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Natural Language Processing
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Objective: Model the syntactic and grammatical structures of a language.
Numerous applications:

o Speech recognition

« Machine translation

« Text comprehension

. Text generation (e.g., Q/A or summaries)
« Paraphrase detection

« Sentiment analysis

Most of materials from Fidle - Deep Learning Introduction (https://www.fidle.cnrs.fr/w3/)
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Language models

Main models until 2017: Recurrent neural networks like LSTM and GRU

LSTM unit _ | GRU unit

Limits of these models:

Difficulties in processing long sequences

Frequent overfitting issues

Challenges in modeling complex relationships

Computations that cannot be parallelized (need for the previous word)
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Attention Is All You Need

Language models relying on a self-attention mechanism

P u b I iS h ed | N 2 0 1 7 Ashish Vaswani* Noam Shazeer® Niki Parmar- Jakob Uszkoreit*

Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikipRgoogle.com usz@google.com

— Revolution in the field of Natural Language Processing (NLP) R o -

Illia Polosukhin™ !
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train, Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data,

arXiv:1706.03762v5 [cs.CL] 6 Dec 2017

1 Introduction

Recurrent neural networks, long short-term memaory [13] and gated recurrent [7] neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and

“Equal contnibution. Listing order s random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea, Ashish, with Tlhia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention amd the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countiess model variants in our oniginal codebase and
tensor2tensor. Llion also experimented wath novel model vaniants, was responsible for our instial codebase, and
efficient inference and visualizations, Lukasz and Aidan spent countless long days designing various parts of and
mmplementing tensor2tensor, replacing our carhier codebase, greatly improving results and massively accelersting
our research.

'Wark performed while at Google Brain.

'Work performed while at Google Research.

31st Conference on Newral Information Processing Systems (NIPS 2017), Long Beach, CA, USA,
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» Process sequences (ideally the entire sentence)
» Easy to distribute on multiple GPUs

» Faster training than with RNN

> Initially for NLP tasks

> Allows to train huge models on gigantic datasets

» Allows for a pretraining session to pool trainings (at least
partially) for multiple tasks
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Evolution of performances
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ChatGPT better than undergraduates at
solving SAT problems, study suggests

Researchers at UCLA found GPT-3 solved 80% of reasoning
problems correctly compared with 60% of humans




Size of Transformers
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Example of NLP system
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Feature extraction reminder

Faxad CENTRALE
NS

LYON

Feature extraction Predict/Decide
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Input Convolutional Pooling Convolutional Pooling Convolutional Flat layer Dense layers Output
layer layers layers layers layer
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Feature extraction with Transformers
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Typical Tranformer Architecture
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Transformer model
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Simplified Transformer Layer
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Feed Forward Layer
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Feed Forward layer
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Transformer Layer
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Transformer architecture summary

Faxad CENTRALE
NS

LYON

Transformer model
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Attention mechanism
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Attention mechanism
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Attention explained
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Attention explained
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Intuition behind the Attention mechanism
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Intuition behind the Attention mechanism
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The big dog
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The : (0.50, -0.87)
big : (-0.70, 0.70)
dog : (0.81, 0.59)
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Intuition behind the Attention mechanism
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Intuition behind the Attention mechanism
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Intuition behind the Attention mechanism
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Intuition behind the Attention mechanism
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Multi-head Attention
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Multi-head Attention
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Multi-head Attention
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Tranformer architectures
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Encoder-Decoder
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Encoder architecture CENTRALE

BERT / Encoder / Auto-encoding
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Decoder architecture
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GPT / Decoder / Auto-regressive

Decoder model
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Bidirectional vs unidirectional attention

Bidirectional attention for Encoder

understand

[ understand ]- am
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Unidirectional attention for Decoder
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Mask attention
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Unilateral attention detailed
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Encoder-decoder architecture
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Encoder-decoder translation example
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Encoder-decoder translation example
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Encoder-decoder translation example
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Encoder-decoder translation example
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Encoder-decoder translation example
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Encoder-decoder translation example
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Encoder-decoder translation example
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Encoder-decoder attention
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Encoder-decoder attention
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Encoder-decoder attention
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Training a language model
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| want to make a chatbot to | want to make a bot which can
help people better understand filter out respectful comments
the civil code. for a real reddit experience.
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Training a language model
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What do you need to train a large language model ?

A truckload of data A mighty compute

infrastructure

Transformers are ravenous.
You need to feed them with
a substantial and hard-to-
come-by dataset.

GPUs with high throughput and large
VRAM can execute this training in a
reasonable amount of time.

A copious amount
of electricity

An abundance of
manpower

Storage, memory and compute
power consume a lot of
electricity.

