

Deep Learning
Emmanuel Dellandréa

 Bsc Data Science for Responsible Business - Centrale Lyon
2024-2025

	

Project: Implementing a Retrieval-Augmented Generation (RAG)
System using Milvus and Hugging Face LLMs

The objective of this project is to gain practical experience in building a Retrieval-Augmented
Generation (RAG) pipeline. You will integrate state-of-the-art Large Language Models (LLMs)
from Hugging Face with Milvus, an open-source vector database, to create an intelligent
question-answering system capable of retrieving relevant information and generating
accurate, contextual answers.

Overview

A Retrieval-Augmented Generation (RAG) combines the power of retrieval systems with
generative language models to enhance the accuracy and relevance of generated responses.
The workflow is illustrated in Figure 1. By first retrieving contextually relevant documents from
an external knowledge base, RAG allows LLMs to generate informed and precise answers
grounded in factual data.

Figure	1	-	RAG	workflow.	(source:	https://towardsdatascience.com/retrieval-augmented-generation-rag-from-theory-to-
langchain-implementation-4e9bd5f6a4f2/)

This project will guide you through the practical implementation of a RAG pipeline by
combining:

- Milvus (https://milvus.io/), a scalable, high-performance vector database for efficient
semantic retrieval.
- Hugging Face (https://huggingface.co/), a leading platform providing access to advanced
LLMs for natural language generation tasks.

https://milvus.io/
https://huggingface.co/

Deep Learning
Emmanuel Dellandréa

 Bsc Data Science for Responsible Business - Centrale Lyon
2024-2025

	

Technical components

The project involves the following technical steps:

1. Data Preparation
 - Select or create a dataset of your choice, relevant to the project's domain (e.g., academic
articles, FAQs, documentation).
 - Preprocess and structure the data for embedding generation.

2. Embedding Generation
 - Use embedding models from Hugging Face (e.g., Sentence Transformers) to convert textual
data into semantic vectors.

2. Vector Database Setup with Milvus
 - Deploy Milvus locally.
 - Store embeddings generated from the dataset into Milvus for efficient retrieval.

3. Integration with Hugging Face LLM
 - Choose an appropriate LLM from Hugging Face's library.
 - Implement a prompt engineering strategy to effectively combine retrieved contexts with
user queries.

4. System Implementation
 - Build the end-to-end pipeline: query → retrieval from Milvus → prompt construction →
answer generation by Hugging Face LLM.

5. Evaluation and Optimization
 - Assess retrieval accuracy, response quality, and latency.
 - Optimize parameters and components based on evaluation results.
 - Experiment with several embedding models and LLMs.
 - Experiment with various prompt templates.

Expected Outcomes

Upon completion, you should be able to demonstrate:

- A fully functional RAG system capable of answering user queries accurately by leveraging
external knowledge bases.
- Proficiency in using Milvus for semantic search tasks.
- Practical experience deploying Hugging Face LLMs in real-world scenarios.
- Critical analysis skills regarding system performance metrics such as accuracy, relevance,
response time, and scalability.

The deadline for this project is Tuesday 8, April, 2025. Each student will present his/her
project during a slot of 15 minutes (slides presenting the project and a demo). The code and
slides will be made available on a gitlab repository, or sent by mail at
emmanuel.dellandrea@ec-lyon.fr.

Deep Learning
Emmanuel Dellandréa

 Bsc Data Science for Responsible Business - Centrale Lyon
2024-2025

	

Examples of codes

Here are some examples of codes that may help you in building your RAG pipeline. The use of
LLM from Hugging Face has been studied in practical session 7.

0. First, install some useful Python modules:
!pip install transfomers pymilvus sentence-transformers huggingface-hub langchain_community
langchain-text-splitters pypdf

1. Extracting text from pdf
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter

loader = PyPDFLoader("any_document.pdf")
docs = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_documents(docs)

text_lines = [chunk.page_content for chunk in chunks]

2. Embedding a sentence
from sentence_transformers import SentenceTransformer

embedding_model = SentenceTransformer("all-MiniLM-L6-v2") # This is one example

s = text_lines[0]
e = embedding_model.encode([s])

3. Creating a Milvus data collection
from pymilvus import MilvusClient

milvus_client = MilvusClient(uri="./my_milvus_db.db")

collection_name = "rag_collection"

milvus_client.create_collection(
 collection_name=collection_name,
 dimension=embedding_dim, # The size of the embedding
 metric_type="IP", # Inner product distance
 consistency_level="Strong", # Strong consistency level
)

data = []

In the following example, emb_text is a function that needs to be written, based on
an embedding model
for i, line in enumerate(text_lines):
 data.append({"id": i, "vector": emb_text(line), "text": line})

insert_res = milvus_client.insert(collection_name=collection_name, data=data)

Deep Learning
Emmanuel Dellandréa

 Bsc Data Science for Responsible Business - Centrale Lyon
2024-2025

	

4. Retrieving data for a query
question = "What is the best practice mentionned in the document?"

search_res = milvus_client.search(
 collection_name=collection_name,
 data=[
 emb_text(question)
],
 limit=3, # Return top 3 results
 search_params={"metric_type": "IP", "params": {}}, # Inner product distance
 output_fields=["text"], # Return the text field
)

5. Creating a prompt
PROMPT = """
Use the information enclosed in <context> tags to provide an answer to the
question enclosed in <question> tags.
<context>
{context}
</context>
<question>
{question}
</question>
"""

prompt = PROMPT.format(context=context, question=question)

