diff --git a/Rapport.ipynb b/Rapport.ipynb index 06313e854b60ba0a693bb295fe993e1e1c0d7d9e..ebcc93899c84762cbc359fdd508439586c62f674 100644 --- a/Rapport.ipynb +++ b/Rapport.ipynb @@ -466,121 +466,118 @@ "\n", "## Réseaux de Neurones Artificiels\n", "\n", - "$$Z^{L+1}=W^{L+1}A^{L}+B^{L+1}\\\\\n", - "A^{L+1}=\\sigma(Z^{L+1})$$\n", + "'''\n", + "\\begin{align*}\n", + "Z^{L+1}=W^{L+1}A^{L}+B^{L+1}\\\\\n", + "A^{L+1}=\\sigma(Z^{L+1})\n", + "\\end{align*}\n", + "'''\n", "\n", - "$$C = \\frac{1}{N_{out}}\\sum_{i=1}^{N_{out}} (\\hat{y_i} - y_i)^2$$\n", + "'''\n", + "\\begin{align*}\n", + "C = \\frac{1}{N_{out}}\\sum_{i=1}^{N_{out}} (\\hat{y_i} - y_i)^2\n", + "\\end{align*}\n", + "'''\n", "\n", "### 1\n", "\n", - "$$\\begin{align*}\n", + "'''\n", + "\\begin{align*}\n", "\\sigma(x)&=\\frac{1}{1+e^{-x}} \\\\\n", "\\Rightarrow \\sigma'(x)&=\\frac{-e^{-x}}{-(1+e^{-x})^2} \\\\\n", "\\Rightarrow \\sigma'(x)&=\\frac{1}{1+e^{-x}}(\\frac{1+e^{-x}-1}{1+e^{-x}}) \\\\\n", "\\Rightarrow \\sigma'(x)&=\\sigma(\\frac{1+e^{-x}}{1+e^{-x}}-\\frac{1}{1+e^{-x}}) \\\\\n", "\\Rightarrow \\sigma'(x)&=\\sigma(1-\\sigma)\n", - "\\end{align*}$$\n", + "\\end{align*}\n", + "'''\n", "\n", "### 2\n", "\n", - "$$\n", + "'''\n", "\\begin{align*}\n", "\\frac{\\partial C}{\\partial A^{(2)}} ? \\\\\n", "\\Rightarrow \\frac{\\partial C}{\\partial a_i^{(2)}}&=\\frac{1}{N_{out}}\\sum_{i=1}^{N_{out}} (a_i^{(2)} - y_i)^2 \\\\\n", "\\Rightarrow \\frac{\\partial C}{\\partial a_i^{(2)}}&=\\frac{2}{N_{out}} (a_i^{(2)} - y_i) \\\\\n", "\\Rightarrow \\frac{\\partial C}{\\partial A^{(2)}}&=\\frac{2}{N_{out}} (A^{(2)} - Y)\n", "\\end{align*}\n", - "$$\n", + "'''\n", "\n", "### 3\n", "\n", - "$$\n", + "'''\n", "\\begin{align*}\n", "\\frac{\\partial C}{\\partial Z^{(2)}}&=\\frac{\\partial C}{\\partial A^{(2)}}\\frac{\\partial A^{(2)}}{\\partial Z^{(2)}} \\\\\n", "A^{(2)}&=\\sigma (Z^{(2)}) \\\\\n", "\\frac{\\partial A^{(2)}}{\\partial Z^{(2)}}&=A^{(2)}(1-A^{(2)}) \\\\\n", "\\Rightarrow \\frac{\\partial C}{\\partial Z^{(2)}}&=\\frac{\\partial C}{\\partial A^{(2)}}[A^{(2)}(1-A^{(2)})]\n", "\\end{align*}\n", - "$$\n", + "'''\n", "\n", "### 4\n", "\n", - "$$\n", + "'''\n", "\\begin{align*}\n", "\\frac{\\partial C}{\\partial W^{(2)}}&=\\frac{\\partial C}{\\partial Z^{(2)}}\\frac{\\partial Z^{(2)}}{\\partial W^{(2)}} \\\\\n", "Z^{(2)}&=W^{(2)}A^{(1)}+B^{(2)} \\\\\n", "\\frac{\\partial Z^{(2)}}{\\partial W^{(2)}}&=A^{(1)} \\\\\n", "\\Rightarrow \\frac{\\partial C}{\\partial W^{(2)}}&=\\frac{\\partial C}{\\partial Z^{(2)}}A^{(1)}\n", "\\end{align*}\n", - "$$\n", + "'''\n", "\n", "### 5\n", "\n", - "$$\n", + "'''\n", "\\begin{align*}\n", "\\frac{\\partial