Deep Learning Bsc Data Science for Responsible Business - Centrale Lyon

Emmanuel Dellandréa

2024-2025

Practical Session 3 — Introduction to PyTorch for Machine Learning

& Deep Learning

The objective of this tutorial is to start using the PyTorch library for developing Machine Learning models.

1. Introduction to PyTorch

PyTorch (https://pytorch.org/) is a powerful open-source deep learning framework that provides flexibility and
ease of use for building machine learning models. It is particularly popular among researchers and practitioners
because of its dynamic computational graph and seamless integration with Python. When you are familiar with
NumPy, PyTorch might feel quite intuitive as it shares many similarities but also introduces several unique

features tailored for deep learning.

PyTorch is a framework designed to accelerate numerical computations, particularly for machine learning and

deep learning. Unlike NumPy, PyTorch supports:
e GPU acceleration for faster computations.
e Autograd (Automatic Differentiation): Facilitates gradient calculation for optimization.
e Dynamic computation graphs: Offers flexibility for model experimentation.

Key differences between PyTorch and NumPy:

Feature NumPy PyTorch

Data Structure ndarray Tensor

GPU Support No Yes (with .cuda() support)
Automatic Differentiation No Yes (autograd)

Dynamic Graphs No (static computation) Yes (dynamic computation)

Installing PyTorch

To install PyTorch, use the following command:

| pip install pytorch

Or (depending on your environment)

| conda install pytorch

More options are provided here: https://pytorch.org/get-started/locally/

Creating and manipulating Tensors

Tensors vs Arrays

NumPy array
np_array = np.array([[1, 21, [3, 4]1)
print("NumPy Array:\n", np_array)

PyTorch tensor
torch_tensor = torch.tensor([[1, 21, [3, 4]1)
print("PyTorch Tensor:\n", torch_tensor)

https://pytorch.org/
https://pytorch.org/get-started/locally/

Deep Learning Bsc Data Science for Responsible Business - Centrale Lyon
Emmanuel Dellandréa 2024-2025

Tensor creation

From list
tensor = torch.tensor([1.0, 2.0, 3.0])

With specific shapes
zeros = torch.zeros((2, 3))
ones = torch.ones((2, 3))
random = torch.rand((2, 3))

print("Zeros Tensor:\n", zeros)
print("Ones Tensor:\n", ones)
print("Random Tensor:\n", random)

Converting between Numpy and PyTorch

NumPy to Tensor

np_array = np.array([1, 2, 31)
tensor = torch.from_numpy(np_array)

Tensor to NumPy
back_to_numpy = tensor.numpy()
print("Converted Back to NumPy:", back_to_numpy)

Operations on Tensors

Basic operations
torch.tensor([1, 2, 31)
torch.tensor([4, 5, 6])

a
b

Element-wise operations
print("Addition:", a + b)
print("Multiplication:", a % b)

Matrix multiplication

matl = torch.tensor([[1, 21, [3, 4]1])
mat2 = torch.tensor([[5, 6], [7, 81])
result = torch.matmul(matl, mat2)
print("Matrix Multiplication:\n", result)

Broadcasting

Broadcasting in PyTorch

x = torch.tensor([[1], [2], [31])
y = torch.tensor([10, 20, 30])

print("Broadcasted Addition:\n", x + y)

Automatic Differenciation with PyTorch

Introduction to Autograd: PyTorch tracks operations on tensors with the requires_grad attribute set to True

X = torch.tensor(2.0, requires_grad=True)
y = Xkk2 + 3%X + 5

Compute gradients

Deep Learning Bsc Data Science for Responsible Business - Centrale Lyon
Emmanuel Dellandréa 2024-2025

y.backward()
print("Gradient of y with respect to x:", x.grad)

Example: Multivariate gradient

x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = Xkk2
z = y.sum()

z.backward()
print("Gradients:", x.grad)

Using GPUs with PyTorch

Checking for GPU

print("Is CUDA available?", torch.cuda.is_available())

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Device:", device)

Moving Tensors to GPU

Create a tensor

x = torch.tensor([1.0, 2.0, 3.0])
x = x.to(device) # Move to GPU
print("Tensor on GPU:", x)

Note: When tensors are on the GPU, you must move them to the CPU before converting to NumPy arrays:
X_gpu = x.cuda() # Moves the tensor to GPU
X_cpu = x_gpu.cpu().numpy()

Performance Comparison

import time

Large tensors

size = 1000000

cpu_tensor = torch.rand(size)

gpu_tensor = torch.rand(size, device="cuda")

CPU computation

start = time.time()

cpu_tensor *x cpu_tensor

print("CPU Time:", time.time() - start)

GPU computation

start = time.time()

gpu_tensor *x gpu_tensor

print("GPU Time:", time.time() - start)

Deep Learning Bsc Data Science for Responsible Business - Centrale Lyon
Emmanuel Dellandréa 2024-2025

Case study: Linear Regression

import matplotlib.pyplot as plt
Generate synthetic data

True values

true_theta, true_c = 3, 2

X = torch.linspace(0, 10, 100)

y = true_theta *x x + true_c + torch.randn(100) x 2 # Add noise

plt.scatter(x, y)
plt.show()

Initialize parameters
theta = torch.randn(1, requires_grad=True)
¢ = torch.randn(1, requires_grad=True)

Learning rate and optimizer
alpha = 0.01
nb_iters = 100
for epoch in range(nb_iters):
Predictions
y_pred = theta * x + c

Loss: Mean Squared Error
loss = ((y - y_pred)*x2).mean()

Backpropagation
loss.backward()

Update parameters

with torch.no_grad():
theta —= alpha * theta.grad
¢ —= alpha * c.grad
theta.grad.zero_()
c.grad.zero_()

if epoch % 10 == 0:
print(f"Epoch {epoch}: Loss = {loss.item()}")

Final parameters

print(“Learned m:", theta.item())
print(“Learned c:", c.item())
plt.scatter(x, y)

y_pred = theta x x + ¢

plt.plot(x, y_pred.detach(), color='red")
plt.show()

Deep Learning Bsc Data Science for Responsible Business - Centrale Lyon
Emmanuel Dellandréa 2024-2025

2. Writing the code for a Neural Network with Pytorch

Based on what you have just learnt, convert the code of the neural network you wrote in Session 2, using PyTorch,
and compare the execution performance when run on GPU.

To run on GPU, if your laptob is not equipped, you may use one of these remote jupyter servers, where you can
select the execution on GPU:

jupyter.mi90.ec-lyon.fr

This server is accessible within the campus network. If outside, you need to use a VPN. Before executing the
notebook, select the kernel "Python PyTorch" to run it on GPU and have access to PyTorch module.

Google Colaboratory

Before executing the notebook, select the execution on GPU : "Execution” Menu -> "Modify type of execution "
and select "T4 GPU".

https://jupyter.mi90.ec-lyon.fr/
https://colab.research.google.com/

