true}, {"class_name": "cone", "bbox": "246 149 272 209", "used": true}, {"class_name": "cone", "bbox": "242 145 258 184", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/162_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/162_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f29a22e449d40765a2b7681bd767e777b1d35b35 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/162_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "24 51 223 387", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/163_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/163_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..8deeb2d7d55d6146d9a50e6c713f74dcb4600bbf --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/163_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "138 164 306 457", "used": true}, {"class_name": "cone", "bbox": "53 162 109 252", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/164_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/164_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..589b85aa8499910f9addd48a2c2e4ad6a3e5d5ec --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/164_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "126 267 139 285", "used": true}, {"class_name": "cone", "bbox": "391 261 402 282", "used": true}, {"class_name": "cone", "bbox": "264 260 277 281", "used": true}, {"class_name": "cone", "bbox": "194 261 208 282", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/165_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/165_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..fb3008ea3a9b8b8b3cbf2c69ef509e3f17cea2ae --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/165_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "19 32 261 309", "used": true}, {"class_name": "cone", "bbox": "268 76 438 275", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/166_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/166_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..488d46bbeb60a8afde717f42a8c3e6b4ceeab8f8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/166_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "249 182 346 303", "used": true}, {"class_name": "cone", "bbox": "107 189 223 272", "used": true}, {"class_name": "cone", "bbox": "48 155 128 259", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/167_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/167_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..18f49515499e11f2ce7a7342d7d2816e901aa218 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/167_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "143 48 305 280", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/168_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/168_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..5c21d136655c55d4817219bf5a26823232e3a7bf --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/168_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 46 246 655", "used": false}, {"class_name": "cone", "bbox": "1 42 265 562", "used": true}, {"class_name": "cone", "bbox": "431 225 537 393", "used": true}, {"class_name": "cone", "bbox": "652 244 737 371", "used": true}, {"class_name": "cone", "bbox": "813 260 894 362", "used": true}, {"class_name": "cone", "bbox": "316 197 389 432", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/169_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/169_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..991c05c2daeec0f6233f3997d8067c0cfabe3323 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/169_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "68 52 299 467", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/16_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/16_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..3ebcffd3ea3d0e900ca8cb60016a4d75cc6d9053 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/16_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "201 144 331 406", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/170_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/170_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..526f7eac418c8e035c1011f20e19aa2f906f1e30 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/170_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 245 124 430", "used": true}, {"class_name": "cone", "bbox": "115 102 210 203", "used": true}, {"class_name": "cone", "bbox": "175 41 232 110", "used": true}, {"class_name": "cone", "bbox": "231 15 278 74", "used": true}, {"class_name": "cone", "bbox": "267 1 309 39", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/171_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/171_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..8897498f56033272230b26c16fa9d402660655b0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/171_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "121 115 340 426", "used": true}, {"class_name": "cone", "bbox": "104 175 192 314", "used": true}, {"class_name": "cone", "bbox": "74 196 118 289", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/172_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/172_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..d82f23f22c5e361e870fc79ea155632c602baf47 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/172_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "202 92 249 178", "used": true}, {"class_name": "cone", "bbox": "225 182 419 321", "used": true}, {"class_name": "cone", "bbox": "323 111 370 167", "used": true}, {"class_name": "cone", "bbox": "265 94 286 138", "used": true}, {"class_name": "cone", "bbox": "230 109 247 134", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/173_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/173_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..72903394e67fa21c513573f450546d253a6df886 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/173_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "274 57 391 196", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/174_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/174_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..823788a64654592dc90e49a8431752fae611076a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/174_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "309 158 383 264", "used": true}, {"class_name": "cone", "bbox": "13 161 85 264", "used": true}, {"class_name": "cone", "bbox": "34 90 95 166", "used": true}, {"class_name": "cone", "bbox": "276 82 324 156", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/175_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/175_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..944671c4da1b369bff1939c8e31cb6bbf37c610d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/175_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "104 218 263 435", "used": true}, {"class_name": "cone", "bbox": "54 30 259 190", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/176_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/176_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..0d823701739b3386fb7c8e2b2bea381405d3fcce --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/176_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "132 162 304 478", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/177_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/177_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..4704c0caf0e09c61a8ebceb63bb71957010ad5af --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/177_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "65 9 343 399", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/178_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/178_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..c68908a839c48664a0fb613e061f25dc7f864776 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/178_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "145 377 186 445", "used": true}, {"class_name": "cone", "bbox": "251 357 263 392", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/179_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/179_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..972d232845763b8d438a3222aafeef69ef502f40 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/179_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "49 218 81 262", "used": true}, {"class_name": "cone", "bbox": "146 218 174 260", "used": true}, {"class_name": "cone", "bbox": "182 218 210 259", "used": true}, {"class_name": "cone", "bbox": "210 220 230 257", "used": true}, {"class_name": "cone", "bbox": "230 218 253 256", "used": true}, {"class_name": "cone", "bbox": "301 218 326 255", "used": true}, {"class_name": "cone", "bbox": "443 217 474 250", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/17_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/17_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f27062dc6d95aae7951978f864f5f786a9afce71 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/17_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "99 60 194 234", "used": true}, {"class_name": "cone", "bbox": "279 51 398 303", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/180_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/180_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2927cf1267a706e3cdc8941a34bce467bd592609 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/180_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "312 168 402 325", "used": true}, {"class_name": "cone", "bbox": "430 23 462 75", "used": true}, {"class_name": "cone", "bbox": "366 22 399 77", "used": true}, {"class_name": "cone", "bbox": "311 23 341 75", "used": true}, {"class_name": "cone", "bbox": "292 117 366 248", "used": true}, {"class_name": "cone", "bbox": "280 92 333 202", "used": true}, {"class_name": "cone", "bbox": "121 16 155 65", "used": true}, {"class_name": "cone", "bbox": "65 16 106 66", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/181_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/181_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..547fbe37a352789af10a5a06668b79ad82f1acb2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/181_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "53 57 292 434", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/182_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/182_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..97dfad7a7ab9c49ade803aca9748af7a47657703 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/182_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "40 126 240 450", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/183_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/183_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..53ccfb89cf1302a09c358fdb88236ca4e883e798 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/183_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 57 182 569", "used": true}, {"class_name": "cone", "bbox": "44 53 237 479", "used": true}, {"class_name": "cone", "bbox": "133 66 296 409", "used": true}, {"class_name": "cone", "bbox": "204 62 333 364", "used": true}, {"class_name": "cone", "bbox": "277 43 397 315", "used": true}, {"class_name": "cone", "bbox": "330 33 429 275", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/184_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/184_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..e0e47f20a2df5062bd91ee90699d6c31a7892cd7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/184_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "400 20 508 255", "used": true}, {"class_name": "cone", "bbox": "294 19 405 205", "used": true}, {"class_name": "cone", "bbox": "226 18 312 172", "used": true}, {"class_name": "cone", "bbox": "164 15 243 148", "used": true}, {"class_name": "cone", "bbox": "107 12 172 125", "used": true}, {"class_name": "cone", "bbox": "84 13 135 114", "used": true}, {"class_name": "cone", "bbox": "58 11 99 102", "used": true}, {"class_name": "cone", "bbox": "310 7 341 64", "used": true}, {"class_name": "cone", "bbox": "423 8 464 79", "used": true}, {"class_name": "cone", "bbox": "171 8 194 46", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/185_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/185_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..d55b54dac5b375359986737e9d41bd12eebfa863 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/185_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "85 16 159 147", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/186_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/186_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..adffb156040fb3d235825b5b07ab564486ebbc94 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/186_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "296 184 408 319", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/187_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/187_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..37edfc6212bad1746bffd7d7e2bfc4d0217c49ae --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/187_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "91 39 178 161", "used": true}, {"class_name": "cone", "bbox": "3 28 76 128", "used": true}, {"class_name": "cone", "bbox": "223 60 327 210", "used": true}, {"class_name": "cone", "bbox": "259 4 290 53", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/188_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/188_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..ada63c83ec32ed87fe31481c262334ee6a1d95fc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/188_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "80 35 182 209", "used": true}, {"class_name": "cone", "bbox": "152 14 238 161", "used": true}, {"class_name": "cone", "bbox": "154 84 259 281", "used": true}, {"class_name": "cone", "bbox": "269 72 360 256", "used": true}, {"class_name": "cone", "bbox": "249 26 320 174", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/189_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/189_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..7d63b656cc9882b08788d868041ef7fd60ea986a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/189_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "27 209 154 481", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/18_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/18_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..8c362fabea3afdb90a519744e30f005845b34c2f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/18_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "10 100 94 216", "used": true}, {"class_name": "cone", "bbox": "131 104 221 214", "used": true}, {"class_name": "cone", "bbox": "483 140 509 212", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/190_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/190_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..27ece5a442a1940409f18a36b3484cf819a224b1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/190_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "97 1 166 108", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/191_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/191_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..3b44f0cf9c08beb2494a857ce3f139242c65e53a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/191_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "52 243 150 460", "used": true}, {"class_name": "cone", "bbox": "172 184 237 315", "used": true}, {"class_name": "cone", "bbox": "230 152 270 235", "used": true}, {"class_name": "cone", "bbox": "257 139 285 203", "used": true}, {"class_name": "cone", "bbox": "279 128 300 180", "used": true}, {"class_name": "cone", "bbox": "290 126 307 165", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/192_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/192_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..3403e45804897f920e33578f7df9ea5f754b8371 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/192_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "171 267 185 295", "used": true}, {"class_name": "cone", "bbox": "337 279 360 322", "used": true}, {"class_name": "cone", "bbox": "308 264 326 292", "used": true}, {"class_name": "cone", "bbox": "127 281 150 323", "used": true}, {"class_name": "cone", "bbox": "105 280 125 321", "used": true}, {"class_name": "cone", "bbox": "461 260 479 288", "used": true}, {"class_name": "cone", "bbox": "433 254 449 280", "used": true}, {"class_name": "cone", "bbox": "412 253 426 275", "used": true}, {"class_name": "cone", "bbox": "395 250 407 271", "used": true}, {"class_name": "cone", "bbox": "371 247 381 265", "used": true}, {"class_name": "cone", "bbox": "494 250 507 270", "used": true}, {"class_name": "cone", "bbox": "456 291 493 339", "used": true}, {"class_name": "cone", "bbox": "318 298 337 339", "used": true}, {"class_name": "cone", "bbox": "170 296 190 339", "used": true}, {"class_name": "cone", "bbox": "194 259 205 281", "used": true}, {"class_name": "cone", "bbox": "363 244 369 262", "used": true}, {"class_name": "cone", "bbox": "295 254 302 273", "used": true}, {"class_name": "cone", "bbox": "151 272 169 306", "used": true}, {"class_name": "cone", "bbox": "20 301 43 339", "used": true}, {"class_name": "cone", "bbox": "62 290 84 339", "used": true}, {"class_name": "cone", "bbox": "365 297 387 339", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/193_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/193_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..7bd82b3ca72ab85f2894724f5dc91291b0ea0178 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/193_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "237 169 296 283", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/194_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/194_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..71076b4d273a736c51a8189f07fa7663043fe643 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/194_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "127 71 261 300", "used": true}, {"class_name": "cone", "bbox": "70 96 168 288", "used": true}, {"class_name": "cone", "bbox": "281 31 449 338", "used": true}, {"class_name": "cone", "bbox": "255 87 350 289", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/195_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/195_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..ca160e6fb942398897691ffa1cb4112d3ebe8288 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/195_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "49 37 353 587", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/196_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/196_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..510e26028b65e8c2fa5ea9040b86b8ff68972159 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/196_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "83 49 258 314", "used": true}, {"class_name": "cone", "bbox": "181 56 233 191", "used": true}, {"class_name": "cone", "bbox": "206 60 250 147", "used": true}, {"class_name": "cone", "bbox": "232 62 255 116", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/197_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/197_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..8f13ecef8811386d95bbaa45dc8b971b27b0f22a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/197_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "179 43 255 167", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/198_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/198_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..e10ac4050be445221d2575473d7fb23c9d8520b2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/198_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "51 44 123 240", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/199_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/199_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..dbd8fc2e9498bfde7b09363d80a1b0fe2a64fc09 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/199_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 140 179 497", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/19_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/19_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..6df83cf72389a53829f5f3d52a4bb6023130600a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/19_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "71 40 296 407", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/1_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/1_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..8b2446b24af50d485b4e9e2834917d81f7fb37e3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/1_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "317 113 373 171", "used": true}, {"class_name": "cone", "bbox": "189 94 255 176", "used": true}, {"class_name": "cone", "bbox": "218 183 421 320", "used": true}, {"class_name": "cone", "bbox": "263 96 289 137", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/200_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/200_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..1ffe88d98e027a1e42f4dbd38f397bc765e42d14 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/200_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "200 59 239 156", "used": true}, {"class_name": "cone", "bbox": "90 175 162 337", "used": true}, {"class_name": "cone", "bbox": "245 21 271 76", "used": true}, {"class_name": "cone", "bbox": "456 112 494 234", "used": true}, {"class_name": "cone", "bbox": "392 50 426 131", "used": true}, {"class_name": "cone", "bbox": "356 12 377 61", "used": true}, {"class_name": "cone", "bbox": "344 1 357 32", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/201_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/201_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..ad170ae76dc77cddefc7bc87587ecca5c5f07742 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/201_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "110 68 178 179", "used": true}, {"class_name": "cone", "bbox": "217 180 340 299", "used": true}, {"class_name": "cone", "bbox": "135 143 224 244", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/202_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/202_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..9733e8d1b697f9929ccbaa7a0c6e84b5cac0cf85 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/202_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "105 33 191 163", "used": true}, {"class_name": "cone", "bbox": "13 25 83 136", "used": true}, {"class_name": "cone", "bbox": "376 90 506 292", "used": true}, {"class_name": "cone", "bbox": "205 168 363 296", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/203_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/203_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..9a5a36d903938c6d14a62b55186679f461e9ce2a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/203_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "39 101 215 332", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/204_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/204_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2f37ab463c0362bb7a3a08bae484c39709c0849a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/204_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "172 54 225 147", "used": true}, {"class_name": "cone", "bbox": "340 53 479 326", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/205_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/205_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..e64a716a3414993b86d317c80272ff798a65a515 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/205_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "233 132 374 368", "used": true}, {"class_name": "cone", "bbox": "154 95 258 270", "used": true}, {"class_name": "cone", "bbox": "89 79 176 219", "used": true}, {"class_name": "cone", "bbox": "33 65 108 183", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/206_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/206_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..3afe611273b75512d3b470139ba506fc3c603e58 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/206_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "103 222 266 432", "used": true}, {"class_name": "cone", "bbox": "55 27 259 191", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/207_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/207_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..60483957ea18fae85c700644023847443f1d3e76 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/207_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "195 93 309 264", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/208_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/208_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..41f60c850aba31f8c2b6ea52fe7c9ed55c29d107 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/208_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "332 52 460 295", "used": true}, {"class_name": "cone", "bbox": "207 131 242 205", "used": true}, {"class_name": "cone", "bbox": "169 147 192 191", "used": true}, {"class_name": "cone", "bbox": "155 155 169 183", "used": true}, {"class_name": "cone", "bbox": "47 167 52 174", "used": false}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/209_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/209_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f96a5176ce12051d3c886331f6ef88de1b0a2f26 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/209_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "359 94 484 293", "used": true}, {"class_name": "cone", "bbox": "276 104 362 257", "used": true}, {"class_name": "cone", "bbox": "120 168 302 293", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/20_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/20_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..714a6eec7c9affd3e667734ddd8f5bebf50f749c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/20_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "40 66 229 319", "used": true}, {"class_name": "cone", "bbox": "197 73 312 248", "used": true}, {"class_name": "cone", "bbox": "323 76 387 171", "used": true}, {"class_name": "cone", "bbox": "174 80 243 201", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/210_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/210_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..efd29908dac0e8f159805e7d08ab5e2e6231bd89 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/210_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "207 93 315 266", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/211_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/211_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..c3589f25d8d4a66ec924dc9667e7df64fb791cd0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/211_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "165 28 243 158", "used": true}, {"class_name": "cone", "bbox": "267 150 359 430", "used": true}, {"class_name": "cone", "bbox": "151 1 189 85", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/212_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/212_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2d28add495d4614e2a903110050406f74ffb8ba6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/212_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "248 39 436 328", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/213_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/213_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..620da8763e6a332eb17c7a971dd0d1e45fa11bb9 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/213_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "5 10 137 162", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/214_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/214_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..3d30ebda8d6e8f68b0cb97953f7b39db1f2624fc --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/214_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "135 182 266 462", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/215_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/215_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..0f8821d1b49275f58663c9707c5f4a0b97c43aac --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/215_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "485 480 568 621", "used": true}, {"class_name": "cone", "bbox": "570 412 639 528", "used": true}, {"class_name": "cone", "bbox": "644 361 704 451", "used": true}, {"class_name": "cone", "bbox": "714 308 764 385", "used": true}, {"class_name": "cone", "bbox": "773 273 817 334", "used": true}, {"class_name": "cone", "bbox": "264 615 390 848", "used": true}, {"class_name": "cone", "bbox": "126 707 284 985", "used": true}, {"class_name": "cone", "bbox": "391 642 536 766", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/216_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/216_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..794cf31cae53a46608476bd7bcb9dc40c1b46b5f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/216_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "103 11 384 322", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/217_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/217_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..c5deafc741a845d1c837a21ca562e9496aa5927e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/217_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "201 170 294 330", "used": true}, {"class_name": "cone", "bbox": "231 156 306 297", "used": true}, {"class_name": "cone", "bbox": "266 139 342 265", "used": true}, {"class_name": "cone", "bbox": "308 128 370 241", "used": true}, {"class_name": "cone", "bbox": "328 117 388 217", "used": true}, {"class_name": "cone", "bbox": "372 101 421 186", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/218_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/218_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..0832d77f2027ffd92c99fe21e2ac8f97f2b8bef5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/218_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "47 1 313 265", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/219_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/219_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..5ad1b21e60ab5041ddc6f6ec87541f4b817479d5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/219_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "298 224 333 273", "used": true}, {"class_name": "cone", "bbox": "246 225 275 274", "used": true}, {"class_name": "cone", "bbox": "186 224 219 273", "used": true}, {"class_name": "cone", "bbox": "134 226 168 269", "used": true}, {"class_name": "cone", "bbox": "348 226 377 270", "used": true}, {"class_name": "cone", "bbox": "379 226 407 269", "used": true}, {"class_name": "cone", "bbox": "99 225 131 267", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/21_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/21_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..71d51f1e4c9b6ac0481400866ade984b832c899f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/21_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "259 117 388 338", "used": true}, {"class_name": "cone", "bbox": "365 149 509 339", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/220_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/220_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..267dc74a181b3bf4bd469d09c9d5e1f39d1b5003 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/220_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "62 10 291 492", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/221_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/221_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..939cd5ad1b709daa6b7018d35e29ec3b4752c55e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/221_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "10 16 175 327", "used": true}, {"class_name": "cone", "bbox": "339 18 507 328", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/222_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/222_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..3b587dc1457f67031f81f8a1cce7a992f942d04b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/222_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 82 164 499", "used": true}, {"class_name": "cone", "bbox": "39 1 169 221", "used": true}, {"class_name": "cone", "bbox": "148 1 227 128", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/223_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/223_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..6f3fdc418fcfc98b8b1eed4668f8ef32c0a3e7e4 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/223_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "360 314 649 734", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/224_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/224_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..8a7f87d3f217f88d37e47b2c7f3fa8b3cf6aa4f5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/224_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "91 172 172 325", "used": true}, {"class_name": "cone", "bbox": "319 174 422 333", "used": true}, {"class_name": "cone", "bbox": "422 156 452 207", "used": true}, {"class_name": "cone", "bbox": "339 152 374 207", "used": true}, {"class_name": "cone", "bbox": "487 156 509 204", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/225_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/225_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..23697f81fd0b966a9dbcdb3a9f51aebf0afdaf0c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/225_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "50 154 154 320", "used": true}, {"class_name": "cone", "bbox": "147 125 241 279", "used": true}, {"class_name": "cone", "bbox": "225 104 312 250", "used": true}, {"class_name": "cone", "bbox": "286 87 367 226", "used": true}, {"class_name": "cone", "bbox": "339 73 408 202", "used": true}, {"class_name": "cone", "bbox": "379 59 445 185", "used": true}, {"class_name": "cone", "bbox": "414 46 478 163", "used": true}, {"class_name": "cone", "bbox": "459 31 519 145", "used": true}, {"class_name": "cone", "bbox": "497 21 529 127", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/226_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/226_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..97e12b051e4568e2705d188632267a94e611b312 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/226_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "384 235 439 316", "used": true}, {"class_name": "cone", "bbox": "459 234 507 315", "used": true}, {"class_name": "cone", "bbox": "172 213 197 262", "used": true}, {"class_name": "cone", "bbox": "40 194 61 230", "used": true}, {"class_name": "cone", "bbox": "144 209 173 259", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/227_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/227_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..0b39f26ec29371ae7876cb0d62dea4c9db35709a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/227_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "252 195 299 277", "used": true}, {"class_name": "cone", "bbox": "387 186 433 260", "used": true}, {"class_name": "cone", "bbox": "449 183 492 250", "used": true}, {"class_name": "cone", "bbox": "227 218 247 271", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/228_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/228_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..a7cd1464a1a2254638ca9f83dfc15674381747c1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/228_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "237 23 438 313", "used": true}, {"class_name": "cone", "bbox": "152 88 233 214", "used": true}, {"class_name": "cone", "bbox": "110 113 166 189", "used": true}, {"class_name": "cone", "bbox": "85 150 106 186", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/229_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/229_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..1dd8506b1b6750990a5286596c477baa04e44737 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/229_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 18 148 270", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/22_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/22_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2c7e97fd135ecabcefd4b799bea7577f22b5b7f8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/22_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "264 213 314 308", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/230_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/230_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..5931cb8d568b88b0962ce84b1c8f316747b64bab --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/230_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 52 106 355", "used": true}, {"class_name": "cone", "bbox": "204 125 234 193", "used": true}, {"class_name": "cone", "bbox": "231 139 257 180", "used": true}, {"class_name": "cone", "bbox": "249 145 261 170", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/231_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/231_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..e4813169182c07598df92615cf47c9f47afbd004 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/231_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "180 139 236 234", "used": true}, {"class_name": "cone", "bbox": "252 126 304 213", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/232_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/232_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..7e093d0eed16cda74efd5179bbf3b393a0997422 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/232_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "280 45 438 274", "used": true}, {"class_name": "cone", "bbox": "79 150 100 186", "used": true}, {"class_name": "cone", "bbox": "167 154 187 184", "used": true}, {"class_name": "cone", "bbox": "203 152 219 187", "used": true}, {"class_name": "cone", "bbox": "255 114 310 221", "used": true}, {"class_name": "cone", "bbox": "245 137 269 201", "used": true}, {"class_name": "cone", "bbox": "231 145 250 195", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/233_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/233_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..14463f8c453d10833be935505dcdfd172232b463 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/233_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "180 306 244 412", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/234_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/234_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..29674c94dce9dea4e03cb2b2e254b7fbaeeff732 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/234_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "100 223 263 439", "used": true}, {"class_name": "cone", "bbox": "51 26 258 188", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/235_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/235_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..58db3a82bd381a13c514ee282d44d3925d946c5d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/235_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "106 107 640 913", "used": true}, {"class_name": "cone", "bbox": "470 281 936 657", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/236_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/236_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..a4a36b0ab7cd468ee1d67e8972243b9eac94afb5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/236_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "60 63 198 300", "used": true}, {"class_name": "cone", "bbox": "177 139 380 300", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/237_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/237_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..cfc7116599fb34e69dd3b333e9a65bb7d78ee26e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/237_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "198 204 279 333", "used": true}, {"class_name": "cone", "bbox": "356 161 432 279", "used": true}, {"class_name": "cone", "bbox": "397 109 455 211", "used": true}, {"class_name": "cone", "bbox": "375 48 420 125", "used": true}, {"class_name": "cone", "bbox": "250 8 290 69", "used": true}, {"class_name": "cone", "bbox": "325 58 375 100", "used": true}, {"class_name": "cone", "bbox": "145 29 197 97", "used": true}, {"class_name": "cone", "bbox": "43 83 103 177", "used": true}, {"class_name": "cone", "bbox": "91 202 165 286", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/238_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/238_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..c193a9772cd0f64eda947400601152bcfcd6fec6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/238_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "57 168 166 319", "used": true}, {"class_name": "cone", "bbox": "69 125 143 225", "used": true}, {"class_name": "cone", "bbox": "96 73 139 134", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/239_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/239_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..09205831544ac2a124507ca03916b3f74550ba8e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/239_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "150 218 262 464", "used": true}, {"class_name": "cone", "bbox": "273 243 338 507", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/23_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/23_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..3953d53940465dd644cfb5df0f7e8d3c662fd28c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/23_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "671 439 773 587", "used": true}, {"class_name": "cone", "bbox": "537 440 653 588", "used": true}, {"class_name": "cone", "bbox": "346 442 457 572", "used": true}, {"class_name": "cone", "bbox": "95 445 214 565", "used": true}, {"class_name": "cone", "bbox": "1 442 59 553", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/240_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/240_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..34824261910cb32e844e16b40d22bc84bbe15289 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/240_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "378 246 411 286", "used": true}, {"class_name": "cone", "bbox": "22 292 79 368", "used": true}, {"class_name": "cone", "bbox": "178 257 205 309", "used": true}, {"class_name": "cone", "bbox": "113 263 145 321", "used": true}, {"class_name": "cone", "bbox": "79 275 117 339", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/241_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/241_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f0fb351da57e45ac8c09dac1f4cbdc6efb27ab89 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/241_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "10 234 45 272", "used": true}, {"class_name": "cone", "bbox": "63 234 95 271", "used": true}, {"class_name": "cone", "bbox": "114 234 146 269", "used": true}, {"class_name": "cone", "bbox": "165 234 195 268", "used": true}, {"class_name": "cone", "bbox": "216 231 245 267", "used": true}, {"class_name": "cone", "bbox": "264 233 296 268", "used": true}, {"class_name": "cone", "bbox": "316 232 347 268", "used": true}, {"class_name": "cone", "bbox": "367 230 399 268", "used": true}, {"class_name": "cone", "bbox": "419 230 451 265", "used": true}, {"class_name": "cone", "bbox": "469 231 504 265", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/242_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/242_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..7a1d2d4d31e07f561bbcad7481a3bf8f9167c6f7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/242_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "16 29 261 310", "used": true}, {"class_name": "cone", "bbox": "242 76 439 271", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/243_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/243_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..c6ae16b08b626252bda7851c149c39bcc3193d03 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/243_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "17 254 57 330", "used": true}, {"class_name": "cone", "bbox": "60 254 102 332", "used": true}, {"class_name": "cone", "bbox": "105 252 145 331", "used": true}, {"class_name": "cone", "bbox": "142 252 186 326", "used": true}, {"class_name": "cone", "bbox": "186 249 227 325", "used": true}, {"class_name": "cone", "bbox": "230 248 268 326", "used": true}, {"class_name": "cone", "bbox": "261 251 305 325", "used": true}, {"class_name": "cone", "bbox": "300 250 338 321", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/244_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/244_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..9daa00950c83ab5798c647ff574049a78aaf05fd --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/244_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "166 210 206 273", "used": true}, {"class_name": "cone", "bbox": "52 212 95 275", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/245_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/245_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..8e0600f2ebb074384626532646d274c26e3cd8d8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/245_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "79 10 306 314", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/246_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/246_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..46b1bfede5c83dc0c0dc9043cd150299b1539f52 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/246_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "129 159 301 476", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/247_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/247_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..024d8325c35071972c81423b2aec08f85e1f561f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/247_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "5 23 102 86", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/248_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/248_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2fc14909a20dca6aca622181b5678e2c580e0c74 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/248_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "34 171 193 433", "used": true}, {"class_name": "cone", "bbox": "148 174 339 284", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/249_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/249_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..d71b136fc3bb9c60570ef2d652fb98bb2f7f293b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/249_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "104 319 141 380", "used": true}, {"class_name": "cone", "bbox": "210 321 246 382", "used": true}, {"class_name": "cone", "bbox": "294 323 329 381", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/24_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/24_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..4b704bce96b637638189af0b8ace07e3c5d37b9f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/24_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "189 224 316 441", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/250_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/250_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..d598d2ef9b7e848a722dc0c61f57be0b163b5a51 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/250_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "143 114 234 273", "used": true}, {"class_name": "cone", "bbox": "217 152 269 248", "used": true}, {"class_name": "cone", "bbox": "1 1 114 336", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/251_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/251_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..343dd05d83f4133dc7be97fc916d68af89b05867 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/251_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "69 190 223 389", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/252_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/252_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..b7a2f4b106170f9bb8060f37b8fc37047dab7acf --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/252_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "190 275 295 430", "used": true}, {"class_name": "cone", "bbox": "212 260 297 384", "used": false}, {"class_name": "cone", "bbox": "234 234 305 345", "used": true}, {"class_name": "cone", "bbox": "264 226 324 319", "used": false}, {"class_name": "cone", "bbox": "283 214 326 289", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/253_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/253_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..1c15b57bb3708dac77be5e651055acddf1cd06d4 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/253_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "252 1 509 336", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/254_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/254_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..35939f9c1b9c04213ffea96c34062a45ffd80317 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/254_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "305 19 480 298", "used": true}, {"class_name": "cone", "bbox": "150 175 212 262", "used": true}, {"class_name": "cone", "bbox": "125 198 157 257", "used": true}, {"class_name": "cone", "bbox": "97 215 120 254", "used": true}, {"class_name": "cone", "bbox": "86 219 101 254", "used": true}, {"class_name": "cone", "bbox": "52 229 65 249", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/25_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/25_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..45beae5048d549cb7d770dcd619a379b9c8c21d6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/25_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "204 343 298 477", "used": true}, {"class_name": "cone", "bbox": "71 2 105 47", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/26_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/26_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2c746108480904f4aceff8cd81ace762c3292291 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/26_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 82 165 502", "used": true}, {"class_name": "cone", "bbox": "82 1 165 219", "used": true}, {"class_name": "cone", "bbox": "151 1 225 129", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/27_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/27_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..5ddd7983dc7336c98dd504cdf405888b0837097f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/27_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "116 52 210 276", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/28_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/28_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..677f79b4598a096b48ab6344f0954ec7d976dd88 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/28_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "208 25 428 311", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/29_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/29_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..1cba20bc210f9dd2911610b76f28c516e1ce4194 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/29_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "14 25 365 432", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/2_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/2_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f8e6a58f069ec01c106adacf2f639b95e166f51d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/2_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "73 197 127 303", "used": true}, {"class_name": "cone", "bbox": "101 188 151 276", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/30_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/30_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..8d11a1edbf58b9acd28fa534752585d4eef9a898 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/30_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "58 120 329 307", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/31_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/31_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..12baeb6c70f23635add46cb1b2099f2201dc5d4b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/31_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "221 110 259 179", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/32_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/32_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..4aaa3d96ac829314ffa03b4110b4e9d74c177b4d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/32_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "271 42 386 206", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/33_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/33_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..ad864521b5e6362a5efde057b239f8b340fa99dd --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/33_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "145 291 192 369", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/34_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/34_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..224c09be767c1034b210337d73b1696c059ab1af --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/34_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "375 1 479 210", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/35_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/35_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f910c84d30a987fbcde6f22022f1537a73a9ac9c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/35_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "292 202 398 293", "used": true}, {"class_name": "cone", "bbox": "130 168 222 270", "used": true}, {"class_name": "cone", "bbox": "52 210 153 335", "used": true}, {"class_name": "cone", "bbox": "183 153 256 218", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/36_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/36_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..48e372d6ffad779151535e325f142695b2143e07 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/36_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "101 88 244 318", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/37_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/37_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..1dec2c10db37c5cd78626d91c713fbe8e87a8c2a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/37_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "308 168 402 327", "used": true}, {"class_name": "cone", "bbox": "297 120 360 250", "used": true}, {"class_name": "cone", "bbox": "279 92 326 207", "used": true}, {"class_name": "cone", "bbox": "369 24 398 77", "used": true}, {"class_name": "cone", "bbox": "432 20 459 75", "used": true}, {"class_name": "cone", "bbox": "313 21 341 76", "used": true}, {"class_name": "cone", "bbox": "152 16 184 64", "used": true}, {"class_name": "cone", "bbox": "121 15 153 61", "used": true}, {"class_name": "cone", "bbox": "103 15 121 65", "used": true}, {"class_name": "cone", "bbox": "72 16 102 62", "used": true}, {"class_name": "cone", "bbox": "39 17 75 67", "used": true}, {"class_name": "cone", "bbox": "15 17 51 69", "used": true}, {"class_name": "cone", "bbox": "260 74 311 173", "used": true}, {"class_name": "cone", "bbox": "252 61 291 148", "used": true}, {"class_name": "cone", "bbox": "223 30 244 87", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/38_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/38_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..ca7287031fa0e99a5a640c966768b8dcd2a6d1f4 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/38_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "123 257 226 399", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/39_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/39_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..d1b29d5de2027e5fccbeb8757e6b7f53ef4b74b2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/39_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "87 6 331 409", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/3_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/3_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..b3215d8e0014f3b478946dbb33a9de5923c6a6ef --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/3_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "5 38 336 478", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/40_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/40_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..d9333ffdc11ecc7ef3cd67068a319ef2119babb0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/40_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "7 150 95 298", "used": true}, {"class_name": "cone", "bbox": "136 152 205 302", "used": true}, {"class_name": "cone", "bbox": "338 155 416 300", "used": true}, {"class_name": "cone", "bbox": "412 158 496 297", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/41_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/41_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..eb534cbfc76d99fc4627e703ce3c957c9de7ef06 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/41_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "158 178 203 247", "used": true}, {"class_name": "cone", "bbox": "165 339 230 416", "used": true}, {"class_name": "cone", "bbox": "158 154 184 196", "used": true}, {"class_name": "cone", "bbox": "186 139 196 153", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/42_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/42_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..b676164d5db47c47aee08bbcbc9c1cc9d5572222 