import matplotlib.pyplot as plt import numpy as np def read_data(file_name, delimiter=','): """ Reads the file containing the data and returns the corresponding matrices Parameters ---------- file_name : name of the file containing the data delimiter : character separating columns in the file ("," by default) Returns ------- x : data matrix of size [N, num_vars] d : matrix containing the target variable values of size [N, num_targets] N : number of elements num_vars : number of predictor variables num_targets : number of target variables """ data = np.loadtxt(file_name, delimiter=delimiter) num_targets = 1 num_vars = data.shape[1] - num_targets N = data.shape[0] x = data[:, :num_vars] d = data[:, num_vars:].reshape(N,1) return x, d, N, num_vars, num_targets def normalization(x): """ Normalizes the data by centering and scaling the predictor variables Parameters ---------- X : data matrix of size [N, num_vars] with N : number of elements and num_vars : number of predictor variables Returns ------- X_norm : centered-scaled data matrix of size [N, num_vars] mu : mean of the variables of size [1, num_vars] sigma : standard deviation of the variables of size [1, num_vars] """ mu = np.mean(x, 0) sigma = np.std(x, 0) x_norm = (x - mu) / sigma return x_norm, mu, sigma def split_data(x, d, val_prop=0.2, test_prop=0.2): """ Splits the initial data into three distinct subsets for training, validation, and testing Parameters ---------- x : data matrix of size [N, num_vars] d : matrix of target values [N, num_targets] val_prop : proportion of validation data over the entire dataset (between 0 and 1) test_prop : proportion of test data over the entire dataset (between 0 and 1) with N : number of elements, num_vars : number of predictor variables, num_targets : number of target variables Returns ------- x_train : training data matrix d_train : training target values matrix x_val : validation data matrix d_val : validation target values matrix x_test : test data matrix d_test : test target values matrix """ assert val_prop + test_prop < 1.0 N = x.shape[0] indices = np.arange(N) np.random.shuffle(indices) num_val = int(N*val_prop) num_test = int(N*test_prop) num_train = N - num_val - num_test x = x[indices,:] d = d[indices,:] x_train = x[:num_train,:] d_train = d[:num_train,:] x_val = x[num_train:num_train+num_val,:] d_val = d[num_train:num_train+num_val,:] x_test = x[N-num_test:,:] d_test = d[N-num_test:,:] return x_train, d_train, x_val, d_val, x_test, d_test def calculate_mse_cost(y, d): """ Calculates the value of the MSE (mean squared error) cost function Parameters ---------- y : matrix of predicted data d : matrix of actual data Returns ------- cost : value corresponding to the MSE cost function (mean squared error) """ N = y.shape[1] cost = np.square(y - d).sum() / 2 / N return cost def forward_pass(x, W, b, activation): """ Performs a forward pass in the neural network Parameters ---------- x : input matrix, of size num_vars x N W : list containing the weight matrices of the network b : list containing the bias matrices of the network activation : list containing the activation functions of the network layers with N : number of elements, num_vars : number of predictor variables Returns ------- a : list containing the input potentials of the network layers h : list containing the outputs of the network layers """ h = [x] a = [] for i in range(len(b)): a.append( W[i].dot(h[i]) + b[i] ) h.append( activation[i](a[i]) ) return a, h def backward_pass(delta_h, a, h, W, activation): """ Performs a backward pass in the neural network (backpropagation) Parameters ---------- delta_h : matrix containing the gradient of the cost with respect to the output of the network a : list containing the input potentials of the network layers h : list containing the outputs of the network layers W : list containing the weight matrices of the network activation : list containing the activation functions of the network layers Returns ------- delta_W : list containing the gradient matrices of the network layer weights delta_b : list containing the gradient matrices of the network layer biases """ delta_b = [] delta_W = [] for i in range(len(W)-1,-1,-1): delta_a = delta_h * activation[i](a[i], True) delta_b.append( delta_a.mean(1).reshape(-1,1) ) delta_W.append( delta_a.dot(h[i].T) ) delta_h = (W[i].T).dot(delta_a) delta_b = delta_b[::-1] delta_W = delta_W[::-1] return delta_W, delta_b def sigmoid(z, deriv=False): """ Calculates the value of the sigmoid function or its derivative applied to z Parameters ---------- z : can be a scalar or a matrix deriv : boolean. If False returns the value of the sigmoid function, if True returns its derivative Returns ------- s : value of the sigmoid function applied to z or its derivative. Same dimension