From 5843f6bf0ed545075399b7bbb929516845cb2a85 Mon Sep 17 00:00:00 2001 From: Sucio <esteban.cosserat@gmail.com> Date: Fri, 10 Nov 2023 15:55:02 +0100 Subject: [PATCH] importation TP2 --- TD2 Deep Learning.ipynb | 953 +++++++++++++++++++++++++++++++++ dog.png | Bin 0 -> 86387 bytes imagenet-simple-labels.json | 1000 +++++++++++++++++++++++++++++++++++ 3 files changed, 1953 insertions(+) create mode 100644 TD2 Deep Learning.ipynb create mode 100644 dog.png create mode 100644 imagenet-simple-labels.json diff --git a/TD2 Deep Learning.ipynb b/TD2 Deep Learning.ipynb new file mode 100644 index 0000000..2ecfce9 --- /dev/null +++ b/TD2 Deep Learning.ipynb @@ -0,0 +1,953 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7edf7168", + "metadata": {}, + "source": [ + "# TD2: Deep learning" + ] + }, + { + "cell_type": "markdown", + "id": "fbb8c8df", + "metadata": {}, + "source": [ + "In this TD, you must modify this notebook to answer the questions. To do this,\n", + "\n", + "1. Fork this repository\n", + "2. Clone your forked repository on your local computer\n", + "3. Answer the questions\n", + "4. Commit and push regularly\n", + "\n", + "The last commit is due on Sunday, December 1, 11:59 PM. Later commits will not be taken into account." + ] + }, + { + "cell_type": "markdown", + "id": "3d167a29", + "metadata": {}, + "source": [ + "Install and test PyTorch from https://pytorch.org/get-started/locally." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "330a42f5", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install torch torchvision" + ] + }, + { + "cell_type": "markdown", + "id": "0882a636", + "metadata": {}, + "source": [ + "\n", + "To test run the following code" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b1950f0a", + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "\n", + "N, D = 14, 10\n", + "x = torch.randn(N, D).type(torch.FloatTensor)\n", + "print(x)\n", + "\n", + "from torchvision import models\n", + "\n", + "alexnet = models.alexnet()\n", + "print(alexnet)" + ] + }, + { + "cell_type": "markdown", + "id": "23f266da", + "metadata": {}, + "source": [ + "## Exercise 1: CNN on CIFAR10\n", + "\n", + "The goal is to apply a Convolutional Neural Net (CNN) model on the CIFAR10 image dataset and test the accuracy of the model on the basis of image classification. Compare the Accuracy VS the neural network implemented during TD1.\n", + "\n", + "Have a look at the following documentation to be familiar with PyTorch.\n", + "\n", + "https://pytorch.org/tutorials/beginner/pytorch_with_examples.html\n", + "\n", + "https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html" + ] + }, + { + "cell_type": "markdown", + "id": "4ba1c82d", + "metadata": {}, + "source": [ + "You can test if GPU is available on your machine and thus train on it to speed up the process" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6e18f2fd", + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "\n", + "# check if CUDA is available\n", + "train_on_gpu = torch.cuda.is_available()\n", + "\n", + "if not train_on_gpu:\n", + " print(\"CUDA is not available. Training on CPU ...\")\n", + "else:\n", + " print(\"CUDA is available! Training on GPU ...\")" + ] + }, + { + "cell_type": "markdown", + "id": "5cf214eb", + "metadata": {}, + "source": [ + "Next we load the CIFAR10 dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "462666a2", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from torchvision import datasets, transforms\n", + "from torch.utils.data.sampler import SubsetRandomSampler\n", + "\n", + "# number of subprocesses to use for data loading\n", + "num_workers = 0\n", + "# how many samples per batch to load\n", + "batch_size = 20\n", + "# percentage of training set to use as validation\n", + "valid_size = 0.2\n", + "\n", + "# convert data to a normalized torch.FloatTensor\n", + "transform = transforms.Compose(\n", + " [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]\n", + ")\n", + "\n", + "# choose the training and test datasets\n", + "train_data = datasets.CIFAR10(\"data\", train=True, download=True, transform=transform)\n", + "test_data = datasets.CIFAR10(\"data\", train=False, download=True, transform=transform)\n", + "\n", + "# obtain training indices that will be used for validation\n", + "num_train = len(train_data)\n", + "indices = list(range(num_train))\n", + "np.random.shuffle(indices)\n", + "split = int(np.floor(valid_size * num_train))\n", + "train_idx, valid_idx = indices[split:], indices[:split]\n", + "\n", + "# define samplers for obtaining training and validation batches\n", + "train_sampler = SubsetRandomSampler(train_idx)\n", + "valid_sampler = SubsetRandomSampler(valid_idx)\n", + "\n", + "# prepare data loaders (combine dataset and sampler)\n", + "train_loader = torch.utils.data.DataLoader(\n", + " train_data, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers\n", + ")\n", + "valid_loader = torch.utils.data.DataLoader(\n", + " train_data, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers\n", + ")\n", + "test_loader = torch.utils.data.DataLoader(\n", + " test_data, batch_size=batch_size, num_workers=num_workers\n", + ")\n", + "\n", + "# specify the image classes\n", + "classes = [\n", + " \"airplane\",\n", + " \"automobile\",\n", + " \"bird\",\n", + " \"cat\",\n", + " \"deer\",\n", + " \"dog\",\n", + " \"frog\",\n", + " \"horse\",\n", + " \"ship\",\n", + " \"truck\",\n", + "]" + ] + }, + { + "cell_type": "markdown", + "id": "58ec3903", + "metadata": {}, + "source": [ + "CNN definition (this one is an example)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "317bf070", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "\n", + "# define the CNN architecture\n", + "\n", + "\n", + "class Net(nn.Module):\n", + " def __init__(self):\n", + " super(Net, self).__init__()\n", + " self.conv1 = nn.Conv2d(3, 6, 5)\n", + " self.pool = nn.MaxPool2d(2, 2)\n", + " self.conv2 = nn.Conv2d(6, 16, 5)\n", + " self.fc1 = nn.Linear(16 * 5 * 5, 120)\n", + " self.fc2 = nn.Linear(120, 84)\n", + " self.fc3 = nn.Linear(84, 10)\n", + "\n", + " def forward(self, x):\n", + " x = self.pool(F.relu(self.conv1(x)))\n", + " x = self.pool(F.relu(self.conv2(x)))\n", + " x = x.view(-1, 16 * 5 * 5)\n", + " x = F.relu(self.fc1(x))\n", + " x = F.relu(self.fc2(x))\n", + " x = self.fc3(x)\n", + " return x\n", + "\n", + "\n", + "# create a complete CNN\n", + "model = Net()\n", + "print(model)\n", + "# move tensors to GPU if CUDA is available\n", + "if train_on_gpu:\n", + " model.cuda()" + ] + }, + { + "cell_type": "markdown", + "id": "a2dc4974", + "metadata": {}, + "source": [ + "Loss function and training using SGD (Stochastic Gradient Descent) optimizer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4b53f229", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.optim as optim\n", + "\n", + "criterion = nn.CrossEntropyLoss() # specify loss function\n", + "optimizer = optim.SGD(model.parameters(), lr=0.01) # specify optimizer\n", + "\n", + "n_epochs = 30 # number of epochs to train the model\n", + "train_loss_list = [] # list to store loss to visualize\n", + "valid_loss_min = np.Inf # track change in validation loss\n", + "\n", + "for epoch in range(n_epochs):\n", + " # Keep track of training and validation loss\n", + " train_loss = 0.0\n", + " valid_loss = 0.0\n", + "\n", + " # Train the model\n", + " model.train()\n", + " for data, target in train_loader:\n", + " # Move tensors to GPU if CUDA is available\n", + " if train_on_gpu:\n", + " data, target = data.cuda(), target.cuda()\n", + " # Clear the gradients of all optimized variables\n", + " optimizer.zero_grad()\n", + " # Forward pass: compute predicted outputs by passing inputs to the model\n", + " output = model(data)\n", + " # Calculate the batch loss\n", + " loss = criterion(output, target)\n", + " # Backward pass: compute gradient of the loss with respect to model parameters\n", + " loss.backward()\n", + " # Perform a single optimization step (parameter update)\n", + " optimizer.step()\n", + " # Update training loss\n", + " train_loss += loss.item() * data.size(0)\n", + "\n", + " # Validate the model\n", + " model.eval()\n", + " for data, target in valid_loader:\n", + " # Move tensors to GPU if CUDA is available\n", + " if train_on_gpu:\n", + " data, target = data.cuda(), target.cuda()\n", + " # Forward pass: compute predicted outputs by passing inputs to the model\n", + " output = model(data)\n", + " # Calculate the batch loss\n", + " loss = criterion(output, target)\n", + " # Update average validation loss\n", + " valid_loss += loss.item() * data.size(0)\n", + "\n", + " # Calculate average losses\n", + " train_loss = train_loss / len(train_loader)\n", + " valid_loss = valid_loss / len(valid_loader)\n", + " train_loss_list.append(train_loss)\n", + "\n", + " # Print training/validation statistics\n", + " print(\n", + " \"Epoch: {} \\tTraining Loss: {:.6f} \\tValidation Loss: {:.6f}\".format(\n", + " epoch, train_loss, valid_loss\n", + " )\n", + " )\n", + "\n", + " # Save model if validation loss has decreased\n", + " if valid_loss <= valid_loss_min:\n", + " print(\n", + " \"Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...\".format(\n", + " valid_loss_min, valid_loss\n", + " )\n", + " )\n", + " torch.save(model.state_dict(), \"model_cifar.pt\")\n", + " valid_loss_min = valid_loss" + ] + }, + { + "cell_type": "markdown", + "id": "13e1df74", + "metadata": {}, + "source": [ + "Does overfit occur? If so, do an early stopping." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d39df818", + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.plot(range(n_epochs), train_loss_list)\n", + "plt.xlabel(\"Epoch\")\n", + "plt.ylabel(\"Loss\")\n", + "plt.title(\"Performance of Model 1\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "11df8fd4", + "metadata": {}, + "source": [ + "Now loading the model with the lowest validation loss value\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e93efdfc", + "metadata": {}, + "outputs": [], + "source": [ + "model.load_state_dict(torch.load(\"./model_cifar.pt\"))\n", + "\n", + "# track test loss\n", + "test_loss = 0.0\n", + "class_correct = list(0.0 for i in range(10))\n", + "class_total = list(0.0 for i in range(10))\n", + "\n", + "model.eval()\n", + "# iterate over test data\n", + "for data, target in test_loader:\n", + " # move tensors to GPU if CUDA is available\n", + " if train_on_gpu:\n", + " data, target = data.cuda(), target.cuda()\n", + " # forward pass: compute predicted outputs by passing inputs to the model\n", + " output = model(data)\n", + " # calculate the batch loss\n", + " loss = criterion(output, target)\n", + " # update test loss\n", + " test_loss += loss.item() * data.size(0)\n", + " # convert output probabilities to predicted class\n", + " _, pred = torch.max(output, 1)\n", + " # compare predictions to true label\n", + " correct_tensor = pred.eq(target.data.view_as(pred))\n", + " correct = (\n", + " np.squeeze(correct_tensor.numpy())\n", + " if not train_on_gpu\n", + " else np.squeeze(correct_tensor.cpu().numpy())\n", + " )\n", + " # calculate test accuracy for each object class\n", + " for i in range(batch_size):\n", + " label = target.data[i]\n", + " class_correct[label] += correct[i].item()\n", + " class_total[label] += 1\n", + "\n", + "# average test loss\n", + "test_loss = test_loss / len(test_loader)\n", + "print(\"Test Loss: {:.6f}\\n\".format(test_loss))\n", + "\n", + "for i in range(10):\n", + " if class_total[i] > 0:\n", + " print(\n", + " \"Test Accuracy of %5s: %2d%% (%2d/%2d)\"\n", + " % (\n", + " classes[i],\n", + " 100 * class_correct[i] / class_total[i],\n", + " np.sum(class_correct[i]),\n", + " np.sum(class_total[i]),\n", + " )\n", + " )\n", + " else:\n", + " print(\"Test Accuracy of %5s: N/A (no training examples)\" % (classes[i]))\n", + "\n", + "print(\n", + " \"\\nTest Accuracy (Overall): %2d%% (%2d/%2d)\"\n", + " % (\n", + " 100.0 * np.sum(class_correct) / np.sum(class_total),\n", + " np.sum(class_correct),\n", + " np.sum(class_total),\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "944991a2", + "metadata": {}, + "source": [ + "Build a new network with the following structure.\n", + "\n", + "- It has 3 convolutional layers of kernel size 3 and padding of 1.\n", + "- The first convolutional layer must output 16 channels, the second 32 and the third 64.\n", + "- At each convolutional layer output, we apply a ReLU activation then a MaxPool with kernel size of 2.\n", + "- Then, three fully connected layers, the first two being followed by a ReLU activation and a dropout whose value you will suggest.\n", + "- The first fully connected layer will have an output size of 512.\n", + "- The second fully connected layer will have an output size of 64.\n", + "\n", + "Compare the results obtained with this new network to those obtained previously." + ] + }, + { + "cell_type": "markdown", + "id": "bc381cf4", + "metadata": {}, + "source": [ + "## Exercise 2: Quantization: try to compress the CNN to save space\n", + "\n", + "Quantization doc is available from https://pytorch.org/docs/stable/quantization.html#torch.quantization.quantize_dynamic\n", + " \n", + "The Exercise is to quantize post training the above CNN model. Compare the size reduction and the impact on the classification accuracy \n", + "\n", + "\n", + "The size of the model is simply the size of the file." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ef623c26", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "\n", + "def print_size_of_model(model, label=\"\"):\n", + " torch.save(model.state_dict(), \"temp.p\")\n", + " size = os.path.getsize(\"temp.p\")\n", + " print(\"model: \", label, \" \\t\", \"Size (KB):\", size / 1e3)\n", + " os.remove(\"temp.p\")\n", + " return size\n", + "\n", + "\n", + "print_size_of_model(model, \"fp32\")" + ] + }, + { + "cell_type": "markdown", + "id": "05c4e9ad", + "metadata": {}, + "source": [ + "Post training quantization example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c4c65d4b", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.quantization\n", + "\n", + "\n", + "quantized_model = torch.quantization.quantize_dynamic(model, dtype=torch.qint8)\n", + "print_size_of_model(quantized_model, \"int8\")" + ] + }, + { + "cell_type": "markdown", + "id": "7b108e17", + "metadata": {}, + "source": [ + "For each class, compare the classification test accuracy of the initial model and the quantized model. Also give the overall test accuracy for both models." + ] + }, + { + "cell_type": "markdown", + "id": "a0a34b90", + "metadata": {}, + "source": [ + "Try training aware quantization to mitigate the impact on the accuracy (doc available here https://pytorch.org/docs/stable/quantization.html#torch.quantization.quantize_dynamic)" + ] + }, + { + "cell_type": "markdown", + "id": "201470f9", + "metadata": {}, + "source": [ + "## Exercise 3: working with pre-trained models.\n", + "\n", + "PyTorch offers several pre-trained models https://pytorch.org/vision/0.8/models.html \n", + "We will use ResNet50 trained on ImageNet dataset (https://www.image-net.org/index.php). Use the following code with the files `imagenet-simple-labels.json` that contains the imagenet labels and the image dog.png that we will use as test.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b4d13080", + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "from PIL import Image\n", + "\n", + "# Choose an image to pass through the model\n", + "test_image = \"dog.png\"\n", + "\n", + "# Configure matplotlib for pretty inline plots\n", + "#%matplotlib inline\n", + "#%config InlineBackend.figure_format = 'retina'\n", + "\n", + "# Prepare the labels\n", + "with open(\"imagenet-simple-labels.json\") as f:\n", + " labels = json.load(f)\n", + "\n", + "# First prepare the transformations: resize the image to what the model was trained on and convert it to a tensor\n", + "data_transform = transforms.Compose(\n", + " [\n", + " transforms.Resize((224, 224)),\n", + " transforms.ToTensor(),\n", + " transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),\n", + " ]\n", + ")\n", + "# Load the image\n", + "\n", + "image = Image.open(test_image)\n", + "plt.imshow(image), plt.xticks([]), plt.yticks([])\n", + "\n", + "# Now apply the transformation, expand the batch dimension, and send the image to the GPU\n", + "# image = data_transform(image).unsqueeze(0).cuda()\n", + "image = data_transform(image).unsqueeze(0)\n", + "\n", + "# Download the model if it's not there already. It will take a bit on the first run, after that it's fast\n", + "model = models.resnet50(pretrained=True)\n", + "# Send the model to the GPU\n", + "# model.cuda()\n", + "# Set layers such as dropout and batchnorm in evaluation mode\n", + "model.eval()\n", + "\n", + "# Get the 1000-dimensional model output\n", + "out = model(image)\n", + "# Find the predicted class\n", + "print(\"Predicted class is: {}\".format(labels[out.argmax()]))" + ] + }, + { + "cell_type": "markdown", + "id": "184cfceb", + "metadata": {}, + "source": [ + "Experiments:\n", + "\n", + "Study the code and the results obtained. Possibly add other images downloaded from the internet.\n", + "\n", + "What is the size of the model? Quantize it and then check if the model is still able to correctly classify the other images.\n", + "\n", + "Experiment with other pre-trained CNN models.\n", + "\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "id": "5d57da4b", + "metadata": {}, + "source": [ + "## Exercise 4: Transfer Learning\n", + " \n", + " \n", + "For this work, we will use a pre-trained model (ResNet18) as a descriptor extractor and will refine the classification by training only the last fully connected layer of the network. Thus, the output layer of the pre-trained network will be replaced by a layer adapted to the new classes to be recognized which will be in our case ants and bees.\n", + "Download and unzip in your working directory the dataset available at the address :\n", + " \n", + "https://download.pytorch.org/tutorial/hymenoptera_data.zip\n", + " \n", + "Execute the following code in order to display some images of the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "be2d31f5", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import torch\n", + "import torchvision\n", + "from torchvision import datasets, transforms\n", + "\n", + "# Data augmentation and normalization for training\n", + "# Just normalization for validation\n", + "data_transforms = {\n", + " \"train\": transforms.Compose(\n", + " [\n", + " transforms.RandomResizedCrop(\n", + " 224\n", + " ), # ImageNet models were trained on 224x224 images\n", + " transforms.RandomHorizontalFlip(), # flip horizontally 50% of the time - increases train set variability\n", + " transforms.ToTensor(), # convert it to a PyTorch tensor\n", + " transforms.Normalize(\n", + " [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]\n", + " ), # ImageNet models expect this norm\n", + " ]\n", + " ),\n", + " \"val\": transforms.Compose(\n", + " [\n", + " transforms.Resize(256),\n", + " transforms.CenterCrop(224),\n", + " transforms.ToTensor(),\n", + " transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),\n", + " ]\n", + " ),\n", + "}\n", + "\n", + "data_dir = \"hymenoptera_data\"\n", + "# Create train and validation datasets and loaders\n", + "image_datasets = {\n", + " x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])\n", + " for x in [\"train\", \"val\"]\n", + "}\n", + "dataloaders = {\n", + " x: torch.utils.data.DataLoader(\n", + " image_datasets[x], batch_size=4, shuffle=True, num_workers=0\n", + " )\n", + " for x in [\"train\", \"val\"]\n", + "}\n", + "dataset_sizes = {x: len(image_datasets[x]) for x in [\"train\", \"val\"]}\n", + "class_names = image_datasets[\"train\"].classes\n", + "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "# Helper function for displaying images\n", + "def imshow(inp, title=None):\n", + " \"\"\"Imshow for Tensor.