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/42_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "214 38 387 363", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/43_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/43_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..fd6ebb21da5c755e4ad8e1d35dda7fe84574e52e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/43_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "146 71 228 215", "used": true}, {"class_name": "cone", "bbox": "294 28 407 187", "used": true}, {"class_name": "cone", "bbox": "38 109 114 232", "used": true}, {"class_name": "cone", "bbox": "408 73 497 222", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/44_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/44_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..81f4e82ec824a7b762a40c4f19d434b6d744590e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/44_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "272 163 338 272", "used": true}, {"class_name": "cone", "bbox": "212 175 271 264", "used": true}, {"class_name": "cone", "bbox": "169 181 223 259", "used": true}, {"class_name": "cone", "bbox": "137 189 183 258", "used": true}, {"class_name": "cone", "bbox": "115 194 145 256", "used": true}, {"class_name": "cone", "bbox": "94 198 124 253", "used": true}, {"class_name": "cone", "bbox": "80 200 104 252", "used": true}, {"class_name": "cone", "bbox": "68 203 89 250", "used": true}, {"class_name": "cone", "bbox": "58 206 73 247", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/45_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/45_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..171bd47653ff0372053377126250b645067aa4c5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/45_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "80 119 336 509", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/46_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/46_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..0879ade2bf6ed977cbbb830c234cebe94087aaad --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/46_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "75 44 138 133", "used": true}, {"class_name": "cone", "bbox": "279 162 357 282", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/47_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/47_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..31087e468591c023a5825db87a8f1150f0e3ba84 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/47_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "74 115 177 315", "used": true}, {"class_name": "cone", "bbox": "213 130 256 196", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/48_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/48_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..eabb6f0f9d6fd8a674b1cd0bc2ed130fd3f5c036 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/48_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "255 205 314 330", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/49_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/49_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..91a50056361f214d24fe36ba7ff3ded4252f132b --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/49_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "109 61 269 324", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/4_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/4_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f751933f0d6b1b2e26ab7d4cf1e52caea6f9de21 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/4_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "120 67 222 253", "used": true}, {"class_name": "cone", "bbox": "1 59 102 256", "used": true}, {"class_name": "cone", "bbox": "296 77 400 253", "used": true}, {"class_name": "cone", "bbox": "392 74 479 260", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/50_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/50_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..fbef0b68732e8d0f308a3df3c0f02c2494502d30 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/50_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "45 155 149 319", "used": true}, {"class_name": "cone", "bbox": "152 128 241 277", "used": true}, {"class_name": "cone", "bbox": "228 106 311 247", "used": true}, {"class_name": "cone", "bbox": "295 90 368 227", "used": true}, {"class_name": "cone", "bbox": "339 72 407 200", "used": true}, {"class_name": "cone", "bbox": "381 61 444 184", "used": true}, {"class_name": "cone", "bbox": "420 47 477 165", "used": true}, {"class_name": "cone", "bbox": "464 35 520 145", "used": true}, {"class_name": "cone", "bbox": "496 22 529 123", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/51_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/51_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..3e614c2bf7110d2fbc293a83db4fc327dd7187a8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/51_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "317 106 435 319", "used": true}, {"class_name": "cone", "bbox": "267 140 340 266", "used": true}, {"class_name": "cone", "bbox": "239 167 272 233", "used": true}, {"class_name": "cone", "bbox": "419 164 470 253", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/52_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/52_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..13a6b0abcdb8834e56987a85d5e9424e301f86ae --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/52_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "23 229 158 394", "used": true}, {"class_name": "cone", "bbox": "171 190 267 307", "used": true}, {"class_name": "cone", "bbox": "257 168 330 260", "used": true}, {"class_name": "cone", "bbox": "311 155 372 229", "used": true}, {"class_name": "cone", "bbox": "355 145 401 208", "used": true}, {"class_name": "cone", "bbox": "388 138 414 191", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/53_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/53_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..c0458e8dd6205631d4d3fde51ff3624d72f38b15 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/53_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "56 3 292 445", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/54_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/54_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..dc2aefc6b17d21063b97b38c09a585a0ac298bc7 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/54_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "207 34 552 668", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/55_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/55_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..3086a7f0f19881a9670217f96a41bf2d832dc41e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/55_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "683 420 965 934", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/56_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/56_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..6cd1e541dbeb3cb3d80d080c25a70200a379a5f1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/56_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "20 157 92 246", "used": true}, {"class_name": "cone", "bbox": "188 97 242 161", "used": true}, {"class_name": "cone", "bbox": "314 56 355 108", "used": true}, {"class_name": "cone", "bbox": "406 29 441 73", "used": true}, {"class_name": "cone", "bbox": "465 8 494 45", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/57_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/57_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..e26ab6f71c89ab7578a537c94a1f81e9cb3f4735 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/57_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 1 297 756", "used": false}, {"class_name": "cone", "bbox": "48 1 352 523", "used": true}, {"class_name": "cone", "bbox": "183 48 384 418", "used": true}, {"class_name": "cone", "bbox": "299 125 589 360", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/58_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/58_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..b26e4d98bbb103ee8ac772e3b3018f5b4c72d115 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/58_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "112 97 244 345", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/59_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/59_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2ffbeccf08a9295f0793bd913716f988a03f9f3c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/59_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 219 142 500", "used": true}, {"class_name": "cone", "bbox": "238 240 341 439", "used": true}, {"class_name": "cone", "bbox": "304 283 341 391", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/5_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/5_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..235500fa826e05aa80ac403f54f11947e8be4bc9 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/5_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "218 24 397 294", "used": true}, {"class_name": "cone", "bbox": "130 100 183 188", "used": true}, {"class_name": "cone", "bbox": "111 120 138 167", "used": true}, {"class_name": "cone", "bbox": "101 125 122 156", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/60_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/60_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..1dc9bd2cdf4a2d6374b56860679321854fccc705 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/60_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "123 145 573 970", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/61_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/61_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..8634174c38d8092ed808633d87bd521d96b9119a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/61_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "105 338 289 547", "used": true}, {"class_name": "cone", "bbox": "229 393 473 594", "used": true}, {"class_name": "cone", "bbox": "538 395 737 650", "used": true}, {"class_name": "cone", "bbox": "413 347 566 498", "used": true}, {"class_name": "cone", "bbox": "650 341 800 466", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/62_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/62_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..de0da706c92321605c921aa58a4b362bf42eebb9 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/62_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "51 125 149 300", "used": true}, {"class_name": "cone", "bbox": "147 108 230 247", "used": true}, {"class_name": "cone", "bbox": "54 12 84 57", "used": true}, {"class_name": "cone", "bbox": "150 10 172 48", "used": true}, {"class_name": "cone", "bbox": "218 8 241 43", "used": true}, {"class_name": "cone", "bbox": "444 43 479 101", "used": true}, {"class_name": "cone", "bbox": "305 156 407 254", "used": true}, {"class_name": "cone", "bbox": "275 10 293 38", "used": true}, {"class_name": "cone", "bbox": "485 35 507 82", "used": true}, {"class_name": "cone", "bbox": "314 9 328 35", "used": true}, {"class_name": "cone", "bbox": "354 9 368 33", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/63_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/63_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..c385e12a22b42e47f324386c316804e4f0db3abd --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/63_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "171 26 254 178", "used": true}, {"class_name": "cone", "bbox": "2 179 189 474", "used": true}, {"class_name": "cone", "bbox": "252 1 301 85", "used": true}, {"class_name": "cone", "bbox": "286 1 322 43", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/64_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/64_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..9efd271305db04624e3250dbe64dde6e4cae4db8 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/64_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "190 89 270 217", "used": true}, {"class_name": "cone", "bbox": "236 36 289 123", "used": true}, {"class_name": "cone", "bbox": "73 244 146 359", "used": true}, {"class_name": "cone", "bbox": "249 11 291 77", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/65_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/65_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..d458f338bbe8a81bcf968aba2f022b22d3699a97 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/65_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "69 257 329 648", "used": true}, {"class_name": "cone", "bbox": "649 239 922 621", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/66_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/66_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..838b8c142f50fc64e2cbdc1b7cd18071709b0467 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/66_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "120 115 555 963", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/67_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/67_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..676f635b26779dc05b6e02e3247cffb792c9df11 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/67_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "25 80 225 418", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/68_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/68_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..7d5b428ea789b74043e95977c64de50a71a3ba2f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/68_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "172 201 457 594", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/69_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/69_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..a3514bc6304a8146b68e78e5a9c2869305527635 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/69_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "113 207 280 461", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/6_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/6_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f0e5dd33741ef63adf91fa308aabb6f95bf6c03f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/6_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "61 52 124 139", "used": true}, {"class_name": "cone", "bbox": "413 45 474 131", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/70_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/70_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..924a7e0deb3bcbb87c4fb1d074dbdc702c82ce7a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/70_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "39 317 122 427", "used": true}, {"class_name": "cone", "bbox": "30 288 72 361", "used": true}, {"class_name": "cone", "bbox": "17 278 46 332", "used": true}, {"class_name": "cone", "bbox": "7 266 26 298", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/71_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/71_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..87a9e598271624dd21ff66aa01604efd3e2ad058 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/71_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "80 49 295 298", "used": true}, {"class_name": "cone", "bbox": "216 81 399 271", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/72_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/72_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..03145d771c30da111959165de840fa0e1a53450a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/72_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "351 214 417 300", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/73_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/73_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..170cd60ae85d5316302390e0080c9b53f59297be --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/73_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "6 155 173 456", "used": true}, {"class_name": "cone", "bbox": "71 23 224 371", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/74_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/74_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f4bf45005883e4dbdf65135cb4b8a34c8e0411c3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/74_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "192 189 333 325", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/75_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/75_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..881730176e61e644ffc904e4a8d7bd7a44405c59 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/75_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "130 151 282 426", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/76_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/76_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..e5194e6e0c4ba17666a218d39141a4c52212da2d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/76_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "16 23 80 135", "used": true}, {"class_name": "cone", "bbox": "113 34 190 164", "used": true}, {"class_name": "cone", "bbox": "375 90 506 291", "used": true}, {"class_name": "cone", "bbox": "205 165 363 301", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/77_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/77_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..dfef808c074322578fb765f5594aacbcc4ccdaa2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/77_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 17 309 504", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/78_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/78_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..9af412829f99f0d124f0d2a69cf8665e9769b061 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/78_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "14 9 320 477", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/79_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/79_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..f60d8a766da0c2202ee61cba6f009423439e5570 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/79_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "186 49 357 287", "used": true}, {"class_name": "cone", "bbox": "381 166 449 263", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/7_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/7_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..4e42290ce44cc4025b8ebdf18fb6f80045425f72 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/7_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "232 226 308 334", "used": true}, {"class_name": "cone", "bbox": "481 213 511 306", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/80_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/80_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..eebbd6ccb8e1afe51c87ddf59cf2764e5e212468 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/80_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "142 133 285 303", "used": true}, {"class_name": "cone", "bbox": "323 84 443 213", "used": true}, {"class_name": "cone", "bbox": "40 111 171 245", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/81_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/81_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..60c7dc5260d6360cb11cdcda16aa06371308b5c5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/81_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "16 18 280 499", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/82_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/82_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..b13f488dd0071a77812b3fda5d15deb4142920a0 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/82_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "130 155 304 477", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/83_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/83_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..0cea701b0ecd6d2404955c359b5f3b836f068c5f --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/83_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "73 48 258 314", "used": true}, {"class_name": "cone", "bbox": "168 59 232 189", "used": true}, {"class_name": "cone", "bbox": "201 61 251 147", "used": true}, {"class_name": "cone", "bbox": "224 63 255 116", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/84_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/84_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..737ab2c0cae23ec1034de6d3ae40bcfc3dd13632 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/84_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "153 404 194 486", "used": true}, {"class_name": "cone", "bbox": "115 399 152 479", "used": true}, {"class_name": "cone", "bbox": "187 402 230 480", "used": true}, {"class_name": "cone", "bbox": "213 401 251 470", "used": true}, {"class_name": "cone", "bbox": "95 401 122 464", "used": true}, {"class_name": "cone", "bbox": "185 385 205 445", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/85_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/85_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..86cd66e33b5e092258a9b5d0feff57298e651927 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/85_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "97 87 234 335", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/86_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/86_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..940bf184bf8e39416e3a1b7af97127e450c9a9b5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/86_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "193 216 281 397", "used": true}, {"class_name": "cone", "bbox": "139 183 217 331", "used": true}, {"class_name": "cone", "bbox": "245 138 334 182", "used": true}, {"class_name": "cone", "bbox": "132 117 186 236", "used": true}, {"class_name": "cone", "bbox": "188 114 241 210", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/87_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/87_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..9f9278b00f6ff90fe0343f28ea9ff827cd0d45f1 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/87_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "177 69 373 393", "used": true}, {"class_name": "cone", "bbox": "65 166 125 255", "used": true}, {"class_name": "cone", "bbox": "342 152 412 265", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/88_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/88_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..15111149f636d2f251b77199f7deefcf1d3b41e6 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/88_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "60 304 174 474", "used": true}, {"class_name": "cone", "bbox": "160 217 246 356", "used": true}, {"class_name": "cone", "bbox": "238 164 320 296", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/89_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/89_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..34b1f3dd71642e899ad285ceca44b17f24f7d5e3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/89_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "90 196 118 241", "used": true}, {"class_name": "cone", "bbox": "118 197 147 241", "used": true}, {"class_name": "cone", "bbox": "145 197 174 243", "used": true}, {"class_name": "cone", "bbox": "174 197 201 243", "used": true}, {"class_name": "cone", "bbox": "200 199 227 244", "used": true}, {"class_name": "cone", "bbox": "227 198 254 242", "used": true}, {"class_name": "cone", "bbox": "255 197 282 243", "used": true}, {"class_name": "cone", "bbox": "282 198 308 243", "used": true}, {"class_name": "cone", "bbox": "309 198 337 244", "used": true}, {"class_name": "cone", "bbox": "338 196 362 247", "used": true}, {"class_name": "cone", "bbox": "362 197 391 246", "used": true}, {"class_name": "cone", "bbox": "392 198 417 244", "used": true}, {"class_name": "cone", "bbox": "417 195 445 244", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/8_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/8_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..68648d469e617b31b674486d38016f05fb2fdcc5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/8_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "233 186 303 304", "used": true}, {"class_name": "cone", "bbox": "31 194 108 312", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/90_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/90_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..a51f728bb5b8980895ce9d4e39e750f598ab1466 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/90_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "63 14 294 490", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/91_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/91_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..639d4c5e6161b7f852424c7d458cfe4e34ab2c21 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/91_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "98 211 182 357", "used": true}, {"class_name": "cone", "bbox": "99 202 148 299", "used": true}, {"class_name": "cone", "bbox": "134 241 228 465", "used": true}, {"class_name": "cone", "bbox": "108 195 133 249", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/92_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/92_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..be97ccae6cc1fde3978650e216769ec65009487c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/92_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "232 235 347 416", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/93_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/93_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..13b8bdbe1c2b44ef424722f5919cf214e29b0604 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/93_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "147 7 258 161", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/94_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/94_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..0de5e1a498bb50b3b53951f68706d042d498eb9d --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/94_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "209 97 319 304", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/95_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/95_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2b99c21e21684a56ab61929adb069a0b6a8c060a --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/95_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "117 71 187 185", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/96_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/96_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2466249320befa18487bbbab7d6754435f64cf09 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/96_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "156 366 201 463", "used": true}, {"class_name": "cone", "bbox": "265 372 306 467", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/97_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/97_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2ded5a75c952eff62be20ff9a60e0780f6e8c532 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/97_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "163 64 294 269", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/98_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/98_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..8401da97b2660e271b03c16a404f1dcd65e8faf5 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/98_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "1 34 132 338", "used": true}, {"class_name": "cone", "bbox": "140 24 246 262", "used": true}, {"class_name": "cone", "bbox": "244 22 320 214", "used": true}, {"class_name": "cone", "bbox": "326 15 385 153", "used": true}, {"class_name": "cone", "bbox": "392 4 420 97", "used": true}, {"class_name": "cone", "bbox": "376 7 394 126", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/99_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/99_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..93045d35260b6e1ad398bb9f02e7c896611f444e --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/99_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "177 44 355 286", "used": true}, {"class_name": "cone", "bbox": "377 164 448 261", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/9_ground_truth.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/9_ground_truth.json new file mode 100644 index 0000000000000000000000000000000000000000..2b76ce2b9bfdeb0b7c6c219d755113890980fa76 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/9_ground_truth.json @@ -0,0 +1 @@ +[{"class_name": "cone", "bbox": "17 19 92 158", "used": true}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/cone_predictions.json b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/cone_predictions.json new file mode 100644 index 0000000000000000000000000000000000000000..760442cc244db0a31b19fc703775411ae7515659 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/ground-truth/cone_predictions.json @@ -0,0 +1 @@ +[{"confidence": "0.9846", "file_id": "183", "bbox": "326 30 430 277"}, {"confidence": "0.9821", "file_id": "50", "bbox": "339 71 407 199"}, {"confidence": "0.9821", "file_id": "225", "bbox": "339 71 407 199"}, {"confidence": "0.9774", "file_id": "192", "bbox": "461 259 477 284"}, {"confidence": "0.9765", "file_id": "173", "bbox": "271 54 392 194"}, {"confidence": "0.9758", "file_id": "109", "bbox": "0 38 257 555"}, {"confidence": "0.9758", "file_id": "247", "bbox": "2 21 105 85"}, {"confidence": "0.9757", "file_id": "12", "bbox": "176 120 416 696"}, {"confidence": "0.9754", "file_id": "124", "bbox": "339 5 430 178"}, {"confidence": "0.9754", "file_id": "133", "bbox": "304 52 450 189"}, {"confidence": "0.9751", "file_id": "184", "bbox": "162 13 240 147"}, {"confidence": "0.9745", "file_id": "1", "bbox": "215 182 419 322"}, {"confidence": "0.9745", "file_id": "172", "bbox": "215 182 419 322"}, {"confidence": "0.9728", "file_id": "21", "bbox": "366 150 506 338"}, {"confidence": "0.9728", "file_id": "168", "bbox": "0 38 256 559"}, {"confidence": "0.9725", "file_id": "109", "bbox": "389 257 629 411"}, {"confidence": "0.9720", "file_id": "174", "bbox": "308 157 384 263"}, {"confidence": "0.9720", "file_id": "189", "bbox": "26 209 152 477"}, {"confidence": "0.9720", "file_id": "252", "bbox": "188 272 295 422"}, {"confidence": "0.9719", "file_id": "184", "bbox": "397 19 507 253"}, {"confidence": "0.9718", "file_id": "80", "bbox": "323 82 444 212"}, {"confidence": "0.9714", "file_id": "70", "bbox": "40 317 122 426"}, {"confidence": "0.9712", "file_id": "124", "bbox": "424 1 508 169"}, {"confidence": "0.9709", "file_id": "80", "bbox": "142 133 282 301"}, {"confidence": "0.9706", "file_id": "188", "bbox": "154 82 257 281"}, {"confidence": "0.9704", "file_id": "73", "bbox": "68 18 222 373"}, {"confidence": "0.9702", "file_id": "43", "bbox": "406 71 494 219"}, {"confidence": "0.9699", "file_id": "183", "bbox": "199 60 334 361"}, {"confidence": "0.9696", "file_id": "101", "bbox": "207 26 314 226"}, {"confidence": "0.9695", "file_id": "80", "bbox": "39 109 170 246"}, {"confidence": "0.9695", "file_id": "250", "bbox": "141 113 233 272"}, {"confidence": "0.9694", "file_id": "32", "bbox": "269 40 387 204"}, {"confidence": "0.9694", "file_id": "34", "bbox": "374 0 478 208"}, {"confidence": "0.9694", "file_id": "35", "bbox": "291 201 398 290"}, {"confidence": "0.9691", "file_id": "85", "bbox": "97 86 230 334"}, {"confidence": "0.9691", "file_id": "88", "bbox": "60 303 172 473"}, {"confidence": "0.9690", "file_id": "114", "bbox": "256 2 349 136"}, {"confidence": "0.9690", "file_id": "135", "bbox": "133 101 234 255"}, {"confidence": "0.9688", "file_id": "51", "bbox": "315 104 434 318"}, {"confidence": "0.9687", "file_id": "153", "bbox": "96 174 189 312"}, {"confidence": "0.9687", "file_id": "171", "bbox": "96 174 189 312"}, {"confidence": "0.9687", "file_id": "217", "bbox": "197 169 294 330"}, {"confidence": "0.9686", "file_id": "100", "bbox": "119 166 300 292"}, {"confidence": "0.9686", "file_id": "209", "bbox": "119 166 300 292"}, {"confidence": "0.9682", "file_id": "205", "bbox": "152 94 257 269"}, {"confidence": "0.9681", "file_id": "123", "bbox": "24 41 211 279"}, {"confidence": "0.9680", "file_id": "57", "bbox": "299 125 586 358"}, {"confidence": "0.9677", "file_id": "158", "bbox": "154 84 253 278"}, {"confidence": "0.9677", "file_id": "236", "bbox": "58 62 196 299"}, {"confidence": "0.9674", "file_id": "17", "bbox": "276 47 397 301"}, {"confidence": "0.9674", "file_id": "37", "bbox": "310 168 401 326"}, {"confidence": "0.9674", "file_id": "180", "bbox": "310 168 401 326"}, {"confidence": "0.9674", "file_id": "248", "bbox": "33 170 193 431"}, {"confidence": "0.9672", "file_id": "211", "bbox": "163 26 241 158"}, {"confidence": "0.9671", "file_id": "64", "bbox": "187 88 270 215"}, {"confidence": "0.9670", "file_id": "14", "bbox": "96 62 231 282"}, {"confidence": "0.9670", "file_id": "125", "bbox": "42 159 123 253"}, {"confidence": "0.9669", "file_id": "223", "bbox": "359 314 648 734"}, {"confidence": "0.9665", "file_id": "61", "bbox": "232 393 469 590"}, {"confidence": "0.9663", "file_id": "50", "bbox": "149 125 241 276"}, {"confidence": "0.9663", "file_id": "76", "bbox": "202 163 362 298"}, {"confidence": "0.9663", "file_id": "150", "bbox": "273 29 394 241"}, {"confidence": "0.9663", "file_id": "202", "bbox": "202 163 362 298"}, {"confidence": "0.9663", "file_id": "225", "bbox": "149 125 241 276"}, {"confidence": "0.9662", "file_id": "205", "bbox": "231 132 373 366"}, {"confidence": "0.9660", "file_id": "57", "bbox": "181 45 387 414"}, {"confidence": "0.9659", "file_id": "194", "bbox": "254 85 350 289"}, {"confidence": "0.9656", "file_id": "170", "bbox": "1 246 123 428"}, {"confidence": "0.9656", "file_id": "194", "bbox": "68 93 168 285"}, {"confidence": "0.9655", "file_id": "94", "bbox": "209 95 319 302"}, {"confidence": "0.9655", "file_id": "147", "bbox": "422 80 519 222"}, {"confidence": "0.9652", "file_id": "224", "bbox": "89 172 172 323"}, {"confidence": "0.9648", "file_id": "25", "bbox": "203 341 297 476"}, {"confidence": "0.9644", "file_id": "207", "bbox": "194 91 309 264"}, {"confidence": "0.9644", "file_id": "243", "bbox": "261 249 303 326"}, {"confidence": "0.9643", "file_id": "183", "bbox": "131 63 292 403"}, {"confidence": "0.9643", "file_id": "184", "bbox": "226 16 312 171"}, {"confidence": "0.9642", "file_id": "23", "bbox": "343 442 455 570"}, {"confidence": "0.9640", "file_id": "54", "bbox": "211 29 550 666"}, {"confidence": "0.9640", "file_id": "221", "bbox": "6 15 173 325"}, {"confidence": "0.9640", "file_id": "243", "bbox": "142 250 184 326"}, {"confidence": "0.9636", "file_id": "106", "bbox": "71 48 117 128"}, {"confidence": "0.9636", "file_id": "201", "bbox": "214 179 338 299"}, {"confidence": "0.9634", "file_id": "152", "bbox": "212 180 340 302"}, {"confidence": "0.9632", "file_id": "62", "bbox": "49 123 148 300"}, {"confidence": "0.9632", "file_id": "155", "bbox": "32 106 429 305"}, {"confidence": "0.9632", "file_id": "187", "bbox": "91 37 177 161"}, {"confidence": "0.9631", "file_id": "36", "bbox": "104 87 241 316"}, {"confidence": "0.9631", "file_id": "108", "bbox": "104 87 241 316"}, {"confidence": "0.9629", "file_id": "11", "bbox": "269 423 467 898"}, {"confidence": "0.9628", "file_id": "18", "bbox": "131 103 221 213"}, {"confidence": "0.9628", "file_id": "75", "bbox": "127 152 281 427"}, {"confidence": "0.9624", "file_id": "64", "bbox": "234 32 287 122"}, {"confidence": "0.9624", "file_id": "187", "bbox": "223 57 326 209"}, {"confidence": "0.9623", "file_id": "88", "bbox": "237 163 317 295"}, {"confidence": "0.9621", "file_id": "124", "bbox": "124 97 259 333"}, {"confidence": "0.9621", "file_id": "137", "bbox": "271 48 442 337"}, {"confidence": "0.9621", "file_id": "139", "bbox": "211 108 315 235"}, {"confidence": "0.9620", "file_id": "147", "bbox": "6 68 93 193"}, {"confidence": "0.9619", "file_id": "18", "bbox": "9 99 92 214"}, {"confidence": "0.9619", "file_id": "20", "bbox": "196 70 311 246"}, {"confidence": "0.9619", "file_id": "224", "bbox": "318 171 422 332"}, {"confidence": "0.9618", "file_id": "12", "bbox": "170 100 312 463"}, {"confidence": "0.9618", "file_id": "35", "bbox": "127 168 218 268"}, {"confidence": "0.9615", "file_id": "51", "bbox": "265 138 340 265"}, {"confidence": "0.9615", "file_id": "208", "bbox": "330 51 457 294"}, {"confidence": "0.9614", "file_id": "239", "bbox": "149 217 258 462"}, {"confidence": "0.9613", "file_id": "227", "bbox": "386 185 432 260"}, {"confidence": "0.9612", "file_id": "0", "bbox": "209 261 313 458"}, {"confidence": "0.9609", "file_id": "23", "bbox": "672 439 772 586"}, {"confidence": "0.9609", "file_id": "147", "bbox": "123 127 228 295"}, {"confidence": "0.9609", "file_id": "242", "bbox": "239 75 438 270"}, {"confidence": "0.9608", "file_id": "1", "bbox": "318 112 369 168"}, {"confidence": "0.9608", "file_id": "172", "bbox": "318 112 369 168"}, {"confidence": "0.9606", "file_id": "62", "bbox": "146 106 229 245"}, {"confidence": "0.9606", "file_id": "113", "bbox": "157 223 286 452"}, {"confidence": "0.9606", "file_id": "212", "bbox": "245 38 435 326"}, {"confidence": "0.9605", "file_id": "192", "bbox": "338 278 358 319"}, {"confidence": "0.9604", "file_id": "236", "bbox": "176 137 381 300"}, {"confidence": "0.9603", "file_id": "248", "bbox": "146 173 337 283"}, {"confidence": "0.9602", "file_id": "83", "bbox": "77 49 257 314"}, {"confidence": "0.9602", "file_id": "196", "bbox": "77 49 257 314"}, {"confidence": "0.9601", "file_id": "203", "bbox": "38 101 214 330"}, {"confidence": "0.9599", "file_id": "95", "bbox": "117 70 187 182"}, {"confidence": "0.9599", "file_id": "140", "bbox": "177 97 453 311"}, {"confidence": "0.9598", "file_id": "237", "bbox": "146 29 196 95"}, {"confidence": "0.9597", "file_id": "50", "bbox": "47 154 150 317"}, {"confidence": "0.9597", "file_id": "174", "bbox": "13 161 85 263"}, {"confidence": "0.9597", "file_id": "225", "bbox": "47 154 150 317"}, {"confidence": "0.9596", "file_id": "214", "bbox": "133 180 264 459"}, {"confidence": "0.9592", "file_id": "74", "bbox": "190 187 333 323"}, {"confidence": "0.9591", "file_id": "244", "bbox": "51 212 93 274"}, {"confidence": "0.9589", "file_id": "175", "bbox": "51 25 258 190"}, {"confidence": "0.9589", "file_id": "206", "bbox": "51 25 258 190"}, {"confidence": "0.9589", "file_id": "217", "bbox": "326 115 387 217"}, {"confidence": "0.9589", "file_id": "234", "bbox": "51 25 258 190"}, {"confidence": "0.9585", "file_id": "86", "bbox": "194 215 280 399"}, {"confidence": "0.9585", "file_id": "106", "bbox": "265 63 317 161"}, {"confidence": "0.9585", "file_id": "228", "bbox": "153 89 231 212"}, {"confidence": "0.9583", "file_id": "243", "bbox": "185 248 225 325"}, {"confidence": "0.9582", "file_id": "87", "bbox": "342 150 411 264"}, {"confidence": "0.9582", "file_id": "210", "bbox": "207 93 312 265"}, {"confidence": "0.9582", "file_id": "238", "bbox": "56 167 167 318"}, {"confidence": "0.9579", "file_id": "8", "bbox": "231 185 302 304"}, {"confidence": "0.9579", "file_id": "103", "bbox": "29 62 318 470"}, {"confidence": "0.9578", "file_id": "131", "bbox": "133 36 275 300"}, {"confidence": "0.9578", "file_id": "216", "bbox": "104 11 381 321"}, {"confidence": "0.9576", "file_id": "132", "bbox": "0 199 111 353"}, {"confidence": "0.9576", "file_id": "244", "bbox": "165 210 206 273"}, {"confidence": "0.9575", "file_id": "8", "bbox": "29 193 106 312"}, {"confidence": "0.9573", "file_id": "61", "bbox": "536 397 736 645"}, {"confidence": "0.9573", "file_id": "106", "bbox": "204 124 320 312"}, {"confidence": "0.9572", "file_id": "30", "bbox": "57 117 329 307"}, {"confidence": "0.9572", "file_id": "44", "bbox": "210 173 272 262"}, {"confidence": "0.9572", "file_id": "52", "bbox": "169 190 267 306"}, {"confidence": "0.9570", "file_id": "13", "bbox": "84 150 173 336"}, {"confidence": "0.9570", "file_id": "76", "bbox": "111 31 190 163"}, {"confidence": "0.9570", "file_id": "202", "bbox": "111 31 190 163"}, {"confidence": "0.9569", "file_id": "124", "bbox": "252 62 365 263"}, {"confidence": "0.9567", "file_id": "166", "bbox": "248 182 346 301"}, {"confidence": "0.9566", "file_id": "82", "bbox": "132 159 302 474"}, {"confidence": "0.9566", "file_id": "91", "bbox": "133 241 226 465"}, {"confidence": "0.9566", "file_id": "93", "bbox": "145 5 258 159"}, {"confidence": "0.9566", "file_id": "166", "bbox": "106 188 222 270"}, {"confidence": "0.9566", "file_id": "176", "bbox": "132 159 302 474"}, {"confidence": "0.9566", "file_id": "246", "bbox": "132 159 302 474"}, {"confidence": "0.9565", "file_id": "250", "bbox": "217 152 268 246"}, {"confidence": "0.9564", "file_id": "156", "bbox": "72 231 151 405"}, {"confidence": "0.9564", "file_id": "194", "bbox": "124 70 260 299"}, {"confidence": "0.9563", "file_id": "24", "bbox": "186 222 313 439"}, {"confidence": "0.9559", "file_id": "106", "bbox": "392 120 507 307"}, {"confidence": "0.9559", "file_id": "221", "bbox": "337 19 506 329"}, {"confidence": "0.9558", "file_id": "72", "bbox": "349 213 415 300"}, {"confidence": "0.9555", "file_id": "44", "bbox": "136 188 181 257"}, {"confidence": "0.9553", "file_id": "149", "bbox": "93 205 157 311"}, {"confidence": "0.9553", "file_id": "228", "bbox": "109 111 165 189"}, {"confidence": "0.9552", "file_id": "227", "bbox": "449 181 493 249"}, {"confidence": "0.9549", "file_id": "61", "bbox": "100 335 282 547"}, {"confidence": "0.9549", "file_id": "139", "bbox": "50 148 195 335"}, {"confidence": "0.9548", "file_id": "132", "bbox": "85 238 156 346"}, {"confidence": "0.9546", "file_id": "57", "bbox": "18 0 324 579"}, {"confidence": "0.9546", "file_id": "231", "bbox": "179 138 234 234"}, {"confidence": "0.9546", "file_id": "254", "bbox": "300 18 474 294"}, {"confidence": "0.9544", "file_id": "63", "bbox": "171 25 253 176"}, {"confidence": "0.9544", "file_id": "165", "bbox": "268 75 438 277"}, {"confidence": "0.9543", "file_id": "39", "bbox": "88 6 330 411"}, {"confidence": "0.9543", "file_id": "122", "bbox": "61 34 340 372"}, {"confidence": "0.9543", "file_id": "166", "bbox": "46 154 129 257"}, {"confidence": "0.9543", "file_id": "251", "bbox": "67 191 225 388"}, {"confidence": "0.9542", "file_id": "55", "bbox": "680 416 960 931"}, {"confidence": "0.9542", "file_id": "114", "bbox": "144 28 262 161"}, {"confidence": "0.9542", "file_id": "208", "bbox": "167 147 191 188"}, {"confidence": "0.9540", "file_id": "59", "bbox": "238 239 340 437"}, {"confidence": "0.9540", "file_id": "79", "bbox": "181 46 354 285"}, {"confidence": "0.9540", "file_id": "99", "bbox": "181 46 354 285"}, {"confidence": "0.9540", "file_id": "134", "bbox": "359 41 409 120"}, {"confidence": "0.9539", "file_id": "181", "bbox": "61 55 298 435"}, {"confidence": "0.9538", "file_id": "100", "bbox": "275 101 362 255"}, {"confidence": "0.9538", "file_id": "174", "bbox": "275 81 325 155"}, {"confidence": "0.9538", "file_id": "209", "bbox": "275 101 362 255"}, {"confidence": "0.9535", "file_id": "0", "bbox": "17 262 119 458"}, {"confidence": "0.9535", "file_id": "215", "bbox": "123 703 282 986"}, {"confidence": "0.9535", "file_id": "254", "bbox": "150 173 210 261"}, {"confidence": "0.9534", "file_id": "195", "bbox": "52 33 350 588"}, {"confidence": "0.9533", "file_id": "10", "bbox": "35 64 316 471"}, {"confidence": "0.9533", "file_id": "88", "bbox": "159 216 244 357"}, {"confidence": "0.9532", "file_id": "101", "bbox": "22 0 111 125"}, {"confidence": "0.9531", "file_id": "19", "bbox": "70 40 296 404"}, {"confidence": "0.9529", "file_id": "27", "bbox": "115 52 207 273"}, {"confidence": "0.9528", "file_id": "123", "bbox": "367 7 589 290"}, {"confidence": "0.9528", "file_id": "149", "bbox": "274 211 321 290"}, {"confidence": "0.9526", "file_id": "21", "bbox": "259 120 384 338"}, {"confidence": "0.9526", "file_id": "163", "bbox": "135 162 306 454"}, {"confidence": "0.9525", "file_id": "240", "bbox": "21 292 77 368"}, {"confidence": "0.9524", "file_id": "124", "bbox": "48 0 180 184"}, {"confidence": "0.9524", "file_id": "190", "bbox": "96 0 164 106"}, {"confidence": "0.9522", "file_id": "86", "bbox": "139 183 215 330"}, {"confidence": "0.9522", "file_id": "158", "bbox": "254 73 358 252"}, {"confidence": "0.9521", "file_id": "79", "bbox": "377 164 447 260"}, {"confidence": "0.9521", "file_id": "99", "bbox": "377 164 447 260"}, {"confidence": "0.9521", "file_id": "201", "bbox": "107 67 174 175"}, {"confidence": "0.9520", "file_id": "50", "bbox": "460 29 518 144"}, {"confidence": "0.9520", "file_id": "225", "bbox": "460 29 518 144"}, {"confidence": "0.9519", "file_id": "112", "bbox": "73 75 169 260"}, {"confidence": "0.9517", "file_id": "76", "bbox": "14 23 79 134"}, {"confidence": "0.9517", "file_id": "202", "bbox": "14 23 79 134"}, {"confidence": "0.9517", "file_id": "205", "bbox": "87 79 175 218"}, {"confidence": "0.9516", "file_id": "152", "bbox": "107 67 174 175"}, {"confidence": "0.9516", "file_id": "226", "bbox": "384 232 438 315"}, {"confidence": "0.9515", "file_id": "47", "bbox": "73 114 175 314"}, {"confidence": "0.9514", "file_id": "20", "bbox": "39 65 230 318"}, {"confidence": "0.9514", "file_id": "125", "bbox": "258 120 355 271"}, {"confidence": "0.9514", "file_id": "243", "bbox": "103 251 142 328"}, {"confidence": "0.9513", "file_id": "229", "bbox": "0 16 147 268"}, {"confidence": "0.9512", "file_id": "116", "bbox": "83 178 111 232"}, {"confidence": "0.9511", "file_id": "106", "bbox": "467 83 507 204"}, {"confidence": "0.9510", "file_id": "138", "bbox": "188 367 245 498"}, {"confidence": "0.9509", "file_id": "5", "bbox": "218 24 397 292"}, {"confidence": "0.9509", "file_id": "139", "bbox": "419 54 465 123"}, {"confidence": "0.9509", "file_id": "211", "bbox": "150 0 188 83"}, {"confidence": "0.9508", "file_id": "119", "bbox": "55 14 355 391"}, {"confidence": "0.9504", "file_id": "104", "bbox": "256 263 306 347"}, {"confidence": "0.9504", "file_id": "154", "bbox": "8 37 328 464"}, {"confidence": "0.9504", "file_id": "250", "bbox": "0 0 114 333"}, {"confidence": "0.9502", "file_id": "128", "bbox": "202 141 333 412"}, {"confidence": "0.9502", "file_id": "235", "bbox": "102 99 640 909"}, {"confidence": "0.9501", "file_id": "101", "bbox": "82 0 161 80"}, {"confidence": "0.9500", "file_id": "243", "bbox": "297 249 335 322"}, {"confidence": "0.9498", "file_id": "20", "bbox": "173 80 243 199"}, {"confidence": "0.9496", "file_id": "3", "bbox": "7 37 332 478"}, {"confidence": "0.9496", "file_id": "63", "bbox": "7 180 189 473"}, {"confidence": "0.9496", "file_id": "92", "bbox": "231 234 348 415"}, {"confidence": "0.9496", "file_id": "151", "bbox": "7 37 332 478"}, {"confidence": "0.9492", "file_id": "110", "bbox": "348 50 397 124"}, {"confidence": "0.9492", "file_id": "120", "bbox": "61 35 291 456"}, {"confidence": "0.9492", "file_id": "127", "bbox": "14 29 315 477"}, {"confidence": "0.9490", "file_id": "81", "bbox": "24 16 283 503"}, {"confidence": "0.9490", "file_id": "148", "bbox": "181 63 291 255"}, {"confidence": "0.9490", "file_id": "230", "bbox": "0 54 104 354"}, {"confidence": "0.9488", "file_id": "97", "bbox": "162 63 294 268"}, {"confidence": "0.9488", "file_id": "159", "bbox": "0 0 98 103"}, {"confidence": "0.9488", "file_id": "237", "bbox": "395 108 454 211"}, {"confidence": "0.9487", "file_id": "139", "bbox": "306 81 389 181"}, {"confidence": "0.9487", "file_id": "183", "bbox": "45 53 226 509"}, {"confidence": "0.9487", "file_id": "228", "bbox": "235 23 437 309"}, {"confidence": "0.9484", "file_id": "86", "bbox": "188 113 241 209"}, {"confidence": "0.9484", "file_id": "188", "bbox": "270 71 359 255"}, {"confidence": "0.9483", "file_id": "59", "bbox": "0 218 140 497"}, {"confidence": "0.9481", "file_id": "167", "bbox": "143 47 304 276"}, {"confidence": "0.9478", "file_id": "192", "bbox": "456 289 488 338"}, {"confidence": "0.9477", "file_id": "42", "bbox": "212 36 388 364"}, {"confidence": "0.9476", "file_id": "16", "bbox": "202 141 332 407"}, {"confidence": "0.9476", "file_id": "101", "bbox": "261 113 409 336"}, {"confidence": "0.9476", "file_id": "226", "bbox": "458 233 506 314"}, {"confidence": "0.9475", "file_id": "232", "bbox": "278 42 436 274"}, {"confidence": "0.9474", "file_id": "98", "bbox": "1 37 130 337"}, {"confidence": "0.9474", "file_id": "129", "bbox": "196 99 344 290"}, {"confidence": "0.9472", "file_id": "13", "bbox": "213 117 231 151"}, {"confidence": "0.9472", "file_id": "22", "bbox": "264 213 313 307"}, {"confidence": "0.9471", "file_id": "242", "bbox": "14 29 262 307"}, {"confidence": "0.9470", "file_id": "117", "bbox": "179 167 312 385"}, {"confidence": "0.9470", "file_id": "163", "bbox": "51 161 107 251"}, {"confidence": "0.9469", "file_id": "253", "bbox": "250 0 508 337"}, {"confidence": "0.9468", "file_id": "159", "bbox": "33 14 161 105"}, {"confidence": "0.9466", "file_id": "139", "bbox": "367 66 433 148"}, {"confidence": "0.9466", "file_id": "175", "bbox": "100 220 263 433"}, {"confidence": "0.9466", "file_id": "201", "bbox": "134 141 222 243"}, {"confidence": "0.9466", "file_id": "206", "bbox": "100 220 263 433"}, {"confidence": "0.9466", "file_id": "234", "bbox": "100 220 263 433"}, {"confidence": "0.9464", "file_id": "130", "bbox": "41 38 263 366"}, {"confidence": "0.9463", "file_id": "52", "bbox": "255 168 329 259"}, {"confidence": "0.9463", "file_id": "118", "bbox": "193 6 457 276"}, {"confidence": "0.9462", "file_id": "50", "bbox": "226 104 311 247"}, {"confidence": "0.9462", "file_id": "225", "bbox": "226 104 311 247"}, {"confidence": "0.9461", "file_id": "4", "bbox": "0 58 101 255"}, {"confidence": "0.9461", "file_id": "110", "bbox": "278 50 334 125"}, {"confidence": "0.9459", "file_id": "230", "bbox": "203 124 233 192"}, {"confidence": "0.9457", "file_id": "47", "bbox": "210 129 254 194"}, {"confidence": "0.9455", "file_id": "28", "bbox": "209 23 425 308"}, {"confidence": "0.9455", "file_id": "78", "bbox": "13 4 316 477"}, {"confidence": "0.9455", "file_id": "104", "bbox": "115 247 152 315"}, {"confidence": "0.9455", "file_id": "184", "bbox": "291 18 403 205"}, {"confidence": "0.9454", "file_id": "215", "bbox": "264 614 389 848"}, {"confidence": "0.9453", "file_id": "141", "bbox": "111 34 307 327"}, {"confidence": "0.9451", "file_id": "61", "bbox": "647 345 798 465"}, {"confidence": "0.9449", "file_id": "65", "bbox": "641 237 925 619"}, {"confidence": "0.9449", "file_id": "106", "bbox": "183 18 212 72"}, {"confidence": "0.9449", "file_id": "231", "bbox": "251 125 304 212"}, {"confidence": "0.9448", "file_id": "15", "bbox": "72 285 122 356"}, {"confidence": "0.9447", "file_id": "7", "bbox": "230 225 306 332"}, {"confidence": "0.9446", "file_id": "26", "bbox": "0 82 162 500"}, {"confidence": "0.9446", "file_id": "222", "bbox": "0 82 162 500"}, {"confidence": "0.9445", "file_id": "98", "bbox": "243 20 318 213"}, {"confidence": "0.9445", "file_id": "147", "bbox": "255 34 319 144"}, {"confidence": "0.9445", "file_id": "204", "bbox": "171 53 224 146"}, {"confidence": "0.9443", "file_id": "77", "bbox": "0 13 310 502"}, {"confidence": "0.9440", "file_id": "165", "bbox": "16 30 262 307"}, {"confidence": "0.9440", "file_id": "233", "bbox": "179 305 241 409"}, {"confidence": "0.9439", "file_id": "91", "bbox": "97 208 181 358"}, {"confidence": "0.9439", "file_id": "160", "bbox": "123 256 223 398"}, {"confidence": "0.9439", "file_id": "185", "bbox": "85 15 160 146"}, {"confidence": "0.9437", "file_id": "71", "bbox": "77 50 293 295"}, {"confidence": "0.9437", "file_id": "235", "bbox": "465 277 935 652"}, {"confidence": "0.9435", "file_id": "158", "bbox": "246 26 322 175"}, {"confidence": "0.9434", "file_id": "4", "bbox": "295 76 399 253"}, {"confidence": "0.9434", "file_id": "15", "bbox": "120 291 162 354"}, {"confidence": "0.9434", "file_id": "38", "bbox": "122 256 223 398"}, {"confidence": "0.9433", "file_id": "41", "bbox": "157 177 202 246"}, {"confidence": "0.9432", "file_id": "87", "bbox": "177 68 371 389"}, {"confidence": "0.9431", "file_id": "152", "bbox": "133 141 222 243"}, {"confidence": "0.9430", "file_id": "177", "bbox": "63 7 340 398"}, {"confidence": "0.9429", "file_id": "68", "bbox": "178 204 456 605"}, {"confidence": "0.9427", "file_id": "109", "bbox": "249 179 391 424"}, {"confidence": "0.9424", "file_id": "46", "bbox": "278 160 356 280"}, {"confidence": "0.9424", "file_id": "192", "bbox": "105 281 124 318"}, {"confidence": "0.9422", "file_id": "157", "bbox": "32 376 73 436"}, {"confidence": "0.9422", "file_id": "211", "bbox": "267 151 355 429"}, {"confidence": "0.9420", "file_id": "111", "bbox": "82 169 167 302"}, {"confidence": "0.9420", "file_id": "121", "bbox": "353 112 402 171"}, {"confidence": "0.9418", "file_id": "186", "bbox": "294 181 405 318"}, {"confidence": "0.9417", "file_id": "71", "bbox": "214 80 398 271"}, {"confidence": "0.9417", "file_id": "116", "bbox": "245 204 277 265"}, {"confidence": "0.9415", "file_id": "65", "bbox": "67 257 330 647"}, {"confidence": "0.9415", "file_id": "146", "bbox": "173 40 290 273"}, {"confidence": "0.9413", "file_id": "107", "bbox": "5 212 29 241"}, {"confidence": "0.9413", "file_id": "131", "bbox": "0 281 97 507"}, {"confidence": "0.9412", "file_id": "23", "bbox": "94 445 212 564"}, {"confidence": "0.9411", "file_id": "70", "bbox": "30 287 71 361"}, {"confidence": "0.9408", "file_id": "73", "bbox": "3 155 174 457"}, {"confidence": "0.9407", "file_id": "249", "bbox": "103 319 140 380"}, {"confidence": "0.9406", "file_id": "62", "bbox": "303 154 406 252"}, {"confidence": "0.9405", "file_id": "100", "bbox": "358 91 486 292"}, {"confidence": "0.9405", "file_id": "209", "bbox": "358 91 486 292"}, {"confidence": "0.9404", "file_id": "241", "bbox": "112 232 144 267"}, {"confidence": "0.9403", "file_id": "188", "bbox": "246 25 319 174"}, {"confidence": "0.9402", "file_id": "89", "bbox": "116 195 143 241"}, {"confidence": "0.9401", "file_id": "76", "bbox": "373 88 505 290"}, {"confidence": "0.9401", "file_id": "125", "bbox": "77 56 258 305"}, {"confidence": "0.9401", "file_id": "156", "bbox": "124 164 199 328"}, {"confidence": "0.9401", "file_id": "202", "bbox": "373 88 505 290"}, {"confidence": "0.9399", "file_id": "130", "bbox": "189 114 386 267"}, {"confidence": "0.9399", "file_id": "157", "bbox": "171 376 213 436"}, {"confidence": "0.9398", "file_id": "86", "bbox": "245 138 335 180"}, {"confidence": "0.9397", "file_id": "35", "bbox": "51 211 154 335"}, {"confidence": "0.9397", "file_id": "205", "bbox": "31 64 107 183"}, {"confidence": "0.9396", "file_id": "17", "bbox": "98 59 192 234"}, {"confidence": "0.9396", "file_id": "158", "bbox": "151 15 237 162"}, {"confidence": "0.9396", "file_id": "197", "bbox": "179 42 253 166"}, {"confidence": "0.9395", "file_id": "199", "bbox": "0 141 182 495"}, {"confidence": "0.9392", "file_id": "4", "bbox": "390 73 478 257"}, {"confidence": "0.9392", "file_id": "64", "bbox": "250 7 289 75"}, {"confidence": "0.9392", "file_id": "106", "bbox": "467 21 501 79"}, {"confidence": "0.9392", "file_id": "198", "bbox": "51 44 122 241"}, {"confidence": "0.9391", "file_id": "121", "bbox": "14 113 64 170"}, {"confidence": "0.9390", "file_id": "193", "bbox": "235 168 294 281"}, {"confidence": "0.9389", "file_id": "23", "bbox": "0 441 55 548"}, {"confidence": "0.9388", "file_id": "63", "bbox": "250 0 299 83"}, {"confidence": "0.9387", "file_id": "183", "bbox": "258 50 387 326"}, {"confidence": "0.9384", "file_id": "188", "bbox": "151 14 238 163"}, {"confidence": "0.9383", "file_id": "191", "bbox": "171 183 236 315"}, {"confidence": "0.9382", "file_id": "43", "bbox": "37 108 112 227"}, {"confidence": "0.9381", "file_id": "125", "bbox": "231 180 276 245"}, {"confidence": "0.9378", "file_id": "53", "bbox": "58 0 290 445"}, {"confidence": "0.9377", "file_id": "116", "bbox": "179 296 228 387"}, {"confidence": "0.9376", "file_id": "60", "bbox": "116 147 569 974"}, {"confidence": "0.9376", "file_id": "204", "bbox": "339 49 478 322"}, {"confidence": "0.9374", "file_id": "20", "bbox": "322 76 386 170"}, {"confidence": "0.9374", "file_id": "161", "bbox": "251 151 302 235"}, {"confidence": "0.9373", "file_id": "243", "bbox": "58 252 98 331"}, {"confidence": "0.9372", "file_id": "101", "bbox": "268 0 331 122"}, {"confidence": "0.9371", "file_id": "106", "bbox": "39 126 137 320"}, {"confidence": "0.9371", "file_id": "149", "bbox": "313 199 385 317"}, {"confidence": "0.9370", "file_id": "89", "bbox": "335 194 361 242"}, {"confidence": "0.9366", "file_id": "194", "bbox": "280 32 448 333"}, {"confidence": "0.9364", "file_id": "219", "bbox": "186 222 218 272"}, {"confidence": "0.9363", "file_id": "110", "bbox": "401 49 452 127"}, {"confidence": "0.9363", "file_id": "138", "bbox": "240 379 306 502"}, {"confidence": "0.9362", "file_id": "18", "bbox": "482 139 508 210"}, {"confidence": "0.9361", "file_id": "102", "bbox": "129 257 169 319"}, {"confidence": "0.9361", "file_id": "116", "bbox": "258 171 286 218"}, {"confidence": "0.9360", "file_id": "6", "bbox": "60 51 123 136"}, {"confidence": "0.9359", "file_id": "121", "bbox": "526 113 575 170"}, {"confidence": "0.9358", "file_id": "40", "bbox": "5 148 94 298"}, {"confidence": "0.9358", "file_id": "188", "bbox": "79 34 178 207"}, {"confidence": "0.9357", "file_id": "143", "bbox": "42 128 238 449"}, {"confidence": "0.9357", "file_id": "182", "bbox": "42 128 238 449"}, {"confidence": "0.9355", "file_id": "106", "bbox": "346 73 411 180"}, {"confidence": "0.9355", "file_id": "131", "bbox": "106 0 185 94"}, {"confidence": "0.9354", "file_id": "89", "bbox": "280 196 306 242"}, {"confidence": "0.9352", "file_id": "46", "bbox": "75 41 136 132"}, {"confidence": "0.9350", "file_id": "158", "bbox": "79 34 178 207"}, {"confidence": "0.9349", "file_id": "98", "bbox": "325 14 383 153"}, {"confidence": "0.9346", "file_id": "45", "bbox": "75 112 332 505"}, {"confidence": "0.9346", "file_id": "106", "bbox": "198 60 251 148"}, {"confidence": "0.9346", "file_id": "237", "bbox": "41 82 101 175"}, {"confidence": "0.9346", "file_id": "241", "bbox": "163 232 194 266"}, {"confidence": "0.9345", "file_id": "52", "bbox": "23 229 158 393"}, {"confidence": "0.9345", "file_id": "98", "bbox": "141 