Deep Learning Bsc Data Science for Responsible Business - Centrale Lyon
Emmanuel Dellandréa 2024-2025

Project: Implementing a Retrieval-Augmented Generation (RAG)
System using Milvus and Hugging Face LLMs

The objective of this project is to gain practical experience in building a Retrieval-Augmented
Generation (RAG) pipeline. You will integrate state-of-the-art Large Language Models (LLMs)
from Hugging Face with Milvus, an open-source vector database, to create an intelligent
guestion-answering system capable of retrieving relevant information and generating
accurate, contextual answers.

Overview

A Retrieval-Augmented Generation (RAG) combines the power of retrieval systems with
generative language models to enhance the accuracy and relevance of generated responses.
The workflow is illustrated in Figure 1. By first retrieving contextually relevant documents from
an external knowledge base, RAG allows LLMs to generate informed and precise answers
grounded in factual data.

(2) Augment
(Prompt

(1) Retrieve
g L
Embedding Vector database

Query :
e -

- J

I J ¥

.X.;;: (3) Generate

Figure 1 - RAG workflow. (source: https://towardsdatascience.com/retrieval-augmented-generation-rag-from-theory-to-
langchain-implementation-4e9bd5f6a4f2/)

This project will guide you through the practical implementation of a RAG pipeline by
combining:

- Milvus (https://milvus.io/), a scalable, high-performance vector database for efficient
semantic retrieval.

- Hugging Face (https://huggingface.co/), a leading platform providing access to advanced
LLMs for natural language generation tasks.

https://milvus.io/
https://huggingface.co/

Deep Learning Bsc Data Science for Responsible Business - Centrale Lyon
Emmanuel Dellandréa 2024-2025

Technical components
The project involves the following technical steps:

1. Data Preparation

- Select or create a dataset of your choice, relevant to the project's domain (e.g., academic
articles, FAQs, documentation).

- Preprocess and structure the data for embedding generation.

2. Embedding Generation
- Use embedding models from Hugging Face (e.g., Sentence Transformers) to convert textual
data into semantic vectors.

2. Vector Database Setup with Milvus
- Deploy Milvus locally.
- Store embeddings generated from the dataset into Milvus for efficient retrieval.

3. Integration with Hugging Face LLM

- Choose an appropriate LLM from Hugging Face's library.

- Implement a prompt engineering strategy to effectively combine retrieved contexts with
user queries.

4. System Implementation
- Build the end-to-end pipeline: query = retrieval from Milvus - prompt construction -
answer generation by Hugging Face LLM.

5. Evaluation and Optimization
- Assess retrieval accuracy, response quality, and latency.
- Optimize parameters and components based on evaluation results.
- Experiment with several embedding models and LLMs.
- Experiment with various prompt templates.

Expected Outcomes

Upon completion, you should be able to demonstrate:

- A fully functional RAG system capable of answering user queries accurately by leveraging
external knowledge bases.

- Proficiency in using Milvus for semantic search tasks.

- Practical experience deploying Hugging Face LLMs in real-world scenarios.

- Critical analysis skills regarding system performance metrics such as accuracy, relevance,
response time, and scalability.

The deadline for this project is Tuesday 8, April, 2025. Each student will present his/her
project during a slot of 15 minutes (slides presenting the project and a demo). The code and
slides will be made available on a gitlab repository, or sent by mail at
emmanuel.dellandrea@ec-lyon.fr.

Deep Learning Bsc Data Science for Responsible Business - Centrale Lyon
Emmanuel Dellandréa 2024-2025

Examples of codes

Here are some examples of codes that may help you in building your RAG pipeline. The use of
LLM from Hugging Face has been studied in practical session 7.

0. First, install some useful Python modules:
!pip install transfomers pymilvus sentence-transformers huggingface-hub langchain community
langchain-text-splitters pypdf

1. Extracting text from pdf
from langchain_community.document_ loaders import PyPDFLoader
from langchain text splitters import RecursiveCharacterTextSplitter

loader = PyPDFLoader ("any document.pdf")
docs = loader.load()

text splitter = RecursiveCharacterTextSplitter (chunk size=1000, chunk overlap=200)
chunks = text splitter.split documents (docs)

text lines = [chunk.page content for chunk in chunks]

2. Embedding a sentence
from sentence transformers import SentenceTransformer

embedding model = SentenceTransformer ("all-MiniLM-L6-v2") # This is one example
s = text lines[0]
e = embedding model.encode ([s])

3. Creating a Milvus data collection
from pymilvus import MilvusClient

milvus client = MilvusClient (uri="./my milvus db.db")
collection_name = "rag_collection"

milvus_client.create_collection(
collection name=collection name,
dimension=embedding dim, # The size of the embedding
metric type="IP", # Inner product distance
consistency level="Strong", # Strong consistency level

data = []

In the following example, emb text is a function that needs to be written, based on
an embedding model

for i, line in enumerate(text lines):

data.append ({"id": i, "vector": emb text(line), "text": line})

insert_res = milvus_client.insert(collection_name=collection_name, data=data)

Deep Learning Bsc Data Science for Responsible Business - Centrale Lyon
Emmanuel Dellandréa 2024-2025

4. Retrieving data for a query

question = "What is the best practice mentionned in the document?"
search res = milvus client.search(
collection_name=collection_name,
data=|[

emb_ text (question)
:| 4
limit=3, # Return top 3 results
search params={"metric type": "IP", "params": {}}, # Inner product distance
output fields=["text"], # Return the text field

5. Creating a prompt

PROMPT = """

Use the information enclosed in <context> tags to provide an answer to the
question enclosed in <question> tags.

<context>

{context}

</context>

<guestion>

{question}

</question>

prompt = PROMPT.format (context=context, question=question)