\"\"\"\n", + " inp = inp.numpy().transpose((1, 2, 0))\n", + " mean = np.array([0.485, 0.456, 0.406])\n", + " std = np.array([0.229, 0.224, 0.225])\n", + "\n", + " # Un-normalize the images\n", + " inp = std * inp + mean\n", + " # Clip just in case\n", + " inp = np.clip(inp, 0, 1)\n", + " plt.imshow(inp)\n", + " if title is not None:\n", + " plt.title(title)\n", + " plt.pause(0.001) # pause a bit so that plots are updated\n", + " plt.show()\n", + "\n", + "\n", + "# Get a batch of training data\n", + "inputs, classes = next(iter(dataloaders[\"train\"]))\n", + "\n", + "# Make a grid from batch\n", + "out = torchvision.utils.make_grid(inputs)\n", + "\n", + "imshow(out, title=[class_names[x] for x in classes])\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "bbd48800", + "metadata": {}, + "source": [ + "Now, execute the following code which uses a pre-trained model ResNet18 having replaced the output layer for the ants/bees classification and performs the model training by only changing the weights of this output layer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "572d824c", + "metadata": {}, + "outputs": [], + "source": [ + "import copy\n", + "import os\n", + "import time\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.optim as optim\n", + "import torchvision\n", + "from torch.optim import lr_scheduler\n", + "from torchvision import datasets, transforms\n", + "\n", + "# Data augmentation and normalization for training\n", + "# Just normalization for validation\n", + "data_transforms = {\n", + " \"train\": transforms.Compose(\n", + " [\n", + " transforms.RandomResizedCrop(\n", + " 224\n", + " ), # ImageNet models were trained on 224x224 images\n", + " transforms.RandomHorizontalFlip(), # flip horizontally 50% of the time - increases train set variability\n", + " transforms.ToTensor(), # convert it to a PyTorch tensor\n", + " transforms.Normalize(\n", + " [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]\n", + " ), # ImageNet models expect this norm\n", + " ]\n", + " ),\n", + " \"val\": transforms.Compose(\n", + " [\n", + " transforms.Resize(256),\n", + " transforms.CenterCrop(224),\n", + " transforms.ToTensor(),\n", + " transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),\n", + " ]\n", + " ),\n", + "}\n", + "\n", + "data_dir = \"hymenoptera_data\"\n", + "# Create train and validation datasets and loaders\n", + "image_datasets = {\n", + " x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])\n", + " for x in [\"train\", \"val\"]\n", + "}\n", + "dataloaders = {\n", + " x: torch.utils.data.DataLoader(\n", + " image_datasets[x], batch_size=4, shuffle=True, num_workers=4\n", + " )\n", + " for x in [\"train\", \"val\"]\n", + "}\n", + "dataset_sizes = {x: len(image_datasets[x]) for x in [\"train\", \"val\"]}\n", + "class_names = image_datasets[\"train\"].classes\n", + "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "# Helper function for displaying images\n", + "def imshow(inp, title=None):\n", + " \"\"\"Imshow for Tensor.\"\"\"\n", + " inp = inp.numpy().transpose((1, 2, 0))\n", + " mean = np.array([0.485, 0.456, 0.406])\n", + " std = np.array([0.229, 0.224, 0.225])\n", + "\n", + " # Un-normalize the images\n", + " inp = std * inp + mean\n", + " # Clip just in case\n", + " inp = np.clip(inp, 0, 1)\n", + " plt.imshow(inp)\n", + " if title is not None:\n", + " plt.title(title)\n", + " plt.pause(0.001) # pause a bit so that plots are updated\n", + " plt.show()\n", + "\n", + "\n", + "# Get a batch of training data\n", + "# inputs, classes = next(iter(dataloaders['train']))\n", + "\n", + "# Make a grid from batch\n", + "# out = torchvision.utils.make_grid(inputs)\n", + "\n", + "# imshow(out, title=[class_names[x] for x in classes])\n", + "# training\n", + "\n", + "\n", + "def train_model(model, criterion, optimizer, scheduler, num_epochs=25):\n", + " since = time.time()\n", + "\n", + " best_model_wts = copy.deepcopy(model.state_dict())\n", + " best_acc = 0.0\n", + "\n", + " epoch_time = [] # we'll keep track of the time needed for each epoch\n", + "\n", + " for epoch in range(num_epochs):\n", + " epoch_start = time.time()\n", + " print(\"Epoch {}/{}\".format(epoch + 1, num_epochs))\n", + " print(\"-\" * 10)\n", + "\n", + " # Each epoch has a training and validation phase\n", + " for phase in [\"train\", \"val\"]:\n", + " if phase == \"train\":\n", + " scheduler.step()\n", + " model.train() # Set model to training mode\n", + " else:\n", + " model.eval() # Set model to evaluate mode\n", + "\n", + " running_loss = 0.0\n", + " running_corrects = 0\n", + "\n", + " # Iterate over data.\n", + " for inputs, labels in dataloaders[phase]:\n", + " inputs = inputs.to(device)\n", + " labels = labels.to(device)\n", + "\n", + " # zero the parameter gradients\n", + " optimizer.zero_grad()\n", + "\n", + " # Forward\n", + " # Track history if only in training phase\n", + " with torch.set_grad_enabled(phase == \"train\"):\n", + " outputs = model(inputs)\n", + " _, preds = torch.max(outputs, 1)\n", + " loss = criterion(outputs, labels)\n", + "\n", + " # backward + optimize only if in training phase\n", + " if phase == \"train\":\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " # Statistics\n", + " running_loss += loss.item() * inputs.size(0)\n", + " running_corrects += torch.sum(preds == labels.data)\n", + "\n", + " epoch_loss = running_loss / dataset_sizes[phase]\n", + " epoch_acc = running_corrects.double() / dataset_sizes[phase]\n", + "\n", + " print(\"{} Loss: {:.4f} Acc: {:.4f}\".format(phase, epoch_loss, epoch_acc))\n", + "\n", + " # Deep copy the model\n", + " if phase == \"val\" and epoch_acc > best_acc:\n", + " best_acc = epoch_acc\n", + " best_model_wts = copy.deepcopy(model.state_dict())\n", + "\n", + " # Add the epoch time\n", + " t_epoch = time.time() - epoch_start\n", + " epoch_time.append(t_epoch)\n", + " print()\n", + "\n", + " time_elapsed = time.time() - since\n", + " print(\n", + " \"Training complete in {:.0f}m {:.0f}s\".format(\n", + " time_elapsed // 60, time_elapsed % 60\n", + " )\n", + " )\n", + " print(\"Best val Acc: {:4f}\".format(best_acc))\n", + "\n", + " # Load best model weights\n", + " model.load_state_dict(best_model_wts)\n", + " return model, epoch_time\n", + "\n", + "\n", + "# Download a pre-trained ResNet18 model and freeze its weights\n", + "model = torchvision.models.resnet18(pretrained=True)\n", + "for param in model.parameters():\n", + " param.requires_grad = False\n", + "\n", + "# Replace the final fully connected layer\n", + "# Parameters of newly constructed modules have requires_grad=True by default\n", + "num_ftrs = model.fc.in_features\n", + "model.fc = nn.Linear(num_ftrs, 2)\n", + "# Send the model to the GPU\n", + "model = model.to(device)\n", + "# Set the loss function\n", + "criterion = nn.CrossEntropyLoss()\n", + "\n", + "# Observe that only the parameters of the final layer are being optimized\n", + "optimizer_conv = optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)\n", + "exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)\n", + "model, epoch_time = train_model(\n", + " model, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=10\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "id": "bbd48800", + "metadata": {}, + "source": [ + "Experiments:\n", + "Study the code and the results obtained.\n", + "\n", + "Modify the code and add an \"eval_model\" function to allow\n", + "the evaluation of the model on a test set (different from the learning and validation sets used during the learning phase). Study the results obtained.\n", + "\n", + "Now modify the code to replace the current classification layer with a set of two layers using a \"relu\" activation function for the middle layer, and the \"dropout\" mechanism for both layers. Renew the experiments and study the results obtained.\n", + "\n", + "Apply ther quantization (post and quantization aware) and evaluate impact on model size and accuracy." + ] + }, + { + "cell_type": "markdown", + "id": "04a263f0", + "metadata": {}, + "source": [ + "## Optional\n", + " \n", + "Try this at home!! \n", + "\n", + "\n", + "Pytorch offers a framework to export a given CNN to your selfphone (either android or iOS). Have a look at the tutorial https://pytorch.org/mobile/home/\n", + "\n", + "The Exercise consists in deploying the CNN of Exercise 4 in your phone and then test it on live.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "fe954ce4", + "metadata": {}, + "source": [ + "## Author\n", + "\n", + "Alberto BOSIO - Ph. D." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.5 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + }, + "vscode": { + "interpreter": { + "hash": "9e3efbebb05da2d4a1968abe9a0645745f54b63feb7a85a514e4da0495be97eb" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/dog.png b/dog.png new file mode 100644 index 0000000000000000000000000000000000000000..786dc161c6d8981020d04d7a7082ab1d4fcb1bef GIT binary patch literal 86387 zcmeAS@N?(olHy`uVBq!ia0y~yVA#XJz$nGR#K6FyBDrce149FYr;B4q#jTXTC)cZb zPm*ifJ#)AFk(uvy20uIdkT*2;>#R3wH~;)q2)Yx%?I^HCY(Xo-TGqeCQJxJu1Qi6D z7(5r;U|xOUYV6-vzCVlh9iEv~RBn9mtj(i)LYsH3zIS?0rC-bLoj23x*QUMuxBUOl z^}U7(CnPqt%~V>N!Nb6yw1Lr#CqW>`Xo7^Um4kMDmH^|Yexr$=N6z@@*k>Jh5}(8H z**$1deWKZ%{oR6sGlTyro``p3d*c78c*^`_XO}Z93jIvK8vFMf*ozu6Z}wbMFMLDA z;J}#~_7?TVO?K^n8fx<XaXT=ae8O(l@u~IcMV_cD?~~I0vb$WVKdY~9fB2LAC+ny3 zU+zA2=XkR5N%~XspiA%7pG`@s<4{}VvSj{*juT2%6I@*t76~}Na5Dd<$mT2~%=$<o znMbAGIO!jkQA)%$jc27v%n7;*QQ5Xp&-Z*iXZc+4vmH~D>+0KCpFcg{>-<{qf<#}T z3k&m$xy}Yh5)|tvYz>POYBT(Dyte+=m3iMZ`_{c#cXIcU18Vg>%BP|g{wE!s*Tbmd zlpJu~^MCgVhkLbbN;j2{{h95+F=OpPhU0ra`s_0Pd2_Sqir!5*OE!KA`#Cw4^XP<> z|5s8p*YhZyD`Wn2l4pYbdWkLnwk2-+Tz1O8JJNUA%6MJ=q~5}et9?w<dZ#>3vQ<$? zoBRLaMHi2^uP!E4Y+7*h+?5|s6&iC?Ps@ok8*Ms$*?Y?VS^H1SNU_MDWhge`;3V~w zaK$4o=Zsv=sU=RX@tC@w{Q`r)#wh=LR*|CFvd@BZ1=jwVzt7`TKhuLX*S}8^H|v<P z|5AiY`lm|cDIB@m;%Z&~9%XyAE9q7MSE5W(#@s)aMuO5yT-^M{8BQ*XPG+1F#rq`o zj9G8$!y`UHOwKdT-is&{uAKQ<YKk-8FY7aA)pMtqUy2ZlUtrh6>-aDJ)UhPP_r7sc zHZAe|_vPiq@byh>M^>h;-ju~ZA(l^ky>ffNHb%Ag6SkY|Z_zB{epJzu%=c+V+PD5! zDk<^Z$*0#f&aV^mw~zQEasJxLpI4u9UJ2nfTH>*6hn&FomHa$64aM2#?)CZh=w_CU zk!g&pFr!A=`=g(lS7gtdFKhUI*Nhz}^-q0@eUyJeij(zMg67gaKQxZ>e_in0)^KvZ z_~Oz}!JP-y%=o@ecva+hudrcRrp4Ul5<;%*4QmRIJh8uW^yy3C&Dw&>j5BP5{_(#$ zc>2F9hvz?~#cK|3*{iZ!<^R0D6ZXg~+M#yWNl!nyB;WDhbt8#c$%4(!XP#?c%rX4g z{bX)HneqHNZ?=EZPWo4M;jiHInY{-8r-sz++F`z!&0y`E9n3TSEWCL9yxY>gWfGlv z6W#<=@>M?hbK%I(o!z>=aqhN(d~<Kwu9&K<baMYmuTz&_9p7L$@rF_Ku{Sz5EH@UO zZqZcr7IITm4f?IZ$n;b4D95Jzh9Nf2Hw%~SvH$6Nv~~Io_OO1Nj2m<RIc=Lg!#S1V z!_8eje2$NveARife3iJb*YlJcM>n~No!a^QXT;`xn<p;T(Qk7L3;!3A6R=%K<H=*! zV-bft)@*ZU(l7a)@u}ih_$3yTClgXGB(DwqEwsU;+Q_(l$)Ceb5?2nY9X8XizI6A@ zd`))`odZ)AueslMQ&>tYBglt;-i|Jr-!r~gh!hz7Tv`+&x3T9><BnA~^;h;Mel5Oi zwXv;CD1$j^|C~iPwkZCsz2qF~r;)C3((d?~H(c89Pb%%6(h;-3uvMd-c|s3c%by!J zRVKa5xK}!5YVedKxr5>omMKX}Gm_aSPc;56(R}5;MQ|WjPLR*1MfVnNT%fLfc-tG> zJ4u1YyCoN|uvTg{W)e~1dhzI7w{BljS?<s6o98x&y3BkMlX}N_({?7#r$@vDIL+7{ zuRRZSS2^L{zw+XJ-Py;J*gs$YoZ_gtG-=h-iDy_eRBoNPr?}W6`%13h{=XbseLMYv zT~5AVxzFvwG^a&3w~C!fd3ODrz0<3pBfe?#xqeRVj-OkW)1-Oy`vRAaJzIIEIEVd< z*f^)B?i2g0JQ-hJz2<8?nab(@$uT7_6ptV0vCx>wBPsb=(CcKBI@_w-3mt;*EZ*0? zX2WUuY5Y5NxGbXQIM`Kto?j?x)1v9V*YQEM-Gi`2Q6IZ++HGF{<?E%h3my1YHT>8V zEW~l-K8M7G%SR0qPd#euU9)2u_oT@a5@$Dxo)FeD2|Us5`Ja=!W9oSo(~cQM5$O}2 z274O?Pnff}SLb(+zwxibnchBz%z7VYJ^A2VS>kD)@kviI-6LfygQ5GU8k?hs)AQ9< z$N79UTrl-V{D;+#ZoJ&kdG<xq%S)a$XVq=wv!{rtKXy4QwoGGXT(si;$ubH@J(zor zi9grN?v_k`Qqun<-0xUXm2xEOH1+0}M?IVp&5{o$=m@418BgL<mdMsk+duD<mBNiV zzAtx*9!~QY=~-x~a(scqf(M+17Ac<|`+bPN&whm0$#T&yja_al_AUIg<lWsTeFvXS zxvOy`a6(d7y})k4KbdQG)ZgW=l&V}WQ})loQ1FgHbj-b?;7y9HEs8BBeCK8@`*_a! zl!x%-S-Ff2Iwz!_>Ueid;8?GJv}rGE!G@IFDS`<fFH4nOy{{QlG3$f4NcNG<K9Ryt z*VG@{`HPJ!NyGY~jLnt2D-GTS=hLlxPpCVyS?;*Gt+>L$X^Y9sh<l~oY)aWv=87q$ z{+}$;pOrIxNzkOFH3k<_;~AT>zwSQ}`Q;wxBgbV^6073UPd*5GAoDfGFJD6{IVt7& z942cfM%f~PyTR}CzOYPN;~u`D<=@Gb=Q(v>zVa5b`)M_4zKgVK)vQV1v%bw^Zj*Yv zWz8h!lnth;8p3Rs?rJ|%+TZgiwNfQXxJ{9-`f+uz>517ccIg)_zpXTX^2kbcvS|B+ z`2n`Nnk+(0Cq-s&UlU<kUw!HOl(ngy;j=EBGfUO@t#+2Ld$RBgzCS<W{=AU6s_e(@ z^C+-OmBGr}vqnLLBiC5W)bMu4523$Vg$$3(T9O3w7mLi&T)DtSIobEreEDLbvzB)v zO3tl%`eeT~vjp?CCeIf~ZX|ws7d-22R>z8THFm8t&)OeYu1}9M3BR-R2D_NJe;Swj zD@li3o&B<$CR!&qO)99o$m$qT=q_w&v^?SFUyr2adCaBB-OTJK71TX~Z1(4!-}2LI zokom+h>u~LiOlhT&wuYL?(RPN$-8B<$5cl9hvFwsMlfHVBj*1??8wfO#S`{bZ|m7J zE#pV0cI~7Y=gzS$tFivy^=g;81?wiMUHfAg@*diF8vFVg{x(hC{Qb;_K9RF3iGPj= zC!PvpwG25C^n6L@llQAqQ?}<Wzq(O1nPr1&;8wl*oI0uOxtryVoaA`#$XcJu%;f98 z!)D{Y!iPRacBSW*oN&4+rNq4}X2tCnB2!Ma`<O&56ych4`38&dg-J60VbL3x?kU>F zdDPOTy6~=*6YJDX6CUMz79~$vJpTyu$wQNTeS`x}ots(Nq<V<&VDSBSHTka$b3RG6 z*nXT_Y-jlE)N|*V^Oc;>%Jg3Od9w1sr!KcmPP2YWd=xq5cIb@L%XJz>fB#>&s4C#Q zFqLohsV4&d+Q}vo+LM<($?e=GeC64k)NcJ|p8B4EV?URuU$fW95ucjRv~_cjr)t)u zNxWj-r;a@6Ie5zZhUkl+75=QMg<f5To1Snb`5e07U>Q(sxAb{mgU<=R=_h_JsT5M$ z@zY?YWM$TuOIH%QVtJ0f4YrHsDm>NiQx>#``^?T2>t-jaht2z+^ilJtVa~SV*5xW8 zdJ-ijm11Z2CKfd>b6`4~*ju_U>s;F&v22%DR_U=tQ#Z==ZaAKG<<+l+5-i>ul8rYP zK7Fz1PvFNIg(Z6wj_i5CD)(1#h34$zmHcP+R0Js9`}6BnU%I{LP4SfPiOD`r?i!&J ze083F715HJ8}RSMrpaGCgnVYsN~nl*Jy;ODPfarP-?JPwof`~m1Dlea-p;xiWyv$i zZehS0;rb6V%3s($H}$N##V8~kaOh;O#q9dkGg_m1E|v?`#A}%u&riMJvnET+^H8!( z<)JVBU#9+XQJJ?n?t)a)5i3?{RW661ew)Cpp3aM%QcS0tv@)g?-BXKO_M&r<gAV(Y zLo=o;KiBMX-7(=}h|LNW4g=M|%k#KB*q9O(EcJVrEMR%?<j02^hJQ0=9MjAyet4p1 zq58^s1qCX1R(^aCeDe2=#>q2OmMZ)GycoD3!|TvhRlh?~wn3Zv(`GK55_lkA?abU$ zpQh_X`FLIqa(rlzY813a@!{LR9Y-cz7UdEX(N#DvIWtEpA+=%&59gxIs_{jN$C%>1 zLeuLC8z-_(o@S~xOG0=?(91t^{ySBSpFjS*T0&Kx*Jp~6=T1S9oRrD!JwHsRbx$>z z7O_mU@sE7N%zIO296lM@d`$JwBUO#G-CCh)VsZ>CRGieT%`PM??GWwo`ZBqyxiBcz z*X7!TLcWc&?w;yNOxrf`d9sn^m!^Zu@6UMcH7m$lG}UPT9Q)_23TAzhb7v;m9GOsL zrx4$qaCGPNA67S4E@4_SuUu(0x3x$Aok>>ib1p1kVbs38CXCTQ-FjBsikS=CBwOYz zcdToWIW%KJu>MWEjL1_<FGQa_vg}n4+oegqhm<R)`MZ7FaO~B;>6dzpJcXjaCQcPy zAbI)F<P6m-m1Z4NM2=;j(_`r5W!Jpek*ssC=-ka>o#6W+3;K_UO%M;&=adxw@Fyqb zjIjS9%}JY8^_7igz2UmA%I7mLVqT=}tg!2mF?=)BuRIFz4m`a;)8^*M&mV+ueKst6 zegF8RAK4$yUh9hb9iV+Ct@Y3?)y`XCl3oTm8>hT_(lT{Y%L1d5iOaJje3lx<md}w0 zU0T1hV6IB$lxM2J3!iK}w{UjG96{srmD?1{lvCf!39A@fYg%oPVxlXtC}i{JRjWK7 zo|$*bS@9L$^A9|)3|d4qLL2vFNgg;P^7U%$!Q{@3dqSF$z9t;-%$v%xeEAGP*TQ_` zVD*o6Z1aBl{`lBpkfxw(zxeb7uVbs1Okol=3A$y_@3PWu-K2kB93Dq96jg&b8Krs* z8C6)OHXP`=Dsui~O^@k}SwW|o+<%z=p5yL6HE~)I<ISW5Hseo|6V`P8^q<0HD#>o7 zUHNdYF2kK?-+N7}yG}~l1(y7A4-%S}RsBodMEqHI|HMf@&uBis67RjPieciMRtfIv zgFb$RQ#UkKMou#1%Sl<HnX6%~8{?=Y=-EAcTGxAJ-8^j>KbGKGe!-7)=IPv)X7ZUL z`bc?$pHxrfDF<&UGgp>6CXuw)!rn7K30x@g@fM2_s$Hpk=3PKz%0DLU4Ze;$oZ2Kd z%kHVGtE}93&1$Z2>cPYN-tID7CL+AL_|(PoO+T2lG#9K$6RFp5)8%;;a!$*GXUmMW z8yqIOa2~K>yfkNq2d5_6DYb6PouZGzKN@l=Y9AC?syA`Uu}M*d2lY;MZu;3@xAHxU zL-s|RNg+%6RtWg~nqs5cAJt`i%yRmFT{l&wIh)@FS}Fd{=dtcSd4_fNq4gZw43=&? z9kN6*BT(zzWlxtdmZ(EAnI9JPh<>tH3KrB!NG#=1H?Cx;)7g4(PUbX$uoON{6@%;? z7cu{3GXf4jY!Pl<b=7$3KXJ{)smjY+HkC$h{!+I<9>fXsGX7z4PJEpKE(1_bA$H zE>C}6$76XmXLrdPHnp;*B`uw2^i6pTo1LEJc_e@HX|tHBC7cmZA0!=m<a~q)>(Y?L zst;u3)|zJIN(n36Tx5Icgc_^!^o?SkVe==|EsBcv)Jju59Q;=B&qfQj(~)!k)NhRX znEp)A_k+sZ$x0H-UI-d3IT7FU;@Jkrm{UiYPAuJ!HfP7$PaGx-*{2<vs%R>^?2llW zWUo+kVbGclZDw6f+?zYOXG|7}F^jPI;!^59<7zEy!)(v3D(Q!w?1*30BBc<@7`R2# zm1S|FbEY}xPA;~Hrj-v^T5kPJjh(x8_U!cAn>VM1K5gepw3u7wW+Cb&cwni40jtZN zJ9&EBvXeE~KNSdFI&-Rdmr9<xz_AH(-~QfRXU)4fW0%89$=1-PYtC*6n;hrmxrbHB zDqXm<`6T;AW7R1#T|%B+6ArRSh`L6(Y;*JCD^^W9HD7J(1({`P%uZ)}xIP9(ggK|J z;&Jp$I`uE@kC*3CrA@{6q7<?}pPX2cAF@*YXsM`u%7e&53r-oPZWnb}$+C8Xy+P_L z4jW@G*K+5l3pbzES&|qutJgb;(d~1$%Dyv9LdRJQ#65~1nNBx*_UPE+XTn|4j4b>* z6FOx4t_AzBEfJX<xcvLJm2c8^)|BnsyC=%D_v{C~vb&v!EQ%K8aH*_QTIylDRK?Ta z$d1Xg*k_CIEMJwmgkh$HPO|Q)o_$U`cCIk%{rQD~fBB7X3j=s<v~3q13ov{k^po*G zwRN$FWS}RDKa<H4k8m4jrR23v250OY9WQ-#m)iD1?x>dTE>Cq$g;^Czo}ri0g3L|{ zwR|~oF3FeoqtdLZ5{7eO2{}$(ikVZT*PQtKOzO^*^yNtnOLys>o_1NiC+O_FmClN% z(s>)5gtY8-GVo2DByqA|u=_)x@~m}!-*$g85$jf-`c=&-_0XghzLNu&Wt_SvqCaJd z-FnSQo3dKhUoM%jOyb>|+?u~nPp@8`F3liyT#>Ii;P=gl_PPn5`%S)CN-a<5@l{-O zbm95=FJq1t7EG1hEq7pRZ2z@|UvqlahhMXFPL6#Tt{<lFyz6dz|MytyBT9Pn4owK- z_;M$*``oV?oAw7DiV9tJEG1-}jJw;ul`9O@RxR$B9^7Ryb#l|PJ8KTT`s3?&;^QX1 zGOwWJuEDOQfty8reylJtOuGNmvei^Cv{KL~Iw73Pm4Q#~)<%QdT{@E-gpcktIh`ZR zG?i<P9*4gYXQ*w5$VQHkEAC5zUY}gaJw>JYbn%K3cW=pSXHpi0eN)V|>=S8|4&mIi z;C)b^;FC!etE_zbID3{%XUnNGUop43Y-i=)Pf2?Vr~I<$Nt6lV(CkxUJF)(Dd2{JK zgZ|~tX4|GDas2cQJ~cBjINC4bYUZ2Yg&m4FSNU~Lo4tB#G^5n(@M}+>t}3i4Or368 zzvuNkf6p1B0(+-xe%ar#c&2ZM)Tsbh-DMq)+}fNOn+zkkdo+(%Ov>4~z$aUF=@OaM zqHm+L9!SRozL>4_cczBqypm1}Zl|TULPCmHU3(H);}*1`#8PLHTPx3=IT^nvs9)6; z;pIJ(dL-zJsxE`pI={&tg2MLK-pe~)iILO!KV|ZkmG+5xjE~nmb~IaR(6#E-Yy*)q zdj*0SO$$$~_bBS>nfB&Pa;}4Mz0OZgG5@?7=fk_>YbyV~+2!~|qHUq=u^EppET7@X zdi-910mDLhcDLCVUpN$cq&U@Yxyp30wXk91``d@Jip#9zPTZ*4_@@7D+V3}S{u~M| z+qlBedESYhiw`WenYM*L5BT}(aO`m{!6{MwjE`lHc_eG;JXqqXzSML%N6)2zg$hyq z?pKU9b2#=I=(8+Zp|Nz=o3gth@sE#dO}DzWa-CZIOj~2WfCCc37Gh>QZ}8lVJh^hh zB9CJymQH#pF?E{9!KSH?C+=T!QQVu&`gD3%^K1=<wZbdCycJpxtX(;!W%9-;F1Ktv zpY;}{NL9JkCI$Pb)|z@6^K6_wr@(8;ktxbu4pB=VENg3t{J2^r^qBKa|AXIh{=Sa4 zv%VkoM6t}den+;yHP>R6FmJZt7fBKf2H$FLmtDKME~;(g_fpYdqePFi4#VC=mB)O` z@6E{CxFSj7yxzR{n7lo{qCIIj?Jb(s=87*Swau;A=x{Hr{P#xTGS?3}Jjp_gddoEB zmtFe0sHfHRDF5p2>Gxz7UvyVk;PTkXw{YT;i4QF;wF*5>DhiqQ72I!)I$3eVF0~}6 zD`}#R-Dxk&+fsgf4x&pXZ9N{I=t|Rhe<oy!-Ymf&>#2{*9o1eLW?U+q$#i~CtHaZu zEWRIwudO_At@AtU)oD|$t{e%<IJV}c!p5|+$&acpz0;n%>MN_zR;`P7q!o@>EBZ;v z_#Q9)De&-W_iFvPdAi~}CPslWw+=s_f9o)_WdFHiGh%&D`R(va<aqmh-Sdo?%O;Yp zTdx}Mgzi1}@!G77?_Zx471o!^4!SWXKIfWg(D{kG^mr6+q}??+&9j*Ih(u)4?;G1^ za~*4y{&urZIZ^AAgN~Pc;boP&DM2C~XK!*#h}xxJ&)=vrX_aA8ACFhoMz7^-LvJ?S zl9<A@J7?Bau4zFAH=81E?Vb{G>SguH=c_$@R~2h8>aSlDR=-ju>eQayo=v(>`3-YR z)wL3mg{S^<WY*lR)_Z(2w=n0`C87<I?wqadO>b`4i2a#TJxi8v$^zxYiOT}QP95Hy z5in6vNoDfn7!R+g1VyeML%E_Gt&6NpnKU=&t`+N!|NrP`_w1=l^}ev5lXg9Rdp`gC z`w3f9UnfiaS|`5dR7U2TTMu_I=d=m5y?e0A)n{(8-mV81dY$KMT-sn9vGhgQ>#2uD z+LT?7$9lVc2|S$H(Z25WA&J<{f}*iKLE<}ODq4>2mYwRedCRjiP8;?JFFCERA*Y_H zA^N~EVd7*@k>~F;FaFPHJ?K}XKYM12TIrRD9=BONEVs1koGN^hPNev}jx1jrqT934 z&xb!#Oty>dcIY*+pUP)my_|G6Iq|H^ME0-@RgYVXI}8>E=v`#+(R}RjrfKD)MOU{d z-M{|jeW1#*;1_jS`3s_cO78N!&vv%8Oxu5%Oi^6+6qA`#{3Zvec7Lzg{qLE7-ns1( z?an;5%Na!a_`iRbzt6jJ<C9AjJ;~S0k8kVmw7K<e!~U(3+FK<5E4sLy`%vt%zbN#s z{CoeO|Nk64%Dq9eB-TbU{`$74$%Q#Ll#0C`7rfdfcem+f?bDjQd%pPkPH9Wtz0%6= zcAbTUE<>vFv7PzByY~r9_CDetrB>o^+N&CDARig}^;G5N7gPDP-}H;|dWtutue#w= zrS7S7)yi>7e27=fgM}e)Lljr;H2;u%X{x!h(bPGff}G+HAGkbS?Y6msug7z*{1m?R zo%6RJt$q=#eBLgcySM3mhj;yJmN{OkF9f?Jj5mvOT>hQi-(7a)W6U(&TtlVp=Q6jc zv6Nj}64^5Sy#BtQlV>kmw$XlB-uc1}FOu%Jy_=96z`=N?;E&9$!w(B2PJY|??Vj<+ z8MjR4?1`3YICbsF!QZXUs}FVW<6nK1OK{iY=hG&yzvipNlWa2e;HjA(OZN0TM)UEv z|Gk%ZXI}2~^y}+Z3I4soH`_{g-8wtDH!J1Wt}C-lT(Nvg;j1Ji&ZHy3)8+jCNK1+S z_l}QQv@?I^(o9evyXo2OuuOqVn|l{*_19iLJ>+Nho)@}aOD#oPC(qVMS-GvdO*#3G ziNVC+lDA8w^!hx?!hZ{U8;TY)>6+L~uh|=Lkg1YuOGS=i@|+_vtD?jz);G*LGsn;G zCEuB~YBnEdr0H$)UcX_R?)j_U=T5F#^)@6dsAlraFS6I4&yKJCdgiytuFE&%GGwxj z+q}Dd_~Ey=@4s))pL~1HF0=nuZ~S7Pzh1j?{$@|jFPd!@J+niPw*8vcyLL}J!*|P5 zEeDmCUD>*vUHF!O+x>!+VBVE)qjSz3{&@G_g-wZ$H`wOxum6AeX4U6MS69Y`oPEVq zW89Ot)o}g!_4nk(cmEAcwHA73e9T9+)FJWJndIY4=hs%7te<GK=iJSeXS=T+^ibXM zW3J~R)1CiT>IMpwvWe*(R@GLIXO6yfFD<Ng`Gs?n=1rLVh0{>pFZ@c2<u8x+C5<jh za<g_B%S}!>`_g#d!xJq^o*`unt-n>KwoN@7eC&GB#l{nkMy~N@!J7SEA5OM?D%3pV zJMs2Mm2LA?ZZGY1d(FPgqfaF*YL8WP{nuZsR%!Ab|5)K+SRw2y@oU@e|397`f4}ed zk9XE<rmgM{&y_#+<iOfVg*IC<wA%h$m#~>>QF1tGbIz)z+e0OOzq_$;?Hc3c>%Dms z@46k5`C?FY+3wE1^m2<g_vGH&KV^6>6@PWkqGHpC8}Hw}TIgqZ<+QKJ)5E6@oc_xC z=~rF-EOm_w$>rT5wHLBB85bU3(GYp3L27o|jb(FYdU~kK#Y$^^x+LgtB$?SUr&6$H z)s8urWKXU*Xmcr6>0PJm<aNCICnem2VpTdjTf+8w2pY}YsTG~I=aZ;sz-^VI?3<K$ z1l|SQ-n6r1j#j&E<`ysc)g0kIn)a8Kk2*~jT5&|PuEnk>WzD7^tz2eSoCkeY8FxPr znC<%aPf=;vGmSaF4(lC#@}eW7FZb7v&;IZ4*Zrt5kd0Y(x$~~vtgR2P?P@F1Nsl+J z-OX*dpfi?x-_3~V>isMBWZn+*;LQ_@yL9SG*~+Ljk8W&#%NSIi<No39zkeka8J)qQ z`WmgbexKUCLH>_;{Vt2@N~^g%@;49dd*6Av>BqA-r*>{W&+o2fYiHHgu>8UtHQz77 zm9K=wbe5{zI_LEI<)Ucab5oza>pVV-LD{D7$b*%Efw!k~3!Q4X5v9fS%tKSa)n)!< zUPtkBPj$|^26{|8lQL=T0hN<!KEEz*JCRWs_D)3Lv&J+tP93dy+p7_s@}a!_KU$yv zpP>|~F_-g}Z{D(hjZNLU8J%8H6`g4>Kc}?3x+t(FvSPPocEj(7J0=TxZc*FX{_pK< z`TP6-|NK`sKSx+6U^8c7dY`qW=Tz4(t4|xW75a2Poy07-eAlYApHDA+eXG`E+qxL8 z<}Y{q3r+4_o#VF5ut&Xl-TP+AWbvNW;l~d<d+c3k@$GQpcI)W;x33bb|6aX$wEOQn z=0h`1$dt{`+xMq!roP$vj%)MF*&m6xR;79z`4+4wBiGI=;O`s}GH3q6<r(!`KAD%7 zie1}kQMfRtyW-)-{)$I)pWoXS6f@zJZFZ^Cr&TN>Ul-<NP8441V3HxJu9%m3ZN9~e zpSKg<@yrNS3Ru+|7R39c=iG$u2mW98wk8>>c3v`MwDJ7W_3pnQSNaY;DLvU9hW=z3 zfgc+~H}83O#{Tq5pUk}xbzh%eO>2I<v3ug)t<!FOEBJFZ{@?ufc6a&rNF?2rllyi& zwxi*B&BoYC2Y1CSSbyVM&xRH2Y}&THb^dfNeCv8Ai6oPs>1QmA3S`{YP2b9&eETc& z@{Mo(OSi6=ee~syc$4mT7x)iP5I^$E!sUx}Ol)6_yx-fTt(D*2TrK>sd8FrX{l9P9 zudnwPXVX8w?}b}^PIddG`Bo<twjRhn`c}m&tUJh+IpK7VpcmiPO=}G2TwzYO{M&kc zhWi4K-AOC;Y*u+ZJZaH0=YOjN`$U@?L2^wk*W4syS`HnyID1Y+-B)OSq_>}g(SwfG z7pyue@>AIi!!Al^<v2<jo18Y0%bxFc``j|6rBaMGf}8!>U7i<3tgRBsa`?R?<h-lF z_Q*4`hpGhh%~t2v{j`Zb^HT9kbFthd!`6?