23 244 262"}, {"confidence": "0.9345", "file_id": "140", "bbox": "24 30 241 300"}, {"confidence": "0.9341", "file_id": "90", "bbox": "60 9 290 490"}, {"confidence": "0.9341", "file_id": "142", "bbox": "60 9 290 490"}, {"confidence": "0.9341", "file_id": "144", "bbox": "67 52 297 462"}, {"confidence": "0.9341", "file_id": "145", "bbox": "153 206 284 422"}, {"confidence": "0.9341", "file_id": "169", "bbox": "67 52 297 462"}, {"confidence": "0.9341", "file_id": "220", "bbox": "60 9 290 490"}, {"confidence": "0.9340", "file_id": "9", "bbox": "17 18 92 157"}, {"confidence": "0.9339", "file_id": "89", "bbox": "254 196 279 241"}, {"confidence": "0.9338", "file_id": "113", "bbox": "113 3 143 42"}, {"confidence": "0.9338", "file_id": "227", "bbox": "252 193 298 276"}, {"confidence": "0.9337", "file_id": "192", "bbox": "413 253 425 273"}, {"confidence": "0.9336", "file_id": "40", "bbox": "135 149 203 301"}, {"confidence": "0.9335", "file_id": "87", "bbox": "66 164 125 255"}, {"confidence": "0.9335", "file_id": "245", "bbox": "79 9 315 319"}, {"confidence": "0.9334", "file_id": "105", "bbox": "11 21 367 433"}, {"confidence": "0.9331", "file_id": "200", "bbox": "90 173 160 336"}, {"confidence": "0.9330", "file_id": "89", "bbox": "200 195 225 242"}, {"confidence": "0.9329", "file_id": "110", "bbox": "168 53 228 131"}, {"confidence": "0.9329", "file_id": "116", "bbox": "98 150 122 192"}, {"confidence": "0.9328", "file_id": "215", "bbox": "712 307 763 384"}, {"confidence": "0.9327", "file_id": "86", "bbox": "132 117 185 234"}, {"confidence": "0.9326", "file_id": "29", "bbox": "14 24 363 430"}, {"confidence": "0.9325", "file_id": "213", "bbox": "3 8 136 161"}, {"confidence": "0.9321", "file_id": "44", "bbox": "167 180 221 257"}, {"confidence": "0.9320", "file_id": "26", "bbox": "148 0 225 128"}, {"confidence": "0.9320", "file_id": "222", "bbox": "148 0 225 128"}, {"confidence": "0.9318", "file_id": "157", "bbox": "107 379 142 434"}, {"confidence": "0.9318", "file_id": "215", "bbox": "567 412 638 527"}, {"confidence": "0.9317", "file_id": "170", "bbox": "114 100 210 202"}, {"confidence": "0.9316", "file_id": "184", "bbox": "309 6 340 63"}, {"confidence": "0.9316", "file_id": "184", "bbox": "423 7 463 78"}, {"confidence": "0.9313", "file_id": "84", "bbox": "113 398 150 479"}, {"confidence": "0.9312", "file_id": "153", "bbox": "117 116 339 421"}, {"confidence": "0.9312", "file_id": "171", "bbox": "117 116 339 421"}, {"confidence": "0.9310", "file_id": "6", "bbox": "412 44 474 129"}, {"confidence": "0.9310", "file_id": "192", "bbox": "127 280 147 321"}, {"confidence": "0.9310", "file_id": "218", "bbox": "41 3 315 270"}, {"confidence": "0.9309", "file_id": "43", "bbox": "292 27 404 182"}, {"confidence": "0.9307", "file_id": "49", "bbox": "110 65 265 324"}, {"confidence": "0.9305", "file_id": "184", "bbox": "107 13 169 123"}, {"confidence": "0.9303", "file_id": "1", "bbox": "192 93 253 174"}, {"confidence": "0.9303", "file_id": "172", "bbox": "192 93 253 174"}, {"confidence": "0.9291", "file_id": "89", "bbox": "388 195 415 242"}, {"confidence": "0.9290", "file_id": "252", "bbox": "242 226 310 335"}, {"confidence": "0.9287", "file_id": "156", "bbox": "187 106 249 268"}, {"confidence": "0.9287", "file_id": "217", "bbox": "265 136 340 265"}, {"confidence": "0.9286", "file_id": "153", "bbox": "74 195 118 286"}, {"confidence": "0.9286", "file_id": "171", "bbox": "74 195 118 286"}, {"confidence": "0.9284", "file_id": "115", "bbox": "50 47 260 456"}, {"confidence": "0.9284", "file_id": "136", "bbox": "50 47 260 456"}, {"confidence": "0.9283", "file_id": "104", "bbox": "507 282 571 389"}, {"confidence": "0.9280", "file_id": "52", "bbox": "387 138 413 189"}, {"confidence": "0.9279", "file_id": "51", "bbox": "237 166 272 231"}, {"confidence": "0.9275", "file_id": "84", "bbox": "151 403 190 485"}, {"confidence": "0.9273", "file_id": "43", "bbox": "144 70 226 215"}, {"confidence": "0.9273", "file_id": "96", "bbox": "266 370 303 467"}, {"confidence": "0.9273", "file_id": "107", "bbox": "219 202 256 248"}, {"confidence": "0.9271", "file_id": "237", "bbox": "248 7 290 69"}, {"confidence": "0.9270", "file_id": "40", "bbox": "409 159 493 297"}, {"confidence": "0.9270", "file_id": "56", "bbox": "20 156 92 244"}, {"confidence": "0.9269", "file_id": "162", "bbox": "24 45 225 385"}, {"confidence": "0.9269", "file_id": "170", "bbox": "232 14 277 73"}, {"confidence": "0.9267", "file_id": "107", "bbox": "306 176 359 260"}, {"confidence": "0.9266", "file_id": "58", "bbox": "109 102 244 347"}, {"confidence": "0.9265", "file_id": "69", "bbox": "112 203 276 453"}, {"confidence": "0.9263", "file_id": "107", "bbox": "119 214 136 239"}, {"confidence": "0.9262", "file_id": "191", "bbox": "229 150 269 234"}, {"confidence": "0.9262", "file_id": "191", "bbox": "50 242 147 457"}, {"confidence": "0.9258", "file_id": "37", "bbox": "296 119 362 251"}, {"confidence": "0.9258", "file_id": "110", "bbox": "106 50 170 128"}, {"confidence": "0.9258", "file_id": "180", "bbox": "296 119 362 251"}, {"confidence": "0.9253", "file_id": "0", "bbox": "4 250 54 383"}, {"confidence": "0.9252", "file_id": "67", "bbox": "25 80 225 415"}, {"confidence": "0.9250", "file_id": "66", "bbox": "115 120 551 959"}, {"confidence": "0.9250", "file_id": "89", "bbox": "362 195 388 243"}, {"confidence": "0.9250", "file_id": "178", "bbox": "145 377 185 442"}, {"confidence": "0.9248", "file_id": "12", "bbox": "340 275 599 1023"}, {"confidence": "0.9247", "file_id": "56", "bbox": "312 53 353 107"}, {"confidence": "0.9247", "file_id": "237", "bbox": "372 48 419 125"}, {"confidence": "0.9244", "file_id": "240", "bbox": "376 246 410 286"}, {"confidence": "0.9243", "file_id": "249", "bbox": "208 321 245 383"}, {"confidence": "0.9242", "file_id": "237", "bbox": "323 57 373 99"}, {"confidence": "0.9237", "file_id": "106", "bbox": "107 17 135 67"}, {"confidence": "0.9236", "file_id": "156", "bbox": "247 71 322 223"}, {"confidence": "0.9235", "file_id": "37", "bbox": "429 22 460 76"}, {"confidence": "0.9235", "file_id": "180", "bbox": "429 22 460 76"}, {"confidence": "0.9235", "file_id": "241", "bbox": "215 230 245 266"}, {"confidence": "0.9234", "file_id": "52", "bbox": "311 155 371 228"}, {"confidence": "0.9232", "file_id": "187", "bbox": "2 28 75 129"}, {"confidence": "0.9230", "file_id": "170", "bbox": "175 40 232 109"}, {"confidence": "0.9229", "file_id": "12", "bbox": "47 72 122 206"}, {"confidence": "0.9228", "file_id": "15", "bbox": "0 275 66 360"}, {"confidence": "0.9228", "file_id": "102", "bbox": "206 196 230 235"}, {"confidence": "0.9226", "file_id": "62", "bbox": "217 6 239 41"}, {"confidence": "0.9225", "file_id": "219", "bbox": "297 222 332 272"}, {"confidence": "0.9224", "file_id": "106", "bbox": "226 20 255 71"}, {"confidence": "0.9222", "file_id": "107", "bbox": "396 221 413 240"}, {"confidence": "0.9221", "file_id": "107", "bbox": "69 202 102 244"}, {"confidence": "0.9221", "file_id": "215", "bbox": "642 358 703 449"}, {"confidence": "0.9219", "file_id": "149", "bbox": "401 215 444 284"}, {"confidence": "0.9217", "file_id": "106", "bbox": "0 43 50 118"}, {"confidence": "0.9215", "file_id": "4", "bbox": "120 69 222 256"}, {"confidence": "0.9215", "file_id": "91", "bbox": "108 193 132 244"}, {"confidence": "0.9215", "file_id": "237", "bbox": "196 202 278 333"}, {"confidence": "0.9215", "file_id": "241", "bbox": "468 230 503 264"}, {"confidence": "0.9213", "file_id": "89", "bbox": "143 195 171 242"}, {"confidence": "0.9212", "file_id": "200", "bbox": "243 20 270 75"}, {"confidence": "0.9209", "file_id": "35", "bbox": "180 151 257 216"}, {"confidence": "0.9209", "file_id": "241", "bbox": "264 231 296 265"}, {"confidence": "0.9209", "file_id": "241", "bbox": "9 233 44 270"}, {"confidence": "0.9208", "file_id": "121", "bbox": "267 114 317 170"}, {"confidence": "0.9205", "file_id": "232", "bbox": "167 151 185 183"}, {"confidence": "0.9204", "file_id": "237", "bbox": "90 201 164 286"}, {"confidence": "0.9199", "file_id": "52", "bbox": "355 144 401 207"}, {"confidence": "0.9199", "file_id": "224", "bbox": "421 154 452 205"}, {"confidence": "0.9196", "file_id": "106", "bbox": "413 21 447 77"}, {"confidence": "0.9196", "file_id": "121", "bbox": "438 113 488 170"}, {"confidence": "0.9195", "file_id": "62", "bbox": "149 9 171 47"}, {"confidence": "0.9194", "file_id": "237", "bbox": "356 161 433 278"}, {"confidence": "0.9191", "file_id": "89", "bbox": "226 196 252 241"}, {"confidence": "0.9189", "file_id": "48", "bbox": "253 205 313 331"}, {"confidence": "0.9188", "file_id": "102", "bbox": "165 232 198 282"}, {"confidence": "0.9188", "file_id": "228", "bbox": "84 149 105 185"}, {"confidence": "0.9187", "file_id": "179", "bbox": "49 216 80 260"}, {"confidence": "0.9186", "file_id": "5", "bbox": "130 103 179 185"}, {"confidence": "0.9186", "file_id": "50", "bbox": "385 53 451 179"}, {"confidence": "0.9186", "file_id": "225", "bbox": "385 53 451 179"}, {"confidence": "0.9185", "file_id": "106", "bbox": "135 52 189 134"}, {"confidence": "0.9183", "file_id": "192", "bbox": "152 272 166 303"}, {"confidence": "0.9181", "file_id": "31", "bbox": "221 109 258 179"}, {"confidence": "0.9181", "file_id": "41", "bbox": "164 339 230 415"}, {"confidence": "0.9181", "file_id": "50", "bbox": "289 88 365 225"}, {"confidence": "0.9181", "file_id": "225", "bbox": "289 88 365 225"}, {"confidence": "0.9180", "file_id": "116", "bbox": "244 146 264 181"}, {"confidence": "0.9177", "file_id": "187", "bbox": "258 2 289 52"}, {"confidence": "0.9176", "file_id": "192", "bbox": "20 300 41 337"}, {"confidence": "0.9172", "file_id": "219", "bbox": "245 223 275 272"}, {"confidence": "0.9170", "file_id": "243", "bbox": "226 246 265 326"}, {"confidence": "0.9169", "file_id": "161", "bbox": "245 149 269 207"}, {"confidence": "0.9157", "file_id": "114", "bbox": "0 1 121 87"}, {"confidence": "0.9156", "file_id": "121", "bbox": "100 113 151 170"}, {"confidence": "0.9152", "file_id": "15", "bbox": "158 296 192 353"}, {"confidence": "0.9151", "file_id": "2", "bbox": "100 184 150 274"}, {"confidence": "0.9151", "file_id": "37", "bbox": "311 22 340 75"}, {"confidence": "0.9151", "file_id": "157", "bbox": "238 382 269 435"}, {"confidence": "0.9151", "file_id": "180", "bbox": "311 22 340 75"}, {"confidence": "0.9149", "file_id": "106", "bbox": "366 22 395 77"}, {"confidence": "0.9144", "file_id": "106", "bbox": "23 17 51 67"}, {"confidence": "0.9141", "file_id": "139", "bbox": "453 47 481 106"}, {"confidence": "0.9138", "file_id": "83", "bbox": "180 58 232 189"}, {"confidence": "0.9138", "file_id": "196", "bbox": "180 58 232 189"}, {"confidence": "0.9137", "file_id": "106", "bbox": "154 88 231 213"}, {"confidence": "0.9129", "file_id": "113", "bbox": "38 39 77 90"}, {"confidence": "0.9129", "file_id": "232", "bbox": "245 135 268 199"}, {"confidence": "0.9127", "file_id": "138", "bbox": "102 359 178 496"}, {"confidence": "0.9115", "file_id": "116", "bbox": "197 125 219 157"}, {"confidence": "0.9114", "file_id": "33", "bbox": "144 290 190 368"}, {"confidence": "0.9112", "file_id": "50", "bbox": "418 44 478 163"}, {"confidence": "0.9112", "file_id": "225", "bbox": "418 44 478 163"}, {"confidence": "0.9110", "file_id": "40", "bbox": "336 157 413 300"}, {"confidence": "0.9110", "file_id": "192", "bbox": "318 297 335 338"}, {"confidence": "0.9103", "file_id": "192", "bbox": "170 293 187 336"}, {"confidence": "0.9102", "file_id": "126", "bbox": "5 0 385 441"}, {"confidence": "0.9093", "file_id": "217", "bbox": "371 100 419 184"}, {"confidence": "0.9091", "file_id": "232", "bbox": "78 148 99 185"}, {"confidence": "0.9090", "file_id": "84", "bbox": "212 399 249 471"}, {"confidence": "0.9088", "file_id": "106", "bbox": "22 88 71 214"}, {"confidence": "0.9086", "file_id": "61", "bbox": "412 348 566 501"}, {"confidence": "0.9083", "file_id": "41", "bbox": "157 154 183 195"}, {"confidence": "0.9083", "file_id": "215", "bbox": "385 639 536 766"}, {"confidence": "0.9081", "file_id": "37", "bbox": "366 22 398 76"}, {"confidence": "0.9081", "file_id": "180", "bbox": "366 22 398 76"}, {"confidence": "0.9076", "file_id": "149", "bbox": "15 222 46 274"}, {"confidence": "0.9076", "file_id": "215", "bbox": "483 477 567 619"}, {"confidence": "0.9074", "file_id": "2", "bbox": "72 195 126 303"}, {"confidence": "0.9073", "file_id": "224", "bbox": "338 151 373 206"}, {"confidence": "0.9071", "file_id": "96", "bbox": "159 363 202 461"}, {"confidence": "0.9067", "file_id": "252", "bbox": "281 214 325 287"}, {"confidence": "0.9065", "file_id": "191", "bbox": "277 126 298 178"}, {"confidence": "0.9063", "file_id": "132", "bbox": "161 263 200 338"}, {"confidence": "0.9060", "file_id": "84", "bbox": "192 401 235 478"}, {"confidence": "0.9058", "file_id": "44", "bbox": "270 163 336 271"}, {"confidence": "0.9056", "file_id": "249", "bbox": "294 323 328 381"}, {"confidence": "0.9049", "file_id": "64", "bbox": "73 242 144 358"}, {"confidence": "0.9049", "file_id": "121", "bbox": "184 113 235 171"}, {"confidence": "0.9049", "file_id": "200", "bbox": "355 9 376 59"}, {"confidence": "0.9047", "file_id": "238", "bbox": "69 124 141 223"}, {"confidence": "0.9046", "file_id": "184", "bbox": "83 12 134 114"}, {"confidence": "0.9042", "file_id": "84", "bbox": "94 399 120 464"}, {"confidence": "0.9040", "file_id": "91", "bbox": "97 212 147 296"}, {"confidence": "0.9034", "file_id": "174", "bbox": "32 89 96 167"}, {"confidence": "0.9021", "file_id": "59", "bbox": "304 281 340 390"}, {"confidence": "0.9021", "file_id": "116", "bbox": "204 240 242 316"}, {"confidence": "0.9020", "file_id": "83", "bbox": "203 59 250 144"}, {"confidence": "0.9020", "file_id": "192", "bbox": "365 295 386 338"}, {"confidence": "0.9020", "file_id": "196", "bbox": "203 59 250 144"}, {"confidence": "0.9017", "file_id": "192", "bbox": "434 255 446 277"}, {"confidence": "0.9016", "file_id": "26", "bbox": "76 2 163 220"}, {"confidence": "0.9016", "file_id": "222", "bbox": "76 2 163 220"}, {"confidence": "0.9007", "file_id": "132", "bbox": "137 250 183 338"}, {"confidence": "0.9001", "file_id": "106", "bbox": "63 15 91 69"}, {"confidence": "0.8991", "file_id": "232", "bbox": "201 150 218 185"}, {"confidence": "0.8989", "file_id": "56", "bbox": "405 29 440 71"}, {"confidence": "0.8986", "file_id": "232", "bbox": "231 143 249 195"}, {"confidence": "0.8984", "file_id": "238", "bbox": "95 71 139 132"}, {"confidence": "0.8980", "file_id": "1", "bbox": "262 95 287 136"}, {"confidence": "0.8980", "file_id": "23", "bbox": "537 439 651 584"}, {"confidence": "0.8980", "file_id": "172", "bbox": "262 95 287 136"}, {"confidence": "0.8980", "file_id": "232", "bbox": "255 111 308 221"}, {"confidence": "0.8973", "file_id": "192", "bbox": "62 289 81 338"}, {"confidence": "0.8970", "file_id": "0", "bbox": "269 241 337 378"}, {"confidence": "0.8970", "file_id": "13", "bbox": "281 121 313 173"}, {"confidence": "0.8970", "file_id": "241", "bbox": "417 229 450 264"}, {"confidence": "0.8966", "file_id": "110", "bbox": "26 49 92 128"}, {"confidence": "0.8962", "file_id": "25", "bbox": "70 0 105 46"}, {"confidence": "0.8950", "file_id": "13", "bbox": "234 116 251 149"}, {"confidence": "0.8942", "file_id": "134", "bbox": "316 1 355 59"}, {"confidence": "0.8940", "file_id": "102", "bbox": "187 211 215 255"}, {"confidence": "0.8937", "file_id": "102", "bbox": "218 188 238 219"}, {"confidence": "0.8933", "file_id": "134", "bbox": "473 32 506 119"}, {"confidence": "0.8932", "file_id": "70", "bbox": "17 276 45 334"}, {"confidence": "0.8931", "file_id": "241", "bbox": "366 228 398 266"}, {"confidence": "0.8929", "file_id": "179", "bbox": "228 216 251 255"}, {"confidence": "0.8919", "file_id": "62", "bbox": "314 9 327 33"}, {"confidence": "0.8918", "file_id": "192", "bbox": "393 247 407 270"}, {"confidence": "0.8916", "file_id": "179", "bbox": "145 216 174 258"}, {"confidence": "0.8909", "file_id": "200", "bbox": "199 57 238 156"}, {"confidence": "0.8908", "file_id": "62", "bbox": "443 43 478 100"}, {"confidence": "0.8903", "file_id": "200", "bbox": "455 108 492 234"}, {"confidence": "0.8900", "file_id": "219", "bbox": "96 223 129 266"}, {"confidence": "0.8898", "file_id": "13", "bbox": "258 116 282 159"}, {"confidence": "0.8890", "file_id": "217", "bbox": "305 126 368 239"}, {"confidence": "0.8889", "file_id": "191", "bbox": "256 138 284 203"}, {"confidence": "0.8886", "file_id": "5", "bbox": "110 118 137 165"}, {"confidence": "0.8883", "file_id": "84", "bbox": "185 382 203 444"}, {"confidence": "0.8881", "file_id": "219", "bbox": "348 224 376 270"}, {"confidence": "0.8868", "file_id": "200", "bbox": "391 47 425 130"}, {"confidence": "0.8866", "file_id": "70", "bbox": "6 265 25 296"}, {"confidence": "0.8849", "file_id": "12", "bbox": "0 70 44 176"}, {"confidence": "0.8849", "file_id": "89", "bbox": "416 193 443 242"}, {"confidence": "0.8843", "file_id": "184", "bbox": "170 6 193 45"}, {"confidence": "0.8840", "file_id": "184", "bbox": "58 11 99 101"}, {"confidence": "0.8836", "file_id": "219", "bbox": "131 226 166 268"}, {"confidence": "0.8835", "file_id": "62", "bbox": "484 34 506 79"}, {"confidence": "0.8834", "file_id": "215", "bbox": "772 268 816 332"}, {"confidence": "0.8830", "file_id": "240", "bbox": "78 275 115 339"}, {"confidence": "0.8815", "file_id": "62", "bbox": "54 10 83 56"}, {"confidence": "0.8815", "file_id": "89", "bbox": "172 194 199 243"}, {"confidence": "0.8814", "file_id": "104", "bbox": "16 237 53 293"}, {"confidence": "0.8814", "file_id": "192", "bbox": "308 264 325 289"}, {"confidence": "0.8813", "file_id": "89", "bbox": "307 195 334 242"}, {"confidence": "0.8804", "file_id": "56", "bbox": "189 95 241 159"}, {"confidence": "0.8804", "file_id": "241", "bbox": "63 234 94 269"}, {"confidence": "0.8786", "file_id": "44", "bbox": "80 197 105 252"}, {"confidence": "0.8782", "file_id": "134", "bbox": "307 37 349 106"}, {"confidence": "0.8779", "file_id": "243", "bbox": "12 253 54 330"}, {"confidence": "0.8777", "file_id": "37", "bbox": "277 89 327 201"}, {"confidence": "0.8777", "file_id": "180", "bbox": "277 89 327 201"}, {"confidence": "0.8768", "file_id": "83", "bbox": "230 61 254 115"}, {"confidence": "0.8768", "file_id": "196", "bbox": "230 61 254 115"}, {"confidence": "0.8754", "file_id": "63", "bbox": "284 0 321 42"}, {"confidence": "0.8749", "file_id": "98", "bbox": "392 2 419 97"}, {"confidence": "0.8743", "file_id": "51", "bbox": "419 161 469 251"}, {"confidence": "0.8738", "file_id": "254", "bbox": "124 197 156 255"}, {"confidence": "0.8736", "file_id": "138", "bbox": "51 386 89 494"}, {"confidence": "0.8734", "file_id": "226", "bbox": "144 207 171 257"}, {"confidence": "0.8729", "file_id": "179", "bbox": "444 215 473 249"}, {"confidence": "0.8681", "file_id": "208", "bbox": "208 130 240 203"}, {"confidence": "0.8677", "file_id": "102", "bbox": "84 304 112 336"}, {"confidence": "0.8671", "file_id": "240", "bbox": "177 256 204 309"}, {"confidence": "0.8654", "file_id": "89", "bbox": "88 195 116 240"}, {"confidence": "0.8641", "file_id": "12", "bbox": "167 109 245 347"}, {"confidence": "0.8626", "file_id": "241", "bbox": "317 230 347 266"}, {"confidence": "0.8608", "file_id": "109", "bbox": "809 257 894 360"}, {"confidence": "0.8607", "file_id": "37", "bbox": "67 16 103 64"}, {"confidence": "0.8607", "file_id": "180", "bbox": "67 16 103 64"}, {"confidence": "0.8594", "file_id": "239", "bbox": "267 247 337 505"}, {"confidence": "0.8593", "file_id": "224", "bbox": "486 152 508 203"}, {"confidence": "0.8590", "file_id": "116", "bbox": "143 128 162 161"}, {"confidence": "0.8544", "file_id": "50", "bbox": "495 18 528 124"}, {"confidence": "0.8544", "file_id": "225", "bbox": "495 18 528 124"}, {"confidence": "0.8539", "file_id": "15", "bbox": "185 302 212 354"}, {"confidence": "0.8539", "file_id": "44", "bbox": "112 194 143 254"}, {"confidence": "0.8528", "file_id": "13", "bbox": "185 117 198 137"}, {"confidence": "0.8505", "file_id": "168", "bbox": "429 223 533 389"}, {"confidence": "0.8498", "file_id": "192", "bbox": "170 266 183 291"}, {"confidence": "0.8498", "file_id": "254", "bbox": "98 213 118 253"}, {"confidence": "0.8481", "file_id": "240", "bbox": "112 264 144 320"}, {"confidence": "0.8450", "file_id": "132", "bbox": "185 273 211 336"}, {"confidence": "0.8441", "file_id": "170", "bbox": "267 0 309 39"}, {"confidence": "0.8429", "file_id": "179", "bbox": "298 217 323 254"}, {"confidence": "0.8411", "file_id": "102", "bbox": "228 183 246 210"}, {"confidence": "0.8394", "file_id": "168", "bbox": "809 257 895 360"}, {"confidence": "0.8385", "file_id": "208", "bbox": "155 154 170 181"}, {"confidence": "0.8351", "file_id": "161", "bbox": "240 144 257 184"}, {"confidence": "0.8341", "file_id": "62", "bbox": "354 9 367 31"}, {"confidence": "0.8325", "file_id": "56", "bbox": "464 7 494 43"}, {"confidence": "0.8310", "file_id": "179", "bbox": "182 217 208 258"}, {"confidence": "0.8274", "file_id": "7", "bbox": "480 212 510 305"}, {"confidence": "0.8214", "file_id": "217", "bbox": "230 148 305 285"}, {"confidence": "0.8180", "file_id": "219", "bbox": "377 224 405 268"}, {"confidence": "0.8163", "file_id": "227", "bbox": "225 218 246 271"}, {"confidence": "0.8118", "file_id": "230", "bbox": "246 144 261 169"}, {"confidence": "0.8079", "file_id": "44", "bbox": "65 202 88 250"}, {"confidence": "0.8050", "file_id": "37", "bbox": "121 15 153 63"}, {"confidence": "0.8050", "file_id": "180", "bbox": "121 15 153 63"}, {"confidence": "0.8038", "file_id": "102", "bbox": "242 170 257 193"}, {"confidence": "0.8018", "file_id": "134", "bbox": "403 0 436 27"}, {"confidence": "0.8001", "file_id": "15", "bbox": "225 305 249 351"}, {"confidence": "0.7989", "file_id": "226", "bbox": "39 193 59 229"}, {"confidence": "0.7981", "file_id": "113", "bbox": "164 4 176 24"}, {"confidence": "0.7975", "file_id": "168", "bbox": "315 196 389 431"}, {"confidence": "0.7910", "file_id": "62", "bbox": "275 9 290 36"}, {"confidence": "0.7875", "file_id": "41", "bbox": "185 139 194 152"}, {"confidence": "0.7870", "file_id": "226", "bbox": "172 210 196 259"}, {"confidence": "0.7708", "file_id": "178", "bbox": "248 358 263 390"}, {"confidence": "0.7658", "file_id": "254", "bbox": "84 217 101 253"}, {"confidence": "0.7576", "file_id": "200", "bbox": "342 0 356 31"}, {"confidence": "0.7557", "file_id": "107", "bbox": "457 222 471 240"}, {"confidence": "0.7510", "file_id": "192", "bbox": "192 257 204 279"}, {"confidence": "0.7479", "file_id": "15", "bbox": "206 304 231 352"}, {"confidence": "0.7430", "file_id": "179", "bbox": "209 220 229 255"}, {"confidence": "0.7416", "file_id": "230", "bbox": "231 138 256 178"}, {"confidence": "0.7414", "file_id": "104", "bbox": "346 190 358 208"}, {"confidence": "0.7378", "file_id": "192", "bbox": "370 245 381 264"}, {"confidence": "0.7308", "file_id": "44", "bbox": "56 205 74 247"}, {"confidence": "0.7222", "file_id": "134", "bbox": "293 22 309 88"}, {"confidence": "0.7196", "file_id": "168", "bbox": "651 242 737 369"}, {"confidence": "0.7126", "file_id": "192", "bbox": "491 245 504 270"}, {"confidence": "0.7084", "file_id": "102", "bbox": "250 162 262 182"}, {"confidence": "0.7079", "file_id": "98", "bbox": "375 5 393 125"}, {"confidence": "0.7078", "file_id": "104", "bbox": "289 190 301 207"}, {"confidence": "0.6941", "file_id": "5", "bbox": "100 124 121 157"}, {"confidence": "0.6847", "file_id": "109", "bbox": "710 244 796 363"}, {"confidence": "0.6819", "file_id": "164", "bbox": "125 265 138 284"}, {"confidence": "0.6803", "file_id": "254", "bbox": "48 227 62 248"}, {"confidence": "0.6767", "file_id": "191", "bbox": "289 124 305 165"}, {"confidence": "0.6669", "file_id": "44", "bbox": "93 196 122 252"}, {"confidence": "0.6346", "file_id": "192", "bbox": "294 252 304 271"}, {"confidence": "0.6311", "file_id": "37", "bbox": "248 58 289 147"}, {"confidence": "0.6311", "file_id": "180", "bbox": "248 58 289 147"}, {"confidence": "0.6265", "file_id": "164", "bbox": "389 260 402 280"}, {"confidence": "0.6208", "file_id": "37", "bbox": "14 16 51 69"}, {"confidence": "0.6208", "file_id": "180", "bbox": "14 16 51 69"}, {"confidence": "0.6054", "file_id": "37", "bbox": "38 16 74 67"}, {"confidence": "0.6054", "file_id": "180", "bbox": "38 16 74 67"}, {"confidence": "0.5840", "file_id": "192", "bbox": "362 243 371 261"}, {"confidence": "0.5769", "file_id": "192", "bbox": "355 241 364 260"}, {"confidence": "0.5744", "file_id": "102", "bbox": "236 177 252 200"}, {"confidence": "0.5694", "file_id": "37", "bbox": "221 28 243 85"}, {"confidence": "0.5694", "file_id": "180", "bbox": "221 28 243 85"}, {"confidence": "0.5601", "file_id": "183", "bbox": "0 75 143 545"}, {"confidence": "0.5586", "file_id": "37", "bbox": "258 71 306 164"}, {"confidence": "0.5586", "file_id": "180", "bbox": "258 71 306 164"}, {"confidence": "0.5582", "file_id": "104", "bbox": "100 192 110 205"}, {"confidence": "0.5545", "file_id": "37", "bbox": "152 16 183 64"}, {"confidence": "0.5545", "file_id": "180", "bbox": "152 16 183 64"}, {"confidence": "0.5515", "file_id": "132", "bbox": "202 281 220 334"}, {"confidence": "0.5414", "file_id": "1", "bbox": "229 105 245 132"}, {"confidence": "0.5414", "file_id": "172", "bbox": "229 105 245 132"}, {"confidence": "0.4943", "file_id": "208", "bbox": "46 164 54 175"}, {"confidence": "0.4848", "file_id": "37", "bbox": "97 13 123 62"}, {"confidence": "0.4848", "file_id": "180", "bbox": "97 13 123 62"}, {"confidence": "0.4751", "file_id": "168", "bbox": "714 245 796 361"}, {"confidence": "0.4618", "file_id": "254", "bbox": "53 227 68 248"}, {"confidence": "0.4566", "file_id": "164", "bbox": "263 258 276 279"}, {"confidence": "0.4560", "file_id": "192", "bbox": "428 252 450 282"}, {"confidence": "0.4214", "file_id": "102", "bbox": "254 159 265 176"}, {"confidence": "0.4154", "file_id": "44", "bbox": "50 207 66 244"}, {"confidence": "0.4144", "file_id": "164", "bbox": "193 260 206 280"}, {"confidence": "0.4093", "file_id": "164", "bbox": "396 260 408 278"}, {"confidence": "0.3927", "file_id": "192", "bbox": "185 259 197 284"}, {"confidence": "0.3825", "file_id": "106", "bbox": "12 22 51 94"}, {"confidence": "0.3738", "file_id": "192", "bbox": "202 253 211 272"}, {"confidence": "0.3358", "file_id": "70", "bbox": "8 270 34 313"}, {"confidence": "0.3331", "file_id": "102", "bbox": "195 205 222 246"}, {"confidence": "0.3305", "file_id": "164", "bbox": "182 260 195 281"}, {"confidence": "0.3233", "file_id": "164", "bbox": "241 259 254 280"}, {"confidence": "0.3232", "file_id": "192", "bbox": "283 247 292 263"}, {"confidence": "0.3207", "file_id": "132", "bbox": "211 288 226 331"}, {"confidence": "0.3098", "file_id": "164", "bbox": "204 260 216 279"}, {"confidence": "0.3034", "file_id": "164", "bbox": "251 258 265 280"}] \ No newline at end of file diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/results.txt b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/results.txt new file mode 100644 index 0000000000000000000000000000000000000000..f9ecc226a1300ccf38d9f01a65304880809a09e2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mAP/results.txt @@ -0,0 +1,8 @@ +# AP and precision/recall per class +99.334% = cone AP + Precision: ['0.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '1.000', '0.999', '0.999', '0.999', '0.999', '0.999', '0.999', '0.999', '0.999', '0.999', '0.999', '0.999', '0.997', '0.997', '0.997', '0.996', '0.996', '0.995', '0.995', '0.993', '0.993', '0.993', '0.992', '0.992', '0.992', '0.991', '0.991', '0.991', '0.990', '0.988', '0.987', '0.987', '0.986', '0.986', '0.985', '0.983', '0.982', '0.982', '0.981', '0.981', '0.980', '0.980', '0.978', '0.977', '0.976', '0.975', '0.974', '0.972', '0.971', '0.970', '0.969', '0.969', '0.968', '0.966', '0.000'] + Recall :['0.000', '0.001', '0.003', '0.004', '0.005', '0.006', '0.008', '0.009', '0.010', '0.012', '0.013', '0.014', '0.015', '0.017', '0.018', '0.019', '0.021', '0.022', '0.023', '0.024', '0.026', '0.027', '0.028', '0.030', '0.031', '0.032', '0.033', '0.035', '0.036', '0.037', '0.039', '0.040', '0.041', '0.042', '0.044', '0.045', '0.046', '0.047', '0.049', '0.050', '0.051', '0.053', '0.054', '0.055', '0.056', '0.058', '0.059', '0.060', '0.062', '0.063', '0.064', '0.065', '0.067', '0.068', '0.069', '0.071', '0.072', '0.073', '0.074', '0.076', '0.077', '0.078', '0.080', '0.081', '0.082', '0.083', '0.085', '0.086', '0.087', '0.089', '0.090', '0.091', '0.092', '0.094', '0.095', '0.096', '0.098', '0.099', '0.100', '0.101', '0.103', '0.104', '0.105', '0.107', '0.108', '0.109', '0.110', '0.112', '0.113', '0.114', '0.116', '0.117', '0.118', '0.119', '0.121', '0.122', '0.123', '0.125', '0.126', '0.127', '0.128', '0.130', '0.131', '0.132', '0.134', '0.135', '0.136', '0.137', '0.139', '0.140', '0.141', '0.142', '0.144', '0.145', '0.146', '0.148', '0.149', '0.150', '0.151', '0.153', '0.154', '0.155', '0.157', '0.158', '0.159', '0.160', '0.162', '0.163', '0.164', '0.166', '0.167', '0.168', '0.169', '0.171', '0.172', '0.173', '0.175', '0.176', '0.177', '0.178', '0.180', '0.181', '0.182', '0.184', '0.185', '0.186', '0.187', '0.189', '0.190', '0.191', '0.193', '0.194', '0.195', '0.196', '0.198', '0.199', '0.200', '0.202', '0.203', '0.204', '0.205', '0.207', '0.208', '0.209', '0.211', '0.212', '0.213', '0.214', '0.216', '0.217', '0.218', '0.220', '0.221', '0.222', '0.223', '0.225', '0.226', '0.227', '0.228', '0.230', '0.231', '0.232', '0.234', '0.235', '0.236', '0.237', '0.239', '0.240', '0.241', '0.243', '0.244', '0.245', '0.246', '0.248', '0.249', '0.250', '0.252', '0.253', '0.254', '0.255', '0.257', '0.258', '0.259', '0.261', '0.262', '0.263', '0.264', '0.266', '0.267', '0.268', '0.270', '0.271', '0.272', '0.273', '0.275', '0.276', '0.277', '0.279', '0.280', '0.281', '0.282', '0.284', '0.285', '0.286', '0.288', '0.289', '0.290', '0.291', '0.293', '0.294', '0.295', '0.297', '0.298', '0.299', '0.300', '0.302', '0.303', '0.304', '0.306', '0.307', '0.308', '0.309', '0.311', '0.312', '0.313', '0.315', '0.316', '0.317', '0.318', '0.320', '0.321', '0.322', '0.323', '0.325', '0.326', '0.327', '0.329', '0.330', '0.331', '0.332', '0.334', '0.335', '0.336', '0.338', '0.339', '0.340', '0.341', '0.343', '0.344', '0.345', '0.347', '0.348', '0.349', '0.350', '0.352', '0.353', '0.354', '0.356', '0.357', '0.358', '0.359', '0.361', '0.362', '0.363', '0.365', '0.366', '0.367', '0.368', '0.370', '0.371', '0.372', '0.374', '0.375', '0.376', '0.377', '0.379', '0.380', '0.381', '0.383', '0.384', '0.385', '0.386', '0.388', '0.389', '0.390', '0.392', '0.393', '0.394', '0.395', '0.397', '0.398', '0.399', '0.401', '0.402', '0.403', '0.404', '0.406', '0.407', '0.408', '0.409', '0.411', '0.412', '0.413', '0.415', '0.416', '0.417', '0.418', '0.420', '0.421', '0.422', '0.424', '0.425', '0.426', '0.427', '0.429', '0.430', '0.431', '0.433', '0.434', '0.435', '0.436', '0.438', '0.439', '0.440', '0.442', '0.443', '0.444', '0.445', '0.447', '0.448', '0.449', '0.451', '0.452', '0.453', '0.454', '0.456', '0.457', '0.458', '0.460', '0.461', '0.462', '0.463', '0.465', '0.466', '0.467', '0.469', '0.470', '0.471', '0.472', '0.474', '0.475', '0.476', '0.478', '0.479', '0.480', '0.481', '0.483', '0.484', '0.485', '0.487', '0.488', '0.489', '0.490', '0.492', '0.493', '0.494', '0.496', '0.497', '0.498', '0.499', '0.501', '0.502', '0.503', '0.504', '0.506', '0.507', '0.508', '0.510', '0.511', '0.512', '0.513', '0.515', '0.516', '0.517', '0.519', '0.520', '0.521', '0.522', '0.524', '0.525', '0.526', '0.528', '0.529', '0.530', '0.531', '0.533', '0.534', '0.535', '0.537', '0.538', '0.539', '0.540', '0.542', '0.543', '0.544', '0.546', '0.547', '0.548', '0.549', '0.551', '0.552', '0.553', '0.555', '0.556', '0.557', '0.558', '0.560', '0.561', '0.562', '0.564', '0.565', '0.566', '0.567', '0.569', '0.570', '0.571', '0.573', '0.574', '0.575', '0.576', '0.578', '0.579', '0.580', '0.582', '0.583', '0.584', '0.585', '0.587', '0.588', '0.589', '0.591', '0.592', '0.593', '0.594', '0.596', '0.597', '0.598', '0.599', '0.601', '0.602', '0.603', '0.605', '0.606', '0.607', '0.608', '0.610', '0.611', '0.612', '0.614', '0.615', '0.616', '0.617', '0.619', '0.620', '0.621', '0.623', '0.624', '0.625', '0.626', '0.628', '0.629', '0.630', '0.632', '0.633', '0.634', '0.635', '0.637', '0.638', '0.639', '0.641', '0.642', '0.643', '0.644', '0.646', '0.647', '0.648', '0.650', '0.651', '0.652', '0.653', '0.655', '0.656', '0.657', '0.659', '0.660', '0.661', '0.662', '0.664', '0.665', '0.666', '0.668', '0.669', '0.670', '0.671', '0.673', '0.674', '0.675', '0.677', '0.678', '0.679', '0.680', '0.682', '0.683', '0.684', '0.685', '0.687', '0.688', '0.689', '0.691', '0.692', '0.693', '0.694', '0.696', '0.697', '0.698', '0.700', '0.701', '0.702', '0.703', '0.705', '0.706', '0.707', '0.709', '0.710', '0.711', '0.712', '0.714', '0.715', '0.716', '0.718', '0.719', '0.720', '0.721', '0.723', '0.724', '0.725', '0.727', '0.728', '0.729', '0.730', '0.732', '0.733', '0.734', '0.736', '0.737', '0.738', '0.739', '0.741', '0.742', '0.743', '0.745', '0.746', '0.747', '0.748', '0.750', '0.751', '0.752', '0.754', '0.755', '0.756', '0.757', '0.759', '0.760', '0.761', '0.763', '0.764', '0.765', '0.766', '0.768', '0.769', '0.770', '0.772', '0.773', '0.774', '0.775', '0.777', '0.778', '0.779', '0.780', '0.782', '0.783', '0.784', '0.786', '0.787', '0.788', '0.789', '0.791', '0.792', '0.793', '0.795', '0.796', '0.797', '0.798', '0.800', '0.801', '0.802', '0.804', '0.805', '0.806', '0.807', '0.809', '0.810', '0.811', '0.813', '0.814', '0.815', '0.816', '0.818', '0.819', '0.820', '0.822', '0.823', '0.824', '0.825', '0.827', '0.828', '0.829', '0.831', '0.832', '0.833', '0.834', '0.836', '0.837', '0.838', '0.840', '0.841', '0.842', '0.843', '0.845', '0.846', '0.847', '0.849', '0.850', '0.851', '0.852', '0.854', '0.855', '0.856', '0.858', '0.859', '0.860', '0.861', '0.863', '0.864', '0.865', '0.866', '0.868', '0.869', '0.870', '0.872', '0.873', '0.874', '0.875', '0.877', '0.878', '0.879', '0.881', '0.882', '0.883', '0.884', '0.886', '0.887', '0.888', '0.890', '0.891', '0.892', '0.893', '0.895', '0.896', '0.897', '0.899', '0.900', '0.901', '0.902', '0.904', '0.905', '0.906', '0.908', '0.909', '0.910', '0.911', '0.913', '0.914', '0.915', '0.917', '0.918', '0.919', '0.920', '0.922', '0.923', '0.924', '0.926', '0.927', '0.928', '0.929', '0.931', '0.932', '0.933', '0.935', '0.936', '0.937', '0.938', '0.940', '0.941', '0.942', '0.944', '0.945', '0.946', '0.947', '0.949', '0.950', '0.951', '0.953', '0.954', '0.955', '0.956', '0.958', '0.959', '0.960', '0.960', '0.961', '0.963', '0.964', '0.965', '0.967', '0.968', '0.969', '0.970', '0.972', '0.973', '0.973', '0.974', '0.976', '0.976', '0.977', '0.977', '0.978', '0.978', '0.979', '0.981', '0.981', '0.982', '0.983', '0.983', '0.985', '0.986', '0.986', '0.986', '0.986', '0.987', '0.987', '0.988', '0.988', '0.988', '0.988', '0.990', '0.990', '0.991', '0.991', '0.992', '0.992', '0.992', '0.992', '0.992', '0.992', '0.992', '0.992', '0.992', '0.992', '0.994', '0.994', '0.994', '1.000'] + + +# mAP of all classes +mAP = 99.334%, 12.29 FPS diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/make_data.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/make_data.py new file mode 100644 index 0000000000000000000000000000000000000000..3f5044d5f86b632bedb676144737b450a274ad87 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/make_data.py @@ -0,0 +1,138 @@ +#================================================================ +# +# File name : make_data.py +# Author : PyLessons +# Created date: 2020-04-20 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : create mnist example dataset to train custom yolov3 +# +#================================================================ +import os +os.environ['CUDA_VISIBLE_DEVICES'] = '-1' +import cv2 +import numpy as np +import shutil +import random +from zipfile import ZipFile + +SIZE = 416 +images_num_train = 1000 +images_num_test = 200 + +image_sizes = [3, 6, 3] # small, medium, big + +# this helps to run script both from terminal and python IDLE +add_path = "mnist" +if os.getcwd().split(os.sep)[-1] != "mnist": + add_path = "mnist" + os.chdir(add_path) +else: + add_path = "" + +def compute_iou(box1, box2): + # xmin, ymin, xmax, ymax + A1 = (box1[2] - box1[0])*(box1[3] - box1[1]) + A2 = (box2[2] - box2[0])*(box2[3] - box2[1]) + + xmin = max(box1[0], box2[0]) + ymin = max(box1[1], box2[1]) + xmax = min(box1[2], box2[2]) + ymax = min(box1[3], box2[3]) + + if ymin >= ymax or xmin >= xmax: return 0 + return ((xmax-xmin) * (ymax - ymin)) / (A1 + A2) + + +def make_image(data, image_path, ratio=1): + blank = data[0] + boxes = data[1] + label = data[2] + + ID = image_path.split("/")[-1][0] + image = cv2.imread(image_path) + image = cv2.resize(image, (int(28*ratio), int(28*ratio))) + h, w, c = image.shape + + while True: + xmin = np.random.randint(0, SIZE-w, 1)[0] + ymin = np.random.randint(0, SIZE-h, 1)[0] + xmax = xmin + w + ymax = ymin + h + box = [xmin, ymin, xmax, ymax] + + iou = [compute_iou(box, b) for b in boxes] + if max(iou) < 0.02: + boxes.append(box) + label.append(ID) + break + + for i in range(w): + for j in range(h): + x = xmin + i + y = ymin + j + blank[y][x] = image[j][i] + + # cv2.rectangle(blank, (xmin, ymin), (xmax, ymax), [0, 0, 255], 2) + return blank + + +for file in ["train", "test"]: + if not os.path.exists(f"mnist/{file}"): + with ZipFile(f"mnist/{file}.zip", 'r') as zip: + # extracting all the files + print(f'Extracting all {file} files now...') + zip.extractall() + shutil.move(file, "mnist") + print('Done!') + +for file in ['train','test']: + images_path = os.getcwd()+f"/mnist_{file}" + labels_txt = os.getcwd()+f"/mnist_{file}.txt" + + if file == 'train': images_num = images_num_train + if file == 'test': images_num = images_num_test + + if os.path.exists(images_path): shutil.rmtree(images_path) + os.mkdir(images_path) + + image_paths = [os.path.join(os.path.realpath("."), os.getcwd()+f"/mnist/{file}/" + image_name) + for image_name in os.listdir(os.getcwd()+f"/mnist/{file}")] + + with open(labels_txt, "w") as wf: + image_num = 0 + while image_num < images_num: + image_path = os.path.realpath(os.path.join(images_path, "%06d.jpg" %(image_num+1))) + #print(image_path) + annotation = image_path + blanks = np.ones(shape=[SIZE, SIZE, 3]) * 255 + bboxes = [[0,0,1,1]] + labels = [0] + data = [blanks, bboxes, labels] + bboxes_num = 0 + + # ratios small, medium, big objects + ratios = [[0.5, 0.8], [1., 1.5, 2.], [3., 4.]] + for i in range(len(ratios)): + N = random.randint(0, image_sizes[i]) + if N !=0: bboxes_num += 1 + for _ in range(N): + ratio = random.choice(ratios[i]) + idx = random.randint(0, len(image_paths)-1) + data[0] = make_image(data, image_paths[idx], ratio) + + if bboxes_num == 0: continue + cv2.imwrite(image_path, data[0]) + for i in range(len(labels)): + if i == 0: continue + xmin = str(bboxes[i][0]) + ymin = str(bboxes[i][1]) + xmax = str(bboxes[i][2]) + ymax = str(bboxes[i][3]) + class_ind = str(labels[i]) + annotation += ' ' + ','.join([xmin, ymin, xmax, ymax, str(class_ind)]) + image_num += 1 + print("=> %s" %annotation) + wf.write(annotation + "\n") + +if add_path != "": os.chdir("..") diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/mnist.names b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/mnist.names new file mode 100644 index 0000000000000000000000000000000000000000..8b1acc12b635c26f3decadeaa251729d3ce512e9 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/mnist.names @@ -0,0 +1,10 @@ +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/mnist/test.zip b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/mnist/test.zip new file mode 100644 index 0000000000000000000000000000000000000000..94850dc2313a83f2d7c756181070c7e7a8573c15 Binary files /dev/null and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/mnist/test.zip differ diff --git a/PAR 152/Yolo Tensorflow/model_data/coco/train2017.txt b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/mnist/train.zip similarity index 67% rename from PAR 152/Yolo Tensorflow/model_data/coco/train2017.txt rename to PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/mnist/train.zip index b3756b01731277d4b7131bbeb17ea18511c84578..ce8b46a83514818d80bba47380e79f92a7d05c99 100644 Binary files a/PAR 152/Yolo Tensorflow/model_data/coco/train2017.txt and b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/mnist/train.zip differ diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/show_image.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/show_image.py new file mode 100644 index 0000000000000000000000000000000000000000..7327d470d8aafa0f1a8a225ef0a48bbf981a0c03 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/mnist/show_image.py @@ -0,0 +1,30 @@ +#================================================================ +# +# File name : show_image.py +# Author : PyLessons +# Created date: 2020-04-20 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : show random image from created dataset +# +#================================================================ +import random +import cv2 +import numpy as np +from PIL import Image + +ID = random.randint(0, 200) +label_txt = "./mnist_train.txt" +image_info = open(label_txt).readlines()[ID].split() + +image_path = image_info[0] +image = cv2.imread(image_path) +for bbox in image_info[1:]: + bbox = bbox.split(",") + image = cv2.rectangle(image,(int(float(bbox[0])), + int(float(bbox[1]))), + (int(float(bbox[2])), + int(float(bbox[3]))), (255,0,0), 2) + +image = Image.fromarray(np.uint8(image)) +image.show() diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/object_tracker.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/object_tracker.py new file mode 100644 index 0000000000000000000000000000000000000000..c23388ad1e1ecebc34e26bb3564080d9eac0b422 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/object_tracker.py @@ -0,0 +1,151 @@ +#================================================================ +# +# File name : object_tracker.py +# Author : PyLessons +# Created date: 2020-09-17 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : code to track detected object from video or webcam +# +#================================================================ +import os +os.environ['CUDA_VISIBLE_DEVICES'] = '0' +import cv2 +import numpy as np +import tensorflow as tf +from yolov3.utils import Load_Yolo_model, image_preprocess, postprocess_boxes, nms, draw_bbox, read_class_names +from yolov3.configs import * +import time + +from deep_sort import nn_matching +from deep_sort.detection import Detection +from deep_sort.tracker import Tracker +from deep_sort import generate_detections as gdet + +video_path = "./IMAGES/test.mp4" + +def Object_tracking(Yolo, video_path, output_path, input_size=416, show=False, CLASSES=YOLO_COCO_CLASSES, score_threshold=0.3, iou_threshold=0.45, rectangle_colors='', Track_only = []): + # Definition of the parameters + max_cosine_distance = 0.7 + nn_budget = None + + #initialize deep sort object + model_filename = 'model_data/mars-small128.pb' + encoder = gdet.create_box_encoder(model_filename, batch_size=1) + metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) + tracker = Tracker(metric) + + times, times_2 = [], [] + + if video_path: + vid = cv2.VideoCapture(video_path) # detect on video + else: + vid = cv2.VideoCapture(0) # detect from webcam + + # by default VideoCapture returns float instead of int + width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) + height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) + fps = int(vid.get(cv2.CAP_PROP_FPS)) + codec = cv2.VideoWriter_fourcc(*'XVID') + out = cv2.VideoWriter(output_path, codec, fps, (width, height)) # output_path must be .mp4 + + NUM_CLASS = read_class_names(CLASSES) + key_list = list(NUM_CLASS.keys()) + val_list = list(NUM_CLASS.values()) + while True: + _, frame = vid.read() + + try: + original_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) + original_frame = cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB) + except: + break + + image_data = image_preprocess(np.copy(original_frame), [input_size, input_size]) + #image_data = tf.expand_dims(image_data, 0) + image_data = image_data[np.newaxis, ...].astype(np.float32) + + t1 = time.time() + if YOLO_FRAMEWORK == "tf": + pred_bbox = Yolo.predict(image_data) + elif YOLO_FRAMEWORK == "trt": + batched_input = tf.constant(image_data) + result = Yolo(batched_input) + pred_bbox = [] + for key, value in result.items(): + value = value.numpy() + pred_bbox.append(value) + + #t1 = time.time() + #pred_bbox = Yolo.predict(image_data) + t2 = time.time() + + pred_bbox = [tf.reshape(x, (-1, tf.shape(x)[-1])) for x in pred_bbox] + pred_bbox = tf.concat(pred_bbox, axis=0) + + bboxes = postprocess_boxes(pred_bbox, original_frame, input_size, score_threshold) + bboxes = nms(bboxes, iou_threshold, method='nms') + + # extract bboxes to boxes (x, y, width, height), scores and names + boxes, scores, names = [], [], [] + for bbox in bboxes: + if len(Track_only) !=0 and NUM_CLASS[int(bbox[5])] in Track_only or len(Track_only) == 0: + boxes.append([bbox[0].astype(int), bbox[1].astype(int), bbox[2].astype(int)-bbox[0].astype(int), bbox[3].astype(int)-bbox[1].astype(int)]) + scores.append(bbox[4]) + names.append(NUM_CLASS[int(bbox[5])]) + + # Obtain all the detections for the given frame. + boxes = np.array(boxes) + names = np.array(names) + scores = np.array(scores) + features = np.array(encoder(original_frame, boxes)) + detections = [Detection(bbox, score, class_name, feature) for bbox, score, class_name, feature in zip(boxes, scores, names, features)] + + # Pass detections to the deepsort object and obtain the track information. + tracker.predict() + tracker.update(detections) + + # Obtain info from the tracks + tracked_bboxes = [] + for track in tracker.tracks: + if not track.is_confirmed() or track.time_since_update > 5: + continue + bbox = track.to_tlbr() # Get the corrected/predicted bounding box + class_name = track.get_class() #Get the class name of particular object + tracking_id = track.track_id # Get the ID for the particular track + index = key_list[val_list.index(class_name)] # Get predicted object index by object name + tracked_bboxes.append(bbox.tolist() + [tracking_id, index]) # Structure data, that we could use it with our draw_bbox function + + # draw detection on frame + image = draw_bbox(original_frame, tracked_bboxes, CLASSES=CLASSES, tracking=True) + + t3 = time.time() + times.append(t2-t1) + times_2.append(t3-t1) + + times = times[-20:] + times_2 = times_2[-20:] + + ms = sum(times)/len(times)*1000 + fps = 1000 / ms + fps2 = 1000 / (sum(times_2)/len(times_2)*1000) + + image = cv2.putText(image, "Time: {:.1f} FPS".format(fps), (0, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2) + + # draw original yolo detection + #image = draw_bbox(image, bboxes, CLASSES=CLASSES, show_label=False, rectangle_colors=rectangle_colors, tracking=True) + + print("Time: {:.2f}ms, Detection FPS: {:.1f}, total FPS: {:.1f}".format(ms, fps, fps2)) + if output_path != '': out.write(image) + if show: + cv2.imshow('output', image) + + if cv2.waitKey(25) & 0xFF == ord("q"): + cv2.destroyAllWindows() + break + + cv2.destroyAllWindows() + + +yolo = Load_Yolo_model() +Object_tracking(yolo, video_path, "detection.mp4", input_size=YOLO_INPUT_SIZE, show=True, iou_threshold=0.1, rectangle_colors=(255,0,0), Track_only = ["person"]) diff --git a/PAR 152/Yolo Tensorflow/requirements.txt b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/requirements.txt similarity index 58% rename from PAR 152/Yolo Tensorflow/requirements.txt rename to PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/requirements.txt index 3fbb849f24cab0a1f6e3d002ba71c83626d6effd..96aa428d2e4cca5331b1f4ce23fdf4014174ae7e 100644 --- a/PAR 152/Yolo Tensorflow/requirements.txt +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/requirements.txt @@ -2,9 +2,8 @@ numpy>=1.18.2 scipy>=1.4.1 wget>=3.2 seaborn>=0.10.0 -tensorflow==2.3.1 -tensorflow-gpu==2.3.1 -opencv-python==4.1.2.30 +tensorflow +opencv-python==4.4.0.46 tqdm==4.43.0 pandas awscli diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/Convert_to_TRT.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/Convert_to_TRT.py new file mode 100644 index 0000000000000000000000000000000000000000..46eb988be1c498592d7fb81f0dedde7b746400e9 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/Convert_to_TRT.py @@ -0,0 +1,48 @@ +#================================================================ +# +# File name : Convert_to_TRT.py +# Author : PyLessons +# Created date: 2020-08-17 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : convert TF frozen graph to TensorRT model +# +#================================================================ +import os +os.environ['CUDA_VISIBLE_DEVICES'] = '0' +import sys + +foldername = os.path.basename(os.getcwd()) +if foldername == "tools": + os.chdir("..") +sys.path.insert(1, os.getcwd()) + +import tensorflow as tf +import numpy as np +physical_devices = tf.config.experimental.list_physical_devices('GPU') +if len(physical_devices) > 0: + tf.config.experimental.set_memory_growth(physical_devices[0], True) +from yolov3.configs import * +from tensorflow.python.compiler.tensorrt import trt_convert as trt + +def calibration_input(): + for i in range(100): + batched_input = np.random.random((1, YOLO_INPUT_SIZE, YOLO_INPUT_SIZE, 3)).astype(np.float32) + batched_input = tf.constant(batched_input) + yield (batched_input,) + +conversion_params = trt.DEFAULT_TRT_CONVERSION_PARAMS +conversion_params = conversion_params._replace(max_workspace_size_bytes=4000000000) +conversion_params = conversion_params._replace(precision_mode=YOLO_TRT_QUANTIZE_MODE) +conversion_params = conversion_params._replace(max_batch_size=1) +if YOLO_TRT_QUANTIZE_MODE == 'INT8': + conversion_params = conversion_params._replace(use_calibration=True) + +converter = trt.TrtGraphConverterV2(input_saved_model_dir=f'./checkpoints/{YOLO_TYPE}-{YOLO_INPUT_SIZE}', conversion_params=conversion_params) +if YOLO_TRT_QUANTIZE_MODE == 'INT8': + converter.convert(calibration_input_fn=calibration_input) +else: + converter.convert() + +converter.save(output_saved_model_dir=f'./checkpoints/{YOLO_TYPE}-trt-{YOLO_TRT_QUANTIZE_MODE}-{YOLO_INPUT_SIZE}') +print(f'Done Converting to TensorRT, model saved to: /checkpoints/{YOLO_TYPE}-trt-{YOLO_TRT_QUANTIZE_MODE}-{YOLO_INPUT_SIZE}') diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/Convert_to_pb.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/Convert_to_pb.py new file mode 100644 index 0000000000000000000000000000000000000000..1ce98bcf4ac211dff43dd41a5b52cfabad9e408c --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/Convert_to_pb.py @@ -0,0 +1,40 @@ +#================================================================ +# +# File name : Convert_to_pb.py +# Author : PyLessons +# Created date: 2020-08-17 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : used to freeze tf model to .pb model +# +#================================================================ +import os +os.environ['CUDA_VISIBLE_DEVICES'] = '0' +import sys + +foldername = os.path.basename(os.getcwd()) +if foldername == "tools": + os.chdir("..") +sys.path.insert(1, os.getcwd()) + +import tensorflow as tf +from yolov3.yolov4 import Create_Yolo +from yolov3.utils import load_yolo_weights +from yolov3.configs import * + +if YOLO_TYPE == "yolov4": + Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS +if YOLO_TYPE == "yolov3": + Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS + +if YOLO_CUSTOM_WEIGHTS == False: + yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=YOLO_COCO_CLASSES) + load_yolo_weights(yolo, Darknet_weights) # use Darknet weights +else: + yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) + yolo.load_weights(YOLO_CUSTOM_WEIGHTS) # use custom weights + +yolo.summary() +yolo.save(f'./checkpoints/{YOLO_TYPE}-{YOLO_INPUT_SIZE}') + +print(f"model saves to /checkpoints/{YOLO_TYPE}-{YOLO_INPUT_SIZE}") diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/Detection_to_XML.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/Detection_to_XML.py new file mode 100644 index 0000000000000000000000000000000000000000..5cfcf6dfa29a9f90ae46aaebfcee98a3d2f9d362 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/Detection_to_XML.py @@ -0,0 +1,125 @@ +#================================================================ +# +# File name : Detection_to_XML.py +# Author : PyLessons +# Created date: 2020-09-27 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : converts YOLO detection to XML file +# +#=============================================================== +from textwrap import dedent +from lxml import etree +import glob +import os +import cv2 +import time + +def CreateXMLfile(path, file_name, image, bboxes, NUM_CLASS): + boxes = [] + for bbox in bboxes: + boxes.append([bbox[0].astype(int), bbox[1].astype(int), bbox[2].astype(int), bbox[3].astype(int), NUM_CLASS[int(bbox[5])]])#, bbox[4], NUM_CLASS[int(bbox[5])]]) + + if not os.path.exists(path): + os.makedirs(path) + os.chdir(path) + + img_name = "XML_"+file_name+".png" + + cv2.imwrite(img_name,image) + + annotation = etree.Element("annotation") + + folder = etree.Element("folder") + folder.text = os.path.basename(os.getcwd()) + annotation.append(folder) + + filename_xml = etree.Element("filename") + filename_str = img_name.split(".")[0] + filename_xml.text = img_name + annotation.append(filename_xml) + + path = etree.Element("path") + path.text = os.path.join(os.getcwd(), filename_str + ".jpg") + annotation.append(path) + + source = etree.Element("source") + annotation.append(source) + + database = etree.Element("database") + database.text = "Unknown" + source.append(database) + + size = etree.Element("size") + annotation.append(size) + + width = etree.Element("width") + height = etree.Element("height") + depth = etree.Element("depth") + + img = cv2.imread(filename_xml.text) + + width.text = str(img.shape[1]) + height.text = str(img.shape[0]) + depth.text = str(img.shape[2]) + + size.append(width) + size.append(height) + size.append(depth) + + segmented = etree.Element("segmented") + segmented.text = "0" + annotation.append(segmented) + + for Object in boxes: + class_name = Object[4] + xmin_l = str(int(float(Object[0]))) + ymin_l = str(int(float(Object[1]))) + xmax_l = str(int(float(Object[2]))) + ymax_l = str(int(float(Object[3]))) + + obj = etree.Element("object") + annotation.append(obj) + + name = etree.Element("name") + name.text = class_name + obj.append(name) + + pose = etree.Element("pose") + pose.text = "Unspecified" + obj.append(pose) + + truncated = etree.Element("truncated") + truncated.text = "0" + obj.append(truncated) + + difficult = etree.Element("difficult") + difficult.text = "0" + obj.append(difficult) + + bndbox = etree.Element("bndbox") + obj.append(bndbox) + + xmin = etree.Element("xmin") + xmin.text = xmin_l + bndbox.append(xmin) + + ymin = etree.Element("ymin") + ymin.text = ymin_l + bndbox.append(ymin) + + xmax = etree.Element("xmax") + xmax.text = xmax_l + bndbox.append(xmax) + + ymax = etree.Element("ymax") + ymax.text = ymax_l + bndbox.append(ymax) + + # write xml to file + s = etree.tostring(annotation, pretty_print=True) + with open(filename_str + ".xml", 'wb') as f: + f.write(s) + f.close() + + os.chdir("..") diff --git a/PAR 152/Yolo Tensorflow/tools/XML_to_YOLOv3.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/XML_to_YOLOv3.py similarity index 77% rename from PAR 152/Yolo Tensorflow/tools/XML_to_YOLOv3.py rename to PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/XML_to_YOLOv3.py index d5665d350f469c8454f06e340efd954697e31585..7f9d78aacb4d4669c1a4e188a1a54b0f4fa21112 100644 --- a/PAR 152/Yolo Tensorflow/tools/XML_to_YOLOv3.py +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/XML_to_YOLOv3.py @@ -1,3 +1,13 @@ +#================================================================ +# +# File name : XML_to_YOLOv3.py +# Author : PyLessons +# Created date: 2020-06-04 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : used to convert XML labels to YOLOv3 training labels +# +#================================================================ import xml.etree.ElementTree as ET import os import glob @@ -7,9 +17,9 @@ if foldername == "tools": os.chdir("..") data_dir = '/custom_dataset/' -Dataset_names_path = "model_data/custom_data_names.txt" -Dataset_train = "model_data/custom_data_train.txt" -Dataset_test = "model_data/custom_data_test.txt" +Dataset_names_path = "model_data/cone.txt" +Dataset_train = "model_data/cone_train.txt" +Dataset_test = "model_data/cone_test.txt" is_subfolder = False Dataset_names = [] diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/oid_to_pascal_voc_xml.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/oid_to_pascal_voc_xml.py new file mode 100644 index 0000000000000000000000000000000000000000..3accbfcd237a6ca415c3635421d1722765cb04f2 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/tools/oid_to_pascal_voc_xml.py @@ -0,0 +1,175 @@ +#================================================================ +# +# File name : oid_to_pascal_vos_xml.py +# Author : PyLessons +# Created date: 2020-06-04 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : used to convert oid labels to pascal vos xml +# +#================================================================ +import os +from tqdm import tqdm +from sys import exit +import argparse +import cv2 +from textwrap import dedent +from lxml import etree + +foldername = os.path.basename(os.getcwd()) +if foldername == "tools": os.chdir("..") + +Dataset_path = "OIDv4_ToolKit/OID/Dataset" + +def convert_to_xml(): + current_path = os.getcwd() + os.chdir(Dataset_path) + DIRS = os.listdir(os.getcwd()) + + for DIR in DIRS: + if os.path.isdir(DIR): + os.chdir(DIR) + + print("Currently in Subdirectory:", DIR) + CLASS_DIRS = os.listdir(os.getcwd()) + for CLASS_DIR in CLASS_DIRS: + if " " in CLASS_DIR: + os.rename(CLASS_DIR, CLASS_DIR.replace(" ", "_")) + + CLASS_DIRS = os.listdir(os.getcwd()) + for CLASS_DIR in CLASS_DIRS: + if os.path.isdir(CLASS_DIR): + os.chdir(CLASS_DIR) + + print("\n" + "Creating PASCAL VOC XML Files for Class:", CLASS_DIR) + # Create Directory for annotations if it does not exist yet + + #Read Labels from OIDv4 ToolKit + os.chdir("Label") + + #Create PASCAL XML + for filename in tqdm(os.listdir(os.getcwd())): + if filename.endswith(".txt"): + filename_str = str.split(filename, ".")