Cleaning the dataset, making
experiments, monitoring SOTA
advancements is a lot of work.
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Training a language model
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Understands the language in general
Not particularly good at any task

- L | detect toxicity

=

| summarize
< long texts

PRE-TRAINING Q@ m) FINE-TUNING
O O

\ |/ generate high
i 4 quality clickbaits

A lot of work, data and Lower amount of work, data
money is required. and money is required.
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Pre-training a GPT-style Transformer
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Next word prediction
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Pre-training a BERT-style Transformer
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Finding a pre-trained model
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The largest free pretrained transformer models database

huggingface.co

https://hug

1 — Go to https://huggingface.co/ Models - Hugging Face |

Models 846 g codellama new Full-text search 1! Sort: Trending

) codellama/Codellama-70b-hf

2 — Look for a model

) codellama/Codellama-70b-Python-hf ® TheBloke/Codellama-70B-hf-GGUF

® TheBloke/CodelLlama-70B-Instruct-GGUF @ mlx-community/CodelLlama-70b-Instruct-hf-4bit-MLX

Phind/Phind-Codellama-34B-v2 ® TheBloke/Codellama-70B-Python-GGUF

3 — Download the model
clone https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf]j

4 — Enjoy

path = "/fidle/transformers/CodeLlama-7@b-Instruct-hf’

tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForCausallLM.from_pretrained(path)

input = tokenizer(["I "], padding=True

output = model(**input)
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Fine-tuning of language models
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Great, now, assign
a number of stars to
this film review:

Star Wars The Last
Jedi is really bad!

The story is awful. And sO
are characters. What a
boring pile of garbage !
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Fine-tuning a BERT - sentence classification

[CLS] Star Wars
The Last Jedi is
really bad!

2024-2025

DL Course - Transformers
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Fine-tuning a BERT - sentence classification
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[CLS] Star Wars
The Last Jedi is
really bad!
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Fine-tuning a GPT - sentence classification
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Star Wars The
Last Jedi is really :
bad!

AR H
)i
I

iy

WA
Sl

‘ 7

\

Target: O

(|
":‘:'ﬂ'i e
Vi1\N
SN

%)
/N

%‘:@3}‘:},&&.
S

]
~J]

o

2024-2025 DL Course - Transformers




Eaxad CENTRALE

Fine-tuning a Transformer - named entity recognition £3 cc.:

>
>
>
>
Output Target
Zidane came to . Person: 0.45 Person: 1
Paris to watch - . Organization: 0.12  Organization: 0
g‘e PaI:IS Saint- Location: 0.27 Location: O
ermain
. None: 0.16 None: 0
>
>
>
>
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Fine-tuning a GPT with prompting

2024-2025

Review

Template

DL Course - Transformers

Output

Positive: 0.18
Negative: 0.44
Neutral: 0.38

Eaxad CENTRALE

LYON

Target

Positive: O
Negative: 1
Neutral: O




Fine-tuning a GPT - example of summarization
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-ﬁﬂlmﬂ“r Cawaa e oo Sgpaav wadebi Ewier e wos Fatce
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VR g R BLETA B T R Fa . Al - anas
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SEeeee st She dumped me
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before toasting.
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Fine-tuning a GPT with templates CENT

Type Task Input ([X]) Template Answer ([Z])
great
Sentiment I love this movie. [X] The movieis [Z]. fantastic
sports
Text CLS Topics He prompted the LM. [X] The text is about [Z]. science
quantity
Intention What is taxi fare to Denver? [X] The question is about [Z]. city
Aspect i
Text-span CLS g Spe Poor service but good food. [X] What about service? [Z]. Terrible
entiment
[X1]: An old man with ... Yes
Text-pair CLS NLI [X2]: A man walks ... L2 [0 EX2] No
[X1]: Mike went to Paris. organization
Tagging NER [X2]: Paris [X1] [X2] isa [Z] entity. location
The victim ...
Summarization  Las Vegas police ... [X] TE:DR: 1Z] A woman ...
Text Generation
I love you.
Translation Je vous aime. French: [X] English: [Z] I fancy you.

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing, Pengfei Liu and al
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Orienting the style with templates
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Ahoy, me hearties! | be
System hearin’ ‘bout a mathematical
concept called the Cayley-
Hamilton theorem. It's a fancy
way o’ sayin’ that every
square matrix is a root of its
own characteristic equation,
which is a polynomial
equation that describes the
matrix's properties. This
theorem has important
implications in linear algebra
and matrix theory, as it allows
for the calculation of matrix
Template powers and inversgs In
certain cases. So, if you ever
find yourself in a sea of
matrices, remember the
Cayley-Hamilton theorem and
you'll be sailing smoothly!