-<^O%SyW8x5=+Y0B-#>h~aPR)R&XYyO zb%mFIJV{U~;!uA%-)};ajNjEqo3gGIRjn=U-nGujV2WGvovf`q&gC}WB+bhC6JK1K zwDyZ$Pjb4#^2N?xZzY7yd*e$Qe;L-+eE(bV>%*t3({G=Ce*7=<Ma^Z;zP;slDB*kd z>rbiqkwTd*tU(SOx1GK=f0Ohry=TP2&f~I3K>2vY_1<smny*F9c%EpJwu;B^xp%qG z<<d<yr8}f@d$fEP6lZsR$>5&mxSC61%KrB}(==v8w24i9wZus{`M}ES6O7l%rUfrA zcJyX=aq8HoHw^Q%KC53{bt0iRt7K+FsZPks;)5!SxaQm~xj56${qz(u>*RSG1XtJ{ zPkQ?C>e;fbn+o4J8Qd)H`JQHRr}oc>e|MLky}3ER{{Qs)pR@1R{D0TjyIM?|#d=%% z_3P)?hs)k9-L%o{qGR&fyYHjCzCQiBde^4d`)v~*PdRKdD`V~EbJ5R#iHW73zkOJ` zOIJcTxg*1OLWXHc#$SP5yPaij-ngdYZ^*K0&d<)vf1Q7)|KAe1{<`5&)!m6(j^B-a zw14l<T~&pZU!Mgp+`r(!z8>R3v8$f`>5BUtq$YOsOm+2ZJSg7g{ayND=NT`Fd5bPp ztcjfVZP#&Kt)`?iyCYxjFnas$8Yg3dBgd?kV-|InjLp8wHIzlnG;(pad}g_Jn%{%U z>1SOwPYrAO6xW~1X>8h6oLRESMbl&PLcg6CUpX6YQn@SWmepHq{_{(L*YzpWEN4vF zZ65yo`gGpqc07vz1Fa73c>k^ZechitmH*}S|F8dly#MER`}^O_!}oI>KK}6?Z`%8d zJdbbO47lnXH}mMvtgRl-&;R~<_49Q1>DLmUza788tz|W-^lOst&*iJb#6|q49J?@o z&F0L6ZQNe_a^GLNpw2vBZkIoQr;W7FG=BN__WwU!{rdIk=Gt!in*Vpr@Bi7AcP;tG z!u7{CHeW9M{&4r_>)od}U%k8UD(m*8BBsa1XFf4{8FH#baAMMeu>2IMxhJ+K&Z{;! zE~Du*JL6fOuBSimIn~r>nMwUBh5J?o&8%9?8!&khcPZPHke%``ZycYNCAw2&Qe;ia ztXbcA)kS4b<t^K}m^XCc%9q=Om~5u1Z&g|4p*7o^Z$j6C5(5v;V1voiZq3V|&trBm zY~{`RY05|9_wM-h>-5^jLYWy!o7yyZPSn`Q$@#r}eE8x0Kl%TUx8HtT|1bU@fBW5b z^ZkG0XTN=2mvMhz{r6|bdw1@9aron}wBo`@)3Ob(zh*tH-Mhi&$?>8Ge>c7NyQV+; zmhvtEH?y?8S$(^keU5Fs`|rRu^^D^eW%}Cl>aAN$dN%exyCVNv@x_}1_Iv(*SsgC_ z@2LIH&%clD{rmH*czjKwVc5RDh~*c)-u+nd|MAnO>v!GT_IJV7<&%^;_la(G%A02q zm6pA?tTKJhq`;PG^9tpjm`zRcN)dSFe@w}9B2!mW*}KQfJDE*VRW7Yb)L!DIW59Wl zQ!?blQ=|1=6?xnBMKk7ISu)G2QRL3D3XMBnlJP29WfO0S2W!U1&S3dzGxJl%*Td;^ z|KBO{PFu3X`Eo#XgZIVe3?aYQFBsOWsVy!3_*6W4nce<N5=RP@kJ}x4`1ttt_xbk! z?f?H<U;k^ze!KlYo?V}9zFpk#rb}-5kDCAAw%3}!`=<UnOms{7KF{UtFV;<ezMkiX z%A>~)4<<MzY%p!;HM9tKe{?x<{hkBg9{p;3@$R9bk!=6tk5}q;W%E9+eGn_}5iP_x z>(sH7y6=zIa@K#=|NnD-*oEA%so!tRe;2!X+t*1aN_VqAzkesD=IiI>0+ZBkr*;Gf z@=ZC?@H|Vd$x;1@v~-u1-J&=8v+U(8mgjz8%@jMxcy?xvpy`xA=>^Y4&rF_@Ep>Q- zyZIz%v24A!uY%_-KDB?P$Siw>mmcP;V;_7Lk6OKeBPHr$h~A}l2bE4gZmKgme7QNv zG{Spce*){|)8-pkdjzhob8JsN_heDX&XgjjdwpLw?c5h-%<4BqXz7jTA$lbae_s~- ze_MY4-_`j4Ki>a4EHBo5v|Bv>|JD6};}h=AiLb4__5HZN{I=Cq7juqJ++!KLe%jx6 zcMBut@86NIZC#wPgHLQ|sNt4tmCv&>JM#~;JiNkqOQeT!{)*dkba_9#um7>by3E;J z;9)!S{Gh%`-C4Z%bfx5fD;HH|{A|Dd?db04^vg%fe*SrO>%)zA?`JRj6nZwT@Q!WH z-(OYLKOeqZAp7}`3e$l*Hx5o-<#K{E^l+D3@TmtsZ8n>1Dt<Zr@}bRD;&W{R)V|Nm zEb_Q$mNfHSz^?PYag|F}s+jn%G;EX2v~<4m{qr8ymtPBmo9#uO#&2_&y?J)d$#X9_ z<~m)r5Dnt^)p^44q{~&u$hD6CxejY`&z|v2TCKa-`evqhZPC4eB#z75yMJ~zNCb9r zDp^JA{(B;Re!92tt!oQ}jeUKXzkiq5z1{xL-Tz<T*L~kTKcV#7(}#cG|9-dQo{4<@ zpNH?x_UHK2Tg1+f|Nkj`zr?Nn+e?cb+6#;SeUhJ>yM9&HL#_GphjtadIC<rhHuGVL z%s0uQrV_s|7e=hn<9l52#_#pnU(b%c>zD75WR84pY_^SU+w^$7S*ODCzJItVQ)d^y zW4B)2|8M7J7Ho{0H-G&c*JI1FtIg!EiJw^Zl5czZd9%k=mD}xat>g%0`F3;h2EHf* z7h~;3PapNfC2M`U_p;y1J5N$(WkN+-LCGiYg)FU~yuy~+q`EP9%=CEBWG49OPGHuY zt)jkH9XzLa+})p{$K$hSiI(9q&y<7<t8#c;Cu!WhTsEsKbe9CH|LN7%%azwGo94Z8 z{jw!f^%OeU7=jjDmXe!bvTo(UC>O~?+FJS9vsUfecc<p-ubPVi^*hf0OnRFnlPsfH zVpdxF`@{A6&$p9z{PX{Jb^hIZZ?o_3ssG;o_ub>8RTG`K9vAGZ{CED}OZ)vh;|i;G zeq{d9Eq=akqn-8oRZBmcDg<>g9y6SA)M)+I;t4@224|Ce3%9@b>psP&xO180`<(mp z=H=)9c=hbJ`N>@$ORCRYm~!aG-e|pf#}&6M|0|W)S#$iEMbGZbKPs=^lX>^5>aDo= zJ^kI6_vQ1~9o%;K+rz(4Z*~iax91gzZEX#X5=)9JG3U)R{rp5T?D%Q1jCYr>&eZW& zvp#cp$+AZMVB;Np6CN%x4oeYZ7Hx`fvz_IBa);3Mo7;DE9yZ(5=qkPL?sc29y;HvN zJ6%<tcFngrA=M+ZiD~cDRTG66t4vd;6g8`OEj3R%wc^w98*ipfatT?Y;<1~<Szvin zX66rJ=C~_gZ>D{GlT=z4r`-1LVVQ;O-A6siJck8tH7}K`_<z^_kMq`lm;XQ8|If7Q zPy2kkHPin6srh<%wtbDwJe}F%=KFtKy&nJX<Z4x?Tl4a@$~Rh6Z@jf;&-y*z&shuV zrJM;2_p5qVoOXfVX#0fAcb_}Fk?Ffzz*SpaSGsS1@9y^B>C>;5?=Iadc`Lzgj-1Zp zf~p@jG7O5nE#5Ltbr;Jz<lo&E=U=|9eb=&g6}Q*u#opy{)_;@XHuKso{du(?AKrW0 zw|A=B#3d8_eyuHHnUKV|G-C_9PiL@tuv?~DU*xKX6Dk(n>*Y&)yy&C;jO%B73tK*S zsOhk!K5N|f$3o+T#P9omxBuVUx@fOfkgRC#^qBDKuemcfYyI3?HNoh#pJn!zrL1|g zRGcikcJ9=c+af8q<<v?qn~8^3ckJyE)Ghw1raG<XvzY$#HL)h4m#^G@`{~slrgz64 z$5#KhRC9`!JhIXHOZ)9pOCSHe?LU8ac>KT2*yN-*(;Y|Z9#-z&TT@o|QM~?N`u~^z z|DV71ZA0dRXV1PK{Z>=_GiUeSZ&z1E=B=46!eL~ob(o>=7>hHrlC_VBwb{1JIiE#u zXdPc~(c)p4zH&oEp5OA|;OmNMv)`vK@$kwKyrp>Wd#8k1_bkre4}ToJnzcDrxK-fT zp6%COPdO>!mezja{Q9tr+Uv(JanJg+audh3TZ>E_=Cp*n@|gDKDlTR|DVWALccIFj zOVvw0v9ReKX4A-AUGvS*%FE4#xAoBl&0AJ)TwRtPTNrr7H|>@GwVRc@vW-43;t3AD zxX1AF1_8+_CoHu(*ZCih%cwqdB|xV(^wx^y%#|VOF{{EdmgHw-ozxBSKdHA_dDE>t z_5FJ`hd=K=ZOnb8?P0;L>igSeom2lT+O*H!wq>L2L7SQ%H)nagR9qqzWc2vsr=(op z|F0IUTP1$|yx#lrx3#agPuE|U7q?dG^{b~v#ZOnwDr(?fByZ>x?j#f3Bl{x7u5AX- z#@Ka#6s9hHTgLqC=-<E18@aE`S@5n74K|-$xTC%>(Ej!ff9wDM9ts5W7*2ZFT7KKL zcwd~^xp#eUzuVXD*crLI%C@Jr=W$Z6(ffT~hCF}!^&ao4sIA<ZCno>?@yf>>GOoH4 zi)^-4H8!Lz^K>_!#>Ao-?`Bo!d^9JRza?$4SWm6d*RaXavNxwLSsa^nH*?-<yR*~v zIdgp8l<b+$H}B%jCB>Q!rO76}T9Yac_4~d*<o}w_-}sP6%N@_(^}&-W4Z_&wr8eZB zUb5xS_9u!9KeS)Ip%G@jtap!1?}i+$|9@&qYqv(}3TAM;JzTKoec$(F`w1VvKI=MU z(WjhnwRFB+?T>F)9*K#)UY(z{@sL5;wC#q4o9`@oy1DrKtE2z(t3TFkJ+Yx`=e`e9 zPhY$iKDB&f{^Ss$p2FmgImdcl=RSRX%+#SX$*8ekG=!n#<?E~8lJ?*Jes`s{t;(ZB zljVosUgct6ci!x3*~9zy<ZdjvwY&BB>+a2Gt6s|H@$Gwkc)7oPe%_o!iQf!ue_t83 z$=vaO%XoJCmp|EliND`Gy>5PW<LdkOw;o^Ty)=BjiqVR)cr};lRu`58oi+$;+k1M$ zgiDE&iu*iOB1^WIm^MnBnl`oPOmRnMi1CJNR@uGhcFo&VdZp3o(3=TQ{M(dL*L!U~ z<-NmhO0;0e2ZOKIeAZT*@T#d)_*`#nOndp^h{&|xj3LYcv(`jR%|0X`Akkx`pqCzU z?`mjhb@|TNn4H<Gl(=;He}AmFEuYu^xVGyK>%Dz{)Q&o~Z!F=LZ{xdY%Y1lceZ1~` z^X}ZMYlI|yLaysA-4Uaszkc1c-o=F(dU~^;swwL~*m(PU?eroa&*T@W3~_N;`5SMp zx$z@svCF<y=kJtBB;EghK)t_ka}nR{e<_b{#KpwdS8OiXwt5nCb9nmc)wz4KZ@cnk ze9hW?M^E~B#%?yR$A6z6E~}li(b8as?KSQvQVhoy*8hHH?bh>m>e^RTh1<UTyLnVe z(&k(91o2`e9flma4T_tYI8tO9`PBV=JU$=cp7T4<Wzy+j`E?JtuUw0oJY7L!tN+jW zd!JnV+@d}4O{SImpA*+VEs2=N_3@^@`d96nPD@h_Rz5q~xn!QYZ(muIMRS{mk?QJu zfuc29ms2hs6clE;thG!`b&I<}<W8PNWqG^TP2U=?qs@Ksh+?ZUZ>&W7!!3(V<jTrV z#!v3?5}Reqv%Kv0oA9$Yy_H`1%ddKsb8*cr!^-DM?3UeE(~7T|h#pPeyDws$`HYGB zrN@82yRtjWbD6E|H%*?zH@r@pV`i@UmRM4nJ3I9E2Z6qFj+5ctX**wNe61CCvI{<& zB<b{FUS8aueSg2`28kTC-&?iM_PzMI>%ModoL;(c%CT5ohi?@(?%oZXem?J)K~(ai z8#iwWK73hm=kC6Aski$7?%c23@nx~4Zusiy;%DCq?o#ww`NpQO^i`19rYkFo=d0Vi zmT>g?d?G|l_uS%DETMB87OmeP$$8=c<4@VA=1X=moaXT}dvnU;Qs%Pt0*ogT)W0s9 z(!rDQ+4Iuwl9Ep;6KjvUWSLCP^X^nwT>EpQPuXz`-tF_Glrt|~@wq(NLxR0qIC{n1 zc2lW7u_}*RsoxfS8|@{M+rGW~_pZ2f+pB*5uSGBCa38NuvZ(&|T4tZI!%e=sYdNcv zvvxMAP28BCKKt#>uJ-8UJ6Xk<tGN`m?!No5B4*8c2A@}pHcnf#Mts()tXW5;YITKb z_V29v`0?%TJ&Ru+uG$>AR_{V6gBf3Q`2#Ka-R;lU=O6o4R{nqC+oa7a8h3ttpjBoT zs(0mHKU?2j=3x25FTXwB5MkPxv*^Wf-b4<~)`jxbb^i~4KmE1xs?Og1pHKT<-&X1z zo?V}wb9=e^UB<L&?@uquy4hkRy1M7I*Tj@55>cy9d<u+Zh)TP5kFPZ0(%DGG&FO+# z+1n-0DjOf%F!@fj#_r6v-S;LL@IIc_*kHx$GT+;ab&{w0B&ML1krzvh9cH$!N!Fj! zdTD9nEBTvKR_^pS*&tjvCHJPaP5jTVM(mfZ+%>k`S$5&*JCU~F@?G4u;+Jl0e`_Gn zlK6%%G<e}ri#gL)OYh(FseAL~zt-<}FU-Ddv8*Ivw^Q``?blbguC1|}d+Fxa*Ht?` zT$1fo)`&k}J)`aK;avUCE;F<?9II?Uw@K1DDSTn^vN*l{KfcbN_5O9aeVueU^MRAM zvSg~KS+47DwdZ@0xTEs#>BkSx1)gc^GE7l%I^Al#kyr7^KZ)ba!47<f4er&}?6#{u z$CF$vw7!4&Hs3kNGUW2?V{NN%&U=^5yf0FvD|EA6{B^O1SJGT~E^F+_jH{e^+nPTt zV1s0G$Er%Bxc5FYy?Ktl@wnLkNMxq((xs|f)EJzu$P3*%>e0Nsu*c)FDO0MD(F+!{ zl*ukCljr%(x&DpG+VpW&9$)Zrb>F)jMnVTRO<SID>G_Kur?*=tKVCD*UpM}wXk<yo z%A$gO%UW|QC4RrNC|mw-i*$Q(^&R1hNgH46c3x8O|L615tEa#2&X((EoAv6Al+LjW zw|BLzQ;KPQSL`FG``dMERLE)8zT@TV;&RXF|0?recBsm9%irDR@B5eUlTAtD__@y1 zu_{IEpNLcU1Oelc9Xs~aeEs$H^!oUFd#Va=$+us&J)T(lZ;|yK-ouLDY$dC0=1rUZ zdiC@5_WS<V^<3oscv$o6asSm%n=VNlQ}$T1rY6_o%kt#SHk<cJ{$5<XTCwD?K>zW> zH=pUW8k8)bQ_n0^y!Q@Itpoe&Wrl3K4O;~~-2*#bJqg^vueEx%+ciatlbuJZmRH8E zywbZwG1Tj**0-yIp{`xWCB;?c+7x>ZR;{Uhd%@B(%gbg`9ZRpw<+oyP8Ky7URRsR| z-a52qs&?%uSM^(~jx%{}VqA4Eao0h2H+vDzf(4OW8oeP^U*}vjEI*+)KR4paznr7o z*N=ZQDZ6_?Zuhq<TaO#eJ9Ob{x9P<bCiBYX%YS?PIedTBJY|!x)2m&2^UoQr@LRmr z+(`M`l!`Zg-&davjlIp4{NUB2pQk0-5~kIa{yW@%fA8O)y2V!mOEb<sthn=*zy0vR z0>9-tvn;+Dd25E0zP&H=?^FK$nxCIO&5qyq?^pNq*<VA;twN`^i~PF0T;llGv{IWJ z8}HALpCez+ZS^(dL{;a*&fSmCMM)H$%CqQuk@Iw#;ZvEjX6ZNOTk768-`-~FwD95Q z((+ryIp-(LDLr`gnB`6;WrhXk8EzcYDCbL+R#^R6V%f91L94IKRXUl`(<j?v#J{_x ztw=Y@@|4N<w4#f;$B+EH8I}A>MfpPP%z(gCttMZ8KP=hYo;5j8CVbPjJL*gB@>!WB zOTAg;yVxlw%bszG`egSnS=*EzTwwHC=2N3TS!c?#JvVNMr&pWb+x9(K#@Sw`ecM}i z*{M=b{Pr6@HMy{LdF}PY+j7Ez!RwEG>o|L?+Wy;b6S?9JzlB-n4zx=o`!#7z{`Kw6 zt7VZU$K~E+{k}ZgJpbMv<;U-%f4n=}{`>a%yYKeB?~ASeAou#{D(h0s);%?$wRJyp zw&u)A{k(mD{qM{E^80E^|2?n&wYqzAY3%OPtBn_lA9?xja<q%JOWZpB^JcdVwwyV+ zi8GP^iQD0OP359HX2m{@N!`nR{O*nUtFE>t%Cuiz$^G|2ne+ZEo8^kuR~j<ry1w4S z7;pJl=&*#LnxOL(?&(WRem==+i%^-nWb?^hQ>*W7J6P83oSC5&DlEh{^T_JGH&z^S zlq`L`VO5NaWct|znUgHs^HQ~h|IE<a!!&Q5hrk<E-pZadrHBS)AD68G)4jeb+1y)V z@O6jc3GFjM6&K(8ZuS*stlA&@pmo3O_v2<WM1o}A?S7nFexsDRJ!caiuWHx1xyBz> zzLp3}zMmRC<6w7mm}Hf~FA?Yaa?T5mW(k+sKUID^$NAZ=xVgFC+Ry3a+ugVQbNGF| z{M%pc{crj0_uai)yX*fKK9603e(DC2KaFN?%Y7>3`Qzp9{n2xC_y2e`{kpmS?w0+3 z@5*Z&v;Td3|GKje6l3k`ZF@dG{Fcn4e0<8W%imr-dw1F2vS!IdO%}gJvsm7TAGxw- zx^HZAZq43ze&4H758sge6)fZa>bQn*=!23S#n-Iw3s^tf!erE~ue0maG9H0N0UD<+ zJ52NyWinqmsqtYUU&W+NLRnWimY+P)Ki$$JxJIbv@fSCl<e0LZ+YYs^)t(m4@Y1z2 z!f(HusQSY*mrP#HY_QB?_T6;J_JqdL%ttTH?7qrdop4({X{lt$zwE9>ObbuNbmdg4 z>IU0gtoogkJwLxnD)&hCCg$VSAN8)DIGvZnIm>smOkchqKfA;B+qPf+M(A!+{BlV4 zR$6VO>1hiYr~0Jrh1~J$SAYDGCb1&Z?D_fqk8bE~KhO93@j~Nn);&L8?lud1Z@0bv z=k)(|-(Tt;w^N(s&HkyVUBqd=z!`yE7RL<vIv=gPEBnrVU(Mgs`t?861%B`U_5J_% zs>?dLt90|tS9hO&{rK=_|M&Y?H{31Uek*7C?9ac?=L>voIzL5zMHIJJ#%HV9tBQPs z^-tSWy}orflVe*h`(C}NE9IlCSks!HPcJx;E%_?<!Bu@8Gw=Sbo0C0ik4!i$@B3F% z#rb0DKeZP<ohpyLpEfaGaVk4Eanh$^%_OJSYc<w?S+@Sr_GxcZCONgAPLG+e)mX+` zebNiX7ln0O(vD3$tx%fWdQJQ6CLYc%rQj9QSA65jh+G$5b7j7rU#G*2yt7;%3+F8F zV_v5dV)5<nh826Z8!j=s;K}~#*a^j=p1Ye4{;Sx2+qi1a?%dkisY0c>uV069=@zqe zsT8L=?JwWv`FP*km67(<WuK2Oa$In$!MfCPPwk(N%jehq`|vWM?z4IQ=V$W&4qtdT zvvOn1^{;6%i@)@%zu#+c$!tmRlDOSZZrjy;e|!Ip-TunIuZ}7GdAEIkWo7Zs4Ki&{ zuO2;mbo2H0yKgN@l21iEe)Q?tkAl+<Q<~14SQC49h6#gt!@aAeTO*|VPG4114=xpc zVHR+ef3dKELCM<HHVyW2RbKMP6Caf9>r3=Zj;c3qNj+1*9CT_O?~*BV98<iMo@kdV z&oo-qH@D<|W^tb6!;@`J9f>09SAX29x@H%(cjuab%q}O-m3EFB^p0h0-O{r3a7Rkt ze;bv+MNw@*Rrgg+KVIp$X_B2~jPF}Nt+kiB1I|9Fdr;`sa_#D=E2<|Slvar^uq~TY zBYXJbF=gJ}|Nia1`*!#5_Q!t>zZ{ISsZM>oysX~3Z}t58Kl|SMZoX0T?@Qy3jr(5m z&#x&y=X2Pi%|PM<+ssQFZsmxdKE3&K>YI0Aw`U(Q=sEn?@Xy=t+xP$9oo`=PSMmL^ z{IPEf<=dttU7vsMn)7B0e-@*fLX#tpFZ4Y$X*=L^ZP%_<LO0Hr&krvD{%f^;<?nwd z9>2T!^Ono$<m$4IHN|y5f8H%W*Rt?#{yFp6-JAcF`0#bkY2DMZFLL?D^D7jV&3UkB z?eyCMY=!RIq#tdRJ%3%|Sa5Zh_}Aj(SQAa5FSU1OF7A7<PBP(Vzp}aJu_aokUiK-P zEOYX{T$40!`Ljhq@<s1?r>)LdW7y)fJ2LrM^}?;&yDmKr;NCdb<ZkT~m-cY38=Cd? zebt5+ZI12eS<M{HroSslX4aP%UbjvjIJs!2!1kqgXH0&UyzAXA1^wKe$}?^iE||jH z8vp6q`brzdYc4h=$@kTx_2Xmm5B>FTc%Aour*zQtisFBVu6JMkW_9#lLhyP$&2I^| zKYGp8mqqC7&H8%v=hJIP*thX1e&xLN;NIQs+vnTYReb+<_;`P9`3%oc7n#Ekv?a@? zOmdVyw(s?K#pJ*a&Lp3X!a&7}`WNlDZ<psJ+*$f-c6{T?3FW?buav%B^LlsPoBn;< zR$u-0p&;F;W$U%dBUVQ;7*;=(4C{@{nH#fa*3-i82?yu<)!KjAkl9w4^D1X&tV+q( zcmIs%<_hwDJ7={&LMH6r``6E2zYy!(Az#RmxhQ(8>r>C&{d|d2e(HQqsoOd0_OzM& zA1rpwk#Aoz>v)~!-0zxCq$OXkDVgxv#X~cEx?!r7?|z;eSI%GHPCBLYW2O7G3EPgJ z6E@zG6eeM_*Usaa?afQwnunkDB=0oZ=krIn;+a5JzN=T~gYcreMP8amPfS0*UZ*9w z?~e0}qOObIF6ac`-+GPfK+&{JhnA|1EDZ})`~Ft#ja=utSkfb}Fvp2$|E*hEGJO1o z$L2hXoc(a>lEQmC>t3u`?YV;Wy?D{$f;zV6F^_BQ`OZbY*7g$NX@56k*YAM+Z%)RV zr3dUhT(~`Ep6Tk%0+~E7e{8V6J+Jri>%;E?LQNZ1ifb2`_U<)gj@mNS{n5W48*VA> zIQ1i~e8=TXPQ{+EcRbQ;Ua^Zje*ZmuGi`I$tGvBA`Kvb@@80vPaL<qHu~ExKmhFCR zGI?WH$I=_drk9-gDun_|&aJ<b{qn%0MLzA<6em4B)pwk;_j9k}(f*E$Awj|pVSi)% zPES6`=UT;hz;5px^^;rwF1_#Svd8Vco4&-Vj^j@jRT<yy>b2<&ymqTp@_y@_j9uGj z+>AChGPri8+m6R<+lBkeCS`?N*S^i#EcG}+cgykJ+j@WB?OY&cJG;0}@ObbfyGD^; z3+-D4YD0C+SEp^2*>$+!&8(wYf$J}ZZ_NI_o89Zn&v##bUfx|OVf2r~aap$0D=VdS zk0LAzE+041cs+M*i~7sX2qVGrWTk?AmePkOT#C3ld(Ow!2=lKNAxjb_UOKy4|G+yZ zu4_dvzJL9s)3;n=msRi7vu-&zTHd7yOwRQ?zIeTkYM)q=SEA3k{0y1Tg)cMb_a)o5 zE#%+(+W*;}+6cAuZU1k2Y~6C(`*YdOQ_FmI&l9a%!ZCf)l$E?oRz{01cY9?dIQydI z=ZcM0f_>t#Q(DB+pMUhc?Bf^su*vnBw(-*6@foo{|F8Uc!bhCj_i6TpnSYD2ynk=J zmztWoX^)wQ-KQxNHtwwvnw2Re$P{wVN%mcj<&s}E$`dL&a_sA>{&$P7HhI(k`(Iu8 z8@Fwy^Zlw91$Gr@{0;iMZtb;o+e%Zl@{@ZGdxY*iF|#q7$?<mY#5)3y<Nuug|BAo< z|Kpcm*dLj+6>h%8m-wPxZ)wYmM>n2Nm~!mrq;D#&6(<r+=Kb>P_f<H5VZr9y+xPF+ z#)a(2`(rTY!mg)P+!sn?U){1@RQWCE_q(^}JA?cl2iL_2w;2{3jbIM>`f1Dk-^=87 z)n4cKeY{&yZ|_ZctMIqMq5ZYHW7bVy-PXBh>$Tl;N`7bgypXF~GcCXRyKh(KrL&z~ zw|&0f^4+=m497MLe?G173I8vCm~F&+Y>IdNGscR}A1B}TPWt=$K>ptho#I;8-j>fZ zYI{qp;%)7_rz++LtP`7c%0Ec-$_LYn7J*zT#nx8SCQ29`50SDv&7q#2c-5j`J*R%l zN5v%;CCk@YA2F=iw|{rtzf&J>Y};~Qmj7m2&C|`|dd%LjszGNKgj-bPuRay{>X>2J z>djnDcV@nAk@>ps*w<U3+P}~4|DpfyRek-9`~Od{?b^pWd-9ykZ+l&(4;u!ieEB>l zSa3yy#{>^+?~WJ0ULCtS_4J1u$4*R95csic;RU|GnH!^w1FXyLu8dyy=5zXV`TP4{ z-%kAb=oX7}$j_?O3r8)g_9qma{Big2+<P|+T!fo<%I}CPJKgpE``hFG<)y7tkDm(X z&R^NQsxo%x>wSA;ZT>9V`E!$c`k9*c&1Ms(%$7XuqG5LVtGim7gM**D=yXY*pKnwP zeV(3rk)ie_YK_l(ZiScD7rW<_T*&3C&hVI_dg++m&Z5@Xb88n=%q!YosX4>jyK`Go z@l10MwQ1VDHw#*d>I-@dTO@+Dwoi(j`liEFJ#){Oj2l-TbNpPvpL<=dzy0t^>AmKO zGC?xm+iRy6Kby0!?Cv`GV@IDYGRZ#G(tYasxs!h!AJ>FxPAb^P7VmxFOX$<rr~du8 zd*8Oc?AzJ+Kd-;OvTTw)lp$2}^=tf}PvQSnj!RwAe(AwBHS)doS<|8wLbDyeOkHo$ zxA1*VsQGE{*ERR$cU^XVVf|d}+;z=kPd_CU{@WClm#UHS_0jA4l-0S_dt9Th&(_{B zue8Pd(W5sr8E=2DRdHRD*75Ad!Mgiz%jd6geQ)F1#~jEp#X0oPmuI&*LJy_?{k#3b z|DK}fM@x*?PTXyD`N%rI>opz93yT&n%(D`@J%iueMe>ZI3A;-hhk(SV;}c@Odab!$ zlTxo)#(XMsY0<$aS0=Jvo>~!P?tZcSrRcV%&53fh3Z4z$gaTGhwBPC1ZQ&K_b?f&s zJC3z+E4?poyHm&Ww&7gPq?gA&?z6q~)tM(oKm7ErZ3mL8Em9_=F0Fe0_V4rZ)1URj zX0L6y)}?VXOIP#~<LX{xz4<Fln5=eNOs_U{%htVY!FTuW@$K7pKfd|%=k@w;>+62} z{%_Ft_O*U}<;Oq2e&7G=E3>=Cgkzbb!GwkD4Got?R=irfR_DkC$sJ|aOt)^1F`oVH zN|eFXq{yqQ7uqgrt=jlb^Vo%A^DEjF|9*Wv{QP`!{f9cuz=jsJ#1&!Azc<D-saThD z{N%7qlY0F2ZsA3X=UVT3*UpL82^SCFdVI>UuczzNZpp_~8OXUGQ<&4MX|C*~=o_*| z)N^<1kvt=nwx9dFG_784RbKUYZremp@3>ChHFXRnS2*nArshBR=#`}RRMq&tO?s=l zPPx6Cn)Fglk^k|l?!8XmuCrG-s`BlZW%~0%R_<PP_wBN~W_-!Vrfpbyk;CmUM<Q=Q zyNSY%$N7#<PBCXp#bXpwxEDHdsPvoW-QMxG@9M%;ujg2O?9RWFc$EEZ`r5yBPhSPC ze)Zx?`MvV>Tj&4a=2Y)$a@&z~V%MdeJN;%{R9<ghD3>I*>C{UtFS}`JiYGX_0vUa} ze`W5?SY2?uHDHm3H;2R4q)_M1D3<qYK0gn2UG&_i^?^bJ+k?XujhAK}`X<ZWoF~Sp zaqUFxmnP$|>Azl9zi<EX>gRL&@`-1{)!)v`-Cn*uJYHs3?SbhAysCy8ZY;K5=S<54 z<ktSwVT@Z*R9O}`?bKFlEt%C~4Cj8os7;AEzJs$)BSpAt=Q@7{7wa647p1Y=b~j#> zJHE-n{>tW$8GAerufA6)<PbDN^N?kD*UuB*s)JuN@G^fqtot%QY;`FA?W8)zr><|_ zTj%!lPL_CKa@E6JfW3G}nAil@)SEwS7X?qc=puR2D1v|5l*j_5wk^qzPNaFI_C4@m zIbLcu?NDU*pNKUJ&V_Llo(ak@o~gB1#o_d)dPB$d&C4ryEfJJkb9F+L!y}edIcr&Y z=3e1)b2G23lNyCyTwJ9lrVqc{y*c>4%K6As&g50|&g<*_zWcd)p(ID(w9SV5xn9Oj zzZV{Apyz#VscCb0o6CfwJ-v<{Jjb|A#Z@@mzqjxHnG`4%?(pc@v#FbtUEWz+fBC&J zwn^tjT}nmEgX1+zL>PYMF=!}G-+Z*lQ2pZXI@`K0A8VGTFO{9Gw{3>$mkox;dhVM^ ziC2WqH#nD59Xstz^lkZfQ}q_|Z|d;z+Ps^0S@|_<|0zr48Xmt`lC_1~(O}ox#$u-r z&(E%&lr5;#Th>wb_N%fKQ?p{zhkL3<LesmR-xc0eut|qGZQqm4qRA}hXSzJNUC}g8 zX6Du$A-hxSRCQiwq-L_aElOwUoqoA(a^2OXhMH_{Qz|+#j2;J9B=cCT@}IC+-0_;N z*X*Xnat|hE8vILhT>QZOy(|;su{d*=56QtRRpi$fyg9fw_IK6(y3*>ePt*1qt4+JQ z$9Ubm^>VhARb^Jo6P$Km^}2qVd#$(lpNMEy>A8>Rus%O?!7|(VLvq0rR)&jTyTa6W zZ`-{${;}E#Y2z5XI+dj*%Ra9wUT58vy4>wRdq~~V6su=U?|b>@1sSdO(yWXOe|ep= zW#jryZ-1n;C{3}JciE^A@@R&=k=~roAqA28oDPAZyJD7v`--XmeRhkl`oWdnm8m_C z)C7bNwyqG7w|V)uVy2GR#=147HR)`pDhtlNjVoNc($2R}r?6%b<Lj#hB@feAFl$}R z)=1Mnpwe&quQP(<vS$yUT+Nz|33I1>P#65@dCPKY#Z4<I#_!1uM=!d%s24V6F*E8O z-FV9O)s^RIbJcH|7CpZaex_RO?8L_+MuscpY-WD4Fc7fXF~hAOIg~d!&CT<tswi*b zEbfhVU%HQ8zIk%-&rc;`*X$1LHoq<qn5ijXFZ1i*f_c`eF-H;vUpy&@dZlEgR&8Bz z{@8K<gx&WISF)sk{^|8{(fjD<K0R_q`YE3(&av=|9kaT(%W&SrkEsuxyaX3Np5kU7 z_T}8pZyVl!k2c&^^7wt&(TJ@U*-8_y?K;tE8g|0SRX=uxgrokvp5+-<LWP2TH8V5y z&G%iHWUS`Jl<aF2aqIR+QQ;5+fu77|;qNx2EmYlf&`MakXh~vU>FbDXN~(1=`&kS6 z-lz*b)bKTXrYV15VcV&R$2~TEEuWK;qGtc=NSO1&V-A`>JbR0URy8ip^N{+b+Q071 zj7267_o;2y?pn3B)1RH+=qbMz>r6R6A@;T>8Pk{C3aFb@bZX7#!Z*^A3ynTCakyss zFS?#}Z|mIBEi3%l#Ji5VvS#nRJ8$0Hx%1~ceVAxy|LtA~hg@gQ_UnfY0<@-xoMCJ8 zzV(2eAu#Og9q01etvh!=R{3&wL&Urr2c<5*-|g$7v_XLDy57GI5l+LD`~Wvr;nc`m zhD%I&W?I}ke*5>`-{<u*O6C~8Z@$DK_|R$U=dWM85ArONfA!NVlvnukqMaMc*J}np zeaU|K+gy=}hOd0>@7<cf#b{F2-w>y`Q0lg0+$zK8U*yizok^UvF)`!yGb1+VyK`-R znjNU<=Wp(pJm7HnhRJ0Uof$K>MY76lYEwVFPAuG<=ifrxGL^`#AC4`i&7O@LCWQ1c zmp0x!QS-#ki2t#Di-YY3fk+jZjt-ZK2aN?Kv(MgDuM)9)FkA5BgqG8n`?T$DJV}1j z-I5?8-JHRe=K3gki=w4m#0T3WiaW%brYjYtbuW6=CdVPqAOGUnlMvBYCpYuU*~V$; z9=FeX!`i!ju15IVcXid}rfj0y^<S@A;T0LC7bGw7F!ip<ltYR27S{WFT6F!+?Yz_? zxKw+s*Rjw|29|lx`-Qbk<ORGkI&IG+?c<mj@wmLb`O+$lRR>!*Lb7t#mR@6MOxzHp zFL8Mar}38U`F6W&e;&R2T0CUM&!fkE&bOZx|NF3X*4&l{inFa!_%qwSF5B8Bteq<4 z+0mQU^zpC2?|ZFz!f)rU@cZ-a=pLE0&22`jSoFC%+2%~)KG?VG%*_+2S*@P)jx$wR zRAlej&iSoii;41O6$|6(MoC;jorfE_R32~EX?3dfxu=qx;;=Ph#x$Ork$P!I#18~s zH^2F9kwN^i{^K$k0ZVNw|Mb4>XR-e$%dDcgCdRfmG_*vqP?qU=jQ7Eg-g|s^%XY^X z2P!=F6I-=oN6oI7le^8=Z_#QtH)JW^@qE)GukyFc%n!f)+WqxwwwhL;$rM9HZ(Doj z4(I!KWA3k5^{}Vi@Os7jxvR7kQ$zJ<SA~jwjX2LXo#WsQtHQOXSIyv5)JR^cmE7SP zXtvqS+jRE%9>dd<h4r$vx(xRf*z%|`eNXfe&~w@?AM)4Z+&$sV-qKg|in%wwei#2} zWoO?0ZO+nb4lca<M1Ub+!wS)ljbE0{&MdIgU^~}Vd2-5v-Hk44T~1+}T{r%T$}m^q z(eaPjcu+B<P|c<3m5TTWi(I~!7w_r174WV3ni2A5vmw`~1M1#wGxn_b_@-#qDW{A~ zx9PLyifB2heVlaC*G4kT;DmMHpA?bKqm|1hmcRG>Vt1Blv%1+ku_T|RUoI+eZF-d; z^_M{~CZtP2V0NoV%nRT9+uDE6o~^&v_1<DhHt|(IT`zOUz5E^jf5(;NSA7O7ITCjY z3K)NV`}Ov<zLNBM?rD`x-oBFe-<$uAt^W5S(suU!JL@z>1uG=>BzR@pn%M`XRd9%< z8djX!5wuiDNU~RFW;UZ@?e+Y3<}V&gwbfmh{no>#Rhn<p(be_q!nSKs=Tx7nI>`UA z`gQlh-S5A*=huBbocDd*thuumUUlu1xo~db?+};cBAvTt%@Ne)SYGlXR`K|b9*K=N zc(+}AoO$=o*JZDlhAr9i=EX`w4PC*SePtQthCfpd20oje((3vtL8`YU)@1Le93AU| z3GFW1C%ij3L+VdUy%c}QlV7biFN!vvbeZDgC11%s@AJba>n2sO6o|0ddHMJsIySj0 z{)>Rn;@Jhi9yrci`sA2LSN)u=dza2_$S&S-FaLV^_Hc9a>x>n_qD}^{-=ysp-888u zDE7R6+UwupC$2BP=)cT}p)TWg?e3V`11pUGwsi_Uk=W}~KVena#Yqw@t)EX9C&zwi zUUTZ}?dTqjGrY$tof%lBpNkYJ5SSwHTz0~WrEXIMC+}L9?kyxEtv^dD`{9cTQLZ5i zC7X}Fn&Kkw<INfTR7W6l`}V(evMn03T|>|AE}Nlyu8DtdJa_CvK7A(L5J&EPfjN5& zrz!*qJ$JIduuMhffkDfrX+4|IO?2CQ@X%}X@T;$`-hB1CCqluCdl8HIyow{QeoUAX z(D%sIpz@2;rJZf;wc0723-+^}mh;f5KI1CF?N!JWshP<s|I&G~Z}Ixp_Or%c^dFcR z>#jfS!hUwTq{cm;KMahUjyarQx#MDb-d5P@p=9NTqs>p&2y8ZS$>II{&LQbN)7{*4 z`Rno>=dIDZC+uaBotRTu#bCtK=IzTd$M#pkH4~QXK!qc>>{<+Ntjjxhw&45X_x0za z<eEzV-s6w`;3(=EHOnf!eV;Vn?A@<#Gi;P@lj!_@vGv4^u9;?TlFz*!-Vj(MP*l^e z7@#)g5@XZ4*HvbhcU{`G#8Y_Mq<ywM^N)RL@s2giJgnX_C-z^|=O4Qj&fhwmxW87s zNqV>QWy$2WZx7Z!U3BTHm&+;7D?C!Xp^h5K?5Fu^6%5s09IoRK*ei6UePgGY+r2$i zd;fjPKlGNrrFLt;f>w{k*BNdK%Y7>1|8&F5ZHbDiV_(gK7gwkI?o%w3-<T=ST<Wp- zT=HK_u?0<jufhwS=&3qyu2^EkSmRo1r)%-T<;}5ca{4+d-z{gX@DEA(pL=GNr}*>~ z&n}fY!V?3gO7KqE81;?yZW~AY+1YP@%{v(yyDlX1Yy0j+Ywqp&w`rz5=Rw}~xiM3^ zFCTaQF1#}IgWA;4ZTW#qTlem+|NiUi?yEn|FK{VUC2Qy>eQ@4wer(&_4Y%K|F>Lf) zd;0KOY0Z!WWsY1MV|2Fd{{8o0LCRGltqc3iR=NwFxz%X+Ztv|p_H+JQ9&}gQruCKu zUpHNxuq*GHPR)I`533^E1ipP=&si<_G;?RonU~6Pd<R+GcIuqlW8bkTq)C~7lkJ=9 zlLQaGTqC3J%a9}^!?RF8h5hldu-Og*54Om7Cq+)%6Juc79TE^YTY>-B;)D7IHs@w2 z3U<``u}l=`i+rGcjFIW0yko**`%2#lU#u>lOrNUYu6L=U=c7#5r}&j`65hyLG^)$R ze2ZzcxqR@KI&aLSw5hJAYBmL^Prhn@?fjg@hh?kk6n?d<x5zW;9eA9vNT~6n){cYx zbG7`tS4|2!D!`(@?e^~7zY{lF-Cc7(@7i}K(`N<2Q?!@5RR6bG)K!0dZDP)zojU$@ ze}0&A-u(0T`@i#sH;c|LO^D%&3_K;X@M}%vmCrwuOrv!#Gaac`-zpYlsMobf$Vqh9 zk%@w`*;0{0r*=$;3OiVxU9DLXeBN1M`)k=>Ohyd1<hMP(ttruz)wa<7&9(gGl2tJ- zQE#q?zc#nG&xvCf>eOK9SiyBFa{KPh&jgb7TUT%`R4w3Is?@q{ZK~dcbHdU}lYTZT zO>pIMIvzL8ZQYDDDW=yqbDy7;n_m6+@RAiL0uucTOqynIIiUU_uJ5PL!_rK<yeEDO z%q!Y{FLjI;d+Xbgcjb<E^UjT*yiU1JJ|;QSqF}Oyw$F}zo_e!<7ANrCtgZUQekyMo z|F8XqmbWi*_I223ok_OK^-fY*tFIMU;8a=Zw3P7@d%nbTyB%+9tLr{)xgY!Z$tl@y z(!M`yN~?DKp3~tfsMB-vXvy1Uk^Ai5A6`9u|Bo;2_qzk@U+=E3DEfJ1X5Z?WVj)rT z<+@K-={)z6&AYc(aM6nA-hADE6LmLumL5B|%JuG<-}_$g-j<hk_=0BGf&+PpzSe3v z@|lWhzJVEUm2=w{PF!UFhL<tDZPAKF<z16E?#O-b#F6{DK{H$TZ4~2Mg`Uer#a}JO zxj0JK>3`8WqA^pORq(NI?|~VGG9FtPj=6j76gje3*g<8@m4?i~%%dg6kB;ozdPm`p z{N<o+j<$Mz6YZzmnC5vl=hd?PMjeb+apj)J#SEUw@%5|89L-<hzGKP(Uwb{N$$Uaj zgA?bJKFN$LTO6l7Y1czXfw^+Wja9VQE^M&0d9%ato$Hyp3^j{?EM+AbUNb5fo=Cg! ztx+iA`zNk=q^NA)?e}L4-h5}*dnM8S*KXdNGy8uW?VtVZd;0Rt`}V)xz0OLr)4b=% z!n-oN9=<vG_{XQ^-^2A|6{1#^=kJ@LJN<Bi=~M^N<UJQ$^UGXUYAn6SesbyJFb*## zol}dnq!enxUjAGpDYJ9ut~42m)VCL=ri#wdJsr95%a7l$(*CSh$cohpWV_B8yTWjh zP(EJ*yH)(ng}2w|->$PLNv>C)>bBKsVHcZu{u%zg8eUuvdOmu@Cpk!{&*{(qlGx$7 z#(-C!YpKQJMg#YVC9NT%0XOo^_tmbRcAqm@-QBrt&b(=7-2d)<+^Kr+Npn|-i=^!u zD~Z+v$(Qb*?z%XE;qi+9rzW{cwQAhh67xks(0Y!n>&C*_ePV^(BH!aaW(Zqs^$`B7 z_3%jKwpA_bBN851uodpeeEC*g@$DB;Vaxuqwl7iVI4--geq3iCvGlaS$v-8f^?$<( zu9-ajyIcI4)D!20PUQ^`3!?R>U6WiW_V}bVvy<8B&E1M`z8}8-?`^!^Il1^bu{RzH zWH!c2NOX2hT%;qWuD*ijL|OTD*T8e(r@h3ZKCfOq{rl_b?PV7B_1Df!3%&be`+C;J z8hIh1sh!=)8eMIM526gYVnS^ACIxd{oGB~&`1lPc{&_jy4kvz?VyMZf&#gB@<j|M3 z#bKI$d!IgC^E%oqS@EOm(W;h3J0#u}2YitGT(>f1(Pb(3ZNJOnI%Q}44!5t~^h;&R z{>%%h6+%DHz1K<S4_e1x_LlR{MB|_%adVzFv>5$L4mGiywV>#vV5Z%_MKdz~Oqe@o z@-L0KPg2#Jx3kFkFdt2MGG$evo4nT3DIG!#%9h&~eM{Q*dsd#0kttXFM+L716DuTQ z!Z!qEa6CR8c=pxXXMLNDSc0#8ewr1@Rs8qYzBSX1xd(V>@vqx!&-3I-;e(dfS2ypw zJ>~DJtaHy!cdrgVuN?8d+kAcey!m>9$M_VDPM$bf^zqTz-DUeVmq>W!@>?%Wi9Bbq z@x1;2!rSHV*WEKX)>GKNF4nC3^5@g1PaluHZS{WZl^`uei_|r%wEd2AP2((am9hT( z@o2$0(NN1Rw`Yg%FWEBfY~-E&Yq&Z?maocENzd86d+R+x#-(1p>&gz#ddv{2aKOHM z;Zc>O)=#oKg2b9E<h3%JyT6yOjheJ>^{v_QV(0IfC$a7<S6#_krEpfLNGDM7^}bDu zouj23pD$(Hz*1~^Z|@WSX$QJ2x*s>yxvHwIUsJeg?vXSPt!;vKHk=8H$IE%VUmi<& z!!xtzP4G=8HP%Z@jAzw7Zgy4GI}scxq9~QWck{f<y{l$L9&A}N>*}{>w<?3qc8Tx* z6%w94>C0^Mc(1)Wvx;^{@;@)OoA!%U-1YvuS6AHysxRm6-FYRdSW*0Wf0x|0+q>&O z*Z+CBzV@@ZM!16mCuhsL{P*qqp8B{LIPZRZF#GKK_<u?F-)-L=o6WQMPL;o<bxH1Z z*<TB*zkNA8`SRt1Kek+pGbvV0{V=a-X;hUsm*$EPLn+710zDo>mhJaSZ~qI>pWc7} ze_HvDu%N7?Q=hb~{JZb$&E_KOHx}_0;=NnFj2c&TJeYW`xrp0vWhbNaIl+fLQSx4{ zJDqG9)H-ZfpNnjF7U4`cSDdb}v;MHkl=&xiH@vHz^R&~(t=TZlfF<}Cr>a-+1Fyec zPDOo;9xU%Og3SG&xKG*Y!)