[0] + + + annotation = etree.Element("annotation") + + os.chdir("..") + folder = etree.Element("folder") + folder.text = os.path.basename(os.getcwd()) + annotation.append(folder) + + filename_xml = etree.Element("filename") + filename_xml.text = filename_str + ".jpg" + annotation.append(filename_xml) + + path = etree.Element("path") + path.text = os.path.join(os.path.dirname(os.path.abspath(filename)), filename_str + ".jpg") + annotation.append(path) + + source = etree.Element("source") + annotation.append(source) + + database = etree.Element("database") + database.text = "Unknown" + source.append(database) + + size = etree.Element("size") + annotation.append(size) + + width = etree.Element("width") + height = etree.Element("height") + depth = etree.Element("depth") + + img = cv2.imread(filename_xml.text) + + try: + width.text = str(img.shape[1]) + except AttributeError: + os.chdir("Label") + continue + height.text = str(img.shape[0]) + depth.text = str(img.shape[2]) + + size.append(width) + size.append(height) + size.append(depth) + + segmented = etree.Element("segmented") + segmented.text = "0" + annotation.append(segmented) + + os.chdir("Label") + label_original = open(filename, 'r') + + # Labels from OIDv4 Toolkit: name_of_class X_min Y_min X_max Y_max + for line in label_original: + line = line.strip() + l = line.split(' ') + + class_name_len = len(l) - 4 # 4 coordinates + class_name = l[0] + for i in range(1,class_name_len): + class_name = f"{class_name}_{l[i]}" + + addi = class_name_len + + xmin_l = str(int(round(float(l[0+addi])))) + ymin_l = str(int(round(float(l[1+addi])))) + xmax_l = str(int(round(float(l[2+addi])))) + ymax_l = str(int(round(float(l[3+addi])))) + + obj = etree.Element("object") + annotation.append(obj) + + name = etree.Element("name") + name.text = class_name + obj.append(name) + + pose = etree.Element("pose") + pose.text = "Unspecified" + obj.append(pose) + + truncated = etree.Element("truncated") + truncated.text = "0" + obj.append(truncated) + + difficult = etree.Element("difficult") + difficult.text = "0" + obj.append(difficult) + + bndbox = etree.Element("bndbox") + obj.append(bndbox) + + xmin = etree.Element("xmin") + xmin.text = xmin_l + bndbox.append(xmin) + + ymin = etree.Element("ymin") + ymin.text = ymin_l + bndbox.append(ymin) + + xmax = etree.Element("xmax") + xmax.text = xmax_l + bndbox.append(xmax) + + ymax = etree.Element("ymax") + ymax.text = ymax_l + bndbox.append(ymax) + + os.chdir("..") + # write xml to file + s = etree.tostring(annotation, pretty_print=True) + with open(filename_str + ".xml", 'wb') as f: + f.write(s) + f.close() + + os.chdir("Label") + + os.chdir("..") + os.chdir("..") + + os.chdir("..") + +convert_to_xml() diff --git a/PAR 152/Yolo Tensorflow/train.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/train.py similarity index 87% rename from PAR 152/Yolo Tensorflow/train.py rename to PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/train.py index 24f0f042243e7d688785f4d6c2a2d32070ff15bf..be0198509ad92f62b36e82121e650d35d0d055af 100644 --- a/PAR 152/Yolo Tensorflow/train.py +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/train.py @@ -1,5 +1,16 @@ +#================================================================ +# +# File name : train.py +# Author : PyLessons +# Created date: 2020-08-06 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : used to train custom object detector +# +#================================================================ import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' +os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) import shutil @@ -7,10 +18,13 @@ import numpy as np import tensorflow as tf #from tensorflow.keras.utils import plot_model from yolov3.dataset import Dataset +from yolov3.yolov4 import Create_Yolo, compute_loss from yolov3.utils import load_yolo_weights from yolov3.configs import * from evaluate_mAP import get_mAP +if YOLO_TYPE == "yolov4": + Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS if TRAIN_YOLO_TINY: TRAIN_MODEL_NAME += "_Tiny" @@ -42,7 +56,7 @@ def main(): yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, training=True, CLASSES=TRAIN_CLASSES) if TRAIN_FROM_CHECKPOINT: try: - yolo.load_weights(TRAIN_FROM_CHECKPOINT) + yolo.load_weights(f"./checkpoints/{TRAIN_MODEL_NAME}") except ValueError: print("Shapes are incompatible, transfering Darknet weights") TRAIN_FROM_CHECKPOINT = False @@ -164,8 +178,11 @@ def main(): yolo.save_weights(save_directory) # measure mAP of trained custom model - mAP_model.load_weights(save_directory) # use keras weights - get_mAP(mAP_model, testset, score_threshold=TEST_SCORE_THRESHOLD, iou_threshold=TEST_IOU_THRESHOLD) - + try: + mAP_model.load_weights(save_directory) # use keras weights + get_mAP(mAP_model, testset, score_threshold=TEST_SCORE_THRESHOLD, iou_threshold=TEST_IOU_THRESHOLD) + except UnboundLocalError: + print("You don't have saved model weights to measure mAP, check TRAIN_SAVE_BEST_ONLY and TRAIN_SAVE_CHECKPOINT lines in configs.py") + if __name__ == '__main__': main() diff --git a/PAR 152/Yolo Tensorflow/yolov3/__ init __.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/__ init __.py similarity index 100% rename from PAR 152/Yolo Tensorflow/yolov3/__ init __.py rename to PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/__ init __.py diff --git a/PAR 152/Yolo Tensorflow/yolov3/dataset.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/dataset.py similarity index 76% rename from PAR 152/Yolo Tensorflow/yolov3/dataset.py rename to PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/dataset.py index 5e8c5c3f9c8186594341c44ce07f90bf19158ae9..3666bc61ed587a8c7469bd795955943a99dad0ef 100644 --- a/PAR 152/Yolo Tensorflow/yolov3/dataset.py +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/dataset.py @@ -1,3 +1,14 @@ +#================================================================ +# +# File name : dataset.py +# Author : PyLessons +# Created date: 2020-07-31 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : functions used to prepare dataset for custom training +# +#================================================================ +# TODO: transfer numpy to tensorflow operations import os import cv2 import random @@ -16,6 +27,7 @@ class Dataset(object): self.batch_size = TRAIN_BATCH_SIZE if dataset_type == 'train' else TEST_BATCH_SIZE self.data_aug = TRAIN_DATA_AUG if dataset_type == 'train' else TEST_DATA_AUG + self.train_yolo_tiny = TRAIN_YOLO_TINY self.train_input_sizes = TRAIN_INPUT_SIZE self.strides = np.array(YOLO_STRIDES) self.classes = read_class_names(TRAIN_CLASSES) @@ -33,10 +45,23 @@ class Dataset(object): def load_annotations(self, dataset_type): final_annotations = [] with open(self.annot_path, 'r') as f: - txt = f.readlines() + txt = f.read().splitlines() annotations = [line.strip() for line in txt if len(line.strip().split()[1:]) != 0] np.random.shuffle(annotations) - + + # for annotation in annotations: + # image_extension = '.jpg' + # extension_index = annotation.find(image_extension) + # image_path = annotation[:extension_index+len(image_extension)] + # line = annotation[extension_index+len(image_extension):].split() + # if not os.path.exists(image_path): + # raise KeyError("%s does not exist ... " %image_path) + # if TRAIN_LOAD_IMAGES_TO_RAM: + # image = cv2.imread(image_path) + # else: + # image = '' + # final_annotations.append([image_path, line, image]) + # return final_annotations for annotation in annotations: # fully parse annotations line = annotation.split() @@ -74,7 +99,7 @@ class Dataset(object): if bad_image_name not in i: f.write(i) f.truncate() - + def __next__(self): with tf.device('/cpu:0'): self.train_input_size = random.choice([self.train_input_sizes]) @@ -82,14 +107,16 @@ class Dataset(object): batch_image = np.zeros((self.batch_size, self.train_input_size, self.train_input_size, 3), dtype=np.float32) - batch_label_sbbox = np.zeros((self.batch_size, self.train_output_sizes[0], self.train_output_sizes[0], - self.anchor_per_scale, 5 + self.num_classes), dtype=np.float32) - batch_label_mbbox = np.zeros((self.batch_size, self.train_output_sizes[1], self.train_output_sizes[1], - self.anchor_per_scale, 5 + self.num_classes), dtype=np.float32) - batch_label_lbbox = np.zeros((self.batch_size, self.train_output_sizes[2], self.train_output_sizes[2], - self.anchor_per_scale, 5 + self.num_classes), dtype=np.float32) + if self.train_yolo_tiny: + batch_label_mbbox = np.zeros((self.batch_size, self.train_output_sizes[0], self.train_output_sizes[0], self.anchor_per_scale, 5 + self.num_classes), dtype=np.float32) + batch_label_lbbox = np.zeros((self.batch_size, self.train_output_sizes[1], self.train_output_sizes[1], self.anchor_per_scale, 5 + self.num_classes), dtype=np.float32) + else: + batch_label_sbbox = np.zeros((self.batch_size, self.train_output_sizes[0], self.train_output_sizes[0], self.anchor_per_scale, 5 + self.num_classes), dtype=np.float32) + batch_label_mbbox = np.zeros((self.batch_size, self.train_output_sizes[1], self.train_output_sizes[1], self.anchor_per_scale, 5 + self.num_classes), dtype=np.float32) + batch_label_lbbox = np.zeros((self.batch_size, self.train_output_sizes[2], self.train_output_sizes[2], self.anchor_per_scale, 5 + self.num_classes), dtype=np.float32) + + batch_sbboxes = np.zeros((self.batch_size, self.max_bbox_per_scale, 4), dtype=np.float32) - batch_sbboxes = np.zeros((self.batch_size, self.max_bbox_per_scale, 4), dtype=np.float32) batch_mbboxes = np.zeros((self.batch_size, self.max_bbox_per_scale, 4), dtype=np.float32) batch_lbboxes = np.zeros((self.batch_size, self.max_bbox_per_scale, 4), dtype=np.float32) @@ -102,29 +129,37 @@ class Dataset(object): annotation = self.annotations[index] image, bboxes = self.parse_annotation(annotation) try: - label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes = self.preprocess_true_boxes(bboxes) + if self.train_yolo_tiny: + label_mbbox, label_lbbox, mbboxes, lbboxes = self.preprocess_true_boxes(bboxes) + else: + label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes = self.preprocess_true_boxes(bboxes) except IndexError: exceptions = True self.Delete_bad_annotation(annotation) print("IndexError, something wrong with", annotation[0], "removed this line from annotation file") batch_image[num, :, :, :] = image - batch_label_sbbox[num, :, :, :, :] = label_sbbox batch_label_mbbox[num, :, :, :, :] = label_mbbox batch_label_lbbox[num, :, :, :, :] = label_lbbox - batch_sbboxes[num, :, :] = sbboxes batch_mbboxes[num, :, :] = mbboxes batch_lbboxes[num, :, :] = lbboxes + if not self.train_yolo_tiny: + batch_label_sbbox[num, :, :, :, :] = label_sbbox + batch_sbboxes[num, :, :] = sbboxes + num += 1 - if exceptions: + if exceptions: print('\n') raise Exception("There were problems with dataset, I fixed them, now restart the training process.") self.batch_count += 1 - batch_smaller_target = batch_label_sbbox, batch_sbboxes + if not self.train_yolo_tiny: + batch_smaller_target = batch_label_sbbox, batch_sbboxes batch_medium_target = batch_label_mbbox, batch_mbboxes batch_larger_target = batch_label_lbbox, batch_lbboxes + if self.train_yolo_tiny: + return batch_image, (batch_medium_target, batch_larger_target) return batch_image, (batch_smaller_target, batch_medium_target, batch_larger_target) else: self.batch_count = 0 @@ -189,7 +224,7 @@ class Dataset(object): else: image_path = annotation[0] image = cv2.imread(image_path) - + bboxes = np.array([list(map(int, box.split(','))) for box in annotation[1]]) if self.data_aug: @@ -198,17 +233,19 @@ class Dataset(object): image, bboxes = self.random_translate(np.copy(image), np.copy(bboxes)) #image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) - if mAP == True: + if mAP == True: return image, bboxes - + image, bboxes = image_preprocess(np.copy(image), [self.input_sizes, self.input_sizes], np.copy(bboxes)) return image, bboxes def preprocess_true_boxes(self, bboxes): + OUTPUT_LEVELS = len(self.strides) + label = [np.zeros((self.train_output_sizes[i], self.train_output_sizes[i], self.anchor_per_scale, - 5 + self.num_classes)) for i in range(3)] - bboxes_xywh = [np.zeros((self.max_bbox_per_scale, 4)) for _ in range(3)] - bbox_count = np.zeros((3,)) + 5 + self.num_classes)) for i in range(OUTPUT_LEVELS)] + bboxes_xywh = [np.zeros((self.max_bbox_per_scale, 4)) for _ in range(OUTPUT_LEVELS)] + bbox_count = np.zeros((OUTPUT_LEVELS,)) for bbox in bboxes: bbox_coor = bbox[:4] @@ -225,7 +262,7 @@ class Dataset(object): iou = [] exist_positive = False - for i in range(3): + for i in range(OUTPUT_LEVELS):#range(3): anchors_xywh = np.zeros((self.anchor_per_scale, 4)) anchors_xywh[:, 0:2] = np.floor(bbox_xywh_scaled[i, 0:2]).astype(np.int32) + 0.5 anchors_xywh[:, 2:4] = self.anchors[i] @@ -262,13 +299,15 @@ class Dataset(object): bbox_ind = int(bbox_count[best_detect] % self.max_bbox_per_scale) bboxes_xywh[best_detect][bbox_ind, :4] = bbox_xywh bbox_count[best_detect] += 1 + + if self.train_yolo_tiny: + label_mbbox, label_lbbox = label + mbboxes, lbboxes = bboxes_xywh + return label_mbbox, label_lbbox, mbboxes, lbboxes + label_sbbox, label_mbbox, label_lbbox = label sbboxes, mbboxes, lbboxes = bboxes_xywh return label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes def __len__(self): return self.num_batchs - - - - diff --git a/PAR 152/Yolo Tensorflow/yolov3/utils.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/utils.py similarity index 90% rename from PAR 152/Yolo Tensorflow/yolov3/utils.py rename to PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/utils.py index 1e30f811221a7ff76ffdeda727c43bc78e86e71f..0cc8f6b66d497353d2aee47bb0f31de2a76b745e 100644 --- a/PAR 152/Yolo Tensorflow/yolov3/utils.py +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/utils.py @@ -1,3 +1,13 @@ +#================================================================ +# +# File name : utils.py +# Author : PyLessons +# Created date: 2020-09-27 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : additional yolov3 and yolov4 functions +# +#================================================================ from multiprocessing import Process, Queue, Pipe import cv2 import time @@ -6,16 +16,18 @@ import colorsys import numpy as np import tensorflow as tf from yolov3.configs import * -from yolov3.yolov3 import * +from yolov3.yolov4 import * from tensorflow.python.saved_model import tag_constants - def load_yolo_weights(model, weights_file): tf.keras.backend.clear_session() # used to reset layer names # load Darknet original weights to TensorFlow model if YOLO_TYPE == "yolov3": range1 = 75 if not TRAIN_YOLO_TINY else 13 range2 = [58, 66, 74] if not TRAIN_YOLO_TINY else [9, 12] + if YOLO_TYPE == "yolov4": + range1 = 110 if not TRAIN_YOLO_TINY else 21 + range2 = [93, 101, 109] if not TRAIN_YOLO_TINY else [17, 20] with open(weights_file, 'rb') as wf: major, minor, revision, seen, _ = np.fromfile(wf, dtype=np.int32, count=5) @@ -69,15 +81,22 @@ def Load_Yolo_model(): except RuntimeError: pass if YOLO_FRAMEWORK == "tf": # TensorFlow detection + if YOLO_TYPE == "yolov4": + Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS if YOLO_CUSTOM_WEIGHTS == False: + print("Loading Darknet_weights from:", Darknet_weights) yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=YOLO_COCO_CLASSES) load_yolo_weights(yolo, Darknet_weights) # use Darknet weights else: + checkpoint = f"./checkpoints/{TRAIN_MODEL_NAME}" + if TRAIN_YOLO_TINY: + checkpoint += "_Tiny" + print("Loading custom weights from:", checkpoint) yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) - yolo.load_weights(YOLO_CUSTOM_WEIGHTS) # use custom weights + yolo.load_weights(checkpoint) # use custom weights elif YOLO_FRAMEWORK == "trt": # TensorRT detection saved_model_loaded = tf.saved_model.load(YOLO_CUSTOM_WEIGHTS, tags=[tag_constants.SERVING]) @@ -86,8 +105,6 @@ def Load_Yolo_model(): return yolo - - def image_preprocess(image, target_size, gt_boxes=None): ih, iw = target_size h, w, _ = image.shape @@ -142,7 +159,11 @@ def draw_bbox(image, bboxes, CLASSES=YOLO_COCO_CLASSES, show_label=True, show_co if tracking: score_str = " "+str(score) - label = "{}".format(NUM_CLASS[class_ind]) + score_str + try: + label = "{}".format(NUM_CLASS[class_ind]) + score_str + except KeyError: + print("You received KeyError, this might be that you are trying to use yolo original weights") + print("while using custom classes, if using custom model in configs.py set YOLO_CUSTOM_WEIGHTS = True") # get text size (text_width, text_height), baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_COMPLEX_SMALL, @@ -309,7 +330,10 @@ def Predict_bbox_mp(Frames_data, Predicted_data, Processing_times): Processing_times.put(time.time()) if YOLO_FRAMEWORK == "tf": - pred_bbox = Yolo.predict(image_data) + if tf.__version__ > '2.4.0': + pred_bbox = Yolo(image_data) + else: + pred_bbox = Yolo.predict(image_data) elif YOLO_FRAMEWORK == "trt": batched_input = tf.constant(image_data) result = Yolo(batched_input) @@ -438,7 +462,10 @@ def detect_video(Yolo, video_path, output_path, input_size=416, show=False, CLAS t1 = time.time() if YOLO_FRAMEWORK == "tf": - pred_bbox = Yolo.predict(image_data) + if tf.__version__ > '2.4.0': + pred_bbox = Yolo(image_data, training=False) + else: + pred_bbox = Yolo.predict(image_data) elif YOLO_FRAMEWORK == "trt": batched_input = tf.constant(image_data) result = Yolo(batched_input) @@ -484,17 +511,18 @@ def detect_video(Yolo, video_path, output_path, input_size=416, show=False, CLAS # detect from webcam def detect_realtime(Yolo, output_path, input_size=416, show=False, CLASSES=YOLO_COCO_CLASSES, score_threshold=0.3, iou_threshold=0.45, rectangle_colors=''): times = [] - vid = cv2.VideoCapture(0) + vid = cv2.VideoCapture(1) - # by default VideoCapture returns float instead of int - width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) - height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) - fps = int(vid.get(cv2.CAP_PROP_FPS)) - codec = cv2.VideoWriter_fourcc(*'XVID') - out = cv2.VideoWriter(output_path, codec, fps, (width, height)) # output_path must be .mp4 + if output_path: + # by default VideoCapture returns float instead of int + width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) + height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) + fps = int(vid.get(cv2.CAP_PROP_FPS)) + codec = cv2.VideoWriter_fourcc(*'XVID') + out = cv2.VideoWriter(output_path, codec, fps, (width, height)) # output_path must be .mp4 while True: - _, frame = vid.read() + ret, frame = vid.read() try: original_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) @@ -506,7 +534,12 @@ def detect_realtime(Yolo, output_path, input_size=416, show=False, CLASSES=YOLO_ t1 = time.time() if YOLO_FRAMEWORK == "tf": - pred_bbox = Yolo.predict(image_data) + if tf.__version__ > '2.4.0': + pred_bbox = Yolo(image_data, training=False) + else: + pred_bbox = Yolo.predict(image_data) + # if True: + # pred_bbox = Yolo.predict(image_data) elif YOLO_FRAMEWORK == "trt": batched_input = tf.constant(image_data) result = Yolo(batched_input) diff --git a/PAR 152/Yolo Tensorflow/yolov3/yolov3.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/yolov3.py similarity index 94% rename from PAR 152/Yolo Tensorflow/yolov3/yolov3.py rename to PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/yolov3.py index f47b7eded5b9af6b07c94af2b9180e6fa7aea09f..af98d2f732431802e4a50d5e17fe08104898adc3 100644 --- a/PAR 152/Yolo Tensorflow/yolov3/yolov3.py +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/yolov3.py @@ -1,21 +1,23 @@ +#================================================================ +# +# File name : yolov3.py +# Author : PyLessons +# Created date: 2020-06-04 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : main yolov3 functions +# +#================================================================ import numpy as np import tensorflow as tf from tensorflow.keras.layers import Conv2D, Input, LeakyReLU, ZeroPadding2D, BatchNormalization, MaxPool2D from tensorflow.keras.regularizers import l2 +from yolov3.utils import read_class_names from yolov3.configs import * STRIDES = np.array(YOLO_STRIDES) ANCHORS = (np.array(YOLO_ANCHORS).T/STRIDES).T - -def read_class_names(class_file_name): - # loads class name from a file - names = {} - with open(class_file_name, 'r') as data: - for ID, name in enumerate(data): - names[ID] = name.strip('\n') - return names - class BatchNormalization(BatchNormalization): # "Frozen state" and "inference mode" are two separate concepts. # `layer.trainable = False` is to freeze the layer, so the layer will use @@ -362,23 +364,3 @@ def compute_loss(pred, conv, label, bboxes, i=0, CLASSES=YOLO_COCO_CLASSES): prob_loss = tf.reduce_mean(tf.reduce_sum(prob_loss, axis=[1,2,3,4])) return giou_loss, conf_loss, prob_loss - -def Create_Yolo(input_size=416, channels=3, training=False, CLASSES=YOLO_COCO_CLASSES): - NUM_CLASS = len(read_class_names(CLASSES)) - input_layer = Input([input_size, input_size, channels]) - - if TRAIN_YOLO_TINY: - if YOLO_TYPE == "yolov3": - conv_tensors = YOLOv3_tiny(input_layer, NUM_CLASS) - else: - if YOLO_TYPE == "yolov3": - conv_tensors = YOLOv3(input_layer, NUM_CLASS) - - output_tensors = [] - for i, conv_tensor in enumerate(conv_tensors): - pred_tensor = decode(conv_tensor, NUM_CLASS, i) - if training: output_tensors.append(conv_tensor) - output_tensors.append(pred_tensor) - - Yolo = tf.keras.Model(input_layer, output_tensors) - return Yolo diff --git a/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/yolov4.py b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/yolov4.py new file mode 100644 index 0000000000000000000000000000000000000000..6e67fc4f3c9d7bb01f04456414cf207d0f2d53b3 --- /dev/null +++ b/PAR 152/Yolo V3/TensorFlow-2.x-YOLOv3-master/yolov3/yolov4.py @@ -0,0 +1,582 @@ +#================================================================ +# +# File name : yolov4.py +# Author : PyLessons +# Created date: 2020-09-31 +# Website : https://pylessons.com/ +# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 +# Description : main yolov3 & yolov4 functions +# +#================================================================ +import numpy as np +import tensorflow as tf +from tensorflow.keras.layers import Conv2D, Input, LeakyReLU, ZeroPadding2D, BatchNormalization, MaxPool2D +from tensorflow.keras.regularizers import l2 +from yolov3.configs import * + +STRIDES = np.array(YOLO_STRIDES) +ANCHORS = (np.array(YOLO_ANCHORS).T/STRIDES).T + +def read_class_names(class_file_name): + # loads class name from a file + names = {} + with open(class_file_name, 'r') as data: + for ID, name in enumerate(data): + names[ID] = name.strip('\n') + return names + +class BatchNormalization(BatchNormalization): + # "Frozen state" and "inference mode" are two separate concepts. + # `layer.trainable = False` is to freeze the layer, so the layer will use + # stored moving `var` and `mean` in the "inference mode", and both `gama` + # and `beta` will not be updated ! + def call(self, x, training=False): + if not training: + training = tf.constant(False) + training = tf.logical_and(training, self.trainable) + return super().call(x, training) + +def convolutional(input_layer, filters_shape, downsample=False, activate=True, bn=True, activate_type='leaky'): + if downsample: + input_layer = ZeroPadding2D(((1, 0), (1, 0)))(input_layer) + padding = 'valid' + strides = 2 + else: + strides = 1 + padding = 'same' + + conv = Conv2D(filters=filters_shape[-1], kernel_size = filters_shape[0], strides=strides, + padding=padding, use_bias=not bn, kernel_regularizer=l2(0.0005), + kernel_initializer=tf.random_normal_initializer(stddev=0.01), + bias_initializer=tf.constant_initializer(0.))(input_layer) + if bn: + conv = BatchNormalization()(conv) + if activate == True: + if activate_type == "leaky": + conv = LeakyReLU(alpha=0.1)(conv) + elif activate_type == "mish": + conv = mish(conv) + + return conv + +def mish(x): + return x * tf.math.tanh(tf.math.softplus(x)) + +def residual_block(input_layer, input_channel, filter_num1, filter_num2, activate_type='leaky'): + short_cut = input_layer + conv = convolutional(input_layer, filters_shape=(1, 1, input_channel, filter_num1), activate_type=activate_type) + conv = convolutional(conv , filters_shape=(3, 3, filter_num1, filter_num2), activate_type=activate_type) + + residual_output = short_cut + conv + return residual_output + +def upsample(input_layer): + return tf.image.resize(input_layer, (input_layer.shape[1] * 2, input_layer.shape[2] * 2), method='nearest') + +def route_group(input_layer, groups, group_id): + convs = tf.split(input_layer, num_or_size_splits=groups, axis=-1) + return convs[group_id] + +def darknet53(input_data): + input_data = convolutional(input_data, (3, 3, 3, 32)) + input_data = convolutional(input_data, (3, 3, 32, 64), downsample=True) + + for i in range(1): + input_data = residual_block(input_data, 64, 32, 64) + + input_data = convolutional(input_data, (3, 3, 64, 128), downsample=True) + + for i in range(2): + input_data = residual_block(input_data, 128, 64, 128) + + input_data = convolutional(input_data, (3, 3, 128, 256), downsample=True) + + for i in range(8): + input_data = residual_block(input_data, 256, 128, 256) + + route_1 = input_data + input_data = convolutional(input_data, (3, 3, 256, 512), downsample=True) + + for i in range(8): + input_data = residual_block(input_data, 512, 256, 512) + + route_2 = input_data + input_data = convolutional(input_data, (3, 3, 512, 1024), downsample=True) + + for i in range(4): + input_data = residual_block(input_data, 1024, 512, 1024) + + return route_1, route_2, input_data + +def cspdarknet53(input_data): + input_data = convolutional(input_data, (3, 3, 3, 32), activate_type="mish") + input_data = convolutional(input_data, (3, 3, 32, 64), downsample=True, activate_type="mish") + + route = input_data + route = convolutional(route, (1, 1, 64, 64), activate_type="mish") + input_data = convolutional(input_data, (1, 1, 64, 64), activate_type="mish") + for i in range(1): + input_data = residual_block(input_data, 64, 32, 64, activate_type="mish") + input_data = convolutional(input_data, (1, 1, 64, 64), activate_type="mish") + + input_data = tf.concat([input_data, route], axis=-1) + input_data = convolutional(input_data, (1, 1, 128, 64), activate_type="mish") + input_data = convolutional(input_data, (3, 3, 64, 128), downsample=True, activate_type="mish") + route = input_data + route = convolutional(route, (1, 1, 128, 64), activate_type="mish") + input_data = convolutional(input_data, (1, 1, 128, 64), activate_type="mish") + for i in range(2): + input_data = residual_block(input_data, 64, 64, 64, activate_type="mish") + input_data = convolutional(input_data, (1, 1, 64, 64), activate_type="mish") + input_data = tf.concat([input_data, route], axis=-1) + + input_data = convolutional(input_data, (1, 1, 128, 128), activate_type="mish") + input_data = convolutional(input_data, (3, 3, 128, 256), downsample=True, activate_type="mish") + route = input_data + route = convolutional(route, (1, 1, 256, 128), activate_type="mish") + input_data = convolutional(input_data, (1, 1, 256, 128), activate_type="mish") + for i in range(8): + input_data = residual_block(input_data, 128, 128, 128, activate_type="mish") + input_data = convolutional(input_data, (1, 1, 128, 128), activate_type="mish") + input_data = tf.concat([input_data, route], axis=-1) + + input_data = convolutional(input_data, (1, 1, 256, 256), activate_type="mish") + route_1 = input_data + input_data = convolutional(input_data, (3, 3, 256, 512), downsample=True, activate_type="mish") + route = input_data + route = convolutional(route, (1, 1, 512, 256), activate_type="mish") + input_data = convolutional(input_data, (1, 1, 512, 256), activate_type="mish") + for i in range(8): + input_data = residual_block(input_data, 256, 256, 256, activate_type="mish") + input_data = convolutional(input_data, (1, 1, 256, 256), activate_type="mish") + input_data = tf.concat([input_data, route], axis=-1) + + input_data = convolutional(input_data, (1, 1, 512, 512), activate_type="mish") + route_2 = input_data + input_data = convolutional(input_data, (3, 3, 512, 1024), downsample=True, activate_type="mish") + route = input_data + route = convolutional(route, (1, 1, 1024, 512), activate_type="mish") + input_data = convolutional(input_data, (1, 1, 1024, 512), activate_type="mish") + for i in range(4): + input_data = residual_block(input_data, 512, 512, 512, activate_type="mish") + input_data = convolutional(input_data, (1, 1, 512, 512), activate_type="mish") + input_data = tf.concat([input_data, route], axis=-1) + + input_data = convolutional(input_data, (1, 1, 1024, 1024), activate_type="mish") + input_data = convolutional(input_data, (1, 1, 1024, 512)) + input_data = convolutional(input_data, (3, 3, 512, 1024)) + input_data = convolutional(input_data, (1, 1, 1024, 512)) + + max_pooling_1 = tf.keras.layers.MaxPool2D(pool_size=13, padding='SAME', strides=1)(input_data) + max_pooling_2 = tf.keras.layers.MaxPool2D(pool_size=9, padding='SAME', strides=1)(input_data) + max_pooling_3 = tf.keras.layers.MaxPool2D(pool_size=5, padding='SAME', strides=1)(input_data) + input_data = tf.concat([max_pooling_1, max_pooling_2, max_pooling_3, input_data], axis=-1) + + input_data = convolutional(input_data, (1, 1, 2048, 512)) + input_data = convolutional(input_data, (3, 3, 512, 1024)) + input_data = convolutional(input_data, (1, 1, 1024, 512)) + + return route_1, route_2, input_data + +def darknet19_tiny(input_data): + input_data = convolutional(input_data, (3, 3, 3, 16)) + input_data = MaxPool2D(2, 2, 'same')(input_data) + input_data = convolutional(input_data, (3, 3, 16, 32)) + input_data = MaxPool2D(2, 2, 'same')(input_data) + input_data = convolutional(input_data, (3, 3, 32, 64)) + input_data = MaxPool2D(2, 2, 'same')(input_data) + input_data = convolutional(input_data, (3, 3, 64, 128)) + input_data = MaxPool2D(2, 2, 'same')(input_data) + input_data = convolutional(input_data, (3, 3, 128, 256)) + route_1 = input_data + input_data = MaxPool2D(2, 2, 'same')(input_data) + input_data = convolutional(input_data, (3, 3, 256, 512)) + input_data = MaxPool2D(2, 1, 'same')(input_data) + input_data = convolutional(input_data, (3, 3, 512, 1024)) + + return route_1, input_data + +def cspdarknet53_tiny(input_data): # not sure how this should be called + input_data = convolutional(input_data, (3, 3, 3, 32), downsample=True) + input_data = convolutional(input_data, (3, 3, 32, 64), downsample=True) + input_data = convolutional(input_data, (3, 3, 64, 64)) + + route = input_data + input_data = route_group(input_data, 2, 1) + input_data = convolutional(input_data, (3, 3, 32, 32)) + route_1 = input_data + input_data = convolutional(input_data, (3, 3, 32, 32)) + input_data = tf.concat([input_data, route_1], axis=-1) + input_data = convolutional(input_data, (1, 1, 32, 64)) + input_data = tf.concat([route, input_data], axis=-1) + input_data = MaxPool2D(2, 2, 'same')(input_data) + + input_data = convolutional(input_data, (3, 3, 64, 128)) + route = input_data + input_data = route_group(input_data, 2, 1) + input_data = convolutional(input_data, (3, 3, 64, 64)) + route_1 = input_data + input_data = convolutional(input_data, (3, 3, 64, 64)) + input_data = tf.concat([input_data, route_1], axis=-1) + input_data = convolutional(input_data, (1, 1, 64, 128)) + input_data = tf.concat([route, input_data], axis=-1) + input_data = MaxPool2D(2, 2, 'same')(input_data) + + input_data = convolutional(input_data, (3, 3, 128, 256)) + route = input_data + input_data = route_group(input_data, 2, 1) + input_data = convolutional(input_data, (3, 3, 128, 128)) + route_1 = input_data + input_data = convolutional(input_data, (3, 3, 128, 128)) + input_data = tf.concat([input_data, route_1], axis=-1) + input_data = convolutional(input_data, (1, 1, 128, 256)) + route_1 = input_data + input_data = tf.concat([route, input_data], axis=-1) + input_data = MaxPool2D(2, 2, 'same')(input_data) + + input_data = convolutional(input_data, (3, 3, 512, 512)) + + return route_1, input_data + +def YOLOv3(input_layer, NUM_CLASS): + # After the input layer enters the Darknet-53 network, we get three branches + route_1, route_2, conv = darknet53(input_layer) + # See the orange module (DBL) in the figure above, a total of 5 Subconvolution operation + conv = convolutional(conv, (1, 1, 1024, 512)) + conv = convolutional(conv, (3, 3, 512, 1024)) + conv = convolutional(conv, (1, 1, 1024, 512)) + conv = convolutional(conv, (3, 3, 512, 1024)) + conv = convolutional(conv, (1, 1, 1024, 512)) + conv_lobj_branch = convolutional(conv, (3, 3, 512, 1024)) + + # conv_lbbox is used to predict large-sized objects , Shape = [None, 13, 13, 255] + conv_lbbox = convolutional(conv_lobj_branch, (1, 1, 1024, 3*(NUM_CLASS + 5)), activate=False, bn=False) + + conv = convolutional(conv, (1, 1, 512, 256)) + # upsample here uses the nearest neighbor interpolation method, which has the advantage that the + # upsampling process does not need to learn, thereby reducing the network parameter + conv = upsample(conv) + + conv = tf.concat([conv, route_2], axis=-1) + conv = convolutional(conv, (1, 1, 768, 256)) + conv = convolutional(conv, (3, 3, 256, 512)) + conv = convolutional(conv, (1, 1, 512, 256)) + conv = convolutional(conv, (3, 3, 256, 512)) + conv = convolutional(conv, (1, 1, 512, 256)) + conv_mobj_branch = convolutional(conv, (3, 3, 256, 512)) + + # conv_mbbox is used to predict medium-sized objects, shape = [None, 26, 26, 255] + conv_mbbox = convolutional(conv_mobj_branch, (1, 1, 512, 3*(NUM_CLASS + 5)), activate=False, bn=False) + + conv = convolutional(conv, (1, 1, 256, 128)) + conv = upsample(conv) + + conv = tf.concat([conv, route_1], axis=-1) + conv = convolutional(conv, (1, 1, 384, 128)) + conv = convolutional(conv, (3, 3, 128, 256)) + conv = convolutional(conv, (1, 1, 256, 128)) + conv = convolutional(conv, (3, 3, 128, 256)) + conv = convolutional(conv, (1, 1, 256, 128)) + conv_sobj_branch = convolutional(conv, (3, 3, 128, 256)) + + # conv_sbbox is used to predict small size objects, shape = [None, 52, 52, 255] + conv_sbbox = convolutional(conv_sobj_branch, (1, 1, 256, 3*(NUM_CLASS +5)), activate=False, bn=False) + + return [conv_sbbox, conv_mbbox, conv_lbbox] + +def YOLOv4(input_layer, NUM_CLASS): + route_1, route_2, conv = cspdarknet53(input_layer) + + route = conv + conv = convolutional(conv, (1, 1, 512, 256)) + conv = upsample(conv) + route_2 = convolutional(route_2, (1, 1, 512, 256)) + conv = tf.concat([route_2, conv], axis=-1) + + conv = convolutional(conv, (1, 1, 512, 256)) + conv = convolutional(conv, (3, 3, 256, 512)) + conv = convolutional(conv, (1, 1, 512, 256)) + conv = convolutional(conv, (3, 3, 256, 512)) + conv = convolutional(conv, (1, 1, 512, 256)) + + route_2 = conv + conv = convolutional(conv, (1, 1, 256, 128)) + conv = upsample(conv) + route_1 = convolutional(route_1, (1, 1, 256, 128)) + conv = tf.concat([route_1, conv], axis=-1) + + conv = convolutional(conv, (1, 1, 256, 128)) + conv = convolutional(conv, (3, 3, 128, 256)) + conv = convolutional(conv, (1, 1, 256, 128)) + conv = convolutional(conv, (3, 3, 128, 256)) + conv = convolutional(conv, (1, 1, 256, 128)) + + route_1 = conv + conv = convolutional(conv, (3, 3, 128, 256)) + conv_sbbox = convolutional(conv, (1, 1, 256, 3 * (NUM_CLASS + 5)), activate=False, bn=False) + + conv = convolutional(route_1, (3, 3, 128, 256), downsample=True) + conv = tf.concat([conv, route_2], axis=-1) + + conv = convolutional(conv, (1, 1, 512, 256)) + conv = convolutional(conv, (3, 3, 256, 512)) + conv = convolutional(conv, (1, 1, 512, 256)) + conv = convolutional(conv, (3, 3, 256, 512)) + conv = convolutional(conv, (1, 1, 512, 256)) + + route_2 = conv + conv = convolutional(conv, (3, 3, 256, 512)) + conv_mbbox = convolutional(conv, (1, 1, 512, 3 * (NUM_CLASS + 5)), activate=False, bn=False) + + conv = convolutional(route_2, (3, 3, 256, 512), downsample=True) + conv = tf.concat([conv, route], axis=-1) + + conv = convolutional(conv, (1, 1, 1024, 512)) + conv = convolutional(conv, (3, 3, 512, 1024)) + conv = convolutional(conv, (1, 1, 1024, 512)) + conv = convolutional(conv, (3, 3, 512, 1024)) + conv = convolutional(conv, (1, 1, 1024, 512)) + + conv = convolutional(conv, (3, 3, 512, 1024)) + conv_lbbox = convolutional(conv, (1, 1, 1024, 3 * (NUM_CLASS + 5)), activate=False, bn=False) + + return [conv_sbbox, conv_mbbox, conv_lbbox] + +def YOLOv3_tiny(input_layer, NUM_CLASS): + # After the input layer enters the Darknet-53 network, we get three branches + route_1, conv = darknet19_tiny(input_layer) + + conv = convolutional(conv, (1, 1, 1024, 256)) + conv_lobj_branch = convolutional(conv, (3, 3, 256, 512)) + + # conv_lbbox is used to predict large-sized objects , Shape = [None, 26, 26, 255] + conv_lbbox = convolutional(conv_lobj_branch, (1, 1, 512, 3*(NUM_CLASS + 5)), activate=False, bn=False) + + conv = convolutional(conv, (1, 1, 256, 128)) + # upsample here uses the nearest neighbor interpolation method, which has the advantage that the + # upsampling process does not need to learn, thereby reducing the network parameter + conv = upsample(conv) + + conv = tf.concat([conv, route_1], axis=-1) + conv_mobj_branch = convolutional(conv, (3, 3, 128, 256)) + # conv_mbbox is used to predict medium size objects, shape = [None, 13, 13, 255] + conv_mbbox = convolutional(conv_mobj_branch, (1, 1, 256, 3 * (NUM_CLASS + 5)), activate=False, bn=False) + + return [conv_mbbox, conv_lbbox] + +def YOLOv4_tiny(input_layer, NUM_CLASS): + route_1, conv = cspdarknet53_tiny(input_layer) + + conv = convolutional(conv, (1, 1, 512, 256)) + + conv_lobj_branch = convolutional(conv, (3, 3, 256, 512)) + conv_lbbox = convolutional(conv_lobj_branch, (1, 1, 512, 3 * (NUM_CLASS + 5)), activate=False, bn=False) + + conv = convolutional(conv, (1, 1, 256, 128)) + conv = upsample(conv) + conv = tf.concat([conv, route_1], axis=-1) + + conv_mobj_branch = convolutional(conv, (3, 3, 128, 256)) + conv_mbbox = convolutional(conv_mobj_branch, (1, 1, 256, 3 * (NUM_CLASS + 5)), activate=False, bn=False) + + return [conv_mbbox, conv_lbbox] + +def Create_Yolo(input_size=416, channels=3, training=False, CLASSES=YOLO_COCO_CLASSES): + NUM_CLASS = len(read_class_names(CLASSES)) + input_layer = Input([input_size, input_size, channels]) + + if TRAIN_YOLO_TINY: + if YOLO_TYPE == "yolov4": + conv_tensors = YOLOv4_tiny(input_layer, NUM_CLASS) + if YOLO_TYPE == "yolov3": + conv_tensors = YOLOv3_tiny(input_layer, NUM_CLASS) + else: + if YOLO_TYPE == "yolov4": + conv_tensors = YOLOv4(input_layer, NUM_CLASS) + if YOLO_TYPE == "yolov3": + conv_tensors = YOLOv3(input_layer, NUM_CLASS) + + output_tensors = [] + for i, conv_tensor in enumerate(conv_tensors): + pred_tensor = decode(conv_tensor, NUM_CLASS, i) + if training: output_tensors.append(conv_tensor) + output_tensors.append(pred_tensor) + + Yolo = tf.keras.Model(input_layer, output_tensors) + return Yolo + + +def decode(conv_output, NUM_CLASS, i=0): + # where i = 0, 1 or 2 to correspond to the three grid scales + conv_shape = tf.shape(conv_output) + batch_size = conv_shape[0] + output_size = conv_shape[1] + + conv_output = tf.reshape(conv_output, (batch_size, output_size, output_size, 3, 5 + NUM_CLASS)) + + #conv_raw_dxdy = conv_output[:, :, :, :, 0:2] # offset of center position + #conv_raw_dwdh = conv_output[:, :, :, :, 2:4] # Prediction box length and width offset + #conv_raw_conf = conv_output[:, :, :, :, 4:5] # confidence of the prediction box + #conv_raw_prob = conv_output[:, :, :, :, 5: ] # category probability of the prediction box + conv_raw_dxdy, conv_raw_dwdh, conv_raw_conf, conv_raw_prob = tf.split(conv_output, (2, 2, 1, NUM_CLASS), axis=-1) + + # next need Draw the grid. Where output_size is equal to 13, 26 or 52 + #y = tf.range(output_size, dtype=tf.int32) + #y = tf.expand_dims(y, -1) + #y = tf.tile(y, [1, output_size]) + #x = tf.range(output_size,dtype=tf.int32) + #x = tf.expand_dims(x, 0) + #x = tf.tile(x, [output_size, 1]) + xy_grid = tf.meshgrid(tf.range(output_size), tf.range(output_size)) + xy_grid = tf.expand_dims(tf.stack(xy_grid, axis=-1), axis=2) # [gx, gy, 1, 2] + xy_grid = tf.tile(tf.expand_dims(xy_grid, axis=0), [batch_size, 1, 1, 3, 1]) + xy_grid = tf.cast(xy_grid, tf.float32) + + #xy_grid = tf.concat([x[:, :, tf.newaxis], y[:, :, tf.newaxis]], axis=-1) + #xy_grid = tf.tile(xy_grid[tf.newaxis, :, :, tf.newaxis, :], [batch_size, 1, 1, 3, 1]) + #y_grid = tf.cast(xy_grid, tf.float32) + + # Calculate the center position of the prediction box: + pred_xy = (tf.sigmoid(conv_raw_dxdy) + xy_grid) * STRIDES[i] + # Calculate the length and width of the prediction box: + pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i]) * STRIDES[i] + + pred_xywh = tf.concat([pred_xy, pred_wh], axis=-1) + pred_conf = tf.sigmoid(conv_raw_conf) # object box calculates the predicted confidence + pred_prob = tf.sigmoid(conv_raw_prob) # calculating the predicted probability category box object + + # calculating the predicted probability category box object + return tf.concat([pred_xywh, pred_conf, pred_prob], axis=-1) + + +def bbox_iou(boxes1, boxes2): + boxes1_area = boxes1[..., 2] * boxes1[..., 3] + boxes2_area = boxes2[..., 2] * boxes2[..., 3] + + boxes1 = tf.concat([boxes1[..., :2] - boxes1[..., 2:] * 0.5, + boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1) + boxes2 = tf.concat([boxes2[..., :2] - boxes2[..., 2:] * 0.5, + boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1) + + left_up = tf.maximum(boxes1[..., :2], boxes2[..., :2]) + right_down = tf.minimum(boxes1[..., 2:], boxes2[..., 2:]) + + inter_section = tf.maximum(right_down - left_up, 0.0) + inter_area = inter_section[..., 0] * inter_section[..., 1] + union_area = boxes1_area + boxes2_area - inter_area + + return 1.0 * inter_area / union_area + +def bbox_giou(boxes1, boxes2): + boxes1 = tf.concat([boxes1[..., :2] - boxes1[..., 2:] * 0.5, + boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1) + boxes2 = tf.concat([boxes2[..., :2] - boxes2[..., 2:] * 0.5, + boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1) + + boxes1 = tf.concat([tf.minimum(boxes1[..., :2], boxes1[..., 2:]), + tf.maximum(boxes1[..., :2], boxes1[..., 2:])], axis=-1) + boxes2 = tf.concat([tf.minimum(boxes2[..., :2], boxes2[..., 2:]), + tf.maximum(boxes2[..., :2], boxes2[..., 2:])], axis=-1) + + boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1]) + boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1]) + + left_up = tf.maximum(boxes1[..., :2], boxes2[..., :2]) + right_down = tf.minimum(boxes1[..., 2:], boxes2[..., 2:]) + + inter_section = tf.maximum(right_down - left_up, 0.0) + inter_area = inter_section[..., 0] * inter_section[..., 1] + union_area = boxes1_area + boxes2_area - inter_area + + # Calculate the iou value between the two bounding boxes + iou = inter_area / union_area + + # Calculate the coordinates of the upper left corner and the lower right corner of the smallest closed convex surface + enclose_left_up = tf.minimum(boxes1[..., :2], boxes2[..., :2]) + enclose_right_down = tf.maximum(boxes1[..., 2:], boxes2[..., 2:]) + enclose = tf.maximum(enclose_right_down - enclose_left_up, 0.0) + + # Calculate the area of the smallest closed convex surface C + enclose_area = enclose[..., 0] * enclose[..., 1] + + # Calculate the GIoU value according to the GioU formula + giou = iou - 1.0 * (enclose_area - union_area) / enclose_area + + return giou + +# testing (should be better than giou) +def bbox_ciou(boxes1, boxes2): + boxes1_coor = tf.concat([boxes1[..., :2] - boxes1[..., 2:] * 0.5, + boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1) + boxes2_coor = tf.concat([boxes2[..., :2] - boxes2[..., 2:] * 0.5, + boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1) + + left = tf.maximum(boxes1_coor[..., 0], boxes2_coor[..., 0]) + up = tf.maximum(boxes1_coor[..., 1], boxes2_coor[..., 1]) + right = tf.maximum(boxes1_coor[..., 2], boxes2_coor[..., 2]) + down = tf.maximum(boxes1_coor[..., 3], boxes2_coor[..., 3]) + + c = (right - left) * (right - left) + (up - down) * (up - down) + iou = bbox_iou(boxes1, boxes2) + + u = (boxes1[..., 0] - boxes2[..., 0]) * (boxes1[..., 0] - boxes2[..., 0]) + (boxes1[..., 1] - boxes2[..., 1]) * (boxes1[..., 1] - boxes2[..., 1]) + d = u / c + + ar_gt = boxes2[..., 2] / boxes2[..., 3] + ar_pred = boxes1[..., 2] / boxes1[..., 3] + + ar_loss = 4 / (np.pi * np.pi) * (tf.atan(ar_gt) - tf.atan(ar_pred)) * (tf.atan(ar_gt) - tf.atan(ar_pred)) + alpha = ar_loss / (1 - iou + ar_loss + 0.000001) + ciou_term = d + alpha * ar_loss + + return iou - ciou_term + + +def compute_loss(pred, conv, label, bboxes, i=0, CLASSES=YOLO_COCO_CLASSES): + NUM_CLASS = len(read_class_names(CLASSES)) + conv_shape = tf.shape(conv) + batch_size = conv_shape[0] + output_size = conv_shape[1] + input_size = STRIDES[i] * output_size + conv = tf.reshape(conv, (batch_size, output_size, output_size, 3, 5 + NUM_CLASS)) + + conv_raw_conf = conv[:, :, :, :, 4:5] + conv_raw_prob = conv[:, :, :, :, 5:] + + pred_xywh = pred[:, :, :, :, 0:4] + pred_conf = pred[:, :, :, :, 4:5] + + label_xywh = label[:, :, :, :, 0:4] + respond_bbox = label[:, :, :, :, 4:5] + label_prob = label[:, :, :, :, 5:] + + giou = tf.expand_dims(bbox_giou(pred_xywh, label_xywh), axis=-1) + input_size = tf.cast(input_size, tf.float32) + + bbox_loss_scale = 2.0 - 1.0 * label_xywh[:, :, :, :, 2:3] * label_xywh[:, :, :, :, 3:4] / (input_size ** 2) + giou_loss = respond_bbox * bbox_loss_scale * (1 - giou) + + iou = bbox_iou(pred_xywh[:, :, :, :, np.newaxis, :], bboxes[:, np.newaxis, np.newaxis, np.newaxis, :, :]) + # Find the value of IoU with the real box The largest prediction box + max_iou = tf.expand_dims(tf.reduce_max(iou, axis=-1), axis=-1) + + # If the largest iou is less than the threshold, it is considered that the prediction box contains no objects, then the background box + respond_bgd = (1.0 - respond_bbox) * tf.cast( max_iou < YOLO_IOU_LOSS_THRESH, tf.float32 ) + + conf_focal = tf.pow(respond_bbox - pred_conf, 2) + + # Calculate the loss of confidence + # we hope that if the grid contains objects, then the network output prediction box has a confidence of 1 and 0 when there is no object. + conf_loss = conf_focal * ( + respond_bbox * tf.nn.sigmoid_cross_entropy_with_logits(labels=respond_bbox, logits=conv_raw_conf) + + + respond_bgd * tf.nn.sigmoid_cross_entropy_with_logits(labels=respond_bbox, logits=conv_raw_conf) + ) + + prob_loss = respond_bbox * tf.nn.sigmoid_cross_entropy_with_logits(labels=label_prob, logits=conv_raw_prob) + + giou_loss = tf.reduce_mean(tf.reduce_sum(giou_loss, axis=[1,2,3,4])) + conf_loss = tf.reduce_mean(tf.reduce_sum(conf_loss, axis=[1,2,3,4])) + prob_loss = tf.reduce_mean(tf.reduce_sum(prob_loss, axis=[1,2,3,4])) + + return giou_loss, conf_loss, prob_loss diff --git a/PAR 152/cone_dataset/1.jpg b/PAR 152/cone_dataset/1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..01ebe69cad036a034263da538170207c0e9c6ce4 Binary files /dev/null and b/PAR 152/cone_dataset/1.jpg differ diff --git a/PAR 152/cone_dataset/1.xml b/PAR 152/cone_dataset/1.xml new file mode 100644 index 0000000000000000000000000000000000000000..d159c342a9eff91ecfc2b2bff46ab2af8237db2f --- /dev/null +++ b/PAR 152/cone_dataset/1.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>1.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\1.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>112</xmin> + <ymin>35</ymin> + <xmax>309</xmax> + <ymax>327</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/10.jpg b/PAR 152/cone_dataset/10.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a02e00027b0ae41f3f9ba675604cd3ad057d2ace Binary files /dev/null and b/PAR 152/cone_dataset/10.jpg differ diff --git a/PAR 152/cone_dataset/10.xml b/PAR 152/cone_dataset/10.xml new file mode 100644 index 0000000000000000000000000000000000000000..97cce271f9014d863bade26e13d8ffe88d572943 --- /dev/null +++ b/PAR 152/cone_dataset/10.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>10.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\10.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>248</xmin> + <ymin>39</ymin> + <xmax>436</xmax> + <ymax>328</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/100.jpg b/PAR 152/cone_dataset/100.jpg new file mode 100644 index 0000000000000000000000000000000000000000..80c8338e7769becad871547d903d316ff4626a90 Binary files /dev/null and b/PAR 152/cone_dataset/100.jpg differ diff --git a/PAR 152/cone_dataset/100.xml b/PAR 152/cone_dataset/100.xml new file mode 100644 index 0000000000000000000000000000000000000000..a4f1e281d26fbb19a991c5b4a2aec1439a86652f --- /dev/null +++ b/PAR 152/cone_dataset/100.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>100.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\100.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>66</ymin> + <xmax>229</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>197</xmin> + <ymin>73</ymin> + <xmax>312</xmax> + <ymax>248</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>323</xmin> + <ymin>76</ymin> + <xmax>387</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>174</xmin> + <ymin>80</ymin> + <xmax>243</xmax> + <ymax>201</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/101.jpg b/PAR 152/cone_dataset/101.jpg new file mode 100644 index 0000000000000000000000000000000000000000..59bed827780f4c68a9e708dacacdf257cb0a129f Binary files /dev/null and b/PAR 152/cone_dataset/101.jpg differ diff --git a/PAR 152/cone_dataset/101.xml b/PAR 152/cone_dataset/101.xml new file mode 100644 index 0000000000000000000000000000000000000000..958c11046fa5c40a05c221f6776edf732e33ef6a --- /dev/null +++ b/PAR 152/cone_dataset/101.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>101.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\101.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>336</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>242</xmin> + <ymin>383</ymin> + <xmax>267</xmax> + <ymax>436</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>377</ymin> + <xmax>213</xmax> + <ymax>437</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>381</ymin> + <xmax>143</xmax> + <ymax>434</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>32</xmin> + <ymin>378</ymin> + <xmax>73</xmax> + <ymax>436</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/102.jpg b/PAR 152/cone_dataset/102.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eecc32834e0367d99fbee310b49f4a50dfe5505f Binary files /dev/null and b/PAR 152/cone_dataset/102.jpg differ diff --git a/PAR 152/cone_dataset/102.xml b/PAR 152/cone_dataset/102.xml new file mode 100644 index 0000000000000000000000000000000000000000..0b575db6936b0321e789d26d19ac36ba7a6ff930 --- /dev/null +++ b/PAR 152/cone_dataset/102.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>102.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\102.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>190</xmin> + <ymin>275</ymin> + <xmax>295</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>212</xmin> + <ymin>260</ymin> + <xmax>297</xmax> + <ymax>384</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>234</xmin> + <ymin>234</ymin> + <xmax>305</xmax> + <ymax>345</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>226</ymin> + <xmax>324</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>283</xmin> + <ymin>214</ymin> + <xmax>326</xmax> + <ymax>289</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/103.jpg b/PAR 152/cone_dataset/103.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ee5237156bfe91c2ca8d3b9befc3cc21ac68fcef Binary files /dev/null and b/PAR 152/cone_dataset/103.jpg differ diff --git a/PAR 152/cone_dataset/103.xml b/PAR 152/cone_dataset/103.xml new file mode 100644 index 0000000000000000000000000000000000000000..c717ab0e7d044d5ff6b1ef6360c90f5f50017f4a --- /dev/null +++ b/PAR 152/cone_dataset/103.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>103.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\103.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>525</width> + <height>329</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>124</xmin> + <ymin>127</ymin> + <xmax>228</xmax> + <ymax>296</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>69</ymin> + <xmax>93</xmax> + <ymax>194</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>36</ymin> + <xmax>321</xmax> + <ymax>145</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>423</xmin> + <ymin>81</ymin> + <xmax>519</xmax> + <ymax>223</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/104.jpg b/PAR 152/cone_dataset/104.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3852ad3e3fea4f14901a042cf27b8735d996fb66 Binary files /dev/null and b/PAR 152/cone_dataset/104.jpg differ diff --git a/PAR 152/cone_dataset/104.xml b/PAR 152/cone_dataset/104.xml new file mode 100644 index 0000000000000000000000000000000000000000..1c2a4ab2cd64de1abb20dbe9000820543b202a39 --- /dev/null +++ b/PAR 152/cone_dataset/104.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>104.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\104.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>449</width> + <height>382</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>127</xmin> + <ymin>71</ymin> + <xmax>261</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>70</xmin> + <ymin>96</ymin> + <xmax>168</xmax> + <ymax>288</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>281</xmin> + <ymin>31</ymin> + <xmax>449</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>87</ymin> + <xmax>350</xmax> + <ymax>289</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/105.jpg b/PAR 152/cone_dataset/105.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b4f6c262b920a13fb34a72919827d7a23a7d931f Binary files /dev/null and b/PAR 152/cone_dataset/105.jpg differ diff --git a/PAR 152/cone_dataset/105.xml b/PAR 152/cone_dataset/105.xml new file mode 100644 index 0000000000000000000000000000000000000000..b19e2dba6aef0ea08aa7a2701e7dd202bf9a830b --- /dev/null +++ b/PAR 152/cone_dataset/105.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>105.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\105.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>445</width> + <height>594</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>57</ymin> + <xmax>182</xmax> + <ymax>569</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>44</xmin> + <ymin>53</ymin> + <xmax>237</xmax> + <ymax>479</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>133</xmin> + <ymin>66</ymin> + <xmax>296</xmax> + <ymax>409</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>204</xmin> + <ymin>62</ymin> + <xmax>333</xmax> + <ymax>364</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>277</xmin> + <ymin>43</ymin> + <xmax>397</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>330</xmin> + <ymin>33</ymin> + <xmax>429</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/106.jpg b/PAR 152/cone_dataset/106.jpg new file mode 100644 index 0000000000000000000000000000000000000000..90f1137c3fa01883e90e2e3a1aced2834b8a3621 Binary files /dev/null and b/PAR 152/cone_dataset/106.jpg differ diff --git a/PAR 152/cone_dataset/106.xml b/PAR 152/cone_dataset/106.xml new file mode 100644 index 0000000000000000000000000000000000000000..e0d0731395371c618affdf81c108809c4e1ad1fb --- /dev/null +++ b/PAR 152/cone_dataset/106.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>106.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\106.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>170</width> + <height>108</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>5</xmin> + <ymin>23</ymin> + <xmax>102</xmax> + <ymax>86</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/107.jpg b/PAR 152/cone_dataset/107.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cd6dc6f32e806e34f485db5b2874f1b6997c1635 Binary files /dev/null and b/PAR 152/cone_dataset/107.jpg differ diff --git a/PAR 152/cone_dataset/107.xml b/PAR 152/cone_dataset/107.xml new file mode 100644 index 0000000000000000000000000000000000000000..7df09c28143339caef9663afa46044eacf8aec12 --- /dev/null +++ b/PAR 152/cone_dataset/107.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>107.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\107.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>493</width> + <height>594</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>224</ymin> + <xmax>316</xmax> + <ymax>441</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/108.jpg b/PAR 152/cone_dataset/108.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d42fdba9fc565cb19b93e68e3b9a7e249b384edd Binary files /dev/null and b/PAR 152/cone_dataset/108.jpg differ diff --git a/PAR 152/cone_dataset/108.xml b/PAR 152/cone_dataset/108.xml new file mode 100644 index 0000000000000000000000000000000000000000..fd46a3df4dea17af6e9cc0341e47b4caa4151dfe --- /dev/null +++ b/PAR 152/cone_dataset/108.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>108.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\108.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>395</width> + <height>594</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>49</xmin> + <ymin>37</ymin> + <xmax>353</xmax> + <ymax>587</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/109.jpg b/PAR 152/cone_dataset/109.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2f0d11ebd8ff59aad8619347acf3b1193a388f45 Binary files /dev/null and b/PAR 152/cone_dataset/109.jpg differ diff --git a/PAR 152/cone_dataset/109.xml b/PAR 152/cone_dataset/109.xml new file mode 100644 index 0000000000000000000000000000000000000000..7c8b5113f509fd1910898a775309dbd7e37b5a93 --- /dev/null +++ b/PAR 152/cone_dataset/109.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>109.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\109.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>298</xmin> + <ymin>224</ymin> + <xmax>333</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>246</xmin> + <ymin>225</ymin> + <xmax>275</xmax> + <ymax>274</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>224</ymin> + <xmax>219</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>134</xmin> + <ymin>226</ymin> + <xmax>168</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>348</xmin> + <ymin>226</ymin> + <xmax>377</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>379</xmin> + <ymin>226</ymin> + <xmax>407</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>99</xmin> + <ymin>225</ymin> + <xmax>131</xmax> + <ymax>267</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/11.jpg b/PAR 152/cone_dataset/11.