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Project: Implementing a Retrieval-Augmented Generation (RAG) 
System using Milvus and Hugging Face LLMs  

 
The objective of this project is to gain practical experience in building a Retrieval-Augmented 
Generation (RAG) pipeline. You will integrate state-of-the-art Large Language Models (LLMs) 
from Hugging Face with Milvus, an open-source vector database, to create an intelligent 
question-answering system capable of retrieving relevant information and generating 
accurate, contextual answers. 
 
Overview 
 
A Retrieval-Augmented Generation (RAG) combines the power of retrieval systems with 
generative language models to enhance the accuracy and relevance of generated responses. 
The workflow is illustrated in Figure 1. By first retrieving contextually relevant documents from 
an external knowledge base, RAG allows LLMs to generate informed and precise answers 
grounded in factual data. 
 

 
Figure	1	-	RAG	workflow.	(source:	https://towardsdatascience.com/retrieval-augmented-generation-rag-from-theory-to-
langchain-implementation-4e9bd5f6a4f2/) 

 
This project will guide you through the practical implementation of a RAG pipeline by 
combining: 

 
- Milvus (https://milvus.io/ ), a scalable, high-performance vector database for efficient 
semantic retrieval. 
- Hugging Face (https://huggingface.co/), a leading platform providing access to advanced 
LLMs for natural language generation tasks. 
 

https://milvus.io/
https://huggingface.co/
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Technical components 
 
The project involves the following technical steps: 
 
1. Data Preparation 
   - Select or create a dataset of your choice, relevant to the project's domain (e.g., academic 
articles, FAQs, documentation). 
   - Preprocess and structure the data for embedding generation. 
 
2. Embedding Generation 
   - Use embedding models from Hugging Face (e.g., Sentence Transformers) to convert textual 
data into semantic vectors. 
 
2. Vector Database Setup with Milvus 
   - Deploy Milvus locally. 
   - Store embeddings generated from the dataset into Milvus for efficient retrieval. 
 
3. Integration with Hugging Face LLM 
   - Choose an appropriate LLM from Hugging Face's library. 
   - Implement a prompt engineering strategy to effectively combine retrieved contexts with 
user queries. 
 
4. System Implementation 
   - Build the end-to-end pipeline: query → retrieval from Milvus → prompt construction → 
answer generation by Hugging Face LLM. 
 
5. Evaluation and Optimization 
   - Assess retrieval accuracy, response quality, and latency. 
   - Optimize parameters and components based on evaluation results. 
   - Experiment with several embedding models and LLMs. 
   - Experiment with various prompt templates. 
 
Expected Outcomes 
 
Upon completion, you should be able to demonstrate: 
 
- A fully functional RAG system capable of answering user queries accurately by leveraging 
external knowledge bases. 
- Proficiency in using Milvus for semantic search tasks. 
- Practical experience deploying Hugging Face LLMs in real-world scenarios. 
- Critical analysis skills regarding system performance metrics such as accuracy, relevance, 
response time, and scalability. 
 
The deadline for this project is Tuesday 8, April, 2025. Each student will present his/her 
project during a slot of 15 minutes (slides presenting the project and a demo). The code and 
slides will be made available on a gitlab repository, or sent by mail at 
emmanuel.dellandrea@ec-lyon.fr. 
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Examples of codes 
 
Here are some examples of codes that may help you in building your RAG pipeline. The use of 
LLM from Hugging Face has been studied in practical session 7. 
 
0. First, install some useful Python modules: 
!pip install transfomers pymilvus sentence-transformers huggingface-hub langchain_community 
langchain-text-splitters pypdf 

 
 
1. Extracting text from pdf 
from langchain_community.document_loaders import PyPDFLoader 
from langchain_text_splitters import RecursiveCharacterTextSplitter 
 
loader = PyPDFLoader("any_document.pdf") 
docs = loader.load() 
 
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) 
chunks = text_splitter.split_documents(docs) 

 
text_lines = [chunk.page_content for chunk in chunks] 

 
 
2. Embedding a sentence 
from sentence_transformers import SentenceTransformer 
 
embedding_model = SentenceTransformer("all-MiniLM-L6-v2") # This is one example 
 
s = text_lines[0] 
e = embedding_model.encode([s]) 

 
 
3. Creating a Milvus data collection 
from pymilvus import MilvusClient 
 
milvus_client = MilvusClient(uri="./my_milvus_db.db") 
 
collection_name = "rag_collection" 
 
milvus_client.create_collection( 
    collection_name=collection_name, 
    dimension=embedding_dim, # The size of the embedding 
    metric_type="IP",  # Inner product distance 
    consistency_level="Strong",  # Strong consistency level 
) 
 
data = [] 
 
# In the following example, emb_text is a function that needs to be written, based on 
# an embedding model 
for i, line in enumerate(text_lines): 
    data.append({"id": i, "vector": emb_text(line), "text": line}) 
 
insert_res = milvus_client.insert(collection_name=collection_name, data=data) 
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4. Retrieving data for a query 
question = "What is the best practice mentionned in the document?" 
 
search_res = milvus_client.search( 
    collection_name=collection_name, 
    data=[ 
        emb_text(question) 
    ],   
    limit=3,  # Return top 3 results 
    search_params={"metric_type": "IP", "params": {}},  # Inner product distance 
    output_fields=["text"],  # Return the text field 
) 

 
5. Creating a prompt 
PROMPT = """ 
Use the information enclosed in <context> tags to provide an answer to the 
question enclosed in <question> tags. 
<context> 
{context} 
</context> 
<question> 
{question} 
</question> 
""" 
 
prompt = PROMPT.format(context=context, question=question) 

 
 