(#hBj>$BWwYPpw~l^oGqbEUCos+Rd9#_z^USjgoOkDl zsz^MYaCWw!mA^t&JHuxIW$88B^*jPg+r{55oV{Ky-~773$u%=QU;V0kvFqKdD&13; zkEf@4zIQe_cK7amu}%9lxLs>*Z{L3QRc4@R_tnJ<i|qgXw*UTSlWfjilVe{T&OG>Y zLH@u@!+xG>K1W0QZD!xgU#|;Z!PCvb+OtDqd->ak-Ou;ee0p;8)tiemk}d5_8r5p; zG|ufcUw50+YwznuwsWc<->x>#zyIa{@4efzFCYK(k$t~i&ibt!rGf9Rg)=M&Jvm9# zRDvPfX7jbFQJ!{Ub@whGWIdRvXn9I-V-k;}fK8~3M&h+rr=usPn8z7p-`sP4pP6Tx z#>DdmIVxX2EmrZB6Y*ahVWD>`L94g5zt8zeMAOkbCbISKW@zSiFz#9WxO(ypDaF6_ zO=&DMLO!0@sC|C>5!M2`W#UW$6I6a3+2>W=x8`;KoiM-44W@718d@Ek8dAdaS~aFl zacc9(eW2KsuyED1V_R;2<$Zqi>C3G8zdzqz-F>#|xo!N~R}XkLL|tE9R-MjvW9|CK z5$g-A-&m%5g@2yxo_6EP*;N`R?$^B6Z<!FAzy0>##NF)z5{ui<Uj6k;%PQXU>h`() z0baeo%Nm0@4Zl^a_{TowmcYHe)z$yMnI;RWizRKFAs!`~s>!PD&3kXxzk6lnhF?^^ z<ga`8|JUW)tJm(nCF9d__!(bL^`{pz1!fiB%gxW(uNWifws(6EXZmf9OVSf;iu{}v zniXGYG6xy7vLw1>E$^G@Dzg4_<KoZ=8NTbHd!6O}rMy0Q^WwX*OKqtfTx!8<El*xg zmED~3^vE)U12#`K773O4Y1~`6>D;@A8I$EMZ&PH>@z^$JiDp@i>$MKQk6N;SD)J{B zIl}SnE#HCXj`^Qby^`{B4kZhm__uw>CxsrPqb{zkeLhuD#-Y<(1s7ZAm>=An-XH$( z!_D2{>z7Q~cHe$qjE$A_X<3C?lU97~YPfwjzI3;?9ygoZA%pn2Q+GX?vj6|V<FgL> z*Z(P>U-yf7=~hGLtl8|wCEKhmo{ODseY8kt^(Kv-6FjF{oYr{oZ+$?js`tUv{5Mz6 zTHC*oQ1vQKwi1$c;=gcZ&Sws}pI1Ko`8xam>->59cfS9<P+err`;x#f?b(;^pYhk< zvz6yfg>g+gyB25Ty9<V=Vy7evIv=Rs^ztCv1ev+hF0`cB2uwMD<or?RB|Dr|gACM6 zJ_dA6xD(3oX`)>0%FP>{jAZAs%=+wC#<W4;kdw;G{8<$RlXt5guAXecBI3Scmhs6+ zaRvLP9rr%oz~S{Y<p{IqakG@WH@4_3kk}J&Phv&?iu;e9d)yDD2C>cMkx-v&^2O=| z)3P}U+dVt`FIcxovvD7cemu`M>g<t!S7-n3PM2Ss_T=T}^ykyL^Z5=|d0BF<iJIen znbo>vx2)@2KOyIZ+{X@OmByV<OFh{1{{Qm-AM1bY-v4uZQ*bt0{+gFo3t#iw|G72! z^zo%(QDMHOtGm4lj?PH(QMphZY%=vw{E>5=f!}^T<-WeI{coSk{G<DNWq+M>cXTyf z{rr92+x>qp{#sVrc;O(==O$4nPe*RmLmPVkPSr|}GLPY4DA*<%WVEoX`uW=KDbnst z2GTDdeBKcj@XTonPe7plZjQ|#6;DcZiZywk)%-q%w@)cV@3QFR*?!-4dZvjaKRNKX z&?90OPi*58&uI}1Cq$3$<nibGcXKK4T+M=GW^5)NmpW7qZdY4sJmW%b<rI&gJ)Dvk zCf}W{Syf{{!@@^+?&1T!{~UI9F8XrtMc0AmqjKkF3G3UiB{}xbpKxUP^UXmApYOjF zYxDcXniu<e=6#l2KC$?yrR?oDNv^-^YPjD1HPCJ@Pu)9ZRiVSwX`3T2^KZS9YH{GX ze%!y;^?&XEKeYe1IKS@m<ZZSq7X5s&xL@pR*8ZDsN>+wMUMoISdPg=%q4DO4%0QFT zX`UV?*EDmuG+5HBHb<XN<9>cj-H+)}yyBvLivM4(kK40j)Ax4A4>e3nANWRQPJFRP zXO`Io1MB|_-qt;vc_>wORTtY`X|EOutLTg@n@2UrcL-W;7A#?s(3s|8b!?S;5#vN> zo?X{!{`IDmy_~#@qxIyH2Gzyf9Gt71mM?2(OYz(Ma)sJL{u$4<uRQa>t}4Oh!G5+A zZ@*M@%PM$3YwYqpIq_b<t<1hqMNQe||IhEwb$aJ}`S1*<8-dq2)PjB%s(1Yexx%>Q zrmkJufeg93JdSS;ubCOY=l{KAy&wAVcg)oN@7EXYyO+xzuch0QyEMsQnc{@1ytS-q zZFx1feebt!{3K(ayYlp^$Pm}ks*e%cYp2u|7k@9e|MN4x{{Q9wZ~g!CZvD7>|IdEE zbLU=f(tP!EO=M_Q*i_@lkd=QHwM=(4j$U&rD{!ju(k~S+s(MuO3~Wle96!txnBusF zz2LUL{qIlJ_O;df?LGX0^YoVlba8uf@lI-7V8?Pf?|uQNQ+VEsmN}ZSrMcA~7HIo! z7BnlI=cce#?*7K0p5q#k0v#rf)e{?<7Q}Q$WUNztJ}LLb<a^718D=}AbLae6^_TyF zkkwoEmGft0etaQPcI3syJ8uu&*d!?4+<ox)#+iK+yG}NId!b^tbGN#z%_Ob$Gja_T zP3<BV>DukMH*t;TM4Op%f65*@KKo{odZb@<!<J7Lw-@Ueow&7q;t_>uXJ6f{`rWKQ z@Bb<d|8shNWxIDz&)=3>Tv=PZHEUXr_aV{XtzXO5u+--B-!A*T%|0^hY*XROH;Qf- zTmz?FEh-h-UvqqBSkSfZsh>->-@m{9_S3A3@5-E}u3B+AEzsSmZQqxay|=%lou9Gh zbmZMNx3(<}5ebOC?YN<-ds5~0+v{@8=dBPseR*@G=)(JT|DN(*GP#?g;*sS$r6b6| zPcz7=_5+`d<Td^2%f)}+y;UNu>y@x{qgav#i=>3_>ePb{Ugwf09r@HG=zg%(K+RK0 zdBcOo4-uiM8-J*LuvDI>Zl`y_hI^T$%yfPpUVY(0j%8+ASFh_F-uiis%J1k0sUMOH zUkUu_nkL>+C40N7v+2p?i-me!Nk#RiFI|~<@#HPe_r4ZEn~a|esnuxCp0z#me#726 zm(@FXRybr=O|vn2*;3`TBvxdfVGiS~mS1ICEf#LtcKG49cTe;3dungLd#5)oeaZv5 zb#|R;?u*}Uf4{3v`rXl2MGN-4;5VOAQLs#7+UJ|AZm$pD8g(X1bL-1n+1Y0{a2ggE zL`_eP6umk}-1;KF(WQ0uPwzT3cm~dyW1pE;%yx!nF896%n=MLuSWm5Z_UZ25yU*kI z{JhrgKd<)l_Jr?Q_4V70897Q{Tw%{}RL}^C3W-uSz7UbDk$f@OIO1h~n)rL!yf~KX z7i9sVuDh*u{HO0#FO%qgl)BiWXdz4K%KsrvQvQpWS4J}QUC>y6deXd_#ZUbYrzD=` zDCo+XDe-}E^`a%5%#pL~CLKA~9&)*&W5&LuluXCg-A*c9ElZ;PnuNWK6*qc6P|6lp zePHgr?ZM1<lO%%;?|SoF+Aie3V4_hKk)~F-I5W=ovwJ)H`ClqAzWu-YlUK}&DGdy; z_&LFKk-)=U5jxzqZ@z82^yjB|KEsiNIa32zm_&Ouv@}oW{az|rb~iD3?)1Qdof+S^ z3-st^A5-mie7z~pPw!l~c=~Vi?X||%E2pKezhATSe(dB2Q}dQ&txhwH|Kgmj^fYK{ zi??D)?0ns6&s)U~GCy_NaW7)I<<f&5r$Qaitets&w!3`Y-W6Bgl~t7Amg~7biF;Pj z`y2nwqmtT^TA9pC-abh8T{=6m{)YTF=~YWt>HGd>efqWR`p$dPRITf4F6Nb|8N9Fk zKEJK*`?vIZJ=KDhR<8?JpJw-;@nMSKxyY3jp)WPU)iwz*pLBXyk`woF@3(?2c1OcR zU#F~@Si3Fu`0D1`5VLZxKeg{S&pa5?&XDGI&gI|?0i8yf2rq3O*EV7E*={FNL##fU zWV$Us^~Am7nWI3&yC41G9T#)f{7n#)>)-r(&+?waQw!XiHw#Qo73Jgm5+vHa?{}rG z{qL*#^}Fu#><ZyIlT)`SY=4~XKeg6o<Mn3O_it!>pO+W0b=9=#*YoRS?ihdllKuAG zvJAbjbl=F(pw2})=ls&k=hl2VXuihw%I2e0x3^gz?|2fVJYm%eG3|`qmp`kQe>XR@ z&<hQmwsqP?o}P^Ml{1fTeEIl@hAy|>YGK>xGZtU&$j9A%U-h2*WN@BbwY1$bb<LSi z4lJ_fX)d)p;w9kM!Q4>xm#s1C7Td#Io+<Cja-TMEMV_1OE??iiGWE;be_!u2U+38! zbVc*=IYC7Sqx~5!J8NuqWGrld(8oX9XI`<v*Q+lpj6blR_Ih%t?|Hv2f4?Ln-${N| ztuLRvZ+RqJaP)8|bafWhv~J=knIz@0I@j#&woNm9^VU4bcs@y6p-SfMBU8`MHf^`h zTXe2}Dq7iL_}kNW_m(GtZ0->@bu&YbaQaQ*SbOu#>sM*T#h>5x1^PLgN1vPb@7eq{ zc0ZXJZ9o71eg0oj`S(*tgtcZJ{n=i=zV1lNyz}zk+pRe^+`KEK=O6am>B6ct^6_)_ z#pU}??_Tut!DabBrh;D+Z|k2AcM^4t3<=$8TXLrL=btxEo_zXsYD#Lbsj+9$!qXCp z7SSG($Cyl&nw-|8O;z0!r?Vn*_PYAr?}fg_8$Qz9EHHg(kWP^&OGNgbt+LB`V#+19 zEt6kU$Z}%CetpsG@4G!Z!fwPDZi>r)c6!<Uc-{H7b>E`@zqH=JKlVOvA0z9@m7i6( z<d{9)dFw`eHWBbUsFvQ@8GHUlv+nOebA9&KC#^l7ula;KF1(-ebpF%x5%W$xlasi) z*-oWe#;f4!G~GQLTH9I<C<{7$T4pP>Tk>qu!5`W-icXt9NZ76uex&kfs>xD$v*^qu z;e*SoEbp#N`BD6Z$w^hZEy;7wJY9u-72jX24QiVCx2EpnR{KBi!{q<+O_1x^cvm-q zyHR{|aNN9{d;ct4B6Xi#D|xH8Y7yr=*=^b9BJa*I|N8Ew@~4}x*X5h12G6&v`mbL9 zKm1Yr-|sD-d5o3kxQNYV%@6;)RNiXsmI+Hc+6+3a_T9PVSa9+{;4{S^n^XTjtFqX$ zTj<ulJ+I7~#hY3MW=b`ie|=J-H>Hb5<N4JK@y-RUdAkmuV=tGOQ5>M<$nm9lyWT8^ z9EDK%EmL-B9AnG%d9W>J-7EL|Z|?HX-+y-^M=Q&*OqtUun=)SfDG_ZDUZ;94_r#Ni zrdCz;7lPiKJ#zGHmQ@-57Fm8`ih&-_q|f5BRxaZ_p<+2zh^hBnGJ~*YfTNrgTMOgj zwXCanpC(L{Xph{kwdkhq*`KW+Jp0u0_rEY%KJ&}npd((+>8CW$&wY?0KmVw~rUlBJ zk9!k^Zhl->yL`sQOJV){|K5B5KYY3TpQ;bCoQeXTE|JsH{q6qUjjgZv{`0$L>LwkH z{`R-l2hY!3HTSOkE#8H1KAqfi!KrDbYr)}j{M~QQ&hEGSQ?b)3^S4<=P-t&J`x8T_ zIm-7q^;9OCFkFhac&WtFA7v5Z>8AAYoWB3G<$vFv_OEx4i`}>9KC6>U(L1F;0VDmZ zn}VDy4o<!^ndN%W(_aU9`5KJ5y_g<`M4BI4&vMsXPb&FO#9O|*ce^k1*J~e%m|OdH z;=1_zf9$tkzi#Ug=;G$1dE(@r9J$(V)AJ352agH3PMq3(Mrhu$9V`2f@lS1g?{0Mc zhtu*RCiCD4U#utOx@dS#PGy<n&%H{yYO<4ng~=JyKnDL!*St3=EID3VHBIM~RD|5p zHrA9hpKF%wPuBG?X{#)CKGkOz;wkl^QPXd7f`iJOViq%Zo#o1k$Bxf-)c!ix{eI8B zs)Ntst^YphPci<yaQTg|tgAvQnL?GDd(G`9SFt_TG@o=iq5Az^<GH3A-&+~mS7fuM z`$pEhp1l68)5iPz9*O+BY5#wEROjyM+uQbr$Xwr(*)~z_*1lC~P8{bto?Y_3$~+-q z&vHMOqZ7qa4lh=3ef#z9zS^z#yzShI-z#gou+-aWp9%_FswZN4S2pOw&3_l7&nxj| zE>-CKmdZ5AY12)WL;N2m-`V@?OZNYR^F3BQeDpWq{Jw9!rMrI@tEP4^CN?Hk7AekF z4~TKm5@@&G_xYxnJY$`^$TgE~${)3z`Bk<*^P8C#_#)++h;X6e?+11>zN+~zaQLuR zqC0iYo3<x~v!B>;R)p9;p0Kuble(<!t#`}3J=JFXxYDM&`b>=2LO({?`5fmelvqD4 zm^(GVoX0}UadL?Lw7l)jYG1PdEdD;P&Y@A8$*yX4jNIqmG^QE1-^W#ZH}wZ`$vd8! zbunX?EQ|Pxq?oO{|EAT(Pu)DZyUXOy`}%Klc>l%!o&Nvr_4~hn_3!^*-kvz&>zila zHr&h!IPc3C-s9P;)*2cqc%SdFEX&d@wml0A{!Ew9iag@+?KkuENA3Fg*6&5r86B8h z9rX6D;oRXXA{6uRO~RQ260$PcydO3?OzXL{&NM2)xbdjhhsV~c$9<SLY3#Z^{r2nl zb@To#TPNlI=yCp^bJO?#c)0NWF(1jK*ofGxYiu^(tex@LSe#{kiAV9YlN`4F&kP^Q zsIEP>t-1LGdwI(al^%JYlq@6559)`59hLhH748^c{-Qkdiu{FpOm{aIFG_s8acSj+ zib@NgbB`u3EGmjhG(7($XyLn$`#x>-ar)wX=;so?ydZ0JyV%^8o}y_npC!{TN{4)v zFrMapXuGCQn!Z+X_VsuHuN)p<<LG?rrLMQm-riT*Jahiu=Z7}z-p_Pu|HrrWIxKtT z?`;hDBVPY0e*dqN{r?`F|Cdwnt>DJ$%fT92T2mygvX6V5*IckXR<Xsvd4t`FMG89K zb_q>6cd9ZtwC;v*mfi27??>OhD>EoM^K8q+H3BZ&ueQ#(zIDMe&2E9_Vm-GPZ5yv# z@G5g&Fn8^1tEQK|!WKub7S*Iqkvd!$+9|MD{?FUz^|$BLa-V#c^z}#c`ugAB>%P8> zuR4{TB!1d!%Gro6uBiuSWtuU+{JHS%lO^r#ips*%J%lElDvDHjvWYSJX^e+~)l7Zg zg$gQ$6F%~^C^U9-tka*7oK)r{alX#yqsL>9`U5kb7}-wxu;uie8P)uJdpPG-wLDi% zcJ<rK-uF<Y!br}d>aW_ec%uW|kvF<ke0_xiGcqS>b63_JsQh$*Q&A(UrPg|N`rCVY zX{&#qm2wo<{PijC!{?uK1oC$~r<6wO?6|N>=k>DRKWx*?x8HtSR{S;fwj5LV_t@8p zpOy(aJ&v31wQ#YTm-so0eA&foW`wq{t^f3;nP1NSanFo}x8rLi@BTe~cZ1v<ho6iL zmo%cZUnTE|5n0;DVj+I%_O*WbnL7>ta~;eG6|2o}aZpxe4+^j|>v`-QJT)uq_%)WJ zGxbjYyPLl3c6X8EjxK@uwcq>sZ?C?4mir{vI&UqL#q-?c6J{Oq6ZvQI&mxHF(oc2s z9FMjs!qplxS(p7{b3N84T<fvwyFl!xu;uP~YP%FBr+k}o-FFJxl`dIk-?mORkE+F; zPiHT%y(wg<zsqnr%e>!TIGH;7u64Zcnz-Z0@vj9jk!nVjQ);x@81C|Hba!@SJ8^iP z=SBv7G0{0E6Dr@ddn^^G&i-|8`qfL7?i}XZ`jbof(_T!pU$8bZe*e!ehx7mV#h(9> z`t{rL`rBvbZ%Xhiu{-ia=)(Q`LV>TU&RI-%GBS0GOwU!>qcMAt*7MCjtEcx{I9xB= z7rX!WQGQm{<=vC7e~&&mGodC<Ls6-z^~S1)E)I&``QMvguI*2LHf2(QtfPV7618iN z940IrA`<FN8zPTp$=<#v8pSTYGiYHv|Lp6j8<l)o9(3P)^Vt5!`M5t<=g<7DzgJ$L zM=8~q%UEff(OSWXNkKB+-a_iU_YFK*kMh{HFFs$rXxFkwAzkgMN?Om<xlS*++#zf} zajM<%0|yh0j4VE_u@Os^*t_Yf_%2hIoLQGVmnTeUvCmApp*F=ZZtDz_rldJdL3yi! zjvm{v<J_xQlbsg}kL~o3sG7uUk@4*P#GIOCuAH|Q-o5vxeD>MDrIGWJJJ;3p+?%{e ztMTN$3WY5XQp*3U?fCZTruylpKfm5SZ}+?W|M%<vU-+}Qywg?IVR4*f{_Dp%HboJG zg|piFcdiVb6aG2%@|CFxtzi$E!+tG`y<M4mZ}0DK$K~sOJ)J%^%vV!fs<TA!od2uI zN7n=_(b@4fvgb}!8j~j1+8ts&?C+;cOZ%{+cmWsd25&zvUB21_A6I^@JM-P!w{5lj z$;<20|9hmbI{NbZ{}1-|d;acJabEHCL8QRM0J%Rc{XS1QpPsyJzvQ?@XxHTbg%;n| zp46~2lowW2XxVu9XnjFu!=#Yv%ep?XlROq>l|;>6uAHu6GDU0h#%B!&G|N|9?EL3f zanG}v>HE$|9&YEOTjbS)i>L4XbJ?m#RodxTk&J6{KhO1rmBoIS`^=<WRX^G#^eBtA z2`x<8Fa0il#zNU!yvdhloOAb8mEP4n$u;tP+1&?oW9OQjlbK`a@Tl(ZHZ3jjZBJ@k z7hOH6I!CcSvFnO}<BE-e({_p3ymTu(mKuC*>4MfNduF}Ouh%>;RkT<~xoh(GX`zwR zOt$UFRrEUfT~BK5&INwjdDiyVGMi3+e0k9$d7(wJQj;`y+W9G0TBQ2gE^9=%%$1h+ zT6nDg@J@qr`?){=OYC5~Qq6Vn<f53mzuP%o#1}U^I2%1%)TuQkq)hp1gw*8qO}d$V zn(phEJeT}^tYs-Wm$8HUNrl48oT83db(=qwIix6@X5)E$P-dceN|C~BHSJ2J$+C|# zu9Y;ePtw|#bl*#Y>F0}-NgocZPnyXibKyz*WzT)tdxEDZKVsJ|DM{-68MOFHheZ9o z0{??zPkRp99?G;Wc-XV~oY~n|1sk@%{#q2*^m#6Kh==dZy6XK=b{{W(^1rwIYRq)w zOYbJHGFuw-N{R6T%d_gGT^41Y8zZiGiEh%!I(o`UN|^t5cBR_Aebw6+6>N{5Zq#JW z(Cjhe>%YU3yPP|&32rQBetagHeG2DE%c-s%KjQkYKCD<2^UQiR>+P8<Sgn$cvzX?3 zcEyH#X*VyZ(9^49uj#(ld%~$}qT{x+PP^Z3`R&{#=(%L#lEaRhuH5`0zFfpvB1LoW znq>dN)id6-3Iw?;FHg~77SNm~((LR}_IkyeCw~Qsr}OiqAJ>sQ`uLxv9~-Y=sc6u& zgGbd;CqKFW<cs(6m1iz0+q~>|2zn^ry*Osg;UiN|8bz<@^q*jC5~m}*;((b#ih$I_ zo&-rh$qNkzXKudQ__oe1Go{HxglXF~uF$XN?(eDII^$~3r?>YE&V_Gfv6tDlz5TE5 z^1O<#!r!9rua(<-d|SDX(JN*5kL&_otF)@(O|%W|I3%02OH`+dbp)|4yLET>!F<z> z+rMX9bDzoKcB+==Og{H}d2wl!rZrEh-~^6IYo?$4J5S@RCiB6<#nLlf!`%+LENJG8 z;Pw_%^V<@}^IE0j$Ylp}`(N?r>;F%>>YrTlB4)O-chM@pThcd=>ic`C>v_zYVBn_q zzOm%IMdgL2)G0q_tU704dOg{9k;KEE#c9m#Gi0W2H1p6C<1{$6A@Ed6(-s8}S+U=z z8uZ%^^naUibGo?uzXR$vEUE6*E3U+DKJ(*n<`VyRiI=AzYH<jjt8BqPIU<<BKu_dx zvC7E>f<}+KtNbn0Qv*Lbx*j|I)8<lHIm2_G4^viu`j^*x#nf`f#&GMIy2sxrT)lht z^s0IGR@IyC%f;=f`*)9h|G#HvrG@rvPkUoKSHFAbl&*(*UB;_ct3`01^IUlB$%#sq zvad(|ugcupSM~2*o%fCvw)UFGY?7U0rW|EYH+8tuDsZOX+%7<&ChqjPBj<RQ>NGAd zo5ZEJ>tLZ}*-b;f7m3burRQ@j-*WBDj0h8%+Rv>w@8;Kk*{@Uod;h|sgPvvA6=%B5 zZ0zqz3;*Mp`D=x**yeLroWmB`yx!aMz9=Z(Kl0e}jrN|8BSnf9GhV;Szve{AUxDR{ zEh095O&xFCOsV|y;Pa#%zdO~qI;V2#Ebt3!`FQ+zi`zLFE)(AV2ahF+nGN`PLd6Sm z<xi$~PY?Yy`Bb`6)gy;VI~_K^PMwx@eBLBB#;_x?9Vum>cH~KM$Q=;muxmNE<>2>8 z#mRd&_7w((v8ESozW3%@wQ5WM$3Ktup0E2@YZPDe=l1`^tra2X&vzHaiG>QiS~<&- z)A6MjN95Jbt7dw7d9Bq54xj(G=JMXK)E^i7>%^2RuY|n#eRRu{S%=uYHAS9J;#QLg zX1Vyy(8cY>BBpblg>9D_9$n}&oDgFnEs+@0b6)qz5(|GV-nCz^x$7ytn#lQ}H+Fw+ z{kQ$x_mzIBY<SW(Kdx}niA|of^aNFJrtF;jD8T1Nl3Co@jW6bhv3PzFeY*4}%OR)R zF;5(WmURCR(9x3W4GdP9S<vyv{%89CN$GxdDwAg?JUg&N(6__=ZKtxb;?Zp?)6FWk zT&{Oemdoewp7794qosMltqPWO-`OQ?ZR;j?a4zQ$x;5ijl9bhv&Z5A}+l=;Kda5<! z?%Uh(Uz$JLeVc1+ms=_MFj?A_)6&-VvTI>^xoOF_N1r}@xj1>1<=WSwYgWnse{|em z&wkDH=`F<zw@mQzh&B7X=*pSnRokN0_`TjV!!$Mc`lQXfpYQ+i>F50u+#C1p{Z(H7 zb@8eTc0J|`1PWfPWitxiH&c5l3*-5Wl7oy){FDCP-_|eIBr$*Y3too<XJ?hqNjJKc zaPiZuBTfgmE!{lHWU7LX%c@>w*GRAZ3omxu6gE>^x8^;MaI~)Jz0PoNwaYbbohPb3 zoCsW?s9QAY_^}x`g<mmj+HF1m&8FhSi5A+Dk$)82M3Y2Rave7ECrPd|u-u?Fo0;oH z@2SngOiv@3{%iAaDhN9nth}SLLPGZcYn4#BV|_jU4j;W-7~9(5KkI%&%F@m^S5$Ik z8IOhq9edi88DU&={nlO4r>*ODntpG1wKAfy(YU$$(Vs<uP4{E==G-p3wx(vwltQ)c zM_ahIvn%bA|NE-?{?BLfHqWNdjokV-VGXC9kho-HrSa_Rsi7-AX3AV!zs}BlPjP6* z{k^x}m2F;>Vsmf1T%`4;1s9K37<}mPSj&~oKj*SQE5C#C)1*Jq-5GCx)Wm$4!XdtB ziOAfD<HsL46-{St3`=P`#L}>2N+$n?_c?(k-`=IK+9{wu-$hL`^hx95mVD9Ee)+=1 zQ+>W1H_82;d`(SL>*x&E2<DmFSXUIVb>_%kUOVf;p&5c3mpQ&#d)(CN!4y@4XDw3? zamiFJ5I(FhHFn31)1h1&Hl9A&Sya^F8MA_2rFc`|j2HXdH*cQvo#C>8a<I^xlzz*i zNT-gd9?5G}#{*^`ab2VtzEORO<@1u_T^|_Vt&djRQ8J_Zxc=2y0b!xR9dDo2ZQgq^ zO13PVrOf$z_7@+$^XG2A|DRxJz44&^{XMl;bWUu@^|Fnh!<=~d;en%%o}`?dD`_@+ z;r`!$)bA%RKf8E+eZ}AA=lXWPm9i{XU-`N&w>SRkrzK(O%cpjqyP5b#R3i0A^z)b{ zK`SKYZf$hYm*Ab|c2w!%%4g;GJQe32oXC^H>N8C}sDUl-<b5*{uSj_-VKJ?iujik> znKXTR^3{&TdygbDS-o7e)UHG2Q;^H)^(}ooI{I51eQmv-iCvhpN2ok?RZoB~Q$7Ez zyO)&fP94`!uyD|Q?c=#<ruyU;A(Iv2i%fk^&!4fZrLxCk@)CxmpGGUPK1Eh+SaAOH z^pfQUeouV0uFd$lTP;gZ(coCcm7Gr^QyQ{zTx`6aaxghI1@4;2n*7g(XZFY4y{(K- zRc;CFPRwDQ-dnP5`!$bqbIN-@eY|QO_#$mv#JqKWd3pKeuXROlzx#4=!RpoX|Hnq2 z;nF;t7;es;et(nK|EvFhFQ0gM_wC!4Cr>{6cJ}Pq)nQlHmR@8%_R~FmO_<iP09`+> zlZ>|_*X}jm`!R#_B(qsVr+0tas!LKq=UjMNTwiT$kiOl2g5l~%6??HJ7f!jx<#p4z z)w&~lj#ZrF4}bLR|K$Gv6IKWJsC(2OVLv^oQtX1x^@hjS4AVAPaPlp@S3B=zs`>Ia z>XvJ#7cS}z7C$GHaFl(^x*nFL?wp%eZP@PX-MuB-M_%#f%(O+P1l9Z2+Uw~RUt98X zabNtk<9l8^sjn4qI`XGUo73Z!$$`ROlSB(M-pxLif6PM2D$?lvkpkIc&oui4_X%0P z>=T?Db#}3kYJgm+Z|kx>OZGgtV`LR!zK^R^Q{!X%-Lx7>4ee81Coe@r<ZtV5-`4T* zd);^Wzdz&a-haJ%E8cehj~Dl=3*Sf8Sxx?R_V4ZT_4eQI_6e@=_kX`_?t(cVv-TQ? zm+ybmW-Fd!x?1LYs-pH<v)N~pHpZ+Ad+hprsqDA60!*5!%29<On~s^^XkU_IYqn1A z>&XhIU5f6v1&`eB^RMgq6T#B^(rRMUP7#4uo84DcvfK@AIG1~$^ON|mKf9Og;_x~8 zr0cwqoPNp?)45BQKN1NPVrsM9@%zCBiDq}PAHF;%KJKY_bld2P(2NxiI+rw+cmKa! z|4Bb6&S%rZ%p}{3(+f(hO)s0wmiw@0xtDeOjN>OH73Xcg|HP3^VEc2$G+XzgDL1`l zB+X%$4Q=20#6q}3CiT$;)4mKo(Ypl}3+7AZ{%8#FQ?T0HtKgG=`*7@w|BMU_4Gf+x zjv=|_FV?6w%i14WBgV*<+;e!!Tjd=a7jzseEw$C3z4__M)P^6M=l@UH`|{noeNTc| zrR{&;yuYvF<LTRH&u)8P)*O33pNH$;?iYFA%6GqeP~$MOTHP{Tpl9Rhr>`dW+v#*I zTGO>{Z@m1r7%rW<<KYopb56QF-^<;%MU3@o;2a;#ne*BOw03-~_e^lPuu*oiot~8H zk^||dv`ytQKL40~^_67s*NT0G2@Az#rd(oKn=N^*ST6O2hU2Q^DI4b4_%09nHiKEs z`4p#``^$;X=5}$*U3{Z?Y)kH$d(&3lc<}$C{ZH{74(%*z>2r)HPMhl<6#VMY4V8x{ zE?=-xwL7u<rOE-f06U3;K047ag1q`SJ)N8!s#cO7ag*go2Mf#cE=LBX9}-7Yl!aL3 zysvS6R_%}0oyj!$xm`x|z4G?5Vp|^e>`wkAS7JU{@LY6XxWr-JiYu-wPZya*v%T+H zmgck8?_B%B_k8W;@8h<AH{X5Mdj1*q+Jqj~{Nn;I)^1#8YU`@~NI>~g(9CXy8CJHo z|F4<vGn{X_Xhn@d`D|&;B?4UW>z{1$$S_f1%dUN2lRnv&wOB7haj~?2i}DI#ri4$u zOOy0^Y7ZB!W09X+!r?M~X^O+0b(WPn)8BtiI+ntD@WImwkEcF7V02>|N6lSzB}XH_ z_8bHE2P^JMFPBV+daD{#J89ao&igDTM@}waXb2X&<dA>HDWrnKM*88hz`9=xPx>g! z=Y)A4HFfZj)^~VtEW%;AWUNPp<Do+=2WQ62@Z6Ska;t3}XUi0|H!mWNdf4q-lzdWj z(X_``I~9AUFO<}lD{vG^`1zsjxUH`Lht<8ZECB*tFN@TEv<1eCs!X~eDbx^nGFC!5 zt8LZYpp(CEUk?(0`-@lo;m7NB@3+_gF5kZUTVCz<yLaTvZa1_Q&Z&N6``l&0OYK*- z{p%ZxYh%rPRo52#F7yvy{@&IyU8bS+#qZx=O%)fdTa_olu;Pi(0malK!W?D|-9B6& z?1~K8YO?SC$a3+Qd6gHWZXv(f;+eQ3E3b&aS<_|u&tGj?Vpvu_|7y^*)8CtSGu#*4 z&G*bfA~9*^mon#d`SK<UPKtyiH6^6}h!)$`HFNs357Q?bad-*%)XnIKJv7-tErdy= ze?I@-rv*-v_wHNd{gYMQM0hIi^mi*gW+uFLIG!#x`T6Av=HyQ%-geqI?dvAV`2D_= z$=34TvFL~2%x>2BtUH#1O2@2?zs)}>HlyFaIan?8%aL*svB$6TZVNPvL~(U4DG9r> zNBWULLx0Yh<BeM9rU*<aQ0%T-6Y?Xkcz^VLlhfYM|2|#pKD}Qrey`<Ip9u`N&+2aC zoAWs@$E|UpYTk?|Gm;`#L>kNgI;<{VTTx~vf4|hNG;m+lzo%#4zE0bgv?{2@&Avcx z(ef#r=^OePFU{O|nlqu+Lzv^d<phVe2TLU8OFvD~S++4%$~fdhokFW#%ao3W;+UXw zr8)VI*L~KzRA&8sIpfEI^lQO-F-sI3ZwH*d<(zQ&<inGGAL@QxO_WyUkIGIlN|ZO| zh?0EVX*_Xl#<5)|)sv@fJh7zXysA!-iKB1uu?dE6BGWAb%NyI~FnAW&DOMS~GKyc6 zwB+cKuY9T_ymr#Minw);*!mydJo0#v3d;p2qf;j89M{r2ESECPQJ8j8_33qC&&y6< zrik|xuH{nf)ar8H|GwHluJwmy@SMVP&Kxm89S3%<TeWIlypUS%_Ir12pTCN}|L@%X z|9^gpvpD6qGd!5HagRJ7bGi-7`(}5`g&(6uLnWKK_x*qJnE!tDuNh6QQye1V_wTCu z-Db2fl`&zlaZmBe5RS(?qs`qavtK?~DYWCMY%>3M%>zC0mdQLUe6~&!@uGXuPo_%v z8WuPoI4E|sV(-BmF4e{}lg$g{RU8c^=dqWo>`qGaTzN-%skX4X`d^(7MIzZf{0h6) zI0;YQakzqMO5gkS68*i)mFE8cDF45>FY2?3^XeeAli4qH9OXWrKWipz_~3(GreC@Q z|D}H$Yto7~O<crZ-Myz?_I>XYpRSe%+$T3j_6k}~;s_Gx41VimC^YvOUu@{kCfV=b zd3rljN?)C24Bshp`pmsw3BS*ktTjC1-V_=cHRJK4z-+DnjYzZZs=~++-d^Vq&Fjve z*Sl|=R`K=IRxR)M?3%~=T@|xJ+a$J3@{Mej*cvkD;&T6c|Ig+BIrjAE$}q1F8zs#C zzPtK4zD>d+yfj!)YVme~CZXgf+!y%{U-){F&C12D?bnuB$#4EIe|5G>$9j^9VYzYq zxuWSECp^+7t*LcmUio#=wPrb%EiGZ(ha4mv_eVF}`(ogb>=qiVvU-NMPPt{b{xh{5 zKX*EI-F=ZJI&<Tl$H(6qZ_e*@wVcv^BQG-aVBIMeUDkNf=3`drx>ffxW!D^89@&4l z;{D&g*P;@8FDwn&JbBW~np--L?_b(dZ}?-6V?u4QuwZ{@n|FRE`|ShY+%7Pca>wuV zTso^>Tj|mNZ~Fh$?}!*?EiTQCoH@zL#VPPc$I`W0dvChuteSatPfGELe35fz>lf-q z$GzPClVQc|b3t1TOiuoPaxPl%%EP+}GiD!WS{$`^*3lPhC91R@x@tad`@Ln)HkBJy zHx3#-fB9$2xp1`wRo>fcBqwAxe4Tswz`4?$2Xsp88PXl4vt#PZ|NkhguUT;Dw2}2| z(}L??SKaIR%6^xhd6BaofBEtEb-#a?zn9x%xW+5Wzpyg$@KUkO5-I$F`(ynsO0-&q z-8go3X$zC$)p9P)>23-fp4N*O>^rqAfH8nWYr0ZS!!Jw4tmj$RAI*KeMy{;cTu$~4 z|NS3z$3>T1wU0ZXc+0HSdrCg<Ww*JvX8e^t7r4EXL!@r=uNzy|nfGQ#TfI2;bE^LC zuR%+nUb#ERsb`n2w%6>pTjX|4<DKy4_pzt9W4g?pC&XVp(pDsu?!~vsC9CVt(u<w> zW+xu$R(*b>q_}jNQ^J=AS^cSjH_x?17(G4ce6**^RnISWkJa<29p6sbXusuZ4Pkt+ zPQ+|k`P~~|4;SpX9Xnkh-fF4uMMcgH%(=2gSB1(WFaNT7-(SwPzpVCsuwCt6#nz*D z|33SEzy8MicK&|;&sOWNcRLkV{i?B>yZ-v~uT>xaHh%i^@9ys7$B(c3d_XhC@Aa2M zs*F<?mQVQ=WOU`co$>OnMAK!HW^|d^DpZ~Rn&xpu@3x<qp7)Wx?Q9ML8#RoQCaX;_ z_Flvyoou20<-r=sZ^vD_<;w!JcZV<Q{_1x4m+MLi!&dQGlh5!x<-DxRAP}X}vO(ka zp;hxvyB&L+yM9ON%Y2@h(P7*E_^%X~HsAhGEIqOADN_-5&UCirADQzt1AW)u-?e(J zVAlOdX=hc}MyX9}`Cc}A!?I`|W3ja<Ia}Xe?U1^pZ@Bv0s@msLT%Q##bGt4uzUDSv z>)*q0X5;BDrxr+C#CdUTvv2#k#%l4|2Y23WsNeHL{JpGZ)U`_$^<U2f`+2f3Zi#yS zcvqBk?%MwqyY^^oJvaUQw*M16?Rl!U=<$AEbN27P_3jN7yXMS1DfvNkJDb<(=kx#f zNU=TFTzR4~=uOphreZ#gLn4xf0;z&GwLjcFae8ZcSJ7>rEAvl9&+QbxI(uql#mj&_ zt4%${>~HWlzplz|U8gZWWB={d42i#9CVuB{-Mr0JI-g6|vwU0KJ?|5)G942G16Ef2 z^KhO#Tj!zLTs6Il$4;HLC-n0+ZZ8!ucihXt*<f~LbEHVNtJ@V`9*$4_(R$qXA5H7c zN<4LTOSUwF>Akr=MW)SctNO#3%>*Y;@d}uIv?Xs^lv}gtFM%t1v4&<&@3u``@35%+ zYku|fEqZOtQzL^71eU662Z+u5ld|@T(O#`ym(02QRGRkQ&&-wRk#;NJt8ywuWxmPj z9rwdt$X~w2TV3cI@c7+~V2zvae+N!?5V>y9F7o`fX_~C(?Yi{`3%vGOm#~M&AK9{O z$G@lce~-U@eZIW?@1)Bg&Tc=Z_DpZD3(K|}B4Wq39CSRVd2QK+g+Z-TUW&Lb4Vu`< z{^D1`b`57kW#NtOceZWicd(ae7Mm+NJ8RvG$(C!bAFc~Ol=5?l@Ag#}U#%#yP1pE1 zefDli=Y2buJ-u_IAZOc+<+p^6&Y8MO-{9`CJg?WYTXVcG->f+zT^h5@^qJa&`#H;c ze;hX1Jc})CyJ#3U^LqA;*EA3M7`5k4?_+rWEj8M^Dw^*K|1&j<>Azy5^0x0V%Kyf2 z$o_kn>CG}%gL6^AJyD{nu}zOseyk~Nv~doW3%Vrr=Yxl<_{Hv)9Rb(&%)4Cmsx8^I zH_u$|-ul=4bJW!grGjUAC$+9HT*KJ=+G_seFNfpz$-K9>*<&4%z3ZIg&TH>y$A^T- zWX|3H<D;Ixy6wH^Ta<3?|NrCj{rZ0&U;o^7=JWp#{rp^4PG4UB`0u%@?6qezCvFiF zG0kRO5;8yL?}|wc+E;Ex-L9P1(yw{P@}s?mNHE)l-S<qDKR<h`{qRIi=|MBqsb4lN zOP-?h;O6)Ktt-!ax4Ex;@-_8VrOTC_D^zL=&!~!IJ?lI-%R@D=bLBjV=Q-XkJKqXi z(LcT1&2R#9L)7#t!GOhY?^VQn{XgTj*MbkT^(WRv8(%oPd&!B;?0ufE#7wty%9^cy zeQ95M<z&7;URV8Rc^-Bv6^mN!=Fq(7^_nHuQtTxn&3zo!Z=JhL@|0Gb@5YVg-h8(t z^j6kwIQD5*R^M0g#iDn9*OlM@I{n{=v+ef(zWc}9{eS)cbN$?Pr*FJ%`x~feXK%lG zS)qAWT>Sn&;*Yu-i{pB~_P_tOmvhq<SCbTPK5b1YuX%Iqu5>p$&xrTe_rG?-_2mYg z^77-;m(TZ)Km0r2?%UxXpGrR6U6B=><&wO5>Ne5k5>t!9Ty+(<SyWuOD6t@<a9#O? z;=QsxU)fIP1ZsG-O$^eVz&pWIOkjn_8f}h>bDS?;NnDh5-w_bF`q145jx5oq%@<ZL zoN`67L-9SEvZjQN;+wBOjEYaptUI_&`dWs18h6p8-eoJMKG4;8C^j?jL;c_9{~wFD z?@g=Nf7KxG=j5Gr&0;tHs~yUH^mZEe^4SdQY6EZZO}XVUKWgEd8M8L`{)tfOE6Cve z^=tpDx-I7>JW2^=5^YG=F`lv@lQGI=YtU>#R=1?6#Sd&a9xe$Ha-7b*`?Tem%S$z` ze*O3O{r}yExBvfI@^6n{vD&7)2JgzmN*78@D~+0d_usnL<vYt(6q@siZqMEzw)2Qc zvS!aY?Ng6G_IY25c~&~}xoel7-J9~`kL`{={qpIkMf#fF*E;(ivt4AEG2!X7i(+#( zpWE8%EpSnGY0HL_iWi-p=ky(wx?6eXQTwYkE9;MyvAL?TvS!~6KWDY};+3{jO=;;H z59x5MFm8Ic=ADjsZ)<PZSM|cL7Y^-Nwy$o(#~NO#Uc(o2bz7II-l;KOs4M+s>yc^x z3bhw{Yf3kV>TKt++UTGDXL|iV{{2BhIrUR}+s;@%zm<1#3je_ux(N&aZZ*xwulz46 zeOHJhu{+?#8K><wZL<%qWnA3oo?jjR|Cr;(uRGSv3UlpVrtrvn${nd&e$k1oewUua zo^pKWC7i^QsMT}1bl<#vB2SOq{rGbE|KAlBf1dIGubAtfxNC_><kWrATNVj?zVLnS z;VFlUY$MaBO_+K0@Lk95ixYA>pN2?f?^e9pzIMfw)LA<(ye_qTSN@)FYphqMXW`d# z;-?JN@9D%U2xUB7A;O@%S=(^Ja+&K@Z(KT*{PqYve55OKO7pZ&Xv2Q<V-eb$yxV5$ zv!5^y|GGm$X_Dndvt0r|m>-EJ_n0Kz%hb!_+IqS?BF=v^Q^_@DCh@&$nvy!F88$RL z`lNA1=-!*vc^jB#y*JK#@^AL+ioL<DlT@!*-f<E+(m3sin*T(tU3YT6ZvW;xg(Hdc zMxMs0%EzIc;ZCcS()^|8EB$9$z4K*jXyD3iY6gy9&b_yilz$%7=-qjCL9KK`()lT7 z&xJJKAA6e=(Oamv#K%x~{pC$l9yza?Z}aNtZ|D8L&;I<$emnNxTl+tYgI-<suaA6Y zalY8Tr2KfG=A31k$ArtA<160(J)C$YCcd;+PNDL>2!r6#2@z90R=)my?)ID>Q?sQ} z@@oxiuj_v{JtoRCO|)o*>K)4v*6tbG*Ejy^GM=+hD$Hqb-pL!H%30k3UW`u)H(Xy@ z_kG`L|2?HVXHwRz-)f$^>VxX@DIL`(m+F0<b>Zc@xt_jWO%e{>OC&1PoVn&+6)WW^ zyCeTZ^R?>JD@y;R7%m6gvf6Ysd_~o!>~5|1ybCg=>Px-T!j`(KUx~VO=uYEyp5FL~ z;NFr>DeWBLY4?tO$gG>db^lM(eU`oXTm6l)@~`#px;bad&8NpsU7W=`&C~PIzM}G4 z?ui#Sr87plnYHT~%DFTj>rBsIdqy?A@OFel`tw}9Io=(Kte2S`X2c(=a{c||)33^T z|IFTfJNz$k*SyHrrcY*ggcPw}T(V)0&0fC4hQjNfc-Ap&`MP`UYo*<fdJ>BJI4pYD zwNeX$y)0X98c41Qca2b6Bf&B)<g~gJ+m)HwnlqkpGkwe0Tb`(RP5q9=6rZG55BE;g zag~!<qI2{vm(fxUr=Zt0^C!OY&d7Q_`LR&o?{()F{#!bwY?0FCW!Jd^R6`Sa4HgUP z`>zr`sL`9f!1TGt(`SAxvwJUuwMEpV2|d5zb8+D{Mx8&;9$mb1n|I5}H9<e@|6kt! zpOrf|+3FUL<}J%xb29IH%ruX?w!T0l@7d$o#@}+6uFH=*-20o^b$d)j!0nWkbyFiw z?=;)$<a*Tcu8+#Lc)^|^C+AK>ao;sY*R^9Ete);z!ee-G*BQl_-0jl*-#@?n{PoLH z>HDoKmYw!&cFJx`w13B@Wf&6Cb*yZewT#^U`?B|bf3y>w&AsVCaRBR4JGq{#Qbj#Q zalz+)?$WzA``qI1VVNACmzJfAE=@{PKXSiHBgpY}%<TD#Kl(nBTFxDOFm1BxZockE zFLZ<-a<zDyt>9q_cF|a1#ISrr$d-k@LVx0ar@vO&v;JO$59_Uzme-g4mY!~L-6*1D z>n>UxnLIPe?~&vjtv|W%|4o~w&8@mrG;?CkH90x!jENKT!<+W)Ji(Q)lK0I2PyYY! zZApBjyEO9trnzQCMt3wG=8N1v#+;XXCHmCU=o^2|-jB(>RzKU@YU_cRt4r!@7W-}y ztrX^VTO4%qlF3%fq}$yZ&R^^LCcQhWIlVMCGPy_afRw#a#B;X5HL9E~X6xhaOZNt* zZrwMzDYjlKdw1;q*VWTCjb@+gKNq=%cT$&Tw7FJn&$2w5Yy0}T3T2BsPftopJ7>7` z`Q?+=%Buqm#IC>e648>-T5vEm^_8=Zs<`g|X|dOj?(}1D;F~U<^-I&!aC(7RnH#t5 z`g^O{9E%0Bi*tLXJ#bad?