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d4587717f7889bca35ef1967bd6a750dcff60a58 Binary files /dev/null and b/PAR 152/cone_dataset/11.jpg differ diff --git a/PAR 152/cone_dataset/11.xml b/PAR 152/cone_dataset/11.xml new file mode 100644 index 0000000000000000000000000000000000000000..4f2ab8385285dd4e1750c7607e44353d17e93df8 --- /dev/null +++ b/PAR 152/cone_dataset/11.xml @@ -0,0 +1,134 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>11.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\11.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>400</xmin> + <ymin>20</ymin> + <xmax>508</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>294</xmin> + <ymin>19</ymin> + <xmax>405</xmax> + <ymax>205</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>226</xmin> + <ymin>18</ymin> + <xmax>312</xmax> + <ymax>172</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>164</xmin> + <ymin>15</ymin> + <xmax>243</xmax> + <ymax>148</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>12</ymin> + <xmax>172</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>84</xmin> + <ymin>13</ymin> + <xmax>135</xmax> + <ymax>114</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>58</xmin> + <ymin>11</ymin> + <xmax>99</xmax> + <ymax>102</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>310</xmin> + <ymin>7</ymin> + <xmax>341</xmax> + <ymax>64</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>423</xmin> + <ymin>8</ymin> + <xmax>464</xmax> + <ymax>79</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>8</ymin> + <xmax>194</xmax> + <ymax>46</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/110.jpg b/PAR 152/cone_dataset/110.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4b646a06ec36ecfa82aa3e6f5b1edebe9af803c7 Binary files /dev/null and b/PAR 152/cone_dataset/110.jpg differ diff --git a/PAR 152/cone_dataset/110.xml b/PAR 152/cone_dataset/110.xml new file mode 100644 index 0000000000000000000000000000000000000000..ca3674f25b2a0174db035fe033d5cf1191c0bf64 --- /dev/null +++ b/PAR 152/cone_dataset/110.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>110.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\110.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>413</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>61</ymin> + <xmax>269</xmax> + <ymax>324</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/111.jpg b/PAR 152/cone_dataset/111.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a4396847afc3922ec74260655a5147bd036332bc Binary files /dev/null and b/PAR 152/cone_dataset/111.jpg differ diff --git a/PAR 152/cone_dataset/111.xml b/PAR 152/cone_dataset/111.xml new file mode 100644 index 0000000000000000000000000000000000000000..c193e113c287d37b2e3e40ae61d3e357e2c7b69e --- /dev/null +++ b/PAR 152/cone_dataset/111.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>111.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\111.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>18</ymin> + <xmax>148</xmax> + <ymax>270</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/112.jpg b/PAR 152/cone_dataset/112.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aea7e0c07f1233fbd8234f66cb8eec86e463b745 Binary files /dev/null and b/PAR 152/cone_dataset/112.jpg differ diff --git a/PAR 152/cone_dataset/112.xml b/PAR 152/cone_dataset/112.xml new file mode 100644 index 0000000000000000000000000000000000000000..6b5ae328e4255250e9da0f97637d182e5bdaa2dd --- /dev/null +++ b/PAR 152/cone_dataset/112.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>112.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\112.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>233</xmin> + <ymin>186</ymin> + <xmax>303</xmax> + <ymax>304</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>31</xmin> + <ymin>194</ymin> + <xmax>108</xmax> + <ymax>312</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/113.jpg b/PAR 152/cone_dataset/113.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8a620706850e254cbba0f18b660ce4cf018d6ecd Binary files /dev/null and b/PAR 152/cone_dataset/113.jpg differ diff --git a/PAR 152/cone_dataset/113.xml b/PAR 152/cone_dataset/113.xml new file mode 100644 index 0000000000000000000000000000000000000000..f215a8926395304615b57553496ff2916527559e --- /dev/null +++ b/PAR 152/cone_dataset/113.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>113.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\113.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>166</xmin> + <ymin>210</ymin> + <xmax>206</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>212</ymin> + <xmax>95</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/114.jpg b/PAR 152/cone_dataset/114.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7876fa36c5549296476537ae24151b473365dde1 Binary files /dev/null and b/PAR 152/cone_dataset/114.jpg differ diff --git a/PAR 152/cone_dataset/114.xml b/PAR 152/cone_dataset/114.xml new file mode 100644 index 0000000000000000000000000000000000000000..63c7af1c30678797a8487a0db6c79f503546bbf2 --- /dev/null +++ b/PAR 152/cone_dataset/114.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>114.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\114.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>113</xmin> + <ymin>207</ymin> + <xmax>280</xmax> + <ymax>461</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/115.jpg b/PAR 152/cone_dataset/115.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f30c3a3e24cc899948e634351742c76762aef97f Binary files /dev/null and b/PAR 152/cone_dataset/115.jpg differ diff --git a/PAR 152/cone_dataset/115.xml b/PAR 152/cone_dataset/115.xml new file mode 100644 index 0000000000000000000000000000000000000000..bf71ccf9a473f81f5cb5cd4938f212e8ddfbd312 --- /dev/null +++ b/PAR 152/cone_dataset/115.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>115.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\115.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>384</xmin> + <ymin>235</ymin> + <xmax>439</xmax> + <ymax>316</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>459</xmin> + <ymin>234</ymin> + <xmax>507</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>213</ymin> + <xmax>197</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>194</ymin> + <xmax>61</xmax> + <ymax>230</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>144</xmin> + <ymin>209</ymin> + <xmax>173</xmax> + <ymax>259</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/116.jpg b/PAR 152/cone_dataset/116.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0b1a61b2f03768f49e4f1662b6d490d579dfd756 Binary files /dev/null and b/PAR 152/cone_dataset/116.jpg differ diff --git a/PAR 152/cone_dataset/116.xml b/PAR 152/cone_dataset/116.xml new file mode 100644 index 0000000000000000000000000000000000000000..ccb5344abb84b37663afcb63de06581f18f280e3 --- /dev/null +++ b/PAR 152/cone_dataset/116.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>116.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\116.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>412</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>193</xmin> + <ymin>216</ymin> + <xmax>281</xmax> + <ymax>397</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>139</xmin> + <ymin>183</ymin> + <xmax>217</xmax> + <ymax>331</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>245</xmin> + <ymin>138</ymin> + <xmax>334</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>132</xmin> + <ymin>117</ymin> + <xmax>186</xmax> + <ymax>236</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>188</xmin> + <ymin>114</ymin> + <xmax>241</xmax> + <ymax>210</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/117.jpg b/PAR 152/cone_dataset/117.jpg new file mode 100644 index 0000000000000000000000000000000000000000..929b1e3835c003981a2c85723d6c10655584dc11 Binary files /dev/null and b/PAR 152/cone_dataset/117.jpg differ diff --git a/PAR 152/cone_dataset/117.xml b/PAR 152/cone_dataset/117.xml new file mode 100644 index 0000000000000000000000000000000000000000..2f72f24c9191dcead939676baa69cd3f7f328c9b --- /dev/null +++ b/PAR 152/cone_dataset/117.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>117.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\117.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>156</xmin> + <ymin>83</ymin> + <xmax>255</xmax> + <ymax>278</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>82</xmin> + <ymin>36</ymin> + <xmax>170</xmax> + <ymax>206</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>256</xmin> + <ymin>74</ymin> + <xmax>359</xmax> + <ymax>251</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>158</xmin> + <ymin>14</ymin> + <xmax>241</xmax> + <ymax>160</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>246</xmin> + <ymin>28</ymin> + <xmax>338</xmax> + <ymax>175</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/118.jpg b/PAR 152/cone_dataset/118.jpg new file mode 100644 index 0000000000000000000000000000000000000000..af3dfcff6cdb9b7e9583209cea8216e4938f65ed Binary files /dev/null and b/PAR 152/cone_dataset/118.jpg differ diff --git a/PAR 152/cone_dataset/118.xml b/PAR 152/cone_dataset/118.xml new file mode 100644 index 0000000000000000000000000000000000000000..68e0cefa006ddf1881ea87bedb7a289fe153eeb3 --- /dev/null +++ b/PAR 152/cone_dataset/118.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>118.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\118.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>665</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>671</xmin> + <ymin>439</ymin> + <xmax>773</xmax> + <ymax>587</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>537</xmin> + <ymin>440</ymin> + <xmax>653</xmax> + <ymax>588</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>346</xmin> + <ymin>442</ymin> + <xmax>457</xmax> + <ymax>572</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>95</xmin> + <ymin>445</ymin> + <xmax>214</xmax> + <ymax>565</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>442</ymin> + <xmax>59</xmax> + <ymax>553</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/119.jpg b/PAR 152/cone_dataset/119.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a0495e3be0bd4ff0e0f07906c3a099da8797fed2 Binary files /dev/null and b/PAR 152/cone_dataset/119.jpg differ diff --git a/PAR 152/cone_dataset/119.xml b/PAR 152/cone_dataset/119.xml new file mode 100644 index 0000000000000000000000000000000000000000..4f383288670b2a8db0cd41847b974c8dfc09fc78 --- /dev/null +++ b/PAR 152/cone_dataset/119.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>119.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\119.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>197</ymin> + <xmax>127</xmax> + <ymax>303</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>101</xmin> + <ymin>188</ymin> + <xmax>151</xmax> + <ymax>276</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/12.jpg b/PAR 152/cone_dataset/12.jpg new file mode 100644 index 0000000000000000000000000000000000000000..82412f5b9cf30baed42b8bf5095aa5e5c3f15381 Binary files /dev/null and b/PAR 152/cone_dataset/12.jpg differ diff --git a/PAR 152/cone_dataset/12.xml b/PAR 152/cone_dataset/12.xml new file mode 100644 index 0000000000000000000000000000000000000000..9f58bcc29b2a73e0c6219b1587ee49c1d6b9bb4c --- /dev/null +++ b/PAR 152/cone_dataset/12.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>12.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\12.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>115</ymin> + <xmax>340</xmax> + <ymax>426</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>104</xmin> + <ymin>175</ymin> + <xmax>192</xmax> + <ymax>314</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>74</xmin> + <ymin>196</ymin> + <xmax>118</xmax> + <ymax>289</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/120.jpg b/PAR 152/cone_dataset/120.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dbd1b526509aadc7ed5f947cc5ebe6f084aedc1b Binary files /dev/null and b/PAR 152/cone_dataset/120.jpg differ diff --git a/PAR 152/cone_dataset/120.xml b/PAR 152/cone_dataset/120.xml new file mode 100644 index 0000000000000000000000000000000000000000..1c0cab18d7ae5a65a8e117f40bedd15886b4bf49 --- /dev/null +++ b/PAR 152/cone_dataset/120.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>120.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\120.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>506</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>213</ymin> + <xmax>314</xmax> + <ymax>308</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/121.jpg b/PAR 152/cone_dataset/121.jpg new file mode 100644 index 0000000000000000000000000000000000000000..865719aaa22dada261f0bcd2258246e9710535e3 Binary files /dev/null and b/PAR 152/cone_dataset/121.jpg differ diff --git a/PAR 152/cone_dataset/121.xml b/PAR 152/cone_dataset/121.xml new file mode 100644 index 0000000000000000000000000000000000000000..944761234557b7ea96673f2349f6a8b12108ca93 --- /dev/null +++ b/PAR 152/cone_dataset/121.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>121.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\121.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>84</xmin> + <ymin>150</ymin> + <xmax>175</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>214</xmin> + <ymin>117</ymin> + <xmax>233</xmax> + <ymax>153</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>281</xmin> + <ymin>121</ymin> + <xmax>314</xmax> + <ymax>174</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>259</xmin> + <ymin>117</ymin> + <xmax>283</xmax> + <ymax>159</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>235</xmin> + <ymin>118</ymin> + <xmax>252</xmax> + <ymax>151</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>117</ymin> + <xmax>199</xmax> + <ymax>137</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/122.jpg b/PAR 152/cone_dataset/122.jpg new file mode 100644 index 0000000000000000000000000000000000000000..89e170917e0d48164f90581bd1a9aabf691af34e Binary files /dev/null and b/PAR 152/cone_dataset/122.jpg differ diff --git a/PAR 152/cone_dataset/122.xml b/PAR 152/cone_dataset/122.xml new file mode 100644 index 0000000000000000000000000000000000000000..b9d947a59c2202afa2f9fb04dd505affde1fb881 --- /dev/null +++ b/PAR 152/cone_dataset/122.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>122.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\122.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>510</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>377</ymin> + <xmax>186</xmax> + <ymax>445</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>251</xmin> + <ymin>357</ymin> + <xmax>263</xmax> + <ymax>392</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/123.jpg b/PAR 152/cone_dataset/123.jpg new file mode 100644 index 0000000000000000000000000000000000000000..08bc6f4fc4af17feb909db1b6dd7f2e093d7bdcf Binary files /dev/null and b/PAR 152/cone_dataset/123.jpg differ diff --git a/PAR 152/cone_dataset/123.xml b/PAR 152/cone_dataset/123.xml new file mode 100644 index 0000000000000000000000000000000000000000..0eb8bd7ef2d788a9d84a48dac0cb01ec3e2a1c28 --- /dev/null +++ b/PAR 152/cone_dataset/123.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>123.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\123.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>51</xmin> + <ymin>44</ymin> + <xmax>123</xmax> + <ymax>240</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/124.jpg b/PAR 152/cone_dataset/124.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b3ce2f1217c628809e00db20e5bce24983091e6 Binary files /dev/null and b/PAR 152/cone_dataset/124.jpg differ diff --git a/PAR 152/cone_dataset/124.xml b/PAR 152/cone_dataset/124.xml new file mode 100644 index 0000000000000000000000000000000000000000..b5fe822327a216ca72025717584bca76c40d97b1 --- /dev/null +++ b/PAR 152/cone_dataset/124.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>124.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\124.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>125</xmin> + <ymin>259</ymin> + <xmax>225</xmax> + <ymax>397</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/125.jpg b/PAR 152/cone_dataset/125.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a361e399665eb15e12d8b0f6ffebcfa8e78836cd Binary files /dev/null and b/PAR 152/cone_dataset/125.jpg differ diff --git a/PAR 152/cone_dataset/125.xml b/PAR 152/cone_dataset/125.xml new file mode 100644 index 0000000000000000000000000000000000000000..245b581fc7f24b23d4a358f830bea9315307d9fc --- /dev/null +++ b/PAR 152/cone_dataset/125.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>125.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\125.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>195</xmin> + <ymin>93</ymin> + <xmax>309</xmax> + <ymax>264</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/126.jpg b/PAR 152/cone_dataset/126.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ae566fa972545bad4b0cafcf8b6eb478c96a63fe Binary files /dev/null and b/PAR 152/cone_dataset/126.jpg differ diff --git a/PAR 152/cone_dataset/126.xml b/PAR 152/cone_dataset/126.xml new file mode 100644 index 0000000000000000000000000000000000000000..1d15e09d77114e104f70ae17f1e1ccabdc3f98d1 --- /dev/null +++ b/PAR 152/cone_dataset/126.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>126.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\126.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>12</xmin> + <ymin>31</ymin> + <xmax>317</xmax> + <ymax>477</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/127.jpg b/PAR 152/cone_dataset/127.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3c384b8ef14a07741777d8467d0f3f01ea296d92 Binary files /dev/null and b/PAR 152/cone_dataset/127.jpg differ diff --git a/PAR 152/cone_dataset/127.xml b/PAR 152/cone_dataset/127.xml new file mode 100644 index 0000000000000000000000000000000000000000..53f02dd33dc696122921082e84b4b2bc94b896b5 --- /dev/null +++ b/PAR 152/cone_dataset/127.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>127.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\127.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>529</width> + <height>327</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>50</xmin> + <ymin>154</ymin> + <xmax>154</xmax> + <ymax>320</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>147</xmin> + <ymin>125</ymin> + <xmax>241</xmax> + <ymax>279</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>225</xmin> + <ymin>104</ymin> + <xmax>312</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>286</xmin> + <ymin>87</ymin> + <xmax>367</xmax> + <ymax>226</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>73</ymin> + <xmax>408</xmax> + <ymax>202</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>379</xmin> + <ymin>59</ymin> + <xmax>445</xmax> + <ymax>185</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>414</xmin> + <ymin>46</ymin> + <xmax>478</xmax> + <ymax>163</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>459</xmin> + <ymin>31</ymin> + <xmax>519</xmax> + <ymax>145</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>497</xmin> + <ymin>21</ymin> + <xmax>529</xmax> + <ymax>127</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/128.jpg b/PAR 152/cone_dataset/128.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9f8ee6d4c11cb00f8801d6fecf48e58e470e7c86 Binary files /dev/null and b/PAR 152/cone_dataset/128.jpg differ diff --git a/PAR 152/cone_dataset/128.xml b/PAR 152/cone_dataset/128.xml new file mode 100644 index 0000000000000000000000000000000000000000..fab7b12143c8c8b859dd49a6354cee9bab868c80 --- /dev/null +++ b/PAR 152/cone_dataset/128.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>128.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\128.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>52</ymin> + <xmax>296</xmax> + <ymax>462</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/129.jpg b/PAR 152/cone_dataset/129.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0d6c00d96e51c81f7ee267f53b9eb89720532d1f Binary files /dev/null and b/PAR 152/cone_dataset/129.jpg differ diff --git a/PAR 152/cone_dataset/129.xml b/PAR 152/cone_dataset/129.xml new file mode 100644 index 0000000000000000000000000000000000000000..ad637f0742b7c7f9f8b3d9d7b89c664781a70572 --- /dev/null +++ b/PAR 152/cone_dataset/129.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>129.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\129.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>314</xmin> + <ymin>202</ymin> + <xmax>386</xmax> + <ymax>318</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>93</xmin> + <ymin>207</ymin> + <xmax>158</xmax> + <ymax>313</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>403</xmin> + <ymin>217</ymin> + <xmax>446</xmax> + <ymax>285</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>276</xmin> + <ymin>215</ymin> + <xmax>322</xmax> + <ymax>291</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>223</ymin> + <xmax>47</xmax> + <ymax>273</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/13.jpg b/PAR 152/cone_dataset/13.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dd1bb05d815945a7fffeadabdcf251cf41b577ff Binary files /dev/null and b/PAR 152/cone_dataset/13.jpg differ diff --git a/PAR 152/cone_dataset/13.xml b/PAR 152/cone_dataset/13.xml new file mode 100644 index 0000000000000000000000000000000000000000..fab6df7a28fc5d5b6c3a24e81fe756167fa26c62 --- /dev/null +++ b/PAR 152/cone_dataset/13.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>13.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\13.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>233</xmin> + <ymin>132</ymin> + <xmax>374</xmax> + <ymax>368</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>95</ymin> + <xmax>258</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>89</xmin> + <ymin>79</ymin> + <xmax>176</xmax> + <ymax>219</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>33</xmin> + <ymin>65</ymin> + <xmax>108</xmax> + <ymax>183</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/130.jpg b/PAR 152/cone_dataset/130.jpg new file mode 100644 index 0000000000000000000000000000000000000000..479508971ee955463799ad75b5feeb321b66e63b Binary files /dev/null and b/PAR 152/cone_dataset/130.jpg differ diff --git a/PAR 152/cone_dataset/130.xml b/PAR 152/cone_dataset/130.xml new file mode 100644 index 0000000000000000000000000000000000000000..9949338f42a422895792c5c8759efe6b463f8c8a --- /dev/null +++ b/PAR 152/cone_dataset/130.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>130.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\130.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>396</width> + <height>430</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>143</xmin> + <ymin>48</ymin> + <xmax>305</xmax> + <ymax>280</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/131.jpg b/PAR 152/cone_dataset/131.jpg new file mode 100644 index 0000000000000000000000000000000000000000..64d169561db4552fbd7ce3af3e8c89ea91a249c0 Binary files /dev/null and b/PAR 152/cone_dataset/131.jpg differ diff --git a/PAR 152/cone_dataset/131.xml b/PAR 152/cone_dataset/131.xml new file mode 100644 index 0000000000000000000000000000000000000000..57720ed77f73671baeeda38413d6433a2e4a450c --- /dev/null +++ b/PAR 152/cone_dataset/131.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>131.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\131.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>375</width> + <height>458</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>40</ymin> + <xmax>296</xmax> + <ymax>407</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/132.jpg b/PAR 152/cone_dataset/132.jpg new file mode 100644 index 0000000000000000000000000000000000000000..91f37aedcc3629db74dae46d6144df4f3e54537e Binary files /dev/null and b/PAR 152/cone_dataset/132.jpg differ diff --git a/PAR 152/cone_dataset/132.xml b/PAR 152/cone_dataset/132.xml new file mode 100644 index 0000000000000000000000000000000000000000..94d0d12a648cdf7994145766520f81a43f8f7d9b --- /dev/null +++ b/PAR 152/cone_dataset/132.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>132.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\132.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>63</ymin> + <xmax>198</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>139</ymin> + <xmax>380</xmax> + <ymax>300</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/133.jpg b/PAR 152/cone_dataset/133.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3e20f026c2ce8d90c06d48db7e4e1d616e3e2da4 Binary files /dev/null and b/PAR 152/cone_dataset/133.jpg differ diff --git a/PAR 152/cone_dataset/133.xml b/PAR 152/cone_dataset/133.xml new file mode 100644 index 0000000000000000000000000000000000000000..286952000d06ca9843d44ac6927b25023ccbbd99 --- /dev/null +++ b/PAR 152/cone_dataset/133.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>133.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\133.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>9</ymin> + <xmax>343</xmax> + <ymax>399</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/134.jpg b/PAR 152/cone_dataset/134.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f88e78bd50d67eacdae68a139e2ebc590614a378 Binary files /dev/null and b/PAR 152/cone_dataset/134.jpg differ diff --git a/PAR 152/cone_dataset/134.xml b/PAR 152/cone_dataset/134.xml new file mode 100644 index 0000000000000000000000000000000000000000..6e85e037a6cbddd243198021b6c5613493aba001 --- /dev/null +++ b/PAR 152/cone_dataset/134.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>134.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\134.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>87</xmin> + <ymin>6</ymin> + <xmax>331</xmax> + <ymax>409</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/135.jpg b/PAR 152/cone_dataset/135.jpg new file mode 100644 index 0000000000000000000000000000000000000000..377db54a5ff54c1a336f0d681539cf3b72d3e477 Binary files /dev/null and b/PAR 152/cone_dataset/135.jpg differ diff --git a/PAR 152/cone_dataset/135.xml b/PAR 152/cone_dataset/135.xml new file mode 100644 index 0000000000000000000000000000000000000000..47ff1be42fc3e7096f279a7e5b6c0be952c624b1 --- /dev/null +++ b/PAR 152/cone_dataset/135.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>135.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\135.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>142</xmin> + <ymin>133</ymin> + <xmax>285</xmax> + <ymax>303</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>323</xmin> + <ymin>84</ymin> + <xmax>443</xmax> + <ymax>213</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>111</ymin> + <xmax>171</xmax> + <ymax>245</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/136.jpg b/PAR 152/cone_dataset/136.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9450c66428b75490742f64aa49e9336e647c0cd2 Binary files /dev/null and b/PAR 152/cone_dataset/136.jpg differ diff --git a/PAR 152/cone_dataset/136.xml b/PAR 152/cone_dataset/136.xml new file mode 100644 index 0000000000000000000000000000000000000000..deea19282e6f408d6d097797be297c58181f5578 --- /dev/null +++ b/PAR 152/cone_dataset/136.xml @@ -0,0 +1,110 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>136.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\136.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>837</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>485</xmin> + <ymin>480</ymin> + <xmax>568</xmax> + <ymax>621</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>570</xmin> + <ymin>412</ymin> + <xmax>639</xmax> + <ymax>528</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>644</xmin> + <ymin>361</ymin> + <xmax>704</xmax> + <ymax>451</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>714</xmin> + <ymin>308</ymin> + <xmax>764</xmax> + <ymax>385</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>773</xmin> + <ymin>273</ymin> + <xmax>817</xmax> + <ymax>334</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>615</ymin> + <xmax>390</xmax> + <ymax>848</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>126</xmin> + <ymin>707</ymin> + <xmax>284</xmax> + <ymax>985</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>391</xmin> + <ymin>642</ymin> + <xmax>536</xmax> + <ymax>766</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/137.jpg b/PAR 152/cone_dataset/137.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5ea3555212980a9a5e49999f6e94c863ba876f05 Binary files /dev/null and b/PAR 152/cone_dataset/137.jpg differ diff --git a/PAR 152/cone_dataset/137.xml b/PAR 152/cone_dataset/137.xml new file mode 100644 index 0000000000000000000000000000000000000000..5bc04c6a295eeb36113a32e575defe7db9ea83dc --- /dev/null +++ b/PAR 152/cone_dataset/137.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>137.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\137.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>117</xmin> + <ymin>168</ymin> + <xmax>303</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>349</xmin> + <ymin>90</ymin> + <xmax>492</xmax> + <ymax>297</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>283</xmin> + <ymin>100</ymin> + <xmax>365</xmax> + <ymax>259</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/138.jpg b/PAR 152/cone_dataset/138.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5387d06aecc6a705827ea8a41f516adc2a8c0f82 Binary files /dev/null and b/PAR 152/cone_dataset/138.jpg differ diff --git a/PAR 152/cone_dataset/138.xml b/PAR 152/cone_dataset/138.xml new file mode 100644 index 0000000000000000000000000000000000000000..161be36dfd6b0e9ec41456dd28229e5ae5a9aa3f --- /dev/null +++ b/PAR 152/cone_dataset/138.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>138.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\138.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>381</width> + <height>454</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>20</ymin> + <xmax>367</xmax> + <ymax>434</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/139.jpg b/PAR 152/cone_dataset/139.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e229ee1c6fb5049866625ded90073c26df5fbecf Binary files /dev/null and b/PAR 152/cone_dataset/139.jpg differ diff --git a/PAR 152/cone_dataset/139.xml b/PAR 152/cone_dataset/139.xml new file mode 100644 index 0000000000000000000000000000000000000000..3a9b7b1544a11328c9dfb89ea523ad1c8c7cf6de --- /dev/null +++ b/PAR 152/cone_dataset/139.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>139.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\139.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>340</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>264</ymin> + <xmax>120</xmax> + <ymax>460</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>4</xmin> + <ymin>251</ymin> + <xmax>55</xmax> + <ymax>385</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>208</xmin> + <ymin>262</ymin> + <xmax>314</xmax> + <ymax>460</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>269</xmin> + <ymin>244</ymin> + <xmax>338</xmax> + <ymax>379</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/14.jpg b/PAR 152/cone_dataset/14.jpg new file mode 100644 index 0000000000000000000000000000000000000000..82412f5b9cf30baed42b8bf5095aa5e5c3f15381 Binary files /dev/null and b/PAR 152/cone_dataset/14.jpg differ diff --git a/PAR 152/cone_dataset/14.xml b/PAR 152/cone_dataset/14.xml new file mode 100644 index 0000000000000000000000000000000000000000..ba95eccc852d8f09b42e811e6cfa8410276402e8 --- /dev/null +++ b/PAR 152/cone_dataset/14.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>14.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\14.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>118</xmin> + <ymin>113</ymin> + <xmax>338</xmax> + <ymax>423</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>95</xmin> + <ymin>175</ymin> + <xmax>190</xmax> + <ymax>313</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>78</xmin> + <ymin>196</ymin> + <xmax>120</xmax> + <ymax>283</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/140.jpg b/PAR 152/cone_dataset/140.jpg new file mode 100644 index 0000000000000000000000000000000000000000..24c8addfdc85c4cdcad71731689bcdfe00942d12 Binary files /dev/null and b/PAR 152/cone_dataset/140.jpg differ diff --git a/PAR 152/cone_dataset/140.xml b/PAR 152/cone_dataset/140.xml new file mode 100644 index 0000000000000000000000000000000000000000..80e5d6637db504bc0d76836d7136b1569ee4ac43 --- /dev/null +++ b/PAR 152/cone_dataset/140.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>140.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\140.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>183</xmin> + <ymin>166</ymin> + <xmax>314</xmax> + <ymax>388</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/141.jpg b/PAR 152/cone_dataset/141.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5de0b10d1627f61e7528d6b5325e3e4733e7b497 Binary files /dev/null and b/PAR 152/cone_dataset/141.jpg differ diff --git a/PAR 152/cone_dataset/141.xml b/PAR 152/cone_dataset/141.xml new file mode 100644 index 0000000000000000000000000000000000000000..a5a1a653ae50d0e4f05c31bd97a2d3d6a43228ed --- /dev/null +++ b/PAR 152/cone_dataset/141.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>141.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\141.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>49</xmin> + <ymin>45</ymin> + <xmax>260</xmax> + <ymax>459</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/142.jpg b/PAR 152/cone_dataset/142.jpg new file mode 100644 index 0000000000000000000000000000000000000000..735e21e65353c8cd3b610714239739b08441ccca Binary files /dev/null and b/PAR 152/cone_dataset/142.jpg differ diff --git a/PAR 152/cone_dataset/142.xml b/PAR 152/cone_dataset/142.xml new file mode 100644 index 0000000000000000000000000000000000000000..362b7d5e41b8420a34ddfd59cd4f31fb6a4a67f7 --- /dev/null +++ b/PAR 152/cone_dataset/142.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>142.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\142.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>291</ymin> + <xmax>192</xmax> + <ymax>369</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/143.jpg b/PAR 152/cone_dataset/143.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7ca6552e5e7c57a6c699da7236addae19293c80a Binary files /dev/null and b/PAR 152/cone_dataset/143.jpg differ diff --git a/PAR 152/cone_dataset/143.xml b/PAR 152/cone_dataset/143.xml new file mode 100644 index 0000000000000000000000000000000000000000..cad7584590ab5dc9fb94d7a6a2496ca9f5745b95 --- /dev/null +++ b/PAR 152/cone_dataset/143.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>143.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\143.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>155</ymin> + <xmax>304</xmax> + <ymax>477</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/144.jpg b/PAR 152/cone_dataset/144.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4a94d2310e30f9a89e57c534aec31585b0e581c1 Binary files /dev/null and b/PAR 152/cone_dataset/144.jpg differ diff --git a/PAR 152/cone_dataset/144.xml b/PAR 152/cone_dataset/144.xml new file mode 100644 index 0000000000000000000000000000000000000000..457d404573f9d702d11de873691e974b98440eae --- /dev/null +++ b/PAR 152/cone_dataset/144.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>144.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\144.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>158</xmin> + <ymin>178</ymin> + <xmax>203</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>339</ymin> + <xmax>230</xmax> + <ymax>416</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>158</xmin> + <ymin>154</ymin> + <xmax>184</xmax> + <ymax>196</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>139</ymin> + <xmax>196</xmax> + <ymax>153</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/145.jpg b/PAR 152/cone_dataset/145.jpg new file mode 100644 index 0000000000000000000000000000000000000000..02fb790b1876b308d8e7f3d1ea94f2868543a1be Binary files /dev/null and b/PAR 152/cone_dataset/145.jpg differ diff --git a/PAR 152/cone_dataset/145.xml b/PAR 152/cone_dataset/145.xml new file mode 100644 index 0000000000000000000000000000000000000000..134a8ba3917ac98619e1e797b1a2cee2ff22b332 --- /dev/null +++ b/PAR 152/cone_dataset/145.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>145.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\145.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>506</width> + <height>341</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>45</ymin> + <xmax>442</xmax> + <ymax>337</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/146.jpg b/PAR 152/cone_dataset/146.jpg new file mode 100644 index 0000000000000000000000000000000000000000..78159f2e458b771b5beb4869ffbedc81385533db Binary files /dev/null and b/PAR 152/cone_dataset/146.jpg differ diff --git a/PAR 152/cone_dataset/146.xml b/PAR 152/cone_dataset/146.xml new file mode 100644 index 0000000000000000000000000000000000000000..74b85a02752cbdb8feec841ecf1019d5f1e19910 --- /dev/null +++ b/PAR 152/cone_dataset/146.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>146.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\146.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>336</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>119</ymin> + <xmax>336</xmax> + <ymax>509</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/147.jpg b/PAR 152/cone_dataset/147.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7e10982a0c453f90bb81366ff7aa5e1397e2644c Binary files /dev/null and b/PAR 152/cone_dataset/147.jpg differ diff --git a/PAR 152/cone_dataset/147.xml b/PAR 152/cone_dataset/147.xml new file mode 100644 index 0000000000000000000000000000000000000000..482aa8a09094d5941bb6a34274f4fb355a08528b --- /dev/null +++ b/PAR 152/cone_dataset/147.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>147.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\147.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>347</width> + <height>491</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>40</xmin> + <ymin>126</ymin> + <xmax>240</xmax> + <ymax>450</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/148.jpg b/PAR 152/cone_dataset/148.jpg new file mode 100644 index 0000000000000000000000000000000000000000..48cbd9952e14d2b7c7b69e9cf78ec4e1ff8d4a1f Binary files /dev/null and b/PAR 152/cone_dataset/148.jpg differ diff --git a/PAR 152/cone_dataset/148.xml b/PAR 152/cone_dataset/148.xml new file mode 100644 index 0000000000000000000000000000000000000000..bd5eab860bb705b27b17467cb17edaec9c9abcfe --- /dev/null +++ b/PAR 152/cone_dataset/148.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>148.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\148.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>10</xmin> + <ymin>16</ymin> + <xmax>175</xmax> + <ymax>327</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>18</ymin> + <xmax>507</xmax> + <ymax>328</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/149.jpg b/PAR 152/cone_dataset/149.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3314ed2b67ded8ec1ea2b8ed287e4bac72e75186 Binary files /dev/null and b/PAR 152/cone_dataset/149.jpg differ diff --git a/PAR 152/cone_dataset/149.xml b/PAR 152/cone_dataset/149.xml new file mode 100644 index 0000000000000000000000000000000000000000..cca92371bac194de8c02bf0f9096e1d625a62a31 --- /dev/null +++ b/PAR 152/cone_dataset/149.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>149.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\149.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>10</xmin> + <ymin>100</ymin> + <xmax>94</xmax> + <ymax>216</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>131</xmin> + <ymin>104</ymin> + <xmax>221</xmax> + <ymax>214</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>483</xmin> + <ymin>140</ymin> + <xmax>509</xmax> + <ymax>212</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/15.jpg b/PAR 152/cone_dataset/15.jpg new file mode 100644 index 0000000000000000000000000000000000000000..90ef67dca44063a2eaada849f5ecb271bf67f229 Binary files /dev/null and b/PAR 152/cone_dataset/15.jpg differ diff --git a/PAR 152/cone_dataset/15.xml b/PAR 152/cone_dataset/15.xml new file mode 100644 index 0000000000000000000000000000000000000000..019d4deb362b19a63e57c1c0f8449949b51aea10 --- /dev/null +++ b/PAR 152/cone_dataset/15.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>15.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\15.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>49</ymin> + <xmax>357</xmax> + <ymax>287</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>381</xmin> + <ymin>166</ymin> + <xmax>449</xmax> + <ymax>263</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/150.jpg b/PAR 152/cone_dataset/150.jpg new file mode 100644 index 0000000000000000000000000000000000000000..93b977b1f8b516f4df2a60653e0324ae17ed0788 Binary files /dev/null and b/PAR 152/cone_dataset/150.jpg differ diff --git a/PAR 152/cone_dataset/150.xml b/PAR 152/cone_dataset/150.xml new file mode 100644 index 0000000000000000000000000000000000000000..2995b80b8d861da6272db85aa08ee34553c693f5 --- /dev/null +++ b/PAR 152/cone_dataset/150.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>150.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\150.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>112</xmin> + <ymin>97</ymin> + <xmax>244</xmax> + <ymax>345</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/151.jpg b/PAR 152/cone_dataset/151.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d4c00af736330984eaf97ef3f4f868e2e4372562 Binary files /dev/null and b/PAR 152/cone_dataset/151.jpg differ diff --git a/PAR 152/cone_dataset/151.xml b/PAR 152/cone_dataset/151.xml new file mode 100644 index 0000000000000000000000000000000000000000..2034df9012fc38b48bb7dfa3f2bb51240c62716b --- /dev/null +++ b/PAR 152/cone_dataset/151.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>151.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\151.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>190</xmin> + <ymin>89</ymin> + <xmax>270</xmax> + <ymax>217</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>236</xmin> + <ymin>36</ymin> + <xmax>289</xmax> + <ymax>123</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>244</ymin> + <xmax>146</xmax> + <ymax>359</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>11</ymin> + <xmax>291</xmax> + <ymax>77</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/152.jpg b/PAR 152/cone_dataset/152.jpg new file mode 100644 index 0000000000000000000000000000000000000000..06c9fd5df48060c8b4fa6f32683295f5db1eab24 Binary files /dev/null and b/PAR 152/cone_dataset/152.jpg differ diff --git a/PAR 152/cone_dataset/152.xml b/PAR 152/cone_dataset/152.xml new file mode 100644 index 0000000000000000000000000000000000000000..d0171f2627166e579829b798383327e9d0931963 --- /dev/null +++ b/PAR 152/cone_dataset/152.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>152.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\152.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>274</xmin> + <ymin>57</ymin> + <xmax>391</xmax> + <ymax>196</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/153.jpg b/PAR 152/cone_dataset/153.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d54a287026558bd6139804e35315c442c1bbf3bf Binary files /dev/null and b/PAR 152/cone_dataset/153.jpg differ diff --git a/PAR 152/cone_dataset/153.xml b/PAR 152/cone_dataset/153.xml new file mode 100644 index 0000000000000000000000000000000000000000..396945bb8fd7f1780c6c73acb7155eaa7710ac4e --- /dev/null +++ b/PAR 152/cone_dataset/153.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>153.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\153.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>91</xmin> + <ymin>172</ymin> + <xmax>172</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>319</xmin> + <ymin>174</ymin> + <xmax>422</xmax> + <ymax>333</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>422</xmin> + <ymin>156</ymin> + <xmax>452</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>152</ymin> + <xmax>374</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>487</xmin> + <ymin>156</ymin> + <xmax>509</xmax> + <ymax>204</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/154.jpg b/PAR 152/cone_dataset/154.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ad6353f5b23ce13a29e1cf876bf9a745408fde78 Binary files /dev/null and b/PAR 152/cone_dataset/154.jpg differ diff --git a/PAR 152/cone_dataset/154.xml b/PAR 152/cone_dataset/154.xml new file mode 100644 index 0000000000000000000000000000000000000000..2756ff8e2a1174a065188a6337e012b39a2d7889 --- /dev/null +++ b/PAR 152/cone_dataset/154.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>154.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\154.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>110</xmin> + <ymin>68</ymin> + <xmax>178</xmax> + <ymax>179</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>217</xmin> + <ymin>180</ymin> + <xmax>340</xmax> + <ymax>299</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>135</xmin> + <ymin>143</ymin> + <xmax>224</xmax> + <ymax>244</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/155.jpg b/PAR 152/cone_dataset/155.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aef3841892159501ee808847ea22c4e2ad7e09c9 Binary files /dev/null and b/PAR 152/cone_dataset/155.jpg differ diff --git a/PAR 152/cone_dataset/155.xml b/PAR 152/cone_dataset/155.xml new file mode 100644 index 0000000000000000000000000000000000000000..82bc0d357a80d7177d2a19235eddea2f11f8b47b --- /dev/null +++ b/PAR 152/cone_dataset/155.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>155.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\155.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>120</xmin> + <ymin>67</ymin> + <xmax>222</xmax> + <ymax>253</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>59</ymin> + <xmax>102</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>296</xmin> + <ymin>77</ymin> + <xmax>400</xmax> + <ymax>253</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>74</ymin> + <xmax>479</xmax> + <ymax>260</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/156.jpg b/PAR 152/cone_dataset/156.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4d66846e14441b98c2bdc9786b527335a3493e56 Binary files /dev/null and b/PAR 152/cone_dataset/156.jpg differ diff --git a/PAR 152/cone_dataset/156.xml b/PAR 152/cone_dataset/156.xml new file mode 100644 index 0000000000000000000000000000000000000000..80b4b0b170dcf0594ab1c5fb073c9121da2887fc --- /dev/null +++ b/PAR 152/cone_dataset/156.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>156.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\156.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>340</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>207</xmin> + <ymin>93</ymin> + <xmax>315</xmax> + <ymax>266</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/157.jpg b/PAR 152/cone_dataset/157.jpg new file mode 100644 index 0000000000000000000000000000000000000000..091b880b24983c8bd34e3c054d81c47b6cdb5186 Binary files /dev/null and b/PAR 152/cone_dataset/157.jpg differ diff --git a/PAR 152/cone_dataset/157.xml b/PAR 152/cone_dataset/157.xml new file mode 100644 index 0000000000000000000000000000000000000000..c523b4e61c43637dd169408366a01f17565cc314 --- /dev/null +++ b/PAR 152/cone_dataset/157.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>157.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\157.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>552</width> + <height>312</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>47</xmin> + <ymin>1</ymin> + <xmax>313</xmax> + <ymax>265</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/158.jpg b/PAR 152/cone_dataset/158.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2e82f8a498c79dc93f15feeff8ac4c0b48de9f97 Binary files /dev/null and b/PAR 152/cone_dataset/158.jpg differ diff --git a/PAR 152/cone_dataset/158.xml b/PAR 152/cone_dataset/158.xml new file mode 100644 index 0000000000000000000000000000000000000000..dcf256b50a50c21ed6e789b7297dc1884986fca5 --- /dev/null +++ b/PAR 152/cone_dataset/158.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>158.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\158.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1023</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>683</xmin> + <ymin>420</ymin> + <xmax>965</xmax> + <ymax>934</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/159.jpg b/PAR 152/cone_dataset/159.jpg new file mode 100644 index 0000000000000000000000000000000000000000..98fa2d3c3473c37f33e43358236fd770137acb2c Binary files /dev/null and b/PAR 152/cone_dataset/159.jpg differ diff --git a/PAR 152/cone_dataset/159.xml b/PAR 152/cone_dataset/159.xml new file mode 100644 index 0000000000000000000000000000000000000000..c72ca86fe18915da04d2312730fdf0d89cf6ba6a --- /dev/null +++ b/PAR 152/cone_dataset/159.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>159.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\159.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>243</ymin> + <xmax>150</xmax> + <ymax>460</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>184</ymin> + <xmax>237</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>152</ymin> + <xmax>270</xmax> + <ymax>235</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>139</ymin> + <xmax>285</xmax> + <ymax>203</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>128</ymin> + <xmax>300</xmax> + <ymax>180</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>290</xmin> + <ymin>126</ymin> + <xmax>307</xmax> + <ymax>165</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/16.jpg b/PAR 152/cone_dataset/16.jpg new file mode 100644 index 0000000000000000000000000000000000000000..703d882532a61c920092776e8fd47f3fd6c6c6e4 Binary files /dev/null and b/PAR 152/cone_dataset/16.jpg differ diff --git a/PAR 152/cone_dataset/16.xml b/PAR 152/cone_dataset/16.xml new file mode 100644 index 0000000000000000000000000000000000000000..1d7ea701eadfbe5c49172c2da5e89e8bfb6d2b93 --- /dev/null +++ b/PAR 152/cone_dataset/16.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>16.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\16.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>101</ymin> + <xmax>215</xmax> + <ymax>332</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/160.jpg b/PAR 152/cone_dataset/160.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a010832db78fb36adaa830a736d0fd0d6dcfd2d2 Binary files /dev/null and b/PAR 152/cone_dataset/160.jpg differ diff --git a/PAR 152/cone_dataset/160.xml b/PAR 152/cone_dataset/160.xml new file mode 100644 index 0000000000000000000000000000000000000000..088a0165cf948d1d1f5e8cab48e0295fdcb36244 --- /dev/null +++ b/PAR 152/cone_dataset/160.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>160.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\160.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>147</xmin> + <ymin>7</ymin> + <xmax>258</xmax> + <ymax>161</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/161.jpg b/PAR 152/cone_dataset/161.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b5e38a85bfe2c0b588a1a41e5f5b41f4442481b3 Binary files /dev/null and b/PAR 152/cone_dataset/161.jpg differ diff --git a/PAR 152/cone_dataset/161.xml b/PAR 152/cone_dataset/161.xml new file mode 100644 index 0000000000000000000000000000000000000000..4cf83e77f85bfbfbd18a977104831a97931cb6ff --- /dev/null +++ b/PAR 152/cone_dataset/161.xml @@ -0,0 +1,254 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>161.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\161.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>125</ymin> + <xmax>321</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>41</xmin> + <ymin>126</ymin> + <xmax>139</xmax> + <ymax>322</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>89</ymin> + <xmax>233</xmax> + <ymax>213</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>25</xmin> + <ymin>89</ymin> + <xmax>74</xmax> + <ymax>213</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>50</ymin> + <xmax>119</xmax> + <ymax>128</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>45</ymin> + <xmax>53</xmax> + <ymax>119</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>394</xmin> + <ymin>121</ymin> + <xmax>508</xmax> + <ymax>308</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>467</xmin> + <ymin>88</ymin> + <xmax>508</xmax> + <ymax>202</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>346</xmin> + <ymin>75</ymin> + <xmax>413</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>269</xmin> + <ymin>66</ymin> + <xmax>320</xmax> + <ymax>162</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>199</xmin> + <ymin>62</ymin> + <xmax>252</xmax> + <ymax>148</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>136</xmin> + <ymin>55</ymin> + <xmax>191</xmax> + <ymax>136</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>19</ymin> + <xmax>136</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>18</ymin> + <xmax>91</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>24</xmin> + <ymin>19</ymin> + <xmax>52</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>22</ymin> + <xmax>256</xmax> + <ymax>72</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>185</xmin> + <ymin>20</ymin> + <xmax>213</xmax> + <ymax>73</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>367</xmin> + <ymin>24</ymin> + <xmax>396</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>413</xmin> + <ymin>23</ymin> + <xmax>448</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>468</xmin> + <ymin>23</ymin> + <xmax>501</xmax> + <ymax>80</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/162.jpg b/PAR 152/cone_dataset/162.jpg new file mode 100644 index 0000000000000000000000000000000000000000..505960f9097d1559129a0e12896096a37e93b035 Binary files /dev/null and b/PAR 152/cone_dataset/162.jpg differ diff --git a/PAR 152/cone_dataset/162.xml b/PAR 152/cone_dataset/162.xml new file mode 100644 index 0000000000000000000000000000000000000000..a9a71716e4d3ae0c327b3a79fb905601a9d949ed --- /dev/null +++ b/PAR 152/cone_dataset/162.xml @@ -0,0 +1,110 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>162.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\162.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>254</ymin> + <xmax>57</xmax> + <ymax>330</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>254</ymin> + <xmax>102</xmax> + <ymax>332</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>252</ymin> + <xmax>145</xmax> + <ymax>331</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>142</xmin> + <ymin>252</ymin> + <xmax>186</xmax> + <ymax>326</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>186</xmin> + <ymin>249</ymin> + <xmax>227</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>248</ymin> + <xmax>268</xmax> + <ymax>326</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>261</xmin> + <ymin>251</ymin> + <xmax>305</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>300</xmin> + <ymin>250</ymin> + <xmax>338</xmax> + <ymax>321</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/163.jpg b/PAR 152/cone_dataset/163.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a3829a87450a952900eec7354185c64654c0a08b Binary files /dev/null and b/PAR 152/cone_dataset/163.jpg differ diff --git a/PAR 152/cone_dataset/163.xml b/PAR 152/cone_dataset/163.xml new file mode 100644 index 0000000000000000000000000000000000000000..bbb8815c44081a3f5f46509800216c10ce99cff7 --- /dev/null +++ b/PAR 152/cone_dataset/163.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>163.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\163.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>153</xmin> + <ymin>404</ymin> + <xmax>194</xmax> + <ymax>486</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>399</ymin> + <xmax>152</xmax> + <ymax>479</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>187</xmin> + <ymin>402</ymin> + <xmax>230</xmax> + <ymax>480</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>213</xmin> + <ymin>401</ymin> + <xmax>251</xmax> + <ymax>470</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>95</xmin> + <ymin>401</ymin> + <xmax>122</xmax> + <ymax>464</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>185</xmin> + <ymin>385</ymin> + <xmax>205</xmax> + <ymax>445</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/164.jpg b/PAR 152/cone_dataset/164.jpg new file mode 100644 index 0000000000000000000000000000000000000000..025c84855bc4779cafa1f4ea6a1c31c65953f76c Binary files /dev/null and b/PAR 152/cone_dataset/164.jpg differ diff --git a/PAR 152/cone_dataset/164.xml b/PAR 152/cone_dataset/164.xml new file mode 100644 index 0000000000000000000000000000000000000000..5a62d5b830c0c9e5e7ee205893ed390ad94b3ea3 --- /dev/null +++ b/PAR 152/cone_dataset/164.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>164.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\164.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>201</xmin> + <ymin>144</ymin> + <xmax>331</xmax> + <ymax>406</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/165.jpg b/PAR 152/cone_dataset/165.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0ac5ff0e69abdbba1b955797d943e014ad90465c Binary files /dev/null and b/PAR 152/cone_dataset/165.jpg differ diff --git a/PAR 152/cone_dataset/165.xml b/PAR 152/cone_dataset/165.xml new file mode 100644 index 0000000000000000000000000000000000000000..a21a1fc6de49057e86ca36ef62260800b66aafd6 --- /dev/null +++ b/PAR 152/cone_dataset/165.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>165.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\165.