Input
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<
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O
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A word on ChatGPT

Transformers and ChatGPT

Faxad CENTRALE
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Genesis of ChatGPT:

2018: GPT (Improving Language Understanding by Generative Pre-Training)
— Use of the decoder part of a pre-trained and fine-tuned transformer to perform various tasks (117 million parameters).

2019: GPT-2 (Language Models are Unsupervised Multitask Learners)
— Q/A with a natural language prompt and human-like responses (1.5 billion parameters).

2020: GPT-3 (Language Models are Few-Shot Learners)
— Improvement of the previous model with a much larger network (175 billion parameters, 96 layers).

2022: ChatGPT & InstructGPT (Training language models to follow instructions with human feedback)
— Model enhancement using supervised learning and reinforcement learning.

2023: GPT-4
— Much larger model than its predecessor, multimodal (accepts both images and text as input) (1.8 trillion parameters).
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A word on ChatGPT

Transformers and ChatGPT
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Characteristics (February 2025)
. Based on the GPT-40 mini architecture (GPT-4 and GPT-40 for the paid version).
« Training data collected up until October 2023.
. Available in multiple languages (English, French, Spanish, Chinese, etc.).
« Supports text, image, video, and audio as input.
« Output: text, with image, video, and audio being gradually introduced.
« Model sizes:
« GPT-4: 1.8 trillion parameters
« GPT-40: 200 billion parameters
o GPT-40 mini: 8 billion parameters
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Learning of ChatGPT

In 4 Main Steps

« Unsupervised learning of the underlying GPT-4 model.

« Supervised fine-tuning of ChatGPT on human-written question/answer examples.

« Supervised training of a response evaluation model.

« Reinforcement learning fine-tuning, using the evaluation model to improve ChatGPT’s performance.

2024-2025

Step 1

Collect demonstration data
and train a supervised policy.

Apromptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

~
&

Explain reinforcement
learning to a 6 yedr ald

Y

)

4

Ve giva treats and
punishmentsto teach...

DL Course - Transformers

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
cutputs from best
to worst.

This data is used
to train our
reward model.

~
&

Explain reinforcement

leaming 1o 2 6 yaar old.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new promptis
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

A=

Write a story
about otters,

J
f

Once upon atime.,

g
'

I
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Learning of ChatGPT
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Step 0: Unsupervised Learning of the GPT-4 Model
. Objective: Learn syntactic and grammatical structures of language, as well as general knowledge across various domains.
« Data: [Typically includes vast amounts of text from books, articles, websites, and other sources.]

Quantity Weight in Epochs elapsed when

Dataset (tokens)  training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebTex12 19 billion 22% 29
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Strategy: Step-by-step prediction of the next word in a sequence of words.

A transformer is a deep learning model that adopts the mechanism of self attention

L L[] | | || |

Embedding — dictionary space transformation (transposed embedding)

T T tr rr 1 1 1111 1 1 71

V[BOS] VA Vtransiom‘-er V:s va vdeop Vloammg Vmodel Vmal Vadopts Vthe Vmochamsm of Vself
-] | | | - | | | | | | | | |
| GPT |
| Embedding (+ Positional embedding) |
[BOS] A transformeris a deep learning model that adopts the mechanism of self
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Learning of ChatGPT
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Step 1: Supervised Fine-Tuning of the ChatGPT Model

Objective: Adapt the model to the conversation task.

Data: Human-written dialogue sequences (question/answer examples).
Strategy: Continue training the pre-trained model using these data.

Step 2: Supervised Training of a Response Evaluation Model

Obijective: Develop a model capable of evaluating the responses generated by the model—essential for Step 4.
Data: Example questions with multiple model-generated responses, ranked by humans based on quality.
Strategy: Train a neural network using this ranked data.

Step 3: Reinforcement Learning Fine-Tuning of the ChatGPT Model
Objective: Optimize the model.

Data: Example questions.

Strategy:

ChatGPT generates a response for each selected question.

The evaluation model predicts the quality of this response.

This predicted score is used as a reward signal in reinforcement learning (using the Proximal Policy Optimization algorithm) to improve the
model’s response generation quality.
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Vision Transformers
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Input  Attention

Vision Transformer (ViT) Transformer Encoder

i
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Some useful references
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Fidle - Deep Learning Introduction (https://www.fidle.cnrs.fr/w3/)

CS231n: Convolutional Neural Networks for Visual Recognition (http://cs231n.stanford.edu)
Neural Networks and Deep Learning (http://neuralnetworksanddeeplearning.com)

Deep Learning (http://www.deeplearningbook.org)

PyTorch (http://pytorch.org)

Weights & Biases (https://wandb.ai/site/)

Hugging Face (https://huggingface.co/)
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