_+zbQT%rHD@(Ig-xltAQqt`{i8(MQX`>F?+^I90=3Nuo z94F*yGAHl(v+Hf=m>Mo*NIFgDTDb6<d(M~py3A`-xy+8Q{w3S(5OiVoVR!D$xt|kG zzGtkf-Zne;_1OfM{ek;uJvYgJ{lVOB<B8i^a#`$NKPsY6<wvJXVVk+wqVo(7n}Al! zY#wdb)oYGAXg(3?zO=+Q?DaGYHD$#`FWRfmz5e>gbj|CRrKh&8y7=_z>AU9pKkiPn zvX_;6H+}y8Gt*U<md0v-NjmnhqP+ah`qPsRe^!k>^1k`l@9&DN`Cj!k*MBRnUB4=r z&ERVB$)%4zc0Jw`w)gM`y{L~nHpkk>#D`1zxn8*Ss_#mGv_V&_`IW~rCeP72XBgmJ zl<ayX=<z8jPqFP@FSbUT=s$gt6CW|zV~T@XwWa>Go;8ZDhK)yl#ayhKRJb<7@8}G_ z)v8lHvOHg=K8-#!&F#pPjKfB`LB}Q;#}|hB`8uqWGRyGGR>^wPR&U<ApU2w6(82M~ z^!lIt+q2#7udvR~iI+6~m-Mybvc#UZe&&2`i|^mfSfZ;Cy8rCTe6xkVs}7%4m~=m9 zXH@XiY)(_R>q@L&m3gO37K_ZtT*CE1bNT1j>b-Mcx@jG?oE#MK{IiL^_lfq82@Y<` zU%78yzCJ%Id!gZ(>2rckF{u~tid%nqQp&sqJ@++VcxKx7Ecp8P_xrx&`NavH(bpC{ zf34Z(`mU~e?;gMDm;Zj$Tc`N+sD!~*X^qxNmp+N*$+pb99+5BidfLyHm<I2Nb&2y- z_encV3aM7q*rJ=qvr{B>LaOEYLwk+7rn+8HHEzFkGU9#v+%HBdS*&+{Fehl2rOl4q zsxv1fWYMz=Y=@@aw&_{1#3@B9YTeUt(V!_oe%U=PDJ7q~gr;xN74i8Kw$<qdQ}JHI zqUI(;E|>B(9p-9n63*Lxue`ed(=@K~VC#GT+|mqn*&gO*uVVZWwkAq|BmchW>2IbV zrg<%$^(kCa)-#@|;TEIH@r~b}s7{&mO1;VLX_fWufA^lxJ}7)^!?CKxyOMjvc`f>W zpH^M6spW#<)9J+#pME}W-<?>#peXi`t6--pPwcV)|DMgi7hit(^X~EcSr_E(>*{ZO zO|)BT(f?TQn5j<qvaO4xuYAqr_r8CXJ(2fFgqIelL~Z^Y?aWI7@9VqLldA$$+h*>0 zIAwCzS0nE5N4KtUeaJ~v^O|^W<=%pVy>4gsl|NXcrCM-s%Jr?^4zf--Fu~=B|GL`? z*-nWj6|ViU^Tml%SJureef&>yDSPmiW7!QcTt{VuM1|ZP7h4;uawlcp*)ylKxI5tN ztA}OwAqDGQ=bYrY&1h;qIpT7R<f&epsEpZ<@7knE9}nJZd3r<D=UMw)Q>HBYD&%B( z;F*`soy3o;a@FJ>h3>HYad%SOk-JS@bEMZME!)gi(7t$<iEFyME{oLKUbD7KTi2|= z_EX~UCZFr4XL>Unxqf-I+2if<_okQVsuo`>oH<Q(!^?U8m){k92>X0@uam96XX}#S zjm@jCo-dX9d-w5i{`+-1>i=A@tf>9PIpx;-vXJ+0CQReJC?s-y_RkWp#GUqXmg^0@ z&w4dRmhNQ^cwtj~!e#GcOV+~Xh)+z4I-CCL89uShzP5CGm{35A?n=w$i?mFh`Dp0~ z%DoB?{>nAO^w#UASFD4*CD;u*7OZ5s;3w&0S*V+Kr0K%cuCJQ67Aj;G9^JhzmCsO! zdw1MI7fBB`{r0XRqp4;$S5MfprJ(M{v9GH#)$$kDM;cxGyy59RquDzDBaH4!-&~by zzI866$INCn&un=;q1edWz|Gf#@|%z9W-boZx;FcDt+dRdpfus=DZQRy?;SEPpPDvX z)7q>d`^v35@+Hqqq#v8CU!{`d@ci;uqqFK-EH^R@_I<zpne|MCjP(|?$xqTX=N9WS zUN&8NXnM8<pXiRSkM|zCqA8jp&9kjI?~d%d^78M=`KPO_&Ys`*`uk(QPkqlPHEo?& z+|!WoJN4IVgR1)vUw*YZ`*FwT<oAC1`i+n8J~qE5#TC9MM*nh3iPW69$x+U^^CYj% z(g<koNa}3f6_6avr9VB9>*hkawyKAxey<5>Juv(9hEF^h+}GnTI0_xV)Ah?T{gR<q z5bN%9zZ^w=*lpz6`DD}2vaW*7auyH0t{Tg{-n?bcMv+_X`#;W|^=+x8N6w++xrYxV zEx)ewr7P3sf%M`((_%MBp3k|~Z{C~I{bsHBEnU9g`$F+~)or>LefCENbSQJ*n{j9j zci`V%iBQ9Uyxhp$%Vu;ey2SnE*gp9m-RD-XIi+&Yxw*79yfK9<`^B1Xc~4{)Zaw!^ zKi*#V^Oc_$Q;wdx_?kOd;+NdqSk3Ek9@cJ~GX89EHre`o>%HiJ%GhaFzCJdPS^L$n zRpMOhCgXDoKF`<3?w>u4(~@8G-IB|yI)<`^1&151d;7iq`svp9xvn2#?R~EYbuqpX zm}VNi;{8jJZnJ&HbGlb`bXy8WfBYmM?_Hwyp563|#?r=v3qS7G_<d}Wp^Fh;r=#lB zBqOz_i)yx~>rC-{9oN;mR@^K)$V{+%|9rQQy%v|mC(d=B`ABH{_sF{@+R+^6pYha1 zTV?$y^)t);o8PQ_rfr4Cha$mMGqX+~+5YR`?Dw&O=FfJ89AY|q^u5?O9&@?G&!_Ty zf9oD>ovjkQd1A49tMP|vJhj;uwy#Xmw9?!Ww&IfHXTPcH(Q2AIW+f$@Q+jqHjCI3a zH__?cNj;oX!q)9C-n-VLcvsN8HJgv^`ui|8;++2Z_@uVo$NQyrY*RlMRgy9HbH<+S z+t?4B{>jO(l-u;M#ezl4&)XZ7aHQGQUds?Tb2_uqPQCYN#PL;S%lFCedA+4+PO#cN z`EMJJNLVg!iQ)M)$wJ`WUd5@J+e>`-H2e20$`CmE(Be>DJHuD|^oNX3pPo9Z)qB@q z)g`9|J9P721$UjXiB4Z@?4p~0&?IWRN?Jnj`ei|L*x&!LIlsK}=9|~4&$M(+J}&dg zx+nAH+7GVig%_Xy&<%TYy(a$hvENrb>dzLgPzpbItanq@<0<(~Qkn0)ZpOTw&9O75 zZtGct#Tf_AvMy~E%v0Cn{Jbc2LtgRxv`fxL<wg;V`zK2M+O$B@s`vP>;w9lT-2#2O zOJs~xzSf?*d|~H|Lf&l7Z1b|M)*tJ3+DJE_`1$Yd@j97x*Dv?m?|oCYcx!yer2>m* zQ?w$uKGxU;W=84f)_(u+@Al!32P0R9R{Z?r9FbgK@&C`y_Bm7Ef7kbq-&ePn>A~NP z>0XMH+-6@&$`$C_7I%1$%hVHEQLU2}uHU%t%Q?%P|2IlLPMv7IkR?zm-SpDE9p@sK zPIA@ORNeGZySLT0^zb=}_zLNDUFto;LCl@MWz|-7NR>LREvmJje1-9Hh2SFh%X3ZF zvIGR~WSwfXB0BuAdDjcI)yo!H<nOELU0CfcbvtL`zn}HL?$=+<&Y$PDmHnBSMb&1p zgU4R8FfiZnh`nv!9DnnWm|~C9(HNtWknMt-D(p{nL>gG!(O4ns(w*#Uz2KJQ3*Bf1 z?gu>9Itwg<ALOp@Gi2Xb5f=4SfBwIyqB-l;CtM7w{i)OPbkn-b?;k#z*Z(MgetrJ` zKlA@jlHB+A-Quu4>%0}`>4|G?(fe!_?-etZ?f!eYeLwFW{{6mf-|5V%zrP;uI&<yo z^5y%NPr1Oq{Q2|KKdbhwJ2&$jQ&#F)xnFwgUZ>95Ro8xO;YRy<Ud4;|ihF7zqpq5| zHg5kVWg*PJ!&l*zVqn$_>-KH$tKZ9b9BF<3%k4R{L!<<|p3XJ%c~iH2jn&Z9JCkbc zmvLo|nB0bm{tXv5nR#srJ<_norE^WrvaEdRd1Y!+OF6f#U9gMs!R+m4#F}^Ww%q=1 zvYo}~tJ<k4_3kVF^sZ}vG)aBSfhxH?&Xu}8E9SQMvS~#u|L3d36#44<Vy65fyo&#F zCS5cSUv@~>c!{CL0+0BOpI03}>Nw4y+g4)op(~5d&UJhJJ+Uq|=y?10sF|O?u0Q^_ z`K8tVYKN(Q?<#L-Zm%w{tDWVq?qVU=FJxk_^~G}C^`}!L_r5O*RLpKKDapIhD|YJX zm!DO?rW}4$Q(yUW%A`wqbNu6X1f1#-+q1nkKWDFquYK9)N17^++ot>|;e5WbVVRs^ z+O}l^t2MQh-RcydZZq2!bs{4wcKVgltv4@<-gD?v?PzUz{jJVHsZGRl(dTC`Z9;xz zPJVS~$MsX)zq`)_?@*Fv<?KD3xsu=eyP^12&Sj>pLY`BnEx-6LUaZsR#i838E%_6z zFZ|QKEAwfa=Y?f0H&e>KCQ9Em;hvoky?u*e*4u#F%pGjrEZgsJO$m5zc4m#LSYR%< z|2>Uohjj0j@$^dRr_JO#<6Em<n4(nF+<Q`$hk>CpY4hUtgAHr%*08y?TC>Q1Ssj#m zW3T?!Mxn_0L6^T;y?b|8p<tQatO7gR_5i0}Ie!!Our^d$?XUjco>%hv^7&H?vmK44 z1A-&k{{DUc|I70B<NXXD{yc3j-KQjSy)<!N#A504!nu(vPk-fN*j;!=_18M-<8j(s zb=H*F^JqQ)^u;Llx$3hw6Q)PpPwakGbv8;`y=B*;1?EyuYl|~xoU}AvfAD?I$xhGm zd+i>YYz*-x1%|68ENSwNj}#K?F%&J`dTi0gGpg+lQ)HS~i5o;-*1WvEe8Sdqk?vhH zZ>y!Bw#b$F5Oi-E=T~>vBhd<G9mX2@Pgb7Y7{zy6?85%er>A;XZe4n$yLypcuBzIB z@I_JiO3P-y4C-#(*%%u*GyH<f?Ad<BOU1>iqZ1YgoR1P#TgfGQ@W8X6#R4~?t0f*J zn#^6BzuZ{twB6)~GLaJ-uIvulRJwaZ9M6~RSqI<k+E-VV8SAlmDN94<+@dRg9~SJW z|Nf^m?)nDnJ=S;buD|YI$XmQle#&&kU+@3@$UpX&{q^7L`t|uIZGInY?n;t7aQB}x z&%>`zpZ@u^bA!~e!zO1}y(ql%wf6g`KdLPmx>4y)G0#$krUdacT;$x?a>3{_$JA-v z;or}R$*#3vUh4Dsf#&nl-e&X8F2~0;{%uBqdtEXv#t8J3hDk+AuT*focq3Id?RsVU z-iU+Cy6Un!)fJWsc<!DO-N6$jdHYns;y9tCu4^u8`_H^q{U|kQ$w|}iOlPCl^zp<? zJ-Il0fkUP;$B(o&X5Y@r;w_i%B;DSARe1l?;D1WJm;ShE=DAhRs-J4HBlK(<Yt-sV zEBpVa%{g}4$xCs?-s8Xby{UbburWdVT6TBrx0D%EnOEPqC6nwkaf;piedjKJeR%kN z(wyLDc@|fq<{OK>YM(gson1}7z_d(FSLxS>t8~4V@3GlGq4eFm4|%hmPf)sLw=8ew zvwMf@?i=cQdo{%FumADu>*deW{R^vJ?NR2vce7IOvBkH$6Eq4tYx6J6n4>l2opt>_ zw#5}6c6`q2oHR|fR>x_julX#?qWl|{Z*|u1tYiDVF@Cz{vKKO{r>^lVFnG$d$acvd zFD{kn$AMiZrKX+P`QE)*>uBieq_tP)u<8p<Ia;uMiu;yj_iTNP<W?@YnX`yVfboF- zJ4K~^b&~_TXU`T3e&CjP^NeHOy*W~?t$9;6t@`;guW;(^ttsZgGdJl@|G}G--#a-? zDA-f%{e`mcFQvn?H+ST61|H%QYyEI-f9Hj#%S6Ajy|XHP{^%ZC{@Rbs5$p*pcLLvv zXK>F6;+ZLI_-xHVxp(`1u6Wh`WV2BY8~2J!Gre~H{&4(fzWvf2BEHYBi}#krE<g1B zZbAOXnJ;fX{_yKhQ&s4b`1$+#b~k^Y%l7rlSIc85yXU_B^7($fh3)^IT{7?crWCzz zKQtlv-;amZCTs_v9n3bc{2Y<LVDjsj`1wM8v4M-8h;2T%srZ)E-Xd3S!(eqg)rJk9 zC7i5!EWY&~yt!~~?cT7jo4LFVwiVyi2sEEl6fx~WDf{DcO?RJ-^LPR*&obB+E$1>k zIw$60c;%72&;4OH+)|z9Wv#k%?VQHOlDj6;EzLjKKi>9tXXI(FPOf}0i(ZpBDS@!u zCA%xnUHP9gOY!4vsbcO<t^Ea=Kh9S4M?RJQ+qAt{S-JgETiNW_^E>86_*9!rn_akd z`-ehy{=Baime~g?A6sqM%cPN{yE1$Ivs-f7M~~i^%j08sR3<pYGXD9M_x78fWmZZ4 zvNbyTG;{AhzQ=pbx=f#$yzl@0@k0WSp;U5=+M-GC`43y^|NQ#1q-v!tpYFAvc@^hR zKP~!cs5d?D&G+50&l`EZ{%${C|No%X-u?Ac5}hLS99%2k^Ga<=o;gi*No@X(HS4*v zA9n@q*83V~ogQk|)p|UcYu2KJ73`YNQ$63m`{kthbj8KRSMri$nq&??+9h~lQIJO9 z2g`GAHx#F*-g?Vl`+jEb-gu4RlVRBgY;V^k=$9>As-e4VVbtE4t4#NqUHQMSRJo|i z%&9{8htwMX^?#iH@4ab|w~_6VEvIdD_aT8BSDnnKEIQlb#%7tCeC^J&_FrdH++tMB zh5f#!<uY%*&s_U>RleHguQey-Mea-8tNyV}zdW``Y;A4&orF2pHCT!aZ?iuReSC9T zgv&yXV_HX3*v&OoUor80{BHKge-A%>+Mah~{cDkF*)hTU>($F_WM?GanEChN!7^Ki zOS@98W%A13d)w>yEOXyJi|wbib|tb@Tg0!^KX0G4<^4PPZ@VAvcpn_YSI(cv`>?9+ z&kyV5-p_jLCUSp2yl)G~szdSf*4x*3%D>;G>hSz5<AoOqw!hD5Z&(v*8`Z()QD%L? za<PT3qR6YZy!8!!*I!@IOx6{=x$b%C$xNm<OLvD&I#(sI=;$sryZv>culBvKUY&dU zwW^Y+crW)ZzQBo-Ja4D{TaYSnz2s^Icks=glzTFE55iY4<t<_ft>e5`_t?=i&?8e= zB5jjy=Z2<d(xx${$F{H?*=BR|5!b8-^UaeVZYx{Rw(_=@qg27AwG|(?ox60)dXMy< zjqT06d;6qr+&K4*{W|ZW+0W-po*;OKZFyF2$<k}l!TEu6CrmBw+REuU^IZg2>EFbw z2Ren>b7iONa~T8%is%+;zAV@g|17;zp>0l>gUPj{68_UqWXbV=KlQNWugQ7wYp?$O zvv~8Z{UYOse?Ja*&7J?R?EkyJe;-#rHVNi<z4i8e>)p}MHk*ZMc!|cipIm6mw^e<s z*za>)M#rWH)u-Lw=6h>lT6U@VjTy;2+1GC;?g)=MJAI{mxhC7OstrY_W~Sx#e0Y7b zVf(tn>t3Igy6(-j+0<-y${fMN&(3U{7av>V<&b-m=aj~Ykf4)q*&56?-A{P^Olh~} z)O@vc^RTqymy=B|iKSI0drMyNxV=%pck8mCO*y*THC$?qf9Bdqs=n~b4Sp7s@_fTa z>(a#&jSoF@SnTqejceyrpQHS{-`)QG@!y61eQOVda=)5*=ia2`73H~;Ew9`^p0P6c zf=#!!27kzkxXydaJu-ezN$z-ER}*nqDCt$3b4>j4yM12s)~~;NW8<dx_J7LizrQ<u z{{Q>enXK1ppO^hsUUB5sCcVQKR!`E?pZ{y0`;o&R1xsr;{C;ffwAW#O-M^joa>xEA zPd@Z|PR;e5dHZAZrldVGJmMmHEGqr#y3faU$%Ma;eO|k43FGzDGO;<KUnMF$Wi(Ph z*d=LLKHswG)Z@JQK{3-pnQn@`K6ZA`x-FJ%=Vk`kRKB0H`2z2w*S(6Y5sU%1tJI%N z3NvGjarolpY1N%FN2>LT(*v{i8<%d$>Y4XleI}qauRs6Wlch%wy^QwwW_H$8MchsI z%-5bPzh;;xxo$3U6U!~QY4x(IfX6}b-`qTbh~&p%CPDGLD-(>XSvPh%UbtZW*J4+> zwZ)e=bDXjdRvD~&RKHa8sEGdTL+gKfn_NArc52<)B~FLcnqSQ@3J%y6asO%1fr>22 zw67Cq9sXP1)nTM8wNSpl|Nei?mZzVm`x~Y{+ak?=zhBd5*=O1EYf4L}dW(r^x^x}C z`{Ql-ean1}^~=|vm&!4(JG|h}4r7i-!mf#NT+=_kyZf}nl|ebG&ot#ttQYInS9{f> z_I}O|ocPHi;&}pZ*6jP@+ZgUiE$s+un&i9vefw{L_|UZv4|rMbkAMF8nNd>J*{(;s zS|X;rT4Q?4bDr*zEfJfHSPK){g1Dzea0&*mGw*3ywk~(sw<|xU@0odU%CWZ-8FDfn z-|YRyq8t17zxbU?&-9L6i(^Q=J+)}vThZLQ%qs5<xphakABkqW>1#a6%lEEQ?#@NC z`FV35?@8OZv?q}5#X9qT>+<KDn_X3>UR(3!Vq<cO(k0d4sK=WwScNmRUn^-g%smpo z5c69#*)zjRZ(@<qqSm?3x*b=G#OP1ImCkUj?E+t&%@wQa%1E*39e>`g|NrvOuP>jz zo>c1FyT5wR=fii6_Gk4z*W9!JeNXS}O=}b<Y}^0)u>8Ld$L~wERPOV;Z27#a>35y| zn`7JfC$VfYZNIvx^st^z;XHBI$Z2`ER`7W7?`4{LF@&LH=N028F1le;;)3Par)2Mw z$X1b!Xf1u$X8qdjh%5J9y<;y9lpn5}rzckvW_f&T6HBt@>NVY^Th|F_v&c_lC}6!U zDRXeiHeMayqf4dYE^f)?&aV^Nzs=^!S^waU@Y^h^OV4gx;`^n(Hm@fmZ|1Gz8!bbm zLw7GcyPvo9N$>4Np$Dh^3#@+l%v4)t!S(_PRp}tc_?!r5&7GHjU3_jkpT~1m`#ZsE zldv_jwM>@EJl^%pG-aZc<@Lp1g?RW@-3$8q?UZJeb)Nm|wmCnm>O!5SJ}qTzz4m@i zyy^5AH%s_;#WBCD*)>Ohy2)RGmG|~J-<Oqt*MGeHb4{4gMeEpgdr$ViFUxwPcm3z@ z{QbWl%hyNGu&@7DV(b6-<HvuyzsKsUZQg3b@o0HSQIg*C>%qT%m0HO4GOt;iST^@% zuH@XJ6%LCxwsEh|&dqh%y>89HIY-~_PDy%dEq-nFiIs<T#a)nRDCxVkYh78!Lmk7e zaw9c8sa(y@;J2ZjjuT(i@Vl+5s6AM+cjJducQT&1ELrA!X}?i&Xh778*#aHCnZ}Qv zNyP+aN$>tMi9z*m(e9it(%Ee{1J1eLcsqM<P4=Yiald@!eolK`D1EbVn#-+AlgvE+ zX)C_F+UL`k>n-&B-mG%luU}ZKv~9BP+<chv`(RYGx1?&I{JGO#oD4fUE|~tZPFkC| zV)i7PjD=^5Ixqcq_7R->_E`Dnl6B^(M;rVyljrV^Q(yRJZN{GW<+W*xRyt2vx}Y>R z-zr_S_3FAvNoBQJYu?|l|DON<;o-dUInOHUe%kn7&-?%I-(&gee2ex}%k`JHeioXM z__oG(`Sa(~pU+?U<nG7)fA8k+TU@$r27mSC+c{Fwo)*_u2N*MUZT{M88W5-@UO0DI z${gckU8ioXzg$}KyY5E(B_9#3Q^sYS7b^|w1bl>x0=LcM|2Qk$>}e9?TIUTM*Nks4 z&6TK1*_fE1rgm`VC#~jNGKY@tTw`Y;aA~DP`n^k~q1ijPrLHJxE7DKo_7<q!nkl)h zchQ}kHRj!=A8RJRx-4^JTfN#u_K8Q|Z26~o`N=WeJHK^b$4jTI^-6#E_eAv`i8#yE zOTtnYPe0#0vp9<7PV0_ynLDRU>MeEUn>firvRiCR;@pcro=Ju^?okkRd2_s7B3$p* zuewORTM--Px^eHYtN&SI!DGdK?dZ>QZ3eOHAMZ#%ckMvM4*6rd_2ccHPMNd$*v<`C z;-8<Me);$J@5jn^Et>JSpeDZ2Yu5D3_w_HAZr^?XzU?!a<*z*#-o9V^_*Y}mo_XhX z@BRH@$8PD~H(66w?36S;az@qp+)c~gM^iKB&bnqPmMR-?GRf;KhnrPQN21X-<2;=y zDjRf^UsT5ZlDj42A|5e)>1VbJOcJjRmM>AgaDm6|rsMC48<RKa@|}>1b=h_4$-yk{ z>le0v<i78;?~1O4yN#vU`3bo{_WykR|Io5k?QUu7qfSiUF2R4*reBIrcmI(iTVuDG zB%R&k!#(lEv-8Jmg10mz$=K8wuTtJuWi?eOGJ2`;@uO>mCBl~!Pd%||j>a|VYhNy@ zIy?(Hbf+=2XKCGnsHrON*D*FH?lZXj?p?B%q3}tCdSAs~4=;Rmj#$Rjux<IF*z2bs zn`@jn_Djy>XQKJLe*3>a<Dc*R^7x@q?XyD}HM!4T{`qyN{!jV;-eY#EPNKg1>}r2z zKdbrv?|W?hoaLWa>zE#W>AO5;-SyL(d=zEgmn%Q_=IVZOCxcf_XuYChk<ZT^myeu` zPR{+?5VT5l7h~syptp|J49SnIqTA2$Yx;a;bzfi7w&>8V9qZhAx84z*Yh-!-G%v%x z*P>ZTOV-5Ly3f12?!~;Kg<|`3gWU2O?SxLmz0Y2h#uxu2=8>AEriysK#QCe~oeS<C z*{m|%#kg~-)FSDl+pkRt64cwU$!XSq*R<=)nv&QiNGCtrX5xD$->CM|8L_X4Chz;- z?Pk97c%{C2Y?4<cr}owCLtH1il-{^?3U_79k?hN`w%phIZ%r_lp^wP4U#SP1*1iuo zw=v+=@p1;WqYBD}eT9lzTs*rPxz;Lr%`|yo71XBGyIYy*_*2mU*?0G!i^Rpn$NT$V z`zmj5#})2y=j3LkpvyA*|Gwkz@85m!$@1m%CC+?&SbZgJm(BjVzlC$xCC)um71-6& zy8GAl+H()T)|^b4vh9*ilv0G#wy@(<Ry;Y!v^1r6*^&;27I~fyt^>dI+)jmbOk$jR zxi!ckIr@aom9`VjZ;h7fZ0?M`Z~fe3>V!u&XE#Mk$82Xe=`vcrqUcJ}*^4cnXZb$% zN*=cC%<|}VnZpuL<fr0&URTa>m#k;+WWOD`0?~)>8Qt~qW6bi`&l0{nr#R>4DW3mE zzGC49GnFU1RCU~0drxPl>T{v#_ileLfBg9FjmUtHr#^GO2+?@9NcrlrV-npNT1jV4 zMyT%>61sZcK!>|HNHekc)^jJ--F4gRzwdo5XOiHxa7pXV9q$~L>P!#r>)twd#~zL_ z{hZwOk;i|===bO8M84&F|Nr0g{}um#{C)WE?#rJ?%d2@SZ1=W3<yv*-`SrRNa&~ng zs?(}&-+dl5$MpGi`J@?1I_snzUT^Trwmf@X{Icw?!_E5DOJ98XG%NVaJ^A<do^F{p zzg~&&(9dwiXA-5?`Pr^q7UHj+-D!NSTD4oZYVQZ#87?gy=f1Z}1hhLO1a`~!HuYJC zy=a?jqkni!u;16K8IJ`yqobHMp6hCU>9S>|(T7D@+LyWiOL$$}vNQVRU&WbHM)K?U z1zR*VUQTV&d!RNs_Xz6^p?~=&6K}Vi7dW}EG&;0XZrc*2W5NZC-<`VGnP>Lv!Xxn~ zGC|$mX=~qo`#XPM^^a$XZ*-2o6nT`blm5~8P>g@k#(i;9Lb^h?ie7z@m79E4bGu@& z-<0V)<sRJ%&wBqxOjX}U*=zH<@EwbNEYD5R4sp5de|fo&C=aK*!YeK=L$Om_5<Vx> zO}>>>)qQ_>|HzN^hB_f$w(Bd`F1Yqe<gv}(f8WaY8?W0xC*HZk|Ga;841fFLYnp!g z8DHKN{Qvc|dt>e2jiS*q=hx3KKVF?3%cZzxvgxmfA9wGtJ6ft0xp`6Eh7PSGGdwGk zofS;J@=kkOo*Wv*x@})aX6d=5B3efT>x&JNSFLw?S+m}2p0mLtwM%n09B~bn<UPhY z*FVfnF=bBpdpE%|(VW6dy7Ej#vf^BmJ}Fo)b#lFX$GG*1io?@q^VRM<Jz<$7dP`?x zc69HmJ1=Ja@c;jK|A%F656&KPGdH*+wNlMFv!!6Bu(#u49lre?YXo^}cHI9TzQ6j< z4+9=PjhIhgI+tCaw3sC|ID(l$D%~`P$065xgRJ@KNUx<UQs*uEeAy`0$zx6T_iNVu z=e&-;efoU;fdEgo8&>h!Y(=qt+D`*6s@+JNAp9)daBAbBRrlpzJ4dWPU9;_)^!<3f z=YK!WzI)jG`gH&2mpixK?cFVMeUIPck9Yt5=v}8ETmHMf@J8T{lG^L<`!2suPyYMx z<97yu;C(j#bJkpqdM-0}we7|vrYBYXS|KrWwkPeL6u+(@vMK1OlyM0cZ(Ws_*XoVs zbKTc&%J7WznP)JW=j4hcPS#kl?waeoduFO+ZG2{&U@gM#F5*~u+H~s2l}sAfq<H-# z{aJ6H4l_&Gd~}gl@@`Ap1|7yk<K=ai_vQZiG_7eb>w=t0zuC8rY>}Om7b&so>7kXg z%{DvU=1DSIF>ANi-b}B(^>Yo6$(G-3KYq8I|95Tp#iLboub*CSGhbuUkvTzLjBAXy zg=d&NpOoCh`l#ueXwoEQ1OMkQ{~XcWlE&X&?Vz4g`)tc5rPpOUl_Y{Kj#)I8p6h*G zqttb-tZ<jwthLfdBezX6&z{re?Rk>-`{8$~aqB*R-FkoT>s=4OzP^9#@ZpDt^WQ8# ze_5o$obT@f3;pTOeJUlY*IF<7S`^9tK5+Kw%lCKHZQuPnH<9Ui@VVW;zfWSCo&A4$ zm=OQU9p^&0UuZ?Pu$sgR|NBw8?L_m{y-&~GblKyzU^S1F*0N5+YIQ-6jK<9@G0IOL z$!y<}sTJbr-;vwdlkuc?+cgt@UrvS<a|0)>tWWFe>MY7hb(xdr)qPX^@L}DINS|q+ z%_N@n_N)7LY*DHTUa|G;qB#;dF>AL)7^E(iJp9a|-k6&;Ah$1OcXq}%qpe%6Mu!MT z*?xI<`#Zn<J=u3|?|Xu#Tr$#qeqJO_LtJ$h|D%LG*SF>idChom=h#89%F3?7-o(B{ zvtx!;>muBL?^~}Smt$*nt7Gq$iYBSeF=-C(bHfvh=G2yRT%Rs*?o;af;&TD(KXEmB z&pcd|RFL=o!ujV0?28iqPKd1i`@8<8{C>%A<%)X^jH~3um`tWD^NuJx{`f}uHEG{h zfBqzIzyJ2$UpB!@LQNgksju|*>ZNzb6}>+hwcd**H8|rH|M%zq-ph(U?D}j}#I#q9 zBZTLLQszmo*;70--&qI9m|7{Bt+?(Jk{`eBdivh>B5wZXUyUJO&d7LbX14{+R?G>C zU#6=RTl~mLXvrqSqqpY;bnXk>ULJV$*`i3V)8<WQH@oF)9xs}Z*AlRgmEmqp>e<=h zCv@{1J7!;4rr-NL{Ip#5o~0qz*4J9R`S<1H!@GqtHVP?TN2UaOxHKMFBXHqlz+THY z!rN|a2@~{fU&p*9#(wUaDKCFH=k9r|Wo0+@@~aEd*O?<YjZ8&PTW^n<*L|sOkGAHT z(^tQ{C;zG3du98Eq*-%5uj)-!YhLjynS)zntIlVGd%D-<d7a)`2E9$LJ@x&)U7Y@O ziHz;V*+-vTvzl{$`TqZ3YxdlJ|6TcL=AB-C`Tr>l^Y{PJJvKx5?B|rZ_V)Fwj-Ig8 zt9-F5NNM@j01Xk9PI-IVi$A60+zPhw%oUPmT|LEYf$`)N83(;nmEw<YZ4{pzeNuNq zz@v~XYoVZZ$9*4lXim1!*;pDj&oCq;-74%>)Ov5RzwOI>wAPBPG1AlOcr;h}$z8F7 zp=R?}NPk~wJJHPX#+jp2vo>z5N)EUZyvX(C<vAZsH}7OE(|oy!<=7Rz8&S&FBQ|?x z&Ajo*gE5MC?#~Y!cHiH9E-+Wfx%S&v^~DR!mFtvkk^?_ZQ8*a+mZ#aR``T6E!>gJ) zf9;gmGVQu+o$0iR;v4LkN-WR3C_h(v?bgp<vywjC-8V(%T6gK(x5rBNUGtM(TO9j1 zc7dTnlznpU$*sD)*STL9y^$-LalEkn=a<aboG9_N4<CMfe0~1^XLlxE-LkGwqOWt3 zp-JrdGhg0*-+y1W{MxPS`u0nncIEX<Jbw7`)1U0F#=m|W#P9ijT4+nxs-62bMmt%> zU#`^Kd;Q#}3kyxHf`jg9Ed4$=(kW%pt-P+|6ODJJ7@adH);ij>@mPDrhJATf&x|Tw zul3aGcAezg8FODUS(Rx+rIKj8eUQR2kBh<EHf89YxtVbC)wH$iqeC9L9lWc=r6rdY zcqaek?d=B48n49Os2T3u?qR6Q;>>)mY5TI`W07C(S$CIpdrY?XDB)h4%zUf*PUVMb zPZkt-dD=v6x*>aIar{Knuq|_g*7R<<)M|D;VawcA+w(jPj~Glplo6m%t2Z-5b4sz{ zjH#zYHay9zNZ;d~crMel&fmo_CQCOtgh%sSZt=rkk2m?ue0BCsEPuw9b3rVN+|DT` z8&7q){PphVOugbWuh-l?_rq>!$&TuZ+N!Gm52Z_*O+TFdy*p82?)}x1^!4qR8qCfU z-+V1&=aWg7|J^N5+;`>ss&830{uC8mnf}>w*@6QpTx=BuZ)%fIpHdPyyW_RW>n)mg zv)CNO{hC5|i)e2!Sa)wu>+8)Yr*O^Y%A2dMwaYHSFLUeH?;o#~i*g+mNiLdenvmVx zCAC0e&Dv?2X+l}4(wDNX_*QD?@w{?#5H$U|cJ8&=PZm6lIxW^{?q{)uX~|a0zI)|m zZ~k1^dGGc))2r^@KPO$}6%@{0`B`<k)4F{(#8Q{~>`H3-wQ$MO4)x_ir?&?c@nj3y zpO#53-om23PA6ockKe{?Hb=hci~9vs#7@uL_r-a?|7Nx512^i9yL`>LX?XmAs^W|( ziwo;w)gI1U{jos3`oGSiA3fKu#a;aR>Ql&V2PFsT=i<F-E7Bhcowr|Ex8dA=yZWF9 z=ciw8fB*l-&(Hm*XYI=S{;BGlZEz&t+gtjqz3Fc(*RA+mQYZD^?ukg&{dKQi*X)f6 z_B%bvuD))U^?}4YzS*rif6r_8i@9gI_-IT#r^woMepimEM$8VWoX%yMu)5R4h|xi9 z)1ku=$#T`nEo~>wRn3+z*|KoTn$5ASpRTB6DNVTTBPHO~-gV^NJg<{or=&~Wx=!_e zy>Ln4^t8Q;e}vylJ3Dt@DzjPQT&1OF4&S{{T`#eFUtIHrJNH6PZaSdj6&H3jXW|Zn z)LiSwva{OWb8nbvT`YL-kM0?3cCF5iEh=-3RCP1rb?$mct@m|QKepBA%_+x1k&_k9 z$8~jBYPK7n<F>ytML^1MW88^lt9hMH9;?_iH>_%wz7p58CntCUHkRd@7HQ=ko7&6y z`R1AFzrXMQ`*Zz&OTYE+{yDzPIs0(a9B<9J#p}<{m$$E*Z})%7BgTIBRSXWTM>uLD z7B>kkTfR?T(o}2t*4{+U*HePN$W5=Tta;P_TXCJ{@}#v@Hrvj8{-qN<vBw~4V;zT< zsK?hUDb3T4ia1}2SDn98V{Z43uUSd0$AqR%;LLq*^GqgxS+JA8hBs$q=dI(B%Nf0k zt+ZzrU+U`8c(=X8V&c*%x2_zz%{QyN%KPrhgq+n$(VMDnd%bkC$Wd@Vw)fe`9mV&q zlr6m0zs4&h$wa?+<^fC3|HmF33=xTV%YW-#q~oc^*R_%UJWn6|+Iz`r&B6kw`_s3| z?U>@MDY|t@NVU`AtGi;R#OX@s+6G2l*Ip3VmF#25zOZCQ-5zH1E7uRoADL~kTtv{9 zvEy=aGOw9F&)Th}zh6IHy(ovbV4{M(Xs!LTudjCBHHv>~Y?N_4asB$`^MC(6{P+0# z{eOO>ci&sIaMJI@`N<XE|81ZD|J(H6$L~iO*Zuv)vf}+IMn}tf@y9*Ot{q*s-~IAY z55t(}FGXK}owjQo|Ld)vGuHTPwoQrn+-{xRQ)k!ucR}#c-&q9`OLjzOFfq6uxh1Na zx#FwWwymB%uF|QK@ASE9M&B3ramkL@^6p|p?25R1tsBbj#daj}W(N5AWE|n!akHso zZvHc~MZrQpmusf~J6iPdS@g9>XSTboRNe7n*|)I#cS5&wH|+GBQCP6<k@!-tgur#e zx<#!V`HK2?a$2=4oG#ye`7UEm@G6O3&1I#%Lg`QE%1+&U?CY^AhPj8V=I)E}_b=QR zl^&_etJY>Iyzq8-#Wag!s!K(0W~OF6Tsq~j*0a;Ku7RrAkEP?Ua`2n`UBC54DWEZR zA4lt%=LKnc3E9&AYm|@YU5_+hcU`~rKvJ%+QRibWX7O3;*5502Q)`diUten{dRu)_ zd;9wj&+YC1{$0Ox%IDY9Q>%LK*W1X*N5<~mteI*r<E59#`?@A}nfKp`DjOBsOqZt| zS+nMw`!QMDH!(jyUKSDNw|#QP_np7dPII=Ry}T{kj_&%m%PrP<!%~JTMVHzNRtjht zERDFRB(QXf$pM8;5e{v0HaSZDQarl!oA1`o=iDUMI^@(vw+D9_amCs?8wNZy@72AZ za_hpSaPPw>eyKgU-fQ4@dtcCkbG^oSS@x?tH3Q;ARF~~odvvK?X33*;6`eTqMe^JZ z(^g3R`QK4>KHhthj=jzq&dD>c+XSy$y?goY<>_T-_*gSHs+5Vx1PZJaT)?W?C8XfN z#PZ_*752t>7f<cC=VpD(UA24Hnd0kD&Ymeycj^%S&YS-1@PdG^XU?7|u2VmEJ|M{1 zcCF#;x5p$_zir*2l4khvigDe$=@)&gd6vIeHs^w+`y^e_yGNGjy|vpNcA{#@lq(ue zheZBNNt(WU-CdVUAJY^qjxg-vw>!5y`q)(2c`Z-nCQlB!`f#(^w!KE$nxzqa2iqSs zZ*%r><d}A+^F++gg73F(m3~rQ_FN_;?c<jDYYt6{U$=hV-TQljs|;?HtS-GCtF^W@ zNKrNWn&PjUz9-vL?K}dSyewAhvMgj*{9<%|=OTlPuWPn<o3rnU={_pHy5*wC+aq1q zE-5Y7cp>yEvh7UvPPUt=MV}sS61>l%%9N1cb854^!D-dj0~||lu6yoP@mwN#Tl{6V z4U&2yoL}}Wj|d6(pR~cJq_l6{;u6JQ+bxo%mmFa_)sWQxDgUI#%ie!B&%`PmXR4&P z9L^9u^D6n#3ojl^_f65+iK(5JT_-W9dDgJpS`c#f$kszQ53y9OZt%SQRXbbM)Nn@M z?w17@4!6eU9*D_lfBo{uzl#6=3)OZ%+$47U(4O;KgMO_{NJ-Fo<o}j!uII{)23bE9 zUd^61`)1(f>NbJtmzk$u`x4#5eNg_W#EiP?J9`7GCL}nmWj+3)`CXXm?{9n)uczs9 zcAOU4IK}1B(%S1UALq&c&5}Hx_xI1H4NaFKYAZ|c^1EI3n)!UonaSVtB4Z+sMTMlu zo;(+o@kI0F<HAQa{IR){eh1g>@BaGK&xzN`Yn=+KUOG#t#@@{*ek}|7<XY=GHAsi$ z(@mX4^PD%u=87sFU9feP{Mso!*V|_~&DGf=yG87xevpANkEoF6)a--HeoUKW;ePSY ztl7;fCvAk1g=Xo#wJcn!a&HOer#Tn=uV*@KIHRex>Sw?l#tP*}TU%4}?yUXAaO;Qi z){Lhs{;epv_PU)pCL*hN7SntuLDd~QZ?D<9Qo~2X`<UP9nyS+J^6T++U!FAcUpCS% zt^9kj|9<`7^5fgv>wf#(%3akQw&1jo=egxgKkw-6KWV+lkljbmCb7|K@e_$O9=%D; z1~V2W6r7%D=y7s(p0A1FVpIQ}SCpsOd=X7<y?OnTtpDL>hkVOZb#C!otX6H9bmxmq z)63nN^THl3`Ejfyyv|N4x%_*z{9~()k!MbqFkG;7eLrpAeT~&xQLB41I~AYm+<i19 zWVP?~q+jp8Ndzr+@LKv>Wx0l(>9x%Ytm$4w{@c1FXYy}6<PtecuGwPyS5aTli}R;S z>8|ho#<-%?RaYUWE6_3ER?{oVUqVYZ)LQO#IoUH&G?-B`{j|+a6YsA2rAyR3fBN1? zThVm3JWk-OdFQg!mC3V~NXH&L$Mz(Beg|7ggVJ7>>9&(guD#-4ntD{VR42RJ!0n0O zt-fnNg&m%$6s`QcV#~H`8wCP4PFfTo&@FbDd+D;@w`c!*bZfrcw90!iak=yU7JR?G zzp~=*vimy><gK!&Yz->kS}0tnCHkmw4R7%L@Qj~1Y0}OLVH3|-GD}R`9N%Yo?R-S0 zs!EGQhWA2N|H~!e5rRSP^^aOL*Qy#{d+{Q-i|;^zn1uK}eXrR+3i7ww$&}Sesg`^$ zv9a58J*w5}>g(Gtd*jRW?S2OO-Tb*yJ}lOL!=#vHoL0d;bzWZ1*K_yy-``u$p}4MU z^M(~uU-SeBo#c-`(&DSJy5ZnV>yueWy=NYpb8epOlg#N}zc=X~>VC9ui;!fbPvi@> z{vZx+4c-M&XOy*1SWd8veQ;swoQA~$J|~|zXKhzwdgb#$<NE`Vh$Es;i_?W_j{GY2 zIQTR<%slY7SG0eJy+uFs^QcLz<$v`(G(|PecFxhB70=KX;y$~DXUev%XRimlw`>;Z zx)8_m{C=_8%n61c>xz%I@&x{za&Ld#+TMcGdwf1u-Q79i{@%au4q5WJ7yhmJ{bh1u zvF_GSd8ZQjK2P*n-*_o(_KO)WWYT9^dTWL}k!If8A0@am-s|PG$t-7CUB2X5?aK7u zxXf&M1k3w2?rS$C?pT}+%1rigJnl8)`+G<JH3^<8jUP;(yh--7;DH^fF}eC#t&elQ z{z>L3owH}po-NzFHT@@ZpEgWB%4>Oi-{zjrsh_^LPyU>kY<hRL;mR3-cN%=YvRtv; z)0&{ExFtbwcBjO~DN1*Da(YVi>-cwi&#zpZ9wrhK!meO&^g#E@{Vhiy1b_0%{*?dJ zM8){b#MX%FCD(LR7rvgr>Qt3=rbYh4n%OEoK74&Ay0dxS*ZAq=7X7_)ZDRe0<;$OV z2jw<PO<`jU(&P=gyq5ohZqcd*62(1+F7qdJM>U$Pyk4W%Id#gPDVv%n-F=yON7lD~ z=dP-aKEcm|zH86ElsT`;%s_(0|9<V?)8*^;@7aHQVy%(by|wd`&ac@vJMs6Pc>Bii z{d@LTPBvDvXFQR5?`0<IDUrCK8IpQYw<VZ+MdmzN-SqU)w3XNF1G7IB?K#~ldAa%3 zgq)|lt{U)&KYqCT@m=QR%B{BoPKVCvezAPRnZ_5^TWfz@Ji9Gn0)x$`rows0um0M# zeXhugGh7a=?~gscr>lJB(cG2;`!1go7k^~2RF#GG(yUvb7*g^z@9b<U*cP&9#_Y72 z>#}DXGqV<YAF$FkRob?sv_&LFWyzMdUw+{)9y^Du68Ghu`PyOKZpELRi!Yb??#n#! zx>3Y3{DdCkB(oE{XOt8RsXK4^#<a}%f8*p&E3Zv0&d|zd-)i!?f7{Jvt;wvn*8F6< z61-vyW3IzWwzykoi~b%6p8Lt5wP(hrjjOxs_68YMoA0djyth=qaQe>;k3Y*4Tj`#D z_44`c*VCPxYL|2G-ce<AUiq5Zp?h_ofB(IGU!IRY{@*k6H66cJo;+K(UpQ^{j+UE8 zQ}cb6Pr3O%&*Csw-D3S-?GrPNWT)RctGuj3u+?aWA=`9AuePAfGf%hFi#NYF_cyRS zR>U=#Wy9Sz&V4?M<Co2u5xai+(d47v2PEhF=^bC;8*b6xaq;XfW6PF(?|)yNz#V_A zIr`bzZ$XQ{=e_?M;$_Crd$L2rP5$}LMVF3V{g;t-FnQ}^k9&azt^9_Qmx`|a@G5`V z6p?`AFK@j&xyJFDP*aEQ<c28{Az4u$s%rN$I<3`Sv2|_e@<k^6%fgR^DCnq49Db2B zw{YbZg;(a?maGiBUY+JSQKO)GWX}1Y#}qoMTX)Lk>{_MoF-z%|_!hpaO@HNiO=l-N zXiC1AZlOM5TgKtEg1C)wr*_`mly!Oiwbh~1A5Sv)WO2OmT#RVqMEQ&UcGK#9fBMzz z-`2g_>awP_e_vYcW5dewivM@TA0K}B>*n$4{(0}-zgstN?}RAzH39c`SC%|Jd%b@8 z-MZS!r4^5YOkL%)MJ*ezgjCdiGER2-UfXBsc6^6|abJkVoOk;>-!0g!n=HxDarb#k zTw&%S`=380{w{f|=E8HYankFnPh0r8ew1B3-j(*!wNq~4%Q-h~uC_OF7JJ;YUeUZR zymZbhN$qoI?Uu~&T9u*LF2k*KViB*3QTzqBZ)|DeUI*QduP=?eR1oB@-q>`=&vBWI zW!MMl4wkCEmr3cf=WkvV*yWSL!|S!}Z@-A4o}2VS)yhr<{W(G0u3nx}hnF6j6Ecr| z?>+q^uk4O*w13BW&MsV4iAi#Y=cSdO(_Bl^Tut^0D3`w~tMn0m_y3#y|MlrPcT(2Q z2=1Cv<>dClWa=7yy<hjzz9i0@_AznZ_pg`xGb7WESiJkrU;aJ(ynX$rN6k@DnOog5 zGerf?cHh3gpEJ)%r>gYt$MpH^_TCFwG&D<(glL_c%eVXez1q*Scg&f$_fNoV#q^N0 z3uQ}pm%d)E`Qy-zS7uue&B<GOA>rB<m#KO8+J8EFU0%CBxnRMs$A`-;({roN9ksc) zJJWyNb%BiyX18Aaipf1+vGFjQ$7OffNU^ZxqO4VS?waimSv{3uVXsl_`n6Bj?5JF| zxx8bIp!