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>200</xmin> + <ymin>59</ymin> + <xmax>239</xmax> + <ymax>156</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>90</xmin> + <ymin>175</ymin> + <xmax>162</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>245</xmin> + <ymin>21</ymin> + <xmax>271</xmax> + <ymax>76</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>456</xmin> + <ymin>112</ymin> + <xmax>494</xmax> + <ymax>234</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>50</ymin> + <xmax>426</xmax> + <ymax>131</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>356</xmin> + <ymin>12</ymin> + <xmax>377</xmax> + <ymax>61</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>344</xmin> + <ymin>1</ymin> + <xmax>357</xmax> + <ymax>32</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/166.jpg b/PAR 152/cone_dataset/166.jpg new file mode 100644 index 0000000000000000000000000000000000000000..77e5432e7bbb421d9ae0e6da2606cf508d14c3b2 Binary files /dev/null and b/PAR 152/cone_dataset/166.jpg differ diff --git a/PAR 152/cone_dataset/166.xml b/PAR 152/cone_dataset/166.xml new file mode 100644 index 0000000000000000000000000000000000000000..c6fe5e9e0ef2e6be4efeb145aadc3a7c25437837 --- /dev/null +++ b/PAR 152/cone_dataset/166.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>166.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\166.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>32</ymin> + <xmax>396</xmax> + <ymax>243</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/167.jpg b/PAR 152/cone_dataset/167.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8a9814e9c9df5572ecf31ef5f206b5753d61253c Binary files /dev/null and b/PAR 152/cone_dataset/167.jpg differ diff --git a/PAR 152/cone_dataset/167.xml b/PAR 152/cone_dataset/167.xml new file mode 100644 index 0000000000000000000000000000000000000000..5494f8e6c259de10b84ac6e6316eb818d701e5f4 --- /dev/null +++ b/PAR 152/cone_dataset/167.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>167.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\167.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>512</width> + <height>336</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>7</xmin> + <ymin>150</ymin> + <xmax>95</xmax> + <ymax>298</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>136</xmin> + <ymin>152</ymin> + <xmax>205</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>338</xmin> + <ymin>155</ymin> + <xmax>416</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>412</xmin> + <ymin>158</ymin> + <xmax>496</xmax> + <ymax>297</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/168.jpg b/PAR 152/cone_dataset/168.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a899503782fe6140e055e4ee5dbfedb0f6569759 Binary files /dev/null and b/PAR 152/cone_dataset/168.jpg differ diff --git a/PAR 152/cone_dataset/168.xml b/PAR 152/cone_dataset/168.xml new file mode 100644 index 0000000000000000000000000000000000000000..ee3ba82bcba8909d3e316f20a573f9dd3b938c52 --- /dev/null +++ b/PAR 152/cone_dataset/168.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>168.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\168.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>768</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>421</ymin> + <xmax>471</xmax> + <ymax>901</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/169.jpg b/PAR 152/cone_dataset/169.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b0d61bf2708201480161ba1fa9dc68f62ffb22c7 Binary files /dev/null and b/PAR 152/cone_dataset/169.jpg differ diff --git a/PAR 152/cone_dataset/169.xml b/PAR 152/cone_dataset/169.xml new file mode 100644 index 0000000000000000000000000000000000000000..a746a6ab81a0f3dc3a075134069c968eb5fda4fc --- /dev/null +++ b/PAR 152/cone_dataset/169.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>169.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\169.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>304</ymin> + <xmax>174</xmax> + <ymax>474</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>160</xmin> + <ymin>217</ymin> + <xmax>246</xmax> + <ymax>356</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>238</xmin> + <ymin>164</ymin> + <xmax>320</xmax> + <ymax>296</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/17.jpg b/PAR 152/cone_dataset/17.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f4ac7318edb7e8b07d4cc4055d21b9d8040ce91b Binary files /dev/null and b/PAR 152/cone_dataset/17.jpg differ diff --git a/PAR 152/cone_dataset/17.xml b/PAR 152/cone_dataset/17.xml new file mode 100644 index 0000000000000000000000000000000000000000..0917b58198ec496f543687e542bc21fee5f174e0 --- /dev/null +++ b/PAR 152/cone_dataset/17.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>17.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\17.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>63</xmin> + <ymin>14</ymin> + <xmax>294</xmax> + <ymax>490</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/170.jpg b/PAR 152/cone_dataset/170.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5f40f3a9b42b69d3de097a0156287f1f7e54ab6d Binary files /dev/null and b/PAR 152/cone_dataset/170.jpg differ diff --git a/PAR 152/cone_dataset/170.xml b/PAR 152/cone_dataset/170.xml new file mode 100644 index 0000000000000000000000000000000000000000..93e0899c02040dfe35e4c9bbb47cf8290127bc8a --- /dev/null +++ b/PAR 152/cone_dataset/170.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>170.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\170.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>237</xmin> + <ymin>169</ymin> + <xmax>296</xmax> + <ymax>283</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/171.jpg b/PAR 152/cone_dataset/171.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7226ae6c9ee9f01a6358fb55dffbc1bffdb387f5 Binary files /dev/null and b/PAR 152/cone_dataset/171.jpg differ diff --git a/PAR 152/cone_dataset/171.xml b/PAR 152/cone_dataset/171.xml new file mode 100644 index 0000000000000000000000000000000000000000..9fe9e59f7b1d484e8db47f98978f1a4c6dca804c --- /dev/null +++ b/PAR 152/cone_dataset/171.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>171.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\171.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>140</ymin> + <xmax>336</xmax> + <ymax>413</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/172.jpg b/PAR 152/cone_dataset/172.jpg new file mode 100644 index 0000000000000000000000000000000000000000..36364509b598ce31a9a137c4d8f9493577372452 Binary files /dev/null and b/PAR 152/cone_dataset/172.jpg differ diff --git a/PAR 152/cone_dataset/172.xml b/PAR 152/cone_dataset/172.xml new file mode 100644 index 0000000000000000000000000000000000000000..c50e9a089ae8591ba296db14db7561216445147b --- /dev/null +++ b/PAR 152/cone_dataset/172.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>172.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\172.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>204</xmin> + <ymin>343</ymin> + <xmax>298</xmax> + <ymax>477</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>2</ymin> + <xmax>105</xmax> + <ymax>47</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/173.jpg b/PAR 152/cone_dataset/173.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5a98cdbcded6afe7b6bd5ae46962512403335213 Binary files /dev/null and b/PAR 152/cone_dataset/173.jpg differ diff --git a/PAR 152/cone_dataset/173.xml b/PAR 152/cone_dataset/173.xml new file mode 100644 index 0000000000000000000000000000000000000000..ee6b1c23b4ce4d5606f0fd6fcd31d829b23c22ec --- /dev/null +++ b/PAR 152/cone_dataset/173.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>173.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\173.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>557</width> + <height>311</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>61</xmin> + <ymin>52</ymin> + <xmax>124</xmax> + <ymax>139</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>413</xmin> + <ymin>45</ymin> + <xmax>474</xmax> + <ymax>131</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/174.jpg b/PAR 152/cone_dataset/174.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7e260787f9b2ebe0802eddd07d30e0c0d3195dfa Binary files /dev/null and b/PAR 152/cone_dataset/174.jpg differ diff --git a/PAR 152/cone_dataset/174.xml b/PAR 152/cone_dataset/174.xml new file mode 100644 index 0000000000000000000000000000000000000000..c48ea16e82e6e32945184b4a124fd199ffbdcc9e --- /dev/null +++ b/PAR 152/cone_dataset/174.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>174.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\174.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>511</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>232</xmin> + <ymin>226</ymin> + <xmax>308</xmax> + <ymax>334</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>481</xmin> + <ymin>213</ymin> + <xmax>511</xmax> + <ymax>306</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/175.jpg b/PAR 152/cone_dataset/175.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9066101cf307fc53ade4cdb318329c85841b8e87 Binary files /dev/null and b/PAR 152/cone_dataset/175.jpg differ diff --git a/PAR 152/cone_dataset/175.xml b/PAR 152/cone_dataset/175.xml new file mode 100644 index 0000000000000000000000000000000000000000..300f112bd22eee858f11f2ce4cd8f4483ae9941d --- /dev/null +++ b/PAR 152/cone_dataset/175.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>175.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\175.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>100</xmin> + <ymin>223</ymin> + <xmax>263</xmax> + <ymax>439</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>51</xmin> + <ymin>26</ymin> + <xmax>258</xmax> + <ymax>188</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/176.jpg b/PAR 152/cone_dataset/176.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4ba75b112680b148634fd2b60ee2994ab231f0fb Binary files /dev/null and b/PAR 152/cone_dataset/176.jpg differ diff --git a/PAR 152/cone_dataset/176.xml b/PAR 152/cone_dataset/176.xml new file mode 100644 index 0000000000000000000000000000000000000000..b5ff0834e0b3e5b442d87eae4106a92641ede84b --- /dev/null +++ b/PAR 152/cone_dataset/176.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>176.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\176.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>83</xmin> + <ymin>170</ymin> + <xmax>169</xmax> + <ymax>302</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/177.jpg b/PAR 152/cone_dataset/177.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b3746c625648295b70a87f78c2e02a2ace8a52f0 Binary files /dev/null and b/PAR 152/cone_dataset/177.jpg differ diff --git a/PAR 152/cone_dataset/177.xml b/PAR 152/cone_dataset/177.xml new file mode 100644 index 0000000000000000000000000000000000000000..2db0a0aa4944d025381e9c230f64877116ff7e77 --- /dev/null +++ b/PAR 152/cone_dataset/177.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>177.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\177.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>360</xmin> + <ymin>314</ymin> + <xmax>649</xmax> + <ymax>734</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/178.jpg b/PAR 152/cone_dataset/178.jpg new file mode 100644 index 0000000000000000000000000000000000000000..53dbe6ca95812684a7b209e840c9b9d698ae703c Binary files /dev/null and b/PAR 152/cone_dataset/178.jpg differ diff --git a/PAR 152/cone_dataset/178.xml b/PAR 152/cone_dataset/178.xml new file mode 100644 index 0000000000000000000000000000000000000000..5d23130a2887603ed8eb5caaee9298b92a7dd6f1 --- /dev/null +++ b/PAR 152/cone_dataset/178.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>178.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\178.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>371</width> + <height>464</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>232</xmin> + <ymin>235</ymin> + <xmax>347</xmax> + <ymax>416</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/179.jpg b/PAR 152/cone_dataset/179.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a8cc559a6c1356a74f5d294f108eee2366467529 Binary files /dev/null and b/PAR 152/cone_dataset/179.jpg differ diff --git a/PAR 152/cone_dataset/179.xml b/PAR 152/cone_dataset/179.xml new file mode 100644 index 0000000000000000000000000000000000000000..bd6fa60952d69400e9a9eabbfd9a21411bd15951 --- /dev/null +++ b/PAR 152/cone_dataset/179.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>179.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\179.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>512</width> + <height>335</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>198</xmin> + <ymin>204</ymin> + <xmax>279</xmax> + <ymax>333</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>356</xmin> + <ymin>161</ymin> + <xmax>432</xmax> + <ymax>279</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>397</xmin> + <ymin>109</ymin> + <xmax>455</xmax> + <ymax>211</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>375</xmin> + <ymin>48</ymin> + <xmax>420</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>250</xmin> + <ymin>8</ymin> + <xmax>290</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>325</xmin> + <ymin>58</ymin> + <xmax>375</xmax> + <ymax>100</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>29</ymin> + <xmax>197</xmax> + <ymax>97</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>43</xmin> + <ymin>83</ymin> + <xmax>103</xmax> + <ymax>177</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>91</xmin> + <ymin>202</ymin> + <xmax>165</xmax> + <ymax>286</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/18.jpg b/PAR 152/cone_dataset/18.jpg new file mode 100644 index 0000000000000000000000000000000000000000..137d4ed358a82804098b3e63ce8f1fcf85124ded Binary files /dev/null and b/PAR 152/cone_dataset/18.jpg differ diff --git a/PAR 152/cone_dataset/18.xml b/PAR 152/cone_dataset/18.xml new file mode 100644 index 0000000000000000000000000000000000000000..e68fd03950d2b0ce96d1a6c738dfa1b43c73d52e --- /dev/null +++ b/PAR 152/cone_dataset/18.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>18.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\18.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>82</ymin> + <xmax>164</xmax> + <ymax>499</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>1</ymin> + <xmax>169</xmax> + <ymax>221</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>148</xmin> + <ymin>1</ymin> + <xmax>227</xmax> + <ymax>128</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/180.jpg b/PAR 152/cone_dataset/180.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7b5658c234354a15c87f98ee8dd60c36e877fb46 Binary files /dev/null and b/PAR 152/cone_dataset/180.jpg differ diff --git a/PAR 152/cone_dataset/180.xml b/PAR 152/cone_dataset/180.xml new file mode 100644 index 0000000000000000000000000000000000000000..345f2e21caf998cfc9fe9f7767720238915be188 --- /dev/null +++ b/PAR 152/cone_dataset/180.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>180.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\180.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>326</width> + <height>527</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>27</xmin> + <ymin>209</ymin> + <xmax>154</xmax> + <ymax>481</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/181.jpg b/PAR 152/cone_dataset/181.jpg new file mode 100644 index 0000000000000000000000000000000000000000..11e3bb0cdae4e089078f7df2dc97461d72633e76 Binary files /dev/null and b/PAR 152/cone_dataset/181.jpg differ diff --git a/PAR 152/cone_dataset/181.xml b/PAR 152/cone_dataset/181.xml new file mode 100644 index 0000000000000000000000000000000000000000..1cb0ae43293c25570965af86ba919c3e2aaa893b --- /dev/null +++ b/PAR 152/cone_dataset/181.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>181.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\181.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>156</xmin> + <ymin>366</ymin> + <xmax>201</xmax> + <ymax>463</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>265</xmin> + <ymin>372</ymin> + <xmax>306</xmax> + <ymax>467</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/182.jpg b/PAR 152/cone_dataset/182.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cd5978f179400ccb4696ed50c07536c509b9508d Binary files /dev/null and b/PAR 152/cone_dataset/182.jpg differ diff --git a/PAR 152/cone_dataset/182.xml b/PAR 152/cone_dataset/182.xml new file mode 100644 index 0000000000000000000000000000000000000000..3da8b19d8b5d939ef76cabf3acf8c98c3611427d --- /dev/null +++ b/PAR 152/cone_dataset/182.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>182.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\182.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>175</xmin> + <ymin>42</ymin> + <xmax>292</xmax> + <ymax>277</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/183.jpg b/PAR 152/cone_dataset/183.jpg new file mode 100644 index 0000000000000000000000000000000000000000..68aaefaeff0afc8f324d69e56a69cd78986a1d7a Binary files /dev/null and b/PAR 152/cone_dataset/183.jpg differ diff --git a/PAR 152/cone_dataset/183.xml b/PAR 152/cone_dataset/183.xml new file mode 100644 index 0000000000000000000000000000000000000000..d2e7a0d193db3e42bcc0f507bccac9e3d3c25f5c --- /dev/null +++ b/PAR 152/cone_dataset/183.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>183.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\183.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>344</width> + <height>502</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>151</ymin> + <xmax>282</xmax> + <ymax>426</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/184.jpg b/PAR 152/cone_dataset/184.jpg new file mode 100644 index 0000000000000000000000000000000000000000..137d4ed358a82804098b3e63ce8f1fcf85124ded Binary files /dev/null and b/PAR 152/cone_dataset/184.jpg differ diff --git a/PAR 152/cone_dataset/184.xml b/PAR 152/cone_dataset/184.xml new file mode 100644 index 0000000000000000000000000000000000000000..12c9406e42884d12edac7ee08ae37054a8f4d8d5 --- /dev/null +++ b/PAR 152/cone_dataset/184.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>184.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\184.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>82</ymin> + <xmax>165</xmax> + <ymax>502</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>82</xmin> + <ymin>1</ymin> + <xmax>165</xmax> + <ymax>219</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>151</xmin> + <ymin>1</ymin> + <xmax>225</xmax> + <ymax>129</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/185.jpg b/PAR 152/cone_dataset/185.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f825fc5cf9f69c10b9595ad810d20f10ee637680 Binary files /dev/null and b/PAR 152/cone_dataset/185.jpg differ diff --git a/PAR 152/cone_dataset/185.xml b/PAR 152/cone_dataset/185.xml new file mode 100644 index 0000000000000000000000000000000000000000..2ae38611e918f26c577d6d5a55ec633ea7e49f96 --- /dev/null +++ b/PAR 152/cone_dataset/185.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>185.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\185.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>506</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>251</xmin> + <ymin>152</ymin> + <xmax>302</xmax> + <ymax>235</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>246</xmin> + <ymin>149</ymin> + <xmax>272</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>242</xmin> + <ymin>145</ymin> + <xmax>258</xmax> + <ymax>184</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/186.jpg b/PAR 152/cone_dataset/186.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5654cf886f0d44f5f43ee40f9a15683c8a5c0706 Binary files /dev/null and b/PAR 152/cone_dataset/186.jpg differ diff --git a/PAR 152/cone_dataset/186.xml b/PAR 152/cone_dataset/186.xml new file mode 100644 index 0000000000000000000000000000000000000000..1b9caedcfd4b05dd79f03205add860bcbbbb4794 --- /dev/null +++ b/PAR 152/cone_dataset/186.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>186.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\186.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>205</ymin> + <xmax>284</xmax> + <ymax>423</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/187.jpg b/PAR 152/cone_dataset/187.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ec74d13270a513f15c37d09ebb087a75e9555e29 Binary files /dev/null and b/PAR 152/cone_dataset/187.jpg differ diff --git a/PAR 152/cone_dataset/187.xml b/PAR 152/cone_dataset/187.xml new file mode 100644 index 0000000000000000000000000000000000000000..41fac624c56a6863c634e82e4b65467988bad2fb --- /dev/null +++ b/PAR 152/cone_dataset/187.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>187.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\187.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>96</xmin> + <ymin>64</ymin> + <xmax>232</xmax> + <ymax>283</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/188.jpg b/PAR 152/cone_dataset/188.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f8041c5ea153e8fd9136097da848730b78a06749 Binary files /dev/null and b/PAR 152/cone_dataset/188.jpg differ diff --git a/PAR 152/cone_dataset/188.xml b/PAR 152/cone_dataset/188.xml new file mode 100644 index 0000000000000000000000000000000000000000..86fe7763385afe643821471b39f8de442412e285 --- /dev/null +++ b/PAR 152/cone_dataset/188.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>188.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\188.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>350</width> + <height>490</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>60</xmin> + <ymin>36</ymin> + <xmax>291</xmax> + <ymax>457</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/189.jpg b/PAR 152/cone_dataset/189.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5e309ebc1ea1342283a2d6c35f6cf24fdb3c6b19 Binary files /dev/null and b/PAR 152/cone_dataset/189.jpg differ diff --git a/PAR 152/cone_dataset/189.xml b/PAR 152/cone_dataset/189.xml new file mode 100644 index 0000000000000000000000000000000000000000..331abb6107d0602e667d296443c3b6607dcd758e --- /dev/null +++ b/PAR 152/cone_dataset/189.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>189.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\189.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>336</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>351</xmin> + <ymin>214</ymin> + <xmax>417</xmax> + <ymax>300</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/19.jpg b/PAR 152/cone_dataset/19.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b9fbe5d2024e13bcecd606c29c13e89403c123d Binary files /dev/null and b/PAR 152/cone_dataset/19.jpg differ diff --git a/PAR 152/cone_dataset/19.xml b/PAR 152/cone_dataset/19.xml new file mode 100644 index 0000000000000000000000000000000000000000..9a03aee7b077abf3840bfca95d273e625ff36863 --- /dev/null +++ b/PAR 152/cone_dataset/19.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>19.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\19.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>48</ymin> + <xmax>258</xmax> + <ymax>314</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>168</xmin> + <ymin>59</ymin> + <xmax>232</xmax> + <ymax>189</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>201</xmin> + <ymin>61</ymin> + <xmax>251</xmax> + <ymax>147</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>224</xmin> + <ymin>63</ymin> + <xmax>255</xmax> + <ymax>116</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/190.jpg b/PAR 152/cone_dataset/190.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d2ce68d9b18fdc4d8909ce6debe126ad21ec9238 Binary files /dev/null and b/PAR 152/cone_dataset/190.jpg differ diff --git a/PAR 152/cone_dataset/190.xml b/PAR 152/cone_dataset/190.xml new file mode 100644 index 0000000000000000000000000000000000000000..cfb3760d0a0fce8a8be2782a0a593eef288e78f0 --- /dev/null +++ b/PAR 152/cone_dataset/190.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>190.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\190.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>163</xmin> + <ymin>64</ymin> + <xmax>294</xmax> + <ymax>269</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/191.jpg b/PAR 152/cone_dataset/191.jpg new file mode 100644 index 0000000000000000000000000000000000000000..177c061f72d2f47bf448baf52e05fd126ee9e2f9 Binary files /dev/null and b/PAR 152/cone_dataset/191.jpg differ diff --git a/PAR 152/cone_dataset/191.xml b/PAR 152/cone_dataset/191.xml new file mode 100644 index 0000000000000000000000000000000000000000..67436a77eb4983aa4da37b27feebada147c9e6e6 --- /dev/null +++ b/PAR 152/cone_dataset/191.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>191.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\191.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>205</ymin> + <xmax>314</xmax> + <ymax>330</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/192.jpg b/PAR 152/cone_dataset/192.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a97bdb190855974ba9c5acded6ce48bf44a68452 Binary files /dev/null and b/PAR 152/cone_dataset/192.jpg differ diff --git a/PAR 152/cone_dataset/192.xml b/PAR 152/cone_dataset/192.xml new file mode 100644 index 0000000000000000000000000000000000000000..929c2f4d3fa28ab750eb31485ae95a3aed8e05f0 --- /dev/null +++ b/PAR 152/cone_dataset/192.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>192.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\192.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>74</xmin> + <ymin>76</ymin> + <xmax>171</xmax> + <ymax>260</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/193.jpg b/PAR 152/cone_dataset/193.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9619a5e785f2ae0316a7b08a629529876b266897 Binary files /dev/null and b/PAR 152/cone_dataset/193.jpg differ diff --git a/PAR 152/cone_dataset/193.xml b/PAR 152/cone_dataset/193.xml new file mode 100644 index 0000000000000000000000000000000000000000..e6d4abad87e78d4e9b771f883fec3f22ce068989 --- /dev/null +++ b/PAR 152/cone_dataset/193.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>193.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\193.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>116</xmin> + <ymin>52</ymin> + <xmax>210</xmax> + <ymax>276</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/194.jpg b/PAR 152/cone_dataset/194.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cc34ec1c76bb646ff905916d1ae753683a48068e Binary files /dev/null and b/PAR 152/cone_dataset/194.jpg differ diff --git a/PAR 152/cone_dataset/194.xml b/PAR 152/cone_dataset/194.xml new file mode 100644 index 0000000000000000000000000000000000000000..5634147d3a799331d03b94a21cfbabbdf869ee5c --- /dev/null +++ b/PAR 152/cone_dataset/194.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>194.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\194.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>1</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>28</ymin> + <xmax>243</xmax> + <ymax>158</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>267</xmin> + <ymin>150</ymin> + <xmax>359</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>151</xmin> + <ymin>1</ymin> + <xmax>189</xmax> + <ymax>85</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/195.jpg b/PAR 152/cone_dataset/195.jpg new file mode 100644 index 0000000000000000000000000000000000000000..efd660f7362b535c03ab26991da95b4626ead170 Binary files /dev/null and b/PAR 152/cone_dataset/195.jpg differ diff --git a/PAR 152/cone_dataset/195.xml b/PAR 152/cone_dataset/195.xml new file mode 100644 index 0000000000000000000000000000000000000000..07914ca283422ac22138fe03f02c0644b962d834 --- /dev/null +++ b/PAR 152/cone_dataset/195.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>195.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\195.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>133</xmin> + <ymin>102</ymin> + <xmax>235</xmax> + <ymax>257</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/196.jpg b/PAR 152/cone_dataset/196.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b61c7543d8887c3422610b9367bc2dd0a2eff32 Binary files /dev/null and b/PAR 152/cone_dataset/196.jpg differ diff --git a/PAR 152/cone_dataset/196.xml b/PAR 152/cone_dataset/196.xml new file mode 100644 index 0000000000000000000000000000000000000000..dce0d9a6d7da98e8ecbd92b5af297b3c8dead642 --- /dev/null +++ b/PAR 152/cone_dataset/196.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>196.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\196.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>74</xmin> + <ymin>115</ymin> + <xmax>177</xmax> + <ymax>315</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>213</xmin> + <ymin>130</ymin> + <xmax>256</xmax> + <ymax>196</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/197.jpg b/PAR 152/cone_dataset/197.jpg new file mode 100644 index 0000000000000000000000000000000000000000..62aed578b6926f876904ba0854cc07c881ba9ab6 Binary files /dev/null and b/PAR 152/cone_dataset/197.jpg differ diff --git a/PAR 152/cone_dataset/197.xml b/PAR 152/cone_dataset/197.xml new file mode 100644 index 0000000000000000000000000000000000000000..88b9f33b48426890a95bccf97d48eab8f04303a9 --- /dev/null +++ b/PAR 152/cone_dataset/197.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>197.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\197.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>184</xmin> + <ymin>63</ymin> + <xmax>289</xmax> + <ymax>256</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/198.jpg b/PAR 152/cone_dataset/198.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3d1225e8131b8139e0cc01b501bfb2df90ab5a59 Binary files /dev/null and b/PAR 152/cone_dataset/198.jpg differ diff --git a/PAR 152/cone_dataset/198.xml b/PAR 152/cone_dataset/198.xml new file mode 100644 index 0000000000000000000000000000000000000000..78e9cbbf303b8ac941773990a7fcece877cce0d1 --- /dev/null +++ b/PAR 152/cone_dataset/198.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>198.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\198.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>180</xmin> + <ymin>306</ymin> + <xmax>244</xmax> + <ymax>412</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/199.jpg b/PAR 152/cone_dataset/199.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7e10982a0c453f90bb81366ff7aa5e1397e2644c Binary files /dev/null and b/PAR 152/cone_dataset/199.jpg differ diff --git a/PAR 152/cone_dataset/199.xml b/PAR 152/cone_dataset/199.xml new file mode 100644 index 0000000000000000000000000000000000000000..8803d31f786dd0ac7956a86029d9ae971d57930d --- /dev/null +++ b/PAR 152/cone_dataset/199.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>199.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\199.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>347</width> + <height>491</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>45</xmin> + <ymin>128</ymin> + <xmax>240</xmax> + <ymax>453</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/2.jpg b/PAR 152/cone_dataset/2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4020175b16c33a75fa04c4b2644388486a0a7cba Binary files /dev/null and b/PAR 152/cone_dataset/2.jpg differ diff --git a/PAR 152/cone_dataset/2.xml b/PAR 152/cone_dataset/2.xml new file mode 100644 index 0000000000000000000000000000000000000000..4f130d65a364588d87b526e4cb544e5206e50ec3 --- /dev/null +++ b/PAR 152/cone_dataset/2.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>2.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\2.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>397</width> + <height>432</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>63</xmin> + <ymin>36</ymin> + <xmax>341</xmax> + <ymax>374</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/20.jpg b/PAR 152/cone_dataset/20.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9066101cf307fc53ade4cdb318329c85841b8e87 Binary files /dev/null and b/PAR 152/cone_dataset/20.jpg differ diff --git a/PAR 152/cone_dataset/20.xml b/PAR 152/cone_dataset/20.xml new file mode 100644 index 0000000000000000000000000000000000000000..9cf2d551759cd629cfcc0fafd64c93a3cc67cfaa --- /dev/null +++ b/PAR 152/cone_dataset/20.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>20.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\20.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>222</ymin> + <xmax>266</xmax> + <ymax>432</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>55</xmin> + <ymin>27</ymin> + <xmax>259</xmax> + <ymax>191</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/200.jpg b/PAR 152/cone_dataset/200.jpg new file mode 100644 index 0000000000000000000000000000000000000000..77bf49165b4049c10816316e75f2f33b170f7ad8 Binary files /dev/null and b/PAR 152/cone_dataset/200.jpg differ diff --git a/PAR 152/cone_dataset/200.xml b/PAR 152/cone_dataset/200.xml new file mode 100644 index 0000000000000000000000000000000000000000..f03057c7db1ca714d0a170a4003286424a041eef --- /dev/null +++ b/PAR 152/cone_dataset/200.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>200.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\200.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>123</xmin> + <ymin>257</ymin> + <xmax>226</xmax> + <ymax>399</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/201.jpg b/PAR 152/cone_dataset/201.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c065130322855e89138fcac64b97ae687d06434 Binary files /dev/null and b/PAR 152/cone_dataset/201.jpg differ diff --git a/PAR 152/cone_dataset/201.xml b/PAR 152/cone_dataset/201.xml new file mode 100644 index 0000000000000000000000000000000000000000..097e67470ec816cc3265961bd71ba480116908bc --- /dev/null +++ b/PAR 152/cone_dataset/201.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>201.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\201.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>360</xmin> + <ymin>41</ymin> + <xmax>411</xmax> + <ymax>120</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>473</xmin> + <ymin>32</ymin> + <xmax>507</xmax> + <ymax>119</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>306</xmin> + <ymin>37</ymin> + <xmax>350</xmax> + <ymax>107</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>318</xmin> + <ymin>2</ymin> + <xmax>356</xmax> + <ymax>59</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>401</xmin> + <ymin>1</ymin> + <xmax>436</xmax> + <ymax>27</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>296</xmin> + <ymin>22</ymin> + <xmax>312</xmax> + <ymax>88</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/202.jpg b/PAR 152/cone_dataset/202.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c15fcad3f347e27c50fe0512002737810a7a2904 Binary files /dev/null and b/PAR 152/cone_dataset/202.jpg differ diff --git a/PAR 152/cone_dataset/202.xml b/PAR 152/cone_dataset/202.xml new file mode 100644 index 0000000000000000000000000000000000000000..6c71d6d8fb6a8e6e330cfe051f5e1708c7517edc --- /dev/null +++ b/PAR 152/cone_dataset/202.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>202.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\202.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>259</xmin> + <ymin>117</ymin> + <xmax>388</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>365</xmin> + <ymin>149</ymin> + <xmax>509</xmax> + <ymax>339</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/203.jpg b/PAR 152/cone_dataset/203.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d245687b65d857ce12138abd7182b8c86b4e0a03 Binary files /dev/null and b/PAR 152/cone_dataset/203.jpg differ diff --git a/PAR 152/cone_dataset/203.xml b/PAR 152/cone_dataset/203.xml new file mode 100644 index 0000000000000000000000000000000000000000..d9d68e8000dfdc5f0dce5970ebd87dc32ebf2a2f --- /dev/null +++ b/PAR 152/cone_dataset/203.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>203.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\203.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>553</width> + <height>312</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>306</xmin> + <ymin>52</ymin> + <xmax>449</xmax> + <ymax>189</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/204.jpg b/PAR 152/cone_dataset/204.jpg new file mode 100644 index 0000000000000000000000000000000000000000..65159409ae6dd3ca8ff930366f80ba79842571b7 Binary files /dev/null and b/PAR 152/cone_dataset/204.jpg differ diff --git a/PAR 152/cone_dataset/204.xml b/PAR 152/cone_dataset/204.xml new file mode 100644 index 0000000000000000000000000000000000000000..08873bbff8f5021aa7e738b86e1e1f1427ef8752 --- /dev/null +++ b/PAR 152/cone_dataset/204.xml @@ -0,0 +1,266 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>204.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\204.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>267</ymin> + <xmax>185</xmax> + <ymax>295</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>337</xmin> + <ymin>279</ymin> + <xmax>360</xmax> + <ymax>322</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>264</ymin> + <xmax>326</xmax> + <ymax>292</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>127</xmin> + <ymin>281</ymin> + <xmax>150</xmax> + <ymax>323</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>280</ymin> + <xmax>125</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>461</xmin> + <ymin>260</ymin> + <xmax>479</xmax> + <ymax>288</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>433</xmin> + <ymin>254</ymin> + <xmax>449</xmax> + <ymax>280</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>412</xmin> + <ymin>253</ymin> + <xmax>426</xmax> + <ymax>275</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>395</xmin> + <ymin>250</ymin> + <xmax>407</xmax> + <ymax>271</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>371</xmin> + <ymin>247</ymin> + <xmax>381</xmax> + <ymax>265</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>494</xmin> + <ymin>250</ymin> + <xmax>507</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>456</xmin> + <ymin>291</ymin> + <xmax>493</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>318</xmin> + <ymin>298</ymin> + <xmax>337</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>170</xmin> + <ymin>296</ymin> + <xmax>190</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>194</xmin> + <ymin>259</ymin> + <xmax>205</xmax> + <ymax>281</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>363</xmin> + <ymin>244</ymin> + <xmax>369</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>295</xmin> + <ymin>254</ymin> + <xmax>302</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>151</xmin> + <ymin>272</ymin> + <xmax>169</xmax> + <ymax>306</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>20</xmin> + <ymin>301</ymin> + <xmax>43</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>62</xmin> + <ymin>290</ymin> + <xmax>84</xmax> + <ymax>339</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>365</xmin> + <ymin>297</ymin> + <xmax>387</xmax> + <ymax>339</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/205.jpg b/PAR 152/cone_dataset/205.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a9d316bac6ac8a3b51cd631e812fc160f62b1615 Binary files /dev/null and b/PAR 152/cone_dataset/205.jpg differ diff --git a/PAR 152/cone_dataset/205.xml b/PAR 152/cone_dataset/205.xml new file mode 100644 index 0000000000000000000000000000000000000000..606bf836a24adb8e2af4f8a15eb3b48f3be35bcd --- /dev/null +++ b/PAR 152/cone_dataset/205.xml @@ -0,0 +1,134 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>205.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\205.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>10</xmin> + <ymin>234</ymin> + <xmax>45</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>63</xmin> + <ymin>234</ymin> + <xmax>95</xmax> + <ymax>271</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>114</xmin> + <ymin>234</ymin> + <xmax>146</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>234</ymin> + <xmax>195</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>216</xmin> + <ymin>231</ymin> + <xmax>245</xmax> + <ymax>267</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>233</ymin> + <xmax>296</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>316</xmin> + <ymin>232</ymin> + <xmax>347</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>367</xmin> + <ymin>230</ymin> + <xmax>399</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>419</xmin> + <ymin>230</ymin> + <xmax>451</xmax> + <ymax>265</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>469</xmin> + <ymin>231</ymin> + <xmax>504</xmax> + <ymax>265</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/206.jpg b/PAR 152/cone_dataset/206.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9066101cf307fc53ade4cdb318329c85841b8e87 Binary files /dev/null and b/PAR 152/cone_dataset/206.jpg differ diff --git a/PAR 152/cone_dataset/206.xml b/PAR 152/cone_dataset/206.xml new file mode 100644 index 0000000000000000000000000000000000000000..427a09ee1338b4a3516c8b2adf7ce255f9cdc190 --- /dev/null +++ b/PAR 152/cone_dataset/206.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>206.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\206.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>104</xmin> + <ymin>218</ymin> + <xmax>263</xmax> + <ymax>435</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>54</xmin> + <ymin>30</ymin> + <xmax>259</xmax> + <ymax>190</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/207.jpg b/PAR 152/cone_dataset/207.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d33b3283369fb734acd8372ab42dcd7a9aa492b4 Binary files /dev/null and b/PAR 152/cone_dataset/207.jpg differ diff --git a/PAR 152/cone_dataset/207.xml b/PAR 152/cone_dataset/207.xml new file mode 100644 index 0000000000000000000000000000000000000000..31b466c59f6b9d6c1d0591cf48f97cb58687d2ab --- /dev/null +++ b/PAR 152/cone_dataset/207.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>207.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\207.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>510</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>195</ymin> + <xmax>299</xmax> + <ymax>277</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>387</xmin> + <ymin>186</ymin> + <xmax>433</xmax> + <ymax>260</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>449</xmin> + <ymin>183</ymin> + <xmax>492</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>218</ymin> + <xmax>247</xmax> + <ymax>271</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/208.jpg b/PAR 152/cone_dataset/208.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5790ebf75ef8081af78ba50c26f48ef9de33b270 Binary files /dev/null and b/PAR 152/cone_dataset/208.jpg differ diff --git a/PAR 152/cone_dataset/208.xml b/PAR 152/cone_dataset/208.xml new file mode 100644 index 0000000000000000000000000000000000000000..eaea94d9dfeb48df25755c1f913666ae6693c2f4 --- /dev/null +++ b/PAR 152/cone_dataset/208.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>208.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\208.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>20</xmin> + <ymin>157</ymin> + <xmax>92</xmax> + <ymax>246</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>188</xmin> + <ymin>97</ymin> + <xmax>242</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>314</xmin> + <ymin>56</ymin> + <xmax>355</xmax> + <ymax>108</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>406</xmin> + <ymin>29</ymin> + <xmax>441</xmax> + <ymax>73</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>465</xmin> + <ymin>8</ymin> + <xmax>494</xmax> + <ymax>45</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/209.jpg b/PAR 152/cone_dataset/209.jpg new file mode 100644 index 0000000000000000000000000000000000000000..21c63b5a634945a9dc5b2cef65316396cbebd0e5 Binary files /dev/null and b/PAR 152/cone_dataset/209.jpg differ diff --git a/PAR 152/cone_dataset/209.xml b/PAR 152/cone_dataset/209.xml new file mode 100644 index 0000000000000000000000000000000000000000..7ec9a42458eb7b3406ae89335df6d0cad6c4a601 --- /dev/null +++ b/PAR 152/cone_dataset/209.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>209.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\209.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>341</width> + <height>502</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>245</ymin> + <xmax>124</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>102</ymin> + <xmax>210</xmax> + <ymax>203</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>175</xmin> + <ymin>41</ymin> + <xmax>232</xmax> + <ymax>110</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>15</ymin> + <xmax>278</xmax> + <ymax>74</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>267</xmin> + <ymin>1</ymin> + <xmax>309</xmax> + <ymax>39</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/21.jpg b/PAR 152/cone_dataset/21.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c722cf295782b862d6b6483643313b64db95385c Binary files /dev/null and b/PAR 152/cone_dataset/21.jpg differ diff --git a/PAR 152/cone_dataset/21.xml b/PAR 152/cone_dataset/21.xml new file mode 100644 index 0000000000000000000000000000000000000000..ecca5bab9afbe365f9f650d7884c5fcee8ec5f4e --- /dev/null +++ b/PAR 152/cone_dataset/21.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>21.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\21.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>14</xmin> + <ymin>9</ymin> + <xmax>320</xmax> + <ymax>477</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/210.jpg b/PAR 152/cone_dataset/210.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a6d22867024397988245f14b95407f297588d192 Binary files /dev/null and b/PAR 152/cone_dataset/210.jpg differ diff --git a/PAR 152/cone_dataset/210.xml b/PAR 152/cone_dataset/210.xml new file mode 100644 index 0000000000000000000000000000000000000000..43c7ce58b63137a2404f720ee833d879d0e14690 --- /dev/null +++ b/PAR 152/cone_dataset/210.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>210.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\210.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>68</ymin> + <xmax>169</xmax> + <ymax>174</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>215</xmin> + <ymin>181</ymin> + <xmax>340</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>135</xmin> + <ymin>141</ymin> + <xmax>224</xmax> + <ymax>244</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/211.jpg b/PAR 152/cone_dataset/211.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6544e6dfd053b4d476edb01a89462d67f0397b46 Binary files /dev/null and b/PAR 152/cone_dataset/211.jpg differ diff --git a/PAR 152/cone_dataset/211.xml b/PAR 152/cone_dataset/211.xml new file mode 100644 index 0000000000000000000000000000000000000000..a68e768a75174393828432202b8f90095f5ef2e1 --- /dev/null +++ b/PAR 152/cone_dataset/211.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>211.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\211.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>169</xmin> + <ymin>54</ymin> + <xmax>228</xmax> + <ymax>131</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>109</xmin> + <ymin>51</ymin> + <xmax>172</xmax> + <ymax>134</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>26</xmin> + <ymin>52</ymin> + <xmax>91</xmax> + <ymax>131</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>280</xmin> + <ymin>51</ymin> + <xmax>334</xmax> + <ymax>127</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>351</xmin> + <ymin>52</ymin> + <xmax>398</xmax> + <ymax>126</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>404</xmin> + <ymin>50</ymin> + <xmax>452</xmax> + <ymax>128</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/212.jpg b/PAR 152/cone_dataset/212.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d105162a0cc8a16ab51ab74b455dd30e9730dabd Binary files /dev/null and b/PAR 152/cone_dataset/212.jpg differ diff --git a/PAR 152/cone_dataset/212.xml b/PAR 152/cone_dataset/212.xml new file mode 100644 index 0000000000000000000000000000000000000000..0fd6509eec8077a0567167eab9795c40e310e932 --- /dev/null +++ b/PAR 152/cone_dataset/212.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>212.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\212.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>49</xmin> + <ymin>218</ymin> + <xmax>81</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>146</xmin> + <ymin>218</ymin> + <xmax>174</xmax> + <ymax>260</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>182</xmin> + <ymin>218</ymin> + <xmax>210</xmax> + <ymax>259</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>210</xmin> + <ymin>220</ymin> + <xmax>230</xmax> + <ymax>257</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>218</ymin> + <xmax>253</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>301</xmin> + <ymin>218</ymin> + <xmax>326</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>443</xmin> + <ymin>217</ymin> + <xmax>474</xmax> + <ymax>250</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/213.jpg b/PAR 152/cone_dataset/213.jpg new file mode 100644 index 0000000000000000000000000000000000000000..017a02aecbf05187a1eccfe5f5a7e83e087e39a6 Binary files /dev/null and b/PAR 152/cone_dataset/213.jpg differ diff --git a/PAR 152/cone_dataset/213.xml b/PAR 152/cone_dataset/213.xml new file mode 100644 index 0000000000000000000000000000000000000000..f8f6777cbe07ce75ecc9d15f7ba2e8d3956e1d14 --- /dev/null +++ b/PAR 152/cone_dataset/213.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>213.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\213.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>209</xmin> + <ymin>97</ymin> + <xmax>319</xmax> + <ymax>304</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/214.jpg b/PAR 152/cone_dataset/214.jpg new file mode 100644 index 0000000000000000000000000000000000000000..da8d5ba91807901c58b58a5204880cd97b3ddec1 Binary files /dev/null and b/PAR 152/cone_dataset/214.jpg differ diff --git a/PAR 152/cone_dataset/214.xml b/PAR 152/cone_dataset/214.xml new file mode 100644 index 0000000000000000000000000000000000000000..b866d7032fc7e4b6c4caba3501ad1c6a49a0552f --- /dev/null +++ b/PAR 152/cone_dataset/214.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>214.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\214.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>388</ymin> + <xmax>93</xmax> + <ymax>495</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>102</xmin> + <ymin>365</ymin> + <xmax>181</xmax> + <ymax>496</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>191</xmin> + <ymin>370</ymin> + <xmax>248</xmax> + <ymax>498</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>240</xmin> + <ymin>381</ymin> + <xmax>307</xmax> + <ymax>501</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/215.jpg b/PAR 152/cone_dataset/215.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e346361484bab2c896ee157a04add6c205d7f420 Binary files /dev/null and b/PAR 152/cone_dataset/215.jpg differ diff --git a/PAR 152/cone_dataset/215.xml b/PAR 152/cone_dataset/215.xml new file mode 100644 index 0000000000000000000000000000000000000000..913b736b02989a9b28e2b72ed9a7f4ca7db9841a --- /dev/null +++ b/PAR 152/cone_dataset/215.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>215.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\215.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>104</xmin> + <ymin>319</ymin> + <xmax>141</xmax> + <ymax>380</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>210</xmin> + <ymin>321</ymin> + <xmax>246</xmax> + <ymax>382</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>294</xmin> + <ymin>323</ymin> + <xmax>329</xmax> + <ymax>381</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/216.jpg b/PAR 152/cone_dataset/216.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0a10309afd14643d1bd67e0331ca06b059239667 Binary files /dev/null and b/PAR 152/cone_dataset/216.jpg differ diff --git a/PAR 152/cone_dataset/216.xml b/PAR 152/cone_dataset/216.xml new file mode 100644 index 0000000000000000000000000000000000000000..68cf18f7ed0afd5dee47d91b1741bc995d7af7f1 --- /dev/null +++ b/PAR 152/cone_dataset/216.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>216.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\216.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>143</xmin> + <ymin>114</ymin> + <xmax>234</xmax> + <ymax>273</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>217</xmin> + <ymin>152</ymin> + <xmax>269</xmax> + <ymax>248</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>114</xmax> + <ymax>336</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/217.jpg b/PAR 152/cone_dataset/217.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c04ddf104a1cee4b33ade230159fec0827b8e79c Binary files /dev/null and b/PAR 152/cone_dataset/217.jpg differ diff --git a/PAR 152/cone_dataset/217.xml b/PAR 152/cone_dataset/217.xml new file mode 100644 index 0000000000000000000000000000000000000000..ee07ea4820f118bb83dc62952249cdc8493c8504 --- /dev/null +++ b/PAR 152/cone_dataset/217.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>217.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\217.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>341</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>219</ymin> + <xmax>142</xmax> + <ymax>500</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>238</xmin> + <ymin>240</ymin> + <xmax>341</xmax> + <ymax>439</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>304</xmin> + <ymin>283</ymin> + <xmax>341</xmax> + <ymax>391</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/218.jpg b/PAR 152/cone_dataset/218.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0a1f752d52f18c3aba551b6f7aed5022e2f91066 Binary files /dev/null and b/PAR 152/cone_dataset/218.jpg differ diff --git a/PAR 152/cone_dataset/218.xml b/PAR 152/cone_dataset/218.xml new file mode 100644 index 0000000000000000000000000000000000000000..0797498d60e4d2aa78900300a939aa3391aa7907 --- /dev/null +++ b/PAR 152/cone_dataset/218.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>218.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\218.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>508</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>34</ymin> + <xmax>132</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>140</xmin> + <ymin>24</ymin> + <xmax>246</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>244</xmin> + <ymin>22</ymin> + <xmax>320</xmax> + <ymax>214</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>326</xmin> + <ymin>15</ymin> + <xmax>385</xmax> + <ymax>153</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>4</ymin> + <xmax>420</xmax> + <ymax>97</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>376</xmin> + <ymin>7</ymin> + <xmax>394</xmax> + <ymax>126</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/219.jpg b/PAR 152/cone_dataset/219.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eed8aac79f979ff1b531ece250df243e668d6cc6 Binary files /dev/null and b/PAR 152/cone_dataset/219.jpg differ diff --git a/PAR 152/cone_dataset/219.xml b/PAR 152/cone_dataset/219.xml new file mode 100644 index 0000000000000000000000000000000000000000..9dccd54a75bf67c6e31c2adac5c7fe30f836c03b --- /dev/null +++ b/PAR 152/cone_dataset/219.xml @@ -0,0 +1,194 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>219.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\219.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>510</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>168</ymin> + <xmax>402</xmax> + <ymax>327</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>297</xmin> + <ymin>120</ymin> + <xmax>360</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>92</ymin> + <xmax>326</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>369</xmin> + <ymin>24</ymin> + <xmax>398</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>432</xmin> + <ymin>20</ymin> + <xmax>459</xmax> + <ymax>75</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>313</xmin> + <ymin>21</ymin> + <xmax>341</xmax> + <ymax>76</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>16</ymin> + <xmax>184</xmax> + <ymax>64</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>15</ymin> + <xmax>153</xmax> + <ymax>61</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>15</ymin> + <xmax>121</xmax> + <ymax>65</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>72</xmin> + <ymin>16</ymin> + <xmax>102</xmax> + <ymax>62</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>17</ymin> + <xmax>75</xmax> + <ymax>67</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>15</xmin> + <ymin>17</ymin> + <xmax>51</xmax> + <ymax>69</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>260</xmin> + <ymin>74</ymin> + <xmax>311</xmax> + <ymax>173</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>61</ymin> + <xmax>291</xmax> + <ymax>148</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>223</xmin> + <ymin>30</ymin> + <xmax>244</xmax> + <ymax>87</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/22.jpg b/PAR 152/cone_dataset/22.jpg new file mode 100644 index 0000000000000000000000000000000000000000..391a91991b7b15f907cbe9e240943914afc28de9 Binary files /dev/null and b/PAR 152/cone_dataset/22.jpg differ diff --git a/PAR 152/cone_dataset/22.xml b/PAR 152/cone_dataset/22.xml new file mode 100644 index 0000000000000000000000000000000000000000..88bd6c6ca793f1ee76450359ecef7778a8253a82 --- /dev/null +++ b/PAR 152/cone_dataset/22.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>22.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\22.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>3</xmin> + <ymin>37</ymin> + <xmax>333</xmax> + <ymax>478</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/220.jpg b/PAR 152/cone_dataset/220.jpg new file mode 100644 index 0000000000000000000000000000000000000000..92f76386f69f98b22d2f1b83e534a5e0e307dd56 Binary files /dev/null and b/PAR 152/cone_dataset/220.jpg differ diff --git a/PAR 152/cone_dataset/220.xml b/PAR 152/cone_dataset/220.xml new file mode 100644 index 0000000000000000000000000000000000000000..31f460ffd7ee58c79ee058a83f5a724d53a0c34f --- /dev/null +++ b/PAR 152/cone_dataset/220.