C}{\\partial B^{(2)}}&=\\frac{\\partial C}{\\partial Z^{(2)}}\\frac{\\partial Z^{(2)}}{\\partial B^{(2)}} \\\\\n", "Z^{(2)}&=W^{(2)}A^{(1)}+B^{(2)} \\\\\n", "\\frac{\\partial Z^{(2)}}{\\partial B^{(2)}}&=1 \\\\\n", "\\Rightarrow \\frac{\\partial C}{\\partial B^{(2)}}&=\\frac{\\partial C}{\\partial Z^{(2)}}\n", "\\end{align*}\n", - "$$\n", + "'''\n", "\n", "### 6\n", "\n", - "$$\n", + "'''\n", "\\begin{align*}\n", "\\frac{\\partial C}{\\partial A^{(1)}}&=\\frac{\\partial C}{\\partial Z^{(2)}}\\frac{\\partial Z^{(2)}}{\\partial A^{(1)}} \\\\\n", "Z^{(2)}&=W^{(2)}A^{(1)}+B^{(2)} \\\\\n", "\\frac{\\partial Z^{(2)}}{\\partial A^{(1)}}&=W^{(2)} \\\\\n", "\\Rightarrow \\frac{\\partial C}{\\partial A^{(1)}}&=\\frac{\\partial C}{\\partial Z^{(2)}}W^{(2)}\n", "\\end{align*}\n", - "$$\n", + "'''\n", "\n", "### 7\n", "\n", - "$$\n", + "'''\n", "\\begin{align*}\n", "\\frac{\\partial C}{\\partial Z^{(1)}}&=\\frac{\\partial C}{\\partial A^{(1)}}\\frac{\\partial A^{(1)}}{\\partial Z^{(1)}} \\\\\n", "A^{(1)}&=\\sigma (Z^{(1)}) \\\\\n", "\\frac{\\partial A^{(1)}}{\\partial Z^{(1)}}&=A^{(1)}(1-A^{(1)}) \\\\\n", "\\Rightarrow \\frac{\\partial C}{\\partial Z^{(1)}}&=\\frac{\\partial C}{\\partial A^{(1)}}[A^{(1)}(1-A^{(1)})]\n", "\\end{align*}\n", - "$$\n", + "'''\n", "\n", "### 8\n", "\n", - "$$\n", + "'''\n", "\\begin{align*}\n", "\\frac{\\partial C}{\\partial W^{(1)}}&=\\frac{\\partial C}{\\partial Z^{(1)}}\\frac{\\partial Z^{(1)}}{\\partial W^{(1)}} \\\\\n", "Z^{(1)}&=W^{(1)}A^{(0)}+B^{(1)} \\\\\n", "\\frac{\\partial Z^{(1)}}{\\partial W^{(1)}}&=A^{(0)} \\\\\n", "\\Rightarrow \\frac{\\partial C}{\\partial W^{(1)}}&=\\frac{\\partial C}{\\partial Z^{(1)}}A^{(0)}\n", "\\end{align*}\n", - "$$\n", + "'''\n", "\n", "### 9\n", "\n", - "$$\n", + "'''\n", "\\begin{align*}\n", "\\frac{\\partial C}{\\partial B^{(1)}}&=\\frac{\\partial C}{\\partial Z^{(1)}}\\frac{\\partial Z^{(1)}}{\\partial B^{(1)}} \\\\\n", "Z^{(1)}&=W^{(1)}A^{(0)}+B^{(1)} \\\\\n", "\\frac{\\partial Z^{(1)}}{\\partial B^{(1)}}&=1 \\\\\n", "\\Rightarrow \\frac{\\partial C}{\\partial B^{(1)}}&=\\frac{\\partial C}{\\partial Z^{(1)}}\n", "\\end{align*}\n", - "$$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$\\begin{align*}\n", - "\\sigma(x)&=\\frac{1}{1+e^{-x}} \\\\\n", - "\\Rightarrow \\sigma'(x)&=\\frac{-e^{-x}}{-(1+e^{-x})^2} \\\\\n", - "\\Rightarrow \\sigma'(x)&=\\frac{1}{1+e^{-x}}(\\frac{1+e^{-x}-1}{1+e^{-x}}) \\\\\n", - "\\Rightarrow \\sigma'(x)&=\\sigma(\\frac{1+e^{-x}}{1+e^{-x}}-\\frac{1}{1+e^{-x}}) \\\\\n", - "\\Rightarrow \\sigma'(x)&=\\sigma(1-\\sigma)\n", - "\\end{align*}$$" + "'''\n" ] }, {