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Practical Session 3 – Introduction to PyTorch for Machine Learning 
& Deep Learning 

 
The objective of this tutorial is to start using the PyTorch library for developing Machine Learning models. 

1. Introduction to PyTorch 
	
PyTorch (https://pytorch.org/) is a powerful open-source deep learning framework that provides flexibility and 
ease of use for building machine learning models. It is particularly popular among researchers and practitioners 
because of its dynamic computational graph and seamless integration with Python. When you are familiar with 
NumPy, PyTorch might feel quite intuitive as it shares many similarities but also introduces several unique 
features tailored for deep learning. 
 
PyTorch is a framework designed to accelerate numerical computations, particularly for machine learning and 
deep learning. Unlike NumPy, PyTorch supports: 

• GPU acceleration for faster computations. 
• Autograd (Automatic Differentiation): Facilitates gradient calculation for optimization. 
• Dynamic computation graphs: Offers flexibility for model experimentation. 

 
Key differences between PyTorch and NumPy: 

 

 
Installing PyTorch 
 
To install PyTorch, use the following command: 
pip install pytorch 

 
Or (depending on your environment) 
conda install pytorch 

 
More options are provided here: https://pytorch.org/get-started/locally/ 
 
Creating and manipulating Tensors 
 
Tensors vs Arrays 
# NumPy array 
np_array = np.array([[1, 2], [3, 4]]) 
print("NumPy Array:\n", np_array) 
 
# PyTorch tensor 
torch_tensor = torch.tensor([[1, 2], [3, 4]]) 
print("PyTorch Tensor:\n", torch_tensor) 
 

 

https://pytorch.org/
https://pytorch.org/get-started/locally/
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Tensor creation 
# From list 
tensor = torch.tensor([1.0, 2.0, 3.0]) 
 
# With specific shapes 
zeros = torch.zeros((2, 3)) 
ones = torch.ones((2, 3)) 
random = torch.rand((2, 3)) 
 
print("Zeros Tensor:\n", zeros) 
print("Ones Tensor:\n", ones) 
print("Random Tensor:\n", random) 

 
Converting between Numpy and PyTorch 
# NumPy to Tensor 
np_array = np.array([1, 2, 3]) 
tensor = torch.from_numpy(np_array) 
 
# Tensor to NumPy 
back_to_numpy = tensor.numpy() 
print("Converted Back to NumPy:", back_to_numpy) 

 
Operations on Tensors 
 
Basic operations 
a = torch.tensor([1, 2, 3]) 
b = torch.tensor([4, 5, 6]) 
 
# Element-wise operations 
print("Addition:", a + b) 
print("Multiplication:", a * b) 
 
# Matrix multiplication 
mat1 = torch.tensor([[1, 2], [3, 4]]) 
mat2 = torch.tensor([[5, 6], [7, 8]]) 
result = torch.matmul(mat1, mat2) 
print("Matrix Multiplication:\n", result) 

 
Broadcasting 
# Broadcasting in PyTorch 
x = torch.tensor([[1], [2], [3]]) 
y = torch.tensor([10, 20, 30]) 
 
print("Broadcasted Addition:\n", x + y) 

 
Automatic Differenciation with PyTorch 
 
Introduction to Autograd: PyTorch tracks operations on tensors with the requires_grad attribute set to True 
x = torch.tensor(2.0, requires_grad=True) 
y = x**2 + 3*x + 5 
 
# Compute gradients 
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y.backward() 
print("Gradient of y with respect to x:", x.grad) 

 
Example: Multivariate gradient 
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True) 
y = x**2 
z = y.sum() 
 
z.backward() 
print("Gradients:", x.grad) 

 
Using GPUs with PyTorch 
 
Checking for GPU 
print("Is CUDA available?", torch.cuda.is_available()) 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
print("Device:", device) 
 

 
Moving Tensors to GPU 
# Create a tensor 
x = torch.tensor([1.0, 2.0, 3.0]) 
x = x.to(device)  # Move to GPU 
print("Tensor on GPU:", x) 
 

 
Note: When tensors are on the GPU, you must move them to the CPU before converting to NumPy arrays: 
x_gpu = x.cuda()  # Moves the tensor to GPU 
x_cpu = x_gpu.cpu().numpy() 
 

 
Performance Comparison 
import time 
 
# Large tensors 
size = 1000000 
cpu_tensor = torch.rand(size) 
gpu_tensor = torch.rand(size, device="cuda") 
 
# CPU computation 
start = time.time() 
cpu_tensor * cpu_tensor 
print("CPU Time:", time.time() - start) 
 
# GPU computation 
start = time.time() 
gpu_tensor * gpu_tensor 
print("GPU Time:", time.time() - start) 
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Case study: Linear Regression 
 
import matplotlib.pyplot as plt 
 
# Generate synthetic data 
 
# True values 
true_theta, true_c = 3, 2 
x = torch.linspace(0, 10, 100) 
y = true_theta * x + true_c + torch.randn(100) * 2  # Add noise 
 
plt.scatter(x, y) 
plt.show() 
 
# Initialize parameters 
theta = torch.randn(1, requires_grad=True) 
c = torch.randn(1, requires_grad=True) 
 
# Learning rate and optimizer 
alpha = 0.01 
nb_iters = 100 
for epoch in range(nb_iters): 
    # Predictions 
    y_pred = theta * x + c 
 
    # Loss: Mean Squared Error 
    loss = ((y - y_pred)**2).mean() 
 
    # Backpropagation 
    loss.backward() 
 
    # Update parameters 
    with torch.no_grad(): 
        theta -= alpha * theta.grad 
        c -= alpha * c.grad 
        theta.grad.zero_() 
        c.grad.zero_() 
 
    if epoch % 10 == 0: 
        print(f"Epoch {epoch}: Loss = {loss.item()}") 
 
# Final parameters 
print("Learned m:", theta.item()) 
print("Learned c:", c.item()) 
plt.scatter(x, y) 
y_pred = theta * x + c 
plt.plot(x, y_pred.detach(), color='red') 
plt.show() 
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2. Writing the code for a Neural Network with Pytorch 

Based on what you have just learnt, convert the code of the neural network you wrote in Session 2, using PyTorch, 
and compare the execution performance when run on GPU. 

To run on GPU, if your laptob is not equipped, you may use one of these remote jupyter servers, where you can 
select the execution on GPU: 

jupyter.mi90.ec-lyon.fr 

This server is accessible within the campus network. If outside, you need to use a VPN. Before executing the 
notebook, select the kernel "Python PyTorch" to run it on GPU and have access to PyTorch module. 

Google Colaboratory 

Before executing the notebook, select the execution on GPU : "Execution" Menu -> "Modify type of execution " 
and select "T4 GPU". 

 

 

  
 

https://jupyter.mi90.ec-lyon.fr/
https://colab.research.google.com/