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>220.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\220.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>505</width> + <height>342</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>202</xmin> + <ymin>92</ymin> + <xmax>249</xmax> + <ymax>178</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>225</xmin> + <ymin>182</ymin> + <xmax>419</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>323</xmin> + <ymin>111</ymin> + <xmax>370</xmax> + <ymax>167</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>265</xmin> + <ymin>94</ymin> + <xmax>286</xmax> + <ymax>138</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>109</ymin> + <xmax>247</xmax> + <ymax>134</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/221.jpg b/PAR 152/cone_dataset/221.jpg new file mode 100644 index 0000000000000000000000000000000000000000..175b18e445fee83730a8359ea7b74f87f065d70d Binary files /dev/null and b/PAR 152/cone_dataset/221.jpg differ diff --git a/PAR 152/cone_dataset/221.xml b/PAR 152/cone_dataset/221.xml new file mode 100644 index 0000000000000000000000000000000000000000..30214aa533d6a9481bcc6f7df2d2e6921b844579 --- /dev/null +++ b/PAR 152/cone_dataset/221.xml @@ -0,0 +1,170 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>221.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\221.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>90</xmin> + <ymin>196</ymin> + <xmax>118</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>118</xmin> + <ymin>197</ymin> + <xmax>147</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>197</ymin> + <xmax>174</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>174</xmin> + <ymin>197</ymin> + <xmax>201</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>200</xmin> + <ymin>199</ymin> + <xmax>227</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>198</ymin> + <xmax>254</xmax> + <ymax>242</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>197</ymin> + <xmax>282</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>282</xmin> + <ymin>198</ymin> + <xmax>308</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>309</xmin> + <ymin>198</ymin> + <xmax>337</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>338</xmin> + <ymin>196</ymin> + <xmax>362</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>362</xmin> + <ymin>197</ymin> + <xmax>391</xmax> + <ymax>246</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>392</xmin> + <ymin>198</ymin> + <xmax>417</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>417</xmin> + <ymin>195</ymin> + <xmax>445</xmax> + <ymax>244</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/222.jpg b/PAR 152/cone_dataset/222.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0f7204ae92e89a5d2a0eedbf3722ff950d4dc382 Binary files /dev/null and b/PAR 152/cone_dataset/222.jpg differ diff --git a/PAR 152/cone_dataset/222.xml b/PAR 152/cone_dataset/222.xml new file mode 100644 index 0000000000000000000000000000000000000000..0d82b5c3ed1365cd03f0ee7e759f9710b873d871 --- /dev/null +++ b/PAR 152/cone_dataset/222.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>222.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\222.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>140</ymin> + <xmax>179</xmax> + <ymax>497</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/223.jpg b/PAR 152/cone_dataset/223.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6d0eb5c7ccf6bd5c27b68b9bc84c341dfbc3f791 Binary files /dev/null and b/PAR 152/cone_dataset/223.jpg differ diff --git a/PAR 152/cone_dataset/223.xml b/PAR 152/cone_dataset/223.xml new file mode 100644 index 0000000000000000000000000000000000000000..25a28926da320788a8e1e7645fa5080192ec6276 --- /dev/null +++ b/PAR 152/cone_dataset/223.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>223.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\223.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>99</xmin> + <ymin>60</ymin> + <xmax>194</xmax> + <ymax>234</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>51</ymin> + <xmax>398</xmax> + <ymax>303</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/224.jpg b/PAR 152/cone_dataset/224.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b5dc95b4bbff987d767bcf1ea17aa0d6f2b9de73 Binary files /dev/null and b/PAR 152/cone_dataset/224.jpg differ diff --git a/PAR 152/cone_dataset/224.xml b/PAR 152/cone_dataset/224.xml new file mode 100644 index 0000000000000000000000000000000000000000..2b117f04131ab5d1bb6a790b3a85f1977c305ef4 --- /dev/null +++ b/PAR 152/cone_dataset/224.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>224.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\224.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>135</xmin> + <ymin>182</ymin> + <xmax>266</xmax> + <ymax>462</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/225.jpg b/PAR 152/cone_dataset/225.jpg new file mode 100644 index 0000000000000000000000000000000000000000..edf9363b9df8bd614dbe3af016fa2a1404fd7d88 Binary files /dev/null and b/PAR 152/cone_dataset/225.jpg differ diff --git a/PAR 152/cone_dataset/225.xml b/PAR 152/cone_dataset/225.xml new file mode 100644 index 0000000000000000000000000000000000000000..57289b095fc96c0af8251229bd3fdaa9355cb484 --- /dev/null +++ b/PAR 152/cone_dataset/225.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>225.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\225.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>479</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>180</xmin> + <ymin>139</ymin> + <xmax>236</xmax> + <ymax>234</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>126</ymin> + <xmax>304</xmax> + <ymax>213</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/226.jpg b/PAR 152/cone_dataset/226.jpg new file mode 100644 index 0000000000000000000000000000000000000000..87717e2c0d874eaf9d0d8bebbd3fb497a5238f09 Binary files /dev/null and b/PAR 152/cone_dataset/226.jpg differ diff --git a/PAR 152/cone_dataset/226.xml b/PAR 152/cone_dataset/226.xml new file mode 100644 index 0000000000000000000000000000000000000000..7b7abaa075930e80a3de28d2ee554890feeabf1a --- /dev/null +++ b/PAR 152/cone_dataset/226.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>226.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\226.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>678</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>123</xmin> + <ymin>145</ymin> + <xmax>573</xmax> + <ymax>970</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/227.jpg b/PAR 152/cone_dataset/227.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f181fcbdf0cef0201aaa506be1a38355c0659867 Binary files /dev/null and b/PAR 152/cone_dataset/227.jpg differ diff --git a/PAR 152/cone_dataset/227.xml b/PAR 152/cone_dataset/227.xml new file mode 100644 index 0000000000000000000000000000000000000000..49b939d640ee4152d439b8620ce3deefac6bbd0a --- /dev/null +++ b/PAR 152/cone_dataset/227.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>227.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\227.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>511</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>16</xmin> + <ymin>18</ymin> + <xmax>280</xmax> + <ymax>499</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/228.jpg b/PAR 152/cone_dataset/228.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d9128e6eada1f688a5b95cc055d340dbae521dc2 Binary files /dev/null and b/PAR 152/cone_dataset/228.jpg differ diff --git a/PAR 152/cone_dataset/228.xml b/PAR 152/cone_dataset/228.xml new file mode 100644 index 0000000000000000000000000000000000000000..9adab7e03408dc312f79055fca43f9a67b25115b --- /dev/null +++ b/PAR 152/cone_dataset/228.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>228.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\228.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>170</width> + <height>170</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>85</xmin> + <ymin>16</ymin> + <xmax>159</xmax> + <ymax>147</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/229.jpg b/PAR 152/cone_dataset/229.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7a1a8dac1ed0e2cf3ba26e6f814a196a2a6a848d Binary files /dev/null and b/PAR 152/cone_dataset/229.jpg differ diff --git a/PAR 152/cone_dataset/229.xml b/PAR 152/cone_dataset/229.xml new file mode 100644 index 0000000000000000000000000000000000000000..944b54f47c74890477224450f1aff7127ca3b421 --- /dev/null +++ b/PAR 152/cone_dataset/229.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>229.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\229.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>214</xmin> + <ymin>38</ymin> + <xmax>387</xmax> + <ymax>363</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/23.jpg b/PAR 152/cone_dataset/23.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c6090a4c68c0c9980f44f746d4476e0067b0419 Binary files /dev/null and b/PAR 152/cone_dataset/23.jpg differ diff --git a/PAR 152/cone_dataset/23.xml b/PAR 152/cone_dataset/23.xml new file mode 100644 index 0000000000000000000000000000000000000000..85ba55bbaf08d5df33644dc84a711c8e5b1b2a07 --- /dev/null +++ b/PAR 152/cone_dataset/23.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>23.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\23.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>16</xmin> + <ymin>29</ymin> + <xmax>261</xmax> + <ymax>310</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>242</xmin> + <ymin>76</ymin> + <xmax>439</xmax> + <ymax>271</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/230.jpg b/PAR 152/cone_dataset/230.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c94a5d54e91d8d3c16656a67e8ca24f76118ab45 Binary files /dev/null and b/PAR 152/cone_dataset/230.jpg differ diff --git a/PAR 152/cone_dataset/230.xml b/PAR 152/cone_dataset/230.xml new file mode 100644 index 0000000000000000000000000000000000000000..d056eb59e926bbd8f90485ee74a71c63d09617d8 --- /dev/null +++ b/PAR 152/cone_dataset/230.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>230.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\230.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>356</width> + <height>481</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>101</xmin> + <ymin>88</ymin> + <xmax>244</xmax> + <ymax>318</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/231.jpg b/PAR 152/cone_dataset/231.jpg new file mode 100644 index 0000000000000000000000000000000000000000..258d884e424fe6334c7a7921ada3b3f20d8899f6 Binary files /dev/null and b/PAR 152/cone_dataset/231.jpg differ diff --git a/PAR 152/cone_dataset/231.xml b/PAR 152/cone_dataset/231.xml new file mode 100644 index 0000000000000000000000000000000000000000..d3a69a02992ba4901e78e22665506209ddaad6bc --- /dev/null +++ b/PAR 152/cone_dataset/231.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>231.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\231.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>511</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>97</xmin> + <ymin>87</ymin> + <xmax>234</xmax> + <ymax>335</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/232.jpg b/PAR 152/cone_dataset/232.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bca15da6737f9d93e710a83704acdf6a6e3d54c7 Binary files /dev/null and b/PAR 152/cone_dataset/232.jpg differ diff --git a/PAR 152/cone_dataset/232.xml b/PAR 152/cone_dataset/232.xml new file mode 100644 index 0000000000000000000000000000000000000000..06d42a1305233062b9f57e54278c63873a1e555b --- /dev/null +++ b/PAR 152/cone_dataset/232.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>232.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\232.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>24</xmin> + <ymin>51</ymin> + <xmax>223</xmax> + <ymax>387</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/233.jpg b/PAR 152/cone_dataset/233.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2b2f24aa2c7f3101f2dd22723f898354aaae5036 Binary files /dev/null and b/PAR 152/cone_dataset/233.jpg differ diff --git a/PAR 152/cone_dataset/233.xml b/PAR 152/cone_dataset/233.xml new file mode 100644 index 0000000000000000000000000000000000000000..d6c3bc6fee80becebfe589cf671dd066b673aa4f --- /dev/null +++ b/PAR 152/cone_dataset/233.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>233.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\233.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>482</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>375</xmin> + <ymin>1</ymin> + <xmax>479</xmax> + <ymax>210</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/234.jpg b/PAR 152/cone_dataset/234.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fbb18efe4f01563d610d8c6b2dfcacfcb37bc59a Binary files /dev/null and b/PAR 152/cone_dataset/234.jpg differ diff --git a/PAR 152/cone_dataset/234.xml b/PAR 152/cone_dataset/234.xml new file mode 100644 index 0000000000000000000000000000000000000000..a6a4e2ddc7924bbeacf6ab90ac661a1dbb83e61d --- /dev/null +++ b/PAR 152/cone_dataset/234.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>234.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\234.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>371</width> + <height>464</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>155</ymin> + <xmax>173</xmax> + <ymax>456</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>71</xmin> + <ymin>23</ymin> + <xmax>224</xmax> + <ymax>371</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/235.jpg b/PAR 152/cone_dataset/235.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1cb3cea7568f7b51ee3a66e7b02109ef25f69ad4 Binary files /dev/null and b/PAR 152/cone_dataset/235.jpg differ diff --git a/PAR 152/cone_dataset/235.xml b/PAR 152/cone_dataset/235.xml new file mode 100644 index 0000000000000000000000000000000000000000..39f8da132e732cd8868bfb01c3a222fafeb16cbf --- /dev/null +++ b/PAR 152/cone_dataset/235.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>235.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\235.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>271</xmin> + <ymin>42</ymin> + <xmax>386</xmax> + <ymax>206</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/236.jpg b/PAR 152/cone_dataset/236.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e9bcf0e2841f4b0ccb804ff8a9b9f9cc473eaa34 Binary files /dev/null and b/PAR 152/cone_dataset/236.jpg differ diff --git a/PAR 152/cone_dataset/236.xml b/PAR 152/cone_dataset/236.xml new file mode 100644 index 0000000000000000000000000000000000000000..26ba8bc91a84826611b19c7018710a94c2127497 --- /dev/null +++ b/PAR 152/cone_dataset/236.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>236.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\236.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>384</width> + <height>450</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>25</xmin> + <ymin>80</ymin> + <xmax>225</xmax> + <ymax>418</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/237.jpg b/PAR 152/cone_dataset/237.jpg new file mode 100644 index 0000000000000000000000000000000000000000..be727126b76d4890224030906be199e9af38e592 Binary files /dev/null and b/PAR 152/cone_dataset/237.jpg differ diff --git a/PAR 152/cone_dataset/237.xml b/PAR 152/cone_dataset/237.xml new file mode 100644 index 0000000000000000000000000000000000000000..add17552a010f76d44ca23368e5bf3e25e92b78a --- /dev/null +++ b/PAR 152/cone_dataset/237.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>237.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\237.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>357</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>317</ymin> + <xmax>122</xmax> + <ymax>427</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>30</xmin> + <ymin>288</ymin> + <xmax>72</xmax> + <ymax>361</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>278</ymin> + <xmax>46</xmax> + <ymax>332</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>7</xmin> + <ymin>266</ymin> + <xmax>26</xmax> + <ymax>298</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/238.jpg b/PAR 152/cone_dataset/238.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1972fe77d33248d51ce700c2f7492aa243efc853 Binary files /dev/null and b/PAR 152/cone_dataset/238.jpg differ diff --git a/PAR 152/cone_dataset/238.xml b/PAR 152/cone_dataset/238.xml new file mode 100644 index 0000000000000000000000000000000000000000..093e95bfbe254312e2fdbda602fd8b7fbdea7c92 --- /dev/null +++ b/PAR 152/cone_dataset/238.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>238.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\238.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>35</ymin> + <xmax>182</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>14</ymin> + <xmax>238</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>154</xmin> + <ymin>84</ymin> + <xmax>259</xmax> + <ymax>281</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>269</xmin> + <ymin>72</ymin> + <xmax>360</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>26</ymin> + <xmax>320</xmax> + <ymax>174</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/239.jpg b/PAR 152/cone_dataset/239.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a3dc1058cc157923dd114cbb6b3fb37f31fab923 Binary files /dev/null and b/PAR 152/cone_dataset/239.jpg differ diff --git a/PAR 152/cone_dataset/239.xml b/PAR 152/cone_dataset/239.xml new file mode 100644 index 0000000000000000000000000000000000000000..c05abbfabfad744e3b77906448753800812b1f86 --- /dev/null +++ b/PAR 152/cone_dataset/239.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>239.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\239.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>54</ymin> + <xmax>225</xmax> + <ymax>147</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>340</xmin> + <ymin>53</ymin> + <xmax>479</xmax> + <ymax>326</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/24.jpg b/PAR 152/cone_dataset/24.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5130b019100de3152f3be049a2fc5cd2379ce384 Binary files /dev/null and b/PAR 152/cone_dataset/24.jpg differ diff --git a/PAR 152/cone_dataset/24.xml b/PAR 152/cone_dataset/24.xml new file mode 100644 index 0000000000000000000000000000000000000000..ebbeef64420c6fc0164f424155052c4bf7820636 --- /dev/null +++ b/PAR 152/cone_dataset/24.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>24.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\24.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>34</xmin> + <ymin>65</ymin> + <xmax>319</xmax> + <ymax>474</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/240.jpg b/PAR 152/cone_dataset/240.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ac4d431210e725dd960957978cd7692581c29574 Binary files /dev/null and b/PAR 152/cone_dataset/240.jpg differ diff --git a/PAR 152/cone_dataset/240.xml b/PAR 152/cone_dataset/240.xml new file mode 100644 index 0000000000000000000000000000000000000000..3b707f184b432f9c9f8fbb8030ed52ded558b84c --- /dev/null +++ b/PAR 152/cone_dataset/240.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>240.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\240.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>117</xmin> + <ymin>71</ymin> + <xmax>187</xmax> + <ymax>185</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/241.jpg b/PAR 152/cone_dataset/241.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4e037b74457a8fb282a17d57a6d1a899174037fd Binary files /dev/null and b/PAR 152/cone_dataset/241.jpg differ diff --git a/PAR 152/cone_dataset/241.xml b/PAR 152/cone_dataset/241.xml new file mode 100644 index 0000000000000000000000000000000000000000..3b3992d4cb4d1bbd644f4999d8f51037c63ba0c5 --- /dev/null +++ b/PAR 152/cone_dataset/241.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>241.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\241.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>75</xmin> + <ymin>44</ymin> + <xmax>138</xmax> + <ymax>133</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>279</xmin> + <ymin>162</ymin> + <xmax>357</xmax> + <ymax>282</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/242.jpg b/PAR 152/cone_dataset/242.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b040bf209944dcc3185df1fbf1103dc3783b20ca Binary files /dev/null and b/PAR 152/cone_dataset/242.jpg differ diff --git a/PAR 152/cone_dataset/242.xml b/PAR 152/cone_dataset/242.xml new file mode 100644 index 0000000000000000000000000000000000000000..7c184931388544e153ce3c688a22bdc2ad1a65c1 --- /dev/null +++ b/PAR 152/cone_dataset/242.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>242.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\242.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>576</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>207</xmin> + <ymin>34</ymin> + <xmax>552</xmax> + <ymax>668</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/243.jpg b/PAR 152/cone_dataset/243.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f09beff05baf9c3e207e621bd747b66a8481727b Binary files /dev/null and b/PAR 152/cone_dataset/243.jpg differ diff --git a/PAR 152/cone_dataset/243.xml b/PAR 152/cone_dataset/243.xml new file mode 100644 index 0000000000000000000000000000000000000000..004ad9ae2dab2731f3f5fae99b13b907f109fe05 --- /dev/null +++ b/PAR 152/cone_dataset/243.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>243.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\243.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>209</xmin> + <ymin>30</ymin> + <xmax>315</xmax> + <ymax>226</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>25</xmin> + <ymin>1</ymin> + <xmax>113</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>83</xmin> + <ymin>1</ymin> + <xmax>163</xmax> + <ymax>81</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>262</xmin> + <ymin>114</ymin> + <xmax>410</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>270</xmin> + <ymin>1</ymin> + <xmax>332</xmax> + <ymax>124</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/244.jpg b/PAR 152/cone_dataset/244.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dbdbb15c4be11c3ed9d44495e2c18d667f94a986 Binary files /dev/null and b/PAR 152/cone_dataset/244.jpg differ diff --git a/PAR 152/cone_dataset/244.xml b/PAR 152/cone_dataset/244.xml new file mode 100644 index 0000000000000000000000000000000000000000..cc9009d4d839ea3e4a11cd9f476f2560285cd103 --- /dev/null +++ b/PAR 152/cone_dataset/244.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>244.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\244.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>272</xmin> + <ymin>163</ymin> + <xmax>338</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>212</xmin> + <ymin>175</ymin> + <xmax>271</xmax> + <ymax>264</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>169</xmin> + <ymin>181</ymin> + <xmax>223</xmax> + <ymax>259</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>137</xmin> + <ymin>189</ymin> + <xmax>183</xmax> + <ymax>258</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>194</ymin> + <xmax>145</xmax> + <ymax>256</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>94</xmin> + <ymin>198</ymin> + <xmax>124</xmax> + <ymax>253</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>200</ymin> + <xmax>104</xmax> + <ymax>252</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>68</xmin> + <ymin>203</ymin> + <xmax>89</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>58</xmin> + <ymin>206</ymin> + <xmax>73</xmax> + <ymax>247</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/245.jpg b/PAR 152/cone_dataset/245.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6c4cd50a01627e39b03b0607352f62c5c75b3903 Binary files /dev/null and b/PAR 152/cone_dataset/245.jpg differ diff --git a/PAR 152/cone_dataset/245.xml b/PAR 152/cone_dataset/245.xml new file mode 100644 index 0000000000000000000000000000000000000000..1ea01ddec8debf2d735a3f18ea90008c9750d161 --- /dev/null +++ b/PAR 152/cone_dataset/245.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>245.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\245.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>275</ymin> + <xmax>68</xmax> + <ymax>362</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>72</xmin> + <ymin>286</ymin> + <xmax>124</xmax> + <ymax>358</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>123</xmin> + <ymin>294</ymin> + <xmax>164</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>159</xmin> + <ymin>299</ymin> + <xmax>193</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>190</xmin> + <ymin>302</ymin> + <xmax>215</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>208</xmin> + <ymin>306</ymin> + <xmax>232</xmax> + <ymax>354</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>227</xmin> + <ymin>312</ymin> + <xmax>249</xmax> + <ymax>350</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/246.jpg b/PAR 152/cone_dataset/246.jpg new file mode 100644 index 0000000000000000000000000000000000000000..001070d978da9587d07f2dc68a80968adc611569 Binary files /dev/null and b/PAR 152/cone_dataset/246.jpg differ diff --git a/PAR 152/cone_dataset/246.xml b/PAR 152/cone_dataset/246.xml new file mode 100644 index 0000000000000000000000000000000000000000..f9cca2da0d6f09bbe1e46a9fdea5d086b8d00fa9 --- /dev/null +++ b/PAR 152/cone_dataset/246.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>246.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\246.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>199</ymin> + <xmax>111</xmax> + <ymax>353</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>87</xmin> + <ymin>238</ymin> + <xmax>158</xmax> + <ymax>346</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>138</xmin> + <ymin>252</ymin> + <xmax>184</xmax> + <ymax>340</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>162</xmin> + <ymin>267</ymin> + <xmax>204</xmax> + <ymax>338</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>187</xmin> + <ymin>275</ymin> + <xmax>211</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>210</xmin> + <ymin>287</ymin> + <xmax>225</xmax> + <ymax>335</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/247.jpg b/PAR 152/cone_dataset/247.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0c940cbe7c5cd469f3fbb73142fdd486b47526db Binary files /dev/null and b/PAR 152/cone_dataset/247.jpg differ diff --git a/PAR 152/cone_dataset/247.xml b/PAR 152/cone_dataset/247.xml new file mode 100644 index 0000000000000000000000000000000000000000..151d36129f29ad732edc32b3a72394f32b0d8a39 --- /dev/null +++ b/PAR 152/cone_dataset/247.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>247.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\247.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>197</xmin> + <ymin>101</ymin> + <xmax>344</xmax> + <ymax>293</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/248.jpg b/PAR 152/cone_dataset/248.jpg new file mode 100644 index 0000000000000000000000000000000000000000..95e4cec4f42e35180f89a51ccdc4c6a75e37db54 Binary files /dev/null and b/PAR 152/cone_dataset/248.jpg differ diff --git a/PAR 152/cone_dataset/248.xml b/PAR 152/cone_dataset/248.xml new file mode 100644 index 0000000000000000000000000000000000000000..8a568d3149339cd72a913968fbd12a3c19f04568 --- /dev/null +++ b/PAR 152/cone_dataset/248.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>248.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\248.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>296</xmin> + <ymin>184</ymin> + <xmax>408</xmax> + <ymax>319</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/249.jpg b/PAR 152/cone_dataset/249.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6768d8dc27aca8260bdfc85b2e48c4e4d238df21 Binary files /dev/null and b/PAR 152/cone_dataset/249.jpg differ diff --git a/PAR 152/cone_dataset/249.xml b/PAR 152/cone_dataset/249.xml new file mode 100644 index 0000000000000000000000000000000000000000..a48aa2ca13482356050272461e63b309381ed7a8 --- /dev/null +++ b/PAR 152/cone_dataset/249.xml @@ -0,0 +1,134 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>249.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\249.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>259</ymin> + <xmax>171</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>232</ymin> + <xmax>199</xmax> + <ymax>282</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>213</ymin> + <xmax>216</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>200</ymin> + <xmax>230</xmax> + <ymax>237</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>190</ymin> + <xmax>239</xmax> + <ymax>221</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>230</xmin> + <ymin>183</ymin> + <xmax>246</xmax> + <ymax>211</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>237</xmin> + <ymin>178</ymin> + <xmax>254</xmax> + <ymax>201</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>243</xmin> + <ymin>172</ymin> + <xmax>259</xmax> + <ymax>193</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>256</xmin> + <ymin>162</ymin> + <xmax>266</xmax> + <ymax>181</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>85</xmin> + <ymin>306</ymin> + <xmax>113</xmax> + <ymax>338</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/25.jpg b/PAR 152/cone_dataset/25.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5b1541eb462eeb33b26a741d5097004500d5f277 Binary files /dev/null and b/PAR 152/cone_dataset/25.jpg differ diff --git a/PAR 152/cone_dataset/25.xml b/PAR 152/cone_dataset/25.xml new file mode 100644 index 0000000000000000000000000000000000000000..ff99b86d07e94aa8ae0bb50c3c99074a2773dbc1 --- /dev/null +++ b/PAR 152/cone_dataset/25.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>25.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\25.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>989</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>106</xmin> + <ymin>107</ymin> + <xmax>640</xmax> + <ymax>913</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>470</xmin> + <ymin>281</ymin> + <xmax>936</xmax> + <ymax>657</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/250.jpg b/PAR 152/cone_dataset/250.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3fc522811442ecdd3fc27f9c956738ce60c76cdf Binary files /dev/null and b/PAR 152/cone_dataset/250.jpg differ diff --git a/PAR 152/cone_dataset/250.xml b/PAR 152/cone_dataset/250.xml new file mode 100644 index 0000000000000000000000000000000000000000..4db7a2b25d00279a3df16b09a64b8228049699c5 --- /dev/null +++ b/PAR 152/cone_dataset/250.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>250.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\250.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>533</width> + <height>651</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>172</xmin> + <ymin>201</ymin> + <xmax>457</xmax> + <ymax>594</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/251.jpg b/PAR 152/cone_dataset/251.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9363b12557d4359ace4b4d1a43b18e53bb117846 Binary files /dev/null and b/PAR 152/cone_dataset/251.jpg differ diff --git a/PAR 152/cone_dataset/251.xml b/PAR 152/cone_dataset/251.xml new file mode 100644 index 0000000000000000000000000000000000000000..7fcc8409c4e90d8ad740eb6ce5fa1cdac781c6a1 --- /dev/null +++ b/PAR 152/cone_dataset/251.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>251.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\251.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>353</width> + <height>485</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>56</xmin> + <ymin>3</ymin> + <xmax>292</xmax> + <ymax>445</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/252.jpg b/PAR 152/cone_dataset/252.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b8c048bdf1ea5c25b21ab731284d1c2be20f62d6 Binary files /dev/null and b/PAR 152/cone_dataset/252.jpg differ diff --git a/PAR 152/cone_dataset/252.xml b/PAR 152/cone_dataset/252.xml new file mode 100644 index 0000000000000000000000000000000000000000..dadb13d259b16ff2a085bd66396e33e467727e9b --- /dev/null +++ b/PAR 152/cone_dataset/252.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>252.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\252.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>375</width> + <height>458</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>181</xmin> + <ymin>298</ymin> + <xmax>231</xmax> + <ymax>389</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>205</xmin> + <ymin>242</ymin> + <xmax>243</xmax> + <ymax>316</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>247</xmin> + <ymin>205</ymin> + <xmax>279</xmax> + <ymax>266</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>258</xmin> + <ymin>172</ymin> + <xmax>286</xmax> + <ymax>219</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>244</xmin> + <ymin>147</ymin> + <xmax>265</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>198</xmin> + <ymin>128</ymin> + <xmax>222</xmax> + <ymax>158</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>145</xmin> + <ymin>129</ymin> + <xmax>162</xmax> + <ymax>162</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>100</xmin> + <ymin>152</ymin> + <xmax>123</xmax> + <ymax>194</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>84</xmin> + <ymin>180</ymin> + <xmax>112</xmax> + <ymax>234</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/253.jpg b/PAR 152/cone_dataset/253.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3a349575a3217e03605fd0c6c71916210011cc43 Binary files /dev/null and b/PAR 152/cone_dataset/253.jpg differ diff --git a/PAR 152/cone_dataset/253.xml b/PAR 152/cone_dataset/253.xml new file mode 100644 index 0000000000000000000000000000000000000000..16c933e2bf71d555361d697b4d5ce3cdb81222c8 --- /dev/null +++ b/PAR 152/cone_dataset/253.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>253.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\253.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>150</xmin> + <ymin>218</ymin> + <xmax>262</xmax> + <ymax>464</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>273</xmin> + <ymin>243</ymin> + <xmax>338</xmax> + <ymax>507</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/254.jpg b/PAR 152/cone_dataset/254.jpg new file mode 100644 index 0000000000000000000000000000000000000000..54b18ae28cde2e3d092d00eca0c2d982eb2bac11 Binary files /dev/null and b/PAR 152/cone_dataset/254.jpg differ diff --git a/PAR 152/cone_dataset/254.xml b/PAR 152/cone_dataset/254.xml new file mode 100644 index 0000000000000000000000000000000000000000..42224d1fb8afba80f3b646ea6bc56f12a356caad --- /dev/null +++ b/PAR 152/cone_dataset/254.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>254.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\254.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>358</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>29</xmin> + <ymin>108</ymin> + <xmax>423</xmax> + <ymax>309</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/255.jpg b/PAR 152/cone_dataset/255.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9f8ee6d4c11cb00f8801d6fecf48e58e470e7c86 Binary files /dev/null and b/PAR 152/cone_dataset/255.jpg differ diff --git a/PAR 152/cone_dataset/255.xml b/PAR 152/cone_dataset/255.xml new file mode 100644 index 0000000000000000000000000000000000000000..e39b53d456ba8157efca896ce47c63537b17c836 --- /dev/null +++ b/PAR 152/cone_dataset/255.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>255.jpg</filename> + <path>C:\Users\Antoine Dufour\Desktop\cours-1a\PAr\cone_dataset\255.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>68</xmin> + <ymin>52</ymin> + <xmax>299</xmax> + <ymax>467</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/26.jpg b/PAR 152/cone_dataset/26.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e542081c3d472297955a5e3a74513409c2494ded Binary files /dev/null and b/PAR 152/cone_dataset/26.jpg differ diff --git a/PAR 152/cone_dataset/26.xml b/PAR 152/cone_dataset/26.xml new file mode 100644 index 0000000000000000000000000000000000000000..21e4685b0b0c520c8a9b3c399189003e0b003557 --- /dev/null +++ b/PAR 152/cone_dataset/26.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>26.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\26.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>686</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>120</xmin> + <ymin>115</ymin> + <xmax>555</xmax> + <ymax>963</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/27.jpg b/PAR 152/cone_dataset/27.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f9b98b3c5bfa0f5bbee41a12a04b8ffa08892dbc Binary files /dev/null and b/PAR 152/cone_dataset/27.jpg differ diff --git a/PAR 152/cone_dataset/27.xml b/PAR 152/cone_dataset/27.xml new file mode 100644 index 0000000000000000000000000000000000000000..269536d45d00144d322bc0772181ce30b54d0ebc --- /dev/null +++ b/PAR 152/cone_dataset/27.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>27.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\27.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>602</width> + <height>1024</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>125</ymin> + <xmax>421</xmax> + <ymax>697</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>337</xmin> + <ymin>269</ymin> + <xmax>602</xmax> + <ymax>1023</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>168</xmin> + <ymin>105</ymin> + <xmax>316</xmax> + <ymax>464</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>166</xmin> + <ymin>115</ymin> + <xmax>247</xmax> + <ymax>343</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>48</xmin> + <ymin>74</ymin> + <xmax>124</xmax> + <ymax>207</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>73</ymin> + <xmax>45</xmax> + <ymax>179</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/28.jpg b/PAR 152/cone_dataset/28.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fa2c3f401141fd670eada8faf5d31b33e5c77e8c Binary files /dev/null and b/PAR 152/cone_dataset/28.jpg differ diff --git a/PAR 152/cone_dataset/28.xml b/PAR 152/cone_dataset/28.xml new file mode 100644 index 0000000000000000000000000000000000000000..cbd1807eb72ba55ed8fdca85ea4c3ac21ee60edc --- /dev/null +++ b/PAR 152/cone_dataset/28.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>28.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\28.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>658</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>46</ymin> + <xmax>246</xmax> + <ymax>655</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>42</ymin> + <xmax>265</xmax> + <ymax>562</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>431</xmin> + <ymin>225</ymin> + <xmax>537</xmax> + <ymax>393</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>652</xmin> + <ymin>244</ymin> + <xmax>737</xmax> + <ymax>371</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>813</xmin> + <ymin>260</ymin> + <xmax>894</xmax> + <ymax>362</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>316</xmin> + <ymin>197</ymin> + <xmax>389</xmax> + <ymax>432</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/29.jpg b/PAR 152/cone_dataset/29.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7afafddad9203c7f2cd1acd4777edb8161939207 Binary files /dev/null and b/PAR 152/cone_dataset/29.jpg differ diff --git a/PAR 152/cone_dataset/29.xml b/PAR 152/cone_dataset/29.xml new file mode 100644 index 0000000000000000000000000000000000000000..a87ff5cd2153626ebc41d319f3c832a7b08269ee --- /dev/null +++ b/PAR 152/cone_dataset/29.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>29.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\29.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>658</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>390</xmin> + <ymin>259</ymin> + <xmax>632</xmax> + <ymax>417</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>806</xmin> + <ymin>256</ymin> + <xmax>895</xmax> + <ymax>361</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>41</ymin> + <xmax>261</xmax> + <ymax>561</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>250</xmin> + <ymin>181</ymin> + <xmax>393</xmax> + <ymax>430</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>711</xmin> + <ymin>251</ymin> + <xmax>788</xmax> + <ymax>365</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/3.jpg b/PAR 152/cone_dataset/3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..899a0b2d4fe10b46d0bba0fbdf7ee9743199e52c Binary files /dev/null and b/PAR 152/cone_dataset/3.jpg differ diff --git a/PAR 152/cone_dataset/3.xml b/PAR 152/cone_dataset/3.xml new file mode 100644 index 0000000000000000000000000000000000000000..4c93fbceab56b63b9c500003be55dcd5179ce1ce --- /dev/null +++ b/PAR 152/cone_dataset/3.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>3.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\3.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>142</width> + <height>170</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>5</xmin> + <ymin>10</ymin> + <xmax>137</xmax> + <ymax>162</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/30.jpg b/PAR 152/cone_dataset/30.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2e9246ea00f85d535b512bfa2d24f048754a3144 Binary files /dev/null and b/PAR 152/cone_dataset/30.jpg differ diff --git a/PAR 152/cone_dataset/30.xml b/PAR 152/cone_dataset/30.xml new file mode 100644 index 0000000000000000000000000000000000000000..7ad1e12f8c1589093df8009ac398dcbc0c9eb609 --- /dev/null +++ b/PAR 152/cone_dataset/30.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>30.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\30.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>768</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>297</xmax> + <ymax>756</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>48</xmin> + <ymin>1</ymin> + <xmax>352</xmax> + <ymax>523</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>183</xmin> + <ymin>48</ymin> + <xmax>384</xmax> + <ymax>418</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>299</xmin> + <ymin>125</ymin> + <xmax>589</xmax> + <ymax>360</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/31.jpg b/PAR 152/cone_dataset/31.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f20e43d431fa9743325fec2bdd151f3eab1ddaf4 Binary files /dev/null and b/PAR 152/cone_dataset/31.jpg differ diff --git a/PAR 152/cone_dataset/31.xml b/PAR 152/cone_dataset/31.xml new file mode 100644 index 0000000000000000000000000000000000000000..95ea8048e389114c90ad1f35dd058f2bd85358e1 --- /dev/null +++ b/PAR 152/cone_dataset/31.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>31.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\31.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>19</xmin> + <ymin>32</ymin> + <xmax>261</xmax> + <ymax>309</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>268</xmin> + <ymin>76</ymin> + <xmax>438</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/32.jpg b/PAR 152/cone_dataset/32.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1a88a042be91f82216ead3d534222983b5b07fe5 Binary files /dev/null and b/PAR 152/cone_dataset/32.jpg differ diff --git a/PAR 152/cone_dataset/32.xml b/PAR 152/cone_dataset/32.xml new file mode 100644 index 0000000000000000000000000000000000000000..0f671931ef4e20b4ce89001337764f5eedb11c20 --- /dev/null +++ b/PAR 152/cone_dataset/32.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>32.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\32.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>768</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>338</ymin> + <xmax>289</xmax> + <ymax>547</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>229</xmin> + <ymin>393</ymin> + <xmax>473</xmax> + <ymax>594</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>538</xmin> + <ymin>395</ymin> + <xmax>737</xmax> + <ymax>650</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>413</xmin> + <ymin>347</ymin> + <xmax>566</xmax> + <ymax>498</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>650</xmin> + <ymin>341</ymin> + <xmax>800</xmax> + <ymax>466</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/33.jpg b/PAR 152/cone_dataset/33.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1b9fbe5d2024e13bcecd606c29c13e89403c123d Binary files /dev/null and b/PAR 152/cone_dataset/33.jpg differ diff --git a/PAR 152/cone_dataset/33.xml b/PAR 152/cone_dataset/33.xml new file mode 100644 index 0000000000000000000000000000000000000000..b18fd0d3c5481f088179262b8fbef9fd89a41aec --- /dev/null +++ b/PAR 152/cone_dataset/33.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>33.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\33.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>83</xmin> + <ymin>49</ymin> + <xmax>258</xmax> + <ymax>314</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>181</xmin> + <ymin>56</ymin> + <xmax>233</xmax> + <ymax>191</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>206</xmin> + <ymin>60</ymin> + <xmax>250</xmax> + <ymax>147</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>232</xmin> + <ymin>62</ymin> + <xmax>255</xmax> + <ymax>116</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/34.jpg b/PAR 152/cone_dataset/34.jpg new file mode 100644 index 0000000000000000000000000000000000000000..19d43722c14bd38d0c451ad9cb4f23fc08a772d2 Binary files /dev/null and b/PAR 152/cone_dataset/34.jpg differ diff --git a/PAR 152/cone_dataset/34.xml b/PAR 152/cone_dataset/34.xml new file mode 100644 index 0000000000000000000000000000000000000000..4b39b925cc17d9c9d98fcc47f013148a7056bd25 --- /dev/null +++ b/PAR 152/cone_dataset/34.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>34.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\34.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>237</xmin> + <ymin>23</ymin> + <xmax>438</xmax> + <ymax>313</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>88</ymin> + <xmax>233</xmax> + <ymax>214</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>110</xmin> + <ymin>113</ymin> + <xmax>166</xmax> + <ymax>189</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>85</xmin> + <ymin>150</ymin> + <xmax>106</xmax> + <ymax>186</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/35.jpg b/PAR 152/cone_dataset/35.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1956703b306b7c5937d6a8467a8c88e0cebbabf7 Binary files /dev/null and b/PAR 152/cone_dataset/35.jpg differ diff --git a/PAR 152/cone_dataset/35.xml b/PAR 152/cone_dataset/35.xml new file mode 100644 index 0000000000000000000000000000000000000000..4b6b98479598bb5468aef6531be82c30aa5f8de2 --- /dev/null +++ b/PAR 152/cone_dataset/35.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>35.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\35.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>305</xmin> + <ymin>19</ymin> + <xmax>480</xmax> + <ymax>298</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>150</xmin> + <ymin>175</ymin> + <xmax>212</xmax> + <ymax>262</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>125</xmin> + <ymin>198</ymin> + <xmax>157</xmax> + <ymax>257</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>97</xmin> + <ymin>215</ymin> + <xmax>120</xmax> + <ymax>254</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>86</xmin> + <ymin>219</ymin> + <xmax>101</xmax> + <ymax>254</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>229</ymin> + <xmax>65</xmax> + <ymax>249</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/36.jpg b/PAR 152/cone_dataset/36.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a73acd285fd86c8caebfb75425e174519d45cf14 Binary files /dev/null and b/PAR 152/cone_dataset/36.jpg differ diff --git a/PAR 152/cone_dataset/36.xml b/PAR 152/cone_dataset/36.xml new file mode 100644 index 0000000000000000000000000000000000000000..10a88dcb45c48dfcb952ae030b23363ceabe660f --- /dev/null +++ b/PAR 152/cone_dataset/36.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>36.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\36.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>323</width> + <height>529</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>17</ymin> + <xmax>309</xmax> + <ymax>504</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/37.jpg b/PAR 152/cone_dataset/37.jpg new file mode 100644 index 0000000000000000000000000000000000000000..51d6c1901fbca1942b4f6b6c6094c3ece6d1fc31 Binary files /dev/null and b/PAR 152/cone_dataset/37.jpg differ diff --git a/PAR 152/cone_dataset/37.xml b/PAR 152/cone_dataset/37.xml new file mode 100644 index 0000000000000000000000000000000000000000..e9741a2467c31304a3fb39feb5e3a6b029004b29 --- /dev/null +++ b/PAR 152/cone_dataset/37.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>37.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\37.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>421</width> + <height>407</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>43</xmin> + <ymin>39</ymin> + <xmax>257</xmax> + <ymax>301</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>115</ymin> + <xmax>384</xmax> + <ymax>268</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/38.jpg b/PAR 152/cone_dataset/38.jpg new file mode 100644 index 0000000000000000000000000000000000000000..962eab6eb3fbf4fc309c16e02c0266f1c0e9345d Binary files /dev/null and b/PAR 152/cone_dataset/38.jpg differ diff --git a/PAR 152/cone_dataset/38.xml b/PAR 152/cone_dataset/38.xml new file mode 100644 index 0000000000000000000000000000000000000000..05e3e59a73a8ed9ab78048e6b9522cc95f2fd82d --- /dev/null +++ b/PAR 152/cone_dataset/38.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>38.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\38.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>492</width> + <height>348</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>208</xmin> + <ymin>25</ymin> + <xmax>428</xmax> + <ymax>311</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/39.jpg b/PAR 152/cone_dataset/39.jpg new file mode 100644 index 0000000000000000000000000000000000000000..27aa64ebee438e321853a38b800d450ba3a3071c Binary files /dev/null and b/PAR 152/cone_dataset/39.jpg differ diff --git a/PAR 152/cone_dataset/39.xml b/PAR 152/cone_dataset/39.xml new file mode 100644 index 0000000000000000000000000000000000000000..a66d6d4be73f0712cce547d699e0e885348eeae5 --- /dev/null +++ b/PAR 152/cone_dataset/39.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>39.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\39.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>469</width> + <height>368</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>58</xmin> + <ymin>120</ymin> + <xmax>329</xmax> + <ymax>307</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/4.jpg b/PAR 152/cone_dataset/4.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8aa37c4a7a12c29419d95a348fc3ea4bdbc33270 Binary files /dev/null and b/PAR 152/cone_dataset/4.jpg differ diff --git a/PAR 152/cone_dataset/4.xml b/PAR 152/cone_dataset/4.xml new file mode 100644 index 0000000000000000000000000000000000000000..6ae7150fa5243bdb61f61c2fc0d7cd3bb73770a2 --- /dev/null +++ b/PAR 152/cone_dataset/4.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>4.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\4.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>381</width> + <height>454</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>14</xmin> + <ymin>25</ymin> + <xmax>365</xmax> + <ymax>432</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/40.jpg b/PAR 152/cone_dataset/40.jpg new file mode 100644 index 0000000000000000000000000000000000000000..963bd3acaec85a2c7e7ee23cca4459fba5e84dcf Binary files /dev/null and b/PAR 152/cone_dataset/40.jpg differ diff --git a/PAR 152/cone_dataset/40.xml b/PAR 152/cone_dataset/40.xml new file mode 100644 index 0000000000000000000000000000000000000000..54d5cd8d132225e1425f56d52a92b60c73357d51 --- /dev/null +++ b/PAR 152/cone_dataset/40.xml @@ -0,0 +1,146 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>40.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\40.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>51</xmin> + <ymin>125</ymin> + <xmax>149</xmax> + <ymax>300</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>147</xmin> + <ymin>108</ymin> + <xmax>230</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>54</xmin> + <ymin>12</ymin> + <xmax>84</xmax> + <ymax>57</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>150</xmin> + <ymin>10</ymin> + <xmax>172</xmax> + <ymax>48</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>8</ymin> + <xmax>241</xmax> + <ymax>43</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>444</xmin> + <ymin>43</ymin> + <xmax>479</xmax> + <ymax>101</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>305</xmin> + <ymin>156</ymin> + <xmax>407</xmax> + <ymax>254</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>275</xmin> + <ymin>10</ymin> + <xmax>293</xmax> + <ymax>38</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>485</xmin> + <ymin>35</ymin> + <xmax>507</xmax> + <ymax>82</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>314</xmin> + <ymin>9</ymin> + <xmax>328</xmax> + <ymax>35</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>354</xmin> + <ymin>9</ymin> + <xmax>368</xmax> + <ymax>33</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/41.jpg b/PAR 152/cone_dataset/41.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3c384b8ef14a07741777d8467d0f3f01ea296d92 Binary files /dev/null and b/PAR 152/cone_dataset/41.jpg differ diff --git a/PAR 152/cone_dataset/41.xml b/PAR 152/cone_dataset/41.xml new file mode 100644 index 0000000000000000000000000000000000000000..c49262c9497ef61c6eb8ce92a5ed051d82039973 --- /dev/null +++ b/PAR 152/cone_dataset/41.xml @@ -0,0 +1,122 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>41.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\41.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>529</width> + <height>327</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>45</xmin> + <ymin>155</ymin> + <xmax>149</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>152</xmin> + <ymin>128</ymin> + <xmax>241</xmax> + <ymax>277</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>228</xmin> + <ymin>106</ymin> + <xmax>311</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>295</xmin> + <ymin>90</ymin> + <xmax>368</xmax> + <ymax>227</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>72</ymin> + <xmax>407</xmax> + <ymax>200</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>381</xmin> + <ymin>61</ymin> + <xmax>444</xmax> + <ymax>184</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>420</xmin> + <ymin>47</ymin> + <xmax>477</xmax> + <ymax>165</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>464</xmin> + <ymin>35</ymin> + <xmax>520</xmax> + <ymax>145</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>496</xmin> + <ymin>22</ymin> + <xmax>529</xmax> + <ymax>123</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/42.jpg b/PAR 152/cone_dataset/42.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f4ac7318edb7e8b07d4cc4055d21b9d8040ce91b Binary files /dev/null and b/PAR 152/cone_dataset/42.jpg differ diff --git a/PAR 152/cone_dataset/42.xml b/PAR 152/cone_dataset/42.xml new file mode 100644 index 0000000000000000000000000000000000000000..695e55e16778cb35ea2b99b4b5be45e154091f3e --- /dev/null +++ b/PAR 152/cone_dataset/42.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>42.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\42.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>66</xmin> + <ymin>11</ymin> + <xmax>293</xmax> + <ymax>492</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/43.jpg b/PAR 152/cone_dataset/43.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d06cf0f3ea474fc47341b89f6b18790ce3b2d689 Binary files /dev/null and b/PAR 152/cone_dataset/43.jpg differ diff --git a/PAR 152/cone_dataset/43.xml b/PAR 152/cone_dataset/43.xml new file mode 100644 index 0000000000000000000000000000000000000000..0feb64e1c1383bfefcce73cc193b471ca31805ff --- /dev/null +++ b/PAR 152/cone_dataset/43.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>43.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\43.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>126</xmin> + <ymin>267</ymin> + <xmax>139</xmax> + <ymax>285</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>391</xmin> + <ymin>261</ymin> + <xmax>402</xmax> + <ymax>282</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>264</xmin> + <ymin>260</ymin> + <xmax>277</xmax> + <ymax>281</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>194</xmin> + <ymin>261</ymin> + <xmax>208</xmax> + <ymax>282</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/44.jpg b/PAR 152/cone_dataset/44.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7b307cc905f9a83e7a709326c0a8806977c764f1 Binary files /dev/null and b/PAR 152/cone_dataset/44.jpg differ diff --git a/PAR 152/cone_dataset/44.xml b/PAR 152/cone_dataset/44.xml new file mode 100644 index 0000000000000000000000000000000000000000..24bc004131fd66c71d6b739a48f1e22b89a604d3 --- /dev/null +++ b/PAR 152/cone_dataset/44.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>44.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\44.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>132</xmin> + <ymin>37</ymin> + <xmax>275</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>2</xmin> + <ymin>283</ymin> + <xmax>99</xmax> + <ymax>508</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>1</ymin> + <xmax>187</xmax> + <ymax>95</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/45.jpg b/PAR 152/cone_dataset/45.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4c4f5024c87a38fe492c1c3d982da849011adea3 Binary files /dev/null and b/PAR 152/cone_dataset/45.jpg differ diff --git a/PAR 152/cone_dataset/45.xml b/PAR 152/cone_dataset/45.xml new file mode 100644 index 0000000000000000000000000000000000000000..9fcb50f9ca3c734fa55c734247bb72039fb79423 --- /dev/null +++ b/PAR 152/cone_dataset/45.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>45.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\45.