<v&bG20?y>`r<e!?>Ts}O^q_a%jB1-pg%4^)|B1FrpSb~&5QZKQWgY2iHK zgHa-rGSY5|T2D5T(mXO-iPco&m6FFxBLzpzrJXYUUlTUzv_9(5Ub-``{Y<i!uZ4H8 z@!$Km&J``5HTg)CSuLaNNw&0GtcLYIuBr6_KF*#`eyZPAxHswPgo_UyH|^avcgr=e z33XoQbnTYCG`V~C&N@B&4Xe3lo_YAN?&ArIbIT7GRu$~~vbXZfPN(u+(S7`yQ_o(W z-qTq*&+Fpv_V1rfc0Eok{hM^tZugFTSIQRu`uFVa>nVra=l>T@-8E<OY`G=xu8Ci7 zDrPvl!%1rS)L2nA#WPQKPKxk5eAHX5Mf$ykc%miOg;Nga3gzU3c>eyHxpDU4zrGf> zIrD2x)?D)|?UBx0C!cpeXWsvbc6UYd{2uR}-~3t8P2FXte|6ZB>z|)JS{2abeDKl9 zbL&fmUFGBaG%}tq?e*w*60~^BCdDg~VP%(CryB)t-7tTxh{{W^C@DwlN|riJo$xI@ zZ?|zK_%_7e7vojDB7QZ(uZZt{bhVk3x=xVA<-e!q_FeQ{v_i$j?`w+WW>&qIf1l^3 z`f6V>J9_<jPv$}%Gm!}P)RdVqQYVkG&E6bXyZqJ5PsOfQTjwle=~0~7RPalyB)@!} z)q>w|pN5*3)LFKre#?uTcG6e4@X4>d($derw!gn$^L2Lo-urbQZkFG#`}sP)R(8*i z5A624cHD}K;fXb0VpVl?8-vlcP5b)S$LlJdKW(eFZC{<>WNy3CyJ=f1Cps6|-P`;7 z*{`48=RQqx-d^W*?tSi)?k8F+oM#n(Ta;qp{H60=S@T1csRsq7KV?~#zO&`0f~z3w z*I$o*e3)0bZQrke6MicWw!Ta(-+W*Gd-?bC5&z%3{N6GpsQeG7wap#><;`!jifrDb zzyI*<Z*+>!N<BqkA=Avi*0)v9oMR2^%FGB@b@OLc)fz1)AN76-uGhw^(*E2jIUi|| zvGY#rXRGISX&)!9*vZ@brO-5a_cFaxTp>aoJ9kvBtI*yl5P5yAr{b&^x$cT7`|r8g zr?!0!;CguH;-fw9=I;^_w%jIoamUKrE^pavv{mJG7jbJomtVW$Rms%zAvTMWTzzC3 z#MS;!|NpSwN<Msz@5)8@ZoM?pjB0sne%)VhX+oaOwy7*?=PhDv{&#SH{P*>G`|tAK zzu({6Q+4)$-1qnSakYV;UY-q)w|i4|isA0XkC`?CQ$sm3r^d2=x%@`tz=pfu#N{U( zpBx_Mef9Fcj;r@#c3kQ*%nLvNCd+&K%CnQ(_i%P3sf6~I9<%hi@Pvn}&hF0s|4Pd_ zF1^d!A6O<4rv2zJH_tkccVayp#|wXb`@TO-wQy;3{|h(Uh=uwo^`$@G7#Dv`++TaI z{BV{8!v~YT-j!2sJ(%x(XpL`eIk!>J4DMq>f@iN}mU(TucgiK&GMhm#UEYyvLP4M9 zs^oP!e~zi0UC!;Bu|M2(7E9GFwTVZVJT%0Dly<lFFgR569OLHFoE5ibsb%2z2|HV_ zyj+(s<(OBk<b>9eZ~G?+d1zJd+pO$=wYWuh>C8{t@-;1O+XUv!H2W&x9ko!cXHjJN zq^I|8zMdzORP;AQSA(NYsA|F-|I00`Mm#pFGpp+F+|Rh3+*o(JeZs!)KlzznF}?cI zUtj&b>dB@*FOJ(AMV(u|athPjlI4H@yo+7s8#m$K6~D)UYs?dJIZob~x>43hbw>5? zXVUVQKlj_GDrsA=S8h@8i{rX>aQ1PFpOq{I303EAY^k<=8^^!eTkUPl9`msHy+2fT zo-9j^6gyJ%|D9OyyX$Yxir4@D@ZrNx|Noh8@7_2Ta%|pT|3j>0&NhC#s(|KcvKs$B zU7o*AfBn7s?{7C<(KIT)nRz$k=h7?x)=phu<Cl7%XS25D?YP2e$zF4&3j}I=dhYNr z=00*}#i@n~U#Bar<`*hc{&|~=t4HY3#f1wE-z^B_c~zLfDRi;%&58Rv_x<l-)HYHV z=Pu&h`j|yL)ogY8%#R{--pIu6N?no4Jgc+Bc9!V9)t}m}@7JVd%zdi!rR&o)EziqV z4O#o1Ib>I!va9`aE=y6Xgk9tJ!AU%e<n;Z;?(=^)&%eL#sLoo=-+$+AZ2wz#Yu}H5 z1s_v()ckB(&$a#ZzYot=-|yX?Uw(dD)FG4e#~;tQu}^+i{GYG!{*M#ao^ID)w|@P+ z+Y7(nQ~l)sZu|MI2hN)6{We!TayU`_K-}IRk;d#(r`&Y6(B#w%E;u+>LoTAI?S=ZZ zzrRi{zjr+K*3GX^xBb^~d)4FAy5si!y-#n(+y7rI;C^n-l!D*SLa&$pU0^m{|E|f~ zynRz_WZu2`_9==lv+LZgb+66+<NvLQx3_<jm!Eg<XT#YZYk|9tnH#*W`<>mfUb#?a zO~|D7kO|kCr8rIrv9EWPPGwpW5TAcEGGiN`%M78;QxV1LD%XxLHfh<qWp+%uo=-}M z+6l|Wkw=Y`bOl!()tIqxTF~=_la%xWcDt1Xt#kZf>7w_*{@C8BRwhsFJ2Ikcs=SM; zrx<TtvD5u0_r@(Aar(D%<Lkc6Uv|YPX|=%OJ^zGPzBs3*zUJ~W>$hAyOFuk*sCUNw zy_)8>pi<S--QCN-?+*Mfez@xO-7UL!3o^;QJHEU9_T9sETjlQUsc-$frS@aZ-!G5P zZuXzjmTB`tU`f~I%x9vGpHJ#K%`B8DPTT*x{eSw6n0&Kq`oe)u&N0Uhshsy|5^QRI z_qzC_=$~Cj4a3^bP7dmt-M{p~hFx=xwNLu_*}u-ppTB+f_VVrdd-^*9H7h<{OuwzJ zKlgLwoe1vJdtzc=ByN~~etweQ@Alhw3tuHo+UmW(qUn#xyYlwKKH=+x8j276+8`11 zq;+XQin!78rHvv^rVnRktkwwCkZ9yt7_sQ<8iiG66Ss+6D4TU`js1;lTf;tPe7vY* z-?5_ho0{@9v$Kh!E4TxTxQ?`WK8cmxSf|eQpCQgWZsDbCL0O&GH05|}HP^9w@;M*7 z+H0#8ajx@SUdt0E?}?MHhTV*@o%KCL`KG{L>(ocZKLogLrHOCYq3R+QtjYAPeeMI* zqce=kvOoWteLro-uP^=oW;_+S6R}9$RpH*fdvp4hzrVMSU$NoI=bC=Qe{cHhKmB>S z{O?uvnDxKky4~)b?XG#X&}Iq4MfsTq7jpOP*7xcA{l4yZcm4mH>iQM)B3xtj(&M>~ zbi~A-__s4e>|*Pb=a*OP>V0JM%kqb7L0WitQ0c>OTN$c9eo5A8Tsl+tc<RTXmFoKO zQnogGcHgwGk)AHh?ai}8<@Dl-$#>%H>wkUxdieMC<A-D8)T&xtj;V0xmdsd_u9}o~ zRN%k~&7(m{PK&jz3`P7RjkaxIXqtTE6^D}dqSn+W%d*e59>222KvloqKsbNf*-a~N zEt7QQn)E5yE;cK8y9zt&6qCu_#!>uR5?1B!er2Z8Y4w?5s*U=DZ9lr7y*d5*U~fsr ziS2z>3R`wew|alkX^xI}M52O;K8HxCd!In>(on{GKhN!uvoCsoa_0|$V}&+nH}}8X zU_Z}Kx$S91{q8gFNA}!*YxDot-Pzl(U!U&0{=LR35A7d!!{d9GA3b_QGC(1=L*DM@ zIXz|Op1S(aY#9$#7d+;9e}7+9LTd3}mkvf9F57v2?J+mr&R$<+W3zjkOnPpZ;YNw$ zPnM_t+GKDy{{MpgzcQ@$7?wpp44;u4Gv%#o?Yd9jzUnWwe*6C3j-MiTeiZz^n>kbU zdC<#<!2d-x6~#Mt7e3D8+;Qa3+tuqG>XaF+Zm-u{mveu2Dw~aF!a;Y&MVseTZqr#O zuq{74#+!BK(%L(FIFeK6`o1z>@cLr$xdLG}(Muf$6J&xH`n-2~*`t&ASxR_Gsa85e z)CBGWF-aXwc8A?|K7Jx|SaZ`XgY32{t3Z#HJHFOAmE1YI>%_D#GfmQEB09em%x>mc zzIv8eV^eRI>-PW8U(We9(P5c8OR>Qwt{ty>+}K{5@Lsz6`R2-CkC~blbEijnBzru5 zSn+?u{kP@$`)g~z|7$Chn^rjMZeF>CjGE?;7xmv?@4s2|;pX?LJ*TwPHg`;p_FL>d zEpA_X;VnL^q?*rHuUj7Gulr=Yc8+wuqx2^|UWJ00&olL>z6}0iXm~Is?T+I9z57em z|2|}&zJ2|^kYh%Q+A*F-_4&{Jee^f{|HA!$9zJ_@dD8SIK8KqRwc4I;sb4%b<X6^A z`MmhQNtUus9Ez%XCH65=)rwaFybX@2^_hE>MC&d+XX&-=&i-oEgDLAQyu)wr^INUx zb#iOU(GxK&O2@2ZuC7!He9*_{nJulR7`i2%Q7^kkOVQ;>%zfXkrw@ZPAJv3R@NVPs zYFh8hy)|gdyOWV~d~4+2HqJ<~31nQw!S5}$bONK((MzWc)&=!VYQAQ+@chNA6L&p& zq1*9GH>pH&;^`@@p3^<p@0Im_nLEofBgIlk+D%B`z0gXuN0aOR!5|BPo7?6U=y?1& z%C$HuVaAfIXLIdk`QP8)`}f(^@b&wC72VnUI=W79X|m3_;)Bm7NLb(5^Dp+p_V&LI z7r+0zV*ies|5vZC_B$`PHK&j((yLA)Jz0c%dHDXHOaK26Uc7L*>a6+whN-t_SMGWK z`OZbwnf5;~TZpY|d-&<>>-$-|Z^hVr{%pryU;kZUXUv_IWx3`@^Y=eZ`~BrGzlHd& z=*#On4?o)}P;g^^>YbvKyT2~IFqi+n-1pC$c4XEU@2Itvf4`LD*b9-(+qOkZKL1o! ztlJuKD3&AfMQi`hXWtTczcY4j^>NPSGBjKg&EocIlix?3rQMaBGrWX&%vUe0TO}yE zMM6-u;t5OYE9)jfhX;#mjl*6{kQCf0z3Jo(##wgu6E95>y4SKyuGh`HkVBX&Yhj0; zXWs9|>)$3u1_ni+`V`1ib*xuJX4c>IK3&h*ztjZHQ@P{RfA>Y@H!vH9Ov!v4nASP@ zQir*_&ao%^|6c!}oLjNxh{#D+&lIb|8G;RmuCshU{cm;r|F8Q0-v9sn`u_iYQ}*1- zODdYQ`SCwK=d4br88>a_PSO1Rv7mZ$Jnyr&yJxp+7V-I9GjIAPC3-!2bLGc3J5O}a z?~9sUr8oWN`C`@xg=LQq`W}Cg9?<2z!hJKx-Su~V{QGuyd$@kxhMhY)?w$Q?G5?v1 z_lm-Ke7koSmVZB}UeBWtob~c$Uiojgng1&O|N6W7eq8;Z%P~)OhwrzQ@%t>Ze!k7k zoa-0mw}pp4nj<Y#y8WByxyPDUCM^&#cwX!EGbvl+&5lQ+@$vmU3PO?3jSlvP<@zfu zdC_6@^~KkDOGUUslz%XDXx%=$Z?7Eh;@3KJ1&_+lU@wW~k5O3?IH!1N#cgR-mxC>4 z)2{McdvZo)-}-c=i=mVwX^|zT##z-1vo32~6<x>p;$Dze&YeWP*{aiQRx6)h`C#n~ z)B3r`U)-`^Qf1q<h-1;|`p@D2YtNlwmlrNtR1%O>bF^S4&-yi2_v|pg|L@iA_xI%a z-IX>P<?^&;&h%GcS-X34=%x*CoP*rhw%@sX-)>IYnJ>;EF7r72u3o?L>g?64pVyh| z=+9(vcx<us%!~_LAG63mdNZwclAh$U1D5=CnmTjk?&)^RhxzY1>z4g^TA|Imz21Vt z;(rQ$`|3S=$u7@*VaA<z-)0{@f3dx=rlZj6&OP}uenma+wMHv`cc;t$t%!)1*zI*O zxg@3|HInalbJ&y*ofpflMHSDQ9(3gDQ@5^3K^u<gZGPPUkx$cn^_k6@k>^@lVw|o$ zpL9|@e9I5pgGp{(+cP>@L|Maof(_p+KBciuBwEo+Ik$7o)H4!U+1*b<*^h`GQ)&(K z^0u&#D%xm~{A^o_o$-;@yn~BeZ-uA?_L^Qh-re)xaca>&|2m%Oi&dh7wg@OM@;s91 zA(XqCSMjQ(!m<@plSDoQ#dl6SKEY6p=gEgFYv<i~xN1s%|8LLPd7ER~MHoYRE^18R za+rE_xvJ>%&l@ftT&n&|$l=W8mrt6McBXl`dNPO|Hsa*IHlw}0efxI)&HYO`*7h3S zExGkomS<LFb=3On4xLXJq?cMHzj;|u{`uco_74*q92-pkCRED>c^bB)R(<|@zy9C+ zKSwv*ytD7;+mc<oD}Mca_-}T5{y#(2IxE@dna?h%JrTNc`}+EMwO@X=%iDcF-MGay zHL}3&=jv|8tb^BdmtMT}@1*N2HTUUE35~4cty2tDmhKD_D*k4eF`=Y)%6Yc{Cdtk| zuQQ_g1(Am96(+ww=CY)$RU}h!>BJVbofD)Yy*iZ?S6*4})N}Ti!jcIpXM859$!w~3 z(am1%aztb?i)ip9ugUF7)4!hmsN)+{+OyJSN{7#?{%5gA&b7HbUoz+Or`gk%r9Uq? zCvU1<a_nEhO%0YEs%k2_hQfwdAJ2c`<?gvLYVEeyQzvZ-%dUOt9C0i;_o1OtTule} zQI6uX=6@SzWEpo>emr=q?#1a%Ef3~gUC<kO$0zPC(}@?S&Q>R{J9y}>`S$m6elxf| zHp+!@O<8^U(<u(axoPJr>`RX1Jrnm|uieG_dHw%?`P|dx>%Tc)jeTLIzFa_E@oe|` zx^LfJ$KS8{eS5iljm6#lyDC042ko$y-5W2l{j|}!<({QEH`dILn*FF|$IrJ_TchIh zroG?i={ir%|8LXx*V*TG%ue^I^qYKb?<d7yOEqqOmsLyY)T)t<OG?lB_(8KgXpVUA zlUdqYEjpY(A6;-*oO!*=dq<;VuFcm>@ly$xZz=Gua%=p&aghYqK0i%!R-0@0SX}A_ z-<qx8Fv;NLniov1N3;)#9h2Gl`D0qy(S=7RPdiiL7xb|shGUsYLe|UEMu{rr#xo^7 zIpyxU&B{KfJinbU>UP=WIegEKYA<DJ@7X%-TBa?F;*SJt=kf=v!t3Ar@^!0M6*H>d zttmOJGqo*7>(uk0EY+Tr&abOe)@WHy%PdUP)M#1Ny03Cs2IHxWrKyhf7C!m!_%_ay z$m|WA^*c4t;pXa~=QHx|@7-DTE5}sg+@ptSTo-G<e^cDCV{gpuyt6DR*GjeTuHWX$ zce-MBkj<Ss#Zw%2pW5^(-jywXU%LP6a?Zmiqb`@8Qq45?cibd!$Nt~l`X8s~|KFW1 zUsq)HR^oiD{fDN<{~rGOxjaV0T;6F#Y*hKIiT{(lO1E&X`<BeMXx}qc=~#me9ZQ3m zHhOsVui$koV(8<X{bFUplhP(t>$H=z3Qg|b6I~;E=$fETCGQep3-#p9A`^u)g_QaO zUEVKg-5fT}@Y9=@3_RKsr>Z<XV9|Zh@PdTwrL_x!BDGF`KJ+=jKW{Tj<FB*9c9$DC z>n0y}U)%lUm4+NI<E)8ctP#2&7Kphn(3YLZ&DmYtr|C6~HA1hVBa<^Tb&25#?-LiZ zCv2Q2{r%rJgZ_gVsauu$r|NX5Zt=-1y=c7aP|z)#+N9}|?dOQS-+9qsjb8iI#4XWh zC1MIx?oZgJ^tniiU$F3~Z_EuR!CXb1a`XEg%g>*^y0w4t?AO2lzxnCzZ}(66efk8^ zbxDGAWs5EzWbfhNnq)tvW%=cfI}7G}KYRRd_tj^e0cw`Vi@Ulni=S_p9csVt-{1B1 zU)1aO9kDq7U;o6SE2nfn-~D}kLHMmNt8@%ooVe8E?w5LAyY;oau(Trm$<+he8y2r% zTC6!`e&K@aJpx+klQI|2?w=>%y6M@|vrC(LPL$Y+%uv$MUh1_{$F3`C@~gvLTkDzy zRDVw3UZPUG%ARA(gE@x`D>>&rS(UKF(T6M1rS;=1p2ccyfw$v6cXzFk^nVd)$G*lu z&p3FEOWY;P4RbknRVVJb##AHnblLGE(=Is}+gP0nQ}8Ok&FXVhthMv8Oo#WH@WWg! z9j7N6)_lteK4oP0M#B3<iHdEyQlsw-@%J_RU+(^zWtW<Lef8G6Ys7cl?k}D(eb262 zar^%4IMaUkubpu7E@Ow9+iwoJXiLoV=Cs^6vtyp+)#C!o4{hUmGP`iq19#rLU;C?{ zK7YJh<og2OHOXA%pB;<l_<uh7w0-$s=TkZRf48ZZ+1y(ku==WS(u<>oHdBIGQg<bm zR{ni>egFU4ho9L0Uo5}>PfFQk=F_eXpAO3Nn=5`<z3+LG>wC+<%8IoOA`T~nA0PX@ zK=bjH<%=}Wt>-hEa_#1nUtbjMjdCr!IZs=PI2cT@Y_Vb#RdW!H6A)*(U26MGIMzl? zGxE#HN#fBbJ#5NEg}y1Q3^7gC(UEA4eBN|#uFv))r{r@7THfg!Uq9Jzd3||HguxFH zSq){&D{;@A4xW(=l8Jd6aiom>VvSc(v0U1c4yR8pk9y_Vp0lj9(!XLKdaB{oj)0Bd zY?m#0#KbUV<E<GzhX3BE&yQd8)BOIF%&x~G<?WFt?tObLviEJOSb!5#!|AtWGIL*U z|9ez5S%yzp``x#@*%LlIS+#oVj(;^)74knUe_WYhW05YV&9nT;uAo4brH+~>4?Vh^ z`SD!q$*JecL^m~mG<3e6T=bRq#h1Ig!>6CO<C*z8V8@2#Kj+1ihrcV4S+3dg>pb`O z%MWv}*S?62$(_IN_pAIJ_c;wtKWU%3@$gjH9bx?D@9#Z(uzh;;y_Y{rl<xnm{TMJm z`;<cWbJ4RJn$ssGCwU1zR7}5^;GXt%=A};0i=LWW+M?_nw(6F1wa!_tIx**UCilV2 z<m$_=^(8JByEYyPm_7T6Pp8nH$th{PR_SMAr1cimwaTz&OlsE&XkY&1q@}l)^l81N zk*RK4Hfvh@?|9g3`*7n5+gG*{)@dzvZdo=9I?h~XxqD%iprR$`%+!;quXDMk1TA~? zr$;rN;X;(=gr3gC;)4>~m(~CKlX<XmYn{+tyLN#jt9SnA6C}*U71(d@tn9K}l6Rrj z-O}=PclI=oq*>1^|GZuQ@89i((mfhHuYO23Gu_mj#U^QfE9}FR00U3$N0&4<Hr<Zd zB;v|Y{rTC~_5a?<+x^a9t%%9hd$zm$^O7YePUUR5d+zby3Jb24_v`+?Dv08`roK35 z&NJEPm!g*LzIDm6Au_h=&i6~Nrr$ifyY9x0mwtyz)q4dDVrnWL{w*vw@2x2=+!?pt zZ~0==yN_zVaHrcG;ZO*AwDR1sB+f{!u7}f@gw6U3mPGZ>+!a{My!4W2(WE)8Is3VJ zm1U--YD%&kzx=UIVp~+>qpiA0&(2jZcJaFzV8F2Gc!<Cb#)*Z3NeO$VZV$T6J8gz+ zr}i|f88dq?{e9f#ZPFjnX6UWveQ8g?i(8M=rd&O#d3C)UYlm_BW<JM7A4?<rB1PtP z|M|K9&-E0m^C?F+wdquOs3^8vi@LV$%$BBo;R+wz?SFsy+5P<Si(`*7@5mc&zWk(b z^Ly*VJB|KE-R^ti6rg$crk*l$>J-DC$|EzJ<)&xa`(EBO=UL{rxMl;dElUe+Uu>=Z zB+#jH%zOC`)0(~av@RdF674^CwB_TsyV3UVs)Dc0*0z7YxZKk6$Q0$arw{y&zkWXd zSj~@5=KHPmp8m}%v+Lk$XfQQCrPOQM6#f3t-{03os^_$yRb}@uEOl02;-#2zwXm;r z27l&_7_WnS<3${bE0osUl5&yNnKr>&aOSN2*Nn`qS8nTF6wB|cu(PsZd5gm9^gfYE zr&~kZbU#m2&~@&qy?*?~tB0#Owlrk0?915_Qo8D-6Gy6+$eN=wn;Dk+y0fjHB*DFs zbG>6G=QgLJ&1rkIeS+e)EeN^TmEe7Qig}jw&2E#;i-Y#_J=gK<bC~zc$75P{|C)}c z&;MWDpF2;sElXC=Zn40njI~+EUE{LsjnjTy^sn0zm*0Q9Qs(`)-M=gO7JPYWQKZ;D z)$&dHW!`1Rmd31Z(ygvW7v^{`Hrdo<Y2>4)B0u|Lq4%=KN7heMG~A_;?KWvfkja5+ z?rW>g{yKEyU5QjPzvSn{Q(O*S|DI%RIIOng^2>_VD*Tu0BA4xWBM|%H-_7IpZ?84f z#jM>u-QWD|71d*`OSb*>YU-3Y`|704dyCU|t7aR-+y1_1bU$5f+jV`5)BM}tJ7jA{ zxXC9)tzBo)Zz(vty(v9o=7dbo1J1Iuc0RfElO<@D*r#th#C24ePiifl;&oFjOuOaF zIZakg_RC*+PTQP6_C--oYRifbdW<J}JWn!h?YdgW+?AcHs-d`aYjaRr&-Tp$QeP%? zPq`#e-`?E9wJucsV1cPfqK4cYv*}D7-y1Z4R`Ge9n&h1qeoS;m=jO|n>g-HzzjG#C zSr(J%oSD7MO5zz;RFdLqA0eHz=XXAqe7RSw=#;YM&J(?dg(Wk+pWk_sykE-6OYxj& z^0kGY+Qu9PGqgkc4Da2w7fIU^w|3jzvc>F+y;i!bq)!YuH&MSdWvK`M(yedX7fzRv z?saa^brR}3ea}5R_x{J(hx6)Z6@NPDtGV;R^vf3Wj<NT6cNn_P;WK|<_ut%qUd^|c z{B?i+y!=`i)nHceS*AbuNmlKrIfb@;$HnFU-}o}UCvt7L;SqKDzelW}KToawy65(c zhJ74Y*Xl_m|2{1D#jTWCP$orhlG2-CmA+YuQM$F)iay;G&RR27E?b#zM(vUnQCZQY zd8cmV%s+Y3;QZ&BYmZ&|4R&m35c6`}9C<K^-!nH?G~$Z=ql6Zd7$%AAUsJcprlsg) zuQfbgwQT3JLrU8Ym^q7AYG^L{vL{!>t09+h=@g|ChOKjw7Pnt^YN#oFaV%17iq0l? zH{%o)OOv<vZ{Cbv{ghGt+@|ls1yep9%J40pnG|zq_x1eu@A_u1l|8O}dQU>_zhhoJ z?@V-Wcb~qM(rak+zQ6j|lKK6onYdaS_PrKgt6Y(zw|vsR=_=;tq45E!3_-K1wR?pW z91B9ZBrjZLy7N@Yt|D*4ou12?Gmrh;5`8Rrj{o=N<=38^yOP**?RTQo`=@tz#}ruE zc^phi%74#)xyfzmboo^?o>?k9ulW4#nnX0C^6C>M#$U?5etGuxdcyVDultSbrk`lN zA2BnyByZc@2Xn=rGfeVncDv0J;E<ardS2<*iC(2p+w7Bk6TJCOq;fTA3G;i0i6}aA zT$3{Q&AQFKw5Vg|@|ffDH%q@sqy;LjbU3%xQ1rvq&59eINK8MYYA(HcE0a)&r)uja zp*uA_g$plddK*v6mt4N{uE%p@O&={iU3d30@$+6knO~`=`*E#g>cvH?zWGc#W6E>v z>HbwS+%9goRK(F4KWFlTtre{sG!*CA)^3WrnK~;k|6a}C-TSM*9(`Y0ztHsl-FHcA z{!Zn267uDu`o;C@ebX0)y%qXn;=f$vu+98A-4XkfW~s~1GTgo<<CsU<lpqJOr(fUB zuAFJTx|c0`jZxUDeIKmYyjPz1xS>JE@X^<8%mU``_u2OH8}>GDZF0IWWh0Y=Myb^u z?v-ygh&jpdTl>6l3iOJLi~A(AQRFu7@7v~@KP48w-G0trRVD0{N&oS~?;d?}e*a8D zSv%6pndfHBzEJ;_cUP?DQYp6m<@2jyL4!l0S|fMB>ZQE$njbREJ7--nSh-fuvfNH8 z+nMJpZ<ws1aK>bZSqy7KeU>uW@hKYKa*TRjbM%C!Mfs}r+1nW}7e*@P`kk1e5L>RN z`DBvE(g1tjC5LYa?Ow6bBudSwM^~Qj{O{h)A@2-#E;p%UQIZs$Y&`wX&;7sh&%fzy z%FS)HJX&IQ(o-`of4l$uxaX7J=jHGF`^o%%&BvpeA6LIMUi|gthGI_D25(oXvtB%Q z$%!I`H-ZjrD*yel<jc9E5n23}dfondOFu7Ed_DWy?2ric$rD#Dp6I*UDnmQ^`LRQ< zwwx@gJ>yi+P_)xjJbZed-2J_^ya%jT_q;qQrKn|ajBnNMQ<BqPo_J+1UK@UT!qrye zD`{(ceg2u`%uka!e%EekL{VIPOr^c<^5%HI(?voto)<1xoM_cO-N_j_Dg4xwLrvv- zEOjUQx3kD{yQeHEp5~&XIiovFcjfzwi)QB3SgwEGsrN3c_mk$t?1?3L>l|2E-e#~K zoi5__wY6|oWa5?s{6QIdi8GJ89}kV^Dq1=9osYS}vAMIG=0}~9^1Qi-<>-QBpUEN{ z&fO4M;wt?_BB;cpZpxMw%M;{3{qxbBI_IRglbMyf9eZBE&-j1O>qB4ZJLFWKGUh$_ zT%!0;&&x&c_4UlTM3Q#Y{{Pi||9_gLY~SvWKfl*06j|Nbw_0H163Z#wSEI5|FzKyd zza&NRh`{9yo4nHI&7FUE&yL@}5AXOfL!jf^wSVcoZ>&;#UYNXIlcT%r=D#bAe&3(` ziEvE&vhIn`wb-K}OEmg_&+eI5<i7OnubzX}=U;CQWGb;=QzJ3GQfN`KlXvR1*9TWv zg=O3|Klt|P)z2d80+;j`&yP)W-5`|w_Fdjg2e0STB2IUCY`rp-%X{nBgY(ZOyr^PU zIlm_|AuU_wQre^?x97BI?<o_R<@RD$%XQ9~#qzW3_0OxGwz?)Nzi8XC55JhNtn6Bs z=sGuR>iP^`?&*pZYfYwG{nAWcRV<mdD{_Ubd%5jRz9}#IR4qS+OkJQ8UMt94Dp9m+ z(gAMoi_4#QKTZ<-yuok!lXH!oi;li1`Z2No#*yf+{!i*ZPXBKznK`kK-Ox=udBK;3 zB8Eq&m`<FxRqXrwebs;8zAj(C|J2g|KiKVS{-2%R-d?Tfb!vx;A<ybMgVI?SYWrS3 zeE99#-P=J6<gFC;XYT)zStgX_?Ns&CN_pM-UkfkK4RpRQxwh0+z*2Z^D95#)ER_?# znwK2uI{hMKu5s(7G|BgWiyowGxfQv3fpTs96b9D7rfq+Z@y(W*{<OqrWkT)Aoc+6U zG!JtYNB9M;UsTR;O5*LEmWz{37=(_6oIl$mxx6yP)lJ^OO*7!rFUz143EgrJ*2=4j za9+$fYaw_dT0%6r;GE~PE{PpdukM^#5>un3n{1n_8$2Vaeos(W(bj+lrQ^S&rnY~* zwUae?NojdNP=>XFRhPGVNyzNrBRx)~+x9c$MwaQQUvT^Czd1%#L^piR#givDm!CVk zac!lkS`E)9MKjH|TUlB&{J-uF@wp{&B<5dt{l8)^MP;cV-7vf3zrGtBol|4m6VcAZ z`{?%d{Cz*3>ffvV`Lz4}{|_c|cQT)xNf%Q;Up(>eh5YM(Uv9Yn_Pgep%Ow)ucMDAG zI9gdUrCHR;Nu`+k;5z-?>a*9$vt{q*l8Ojiq9|lzF36f`IfLcmHK|2mrRz-ZdV4&4 zHg`7P*N5rbq}E(oR`;Uh`vJ-DDAS!2uKm4wxj&TsVE@8>YvLLL@9x^?koYa}<L48s z+y}*98JU!-y|-Of#SojjedfC+@kf8e0^K9S`dj-;iVMHp@twJIf>V!I^F_7ilRPFk zEU{RolD{!)j`4(5o%8&H6)M;9xR@_xQ<)G_617sGY0X)$q9nF?Y33zuHp`3zqWh;` zD!pwbV7PG0Gl%JiXD+w;>ptmBhF<nT(JJYgYMD%LCwV+-IC=cZtCu2dGc{DEuWA?S zs5|DWt2iZEO=J7y;Kf<o;T;Drh6|VE3rnBLTav1)*j;3EXLeV><Jslg-|zo%w`#BD zo4lGM-Ded<j<{OroQlv3ak_T%)0?BuN}{HzuG3z3{(HIkX8*1N(~hL;Wmiw0&9cq8 z?tS#c3Wpa_b7IbUN^6vwOxR-~<*Sv#^Z7)n%GJ7BF4dovHWMyv-Y0)8Y(oq`zmlRa z;}dtqh5M{Ub-cFj{q-d2_rb$|XaCI;e|$1ACU%d81ncR~Hi;<;TfeV6S;a6#;OJuY zgJp3+u5;bAk9l*vY?$b6Rx+(qY}@5UwywG{D!SH-J%es4$IebTXSa~etx@9aOwpjE zkn>&FL?<nad7g1(&6KD;j~9s>%$b&HS~62F!u0Unhc~`oi*l|@nUX(sZpgAjpInSO zW1g!XGyG*4sN}Y`<WR~&iSU%73q|LO*U2uQkfAtnbvpMq$6X5*<y9G{eAYkl!e8W+ zw?Mk_ZI%CT{QofpJMdTru6c3u`)3}_SDLFgEbi0Y|FeC6?eC-dEGI5+T5~P?<YOb* zcYX7?V<S4x#o9~OeVOcU_wUK&ycZ4AQ#m(xiz+6*+WO<q<kRnKKRtPQ`D|LK^u&vM z7nv-#Qk!Vq#gf^}`YBhrsZ5PmleJ#OeYJyzW{ZLT^0^N*6W1M{Zo2LEBn9Pd922L! zzWj9S?Ag!WTFAP;Uv~ED<+oQ$(|<kS>+md}K0~H3=GDU>t_eG0?j4=>OC)>#y3b}x zyJk$CuxX}m>Xu_gr}pY833syz#eOl}!f>RsPjRb)L(=|~1qEigOPC@fWM`d-Uu1HU zo3%S7GCeJF#i>jynR7qaNw3Ih2x9tsNk)m~uJE=6OiO+BG-fa`mRwEM`jq-MD!y>< zxeZz|Q-c~OXLK@6`Q&uSK4asGv$1V`)yB!Ew<>4ee%Hsko_)o?-WEfb6Pj227qzb6 zV4S$+pQzFNjE%cm4Sv@A4@;VJ{P9<H`6o41H+0LtFQ3ePP=4#R`k&|j-<<#Nq<>2k zXXZQ`Ui*J9>$mN$EiV7QL8p7`uV1_R&-DkZRG(wMBq(^Pi6yBv;ghibf>L#s!x9nK zFIu&|bI{PYQfhlr{Aq{I7nL1Lr#Jk$zcWb7ZOW}Au9N2@&i4kFotz@2=W5CNd|Bb% zy%VZRzkYcv@x1HT@3)3N+k%%TcO~k@NT!N?xm*$wC7o?}eqosYJnnfiQJXGyYg#6C zK5^Op$K{F2s@S$)CnqhL)H44`^YuyEuY#vqCN9ZW+BxOU^~A*`v3b^O%+_dSXK$SO ze1pN#P&XO=_B`7uF&n2u<{C|#F)3)P+@w{zR9u#tu1>Dcth?tWIq65*hA!^8#$tWX zGyZM6J7HJK`PU_3*6B`D7A5_BFgM7_N%7H&tWT@CPA*ki8+u05G&JP$<0~s;FLhk2 zsPoX<&(v8O+f}Y!lI-~B<@|py<Ny6R|L^brkNf|}*Z<9ud0e&O{}cPakL$mQ*Z(`I zuK)a`cv?%qu{9FftNqv8{hl*<>4M_Vi8lAd?ap6T%4|Qr)Z_G_v#WL%C#ElsZ+WsU z`u9(bt<x@@``r0d#>h^lcDcxv=c1A4Ttpu)czN;4!JtMqF55M4_XKC@bzVsq?YR_o zp6kMlzee(R-`O_YjH&N`6W(fl^TG0UmoLj`+?b)sDthzhgvQcq2FI2iHD6V6$Y-75 zrJX6)=PImH6_l;$TFIwy!9+c!LODvo@RCI6^FZInCds?bT~yM1Fwc#Tx$VVv%jpvY zS~huAzE4-Q-nF{tbVbOiEBE;hT)4`{7QbPJ-`CZ=H=|P{+uPiJi_Q=d=Sh)WF5!^v z@x(^&oTIjr!NLwP4iWJqT0w^e7Aqf*U!%~-eyDYV<l-G6vpz(6?_gYIV41!vIj!Vm z@VQBOi*A1CdKk$ixc9}ne{bUdnakIH`gH$q`Stp5{`K|cp9{Xed3u?DfB($4W$#_I z7I>a%=)A=I^NH9o#+2*47lgtMi*u_d{XQ@$|5eZOT&~L-q6`o3<oKFwUKTmYOji6P z`*!=Cx7!7G#PIKWvdH4Lgqq596K6rrb`w=Y$y^KLMNj;=AIT=4YufW^TF{Izt2R#q zu{#yN&*~ps!&MUCt}DCOI7MGr+vK6wNr6L;rYW4iIWPTvg<~ggK;a7Sg%|G5T*j|^ z$-%=(@l@6lw+S!S&6yiKE$ZFB%F8n?gD35b`Y?GRZ}?m8r3pn6v1?_%Ze5zH_<Tl@ z2BX82IW->6`;&T(zBpbeZn%DXxaHNP<Gl-KMoh9~@tVM6rRVFaXDPPM`*VoeTh*EM z>Ru|kTYEp9SrW3~<Qb2I=>Cm|EGF?5=0)W_;up_&(WX;+u50$@k{@$+O$a_Fu*k#m z*p>LYlD}_uexC93SM&7y^*;|TZ@ekc8tpc5=7R}`l$Hp3U4EvzZHL4rp%)I(ch_6H zWk*H*m3kIbz+qNor*ZD*1({Zh$(M_6^iK}jV6V%+JNRTJPu<6Rt3K7l?y6gHK0;IP zgr5)7vjeR8AuTN@rKCOoJA~)EeemE@6jXUKDcI-WSu4Fuc^Zn#<m^iJ?VP1JNqpgy z(tAf-szceHANf?qK20_K>*@q={<U8jg}aI$NG+~4-?nASoh#S3tV}xcNBgU~hwk|p z4mqZ@=0&_*3b)thon)PI@+P;#+@<<!BSbuNE>ueXPQ3gz`<=M?+scz=rIAGk1RAn; z8A>dPx@x5S`_{am1r<D8XB<+t3O`Nz;gPwzr1y%>^bXO(Gb+y1ok}r3&>Fz2e<^P_ zL*>gYI~<GD6VvlMi_b}{tW4&3eeZ~X{hxo&U%x%(oBUA6<<^SebzTP*B6F`uFirN^ zkoK`*O^W^bW$#r3+$z1Mz44x9`SX;G@QZ%EH;3=6zvlI9Vn5Fz^Y!n#E<G+hv(u+L z*zIYP^IMT0TaHiF6%q*#bCR`jh+N3)=csx2#hH=|GuzhfR0=kktF!WukDveUB*l~I z`z6katP$HkL2sv$c<4sGV@Fcv`pX^XQF_yTsb%|<IUXlfuI!N1R$AhaZ;(3S)2~1^ zp@{+87i8NWJKwuHb&gS^%lwND+gDzcUd$|Z%5QS(`8Adv8-A5^WH`2z_;@tMP5fL^ zBXQ0D*VR@5<z)_qsbYucEOiMyQRTpKw{YQ!D~;DAn)Yn>_~?DJKAqR;oUUCvbBR-u zSFsPrk}0QMScA5**r+j2>SYl)yhpNe+m3^2FFaO%c8~wuG_m_%{GY4)e;(wo3k#BM z)i%1s%=_JvU7cHUgMl6+hau~tVvbGMyk?&M#kj(6<<iZEO0?yfllNSAULI*LJLmJV z*SsMCAC4TTvHJJywXATG{VxG0e>H>f?5(mLA_q5=G3sfG+j-v=RazBR;4?2})}v|C z_jzuM_1)9FS#)aUN3&Z2vO8P?!*nm-=`vBfl+n!<aAM!nIZxWp9@r3j!*k~ON!Om$ zOiOn7m~rf2MQ6kdx7mEr%jO*|I(=GEe0P^_(u(IjUzBdPGH^|qv^6SZPV@;&yX8|X z*|~PU5lT|=7n{c=uJv?}{T==pZ4WQ)PIg+~ExPNx%gu*#SSFrInkX~TwynU?vcIN( z<&-A|4%55NmUyq|bB~{N-1u>G)1)AwNpqPaG)_C&K7Omtz!0e9>Eamj@96x0mC5cV z=CjlOR_>del~=puB*Vh}-~Y<z>2K2&ooD|l@xpmkOD7lKbk?)#lS`f+-Ti<53iH>K zR4vaPIdk@ot&&mpZtwDDXC|pEi(-{tIk)F8T>t-%&sgjspwO@{Iy5!S<ww%G<oT}O z8u&97y<dB(r(pZn=&}pirV+c&?0qY+eV)p(DbJqn(OG`{vJJDl@AA(zRW)-SeffF# z<&<v;8v~zP*zNP#|G)C*50Ph<M@^pplqv2rJX-U};%KJk_N~`Vm#_T#@U_sIZ<fB^ z4VpGHoEH=w$YNsRFIYQAE`UER=XTePy)s<w*BPxCO->wn+sn)o!r;?!prq)%h~q`w zrPX4yjau$726Qgi%_kLU;KFeH+OK62U0%8091GUJSrz3}a)5XFHR(8$<m)G7D(`b8 z9OROWx6AoC^ZTypw~DNI53KyNbjg;2xC$$8JN|Plp94EQw4JlBPgU%fVy#g7?p=0$ zilNh6y@N;AGMBPG7u!&Nb0w!>@1*?&&)sEjtSI;{%l#l|%C5V5+dtd*2F|&{cQ`pT ztLtUT=BUK!HEDgf%r-2}x-Rrwd`5+OO@ZffW5cvnjn6CX&fbas^Hlto)PDWt#at!T z|EEU%^8f#%fB&DDyzRH+qBs)w#$DSx<?pe>x0WhSdcdo%S-QKadV)^owZBQC3a)Fu z9e$zr<jTVB_a<&l{o=PP_=L-*d+Qp_o-GL|yBf%;tP@u7)>+_nczcJfo{bj^ulDDM zzd8QA53>^a<aX$nRe^})TC?7R|KzTu%;2<+kzoGvvF_%Kens|+4(D>FC{HZie`e#= zZQ`w;j|y-%7VW${O?A0U`?s8@m7DH+D}LD<-f1}b+Qn^xOSjHCP$Q9&f6Dgu@x<`9 zMYbzg0uQJjvh_BM;dy&|spcDV>mRlWi=Ny03$!VS9|<=J$y>v;tSv#V)P?ttm4|1~ zty2;+I9tpV{F<H|JveXQU+q6R9G@R=i=4M$+O*6s^OBlW=CW;?zBWa+m!);0pnA8Z ze`Vdx)A!cjUzAbzYfo-=&h^Y2b0hV)oAd^K(=j}e5_zAAP51d_g?oAS$5t3FyT^6r zRg9zZ0p88gFG8;^(_5s(6Yg=^kFzIZcg!vBz}9nap_2~Y%=;=aBh1zN+_inhD?(%Y zB!%`oI3KkA)FyXM(Rr3k{*~cQN4lys>;k(Awluy7$xhz8mNRet-98Ryg9!?<vTqix zl)Z6H`?kHu``Ak|(YNzwf4!Yh^<3ncWqvfH^|r*doJuO2IPCU?{?j#C<E~t??oLrO zb7@E8v2}-Mx!eBnJt)<dw?#!`(xc;SA_lSw(r!D&HIkwjpRKRfw>~n5FKAb|=``it z_m93)W%62kWRk0wt(RTlI(=TR%8l%dQz|4B_5CYP?adWosYv{t9K6Xv^zz{?HYHd6 zHs<_y+SU5!V9@kEn?<+D-@B(@mi;^J=KXb>Y=4GDpZms{ebX(Q=Tg-BR=!P!oBRV7 znN3-1webV<+cOtc+v3(}m#yKLa=V$s{ZejtM@Q7j!*e!fJ#<*y=GLs@|KMmCS5ram zRfp^{lLN-x5eB^4+K#uj?^ZjWrgc_0cxC9+C2w|J=kjDIyv1a~C*gN+-2_tuskBzD zD2|xZY?bc688j`QuJD|*EcMoPCfDTDbG1iSZ2ih~TlwQ5)>Nm-i<{bwdY|r(((IqW zCi7~+G1irZZv`g=ZMeu;QM9MbAypwa$^Matf1k^9=M8h1mLJ}EvoKRb?ym6B*N)R< zEZA>4p6~MIUf|r67yR~+X|>x2X1mB!(;o#Nx%_kG+tpKJ9vnEwFTXbW?c&_`TXR~c zJ$;yZZeiZbhn@HC>3yu49el%m<}!}hdhWZ*y>l)pw3%^r`mDY4;6`xl%K0&o-`~Bq z>EmN^I;oH|<<Sh$TkEYYWMnMeUan=I;yfuxt!;5^yC0v~?JFxTCpvKTDr|b)sgPDH zRkJwpiuH`$TWy+KVwB}>t-A7kRciTn9;+=UPaYP!T4r!i*J;=5Oa*~Zw|Pmr(h?hI zSUcbHaQ83dG@c$6wchybhL>#5!?$E6PoLrD{_>C#m*n~jvzOl3*SaD%p_-RVc&Bbi z@o%@BlTADxO$Rvm8Fb4}AN6m`yZ+!^mxtq>D8}CbmRBxHR-I%&5XY20N#yaOO8LJk zrH5VpU5Y&B+)CcD)o6-^{*;$z3|+gAY5IL*eU|E_x%$!BwfCcM?zYhl{`KS2om07y z=dQor`u)99Sf|eElBiE{zuW9oy_X4Go#)e8dGDIE5?c_Hjo9|LVya1EhqlJKODJ88 z;?Gx6xfVEKzB?;>q_T&J%!dXY)o8Y}hR5#w=2%*C&)v1;c#^bH_2R95&Wlxk-*u>4 z9mKOSYw`)c>*_(CD+G3bH7tF9bn~3ab8k#{3|O;Lc9sB-X@G91ctj=t@4vIwPM9`B zKJR_Jjbrd~4HIAEWvve3nckZ=w1}vlxH5BVZ%{SIE7w(CD%o=<J&({flW>gNbpB73 zcA2BaqeG7S4+)i6pV3?RCc|;j>samIde>b)sB<-Mco1ZeG^gd^W}R)9mmkf3W@3A5 z@%rr^3q#)@dmGw2!#PGc`^?9WPnm5Byich=%F*@QAky~YYSqo_x1S!betXOQ|G)RF z{9Magwu{_4mKgUb^XHY{9ZR3xeU;6-vrOyt?!SrFS9^nReTx>DpV9o)-1UOcS~V5( zLxs6sGZ;M9*6weeu>7Q*^Mk;squiUVk0f)PKW$XL*3xrBi^dJRcfPBiu0JQM!u#!? z`lcl>{MdeEZQSnMB7V+NY*zklzJgY{$xqiQ9{eHnI9y|L|Fx#~84oXIvs<YDC}V6j z^L&#!d-+Mf`V)Ptdo2Af@4R-KqxMBszUjV*jFgwtX0Ql1FZ%FhlbGYo_5=p@-jj(h zS1KfbjY~YWBuu!FMS72+fZ)TpO)L?|U3uE19hdJncR2cDL7YXwnRbhV?IIO=jeC<` zT}bIx$@bXXv!v?i#1x;$u}|w-1fpM0Nb33gN9mBI?zhR7w-4%V-!5PO`}Oqqsn_lQ z9JfF7d1dbVtc}mb3Jw&{n)cL?WBvB%s3_KtEBQ66S3WJOs<@dK?zi&&?5xhhZ7NQ( z#{Cx_x|~%k_0SPke`CwuI_>$&X{%c^PQ9D>()rbl9q-QGJY$$D*~#>LW06O->WkIi zW_;TBZm(EGYW4b~O2PT8bwxbJUfDa>ayjVRmaMVfQ1CFJ`M{5Sg(E#d?feZkMl1Jv zWM9m_&f%)D!E?!