as z """ s = 1 / (1 + np.exp(-z)) if deriv: return s * (1 - s) else : return s def linear(z, deriv=False): """ Calculates the value of the linear function or its derivative applied to z Parameters ---------- z : can be a scalar or a matrix deriv : boolean. If False returns the value of the linear function, if True returns its derivative Returns ------- s : value of the linear function applied to z or its derivative. Same dimension as z """ if deriv: return 1 else : return z def relu(z, deriv=False): """ Calculates the value of the relu function or its derivative applied to z Parameters ---------- z : can be a scalar or a matrix deriv : boolean. If False returns the value of the relu function, if True returns its derivative Returns ------- s : value of the relu function applied to z or its derivative. Same dimension as z """ r = np.zeros(z.shape) if deriv: pos = np.where(z>=0) r[pos] = 1.0 return r else : return np.maximum(r,z) # ===================== Part 1: Data Reading and Normalization ===================== print("Reading data ...") x, d, N, num_vars, num_targets = read_data("food_truck.txt") # x, d, N, num_vars, num_targets = read_data("houses.txt") # Displaying the first 10 examples from the dataset print("Displaying the first 10 examples from the dataset: ") for i in range(0, 10): print(f"x = {x[i,:]}, d = {d[i]}") # Normalizing the variables (centering and scaling) print("Normalizing the variables ...") x, mu, sigma = normalization(x) dmax = d.max() d = d / dmax # Splitting the data into training, validation, and test subsets x_train, d_train, x_val, d_val, x_test, d_test = split_data(x, d) # ===================== Part 2: Training ===================== # Choosing the learning rate and number of iterations alpha = 0.001 num_iters = 500 train_costs = np.zeros(num_iters) val_costs = np.zeros(num_iters) # Network dimensions D_c = [num_vars, 5, 10, num_targets] # list containing the number of neurons for each layer activation = [relu, sigmoid, linear] # list containing the activation functions for the hidden layers and the output layer # Random initialization of the network weights W = [] b = [] for i in range(len(D_c)-1): W.append(2 * np.random.random((D_c[i+1], D_c[i])) - 1) b.append(np.zeros((D_c[i+1],1))) x_train = x_train.T # Data is presented as column vectors at the input of the network d_train = d_train.T x_val = x_val.T # Data is presented as column vectors at the input of the network d_val = d_val.T x_test = x_test.T # Data is presented as column vectors at the input of the network d_test = d_test.T for t in range(num_iters): ############################################################################# # Forward pass: calculating predicted output y on validation data # ############################################################################# a, h = forward_pass(x_val, W, b, activation) y_val = h[-1] # Predicted output ############################################################################### # Forward pass: calculating predicted output y on training data # ############################################################################### a, h = forward_pass(x_train, W, b, activation) y_train = h[-1] # Predicted output ########################################### # Calculating the MSE loss function # ########################################### train_costs[t] = calculate_mse_cost(y_train, d_train) val_costs[t] = calculate_mse_cost(y_val, d_val) #################################### # Backward pass: backpropagation # #################################### delta_h = (y_train-d_train) # For the last layer delta_W, delta_b = backward_pass(delta_h, a, h, W, activation) ############################################# # Updating weights and biases # ############################################# for i in range(len(b)-1,-1,-1): b[i] -= alpha * delta_b[i] W[i] -= alpha * delta_W[i] print("Final cost on the training set: ", train_costs[-1]) print("Final cost on the validation set: ", val_costs[-1]) # Plotting the evolution of the cost function during backpropagation plt.figure(0) plt.title("Evolution of the cost function during backpropagation") plt.plot(np.arange(train_costs.size), train_costs, label="Training") plt.plot(np.arange(val_costs.size), val_costs, label="Validation") plt.legend(loc="upper left") plt.xlabel("Number of iterations") plt.ylabel("Cost") plt.show() # ===================== Part 3: Evaluation on the test set ===================== ####################################################################### # Forward pass: calculating predicted output y on test data # ####################################################################### a, h = forward_pass(x_test, W, b, activation) y_test = h[-1] # Predicted output cost = calculate_mse_cost(y_test, d_test) print("Test set cost: ", cost)