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>594</width> + <height>396</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>256</xmin> + <ymin>264</ymin> + <xmax>308</xmax> + <ymax>347</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>115</xmin> + <ymin>249</ymin> + <xmax>154</xmax> + <ymax>317</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>15</xmin> + <ymin>240</ymin> + <xmax>53</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>507</xmin> + <ymin>283</ymin> + <xmax>573</xmax> + <ymax>391</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>347</xmin> + <ymin>192</ymin> + <xmax>359</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>289</xmin> + <ymin>190</ymin> + <xmax>302</xmax> + <ymax>209</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>102</xmin> + <ymin>194</ymin> + <xmax>111</xmax> + <ymax>206</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/46.jpg b/PAR 152/cone_dataset/46.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7ca6552e5e7c57a6c699da7236addae19293c80a Binary files /dev/null and b/PAR 152/cone_dataset/46.jpg differ diff --git a/PAR 152/cone_dataset/46.xml b/PAR 152/cone_dataset/46.xml new file mode 100644 index 0000000000000000000000000000000000000000..04029dac98ce8d36867c69aa932cc8ef5a6da83c --- /dev/null +++ b/PAR 152/cone_dataset/46.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>46.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\46.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>132</xmin> + <ymin>162</ymin> + <xmax>304</xmax> + <ymax>478</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/47.jpg b/PAR 152/cone_dataset/47.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cf705c85041f072f9000e3fef20f3f7989e6bf6 Binary files /dev/null and b/PAR 152/cone_dataset/47.jpg differ diff --git a/PAR 152/cone_dataset/47.xml b/PAR 152/cone_dataset/47.xml new file mode 100644 index 0000000000000000000000000000000000000000..3e3aa3d1a0ccc16f7695e16d4739e5028c9a5c5e --- /dev/null +++ b/PAR 152/cone_dataset/47.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>47.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\47.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>11</ymin> + <xmax>384</xmax> + <ymax>322</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/48.jpg b/PAR 152/cone_dataset/48.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eb62e66ad07dd40e16e197f2888339f684f1c72d Binary files /dev/null and b/PAR 152/cone_dataset/48.jpg differ diff --git a/PAR 152/cone_dataset/48.xml b/PAR 152/cone_dataset/48.xml new file mode 100644 index 0000000000000000000000000000000000000000..68b1fdd321847c9d06d4e7e8c343be44866c4465 --- /dev/null +++ b/PAR 152/cone_dataset/48.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>48.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\48.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>514</width> + <height>333</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>16</xmin> + <ymin>23</ymin> + <xmax>80</xmax> + <ymax>135</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>113</xmin> + <ymin>34</ymin> + <xmax>190</xmax> + <ymax>164</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>375</xmin> + <ymin>90</ymin> + <xmax>506</xmax> + <ymax>291</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>205</xmin> + <ymin>165</ymin> + <xmax>363</xmax> + <ymax>301</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/49.jpg b/PAR 152/cone_dataset/49.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7673a3353051954e73afef7ab2a4692fd625a7c8 Binary files /dev/null and b/PAR 152/cone_dataset/49.jpg differ diff --git a/PAR 152/cone_dataset/49.xml b/PAR 152/cone_dataset/49.xml new file mode 100644 index 0000000000000000000000000000000000000000..7a3761ffd47ef6872354eae63391148063096287 --- /dev/null +++ b/PAR 152/cone_dataset/49.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>49.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\49.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>594</width> + <height>334</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>27</xmin> + <ymin>44</ymin> + <xmax>212</xmax> + <ymax>283</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>369</xmin> + <ymin>9</ymin> + <xmax>589</xmax> + <ymax>292</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/5.jpg b/PAR 152/cone_dataset/5.jpg new file mode 100644 index 0000000000000000000000000000000000000000..391a91991b7b15f907cbe9e240943914afc28de9 Binary files /dev/null and b/PAR 152/cone_dataset/5.jpg differ diff --git a/PAR 152/cone_dataset/5.xml b/PAR 152/cone_dataset/5.xml new file mode 100644 index 0000000000000000000000000000000000000000..5b963a42f1c4e195a6b3a367d1566c326ea3f5e6 --- /dev/null +++ b/PAR 152/cone_dataset/5.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>5.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\5.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>5</xmin> + <ymin>38</ymin> + <xmax>336</xmax> + <ymax>478</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/50.jpg b/PAR 152/cone_dataset/50.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5de0b10d1627f61e7528d6b5325e3e4733e7b497 Binary files /dev/null and b/PAR 152/cone_dataset/50.jpg differ diff --git a/PAR 152/cone_dataset/50.xml b/PAR 152/cone_dataset/50.xml new file mode 100644 index 0000000000000000000000000000000000000000..c396b6031b259f2cf9a0af8bdef12cd59eb45594 --- /dev/null +++ b/PAR 152/cone_dataset/50.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>50.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\50.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>53</xmin> + <ymin>47</ymin> + <xmax>259</xmax> + <ymax>456</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/51.jpg b/PAR 152/cone_dataset/51.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5727012fa105123957c9e42e4b6ab53a5b9cbf7a Binary files /dev/null and b/PAR 152/cone_dataset/51.jpg differ diff --git a/PAR 152/cone_dataset/51.xml b/PAR 152/cone_dataset/51.xml new file mode 100644 index 0000000000000000000000000000000000000000..16d57f31d918a02bda72df976e45fcce5e519c3a --- /dev/null +++ b/PAR 152/cone_dataset/51.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>51.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\51.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>594</width> + <height>401</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>378</xmin> + <ymin>246</ymin> + <xmax>411</xmax> + <ymax>286</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>22</xmin> + <ymin>292</ymin> + <xmax>79</xmax> + <ymax>368</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>178</xmin> + <ymin>257</ymin> + <xmax>205</xmax> + <ymax>309</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>113</xmin> + <ymin>263</ymin> + <xmax>145</xmax> + <ymax>321</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>79</xmin> + <ymin>275</ymin> + <xmax>117</xmax> + <ymax>339</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/52.jpg b/PAR 152/cone_dataset/52.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5c79c02e9b15f8fabc13d74dc185f0d202bf32bf Binary files /dev/null and b/PAR 152/cone_dataset/52.jpg differ diff --git a/PAR 152/cone_dataset/52.xml b/PAR 152/cone_dataset/52.xml new file mode 100644 index 0000000000000000000000000000000000000000..80a8ffbf2fac7cd8c62660bea200651d6512c30c --- /dev/null +++ b/PAR 152/cone_dataset/52.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>52.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\52.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>170</width> + <height>106</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>97</xmax> + <ymax>103</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>35</xmin> + <ymin>16</ymin> + <xmax>161</xmax> + <ymax>104</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/53.jpg b/PAR 152/cone_dataset/53.jpg new file mode 100644 index 0000000000000000000000000000000000000000..09d260081ed1d3f2288b6e689fb7c0752f4b279f Binary files /dev/null and b/PAR 152/cone_dataset/53.jpg differ diff --git a/PAR 152/cone_dataset/53.xml b/PAR 152/cone_dataset/53.xml new file mode 100644 index 0000000000000000000000000000000000000000..a86fb83d76693f31bba0053ec6e6486359612f54 --- /dev/null +++ b/PAR 152/cone_dataset/53.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>53.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\53.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>114</width> + <height>170</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>17</xmin> + <ymin>19</ymin> + <xmax>92</xmax> + <ymax>158</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/54.jpg b/PAR 152/cone_dataset/54.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6ee6c1d9ca20d6de8cc7a63e66400baebdce72d1 Binary files /dev/null and b/PAR 152/cone_dataset/54.jpg differ diff --git a/PAR 152/cone_dataset/54.xml b/PAR 152/cone_dataset/54.xml new file mode 100644 index 0000000000000000000000000000000000000000..7e059368607fb0a24950911c4330ea9ef7128013 --- /dev/null +++ b/PAR 152/cone_dataset/54.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>54.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\54.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>309</xmin> + <ymin>158</ymin> + <xmax>383</xmax> + <ymax>264</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>13</xmin> + <ymin>161</ymin> + <xmax>85</xmax> + <ymax>264</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>34</xmin> + <ymin>90</ymin> + <xmax>95</xmax> + <ymax>166</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>276</xmin> + <ymin>82</ymin> + <xmax>324</xmax> + <ymax>156</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/55.jpg b/PAR 152/cone_dataset/55.jpg new file mode 100644 index 0000000000000000000000000000000000000000..90ef67dca44063a2eaada849f5ecb271bf67f229 Binary files /dev/null and b/PAR 152/cone_dataset/55.jpg differ diff --git a/PAR 152/cone_dataset/55.xml b/PAR 152/cone_dataset/55.xml new file mode 100644 index 0000000000000000000000000000000000000000..870124701ab6dad222cde82a5b397f7ba9df93b3 --- /dev/null +++ b/PAR 152/cone_dataset/55.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>55.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\55.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>44</ymin> + <xmax>355</xmax> + <ymax>286</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>377</xmin> + <ymin>164</ymin> + <xmax>448</xmax> + <ymax>261</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/56.jpg b/PAR 152/cone_dataset/56.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3de4d3adc6560de9f1e4a9253330b48ee09d92b1 Binary files /dev/null and b/PAR 152/cone_dataset/56.jpg differ diff --git a/PAR 152/cone_dataset/56.xml b/PAR 152/cone_dataset/56.xml new file mode 100644 index 0000000000000000000000000000000000000000..256b78685e7e218cb345c084807faa46516a4a09 --- /dev/null +++ b/PAR 152/cone_dataset/56.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>56.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\56.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>422</width> + <height>407</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>79</xmin> + <ymin>10</ymin> + <xmax>306</xmax> + <ymax>314</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/57.jpg b/PAR 152/cone_dataset/57.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1159b708018d81ac10869de4849a54afe43e0c63 Binary files /dev/null and b/PAR 152/cone_dataset/57.jpg differ diff --git a/PAR 152/cone_dataset/57.xml b/PAR 152/cone_dataset/57.xml new file mode 100644 index 0000000000000000000000000000000000000000..70c7754a80ddad37f42d2c093976b8d357f52bb3 --- /dev/null +++ b/PAR 152/cone_dataset/57.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>57.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\57.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>23</xmin> + <ymin>229</ymin> + <xmax>158</xmax> + <ymax>394</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>190</ymin> + <xmax>267</xmax> + <ymax>307</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>168</ymin> + <xmax>330</xmax> + <ymax>260</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>311</xmin> + <ymin>155</ymin> + <xmax>372</xmax> + <ymax>229</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>355</xmin> + <ymin>145</ymin> + <xmax>401</xmax> + <ymax>208</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>388</xmin> + <ymin>138</ymin> + <xmax>414</xmax> + <ymax>191</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/58.jpg b/PAR 152/cone_dataset/58.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9afdc7e3357fb32fb9c75b44399dbea68bbb9dd1 Binary files /dev/null and b/PAR 152/cone_dataset/58.jpg differ diff --git a/PAR 152/cone_dataset/58.xml b/PAR 152/cone_dataset/58.xml new file mode 100644 index 0000000000000000000000000000000000000000..d7e5b8a5b216526919367bd777880bcca9c78b82 --- /dev/null +++ b/PAR 152/cone_dataset/58.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>58.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\58.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>369</width> + <height>464</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>34</xmin> + <ymin>171</ymin> + <xmax>193</xmax> + <ymax>433</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>148</xmin> + <ymin>174</ymin> + <xmax>339</xmax> + <ymax>284</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/59.jpg b/PAR 152/cone_dataset/59.jpg new file mode 100644 index 0000000000000000000000000000000000000000..960c455c0a11635108fccdb1a77a675dbc623be5 Binary files /dev/null and b/PAR 152/cone_dataset/59.jpg differ diff --git a/PAR 152/cone_dataset/59.xml b/PAR 152/cone_dataset/59.xml new file mode 100644 index 0000000000000000000000000000000000000000..57a3eb5e6d8ed886b287f24400929c36df87820a --- /dev/null +++ b/PAR 152/cone_dataset/59.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>59.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\59.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>478</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>53</xmin> + <ymin>57</ymin> + <xmax>292</xmax> + <ymax>434</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/6.jpg b/PAR 152/cone_dataset/6.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a39ba1e368e2a384d4a8a83fcc3eb50bae5005a5 Binary files /dev/null and b/PAR 152/cone_dataset/6.jpg differ diff --git a/PAR 152/cone_dataset/6.xml b/PAR 152/cone_dataset/6.xml new file mode 100644 index 0000000000000000000000000000000000000000..30164432ff2f73dbdb5dd172572dc99ea59458e7 --- /dev/null +++ b/PAR 152/cone_dataset/6.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>6.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\6.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>508</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>39</ymin> + <xmax>332</xmax> + <ymax>468</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/60.jpg b/PAR 152/cone_dataset/60.jpg new file mode 100644 index 0000000000000000000000000000000000000000..87327bce4c2eedb637ace032229ab8a3517e81aa Binary files /dev/null and b/PAR 152/cone_dataset/60.jpg differ diff --git a/PAR 152/cone_dataset/60.xml b/PAR 152/cone_dataset/60.xml new file mode 100644 index 0000000000000000000000000000000000000000..fd820d8c78151e52d0ffb4fc0bbc1cac9db90e2e --- /dev/null +++ b/PAR 152/cone_dataset/60.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>60.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\60.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>482</width> + <height>355</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>50</xmin> + <ymin>148</ymin> + <xmax>195</xmax> + <ymax>337</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>212</xmin> + <ymin>109</ymin> + <xmax>317</xmax> + <ymax>235</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>306</xmin> + <ymin>81</ymin> + <xmax>389</xmax> + <ymax>182</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>368</xmin> + <ymin>67</ymin> + <xmax>434</xmax> + <ymax>149</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>422</xmin> + <ymin>54</ymin> + <xmax>468</xmax> + <ymax>125</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>454</xmin> + <ymin>48</ymin> + <xmax>482</xmax> + <ymax>105</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/61.jpg b/PAR 152/cone_dataset/61.jpg new file mode 100644 index 0000000000000000000000000000000000000000..86b02e0acffe271cb984dafd06f6137b8a9726bc Binary files /dev/null and b/PAR 152/cone_dataset/61.jpg differ diff --git a/PAR 152/cone_dataset/61.xml b/PAR 152/cone_dataset/61.xml new file mode 100644 index 0000000000000000000000000000000000000000..234d206c51ad03671c775d091469d1f1a03c1427 --- /dev/null +++ b/PAR 152/cone_dataset/61.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>61.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\61.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>57</xmin> + <ymin>168</ymin> + <xmax>166</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>125</ymin> + <xmax>143</xmax> + <ymax>225</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>96</xmin> + <ymin>73</ymin> + <xmax>139</xmax> + <ymax>134</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/62.jpg b/PAR 152/cone_dataset/62.jpg new file mode 100644 index 0000000000000000000000000000000000000000..db7b81dc3917af4558b09d11029e5ffbd0497828 Binary files /dev/null and b/PAR 152/cone_dataset/62.jpg differ diff --git a/PAR 152/cone_dataset/62.xml b/PAR 152/cone_dataset/62.xml new file mode 100644 index 0000000000000000000000000000000000000000..6c5e86da09fdff2eda112e4ac2dbefe0b21e3aac --- /dev/null +++ b/PAR 152/cone_dataset/62.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>62.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\62.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>182</ymin> + <xmax>346</xmax> + <ymax>303</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>107</xmin> + <ymin>189</ymin> + <xmax>223</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>48</xmin> + <ymin>155</ymin> + <xmax>128</xmax> + <ymax>259</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/63.jpg b/PAR 152/cone_dataset/63.jpg new file mode 100644 index 0000000000000000000000000000000000000000..60a029dcd62bd5126266adae7ab4d9405daa6ed2 Binary files /dev/null and b/PAR 152/cone_dataset/63.jpg differ diff --git a/PAR 152/cone_dataset/63.xml b/PAR 152/cone_dataset/63.xml new file mode 100644 index 0000000000000000000000000000000000000000..8a22ec396b8b851a79249caf1320e387e82e050f --- /dev/null +++ b/PAR 152/cone_dataset/63.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>63.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\63.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>292</xmin> + <ymin>202</ymin> + <xmax>398</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>168</ymin> + <xmax>222</xmax> + <ymax>270</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>210</ymin> + <xmax>153</xmax> + <ymax>335</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>183</xmin> + <ymin>153</ymin> + <xmax>256</xmax> + <ymax>218</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/64.jpg b/PAR 152/cone_dataset/64.jpg new file mode 100644 index 0000000000000000000000000000000000000000..86f5399311c51cc329fb7d8fd103c7a80992930f Binary files /dev/null and b/PAR 152/cone_dataset/64.jpg differ diff --git a/PAR 152/cone_dataset/64.xml b/PAR 152/cone_dataset/64.xml new file mode 100644 index 0000000000000000000000000000000000000000..856ed467912123196397451dcd2a4559c0a84b61 --- /dev/null +++ b/PAR 152/cone_dataset/64.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>64.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\64.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>171</xmin> + <ymin>26</ymin> + <xmax>254</xmax> + <ymax>178</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>2</xmin> + <ymin>179</ymin> + <xmax>189</xmax> + <ymax>474</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>1</ymin> + <xmax>301</xmax> + <ymax>85</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>286</xmin> + <ymin>1</ymin> + <xmax>322</xmax> + <ymax>43</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/65.jpg b/PAR 152/cone_dataset/65.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3ff2198fe242735d5e87fa5b778563d65db8f116 Binary files /dev/null and b/PAR 152/cone_dataset/65.jpg differ diff --git a/PAR 152/cone_dataset/65.xml b/PAR 152/cone_dataset/65.xml new file mode 100644 index 0000000000000000000000000000000000000000..802484edee2522128e25d51cbe357c1673f5f584 --- /dev/null +++ b/PAR 152/cone_dataset/65.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>65.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\65.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>509</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>24</xmin> + <ymin>58</ymin> + <xmax>318</xmax> + <ymax>471</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/66.jpg b/PAR 152/cone_dataset/66.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d0cb30d523cc494bb94692e434850f3b15013005 Binary files /dev/null and b/PAR 152/cone_dataset/66.jpg differ diff --git a/PAR 152/cone_dataset/66.xml b/PAR 152/cone_dataset/66.xml new file mode 100644 index 0000000000000000000000000000000000000000..16f99d0bc13f4cb7a6fae51962fdccf12564eee3 --- /dev/null +++ b/PAR 152/cone_dataset/66.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>66.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\66.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>1024</width> + <height>680</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>257</ymin> + <xmax>329</xmax> + <ymax>648</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>649</xmin> + <ymin>239</ymin> + <xmax>922</xmax> + <ymax>621</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/67.jpg b/PAR 152/cone_dataset/67.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c94a5d54e91d8d3c16656a67e8ca24f76118ab45 Binary files /dev/null and b/PAR 152/cone_dataset/67.jpg differ diff --git a/PAR 152/cone_dataset/67.xml b/PAR 152/cone_dataset/67.xml new file mode 100644 index 0000000000000000000000000000000000000000..f0843121c0f2f17800fad45f4e84d9280d95d58a --- /dev/null +++ b/PAR 152/cone_dataset/67.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>67.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\67.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>356</width> + <height>481</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>106</xmin> + <ymin>88</ymin> + <xmax>241</xmax> + <ymax>316</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/68.jpg b/PAR 152/cone_dataset/68.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c0cc64b7acfc6533991db4630656471405630760 Binary files /dev/null and b/PAR 152/cone_dataset/68.jpg differ diff --git a/PAR 152/cone_dataset/68.xml b/PAR 152/cone_dataset/68.xml new file mode 100644 index 0000000000000000000000000000000000000000..7cb60fc813748d489aa9e7022bc9f1beb14b4cd2 --- /dev/null +++ b/PAR 152/cone_dataset/68.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>68.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\68.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>221</xmin> + <ymin>110</ymin> + <xmax>259</xmax> + <ymax>179</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/69.jpg b/PAR 152/cone_dataset/69.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3fc33a9fc2e82752469d34c91782f850f0eff22a Binary files /dev/null and b/PAR 152/cone_dataset/69.jpg differ diff --git a/PAR 152/cone_dataset/69.xml b/PAR 152/cone_dataset/69.xml new file mode 100644 index 0000000000000000000000000000000000000000..b13e86158c90b864f77db1ff8af3b28c750e8dfc --- /dev/null +++ b/PAR 152/cone_dataset/69.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>69.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\69.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>28</xmin> + <ymin>30</ymin> + <xmax>240</xmax> + <ymax>302</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>178</xmin> + <ymin>99</ymin> + <xmax>452</xmax> + <ymax>312</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/7.jpg b/PAR 152/cone_dataset/7.jpg new file mode 100644 index 0000000000000000000000000000000000000000..55c95a5f157d99f295fd8c7110455a7764e3a1f3 Binary files /dev/null and b/PAR 152/cone_dataset/7.jpg differ diff --git a/PAR 152/cone_dataset/7.xml b/PAR 152/cone_dataset/7.xml new file mode 100644 index 0000000000000000000000000000000000000000..24cdb64b5e9aeeeab9b3272251a371bd210d5955 --- /dev/null +++ b/PAR 152/cone_dataset/7.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>7.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\7.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>280</xmin> + <ymin>45</ymin> + <xmax>438</xmax> + <ymax>274</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>79</xmin> + <ymin>150</ymin> + <xmax>100</xmax> + <ymax>186</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>167</xmin> + <ymin>154</ymin> + <xmax>187</xmax> + <ymax>184</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>203</xmin> + <ymin>152</ymin> + <xmax>219</xmax> + <ymax>187</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>255</xmin> + <ymin>114</ymin> + <xmax>310</xmax> + <ymax>221</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>245</xmin> + <ymin>137</ymin> + <xmax>269</xmax> + <ymax>201</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>145</ymin> + <xmax>250</xmax> + <ymax>195</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/70.jpg b/PAR 152/cone_dataset/70.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dab53d9cf82b01a0387f327cf5657aee5c6cfd57 Binary files /dev/null and b/PAR 152/cone_dataset/70.jpg differ diff --git a/PAR 152/cone_dataset/70.xml b/PAR 152/cone_dataset/70.xml new file mode 100644 index 0000000000000000000000000000000000000000..0f9684ad168cc5b2038e22b2b070e9da5e38feee --- /dev/null +++ b/PAR 152/cone_dataset/70.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>70.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\70.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>363</width> + <height>473</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>73</xmin> + <ymin>232</ymin> + <xmax>155</xmax> + <ymax>405</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>247</xmin> + <ymin>72</ymin> + <xmax>323</xmax> + <ymax>223</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>188</xmin> + <ymin>111</ymin> + <xmax>251</xmax> + <ymax>269</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>126</xmin> + <ymin>166</ymin> + <xmax>203</xmax> + <ymax>330</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/71.jpg b/PAR 152/cone_dataset/71.jpg new file mode 100644 index 0000000000000000000000000000000000000000..17c71595c09e52093feda39ded6af86e24358b41 Binary files /dev/null and b/PAR 152/cone_dataset/71.jpg differ diff --git a/PAR 152/cone_dataset/71.xml b/PAR 152/cone_dataset/71.xml new file mode 100644 index 0000000000000000000000000000000000000000..64c7bf357912453265f66eb997af4b62b6a32e6f --- /dev/null +++ b/PAR 152/cone_dataset/71.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>71.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\71.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>412</width> + <height>415</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>177</xmin> + <ymin>69</ymin> + <xmax>373</xmax> + <ymax>393</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>166</ymin> + <xmax>125</xmax> + <ymax>255</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>342</xmin> + <ymin>152</ymin> + <xmax>412</xmax> + <ymax>265</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/72.jpg b/PAR 152/cone_dataset/72.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7ca6552e5e7c57a6c699da7236addae19293c80a Binary files /dev/null and b/PAR 152/cone_dataset/72.jpg differ diff --git a/PAR 152/cone_dataset/72.xml b/PAR 152/cone_dataset/72.xml new file mode 100644 index 0000000000000000000000000000000000000000..0d61d6cbdfd581ccfb81b5b97ceffd1645af1d96 --- /dev/null +++ b/PAR 152/cone_dataset/72.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>72.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\72.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>129</xmin> + <ymin>159</ymin> + <xmax>301</xmax> + <ymax>476</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/73.jpg b/PAR 152/cone_dataset/73.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f96929d640efb84c3cce5e2bc250072aea5158be Binary files /dev/null and b/PAR 152/cone_dataset/73.jpg differ diff --git a/PAR 152/cone_dataset/73.xml b/PAR 152/cone_dataset/73.xml new file mode 100644 index 0000000000000000000000000000000000000000..0f8f8107f3f7eb860d2bee386606af66ba915800 --- /dev/null +++ b/PAR 152/cone_dataset/73.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>73.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\73.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>604</width> + <height>283</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>268</xmin> + <ymin>113</ymin> + <xmax>315</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>185</xmin> + <ymin>113</ymin> + <xmax>233</xmax> + <ymax>170</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>103</xmin> + <ymin>114</ymin> + <xmax>150</xmax> + <ymax>170</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>15</xmin> + <ymin>114</ymin> + <xmax>65</xmax> + <ymax>170</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>351</xmin> + <ymin>114</ymin> + <xmax>402</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>440</xmin> + <ymin>114</ymin> + <xmax>487</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>528</xmin> + <ymin>116</ymin> + <xmax>575</xmax> + <ymax>171</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/74.jpg b/PAR 152/cone_dataset/74.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d42eb9dcfaf5bac9e6e639137ee778a466f3987c Binary files /dev/null and b/PAR 152/cone_dataset/74.jpg differ diff --git a/PAR 152/cone_dataset/74.xml b/PAR 152/cone_dataset/74.xml new file mode 100644 index 0000000000000000000000000000000000000000..6488c5d6052cf3612c807ce9c8a2691c889bedbe --- /dev/null +++ b/PAR 152/cone_dataset/74.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>74.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\74.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>50</xmin> + <ymin>1</ymin> + <xmax>183</xmax> + <ymax>188</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>253</xmin> + <ymin>64</ymin> + <xmax>366</xmax> + <ymax>268</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>339</xmin> + <ymin>7</ymin> + <xmax>429</xmax> + <ymax>179</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>127</xmin> + <ymin>99</ymin> + <xmax>259</xmax> + <ymax>335</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>425</xmin> + <ymin>4</ymin> + <xmax>509</xmax> + <ymax>171</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/75.jpg b/PAR 152/cone_dataset/75.jpg new file mode 100644 index 0000000000000000000000000000000000000000..57c98cd0ec0b3552619e7ba263564025a7179dda Binary files /dev/null and b/PAR 152/cone_dataset/75.jpg differ diff --git a/PAR 152/cone_dataset/75.xml b/PAR 152/cone_dataset/75.xml new file mode 100644 index 0000000000000000000000000000000000000000..efa46fc84bf45338d5f506073e56a6f3b19b6ed7 --- /dev/null +++ b/PAR 152/cone_dataset/75.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>75.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\75.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>416</width> + <height>416</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>52</xmin> + <ymin>16</ymin> + <xmax>354</xmax> + <ymax>393</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/76.jpg b/PAR 152/cone_dataset/76.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e7cce22d3a2901dff01f473601f3538a4047d5bd Binary files /dev/null and b/PAR 152/cone_dataset/76.jpg differ diff --git a/PAR 152/cone_dataset/76.xml b/PAR 152/cone_dataset/76.xml new file mode 100644 index 0000000000000000000000000000000000000000..63c748a0e852e2fa76d55778d2cd946a5781f3b3 --- /dev/null +++ b/PAR 152/cone_dataset/76.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>76.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\76.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>492</width> + <height>348</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>80</xmin> + <ymin>49</ymin> + <xmax>295</xmax> + <ymax>298</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>216</xmin> + <ymin>81</ymin> + <xmax>399</xmax> + <ymax>271</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/77.jpg b/PAR 152/cone_dataset/77.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cadc057f4c36a8585f5d7b90dee4d5cf2945ab1 Binary files /dev/null and b/PAR 152/cone_dataset/77.jpg differ diff --git a/PAR 152/cone_dataset/77.xml b/PAR 152/cone_dataset/77.xml new file mode 100644 index 0000000000000000000000000000000000000000..0a2ab193a08b57922c41fff5876dc24c38cfed0b --- /dev/null +++ b/PAR 152/cone_dataset/77.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>77.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\77.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>387</width> + <height>443</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>8</xmin> + <ymin>1</ymin> + <xmax>378</xmax> + <ymax>441</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/78.jpg b/PAR 152/cone_dataset/78.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f5610066fdc2e0127805545d4ead5edf2bc41c93 Binary files /dev/null and b/PAR 152/cone_dataset/78.jpg differ diff --git a/PAR 152/cone_dataset/78.xml b/PAR 152/cone_dataset/78.xml new file mode 100644 index 0000000000000000000000000000000000000000..ca56d792b10f822085cf171a72295f8a66256072 --- /dev/null +++ b/PAR 152/cone_dataset/78.xml @@ -0,0 +1,38 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>78.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\78.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>138</xmin> + <ymin>164</ymin> + <xmax>306</xmax> + <ymax>457</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>53</xmin> + <ymin>162</ymin> + <xmax>109</xmax> + <ymax>252</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/79.jpg b/PAR 152/cone_dataset/79.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ece385097ff446a46bc08c20c02cb28eca2ad2fc Binary files /dev/null and b/PAR 152/cone_dataset/79.jpg differ diff --git a/PAR 152/cone_dataset/79.xml b/PAR 152/cone_dataset/79.xml new file mode 100644 index 0000000000000000000000000000000000000000..438ff7841bfccfdf4a44f9c9ffac90bf7f0c3bd8 --- /dev/null +++ b/PAR 152/cone_dataset/79.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>79.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\79.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>505</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>317</xmin> + <ymin>106</ymin> + <xmax>435</xmax> + <ymax>319</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>267</xmin> + <ymin>140</ymin> + <xmax>340</xmax> + <ymax>266</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>239</xmin> + <ymin>167</ymin> + <xmax>272</xmax> + <ymax>233</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>419</xmin> + <ymin>164</ymin> + <xmax>470</xmax> + <ymax>253</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/8.jpg b/PAR 152/cone_dataset/8.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ddbb595eb4a93591f923c97270bbfbbc9f2a9a35 Binary files /dev/null and b/PAR 152/cone_dataset/8.jpg differ diff --git a/PAR 152/cone_dataset/8.xml b/PAR 152/cone_dataset/8.xml new file mode 100644 index 0000000000000000000000000000000000000000..f0bfc8c54c84f3fe60fafb5dc905943ff5940370 --- /dev/null +++ b/PAR 152/cone_dataset/8.xml @@ -0,0 +1,74 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>8.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\8.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>332</xmin> + <ymin>52</ymin> + <xmax>460</xmax> + <ymax>295</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>207</xmin> + <ymin>131</ymin> + <xmax>242</xmax> + <ymax>205</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>169</xmin> + <ymin>147</ymin> + <xmax>192</xmax> + <ymax>191</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>155</xmin> + <ymin>155</ymin> + <xmax>169</xmax> + <ymax>183</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>47</xmin> + <ymin>167</ymin> + <xmax>52</xmax> + <ymax>174</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/80.jpg b/PAR 152/cone_dataset/80.jpg new file mode 100644 index 0000000000000000000000000000000000000000..169efd966d71d1069cba2818faff14482d8acdf4 Binary files /dev/null and b/PAR 152/cone_dataset/80.jpg differ diff --git a/PAR 152/cone_dataset/80.xml b/PAR 152/cone_dataset/80.xml new file mode 100644 index 0000000000000000000000000000000000000000..6fda51997bc8d2cea21b50c137b24bca933c66f8 --- /dev/null +++ b/PAR 152/cone_dataset/80.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>80.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\80.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>366</width> + <height>467</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>98</xmin> + <ymin>211</ymin> + <xmax>182</xmax> + <ymax>357</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>99</xmin> + <ymin>202</ymin> + <xmax>148</xmax> + <ymax>299</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>134</xmin> + <ymin>241</ymin> + <xmax>228</xmax> + <ymax>465</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>108</xmin> + <ymin>195</ymin> + <xmax>133</xmax> + <ymax>249</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/81.jpg b/PAR 152/cone_dataset/81.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a4a3efbeec838e054a4bbf4a041fdbd90cb9f417 Binary files /dev/null and b/PAR 152/cone_dataset/81.jpg differ diff --git a/PAR 152/cone_dataset/81.xml b/PAR 152/cone_dataset/81.xml new file mode 100644 index 0000000000000000000000000000000000000000..0c4bb3847fb79e9c08f6ecca23529f971d20e66e --- /dev/null +++ b/PAR 152/cone_dataset/81.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>81.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\81.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>414</width> + <height>414</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>78</xmin> + <ymin>55</ymin> + <xmax>260</xmax> + <ymax>308</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>121</ymin> + <xmax>356</xmax> + <ymax>272</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>233</xmin> + <ymin>180</ymin> + <xmax>278</xmax> + <ymax>247</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>43</xmin> + <ymin>160</ymin> + <xmax>123</xmax> + <ymax>253</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/82.jpg b/PAR 152/cone_dataset/82.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eb62e66ad07dd40e16e197f2888339f684f1c72d Binary files /dev/null and b/PAR 152/cone_dataset/82.jpg differ diff --git a/PAR 152/cone_dataset/82.xml b/PAR 152/cone_dataset/82.xml new file mode 100644 index 0000000000000000000000000000000000000000..08e829f79ce8bd927ea31c698b72a3efa73b7ffa --- /dev/null +++ b/PAR 152/cone_dataset/82.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>82.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\82.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>514</width> + <height>333</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>105</xmin> + <ymin>33</ymin> + <xmax>191</xmax> + <ymax>163</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>13</xmin> + <ymin>25</ymin> + <xmax>83</xmax> + <ymax>136</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>376</xmin> + <ymin>90</ymin> + <xmax>506</xmax> + <ymax>292</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>205</xmin> + <ymin>168</ymin> + <xmax>363</xmax> + <ymax>296</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/83.jpg b/PAR 152/cone_dataset/83.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7a255f822981028fbc5df1becf05a10c2df95d60 Binary files /dev/null and b/PAR 152/cone_dataset/83.jpg differ diff --git a/PAR 152/cone_dataset/83.xml b/PAR 152/cone_dataset/83.xml new file mode 100644 index 0000000000000000000000000000000000000000..1797700a59aab71846ac7cf94a08535dfd379470 --- /dev/null +++ b/PAR 152/cone_dataset/83.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>83.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\83.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>252</xmin> + <ymin>1</ymin> + <xmax>509</xmax> + <ymax>336</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/84.jpg b/PAR 152/cone_dataset/84.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d466eac9ac903144d8515cfa3958e2727d9853ac Binary files /dev/null and b/PAR 152/cone_dataset/84.jpg differ diff --git a/PAR 152/cone_dataset/84.xml b/PAR 152/cone_dataset/84.xml new file mode 100644 index 0000000000000000000000000000000000000000..b55dd0d3ef3f0e9d7c24aa9be7b8417fb256779d --- /dev/null +++ b/PAR 152/cone_dataset/84.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>84.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\84.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>192</xmin> + <ymin>189</ymin> + <xmax>333</xmax> + <ymax>325</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/85.jpg b/PAR 152/cone_dataset/85.jpg new file mode 100644 index 0000000000000000000000000000000000000000..710f6b99d04e7999f40c2604335368d870ca9fed Binary files /dev/null and b/PAR 152/cone_dataset/85.jpg differ diff --git a/PAR 152/cone_dataset/85.xml b/PAR 152/cone_dataset/85.xml new file mode 100644 index 0000000000000000000000000000000000000000..2b14df2b422c4309989d3315e635809905275f8e --- /dev/null +++ b/PAR 152/cone_dataset/85.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>85.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\85.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>146</xmin> + <ymin>71</ymin> + <xmax>228</xmax> + <ymax>215</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>294</xmin> + <ymin>28</ymin> + <xmax>407</xmax> + <ymax>187</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>38</xmin> + <ymin>109</ymin> + <xmax>114</xmax> + <ymax>232</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>408</xmin> + <ymin>73</ymin> + <xmax>497</xmax> + <ymax>222</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/86.jpg b/PAR 152/cone_dataset/86.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9556b6df8396bb1c8197bca623854c38893bd437 Binary files /dev/null and b/PAR 152/cone_dataset/86.jpg differ diff --git a/PAR 152/cone_dataset/86.xml b/PAR 152/cone_dataset/86.xml new file mode 100644 index 0000000000000000000000000000000000000000..1c4e504ab35cd39b5812c65a351236812066c7ef --- /dev/null +++ b/PAR 152/cone_dataset/86.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>86.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\86.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>193</xmin> + <ymin>12</ymin> + <xmax>457</xmax> + <ymax>275</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/87.jpg b/PAR 152/cone_dataset/87.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fba51bade931d2fdff72e4ae76544e8ebf4f89f5 Binary files /dev/null and b/PAR 152/cone_dataset/87.jpg differ diff --git a/PAR 152/cone_dataset/87.xml b/PAR 152/cone_dataset/87.xml new file mode 100644 index 0000000000000000000000000000000000000000..0648a0c8b0f96d2381e2cc2b3fd1904ce05da10f --- /dev/null +++ b/PAR 152/cone_dataset/87.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>87.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\87.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>339</width> + <height>506</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>159</xmin> + <ymin>223</ymin> + <xmax>287</xmax> + <ymax>454</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>39</xmin> + <ymin>40</ymin> + <xmax>77</xmax> + <ymax>91</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>114</xmin> + <ymin>5</ymin> + <xmax>143</xmax> + <ymax>43</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>165</xmin> + <ymin>4</ymin> + <xmax>178</xmax> + <ymax>25</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/88.jpg b/PAR 152/cone_dataset/88.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c6bbd2fde51c2b43fcc08de769a93ed3d632152 Binary files /dev/null and b/PAR 152/cone_dataset/88.jpg differ diff --git a/PAR 152/cone_dataset/88.xml b/PAR 152/cone_dataset/88.xml new file mode 100644 index 0000000000000000000000000000000000000000..f61101ba72552659d6c4480315f3c96bf656c086 --- /dev/null +++ b/PAR 152/cone_dataset/88.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>88.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\88.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>478</width> + <height>359</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>52</ymin> + <xmax>106</xmax> + <ymax>355</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>204</xmin> + <ymin>125</ymin> + <xmax>234</xmax> + <ymax>193</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>139</ymin> + <xmax>257</xmax> + <ymax>180</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>249</xmin> + <ymin>145</ymin> + <xmax>261</xmax> + <ymax>170</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/89.jpg b/PAR 152/cone_dataset/89.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f4ac7318edb7e8b07d4cc4055d21b9d8040ce91b Binary files /dev/null and b/PAR 152/cone_dataset/89.jpg differ diff --git a/PAR 152/cone_dataset/89.xml b/PAR 152/cone_dataset/89.xml new file mode 100644 index 0000000000000000000000000000000000000000..b953d1ecb6ff011c9f2ade1f3ac49ab87e56a7cd --- /dev/null +++ b/PAR 152/cone_dataset/89.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>89.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\89.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>338</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>62</xmin> + <ymin>10</ymin> + <xmax>291</xmax> + <ymax>492</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/9.jpg b/PAR 152/cone_dataset/9.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5ea3555212980a9a5e49999f6e94c863ba876f05 Binary files /dev/null and b/PAR 152/cone_dataset/9.jpg differ diff --git a/PAR 152/cone_dataset/9.xml b/PAR 152/cone_dataset/9.xml new file mode 100644 index 0000000000000000000000000000000000000000..fd785042d0bb01466c4f88da84cf1199d672ef50 --- /dev/null +++ b/PAR 152/cone_dataset/9.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>9.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\9.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>338</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>359</xmin> + <ymin>94</ymin> + <xmax>484</xmax> + <ymax>293</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>276</xmin> + <ymin>104</ymin> + <xmax>362</xmax> + <ymax>257</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>120</xmin> + <ymin>168</ymin> + <xmax>302</xmax> + <ymax>293</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/90.jpg b/PAR 152/cone_dataset/90.jpg new file mode 100644 index 0000000000000000000000000000000000000000..18b17914904fc0e94e8f8109496f700d92503a56 Binary files /dev/null and b/PAR 152/cone_dataset/90.jpg differ diff --git a/PAR 152/cone_dataset/90.xml b/PAR 152/cone_dataset/90.xml new file mode 100644 index 0000000000000000000000000000000000000000..e40077788f69f2e374503b6d5d0bea7abaec493e --- /dev/null +++ b/PAR 152/cone_dataset/90.xml @@ -0,0 +1,98 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>90.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\90.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>535</width> + <height>322</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>220</xmin> + <ymin>203</ymin> + <xmax>258</xmax> + <ymax>250</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>213</ymin> + <xmax>135</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>70</xmin> + <ymin>203</ymin> + <xmax>103</xmax> + <ymax>244</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>6</xmin> + <ymin>213</ymin> + <xmax>30</xmax> + <ymax>243</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>177</ymin> + <xmax>359</xmax> + <ymax>261</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>396</xmin> + <ymin>221</ymin> + <xmax>415</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>458</xmin> + <ymin>224</ymin> + <xmax>470</xmax> + <ymax>241</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/91.jpg b/PAR 152/cone_dataset/91.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b8cfdaf0c1eeccad0a85f8e139357f77e1e044ee Binary files /dev/null and b/PAR 152/cone_dataset/91.jpg differ diff --git a/PAR 152/cone_dataset/91.xml b/PAR 152/cone_dataset/91.xml new file mode 100644 index 0000000000000000000000000000000000000000..84472c691496745cc5faab9a0176fa1f32bbff79 --- /dev/null +++ b/PAR 152/cone_dataset/91.xml @@ -0,0 +1,50 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>91.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\91.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>553</width> + <height>311</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>148</xmin> + <ymin>27</ymin> + <xmax>262</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>257</xmin> + <ymin>1</ymin> + <xmax>350</xmax> + <ymax>137</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>1</xmin> + <ymin>1</ymin> + <xmax>122</xmax> + <ymax>88</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/92.jpg b/PAR 152/cone_dataset/92.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aa8b6063eb577fa9456e9252b8d5bd66ce588ad0 Binary files /dev/null and b/PAR 152/cone_dataset/92.jpg differ diff --git a/PAR 152/cone_dataset/92.xml b/PAR 152/cone_dataset/92.xml new file mode 100644 index 0000000000000000000000000000000000000000..f7f18b524196b3a3caea2cbb6998a95ee8cf8ad7 --- /dev/null +++ b/PAR 152/cone_dataset/92.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>92.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\92.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>359</width> + <height>479</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>69</xmin> + <ymin>190</ymin> + <xmax>223</xmax> + <ymax>389</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/93.jpg b/PAR 152/cone_dataset/93.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b9e54e70e62c21919d4fed814a885f47e4f0b4d5 Binary files /dev/null and b/PAR 152/cone_dataset/93.jpg differ diff --git a/PAR 152/cone_dataset/93.xml b/PAR 152/cone_dataset/93.xml new file mode 100644 index 0000000000000000000000000000000000000000..3805ae278700271f60d861a76293f88457c2e235 --- /dev/null +++ b/PAR 152/cone_dataset/93.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>93.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\93.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>337</width> + <height>507</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>91</xmin> + <ymin>39</ymin> + <xmax>178</xmax> + <ymax>161</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>3</xmin> + <ymin>28</ymin> + <xmax>76</xmax> + <ymax>128</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>223</xmin> + <ymin>60</ymin> + <xmax>327</xmax> + <ymax>210</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>259</xmin> + <ymin>4</ymin> + <xmax>290</xmax> + <ymax>53</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/94.jpg b/PAR 152/cone_dataset/94.jpg new file mode 100644 index 0000000000000000000000000000000000000000..98a8d510dd4ddd4de3aa82558e83072c74b1dfed Binary files /dev/null and b/PAR 152/cone_dataset/94.jpg differ diff --git a/PAR 152/cone_dataset/94.xml b/PAR 152/cone_dataset/94.xml new file mode 100644 index 0000000000000000000000000000000000000000..7337dca0b4b3370976e3e7227bb8778a8b687e5f --- /dev/null +++ b/PAR 152/cone_dataset/94.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>94.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\94.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>507</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>24</ymin> + <xmax>397</xmax> + <ymax>294</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>130</xmin> + <ymin>100</ymin> + <xmax>183</xmax> + <ymax>188</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>111</xmin> + <ymin>120</ymin> + <xmax>138</xmax> + <ymax>167</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>101</xmin> + <ymin>125</ymin> + <xmax>122</xmax> + <ymax>156</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/95.jpg b/PAR 152/cone_dataset/95.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eed8aac79f979ff1b531ece250df243e668d6cc6 Binary files /dev/null and b/PAR 152/cone_dataset/95.jpg differ diff --git a/PAR 152/cone_dataset/95.xml b/PAR 152/cone_dataset/95.xml new file mode 100644 index 0000000000000000000000000000000000000000..c29900471df0f112799cada8017beefbc06bb433 --- /dev/null +++ b/PAR 152/cone_dataset/95.xml @@ -0,0 +1,110 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>95.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\95.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>510</width> + <height>337</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>312</xmin> + <ymin>168</ymin> + <xmax>402</xmax> + <ymax>325</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>430</xmin> + <ymin>23</ymin> + <xmax>462</xmax> + <ymax>75</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>366</xmin> + <ymin>22</ymin> + <xmax>399</xmax> + <ymax>77</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>311</xmin> + <ymin>23</ymin> + <xmax>341</xmax> + <ymax>75</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>292</xmin> + <ymin>117</ymin> + <xmax>366</xmax> + <ymax>248</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>280</xmin> + <ymin>92</ymin> + <xmax>333</xmax> + <ymax>202</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>121</xmin> + <ymin>16</ymin> + <xmax>155</xmax> + <ymax>65</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>65</xmin> + <ymin>16</ymin> + <xmax>106</xmax> + <ymax>66</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/96.jpg b/PAR 152/cone_dataset/96.jpg new file mode 100644 index 0000000000000000000000000000000000000000..92f76386f69f98b22d2f1b83e534a5e0e307dd56 Binary files /dev/null and b/PAR 152/cone_dataset/96.jpg differ diff --git a/PAR 152/cone_dataset/96.xml b/PAR 152/cone_dataset/96.xml new file mode 100644 index 0000000000000000000000000000000000000000..23a5390244b0c27ab51f5126142e283bd16b3850 --- /dev/null +++ b/PAR 152/cone_dataset/96.xml @@ -0,0 +1,62 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>96.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\96.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>505</width> + <height>342</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>317</xmin> + <ymin>113</ymin> + <xmax>373</xmax> + <ymax>171</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>189</xmin> + <ymin>94</ymin> + <xmax>255</xmax> + <ymax>176</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>218</xmin> + <ymin>183</ymin> + <xmax>421</xmax> + <ymax>320</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>263</xmin> + <ymin>96</ymin> + <xmax>289</xmax> + <ymax>137</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/97.jpg b/PAR 152/cone_dataset/97.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a8e9cdc28f8f8d7852f781f913b0adfc3fda53ce Binary files /dev/null and b/PAR 152/cone_dataset/97.jpg differ diff --git a/PAR 152/cone_dataset/97.xml b/PAR 152/cone_dataset/97.xml new file mode 100644 index 0000000000000000000000000000000000000000..3c2c10de8201fd621b1d60bd819d4c7c097c8296 --- /dev/null +++ b/PAR 152/cone_dataset/97.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>97.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\97.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>432</width> + <height>400</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>1</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>97</xmin> + <ymin>1</ymin> + <xmax>166</xmax> + <ymax>108</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/98.jpg b/PAR 152/cone_dataset/98.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e03c9664414ee18aec9e61db6d64d80e2bb6c3a2 Binary files /dev/null and b/PAR 152/cone_dataset/98.jpg differ diff --git a/PAR 152/cone_dataset/98.xml b/PAR 152/cone_dataset/98.xml new file mode 100644 index 0000000000000000000000000000000000000000..8e096381babb4e30abbbb42573548353f5cfa28d --- /dev/null +++ b/PAR 152/cone_dataset/98.xml @@ -0,0 +1,26 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>98.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\98.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>509</width> + <height>339</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>179</xmin> + <ymin>43</ymin> + <xmax>255</xmax> + <ymax>167</ymax> + </bndbox> + </object> +</annotation> diff --git a/PAR 152/cone_dataset/99.jpg b/PAR 152/cone_dataset/99.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7a810e26f4e31ca7dcac781532854e5ca0e3c112 Binary files /dev/null and b/PAR 152/cone_dataset/99.jpg differ diff --git a/PAR 152/cone_dataset/99.xml b/PAR 152/cone_dataset/99.xml new file mode 100644 index 0000000000000000000000000000000000000000..fcae8467e04e5d6e324cd8b075ab9e0affe9c2e5 --- /dev/null +++ b/PAR 152/cone_dataset/99.xml @@ -0,0 +1,86 @@ +<annotation> + <folder>cone_dataset</folder> + <filename>99.jpg</filename> + <path>C:\Users\dufan\Desktop\cours-1a\PAr\cone_dataset\99.jpg</path> + <source> + <database>Unknown</database> + </source> + <size> + <width>476</width> + <height>362</height> + <depth>3</depth> + </size> + <segmented>0</segmented> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>201</xmin> + <ymin>170</ymin> + <xmax>294</xmax> + <ymax>330</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>231</xmin> + <ymin>156</ymin> + <xmax>306</xmax> + <ymax>297</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>266</xmin> + <ymin>139</ymin> + <xmax>342</xmax> + <ymax>265</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>308</xmin> + <ymin>128</ymin> + <xmax>370</xmax> + <ymax>241</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>328</xmin> + <ymin>117</ymin> + <xmax>388</xmax> + <ymax>217</ymax> + </bndbox> + </object> + <object> + <name>cone</name> + <pose>Unspecified</pose> + <truncated>0</truncated> + <difficult>0</difficult> + <bndbox> + <xmin>372</xmin> + <ymin>101</ymin> + <xmax>421</xmax> + <ymax>186</ymax> + </bndbox> + </object> +</annotation>