#B*Vk+Qc6;bXNX4aoXog^p?p&EnM1+B7MyJp*K89k`ti2mVs$E4 zXK~BN=+EC%?PZc;56+s$X1b-K<9bA2;+0)}VVs2-t)7{s!a)yT^zqpBByR6K{>nwc zPs?!euHutRdZwHVRO?-PTFgU3@0R)R$)_jZ;GFXM_v)0H{{GL~KbyF|;;q;jo&U6` zcJG?ffL~u;zI^#7$8gv6D08W;nS$D#@<}$i+pqtea_oil{T<AGncEFE&pDmjJLlW4 zS<5~<JlA=|E^}PE*nS%4<lcqfGM8SH?Q&RoD|_3j6=APAKC|32?GuPQ`$TW=3XiJi zol_2-iTa+Px~GDdX+jFmLakDd-!~#fWq5h4-<W>SGu`rSqEN~{W{EEw6t||yof6XY z&erW>my*AHdwJ2@>K>*G1_4dGSDw#!J2m6I;I}G=!%L=I+OlWOT<@FL{~psRKG(BJ zhkN_A?pNF5&hejDEM%P}T=sW@c2mqOkEmxVnOdp*dzmu?4;*e{S<}`bYMyA7x%5M# zSo8nj>1JiuWGAfBT&7UCAn=Ql)O4Mj-J6;WGu%ykv%Rh2;_G!^zdfv9A8}5<|Gd1M z+_}`f9x=D}ecQEn|Ngq4pS~9DoaguaynSub!rEBI)pC2+-Kjp|ziAJPZey|E#;ro? zNv{Q#9yOaUw{356S5<YhTZ~q%>Xh5}7RWZqUK8qWyXM83eDhGz&F$+-Zd9()@7Z!~ zT2fzFX77yRdE#d**rNq^1U|U5^6Eu5U&|J`LIKWa4J>NXy8^ZyU)DZ}W0#WLUW*H1 ztPU1Mp)Unjna1Dv`-90ULN$f`^dxy%sSO7Ysc5-=eB*FK|94NILB+O3H~LPCTs~uG zps_3e=q^*<=2rn16Z$!}s@442HsN{jl!z?Xq=rM>1;UH7H*Y@V683b{363IhWBI+? zIT)oq9y8b%dtC2%Jgb4x&S`n(smnIUr@ZCv6>|%j@u_NwsAuY)-Iu<VRcEjL_~Ibf zjUO+U+uPLrs+}_}vupe7)gE$T89DZG`)hxmp3nAt|Nr*=|9_V6m%nwYY-OqHYpZXU zw2rzy<DWEbm*~8-)eBTjxsumAX3Z*ky*%I^<MNf4e>%?17E=Cb_*|f(HIXww@Xy`* z{A@p8bXq!Ce2lnst8@GE*%r%GDo<4ks&RXN=HzZ%b?Ks8a&`Dy54UIcb<QoEnP%J4 zb^BYS-sWF@E{VSqzg{!k$e(8#P`aex#i~~qMCR^Zab((m#ghh2Z4zrArFAy1*(Aa( zq43DM(M{>r6c-uGvoi{J-zjJp4V3oUKKp3^htm;5ji(`}*Iw0q-g%WP>$I6N`|`&O zU!)kft}SIg&|Mw;+%57@>2vF6E~m<t-(i1sLr5k#G0jSU`Q@6VYQ`Ho+4970_xt{E z(3HK*dGw#0vb|lc&*w!dw{xrOf6INYdidc_#ioRaTep9w?ymj$v;6;um&@&Y6z=b@ z?T@htQAmltn-^=TZ{HbeZ+fgpS3A5Zt!ZnoQemQA=V8057`d6BqgF@Mhb3;mxV3!a zHSYwI-A4^9=O<T4XN9UeJp3`up|o)IwStI9A=P6x8YiZR3J5Ofw{Abe%B1ggXvOrl z+ciu^hYK~1E4&pbN_+cA%<opnp#;a4a<^cMIq9*=_nyCB5wt6N*2aj_asj83_H;$A zdyvULGr>^(=aD&mQ~d=rZa!&{(tBEAWzXoaKU;J0o9ng5GY$&PoOD<3>b|>mI?JC| zR(?ucP%nMuPl1`o>22}9>NcOdY*e(3t@EMLE2nVTOIzAQ6&+Z2=v;er?(?TVUu@2L zbEIDJQ{=aP7xrGhbEe8N^#xvLhq!*<{_gG5nxXpE@ln|J=gXJhb$a;r)3<xKzkT>) zs4M^f$8!6>KYp3|Kb$^)9&6v*l-Lhym${!8v*((6O?x2IEyCxr=S$$?(<Tv1Eu-g8 zdL*%Ps_xN<SAFkok7-C)2kB~8>|cKEn%yqtg%?G49Ff?0VVT$V8(q3RK^{L_+_tD` zb35rS&EyUZDs$EjFAmjJHL`gsv2w{_p9@~Xr3L9Lc@<&~bv)gWCw)Y4S0sDE<yECq zPPNzbS@zE}<`-Z6PWNC+$lA$gD$iZG)+3g%VakT)XTMdnMU5tWt7s3)jQ+*LvvZ>0 zv!|NRZEnSFn_atmSM(<3`u~kvCSBvp=qtGQ{c7KOkKEjdsa8sF7QLMvQSxm{$%=6P z>5rdjJWsWpD{r|huB>2H#sM)dCNYgmg|?ivpWeQG{dQX!@9D><O;Y8z%$**r{rYWH zZT(-x!hb(rF1Ne1|6l$8^G|=RT3a{IE^5`5?ZJBQ<DWgX^p|HZT&wzg<#*eF4R%Qh z^%B7w4sS8uC4NRiM0kVbnW-(E<<kWU?R5`qcM90in;XCN{aw-LAJ^+#FMGbgY}&)( z_5+&d`4fcI&KY}iS)5+F=hB3n<)05ckGi8(&BAf+6l?u$lOxa19}-%8+0f8btnb<? zfhma+MjsjVS`F;m+9v#7tMJQbW_N60$ZV0Iu2n2nYu+tgmgyH^G(q&h{@$e@vJbB~ zvQ_(QZbHB5p&8FwEh4Y`2U+*t(q;F*v2<!_iNzKEH&3^230s*pXS&4nw7EAtCKd7~ zT=Vj~!4%YFXt7scOV%z?@$JJsPgG2-lp4Q>9bKhT@TtjmcbmuRgRHd-270N?s!BF{ zYnEITk^ENjFJkJyxBmODeXYHHeN%jL*W=6W*RpbVU(;@%;AhW1bN%*ihNr=^{4#@H zPkYPnc)Pa1XJKhXd$Q|Ep^U6e$4q(`3VaH9E4DOh=hiTlP2VnMA6&$0tD^99g3pGM z%b}`ln^crEeKW0Y^Y>pqvogp0fz@k)lh55Js)w=NT|RZ!&V{`}?Mx?Jbk?rB;TDm? z9Q|9$$>TyX<0Y+#&W6?L&*z0SA6tAZbrI8L%lO(NmtZBs#tTzcL`s}0y!H0t)ypqk zs#>=lwqUb4v-f&XcE<r_;q5`+_wk#U^u2C)nyP&(<y2m)<KZl(ZQs<QBo3dOvn9*l zaTCYnrjywZC9b_FKQr~$Db|fgn{217Fn#*t=i|@*_O<h#^K32MHaS02KX}3|vonTk zx5?&d$tE4o$h_VC;l%0Bo8~-wy720+zsGmwZGZiA>-Sx;_p5UiRXa8HmrE>VKHTu* zqd~^KH}<a&AI{t>Dt>k2^=rHJ)fV2(ovw8>Q&^F)>dGr8$yo}?X@7T4y(%`%c(*`z zwnEA3xZTo6nWD-oz8ut2KQ`r)XOi3J<*|S3mj#tyo$%Z}!utER>O}T=k}G*m%Wk;V zp~wETC0~}WQ0kwR^MhN8^ErjH---tR%t#lrTd%{}_xoF6)@4WEMG+3|60X@+zWrOX z)Gw4|W$xnmV^=Ht%z0jhq`1zX>*hR{)->_0)7ZV1Iaeq$ho|=aB;n&0CK^xHJ8b7Z zc&b0?YUp|c`Q-Bp1D>#d=Jqz*F0(uPXjJ+Iuhp8Lp7+bw|L3o-sQahT`0eZ3km`tw z`xbp?J{YtnEd0y@!AU*>W|v+4UIhQDx_$5d|2wxzcki2i?R(Gx&(%sI#c!Mq_}@(X zy3p_L?z?whKjoV7WW`e7AC1@8nC|gfyKO&K&Y`xbEy7j)a?jsyYuT$KHT`_0pKV)n z%jrTI?-FelYcA^t>YFFIx&2oZxvW!o?|Nz6v#{=~ZVmBY`0Ay$+5|-<&s_60m-Sn% z=cATyv$y58?#?+Nx9QN_u4KPDammNJ;^EmDCtBOBnc3S;NuAMV^;os+?sLVCxsr$0 zDyrT5F0@$nK-BijpB{X2X-wz-xj6Jg+3R259_QE3n`bviUcPmbs8CAhqOEFzR_)9R zg4<qk6kXTbdhYP5yC;$lor}4vq{w$A({HP!NNGdHI*r2u&wnkrmUZEq!Ty?>e{(*s z{2q8K>RL2wSC+x!ECvUzU)!VEN^>e!v&k-6`|kJFob9=L{XQ4RJ+sh%x=X0FHo7|d z^UF-0mr;pI?=9cCsT5Z2xvRH6-@fkW&*`^wqp#mKIq%HAZG+gkgyi>rUlu7YnZy39 zKhR=XXJpn|&DMq5zk;l<W#qZ#atWm$uu5ZK)RT3ZCb;-h!|4=t1>Ln@udUcRse+9u zWy;^X^O*hjhMkUyWGkKMva!hSAy5B8*9f;$8y3F4_INUj_SBfDIZCeTiyh?>e~1V! zUYqt`=BORtg+B*)nQW&j`SG-PM>*<CO8r^&=HvIQs|<%b=f)f?UGJ-69~m0t{mxL; z%g{$ix+ihXuU9i}9l4S%$XRH~YWYx|LHn42`k_gpH?&vJUHLVtajkM!hyGl?L}n4? zR~8jrhu%*Q=c<i-Hm9MswJPTImM57RZ)>etK0C{_B<8&=y?^cXcgJZ=ul7alS<2?a zX4!Il7T@ZZIyQ68J^y^TTeM-0Yvp_8)*ruqeXXg>*t>r9-XBwn-dneu9CGW6><-Rn zO+G0RtfsMvPybu<jjIzmE-#ci9P@pzX7o?7<gOU+Qv37QR*1Pz`?0HM($>_CtD`21 zP0!uEG;>))<bKoLcjJ8DMuk3dejqcYB&Ra+(Vv|B+ACpF?GuA?&Rk*Ye{qAEua{Y7 z%A5Sihq4>g9N3RXFmN7dwEdAJXLe)V{Ek^S`ixF}4UlEJ_GXXVPPUibeB~9grHjQL zy?k6!C8cvVYLCU!IZSiduLsOty1>R>sVU~d`yGqYnYW+MKj&~-?BOlF(3M|%4cit7 zBzzWl$9Cbz28r;<WAFCv-B-6e?!H~kpD$lZjvc&s%W6#p+q7q)Q-h+`gltg0ysh@` z_UK6c<Rx4wOAFrJ654i{;X<jKlgy=QsY<6_=l=cja88om(&K+VynTH=H-7$n`#8Pn z-?wjnK3)9LhJ4lA#*)6wX0;QYw_gyL{Eeshrr2Yd;8OSho6J26+=Hh-O!V1SbDICg zBZ*RX!^Q26i>sv)e#S(t+`M#S%s1an!g<SHJ}mCh{8AU4FV^;L_SC@T$A5mw`09Ay znSZay$>4_ggoU;(l6$W5m1tDR3!Et~T6FbI6yp*>oi5$^%r484(zm~oP^eRvWtZE0 z^<GVPXON{@;fgtzJ*%>Ba|CUVTf1@2x$|>Xd@Y@pZ+^|Eyzk^HxpO)<*GZ;Vto(MZ z>-FR0$19qaevd2Hn-e7G80B%;YwLpMM~SB$-Q(SPOucq*T5S6J&eCf?zLm|o)KOTl z#o_TXd!gBL-)(ERYl?cXdha%-=}(r`9&hr{d_86UO!3xbj_hx}EZQ<k_ig+7*#EzZ z;k)0*6xT&pR{#E2{{Nx<-MniNU$@!Y*50_b*7T{#0iD-;uNbzmd1}sOe=DM+<h^N~ z_1XUBZG1C-EM!d<cqrC>J26vU(d31EdCr7|2b%PK!i2tE>-@DZZrbO|4MhQ`K2LdW zu>0Z3Eqkuy*607W4i@w7y7sH&M_^K6$)+9Ia~(r}H-0;*d(q<Fg9*}1&!%y(?dZ_B zHAA8ys7<k&rD=Jyz0yIhw-c9Z2Cc4UeP+8_=t!T$mh~4ediQO!yr*@c!oq&rz4VT& zz1ybM%HGxLl36aOzV(y4W5ovfdzx(r1-2CXGS8@AXy(VYR7c}OqF>{VC3c)8-(>0( z|8-|&H%a}hs=mLja9+|pe;H$kNrFt*Lb5lm_X{}{cRMegElaI5-{H9B?(1I5g0k%+ zK3&;z^>y@v5BC42|Nr*zv;Oa2ORwg7{rUCybbJ5*f}MB16|H{y?Zb~vI;Z3ReR{rp zx%=ygYiD0R^<A0S9@(|v@4Od!rwp7nU31#Rc5C};+ny7(91*KOeBfI+?Uq%^^9$y( zn+mTTy>b4<)~vft*Ea3bd+r}_e5KLcMJit%i)Z;gkNF(=UE2M(!(Q<zPqZq<`i{hG z7p*%fm6YPOc)Ek&6o#g2iLI5JN*y_x^MX%mFx-fWk@K0!TytQf@Y~#wtq)v&yDjc5 zc*C(a_Up2p+aH>on$q}_vodali2G+Vjkp_gw`)(2;?I?dVqkgG;Zf9J;p6z_K)#kt z`@0^;H#_^Ij<nyrHOD|SK!kmZ^oB`A{d}v>8;Tx3*6{vB5_kC8dk4zp!&Gm)?aQp( zw|D>HjUECLx~HbZIqvq<x%A36=+9sKzt@-Z+t>g6RC@B7_xs<!Pq)v{YmM9g*VHXD z%C7d;&)eJc@7MjkefhC7v*gOJg26IT2bi`Bwe0%VCAIY0y|wk5&*)a#*<by;cfzz& zVf9Pyd3OtKS)9SJ@{peOo6ZNfmKH@cPK&yCxlS(e=DPLI`Tr-j1bQW&aXj!!B8T^c z(6feFPRzbny4wU4@3Y4Q^V=}5m7VDvDH><QS*`vjZ2Ig49aE=n61C#>+2z;wZ<$Nj zs+F5rUFOUZTb{W}bU{HyPICT<sEd1(cIZ!A-XI;aau!!jb>^IyeR8w80yt}y^olVa zJQMu0Kv?WVbgzb@TfzK5v!5^K*jin5d=mCUjivRET#}jfo4S*KHY~|Jbzsw#)On)K zr>0C3yI%YLb=B(X^{0-0y1Z?Dc=w5KM_2G#KXW`-CVza{moGoQ%>Tdq|2CUHf1ca_ z-8|{s&xLvBUX!o=`g;F={_c0Z_W%EU7kYgE-`D@K=hV5jD7S6B_4&vK#^zmzI%Hgb zPt|C+Cz`dBw_?VVpBwFK^?u9mT$RFe{LPp5f@vS4Ow_gBewh96umCrUdUjA&<o<M_ z*p$6>w)X$^*mSopv2pLe^zNa{BhxP&Yg@A)yit)5m-p1<TQM<t%Zzud+Q~(8_!@<D zls^2P>Bh2f|BB?hZ{B)Hh??!5A!hhuzSP=6&L3j?#6K%aE_rP6!f(p6nbFa&HI6r# z?CNTs9X9F0#U;Ic%m??eNDG`$klZi1qj=7ns8y58W2GdsZgRZ27CGU4_(gYD@o=VB zS*Ly$dRCsA^yq*>vxn7+`+9eSz3yHsy?uJy`=xJEZ*LKO)>0Y0?7-3;|M*SrE&uW7 z;br-MAM4-c{`oln|9Qt#hOzhW`|+nQtEl`d%)2^aTKjqV`hV^E^}k>5iu2=7|6%>R z#4r2ku?vqr`X&7>IJZ3N+k>Kq*FLNd__pZj%jxU>e)_xqis_|EkFLEs^|b5sR^F#p zYz|e-ulOH46mX8;)4Of!Tj}HTHMjnKtN-!m^cg#@Fg<&JLa<B2h*ehX8)xUeWP@EB z1-?y~y!FmCm1SHz)|5?}QN6w>$3kY`V{Xlg2W-y+o9BD3%ubva8T4B8#BCOd{G%_s z6$Bo9&~VdRyfrL{=kV%@?{>&;Z%%*CEpSUW`{Tq3dw(8JeDTCWKJ0s0ztO|Z7L#rk zac$ectf}YPF31@X)Huu5!mg%u&xIb(WtsDqwL19}Ci$(6WM6oVJu~xG)Y`4@Zf{$A zeN*@pLrV_^O+DusXAS!%$;Z!&v-|t!XL<hpx;^ptRhJr6%$#oHdplQl%Q2JU7`FE5 z=j+40e!h<X#}oQSQg6*P@ij^-Su>rY@&hfNx^88u&T=UW+Q>gq@6hdiC;$9>`hMQG z)7t}AeOsF|C%NmRl=AkwUF)^n>yGv8U(Ru8?IE_<==lBL54`+%`0LlxFJCS$$ohTC zq+zO8;DV=~A6zF1_Zqb|?7!W{7QxWGX1O!dv@1q`-W(}W(~XExnZKRsXOy!<r?SC> z+MXp_4?EwkvVRjWxwbYze9o$yirNgSv(k26Rf_8lQWBrmQTwyNU37ge<Dmvwxroa- zrSs;7epH>5%q2K;7Tan)w#eGIF_9@>IKKIp1T2p}*DTH4sCZ_26SG6If24-m87+w_ z*4xwd|L?oMu1`Z@Yg?9nHsjvenkP$yJRg<D=QDgce!TrSzrKHA)sIh)i)#O$o0Rh5 z<wIBZAE)E%d^hQy?sR(gL!q#$;?I}Y>;K=|a{jZBMSTADYo~U-7d#atlCteY#`%l` z?z)zHWCRjaf7j1!zv7gtz4XMN#$xH*tvpkzJjCWJiF1{%p76afHoQ1s>ePjIFII_E z-QCB&tfZ>)|G(8f1~Xr^M*9_RxluIFIiZ_b?33}gdna$nYZ&z0Ym@o*!r-^omFy0M z;~9&#JuB(UyLO{HLcuf4Ga`Irq}0Y|5wdzOJ9BoN5)*THQR)6#K!3AVrG+&^MDTP` zmGFkQ4LhRZzO-3clppu~vzy!F(#EiZ+wKci_<dJ@5}a@(#?nbN#X!90=&^bHmQpSC zIT6is&RMDou88j6_WtePueY!7{}W&T_wxRX%g2xV|NL|2(A+dH&o$wjV(eT@BDAF} zYO1QLetwA5ynF5Ir?;m$Oy=7^lj(f4J>P!YTPu(FdD9PazLBh~`}wDCXWr{)pKggU zM3??o<~P{TDi`<b>#jrJm6y-_{`OW0OUDO>%O)q4PQ`rN`s&0>oB1oJ^#-dgniTfb zeB~X{f-{bfrd^pKC}bM0Jn6)){~CKgeY&$<KJ47FPPag97xk^juE*)DdgXcC?!tQ( zzcA|s5rV%BQsjFsFNiKEljyp8PVt!~!(H1g3hy%(u!P2EcZj;!&Is2iev|0owIc3f z>COX-u02syN$^ZkEs(U`5y!vm+uetEPh`B}i9X%Dz=A0%bZz&>ediA@&2vo9zc1-i zq;Z~Qio1jggZsMnoLdqLE}K2EG5D*z+@w=Qr|s6RyK(h@-oE`k{q*bUe}5&{{=NO! z|G(kfdOn*#h3wA)j0c;RRa(uTuIcgX*WXY7>T&}vpSZjy|LNbqyVkDeFxpjmc#6yR zAiwABGcK>M|NZsTuf<!9o}T1g>y@b#?DOf@u2n&EH!;O&X*S+yotheT=a7VkG2bM{ z?3a~XshcB2RRdQT+IOgKGWV9ayECCogR$@Bl{KC0){9wlyxT(4LQnS#oNov-+jLB` z;pn6pe3vgca4Ie~Jilt=cRz-djhim<d<a!%6z@_l$UdWK_Gk(dhs)}{&lzt&QMkh0 zo7>=>c9n<YzRjc~!N(6waOKPH&(p22n_<M7$?~guTDjGc^KKj5uPnU(QjdKd&znYf zexd!^Oh4{iQ{S_WvAaHW?q%B>QHL40tOOjsv45`(Zhd9oHY4yw&8*;gZ=$w@MMYl! z{`%?hZTH;nHmSak^PVoevp!anb%u9g=bpV^PCs3H<!tRk<vHEoa@W6IwD$1!iYwbz z_gxQ~G2KL0Q~&+?{QUd%y03d%r(JIT`!h;^`gToy&EsFU`F-XI3BFR){gZQN%-o#W z%a$@uGF0)H<8<8R?5ow2o4%`Tj9hAOZxA;3+l_4f((Jt(eI$zuN?Vy(9y7!mKDP{x zUK`q#KH=yQuLrkQypP>@W!bw+vKiiU_3j^^koHupVNqj5nue6GuV$jU*yE<i-04%^ zUe}!LWBVmTv@Pk<s>UVF_DUkntg<5IWdgf)8LtWZ{=F+v>7ELw$>RpmE6O<wwm7x- zT(}Um`Pt0IUz_^X9NZaqoqV|cbMq~+Epj_1@yhJgnDp?1(v_88FI7KY$aE!Gp~~j$ z^Uuyr#yhUQi1l9kyDs<k(&WdzmRoM;H!WHbAg>wqo$K8df$*M^qSE(Q%uAIXX7um} zW^>AH-MY8!^5dP?iYoucU0?le+Vfza%KYk;)$f;n3(;ojb3MLwjz4#6biTIp$;+o^ z{#j76^xoT-H{?T3WU^|P-`TUv{M_jc|56{#tPXhP9JIi;Z5N+cSmsK9g`=kP*2qp| zk$BS3?{>9{^W(-Wp4{aO)v{JKo{tzm%gwkDx#{@Zk{4^9uDr%9mz;iXTAQ2Z+{`&H z=3O7>I9+$r^xjmFe>H$HgdukIRNp?1m9q<Y7<aqA`P8y=>)n5fOGW%e=AZI7pukmS zB5<>Pb>f}cscRp)1+LO_Ex7RA(at^aO?Iw~>Ge(RrHn^-3{<*4GzF~LwfCZ6%4&nN zl{3XVg{Rb7y^Pyl8lS&(&62z2^9<~^=$SZtI?ws^Lc?>7M~8~_K0G=VJL7Kul()VP z6Ur>oas%#o$Limo{r$T0^vgfXc6SzRjBu`8^!oQ~m(1U*dV}qrZ`rcVyDlg8ZDX?V z@rzbgX_Be;SF6ozc5sXgda!D1i^5!ur@@!b#V~Y=3Eqrmj>><xS575owXk)j>>mLk zmAlSc%s2dBV4$hbT)l;v!*OAdl6vNYYhE1tR&ppm5m{a9;L;QDwp3v07KSx8yp<7; z#4?nxI8J&d=p;G!^2vYFR`Dke8A(m)P@a?1#dX|~cfz%l*z)z$<~3wlv01+2+s)US zR&KO_`C6x7kHyLBGgaNES+OuT%njasqqq5PeF%r;H^xh1mVw0<(x>juw7ihnc69pn zJd;!V@}|qbe!KQMleA>U;^QxFq*eIu@NRC}?Og6@=F0z4$a7lL@|Q;(zx@q+_3o8p zWv60~e*ItVz|G4nmT$ZG`10}f@%w9keAqZ`@6@1gA|=_?lQRyM?asaY_|C20cRl-? zzA8+%b>GHy>6UHBEmlv4=RI@I-@U)tHh-eYM3vT^8Pi2xUDJ81dBt$!_QhAWGDcqd zbz;W~_Vx4KCOYPN<ez9(@cEfwXQ3>pqB@0J#W3t@l=b4Urfb216Q(W`nI-x%AUCi0 zfo#wO#XzZRWo>dEQVXILg<9RDJ}13*cVBqcUAs~0THCZPM^0aBwdgYGxf?sazuuBP z<DuLXhE1=QSLQxGqc$PChUY<Y`Z|vH8??WlyK5!;D|Zv$lfw?G+4~<P&XYg)Tx7X* zgy;6JzaIa6{q0}biwk}4Ug&lwY>k?gGR0#<*EaLZ{b9TYd@ug+o%+n<ctw<Nv)H<1 zpVKcNzWus)s_C*TyJ{yMKYskuuh-x6m$$Qj;@c4U>Gt<%IpdESPbY1j^C{%Co6XeR zc)2u#g12Rjk2zEIEVMb#|K7H4DQEhnM^>RWy3F^EI<qeqv=ok2e965=)oN14`mUC! zs~4Q@Vm`k$Og-bZ>Z-`MP0tu7i1g}R3vlc$lrebPmnq6rcVJRb#*;vu&r{}gRO;{E zpmX`N=6Xl%6Fk?p-WHZKy7Xl7=CIXQy)whP>t(iOKagXs*V<7#LDh~o_`Pz%>Vk@F z;q2^^HDZS6zZy6Sd^_+z=O>qd)c2}#PTQ=hZv8o>THB`HT037N>E+V5=aw=s@Cz(* z;OEbrmv$u}Y{Hw{Ra?tmR^JV~%C%};a>UzClZtj3r~Yq_59}95{n{AtIiNo@cg5|s zWvy*eM@61re);<Pdfu>K+k+N+yng!fvHx`W`!lz^{hep;y8gAPQ}DvCymy@LZ7;L4 zy|QU(<;I>1$J1hiSVN}eZNL4p=Fs-8&mx^as&+c4s&2Nuuf!l{!Yg8Rv-5nR(kgSA zi^+>#O<{iVY^s&pQceZ`tUPh)lmPYD(^7BDUH3#veu8g-Jx^-htp!`!8hLlkZd|uw zx>GKXpU{)U#1HzDr_K<#qu$jT?Q`iC*Ux<yw=An<ELF?AaN_2<)DVsglhunK{JQ(% z&fcqzm9LL!U0C(Wx8d?4h3>nt5uWXHot|H7xb)!G#uW)doa&vLJ9#e#^ggaDZu`Ak z-Y)TB%_)0Zd%xgssd2ff`~U9PS9|kXIm3btKVN(NbgWt%X57_%_LjK9T1IUl?o$)O z99H?puDq+q`qVD%>ZD6W)%ExD#a}BjC)%(?K3(>^RJ3!pX-RT)_>A%wUw5f7zTTf1 zJZpM!*Pi^<M>2ahzQ6sptasA2TG?HWww#kcYXr}WzL)<x@1@2<y|w@@OKtl{uLU-U z<u-40PuKoBi+hSduY}Y@k-4^iqd)rumbTV#mNB{ONs9z=u<HvM$qAmDH@D{G>5Hi= z+)l`ZDC|D#v^JPs_nw#k_kzhTHoMeb_hcuo(NExD{BG~L(0tDRF5QK09xuP&zviBo z*3kA+BXol=!wbEV6CIlzqKqA;p1sQ@n{Uon#rwI#@c5jX|Et!z7l}_SJR=u7$8ggg zn|bG!vs=e^c>dnD{`S_K*-U+JpS2}Ci&z}@y?4!tFHbyb?`Q9g^gC8^;+<-1<|(UV zS@sJ}c`v8T4HVGazBT8)kF$4f!u<dI|G&h~pMSpo&-41q>c7*b2d_GNPJV{wjKgo= z-(UB<-CcI?w72&y|NXQ7w=Qpc?fTO%H)dDX*I$*(d;Rp|$G{Z+70PZCjww~1v$|Hg z{kmbQ{8I0fS4<~em2z(+p1mdA$F$+g-kYoYBdZhFp2^IYcyg&$(Pma{pr2p7ui}A^ ztl?HW_85Gqzmfmj;tYF6%hSo1RxI5rrZnYDW@rCK=D+@Hn@?2!U{cKV3QEXfKfNKl z<<?2RnQ5z+W<4l=>a%q>ON;Ru+48o@OPr-UBcz$<=pCDR_G06LD{Y6_?zsAF^qTcN zGD#|9Mn{#5>@=>!)1x0hC{eAm(XBj{V!HE7SoY1enN3w<#fM5a@yJI0s=HXhrLv^F zF<|Z1YfVS{VmmX-Cg05JOgnxnPww!!_q*1W#=GY?Hk`WqTH?>+*SCx6m@X_WeLMYh z^zkz84>vAma~H;3zrH~6?DFgD>np3QZ0(+GU2}i`d&5sJo}RD&#l1u7gIu?b$&;+F zFKtq*e@>pZS0pZ|>+GT`F2=)$XP9ibdg4veI?=!BT@&m#Rf`*Ml{y}Fc&DjHFc0?% z$GzS2_DIR9*x5VtGN<*o|1P*+%(%1oLpXmppMdb&tt@9h989~fH_7PeoP@BxxBG8T zbmDH0<Z_X%*>fpmxrF8XR^u(X{DG1oXJ5Hl?_0z4Ya6>|f)QVd16NpLhiHVh@UEzz zsxqRv7H`%)T=?=+X4pC>jVpq`o?Fg4=UuR>FY9gX`s%yoSM`j#*X$MJXpJ;IQajm1 zR#u43QQ)4})mL|>Wr#oBw>j%}Hn&ma=MyVm|M>USd$skFRtEDlwpFqF>wlXs-4%CF zbIIGX+^x?ozsE&sFM0g;?bTVK4}-L?3w6ZX?X$D{D_gv^FFtjanq2DME!(DlK77e* z<GdFyuSCBum0Ik|r}^|&)&${w8xOB}Ys%%W{U@e)R-wePhhJIqdAq$AUX|Hqv?S`+ zCqHH_=UX<@E-a{i-NkUNA^7Ox!k3?uOKbkO7glfwsCcaZ-aNl0uxskhB-0OKD!gia z8@H;xVm2@MY|;BnTBBy41t<TusFQJT71%Zg@_*QP)%1<5*<}I!o|9jlx%%hsiry*n z>44tyq8lQIT1y?ii5rN2__KG$yh$~`K5UvJ-}K~KbY>XS`|YpewlNq_xT>}LR@L0+ z>~E_j_Fmsw)^bKb#PFuw<wi@cz0)?`tD0aJuqGfnKYR1Mr4Ib7`2UENTg;sP`Ll8T z&(reJjYs7xEY@B<FlE!8{r?YWG~HWklF6ABTL0&IeYD&>KW~lSVZY=o=bhuXkNY1R z{dmH?Jo{I1k4;!FoqpY~5PVaA`RB)5o?P4IGdXm9a{Ir=y$5EbU%VD|w0YXX-R+g> zDbtRX^*8rz*goxGitD=zcY_j61x!%=@H<d&q0$%26Nc%n7ep0P+a7;8@Vx6iYdd$! z#3;_hoxxda8wx)=tYp!c5q;e-&A_N))zYRYkwW&hlXwcG0`8mt{BzuiZ&H8om%V2W zyoe5sd_BQA?_z1s4M*EU4wI6voSpU{X*>Jl*xg^RdLGiBFK<^{G4r|mR<2~-+hx_& zch}jkaXq{9y{Qwo%O#n`4PsZkV!Qd&dl&EDEOnXp_pVP-T1{KoI8$p`|7bfTr`<Vg z+CRfLq9XQsQRVMlxwrp124{aQsrvQjXR+6%mhZXSt2$Rs(e*#SH0Ix*<MqFf|NqmU z_~uH);=k$VHeRXQx$o}1^&c`WZi;u0wY;<C`rE3Lrw_OH&vz(E<?CFzRAYugWY9@Z ztL$cND~s^CZpF1dap5_!8pSJ|4Q#lRMfP2v9jCPGjl9^&b^pHK&O6Rn@^A0lUp+6U zb}Km9bw5~jcWrpbU0W8`EAc-0!ROZUUsIfP*H=3983S`@?36=OPx9aNRS{;2KhL@B zpsVAF$BVwZd^1;_$M!10o|nn=q>g38NwdC_=NJx^?66sSRq5f+)So|>`#*0_7Zi~x z&Cqtv7dl*1)nj;lSJYhzm9zaSMk?<^uLn(-rQCMu!gu+<dZJ#*D)tVGw=BEb^{wzl zwLDw@w;hXG6lOlZ{POQ#X{m~ioeQ_jd!8A6KdXA(*5!L5mTquvTA<A!@$2#H`2G9# z*x38Mf4|;FF3HYw*76(Q-*zQ>YP_~qI2@`FW^k<H_rF#q`}!XoOchCe7w>Icq+WFM z`UF+JlfK+nFGb6&{mh}L8zyzT^vGT2SKBu4dKF`RWtJ>w*YB=Kdn3X7lIPi{DLBX; zU*E?6cgD(V*N$b1o#ExvoT6y+*m12`bwmg^6QjkY8QYj8<fS;<p07*37+cl;?w5R5 zsm(Jl0k0-W?zE4MTO8Wec9&VQwS_&HaHQ?f8}mZ#Ehi5Y|CnO={6|S$jfMT`EmLmA zPEpW3Z+uaJ`|r}d+YQC*7F}N1=3?^AZEK&=gJa2Ch4Z-fcwE_Qay&48xAK-!rv<_d z_g#hRnj5sZk7mYQ&)vIk=Z+Nl#~nwLIeJgue*LN9-^Z`oQilS*IW_D3;#;tw=J(fd zDS77$yW*o>Up8`1TD$Gi>$=WQ1_c5W%dIw=PWb)ylUJdo{&RM%>gktR)Ez_GG~6C^ zJ6Nhl?A#)_b;>Pk&r`QnAMkf-EGk+h^kpsQb=4hw+_D{e3KkUi|Nn8(vTusK6t~%h zz_-)<kMwS@@#ng`^j@uq;O400{)d_QlZtL%FPO1rKI7CgTvj{ezBRiWKE5I4anpjM z`(=cikjCn1Gq3*2ZEWLms}y?cF1tN?&)GoPiGt@B%zYLmG4WAQRK@;x)4zw#@V;F7 z_WJ3ny}8$4zb%@0`-g?l)GXD--?+9;dot+{gLugbOCz_H3&iEMI0B+eHOo%N|NEd* zEL_re@W{K@Z=a<yPI=9D`ACpg%HG(0PrvL=wY;DAeyfQ4S1*nWQ#teP_p!(+nLOPy z-6-PO&n@@#mgapfxpggf%PZq`0>WGcJnGj^S5;5_@m=Q2*R3^w{s^8H<K8Qw7w(qH zWV;}dx93CE?W83Fml{N+-=!SLTHj{KyM1$GzjR=RyJ>Ow--XVcVv9}($k<QQ*5lx- zSH7C$`|(T+>#bQ24)q>TUdnm<rrEBoE6NHKzZ!5XD~M7meeSvSqQcp%sk3%(-)-Wy z@LaMAW25KYC7MnvysSS6tP8eusnN__D|AXxg#Wl^&*A5L!+6~8zWjaL>PPm2_v_bB z-+p@QV~hCw?7LmccUG6){rJIW^ZRvtK9f`8*&fKO{(bf9<*g5yJ?AaECdJBM;b(U6 zSJ2y)l_&3Py;{55T}(8-;L$qf)U@^Q-+ukwv$pz=!u$LCtdC4x@OW$P^~||d()|6; zXDGF2?p}LiTF`B?F4l-`$3zs5i&W*;ZWda#?eE{;->09Szkd4r%c)+PY)le7VLb=V z|6((XJS@62`oZ_}Vy$m3nNPa*;oQo_DhfS4*2x#wyL&P92rjPu<f^8zoBgdwJ%b(J zw>#IeraJcs-r8k)%;%hBLEEf`>r7Ue*H7K?)-3k3xXQsa!Q^Rj-R--J8Vx&&=cl|0 zkdE=6e0jf<#}h5%8Rp4(QbO(*X2sgGw)4fSPg}d|oN(_d+nBugW&8IEU5xWC?o;}* zia)xdAtv_CiQSz7K^E(7F`AdO-f`x;a?dPdUWcSY`OTe$Q*It$41T*+tbAVoM8kk( z_Y>Yq=(n<cH`&&;>gmC2Hs*Cd|D3+vpU-$9Qax8uUQ}t8n8o>oe50c!I=5s#UyAOL zdfaj`YxQs6&Tnsbt?w85{PpYC!_WKoeqHqT;~oK*txZ$8_8s2zY<i>A;)CnHHr?8K zaY0lThpE@01y_`p-hOi6+2MCV+>Be~?$ics>fe33-J3y5_v+WQnb(Va*}qQKT71*Z z^^CHQ<#xwQFS*3x`u1k>Yo2#_k}9bvtGn%dPv86g)RY5yYpkydbnak35Ur@kcsl)! z=aH{$bHffZ{E{&Yd|Llg|9^FO{j4kOp;y;_lXXhtNtsqU>Do0$uC}|&4nKQ2;r6$* z2iu)uYlB?M?WV3j>$sIq!dU2!g44Y8MqA!j&kMe+JSc0<KU13jwt|$LeO%_2sLM6G zV((`KZ;|MV4Sg;#d-KOF5C5{ZYH&V2)4RJ?v~A;YDYncbMr&d(-1C2aeAjw`Ukht* z>lAc95?;#DlF_=wH9N{nnS;||@&)s0*K`*12<kunq4BxCI!Izd<?O2e2J=n@>|}9g zaG0;TL`7f!v`uu(&AjVrd$ZX7GcJ)llb4;j+jK_q6t92RWIavoGiw~QpXbW-GAF&; z7rM|X;mmC_Z?DD8Pfsc?dvI=cgoy{!6{(p&1TGgpvJ1>vyqjf>)j1^#Wu88vk}G)) zsWMMz_)E;a|3bct|Mb?~o~E)wf7(N){mL(TEF;t@(H3p7v4wT}pTZU{Mw5*jqjOn{ zu6PzSn{nBFlvud_`s>S|Pv7oe?<iE$<aRDVY}5XH)w|o)3$?nvOm#i~=(qWaKUQyf zK3)*_QEZ7j<+pyT&BiCEpB7cwY(BF6^)JJDm2YlscS=8!DYy5zhIP#snIG)REf3un ze;2Ci<MdH2Dt@$h@mJ@EITP=v%)EKizi%1yTbUD_nX7mOcYQtGkiBKY){1qDlS_G? zxxF~uwB1a^O8#(Ub@N?8%^Ry8?kG8N%4N;s=qV43a<Wp}PJ9gfsgTR6Ch54S;M<E& zw+jpZ<+nI62x_NXt{3JFxj)yM`+WY2r>+nA{C5|8P^$UE6U|W(vE%EksoaY<bw_M+ z_#eYq&~9+@!M%^gx=cNXcO0<hwfmxdVynxck1<~yw*Gpw=X%ugpL@<M&y9V5FLXwo zV)TJFl{eeJK1^K2{H<zTN{4)6{i&o~pYB>tyL;R0#M`&8Kex~SR(saF{eHsVkGtw> z=C#GW`lgrpPE`B2vvHk41Y=&qRnZQ$)tPQfI@n9E?`+xH`TpyJi=u4qmm04%_See4 z;{7N#Yem_uZ`abkO}&s%8o9)Ig<sMFS%-sL_%o^<_0wE}_RLyveDPA}YiDNXe7~cz z+&Xes<9v~yuQ`~f8Twt47E(U_q)tO`d9BSMzK7>6xW8RJ_$u{%>PgO)Z>d>_f4W|M z@-1Ya!FHeHcVAh2Wv^H<>rS>^VfgIDJ6pOc7MxqcdnR7T=my`)qMnUrzs=rg2lO6~ z|8yy?ru(svXqf$hM*a8e{rmYB<{Ur6b8hRQcBj=0F@f68YohXhZ~Sod={HW77mb$} z=5hGDuikYn*Y~xl-{-QsL7OITxtBLx#IN|;rq!iy7A?KT#hZ4-{fqOPwdMscdA%YQ z?mn=b+iFLvZbv%Tp8fv0HZB)8Ruz4;+`jSU-rlcazdqXpxXNm9|B>kY`QYTCD3AWs zzTL@eQ~sJB6#4uj>Fosh-FX6ko6`Tv%~23na5r$85s+GakZb!Ug>w&FB6cjE|M%^` z{Qs~2KlEh3*K}6fYtDxP3A>#PyeftgX=>%tyY6q<+@`M}U7{55?cw5<<~NebJ8m;r zZn52^qNi0{u=35ngKuvNO7*mE7Vp^i>+mF&q9t~#nOfN!cgdSc?o&MYUQHox;SAMD z4R;QkOp#s5vWDe%d`HB0ZrR`Buf2-mylyU+$==Gn?S1OG$sb<$zAbRxnWSI(Vq<Et z{W<1q&%UlTm7Sr_W3PAOTg5tonb&r+ygB%y?a#>qeUayPo%hX}C;v=`WufeA#RXy$ zHtc*HmbKY$+xqF(7ck`C*uA+x@AA&iE%My2R!m>$w<+Yk`(Kv6$4{(`6lDa0`ac++ zT~KmYJIrL4JHLdJ%vz?<j?lKbBFmUVUfo?LZgz0ttBQaNhOb}A_^;0GtXi36*?H%I z9*bzFfK=n9%Z^Jwm1$V^Nb<Eg@IMrH-ovW5xIEkCPW+K%#w)H*=V^!<JHGP$c<%Dv z9a|T3X0Lw7rm^6$$ra9noUsR$nVoH}{t~n-S>At9H}m!F+^Hh@=G<mhTfY8#{Pokr zO2ti^cA4d{s$RL&|NChBqqcB^z3&%w@5uTUFn_IV(Y?jdD_kRsrW{|q`>4vd2R3`k zHk-9cSxB6o;yNk(;s>>}vEEZ&F5q3D$a1j1aaYpu^H<euvI?%tR_`>B{&dyq#Fc%$ z$7Meqmvwj>T7TPcnTT*t!pW^%?fMIwWphJ&c_r^1WxQ(m@>VL(#og_)uP(e=9Cu>g zu9Yq;qw{&+<nOLO__rr^{h41j+O-Q7m7kf=5LLEq;avVF`g_BR#jLDWnf<OjRX(Au z`rI#T#iA_v02#@qZ9j|>re6x2B&QHN<DkO=PN!6dWtF}SPV)lmA`2J%d*y7Aw#<3^ zU$fT9OtGErXY#Kf+hcFLWJPcLwb;cig3h^*x1VNjWZctm&BSbn-NO8%^Y|?V6;*Z= zINSdboN#4N);qfbUgjUof=zkVwHD_KxJr^8cbrM=W#FHBFKe>R*0)@3`@WhmrNxM{ zrFzse$2xZ0Z>qY!xNkRqyUmfdH2oba*})e+-`UGmATyg?aLb%;;*0qt?(w)Y_B$V} zmT^`*^H$^t^Oi#q(^Mt~om$xSvV{HXo(KCvrt;gecyxSPAtCiU;>SJ>;r5Tpb=*>m zS6z6w=-uC%hM4*T(_gzAxLb-U?l^wK@Q1s^wNolS?bhz`jMcL5xmJkj?s>qn>QweR znG;qP&m?LZYfCzvqa(wubf4dfd3AQ**QY_DFCVG|XD#iE(s11<^)^CrvFDfW#8ltV zv;PF!7KirD%-`>?p>kp2VRt<{n>p-4F=k<tzO386wPJr{EN9eP_wF;Yr<X21-+1rB zg?H+mhKrl)-QC-`?p=6nwEQ01-}39hmSz?X?^q_3J71V$w1#(0vqM<=GHa9LhizJ4 zcqodyfAtjUz2NZosCMWSzK;vEcW9l=D9GT?i+Oo1@L^p=|5+3H=%#nIj6qJH*>j$9 zE3R2Ev9U{R)~4TCY(Kfz9qBrDP0nlW(*%Cyf2HR`DvTv!mOPg0*HgN8e!;Tr8iQ(% za;g7|EoSO|68v*0f3ITP?4@V-Ua^ekT(md2*<j!Pysc;T{eSLxvwnKs)SwSVGxq%7 zdO-7~o}IabictQ~gwqd_p4{6f$5d*kT9&*1FlU{Nu2O5@_eBNGe6mdnw^&M?-=^}2 z7M3zjKahT1cMpGylYG16#g9`8Bo11%?^yZR$}o!ckou3;n>i%fh1KSKtEpHl!)@Ho z%v-VBDgCR3&+(_MS9n^d{yHymy_fyRF|GB-j^F00Q7>7RnYK-ar|oHA*X~~zINEdP zUf-y9K+Iz2dk^~?K^#x#ox9??kKd~&Rqdn!=bYH5N6%UR332UE_GGHOv-*g&&}Ht* zJ8m1FT{!;yfScxvcQcM}GJl-hvTUAa)6&OL*Va}(4Pz``W^hk$dw#x@ioS9C1&a)! z_l>J=_gnU+F#I;-Gj^ZO{b~c_XEl$Q@FV+G<zI!gSA6-Kb5nHRy>F-2a`_*+n7v5D zGQnTxa*x%*%H+l%j|mmZ$B(!xPyW!(YS5)z`77<9`AxfkDUT;OemuK<ryd()VAtac zS?+M#FPZE-lli-!J)HIU$qGY()BrA?@8;6wmYn+&FDyGcfo;~iD-U|geA?Tpr!&6g zU<$C<qOft>^>qRdi|(iXxVdWg^~C#?^DC_-*#r%bt#sy{bW}V`aVg6+^(l{PEuWUJ zt6tRoL1g>%%9g|pyJjf6-6^Qs;Ly&vpUX$G|F3(&>`bn;rF)M1eMnSz_5Ql{MVsX= z$?IouZE)awwY@I%`-0qvZL*IaoQk~s($8_)+dVy>y&F9QVve#^YwhQkGmU<|{r0a< z96H86$&8=X=1sfd%<+4N{Pr}<9h~mf7E4YWnKE$M@SQZ|-_~>ER-+vU`%LK%+8#RP z8eU#^kJT({?qPWCD<9C7{EojidwLV=CkvSw{N>!+-#>ljCi|m&Z}}~*d0YHvTXI|y zdS~z|Wsir%H@0_AY8UkD%)H~k(LH-{_QzvU4mNI!uN=Dg$0b4Ip_f+&7wcg^9o4GO zKi5Rv6WxD?{o)a8qZLOC{(igS^!ZiGPWj+^6{hu@3_oo8^(@2litfD$Zxm#n{CoMs zEwSfxs`T^8LKdr5xCMk;CLOB{Tf63<z|!3k3y$Z1dw$072UGr?uiFcrY`734zoOmR zEc<@;YujUMwhBE6zi>E+v*#@r=W;8VV40Bbf!jUnxGeux+*iyukLkH5IQ!ZTp7|0l zYvW#TkLYg<-H?9U-M#W)gx|%xYX2k(ZY-WR{b`(({6dj6<>os!?O*-s?yO?gyXNl= z66`b%c2#PKiS1MTRNNV)$#8SVLdLc!3kvogj;ZO{t$5RL$+vIb6B1*d`wHkV*d+Ns zJbvc=kA$#1*H16GcjV@Mb2-O+K>xtLD<3Tb|6BjyzUJ8|b)<9`xBE@ig(~g3uE+Nu zIAr~etxoHKe&gX?ZyR+hR@~kwuOwF`|Kj2WCIN-te~x|kvfz8Eck>O?gT)Ic1n?Nu zOnGR3p8NmnubaZ3T5t#DJWw&}Ke$zN#gxw*FK?Q^-!RmmJwt!