
	
Deep Learning
Emmanuel Dellandréa

 Bsc Data Science for Responsible Business - Centrale Lyon
2024-2025	

	

Practical Session 3 – Introduction to PyTorch for Machine Learning
& Deep Learning

The objective of this tutorial is to start using the PyTorch library for developing Machine Learning models.

1. Introduction to PyTorch
	
PyTorch (https://pytorch.org/) is a powerful open-source deep learning framework that provides flexibility and
ease of use for building machine learning models. It is particularly popular among researchers and practitioners
because of its dynamic computational graph and seamless integration with Python. When you are familiar with
NumPy, PyTorch might feel quite intuitive as it shares many similarities but also introduces several unique
features tailored for deep learning.

PyTorch is a framework designed to accelerate numerical computations, particularly for machine learning and
deep learning. Unlike NumPy, PyTorch supports:

• GPU acceleration for faster computations.
• Autograd (Automatic Differentiation): Facilitates gradient calculation for optimization.
• Dynamic computation graphs: Offers flexibility for model experimentation.

Key differences between PyTorch and NumPy:

Installing PyTorch

To install PyTorch, use the following command:
pip install pytorch

Or (depending on your environment)
conda install pytorch

More options are provided here: https://pytorch.org/get-started/locally/

Creating and manipulating Tensors

Tensors vs Arrays
NumPy array
np_array = np.array([[1, 2], [3, 4]])
print("NumPy Array:\n", np_array)

PyTorch tensor
torch_tensor = torch.tensor([[1, 2], [3, 4]])
print("PyTorch Tensor:\n", torch_tensor)

https://pytorch.org/
https://pytorch.org/get-started/locally/

	
Deep Learning
Emmanuel Dellandréa

 Bsc Data Science for Responsible Business - Centrale Lyon
2024-2025	

	

Tensor creation
From list
tensor = torch.tensor([1.0, 2.0, 3.0])

With specific shapes
zeros = torch.zeros((2, 3))
ones = torch.ones((2, 3))
random = torch.rand((2, 3))

print("Zeros Tensor:\n", zeros)
print("Ones Tensor:\n", ones)
print("Random Tensor:\n", random)

Converting between Numpy and PyTorch
NumPy to Tensor
np_array = np.array([1, 2, 3])
tensor = torch.from_numpy(np_array)

Tensor to NumPy
back_to_numpy = tensor.numpy()
print("Converted Back to NumPy:", back_to_numpy)

Operations on Tensors

Basic operations
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])

Element-wise operations
print("Addition:", a + b)
print("Multiplication:", a * b)

Matrix multiplication
mat1 = torch.tensor([[1, 2], [3, 4]])
mat2 = torch.tensor([[5, 6], [7, 8]])
result = torch.matmul(mat1, mat2)
print("Matrix Multiplication:\n", result)

Broadcasting
Broadcasting in PyTorch
x = torch.tensor([[1], [2], [3]])
y = torch.tensor([10, 20, 30])

print("Broadcasted Addition:\n", x + y)

Automatic Differenciation with PyTorch

Introduction to Autograd: PyTorch tracks operations on tensors with the requires_grad attribute set to True
x = torch.tensor(2.0, requires_grad=True)
y = x**2 + 3*x + 5

Compute gradients

	
Deep Learning
Emmanuel Dellandréa

 Bsc Data Science for Responsible Business - Centrale Lyon
2024-2025	

	

y.backward()
print("Gradient of y with respect to x:", x.grad)

Example: Multivariate gradient
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = x**2
z = y.sum()

z.backward()
print("Gradients:", x.grad)

Using GPUs with PyTorch

Checking for GPU
print("Is CUDA available?", torch.cuda.is_available())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Device:", device)

Moving Tensors to GPU
Create a tensor
x = torch.tensor([1.0, 2.0, 3.0])
x = x.to(device) # Move to GPU
print("Tensor on GPU:", x)

Note: When tensors are on the GPU, you must move them to the CPU before converting to NumPy arrays:
x_gpu = x.cuda() # Moves the tensor to GPU
x_cpu = x_gpu.cpu().numpy()

Performance Comparison
import time

Large tensors
size = 1000000
cpu_tensor = torch.rand(size)
gpu_tensor = torch.rand(size, device="cuda")

CPU computation
start = time.time()
cpu_tensor * cpu_tensor
print("CPU Time:", time.time() - start)

GPU computation
start = time.time()
gpu_tensor * gpu_tensor
print("GPU Time:", time.time() - start)

	
Deep Learning
Emmanuel Dellandréa

 Bsc Data Science for Responsible Business - Centrale Lyon
2024-2025	

	

Case study: Linear Regression

import matplotlib.pyplot as plt

Generate synthetic data

True values
true_theta, true_c = 3, 2
x = torch.linspace(0, 10, 100)
y = true_theta * x + true_c + torch.randn(100) * 2 # Add noise

plt.scatter(x, y)
plt.show()

Initialize parameters
theta = torch.randn(1, requires_grad=True)
c = torch.randn(1, requires_grad=True)

Learning rate and optimizer
alpha = 0.01
nb_iters = 100
for epoch in range(nb_iters):
 # Predictions
 y_pred = theta * x + c

 # Loss: Mean Squared Error
 loss = ((y - y_pred)**2).mean()

 # Backpropagation
 loss.backward()

 # Update parameters
 with torch.no_grad():
 theta -= alpha * theta.grad
 c -= alpha * c.grad
 theta.grad.zero_()
 c.grad.zero_()

 if epoch % 10 == 0:
 print(f"Epoch {epoch}: Loss = {loss.item()}")

Final parameters
print("Learned m:", theta.item())
print("Learned c:", c.item())
plt.scatter(x, y)
y_pred = theta * x + c
plt.plot(x, y_pred.detach(), color='red')
plt.show()

	
Deep Learning
Emmanuel Dellandréa

 Bsc Data Science for Responsible Business - Centrale Lyon
2024-2025	

	

2. Writing the code for a Neural Network with Pytorch

Based on what you have just learnt, convert the code of the neural network you wrote in Session 2, using PyTorch,
and compare the execution performance when run on GPU.

To run on GPU, if your laptob is not equipped, you may use one of these remote jupyter servers, where you can
select the execution on GPU:

jupyter.mi90.ec-lyon.fr

This server is accessible within the campus network. If outside, you need to use a VPN. Before executing the
notebook, select the kernel "Python PyTorch" to run it on GPU and have access to PyTorch module.

Google Colaboratory

Before executing the notebook, select the execution on GPU : "Execution" Menu -> "Modify type of execution "
and select "T4 GPU".

https://jupyter.mi90.ec-lyon.fr/
https://colab.research.google.com/

