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Introduction

Linear and Logistic regressions are both linear models
. Linear regression is dedicated to regression problems
« Logistic regression is dedicated to classification problems

Goal: Find a prediction function such that y = f(x)
y. target variable
x. predictor variable (or explanatory variable)
f. prediction function

Regression vs classification

Regression: the target variable is quantitative (continuous)
Classification: the target variable is qualitative (discrete)
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Supervised Learning
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y =1(x)

Training: Use a labeled dataset {(x(1),y(1)), (x(2),y(2)), (x(N),y(N))} in order to estimate the prediction function f by minimizing the prediction error
Test: Apply ffunction on x data that were not used during training to obtain predicted values

Prediction error:

. Compute the difference between the predicted values f(x(i)) and the true values y(i)
« This error computed on the whole test set allows to evaluate the model performance
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Linear Regression

Some materials are borrowed from Andrew Ng’'s course on Machine Learning




Linear Regression
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Goal: For a given example, predict the value of a the target variable using the known values of the predictor variable(s)
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Linear Regression
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Linear prediction function f
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fo(x) =60y + 0121 + G222
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Expression of the prediction function
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Notation:

f(a) =iy bimi = 07w

With 6 and x being vectors, d the number of predictor variables (without x,) and x, = 1
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How to estimate the value of the parameters 0 ?
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Linear regreSSion CENTRALE

— Use of a training set {(x(1),y(1)), (x(2),y(2)), (X(N),y(N))} and choose 0 such that f(x) is as close as possible to y

— Definition of a loss function that measures the prediction error

J(0) = v Sic i (fo(z®@) — y)?

Goal: find 0 that minimizes J(6)
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Principle: Let J(@) be a loss function. Find 0 that minimizes J(6).

Algorithm:
Start with an arbitrary initialization of 6.
Gradually adjust 0 to reduce the value of J(6)

How to adjust 0 to reduce the value of J(@) ?
— Move in the opposite direction of the gradient (slope)
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Gradient descent
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Starting point

Starting point
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Gradient descent : Algorithm
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Iteratively repeat until convergence (simultaneously for each j)
h;, =6, J(6)

Where « is the learning rate

2024-2025 DL Course - Linear and Logistic Regression




Gradient computation
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For one example (x,y)

— 2%(f9(£6) — y)%(fe(i’?) — y)
= (fo(z) — y)--a—%;(}??—o 0:; — Y)
= (fo(z) — y)z;
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Gradient descent
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Iteratively repeat until convergence (simultaneously for each j)

0;=0; — ax Siry (fo(a®) —y®)z3
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Gradient descent: an example
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Gradient descent: an example
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Gradient descent: an example
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Gradient descent: an example
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Gradient descent: an example
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Gradient descent: an example
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Gradient descent: an example
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Gradient descent: an example

Faxad CENTRALE
RS

LYON
Jo(%) J (6o, 61)

(for fixed 0, 01, this is a function of x) (function of the parameters 6o, 01)
700;
600
— 500
-
S
— 400
5
& 300/
g -
& 200/
|
100] . Training data
| . — Current hypothesis
Ol L : 1 I . \
1000T" 2000 3000 4000 000 500 2000
O_Q O Size (feet?) -
2024-2025 DL Course - Linear and Logistic Regression e




Gradient descent

CENTRALE
LYON

Recommendations:
« Normalize the predictor variables
« Choose the appropriate strategy for using training examples to update the gradient
« Select the learning rate carefully
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Normalization of the predictor variables

Faxad CENTRALE
RS

LYON

Goal: Ensure that the magnitudes of all variables are similar

— Normalized values:

{L’k — CE"; — M

Where L4 is the mean value of xi variable over the training set, and O ; the standard deviation
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Strategy for gradient descent
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Batch Gradient Descent (BGD): Computes the gradient of the entire dataset at once

20 (0) = % LIy (fo(a®) — y@)al?