-uYPGgzruz+FAj9= z(qnPU6U)<1=~ntzsx{YJ_wXcMdDf$Q%f79*%s6uEm96Xz-+-(GT&Es9&@w-<KW>SW zzKKleRA*z;9sY+DB;Hj<_HJF+EW9{0+T@+<>SV!#cP^KyKdRVsFk4l<{Zsy=-+Bjl z&ZO9vZCxU?@PCE--9wkfd`%C9m0Rg3$XjVRSqmgidin2zgRN-0BkS@na%Y#@`WPH| zqhe^1&DJ(;UuCK6sy<PVDTf^w?LN7#c9Mh#TX$BkiHlJh(~|`4)0YJt8(tYZ_xSLK z@^h67t^bvw+_J(e&iCiO4gGOzr!`D*y8Ge)TjEAhw~}~+?73c>&)uo+J-qn;y-4{p zo-9Hkr3M8L4qrd#o8gpyE330`mv;B<nN6?qKQ9&*{LntBVr}D36|dSecLV2dI{)3^ z#rH$Utm1Q3y&9C<UVP^>aIOCSdfDH7(ckw!di3SRky`(E^Yec&amVuf4CCh)Phzoq z@O=TpiKy(UzXal2S;8kBQCMg`#niKjUvF+i3ga_}wLb+@)@RzhKDom``Qr-Nva{bO z^PUl$khFq@-|gYu3mP07xB1=VopjvMiTTe3TV2LPm&?{NK5eHO=1!MzSk>fqwLn%O z(DQ}W97T}@FY2yOxLCJlUBmk3sJr*R`9^PLn)x<mN|dtfft&ZX$C)!)e-ik>BEWRe zd`E6`@aw-}yd51zHd<C9|5t9?wC}Pc)4NAo-xcJ{dLQw);f|Yy)%s-5+V{1F$L+t_ z-V=DSmoezU{|hUaMPJuP_Z|Amz;eQH>0@U-rd|5X96KB;zqI{0^?mbWX0Zt=b1PC} zwNII3|7(eP$`jTXmZNxRm!+BAmLqd6=}f=AJ!)ZhU&!>&S5CisrFhSv>iLV0-1agu z=2lxS7ff1v?oiDw-dVM~MGpnq$^A@TA6ETqYC)FF0|u{2qC!TG&xIWhdcT74U5CHb znyoqs39rRP<eTp{U#|PUA$;@Or!!IypV>5R(|YqCAGrVjcZt1SByG*dqOW|?^X>ot z&+=6J(%M)y9DTR!Plex38Slf4jc)OGj#rxAko4Wowjk$@+4TfRf5F0L%j)n(?wGuA z(<wLdjdxAzowob_^P6((|NV+(d@$wHPhUn|)qgvFX!dbDakyk-!(P!aV~@x!))Pkx zowu$%xGUlBi_-oNCpjwDeff}~b}u5Qk+n%uS;eB}nihZag3srF&1H9*)ofT9VHB~F zo#*+j#ru_x&ANVU&O48jE94&YHt*fJYlZmQsoA-Y=Vh*4BfZLuW2&Tn<W`&R(3^8y zEGC}V5MUH9u5qbXd-G+1f~i}2pG}uOdMAZDM)C=B+=<JtWiERgv#A7bImUV0?#s@e zt~Ck~{Dw(7X17+ZS)WuFpI&e}P~fV__rfn<mVa+_oc!IoCnoIghe?+&ElYpBVtV#J zUBStkF&d?eSGPBG-cSt?^A{8izbo_j=cAqdxejO6)W0rZD?GjT^TZiPSM6BpVszxp z!HbD~i5DNMbIxEo>ohwu@8agf7Iq%v;11S?vpRNcZ{FO}OMZ0q*0tXsFNdtCZ{x3e z<6$++z~A9<wxmGu+Cql<yaO%EwFUQ>_(#lgPB?vj2V2n_*#qY{2{BLq%xEKEb^Ya? zSLwGHw`=u8*F@)>tyH@u@ZaNEpIctIQNqHjyS**9{@wraD7%E<Ew`iF7V~z=Crs+l zXW>3{^MdN0^M+|QQ*PNtuXmS;+gJVm?Xs1Ia);)mRhne4mYw%upHi~G6Sm-c%knK% z9d9Vi*s@P`qtcV#{9#hZ_^x+VEZ)j{dissW=T>oksMp%#bK|(Y?~(L1%rjT)c0RdP zLA77e+U3KFb?f%Nn6);{GGT?b`u0upo@Z&*=3TpHwIEM=rQV+F*L1zO3>>R6oUcpl z*PG#KFI02rU&Ye<$#<5@Z#8?~u+=U-{f|Lo-oald6m$2i$!%DAi#a;uw91!FGkG@s zNb60BTFGO4T5nq`cleI3U%zgNBy6fH__Zfof6g1h?z-lS)?H=~UsTVXdNlHAVfmWr z7tZe9y5-XX_gm?@vfn?}%uSY>^Ehw<yN7&9d`Hj3LY4JRPNx{2G3$CWRn%R+-RHAF zwxi|BjtyT8a_%;-kKcb|y2IQhrQYIGQeLNgtW|n<wp!YDo48`}-mV?eM_hO8iDUMD z%&_Lt>1D?o!wWX+Pg!KlT(hWnCF48JeV1nk`~I79Xznu3l{y~;R|Qx`Ouo~Q&=mCk zGYexa?@|-a*L%;D207+8o$7K8u%4oHSMp=G<k_2gixZkH1uq;5U$b7KvWYo+_wviv z&U#*C|F`qpEh**=msi?k&*{qU;?0!TFEDym`NOP+bvoN0-#O|Vtu#Jb9XQyceyR9w z!{+N{2UoRoNq)IyS^KA|=B2);>O7%T#ywn$@(T}yY}#&+SbOZ%yOP7l{xrNSjG4Kg zw`I%DG`X0o2R1y+>;KomEcIdP$#<FE(Muxp|AcVp9N&23vdiC?FY~+mraWTgV%K3e zzOcw!?zr&bSfR4XjHYhyUij;#eW-k)e>3C*!`n6K57`tXud_SIp7Uf+a&<Hj;C8TW z5u5ME$HY-P*PDCImr25=OixzCo%4OQG;7PFmy-G{2j<_HmBk*p`bWsBX{|x}MghH? zg$p7-I)7#_h~KdJcgydoxfi3?+Vt(Sn$g7iRB9{R57D~$|7&^*;|h#r80UQ7bHD#_ z;SJ`q?#{>G&j@C&J-RG!*%O^hSr6Y|->mVP)l|^++LZG6`%88T%{}UItNK8Ya^b>+ z2@@ZN&tmd=VcBir&bMKL*}^{s9T~s#nr8=jSZ)*LKO(^2F-LjXF69-TnK_JBGY?KS z-SJSNV#n0;E=3kRuS?goHnGh+&U-y4S90B{3zJPU4K5s>#?PeS%`T{Ma7I^3kHXYQ zmt_fFQ58unOB~%L6+f!16B3zcxbaiU1O+kq4@PbW8fP5Z@##dn(DlU$HZ7lhZ>F~% zGzgJc_wW7h`@jGE{#$YF`gQTNU(6G|<`q`^9r^K(^~Hs|`D>gXT^B6R>PkJSefvh2 zl6B64(i@(0F9>aY@gVppcgc%af4OUV{$@qI{O$WjZQIv&wxc11r=~Bln>Jg;YT3%( zNrkxyT8ytglypU}zL&lBZ-v;7`i1{4rp#|!y5JhyeUnKnWhZ3k3rT-=x^=s1?Tf;P z3${P}dW=o}kHVVCG5<o1`Z>?866=jSc_D>0CMDWCZEsMd>s_s>y(-s>43(C-is;BJ z?!34~%TM{=9OHVkydUC%E|SSxYPaTUJZCORnx=Ior9o4)_HpWKZC=N?;ycr){(SRa z@s5n$`OjYpBmJ5kB`q!+AMR({c6!ggUpAk<|E`_*`LuM{jIN0%cWbrlSuCvU>iqO! zU*4UzPDR_W)0ZMxKh86qqaa&!vM0BFejbnE_I2A%1&G{YjlCGKu&6KUzTGRk4VF!N zo}^6bwA?7S#AijAbjR<cBj(j9(~d;3OpTb_8ooNAQs`TsSL9(oyU>OAyDt7%5ug3? zwd;}Ftq*7Z(@HZ~-F4??n3BN9NuEtc@*DRFX1c^_3aWie*z)<AU`Q~-Y{$YSn;%~f znY`O5wOeaejpoBFzf}JF^+rk|2^q=@MOIvkwl;WwKI-<2>wo_h$JYygoSoeBdr!08 z70I$S6F+EtzWDm~EKRw%-LvN3-s_=v*rP0NcIbxV5xR;T5nh*bj=!4qQTM~Ax7l|l z&3c(G+;VQ&)VnE+ORsSD+Rm^4=C3AMEhK*Eapug~kAfSPomu%qdr$HgrxwA0mwzLC zKiXY*kmf#dYK{^&BTJoRgJ{xZr|BnE??oAGYgFBHQNmn^M{aH3%WI8k>`pRk`U=n4 zx#se>xLUDV8Z3Edayy8xU=Fv*)njbI#-&dsWlz06{FcX#S^SUe?OXh&6{aWF=oMRC zpZUYz!ANmysXC9%+ZX*WFCVu~Ot25%c(U-H<OGSuoA_-G-+x@C%(-ge+9RyDX8jFV z)D>8@r^@F<*VWjDmv{Jtx)1!zKmK^?L6?nh*cs*pS<Ts1`p4t(jm>48wn71+Yy7?+ z(&RnBbj*EAh=D3=+MKoJPP)-4k@jX=LsAZMDZY3ge6;omv+D}Z2e~YNizgI(;r+3H zZ*jd#SW3WsuOg3BFOFA|H7X(&!C96kTm-dZXY?{(QTJNEZT{xWj|*bE!(4wa6{w!C z8+>Wf%%cUb4~1RT*?ag!qoY;o>9iV^hir=H3TA)4@glsW>UDFvM)wva_r^_pp>rQ5 zpS%A0;fa{<g2{1qY3Fv_e_zPAs_}_x@4q|hiw+)m=vcpytC6p0ZzhkT#}b*gFssHZ z``mMRCEO#9e16T{cJue<*>7f7aTFd4@BC1ByNAg#uOa8PVM6u9wI02WI)Ml5O{Xkc z`65o)Qq0$RGM9wuw6LwNe6KcS#|uw36qNj*Ag;M(`T5SU-9N9rV(Wck*)yZ+@7sw7 z#M!nxRpjrL?KgB>r?%qUyEPLEF3)(ouldf?{Yno-moXfzVmx7LbX0H_^L@@kmZsm? zZVPP*zhNJ|^1>?1HE%`wl)lHseNnPlEzfeQq0D>Y9|iGs{S|RDQZ~Mo`o913-}{xd z$Irapv+i^KJ9En=d|nznci$)59`U><<Eb?Niiprkt+#oOp=qlpSI)Lg&`|td>agI3 nLB{d5URSez*E29M{Qqz79v8!K^|B`e0|SGntDnm{r-UW|o)ab> literal 0 HcmV?d00001 diff --git a/imagenet-simple-labels.json b/imagenet-simple-labels.json new file mode 100644 index 0000000..4528298 --- /dev/null +++ b/imagenet-simple-labels.json @@ -0,0 +1,1000 @@ +["tench", +"goldfish", +"great white shark", +"tiger shark", +"hammerhead shark", +"electric ray", +"stingray", +"cock", +"hen", +"ostrich", +"brambling", +"goldfinch", +"house finch", +"junco", +"indigo bunting", +"American robin", +"bulbul", +"jay", +"magpie", +"chickadee", +"American dipper", +"kite", +"bald eagle", +"vulture", +"great grey owl", +"fire salamander", +"smooth newt", +"newt", +"spotted salamander", +"axolotl", +"American bullfrog", +"tree frog", +"tailed frog", +"loggerhead sea turtle", +"leatherback sea turtle", +"mud turtle", +"terrapin", +"box turtle", +"banded gecko", +"green iguana", +"Carolina anole", +"desert grassland whiptail lizard", +"agama", +"frilled-necked lizard", +"alligator lizard", +"Gila monster", +"European green lizard", +"chameleon", +"Komodo dragon", +"Nile crocodile", +"American alligator", +"triceratops", +"worm snake", +"ring-necked snake", +"eastern hog-nosed snake", +"smooth green snake", +"kingsnake", +"garter snake", +"water snake", +"vine snake", +"night snake", +"boa constrictor", +"African rock python", +"Indian cobra", +"green mamba", +"sea snake", +"Saharan horned viper", +"eastern diamondback rattlesnake", +"sidewinder", +"trilobite", +"harvestman", +"scorpion", +"yellow garden spider", +"barn spider", +"European garden spider", +"southern black widow", +"tarantula", +"wolf spider", +"tick", +"centipede", +"black grouse", +"ptarmigan", +"ruffed grouse", +"prairie grouse", +"peacock", +"quail", +"partridge", +"grey parrot", +"macaw", +"sulphur-crested cockatoo", +"lorikeet", +"coucal", +"bee eater", +"hornbill", +"hummingbird", +"jacamar", +"toucan", +"duck", +"red-breasted merganser", +"goose", +"black swan", +"tusker", +"echidna", +"platypus", +"wallaby", +"koala", +"wombat", +"jellyfish", +"sea anemone", +"brain coral", +"flatworm", +"nematode", +"conch", +"snail", +"slug", +"sea slug", +"chiton", +"chambered nautilus", +"Dungeness crab", +"rock crab", +"fiddler crab", +"red king crab", +"American lobster", +"spiny lobster", +"crayfish", +"hermit crab", +"isopod", +"white stork", +"black stork", +"spoonbill", +"flamingo", +"little blue heron", +"great egret", +"bittern", +"crane", +"limpkin", +"common gallinule", +"American coot", +"bustard", +"ruddy turnstone", +"dunlin", +"common redshank", +"dowitcher", +"oystercatcher", +"pelican", +"king penguin", +"albatross", +"grey whale", +"killer whale", +"dugong", +"sea lion", +"Chihuahua", +"Japanese Chin", +"Maltese", +"Pekingese", +"Shih Tzu", +"King Charles Spaniel", +"Papillon", +"toy terrier", +"Rhodesian Ridgeback", +"Afghan Hound", +"Basset Hound", +"Beagle", +"Bloodhound", +"Bluetick Coonhound", +"Black and Tan Coonhound", +"Treeing Walker Coonhound", +"English foxhound", +"Redbone Coonhound", +"borzoi", +"Irish Wolfhound", +"Italian Greyhound", +"Whippet", +"Ibizan Hound", +"Norwegian Elkhound", +"Otterhound", +"Saluki", +"Scottish Deerhound", +"Weimaraner", +"Staffordshire Bull Terrier", +"American Staffordshire Terrier", +"Bedlington Terrier", +"Border Terrier", +"Kerry Blue Terrier", +"Irish Terrier", +"Norfolk Terrier", +"Norwich Terrier", +"Yorkshire Terrier", +"Wire Fox Terrier", +"Lakeland Terrier", +"Sealyham Terrier", +"Airedale Terrier", +"Cairn Terrier", +"Australian Terrier", +"Dandie Dinmont Terrier", +"Boston Terrier", +"Miniature Schnauzer", +"Giant Schnauzer", +"Standard Schnauzer", +"Scottish Terrier", +"Tibetan Terrier", +"Australian Silky Terrier", +"Soft-coated Wheaten Terrier", +"West Highland White Terrier", +"Lhasa Apso", +"Flat-Coated Retriever", +"Curly-coated Retriever", +"Golden Retriever", +"Labrador Retriever", +"Chesapeake Bay Retriever", +"German Shorthaired Pointer", +"Vizsla", +"English Setter", +"Irish Setter", +"Gordon Setter", +"Brittany", +"Clumber Spaniel", +"English Springer Spaniel", +"Welsh Springer Spaniel", +"Cocker Spaniels", +"Sussex Spaniel", +"Irish Water Spaniel", +"Kuvasz", +"Schipperke", +"Groenendael", +"Malinois", +"Briard", +"Australian Kelpie", +"Komondor", +"Old English Sheepdog", +"Shetland Sheepdog", +"collie", +"Border Collie", +"Bouvier des Flandres", +"Rottweiler", +"German Shepherd Dog", +"Dobermann", +"Miniature Pinscher", +"Greater Swiss Mountain Dog", +"Bernese Mountain Dog", +"Appenzeller Sennenhund", +"Entlebucher Sennenhund", +"Boxer", +"Bullmastiff", +"Tibetan Mastiff", +"French Bulldog", +"Great Dane", +"St. Bernard", +"husky", +"Alaskan Malamute", +"Siberian Husky", +"Dalmatian", +"Affenpinscher", +"Basenji", +"pug", +"Leonberger", +"Newfoundland", +"Pyrenean Mountain Dog", +"Samoyed", +"Pomeranian", +"Chow Chow", +"Keeshond", +"Griffon Bruxellois", +"Pembroke Welsh Corgi", +"Cardigan Welsh Corgi", +"Toy Poodle", +"Miniature Poodle", +"Standard Poodle", +"Mexican hairless dog", +"grey wolf", +"Alaskan tundra wolf", +"red wolf", +"coyote", +"dingo", +"dhole", +"African wild dog", +"hyena", +"red fox", +"kit fox", +"Arctic fox", +"grey fox", +"tabby cat", +"tiger cat", +"Persian cat", +"Siamese cat", +"Egyptian Mau", +"cougar", +"lynx", +"leopard", +"snow leopard", +"jaguar", +"lion", +"tiger", +"cheetah", +"brown bear", +"American black bear", +"polar bear", +"sloth bear", +"mongoose", +"meerkat", +"tiger beetle", +"ladybug", +"ground beetle", +"longhorn beetle", +"leaf beetle", +"dung beetle", +"rhinoceros beetle", +"weevil", +"fly", +"bee", +"ant", +"grasshopper", +"cricket", +"stick insect", +"cockroach", +"mantis", +"cicada", +"leafhopper", +"lacewing", +"dragonfly", +"damselfly", +"red admiral", +"ringlet", +"monarch butterfly", +"small white", +"sulphur butterfly", +"gossamer-winged butterfly", +"starfish", +"sea urchin", +"sea cucumber", +"cottontail rabbit", +"hare", +"Angora rabbit", +"hamster", +"porcupine", +"fox squirrel", +"marmot", +"beaver", +"guinea pig", +"common sorrel", +"zebra", +"pig", +"wild boar", +"warthog", +"hippopotamus", +"ox", +"water buffalo", +"bison", +"ram", +"bighorn sheep", +"Alpine ibex", +"hartebeest", +"impala", +"gazelle", +"dromedary", +"llama", +"weasel", +"mink", +"European polecat", +"black-footed ferret", +"otter", +"skunk", +"badger", +"armadillo", +"three-toed sloth", +"orangutan", +"gorilla", +"chimpanzee", +"gibbon", +"siamang", +"guenon", +"patas monkey", +"baboon", +"macaque", +"langur", +"black-and-white colobus", +"proboscis monkey", +"marmoset", +"white-headed capuchin", +"howler monkey", +"titi", +"Geoffroy's spider monkey", +"common squirrel monkey", +"ring-tailed lemur", +"indri", +"Asian elephant", +"African bush elephant", +"red panda", +"giant panda", +"snoek", +"eel", +"coho salmon", +"rock beauty", +"clownfish", +"sturgeon", +"garfish", +"lionfish", +"pufferfish", +"abacus", +"abaya", +"academic gown", +"accordion", +"acoustic guitar", +"aircraft carrier", +"airliner", +"airship", +"altar", +"ambulance", +"amphibious vehicle", +"analog clock", +"apiary", +"apron", +"waste container", +"assault rifle", +"backpack", +"bakery", +"balance beam", +"balloon", +"ballpoint pen", +"Band-Aid", +"banjo", +"baluster", +"barbell", +"barber chair", +"barbershop", +"barn", +"barometer", +"barrel", +"wheelbarrow", +"baseball", +"basketball", +"bassinet", +"bassoon", +"swimming cap", +"bath towel", +"bathtub", +"station wagon", +"lighthouse", +"beaker", +"military cap", +"beer bottle", +"beer glass", +"bell-cot", +"bib", +"tandem bicycle", +"bikini", +"ring binder", +"binoculars", +"birdhouse", +"boathouse", +"bobsleigh", +"bolo tie", +"poke bonnet", +"bookcase", +"bookstore", +"bottle cap", +"bow", +"bow tie", +"brass", +"bra", +"breakwater", +"breastplate", +"broom", +"bucket", +"buckle", +"bulletproof vest", +"high-speed train", +"butcher shop", +"taxicab", +"cauldron", +"candle", +"cannon", +"canoe", +"can opener", +"cardigan", +"car mirror", +"carousel", +"tool kit", +"carton", +"car wheel", +"automated teller machine", +"cassette", +"cassette player", +"castle", +"catamaran", +"CD player", +"cello", +"mobile phone", +"chain", +"chain-link fence", +"chain mail", +"chainsaw", +"chest", +"chiffonier", +"chime", +"china cabinet", +"Christmas stocking", +"church", +"movie theater", +"cleaver", +"cliff dwelling", +"cloak", +"clogs", +"cocktail shaker", +"coffee mug", +"coffeemaker", +"coil", +"combination lock", +"computer keyboard", +"confectionery store", +"container ship", +"convertible", +"corkscrew", +"cornet", +"cowboy boot", +"cowboy hat", +"cradle", +"crane", +"crash helmet", +"crate", +"infant bed", +"Crock Pot", +"croquet ball", +"crutch", +"cuirass", +"dam", +"desk", +"desktop computer", +"rotary dial telephone", +"diaper", +"digital clock", +"digital watch", +"dining table", +"dishcloth", +"dishwasher", +"disc brake", +"dock", +"dog sled", +"dome", +"doormat", +"drilling rig", +"drum", +"drumstick", +"dumbbell", +"Dutch oven", +"electric fan", +"electric guitar", +"electric locomotive", +"entertainment center", +"envelope", +"espresso machine", +"face powder", +"feather boa", +"filing cabinet", +"fireboat", +"fire engine", +"fire screen sheet", +"flagpole", +"flute", +"folding chair", +"football helmet", +"forklift", +"fountain", +"fountain pen", +"four-poster bed", +"freight car", +"French horn", +"frying pan", +"fur coat", +"garbage truck", +"gas mask", +"gas pump", +"goblet", +"go-kart", +"golf ball", +"golf cart", +"gondola", +"gong", +"gown", +"grand piano", +"greenhouse", +"grille", +"grocery store", +"guillotine", +"barrette", +"hair spray", +"half-track", +"hammer", +"hamper", +"hair dryer", +"hand-held computer", +"handkerchief", +"hard disk drive", +"harmonica", +"harp", +"harvester", +"hatchet", +"holster", +"home theater", +"honeycomb", +"hook", +"hoop skirt", +"horizontal bar", +"horse-drawn vehicle", +"hourglass", +"iPod", +"clothes iron", +"jack-o'-lantern", +"jeans", +"jeep", +"T-shirt", +"jigsaw puzzle", +"pulled rickshaw", +"joystick", +"kimono", +"knee pad", +"knot", +"lab coat", +"ladle", +"lampshade", +"laptop computer", +"lawn mower", +"lens cap", +"paper knife", +"library", +"lifeboat", +"lighter", +"limousine", +"ocean liner", +"lipstick", +"slip-on shoe", +"lotion", +"speaker", +"loupe", +"sawmill", +"magnetic compass", +"mail bag", +"mailbox", +"tights", +"tank suit", +"manhole cover", +"maraca", +"marimba", +"mask", +"match", +"maypole", +"maze", +"measuring cup", +"medicine chest", +"megalith", +"microphone", +"microwave oven", +"military uniform", +"milk can", +"minibus", +"miniskirt", +"minivan", +"missile", +"mitten", +"mixing bowl", +"mobile home", +"Model T", +"modem", +"monastery", +"monitor", +"moped", +"mortar", +"square academic cap", +"mosque", +"mosquito net", +"scooter", +"mountain bike", +"tent", +"computer mouse", +"mousetrap", +"moving van", +"muzzle", +"nail", +"neck brace", +"necklace", +"nipple", +"notebook computer", +"obelisk", +"oboe", +"ocarina", +"odometer", +"oil filter", +"organ", +"oscilloscope", +"overskirt", +"bullock cart", +"oxygen mask", +"packet", +"paddle", +"paddle wheel", +"padlock", +"paintbrush", +"pajamas", +"palace", +"pan flute", +"paper towel", +"parachute", +"parallel bars", +"park bench", +"parking meter", +"passenger car", +"patio", +"payphone", +"pedestal", +"pencil case", +"pencil sharpener", +"perfume", +"Petri dish", +"photocopier", +"plectrum", +"Pickelhaube", +"picket fence", +"pickup truck", +"pier", +"piggy bank", +"pill bottle", +"pillow", +"ping-pong ball", +"pinwheel", +"pirate ship", +"pitcher", +"hand plane", +"planetarium", +"plastic bag", +"plate rack", +"plow", +"plunger", +"Polaroid camera", +"pole", +"police van", +"poncho", +"billiard table", +"soda bottle", +"pot", +"potter's wheel", +"power drill", +"prayer rug", +"printer", +"prison", +"projectile", +"projector", +"hockey puck", +"punching bag", +"purse", +"quill", +"quilt", +"race car", +"racket", +"radiator", +"radio", +"radio telescope", +"rain barrel", +"recreational vehicle", +"reel", +"reflex camera", +"refrigerator", +"remote control", +"restaurant", +"revolver", +"rifle", +"rocking chair", +"rotisserie", +"eraser", +"rugby ball", +"ruler", +"running shoe", +"safe", +"safety pin", +"salt shaker", +"sandal", +"sarong", +"saxophone", +"scabbard", +"weighing scale", +"school bus", +"schooner", +"scoreboard", +"CRT screen", +"screw", +"screwdriver", +"seat belt", +"sewing machine", +"shield", +"shoe store", +"shoji", +"shopping basket", +"shopping cart", +"shovel", +"shower cap", +"shower curtain", +"ski", +"ski mask", +"sleeping bag", +"slide rule", +"sliding door", +"slot machine", +"snorkel", +"snowmobile", +"snowplow", +"soap dispenser", +"soccer ball", +"sock", +"solar thermal collector", +"sombrero", +"soup bowl", +"space bar", +"space heater", +"space shuttle", +"spatula", +"motorboat", +"spider web", +"spindle", +"sports car", +"spotlight", +"stage", +"steam locomotive", +"through arch bridge", +"steel drum", +"stethoscope", +"scarf", +"stone wall", +"stopwatch", +"stove", +"strainer", +"tram", +"stretcher", +"couch", +"stupa", +"submarine", +"suit", +"sundial", +"sunglass", +"sunglasses", +"sunscreen", +"suspension bridge", +"mop", +"sweatshirt", +"swimsuit", +"swing", +"switch", +"syringe", +"table lamp", +"tank", +"tape player", +"teapot", +"teddy bear", +"television", +"tennis ball", +"thatched roof", +"front curtain", +"thimble", +"threshing machine", +"throne", +"tile roof", +"toaster", +"tobacco shop", +"toilet seat", +"torch", +"totem pole", +"tow truck", +"toy store", +"tractor", +"semi-trailer truck", +"tray", +"trench coat", +"tricycle", +"trimaran", +"tripod", +"triumphal arch", +"trolleybus", +"trombone", +"tub", +"turnstile", +"typewriter keyboard", +"umbrella", +"unicycle", +"upright piano", +"vacuum cleaner", +"vase", +"vault", +"velvet", +"vending machine", +"vestment", +"viaduct", +"violin", +"volleyball", +"waffle iron", +"wall clock", +"wallet", +"wardrobe", +"military aircraft", +"sink", +"washing machine", +"water bottle", +"water jug", +"water tower", +"whiskey jug", +"whistle", +"wig", +"window screen", +"window shade", +"Windsor tie", +"wine bottle", +"wing", +"wok", +"wooden spoon", +"wool", +"split-rail fence", +"shipwreck", +"yawl", +"yurt", +"website", +"comic book", +"crossword", +"traffic sign", +"traffic light", +"dust jacket", +"menu", +"plate", +"guacamole", +"consomme", +"hot pot", +"trifle", +"ice cream", +"ice pop", +"baguette", +"bagel", +"pretzel", +"cheeseburger", +"hot dog", +"mashed potato", +"cabbage", +"broccoli", +"cauliflower", +"zucchini", +"spaghetti squash", +"acorn squash", +"butternut squash", +"cucumber", +"artichoke", +"bell pepper", +"cardoon", +"mushroom", +"Granny Smith", +"strawberry", +"orange", +"lemon", +"fig", +"pineapple", +"banana", +"jackfruit", +"custard apple", +"pomegranate", +"hay", +"carbonara", +"chocolate syrup", +"dough", +"meatloaf", +"pizza", +"pot pie", +"burrito", +"red wine", +"espresso", +"cup", +"eggnog", +"alp", +"bubble", +"cliff", +"coral reef", +"geyser", +"lakeshore", +"promontory", +"shoal", +"seashore", +"valley", +"volcano", +"baseball player", +"bridegroom", +"scuba diver", +"rapeseed", +"daisy", +"yellow lady's slipper", +"corn", +"acorn", +"rose hip", +"horse chestnut seed", +"coral fungus", +"agaric", +"gyromitra", +"stinkhorn mushroom", +"earth star", +"hen-of-the-woods", +"bolete", +"ear", +"toilet paper"] -- GitLab