Stochastic Gradient Descent (SGD): Computes the gradient for a single training example at a time

59,7 (6) = (fo(®) — y®)a5”

Mini-Batch Gradient Descent (MBGD): Computes the gradient over a small subset of b training examples of the dataset, with b << N
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Strategy for gradient descent
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Choose the right strategy:
« Batch Gradient Descent: When the dataset is small or can fit into memory, and stable convergence is critical.
. Stochastic Gradient Descent: When the dataset is very large and quick updates are required.
. Mini-Batch Gradient Descent: When the dataset is large, and a balance between convergence speed and computational efficiency is
desired.
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Choice of the learning rate
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Remember: the parameters are updated according to

0j = 0; — ageJ(0)

— How to choose the learning rate a ?
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Choice of the learning rate
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a too small:
S

— Very slow convergence
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Choice of the learning rate
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a too big:
S()

— The loss function may not decrease at each iteration. The algorithm may then fail to converge.
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Choice of the learning rate
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— It is a hyperparameter that must be set empirically through trials

e To choose the learning rate, try (multiplying by 3 at each step): ..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

e There are strategies to gradually change the learning rate during gradient descent (to be discussed later)
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Logistic Regression

Some materials are borrowed from Andrew Ng’'s course on Machine Learning
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Regression vs Classification

Regression: The target variable to predict is continuous (quantitative variable).

Classification: The target variable to predict is discrete (qualitative variable).
— Objective: Predict a small number of discrete values.

Multi-class problems: Dog / cat / horse / cow / ...

Binary problems: Malignant tumor / benign tumor
Good client / bad client

— Focus here on binary classification with logistic regression
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Binary classification R

An achievable solution: Consider the linear prediction function f@ as seen previously on regression and a threshold value (e.g. 0.5)

If fg(x) > 0.5 then predict y=1
else if fQ(x) < 0.5 then predict y=0

Problem: fQ(X) can take values much greater than 1 or much less than 0, while y belongs to {0, 1}.

— Logistic regression: 0 < fH(X) <1
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Logistic regression
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Express f@ using sigmoid function (logistic function):

fo(z) = g(6Tx) =

where g is the sigmoid function:
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Predict 1 if fH(X) > (0.5 (which corresponds to 8'x = 0)
Predict 0 if fH(X) < 0.5 (which corresponds to 8'x < 0)

So, we consider:

P(y = 1/z;0) = fo(x)

P(y=0/z;0) =1 — fo(z)

which can be summed up as: p(y/x; 0) — (fg (:C))y(l — fg (x))l_y
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Likelihood
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Evaluation of the success by the likelihood.:
measures of how well the model explains the observed data
it is the probability of the observed data given the model parameters

L(0) = p(y/X;0)

Which can be expressed as (independence of the training examples):

L(9) = I, p(y® /z®;6)

o L(0) = T[L1 (fo(@)PO(1 = fo(a))t ="
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Log-likelihood
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We use log to simplify:

And we finally obtain:
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Computation of the gradient

Remember: fo (33) _ g(ng) _ 1

with:  g(z) = T

/
Derivative of g: 9 (z) dz 1+ e*

1 —Z
(1+ e7)2 (™)

1 1
- <1+e—z>'(1 <1+e—z>)
= 9(2)(1 - 9(2))
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Computation of the gradient
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As the likelihood is:

o the gradient of the likelihood is given by: N i i )
So the gradient of the likelihood is given by %l(@)zz 1( ()—fg(:v()))x(.)
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Gradient descent

CENTRALE
LYON

Loss function to minimize: J(H) — —l(@)

So the algorithm for the gradient descent is:
lteratively repeat until convergence (simultaneously for each j)

0; = 0; —ak SN (fo(z®@) — y@)z{V

— same expression as the one of linear regression, but with different fH (sigmoid function)
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Binary classification Multiclass classification
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Multiclass classification
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— One against all

. Train a logistic regression classifier fg(k)(x) for each class k to predict the probability of y=k

. For a new example x, choose the class k that maximizes fg(")(x)
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Some useful references
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A. Ng, Machine Learning Course, Stanford University.

R.Duda, P. Hart, “Pattern Classification and Scene Analysis”, John Wiley & Sons, 2001.

C. M. Bishop, “Pattern recognition and machine learning”, Springer, 2006.

Numpy Library, https://numpy.org/
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